Sample records for pumped uv converter

  1. Single-mode, All-Solid-State Nd:YAG Laser Pumped UV Converter

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Armstrong, Darrell, J.; Edwards, William C.; Singh, Upendra N.

    2008-01-01

    In this paper, the status of a high-energy, all solid-state Nd:YAG laser pumped nonlinear optics based UV converter development is discussed. The high-energy UV transmitter technology is being developed for ozone sensing applications from space based platforms using differential lidar technique. The goal is to generate greater than 200 mJ/pulse with 10-50 Hz PRF at wavelengths of 308 nm and 320 nm. A diode-pumped, all-solid-state and single longitudinal mode Nd:YAG laser designed to provide conductively cooled operation at 1064 nm has been built and tested. Currently, this pump laser provides an output pulse energy of >1 J/pulse at 50 Hz PRF and a pulsewidth of 22 ns with an electrical-to-optical system efficiency of greater than 7% and a M(sup 2) value of <2. The single frequency UV converter arrangement basically consists of an IR Optical Parametric Oscillator (OPO) and a Sum Frequency Generator (SFG) setups that are pumped by 532 nm wavelength obtained via Second Harmonic Generation (SHG). In this paper, the operation of an inter cavity SFG with CW laser seeding scheme generating 320 nm wavelength is presented. Efforts are underway to improve conversion efficiency of this mJ class UV converter by modifying the spatial beam profile of the pump laser.

  2. Charge-pump voltage converter

    DOEpatents

    Brainard, John P [Albuquerque, NM; Christenson, Todd R [Albuquerque, NM

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  3. Recent Progress Made in the Development of High-Energy UV Transmitter

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Singh, Upendra N.; Armstrong, Darrell J.

    2007-01-01

    In this paper, the status of an all-solid-state UV converter development for ozone sensing applications is discussed. A high energy Nd:YAG laser for pumping the UV converter arrangement was recently reported. The pump is an all-solid-state, single longitudinal mode, and conductively cooled Nd:YAG laser operating at 1064 nm wavelength. Currently, this pump laser provides an output pulse energy of greater than 1J/pulse at 50 Hz PRF and a pulsewidth of 22 ns with an electrical-to-optical system efficiency of greater than 7% and a M(sup 2) value of approx. 2. The spatial profile of the output beam is a rectangular super Gaussian. This Nd:YAG pump laser has been developed to pump the nonlinear optics based UV converter arrangement to generate 320 nm and 308 nm wavelengths by means of 532 nm wavelength. Previously, this UV converter arrangement has demonstrated IR-to-UV conversion efficiency of 24% using a flash lamp pumped laser providing a round, flat top spatial profile. Recently, the UV converter was assembled and tested at NASA LaRC for pumping with the diode pumped Nd:YAG laser. With current spatial profile, the UV converter was made operational. Current efforts to maximize the nonlinear conversion efficiency by refining its spatial profile to match RISTRA OPO requirements are progressing.

  4. High Energy, Single-Mode, All-Solid-State and Tunable UV Laser Transmitter

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Singh, Upendra N.; Hovis, FLoyd

    2007-01-01

    A high energy, single mode, all solid-state Nd:YAG laser primarily for pumping an UV converter is developed. Greater than 1 J/pulse at 50 HZ PRF and pulse widths around 22 ns have been demonstrated. Higher energy, greater efficiency may be possible. Refinements are known and practical to implement. Technology Demonstration of a highly efficient, high-pulse-energy, single mode UV wavelength generation using flash lamp pumped laser has been achieved. Greater than 90% pump depletion is observed. 190 mJ extra-cavity SFG; IR to UV efficiency > 21% (> 27% for 1 mJ seed). 160 mJ intra-cavity SFG; IR to UV efficiency up to 24% Fluence < 1 J/sq cm for most beams. The pump beam quality of the Nd:YAG pump laser is being refined to match or exceed the above UV converter results. Currently the Nd:YAG pump laser development is a technology demonstration. System can be engineered for compact packaging.

  5. Advanced thermionic converter developments with microwave external pumping

    NASA Technical Reports Server (NTRS)

    Chiu, H. S.; Shaw, D. T.; Manikopulos, C. N.; Lee, C. H.

    1977-01-01

    This work reports ion generation in a cesium thermionic converter as part of advanced-model thermionic converter development research. A microwave with frequency in the range between 1-2 GHz is used to externally pump a thermionic converter as part of our effort in the verification of Lam's theory. It is found that the motive peak as predicted in the theory disappears whenever microwave power is used to excite the cesium plasma of the converter. The electron temperature is effectively heated by the microwave and the experimental data agrees with theory in the low-power output region.

  6. UV diode-pumped solid state laser for medical applications

    NASA Astrophysics Data System (ADS)

    Apollonov, Victor V.; Konstantinov, K. V.; Sirotkin, A. A.

    1999-07-01

    A compact, solid-state, high-efficiency, and safe UV laser medical system with optical fiber output was created for treatment of destructive forms of pulmonary tuberculosis. A frequency-quadruped quasi-CW Nd:YVO4 laser system pumped by laser-diode array is investigated with various resonator configurations. A longitudinal end-pumping scheme was used in a compact acousto-optical Q-switched laser for producing stable pulses of UV radiation at the repetition frequency 10-20 kHz and the duration 7-10 ns with the fiber-guide output power exceeding 10 mW.

  7. Effect of laser speckle on light from laser diode-pumped phosphor-converted light sources.

    PubMed

    Aquino, Felipe; Jadwisienczak, Wojciech M; Rahman, Faiz

    2017-01-10

    Laser diode (LD) pumped white light sources are being developed as an alternative to light-emitting diode-pumped sources for high efficiency and/or high brightness applications. While several performance metrics of laser-pumped phosphor-converted light sources have been investigated, the effect of laser speckle has not been sufficiently explored. This paper describes our experimental studies on how laser speckle affects the behavior of light from laser-excited phosphor lamps. A single LD pumping a phosphor plate was the geometry explored in this work. Overall, our findings are that the down-converted light did not exhibit any speckle, whereas speckle was present in the residual pump light but much reduced from that in direct laser light. Furthermore, a thicker coating of small-grained phosphors served to effectively reduce speckle through static pump light diffusion in the phosphor coating. Our investigations showed that speckle is not of concern in illumination from LD-pumped phosphor-converted light sources.

  8. New down-converter for UV-stable perovskite solar cells: Phosphor-in-glass

    NASA Astrophysics Data System (ADS)

    Roh, Hee-Suk; Han, Gill Sang; Lee, Seongha; Kim, Sanghyun; Choi, Sungwoo; Yoon, Chulsoo; Lee, Jung-Kun

    2018-06-01

    Degradation of hybrid lead halide perovskite by UV light is a crucial issue that limits the commercialization of lead halide perovskite solar cells (PSCs). To address this problem, phosphor-in-glass (PiG) is used to convert UV to visible light. Down-conversion of UV light by PiG dramatically increases UV-stability of PSCs and enables PSCs to harvest UV light that is currently wasted. Performance of PSCs with PiG layer does not change significantly during 100 h-long UV-irradiation, while conventional PSCs degrade quickly by 1 h-long UV-irradiation. After 100 h long UV-irradiation, power conversion efficiency of PSCs with PiG is 440% larger than that of conventional PSCs. This result points a direction toward PSCs which are very stable and highly efficient under UV light.

  9. Performances achieved to the Grid by a Full Power Converter Used in a Variable Speed Pumped Storage Plant

    NASA Astrophysics Data System (ADS)

    Claude, Jean-Michel

    2017-04-01

    The growth of renewable energies likes wind and solar requires pumped-storage plants to increase their performances to stabilize grid frequency and voltage. The introduction of a full-power converter constitutes the ultimate step forward to meet the requirement in a safe, reliable and sustainable manner. This article quickly introduces the converter topology and technology before describing the performances it aims to deliver to the grid. Finally, converter bypass is discussed.

  10. Luminescence- and nanoparticle-mediated increase of light absorption by photoreceptor cells: Converting UV light to visible light.

    PubMed

    Li, Lei; Sahi, Sunil K; Peng, Mingying; Lee, Eric B; Ma, Lun; Wojtowicz, Jennifer L; Malin, John H; Chen, Wei

    2016-02-10

    We developed new optic devices - singly-doped luminescence glasses and nanoparticle-coated lenses that convert UV light to visible light - for improvement of visual system functions. Tb(3+) or Eu(3+) singly-doped borate glasses or CdS-quantum dot (CdS-QD) coated lenses efficiently convert UV light to 542 nm or 613 nm wavelength narrow-band green or red light, or wide-spectrum white light, and thereby provide extra visible light to the eye. In zebrafish (wild-type larvae and adult control animals, retinal degeneration mutants, and light-induced photoreceptor cell degeneration models), the use of Tb(3+) or Eu(3+) doped luminescence glass or CdS-QD coated glass lenses provide additional visible light to the rod and cone photoreceptor cells, and thereby improve the visual system functions. The data provide proof-of-concept for the future development of optic devices for improvement of visual system functions in patients who suffer from photoreceptor cell degeneration or related retinal diseases.

  11. Light-emitting Ga-oxide nanocrystals in glass: a new paradigm for low-cost and robust UV-to-visible solar-blind converters and UV emitters.

    PubMed

    Sigaev, Vladimir N; Golubev, Nikita V; Ignat'eva, Elena S; Paleari, Alberto; Lorenzi, Roberto

    2014-01-01

    Wide-bandgap nanocrystals are an inexhaustible source of tuneable functions potentially addressing most of the demand for new light emitting systems. However, the implementation of nanocrystal properties in real devices is not straightforward if a robust and stable optical component is required as a final result. The achievement of efficient light emission from dense dispersions of Ga-oxide nanocrystals in UV-grade glass can be a breakthrough in this regard. Such a result would permit the fabrication of low cost UV-to-visible converters for monitoring UV-emitting events on a large-scale - from invisible hydrogen flames to corona dispersions. From this perspective, γ-Ga₂O₃ nanocrystals are developed by phase separation in Ga-alkali-germanosilicate glasses, obtaining optical materials based on a UV transparent matrix. Band-to-band UV-excitation of light emission from donor-acceptor pair (DAP) recombination is investigated for the first time in embedded γ-Ga₂O₃. The analysis of the decay kinetics gives unprecedented evidence that nanosized confinement of DAP recombination can force a nanophase to the efficient response of exactly balanced DAPs. The results, including a proof of concept of UV-to-visible viewer, definitely demonstrate the feasibility of workable glass-based fully inorganic nanostructured materials with emission properties borrowed from Ga₂O₃ single-crystals and tailored by the nanocrystal size.

  12. Design considerations for optically pumped, UV and XUV lasers in the Be isoelectronic sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, M.; Trebes, J.

    1984-09-01

    Intense line radiation from plasmas of MnVI, PIX, AlV, AlVIII, AlIX, and AlXI may be used to selectively pump population inversions in plasmas of Be-like CIII, NIV, FVI, NeVII, NaVIII, and MgIX. Quasi-cw lasing is possible on 4p-3d and 4f-3d transitions at wavelengths from 2177 A to 230 A. At the XUV wavelengths, 1 J, 10 ns laser output pulses at 10/sup 8/ W power levels are shown possible with existing discharge technology. Since all six laser ions are in the Be isoelectronic sequence, detailed studies of the optical pumping process at UV wavelengths in CIII would provide scaling parametersmore » for the less accessible XUV wavelengths.« less

  13. Nanotechnology in lithium niobate for integrated optic frequency conversion in the UV

    NASA Astrophysics Data System (ADS)

    Busacca, Alessandro C.; Santini, Claudia; Oliveri, Luigi; Riva-Sanseverino, Stefano; Parisi, Antonino; Cino, Alfonso C.; Assanto, Gaetano

    2017-11-01

    In the domain of Earth Explorer satellites nanoengineered nonlinear crystals can optimize UV tunable solid-state laser converters. Lightweight sources can be based on Lithium Niobate (LN) domain engineering by electric field poling and guided wave interactions. In this Communication we report the preliminary experimental results and the very first demonstration of UltraViolet second-harmonic generation by first-order quasi-phase-matching in a surface-periodically-poled proton-exchanged LN waveguide. The pump source was a Ti-Sapphire laser with a tunability range of 700- 980 nm and a 40 GHz linewidth. We have measured UV continuous-wave light at 390 nm by means of a lock-in amplifier and of a photodiode with enhanced response in the UV. Measured conversion efficiency was about 1%W-1cm-2. QPM experiments show good agreement with theory and pave the way for a future implementation of the technique in materials less prone to photorefractive damage and wider transparency in the UV, such as Lithium Tantalate.

  14. Optically pumped quantum-dot Cd(Zn)Se/ZnSe laser and microchip converter for yellow-green spectral region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutsenko, E V; Voinilovich, A G; Rzheutskii, N V

    2013-05-31

    The room temperature laser generation in the yellow-green ({lambda} = 558.5-566.7 nm) spectral range has been demonstrated under optical pumping by a pulsed nitrogen laser of Cd(Zn)Se/ZnSe quantum dot heterostructures. The maximum achieved laser wavelength was as high as {lambda} = 566.7 nm at a laser cavity length of 945 {mu}m. High values of both the output pulsed power (up to 50 W) and the external differential quantum efficiency ({approx}60%) were obtained at a cavity length of 435 {mu}m. Both a high quality of the laser heterostructure and a low lasing threshold ({approx}2 kW cm{sup -2}) make it possible tomore » use a pulsed InGaN laser diode as a pump source. A laser microchip converter based on this heterostructure has demonstrated a maximum output pulse power of {approx}90 mW at {lambda} = 560 nm. The microchip converter was placed in a standard TO-18 (5.6 mm in diameter) laser diode package. (semiconductor lasers. physics and technology)« less

  15. Jitter-correction for IR/UV-XUV pump-probe experiments at the FLASH free-electron laser

    DOE PAGES

    Savelyev, Evgeny; Boll, Rebecca; Bomme, Cedric; ...

    2017-04-10

    In pump-probe experiments employing a free-electron laser (FEL) in combination with a synchronized optical femtosecond laser, the arrival-time jitter between the FEL pulse and the optical laser pulse often severely limits the temporal resolution that can be achieved. Here, we present a pump-probe experiment on the UV-induced dissociation of 2,6-difluoroiodobenzene C 6H 3F 2I) molecules performed at the FLASH FEL that takes advantage of recent upgrades of the FLASH timing and synchronization system to obtain high-quality data that are not limited by the FEL arrival-time jitter. Here, we discuss in detail the necessary data analysis steps and describe the originmore » of the time-dependent effects in the yields and kinetic energies of the fragment ions that we observe in the experiment.« less

  16. UV Generation of 25 mJ/pulse at 289 nm for Ozone Lidar

    NASA Technical Reports Server (NTRS)

    Storm, Mark E.; Marsh, Waverly; Barnes, James C.

    1998-01-01

    Our paper describes a technique for generating tunable UV laser radiation between 250-300 nm capable of energies up to 30-5O mJ/pulse. The tunability of this source is attractive for selecting ozone absorption cross sections which are optimal for ozone DIAL detection throughout the troposphere. A Nd:YAG laser is used to pump a pulsed titanium sapphire laser which is then frequency tripled into the UV. Titanium sapphire (TiS) lases robustly between 750-900 nm. In initial experiments we have converted 110 mJ of 867 nm from a TiS laser into 28 mJ at 289 nm. The energy conversion efficiency was 62% for doubling into 433 nm and 25% into 289 nm.

  17. Alternative backing up pump for turbomolecular pumps

    DOEpatents

    Myneni, Ganapati Rao

    2003-04-22

    As an alternative to the use of a mechanical backing pump in the application of wide range turbomolecular pumps in ultra-high and extra high vacuum applications, palladium oxide is used to convert hydrogen present in the evacuation stream and related volumes to water with the water then being cryo-pumped to a low pressure of below about 1.e.sup.-3 Torr at 150.degree. K. Cryo-pumping is achieved using a low cost Kleemenco cycle cryocooler, a somewhat more expensive thermoelectric cooler, a Venturi cooler or a similar device to achieve the required minimization of hydrogen partial pressure.

  18. Mechanical drive for blood pump

    DOEpatents

    Bifano, N.J.; Pouchot, W.D.

    1975-07-29

    This patent relates to a highly efficient blood pump to be used as a replacement for a ventricle of the human heart to restore people disabled by heart disease. The mechanical drive of the present invention is designed to operate in conjunction with a thermoelectric converter power source. The mechanical drive system essentially converts the output of a rotary power into pulsatile motion so that the power demand from the thermoelectric converter remains essentially constant while the blood pump output is pulsed. (auth)

  19. High power Raman-converter based on H2-filled inhibited coupling HC-PCF

    NASA Astrophysics Data System (ADS)

    Benoit, A.; Beaudou, B.; Debord, B.; Gerome, F.; Benabid, F.

    2017-02-01

    We report on high power Raman-converter frequency stage based on hydrogen-filled inhibited-coupling hollow-core photonic crystal fibers pumped by an Yb-fiber picosecond laser. This fiber Raman-convertor can operate in two SRS emission regimes by simply controlling the fiber length or the gas pressure. It can set to either generate favorably single laser line or to generate an extremely wide Raman comb. Based on this we demonstrate a pico-second pulse Raman source of 9.3 W average-power at 1.8 μm, and an ultra-wide Raman comb spanning over more than five octaves from UV to mid-infrared, containing around 70 laser lines.

  20. UV Induced Oxidation of Nitric Oxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde, F. (Inventor); Luecke, Dale E. (Inventor)

    2007-01-01

    Nitric oxide in a gaseous stream is converted to nitrogen dioxide using oxidizing species generated at least in part using in situ UV radiation sources. The sources of the oxidizing species include oxygen and/or hydrogen peroxide. The oxygen may be a component of the gaseous stream or added to the gaseous stream, preferably near a UV radiation source, and is converted to ozone by the UV irradiation. The hydrogen peroxide is decomposed through a combination of vaporization and UV irradiation. The hydrogen peroxide is preferably stored at stable concentration levels, i.e., approximately 50% by volume and increased in concentration in a continuous process preceding vaporization within the flow channel of the gaseous stream and in the presence of the UV radiation sources.

  1. Characteristics of a nanosecond-barrier-discharge-pumped multiwave UV – VUV lamp on a mixture of argon, krypton and vapours of freon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shuaibov, A K; Minya, A I; Hrytsak, R V

    2015-02-28

    We present the results of investigation of the characteristics of a nanosecond-barrier-discharge-pumped multiwave lamp based on a gas mixture of Ar – Kr – CCl{sub 4}, which emits in the spectral range of 170 – 260 nm. The main emission bands in the lamp spectrum are ArCl (B → X) near 175 nm, KrCl (B → X) near 222 nm and Cl{sub 2} (D' → A') near 258 nm. The lamp intensity with respect to pressure, working mixture composition and pump regime is optimised. (uv - vuv emitters)

  2. All-Solid-State UV Transmitter Development for Ozone Sensing Applications

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Singh, Upendra N.; Armstrong, Darrell Jr.

    2009-01-01

    In this paper, recent progress made in the development of an all-solid-state UV transmitter suitable for ozone sensing applications from space based platforms is discussed. A nonlinear optics based UV setup based on Rotated Image Singly Resonant Twisted Rectangle (RISTRA) optical parametric oscillator (OPO) module was effectively coupled to a diode pumped, single longitudinal mode, conductively cooled, short-pulsed, high-energy Nd:YAG laser operating at 1064 nm with 50 Hz PRF. An estimated 10 mJ/pulse with 10% conversion efficiency at 320 nm has been demonstrated limited only by the pump pulse spatial profile. The current arrangement has the potential for obtaining greater than 200 mJ/pulse. Previously, using a flash-lamp pumped Nd:YAG laser with round, top-hat profile, up to 24% IR-UV conversion efficiency was achieved with the same UV module. Efforts are underway to increase the IR-UV conversion efficiency of the all solid-state setup by modifying the pump laser spatial profile along with incorporating improved OPO crystals.

  3. Flame Characterization Using a Tunable Solid-State Laser with Direct UV Pumping

    NASA Technical Reports Server (NTRS)

    Kamal, Mohammed M.; Dubinskii, Mark A.; Misra, Prabhakar

    1996-01-01

    Tunable solid-state lasers with direct UV pumping, based on d-f transitions of rare earth ions incorporated in wide band-gap dielectric crystals, are reliable sources of laser radiation that are suitable for excitation of combustion-related free radicals. We have employed such a laser for analytical flame characterization utilizing Laser-Induced Fluorescence (LIF) techniques. LIF spectra of alkane-air flames (used for studying combustion processes under normal and microgravity conditions) excited in the region of the A-X (0,0) OH-absorption band have been recorded and found to be both temperature-sensitive and positionally-sensitive. In addition, also clearly noticeable was the sensitivity of the spectra to the specific wavelength used for data registration. The LiCAF:Ce laser shows good prospects for being able to cover the spectral region between 280 and 340 nm and therefore be used excitation of combustion-intermediates such as the hydroxyl OH, methoxy CH30 and methylthio CH3S radicals.

  4. [The Elektronika UVI-01-N portable insulin pump (construction and method of use)].

    PubMed

    Sharikov, A N; Sklianik, A L

    1990-01-01

    The design and clinical applications of the first Soviet syringe portable insulin pump Electronica UV1 01 N are described. The technical characteristics and functional possibilities of the pump are discussed. The clinical results demonstrate good compensation for glucose metabolism by the insulin pump Electronica UV1 01 N.

  5. UV exposure in cars.

    PubMed

    Moehrle, Matthias; Soballa, Martin; Korn, Manfred

    2003-08-01

    There is increasing knowledge about the hazards of solar and ultraviolet (UV) radiation to humans. Although people spend a significant time in cars, data on UV exposure during traveling are lacking. The aim of this study was to obtain basic information on personal UV exposure in cars. UV transmission of car glass samples, windscreen, side and back windows and sunroof, was determined. UV exposure of passengers was evaluated in seven German middle-class cars, fitted with three different types of car windows. UV doses were measured with open or closed windows/sunroof of Mercedes-Benz E 220 T, E 320, and S 500, and in an open convertible car (Mercedes-Benz CLK). Bacillus subtilis spore film dosimeters (Viospor) were attached to the front, vertex, cheeks, upper arms, forearms and thighs of 'adult' and 'child' dummies. UV wavelengths longer than >335 nm were transmitted through car windows, and UV irradiation >380 nm was transmitted through compound glass windscreens. There was some variation in the spectral transmission of side windows according to the type of glass. On the arms, UV exposure was 3-4% of ambient radiation when the car windows were shut, and 25-31% of ambient radiation when the windows were open. In the open convertible car, the relative personal doses reached 62% of ambient radiation. The car glass types examined offer substantial protection against short-wave UV radiation. Professional drivers should keep car windows closed on sunny days to reduce occupational UV exposure. In individuals with polymorphic light eruption, produced by long-wave UVA, additional protection by plastic films, clothes or sunscreens appears necessary.

  6. A single center's conversion from roller pump to centrifugal pump technology in extracorporeal membrane oxygenation.

    PubMed

    Shade, Brandon C; Schiavo, Kellie; Rosenthal, Tami; Connelly, James T; Melchior, Richard W

    2016-06-05

    Recent advances in blood pump technology have led to an increased use of centrifugal pumps for prolonged extracorporeal membrane oxygenation (ECMO). Data from the Extracorporeal Life Support Organization confirms that many institutions have converted to centrifugal pumps after prior experience with roller pump technology. Centrifugal pump technology is more compact and may generate less heat and hemolysis than a conventional roller pump. Based on the potential advantages of centrifugal pumps, a decision was made institution-wide to convert to centrifugal pump technology in pediatric implementation of ECMO. Based on limited prior experience with centrifugal pumps, a multidisciplinary approach was used to implement this new technology. The new centrifugal pump (Sorin Revolution, Arvada, CO) was intended for ECMO support in the cardiac intensive care unit (CICU), the pediatric intensive care unit (PICU) and the neonatal intensive care unit (NICU). The perfusion team used their knowledge and expertise with centrifugal pumps to create the necessary teaching tools and interactive training sessions for the technical specialists who consisted primarily of registered nurses and respiratory therapists. The first phase consisted of educating all personnel involved in the care of the ECMO patient, followed by patient implementation in the CICU, followed by the PICU and NICU. The institution-wide conversion took several months to complete and was well received among all disciplines in the CICU and PICU. The NICU personnel did use the centrifugal pump circuit, but decided to revert back to using the roller pump technology. A systematic transition from roller pump to centrifugal pump technology with a multidisciplinary team can ensure a safe and successful implementation. © The Author(s) 2016.

  7. UV lasers for drilling and marking applications.

    PubMed

    Hannon, T

    1999-10-01

    Lasers emitting ultraviolet (UV) light have unique capabilities for precision micromachining and marking plastic medical devices. This review of the benefits offered by laser technology includes a look at recently developed UV diode-pumped solid-state lasers and their key features.

  8. Ultraviolet emission in Tm3+-doped fluoride fiber pumped with two infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Mejía, E. B.

    2006-12-01

    An infrared, two-wavelength pumping scheme for generating UV in Tm3+-doped fibers is investigated and proposed as an alternative because the pump wavelengths are accessible from laser diodes. Spectral characterizations of fiber samples with different concentrations revealed that moderate concentrations are best suitable to produce UV (348-362nm) emission when single—or double-line pumping with 1117 and 725nm. Detailed spectroscopic measurements realized to the fiber with the best performance, the 2000ppmwt, allowed to obtain the copumping wavelengths (in the ˜725nm region) that enhanced the UV emission. For example, when applying tens of milliwatts at 725nm, which represented a 28% increase of total pump power, the UV emission increased in an avalanchelike fashion up to three orders of magnitude. Then, a high-power 1117nm source that currently exists in the market and a moderate power 725nm source under development are possible to be used as pumps for this scheme.

  9. Constant-Pressure Hydraulic Pump

    NASA Technical Reports Server (NTRS)

    Galloway, C. W.

    1982-01-01

    Constant output pressure in gas-driven hydraulic pump would be assured in new design for gas-to-hydraulic power converter. With a force-multiplying ring attached to gas piston, expanding gas would apply constant force on hydraulic piston even though gas pressure drops. As a result, pressure of hydraulic fluid remains steady, and power output of the pump does not vary.

  10. Calcium pump kinetics determined in single erythrocyte ghosts by microphotolysis and confocal imaging.

    PubMed

    Kubitscheck, U; Pratsch, L; Passow, H; Peters, R

    1995-07-01

    The activity of the plasma membrane calcium pump was measured in single cells. Human red blood cell ghosts were loaded with a fluorescent calcium indicator and either caged calcium and ATP (protocol A) or caged ATP and calcium (protocol B). In a suitably modified laser scanning microscope either calcium or ATP were released by a short UV light pulse. The time-dependent fluorescence intensity of the calcium indicator was then followed in single ghosts by repetitive confocal imaging. The fluorescence intensity was converted into calcium concentration, which in turn was used to derive the kinetic parameters of the calcium pump, the Michaelis-Menten constant Km, and the maximal transport rate vmax. Km and vmax values derived in this manner were 24 +/- 14 microM and 1.0 +/- 0.6 microM/(ghost s) for protocol A, and 4 +/- 3 microM and 1.0 +/- 0.6 microM/(ghost s) for protocol B, respectively. The difference between A and B is presumably caused by calmodulin, which is inactive in the experiments with protocol A. The possibilities to extend the new method to living nucleus-containing cells transiently transfected with mutants of the plasma membrane calcium pump are discussed.

  11. Flexible and scalable wavelength multicast of coherent optical OFDM with tolerance against pump phase-noise using reconfigurable coherent multi-carrier pumping.

    PubMed

    Lu, Guo-Wei; Bo, Tianwai; Sakamoto, Takahide; Yamamoto, Naokatsu; Chan, Calvin Chun-Kit

    2016-10-03

    Recently the ever-growing demand for dynamic and high-capacity services in optical networks has resulted in new challenges that require improved network agility and flexibility in order for network resources to become more "consumable" and dynamic, or elastic, in response to requests from higher network layers. Flexible and scalable wavelength conversion or multicast is one of the most important technologies needed for developing agility in the physical layer. This paper will investigate how, using a reconfigurable coherent multi-carrier as a pump, the multicast scalability and the flexibility in wavelength allocation of the converted signals can be effectively improved. Moreover, the coherence in the multiple carriers prevents the phase noise transformation from the local pump to the converted signals, which is imperative for the phase-noise-sensitive multi-level single- or multi-carrier modulated signal. To verify the feasibility of the proposed scheme, we experimentally demonstrate the wavelength multicast of coherent optical orthogonal frequency division multiplexing (CO-OFDM) signals using a reconfigurable coherent multi-carrier pump, showing flexibility in wavelength allocation, scalability in multicast, and tolerance against pump phase noise. Less than 0.5 dB and 1.8 dB power penalties at a bit-error rate (BER) of 10-3 are obtained for the converted CO-OFDM-quadrature phase-shift keying (QPSK) and CO-OFDM-16-ary quadrature amplitude modulation (16QAM) signals, respectively, even when using a distributed feedback laser (DFB) as a pump source. In contrast, with a free-running pumping scheme, the phase noise from DFB pumps severely deteriorates the CO-OFDM signals, resulting in a visible error-floor at a BER of 10-2 in the converted CO-OFDM-16QAM signals.

  12. Time-resolved multi-mass ion imaging: Femtosecond UV-VUV pump-probe spectroscopy with the PImMS camera.

    PubMed

    Forbes, Ruaridh; Makhija, Varun; Veyrinas, Kévin; Stolow, Albert; Lee, Jason W L; Burt, Michael; Brouard, Mark; Vallance, Claire; Wilkinson, Iain; Lausten, Rune; Hockett, Paul

    2017-07-07

    The Pixel-Imaging Mass Spectrometry (PImMS) camera allows for 3D charged particle imaging measurements, in which the particle time-of-flight is recorded along with (x, y) position. Coupling the PImMS camera to an ultrafast pump-probe velocity-map imaging spectroscopy apparatus therefore provides a route to time-resolved multi-mass ion imaging, with both high count rates and large dynamic range, thus allowing for rapid measurements of complex photofragmentation dynamics. Furthermore, the use of vacuum ultraviolet wavelengths for the probe pulse allows for an enhanced observation window for the study of excited state molecular dynamics in small polyatomic molecules having relatively high ionization potentials. Herein, preliminary time-resolved multi-mass imaging results from C 2 F 3 I photolysis are presented. The experiments utilized femtosecond VUV and UV (160.8 nm and 267 nm) pump and probe laser pulses in order to demonstrate and explore this new time-resolved experimental ion imaging configuration. The data indicate the depth and power of this measurement modality, with a range of photofragments readily observed, and many indications of complex underlying wavepacket dynamics on the excited state(s) prepared.

  13. Small capillary pumped AMTEC systems

    NASA Astrophysics Data System (ADS)

    Hunt, Thomas K.; Sievers, Robert K.; Butkiewicz, David A.; Pantolin, Jan E.; Ivanenok, Joseph F.

    1993-01-01

    Alkali Metal Thermoelectric Converter (AMTEC) systems offer significant potential advantages for space power. Recent experiments have shown that electromagnetic pumps can operate with a negative priming head and so may be suitable for space applications in microgravity (Hunt et al. 1992). Capillary pumped cells offer an alternative approach to microgravity compatibility. We have designed, built, and operated capillary pumped AMTEC cells in various orientations with respect to gravity in order to provide a presumptive demonstration of zero-G capability (Sievers et al. 1992). We report lifetime and performance data for these capillary pumped AMTEC cells. Progress on other issues relating to space flight testing of AMTEC systems is also discussed.

  14. Evaluation of Ti-Zr-V (NEG) Thin Films for their pumping speed and pumping Capacity

    NASA Astrophysics Data System (ADS)

    Bansod, Tripti; Sindal, B. K.; Kumar, K. V. A. N. P. S.; Shukla, S. K.

    2012-11-01

    Deposition of NEG thin films onto the interior walls of the vacuum chambers is an advanced technique to convert a vacuum chamber from a gas source to an effective pump. These films offer considerably large pumping speed for reactive gases like CO, H2 etc. A UHV compatible pumping speed measurement system was developed in-house to measure the pumping speed of NEG coated chambers. To inject the fixed quantity of CO and H2 gas in pumping speed measurement set-up a calibrated leak was also developed. Stainless steel chambers were sputter coated with thin film of Ti-Zr-V getter material using varied parameters for different compositions and thickness. Pumping capacity which is a function of sorbed gas quantities was also studied at various activation temperatures. In order to optimize the activation temperature for maximum pumping speed for CO and H2, pumping speeds were measured at room temperature after activation at different temperatures. The experimental system detail, pumping performance of the NEG film at various activation temperatures and RGA analysis are presented.

  15. Photochemical Kinetics of a Phosphine Oxide Free Radical Initiator from Femtosecond UV-Pump/Mid-IR-Probe Spectroscopy.

    PubMed

    Straub, Steffen; Lindner, Jörg; Vöhringer, Peter

    2017-07-06

    Femtosecond UV-pump/mid-infrared-probe spectroscopy was used to explore in detail the primary photochemical events of the free radical initiator, (2,4,6-trimethylbenzoyl)diphenylphosphine oxide, in liquid dichloromethane solution at room temperature. Following electronic excitation of its lowest excited singlet state, S 1 , the radical initiator undergoes an intersystem crossing to the triplet ground state, T 1 , with a time constant of 135 ps. A subsequent α-cleavage occurs from the triplet state with a time constant of 15 ps and yields a trimethylbenzoyl radical together with a diphenylphosphinoyl radical. Transient absorptions from the S 1 and T 1 states are observed that can be assigned to the P═O stretching mode and the symmetric in-plane deformation mode of the trimethylphenyl moiety of the radical initiator.

  16. Solar Pumped, Alkali Vapor Laser.

    DTIC Science & Technology

    1987-09-04

    convert the solar radiation to electricity or longer wavelength blackbody radiation which is then used to power the laser. A directly pumped solar laser...wavelength blackbody radiation which is then used to power the laser. A directly pumped solar laser would utilize a portion of the solar spectrum to directly...sodium dimer (near the upper laser state) and a second body. *, I will review the method we used for measuring these rates and present preliminary

  17. 3D printable conducting hydrogels containing chemically converted graphene.

    PubMed

    Sayyar, Sepidar; Gambhir, Sanjeev; Chung, Johnson; Officer, David L; Wallace, Gordon G

    2017-02-02

    The development of conducting 3D structured biocompatible scaffolds for the growth of electroresponsive cells is critical in the field of tissue engineering. This work reports the synthesis and 3D processing of UV-crosslinkable conducting cytocompatible hydrogels that are prepared from methacrylated chitosan (ChiMA) containing graphenic nanosheets. The addition of chemically converted graphene resulted in mechanical and electrical properties of the composite that were significantly better than ChiMA itself, as well as improved adhesion, proliferation and spreading of L929 fibroblasts cells. The chemically converted graphene/ChiMA hydrogels were amenable to 3D printing and this was used to produce multilayer scaffolds with enhanced mechanical properties through UV-crosslinking.

  18. Highly sensitive vacuum ion pump current measurement system

    DOEpatents

    Hansknecht, John Christopher [Williamsburg, VA

    2006-02-21

    A vacuum system comprising: 1) an ion pump; 2) power supply; 3) a high voltage DC--DC converter drawing power from the power supply and powering the vacuum pump; 4) a feedback network comprising an ammeter circuit including an operational amplifier and a series of relay controlled scaling resistors of different resistance for detecting circuit feedback; 5) an optional power block section intermediate the power supply and the high voltage DC--DC converter; and 6) a microprocessor receiving feedback information from the feedback network, controlling which of the scaling resistors should be in the circuit and manipulating data from the feedback network to provide accurate vacuum measurement to an operator.

  19. Lasant Materials for Blackbody-Pumped Lasers

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J. (Editor); Chen, K. Y. (Editor)

    1985-01-01

    Blackbody-pumped solar lasers are proposed to convert sunlight into laser power to provide future space power and propulsion needs. There are two classes of blackbody-pumped lasers. The direct cavity-pumped system in which the lasant molecule is vibrationally excited by the absorption of blackbody radiation and laser, all within the blackbody cavity. The other system is the transfer blackbody-pumped laser in which an absorbing molecule is first excited within the blackbody cavity, then transferred into a laser cavity when an appropriate lasant molecule is mixed. Collisional transfer of vibrational excitation from the absorbing to the lasing molecule results in laser emission. A workshop was held at NASA Langley Research Center to investigate new lasant materials for both of these blackbody systems. Emphasis was placed on the physics of molecular systems which would be appropriate for blackbody-pumped lasers.

  20. Diode-pumped UV refractive surgery laser

    NASA Astrophysics Data System (ADS)

    Lin, Jui T.; Hwang, Ming-Yi; Huang, C. H.

    1993-07-01

    Ophthalmic applications of medical lasers have been extensively explored recently because of their market potential. Refractive surgical lasers represent one of the major development efforts due to the large population of eye disorders: about 160 million people in the USA and more than 2 billion worldwide. The first refractive laser developed was the ArF excimer laser at 193 nm in 1987 - 88 for a procedure called photorefractive keratectomy (PRK). More recently, solid state refractive lasers have also been explored for preliminary clinical trials. These lasers include Nd:YLF (picosecond at 1054 nm), doubled-Nd:YAG (nanosecond at 532 nm), Ho:YAG (microsecond at 2100 nm) and ultraviolet (UV) lasers generated from the harmonic of Ti:sapphire-laser (205 - 220 nm) and Nd:YAG (at 213 nm).

  1. Method for controlling powertrain pumps

    DOEpatents

    Sime, Karl Andrew; Spohn, Brian L; Demirovic, Besim; Martini, Ryan D; Miller, Jean Marie

    2013-10-22

    A method of controlling a pump supplying a fluid to a transmission includes sensing a requested power and an excess power for a powertrain. The requested power substantially meets the needs of the powertrain, while the excess power is not part of the requested power. The method includes sensing a triggering condition in response to the ability to convert the excess power into heat in the transmission, and determining that an operating temperature of the transmission is below a maximum. The method also includes determining a calibrated baseline and a dissipation command for the pump. The calibrated baseline command is configured to supply the fluid based upon the requested power, and the dissipation command is configured to supply additional fluid and consume the excess power with the pump. The method operates the pump at a combined command, which is equal to the calibrated baseline command plus the dissipation command.

  2. Nanoimprinted organic semiconductor laser pumped by a light-emitting diode.

    PubMed

    Tsiminis, Georgios; Wang, Yue; Kanibolotsky, Alexander L; Inigo, Anto R; Skabara, Peter J; Samuel, Ifor D W; Turnbull, Graham A

    2013-05-28

    An organic semiconductor laser, simply fabricated by UV-nanoimprint lithography (UV-NIL), that is pumped with a pulsed InGaN LED is demonstrated. Molecular weight optimization of the polymer gain medium on a nanoimprinted polymer distributed feedback resonator enables the lowest reported UV-NIL laser threshold density of 770 W cm(-2) , establishing the potential for scalable organic laser fabrication compatible with mass-produced LEDs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. An economic evaluation comparison of solar water pumping system with engine pumping system for rice cultivation

    NASA Astrophysics Data System (ADS)

    Treephak, Kasem; Thongpron, Jutturit; Somsak, Dhirasak; Saelao, Jeerawan; Patcharaprakiti, Nopporn

    2015-08-01

    In this paper we propose the design and economic evaluation of the water pumping systems for rice cultivation using solar energy, gasoline fuel and compare both systems. The design of the water and gasoline engine pumping system were evaluated. The gasoline fuel cost used in rice cultivation in an area of 1.6 acres. Under same conditions of water pumping system is replaced by the photovoltaic system which is composed of a solar panel, a converter and an electric motor pump which is compose of a direct current (DC) motor or an alternating current (AC) motor with an inverter. In addition, the battery is installed to increase the efficiency and productivity of rice cultivation. In order to verify, the simulation and economic evaluation of the storage energy battery system with batteries and without batteries are carried out. Finally the cost of four solar pumping systems was evaluated and compared with that of the gasoline pump. The results showed that the solar pumping system can be used to replace the gasoline water pumping system and DC solar pump has a payback less than 10 years. The systems that can payback the fastest is the DC solar pumping system without batteries storage system. The system the can payback the slowest is AC solar pumping system with batteries storage system. However, VAC motor pump of 220 V can be more easily maintained than the motor pump of 24 VDC and batteries back up system can supply a more stable power to the pump system.

  4. Development of the sonic pump levitation

    NASA Technical Reports Server (NTRS)

    Dunn, S. A.

    1984-01-01

    A prototype levitating/positioning device termed the Sonic Pump Levitator was designed, built and successfully tested in full gravity and in the reduced gravity of the parabolic flight regime of the KC-135. Positioning is achieved by timely and appropriate application of gas momentum from one or more of six sonic pumps. The sonic pumps, which are arranged orthogonally in opposed pairs about the levitation region, are activated by an electro-optical, computer controlled, feedback system. The sonic pump is a transducer which is capable of converting sound energy into a directed flow of gas. It consists of a loudspeaker whose face is sealed by a closure perforated by one or more orifices. The diaphragm of the loudspeaker is the only moving part of the sonic pump, no valves being needed. This very low inertia electromechanical device was developed to provide the short response time necessary to keep pace with the demands of computerized position keeping.

  5. Overview and future direction for blackbody solar-pumped lasers

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.

    1988-01-01

    A review of solar-pumped blackbody lasers is given which addresses their present status and suggests future research directions. The blackbody laser concept is one system proposed to scale to multimegawatt power levels for space-to-space power transmissions for such applications as onboard spacecraft electrical or propulsion needs. Among the critical technical issues are the scalability to high powers and the laser wavelength which impacts the transmission optics size as well as the laser-to-electric converter at the receiver. Because present blackbody solar-pumped lasers will have laser wavelengths longer than 4 microns, simple photovoltaic converters cannot be used, and transmission optics will be large. Thus, future blackbody laser systems should emphasize near visible laser wavelengths.

  6. An experimental investigation on fluid dynamics of an automotive torque converter

    NASA Astrophysics Data System (ADS)

    Dong, Yu

    The objective of the automotive torque converter fluid dynamics experimental investigation is to understand the flow field inside the torque converter, improve the performance, and increase the fuel economy of vehicles. A high-frequency response five-hole probe was developed for the unsteady flow measurement. The dynamic performance of this probe was examined, and the corresponding data processing technique was also developed. The accuracy of this probe unsteady flow measurement was assessed using a hot-film sensor and a high-frequency response total pressure Pitot probe. The pump passage relative flow field was measured by a rotating five-hole probe system at three chord-wise locations. The rotating probe system is designed and developed for both pump and turbine flow measurement, and it was proved to be accurate and successful. A strong secondary flow is observed to dominate the flow structure at the pump mid-chord. At the pump 3/4 chord, the flow concentration on the pressure side is clearly observed. The secondary flow is found to change direction of rotation between the 3/4 chord and the 4/4 chord. High losses are found in the core-suction corner "wake" flow. The pump exit and turbine exit unsteady flow fields were measured by a high-frequency response five-hole probe in the stationary frame. At the pump exit, the flow is concentrated on the pressure side due to the strong secondary flow in the pump passage. A strong secondary flow is observed. At the turbine exit, a fully developed flow is found caused by the turbulent mixing. The stator exit steady flow was measured by a conventional five-hole probe. A strong secondary flow is found due to the inlet vorticity and axial velocity deficit near the core. The radially inward velocity and the secondary flow produce a large radial transport of mass flow in the stator passage. The stator passage flow is found to be turbulent at the normal operating condition by the measurement using the surface hot-film sensors

  7. Working medium circuit for alkali metal thermal-to-electric converters (AMTEC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalandarishvili, A.G.

    1996-12-31

    The possibility is studied to create a sodium circuit in an AMTEC type conversion device. The proposed circuit is based on a heat pipe that includes the evaporation-condensation cycle. Different layouts based on this principle are presented. The proposed circuit is characterized by the following advantages: no need for an electromagnetic pump, low load on the converter, better capability to control temperature drop at the converter.

  8. Fusion reactor pumped laser

    DOEpatents

    Jassby, D.L.

    1987-09-04

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

  9. Fusion reactor pumped laser

    DOEpatents

    Jassby, Daniel L.

    1988-01-01

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

  10. Compact and portable multiline UV and visible Raman lasers in hydrogen-filled HC-PCF.

    PubMed

    Wang, Y Y; Couny, F; Light, P S; Mangan, B J; Benabid, F

    2010-04-15

    We report on the realization of compact UV visible multiline Raman lasers based on two types of hydrogen-filled hollow-core photonic crystal fiber. The first, with a large pitch Kagome lattice structure, offers a broad spectral coverage from near IR through to the much sought after yellow, deep-blue and UV, whereas the other, based on photonic bandgap guidance, presents a pump conversion concentrated in the visible region. The high Raman efficiency achieved through these fibers allows for compact, portable diode-pumped solid-state lasers to be used as pumps. Each discrete component of this laser system exhibits a spectral density several orders of magnitude larger than what is achieved with supercontinuum sources and a narrow linewidth, making it an ideal candidate for forensics and biomedical applications.

  11. Biological proton pumping in an oscillating electric field.

    PubMed

    Kim, Young C; Furchtgott, Leon A; Hummer, Gerhard

    2009-12-31

    Time-dependent external perturbations provide powerful probes of the function of molecular machines. Here we study biological proton pumping in an oscillating electric field. The protein cytochrome c oxidase is the main energy transducer in aerobic life, converting chemical energy into an electric potential by pumping protons across a membrane. With the help of master-equation descriptions that recover the key thermodynamic and kinetic properties of this biological "fuel cell," we show that the proton pumping efficiency and the electronic currents in steady state depend significantly on the frequency and amplitude of the applied field, allowing us to distinguish between different microscopic mechanisms of the machine. A spectral analysis reveals dominant reaction steps consistent with an electron-gated pumping mechanism.

  12. Effects of stratospheric ozone depletion, solar UV radiation, and climate change on biogeochemical cycling: interactions and feedbacks

    DOE PAGES

    Erickson III, David J.; Sulzberger, Barbara; Zepp, Richard G.; ...

    2014-11-07

    Climate change modulates the effects of solar UV radiation on biogeochemical cycles in terrestrial and aquatic ecosystems, particularly for carbon cycling, resulting in UV-mediated positive or negative feedbacks on climate. Possible positive feedbacks discussed in this assessment include: (i) enhanced UV-induced mineralisation of above ground litter due to aridification; (ii) enhanced UV-induced mineralisation of photoreactive dissolved organic matter (DOM) in aquatic ecosystems due to changes in continental runoff and ice melting; (iii) reduced efficiency of the biological pump due to UV-induced bleaching of coloured dissolved organic matter (CDOM) in stratified aquatic ecosystems, where CDOM protects phytoplankton from the damaging solarmore » UV-B radiation. Mineralisation of organic matter results in the production and release of CO 2, whereas the biological pump is the main biological process for CO 2 removal by aquatic ecosystems. This research also assesses the interactive effects of solar UV radiation and climate change on the biogeochemical cycling of aerosols and trace gases other than CO 2, as well as of chemical and biological contaminants. Lastly,, interacting effects of solar UV radiation and climate change on biogeochemical cycles are particularly pronounced at terrestrial-aquatic interfaces.« less

  13. The Dual Wavelength UV Transmitter Development for Space Based Ozone DIAL Measurements

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.

    2008-01-01

    The objective of this research is to develop efficient 1-micron to UV wavelength conversion technology to generate tunable, single mode, pulsed UV wavelengths of 320 nm and 308 nm. The 532 nm wavelength radiation is generated by a 1064 nm Nd:YAG laser through second harmonic generation. The 532 nm pumps an optical parametric oscillator (OPO) to generate 803 nm. The 320 nm is generated by sum frequency generation (SFG) of 532 nm and 803 nm wavelengths The hardware consists of a conductively cooled, 1 J/pulse, single mode Nd:YAG pump laser coupled to an efficient RISTRA OPO and SFG assembly-Both intra and extra-cavity approaches are examined for efficiency.

  14. Supreme EnLIGHTenment: Damage Recognition and Signaling in the Mammalian UV Response

    PubMed Central

    Herrlich, Peter; Karin, Michael; Weiss, Carsten

    2009-01-01

    Like their prokaryotic counterparts, mammalian cells can sense light, especially in the ultraviolet (UV) range of the spectrum. Following UV exposure cells mount an elaborate response – called the UV response, which mimics physiological signaling responses except that it targets multiple pathways thereby lacking the defined specificity of receptor-triggered signal transduction. Despite many years of research it is still not fully clear how UV radiation is sensed and converted into the „language of cells“ - signal reception and transduction. This review focuses on how photonic energy and its primary cellular products are sensed to elicit the UV response. PMID:18280234

  15. Performance characteristics of proximity focused ultraviolet image converters

    NASA Technical Reports Server (NTRS)

    Williams, J. T.; Feibelman, W. A.

    1973-01-01

    Performance characteristics of Bendix type BX 8025-4522 proximity focused image tubes for UV to visible light conversion are presented. Quantum efficiency, resolution, background, geometric distortion, and environmental test results are discussed. The converters use magnesium fluoride input windows with Cs-Te photocathodes and P-11 phosphors on fiber optic output windows.

  16. Porous glass electroosmotic pumps: design and experiments.

    PubMed

    Yao, Shuhuai; Hertzog, David E; Zeng, Shulin; Mikkelsen, James C; Santiago, Juan G

    2003-12-01

    An analytical model for electroosmotic flow rate, total pump current, and thermodynamic efficiency reported in a previous paper has been applied as a design guideline to fabricate porous-structure EO pumps. We have fabricated sintered-glass EO pumps that provide maximum flow rates and pressure capacities of 33 ml/min and 1.3 atm, respectively, at applied potential 100 V. These pumps are designed to be integrated with two-phase microchannel heat exchangers with load capacities of order 100 W and greater. Experiments were conducted with pumps of various geometries and using a relevant, practical range of working electrolyte ionic concentration. Characterization of the pumping performance are discussed in the terms of porosity, tortuosity, pore size, and the dependence of zeta potential on bulk ion density of the working solution. The effects of pressure and flow rate on pump current and thermodynamic efficiency are analyzed and compared to the model prediction. In particular, we explore the important tradeoff between increasing flow rate capacity and obtaining adequate thermodynamic efficiency. This research aims to demonstrate the performance of EOF pump systems and to investigate optimal and practical pump designs. We also present a gas recombination device that makes possible the implementation of this pumping technology into a closed-flow loop where electrolytic gases are converted into water and reclaimed by the system.

  17. Biological proton pumping in an oscillating electric field

    PubMed Central

    Kim, Young C.; Furchtgott, Leon A.; Hummer, Gerhard

    2010-01-01

    Time-dependent external perturbations provide powerful probes of the function of molecular machines. Here we study biological proton pumping in an oscillating electric field. The protein cytochrome c oxidase is the main energy transducer in aerobic life, converting chemical energy into an electric potential by pumping protons across a membrane. With the help of master-equation descriptions that recover the key thermodynamic and kinetic properties of this biological “fuel cell,” we show that the proton pumping efficiency and the electronic currents in steady state both depend significantly and distinctly on the frequency and amplitude of the applied field, allowing us to distinguish between different microscopic mechanisms of the machine. A spectral analysis reveals dominant kinetic modes that show reaction steps consistent with an electron-gated pumping mechanism. PMID:20366348

  18. Model Based Optimization of Integrated Low Voltage DC-DC Converter for Energy Harvesting Applications

    NASA Astrophysics Data System (ADS)

    Jayaweera, H. M. P. C.; Muhtaroğlu, Ali

    2016-11-01

    A novel model based methodology is presented to determine optimal device parameters for the fully integrated ultra low voltage DC-DC converter for energy harvesting applications. The proposed model feasibly contributes to determine the maximum efficient number of charge pump stages to fulfill the voltage requirement of the energy harvester application. The proposed DC-DC converter based power consumption model enables the analytical derivation of the charge pump efficiency when utilized simultaneously with the known LC tank oscillator behavior under resonant conditions, and voltage step up characteristics of the cross-coupled charge pump topology. The verification of the model has been done using a circuit simulator. The optimized system through the established model achieves more than 40% maximum efficiency yielding 0.45 V output with single stage, 0.75 V output with two stages, and 0.9 V with three stages for 2.5 kΩ, 3.5 kΩ and 5 kΩ loads respectively using 0.2 V input.

  19. Monolithic solid electrolyte oxygen pump

    DOEpatents

    Fee, Darrell C.; Poeppel, Roger B.; Easler, Timothy E.; Dees, Dennis W.

    1989-01-01

    A multi-layer oxygen pump having a one-piece, monolithic ceramic structure affords high oxygen production per unit weight and volume and is thus particularly adapted for use as a portable oxygen supply. The oxygen pump is comprised of a large number of small cells on the order of 1-2 millimeters in diameter which form the walls of the pump and which are comprised of thin, i.e., 25-50 micrometers, ceramic layers of cell components. The cell components include an air electrode, an oxygen electrode, an electrolyte and interconnection materials. The cell walls form the passages for input air and for exhausting the oxygen which is transferred from a relatively dilute gaseous mixture to a higher concentration by applying a DC voltage across the electrodes so as to ionize the oxygen at the air electrode, whereupon the ionized oxygen travels through the electrolyte and is converted to oxygen gas at the oxygen electrode.

  20. Power consumption analysis of pump station control systems based on fuzzy controllers with discrete terms in iThink software

    NASA Astrophysics Data System (ADS)

    Muravyova, E. A.; Bondarev, A. V.; Sharipov, M. I.; Galiaskarova, G. R.; Kubryak, A. I.

    2018-03-01

    In this article, power consumption of pumping station control systems is discussed. To study the issue, two simulation models of oil level control in the iThink software have been developed, using a frequency converter only and using a frequency converter and a fuzzy controller. A simulation of the oil-level control was carried out in a graphic form, and plots of pumps power consumption were obtained. Based on the initial and obtained data, the efficiency of the considered control systems has been compared, and also the power consumption of the systems was shown graphically using a frequency converter only and using a frequency converter and a fuzzy controller. The models analysis has shown that it is more economical and safe to use a control circuit with a frequency converter and a fuzzy controller.

  1. From diffusion pumps to cryopumps: The conversion of GSFC's space environment simulator

    NASA Technical Reports Server (NTRS)

    Cary, Ron

    1992-01-01

    The SES (Space Environmental Simulator), largest of the Thermal Vacuum Facilities at The Goddard Space Flight Center, recently was converted from an oil diffusion pumped chamber to a Cryopumped chamber. This modification was driven by requirements of flight projects. The basic requirement was to retain or enhance the operational parameters of the chamber such as pumping speed, ultimate vacuum, pump down time, and thermal system performance. To accomplish this task, seventeen diffusion pumps were removed and replaced with eight 1.2 meter (48 inch) diameter cryopumps and one 0.5 meter (20 inch) turbomolecular pump. The conversion was accomplished with a combination of subcontracting and in-house efforts to maximize the efficiency of implementation.

  2. Identification of Dynamic Simulation Models for Variable Speed Pumped Storage Power Plants

    NASA Astrophysics Data System (ADS)

    Moreira, C.; Fulgêncio, N.; Silva, B.; Nicolet, C.; Béguin, A.

    2017-04-01

    This paper addresses the identification of reduced order models for variable speed pump-turbine plants, including the representation of the dynamic behaviour of the main components: hydraulic system, turbine governors, electromechanical equipment and power converters. A methodology for the identification of appropriated reduced order models both for turbine and pump operating modes is presented and discussed. The methodological approach consists of three main steps: 1) detailed pumped-storage power plant modelling in SIMSEN; 2) reduced order models identification and 3) specification of test conditions for performance evaluation.

  3. Evaluation of a UV/Ozone Treatment Process for Removal of MTBE in Groundwater Supplies in New Mexico

    EPA Science Inventory

    EPA’s Office of Research and Development is funding pilot-scale studies on MTBE contaminated groundwater using UV/ozone treatment technology (254 nm UV, 5.8 mg/L ozone). The pilot-scale treatment system consists of a GW well pump, a feed tank, a pretreatment system (water soften...

  4. Evaluation of a UV/Ozone Treatment Process for Removal of MTBE in Groundwater Supplies in New Mexico

    EPA Science Inventory

    EPA’s Office of Research and Development is funding pilot-scale studies on MTBE contaminated groundwater using UV/ozone treatment technology (254 nm UV, 5.8 mg/L ozone). The pilot-scale treatment system consists of a GW well pump, a feed tank, a pretreatment system (water softene...

  5. UV-Enhanced IR Raman System for Identifying Biohazards

    NASA Technical Reports Server (NTRS)

    Stirbl, Robert; Moynihan, Philip; Lane, Arthur

    2003-01-01

    An instrumentation system that would include an ultraviolet (UV) laser or light-emitting diode, an infrared (IR) laser, and the equivalent of an IR Raman spectrometer has been proposed to enable noncontact identification of hazardous biological agents and chemicals. In prior research, IR Raman scattering had shown promise as a means of such identification, except that the Raman-scattered light was often found to be too weak to be detected or to enable unambiguous identification in practical applications. The proposed system would utilize UV illumination as part of a two-level optical-pumping scheme to intensify the Raman signal sufficiently to enable positive identification.

  6. Note: Deep UV-pump THz-probe spectroscopy of the excess electron in water.

    PubMed

    Berger, Arian; Savolainen, Janne; Shalit, Andrey; Hamm, Peter

    2017-06-28

    In the work of Savolainen et al. [Nat. Chem. 6, 697 (2014)], we studied the excess (hydrated) electron in water with the help of transient THz spectroscopy, which is a sensitive probe of its delocalization length. In that work, we used laser pulses at 800 nm, 400 nm, and 267 nm for photoionization. While the detachment mechanism for 400 nm and 267 nm is complicated and requires a concerted nuclear rearrangement, we provided evidence that 800 nm pumping excites the excess electron directly and vertically into the conduction band, despite a highly nonlinear field-ionization process. In the present note, we extend that work to 200 nm pumping, which provides a much cleaner way to reach the conduction band. We show that the detachment pathways upon 200 nm and 800 nm pumping are in essence the same, as indicated by the same initial size of the electron wavefunction and the same time scales for the collapse of the wavefunction and geminate recombination.

  7. Spatial two-photon coherence of the entangled field produced by down-conversion using a partially spatially coherent pump beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jha, Anand Kumar; Boyd, Robert W.

    2010-01-15

    We study the spatial coherence properties of the entangled two-photon field produced by parametric down-conversion (PDC) when the pump field is, spatially, a partially coherent beam. By explicitly treating the case of a pump beam of the Gaussian Schell-model type, we show that in PDC the spatial coherence properties of the pump field get entirely transferred to the spatial coherence properties of the down-converted two-photon field. As one important consequence of this study, we find that, for two-qubit states based on the position correlations of the two-photon field, the maximum achievable entanglement, as quantified by concurrence, is bounded by themore » degree of spatial coherence of the pump field. These results could be important by providing a means of controlling the entanglement of down-converted photons by tailoring the degree of coherence of the pump field.« less

  8. UV scale calibration transfer from an improved pyroelectric detector standard to field UV-A meters and 365 nm excitation sources

    NASA Astrophysics Data System (ADS)

    Eppeldauer, G. P.; Podobedov, V. B.; Cooksey, C. C.

    2017-05-01

    Calibration of the emitted radiation from UV sources peaking at 365 nm, is necessary to perform the ASTM required 1 mW/cm2 minimum irradiance in certain military material (ships, airplanes etc) tests. These UV "black lights" are applied for crack-recognition using fluorescent liquid penetrant inspection. At present, these nondestructive tests are performed using Hg-lamps. Lack of a proper standard and the different spectral responsivities of the available UV meters cause significant measurement errors even if the same UV-365 source is measured. A pyroelectric radiometer standard with spectrally flat (constant) response in the UV-VIS range has been developed to solve the problem. The response curve of this standard determined from spectral reflectance measurement, is converted into spectral irradiance responsivity with <0.5% (k=2) uncertainty as a result of using an absolute tie point from a Si-trap detector traceable to the primary standard cryogenic radiometer. The flat pyroelectric radiometer standard can be used to perform uniform integrated irradiance measurements from all kinds of UV sources (with different peaks and distributions) without using any source standard. Using this broadband calibration method, yearly spectral calibrations for the reference UV (LED) sources and irradiance meters is not needed. Field UV sources and meters can be calibrated against the pyroelectric radiometer standard for broadband (integrated) irradiance and integrated responsivity. Using the broadband measurement procedure, the UV measurements give uniform results with significantly decreased uncertainties.

  9. The advanced thermionic converter with microwave power as an auxiliary ionization source

    NASA Technical Reports Server (NTRS)

    Manikopoulos, C. N.; Hatziprocopiou, M.; Chiu, H. S.; Shaw, D. T.

    1978-01-01

    In the search for auxiliary sources of ionization for the advanced thermionic converter plasma, as required for terrestial applications, the use of externally applied microwave power is considered. The present work is part of the advanced model thermionic converter development research currently performed at the laboratory for Power and Environmental Studies at SUNY Buffalo. Microwave power in the frequency range 1-3 GHz is used to externally pump a thermionic converter and the results are compared to the theoretical model proposed by Lam (1976) in describing the thermionic converter plasma. The electron temperature of the plasma is found to be raised considerably by effective microwave heating which results in the disappearance of the double sheath ordinarily erected in front of the emitter. The experimental data agree satisfactorily with theory in the low current region.

  10. Effect of crystal length on the thermal characteristic in Nd: YLF laser with 20W diode pumped

    NASA Astrophysics Data System (ADS)

    Yahya, K. A.; Hussein, O. A.; Mustafa, O. H.

    2016-03-01

    Theoretical results are reported on thermal effects along the π- 1047nm and σ- 1053nm polarizations in a cut Nd: YLF rod crystal by using 20W Diode -End-pumped. The crystal length effects on the fraction of absorbed pump radiation converted into heat, radial temperature distribution, and the change in a radial refractive index. The result from this study has shown that a maximum fraction converted into heat is calculated to be around 24% and thermal effects of π-polarized 1047 nm stronger than σ-polarized 1053 nm.

  11. Impulse powerful UV-radiation source pumped by the sublight ionization waves for the bacteriological disinfection of water

    NASA Astrophysics Data System (ADS)

    Filiouguine, Igor V.; Kostiouchenko, S. V.; Koudryavtsev, N. N.; Vasilyak, Leonid M.; Yakimenko, A. V.

    1993-11-01

    The bacteriological disinfective action of UV-radiation is well known. The pioneer work on UV-radiation used for bacteriological disinfection of waste water was made in 1910. Because of the high cost and low living time of the UV-radiation sources, the alternative technique for waste water purification by chlorine introducing was spread out. During the second stage of the UV purification development, beginning in approximately 1970, the interest for bacteriological cleaning of water, increased again. Two reasons were responsible for this event: first, the significant improvement of technology and design of UV-bacteriological purificators, and second, recognition of the serious danger of chlorine compounds introduced into water under purification because of the toxicity of these compounds. Further investigations gave excellent results in the creation and industrial applications of UV- bacteriological purificators. Now we can see a rapid development of industrial technology in UV-purification of drinking and waste waters.

  12. Laser effect on the 248 nm KrF transition using heavy ion beam pumping

    NASA Astrophysics Data System (ADS)

    Adonin, A.; Jacoby, J.; Turtikov, V.; Fertman, A.; Golubev, A.; Hoffmann, D. H. H.; Ulrich, A.; Varentsov, D.; Wieser, J.

    2007-07-01

    In December 2005 the first successful operation of a UV excimer laser pumped with a heavy ion beam was demonstrated at GSI. It was the first experiment in which the specific power deposition was sufficient to overcome laser threshold for a UV excimer scheme. The well known KrF* excimer laser line at λ=248 nm has been chosen for this experiment, because the wavelength is short, but still in the range of usual optical diagnostic tools and the emitted light can propagate in air without attenuation. A bunch compressed U+73238 beam with a particle energy of 250 MeV/u and about 110 ns pulse duration (FWHM) was used for this experiment. Single pulses of a beam intensity up to 2.5×109 particles per bunch were focused into the laser cell along the cavity axis. Compact spectrometers, high speed UV-photodiodes and gated CCD-cameras were used for diagnostics of the spontaneous and stimulated emission. As a main result of the experiment laser effect on the 248 nm KrF* excimer laser line has been obtained and verified by temporal and spectral narrowing of the laser line as well as the threshold behaviour and exponential growth of intensity with increasing pumping power. In summary it could be shown that the pumping power of the heavy ion beam at GSI is now sufficient to pump short wavelength lasers. It is planned to extend laser experiments in near future to the VUV range of the spectrum (λ<200 nm).

  13. Power flow control based solely on slow feedback loop for heart pump applications.

    PubMed

    Wang, Bob; Hu, Aiguo Patrick; Budgett, David

    2012-06-01

    This paper proposes a new control method for regulating power flow via transcutaneous energy transfer (TET) for implantable heart pumps. Previous work on power flow controller requires a fast feedback loop that needs additional switching devices and resonant capacitors to be added to the primary converter. The proposed power flow controller eliminates these additional components, and it relies solely on a slow feedback loop to directly drive the primary converter to meet the heart pump power demand and ensure zero voltage switching. A controlled change in switching frequency varies the resonant tank shorting period of a current-fed push-pull resonant converter, thus changing the magnitude of the primary resonant voltage, as well as the tuning between primary and secondary resonant tanks. The proposed controller has been implemented successfully using an analogue circuit and has reached an end-to-end power efficiency of 79.6% at 10 W with a switching frequency regulation range of 149.3 kHz to 182.2 kHz.

  14. Optimizing the performance of a solar liquid piston pump

    NASA Astrophysics Data System (ADS)

    Murphy, C. L.

    Utilization of solar energy for pumping water for irrigation or storage is discussed. Oscillations of a Freon 113 liquid column are generated in a working tube when a continuous flow of hot water, and cooling water, are supplied to heated and cooling coils located in the tube. The oscillations are converted into a pump (SLPP) model exhibited self starting, stable operation over a wide range of conditions, provides the inlet hot water heat source and inlet cooling water heat sink are above and below the critical values for stalling at a given pump head. The operation of the SLPP model, is primarily affected by the heating coil position within the working tube, and the geometries of the inlet and outlet water tubes.

  15. Vectorial Command of Induction Motor Pumping System Supplied by a Photovoltaic Generator

    NASA Astrophysics Data System (ADS)

    Makhlouf, Messaoud; Messai, Feyrouz; Benalla, Hocine

    2011-01-01

    With the continuous decrease of the cost of solar cells, there is an increasing interest and needs in photovoltaic (PV) system applications following standard of living improvements. Water pumping system powered by solar-cell generators are one of the most important applications. The fluctuation of solar energy on one hand, and the necessity to optimise available solar energy on the other, it is useful to develop new efficient and flexible modes to control motors that entrain the pump. A vectorial control of an asynchronous motor fed by a photovoltaic system is proposed. This paper investigates a photovoltaic-electro mechanic chain, composed of a PV generator, DC-AC converter, a vector controlled induction motor and centrifugal pump. The PV generator is forced to operate at its maximum power point by using an appropriate search algorithm integrated in the vector control. The optimization is realized without need to adding a DC-DC converter to the chain. The motor supply is also ensured in all insolation conditions. Simulation results show the effectiveness and feasibility of such an approach.

  16. Solar-pumped gas laser development

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1981-01-01

    The direct conversion of solar radiation into an inverted population for extraction in an optical cavity holds promise as a relatively simple system design. Broad-band photoabsorption in the visible or near-UV range is required to excite large volumes of gas and to ensure good solar absorption efficiency. The state excited must be a metastable state which is not quenched by the parent gas. The emission bandwidth must be less than approximately 10 A. The system should show chemical reversibility and an insensitivity to increasing temperature. Other properties such as good quantum efficiency and kinetic efficiency are also implied. A search of electronic-vibrational transitions in diatomic molecules satisfying these conditions is now in progress. A photodissociation-pumped atomic iodine laser is now being tested under solar pumping conditions. Photodissociation studies for thallium spin-flip metastable formation will begin in the near future.

  17. Three-dimensional geostatistical inversion of flowmeter and pumping test data.

    PubMed

    Li, Wei; Englert, Andreas; Cirpka, Olaf A; Vereecken, Harry

    2008-01-01

    We jointly invert field data of flowmeter and multiple pumping tests in fully screened wells to estimate hydraulic conductivity using a geostatistical method. We use the steady-state drawdowns of pumping tests and the discharge profiles of flowmeter tests as our data in the inference. The discharge profiles need not be converted to absolute hydraulic conductivities. Consequently, we do not need measurements of depth-averaged hydraulic conductivity at well locations. The flowmeter profiles contain information about relative vertical distributions of hydraulic conductivity, while drawdown measurements of pumping tests provide information about horizontal fluctuation of the depth-averaged hydraulic conductivity. We apply the method to data obtained at the Krauthausen test site of the Forschungszentrum Jülich, Germany. The resulting estimate of our joint three-dimensional (3D) geostatistical inversion shows an improved 3D structure in comparison to the inversion of pumping test data only.

  18. Solar-pumped gas laser development

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1980-01-01

    A survey of gas properties through detailed kinetic models led to the identification of critical gas parameters for use in choosing appropriate gas combinations for solar pumped lasers. Broadband photoabsorption in the visible or near UV range is required to excite large volumes of gas and to insure good solar absorption efficiency. The photoexcitation density is independent of the absorption bandwidth. The state excited must be a metastable state which is not quenched by the parent gas. The emission bandwidth must be less than 10 A to insure lasing threshold over reasonable gain lengths. The system should show a high degree of chemical reversibility and an insensitivity to increasing temperature. Other properties such as good quantum efficiency and kinetic efficiency are also implied. Although photoexcitation of electronic vibrational transitions is considered as a possible system if the emission bands sufficiently narrow, it appears that photodissociation into atomic metastables is more likely to result in a successful solar pumped laser system.

  19. Phase-sensitive, through-amplification with a double-pumped JPC

    NASA Astrophysics Data System (ADS)

    Sliwa, K. M.; Hatridge, M.; Frattini, N. E.; Narla, A.; Shankar, S.; Devoret, M. H.

    The Josephson Parametric Converter (JPC) is now routinely used as a quantum-limited signal processing device for superconducting qubit experiments. The JPC consists of two modes, the signal and the idler, that are coupled by a ring of Josephson junctions that implements a non-degenerate, three-wave mixing process. This device is conventionally operated as either a phase-preserving parametric amplifier, or a coherent frequency converter, by pumping it at the sum or difference of the signal and idler frequencies, respectively. Here we present a novel double-pumping scheme based on theory by Metelmann and Clerk where a coherent conversion process and a gain process are simultaneously imposed between the signal and idler modes. The interference of these two processes results in a phase-sensitive amplifier with only forward gain, and which breaks the traditional gain-bandwidth limit of parametric amplification. We present results on phase-sensitive amplification with increased bandwidth, and on noise performance and dynamic range that are comparable to the traditional mode of operation. Work supported by ARO, AFOSR, NSF and YINQE.

  20. Simulation of pump-turbine prototype fast mode transition for grid stability support

    NASA Astrophysics Data System (ADS)

    Nicolet, C.; Braun, O.; Ruchonnet, N.; Hell, J.; Béguin, A.; Avellan, F.

    2017-04-01

    The paper explores the additional services that Full Size Frequency Converter, FSFC, solution can provide for the case of an existing pumped storage power plant of 2x210 MW, for which conversion from fixed speed to variable speed is investigated with a focus on fast mode transition. First, reduced scale model tests experiments of fast transition of Francis pump-turbine which have been performed at the ANDRITZ HYDRO Hydraulic Laboratory in Linz Austria are presented. The tests consist of linear speed transition from pump to turbine and vice versa performed with constant guide vane opening. Then existing pumped storage power plant with pump-turbine quasi homologous to the reduced scale model is modelled using the simulation software SIMSEN considering the reservoirs, penstocks, the two Francis pump-turbines, the two downstream surge tanks, and the tailrace tunnel. For the electrical part, an FSFC configuration is considered with a detailed electrical model. The transitions from turbine to pump and vice versa are simulated, and similarities between prototype simulation results and reduced scale model experiments are highlighted.

  1. Ultrafast internal conversion dynamics of highly excited pyrrole studied with VUV/UV pump probe spectroscopy.

    PubMed

    Horton, Spencer L; Liu, Yusong; Chakraborty, Pratip; Matsika, Spiridoula; Weinacht, Thomas

    2017-02-14

    We study the relaxation dynamics of pyrrole after excitation with an 8 eV pump pulse to a state just 0.2 eV below the ionization potential using vacuum ultraviolet/ultraviolet pump probe spectroscopy. Our measurements in conjunction with electronic structure calculations indicate that pyrrole undergoes rapid internal conversion to the ground state in less than 300 fs. We find that internal conversion to the ground state dominates over dissociation.

  2. Why soft UV-A damages DNA: An optical micromanipulation study

    NASA Astrophysics Data System (ADS)

    Rapp, A.; Greulich, K. O.

    2013-09-01

    Optical micromanipulation studies have solved a puzzle on DNA damage and repair. Such knowledge is crucial for understanding cancer and ageing. So far it was not understood, why the soft UV component of sunlight, UV-A, causes the dangerous DNA double strand breaks. The energy of UV-A photons is below 4 eV per photon, too low to directly cleave the corresponding chemical bonds in DNA. This is occasionally used to claim that artificial sunbeds, which mainly use UV-A, would not impose a risk on health. UV-A is only sufficient for induction of single strand breaks. The essential new observation is that, when on the opposite strand there is another single strand break at a distance of up to 20 base pairs. These two breaks will be converted into a break of the whole double strand with all its known consequences for cancer and ageing. However, in natural sun the effect is counteracted. Simultaneous red light illumination reduces UV induced DNA damages to 1/3. Since sunlight has a red component, skin tanning with natural sun is not as risky as might appear at a first glance.

  3. Ovalis TAH: development and in vitro testing of a new electromechanical energy converter for a total artificial heart.

    PubMed

    Sauer, I M; Frank, J; Spiegelberg, A; Bücherl, E S

    2000-01-01

    A new electromechanical energy converting system has been developed to yield an efficient and durable orthotopic total artificial heart (TAH). The energy converter we developed transforms the unidirectional rotational motion of the motor into a longitudinal forward-reverse movement of an internal geared oval, linked directly to pusher plates on both sides. To ensure a permanent positive connection between the drive gear and the internally geared wheel, a ball bearing runs inside an oval shaped guide track. Motor, gear unit, and conical pusher plates are seated between alternately ejecting and filling ventricles. The unidirectional motion of the brushless DC motor affords easier motor control, reduces energy demand, and ensures longer life of the motor when compared with a bidirectional motion system. In vitro testing has been performed on a mock circulation loop. The overall system efficiency of the TAH Ovalis was 27-39% (mean, 36%) for the pump output range of 2-7 L/min. The maximum output of 7 L/min can be obtained with a pump rate of 130 min(-1) and an afterload pressure of 140 mm Hg. For an average sized human with a mean cardiac output of 6 L/min at a mean aortic pressure of 120 mm Hg, 5 watts of input power would be required. The size of the prototype is 560 cm3, the weight is 950 g. Our first in vitro studies demonstrated the excellent efficiency and pump performance of this new electromechanical energy converter. The results prove the feasibility of this new concept's use as an energy converter for a total artificial heart.

  4. A collimator-converter system for IEC propulsion

    NASA Astrophysics Data System (ADS)

    Momota, Hiromu; Miley, George H.

    2002-01-01

    The collimator-converter system extracts fusion power from D-3He fueled IEC devices and provides electricity needed to operate ionic thrusters and other-power components. The whole system is linear and consists of a series of collimator units at the center, magnetic expander units at both sides of the fusion units, followed by direct energy converters at both ends. This system is enclosed in a vacuum chamber with a magnetic channel provided by magnetic solenoids out of respective chambers. The fusion unit consists of an IEC fusion core, a pair of coils anti-parallel to the solenoid coils, and a stabilization coil that stabilizes the position of coil pair coils. The IEC fusion core is installed at the center of the pair coils. After the magnetic expander, velocities of fusion particles from D-3He fueled IEC units are directed to the magnetic channel, which guides energetic fusion particles as well as leaking unburned fuel components to a high-efficiency traveling wave direct energy converter (TWDEC). Leaking unburned fuel components are separated with a magnetic separator at the entrance of a direct energy converter and pumped out for further refueling. A TWDEC is made of an array of metallic meshed grids, each of which is connected to every terminal with an external transmission circuit. The transmission line couples to the direct energy converter. Substations for electricity, a cryogenic plant, and various power control systems are outside of the vacuum chamber. The length of the cylindrical system is essentially determined by the proton energy of 14.8 MeV and the radius should be large so as to reduce power flow density. The present system provides 250 MWf fusion power and converting it to 150 MWc electricity. Its size is 150 m(length)×6.6 m(diameter) in size and 185 tons in weight. .

  5. Photovoltaic pumping system - Comparative study analysis between direct and indirect coupling mode

    NASA Astrophysics Data System (ADS)

    Harrag, Abdelghani; Titraoui, Abdessalem; Bahri, Hamza; Messalti, Sabir

    2017-02-01

    In this paper, P&O algorithm is used in order to improve the performance of photovoltaic water pumping system in both dynamic and static response. The efficiency of the proposed algorithm has been studied successfully using a DC motor-pump powered using controller by thirty six PV modules via DC-DC boost converter derived by a P&O MPPT algorithm. Comparative study results between the direct and indirect modes coupling confirm that the proposed algorithm can effectively improve simultaneously: accuracy, rapidity, ripple and overshoot.

  6. Diaphragm Pump With Resonant Piezoelectric Drive

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Kline-Schoder, Robert J.; Shimko, Martin A.

    2007-01-01

    make it oscillate at the resonance frequency of the spring and- mass structure. This frequency could be made high enough (of the order of 400 Hz) that the masses of all components could be made conveniently small. The resonance would amplify the relatively small motion of the piezoelectric stack (a stroke of the order of 10 m) to a diaphragm stroke of the order of 0.5 mm. The exact amplification factor would depend on the rate of damping of oscillations; this, in turn, would depend on details of design and operation, including (but not limited to) the desired pressure rise and volumetric flow rate. In order to obtain resonance with large displacement, the damping rate must be low enough that the energy imparted to the pumped fluid on each stroke is much less than the kinetic and potential energy exchanged between the mass and spring during each cycle of oscillation. To minimize the power demand of the pump, a highly efficient drive circuit would be used to excite the piezoelectric stack. This circuit (see Figure 2) would amount to a special-purpose regenerative, switching power supply that would operate in a power-source mode during the part of an oscillation cycle when the excitation waveform was positive and in a power-recovery mode during the part of the cycle when the excitation waveform was negative. The circuit would include a voltage-boosting dc-to-dc converter that would convert between a supply potential of 24 Vdc and the high voltage needed to drive the piezoelectric stack. Because of the power-recovery feature, the circuit would consume little power. It should be possible to build the circuit as a compact unit, using readily available components.

  7. Simulations of a FIR Oscillator with Large Slippage parameter at Jefferson Lab for FIR/UV pump-probe experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, Stephen V.; Campbell, L. T.; McNeil, B.W.T.

    We previously proposed a dual FEL configuration on the UV Demo FEL at Jefferson Lab that would allow simultaneous lasing at FIR and UV wavelengths. The FIR source would be an FEL oscillator with a short wiggler providing diffraction-limited pulses with pulse energy exceeding 50 microJoules, using the exhaust beam from a UVFEL as the input electron beam. Since the UV FEL requires very short pulses, the input to the FIR FEL is extremely short compared to a slippage length and the usual Slowly Varying Envelope Approximation (SVEA) does not apply. We use a non-SVEA code to simulate this systemmore » both with a small energy spread (UV laser off) and with large energy spread (UV laser on).« less

  8. Fine-pitched microgratings encoded by interference of UV femtosecond laser pulses.

    PubMed

    Kamioka, Hayato; Miura, Taisuke; Kawamura, Ken-ichi; Hirano, Masahiro; Hosono, Hideo

    2002-01-01

    Fine-pitched microgratings are encoded on fused silica surfaces by a two-beam laser interference technique employing UV femtosecond pulses from the third harmonics of a Ti:sapphire laser. A pump and prove method utilizing a laser-induced optical Kerr effect or transient optical absorption change has been developed to achieve the time coincidence of the two pulses. Use of the UV pulses makes it possible to narrow the grating pitches to an opening as small as 290 nm, and the groove width of the gratings is of nanoscale size. The present technique provides a novel opportunity for the fabrication of periodic nanoscale structures in various materials.

  9. Fluorescent minerals - A potential source of UV protection and visible light for the growth of green algae and cyanobacteria in extreme cosmic environments

    NASA Astrophysics Data System (ADS)

    Omairi, Tareq; Wainwright, Milton

    2015-07-01

    We propose that green algae (Chlorella variabilis and Dunaliella tertiolecta) and cyanobacteria (Synechococcus elongatus and Nostoc commune) can grow inside fluorescent rock minerals which convert damaging UV light to visible light, thereby allowing these organisms to survive and thrive in UV-rich environments without (or with limited) visible light, which would otherwise be inimical to them. The four microorganisms were incubated inside fluorescent rocks composed of fluorite, calcite and pyrite. The resultant growth was then measured following exposure to UV radiation, with the use of optical density and measurement of chlorophyll concentration. Results show that the microorganisms were shielded from harmful UV in these semi-transparent rocks, while at the same time benefiting from the fact that the minerals converted UV to visible light; this have been shown by a statistically significant increase in their growth, which although lower than when the cells were incubated in sunlight, was significantly higher than in controls incubated in the dark.

  10. 46 CFR 32.52-5 - Bilge piping for pump rooms and adjacent cofferdams on tank vessels constructed or converted on...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... as complying with this provision, or alternatively, the pump controls shall be arranged so that they... 46 Shipping 1 2013-10-01 2013-10-01 false Bilge piping for pump rooms and adjacent cofferdams on... REQUIREMENTS Bilge Systems § 32.52-5 Bilge piping for pump rooms and adjacent cofferdams on tank vessels...

  11. 46 CFR 32.52-5 - Bilge piping for pump rooms and adjacent cofferdams on tank vessels constructed or converted on...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... as complying with this provision, or alternatively, the pump controls shall be arranged so that they... 46 Shipping 1 2014-10-01 2014-10-01 false Bilge piping for pump rooms and adjacent cofferdams on... REQUIREMENTS Bilge Systems § 32.52-5 Bilge piping for pump rooms and adjacent cofferdams on tank vessels...

  12. 46 CFR 32.52-5 - Bilge piping for pump rooms and adjacent cofferdams on tank vessels constructed or converted on...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... as complying with this provision, or alternatively, the pump controls shall be arranged so that they... 46 Shipping 1 2011-10-01 2011-10-01 false Bilge piping for pump rooms and adjacent cofferdams on... REQUIREMENTS Bilge Systems § 32.52-5 Bilge piping for pump rooms and adjacent cofferdams on tank vessels...

  13. 46 CFR 32.52-5 - Bilge piping for pump rooms and adjacent cofferdams on tank vessels constructed or converted on...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... as complying with this provision, or alternatively, the pump controls shall be arranged so that they... 46 Shipping 1 2010-10-01 2010-10-01 false Bilge piping for pump rooms and adjacent cofferdams on... REQUIREMENTS Bilge Systems § 32.52-5 Bilge piping for pump rooms and adjacent cofferdams on tank vessels...

  14. 46 CFR 32.52-5 - Bilge piping for pump rooms and adjacent cofferdams on tank vessels constructed or converted on...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... as complying with this provision, or alternatively, the pump controls shall be arranged so that they... 46 Shipping 1 2012-10-01 2012-10-01 false Bilge piping for pump rooms and adjacent cofferdams on... REQUIREMENTS Bilge Systems § 32.52-5 Bilge piping for pump rooms and adjacent cofferdams on tank vessels...

  15. Ultraviolet converter transients induced by electrons

    NASA Technical Reports Server (NTRS)

    Kernell, R. L.; Becher, J.; Reft, C. S.

    1984-01-01

    The output of ultraviolet converters typically used in satellite astronomy was monitored during irradiation with electrons from a sealed SR-90 source which approximated the peak flux in earth's outer electron belt. The signal induced by irradiation was attributed to two mechanisms: (1) photoelectrons resulting from photons created in the MgF2 window and (2) the direct impact of electrons on the phosphor. For irradiation at about 1 x 10 to the 7th e/sq cm sec, these two effects produced signals which were, in order of magnitude, the same as those produced by an incident UV flux (254 nm) of 10 to the 8th and 10 to the 7th photons/sq cm sec, respectively. In addition, the induced signal was investigated as a function of electron energy by irradiating another converter with 0.4-1.8-MeV electrons from a Van de Graaff. These results suggest that the dominant contribution to the electron-induced signal is Cerenkov photon production in the MgF2 window.

  16. Implementation of UV-based advanced oxidation processes in algal medium recycling.

    PubMed

    Wang, Wenxuan; Sha, Jun; Lu, Zhiying; Shao, Senlin; Sun, Peizhe; Hu, Qiang; Zhang, Xuezhi

    2018-09-01

    Algae show great potential as sustainable feedstock for numerous bioproducts. However, large volume of water consumption during algal biomass production makes that the culture media recycling is a necessity due to economic and environmental concern. To avoid the negative effect of enriched organic matters in the harvested culture media, pre-treatment prior to medium replenishment and reuse is required. In this study, degradation of algenitic organic matters (AOM) in the culture media by UV-based photolysis processes (i.e., direct UV, UV/peroxydisulfate (PDS), UV/H 2 O 2 , and UV/NH 2 Cl) was explored. The results showed that UV, UV/PDS, UV/H 2 O 2 and UV/NH 2 Cl caused a decrease of SUVA for 29.9%, 35.4%, 40.45%, and 22.6%, respectively, though the organic matter was almost not mineralized. Fluorescence excitation-emission matrix combined with parallel factor analysis indicated that UV/PDS and UV/H 2 O 2 degraded 47.26%-56.31% of the fulvic-like and humic-like fractions in AOM. Powder activated carbon absorption and growth evaluation for the AOPs-treated media indicated that UV/PDS and UV/H 2 O 2 processes not only could remove the growth inhibitors in the media, but were also beneficial to the algae growth. These results suggested that UV/PDS and UV/H 2 O 2 could effectively degrade the hydrophobic components in AOM and converted the growth inhibition fraction of AOM in the recycled media into nutrient source for algal growth. Different from the general application of UV-based AOP in the wastewater treatment, this study provided an innovative idea about how to pre-treat AOM in the media recycling: utilization rather than removal, which was a more sustainable and environment-friendly technology. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Evolutionary replacement of UV vision by violet vision in fish.

    PubMed

    Tada, Takashi; Altun, Ahmet; Yokoyama, Shozo

    2009-10-13

    The vertebrate ancestor possessed ultraviolet (UV) vision and many species have retained it during evolution. Many other species switched to violet vision and, then again, some avian species switched back to UV vision. These UV and violet vision are mediated by short wavelength-sensitive (SWS1) pigments that absorb light maximally (lambda(max)) at approximately 360 and 390-440 nm, respectively. It is not well understood why and how these functional changes have occurred. Here, we cloned the pigment of scabbardfish (Lepidopus fitchi) with a lambda(max) of 423 nm, an example of violet-sensitive SWS1 pigment in fish. Mutagenesis experiments and quantum mechanical/molecular mechanical (QM/MM) computations show that the violet-sensitivity was achieved by the deletion of Phe-86 that converted the unprotonated Schiff base-linked 11-cis-retinal to a protonated form. The finding of a violet-sensitive SWS1 pigment in scabbardfish suggests that many other fish also have orthologous violet pigments. The isolation and comparison of such violet and UV pigments in fish living in different ecological habitats will open an unprecedented opportunity to elucidate not only the molecular basis of phenotypic adaptations, but also the genetics of UV and violet vision.

  18. Josephson parametric converter saturation and higher order effects

    NASA Astrophysics Data System (ADS)

    Liu, G.; Chien, T.-C.; Cao, X.; Lanes, O.; Alpern, E.; Pekker, D.; Hatridge, M.

    2017-11-01

    Microwave parametric amplifiers based on Josephson junctions have become indispensable components of many quantum information experiments. One key limitation which has not been well predicted by theory is the gain saturation behavior which limits the amplifier's ability to process large amplitude signals. The typical explanation for this behavior in phase-preserving amplifiers based on three-wave mixing, such as the Josephson Parametric Converter, is pump depletion, in which the consumption of pump photons to produce amplification results in a reduction in gain. However, in this work, we present experimental data and theoretical calculations showing that the fourth-order Kerr nonlinearities inherent in Josephson junctions are the dominant factor. The Kerr-based theory has the unusual property of causing saturation to both lower and higher gains, depending on bias conditions. This work presents an efficient methodology for optimizing device performance in the presence of Kerr nonlinearities while retaining device tunability and points to the necessity of controlling higher-order Hamiltonian terms to make further improvements in parametric devices.

  19. UV photolysis for enhanced phenol biodegradation in the presence of 2,4,6-trichlorophenol (TCP).

    PubMed

    Song, Jiaxiu; Wang, Wenbing; Li, Rongjie; Zhu, Jun; Zhang, Yongming; Liu, Rui; Rittmann, Bruce E

    2016-02-01

    A bacterial strain isolated from activated sludge and identified as Bacillus amyloliquefaciens could biodegrade phenol, but 2,4,6-trichlorophenol (TCP) inhibited phenol biodegradation and biomass growth. UV photolysis converted TCP into dichlorocatechol, monochlorophenol, and dichlorophenol, and this relieved inhibition by TCP. Phenol-removal and biomass-growth rates were significantly accelerated after UV photolysis: the monod maximum specific growth rate (μ(max)) increased by 9% after TCP photolysis, and the half-maximum-rate concentration (K(S)) decreased by 36%. Thus, the major benefit of UV photolysis in this case was to transform TCP into a set of much-less-inhibitory products.

  20. New, Efficient Optically Pumped Solid State Lasers.

    DTIC Science & Technology

    1989-02-21

    Lasers", during the contract period from 15 August 1984 thru 11 November 1988 (AFOSR-88-0378) has led to some notable advances. This effort h,.s focused...lower laser states of both Er and 1Ho. This work has led to the inves t igation of the Nd,Er ion-ion interactions in other crystals such as Nd,Er:YALO...backed pyrex reflector. While the laser may work in a gold-plated cavity, the many visible, blue and near uv pump bands suggest better efficiency is

  1. 93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator.

    PubMed

    Bosenberg, W R; Drobshoff, A; Alexander, J I; Myers, L E; Byer, R L

    1996-09-01

    We report two cw, singly resonant optical parametric oscillator (OPO) configurations based on periodically poled lithium niobate that result in significantly higher efficiency and output power than in previous studies. Using four-mirror OPO cavities and pumping with a 1.064-microm Nd:YAG laser, we observe 93% pump depletion and obtain ~86% of the converted pump photons as useful idler output. The single-beam, in-the-bucket idler output power of 3.55 W at 3.25 microm corresponds to ~80% of quantum-limited performance. We measure and compare the amplitude noise and spectral bandwidth of the two configurations. We also demonstrate >1 W of tunable cw output over the 3.3-3.9-microm spectral range.

  2. Optically (solar) pumped oxygen-iodine lasers

    NASA Astrophysics Data System (ADS)

    Danilov, O. B.; Zhevlakov, A. P.; Yur'ev, M. S.

    2014-07-01

    We present the results of theoretical and experimental studies demonstrating the possibility of developing an oxygen-iodine laser (OIL) with direct optical pumping of molecular oxygen involving inter-molecular interaction with charge transfer from donor molecule (buffer gas) to acceptor molecule (oxygen). This interaction lifts degeneracy of the lower energy states of molecular oxygen and increases its absorption cross section in the visible spectral region and the UV Herzberg band, where high quantum yield of singlet oxygen is achieved (QY ˜ 1 and QY ˜ 2, respectively) at the same time. A pulse-periodic optical pump sources with pulse energy of ˜50 kJ, pulse duration of ˜25 μs, and repetition rate of ˜10 Hz, which are synchronized with the mechanism of singlet oxygen generation, are developed. This allows implementation of a pulse-periodic oxygen-iodine laser with an efficiency of ˜25%, optical efficiency of ˜40%, and parameter L/ T ˜ 1/1.5, where T is the thermal energy released in the laser active medium upon generation of energy L. It is demonstrated that, under direct solar pumping of molecular oxygen, the efficiency parameter of the OIL can reach L/ T ˜ 1/0.8 in a wide range of scaling factors.

  3. Hemodynamic energy generated by a combined centrifugal pump with an intra-aortic balloon pump.

    PubMed

    Lim, Choon Hak; Son, Ho Sung; Fang, Yung Hu; Lee, Jung Joo; Baik, Kwang Je; Kim, Kyung Hyun; Kim, Bum Soo; Lee, Hye Won; Sun, Kyung

    2006-01-01

    We examined the pulsatility generated by an intra-aortic balloon pump/centrifugal pump (IABP/CP) combination in terms of energy equivalent pressure (EEP) and surplus hemodynamic energy (SHE). In five cardiac-arrested pigs, the outflow cannula of the CP was inserted into the ascending aorta, the inflow cannula in the right atrium. A 30-ml IABP was subsequently placed in the descending aorta. Extracorporeal circulation was maintained for 30 minutes using a pump flow of 75 ml/kg per minute by CP alone or by IABP/CP with pressure and flow measured in the right internal carotid artery. The IABP/CP combination converted the flow to pulsatile and increased pulse pressure significantly from 9.1 +/- 1.3 mm Hg to 54.9 +/- 6.1 mm Hg (p = 0.012). It also significantly increased the percent change from mean arterial pressure to EEP from 0.2 +/- 0.3% to 23.3 +/- 6.1% (p = 0.012) and SHE from 133.2 +/- 234.5 erg/cm to 20,219.8 +/- 5842.7 erg/cm3 (p = 0.012). However, no statistical difference was observed between CP and IABP/CP in terms of mean carotid artery pressure (p = NS). In a cardiac-arrested animal model, pulsatility generated by a IABP/CP combination may be effective in terms of energy equivalent pressure and surplus hemodynamic energy.

  4. Demonstration of miniaturized 20mW CW 280nm and 266nm solid-state UV laser sources

    NASA Astrophysics Data System (ADS)

    Landru, Nicolas; Georges, Thierry; Beaurepaire, Julien; Le Guen, Bruno; Le Bail, Guy

    2015-02-01

    Visible 561 nm and 532 nm laser emissions from 14-mm long DPSS monolithic cavities are frequency converted to deep UV 280 nm and 266 nm in 16-mm long monolithic external cavities. Wavelength conversion is fully insensitive to mechanical vibrations and the whole UV laser sources fit in a miniaturized housing. More than 20 mW deep UV laser emission is demonstrated with high power stability, low noise and good beam quality. Aging tests are in progress but long lifetimes are expected thanks to the cavity design. Protein detection and deep UV resonant Raman spectroscopy are applications that could benefit from these laser sources.

  5. PMMA/PDMS valves and pumps for disposable microfluidics.

    PubMed

    Zhang, Wenhua; Lin, Shuichao; Wang, Chunming; Hu, Jia; Li, Cong; Zhuang, Zhixia; Zhou, Yongliang; Mathies, Richard A; Yang, Chaoyong James

    2009-11-07

    Poly(methyl methacrylate) (PMMA) is gaining in popularity in microfluidic devices because of its low cost, excellent optical transparency, attractive mechanical/chemical properties, and simple fabrication procedures. It has been used to fabricate micromixers, PCR reactors, CE and many other microdevices. Here we present the design, fabrication, characterization and application of pneumatic microvalves and micropumps based on PMMA. Valves and pumps are fabricated by sandwiching a PDMS membrane between PMMA fluidic channel and manifold wafers. Valve closing or opening can be controlled by adjusting the pressure in a displacement chamber on the pneumatic layer via a computer regulated solenoid. The valve provides up to 15.4 microL s(-1) at 60 kPa fluid pressure and seals reliably against forward fluid pressure as high as 60 kPa. A PMMA diaphragm pump can be assembled by simply connecting three valves in series. By varying valve volume or opening time, pumping rates ranging from nL to microL per second can be accurately achieved. The PMMA based valves and pumps were further tested in a disposable automatic nucleic acid extraction microchip to extract DNA from human whole blood. The DNA extraction efficiency was about 25% and the 260 nm/280 nm UV absorption ratio for extracted DNA was 1.72. Because of its advantages of inexpensive, facile fabrication, robust and easy integration, the PMMA valve and pump will find their wide application for fluidic manipulation in portable and disposable microfluidic devices.

  6. Ultraviolet (UV) Oxidation Final Report CRADA No. TC-0350-92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, F.; Oster, S.

    This CRADA was a collaborative agreement between the above parties to develop a more efficient ultraviolet (UV) oxidation process than the existing commercial processes. The proposed new process would be capable of completely mineralizing the organic constiruents in aqueous mixedwastes (wastes that contain both radioactive and organic constiruents) and converting them into ordinary radioactive wastes, which would mean cheaper and easier disposal.

  7. Hornet peak flight activity is correlated with solar UV radiation: a multi-annual survey.

    PubMed

    Ishay, Jacob S; Pertsis, Vitaly

    2002-01-01

    This study deals with the effect which solar irradiation of short wavelength, particularly ultraviolet (UV), exerts on the activities of hornets. The findings are based on multi-annual observations carried out during the years 1985, 1989 and 1998 on hornet nests in the field. At the peak of UV radiation, which occurs at noon, hornet activity is greater by 1-2 orders of magnitude than that during the morning or evening hours. The main visible hornet activity appears to be the removal of soil particles from the nest so as to enlarge its volume, enable the building of additional combs and also increase the size of existing combs. Hornet flight during peak insolation hours is characterized by its briefness (5-20 seconds only) and brevity (to distances of 5-10 meters only) as compared to flights at other hours of the day. These prolonged, multi-annual observations lead to the conclusion that hornets are capable of converting the energy of UV radiation into a form amenable to metabolic usage. In this respect the hornet cuticle behaves as a thermophotovoltaic device, i.e., a semiconductor diode that converts photons radiating from the sunlight into electrical energy.

  8. The UV to Near-IR Optical Properties of PAHs: A Semi-Empirical Model

    NASA Technical Reports Server (NTRS)

    Mattioda, A. L.; Allamandola, L. J.; Hudgins, D. M.

    2005-01-01

    Interstellar Polycyclic Aromatic Hydrocarbon (PAH) infrared emission features represent an important and unique diagnostic tool of the chemical and physical conditions throughout the universe. However, one challenge facing the widely accepted PAH emission model has been the detection of infrared features in regions of low UV flux. Utilizing recently published laboratory Near Infrared VIR) PAH ion absorption data measured in our laboratory, we build upon previous models for PAH ion absorption in the UV-Vis to extrapolate a new model which incorporates PAH ion absorption in the NIR. This model provides a basis for comparing the relative energy absorption of PAH ions in the UV-Vis and NIR regions for a wide variety of stellar types. This model demonstrates that the radiation from late-type stars can pump the mid-IR PAH features.

  9. Effect of Ag doping on the properties of ZnO thin films for UV stimulated emission

    NASA Astrophysics Data System (ADS)

    Razeen, Ahmed S.; Gadallah, A.-S.; El-Nahass, M. M.

    2018-06-01

    Ag doped ZnO thin films have been prepared using sol-gel spin coating method, with different doping concentrations. Structural and morphological properties of the films have been investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. Thin films have been optically pumped and stimulated emission has been observed with strong peaks in the UV region. The UV stimulated emission is found to be due to exciton-exciton scattering, and Ag doping promoted this process by increasing the excitons concentrations in the ZnO lattice. Output-input intensity relation and peak emission, FWHM, and quantum efficiency relations with pump intensity have been reported. The threshold for which stimulated emission started has been evaluated to be about 18 MW/cm2 with quantum efficiency of about 58.7%. Mechanisms explaining the role of Ag in enhancement of stimulated emission from ZnO thin films have been proposed.

  10. Fluorescent minerals--A potential source of UV protection and visible light for the growth of green algae and cyanobacteria in extreme cosmic environments.

    PubMed

    Omairi, Tareq; Wainwright, Milton

    2015-07-01

    We propose that green algae (Chlorella variabilis and Dunaliella tertiolecta) and cyanobacteria (Synechococcus elongatus and Nostoc commune) can grow inside fluorescent rock minerals which convert damaging UV light to visible light, thereby allowing these organisms to survive and thrive in UV-rich environments without (or with limited) visible light, which would otherwise be inimical to them. The four microorganisms were incubated inside fluorescent rocks composed of fluorite, calcite and pyrite. The resultant growth was then measured following exposure to UV radiation, with the use of optical density and measurement of chlorophyll concentration. Results show that the microorganisms were shielded from harmful UV in these semi-transparent rocks, while at the same time benefiting from the fact that the minerals converted UV to visible light; this have been shown by a statistically significant increase in their growth, which although lower than when the cells were incubated in sunlight, was significantly higher than in controls incubated in the dark. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  11. A photo-excited broadband to dual-band tunable terahertz prefect metamaterial polarization converter

    NASA Astrophysics Data System (ADS)

    Zhu, Jianfeng; Yang, Yang; Li, Shufang

    2018-04-01

    A new and simple design of photo-excited broadband to dual-band tunable terahertz (THz) metamaterial cross polarization converter is proposed in this paper. The tunable converter is a sandwich structure with the center-cut cross-shaped metallic patterned structure as a resonator, the middle dielectric layer as a spacer and the bottom metallic film as the ground. The conductivity of the photoconductive semiconductor (Silicon) filled in the gap of the cross-shaped metallic resonator can be tuned by the incident pump power, leading to an easy modulation of the electromagnetic response of the proposed converter. The results show that the proposed cross-polarization converter can be tuned from a broadband with polarization conversion ratio (PCR) beyond 95% (1.86-2.94 THz) to dual frequency bands (fl = 1 . 46 THz &fh = 2 . 9 THz). The conversion peaks can reach 99.9% for the broadband and, 99.5% (fl) and 99.7% (fh) for the dual-band, respectively. Most importantly, numerical simulations demonstrate that the broadband/dual-band polarization conversion mechanism of the converter originates from the localized surface plasmon modes, which make the design simple and different from previous designs. With these good features, the proposed broadband to dual-band tunable polarization converter is expected to be used in widespread applications.

  12. Lasing and Longitudinal Cavity Modes in Photo-Pumped Deep Ultraviolet AlGaN Heterostructures

    DTIC Science & Technology

    2013-04-29

    of the structures were intentionally doped. The AlGaN composition was determined by triple -axis high-resolution X-ray diffraction measurements. Cross...threshold can be achieved on single crystal AlN substrates. This achievement serves as a starting point towards realizing electrically pumped sub-300 nm UV

  13. Nonlinear femtosecond pump-probe spectroscopy using a power-encoded soliton delay line.

    PubMed

    Saint-Jalm, Sarah; Andresen, Esben Ravn; Bendahmane, Abdelkrim; Kudlinski, Alexandre; Rigneault, Hervé

    2016-01-01

    We show femtosecond time-resolved nonlinear pump-probe spectroscopy using a fiber soliton as the probe pulse. Furthermore, we exploit soliton dynamics to record an entire transient trace with a power-encoded delay sweep. The power-encoded delay line takes advantage of the dependency of the soliton trajectory in the (λ,z) space upon input power; the difference in accumulated group delay between trajectories converts a fast power sweep into a fast delay sweep. We demonstrate the concept by performing transient absorption spectroscopy in a test sample and validate it against a conventional pump-probe setup.

  14. The influence of physical characteristics on ablation effects in UV laser assisted micro-engineering

    NASA Astrophysics Data System (ADS)

    Ostendorf, Andreas; Kulik, Christian J.; Temme, Thorsten; Otte, Frank; Samm, Katja

    2004-10-01

    The development of the recent years led to an increased importance of frequency-converted diode-pumped solid-state lasers (DPSSL) for industrial drilling, cutting and structuring applications. The UV laser systems show favorable beam absorption in a broad range of MEMS and MOEMS relevant materials like ceramics, metals and polymers. Their short pulses in the range of tH = 20 nanoseconds and the excellent beam quality offer the possibility of manufacturing with a minimum heat affected zone (HAZ) in the surrounding material and thereby a decreasing of initial fusing and debris. To obtain the reachable ablation quality, especially on metals, in this paper copper, tungsten, tantalum, molybdenum, nickel, iron, aluminum and titanium were machined under identical conditions. Material properties like heat conductivity, optical and thermal penetration depth, are decisive for the magnitude of the mentioned side-effects. The correlation of these physical values of different metals to those effects is the subject of this paper. Results of systematically accomplished experiences using a frequency tripled DPSSL with a wavelength of λ = 355 nm in order to investigate this correlation are presented. Due to thermal effects, the ablation quality of metals differ from each other extremely. These information enable a prediction of the reachable quality of the desired structure.

  15. Efficient wavelength converters with flattop responses based on counterpropagating cascaded SFG and DFG in low-loss QPM LiNbO3 waveguides.

    PubMed

    Tehranchi, Amirhossein; Kashyap, Raman

    2009-10-12

    A wavelength converter based on counterpropagating quasi-phase matched cascaded sum and difference frequency generation in lossy lithium niobate waveguide is numerically evaluated and compared to a single-pass scheme assuming a large pump wavelength difference of 75 nm. A double-pass device is proposed to improve the conversion efficiency while the response flattening is accomplished by increasing the wavelength tuning of one pump. The criteria for the design of the low-loss waveguide length, and the assignment of power in the pumps to achieve the desired efficiency, ripple and bandwidth are presented.

  16. UV-induced transformation of four halobenzoquinones in drinking water.

    PubMed

    Qian, Yichao; Wang, Wei; Boyd, Jessica M; Wu, Minghuo; Hrudey, Steve E; Li, Xing-Fang

    2013-05-07

    Halobenzoquinones (HBQs) are a group of emerging disinfection byproducts (DBPs) found in treated drinking water. Because the use of UV treatment for disinfection is becoming more widespread, it is important to understand how the HBQs may be removed or changed due to UV irradiation. Water samples containing four HBQs, 2,6-dichloro-1,4-benzoquinone (DCBQ), 2,3,6-trichloro-1,4-benzoquinone (TCBQ), 2,6-dichloro-3-methyl-1,4-benzoquinone (DCMBQ), and 2,6-dichloro-1,4-benzoquinone (DBBQ), were treated using a modified bench scale collimated beam device, mimicking UV treatment. Water samples before and after UV irradiation were analyzed for the parent compounds and products using a high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) method. As much as 90% of HBQs (0.25 nmol L(-1)) in both pure water and tap water were transformed to other products after UV254 irradiation at 1000 mJ cm(-2). The major products of the four HBQs were identified as 3-hydroxyl-2,6-dichloro-1,4-benzoquinone (OH-DCBQ) from DCBQ, 5-hydroxyl-2,6-dichloro-3-methyl-1,4-benzoquinone (OH-DCMBQ) from DCMBQ, 5-hydroxyl-2,3,6-trichloro-1,4-benzoquinone (OH-TCBQ) from TCBQ, and 3-hydroxyl-2,6-dibromo-1,4-benzoquinone (OH-DBBQ) from DBBQ. These four OH-HBQs were further modified to monohalogenated benzoquinones when the UV dose was higher than 200 mJ cm(-2). These results suggested possible pathways of UV-induced transformation of HBQs to other compounds. Under the UV dose commonly used in water treatment plants, it is likely that HBQs are partially converted to other halo-DBPs. The occurrence and toxicity of these mixed DBPs warrant further investigation to understand whether they pose a health risk.

  17. Broadband biphoton generation and statistics of quantum light in the UV-visible range in an AlGaN microring resonator.

    PubMed

    De Leonardis, Francesco; Soref, Richard A; Soltani, Mohammad; Passaro, Vittorio M N

    2017-09-12

    We present a physical investigation on the generation of correlated photon pairs that are broadly spaced in the ultraviolet (UV) and visible spectrum on a AlGaN/AlN integrated photonic platform which is optically transparent at these wavelengths. Using spontaneous four wave mixing (SFWM) in an AlGaN microring resonator, we show design techniques to satisfy the phase matching condition between the optical pump, the signal, and idler photon pairs, a condition which is essential and is a key hurdle when operating at short wavelength due to the strong normal dispersion of the material. Such UV-visible photon pairs are quite beneficial for interaction with qubit ions that are mostly in this wavelength range, and will enable heralding the photon-ion interaction. As a target application example, we present the systematic AlGaN microresonator design for generating signal and idler photon pairs using a blue wavelength pump, while the signal appears at the transition of ytterbium ion ( 171 Yb + , 369.5 nm) and the idler appears in the far blue or green range. The photon pairs have minimal crosstalk to the pump power due to their broad spacing in spectral wavelength, thereby relaxing the design of on-chip integrated filters for separating pump, signal and idler.

  18. Light Converting Inorganic Phosphors for White Light-Emitting Diodes

    PubMed Central

    Chen, Lei; Lin, Chun-Che; Yeh, Chiao-Wen; Liu, Ru-Shi

    2010-01-01

    White light-emitting diodes (WLEDs) have matched the emission efficiency of florescent lights and will rapidly spread as light source for homes and offices in the next 5 to 10 years. WLEDs provide a light element having a semiconductor light emitting layer (blue or near-ultraviolet (nUV) LEDs) and photoluminescence phosphors. These solid-state LED lamps, rather than organic light emitting diode (OLED) or polymer light-emitting diode (PLED), have a number of advantages over conventional incandescent bulbs and halogen lamps, such as high efficiency to convert electrical energy into light, reliability and long operating lifetime. To meet with the further requirement of high color rendering index, warm light with low color temperature, high thermal stability and higher energy efficiency for WLEDs, new phosphors that can absorb excitation energy from blue or nUV LEDs and generate visible emissions efficiently are desired. The criteria of choosing the best phosphors, for blue (450−480 nm) and nUV (380−400 nm) LEDs, strongly depends on the absorption and emission of the phosphors. Moreover, the balance of light between the emission from blue-nUV LEDs and the emissions from phosphors (such as yellow from Y3Al5O12:Ce3+) is important to obtain white light with proper color rendering index and color temperature. Here, we will review the status of phosphors for LEDs and prospect the future development.

  19. Bioconvertible vitamin antioxidants improve sunscreen photoprotection against UV-induced reactive oxygen species.

    PubMed

    Hanson, Kerry M; Clegg, Robert M

    2003-01-01

    The ability of sunscreens and antioxidants to deactivate highly destructive reactive oxygen species in human skin has remained inconclusive. Two-photon fluorescence imaging microscopy was used to determine the effect of sunscreen/antioxidant combinations upon UV-induced ROS generation in ex vivo human skin. A sunscreen combination containing octylmethoxycinnamate (Parsol MCX) and avobenzone (Parsol 1789) at SPF 8 and SPF 15 was tested for its ability to prevent UV radiation from generating ROS in the viable epidermal strata of ex vivo human skin. A UV dose equivalent to two hours of North American solar UV was used to irradiate the skin. Each sunscreen reduced the amount of ROS induced in the viable strata by a value consistent with the SPF level. UV photons that were not absorbed/scattered by the sunscreen formulations generated ROS within the viable epidermal layers. The addition of the bioconvertible antioxidants vitamin E acetate and sodium ascorbyl phosphate (STAY-C 50) improves photoprotection by converting to vitamins E and C, respectively, within the skin. The bioconversion forms an antioxidant reservoir that deactivates the ROS generated (within the strata granulosum, spinosum, and basale) by the UV photons that the sunscreens do not block in the stratum corneum.

  20. 18. Electrically driven pumps in Armory Street Pump House. Pumps ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Electrically driven pumps in Armory Street Pump House. Pumps in background formerly drew water from the clear well. They went out of service when use of the beds was discontinued. Pumps in the foreground provide high pressure water to Hamden. - Lake Whitney Water Filtration Plant, Armory Street Pumphouse, North side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  1. Potential Improvements to VLBA UV-Coverages by the Addition of a 32-m Peruvian Antenna

    NASA Astrophysics Data System (ADS)

    Horiuchi, S.; Murphy, D. W.; Ishitsuka, J. K.; Ishitsuka, M.

    2005-12-01

    A plan is being currently developed to convert a 32-m telecomunications antenna in the Peruvian Andes into a radio astronomy facility. Significant improvements to stand-alone VLBA UV-coverages can be obtained with the addition of this southern hemisphere telescope to VLBA observations.

  2. Nanostructured carbon materials based electrothermal air pump actuators

    NASA Astrophysics Data System (ADS)

    Liu, Qing; Liu, Luqi; Kuang, Jun; Dai, Zhaohe; Han, Jinhua; Zhang, Zhong

    2014-05-01

    Actuator materials can directly convert different types of energy into mechanical energy. In this work, we designed and fabricated electrothermal air pump-type actuators by utilization of various nanostructured carbon materials, including single wall carbon nanotubes (SWCNTs), reduced graphene oxide (r-GO), and graphene oxide (GO)/SWCNT hybrid films as heating elements to transfer electrical stimulus into thermal energy, and finally convert it into mechanical energy. Both the actuation displacement and working temperature of the actuator films show the monotonically increasing trend with increasing driving voltage within the actuation process. Compared with common polymer nanocomposites based electrothermal actuators, our actuators exhibited better actuation performances with a low driving voltage (<10 V), large generated stress (tens of MPa), high gravimetric density (tens of J kg-1), and short response time (few hundreds of milliseconds). Besides that, the pump actuators exhibited excellent stability under cyclic actuation tests. Among these actuators, a relatively larger actuation strain was obtained for the r-GO film actuator due to the intrinsic gas-impermeability nature of graphene platelets. In addition, the high modulus of the r-GO and GO/SWCNT films also guaranteed the large generated stress and high work density. Specifically, the generated stress and gravimetric work density of the GO/SWCNT hybrid film actuator could reach up to more than 50 MPa and 30 J kg-1, respectively, under a driving voltage of 10 V. The resulting stress value is at least two orders of magnitude higher than that of natural muscles (~0.4 MPa).Actuator materials can directly convert different types of energy into mechanical energy. In this work, we designed and fabricated electrothermal air pump-type actuators by utilization of various nanostructured carbon materials, including single wall carbon nanotubes (SWCNTs), reduced graphene oxide (r-GO), and graphene oxide (GO)/SWCNT hybrid

  3. Underwater Noise from a Wave Energy Converter Is Unlikely to Affect Marine Mammals

    PubMed Central

    Tougaard, Jakob

    2015-01-01

    Underwater noise was recorded from the Wavestar wave energy converter; a full-scale hydraulic point absorber, placed on a jack-up rig on the Danish North Sea coast. Noise was recorded 25 m from the converter with an autonomous recording unit (10 Hz to 20 kHz bandwidth). Median sound pressure levels (Leq) in third-octave bands during operation of the converter were 106–109 dB re. 1 μPa in the range 125–250 Hz, 1–2 dB above ambient noise levels (statistically significant). Outside the range 125–250 Hz the noise from the converter was undetectable above the ambient noise. During start and stop of the converter a more powerful tone at 150 Hz (sound pressure level (Leq) 121–125 dB re 1 μPa) was easily detectable. This tone likely originated from the hydraulic pump which was used to lower the absorbers into the water and lift them out of the water at shutdown. Noise levels from the operating wave converter were so low that they would barely be audible to marine mammals and the likelihood of negative impact from the noise appears minimal. A likely explanation for the low noise emissions is the construction of the converter where all moving parts, except for the absorbers themselves, are placed above water on a jack-up rig. The results may thus not be directly transferable to other wave converter designs but do demonstrate that it is possible to harness wave energy without noise pollution to the marine environment. PMID:26148299

  4. Underwater Noise from a Wave Energy Converter Is Unlikely to Affect Marine Mammals.

    PubMed

    Tougaard, Jakob

    2015-01-01

    Underwater noise was recorded from the Wavestar wave energy converter; a full-scale hydraulic point absorber, placed on a jack-up rig on the Danish North Sea coast. Noise was recorded 25 m from the converter with an autonomous recording unit (10 Hz to 20 kHz bandwidth). Median sound pressure levels (Leq) in third-octave bands during operation of the converter were 106-109 dB re. 1 μPa in the range 125-250 Hz, 1-2 dB above ambient noise levels (statistically significant). Outside the range 125-250 Hz the noise from the converter was undetectable above the ambient noise. During start and stop of the converter a more powerful tone at 150 Hz (sound pressure level (Leq) 121-125 dB re 1 μPa) was easily detectable. This tone likely originated from the hydraulic pump which was used to lower the absorbers into the water and lift them out of the water at shutdown. Noise levels from the operating wave converter were so low that they would barely be audible to marine mammals and the likelihood of negative impact from the noise appears minimal. A likely explanation for the low noise emissions is the construction of the converter where all moving parts, except for the absorbers themselves, are placed above water on a jack-up rig. The results may thus not be directly transferable to other wave converter designs but do demonstrate that it is possible to harness wave energy without noise pollution to the marine environment.

  5. Impeller behavior and displacement of the VentrAssist implantable rotary blood pump.

    PubMed

    Chung, Michael K H; Zhang, Nong; Tansley, Geoff D; Woodard, John C

    2004-03-01

    The VentrAssist implantable rotary blood pump, intended for long-term ventricular assist, is under development and is currently being tested for its rotor-dynamic stability. The pump is of the centrifugal type and consists of a shaftless impeller, also acting as the rotor of the brushless DC motor. The impeller remains passively suspended in the pump cavity by hydrodynamic forces, resulting from the small clearances between the impeller outside surfaces and the pump cavity. In the older version of the pump tested, these small clearances range from approximately 50 microm to 230 microm; the displacement of the impeller relative to the pump cavity is unknown in use. This article presents two experiments: the first measured displacement of the impeller using eddy-current proximity sensors and laser proximity sensors. The second experiment used Hall-effect proximity sensors to measure the displacement of the impeller relative to the pump cavity. All transducers were calibrated prior to commencement of the experiments. Voltage output from the transducers was converted into impeller movement in five degrees of freedom (x, y, z, theta(x), and theta(y)). The sixth degree of freedom, the rotation about the impeller axis (theta(z)), was determined by the commutation performed by the motor controller. The impeller displacement was found to be within the acceptable range of 8 micro m to 222 microm, avoiding blood damage and contact between the impeller and cavity walls. Thus the impeller was hydrodynamically suspended within the pump cavity and results were typical of centrifugal pump behavior. This research will be the basis for further investigation into the stiffness and damping coefficient of the pump's hydrodynamic bearing.

  6. TEM Pump With External Heat Source And Sink

    NASA Technical Reports Server (NTRS)

    Nesmith, Bill J.

    1991-01-01

    Proposed thermoelectric/electromagnetic (TEM) pump driven by external source of heat and by two or more heat pipe radiator heat sink(s). Thermoelectrics generate electrical current to circulate liquid metal in secondary loop of two-fluid-loop system. Intended for use with space and terrestrial dual loop liquid metal nuclear reactors. Applications include spacecraft on long missions or terrestrial beacons or scientific instruments having to operate in remote areas for long times. Design modified to include multiple radiators, converters, and ducts, as dictated by particular application.

  7. Up-conversion media on basis single crystals BaY2F8 for UV and VUV solid state lasers

    NASA Astrophysics Data System (ADS)

    Pushkar, A. A.; Ouvarova, T. V.; Molchanov, V. N.

    2007-04-01

    Crystal BaY IIF 8 represents the big interest as the perspective active media for lasers ultra-violet (UV) and vacuumultra- violet (VUV) regions. For the decision of problems with solarization this media and a choice of sources pump it is offered to use up-conversion mechanisms pump with activators from rare-earth elements (RE). We have developed technology of grown of oriented monocrystals BaY IIF 8, have defined influence of orientation on growth rate and quality ofthe received monocrystals.

  8. Some results regarding stability of photovoltaic maximum-power-point tracking dc-dc converters

    NASA Astrophysics Data System (ADS)

    Schaefer, John F.

    An analytical investigation of a class of photovoltaic (PV) maximum-power-point tracking dc-dc converters has yielded basic results relative to the stability of such devices. Necessary and sufficient conditions for stable operation are derived, and design tools are given. Specific results have been obtained for arbitrary PV arrays driving converters powering resistive loads and batteries. The analytical techniques are applicable to inverters, also. Portions of the theoretical results have been verified in operational devices: a 1500 watt unit has driven a 1-horsepower, 90-volt dc motor powering a water pump jack for over one year. Prior to modification shortly after initial installation, the unit exhibited instability at low levels of irradiance, as predicted by the theory. Two examples are provided.

  9. Pumping liquid metal at high temperatures up to 1,673 kelvin

    NASA Astrophysics Data System (ADS)

    Amy, C.; Budenstein, D.; Bagepalli, M.; England, D.; Deangelis, F.; Wilk, G.; Jarrett, C.; Kelsall, C.; Hirschey, J.; Wen, H.; Chavan, A.; Gilleland, B.; Yuan, C.; Chueh, W. C.; Sandhage, K. H.; Kawajiri, Y.; Henry, A.

    2017-10-01

    Heat is fundamental to power generation and many industrial processes, and is most useful at high temperatures because it can be converted more efficiently to other types of energy. However, efficient transportation, storage and conversion of heat at extreme temperatures (more than about 1,300 kelvin) is impractical for many applications. Liquid metals can be very effective media for transferring heat at high temperatures, but liquid-metal pumping has been limited by the corrosion of metal infrastructures. Here we demonstrate a ceramic, mechanical pump that can be used to continuously circulate liquid tin at temperatures of around 1,473-1,673 kelvin. Our approach to liquid-metal pumping is enabled by the use of ceramics for the mechanical and sealing components, but owing to the brittle nature of ceramics their use requires careful engineering. Our set-up enables effective heat transfer using a liquid at previously unattainable temperatures, and could be used for thermal storage and transport, electric power production, and chemical or materials processing.

  10. Feasibility study for convertible engine torque converter

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The feasibility study has shown that a dump/fill type torque converter has excellent potential for the convertible fan/shaft engine. The torque converter space requirement permits internal housing within the normal flow path of a turbofan engine at acceptable engine weight. The unit permits operating the engine in the turboshaft mode by decoupling the fan. To convert to turbofan mode, the torque converter overdrive capability bring the fan speed up to the power turbine speed to permit engagement of a mechanical lockup device when the shaft speed are synchronized. The conversion to turbofan mode can be made without drop of power turbine speed in less than 10 sec. Total thrust delivered to the aircraft by the proprotor, fan, and engine during tansient can be controlled to prevent loss of air speed or altitude. Heat rejection to the oil is low, and additional oil cooling capacity is not required. The turbofan engine aerodynamic design is basically uncompromised by convertibility and allows proper fan design for quiet and efficient cruise operation. Although the results of the feasibility study are exceedingly encouraging, it must be noted that they are based on extrapolation of limited existing data on torque converters. A component test program with three trial torque converter designs and concurrent computer modeling for fluid flow, stress, and dynamics, updated with test results from each unit, is recommended.

  11. Peristaltic pump noise: A nemesis conquered

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, D.A.

    1994-12-31

    Continuous-flow analyzers (CFA), and especially Segmented Flow Analyzers (SFA), typically employ peristaltic pumps to generate a carrier stream and add reagents thereto. The resulting pump {open_quotes}noise{close_quotes} usually limits precision, and is generally deemed unavoidable. Although the problem is partially solved by hydraulic debubbling, most modern instruments employ bubble thru the flow-cell (BTTFC) technology and electronic debubbling. The authors have developed an algorithm that can significantly reduce this source of noise, even when the individual segments in the SFA stream are of varying volumes and/or concentrations. It does this, without any modifications to the pump, by examining each individual segment asmore » it passes thru the flowcell. The Alpkem model 304 multichannel pump, for example, can be set to produce 90 bubbles/minutes (and therefore 90 segments/minute), so one has 667 msec in which to gather sufficient information to identify a {open_quotes}bad{close_quotes} segment and modify its value. This hardware includes a Hewlett Packard model 8452A diode array spectrophotometer fitted with fiber optics leading to/from a flowcell (5 mm path length X 1mm ID). Each segment remains in the flowcell 300-500 msec. With a data sampling rate of 10/sec (100 msec integration time), the authors can acquire 3-5 intensity values for each segment and convert these to absorbance values. The software to perform all this was written in QuickBASIC 4.5 and incorporates a few routines from Hewlett Packard`s library. The program will be described in some detail so that analytical chemists who use BTTFC can obtain higher precision.« less

  12. CUVE - Cubesat UV Experiment: Unveil Venus' UV Absorber with Cubesat UV Mapping Spectrometer

    NASA Astrophysics Data System (ADS)

    Cottini, V.; Aslam, S.; D'Aversa, E.; Glaze, L.; Gorius, N.; Hewagama, T.; Ignatiev, N.; Piccioni, G.

    2017-09-01

    Our Venus mission concept Cubesat UV Experiment (CUVE) is one of ten proposals selected for funding by the NASA PSDS3 Program - Planetary Science Deep Space SmallSat Studies. CUVE concept is to insert a CubeSat spacecraft into a Venusian orbit and perform remote sensing of the UV spectral region using a high spectral resolution point spectrometer to resolve UV molecular bands, observe nightglow, and characterize the unidentified main UV absorber. The UV spectrometer is complemented by an imaging UV camera with multiple bands in the UV absorber main band range for contextual imaging. CUVE Science Objectives are: the nature of the "Unknown" UV-absorber; the abundances and distributions of SO2 and SO at and above Venus's cloud tops and their correlation with the UV absorber; the atmospheric dynamics at the cloud tops, structure of upper clouds and wind measurements from cloud-tracking; the nightglow emissions: NO, CO, O2. This mission will therefore be an excellent platform to study Venus' cloud top atmospheric properties where the UV absorption drives the planet's energy balance. CUVE would complement past, current and future Venus missions with conventional spacecraft, and address critical science questions cost effectively.

  13. Orbital angular momentum correlations with a phase-flipped Gaussian mode pump beam

    NASA Astrophysics Data System (ADS)

    Romero, J.; Giovannini, D.; McLaren, M. G.; Galvez, E. J.; Forbes, A.; Padgett, M. J.

    2012-08-01

    We report orbital angular momentum (OAM) and angle correlations between signal and idler photons observed when the nonlinear crystal used in spontaneous parametric down-conversion is illuminated by a non-fundamental Gaussian pump beam. We introduce a π-phase step to the transverse profile of the pump, before it impinges on the crystal to create a phase-flipped Gaussian mode, which is a close approximation to an HG10 Hermite-Gaussian-like beam. The correlations in OAM and angular position are then measured holographically using two separate spatial light modulators in the signal and idler arms. We show the transfer of the OAM spectrum of the pump to the down-converted fields, manifested as a redistribution in the OAM correlations consistent with OAM conservation. This corresponds to a modulation of the angular position correlations consistent with the Fourier relationship between the OAM and angle.

  14. All-periodically poled, high-power, continuous-wave, single-frequency tunable UV source.

    PubMed

    Aadhi, A; Chaitanya N, Apurv; Jabir, M V; Singh, R P; Samanta, G K

    2015-01-01

    We report on experimental demonstration of an all-periodically poled, continuous-wave (CW), high-power, single-frequency, ultra-violet (UV) source. Based on internal second-harmonic-generation (SHG) of a CW singly resonant optical parametric oscillator (OPO) pumped in the green, the UV source provides tunable radiation across 398.94-417.08 nm. The compact source comprising of a 25-mm-long MgO-doped periodically poled stoichiometric lithium tantalate (MgO:sPPLT) crystal of period Λ(SLT)=8.5  μm for OPO and a 5-mm-long, multi-grating (Λ(KTP)=3.3, 3.4, 3.6 and 3.8 μm), periodically poled potassium titanium phosphate (PPKTP) for intra-cavity SHG, provides as much as 336 mW of UV power at 398.94 nm, corresponding to a green-to-UV conversion efficiency of ∼6.7%. In addition, the singly resonant OPO (SRO) provides 840 mW of idler at 1541.61 nm and substantial signal power of 108 mW at 812.33 nm transmitted through the high reflective cavity mirrors. UV source provides single-frequency radiation with instantaneous line-width of ∼18.3  MHz and power >100  mW in Gaussian beam profile (ellipticity >92%) across the entire tuning range. Access to lower UV wavelengths requires smaller grating periods to compensate high phase-mismatch resulting from high material dispersion in the UV wavelength range. Additionally, we have measured the normalized temperature and spectral acceptance bandwidth of PPKTP crystal in the UV wavelength range to be ∼2.25°C·cm and ∼0.15  nm·cm, respectively.

  15. Light, Molecules, Action: Using Ultrafast Uv-Visible and X-Ray Spectroscopy to Probe Excited State Dynamics in Photoactive Molecules

    NASA Astrophysics Data System (ADS)

    Sension, R. J.

    2017-06-01

    Light provides a versatile energy source capable of precise manipulation of material systems on size scales ranging from molecular to macroscopic. Photochemistry provides the means for transforming light energy from photon to process via movement of charge, a change in shape, a change in size, or the cleavage of a bond. Photochemistry produces action. In the work to be presented here ultrafast UV-Visible pump-probe, and pump-repump-probe methods have been used to probe the excited state dynamics of stilbene-based molecular motors, cyclohexadiene-based switches, and polyene-based photoacids. Both ultrafast UV-Visible and X-ray absorption spectroscopies have been applied to the study of cobalamin (vitamin B_{12}) based compounds. Optical measurements provide precise characterization of spectroscopic signatures of the intermediate species on the S_{1} surface, while time-resolved XANES spectra at the Co K-edge probe the structural changes that accompany these transformations.

  16. Efficient photoreductive decomposition of N-nitrosodimethylamine by UV/iodide process.

    PubMed

    Sun, Zhuyu; Zhang, Chaojie; Zhao, Xiaoyun; Chen, Jing; Zhou, Qi

    2017-05-05

    N-nitrosodimethylamine (NDMA) has aroused extensive concern as a disinfection byproduct due to its high toxicity and elevated concentration levels in water sources. This study investigates the photoreductive decomposition of NDMA by UV/iodide process. The results showed that this process is an effective strategy for the treatment of NDMA with 99.2% NDMA removed within 10min. The depletion of NDMA by UV/iodide process obeyed pseudo-first-order kinetics with a rate constant (k 1 ) of 0.60±0.03min -1 . Hydrated electrons (e aq - ) generated by the UV irradiation of iodide were proven to play a critical role. Dimethylamine (DMA) and nitrite (NO 2 - ) were formed as the main intermediate products, which completely converted to formate (HCOO - ), ammonium (NH 4 + ) and nitrogen (N 2 ). Therefore, not only the high efficiencies in NDMA destruction, but the elimination of toxic intermediates make UV/iodide process advantageous. A photoreduction mechanism was proposed: NDMA initially absorbed photons to a photoexcited state, and underwent a cleavage of NNO bond under the attack of e aq - . The solution pH had little impact on NDMA removal. However, alkaline conditions were more favorable for the elimination of DMA and NO 2 - , thus effectively reducing the secondary pollution. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. GaSb-based VECSEL for high-power applications and Ho-pumping

    NASA Astrophysics Data System (ADS)

    Holl, P.; Rattunde, M.; Adler, S.; Scholle, K.; Lamrini, S.; Fuhrberg, P.; Diwo-Emmer, E.; Aidam, R.; Bronner, W.; Wagner, J.

    2017-02-01

    The (AlGaIn)(AsSb) material system has been shown to be ideally suited to realize VECSELs for the 2-3 μm wavelength range. In this report we will present results on increasing the output power of the SDL chips with special emphasis on the 2.8 μm emission wavelength by means of low quantum defect pumping. Further on we have investigated concepts for a VECSEL-pumped Q-switched Ho:YAG laser in order to convert the high cw-power of the VECSEL into pulses with a high peak power. Up to 3.3 mJ of pulse energy were achieved with a compact setup (corresponding to a peak power of 30 kW at 110 ns pulse length) combined with stable pulsing behavior.

  18. Possible roles of two quinone molecules in direct and indirect proton pumps of bovine heart NADH-quinone oxidoreductase (complex I).

    PubMed

    Ohnishi, S Tsuyoshi; Salerno, John C; Ohnishi, Tomoko

    2010-12-01

    In many energy transducing systems which couple electron and proton transport, for example, bacterial photosynthetic reaction center, cytochrome bc(1)-complex (complex III) and E. coli quinol oxidase (cytochrome bo(3) complex), two protein-associated quinone molecules are known to work together. T. Ohnishi and her collaborators reported that two distinct semiquinone species also play important roles in NADH-ubiquinone oxidoreductase (complex I). They were called SQ(Nf) (fast relaxing semiquinone) and SQ(Ns) (slow relaxing semiquinone). It was proposed that Q(Nf) serves as a "direct" proton carrier in the semiquinone-gated proton pump (Ohnishi and Salerno, FEBS Letters 579 (2005) 4555), while Q(Ns) works as a converter between one-electron and two-electron transport processes. This communication presents a revised hypothesis in which Q(Nf) plays a role in a "direct" redox-driven proton pump, while Q(Ns) triggers an "indirect" conformation-driven proton pump. Q(Nf) and Q(Ns) together serve as (1e(-)/2e(-)) converter, for the transfer of reducing equivalent to the Q-pool. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. UV disinfection pilot plant study at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huffines, R.L.; Beavers, B.A.

    1993-05-01

    An ultraviolet light disinfection system pilot plant was operated at the Savannah River Site Central Shops sanitary wastewater treatment package plant July 14, 1992 through August 13, 1992. The purpose was to determine the effectiveness of ultraviolet light disinfection on the effluent from the small package-type wastewater treatment plants currently used on-site. This pilot plant consisted of a rack of UV lights suspended in a stainless steel channel through which a sidestream of effluent from the treatment plant clarifier was pumped. Fecal coliform analyses were performed on the influent to and effluent from the pilot unit to verify the disinfectionmore » process. UV disinfection was highly effective in reducing fecal coliform colonies within NPDES permit limitations even under process upset conditions. The average fecal coliform reduction exceeded 99.7% using ultraviolet light disinfection under normal operating conditions at the package treatment plants.« less

  20. UV disinfection pilot plant study at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huffines, R.L.; Beavers, B.A.

    1993-01-01

    An ultraviolet light disinfection system pilot plant was operated at the Savannah River Site Central Shops sanitary wastewater treatment package plant July 14, 1992 through August 13, 1992. The purpose was to determine the effectiveness of ultraviolet light disinfection on the effluent from the small package-type wastewater treatment plants currently used on-site. This pilot plant consisted of a rack of UV lights suspended in a stainless steel channel through which a sidestream of effluent from the treatment plant clarifier was pumped. Fecal coliform analyses were performed on the influent to and effluent from the pilot unit to verify the disinfectionmore » process. UV disinfection was highly effective in reducing fecal coliform colonies within NPDES permit limitations even under process upset conditions. The average fecal coliform reduction exceeded 99.7% using ultraviolet light disinfection under normal operating conditions at the package treatment plants.« less

  1. Multi technical analysis of wear mechanisms in axial piston pumps

    NASA Astrophysics Data System (ADS)

    Schuhler, G.; Jourani, A.; Bouvier, S.; Perrochat, J.-M.

    2017-05-01

    Axial piston pumps convert a motor rotation motion into hydraulic or pneumatic power. Their compactness and efficiency of approximately 0.9 make them suitable for actuation applications especially in aeronautics. However, they suffer a limited life due to the wear of their components. In the literature, studies of axial piston pumps deal with contact between its different elements under lubrication conditions. Nevertheless, they are more focused on analytic or numerical approaches. This study consists in an experimental analysis of worn pump components to highlight and understand wear mechanisms. Piston shoes are central components in the axial piston pump since they are involved in three tribological contacts. These three contacts are thereby studied: piston shoes/swashplate, piston shoes/pistons and piston shoes/shoes hold down plate (SHDP). To perform this analysis, helicopter hydraulic pumps after different operating times have been studied. The wear damage mechanisms and wear debris are analysed using SEM observations. 3D surface roughness measurements are then used to characterize worn surfaces. The observations reveal that in the contact between shoes and swashplate, the main wear mechanism is three-body abrasive wear due to coarse carbides removal. Between shoes and pistons, wear occurs in a less severe way and is mainly due to the debris generated in the first contact and conveyed by the lubricating fluid. In the third contact, the debris are also the prime cause of the abrasive wear and the generation of deep craters in the piston shoes.

  2. Moderate UV Exposure Enhances Learning and Memory by Promoting a Novel Glutamate Biosynthetic Pathway in the Brain.

    PubMed

    Zhu, Hongying; Wang, Ning; Yao, Lei; Chen, Qi; Zhang, Ran; Qian, Junchao; Hou, Yiwen; Guo, Weiwei; Fan, Sijia; Liu, Siling; Zhao, Qiaoyun; Du, Feng; Zuo, Xin; Guo, Yujun; Xu, Yan; Li, Jiali; Xue, Tian; Zhong, Kai; Song, Xiaoyuan; Huang, Guangming; Xiong, Wei

    2018-06-14

    Sunlight exposure is known to affect mood, learning, and cognition. However, the molecular and cellular mechanisms remain elusive. Here, we show that moderate UV exposure elevated blood urocanic acid (UCA), which then crossed the blood-brain barrier. Single-cell mass spectrometry and isotopic labeling revealed a novel intra-neuronal metabolic pathway converting UCA to glutamate (GLU) after UV exposure. This UV-triggered GLU synthesis promoted its packaging into synaptic vesicles and its release at glutamatergic terminals in the motor cortex and hippocampus. Related behaviors, like rotarod learning and object recognition memory, were enhanced after UV exposure. All UV-induced metabolic, electrophysiological, and behavioral effects could be reproduced by the intravenous injection of UCA and diminished by the application of inhibitor or short hairpin RNA (shRNA) against urocanase, an enzyme critical for the conversion of UCA to GLU. These findings reveal a new GLU biosynthetic pathway, which could contribute to some of the sunlight-induced neurobehavioral changes. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Acoustic Pump

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.

    1993-01-01

    Pump uses acoustic-radiation forces. Momentum transferred from sound waves to sound-propagating material in way resulting in net pumping action on material. Acoustic pump is solid-state pump. Requires no moving parts, entirely miniaturized, and does not invade pumped environment. Silent, with no conventional vibration. Used as pump for liquid, suspension, gas, or any other medium interacting with radiation pressure. Also used where solid-state pump needed for reliability and controllability. In microgravity environment, device offers unusual control for low flow rates. For medical or other applications in which contamination cannot be allowed, offers noninvasive pumping force.

  4. Simultaneous energy generation and UV quencher removal from landfill leachate using a microbial fuel cell.

    PubMed

    Iskander, Syeed Md; Novak, John T; Brazil, Brian; He, Zhen

    2017-11-01

    The presence of UV quenching compounds in landfill leachate can negatively affect UV disinfection in a wastewater treatment plant when leachate is co-treated. Herein, a microbial fuel cell (MFC) was investigated to remove UV quenchers from a landfill leachate with simultaneous bioelectricity generation. The key operating parameters including hydraulic retention time (HRT), anolyte recirculation rate, and external resistance were systematically studied to maximize energy recovery and UV absorbance reduction. It was found that nearly 50% UV absorbance was reduced under a condition of HRT 40 days, continuous anolyte recirculation, and 10 Ω external resistance. Further analysis showed a total reduction of organics by 75.3%, including the reduction of humic acids, fulvic acids, and hydrophilic fraction concentration as TOC. The MFC consumed 0.056 kWh m -3 by its pump system for recirculation and oxygen supply. A reduced HRT of 20 days with periodical anode recirculation (1 hour in every 24 hours) and 39 Ω external resistance (equal to the internal resistance of the MFC) resulted in the highest net energy of 0.123 kWh m -3 . Granular activated carbon (GAC) was used as an effective post-treatment step and could achieve 89.1% UV absorbance reduction with 40 g L -1 . The combined MFC and GAC treatment could reduce 92.9% of the UV absorbance and remove 89.7% of the UV quenchers. The results of this study would encourage further exploration of using MFCs as an energy-efficient method for removing UV quenchers from landfill leachate.

  5. PUMP CONSTRUCTION

    DOEpatents

    Strickland, G.; Horn, F.L.; White, H.T.

    1960-09-27

    A pump which utilizes the fluid being pumped through it as its lubricating fluid is described. This is achieved by means of an improved bearing construction in a pump of the enclosed or canned rotor type. At the outlet end of the pump, adjacent to an impeller mechanism, there is a bypass which conveys some of the pumped fluid to a chamber at the inlet end of the pump. After this chamber becomes full, the pumped fluid passes through fixed orifices in the top of the chamber and exerts a thrust on the inlet end of the pump rotor. Lubrication of the rotor shaft is accomplished by passing the pumped fluid through a bypass at the outlet end of the rotor shaft. This bypass conveys Pumped fluid to a cooling means and then to grooves on the surface of the rotor shait, thus lubricating the shaft.

  6. Measuring H(+) Pumping and Membrane Potential Formation in Sealed Membrane Vesicle Systems.

    PubMed

    Wielandt, Alex Green; Palmgren, Michael G; Fuglsang, Anja Thoe; Günther-Pomorski, Thomas; Justesen, Bo Højen

    2016-01-01

    The activity of enzymes involved in active transport of matter across lipid bilayers can conveniently be assayed by measuring their consumption of energy, such as ATP hydrolysis, while it is more challenging to directly measure their transport activities as the transported substrate is not converted into a product and only moves a few nanometers in space. Here, we describe two methods for the measurement of active proton pumping across lipid bilayers and the concomitant formation of a membrane potential, applying the dyes 9-amino-6-chloro-2-methoxyacridine (ACMA) and oxonol VI. The methods are exemplified by assaying transport of the Arabidopsis thaliana plasma membrane H(+)-ATPase (proton pump), which after heterologous expression in Saccharomyces cerevisiae and subsequent purification has been reconstituted in proteoliposomes.

  7. LMFBR with booster pump in pumping loop

    DOEpatents

    Rubinstein, H.J.

    1975-10-14

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation.

  8. Total ozone derived from UV spectrophotometer measurements on the NASA CV-990 aircraft for the fall 1976 latitude survey flights

    NASA Technical Reports Server (NTRS)

    Hanser, F. A.

    1977-01-01

    An ultraviolet interference filter spectrophotometer was modified to use a photodiode and was flown on latitude survey flights in the fall of 1976. Comparison with Dobson station total ozone values shows agreement between UVS and Dobson total ozone of + or - 2 percent. The procedure used to convert UVS measured ozone above the aircraft altitude to total ozone above ground level introduces an additional 2 percent deviation for very high altitude UVS ozone data. Under stable aircraft operating conditions, the UVS derived ozone values have a variability, or reproducibility, of better than + or -1 percent. The UVS data from the latitude survey flights yield a detailed latitude profile of total ozone over the Pacific Ocean during November 1976. Significant latitudinal structure in total ozone is found at the middle latitudes (30 deg to 40 deg N and S).

  9. ACTIVE MEDIA: BaY2F8 single crystals doped with rare-earth ions as promising up-conversion media for UV and VUV lasers

    NASA Astrophysics Data System (ADS)

    Pushkar', A. A.; Uvarova, T. V.; Molchanov, V. N.

    2008-04-01

    BaY2F8 crystals are studied as promising active media for UV and VUV lasers. The up-conversion pumping of rare-earth activators is proposed to solve problems related to the solarisation of the medium and the selection of pump sources. The technology of growing oriented BaY2F8 single crystals is developed and the influence of the crystal orientation on the growth rate and quality of single crystals is determined.

  10. Holography and thermalization in optical pump-probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Bagrov, A.; Craps, B.; Galli, F.; Keränen, V.; Keski-Vakkuri, E.; Zaanen, J.

    2018-04-01

    Using holography, we model experiments in which a 2 +1 D strange metal is pumped by a laser pulse into a highly excited state, after which the time evolution of the optical conductivity is probed. We consider a finite-density state with mildly broken translation invariance and excite it by oscillating electric field pulses. At zero density, the optical conductivity would assume its thermalized value immediately after the pumping has ended. At finite density, pulses with significant dc components give rise to slow exponential relaxation, governed by a vector quasinormal mode. In contrast, for high-frequency pulses the amplitude of the quasinormal mode is strongly suppressed, so that the optical conductivity assumes its thermalized value effectively instantaneously. This surprising prediction may provide a stimulus for taking up the challenge to realize these experiments in the laboratory. Such experiments would test a crucial open question faced by applied holography: are its predictions artifacts of the large N limit or do they enjoy sufficient UV independence to hold at least qualitatively in real-world systems?

  11. Photoactivated UVR8-COP1 Module Determines Photomorphogenic UV-B Signaling Output in Arabidopsis

    PubMed Central

    Ouyang, Xinhao; Chen, Liangbi; Deng, Xing Wang

    2014-01-01

    In Arabidopsis, ultraviolet (UV)-B-induced photomorphogenesis is initiated by a unique photoreceptor UV RESISTANCE LOCUS 8 (UVR8) which utilizes its tryptophan residues as internal chromophore to sense UV-B. As a result of UV-B light perception, the UVR8 homodimer shaped by its arginine residues undergoes a conformational switch of monomerization. Then UVR8 associates with the CONSTITUTIVELY PHOTOMORPHOGENIC 1-SUPPRESSOR OF PHYA (COP1-SPA) core complex(es) that is released from the CULLIN 4-DAMAGED DNA BINDING PROTEIN 1 (CUL4-DDB1) E3 apparatus. This association, in turn, causes COP1 to convert from a repressor to a promoter of photomorphogenesis. It is not fully understood, however, regarding the biological significance of light-absorbing and dimer-stabilizing residues for UVR8 activity in photomorphogenic UV-B signaling. Here, we take advantage of transgenic UVR8 variants to demonstrate that two light-absorbing tryptophans, W233 and W285, and two dimer-stabilizing arginines, R286 and R338, play pivotal roles in UV-B-induced photomorphogenesis. Mutation of each residue results in alterations in UV-B light perception, UVR8 monomerization and UVR8-COP1 association in response to photomorphogenic UV-B. We also identify and functionally characterize two constitutively active UVR8 variants, UVR8W285A and UVR8R338A, whose photobiological activities are enhanced by the repression of CUL4, a negative regulator in this pathway. Based on our molecular and biochemical evidence, we propose that the UVR8-COP1 affinity in plants critically determines the photomorphogenic UV-B signal transduction coupling with UVR8-mediated UV-B light perception. PMID:24651064

  12. RF-DC converter for HF RFID sensing applications powered by a near-field loop antenna

    NASA Astrophysics Data System (ADS)

    Colella, R.; Pasca, M.; Catarinucci, L.; Tarricone, L.; D'Amico, S.

    2016-07-01

    In this paper, an RF-DC converter operating at 13.56 MHz (HF radio frequency identification (RFID) frequency band) is presented. Its architecture provides RF to load isolation, reducing the losses due to the reverse saturation current and improving the sensitivity. Fed by a loop antenna, the RF-DC converter is made by a Dickson's RF-DC rectifier and an additional Pelliconi's charge pump driven by a fully integrated 50 kHz ring oscillator realized using an application-specific integrated circuit (ASIC). The input RF signal from the reader is converted to DC supply voltage and stored on a 1 μF capacitor. Mathematical model of the converter is developed and verified through measurements. Silicon prototypes of the ASIC have been realized in 350 nm complementary metal-oxide semiconductor technology. Measurements have been done on 10 different samples showing an output voltage in the range of 0.5 V-3.11 V in correspondence of an RF input signal power in the range of -19 dBm-0 dBm. These output voltage levels are suitable to power HF RFID sensing platforms and sensor nodes of body sensor networks.

  13. Development and optimization of a matrix converter supplying an electronic ballast - UV lamp system for water sterilization

    NASA Astrophysics Data System (ADS)

    Bokhtache, Aicha Aissa; Zegaoui, Abdallah; Aillerie, Michel; Djahbar, Abdelkader; Hemici, Kheira

    2018-05-01

    Electronic ballasts dedicated to discharge lamps allow improving the quality of radiation by operating at high frequency. In the present work, the use of a single-phase direct converter with a matrix structure for supplying a low-pressure mercury-argon UVC lamp for water sterilization is proposed. The structure of the converter is based on two switching cells allowing the realization of a fully controllable bidirectional switches. The advantages of such a matrix topology include the delivered of a sinusoidal waveform current with a controllable power factor close to unity, variable in amplitude and frequency. In order to obtain the desired amplitude and frequency, a PWM control was associated in the current realization. Finally, a linear adjustment of the lamp arc current was warranted by using of a PI regulator.

  14. Proton-pumping mechanism of cytochrome c oxidase: A kinetic master-equation approach

    PubMed Central

    Kim, Young C.; Hummer, Gerhard

    2011-01-01

    Cytochrome c oxidase (CcO) is an efficient energy transducer that reduces oxygen to water and converts the released chemical energy into an electrochemical membrane potential. As a true proton pump, CcO translocates protons across the membrane against this potential. Based on a wealth of experiments and calculations, an increasingly detailed picture of the reaction intermediates in the redox cycle has emerged. However, the fundamental mechanism of proton pumping coupled to redox chemistry remains largely unresolved. Here we examine and extend a kinetic master-equation approach to gain insight into redox-coupled proton pumping in CcO. Basic principles of the CcO proton pump emerge from an analysis of the simplest kinetic models that retain essential elements of the experimentally determined structure, energetics, and kinetics, and that satisfy fundamental physical principles. The master-equation models allow us to address the question of how pumping can be achieved in a system in which all reaction steps are reversible. Whereas proton pumping does not require the direct modulation of microscopic reaction barriers, such kinetic gating greatly increases the pumping efficiency. Further efficiency gains can be achieved by partially decoupling the proton uptake pathway from the ative-site region. Such a mechanism is consistent with the proposed Glu valve, in which the side chain of a key glutamic acid shuttles between the D channel and the active-site region. We also show that the models predict only small proton leaks even in the absence of turnover. The design principles identified here for CcO provide a blueprint for novel biology-inspired fuel cells, and the master-equation formulation should prove useful also for other molecular machines. PMID:21946020

  15. Continuously pumping and reactivating gas pump

    DOEpatents

    Batzer, T.H.; Call, W.R.

    Apparatus for continuous pumping using cycling cryopumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels that alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independant pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped.

  16. Continuously pumping and reactivating gas pump

    DOEpatents

    Batzer, Thomas H.; Call, Wayne R.

    1984-01-01

    Apparatus for continuous pumping using cycling cyropumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels the alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independent pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped.

  17. Efficiency optimization of a photovoltaic water pumping system for irrigation in Ouargla, Algeria

    NASA Astrophysics Data System (ADS)

    Louazene, M. L.; Garcia, M. C. Alonso; Korichi, D.

    2017-02-01

    This work is technical study to contribute to the optimization of pumping systems powered by solar energy (clean) and used in the field of agriculture. To achieve our goals, we studied the techniques that must be entered on a photovoltaic system for maximum energy from solar panels. Our scientific contribution in this research is the realization of an efficient photovoltaic pumping system for irrigation needs. To achieve this and extract maximum power from the PV generator, two axes have been optimized: 1. Increase in the uptake of solar radiation by choice an optimum tilt angle of the solar panels, and 2. it is necessary to add an adaptation device, MPPT controller with a DC-DC converter, between the source and the load.

  18. [The development tendencies of infusion pumps/syringe pumps].

    PubMed

    Zhang, Peng; Wang, Shu-Yi; Yu, Chuan-Yi; Zhang, Min-Yan

    2009-07-01

    Through the investigation about the current infusion pumps, the development tendencies of the next generation infusion pumps/Syringe Pumps with regarding to human-factors, practicality and application under MRI (Magnetic resonance imaging) were put forward.

  19. Hand-Portable Gradient Capillary Liquid Chromatography Pumping System.

    PubMed

    Sharma, Sonika; Plistil, Alex; Barnett, Hal E; Tolley, H Dennis; Farnsworth, Paul B; Stearns, Stanley D; Lee, Milton L

    2015-10-20

    In this work, a novel splitless nanoflow gradient generator integrated with a stop-flow injector was developed and evaluated using an on-column UV-absorption detector. The gradient pumping system consisted of two nanoflow pumps controlled by micro stepper motors, a mixer connected to a serpentine tube, and a high-pressure valve. The gradient system weighed only 4 kg (9 lbs) and could generate up to 55 MPa (8000 psi) pressure. The system could operate using a 24 V DC battery and required 1.2 A for operation. The total volume capacity of the pump was 74 μL, and a sample volume of 60 nL could be injected. The system provided accurate nanoflow rates as low as 10 nL/min without employing a splitter, making it ideal for capillary column use. The gradient dwell volume was calculated to be 1.3 μL, which created a delay of approximately 4 min with a typical flow rate of 350 nL/min. Gradient performance was evaluated for gradient step accuracy, and excellent reproducibility was obtained in day-to-day experiments (RSD < 1.2%, n = 4). Linear gradient reproducibility was tested by separating a three-component pesticide mixture on a poly(ethylene glycol) diacrylate (PEGDA) monolithic column. The retention time reproducibility was very good in run-to-run experiments (RSD < 1.42%, n = 4). Finally, excellent separation of five phenols was demonstrated using the nanoflow gradient system.

  20. Pump tank divider plate for sump suction sodium pumps

    DOEpatents

    George, John A.; Nixon, Donald R.

    1977-01-01

    A circular plate extends across the diameter of "sump suction" pump, with a close clearance between the edge of the plate and the wall of the pump tank. The plate is located above the pump impeller, inlet and outlet flow nozzles but below the sodium free surface and effectively divides the pump tank into two separate chambers. On change of pump speed, the close fitting flow restriction plate limits the rate of flow into or out of the upper chamber, thereby minimizing the rate of level change in the tank and permitting time for the pump cover gas pressure to be varied to maintain an essentially constant level.

  1. Ion cyclotron production by a four-wave interaction with a helicon pump.

    PubMed

    Sutherland, O; Giles, M; Boswell, R

    2005-05-27

    Ion cyclotron waves at approximately 0.7 the ion gyrofrequency have been observed experimentally in the large volume helicon reactor WOMBAT. These waves are highly localized along the axis of the device where a 8 cm diameter, 2 m long. Ar II plasma column is produced. Spectral measurements reveal a four-wave interaction where energy is down-converted to the ion cyclotron mode from the helicon pump. The experimental results are explained in terms of a filamentation type instability.

  2. Forecasting of UV-Vis absorbance time series using artificial neural networks combined with principal component analysis.

    PubMed

    Plazas-Nossa, Leonardo; Hofer, Thomas; Gruber, Günter; Torres, Andres

    2017-02-01

    This work proposes a methodology for the forecasting of online water quality data provided by UV-Vis spectrometry. Therefore, a combination of principal component analysis (PCA) to reduce the dimensionality of a data set and artificial neural networks (ANNs) for forecasting purposes was used. The results obtained were compared with those obtained by using discrete Fourier transform (DFT). The proposed methodology was applied to four absorbance time series data sets composed by a total number of 5705 UV-Vis spectra. Absolute percentage errors obtained by applying the proposed PCA/ANN methodology vary between 10% and 13% for all four study sites. In general terms, the results obtained were hardly generalizable, as they appeared to be highly dependent on specific dynamics of the water system; however, some trends can be outlined. PCA/ANN methodology gives better results than PCA/DFT forecasting procedure by using a specific spectra range for the following conditions: (i) for Salitre wastewater treatment plant (WWTP) (first hour) and Graz West R05 (first 18 min), from the last part of UV range to all visible range; (ii) for Gibraltar pumping station (first 6 min) for all UV-Vis absorbance spectra; and (iii) for San Fernando WWTP (first 24 min) for all of UV range to middle part of visible range.

  3. Liquid metal pump

    DOEpatents

    Pennell, William E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair.

  4. A UV-B-specific signaling component orchestrates plant UV protection

    PubMed Central

    Brown, Bobby A.; Cloix, Catherine; Jiang, Guang Huai; Kaiserli, Eirini; Herzyk, Pawel; Kliebenstein, Daniel J.; Jenkins, Gareth I.

    2005-01-01

    UV-B radiation in sunlight has diverse effects on humans, animals, plants, and microorganisms. UV-B can cause damage to molecules and cells, and consequently organisms need to protect against and repair UV damage to survive in sunlight. In plants, low nondamaging levels of UV-B stimulate transcription of genes involved in UV-protective responses. However, remarkably little is known about the underlying mechanisms of UV-B perception and signal transduction. Here we report that Arabidopsis UV RESISTANCE LOCUS 8 (UVR8) is a UV-B-specific signaling component that orchestrates expression of a range of genes with vital UV-protective functions. Moreover, we show that UVR8 regulates expression of the transcription factor HY5 specifically when the plant is exposed to UV-B. We demonstrate that HY5 is a key effector of the UVR8 pathway, and that it is required for survival under UV-B radiation. UVR8 has sequence similarity to the eukaryotic guanine nucleotide exchange factor RCC1, but we found that it has little exchange activity. However, UVR8, like RCC1, is located principally in the nucleus and associates with chromatin via histones. Chromatin immunoprecipitation showed that UVR8 associates with chromatin in the HY5 promoter region, providing a mechanistic basis for its involvement in regulating transcription. We conclude that UVR8 defines a UV-B-specific signaling pathway in plants that orchestrates the protective gene expression responses to UV-B required for plant survival in sunlight. PMID:16330762

  5. Measurement of metabolite variations and analysis of related gene expression in Chinese liquorice (Glycyrrhiza uralensis) plants under UV-B irradiation.

    PubMed

    Zhang, Xiao; Ding, Xiaoli; Ji, Yaxi; Wang, Shouchuang; Chen, Yingying; Luo, Jie; Shen, Yingbai; Peng, Li

    2018-04-18

    Plants respond to UV-B irradiation (280-315 nm wavelength) via elaborate metabolic regulatory mechanisms that help them adapt to this stress. To investigate the metabolic response of the medicinal herb Chinese liquorice (Glycyrrhiza uralensis) to UV-B irradiation, we performed liquid chromatography tandem mass spectrometry (LC-MS/MS)-based metabolomic analysis, combined with analysis of differentially expressed genes in the leaves of plants exposed to UV-B irradiation at various time points. Fifty-four metabolites, primarily amino acids and flavonoids, exhibited changes in levels after the UV-B treatment. The amino acid metabolism was altered by UV-B irradiation: the Asp family pathway was activated and closely correlated to Glu. Some amino acids appeared to be converted into antioxidants such as γ-aminobutyric acid and glutathione. Hierarchical clustering analysis revealed that various flavonoids with characteristic groups were induced by UV-B. In particular, the levels of some ortho-dihydroxylated B-ring flavonoids, which might function as scavengers of reactive oxygen species, increased in response to UV-B treatment. In general, unigenes encoding key enzymes involved in amino acid metabolism and flavonoid biosynthesis were upregulated by UV-B irradiation. These findings lay the foundation for further analysis of the mechanism underlying the response of G. uralensis to UV-B irradiation.

  6. Pulsed Gas Lasers Pumped by a Runaway Electron Initiated Discharge

    NASA Astrophysics Data System (ADS)

    Panchenko, A. N.; Tarasenko, V. F.; Panchenko, N. A.

    2017-12-01

    The generation parameters are investigated in a runaway electron preionized diffuse discharge (REP DD). Laser generation is produced in different spectral bands from the IR to VUV range. New modes of the nitrogen laser operation are obtained. Ultimate efficiencies of N2- and nonchain HF(DF)-lasers are achieved. A possibility of increasing the pulse durations of XeF-, KrF-, ArF- and VUV F2- lasers (157 nm) in an oscillating REP DD is shown. The efficiencies of VUV- and UV-generation comparable with that of a laser pumped by a self-sustained volume discharge with preionization are gained.

  7. Breathing Monitor Using Dye-Doped Optical Fiber

    NASA Astrophysics Data System (ADS)

    Muto, Shinzo; Fukasawa, Akihiko; Ogawa, Takayuki; Morisawa, Masayuki; Ito, Hiroshi

    1990-08-01

    A new monitoring system of human breathing using umbelliferon dye-doped plastic fiber has been studied. Under UV light pumping, the fiber which was used as a sensor head generates blue fluorescence depending on human expiration. By converting the light signal to electronic pulses, the counting of breathing and real-time monitoring of abnormal breathing such as a heavy cough or a cloggy sputum have easily been obtained.

  8. Fluid circulating pump operated by same incident solar energy which heats energy collection fluid

    NASA Technical Reports Server (NTRS)

    Collins, E. R.

    1980-01-01

    The application of using a spacecraft solar powered pump terrestrially to reduce or eliminate the need for fossil fuel generated electricity for domestic solar hot water systems was investigated. A breadboard prototype model was constructed utilizing bimetals to convert thermal energy into mechanical motion by means of a toggle operated shutter mechanism. Although it did not meet expected thermal efficiency, the prototype model was sufficient to demonstrate the mechanical concept.

  9. OSCILLATORY PUMP

    DOEpatents

    Underwood, N.

    1958-09-23

    This patent relates to a pump suitable fur pumping highly corrosive gases wherein no lubricant is needed in the pumping chamber thus eliminating possible contamination sources. The chamber contains a gas inlet and outlet in each side, with a paddle like piston suspended by a sylphon seal between these pcrts. An external arrangement causes the paddle to oscillate rapidly between the ports, alternately compressing and exhausting the gas trapped on each side of the paddle. Since the paddle does nnt touch the chamber sides at any point, no lubricant is required. This pump is useful for pumping large quantities of uranium hexafluorine.

  10. Up-converted ultraviolet luminescence of Er3+:BaGd2ZnO5 phosphors for healthy illumination

    NASA Astrophysics Data System (ADS)

    Zhang, Ya; Cui, Qingzhi; Wang, Zhanyong; Liu, Gan; Tian, Tian; Xu, Jiayue

    2016-09-01

    Moderate level of exposure to the solar irradiation containing UV component is essential for health care. To incorporate the UV-emitting phosphors into the commercial YAG-based white light-emitting diode introduces the possibilities of healthy illumination to individuals' daily lives. 1 mol.% Er3+-doped BaGd2ZnO5 (BGZ) particles were synthesized via sol-gel method and efficient up-converted luminescence peaked at 380 nm was detected under 480 nm excitation. The mixed phosphors with varied mass ratio of Er3+:BGZ and Ce3+:YAG particles were encapsulated to form LEDs. The study of the LEDs indicated that the introduction of BGZ component favored the enhancement of color-rendering index and the neutralization of the white light emitting. The WLED with the BGZ/YAG ratio of 8:2 was recommendable for its excellent overall white light luminous performances and UV intensity of 84.55 mW/cm2. The UV illumination dose of the WLEDs with mixed YAG and BGZ was controllable by adjusting the ratio, the illumination distance and the illumination time. Er3+:BGZ phosphors are promising UVemitting phosphors for healthy indoor illumination.

  11. Rotating and positive-displacement pumps for low-thrust rocket engines. Volume 1: Pump Evaluation and design. [of centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Macgregor, C.; Csomor, A.

    1974-01-01

    Rotating and positive displacement pumps of various types were studied for pumping liquid fluorine for low-thrust, high-performance rocket engines. Included in the analysis were: centrifugal, pitot, Barske, Tesla, drag, gear, vane, axial piston, radial piston, diaphragm, and helirotor pump concepts. The centrifugal pump and the gear pump were selected and these were carried through detailed design and fabrication. Mechanical difficulties were encountered with the gear pump during the preliminary tests in Freon-12. Further testing and development was therefore limited to the centrifugal pump. Tests on the centrifugal pump were conducted in Freon-12 to determine the hydrodynamic performance and in liquid fluorine to demonstrate chemical compatibility.

  12. Incorporating high-pressure electroosmotic pump and a nano-flow gradient generator into a miniaturized liquid chromatographic system for peptide analysis.

    PubMed

    Chen, Apeng; Lynch, Kyle B; Wang, Xiaochun; Lu, Joann J; Gu, Congying; Liu, Shaorong

    2014-09-24

    We integrate a high-pressure electroosmotic pump (EOP), a nanoflow gradient generator, and a capillary column into a miniaturized liquid chromatographic system that can be directly coupled with a mass spectrometer for proteomic analysis. We have recently developed a low-cost high-pressure EOP capable of generating pressure of tens of thousands psi, ideal for uses in miniaturized HPLC. The pump worked smoothly when it was used for isocratic elutions. When it was used for gradient elutions, generating reproducible gradient profiles was challenging; because the pump rate fluctuated when the pump was used to pump high-content organic solvents. This presents an issue for separating proteins/peptides since high-content organic solvents are often utilized. In this work, we solve this problem by incorporating our high-pressure EOP with a nano-flow gradient generator so that the EOP needs only to pump an aqueous solution. With this combination, we develop a capillary-based nano-HPLC system capable of performing nano-flow gradient elution; the pump rate is stable, and the gradient profiles are reproducible and can be conveniently tuned. To demonstrate its utility, we couple it with either a UV absorbance detector or a mass spectrometer for peptide separations. Copyright © 2014. Published by Elsevier B.V.

  13. Photodegradation of 4-tert-butylphenol in aqueous solution by UV-C, UV/H2O2 and UV/S2O8(2-) system.

    PubMed

    Wu, Yanlin; Zhu, Xiufen; Chen, Hongche; Dong, Wenbo; Zhao, Jianfu

    2016-01-01

    The photolytic degradation of 4-tert-butylphenol (4-t-BP) in aqueous solution was investigated using three kinds of systems: UV-C directly photodegradation system, UV/H2O2 and UV/S2O8(2-) system. Under experimental conditions, the degradation rate of 4-t-BP was in the order: UV/S2O8(2-) > UV/H2O2 > UV-C. The reaction kinetics of UV/S2O8(2-) system were thoroughly investigated. The increase of S2O8(2-) concentration enhanced the 4-t-BP degradation rate, which was inhibited when the concentration of S2O8(2-) exceeded 4.0 mM. The highest efficacy in 4-t-BP degradation was obtained at pH 6.5. The oxidation rate of 4-t-BP could be accelerated by increasing the reaction temperature and irradiation intensity. The highest rate constant (kobs = 8.4 × 10(-2) min(-1)) was acquired when the reaction temperature was 45 °C. The irradiation intensity was measured by irradiation distance, and the optimum irradiation distance was 10 cm. Moreover, the preliminary mechanism of 4-t-BP degradation was studied. The bond scission of the 4-t-BP molecule occurred by the oxidation of SO4(•-), which dimerized and formed two main primary products. Under the conditions of room temperature (25 °C ± 1 °C) and low concentration of K2S2O8 (0.5 mM), 35.4% of total organic carbon (TOC) was removed after 8.5-h irradiation. The results showed that UV/S2O8(2-) system was effective for the degradation of 4-t-BP.

  14. Prototype laser-diode-pumped solid state laser transmitters

    NASA Technical Reports Server (NTRS)

    Kane, Thomas J.; Cheng, Emily A. P.; Wallace, Richard W.

    1989-01-01

    Monolithic, diode-pumped Nd:YAG ring lasers can provide diffraction-limited, single-frequency, narrow-linewidth, tunable output which is adequate for use as a local oscillator in a coherent communication system. A laser was built which had a linewidth of about 2 kHz, a power of 5 milliwatts, and which was tunable over a range of 30 MHz in a few microseconds. This laser was phase-locked to a second, similar laser. This demonstrates that the powerful technique of heterodyne detection is possible with a diode-pumped laser used as the local oscillator. Laser diode pumping of monolithic Nd:YAG rings can lead to output powers of hundreds of milliwatts from a single laser. A laser was built with a single-mode output of 310 mW. Several lasers can be chained together to sum their power, while maintaining diffraction-limited, single frequency operation. This technique was demonstrated with two lasers, with a total output of 340 mW, and is expected to be practical for up to about ten lasers. Thus with lasers of 310 mW, output of up to 3 W is possible. The chaining technique, if properly engineered, results in redundancy. The technique of resonant external modulation and doubling is designed to efficiently convert the continuous wave, infrared output of our lasers into low duty-cycle pulsed green output. This technique was verified through both computer modeling and experimentation. Further work would be necessary to develop a deliverable system using this technique.

  15. 20. Station Unwatering Pumps and Sump Pump, view to the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Station Unwatering Pumps and Sump Pump, view to the north. The station unwatering pumps are the two large units in the center and right foreground of photograph and are marked with the numbers 1 and 2. The sump pump is the smaller unit in left foreground of photograph. These pumps are used for unwatering the draft chests for maintenance. Note the draft tube unwatering valve visible in background between the two unwatering pumps. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  16. The efficiency evaluation of support vibration isolation with mechanic inertial motion converter for vibroactive process equipment

    NASA Astrophysics Data System (ADS)

    Buryan, Yu. A.; Babichev, D. O.; Silkov, M. V.; Shtripling, L. O.; Kalashnikov, B. A.

    2017-08-01

    This research refers to the problems of processing equipment protection from vibration influence. The theory issues of vibration isolation for vibroactive objects such as engines, pumps, compressors, fans, piping, etc. are considered. The design of the perspective air spring with the parallel mounted mechanical inertial motion converter is offered. The mathematical model of the suspension, allowing selecting options to reduce the factor of the force transmission to the base in a certain frequency range is obtained.

  17. Switchable Pickering Emulsions Stabilized by Awakened TiO2 Nanoparticle Emulsifiers Using UV/Dark Actuation.

    PubMed

    Zhang, Qing; Bai, Rui-Xue; Guo, Ting; Meng, Tao

    2015-08-26

    In this work, switchable Pickering emulsions that utilize UV/dark manipulation employ a type of smart TiO2 nanoparticle as emulsifiers. The emulsifiers can be awakened when needed via UV-induced degradation of grafted silanes on TiO2 nanoparticles. By tuning the surface wettability of TiO2 nanoparticles in situ via UV/dark actuation, emulsions stabilized by the nanoparticles can be reversibly switched between the water-in-oil (W/O) type and oil-in-water (O/W) type for several cycles. Due to the convertible wettability, the smart nanoparticle emulsifiers can be settled in either the oil phase or the water phase as desired during phase separation, making it convenient for recycling. The present work provides a facile and noninvasive method to freely manipulate the formation, breakage, and switching of the emulsion; this method has promising potential as a powerful technique for use in energy-efficient and environmentally friendly industries.

  18. Visible emission in Sm3+ and Tb3+ doped phosphate glass excited by UV radiation

    NASA Astrophysics Data System (ADS)

    Zmojda, Jacek; Dorosz, Dominik; Kochanowicz, Marcin; Miluski, Piotr; Czajkowski, Karol; Ragin, Tomasz

    2013-10-01

    In the article analysis of UV absorption and visible fluorescence of Sm3+ and Tb3+ ions doped phosphate glass with molar composition: 65P2O5 + 8Al2O3 + 10BaO + 17(Na2O + MgO + ZnO) have been investigated. As a result of optical pumping fabricated glass with radiation from a deuterium lamp four luminescence bands were observed near to the wavelength of 600 nm for Sm3+ ions and 550 nm for Tb3+ ions. It was found that larger energy gap between laser and ground levels leads to the strongest emission in the visible range in terbium doped glasses than in glasses doped with samarium ions. Both fabricated glasses are characterized by the ability to selectively detect the radiation in the UV range.

  19. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  20. Photocrosslinking and Photodamage in Protein-Nucleic Acid Systems Resulting from UV and IR Radiation.

    NASA Astrophysics Data System (ADS)

    Kozub, John Andrew

    1995-01-01

    Photocrosslinking of protein-nucleic acid complexes with low intensity UV has frequently been used to study biological systems. We have investigated the photochemistry of protein-nucleic acid systems using nanosecond UV pulses from a Nd:YAG-pumped dye laser system, low-intensity continuous UV from a typical germicidal lamp, and high-intensity mid -IR pulses from the Vanderbilt Free Electron Laser. Quantum yields for UV-induced nucleic acid damage from laser pulses and the germicidal lamp were found to be nearly equivalent. We have demonstrated the general applicability of the laser to this technique by successfully crosslinking hnRNP protein to RNA, yeast TATA-binding protein to dsDNA, and gene 32 protein to ssDNA with UV laser pulses. Our results indicate that UV-crosslinking has an intrinsic specificity for nucleic acid sites containing thymidine (or uridine), forcing a distinction between preferred binding sites and favorable crosslinking sites. We have found in each system that protein and nucleic acid photodamage competes with crosslinking, limits the yield, and may interfere with subsequent analysis. The distribution of photoproducts in the gene 32 protein-ssDNA system was investigated as a function of the total dose of UV radiation and the intensity of UV laser pulses. It was found that laser pulses providing up to 50 photons per nucleic acid base induce a linear response from the system; the absolute and relative yields of photoproducts depend only on the total dose of UV and not on the rate of delivery. At higher intensities, the yield of crosslinks per incident photon was reduced. A single pulse at the optimum intensity (about 100-200 photons per nucleic acid base) induced roughly 80% of the maximum attainable yield of crosslinks in this system. The early results of our search for photochemistry induced by Free Electron Laser pulses indicate the potential to induce a unique photoreaction in the gene 32 protein -ssDNA system. The yield is apparently

  1. PUMPS

    DOEpatents

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  2. Solar-pumped electronic-to-vibrational energy transfer lasers

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Wilson, J. W.

    1981-01-01

    The possibility of using solar-pumped lasers as solar energy converters is examined. The absorbing media considered are halogens or halogen compounds, which are dissociated to yield excited atoms, which then hand over energy to a molecular lasing medium. Estimates of the temperature effects for a Br2-CO2-He system with He as the cooling gas are given. High temperatures can cause the lower energy levels of the CO2 laser transition to be filled. The inverted populations are calculated and lasing should be possible. However, the efficiency is less than 0.001. Examination of other halogen-molecular lasant combinations (where the rate coefficients are known) indicate efficiencies in all cases of less than 0.005.

  3. High speed micromachining with high power UV laser

    NASA Astrophysics Data System (ADS)

    Patel, Rajesh S.; Bovatsek, James M.

    2013-03-01

    Increasing demand for creating fine features with high accuracy in manufacturing of electronic mobile devices has fueled growth for lasers in manufacturing. High power, high repetition rate ultraviolet (UV) lasers provide an opportunity to implement a cost effective high quality, high throughput micromachining process in a 24/7 manufacturing environment. The energy available per pulse and the pulse repetition frequency (PRF) of diode pumped solid state (DPSS) nanosecond UV lasers have increased steadily over the years. Efficient use of the available energy from a laser is important to generate accurate fine features at a high speed with high quality. To achieve maximum material removal and minimal thermal damage for any laser micromachining application, use of the optimal process parameters including energy density or fluence (J/cm2), pulse width, and repetition rate is important. In this study we present a new high power, high PRF QuasarR 355-40 laser from Spectra-Physics with TimeShiftTM technology for unique software adjustable pulse width, pulse splitting, and pulse shaping capabilities. The benefits of these features for micromachining include improved throughput and quality. Specific example and results of silicon scribing are described to demonstrate the processing benefits of the Quasar's available power, PRF, and TimeShift technology.

  4. Multiple pump housing

    DOEpatents

    Donoho, II, Michael R.; Elliott; Christopher M.

    2010-03-23

    A fluid delivery system includes a first pump having a first drive assembly, a second pump having a second drive assembly, and a pump housing. At least a portion of each of the first and second pumps are located in the housing.

  5. Bidirectional DC/DC Converter

    NASA Astrophysics Data System (ADS)

    Pedersen, F.

    2008-09-01

    The presented bidirectional DC/DC converter design concept is a further development of an already existing converter used for low battery voltage operation.For low battery voltage operation a high efficient low parts count DC/DC converter was developed, and used in a satellite for the battery charge and battery discharge function.The converter consists in a bidirectional, non regulating DC/DC converter connected to a discharge regulating Buck converter and a charge regulating Buck converter.The Bidirectional non regulating DC/DC converter performs with relatively high efficiency even at relatively high currents, which here means up to 35Amps.This performance was obtained through the use of power MOSFET's with on- resistances of only a few mille Ohms connected to a special transformer allowing paralleling several transistor stages on the low voltage side of the transformer. The design is patent protected. Synchronous rectification leads to high efficiency at the low battery voltages considered, which was in the range 2,7- 4,3 Volt DC.The converter performs with low switching losses as zero voltage zero current switching is implemented in all switching positions of the converter.Now, the drive power needed, to switch a relatively large number of low Ohm , hence high drive capacitance, power MOSFET's using conventional drive techniques would limit the overall conversion efficiency.Therefore a resonant drive consuming considerable less power than a conventional drive circuit was implemented in the converter.To the originally built and patent protected bidirectional non regulating DC/DC converter, is added the functionality of regulation.Hereby the need for additional converter stages in form of a Charge Buck regulator and a Discharge Buck regulator is eliminated.The bidirectional DC/DC converter can be used in connection with batteries, motors, etc, where the bidirectional feature, simple design and high performance may be useful.

  6. Towards a versatile active wavelength converter for all-optical networks based on quasi-phase matched intra-cavity difference-frequency generation.

    PubMed

    Torregrosa, Adrián J; Maestre, Haroldo; Capmany, Juan

    2013-11-18

    The availability of reconfigurable all-optical wavelength converters for an efficient and flexible use of optical resources in WDM (wavelength division multiplexing) networks is still lacking at present. We propose and report preliminary results on a versatile active technique for multiple and tunable wavelength conversions in the 1500-1700 nm spectral region. The technique is based on combining broadband quasi-phase matched intra-cavity parametric single-pass difference-frequency generation close to degeneracy in a diode-pumped tunable laser. A periodically poled stoichiometric lithium tantalate crystal is used as the nonlinear medium, with a parametric pump wave generated in a continuous-wave self-injection locked Cr3+:LiCAF tunable laser operating at around 800 nm.

  7. Diurnal changes in epidermal UV transmittance of plants in naturally high UV environments.

    PubMed

    Barnes, Paul W; Flint, Stephan D; Slusser, James R; Gao, Wei; Ryel, Ronald J

    2008-06-01

    Studies were conducted on three herbaceous plant species growing in naturally high solar UV environments in the subalpine of Mauna Kea, Hawaii, USA, to determine if diurnal changes in epidermal UV transmittance (T(UV)) occur in these species, and to test whether manipulation of the solar radiation regime could alter these diurnal patterns. Additional field studies were conducted at Logan, Utah, USA, to determine if solar UV was causing diurnal T(UV) changes and to evaluate the relationship between diurnal changes in T(UV) and UV-absorbing pigments. Under clear skies, T(UV), as measured with a UV-A-pulse amplitude modulation fluorometer for leaves of Verbascum thapsus and Oenothera stricta growing in native soils and Vicia faba growing in pots, was highest at predawn and sunset and lowest at midday. These patterns in T(UV) closely tracked diurnal changes in solar radiation and were the result of correlated changes in fluorescence induced by UV-A and blue radiation but not photochemical efficiency (F(v)/F(m)) or initial fluorescence yield (F(o)). The magnitude of the midday reduction in T(UV) was greater for young leaves than for older leaves of Verbascum. Imposition of artificial shade eliminated the diurnal changes in T(UV) in Verbascum, but reduction in solar UV had no effect on diurnal T(UV) changes in Vicia. In Vicia, the diurnal changes in T(UV) occurred without detectable changes in the concentration of whole-leaf UV-absorbing compounds. Results suggest that plants actively control diurnal changes in UV shielding, and these changes occur in response to signals other than solar UV; however, the underlying mechanisms responsible for rapid changes in T(UV) remain unclear.

  8. Winding for linear pump

    DOEpatents

    Kliman, G.B.; Brynsvold, G.V.; Jahns, T.M.

    1989-08-22

    A winding and method of winding for a submersible linear pump for pumping liquid sodium are disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet. 4 figs.

  9. Winding for linear pump

    DOEpatents

    Kliman, Gerald B.; Brynsvold, Glen V.; Jahns, Thomas M.

    1989-01-01

    A winding and method of winding for a submersible linear pump for pumping liquid sodium is disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet.

  10. 5. Station Unwatering Pumps and Sump Pump for Units 1 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Station Unwatering Pumps and Sump Pump for Units 1 and 2, view to the west. The unwatering pumps are the two larger items toward the right side of the photograph (one in foreground and one in background. The smaller item toward the left of the photograph is the sump pump. These pumps are used for draining water from the draft chest for maintenance. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  11. A new blood pump for cardiopulmonary bypass: the HiFlow centrifugal pump.

    PubMed

    Göbel, C; Eilers, R; Reul, H; Schwindke, P; Jörger, M; Rau, G

    1997-07-01

    Centrifugal blood pumps are considered to be generally superior to the traditionally used roller pumps in cardiopulmonary bypass. In our institute a new lightweight centrifugal sealless blood pump with a unique spherical thrust bearing and with a magnetic coupling was developed, the HiFlow. The small design makes the pump suitable for applications in complex devices or close to a patient. Hemolysis tests were carried out in which the BioMedicus pump BP-80 and a roller pump were used as reference. The centrifugal pump HiFlow showed the least blood trauma within the group of investigated pumps. In summary, the HiFlow pump concept with its low priming volume and limited contact surfaces shows great potential for clinical applications in cardiopulmonary bypass. Also, the possibility of using the pump as a short-term assist device with an option of a pulsatile driving mode was demonstrated.

  12. Spin pumping and inverse Rashba-Edelstein effect in NiFe/Ag/Bi and NiFe/Ag/Sb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun

    2015-03-20

    The Rashba effect is an interaction between the spin and the momentum of electrons induced by the spin-orbit coupling in surface or interface states. Here, we measured the inverse Rashba-Edelstein effect via spin pumping in Ag/Bi and Ag/Sb interfaces. The spin current is injected from the ferromagnetic resonance of a NiFe layer towards the Rashba interfaces, where it is further converted into a charge current. While using spin pumping theory, we quantify the conversion parameter of spin to charge current to be 0.11 ± 0.02 nm for Ag/Bi and a factor of ten smaller for Ag/Sb. Furthermore, the relative strengthmore » of the effect is in agreement with spectroscopic measurements and first principles calculations. The spin pumping experiment offers a straight-forward approach of using spin current as an efficient probe for detecting interface Rashba splitting.« less

  13. Laser-induced nonlinear crystalline waveguide on glass fiber format and diode-pumped second harmonic generation

    NASA Astrophysics Data System (ADS)

    Shi, Jindan; Feng, Xian

    2018-03-01

    We report a diode pumped self-frequency-doubled nonlinear crystalline waveguide on glass fiber. A ribbon fiber has been drawn on the glass composition of 50GeO2-25B2O3-25(La,Yb)2O3. Surface channel waveguides have been written on the surface of the ribbon fiber, using space-selective laser heating method with the assistance of a 244 nm CW UV laser. The Raman spectrum of the written area indicates that the waveguide is composed of structure-deformed nonlinear (La,Yb)BGeO5 crystal. The laser-induced surface wavy cracks have also been observed and the forming mechanism of the wavy cracks has been discussed. Efficient second harmonic generation has been observed from the laser-induced crystalline waveguide, using a 976 nm diode pump. 13 μW of 488 nm output has been observed from a 17 mm long waveguide with 26.0 mW of launched diode pump power, corresponding to a normalized conversion efficiency of 4.4%W-1.

  14. Two-step excitation and blue fluorescence under continuous-wave pumping in Nd:YLF

    NASA Technical Reports Server (NTRS)

    Fan, T. Y.; Byer, Robert L.

    1986-01-01

    Near-UV and blue fluorescence from the 4D3/2 and 4D5/2 manifolds in Nd:YLF has been observed at room temperature under CW pumping by a rhodamine 590 dye laser. Excitation to these manifolds is attributed to two-step excitation involving excited-state absorption from the 4F3/2 metastable level. A similar phenomenon has also been observed in Nd:YAG and Nd:glass. The effective excited-state absorption cross section is measured to be (2 + or - 1) x 10 to the -20th sq cm at 587.4 nm in the pi polarization, and the peak effective stimulated emission cross section is measured to be 5 x 10 to the -20th sq cm at 411.7 nm, also in the pi polarization. Estimated laser threshold at 411.7 nm for two-step pumping at 587.4 nm is 70 mW.

  15. Evaluation of the Coreless Linear Conduction Pump for Thermoelectromagnetic Pumps,

    DTIC Science & Technology

    1991-08-01

    Accession Number: 4466 Publication Date: Aug 01, 1991 Title: Evaluation of the Coreless Linear Conduction Pump for Thermoelectromagnetic Pumps ...083191 Report Prepared for: SDIO/T/SL, Washington, DC 20301-7100 Descriptors, Keywords: Coreless Linear Conduction Pump Thermoelectromagnetic...000001 Record ID: 26727 SUMMARY The purpose of the Coreless Linear Conduction Pump (CLCP) was to evaluate the feasibility of the CLCP as a means of

  16. A new technique to control brushless motor for blood pump application.

    PubMed

    Fonseca, Jeison; Andrade, Aron; Nicolosi, Denys E C; Biscegli, José F; Legendre, Daniel; Bock, Eduardo; Lucchi, Júlio César

    2008-04-01

    This article presents a back-electromotive force (BEMF)-based technique of detection for sensorless brushless direct current motor (BLDCM) drivers. The BLDCM has been chosen as the energy converter in rotary or pulsatile blood pumps that use electrical motors for pumping. However, in order to operate properly, the BLDCM driver needs to know the shaft position. Usually, that information is obtained through a set of Hall sensors assembled close to the rotor and connected to the electronic controller by wires. Sometimes, a large distance between the motor and controller makes the system susceptible to interference on the sensor signal because of winding current switching. Thus, the goal of the sensorless technique presented in this study is to avoid this problem. First, the operation of BLDCM was evaluated on the electronic simulator PSpice. Then, a BEMF detector circuitry was assembled in our laboratories. For the tests, a sensor-dependent system was assembled where the direct comparison between the Hall sensors signals and the detected signals was performed. The obtained results showed that the output sensorless detector signals are very similar to the Hall signals at speeds of more than 2500 rpm. Therefore, the sensorless technique is recommended as a responsible or redundant system to be used in rotary blood pumps.

  17. Dual-pumped nondegenerate four-wave mixing in semiconductor laser with a built-in external cavity

    NASA Astrophysics Data System (ADS)

    Wu, Jian-Wei; Qiu, Qi; Hyub Won, Yong

    2017-04-01

    In this paper, a semiconductor laser system consisting of a conventional multimode Fabry-Pérot laser diode with a built-in external cavity is presented and demonstrated. More than two resonance modes, whose peak levels are significantly higher than other residual modes, are simultaneously supported and output by adjusting the bias current and operating temperature of the active region. Based on this device, dual-pumped nondegenerate four-wave mixing—in which two pump waves and a single signal wave are simultaneously fed into the laser, and the injection power and wavelength of the injected pump and signal waves are changed—is observed and discussed thoroughly. The results show that while the wavelengths of pump wave A and signal wave S are kept constant, the other pump wave B jumps from about 1535 nm to 1578 nm, generating conversion signals with changed wavelengths. The achieved conversion bandwidth between the primary signal and the converted signal waves is broadly tunable in the range of several terahertz frequencies. Both the conversion efficiency and optical signal-to-noise ratio of the newly generated conversion signals are adopted to evaluate the performance of the proposed four-wave mixing process, and are strongly dependent on the wavelength and power of the injected waves. Here, the attained maximum conversion efficiency and optical signal-to-noise ratio are close to -22 dB and 15 dB, respectively.

  18. 32. PLAN OF DEER ISLAND PUMPING STATION SHOWING EXISTING PUMPING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. PLAN OF DEER ISLAND PUMPING STATION SHOWING EXISTING PUMPING PLANT AND LOCATION OF PROPOSED ADDITIONS, JULY 1898 SHEET NO. 1. Aperture card 4966-1 - Deer Island Pumping Station, Boston, Suffolk County, MA

  19. New UV-source catalogs, UV spectral database, UV variables and science tools from the GALEX surveys

    NASA Astrophysics Data System (ADS)

    Bianchi, Luciana; de la Vega, Alexander; Shiao, Bernard; Bohlin, Ralph

    2018-03-01

    We present a new, expanded and improved catalog of Ultraviolet (UV) sources from the GALEX All-Sky Imaging survey: GUVcat_AIS (Bianchi et al. in Astrophys. J. Suppl. Ser. 230:24, 2017). The catalog includes 83 million unique sources (duplicate measurements and rim artifacts are removed) measured in far-UV and near-UV. With respect to previous versions (Bianchi et al. in Mon. Not. R. Astron. Soc. 411:2770 2011a, Adv. Space Res. 53:900-991, 2014), GUVcat_AIS covers a slightly larger area, 24,790 square degrees, and includes critical corrections and improvements, as well as new tags, in particular to identify sources in the footprint of extended objects, where pipeline source detection may fail and custom-photometry may be necessary. The UV unique-source catalog facilitates studies of density of sources, and matching of the UV samples with databases at other wavelengths. We also present first results from two ongoing projects, addressing respectively UV variability searches on time scales from seconds to years by mining the GALEX photon archive, and the construction of a database of ˜120,000 GALEX UV spectra (range ˜1300-3000 Å), including quality and calibration assessment and classification of the grism, hence serendipitous, spectral sources.

  20. Chemical pump study

    NASA Technical Reports Server (NTRS)

    Bergquist, L. E.

    1973-01-01

    Sorption pumps applicable to the Pioneer Venus Mass Spectrometer Experiment were investigated. The pump requirements are discussed, and a survey of the existing pumps presented. Zirconium and zirconium graphite products were found to be the most promising among the getter materials surveyed. A preliminary pump design for the noble gas experiment is discussed.

  1. Electrically Injected UV-Visible Nanowire Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, George T.; Li, Changyi; Li, Qiming

    2015-09-01

    There is strong interest in minimizing the volume of lasers to enable ultracompact, low-power, coherent light sources. Nanowires represent an ideal candidate for such nanolasers as stand-alone optical cavities and gain media, and optically pumped nanowire lasing has been demonstrated in several semiconductor systems. Electrically injected nanowire lasers are needed to realize actual working devices but have been elusive due to limitations of current methods to address the requirement for nanowire device heterostructures with high material quality, controlled doping and geometry, low optical loss, and efficient carrier injection. In this project we proposed to demonstrate electrically injected single nanowire lasersmore » emitting in the important UV to visible wavelengths. Our approach to simultaneously address these challenges is based on high quality III-nitride nanowire device heterostructures with precisely controlled geometries and strong gain and mode confinement to minimize lasing thresholds, enabled by a unique top-down nanowire fabrication technique.« less

  2. Application of the moving-actuator type pump as a ventricular assist device: in vitro and in vivo studies.

    PubMed

    Lee, H S; Rho, Y R; Park, C Y; Hwang, C M; Kim, W G; Sun, K; Choi, M J; Lee, K K; Cheong, J T; Shim, E B; Min, B G

    2002-06-01

    A moving actuator type pump has been developed as a multifunctional Korean artificial heart (AnyHeart). The pump consists of a moving actuator as an energy converter, right and left sacs, polymer (or mechanical) valves, and a rigid polyurethane housing. The actuator containing a brushless DC motor moves back and forth on an epicyclical gear train to produce a pendular motion, which compresses both sacs alternately. Of its versatile functions of ventricular assist device and total artificial heart use, we have evaluated the system performance as a single or biventricular assist device through in vitro and in vivo experiments. Pump performance and anatomical feasibility were tested using various animals of different sizes. In the case of single ventricular assist device (VAD) use, one of the sacs remained empty and a mini-compliance chamber was attached to either an outflow or inflow port of the unused sac. The in vitro and in vivo studies show acceptable performance and pump behavior. Further extensive study is required to proceed to human application.

  3. Study on stable equilibrium of levitated impeller in rotary pump with passive magnetic bearings.

    PubMed

    Qian, K X; Wan, F K; Ru, W M; Zeng, P; Yuan, H Y

    2006-01-01

    It is widely acknowledged that the permanent maglev cannot achieve stable equilibrium; the authors have developed, however, a stable permanent maglev centrifugal blood pump. Permanent maglev needs no position detection and feedback control of the rotor, nevertheless the eccentric distance (ED) and vibration amplitude (VA) of the levitator have been measured to demonstrate the levitation and to investigate the factors affecting levitation. Permanent maglev centrifugal impeller pump has a rotor and a stator. The rotor is driven by stator coil and levitated by two passive magnetic bearings. The rotor position is measured by four Hall sensors, which are distributed evenly and peripherally on the end of the stator against the magnetic ring of the bearing on the rotor. The voltage differences of the sensors due to different distances between the sensors and the magnetic ring are converted into ED. The results verify that the rotor can be disaffiliated from the stator if the rotating speed and the flow rate of the pump are large enough, that is, the maximal ED will reduce to about half of the gap between the rotor and the stator. In addition, the gap between rotor and stator and the viscosity of the fluid to be pumped also affect levitation. The former has an optimal value of approximately 2% of the radius of the rotor. For the latter, levitation stability is better with higher viscosity, meaning smaller ED and VA. The pressure to be pumped has no effect on levitation.

  4. 33. PLAN OF DEER ISLAND PUMPING STATION SHOWING EXISTING PUMPING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. PLAN OF DEER ISLAND PUMPING STATION SHOWING EXISTING PUMPING PLAN AND LOCATION OF PROPOSED ADDITIONS, METROPOLITAN WATER AND SEWERAGE BOARD, METROPOLITAN SEWERAGE WORKS, JULY 1908. Aperture card 6417. - Deer Island Pumping Station, Boston, Suffolk County, MA

  5. Experiments towards establishing of design rules for R2R-UV-NIL with polymer working shims

    NASA Astrophysics Data System (ADS)

    Nees, Dieter; Ruttloff, Stephan; Palfinger, Ursula; Stadlober, Barbara

    2016-03-01

    Roll-to-Roll-UV-nanoimprint lithography (R2R-UV-NIL) enables high resolution large area patterning of flexible substrates and is therefore of increasing industrial interest. We have set up a custom-made R2R-UV-NIL pilot machine which is able to convert 10 inch wide web with velocities of up to 30 m/min. In addition, we have developed self-replicable UV-curable resins with tunable surface energy and Young's modulus for UV-imprint material as well as for polymer working stamp/shim manufacturing. Now we have designed test patterns for the evaluation of the impact of structure shape, critical dimension, pitch, depth, side wall angle and orientation relative to the web movement onto the imprint fidelity and working shim life time. We have used female (recessed structures) silicon masters of that design with critical dimensions between CD = 200 nm and 1600 nm, and structure depths of d = 500 nm and 1000 nm - all with vertical as well as inclined side walls. These entire master patterns have been transferred onto single male (protruding structures) R2R polymer working shims. The polymer working shims have been used for R2R-UV-NIL runs of several hundred meters and the imprint fidelity and process stability of the various test patterns have been compared. This study is intended as a first step towards establishing of design rules and developing of nanoimprint proximity correction strategies for industrial R2R-UV-NIL processes using polymer working shims.

  6. Axial Pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George Arthur (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1997-01-01

    A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  7. Microbial UV fluence-response assessment using a novel UV-LED collimated beam system.

    PubMed

    Bowker, Colleen; Sain, Amanda; Shatalov, Max; Ducoste, Joel

    2011-02-01

    A research study has been performed to determine the ultraviolet (UV) fluence-response of several target non-pathogenic microorganisms to UV light emitting diodes (UV-LEDs) by performing collimated beam tests. UV-LEDs do not contain toxic mercury, offer design flexibility due to their small size, and have a longer operational life than mercury lamps. Comsol Multiphysics was utilized to create an optimal UV-LED collimated beam design based on number and spacing of UV-LEDs and distance of the sample from the light source while minimizing the overall cost. The optimized UV-LED collimated beam apparatus and a low-pressure mercury lamp collimated beam apparatus were used to determine the UV fluence-response of three surrogate microorganisms (Escherichia coli, MS-2, T7) to 255 nm UV-LEDs, 275 nm UV-LEDs, and 254 nm low-pressure mercury lamps. Irradiation by low-pressure mercury lamps produced greater E. coli and MS-2 inactivation than 255 nm and 275 nm UV-LEDs and similar T7 inactivation to irradiation by 275 nm UV-LEDs. The 275 nm UV-LEDs produced more efficient T7 and E. coli inactivation than 255 nm UV-LEDs while both 255 nm and 275 nm UV-LEDs produced comparable microbial inactivation for MS-2. Differences may have been caused by a departure from the time-dose reciprocity law due to microbial repair mechanisms. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Gas pump with movable gas pumping panels

    DOEpatents

    Osher, John E.

    1984-01-01

    Apparatus for pumping gas continuously a plurality of articulated panels of getter material, each of which absorbs gases on one side while another of its sides is simultaneously reactivated in a zone isolated by the panels themselves from a working space being pumped.

  9. Gas pump with movable gas pumping panels

    DOEpatents

    Osher, J.L.

    Apparatus for pumping gas continuously a plurality of articulated panels of getter material, each of which absorbs gases on one side while another of its sides is simultaneously reactivated in a zone isolated by the panels themselves from a working space being pumped.

  10. Outcome of Cardiac Rehabilitation Following Off-Pump Versus On-Pump Coronary Bypass Surgery

    PubMed Central

    Arefizadeh, Reza; Hariri, Seyed Yaser; Moghadam, Adel Johari

    2017-01-01

    BACKGROUND: A few studies have compared the cardiac rehabilitation (CR) outcome between those who undergo conventional on-pump bypass surgery and off-pump surgery. We compared this outcome among the patients differentiated by the On-pump and off-pump surgical procedures about cardiovascular variables and psychological status. METHODS: This longitudinal study recruited 318 and 102 consecutive patients who had undergone CABG (on-pump surgery, n = 318 and off-pump surgery, n = 102) and been referred to the CR clinic. RESULTS: The off-pump surgery patients had more improvement in their metabolic equivalents (METs) value. The physical and mental components of health-related quality of life (QOL) (based on SF-36 questionnaire) as well as depression-anxiety (based on Costello-Comrey Depression and Anxiety Scale) were notably improved in the two study groups after the CR program, while changes in the QOL components scores and also depression-anxiety score were not different between the off-pump and on-pump techniques. CONCLUSIONS: Regarding QOL and psychological status, there were no differences in the CR outcome between those who underwent off-pump bypass surgery and those who underwent on-pump surgery; nevertheless, the off-pump technique was superior to the on-pump method on METs improvement following CR. PMID:28698744

  11. Outcome of Cardiac Rehabilitation Following Off-Pump Versus On-Pump Coronary Bypass Surgery.

    PubMed

    Arefizadeh, Reza; Hariri, Seyed Yaser; Moghadam, Adel Johari

    2017-06-15

    A few studies have compared the cardiac rehabilitation (CR) outcome between those who undergo conventional on-pump bypass surgery and off-pump surgery. We compared this outcome among the patients differentiated by the On-pump and off-pump surgical procedures about cardiovascular variables and psychological status. This longitudinal study recruited 318 and 102 consecutive patients who had undergone CABG (on-pump surgery, n = 318 and off-pump surgery, n = 102) and been referred to the CR clinic. The off-pump surgery patients had more improvement in their metabolic equivalents (METs) value. The physical and mental components of health-related quality of life (QOL) (based on SF-36 questionnaire) as well as depression-anxiety (based on Costello-Comrey Depression and Anxiety Scale) were notably improved in the two study groups after the CR program, while changes in the QOL components scores and also depression-anxiety score were not different between the off-pump and on-pump techniques. Regarding QOL and psychological status, there were no differences in the CR outcome between those who underwent off-pump bypass surgery and those who underwent on-pump surgery; nevertheless, the off-pump technique was superior to the on-pump method on METs improvement following CR.

  12. 39. THREECYLINDER HYDRAULIC OIL PUMP (MANUFACTURED BY WORTHINGTON: PUMP AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. THREE-CYLINDER HYDRAULIC OIL PUMP (MANUFACTURED BY WORTHINGTON: PUMP AND MACHINERY COMPANY, HOLYOKE MASSACHUSETTS) IN MACHINERY CHAMBER FOR SLUICE GATE WORKS ON GALLERY 1. NOTE OIL TANK ABOVE PUMP MOTOR. VIEW TO NORTHWEST. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR

  13. Overview of Pump Room, showing pumps at right and power ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of Pump Room, showing pumps at right and power distribution cabinets for valve motors along north wall at left. View to east - Wellton-Mohawk Irrigation System, Pumping Plant No. 1, Bounded by Gila River & Union Pacific Railroad, Wellton, Yuma County, AZ

  14. DISK PUMP FEASIBILITY INVESTIGATION,

    DTIC Science & Technology

    system as an inducer and/or mainstage pump for liquid rocket applications. This investigation consisted of the analysis, design, and test of a disk...pumping action is a function of the viscous properties of the pumped fluid. (2) The pump does not require the conventional pump lifting forces. ( 3 ...with no apparent head deterioration. The representative maximum suction specific speed at a 3 % head drop was never reached. The pump demonstrated

  15. Champagne Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2004-01-01

    The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

  16. 24. Pump Room interiordewatering pump motor on upper level. Note ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Pump Room interior-dewatering pump motor on upper level. Note the removable roof hatch (steel frame) directly above motor. Dewatering pumps motor control center at left - Hunters Point Naval Shipyard, Drydock No. 4, East terminus of Palou Avenue, San Francisco, San Francisco County, CA

  17. Structure and intense UV up-conversion emissions in RE3+-doped sol-gel glass-ceramics containing KYF4 nanocrystals

    NASA Astrophysics Data System (ADS)

    Yanes, A. C.; Santana-Alonso, A.; Méndez-Ramos, J.; del-Castillo, J.

    2013-12-01

    Transparent nano-glass-ceramics containing KYF4 nanocrystals were successfully obtained by the sol-gel method, doped with Eu3+ and co-doped with Yb3+ and Tm3+ ions. Precipitation of cubic KYF4 nanocrystals was confirmed by X-ray diffraction and high-resolution transmission electron microscope images. Excitation and emission spectra let us to discern between ions into KYF4 nanocrystals and those remaining in a glassy environment, supplemented with time-resolved photoluminescence decays, that also clearly reveal differences between local environments. Unusual high-energy up-conversion emissions in the UV range were obtained in Yb3+-Tm3+ co-doped samples, and involved mechanisms were discussed. The intensity of these high-energy emissions was analyzed as a function of Yb3+ concentration, heat treatment temperature of precursor sol-gel glasses and pump power, determining the optimum values for potential optical applications as highly efficient UV up-conversion materials in UV solid-state lasers.

  18. Rotorcraft convertible engine study

    NASA Technical Reports Server (NTRS)

    Gill, J. C.; Earle, R. V.; Mar, H. M.

    1982-01-01

    The objective of the Rotorcraft Convertible Engine Study was to define future research and technology effort required for commercial development by 1988 of convertible fan/shaft gas turbine engines for unconventional rotorcraft transports. Two rotorcraft and their respective missions were defined: a Fold Tilt Rotor aircraft and an Advancing Blade Concept (ABC) rotorcraft. Sensitivity studies were conducted with these rotorcraft to determine parametrically the influence of propulsion characteristics on aircraft size, mission fuel requirements, and direct operating costs (DOC). The two rotorcraft were flown with conventional propulsion systems (separate lift/cruise engines) and with convertible propulsion systems to determine the benefits to be derived from convertible engines. Trade-off studies were conducted to determine the optimum engine cycle and staging arrangement for a convertible engine. Advanced technology options applicable to convertible engines were studied. Research and technology programs were identified which would ensure technology readiness for commercial development of convertible engines by 1988.

  19. Side-pumping combiner for high-power fiber laser based on tandem pumping

    NASA Astrophysics Data System (ADS)

    Gu, Yanran; Lei, Chengmin; Liu, Jun; Li, Ruixian; Liu, Le; Xiao, Hu; Chen, Zilun

    2017-11-01

    We investigate a (2+1)×1 side-pumping combiner numerically and experimentally for high-power fiber laser based on tandem pumping for the first time. The influence of taper ratio and launch mode on the 1018-nm pump coupling efficiency and the leakage power into the coating of the signal fiber (LPC) is analyzed numerically. A side-pumping combiner is developed successfully by tapered-fused splicing technique based on the numerical analysis, consisting of two pump fibers (220/242 μm, NA=0.22) and a signal fiber (40/400 μm, NA=0.06/0.46). The total 1018-nm pump efficiency of the combiner is 98.1%, and the signal light insertion loss is <3%. The results show that, compared with laser diodes pumping, the combiner appears to have a better LPC performance and power handling capability when using 1018-nm fiber as the pump light. Meanwhile, an all-fiber MOPA laser based on tandem pumping with 1080-nm output of 2533 W and the slope efficiency of 82.8% is achieved based on the home-made combiner.

  20. Efficiency and threshold pump intensity of CW solar-pumped solid-state lasers

    NASA Technical Reports Server (NTRS)

    Hwang, In H.; Lee, Ja H.

    1991-01-01

    The authors consider the relation between the threshold pumping intensity, the material properties, the resonator parameters, and the ultimate slope efficiencies of various solid-state laser materials for solar pumping. They clarify the relation between the threshold pump intensity and the material parameters and the relation between the ultimate slope efficiency and the laser resonator parameters such that a design criterion for the solar-pumped solid-state laser can be established. Among the laser materials evaluated, alexandrite has the highest slope efficiency of about 12.6 percent; however, it does not seem to be practical for a solar-pumped laser application because of its high threshold pump intensity. Cr:Nd:GSGG is the most promising for solar-pumped lasing. Its threshold pump intensity is about 100 air-mass-zero (AM0) solar constants and its slope efficiency is about 12 percent when thermal deformation is completely prevented.

  1. PUMP SETS NO. 5 AND NO. 4. Each pump set ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PUMP SETS NO. 5 AND NO. 4. Each pump set consists of a Worthington Pump and a General Electric motor - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Flame Deflector Water System, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  2. Narrowband diode laser pump module for pumping alkali vapors.

    PubMed

    Rotondaro, M D; Zhdanov, B V; Shaffer, M K; Knize, R J

    2018-04-16

    We describe a method of line narrowing and frequency-locking a diode laser stack to an alkali atomic line for use as a pump module for Diode Pumped Alkali Lasers. The pump module consists of a 600 W antireflection coated diode laser stack configured to lase using an external cavity. The line narrowing and frequency locking is accomplished by introducing a narrowband polarization filter based on magneto-optical Faraday effect into the external cavity, which selectively transmits only the frequencies that are in resonance with the 6 2 S 1/2 → 6 2 P 3/2 transition of Cs atoms. The resulting pump module has demonstrated that a diode laser stack, which lases with a line width of 3 THz without narrowbanding, can be narrowed to 10 GHz. The line narrowed pump module produced 518 Watts that is 80% of the power generated by the original broadband diode laser stack.

  3. Cascaded resonant bridge converters

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A. (Inventor)

    1989-01-01

    A converter for converting a low voltage direct current power source to a higher voltage, high frequency alternating current output for use in an electrical system where it is desired to use low weight cables and other circuit elements. The converter has a first stage series resonant (Schwarz) converter which converts the direct current power source to an alternating current by means of switching elements that are operated by a variable frequency voltage regulator, a transformer to step up the voltage of the alternating current, and a rectifier bridge to convert the alternating current to a direct current first stage output. The converter further has a second stage series resonant (Schwarz) converter which is connected in series to the first stage converter to receive its direct current output and convert it to a second stage high frequency alternating current output by means of switching elements that are operated by a fixed frequency oscillator. The voltage of the second stage output is controlled at a relatively constant value by controlling the first stage output voltage, which is accomplished by controlling the frequency of the first stage variable frequency voltage controller in response to second stage voltage. Fault tolerance in the event of a load short circuit is provided by making the operation of the first stage variable frequency voltage controller responsive to first and second stage current limiting devices. The second stage output is connected to a rectifier bridge whose output is connected to the input of the second stage to provide good regulation of output voltage wave form at low system loads.

  4. Photocapacitive image converter

    NASA Technical Reports Server (NTRS)

    Miller, W. E.; Sher, A.; Tsuo, Y. H. (Inventor)

    1982-01-01

    An apparatus for converting a radiant energy image into corresponding electrical signals including an image converter is described. The image converter includes a substrate of semiconductor material, an insulating layer on the front surface of the substrate, and an electrical contact on the back surface of the substrate. A first series of parallel transparent conductive stripes is on the insulating layer with a processing circuit connected to each of the conductive stripes for detecting the modulated voltages generated thereon. In a first embodiment of the invention, a modulated light stripe perpendicular to the conductive stripes scans the image converter. In a second embodiment a second insulating layer is deposited over the conductive stripes and a second series of parallel transparent conductive stripes perpendicular to the first series is on the second insulating layer. A different frequency current signal is applied to each of the second series of conductive stripes and a modulated image is applied to the image converter.

  5. Technologies for converter topologies

    DOEpatents

    Zhou, Yan; Zhang, Haiyu

    2017-02-28

    In some embodiments of the disclosed inverter topologies, an inverter may include a full bridge LLC resonant converter, a first boost converter, and a second boost converter. In such embodiments, the first and second boost converters operate in an interleaved manner. In other disclosed embodiments, the inverter may include a half-bridge inverter circuit, a resonant circuit, a capacitor divider circuit, and a transformer.

  6. Study of the UV Light Conversion of Feruloyl Amides from Portulaca oleracea and Their Inhibitory Effect on IL-6-Induced STAT3 Activation.

    PubMed

    Hwang, Joo Tae; Kim, Yesol; Jang, Hyun-Jae; Oh, Hyun-Mee; Lim, Chi-Hwan; Lee, Seung Woong; Rho, Mun-Chual

    2016-06-30

    Two new feruloyl amides, N-cis-hibiscusamide (5) and (7'S)-N-cis-feruloylnormetanephrine (9), and eight known feruloyl amides were isolated from Portulaca oleracea L. and the geometric conversion of the ten isolated feruloyl amides by UV light was verified. The structures of the feruloyl amides were determined based on spectroscopic data and comparison with literature data. The NMR data revealed that the structures of the isolated compounds showed cis/trans-isomerization under normal laboratory light conditions. Therefore, cis and trans-isomers of feruloyl amides were evaluated for their convertibility and stability by UV light of a wavelength of 254 nm. After 96 h of UV light exposure, 23.2%-35.0% of the cis and trans-isomers were converted to trans-isomers. Long-term stability tests did not show any significant changes. Among all compounds and conversion mixtures collected, compound 6 exhibited the strongest inhibition of IL-6-induced STAT3 activation in Hep3B cells, with an IC50 value of 0.2 μM. This study is the first verification of the conversion rates and an equilibrium ratio of feruloyl amides. These results indicate that this natural material might provide useful information for the treatment of various diseases involving IL-6 and STAT3.

  7. Well-pump alignment system

    DOEpatents

    Drumheller, Douglas S.

    1998-01-01

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping.

  8. Experimental and theoretical investigation for the suppression of the plasma arc drop in the thermionic converter

    NASA Technical Reports Server (NTRS)

    Shaw, D. T.; Manikopoulos, C. N.; Chang, T.; Lee, C. H.; Chiu, N.

    1977-01-01

    Ion generation and recombination mechanisms in the cesium plasma as they pertain to the advanced mode thermionic energy converter were studied. The decay of highly ionized cesium plasma was studied in the near afterglow to examine the recombination processes. Very low recombination in such a plasma may prove to be of considerable importance in practical converters. The approaches of external cesium generation were vibrationally excited nitrogen as an energy source of ionization of cesium ion, and microwave power as a means of resonant sustenance of the cesium plasma. Experimental data obtained so far show that all three techniques - i.e., the non-LTE high-voltage pulsing, the energy transfer from vibrationally excited diatomic gases, and the external pumping with a microwave resonant cavity - can produce plasmas with their densities significantly higher than the Richardson density. The implication of these findings as related to Lam's theory is discussed.

  9. Electroosmotic pump unit and assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shaorong

    An electroosmotic pump unit includes at least a first pump element, at least a second pump element, and an electrode. Each pump element includes a tube, an electrically grounded fluid inlet, a fluid outlet electrically coupled to the electrode, and a porous monolith immobilized in the tube and having open pores having net surface charges. When the electrode applies a voltage across the monoliths, a fluid supplied to the first pump element flows through the pump elements in a direction from a fluid inlet of the first pump element toward a fluid outlet of the second pump element. A pluralitymore » of electroosmotic pump units may be connected in series in a pump assembly. The electroosmotic pump unit, or pump assembly, may be connected to an apparatus such as a HPLC.« less

  10. Interleaved power converter

    DOEpatents

    Zhu, Lizhi

    2007-11-13

    A power converter architecture interleaves full bridge converters to alleviate thermal management problems in high current applications, and may, for example, double the output power capability while reducing parts count and costs. For example, one phase of a three phase inverter is shared between two transformers, which provide power to a rectifier such as a current doubler rectifier to provide two full bridge DC/DC converters with three rather than four high voltage inverter legs.

  11. Well-pump alignment system

    DOEpatents

    Drumheller, D.S.

    1998-10-20

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump are disclosed, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping. 6 figs.

  12. Suppressing spontaneous polarization of p-GaN by graphene oxide passivation: Augmented light output of GaN UV-LED

    PubMed Central

    Jeong, Hyun; Jeong, Seung Yol; Park, Doo Jae; Jeong, Hyeon Jun; Jeong, Sooyeon; Han, Joong Tark; Jeong, Hee Jin; Yang, Sunhye; Kim, Ho Young; Baeg, Kang-Jun; Park, Sae June; Ahn, Yeong Hwan; Suh, Eun-Kyung; Lee, Geon-Woong; Lee, Young Hee; Jeong, Mun Seok

    2015-01-01

    GaN-based ultraviolet (UV) LEDs are widely used in numerous applications, including white light pump sources and high-density optical data storage. However, one notorious issue is low hole injection rate in p-type transport layer due to poorly activated holes and spontaneous polarization, giving rise to insufficient light emission efficiency. Therefore, improving hole injection rate is a key step towards high performance UV-LEDs. Here, we report a new method of suppressing spontaneous polarization in p-type region to augment light output of UV-LEDs. This was achieved by simply passivating graphene oxide (GO) on top of the fully fabricated LED. The dipole layer formed by the passivated GO enhanced hole injection rate by suppressing spontaneous polarization in p-type region. The homogeneity of electroluminescence intensity in active layers was improved due to band filling effect. As a consequence, the light output was enhanced by 60% in linear current region. Our simple approach of suppressing spontaneous polarization of p-GaN using GO passivation disrupts the current state of the art technology and will be useful for high-efficiency UV-LED technology. PMID:25586148

  13. Suppressing spontaneous polarization of p-GaN by graphene oxide passivation: augmented light output of GaN UV-LED.

    PubMed

    Jeong, Hyun; Jeong, Seung Yol; Park, Doo Jae; Jeong, Hyeon Jun; Jeong, Sooyeon; Han, Joong Tark; Jeong, Hee Jin; Yang, Sunhye; Kim, Ho Young; Baeg, Kang-Jun; Park, Sae June; Ahn, Yeong Hwan; Suh, Eun-Kyung; Lee, Geon-Woong; Lee, Young Hee; Jeong, Mun Seok

    2015-01-14

    GaN-based ultraviolet (UV) LEDs are widely used in numerous applications, including white light pump sources and high-density optical data storage. However, one notorious issue is low hole injection rate in p-type transport layer due to poorly activated holes and spontaneous polarization, giving rise to insufficient light emission efficiency. Therefore, improving hole injection rate is a key step towards high performance UV-LEDs. Here, we report a new method of suppressing spontaneous polarization in p-type region to augment light output of UV-LEDs. This was achieved by simply passivating graphene oxide (GO) on top of the fully fabricated LED. The dipole layer formed by the passivated GO enhanced hole injection rate by suppressing spontaneous polarization in p-type region. The homogeneity of electroluminescence intensity in active layers was improved due to band filling effect. As a consequence, the light output was enhanced by 60% in linear current region. Our simple approach of suppressing spontaneous polarization of p-GaN using GO passivation disrupts the current state of the art technology and will be useful for high-efficiency UV-LED technology.

  14. Índice UV

    EPA Pesticide Factsheets

    Información general sobre el Índice UV que proporciona un pronóstico del riesgo esperado de sobreexposición a la radiación ultravioleta (UV) del sol. El índice UV va acompañado de recomendaciones para protegerse del sol.

  15. Direct-to-diffuse UV Solar Irradiance Ratio for a UV rotating Shadowband Spectroradiometer and a UV Multi-filter Rotating Shadowband Radiometer

    NASA Astrophysics Data System (ADS)

    Lantz, K.; Kiedron, P.; Petropavlovskikh, I.; Michalsky, J.; Slusser, J.

    2008-12-01

    . Two spectroradiometers reside that measure direct and diffuse UV solar irradiance are located at the Table Mountain Test Facility, 8 km north of Boulder, CO. The UV- Rotating Shadowband Spectrograph (UV-RSS) measures diffuse and direct solar irradiance from 290 - 400 nm. The UV Multi-Filter Rotating Shadowband Radiometer (UV-MFRSR) measures diffuse and direct solar irradiance in seven 2-nm wide bands, i.e. 300, 305, 311, 317, 325, and 368 nm. The purpose of the work is to compare radiative transfer model calculations (TUV) with the results from the UV-Rotating Shadowband Spectroradiometer (UV-RSS) and the UV-MFRSR to estimate direct-to-diffuse solar irradiance ratios (DDR) that are used to evaluate the possibility of retrieving aerosol single scattering albedo (SSA) under a variety of atmospheric conditions: large and small aerosol loading, large and small surface albedo. For the radiative transfer calculations, total ozone measurements are obtained from a collocated Brewer spectrophotometer.

  16. Air-Operated Sump Pump

    NASA Technical Reports Server (NTRS)

    Nolt, Gary D.

    1988-01-01

    Pump removes liquid seepage from small, restricted area and against large pressure head. Developed for moving small amounts of water and oil from sump pit 85 ft (25.91 m) deep. Fits in space only 6 1/2 in. (16.5 cm) in diameter and 18 in. (45.7 cm) long. In discharge part of pumping cycle, air forces liquid out of pump chamber through pipe. During filling part of pumping cycle, water enters pump chamber from sump pit. Float in chamber next to pump chamber controls pressurization through timer and solenoid valve.

  17. Photovoltaic pump systems

    NASA Astrophysics Data System (ADS)

    Klockgether, J.; Kiessling, K. P.

    1983-09-01

    Solar pump systems for the irrigation of fields and for water supply in regions with much sunshine are discussed. For surface water and sources with a hoisting depth of 12 m, a system with immersion pumps is used. For deep sources with larger hoisting depths, an underwater motor pump was developed. Both types of pump system meet the requirements of simple installation and manipulation, safe operation, maintenance free, and high efficiency reducing the number of solar cells needed.

  18. Electrokinetic pump

    DOEpatents

    Patel, Kamlesh D.

    2007-11-20

    A method for altering the surface properties of a particle bed. In application, the method pertains particularly to an electrokinetic pump configuration where nanoparticles are bonded to the surface of the stationary phase to alter the surface properties of the stationary phase including the surface area and/or the zeta potential and thus improve the efficiency and operating range of these pumps. By functionalizing the nanoparticles to change the zeta potential the electrokinetic pump is rendered capable of operating with working fluids having pH values that can range from 2-10 generally and acidic working fluids in particular. For applications in which the pump is intended to handle highly acidic solutions latex nanoparticles that are quaternary amine functionalized can be used.

  19. Rotary blood pump

    NASA Astrophysics Data System (ADS)

    Bozeman, Richard J.; Akkerman, James W.; Aber, Greg S.; Vandamm, George A.; Bacak, James W.; Svejkovsky, Paul A.; Benkowski, Robert J.

    1993-11-01

    A rotary blood pump is presented. The pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial, and radial clearances of the blades associated with the flow straightener, inducer portion, impeller portion, and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with crosslinked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  20. Rotary blood pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J. (Inventor); Akkerman, James W. (Inventor); Aber, Greg S. (Inventor); Vandamm, George A. (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1993-01-01

    A rotary blood pump is presented. The pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial, and radial clearances of the blades associated with the flow straightener, inducer portion, impeller portion, and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with crosslinked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  1. Development of a tritium monitor combined with an electrochemical tritium pump using a proton conducting oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, M.; Sugiyama, T.

    2015-03-15

    The detection of low level tritium is one of the key issues for tritium management in tritium handling facilities. Such a detection can be performed by tritium monitors based on proton conducting oxide technique. We tested a tritium monitoring system composed of a commercial proportional counter combined with an electrochemical hydrogen pump equipped with CaZr{sub 0.9}In{sub 0.1}O{sub 3-α} as proton conducting oxide. The hydrogen pump operated at 973 K under electrolysis conditions using tritiated water vapor (HTO). The proton conducting oxide extracts tritium molecules (HT) from HTO and tritium concentration is measured by the proportional counter. The advantage of themore » proposed tritium monitoring system is that it is able to convert HTO into molecular hydrogen.« less

  2. Rotary piston blood pumps: past developments and future potential of a unique pump type.

    PubMed

    Wappenschmidt, Johannes; Autschbach, Rüdiger; Steinseifer, Ulrich; Schmitz-Rode, Thomas; Margreiter, Raimund; Klima, Günter; Goetzenich, Andreas

    2016-08-01

    The design of implantable blood pumps is either based on displacement pumps with membranes or rotary pumps. Both pump types have limitations to meet the clinical requirements. Rotary piston blood pumps have the potential to overcome these limitations and to merge the benefits. Compared to membrane pumps, they are smaller and with no need for wear-affected membranes and valves. Compared to rotary pumps, the blood flow is pulsatile instead of a non-physiological continuous flow. Furthermore, the risk of flow-induced blood damage and platelet activation may be reduced due to low shear stress to the blood. The past developments of rotary piston blood pumps are summarized and the main problem for long-term application is identified: insufficient seals. A new approach with seal-less drives is proposed and current research on a simplified rotary piston design is presented. Expert commentary: The development of blood pumps focuses mainly on the improvement of rotary pumps. However, medical complications indicate that inherent limitations of this pump type remain and restrict the next substantial step forward in the therapy of heart failure patients. Thus, research on different pump types is reasonable. If the development of reliable drives and bearings succeeds, rotary piston blood pumps become a promising alternative.

  3. The influence of urban area opacity on biologically active UV-B irradiance

    NASA Astrophysics Data System (ADS)

    Chubarova, Nataly; Rozental', Victor

    2013-04-01

    The study of UV irradiance changes in urban area is an essential problem due to the significant effect of UV irradiance on human health which can be positive (vitamin D synthesis) and negative (erythema, skin cancer, eye damage). According to the results of several experiments within the Moscow megacity we studied the effects of urban area opacity on the different types of biologically active UV-B irradiance on the base of a specially developed mobile photometric complex snd additional measurements of the urban opacity by Nikon Fisheye Converter FC-E8. We analyzed both the level of erythemally-active irradiance and the UV eye damaging radiation using the broadband UVB-1 YES pyranometer calibrated against ultraviolet spectroradiometer Bentham DTM-300 of the Medical University of Innsbruck (courtesy of Dr. M.Blumthaler). In order to estimate the effects of the urban opacity the measurements were normalized on similar measurements at the Meteorological Observatory of Moscow State University with zero opacity. This ratio is defined as an urban radiative transmittance (URT). Different atmospheric conditions were considered. In cloudy conditions the effect of opacity on URT is much less than that in conditions when the sun disk is open from clouds. We revealed some spectral features in transmittance of biologically active UV-B irradiance which is characterized by higher URT variations in overcast cloudy conditions due to more intensive scattering and smaller direct solar radiation component. In the absence of cloudiness the effect of opacity was studied for open and screening solar disk conditions. We obtained much higher URT in UVB spectral region compared with that for total solar irradiance for screening solar disk conditions with a significant URT dependence on the opacity only in UVB spectral region. No URT dependence was obtained for total solar irradiance in these conditions. Some model calculations were fulfilled to match the experimental results.

  4. Digital scale converter

    DOEpatents

    Upton, Richard G.

    1978-01-01

    A digital scale converter is provided for binary coded decimal (BCD) conversion. The converter may be programmed to convert a BCD value of a first scale to the equivalent value of a second scale according to a known ratio. The value to be converted is loaded into a first BCD counter and counted down to zero while a second BCD counter registers counts from zero or an offset value depending upon the conversion. Programmable rate multipliers are used to generate pulses at selected rates to the counters for the proper conversion ratio. The value present in the second counter at the time the first counter is counted to the zero count is the equivalent value of the second scale. This value may be read out and displayed on a conventional seven-segment digital display.

  5. ION PUMP

    DOEpatents

    Milleron, N.

    1961-01-01

    An ion pump and pumping method are given for low vacuum pressures in which gases introduced into a pumping cavity are ionized and thereafter directed and accelerated into a quantity of liquid gettering metal where they are absorbed. In the preferred embodiment the metal is disposed as a liquid pool upon one electrode of a Phillips ion gauge type pump. Means are provided for continuously and remotely withdrawing and degassing the gettering metal. The liquid gettering metal may be heated if desired, although various combinations of gallium, indium, tin, bismuth, and lead, the preferred metals, have very low melting points. A background pressure of evaporated gettering metal may be provided by means of a resistance heated refractory metal wick protruding from the surface of the pcol of gettering metal.

  6. Comets in UV

    NASA Astrophysics Data System (ADS)

    Shustov, B.; Sachkov, M.; Gómez de Castro, A. I.; Vallejo, J. C.; Kanev, E.; Dorofeeva, V.

    2018-04-01

    Comets are important "eyewitnesses" of Solar System formation and evolution. Important tests to determine the chemical composition and to study the physical processes in cometary nuclei and coma need data in the UV range of the electromagnetic spectrum. Comprehensive and complete studies require additional ground-based observations and in situ experiments. We briefly review observations of comets in the ultraviolet (UV) and discuss the prospects of UV observations of comets and exocomets with space-borne instruments. A special reference is made to the World Space Observatory-Ultraviolet (WSO-UV) project.

  7. Liquid metal enabled pump

    PubMed Central

    Tang, Shi-Yang; Khoshmanesh, Khashayar; Sivan, Vijay; Petersen, Phred; O’Mullane, Anthony P.; Abbott, Derek; Mitchell, Arnan; Kalantar-zadeh, Kourosh

    2014-01-01

    Small-scale pumps will be the heartbeat of many future micro/nanoscale platforms. However, the integration of small-scale pumps is presently hampered by limited flow rate with respect to the input power, and their rather complicated fabrication processes. These issues arise as many conventional pumping effects require intricate moving elements. Here, we demonstrate a system that we call the liquid metal enabled pump, for driving a range of liquids without mechanical moving parts, upon the application of modest electric field. This pump incorporates a droplet of liquid metal, which induces liquid flow at high flow rates, yet with exceptionally low power consumption by electrowetting/deelectrowetting at the metal surface. We present theory explaining this pumping mechanism and show that the operation is fundamentally different from other existing pumps. The presented liquid metal enabled pump is both efficient and simple, and thus has the potential to fundamentally advance the field of microfluidics. PMID:24550485

  8. C-terminal region of the UV-B photoreceptor UVR8 initiates signaling through interaction with the COP1 protein

    PubMed Central

    Cloix, Catherine; Kaiserli, Eirini; Heilmann, Monika; Baxter, Katherine J.; Brown, Bobby A.; O’Hara, Andrew; Smith, Brian O.; Christie, John M.; Jenkins, Gareth I.

    2012-01-01

    UV-B light initiates photomorphogenic responses in plants. Arabidopsis UV RESISTANCE LOCUS8 (UVR8) specifically mediates these responses by functioning as a UV-B photoreceptor. UV-B exposure converts UVR8 from a dimer to a monomer, stimulates the rapid accumulation of UVR8 in the nucleus, where it binds to chromatin, and induces interaction of UVR8 with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1), which functions with UVR8 to control photomorphogenic UV-B responses. Although the crystal structure of UVR8 reveals the basis of photoreception, it does not show how UVR8 initiates signaling through interaction with COP1. Here we report that a region of 27 amino acids from the C terminus of UVR8 (C27) mediates the interaction with COP1. The C27 region is necessary for UVR8 function in the regulation of gene expression and hypocotyl growth suppression in Arabidopsis. However, UVR8 lacking C27 still undergoes UV-B–induced monomerization in both yeast and plant protein extracts, accumulates in the nucleus in response to UV-B, and interacts with chromatin at the UVR8-regulated ELONGATED HYPOCOTYL5 (HY5) gene. The UV-B–dependent interaction of UVR8 and COP1 is reproduced in yeast cells and we show that C27 is both necessary and sufficient for the interaction of UVR8 with the WD40 domain of COP1. Furthermore, we show that C27 interacts in yeast with the REPRESSOR OF UV-B PHOTOMORPHOGENESIS proteins, RUP1 and RUP2, which are negative regulators of UVR8 function. Hence the C27 region has a key role in UVR8 function. PMID:22988111

  9. Self-powered microthermionic converter

    DOEpatents

    Marshall, Albert C.; King, Donald B.; Zavadil, Kevin R.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2004-08-10

    A self-powered microthermionic converter having an internal thermal power source integrated into the microthermionic converter. These converters can have high energy-conversion efficiencies over a range of operating temperatures. Microengineering techniques are used to manufacture the converter. The utilization of an internal thermal power source increases potential for mobility and incorporation into small devices. High energy efficiency is obtained by utilization of micron-scale interelectrode gap spacing. Alpha-particle emitting radioisotopes can be used for the internal thermal power source, such as curium and polonium isotopes.

  10. 20. ENGINE/PUMP HOUSE EXTENSION, PUMP NO. 4, HOUSING FOR ECCENTRICS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. ENGINE/PUMP HOUSE EXTENSION, PUMP NO. 4, HOUSING FOR ECCENTRICS THAT CONTROL THE STEAM FOR EAST PISTON LOCATED BELOW THE PISTON CRANKSHAFT HUB AND ABOVE THE THRUST BEARING; CONTROL RODS FOR PISTON NO. 3 LOCATED AT RIGHT. - Deer Island Pumping Station, Boston, Suffolk County, MA

  11. Measure Guideline: Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, A.; Easley, S.

    2012-05-01

    The report evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provide a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.

  12. Diode-pumped laser with improved pumping system

    DOEpatents

    Chang, Jim J.

    2004-03-09

    A laser wherein pump radiation from laser diodes is delivered to a pump chamber and into the lasing medium by quasi-three-dimensional compound parabolic concentrator light channels. The light channels have reflective side walls with a curved surface and reflective end walls with a curved surface. A flow tube between the lasing medium and the light channel has a roughened surface.

  13. Hazardous Chemical Pump Tests.

    DTIC Science & Technology

    1980-07-01

    hydraulic flow rate is the product of the pump speed and the pump displacement. The pump displacement for each respective pump was constant throughout...speed - rpm T - torque - ft lbs 7= 3.1416 By substituting the product of pump speed and pump displacement for the hydraulic flow rate (Q=NO) in the above...FF:iipr’: iL 40 H FLUID F-’UMPED; FPl H FVIi T’E1l ’HJO I...S Lu FL: H KFITE C F~~:ri FIGURE 2 CC E MT 2, Fi C F . c ;E’C F11 *:;_cl PF fog O ~ \\ 4 1

  14. Liquid metal thermal electric converter

    DOEpatents

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1989-01-01

    A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

  15. UV-dependent production of 25-hydroxyvitamin D{sub 2} in the recombinant yeast cells expressing human CYP2R1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasuda, Kaori; Endo, Mariko; Ikushiro, Shinichi

    Highlights: •We produce 25-hydroxyvitamin D in the recombinant yeast expressing human CYP2R1. •Vitamin D2 is produced in yeast from endogenous ergosterol with UV irradiation. •We produce 25-hydroxyvitamin D2 in the recombinant yeast without added substrate. -- Abstract: CYP2R1 is known to be a physiologically important vitamin D 25-hydroxylase. We have successfully expressed human CYP2R1 in Saccharomyces cerevisiae to reveal its enzymatic properties. In this study, we examined production of 25-hydroxylated vitamin D using whole recombinant yeast cells that expressed CYP2R1. When vitamin D{sub 3} or vitamin D{sub 2} was added to the cell suspension of CYP2R1-expressing yeast cells in amore » buffer containing glucose and β-cyclodextrin, the vitamins were converted into their 25-hydroxylated products. Next, we irradiated the cell suspension with UVB and incubated at 37 °C. Surprisingly, the 25-hydroxy vitamin D{sub 2} was produced without additional vitamin D{sub 2}. Endogenous ergosterol was likely converted into vitamin D{sub 2} by UV irradiation and thermal isomerization, and then the resulting vitamin D{sub 2} was converted to 25-hydroxyvitamin D{sub 2} by CYP2R1. This novel method for producing 25-hydroxyvitamin D{sub 2} without a substrate could be useful for practical purposes.« less

  16. Early and mid-term results of off-pump endarterectomy of the left anterior descending artery

    PubMed Central

    Takahashi, Mitsuko; Gohil, Sunir; Tong, Bonnie; Lento, Patrick; Filsoufi, Farzan; Reddy, Ramachandra C.

    2013-01-01

    OBJECTIVES Many patients referred for coronary artery bypass surgery (CABG) today have diffusely diseased coronary vessels, and some of them may require coronary endarterectomy to provide adequate revascularization. Most reports of coronary endarterectomy describe an on-pump procedure. As off-pump coronary artery bypass graft has become safer and more routine, there is renewed interest in off-pump coronary endarterectomy. We report on our series of patients who underwent off-pump coronary endarterectomy of the left anterior descending (LAD) artery using an open endarterectomy technique. METHODS All patients undergoing open heart surgery at The Mount Sinai Medical Center are entered into a state-mandated, audited database. A retrospective review of this database revealed 12 patients between January 2008 and June 2012 who underwent off-pump endarterectomy of the LAD as part of their coronary revascularization. Additional data were collected from a review of the patients' charts. RESULTS There were a total of 12 patients, with a mean age of 72 ± 4 years. Nine (75%) were male and 3 (25%) were female. Comorbidities included hypertension in 11 (92%) patients, dyslipidaemia in 10 (83%), diabetes in 8 (67%), renal failure in 6 (50%) and stroke in 1 (8%). The mean number of diseased coronary territories was 3 ± 0.4 (range 2–3), and the mean number of coronary bypass grafts performed was 4 ± 0.8 (range 2–5). Eight patients required transfusion with packed red blood cells (67%). One (8%) patient was converted from off-pump to on-pump. The mean intensive care unit stay was 3 ± 2.8 (range 1–8 days), and the mean hospital length of stay was 15 ± 13 (range 4–54 days). Postoperative follow-up (mean 24 ± 19 months, range 1–53) is complete, and no ischaemic events have occurred in the early and mid-term follow-up period. CONCLUSIONS We conclude that off-pump endarterectomy of the LAD is a viable option for patients with diffuse LAD disease. PMID:23190620

  17. TiConverter: A training image converting tool for multiple-point geostatistics

    NASA Astrophysics Data System (ADS)

    Fadlelmula F., Mohamed M.; Killough, John; Fraim, Michael

    2016-11-01

    TiConverter is a tool developed to ease the application of multiple-point geostatistics whether by the open source Stanford Geostatistical Modeling Software (SGeMS) or other available commercial software. TiConverter has a user-friendly interface and it allows the conversion of 2D training images into numerical representations in four different file formats without the need for additional code writing. These are the ASCII (.txt), the geostatistical software library (GSLIB) (.txt), the Isatis (.dat), and the VTK formats. It performs the conversion based on the RGB color system. In addition, TiConverter offers several useful tools including image resizing, smoothing, and segmenting tools. The purpose of this study is to introduce the TiConverter, and to demonstrate its application and advantages with several examples from the literature.

  18. Measure Guideline. Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, A.; Easley, S.

    2012-05-01

    This measure guideline evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provides a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.

  19. Resonantly diode-pumped Er:YAG laser: 1470-nm versus 1530-nm CW pumping case

    NASA Astrophysics Data System (ADS)

    Kudryashov, Igor; Ter-Gabrielyan, Nikolai; Dubinskii, Mark

    2009-05-01

    Growing interest to high power lasers in the eye-safe spectral domain initiated a new wave of activity in developing solid-state lasers based on bulk Er3+-doped materials. The resonant pumping of SSL allows for shifting significant part of thermal load from gain medium itself to the pump diodes, thus greatly reducing gain medium thermal distortions deleterious to SSL power scaling with high beam quality. The two major resonant pumping bands in Er:YAG are centered around 1470 and 1532 nm. Pumping into each of these bands has its pros and contras. The best approach to resonant pumping of Er:YAG active media in terms of pump wavelength is yet to be determined. We report the investigation results of high power diode-pumped Er:YAG laser aimed at direct comparison of resonant pumping at 1470 and 1532 nm. Two sources used for pumping were: 1530-nm 10-diode bar stack (>300 W CW) and 1470-nm 10-diode bar stack (>650 W CW). Both pumps were spectrally narrowed by external volume Bragg gratings. The obtained spectral width of less than 1 nm allowed for 'in-line' pumping of Er3+ in either band. The obtained CW power of over 87 W is, to the best of our knowledge, the record high power reported for resonantly pumped Er:YAG DPSSL at room temperature.

  20. Types of Breast Pumps

    MedlinePlus

    ... nipple (the areola). b. Pump: creates the gentle vacuum that expresses milk. The pump may be attached to the breast-shield or ... out of a larger tube to create a vacuum that expresses milk and collects it in an attached container. Another type of manual pump, called a bicycle horn pump, consists of a ...

  1. SHINE Vacuum Pump Test Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Gregg A; Peters, Brent

    2013-09-30

    Normetex pumps used world-wide for tritium service are no longer available. DOE and other researchers worldwide have spent significant funds characterizing this pump. Identification of alternate pumps is required for performance and compatibility with tritium gas. Many of the pumps that could be used to meet the functional performance requirements (e.g. pressure and flow conditions) of the Normetex pump have features that include the use of polymers or oils and greases that are not directly compatible with tritium service. This study assembles a test system to determine the flow characteristics for candidate alternate pumps. These tests are critical to themore » movement of tritium through the SHINE Tritium Purification System (TPS). The purpose of the pump testing is two-fold: (1) obtain baseline vacuum pump characteristics for an alternate (i.e. ''Normetex replacement'') pump intended for use in tritium service; and (2) verify that low pressure hydrogen gas can be transported over distances up to 300 feet by the candidate pumps. Flow rates and nominal system pressures have been identified for the SHINE Mo-99 production process Tritium Purification System (TPS). To minimize the line sizes for the transfer of low pressure tritium from the Neutron Driver Accelerator System (NDAS) to the primary processing systems in the TPS, a ''booster'' pump has been located near the accelerator in the design. A series of pump tests were performed at various configurations using hydrogen gas (no tritium) to ensure that this concept is practical and maintains adequate flow rates and required pressures. This report summarizes the results of the tests that have been performed using various pump configurations. The current design of the Tritium Purification System requires the ''booster'' pump to discharge to or to be backed by another vacuum pump. Since Normetex pumps are no longer manufactured, a commercially available Edwards scroll pump will be used to back the booster pump. In

  2. Normetex Pump Alternatives Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Elliot A.

    2013-04-25

    A mainstay pump for tritium systems, the Normetex scroll pump, is currently unavailable because the Normetex company went out of business. This pump was an all-metal scroll pump that served tritium processing facilities very well. Current tritium system operators are evaluating replacement pumps for the Normetex pump and for general used in tritium service. An all-metal equivalent alternative to the Normetex pump has not yet been identified. 1. The ideal replacement tritium pump would be hermetically sealed and contain no polymer components or oils. Polymers and oils degrade over time when they contact ionizing radiation. 2. Halogenated polymers (containing fluorine,more » chlorine, or both) and oils are commonly found in pumps. These materials have many properties that surpass those of hydrocarbon-based polymers and oils, including thermal stability (higher operating temperature) and better chemical resistance. Unfortunately, they are less resistant to degradation from ionizing radiation than hydrocarbon-based materials (in general). 3. Polymers and oils can form gaseous, condensable (HF, TF), liquid, and solid species when exposed to ionizing radiation. For example, halogenated polymers form HF and HCl, which are extremely corrosive upon reaction with water. If a pump containing polymers or oils must be used in a tritium system, the system must be designed to be able to process the unwanted by-products. Design features to mitigate degradation products include filters and chemical or physical traps (eg. cold traps, oil traps). 4. Polymer components can work in tritium systems, but must be replaced regularly. Polymer components performance should be monitored or be regularly tested, and regular replacement of components should be viewed as an expected normal event. A radioactive waste stream must be established to dispose of used polymer components and oil with an approved disposal plan developed based on the facility location and its regulators. Polymers have

  3. Parametric second Stokes Raman laser output pulse shortening to 300 ps due to depletion of pumping of intracavity Raman conversion

    NASA Astrophysics Data System (ADS)

    Smetanin, S. N.; Jelínek, M.; Kubeček, V.; Jelínková, H.; Ivleva, L. I.

    2016-10-01

    A new effect of the pulse shortening of the parametrically generated radiation down to hundreds of picosecond via depletion of pumping of intracavity Raman conversion in the miniature passively Q-switched Nd: SrMoO4 parametric self-Raman laser with the increasing energy of the shortened pulse under pulsed pumping by a high-power laser diode bar is demonstrated. The theoretical estimation of the depletion stage duration of the convertible fundamental laser radiation via intracavity Raman conversion is in agreement with the experimentally demonstrated duration of the parametrically generated pulse. Using the mathematical modeling of the pulse shortening quality and quantity deterioration is disclosed, and the solution ways are found by the optimization of the laser parameters.

  4. Spin pumping and inverse Rashba-Edelstein effect in NiFe/Ag/Bi and NiFe/Ag/Sb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wei, E-mail: zwei@anl.gov; Jungfleisch, Matthias B.; Jiang, Wanjun

    2015-05-07

    The Rashba effect is an interaction between the spin and the momentum of electrons induced by the spin-orbit coupling in surface or interface states. We measured the inverse Rashba-Edelstein effect via spin pumping in Ag/Bi and Ag/Sb interfaces. The spin current is injected from the ferromagnetic resonance of a NiFe layer towards the Rashba interfaces, where it is further converted into a charge current. Using spin pumping theory, we quantify the conversion parameter of spin to charge current to be 0.11 ± 0.02 nm for Ag/Bi and a factor of ten smaller for Ag/Sb. The relative strength of the effect is in agreementmore » with spectroscopic measurements and first principles calculations. We also vary the interlayer materials to study the voltage output in relation to the change of the effective spin mixing conductance. The spin pumping experiment offers a straight-forward approach of using spin current as an efficient probe for detecting interface Rashba splitting.« less

  5. 11. PUMP HOUSE AND WEIGHING ROOM Fish were pumped from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. PUMP HOUSE AND WEIGHING ROOM Fish were pumped from floating hoppers, to the pump house (on the far right). From there they were either lifted by conveyor belt to the weighing room (top center) and thence to the holding tanks, or were washed through sealers, weighed and then sluiced to holding tanks. The process used depended upon the type and size of fish. The square cement vat (center) was to be a settling tank from which fish oil, reclaimed from the reduction process, was to be pumped into the round metal tank (above the vat). This process however, was never fully utilized before the sardines ran out. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  6. Thermionic converter

    DOEpatents

    Fitzpatrick, G.O.

    1987-05-19

    A thermionic converter is set forth which includes an envelope having an electron collector structure attached adjacent to a wall. An electron emitter structure is positioned adjacent the collector structure and spaced apart from opposite wall. The emitter and collector structures are in a common chamber. The emitter structure is heated substantially only by thermal radiation. Very small interelectrode gaps can be maintained utilizing the thermionic converter whereby increased efficiency results. 10 figs.

  7. Fabrication and characterization of UV-emitting nanoparticles as novel radiation sensitizers targeting hypoxic tumor cells

    NASA Astrophysics Data System (ADS)

    Squillante, Michael R.; Jüstel, Thomas; Anderson, R. Rox; Brecher, Charles; Chartier, Daniel; Christian, James F.; Cicchetti, Nicholas; Espinoza, Sara; McAdams, Daniel R.; Müller, Matthias; Tornifoglio, Brooke; Wang, Yimin; Purschke, Martin

    2018-06-01

    Radiation therapy is one of the primary therapeutic techniques for treating cancer, administered to nearly two-thirds of all cancer patients. Although largely effective in killing cancer cells, radiation therapy, like other forms of cancer treatment, has difficulty dealing with hypoxic regions within solid tumors. The incomplete killing of cancer cells can lead to recurrence and relapse. The research presented here is investigating the enhancement of the efficacy of radiation therapy by using scintillating nanoparticles that emit UV photons. UV photons, with wavelengths between 230 nm and 280 nm, are able to inactivate cells due to their direct interaction with DNA, causing a variety of forms of damage. UV-emitting nanoparticles will enhance the treatment in two ways: first by generating UV photons in the immediate vicinity of cancer cells, leading to direct and oxygen-independent DNA damage, and second by down-converting the applied higher energy X-rays into softer X-rays and particles that are more efficiently absorbed in the targeted tumor region. The end result will be nanoparticles with a higher efficacy in the treatment of hypoxic cells in the tumor, filling an important, unmet clinical need. Our preliminary experiments show an increase in cell death using scintillating LuPO4:Pr nanoparticles over that achieved by the primary radiation alone. This work describes the fabrication of the nanoparticles, their physical characterization, and the spectroscopic characterization of the UV emission. The work also presents in vitro results that demonstrate an enhanced efficacy of cell killing with x-rays and a low unspecific toxicity of the nanoparticles.

  8. Rotary Blood Pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George A. (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1996-01-01

    A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  9. Large enhancement of UV luminescence emission of ZnO nanoparticles by coupling excitons with Ag surface plasmons

    NASA Astrophysics Data System (ADS)

    Kuiri, Probodh K.; Pramanik, Subhamay

    2018-04-01

    For an emitter based on bandgap emission, defect mediated emission has always been considered as the most important loss. Here, a novel approach which can overcome such emission loss is proposed using films of ZnO nanoparticles (NPs) on Ag NPs embedded in silica. The effects of the size of Ag NPs on the enhancement of ultra-violet (UV) photoluminescence (PL) of ZnO NPs for such a system have been studied. For the ZnO NPs without Ag NPs, two emission bands have been seen: one in the UV region and the other one in the visible region. This UV PL emission intensity has been seen to increase significantly with a drastic reduction of the visible PL emission intensity in the case of the sample containing ZnO NPs on silica embedded Ag NPs. A linear increase in UV emission with increase in the size of Ag NPs has been found. For the largest size of Ag NPs (˜10 nm, considered in the present study), the PL emission enhancement becomes about 4 times higher than that of sample without Ag NPs. The observed enhancement of the UV PL emission was caused by coupling between spontaneous emission in ZnO and surface plasmons of Ag. The larger Ag NPs provided a larger scattering cross section in coupling surface plasmons to light leading to an increase in UV emission. Thus, it is possible to convert the useless defect emission to the useful excitonic emission with a large enhancement factor.

  10. Development of flow systems by direct-milling on poly(methyl methacrylate) substrates using UV-photopolymerization as sealing process.

    PubMed

    Rodrigues, Eunice R G O; Lapa, Rui A S

    2009-03-01

    An alternative process for the design and construction of fluidic devices is presented. Several sealing processes were studied, as well as the hydrodynamic characteristics of the proposed fluidic devices. Manifolds were imprinted on polymeric substrates by direct-write milling, according to Computer Assisted Design (CAD) data. Poly(methyl methacrylate) (PMMA) was used as substrate due to its physical and chemical properties. Different bonding approaches for the imprinted channels were evaluated and UV-photopolymerization of acrylic acid (AA) was selected. The hydrodynamic characteristics of the proposed flow devices were assessed and compared to those obtained in similar flow systems using PTFE reactors and micro-pumps as propulsion units (multi-pumping approach). The applicability of the imprinted reactors was evaluated in the sequential determination of calcium and magnesium in water samples. Results obtained were in good agreement with those obtained by the reference procedure.

  11. Modeling the natural UV irradiation and comparative UV measurements at Moussala BEO (BG)

    NASA Astrophysics Data System (ADS)

    Tyutyundzhiev, N.; Angelov, Ch; Lovchinov, K.; Nitchev, Hr; Petrov, M.; Arsov, T.

    2018-03-01

    Studies of and modeling the impact of natural UV irradiation on the human population are of significant importance for human activity and economics. The sharp increase of environmental problems – extraordinary temperature changes, solar irradiation abnormalities, icy rains – raises the question of developing novel means of assessing and predicting potential UV effects. In this paper, we discuss new UV irradiation modeling based on recent real-time measurements at Moussala Basic Environmental Observatory (BEO) on Moussala Peak (2925 m ASL) in Rila Mountain, Bulgaria, and highlight the development and initial validation of portable embedded devices for UV-A, UV-B monitoring using open-source software architecture, narrow bandpass UV sensors, and the popular Arduino controllers. Despite the high temporal resolution of the VIS and UV irradiation measurements, the results obtained reveal the need of new assumptions in order to minimize the discrepancy with available databases.

  12. Transcriptional and cellular effects of benzotriazole UV stabilizers UV-234 and UV-328 in the freshwater invertebrates Chlamydomonas reinhardtii and Daphnia magna.

    PubMed

    Giraudo, Maeva; Cottin, Guillaume; Esperanza, Marta; Gagnon, Pierre; Silva, Amila O De; Houde, Magali

    2017-12-01

    Benzotriazole ultra violet stabilizers (BZT-UVs) are compounds used in many applications and products to prevent photochemical degradation. Despite their widespread presence in aquatic ecosystems and persistence in the environment, there are very limited data on their effects and toxicity, and their modes of action remain largely unknown. The objectives of the present study were to evaluate the chronic effects of 2 BZT-UVs, 2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol (UV-234) and 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV-328), on the freshwater green algae Chlamydomonas reinhardtii and the freshwater crustacean Daphnia magna. Organisms were exposed to 0.01 and 10 μg/L of UV-234, UV-328, as well as a mixture of the 2 compounds. Life-history endpoints (viability, reproduction, and growth) and oxidative stress-related biomarkers (gene transcription, reactive oxygen species [ROS] production, and lipid peroxidation) were measured. Daphnia magna growth, reproduction, and gene transcription were not impacted by 21-d individual or mixed exposure. After 96-h of exposure, no differences were observed on the cellular viability of C. reinhardtii for either of the 2 BZT-UVs. In the algae, results showed increased ROS production in response to UV-328 and lipid peroxidation following exposure to UV-234. Synergistic effects of the 2 BZT-UVs were evident at the transcriptional level with 2 to 6 times up-regulation of glutathione peroxidase (gp x ) in response to the mixture for all treatment conditions. The transcription of superoxide dismutase (sod), catalase (cat), and ascorbic peroxidase (apx) was also regulated by UV-234 and UV-328 in the green algae, most likely as a result of ROS production and lipid peroxidation. Results from the present study suggest potential impacts of UV-234 and UV-328 exposure on the antioxidant defense system in C. reinhardtii. Environ Toxicol Chem 2017;36:3333-3342. © 2017 Crown in the Right of Canada. Published by

  13. Response of biological uv dosimeters to the simulated extraterrestrial uv radiation

    NASA Astrophysics Data System (ADS)

    Bérces, A.; Rontó, G.; Kerékgyártó, T.; Kovács, G.; Lammer, H.

    In the Laboratory polycrystalline uracil thin layer and bacteriophage T7 detectors have been developed for UV dosimetry on the EarthSs surface. Exponential response of the uracil polycrystal has been detected both by absorption spectroscopy and measurements of the refractive index under the influence of terrestrial solar radiation or using UV-C sources. In UV biological dosimetry the UV dose scale is additive starting at a value of zero according to the definition of CIE (Technical Report TC-6-18). The biological dose can be defined by a measured end-effect. In our dosimeters (phage T7 and uracil dosimeter) exposed to natural (terrestrial) UV radiation the proportion of pyrimidin photoproducts among the total photoproducts is smaller than 0.1 and the linear correlation between the biological and physical dose is higher than 0.9. According to the experimental data this linear relationship is often not valid. We observed that UV radiation did not only induce dimerisation but shorter wavelengths caused monomerisation of pyrimidin dimers. Performing the irradiation in oxygen free environment and using a Deuterium lamp as UV source, we could increase monomerisation against dimerisation thus the DNA-based dosimetrySs additivity rule is not fulfilled in these conditions. In this study we will demonstrate those non-linear experiments which constitute the basis of our biological experiments on the International Space Station.

  14. A pump monitoring approach to irrigation pumping plant testing

    USDA-ARS?s Scientific Manuscript database

    The conventional approach for evaluating irrigation pumping plant performance has been an instantaneous spot measurement approach. Using this method, the tester measures the necessary work and energy use parameters to determine overall pumping plant performance. The primary limitation of this appr...

  15. Improvement of centrifugal pump performance through addition of splitter blades on impeller pump

    NASA Astrophysics Data System (ADS)

    Kurniawan, Krisna Eka; Santoso, Budi; Tjahjana, Dominicus Danardono Dwi Prija

    2018-02-01

    The workable way to improve pump performance is to redesign or modify the impellers of centrifugal pump. The purpose of impeller pump modification is to improve pump efficiency, reduce cross flow, reduce secondary incidence flows, and decrease backflow areas at impeller outlets. Number blades and splitter blades in the impeller are three. The outlet blade angle is 20°, and the rotating speed of impeller is 2400 rpm. The added splitter blades variations are 0.25, 0.375, and 0.5 of the original blade length. The splitter blade placements are on the outer side of the impeller. The addition of splitter blades on the outer side of the impeller with 0.5L increases the pump head until 22% and the pump has 38.66% hydraulic efficiency. The best efficiency point of water flow rate pump (Qbep) was 3.02 × 10-3 m3/s.

  16. Drag Reduction and Performance Improvement of Hydraulic Torque Converters with Multiple Biological Characteristics.

    PubMed

    Chunbao, Liu; Li, Li; Yulong, Lei; Changsuo, Liu; Yubo, Zhang

    2016-01-01

    Fish-like, dolphin-like, and bionic nonsmooth surfaces were employed in a hydraulic torque converter to achieve drag reduction and performance improvement, which were aimed at reducing profile loss, impacting loss and friction loss, respectively. YJSW335, a twin turbine torque converter, was bionically designed delicately. The biological characteristics consisted of fish-like blades in all four wheels, dolphin-like structure in the first turbine and the stator, and nonsmooth surfaces in the pump. The prediction performance of bionic YJSW335, obtained by computational fluid dynamics simulation, was improved compared with that of the original model, and then it could be proved that drag reduction had been achieved. The mechanism accounting for drag reduction of three factors was also investigated. After bionic design, the torque ratio and the highest efficiencies of YJSW335 were both advanced, which were very difficult to achieve through traditional design method. Moreover, the highest efficiency of the low speed area and high speed area is 85.65% and 86.32%, respectively. By economic matching analysis of the original and bionic powertrains, the latter can significantly reduce the fuel consumption and improve the operating economy of the loader.

  17. Drag Reduction and Performance Improvement of Hydraulic Torque Converters with Multiple Biological Characteristics

    PubMed Central

    Chunbao, Liu; Changsuo, Liu; Yubo, Zhang

    2016-01-01

    Fish-like, dolphin-like, and bionic nonsmooth surfaces were employed in a hydraulic torque converter to achieve drag reduction and performance improvement, which were aimed at reducing profile loss, impacting loss and friction loss, respectively. YJSW335, a twin turbine torque converter, was bionically designed delicately. The biological characteristics consisted of fish-like blades in all four wheels, dolphin-like structure in the first turbine and the stator, and nonsmooth surfaces in the pump. The prediction performance of bionic YJSW335, obtained by computational fluid dynamics simulation, was improved compared with that of the original model, and then it could be proved that drag reduction had been achieved. The mechanism accounting for drag reduction of three factors was also investigated. After bionic design, the torque ratio and the highest efficiencies of YJSW335 were both advanced, which were very difficult to achieve through traditional design method. Moreover, the highest efficiency of the low speed area and high speed area is 85.65% and 86.32%, respectively. By economic matching analysis of the original and bionic powertrains, the latter can significantly reduce the fuel consumption and improve the operating economy of the loader. PMID:27752220

  18. Construction of Nontoxic Polymeric UV-Absorber with Great Resistance to UV-Photoaging

    PubMed Central

    Huang, Zhong; Ding, Aishun; Guo, Hao; Lu, Guolin; Huang, Xiaoyu

    2016-01-01

    In this article, we developed a series of new nontoxic polymeric UV-absorbers through covalently attaching a benzophenone derivative onto the main chain of poly(vinyl chloride) (PVC) via mild and quantitative click chemistry. Azide groups were firstly introduced into the backbone of PVC via a nucleophilic reaction without affecting polymeric skeleton. Copper-catalyzed Husigen-Click cycloaddition reaction was performed between the pendant azide groups of PVC and alkynyl of (2-hydroxy-4-(prop-2-ynyloxy)phenyl)(phenyl)methanone at ambient temperature for affording the desired PVC-based UV-absorbers (PVC-UV) with different amounts of benzophenone moieties, which displayed great resistance to photoaging without degradation while exposed to UV irradiation. These polymeric UV-absorbers also showed good solubilities in common organic solvents and no cytotoxicity vs. HaCat cell. Small amounts of PVC-UV were homogeneously mixed with PVC as additive for stabilizing PVC against UV-photoaging without degradation and releasing small molecule even after 200 h while keeping thermal stability. This route of polymeric additive clearly paved an efficient way for solving the puzzle of separation of small molecule additive. PMID:27138547

  19. Early outcomes of on-pump versus off-pump coronary artery bypass grafting.

    PubMed

    Hussain, Ghulam; Azam, Hammad; Baig, Mirza Ahmad Raza; Ahmad, Naseem

    2016-01-01

    To see the early post-operative outcomes of off-pump versus on-pump coronary artery bypass graft surgery. This retrospective analytical study was conducted at Ch. Pervaiz Elahi Institute of Cardiology Multan, Pakistan. Our Primary outcome variables were; necessity of inotropic support, nonfatal myocardial infarction, ICU stay, nonfatal stroke, new renal failure requiring dialysis and death within 30 days after operation. There were two groups of patients; Group-I (On-pump group) and Group-II (Off-pump Group). SPSS V17 was used for data analysis. Independent sample t-test and Mann Whitney U test were used to compare quantitative Variables. Chi-square test and Fisher's exact test were used to analyze qualitative variables. P-value ≤ 0.05 was considered significant. Three hundred patients were included in this study. There were no significant difference regarding risk factors except hyper-cholestrolemia which was high in off pump group (p-value 0.05). Angiographic and Echocardiographic characteristics e.g. preoperative ejection fraction, LV function grade and severity of CAD was same between the groups. Mortality risk scores and Priority status for surgery were also same. Regarding post-operative outcomes; Post-op CKMB Levels, need and duration of inotropic support, mechanical ventilation time and ICU stay was significantly less in Off-Pump group (p-value 0.001, <0.0001, 0.006, 0.025 and 0.001 resp.). Peri-operative chest drainage was significantly high in On-pump CABG group (p-value 0.027). Incidence of post-op complications was not statistically different between the groups. At 30 days follow-up, Incidence of myocardial infarction, necessity and duration of inotropic support, ICU stay period and peri-operative bleeding were significantly less in off-pump group. The incidence of neurologic, pulmonary and renal complications was same between the off-pump and on-pump groups.

  20. Early outcomes of on-pump versus off-pump coronary artery bypass grafting

    PubMed Central

    Hussain, Ghulam; Azam, Hammad; Baig, Mirza Ahmad Raza; Ahmad, Naseem

    2016-01-01

    Objectives: To see the early post-operative outcomes of off-pump versus on-pump coronary artery bypass graft surgery. Methods: This retrospective analytical study was conducted at Ch. Pervaiz Elahi Institute of Cardiology Multan, Pakistan. Our Primary outcome variables were; necessity of inotropic support, nonfatal myocardial infarction, ICU stay, nonfatal stroke, new renal failure requiring dialysis and death within 30 days after operation. There were two groups of patients; Group-I (On-pump group) and Group-II (Off-pump Group). SPSS V17 was used for data analysis. Independent sample t-test and Mann Whitney U test were used to compare quantitative Variables. Chi-square test and Fisher’s exact test were used to analyze qualitative variables. P-value ≤ 0.05 was considered significant. Results: Three hundred patients were included in this study. There were no significant difference regarding risk factors except hyper-cholestrolemia which was high in off pump group (p-value 0.05). Angiographic and Echocardiographic characteristics e.g. preoperative ejection fraction, LV function grade and severity of CAD was same between the groups. Mortality risk scores and Priority status for surgery were also same. Regarding post-operative outcomes; Post-op CKMB Levels, need and duration of inotropic support, mechanical ventilation time and ICU stay was significantly less in Off-Pump group (p-value 0.001, <0.0001, 0.006, 0.025 and 0.001 resp.). Peri-operative chest drainage was significantly high in On-pump CABG group (p-value 0.027). Incidence of post-op complications was not statistically different between the groups. Conclusions: At 30 days follow-up, Incidence of myocardial infarction, necessity and duration of inotropic support, ICU stay period and peri-operative bleeding were significantly less in off-pump group. The incidence of neurologic, pulmonary and renal complications was same between the off-pump and on-pump groups. PMID:27648039

  1. Fuel pumping system and method

    DOEpatents

    Shafer, Scott F [Morton, IL; Wang, Lifeng ,

    2006-12-19

    A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.

  2. Fuel Pumping System And Method

    DOEpatents

    Shafer, Scott F.; Wang, Lifeng

    2005-12-13

    A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.

  3. Temporal variation of optimal UV exposure time over Korea: risks and benefits of surface UV radiation

    NASA Astrophysics Data System (ADS)

    Lee, Y. G.; Koo, J. H.

    2015-12-01

    Solar UV radiation in a wavelength range between 280 to 400 nm has both positive and negative influences on human body. Surface UV radiation is the main natural source of vitamin D, providing the promotion of bone and musculoskeletal health and reducing the risk of a number of cancers and other medical conditions. However, overexposure to surface UV radiation is significantly related with the majority of skin cancer, in addition other negative health effects such as sunburn, skin aging, and some forms of eye cataracts. Therefore, it is important to estimate the optimal UV exposure time, representing a balance between reducing negative health effects and maximizing sufficient vitamin D production. Previous studies calculated erythemal UV and vitamin-D UV from the measured and modelled spectral irradiances, respectively, by weighting CIE Erythema and Vitamin D3 generation functions (Kazantzidis et al., 2009; Fioletov et al., 2010). In particular, McKenzie et al. (2009) suggested the algorithm to estimate vitamin-D production UV from erythemal UV (or UV index) and determined the optimum conditions of UV exposure based on skin type Ⅱ according to the Fitzpatrick (1988). Recently, there are various demands for risks and benefits of surface UV radiation on public health over Korea, thus it is necessary to estimate optimal UV exposure time suitable to skin type of East Asians. This study examined the relationship between erythemally weighted UV (UVEry) and vitamin D weighted UV (UVVitD) over Korea during 2004-2012. The temporal variations of the ratio (UVVitD/UVEry) were also analyzed and the ratio as a function of UV index was applied in estimating the optimal UV exposure time. In summer with high surface UV radiation, short exposure time leaded to sufficient vitamin D and erythema and vice versa in winter. Thus, the balancing time in winter was enough to maximize UV benefits and minimize UV risks.

  4. Impact of Room Location on UV-C Irradiance and UV-C Dosage and Antimicrobial Effect Delivered by a Mobile UV-C Light Device.

    PubMed

    Boyce, John M; Farrel, Patricia A; Towle, Dana; Fekieta, Renee; Aniskiewicz, Michael

    2016-06-01

    OBJECTIVE To evaluate ultraviolet C (UV-C) irradiance, UV-C dosage, and antimicrobial effect achieved by a mobile continuous UV-C device. DESIGN Prospective observational study. METHODS We used 6 UV light sensors to determine UV-C irradiance (W/cm2) and UV-C dosage (µWsec/cm2) at various distances from and orientations relative to the UV-C device during 5-minute and 15-minute cycles in an ICU room and a surgical ward room. In both rooms, stainless-steel disks inoculated with methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), and Clostridium difficile spores were placed next to sensors, and UV-C dosages and log10 reductions of target organisms achieved during 5-minute and 15-minute cycles were determined. Mean irradiance and dosage readings were compared using ANOVA. RESULTS Mean UV-C irradiance was nearly 1.0E-03 W/cm2 in direct sight at a distance of 1.3 m (4 ft) from the device but was 1.12E-05 W/cm2 on a horizontal surface in a shaded area 3.3 m (10 ft) from the device (P4 to 1-3 for MRSA, >4 to 1-2 for VRE and >4 to 0 log10 for C. difficile spores, depending on the distance from, and orientation relative to, the device with 5-minute and 15-minute cycles. CONCLUSION UV-C irradiance, dosage, and antimicrobial effect received from a mobile UV-C device varied substantially based on location in a room relative to the UV-C device. Infect Control Hosp Epidemiol 2016;37:667-672.

  5. Pigmentation after single and multiple UV-exposures depending on UV-spectrum.

    PubMed

    Ravnbak, M H; Wulf, H C

    2007-04-01

    Minimal pigmentation dose (MMD) after a single UV-exposure is well investigated. Whereas only few studies have established MMD after multiple UV-exposures and mainly in fair-skinned persons. The purpose of this study was to establish MMD 1 week after, respectively, one and five UV-exposures in volunteers with a large variation in constitutive pigmentation. A total of 52 volunteers (skin Types II-V) had skin pigmentation quantified by reflectance spectroscopy. They were UV-exposed on the back for 1 and 5 days using a Solar Simulator, narrowband UVB, broadband UVA and UVA1. For all sources a higher dose was needed the more pigmented the skin, except for UVA1. After one UV-exposure, we found a significant positive linear correlation between UV-dose to one MMD, skin type and pre-exposure skin pigmentation. After five UV-exposures the positive linear correlation between UV-dose and MMD and skin type was only significant for narrow band UVB, pre-exposure skin pigmentation was significant also for Solar Simulator. For UVA and particularly UVA1 the MMD was independent of pre-exposure pigmentation. The number of SED to MMD is therefore almost the same for very fair-skinned and dark-skinned persons. Pre-exposure pigmentation was clearly more predictive of MMD than skin type. 50% of MMD equals a pigmentation increase of 1%. The shorter the wavelengths the higher the SED to produce MMD. Solar was the least melanogenic and UVA1 the most melanogenic. For the UVB-sources a higher dose was needed the more pigmented the skin. For UVA the MMD was independent of pre-exposure pigmentation.

  6. High power density dc/dc converter: Selection of converter topology

    NASA Technical Reports Server (NTRS)

    Divan, Deepakraj M.

    1990-01-01

    The work involved in the identification and selection of a suitable converter topology is described. Three new dc/dc converter topologies are proposed: Phase-Shifted Single Active Bridge DC/DC Converter; Single Phase Dual Active Bridges DC/DC Converter; and Three Phase Dual Active Bridges DC/DC Converter (Topology C). The salient features of these topologies are: (1) All are minimal in structure, i.e., each consists of an input and output bridge, input and output filter and a transformer, all components essential for a high power dc/dc conversion process; (2) All devices of both the bridges can operate under near zero-voltage conditions, making possible a reduction of device switching losses and hence, an increase in switching frequency; (3) All circuits operate at a constant frequency, thus simplifying the task of the magnetic and filter elements; (4) Since, the leakage inductance of the transformer is used as the main current transfer element, problems associated with the diode reverse recovery are eliminated. Also, this mode of operation allows easy paralleling of multiple modules for extending the power capacity of the system; (5) All circuits are least sensitive to parasitic impedances, infact the parasitics are efficently utilized; and (6) The soft switching transitions, result in low electromagnetic interference. A detailed analysis of each topology was carried out. Based on the analysis, the various device and component ratings for each topology operating at an optimum point, and under the given specifications, are tabulated and discussed.

  7. Submersible sodium pump

    DOEpatents

    Brynsvold, Glen V.; Lopez, John T.; Olich, Eugene E.; West, Calvin W.

    1989-01-01

    An electromagnetic submerged pump has an outer cylindrical stator with an inner cylindrical conductive core for the submerged pumping of sodium in the cylindrical interstitial volume defined between the stator and core. The cylindrical interstitial volume is typically vertically oriented, and defines an inlet at the bottom and an outlet at the top. The outer stator generates upwardly conveyed toroidal magnetic fields, which fields convey preferably from the bottom of the pump to the top of the pump liquid sodium in the cold leg of a sodium cooled nuclear reactor. The outer cylindrical stator has a vertically disposed duct surrounded by alternately stacked layers of coil units and laminates.

  8. Submersible sodium pump

    DOEpatents

    Brynsvold, G.V.; Lopez, J.T.; Olich, E.E.; West, C.W.

    1989-11-21

    An electromagnetic submerged pump has an outer cylindrical stator with an inner cylindrical conductive core for the submerged pumping of sodium in the cylindrical interstitial volume defined between the stator and core. The cylindrical interstitial volume is typically vertically oriented, and defines an inlet at the bottom and an outlet at the top. The outer stator generates upwardly conveyed toroidal magnetic fields, which fields convey preferably from the bottom of the pump to the top of the pump liquid sodium in the cold leg of a sodium cooled nuclear reactor. The outer cylindrical stator has a vertically disposed duct surrounded by alternately stacked layers of coil units and laminates. 14 figs.

  9. Liquid metal electric pump

    DOEpatents

    Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

    1992-01-14

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

  10. Liquid metal electric pump

    DOEpatents

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1992-01-01

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

  11. The TROPOMI surface UV algorithm

    NASA Astrophysics Data System (ADS)

    Lindfors, Anders V.; Kujanpää, Jukka; Kalakoski, Niilo; Heikkilä, Anu; Lakkala, Kaisa; Mielonen, Tero; Sneep, Maarten; Krotkov, Nickolay A.; Arola, Antti; Tamminen, Johanna

    2018-02-01

    The TROPOspheric Monitoring Instrument (TROPOMI) is the only payload of the Sentinel-5 Precursor (S5P), which is a polar-orbiting satellite mission of the European Space Agency (ESA). TROPOMI is a nadir-viewing spectrometer measuring in the ultraviolet, visible, near-infrared, and the shortwave infrared that provides near-global daily coverage. Among other things, TROPOMI measurements will be used for calculating the UV radiation reaching the Earth's surface. Thus, the TROPOMI surface UV product will contribute to the monitoring of UV radiation by providing daily information on the prevailing UV conditions over the globe. The TROPOMI UV algorithm builds on the heritage of the Ozone Monitoring Instrument (OMI) and the Satellite Application Facility for Atmospheric Composition and UV Radiation (AC SAF) algorithms. This paper provides a description of the algorithm that will be used for estimating surface UV radiation from TROPOMI observations. The TROPOMI surface UV product includes the following UV quantities: the UV irradiance at 305, 310, 324, and 380 nm; the erythemally weighted UV; and the vitamin-D weighted UV. Each of these are available as (i) daily dose or daily accumulated irradiance, (ii) overpass dose rate or irradiance, and (iii) local noon dose rate or irradiance. In addition, all quantities are available corresponding to actual cloud conditions and as clear-sky values, which otherwise correspond to the same conditions but assume a cloud-free atmosphere. This yields 36 UV parameters altogether. The TROPOMI UV algorithm has been tested using input based on OMI and the Global Ozone Monitoring Experiment-2 (GOME-2) satellite measurements. These preliminary results indicate that the algorithm is functioning according to expectations.

  12. Geothermal Heat Pump Basics | NREL

    Science.gov Websites

    a free source of hot water. Geothermal heat pumps use much less energy than conventional heating resources: Geothermal Heat Pumps U.S. Department of Energy's Office of Energy Efficiency and Renewable Heat Pump Basics Geothermal Heat Pump Basics Geothermal heat pumps take advantage of the nearly

  13. Advanced high-temperature electromagnetic pump

    NASA Technical Reports Server (NTRS)

    Gahan, J. W.; Powell, A. H.

    1972-01-01

    Three phase helical, electromagnetic induction pump for use as boiler feed pump in potassium Rankine-cycle power system is described. Techniques for fabricating components of pump are discussed. Specifications of pump are analyzed.

  14. UV Radiation and the Skin

    PubMed Central

    D’Orazio, John; Jarrett, Stuart; Amaro-Ortiz, Alexandra; Scott, Timothy

    2013-01-01

    UV radiation (UV) is classified as a “complete carcinogen” because it is both a mutagen and a non-specific damaging agent and has properties of both a tumor initiator and a tumor promoter. In environmental abundance, UV is the most important modifiable risk factor for skin cancer and many other environmentally-influenced skin disorders. However, UV also benefits human health by mediating natural synthesis of vitamin D and endorphins in the skin, therefore UV has complex and mixed effects on human health. Nonetheless, excessive exposure to UV carries profound health risks, including atrophy, pigmentary changes, wrinkling and malignancy. UV is epidemiologically and molecularly linked to the three most common types of skin cancer, basal cell carcinoma, squamous cell carcinoma and malignant melanoma, which together affect more than a million Americans annually. Genetic factors also influence risk of UV-mediated skin disease. Polymorphisms of the melanocortin 1 receptor (MC1R) gene, in particular, correlate with fairness of skin, UV sensitivity, and enhanced cancer risk. We are interested in developing UV-protective approaches based on a detailed understanding of molecular events that occur after UV exposure, focusing particularly on epidermal melanization and the role of the MC1R in genome maintenance. PMID:23749111

  15. UV radiation and the skin.

    PubMed

    D'Orazio, John; Jarrett, Stuart; Amaro-Ortiz, Alexandra; Scott, Timothy

    2013-06-07

    UV radiation (UV) is classified as a "complete carcinogen" because it is both a mutagen and a non-specific damaging agent and has properties of both a tumor initiator and a tumor promoter. In environmental abundance, UV is the most important modifiable risk factor for skin cancer and many other environmentally-influenced skin disorders. However, UV also benefits human health by mediating natural synthesis of vitamin D and endorphins in the skin, therefore UV has complex and mixed effects on human health. Nonetheless, excessive exposure to UV carries profound health risks, including atrophy, pigmentary changes, wrinkling and malignancy. UV is epidemiologically and molecularly linked to the three most common types of skin cancer, basal cell carcinoma, squamous cell carcinoma and malignant melanoma, which together affect more than a million Americans annually. Genetic factors also influence risk of UV-mediated skin disease. Polymorphisms of the melanocortin 1 receptor (MC1R) gene, in particular, correlate with fairness of skin, UV sensitivity, and enhanced cancer risk. We are interested in developing UV-protective approaches based on a detailed understanding of molecular events that occur after UV exposure, focusing particularly on epidermal melanization and the role of the MC1R in genome maintenance.

  16. Pump polarization insensitive and efficient laser-diode pumped Yb:KYW ultrafast oscillator.

    PubMed

    Wang, Sha; Wang, Yan-Biao; Feng, Guo-Ying; Zhou, Shou-Huan

    2016-02-01

    We theoretically and experimentally report and evaluate a novel split laser-diode (LD) double-end pumped Yb:KYW ultrafast oscillator aimed at improving the performance of an ultrafast laser. Compared to a conventional unpolarized single-LD end-pumped ultrafast laser system, we improve the laser performance such as absorption efficiency, slope efficiency, cw mode-locking threshold, and output power by this new structure LD-pumped Yb:KYW ultrafast laser. Experiments were carried out with a 1 W output fiber-coupled LD. Experimental results show that the absorption increases from 38.7% to 48.4%, laser slope efficiency increases from 18.3% to 24.2%, cw mode-locking threshold decreases 12.7% from 630 to 550 mW in cw mode-locking threshold, and maximum output-power increases 28.5% from 158.4 to 221.5 mW when we switch the pump scheme from an unpolarized single-end pumping structure to a split LD double-end pumping structure.

  17. Gas-heat-pump development

    NASA Astrophysics Data System (ADS)

    Creswick, F. A.

    Incentives for the development of gas heat pumps are discussed. Technical progress made on several promising technologies was reviewed. The status of development of gas-engine-driven heat pumps, the absorption cycle for the near- and long-term gas heat pump systems, the Stirling engine, the small Rankine-cycle engines, and gas-turbine-driven heat pump systems were briefly reviewed. Progress in the US, Japan, and Europe is noted.

  18. Photodegradation of pharmaceuticals and personal care products during UV and UV/H2O2 treatments.

    PubMed

    Kim, Ilho; Yamashita, Naoyuki; Tanaka, Hiroaki

    2009-10-01

    Photodegradation characteristics of pharmaceuticals and personal care products (PPCPs) and the effectiveness of H(2)O(2) addition for PPCPs photodegradation during UV treatment were examined in this study. Average k (1st order rate constant) value for all the PPCPs investigated increased by a factor of 1.3 by H(2)O(2) addition during UV treatment using biologically treated water (TW) spiked with the 30 PPCPs. Therefore, the effectiveness of H(2)O(2) addition for PPCPs removal during UV treatment in real wastewater treatment process was expected. It could be also known that H(2)O(2) addition would improve photodegradation rates of PPCPs highly resistant for UV treatment such as DEET, ethenzamide and theophylline. UV dose required for 90% degradation of each PPCP was calculated from k values obtained in UV and UV/H(2)O(2) treatment experiments using TW spiked with 30 PPCPs. For UV treatment, UV dose required for degrading each PPCP by 90% of initial concentration ranged from 38 mJ cm(-2) to 5644 mJ cm(-2), indicating that most of PPCPs will not be removed sufficiently in UV disinfection process in wastewater treatment plant. For UV/H(2)O(2) treatment, all the PPCPs except seven PPCPs including cyclophosphamide and 2-QCA were degraded by more than 90% by UV irradiation for 30 min (UV dose: 691 mJ cm(-2)), indicating that H(2)O(2) addition during UV treatment will be highly effective for improving the degradation of PPCPs by UV, even though much higher UV dose is still necessary comparing to for UV disinfection.

  19. Radiation-Tolerant DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Skutt, Glenn; Sable, Dan; Leslie, Leonard; Graham, Shawn

    2012-01-01

    A document discusses power converters suitable for space use that meet the DSCC MIL-PRF-38534 Appendix G radiation hardness level P classification. A method for qualifying commercially produced electronic parts for DC-DC converters per the Defense Supply Center Columbus (DSCC) radiation hardened assurance requirements was developed. Development and compliance testing of standard hybrid converters suitable for space use were completed for missions with total dose radiation requirements of up to 30 kRad. This innovation provides the same overall performance as standard hybrid converters, but includes assurance of radiation- tolerant design through components and design compliance testing. This availability of design-certified radiation-tolerant converters can significantly reduce total cost and delivery time for power converters for space applications that fit the appropriate DSCC classification (30 kRad).

  20. Nanostructure Neutron Converter Layer Development

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Lowther, Sharon E. (Inventor); Kang, Jin Ho (Inventor); Thibeault, Sheila A. (Inventor); Sauti, Godfrey (Inventor); Bryant, Robert G. (Inventor)

    2016-01-01

    Methods for making a neutron converter layer are provided. The various embodiment methods enable the formation of a single layer neutron converter material. The single layer neutron converter material formed according to the various embodiments may have a high neutron absorption cross section, tailored resistivity providing a good electric field penetration with submicron particles, and a high secondary electron emission coefficient. In an embodiment method a neutron converter layer may be formed by sequential supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In another embodiment method a neutron converter layer may be formed by simultaneous supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In a further embodiment method a neutron converter layer may be formed by in-situ metalized aerogel nanostructure development.

  1. Microminiature thermionic converters

    DOEpatents

    King, Donald B.; Sadwick, Laurence P.; Wernsman, Bernard R.

    2001-09-25

    Microminiature thermionic converts (MTCs) having high energy-conversion efficiencies and variable operating temperatures. Methods of manufacturing those converters using semiconductor integrated circuit fabrication and micromachine manufacturing techniques are also disclosed. The MTCs of the invention incorporate cathode to anode spacing of about 1 micron or less and use cathode and anode materials having work functions ranging from about 1 eV to about 3 eV. Existing prior art thermionic converter technology has energy conversion efficiencies ranging from 5-15%. The MTCs of the present invention have maximum efficiencies of just under 30%, and thousands of the devices can be fabricated at modest costs.

  2. Luminescent carbon quantum dots with high quantum yield as a single white converter for white light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, X. T.; Zhang, Y.; Liu, X. G., E-mail: liuxuguang@tyut.edu.cn

    Carbon quantum dots (CQDs) with high quantum yield (51.4%) were synthesized by a one-step hydrothermal method using thiosalicylic acid and ethylenediamine as precursor. The CQDs have the average diameter of 2.3 nm and possess excitation-independent emission wavelength in the range from 320 to 440 nm excitation. Under an ultraviolet (UV) excitation, the CQDs aqueous solutions emit bright blue fluorescence directly and exhibit broad emission with a high spectral component ratio of 67.4% (blue to red intensity to total intensity). We applied the CQDs as a single white-light converter for white light emitting diodes (WLEDs) using a UV-LED chip as the excitation lightmore » source. The resulted WLED shows superior performance with corresponding color temperature of 5227 K and the color coordinates of (0.34, 0.38) belonging to the white gamut.« less

  3. 2 kW pump-light-stripper-free distributed side-coupled cladding-pumped fiber oscillator

    NASA Astrophysics Data System (ADS)

    Ying, Hanyuan; Yu, Yu; Cao, Jianqiu; Huang, Zhihe; Pan, Zhiyong; Wang, Zefeng; Chen, Jinbao

    2017-06-01

    A 2 kW pump-light-stripper-free all-fiber distributed-pumping oscillator fabricated with the distributed side-coupled cladding-pumped Yb-doped fiber is demonstrated for the first time, to the best of our knowledge. An output power of 1969 W with a slope efficiency of 72.2% is obtained. By utilizing the final-section counter-pumping scheme, pure output spectra free from residual pump light are obtained without using any pump light stripper, which demonstrates that the pump light stripper is not indispensable for this configuration. Besides, no stimulated Raman scattering component is observed in the output spectra. The laser has the M 2 factor ranging from 2.0 to 2.6. We believe that the pertinent results are helpful and valuable for designing high-power fiber laser systems.

  4. Development of the NEDO implantable ventricular assist device with Gyro centrifugal pump.

    PubMed

    Yoshikawa, M; Nonaka, K; Linneweber, J; Kawahito, S; Ohtsuka, G; Nakata, K; Takano, T; Schulte-Eistrup, S; Glueck, J; Schima, H; Wolner, E; Nosé, Y

    2000-06-01

    The Gyro centrifugal pump, PI (permanently implantable) series, is being developed as a totally implantable artificial heart. Our final goal is to establish a "functional TAH," a totally implantable biventricular assist system (BiVAS) with centrifugal pumps. A plastic prototype pump, Gyro PI 601, was evaluated through in vitro and in vivo studies as a single ventricular assist device (VAD). Based upon these results, the pump head material was converted to a titanium alloy, and the actuator was modified. These titanium Gyro pumps, PI 700 series, also were subjected to in vitro and in vivo studies. The Gyro PI 601 and PI 700 series have the same inner dimensions and characteristics, such as the eccentric inlet port, double pivot bearing system, secondary vane, and magnet coupling system; however, the material of the PI 700 is different from the PI 601. The Gyro PI series is driven by the Vienna DC brushless motor actuator. The inlet cannula of the right ventricular assist system (RVAS) specially made for this system consists of 2 parts: a hat-shaped silicone tip biolized with gelatin and an angled wire reinforced tube made of polyvinylchloride. The pump-actuator package was implanted into 8 calves in the preperitoneal space, bypassing from the left ventricle apex to the descending aorta for the left ventricular assist system (LVAS) and bypassing the right ventricle to the main pulmonary artery for the RVAS. According to the PI 601 feasibility protocol, 2 LVAS cases were terminated after 2 weeks, and 1 LVAS case and 1 RVAS were terminated after 1 month. The PI 700 series was implanted into 4 cases: 3 LVAS cases survived for a long term, 2 of them over 200 days (72-283 days), and 1 RVAS case survived for 1 month and was terminated according to the protocol for a short-term antithrombogenic screening and system feasibility study. Regarding power consumption, the plastic pump cases demonstrated from 6.2 to 12.1 W as LVAS and 7.3 W as RVAS, the titanium pump cases showed

  5. Standardization of UV LED measurements

    NASA Astrophysics Data System (ADS)

    Eppeldauer, G. P.; Larason, T. C.; Yoon, H. W.

    2015-09-01

    Traditionally used source spectral-distribution or detector spectral-response based standards cannot be applied for accurate UV LED measurements. Since the CIE standardized rectangular-shape spectral response function for UV measurements cannot be realized with small spectral mismatch when using filtered detectors, the UV measurement errors can be several times ten percent or larger. The UV LEDs produce broadband radiation and both their peaks or spectral bandwidths can change significantly. The detectors used for the measurement of these LEDs also have different spectral bandwidths. In the discussed example, where LEDs with 365 nm peak are applied for fluorescent crack-recognition using liquid penetrant (non-destructive) inspection, the broadband radiometric LED (signal) measurement procedure is standardized. A UV LED irradiance-source was calibrated against an FEL lamp standard to determine its spectral irradiance. The spectral irradiance responsivity of a reference UV meter was also calibrated. The output signal of the reference UV meter was calculated from the spectral irradiance of the UV source and the spectral irradiance responsivity of the reference UV meter. From the output signal, both the integrated irradiance (in the reference plane of the reference meter) and the integrated responsivity of the reference meter were determined. Test UV meters calibrated for integrated responsivity against the reference UV meter, can be used to determine the integrated irradiance from a field UV source. The obtained 5 % (k=2) measurement uncertainty can be decreased when meters with spectral response close to a constant value are selected.

  6. Harmonic generation in metallic, GaAs-filled nanocavities in the enhanced transmission regime at visible and UV wavelengths.

    PubMed

    Vincenti, M A; de Ceglia, D; Roppo, V; Scalora, M

    2011-01-31

    We have conducted a theoretical study of harmonic generation from a silver grating having slits filled with GaAs. By working in the enhanced transmission regime, and by exploiting phase-locking between the pump and its harmonics, we guarantee strong field localization and enhanced harmonic generation under conditions of high absorption at visible and UV wavelengths. Silver is treated using the hydrodynamic model, which includes Coulomb and Lorentz forces, convection, electron gas pressure, plus bulk χ(3) contributions. For GaAs we use nonlinear Lorentz oscillators, with characteristic χ(2) and χ(3) and nonlinear sources that arise from symmetry breaking and Lorentz forces. We find that: (i) electron pressure in the metal contributes to linear and nonlinear processes by shifting/reshaping the band structure; (ii) TE- and TM-polarized harmonics can be generated efficiently; (iii) the χ(2) tensor of GaAs couples TE- and TM-polarized harmonics that create phase-locked pump photons having polarization orthogonal compared to incident pump photons; (iv) Fabry-Perot resonances yield more efficient harmonic generation compared to plasmonic transmission peaks, where most of the light propagates along external metal surfaces with little penetration inside its volume. We predict conversion efficiencies that range from 10(-6) for second harmonic generation to 10(-3) for the third harmonic signal, when pump power is 2 GW/cm2.

  7. Inhibitors of Proton Pumping

    PubMed Central

    Bisson, Mary A.

    1986-01-01

    Reported inhibitors of the Characean plasmalemma proton pump were tested for their ability to inhibit the passive H+ conductance which develops in Chara corallina Klein ex Willd. at high pH. Diethylstilbestrol inhibits the proton pump and the passive H+ conductance with about the same time course, at concentrations that have no effect on cytoplasmic streaming. N-Ethylmaleimide, a sulfhydryl reagent which is small and relatively nonpolar, also inhibits both pumping and passive conductance of H+. However, it also inhibits cytoplasmic streaming with about the same time course, and therefore could not be considered a specific ATPase inhibitor. p-Chloromercuribenzene sulfonate (PCMBS), a sulfhydryl reagent which is large and charged and hence less able to penetrate the membrane, does not inhibit pumping or conductance at low concentration. At high concentration, PCMBS sometimes inhibits pumping without affecting H+ conductance, but since streaming is also inhibited, the effect on the pump cannot be said to be specific. 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide, a water soluble carbodiimide, weakly inhibits both pump and conductance, apparently specifically. PMID:16664807

  8. Solar UV-A and UV-B radiation fluxes at two Alpine stations at different altitudes

    NASA Astrophysics Data System (ADS)

    Blumthaler, M.; Ambach, W.; Rehwald, W.

    1992-03-01

    Daily totals of UV-A and UV-B radiation fluxes and global radiation were measured since 1981 at Jungfraujoch (3576 m) a.s.l.) and in Innsbruck (577 m a.s.l.) in their seasonal course. The altitude effect of annual totals yields 19%/1000 m (UV-B), 11%/1000 m (UV-A) and 9%/1000 m (global radiation) with reference to Innsbruck station. The ratio of the daily totals of UV-B/global radiation shows a significant seasonal course with the maximum in summer, whereas the ratio of the daily totals of UV-A/global radiation shows no significant seasonal variation. The biological effective doses of erythema reaction, delayed tanning and immediate tanning by UV-A and UV-B radiant exposure are reported in the seasonal course at Jungfraujoch and in Innsbruck.

  9. Jet pump assisted artery

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A procedure for priming an arterial heat pump is reported; the procedure also has a means for maintaining the pump in a primed state. This concept utilizes a capillary driven jet pump to create the necessary suction to fill the artery. Basically, the jet pump consists of a venturi or nozzle-diffuser type constriction in the vapor passage. The throat of this venturi is connected to the artery. Thus vapor, gas, liquid, or a combination of the above is pumped continuously out of the artery. As a result, the artery is always filled with liquid and an adequate supply of working fluid is provided to the evaporator of the heat pipe.

  10. Impulse Pump

    DTIC Science & Technology

    2016-06-17

    APPLICATIONS [0002] None. BACKGROUND OF THE INVENTION (1) Field of the Invention [0003] The present invention relates to an impulse pump for generating...impulse pump 15. The sleeve bearings 98 are affixed to the head block 90 to ease axial motion while the plunger 72 is under torsional loads. [0041

  11. GAS METERING PUMP

    DOEpatents

    George, C.M.

    1957-12-31

    A liquid piston gas pump is described, capable of pumping minute amounts of gas in accurately measurable quantities. The pump consists of a flanged cylindrical regulating chamber and a mercury filled bellows. Sealed to the ABSTRACTS regulating chamber is a value and having a gas inlet and outlet, the inlet being connected by a helical channel to the bellows. A gravity check valve is in the gas outlet, so the gas passes through the inlet and the helical channel to the bellows where the pumping action as well as the metering is accomplished by the actuation of the mercury filled bellows. The gas then flows through the check valve and outlet to any associated apparatus.

  12. Comparison of classical fenton, nitrilotriacetic acid (NTA)-Fenton, UV-Fenton, UV photolysis of Fe-NTA, UV-NTA-Fenton, and UV-H2O2 for the degradation of cyclohexanoic acid.

    PubMed

    Zhang, Ying; Klamerth, Nikolaus; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2017-05-01

    The treatment of a naphthenic acid model compound, cyclohexanoic acid, with classical Fenton, UV-H 2 O 2 , UV-Fenton, nitrilotriacetic acid (NTA)-Fenton, UV-NTA-Fenton, and UV photolysis of Fe-NTA processes at pHs 3 and 8 was investigated. At 1.47 mM H 2 O 2 , 0.089 mM Fe, and 0.18 mM NTA, the UV-NTA-Fenton process at pH 3 exhibited the highest H 2 O 2 decomposition (100% in 25 min), CHA removal (100% in 12 min) with a rate constant of 0.27 ± 0.025 min -1 , and NTA degradation (100% in 6 min). Due to the formation of H 2 O 2 -Fe(III)NTA adduct, the total Fe concentration in the UV-NTA-Fenton system (0.063 mM at the end of the reaction) at pH 8 was much higher than that in the UV photolysis of Fe(III)NTA process (0.024 mM). The co-complexing effect of borate buffer helped to keep iron soluble; however, it imposed a negative influence on the CHA degradation in the UV-NTA-Fenton process (68% CHA removal in 60 min in the borate buffer compared to 92% in MilliQ water). The results demonstrated that the most efficient process for the CHA degradation under the experimental conditions was the UV-NTA-Fenton process at pH 3. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Noise exposure in convertible automobiles.

    PubMed

    Mikulec, A A; Lukens, S B; Jackson, L E; Deyoung, M N

    2011-02-01

    To quantify the noise exposure received while driving a convertible automobile with the top open, compared with the top closed. Five different convertible automobiles were driven, with the top both closed and open, and noise levels measured. The cars were tested at speeds of 88.5, 104.6 and 120.7 km/h. When driving with the convertible top open, the mean noise exposure ranged from 85.3 dB at 88.5 km/h to 89.9 dB at 120.7 km/h. At the tested speeds, noise exposure increased by an average of 12.4-14.6 dB after opening the convertible top. Driving convertible automobiles at speeds exceeding 88.5 km/h, with the top open, may result in noise exposure levels exceeding recommended limits, especially when driving with the convertible top open for prolonged periods.

  14. Efficiency of energy conversion in model biological pumps. Optimization by linear nonequilibrium thermodynamic relations.

    PubMed

    Stucki, J W; Compiani, M; Caplan, S R

    1983-09-01

    Experimental investigations showed linear relations between flows and forces in some biological energy converters operating far from equilibrium. This observation cannot be understood on the basis of conventional nonequilibrium thermodynamics. Therefore, the efficiencies of a linear and a nonlinear mode of operation of an energy converter (a hypothetical redox-driven H+ pump) were compared. This comparison revealed that at physiological values of the forces and degrees of coupling (1) the force ratio permitting optimal efficiency was much higher in the linear than in the nonlinear mode and (2) the linear mode of operation was at least 10(6)-times more efficient that the nonlinear one. These observations suggest that the experimentally observed linear relations between flows and forces, particularly in the case of oxidative phosphorylation, may be due to a feedback regulation maintaining linear thermodynamic relations far from equilibrium. This regulation may have come about as the consequence of an evolutionary drive towards higher efficiency.

  15. Thermionic converter

    DOEpatents

    Fitzpatrick, Gary O.

    1987-05-19

    A thermionic converter (10) is set forth which includes an envelope (12) having an electron collector structure (22) attached adjacent to a wall (16). An electron emitter structure (24) is positioned adjacent the collector structure (22) and spaced apart from opposite wall (14). The emitter (24) and collector (22) structures are in a common chamber (20). The emitter structure (24) is heated substantially only by thermal radiation. Very small interelectrode gaps (28) can be maintained utilizing the thermionic converter (10) whereby increased efficiency results.

  16. Electroosmotic pump performance is affected by concentration polarizations of both electrodes and pump

    PubMed Central

    Suss, Matthew E.; Mani, Ali; Zangle, Thomas A.; Santiago, Juan G.

    2010-01-01

    Current methods of optimizing electroosmotic (EO) pump performance include reducing pore diameter and reducing ionic strength of the pumped electrolyte. However, these approaches each increase the fraction of total ionic current carried by diffuse electric double layer (EDL) counterions. When this fraction becomes significant, concentration polarization (CP) effects become important, and traditional EO pump models are no longer valid. We here report on the first simultaneous concentration field measurements, pH visualizations, flow rate, and voltage measurements on such systems. Together, these measurements elucidate key parameters affecting EO pump performance in the CP dominated regime. Concentration field visualizations show propagating CP enrichment and depletion fronts sourced by our pump substrate and traveling at order mm/min velocities through millimeter-scale channels connected serially to our pump. The observed propagation in millimeter-scale channels is not explained by current propagating CP models. Additionally, visualizations show that CP fronts are sourced by and propagate from the electrodes of our system, and then interact with the EO pump-generated CP zones. With pH visualizations, we directly detect that electrolyte properties vary sharply across the anode enrichment front interface. Our observations lead us to hypothesize possible mechanisms for the propagation of both pump- and electrode-sourced CP zones. Lastly, our experiments show the dynamics associated with the interaction of electrode and membrane CP fronts, and we describe the effect of these phenomena on EO pump flow rates and applied voltages under galvanostatic conditions. PMID:21516230

  17. Kinetic removal of haloacetonitrile precursors by photo-based advanced oxidation processes (UV/H2O2, UV/O3, and UV/H2O2/O3).

    PubMed

    Srithep, Sirinthip; Phattarapattamawong, Songkeart

    2017-06-01

    The objective of the study is to evaluate the performance of conventional treatment process (i.e., coagulation, flocculation, sedimentation and sand filtration) on the removals of haloacetonitrile (HAN) precursors. In addition, the removals of HAN precursors by photo-based advanced oxidation processes (Photo-AOPs) (i.e., UV/H 2 O 2 , UV/O 3 , and UV/H 2 O 2 /O 3 ) are investigated. The conventional treatment process was ineffective to remove HAN precursors. Among Photo-AOPs, the UV/H 2 O 2 /O 3 was the most effective process for removing HAN precursors, followed by UV/H 2 O 2 , and UV/O 3 , respectively. For 20min contact time, the UV/H 2 O 2 /O 3 , UV/H 2 O 2 , and UV/O 3 suppressed the HAN formations by 54, 42, and 27% reduction. Increasing ozone doses from 1 to 5 mgL -1 in UV/O 3 systems slightly improved the removals of HAN precursors. Changes in pH (6-8) were unaffected most of processes (i.e., UV, UV/H 2 O 2 , and UV/H 2 O 2 /O 3 ), except for the UV/O 3 system that its efficiency was low in the weak acid condition. The pseudo first-order kinetic constant for removals of dichloroacetonitrile precursors (k' DCANFP ) by the UV/H 2 O 2 /O 3 , UV/H 2 O 2 and standalone UV systems were 1.4-2.8 orders magnitude higher than the UV/O 3 process. The kinetic degradation of dissolved organic nitrogen (DON) tended to be higher than the k' DCANFP value. This study firstly differentiates the kinetic degradation between DON and HAN precursors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Development and validation of liquid chromatographic and UV derivative spectrophotometric methods for the determination of famciclovir in pharmaceutical dosage forms.

    PubMed

    Srinubabu, Gedela; Sudharani, Batchu; Sridhar, Lade; Rao, Jvln Seshagiri

    2006-06-01

    A high-performance liquid chromatographic method and a UV derivative spectrophotometric method for the determination of famciclovir, a highly active antiviral agent, in tablets were developed in the present work. The various parameters, such as linearity, precision, accuracy, specificity, robustness, limit of detection and limit of quantitation were studied according to International Conference on Harmonization guidelines. HPLC was carried out by using the reversed-phase technique on an RP-18 column with a mobile phase composed of 50 mM monobasic phosphate buffer and methanol (50 : 50; v/v), adjusted to pH 3.05 with orthophosphoric acid. The mobile phase was pumped at a flow rate of 1 ml/min and detection was made at 242 nm with UV dual absorbance detector. The first derivative UV spectrophotometric method was performed at 226.5 nm. Statistical analysis was done by Student's t-test and F-test, which showed no significant difference between the results obtained by the two methods. The proposed methods are highly sensitive, precise and accurate and therefore can be used for its Intended purpose.

  19. Darrieus wind-turbine and pump performance for low-lift irrigation pumping

    NASA Astrophysics Data System (ADS)

    Hagen, L. J.; Sharif, M.

    1981-10-01

    In the Great Plains about 15 percent of the irrigation water pumped on farms comes from surface water sources; for the United States as a whole, the figure is about 22 percent. Because of forecast fuel shortages, there is a need to develop alternative energy sources such as wind power for surface water pumping. Specific objectives of this investigation were to: design and assemble a prototype wind powered pumping system for low lift irrigation pumping; determine performance of the prototype system; design and test an irrigation system using the wind powered prototype in a design and test an farm application; and determine the size combinations of wind turbines, tailwater pits, and temporary storage reservoirs needed for successful farm application of wind powered tailwater pumping systems in western Kansas. The power source selected was a two bladed, 6 m diameter, 9 m tall Darrieus vertical axis wind turbine with 0.10 solidity and 36.1 M(2) swept area.

  20. Pump Diode Characterization for an Unstable Diode-Pumped Alkali Laser Resonator

    DTIC Science & Technology

    2013-03-01

    2003. Petersen, A., and R. Lane, Second harmonic operation of diode-pumped Rb vapor lasers , Proc. of SPIE, 7005, 2008. Siegman , A. E., Lasers ...University Science Books, Sausalito, CA, 1986. Siegman , A. E., Defining, measuring and optimizing laser beam quality, Proc. of SPIE, 1868, 1993. Steck, D...PUMP DIODE CHARACTERIZATION FOR AN UNSTABLE DIODE-PUMPED ALKALI LASER RESONATOR THESIS Chad T. Taguba, Master Sergeant, USAF AFIT-ENP-13-M-33

  1. Solar UV variability

    NASA Technical Reports Server (NTRS)

    Donnelly, Richard F.

    1989-01-01

    Measurements from the Solar Backscatter Ultraviolet (SBUV) provide solar UV flux in the 160 to 400 nm wavelength range, backed up by independent measurement in the 115 to 305 nm range from the Solar Mesosphere Explorer (SME). The full disc UV flux from spatially resolved measurements of solar activity was modeled, which provides a better understanding of why the UV variations have their observed temporal and wavelength dependencies. Long term, intermediate term, and short term variations are briefly examined.

  2. DIRECT CURRENT ELECTROMAGNETIC PUMP

    DOEpatents

    Barnes, A.H.

    1957-11-01

    An improved d-c electromagnetic pump is presented in which the poles, and consequently the magetic gap at the poles, are tapered to be wider at the upstream end. In addition, the cross section of the tube carryiQ the liquid metal is tapered so that the velocity of the pumped liquid increases in the downstream direction at a rate such that the counter-induced voltage in the liquid metal remains constant as it traverses the region between the poles. This configuration compensates for the distortion of the magnetic field caused by the induced voltage that would otherwise result in the lowering of the pumping capacity. This improved electromagnetic pump as practical application in the pumping of liquid metal coolants for nuclear reactors where conventional positive displacement pumps have proved unsatisfactory due to the high temperatures and the corrosive properties of the liquid metals involved.

  3. A Teaspoon Pump for Pumping Blood with High Hydraulic Efficiency and Low Hemolysis Potential.

    PubMed

    Dame, Don

    1996-05-01

    Virtually all blood pumps contain some kind of rubbing, sliding, closely moving machinery surfaces that are exposed to the blood being pumped. These valves, internal bearings, magnetic bearing position sensors, and shaft seals cause most of the problems with blood pumps. The original teaspoon pump design prevented the rubbing, sliding machinery surfaces from contacting the blood. However, the hydraulic efficiency was low because the blood was able to "slip around" the rotating impeller so that the blood itself never rotated fast enough to develop adequate pressure. An improved teaspoon blood pump has been designed and tested and has shown acceptable hydraulic performance and low hemolysis potential. The new pump uses a nonrotating "swinging" hose as the pump impeller. The fluid enters the pump through the center of the swinging hose; therefore, there can be no fluid slip between the revolving blood and the revolving impeller. The new pump uses an impeller that is comparable to a flexible garden hose. If the free end of the hose were swung around in a circle like half of a jump rope, the fluid inside the hose would rotate and develop pressure even though the hose impeller itself did not "rotate"; therefore, no rotating shaft seal or internal bearings are required. © 1996 International Society for Artificial Organs.

  4. A teaspoon pump for pumping blood with high hydraulic efficiency and low hemolysis potential.

    PubMed

    Dame, D

    1996-06-01

    Virtually all blood pumps contain some kind of rubbing, sliding, closely moving machinery surfaces that are exposed to the blood being pumped. These valves, internal bearings, magnetic bearing position sensors, and shaft seals cause most of the problems with blood pumps. The original teaspoon pump design prevented the rubbing, sliding machinery surfaces from contacting the blood. However, the hydraulic efficiency was low because the blood was able to "slip around" the rotating impeller so that the blood itself never rotated fast enough to develop adequate pressure. An improved teaspoon blood pump has been designed and tested and has shown acceptable hydraulic performance and low hemolysis potential. The new pump uses a nonrotating "swinging" hose as the pump impeller. The fluid enters the pump through the center of the swinging hose; therefore, there can be no fluid slip between the revolving blood and the revolving impeller. The new pump uses an impeller that is comparable to a flexible garden hose. If the free end of the hose were swung around in a circle like half of a jump rope, the fluid inside the hose would rotate and develop pressure even though the hose impeller itself did not "rotate"; therefore, no rotating shaft seal or internal bearings are required.

  5. A MEMS Interface IC With Low-Power and Wide-Range Frequency-to-Voltage Converter for Biomedical Applications.

    PubMed

    Arefin, Md Shamsul; Redouté, Jean-Michel; Yuce, Mehmet Rasit

    2016-04-01

    This paper presents an interface circuit for capacitive and inductive MEMS biosensors using an oscillator and a charge pump based frequency-to-voltage converter. Frequency modulation using a differential crossed coupled oscillator is adopted to sense capacitive and inductive changes. The frequency-to-voltage converter is designed with a negative feedback system and external controlling parameters to adjust the sensitivity, dynamic range, and nominal point for the measurement. The sensitivity of the frequency-to-voltage converter is from 13.28 to 35.96 mV/MHz depending on external voltage and charging current. The sensitivity ranges of the capacitive and inductive interface circuit are 17.08 to 54.4 mV/pF and 32.11 to 82.88 mV/mH, respectively. A capacitive MEMS based pH sensor is also connected with the interface circuit to measure the high acidic gastric acid throughout the digestive tract. The sensitivity for pH from 1 to 3 is 191.4 mV/pH with 550 μV(pp) noise. The readout circuit is designed and fabricated using the UMC 0.18 μm CMOS technology. It occupies an area of 0.18 mm (2) and consumes 11.8 mW.

  6. Effect of UV irradiation on the apoptosis and necrosis of Jurkat cells using UV LEDs

    NASA Astrophysics Data System (ADS)

    Inada, Shunko A.; Amano, Hiroshi; Akasaki, Isamu; Morita, Akimichi; Kobayashi, Keiko

    2009-02-01

    Phototherapy is a very effective method for treating most of the incurable skin diseases. A fluorescent light bulb is used as a conventional UV light source for this type of therapy. However, infrared radiation from the light source sometimes causes serious problems on patient's health. In addition, the normal part of the skin is irradiated when a large fluorescent light bulb is used. Moreover, a conventional UV irradiation system is heavy and has a short lifetime and a high electrical power consumption. Therefore, a new UV light source for solving the problems of phototherapy is required. To realize low-power-consumption, lightweight and long-lifetime systems, group III nitride-based UV-A1 light-emitting diodes (LEDs) were investigated. We examined the UV LED irradiation of Jurkat cell, which is a tumor cell and more sensitive to UV light than a healthy cell. The numbers of apoptotic and necrotic cells were confirmed to be the same using a UV LED and a conventional lamp system. The UV LED showed the possibility of realizing a new UV light source for phototherapy.

  7. Pressure charged airlift pump

    DOEpatents

    Campbell, Gene K.

    1983-01-01

    A pumping system is described for pumping fluids, such as water with entrained mud and small rocks, out of underground cavities such as drilled wells, which can effectively remove fluids down to a level very close to the bottom of the cavity and which can operate solely by compressed air pumped down through the cavity. The system utilizes a subassembly having a pair of parallel conduit sections (44, 46) adapted to be connected onto the bottom of a drill string utilized for drilling the cavity, the drill string also having a pair of coaxially extending conduits. The subassembly includes an upper portion which has means for connection onto the drill string and terminates the first conduit of the drill string in a plenum (55). A compressed air-driven pump (62) is suspended from the upper portion. The pump sucks fluids from the bottom of the cavity and discharges them into the second conduit. Compressed air pumped down through the first conduit (46) to the plenum powers the compressed air-driven pump and aerates the fluid in the second conduit to lift it to the earth's surface.

  8. Development of UV-B screening compounds in response to variation in ambient levels of UV-B radiation

    NASA Astrophysics Data System (ADS)

    Sullivan, Joe H.; Xu, Chenping; Gao, Wei; Slusser, James R.

    2005-08-01

    The induction of UV-B screening compounds in response to exposure to UV-B radiation is a commonly reported response and is generally considered to be an adaptive response of plants for protection from UVinduced damage. However, a number of questions remain to be answered including the importance of qualitative and localization differences among species in providing protection, indirect consequences of changes in leaf secondary chemistry on ecological processes and the dose response of metabolite accumulation. In this study we utilized UV monitoring data provided on site by the USDA UV-B Monitoring and Research Program to monitor the changes in UV-screening compounds in soybeans under a range of UV-B levels due to natural variation in ambient UV-B radiation. Soybean cultivars Essex, Clark and Clark-magenta, an isoline of Clark that produces minimal levels of flavonols, were grown beneath shelters covered either with polyester to block most UV-B radiation or teflon which is nearly transparent in the UV range and harvested at regular intervals for pigment and protein analysis. Daily levels of weighted UV-B varied from <1 to >7 kJ m-2. Increases in UV-screening compounds showed a positive dose response to UV-B radiation in all cultivars with Essex showing the steepest dose response. UV-A also induced screening compounds in all species The hydroxycinnimates of the magenta isoline showed a steep dose response to UV-A and a rather constant (non dose specific) but small additional increment in response to UV-B. The Clark isoline, which produced primarily the flavonol quercetin, showed a dose response to UV-B intermediate between that of Clark-magenta and Essex. All three cultivars show similar tolerance to UV-B in field conditions indicating that UV-induced pigment production is adequate to protect them from excessive UV-B damage.

  9. Liquid Hydrogen Pump

    DTIC Science & Technology

    1964-11-01

    Diagram 183 65 Hub’ess Inducer Impeller and Shroud Prior Prior to Brazing 189 66 Hubless Inducer Impeller Assembly After Brazing and Finish Machining...Cross-Section of Shrouded Hubless Indjcer Pump 195 71 Liquid Hydrogen Pump Test Site, San Tan, Arizona 197 72 Installation of Pump and Overall )est Site...speed of 300,000. It operates at a tip speed of 1260 ft per second. The impeller is a shrouded wheel designed with sufficient strength to carry the

  10. The Evolution of Ion Pumps.

    ERIC Educational Resources Information Center

    Maloney, Peter C.; Wilson, T. Hastings

    1985-01-01

    Constructs an evolutionary sequence to account for the diversity of ion pumps found today. Explanations include primary ion pumps in bacteria, features and distribution of ATP-driven pumps, preference for cation transport, and proton pump reversal. The integrated evolutionary hypothesis should encourage new experimental approaches. (DH)

  11. Comparative investigation of X-ray contrast medium degradation by UV/chlorine and UV/H2O2.

    PubMed

    Kong, Xiujuan; Jiang, Jin; Ma, Jun; Yang, Yi; Pang, Suyan

    2018-02-01

    The degradation of iopamidol and diatrizoate sodium (DTZ) by UV/chlorine was carried out according to efficiency, mechanism, and oxidation products, and compared to that by UV/H 2 O 2 . The pseudo-first order rate (k') of iopamidol and DTZ was accelerated by UV/chlorine compared to that by UV and chlorine alone. k' of iopamidol and DTZ by UV/chlorine increased with increasing chlorine dosage. Both of iopamidol and DTZ could not be effectively removed by UV/H 2 O 2 compared to that by UV/chlorine. Secondary radicals (Cl 2 - and ClO) rather than primary radicals (HO and Cl) were demonstrated to be mainly responsible for the enhanced removal of iopamidol and DTZ by UV/chlorine. The oxidation products of iopamidol and DTZ resulting from UV/chlorine and UV/H 2 O 2 process were identified, and differences existed in the two systems. IO 3 - (the desired sink of I - ) was the major inorganic product in the UV/chlorine process whereas I - was the predominant inorganic product in the UV/H 2 O 2 process. The formation of chlorine-containing products during the degradation of iopamidol and DTZ by UV/chlorine was also observed. H-abstraction, additions, de-iodination were shared during the degradation of iopamidol by UV/chlorine and UV/H 2 O 2 . Neutral pH condition was preferred for the removal of iopamidol and DTZ by UV/chlorine. UV/chlorine could also be applied in real waters for the removal of iopamidol and DTZ. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Which Breast Pump for Which Mother: An Evidenced-Based Approach to Individualizing Breast Pump Technology

    PubMed Central

    Meier, Paula P.; Patel, Aloka L.; Hoban, Rebecca; Engstrom, Janet L.

    2015-01-01

    The majority of new mothers in the United States use breast pumps in the first four months post-birth in order to achieve their personal human milk feeding goals. Although these mothers seek guidance from health care professionals with respect to the type and use of breast pumps, there are few evidence-based guidelines to guide this professional advice. This paper reviews the evidence to facilitate professional individualization of breast pump recommendations using three categories of literature: the infant as the gold standard to which the pump is compared; the degree of maternal breast pump dependency (e.g., the extent to which the breast pump replaces the infant for milk removal and mammary gland stimulation); and the stage of lactation for which the pump replaces the infant. This review can also serve to inform public and private payers with respect to individualizing breast pump type to mother-dyad characteristics. PMID:26914013

  13. 12. Sewage Ejector Pumps, view to the southwest. These pumps ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Sewage Ejector Pumps, view to the southwest. These pumps are connected to sewage treatment tanks. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  14. Roles of Salmonella typhimurium umuDC and samAB in UV mutagenesis and UV sensitivity.

    PubMed Central

    Nohmi, T; Yamada, M; Watanabe, M; Murayama, S Y; Sofuni, T

    1992-01-01

    Expression of the umuDC operon is required for UV mutagenesis and most chemical mutagenesis in Escherichia coli. The closely related species Salmonella typhimurium has two sets of umuDC-like operons; the samAB operon is located in a 60-MDa cryptic plasmid, while the S. typhimurium umuDC (umuDCST) operon resides in a chromosome. The roles of these two umuDC-like operons in UV mutagenesis and UV sensitivity of S. typhimurium were investigated. A pBR322-derived plasmid carrying the samAB operon more efficiently restored UV mutability to a umuD44 strain and a umuC122::Tn5 strain of E. coli than a plasmid carrying the umuDCST operon did. When the umuDCST operon was specifically deleted from the chromosome of S. typhimurium TA2659, the resulting strain was not UV mutable and was more sensitive to the killing effect of UV irradiation than the parent strain was. Curing of the 60-MDa cryptic plasmid carrying the samAB operon did not influence the UV mutability of strain TA2659 but did increase its resistance to UV killing. A pSC101-derived plasmid carrying the samAB operon did not restore UV mutability to a umuD44 strain of E. coli, whereas pBR322- or pBluescript-derived plasmids carrying the samAB operon efficiently did restore UV mutability. We concluded that the umuDCST operon plays a major role in UV mutagenesis in S. typhimurium and that the ability of the samAB operon to promote UV mutagenesis is strongly affected by gene dosage. Possible reasons for the poor ability of samAB to promote UV mutagenesis when it is present on low-copy-number plasmids are discussed. Images PMID:1400244

  15. Pulsed laser facilities operating from UV to IR at the Gas Laser Lab of the Lebedev Institute

    NASA Astrophysics Data System (ADS)

    Ionin, Andrei; Kholin, Igor; Vasil'Ev, Boris; Zvorykin, Vladimir

    2003-05-01

    Pulsed laser facilities developed at the Gas Lasers Lab of the Lebedev Physics Institute and their applications for different laser-matter interactions are discussed. The lasers operating from UV to mid-IR spectral region are as follows: e-beam pumped KrF laser (λ= 0.248 μm) with output energy 100 J; e-beam sustained discharge CO2(10.6 μm) and fundamental band CO (5-6 μm) lasers with output energy up to ~1 kJ; overtone CO laser (2.5-4.2 μm) with output energy ~ 50 J and N2O laser (10.9 μm) with output energy of 100 J; optically pumped NH3 laser (11-14 μm). Special attention is paid to an e-beam sustained discharge Ar-Xe laser (1.73 μm ~ 100 J) as a potential candidate for a laser-propulsion facility. The high energy laser facilities are used for interaction of laser radiation with polymer materials, metals, graphite, rocks, etc.

  16. UV water disinfector

    DOEpatents

    Gadgil, Ashok; Garud, Vikas

    1998-07-14

    A UV disinfector with a gravity driven feed water delivery system, and an air-suspended bare UV lamp. The disinfector is hydrodynamically optimized with a laminerizing, perforated baffle wall, beveled treatment chamber, and outlet weir.

  17. Vibration Test of a SNAP-8 Sodium-Potassium Alloy Pump

    NASA Image and Video Library

    1970-01-21

    Aeronautics and Space Administration (NASA) Lewis Research Center. Aerojet General was contracted to design the SNAP-8 generator which employed a mercury Rankine system to convert the reactor’s heat into electrical power. The hermetically-sealed pump was designed to generate from 35 to 90 kilowatts of electrical power. In 1964 a SNAP-8 test rig with a mercury boiler and condenser was set up in cell W-1 of Lewis’ Engine Research Building to study the transients in the system’s three loops. In 1967 a complete Rankine system was operated for 60 days in W-1 to verify the integrity of the Lewis-developed mercury boiler. Further tests in 1969 verified the shutdown and startup of the system under normal and emergency conditions. Aerojet operated the first full-Rankine system in June 1966 and completed a 2500-hour endurance test in early 1969. Lewis and Aerojet’s success on the Rankine system was acknowledged with NASA Group Achievement Award in November 1970. The 1970 vibration tests, seen here, were conducted in Lewis’ Engine Research Building’s environmental laboratory. The testing replicated the shock and vibration expected to occur during the launch into space and subsequent maneuvering. The pump was analyzed on each of its major axes.

  18. Pumping capacity and reliability of cryogenic micro-pump for micro-satellite applications

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Zhao, Yi; Li, Biao; Ludlow, Daryl

    2004-10-01

    In micro-satellites, delicate instruments are compacted into a limited space. This raises concerns of active cooling and remote cooling. Silicon based micro-pump arrays are employed thanks to manufacturing simplicity, a small cryogen charge, etc, and keep the instruments within a narrow cryogenic temperature range. The pumping capacity and reliability of the micro-pump are critical in terms of heat balance calculation and lifetime evaluation. The pumping capacity is associated with the diaphragm deflection while the reliability is associated with stress and fatigue. Both of them heavily depend on the silicon diaphragm, one of the key components. This paper examines the pumping capacity and reliability of the micro-pump under cryogenic temperature for micro-satellite applications. In this work, differential pressure was used for the actuation of a single-crystal silicon diaphragm. Diaphragm deflection and stress distribution were achieved using interferometry and micro-Raman spectroscopy, respectively. As a result, smaller pumping capacity was derived under cryogenic temperature, compared to that under room temperature, indicating a stiffer material. From stress mapping, the edge centers were believed to be the most vulnerable to fracture, which was further validated by analyzing the fracture diaphragm. Moreover, a fatigue testing was conducted for 1.8 million cycles with no damage found, verifying silicon as a viable material for long time operation in a cryogenic environment.

  19. Design of high-brightness TEM00-mode solar-pumped laser for renewable material processing

    NASA Astrophysics Data System (ADS)

    Liang, D.; Almeida, J.

    2014-08-01

    The conversion of sunlight into laser light by direct solar pumping is of ever-increasing importance because broadband, temporally constant, sunlight is converted into laser light, which can be a source of narrowband, collimated, rapidly pulsed, radiation with the possibility of obtaining extremely high brightness and intensity. Nonlinear processes, such as harmonic generation, might be used to obtain broad wavelength coverage, including the ultraviolet wavelengths, where the solar flux is very weak. The direct excitation of large lasers by sunlight offers the prospect of a drastic reduction in the cost of coherent optical radiation for high average power materials processing. This renewable laser has a large potential for many applications such as high-temperature materials processing, renewable magnesium-hydrogen energy cycle and so on. We propose here a scalable TEM00 mode solar laser pumping scheme, which is composed of four firststage 1.13 m diameter Fresnel lenses with its respective folding mirrors mounted on a two-axis automatic solar tracker. Concentrated solar power at the four focal spots of these Fresnel lenses are focused individually along a common 3.5 mm diameter, 70 mm length Nd:YAG rod via four pairs of second-stage fused-silica spherical lenses and third-stage 2D-CPCs (Compound Parabolic Concentrator), sitting just above the laser rod which is also double-pass pumped by four V-shaped pumping cavities. Distilled water cools both the rod and the concentrators. 15.4 W TEM00 solar laser power is numerically calculated, corresponding to 6.7 times enhancement in laser beam brightness.

  20. Bidirectional dc-to-dc Power Converter

    NASA Technical Reports Server (NTRS)

    Griesbach, C. R.

    1986-01-01

    Solid-state, series-resonant converter uses high-voltage thyristors. Converter used either to convert high-voltage, low-current dc power to lowvoltage, high current power or reverse. Taking advantage of newly-available high-voltage thyristors to provide better reliability and efficiency than traditional converters that use vacuum tubes as power switches. New converter essentially maintenance free and provides greatly increased mean time between failures. Attractive in industrial applications whether or not bidirectional capability is required.

  1. Temporal Behavior of the Pump Pulses, Residual Pump Pulses, and THz Pulses for D2O Gas Pumped by a TEA CO2 Laser

    NASA Astrophysics Data System (ADS)

    Geng, Lijie; Zhang, Zhifeng; Zhai, Yusheng; Su, Yuling; Zhou, Fanghua; Qu, Yanchen; Zhao, Weijiang

    2016-08-01

    Temporal behavior of the pump pulses, residual pump pulses, and THz pulses for optically pumped D2O gas molecules was investigated by using a tunable TEA CO2 laser as the pumping source. The pulse profiles of pump laser pulses, residual pump pulses, and the THz output pulses were measured, simultaneously, at several different gas pressures. For THz pulse, the pulse delay between the THz pulse and the pump pulse was observed and the delay time was observed to increase from 40 to 70 ns with an increase in gas pressure from 500 to 1700 Pa. Both THz pulse broadening and compression were observed, and the pulse broadening effect transformed to the compression effect with increasing the gas pressure. For the residual pump pulse, the full width at half maximum (FWHM) of the main pulse decreased with increasing gas pressure, and the main pulse disappeared at high gas pressures. The secondary pulses were observed at high gas pressure, and the time intervals of about 518 and 435 ns were observed between the THz output pulse and the secondary residual pump pulse at the pressure of 1400 Pa and 1700 Pa, from which the vibrational relaxation time constants of about 5.45 and 5.55 μs Torr were obtained.

  2. 33 CFR 157.126 - Pumps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157.126 Pumps. (a) Crude oil must be supplied to the COW machines by COW system pumps or cargo pumps. (b) The pumps under paragraph...) A sufficient pressure and flow is supplied to allow the simultaneous operation of those COW machines...

  3. Efficient magneto-optical mode converter on glass

    NASA Astrophysics Data System (ADS)

    Garayt, Jean Philippe; Parsy, François; Jamon, Damien; Neveu, Sophie; Royer, François; Ghibaudo, Elise; Broquin, Jean-Emmanuel

    2014-03-01

    The integration of magneto-optical materials to realize non-reciprocal functions is still a difficult problem, because classical magneto-optical materials require an annealing temperature as high as 700°C. In this framework, this study shows how it is possible to realize efficient magneto-optical mode converter using the association of a magnetic nanoparticles silica/zirconia composite with an ion-exchanged glass waveguide. Using a sol gel process, a silica/zirconia matrix is doped by magnetic nanoparticles (CoFe2O4) and coated on a glass substrate containing straight channel waveguides made by a silver/sodium ion exchange. The extremities of the guides were previously buried using electric field-assisted burial in order to facilitate light injection. Soft annealing (90°C) and UV treatment, both compatible with the ion exchange process, have been implemented to finalize the magneto-optical film. Depending on the amount of nanoparticles in the composite, on the spatial distribution of the field in the guide and on the modal birefringence of the hybrid structure, the TE-TM conversion varies from several degrees to several tens of degrees.

  4. Study of Stage-wise Pressure Pulsation in an Electric Submersible Pump under Variable Frequency Operation at Shut-off Condition

    NASA Astrophysics Data System (ADS)

    Dhanasekaran, A.; Kumaraswamy, S.

    2018-01-01

    Pressure pulsation causes vibration in the Electric Submersible Pump (ESP) and affects the life and performance of its system. ESP systems are installed at depths ranging from a few meters to several hundred meters. Unlike pumps used on the surface, once they are installed they become inaccessible for maintenance or for any kind of diagnostic measurement that might be taken directly on them. Therefore a detailed knowledge of mean and fluctuating pressures is required to achieve an optimal pressure distribution inside the ESP. This paper presents the results of an experimental investigation of the stage-wise pulsating pressure in ESP at shut-off condition at different speeds. Experiments were conducted on a pump having five stages. A variable frequency drive was used to operate the pump at five different speeds. Piezoresistive transducers were mounted at each stage of ESP to capture the unsteady pressure signals. Fast Fourier Transformation was carried out on the pressure signals to convert into frequency domain and the spectra of pressure pulsation signals were analyzed. The obtained results indicated the existence of fundamental frequency corresponding to the speed of rotation times the number of impeller blades and of the whole series of harmonics of higher frequencies.

  5. Influence of uvA on the erythematogenic and therapeutic effects of uvB irradiation in psoriasis; photoaugmentation effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boer, J.; Schothorst, A.A.; Suurmond, D.

    1981-01-01

    The effect of repeated exposure to an additive dose of long ultraviolet (uvA) radiation on the erythemogenic and therapeutic effects of middle ultraviolet (uvB) irradiation was investigated in 8 patients with psoriasis. The surface of the backs of these patients was divided into 2 parts, 1 of which received only uvB irradiation 4 times a week and the other uvA + uvB. uvB was provided by Philips TL-12 lamps and uvA by glass-filtered Philips TL-09 lamps. uvA was held constantly at 10 J/cm2, whereas uvB alone were evaluated by 4 tests during the treatment to determine the minimal erythema dosemore » (MED). Test I (at the start of the therapy) showed a photoaugmentative effect which was no longer apparent in Test III (third week). Test III showed a reversal of the ratios of the MEDs of the sites irradiated with the uvA + uvB and uvB (MED A + B/MED B). This is ascribed to the marked pigmentation which appeared after repeated irradiation with the uvA + uvB combination. Comparison showed for the improvement of the psoriasis no distinct differences between uvA + uvB irradiation and uvB alone, but the former had the cosmetic advantage of giving pleasing tan.« less

  6. UV holographic filters

    NASA Astrophysics Data System (ADS)

    Kalyashova, Zoya N.

    2017-11-01

    A new approach to UV holographic filter's manufacturing, when the filters are the volume reflection holograms, working in UV region in the second Bragg diffraction order, is offered. The method is experimentally realized for wavelength of 266 nm.

  7. Rotary magnetic heat pump

    DOEpatents

    Kirol, Lance D.

    1988-01-01

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  8. Measurement of heat pump processes induced by laser radiation

    NASA Technical Reports Server (NTRS)

    Garbuny, M.; Henningsen, T.

    1983-01-01

    A series of experiments was performed in which a suitably tuned CO2 laser, frequency doubled by a Tl3AsSe37 crystal, was brought into resonance with a P-line or two R-lines in the fundamental vibration spectrum of CO. Cooling or heating produced by absorption in CO was measured in a gas-thermometer arrangement. P-line cooling and R-line heating could be demonstrated, measured, and compared. The experiments were continued with CO mixed with N2 added in partial pressures from 9 to 200 Torr. It was found that an efficient collisional resonance energy transfer from CO to N2 existed which increased the cooling effects by one to two orders of magnitude over those in pure CO. Temperature reductions in the order of tens of degrees Kelvin were obtained by a single pulse in the core of the irradiated volume. These measurements followed predicted values rather closely, and it is expected that increase of pulse energies and durations will enhance the heat pump effects. The experiments confirm the feasibility of quasi-isentropic engines which convert laser power into work without the need for heat rejection. Of more immediate potential interest is the possibility of remotely powered heat pumps for cryogenic use, such applications are discussed to the extent possible at the present stage.

  9. UV water disinfector

    DOEpatents

    Gadgil, A.; Garud, V.

    1998-07-14

    A UV disinfector with a gravity driven feed water delivery system and an air-suspended bare UV lamp are disclosed. The disinfector is hydrodynamically optimized with a laminerizing, perforated baffle wall, beveled treatment chamber, and outlet weir. 7 figs.

  10. A Network Pump

    DTIC Science & Technology

    1996-05-01

    introduced as shown in Fig. 3. Pump ~ y { ~ ~ ~ = ~ messages ACK buffer Fig. 3. The Basic Pump The basic Pump [6] places a buffer (size n ) between...exponential distribution with mean x. Define Q = fY(MAll - T,) + k . ( N - Fair size) where N is the number of messages in buffer, at the time the...message is placed in buffer,,, and k . ( N - Fair size) is a feedback term. Both k and Fair size can be chosen by a sys- tem designer. Note that the moving

  11. 49 CFR 195.262 - Pumping equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Pumping equipment. 195.262 Section 195.262... PIPELINE Construction § 195.262 Pumping equipment. (a) Adequate ventilation must be provided in pump... provided in each pump station: (1) Safety devices that prevent overpressuring of pumping equipment...

  12. Bearing for liquid metal pump

    DOEpatents

    Dickinson, Robert J.; Wasko, John; Pennell, William E.

    1984-01-01

    A liquid metal pump bearing support comprises a series of tangentially oriented spokes that connect the bearing cylinder to the pump internals structure. The spokes may be arranged in a plurality of planes extending from the bearing cylinder to the pump internals with the spokes in one plane being arranged alternately with those in the next plane. The bearing support structure provides the pump with sufficient lateral support for the bearing structure together with the capability of accommodating differential thermal expansion without adversely affecting pump performance.

  13. WATER PUMP HOUSE, TRA619. VIEW OF PUMP HOUSE UNDER CONSTRUCTION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WATER PUMP HOUSE, TRA-619. VIEW OF PUMP HOUSE UNDER CONSTRUCTION. CAMERA IS ON WATER TOWER AND FACES NORTHWEST. TWO RESERVOIR TANKS ALREADY ARE COMPLETED. NOTE EXCAVATIONS FOR PIPE LINES EXITING FROM BELOW GROUND ON SOUTH SIDE OF PUMP HOUSE. BUILDING AT LOWER RIGHT IS ELECTRICAL CONTROL BUILDING, TRA-623. SWITCHYARD IS IN LOWER RIGHT CORNER OF VIEW. INL NEGATIVE NO. 2753. Unknown Photographer, ca. 6/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  14. UV SEDs of early-type cluster galaxies: a new look at the UV upturn

    NASA Astrophysics Data System (ADS)

    Ali, S. S.; Bremer, M. N.; Phillipps, S.; De Propris, R.

    2018-05-01

    Using GALEX, Ultraviolet Optical Telescope (UVOT), and optical photometry, we explore the prevalence and strength of the Ultraviolet (UV) upturn in the spectra of quiescent early-type galaxies in several nearby clusters. Even for galaxies with completely passive optical colours, there is a large spread in vacuum UV colour consistent with almost all having some UV upturn component. Combining GALEX and UVOT data below 3000 Å, we generate for the first time comparatively detailed UV spectral energy distributions for Coma cluster galaxies. Fitting the UV upturn component with a blackbody, 26 of these show a range of characteristic temperatures (10 000-21 000K) for the UV upturn population. Assuming a single temperature to explain GALEX-optical colours could underestimate the fraction of galaxies with UV upturns and mis-classify some as systems with residual star formation. The UV upturn phenomenon is not an exclusive feature found only in giant galaxies; we identify galaxies with similar (or even bluer) FUV - V colours to the giants with upturns over a range of fainter luminosities. The temperature and strength of the UV upturn are correlated with galaxy mass. Under the plausible hypothesis that the sources of the UV upturn are blue horizontal branch stars, the most likely mechanism for this is the presence of a substantial (between 4 per cent and 20 per cent) Helium-rich (Y > 0.3) population of stars in these galaxies, potentially formed at z ˜ 4 and certainly at z > 2; this plausibly sets a lower limit of {˜ } {0.3- 0.8} × 10^{10} M⊙ to the in situ stellar mass of ˜L* galaxies at this redshift.

  15. Low-cost water-lifting from groundwater sources: a comparison of the EMAS Pump with the Rope Pump

    NASA Astrophysics Data System (ADS)

    MacCarthy, Michael F.; Carpenter, Jacob D.; Mihelcic, James R.

    2017-08-01

    In sub-Saharan Africa, low-cost groundwater supply systems offer great opportunities for the current unserved population of >300 million to access drinking water. A comparative study was performed in Uganda of the EMAS Pump (designed by Escuela Móvil Aguas y Saneamiento Básico) with the trade-named Rope Pump, two low-cost manual water-lifting devices appropriate to pumping from shallow groundwater sources. Pumping rates, energy expended, material costs, and construction requirements were analyzed. Focus was on low-cost application for use in shallow groundwater systems at the household level in developing countries, particularly in sub-Saharan Africa. The study site was northern Uganda, with testing performed at several drilled boreholes. Two variants of each pump were tested by a male and female user, pumping from multiple static water-level depths ranging from 5 to 28 m. Results demonstrated the most common version of the EMAS Pump to perform similarly to the comparable version of the Rope Pump in terms of average pumping rate at depth range 5 to 18 m (93-111%), but less so at deeper depths (63-85%). Normalized pumping rates (considering energy expended) accentuated differences between these versions of the EMAS Pump and Rope Pump (47-97%). Cost of materials to construct the EMAS Pump were 21-60% those of the Rope Pump, and EMAS Pump construction requirements were also less. Based on the assessed factors, it is concluded that the EMAS Pump has potential for success in "self-supply" groundwater systems in sub-Saharan Africa and is particularly appropriate to link with low-cost shallow groundwater sources.

  16. Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS): Formation of oxidation products and effect of bicarbonate.

    PubMed

    Yang, Yi; Lu, Xinglin; Jiang, Jin; Ma, Jun; Liu, Guanqi; Cao, Ying; Liu, Weili; Li, Juan; Pang, Suyan; Kong, Xiujuan; Luo, Congwei

    2017-07-01

    The frequent detection of sulfamethoxazole (SMX) in wastewater and surface waters gives rise of concerns about their ecotoxicological effects and potential risks to induce antibacterial resistant genes. UV/hydrogen peroxide (UV/H 2 O 2 ) and UV/persulfate (UV/PDS) advanced oxidation processes have been demonstrated to be effective for the elimination of SMX, but there is still a need for a deeper understanding of product formations. In this study, we identified and compared the transformation products of SMX in UV, UV/H 2 O 2 and UV/PDS processes. Because of the electrophilic nature of SO 4 - , the second-order rate constant for the reaction of sulfate radical (SO 4 - ) with the anionic form of SMX was higher than that with the neutral form, while hydroxyl radical (OH) exhibited comparable reactivity to both forms. The direct photolysis of SMX predominately occurred through cleavage of the NS bond, rearrangement of the isoxazole ring, and hydroxylation mechanisms. Hydroxylation was the dominant pathway for the reaction of OH with SMX. SO 4 - favored attack on NH 2 group of SMX to generate a nitro derivative and dimeric products. The presence of bicarbonate in UV/H 2 O 2 inhibited the formation of hydroxylated products, but promoted the formation of the nitro derivative and the dimeric products. In UV/PDS, bicarbonate increased the formation of the nitro derivative and the dimeric products, but decreased the formation of the hydroxylated dimeric products. The different effect of bicarbonate on transformation products in UV/H 2 O 2 vs. UV/PDS suggested that carbonate radical (CO 3 - ) oxidized SMX through the electron transfer mechanism similar to SO 4 - but with less oxidation capacity. Additionally, SO 4 - and CO 3 - exhibited higher reactivity to the oxazole ring than the isoxazole ring of SMX. Ecotoxicity of transformation products was estimated by ECOSAR program based on the quantitative structure-activity relationship analysis as well as by experiments using

  17. The World Space Observatory Ultraviolet (WSO-UV), as a bridge to future UV astronomy

    NASA Astrophysics Data System (ADS)

    Shustov, B.; Gómez de Castro, A. I.; Sachkov, M.; Vallejo, J. C.; Marcos-Arenal, P.; Kanev, E.; Savanov, I.; Shugarov, A.; Sichevskii, S.

    2018-04-01

    Ultraviolet (UV) astronomy is a vital branch of space astronomy. Many dozens of short-term UV-experiments in space, as well as long-term observatories, have brought a very important knowledge on the physics and chemistry of the Universe during the last decades. Unfortunately, no large UV-observatories are planned to be launched by most of space agencies in the coming 10-15 years. Conversely, the large UVOIR observatories of the future will appear not earlier than in 2030s. This paper briefly describes the projects that have been proposed by various groups. We conclude that the World Space Observatory-Ultraviolet (WSO-UV) will be the only 2-m class UV telescope with capabilities similar to those of the HST for the next decade. The WSO-UV has been described in detail in previous publications, and this paper updates the main characteristics of its instruments and the current state of the whole project. It also addresses the major science topics that have been included in the core program of the WSO-UV, making this core program very relevant to the current state of the UV-astronomy. Finally, we also present here the ground segment architecture that will implement this program.

  18. Simulation and comparative study on the oxidation kinetics of atrazine by UV/H₂O₂, UV/HSO₅⁻ and UV/S₂O₈²⁻.

    PubMed

    Luo, Congwei; Ma, Jun; Jiang, Jin; Liu, Yongze; Song, Yang; Yang, Yi; Guan, Yinghong; Wu, Daoji

    2015-09-01

    This study comparatively investigated atrazine (ATZ) degradation by irradiation at the wavelength of 254 nm in the presence of peroxides including hydrogen peroxide (H2O2), peroxymonosulfate (HSO5(-)), and persulfate (S2O8(2-)) at various initial ATZ concentrations and oxidant dosages. The effects of water matrix, such as carbonate/bicarbonate (HCO3(-)/CO3(2-)), chloride ions (Cl(-)), and natural organic matter (NOM), were evaluated on these three advanced oxidation processes. A simple steady-state kinetic model was developed based on the initial rates of ATZ destruction, which could well describe the apparent pseudo-first-order rate constants (k(app), s(-1)) of ATZ degradation in these three processes. The specific roles of reactive species (i.e., HO·, SO4(-·), CO3(-·), and Cl2(-·)) under various experimental conditions were quantitatively evaluated based on their steady-state concentrations obtained from this model. Modeling results showed that the steady-state concentrations of HO· and SO4(-·) decreased with the increase of CO3(2-)/HCO3(-) concentration, and the relative contribution of HO· to ATZ degradation significantly decreased in UV/H2O2 and UV/HSO5(-) systems. On the other hand, the scavenging effect of HCO3(-)/CO3(2-) on the relative contribution of SO4(-·) to ATZ degradation was lower than that on HO·. The presence of Cl(-) (0.5-10 mM) significantly scavenged SO4(-·) but had slightly scavenging effect on HO· at the present experimental pH, resulting in greater decrease of k(app) in the UV/S2O8(2-) than UV/H2O2 and UV/HSO5(-) systems. Higher levels of Cl2(-·) were generated in the UV/S2O8(2-) than those in the UV/H2O2 and UV/HSO5(-) systems at the same Cl(-) concentrations. NOM significantly decreased k(app) due to its effects of competitive UV absorption and radical scavenging with the latter one being dominant. These results improve the understanding of the effects of water constituents for ATZ degradation in the UV-based oxidation

  19. 27. Pump Room interiorDrainage pump motor control center with main ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. Pump Room interior-Drainage pump motor control center with main valve control panel at right. - Hunters Point Naval Shipyard, Drydock No. 4, East terminus of Palou Avenue, San Francisco, San Francisco County, CA

  20. The optimal UV exposure time for vitamin D3 synthesis and erythema estimated by UV observations in Korea

    NASA Astrophysics Data System (ADS)

    Lee, Y. G.; Koo, J. H.

    2016-12-01

    Solar UV radiation in a wavelength range between 280 to 400 nm has both positive and negative influences on human body. Surface UV radiation is the main natural source of vitamin D, providing the promotion of bone and musculoskeletal health and reducing the risk of a number of cancers and other medical conditions. However, overexposure to surface UV radiation is significantly related with the majority of skin cancer, in addition other negative health effects such as sunburn, skin aging, and some forms of eye cataracts. Therefore, it is important to estimate the optimal UV exposure time, representing a balance between reducing negative health effects and maximizing sufficient vitamin D production. Previous studies calculated erythemal UV and vitamin-D UV from the measured and modelled spectral irradiances, respectively, by weighting CIE Erythema and Vitamin D3 generation functions (Kazantzidis et al., 2009; Fioletov et al., 2010). In particular, McKenzie et al. (2009) suggested the algorithm to estimate vitamin-D production UV from erythemal UV (or UV index) and determined the optimum conditions of UV exposure based on skin type Ⅱ according to the Fitzpatrick (1988). Recently, there are various demands for risks and benefits of surface UV radiation on public health over Korea, thus it is necessary to estimate optimal UV exposure time suitable to skin type of East Asians. This study examined the relationship between erythemally weighted UV (UVEry) and vitamin D weighted UV (UVVitD) from spectral UV measurements during 2006-2010. The temporal variations of the ratio (UVVitD/UVEry) were also analyzed and the ratio as a function of UV index was applied to the broadband UV measured by UV-Biometer at 6 sites in Korea Thus, the optimal UV exposure time for vitamin D3 synthesis and erythema was estimated for diurnal, seasonal, and annual scales over Korea. In summer with high surface UV radiation, short exposure time leaded to sufficient vitamin D and erythema and vice

  1. Rotary magnetic heat pump

    DOEpatents

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  2. 123. UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751). PUMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    123. UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751). PUMP ON LEFT; HYDRAULIC CONTROL PANEL FOR UMBILICAL MAST AND TRENCH DOORS IN CENTER OF ROOM, FACING WEST. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  3. Satellite Propellant Pump Research

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Veres, Joseph P.; Hah, Chunill; Nerone, Anthony L.; Cunningham, Cameron C.; Kraft, Thomas G.; Tavernelli, Paul F.; Fraser, Bryan

    2005-01-01

    NASA Glenn initiated a satellite propellant pump technology demonstration program. The goal was to demonstrate the technologies for a 60 percent efficient pump at 1 gpm flow rate and 500 psia pressure rise. The pump design and analysis used the in-house developed computer codes named PUMPA and HPUMP3D. The requirements lead to a 4-stage impeller type pump design with a tip diameter of 0.54 inches and a rotational speed of 57,000 rpm. Analyses indicated that flow cavitation was not a problem in the design. Since the flow was incompressible, the stages were identical. Only the 2-stage pump was designed, fabricated, assembled, and tested for demonstration. Water was selected as the surrogate fluid for hydrazine in this program. Complete mechanical design including stress and dynamic analyses were conducted. The pump was driven by an electric motor directly coupled to the impellers. Runs up to 57,000 rpm were conducted, where a pressure rise of 200 psia at a flow rate of 0.8 gpm was measured to validate the design effort.

  4. 49 CFR 195.262 - Pumping equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... PIPELINE Construction § 195.262 Pumping equipment. (a) Adequate ventilation must be provided in pump... provided in each pump station: (1) Safety devices that prevent overpressuring of pumping equipment..., pumping equipment must be installed on property that is under the control of the operator and at least 15...

  5. 49 CFR 195.262 - Pumping equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... PIPELINE Construction § 195.262 Pumping equipment. (a) Adequate ventilation must be provided in pump... provided in each pump station: (1) Safety devices that prevent overpressuring of pumping equipment..., pumping equipment must be installed on property that is under the control of the operator and at least 15...

  6. 49 CFR 195.262 - Pumping equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PIPELINE Construction § 195.262 Pumping equipment. (a) Adequate ventilation must be provided in pump... provided in each pump station: (1) Safety devices that prevent overpressuring of pumping equipment..., pumping equipment must be installed on property that is under the control of the operator and at least 15...

  7. 49 CFR 195.262 - Pumping equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... PIPELINE Construction § 195.262 Pumping equipment. (a) Adequate ventilation must be provided in pump... provided in each pump station: (1) Safety devices that prevent overpressuring of pumping equipment..., pumping equipment must be installed on property that is under the control of the operator and at least 15...

  8. TEMIS UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Zempila, Melina-Maria; van Geffen, Jos H. G. M.; Taylor, Michael; Fountoulakis, Ilias; Koukouli, Maria-Elissavet; van Weele, Michiel; van der A, Ronald J.; Bais, Alkiviadis; Meleti, Charikleia; Balis, Dimitrios

    2017-06-01

    This study aims to cross-validate ground-based and satellite-based models of three photobiological UV effective dose products: the Commission Internationale de l'Éclairage (CIE) erythemal UV, the production of vitamin D in the skin, and DNA damage, using high-temporal-resolution surface-based measurements of solar UV spectral irradiances from a synergy of instruments and models. The satellite-based Tropospheric Emission Monitoring Internet Service (TEMIS; version 1.4) UV daily dose data products were evaluated over the period 2009 to 2014 with ground-based data from a Norsk Institutt for Luftforskning (NILU)-UV multifilter radiometer located at the northern midlatitude super-site of the Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki (LAP/AUTh), in Greece. For the NILU-UV effective dose rates retrieval algorithm, a neural network (NN) was trained to learn the nonlinear functional relation between NILU-UV irradiances and collocated Brewer-based photobiological effective dose products. Then the algorithm was subjected to sensitivity analysis and validation. The correlation of the NN estimates with target outputs was high (r = 0. 988 to 0.990) and with a very low bias (0.000 to 0.011 in absolute units) proving the robustness of the NN algorithm. For further evaluation of the NILU NN-derived products, retrievals of the vitamin D and DNA-damage effective doses from a collocated Yankee Environmental Systems (YES) UVB-1 pyranometer were used. For cloud-free days, differences in the derived UV doses are better than 2 % for all UV dose products, revealing the reference quality of the ground-based UV doses at Thessaloniki from the NILU-UV NN retrievals. The TEMIS UV doses used in this study are derived from ozone measurements by the SCIAMACHY/Envisat and GOME2/MetOp-A satellite instruments, over the European domain in combination with SEVIRI/Meteosat-based diurnal cycle of the cloud cover fraction per 0. 5° × 0. 5° (lat × long) grid cells. TEMIS

  9. Development and Optimized Design of Propeller Pump System & Structure with VFD in Low-head Pumping Station

    NASA Astrophysics Data System (ADS)

    Rentian, Zhang; Honggeng, Zhu; Arnold, Jaap; Linbi, Yao

    2010-06-01

    Compared with vertical-installed pumps, the propeller (bulb tubular) pump systems can achieve higher hydraulic efficiencies, which are particularly suitable for low-head pumping stations. More than four propeller pumping stations are being, or will be built in the first stage of the S-to-N Water Diversion Project in China, diverting water from Yangtze River to the northern part of China to alleviate water-shortage problems and develop the economy. New structures of propeller pump have been developed for specified pumping stations in Jiangsu and Shandong Provinces respectively and Variable Frequency Drives (VFDs) are used in those pumping stations to regulate operating conditions. Based on the Navier-Stokes equations and the standard k-e turbulent model, numerical simulations of the flow field and performance prediction in the propeller pump system were conducted on the platform of commercial software CFX by using the SIMPLEC algorithm. Through optimal design of bulb dimensions and diffuser channel shape, the hydraulic system efficiency has improved evidently. Furthermore, the structures of propeller pumps have been optimized to for the introduction of conventional as well as permanent magnet motors. In order to improve the hydraulic efficiency of pumping systems, both the pump discharge and the motor diameter were optimized respectively. If a conventional motor is used, the diameter of the pump casing has to be increased to accommodate the motor installed inside. If using a permanent magnet motor, the diameter of motor casing can be decreased effectively without decreasing its output power, thus the cross-sectional area is enlarged and the velocity of flowing water decreased favorably to reduce hydraulic loss of discharge channel and thereby raising the pumping system efficiency. Witness model tests were conducted after numerical optimization on specific propeller pump systems, indicating that the model system hydraulic efficiencies can be improved by 0.5%˜3.7% in

  10. Photostability of cosmetic UV filters on mammalian skin under UV exposure.

    PubMed

    Stiefel, Constanze; Schwack, Wolfgang; Nguyen, Yen-Thi Hai

    2015-01-01

    Previous studies showed that the common UV filter substances benzophenone-3 (BP-3), butyl methoxydibenzoylmethane (BM-DBM), octocrylene (OCR), ethylhexyl methoxycinnamate (EHMC), ethylhexyl salicylate (EHS) and ethylhexyl triazone (EHT) were able to react with amino side chains of different proteins in vitro. To transfer the results to mammalian skin conditions, sunscreen products were applied on both prepared fresh porcine skin and glass plates, followed by UV irradiation and the determination of depletion of the respective UV filters. Significantly lower recoveries of the UV filters extracted from skin samples than from glass plates indicated the additional reaction of the UV filters with skin constituents, when proteins will be the most important reactants. Among the products tested, BP-3 showed the greatest differences in recoveries between glass and skin samples of about 13% and 24% after 2 and 4 h of irradiation, respectively, followed by EHS > BM-DBM > OCR > EHMC > EHT. The obtained results raise the question, whether the common in vitro evaluations of sunscreens, using inert substrate materials like roughened quartz or polymethyl methacrylate (PMMA) plates are really suitable to fully replace in vivo methods, as they cannot include skin-typical reactions. © 2014 The American Society of Photobiology.

  11. Electroosmotic pumps for microflow analysis

    PubMed Central

    Wang, Xiayan; Wang, Shili; Gendhar, Brina; Cheng, Chang; Byun, Chang Kyu; Li, Guanbin; Zhao, Meiping; Liu, Shaorong

    2009-01-01

    With rapid development in microflow analysis, electroosmotic pumps are receiving increasing attention. Compared to other micropumps, electroosmotic pumps have several unique features. For example, they are bi-directional, can generate constant and pulse-free flows with flow rates well suited to microanalytical systems, and can be readily integrated with lab-on-chip devices. The magnitude and the direction of flow of an electroosmotic pump can be changed instantly. In addition, electroosmotic pumps have no moving parts. In this article, we discuss common features, introduce fabrication technologies and highlight applications of electroosmotic pumps. PMID:20047021

  12. Magnetic Pumping as a Source of Particle Heating and Power-law Distributions in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Lichko, E.; Egedal, J.; Daughton, W.; Kasper, J.

    2017-12-01

    Based on the rate of expansion of the solar wind, the plasma should cool rapidly as a function of distance to the Sun. Observations show this is not the case. In this work, a magnetic pumping model is developed as a possible explanation for the heating and the generation of power-law distribution functions observed in the solar wind plasma. Most previous studies in this area focus on the role that the dissipation of turbulent energy on microscopic kinetic scales plays in the overall heating of the plasma. However, with magnetic pumping, particles are energized by the largest-scale turbulent fluctuations, thus bypassing the energy cascade. In contrast to other models, we include the pressure anisotropy term, providing a channel for the large-scale fluctuations to heat the plasma directly. A complete set of coupled differential equations describing the evolution, and energization, of the distribution function are derived, as well as an approximate closed-form solution. Numerical simulations using the VPIC kinetic code are applied to verify the model’s analytical predictions. The results of the model for realistic solar wind scenario are computed, where thermal streaming of particles are important for generating a phase shift between the magnetic perturbations and the pressure anisotropy. In turn, averaged over a pump cycle, the phase shift permits mechanical work to be converted directly to heat in the plasma. The results of this scenario show that magnetic pumping may account for a significant portion of the solar wind energization.

  13. The UV Sensor Onboard the Mars Science Laboratory Mission: Correction and Generation of UV Fluxes

    NASA Astrophysics Data System (ADS)

    Vicente-Retortillo, Á.; Martinez, G.; Renno, N. O.; Lemmon, M. T.; Gomez-Elvira, J.

    2017-12-01

    The Rover Environmental Monitoring Station UV sensor (UVS) onboard the Mars Science Laboratory mission has completed more than 1750 sols of measurements, providing an unprecedented coverage ranging from diurnal to interannual times scales [1,2]. The UVS is comprised of six photodiodes to measure the UV flux in the ranges 200-380, 320-380, 280-320, 200-280, 230-290 and 300-350 nm [3]. UV fluxes in units of W/m2 can be found in the NASA Planetary Data System (PDS). However, dust deposition on the UVS and a non-physical discontinuity in the calibration functions when the solar zenith angle is above 30º cause errors in these fluxes that increase with time. We have developed a technique to correct UV fluxes from the effects of dust degradation and inconsistencies in the angular response of the UVS. The photodiode output currents (available in the PDS as lower-level TELRDR products), ancillary data records (available in the PDS as ADR products) and dust opacity values derived from Mastcam observations are used for performing the corrections. The corrections have been applied to the UVA band (320-380 nm) for the first 1000 sols of the mission, providing excellent results [4]. We plan to correct the UV fluxes on each of the six UVS bands and to make these results available in the PDS. Data products generated by this study will allow comparisons of the UV radiation environment at Gale crater with that at the locations of the future missions ExoMars 2020 and Mars 2020, as well as the assessment of the potential survivability of biological contaminants brought to Mars from Earth. References: [1] Smith, M. D., et al. (2016), Aerosol optical depth as observed by the Mars Science Laboratory REMS UV photodiodes, Icarus, 280, 234-248. [2] Vicente-Retortillo, Á., et al. (2017), Determination of dust aerosol particle size at Gale Crater using REMS UVS and Mastcam measurements, Geophys. Res. Lett., 44, 3502-3508. [3] Gómez-Elvira, J., et al. (2012), REMS: The environmental sensor

  14. Engine lubrication circuit including two pumps

    DOEpatents

    Lane, William H.

    2006-10-03

    A lubrication pump coupled to the engine is sized such that the it can supply the engine with a predetermined flow volume as soon as the engine reaches a peak torque engine speed. In engines that operate predominately at speeds above the peak torque engine speed, the lubrication pump is often producing lubrication fluid in excess of the predetermined flow volume that is bypassed back to a lubrication fluid source. This arguably results in wasted power. In order to more efficiently lubricate an engine, a lubrication circuit includes a lubrication pump and a variable delivery pump. The lubrication pump is operably coupled to the engine, and the variable delivery pump is in communication with a pump output controller that is operable to vary a lubrication fluid output from the variable delivery pump as a function of at least one of engine speed and lubrication flow volume or system pressure. Thus, the lubrication pump can be sized to produce the predetermined flow volume at a speed range at which the engine predominately operates while the variable delivery pump can supplement lubrication fluid delivery from the lubrication pump at engine speeds below the predominant engine speed range.

  15. Pump Operation Workshop. Third Edition (Revised).

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    Presented is the learner's manual for a five-day workshop designed to supplement the skills of water and wastewater treatment personnel. The program consists of lecture-discussions and hands-on sessions covering the operation of water and wastewater pumps. Areas addressed include: material pumped, pump systems, types of pumps, pump controls,…

  16. Radiation Effects on DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Zhang, De-Xin; AbdulMazid, M. D.; Attia, John O.; Kankam, Mark D. (Technical Monitor)

    2001-01-01

    In this work, several DC-DC converters were designed and built. The converters are Buck Buck-Boost, Cuk, Flyback, and full-bridge zero-voltage switched. The total ionizing dose radiation and single event effects on the converters were investigated. The experimental results for the TID effects tests show that the voltages of the Buck Buck-Boost, Cuk, and Flyback converters increase as total dose increased when using power MOSFET IRF250 as a switching transistor. The change in output voltage with total dose is highest for the Buck converter and the lowest for Flyback converter. The trend of increase in output voltages with total dose in the present work agrees with those of the literature. The trends of the experimental results also agree with those obtained from PSPICE simulation. For the full-bridge zero-voltage switch converter, it was observed that the dc-dc converter with IRF250 power MOSFET did not show a significant change of output voltage with total dose. In addition, for the dc-dc converter with FSF254R4 radiation-hardened power MOSFET, the output voltage did not change significantly with total dose. The experimental results were confirmed by PSPICE simulation that showed that FB-ZVS converter with IRF250 power MOSFET's was not affected with the increase in total ionizing dose. Single Event Effects (SEE) radiation tests were performed on FB-ZVS converters. It was observed that the FB-ZVS converter with the IRF250 power MOSFET, when the device was irradiated with Krypton ion with ion-energy of 150 MeV and LET of 41.3 MeV-square cm/mg, the output voltage increased with the increase in fluence. However, for Krypton with ion-energy of 600 MeV and LET of 33.65 MeV-square cm/mg, and two out of four transistors of the converter were permanently damaged. The dc-dc converter with FSF254R4 radiation hardened power MOSFET's did not show significant change at the output voltage with fluence while being irradiated by Krypton with ion energy of 1.20 GeV and LET of 25

  17. Radiation tolerant power converter controls

    NASA Astrophysics Data System (ADS)

    Todd, B.; Dinius, A.; King, Q.; Uznanski, S.

    2012-11-01

    The Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) is the world's most powerful particle collider. The LHC has several thousand magnets, both warm and super-conducting, which are supplied with current by power converters. Each converter is controlled by a purpose-built electronic module called a Function Generator Controller (FGC). The FGC allows remote control of the power converter and forms the central part of a closed-loop control system where the power converter voltage is set, based on the converter output current and magnet-circuit characteristics. Some power converters and FGCs are located in areas which are exposed to beam-induced radiation. There are numerous radiation induced effects, some of which lead to a loss of control of the power converter, having a direct impact upon the accelerator's availability. Following the first long shut down (LS1), the LHC will be able to run with higher intensity beams and higher beam energy. This is expected to lead to significantly increased radiation induced effects in materials close to the accelerator, including the FGC. Recent radiation tests indicate that the current FGC would not be sufficiently reliable. A so-called FGClite is being designed to work reliably in the radiation environment in the post-LS1 era. This paper outlines the concepts of power converter controls for machines such as the LHC, introduces the risks related to radiation and a radiation tolerant project flow. The FGClite is then described, with its key concepts and challenges: aiming for high reliability in a radiation field.

  18. Simultaneous hydrogenation and UV-photolysis experiments of NO in CO-rich interstellar ice analogues; linking HNCO, OCN-, NH2CHO, and NH2OH

    NASA Astrophysics Data System (ADS)

    Fedoseev, G.; Chuang, K.-J.; van Dishoeck, E. F.; Ioppolo, S.; Linnartz, H.

    2016-08-01

    The laboratory work presented here simulates the chemistry on icy dust grains as typical for the `CO freeze-out stage' in dark molecular clouds. It differs from previous studies in that solid-state hydrogenation and vacuum UV photoprocessing are applied simultaneously to co-depositing molecules. In parallel, the reactions at play are described for fully characterized laboratory conditions. The focus is on the formation of molecules containing both carbon and nitrogen atoms, starting with NO in CO-, H2CO-, and CH3OH-rich ices at 13 K. The experiments yield three important conclusions. (1) Without UV processing hydroxylamine (NH2OH) is formed, as reported previously. (2) With UV processing (energetic) NH2 is formed through photodissociation of NH2OH. This radical is key in the formation of species with an N-C bond. (3) The formation of three N-C bearing species, HNCO, OCN-, and NH2CHO, is observed. The experiments put a clear chemical link between these species; OCN- is found to be a direct derivative of HNCO and the latter is shown to have the same precursor as formamide (NH2CHO). Moreover, the addition of VUV competing channels decreases the amount of NO molecules converted into NH2OH by at least one order of magnitude. Consequently, this decrease in NH2OH formation yield directly influences the amount of NO molecules that can be converted into HNCO, OCN-, and NH2CHO.

  19. Off-pump versus on-pump coronary artery revascularization: effects on pulmonary function.

    PubMed

    e Silva, Ana M R P; Saad, Roberto; Stirbulov, Roberto; Rivetti, Luiz A

    2010-07-01

    Many studies have shown important changes in lung function tests after coronary artery surgeries. It is controversial if off-pump surgery can give a better and shorter recovery than the on-pump. A prospective study was conducted on 42 patients submitted to coronary artery surgery and divided into two groups: 21 off-pump using intraluminal shunt (G (I)) and 21 on-pump (G (II)), matched by the anatomical location of the coronary arteries lesions. All patients had spirometric evaluation, blood gas measurements and alveolo-arterial oxygen gradient (A-aDO(2)), at the fourth and 10th postoperative days (PO(4) and PO(10)). Preoperatively, G(I) and G(II) had similar results (P>0.372). Spirometry showed decreases at PO(4) and remained decreased until PO(10) for both groups, with significant differences between the groups. The blood gas measurements showed reduction in arterial oxygen pressure (PaO(2)) and carbon dioxide pressure (PaCO(2)), while there was an increase in A-aDO(2) at PO(4) and PO(10) in both groups. The results suggest that different changes occur in pulmonary function when the surgery is performed with or without cardiopulmonary bypass. The off-pump patients showed significantly greater improvement than the on-pump group.

  20. Future directions in 980-nm pump lasers: submarine deployment to low-cost watt-class terrestrial pumps

    NASA Astrophysics Data System (ADS)

    Gulgazov, Vadim N.; Jackson, Gordon S.; Lascola, Kevin M.; Major, Jo S.; Parke, Ross; Richard, Tim; Rossin, Victor V.; Zhang, Kai

    1999-09-01

    The demands of global bandwidth and distribution are rising rapidly as Internet usage grows. This fundamentally means that more photons are flowing within optical cables. While transmitting sources launches some optical power, the majority of the optical power that is present within modern telecommunication systems originates from optical amplifiers. In addition, modern optical amplifiers offer flat optical gain over broad wavelength bands, thus making possible dense wavelength de-multiplexing (DWDM) systems. Optical amplifier performance, and by extension the performance of the laser pumps that drive them, is central to the future growth of both optical transmission and distribution systems. Erbium-doped amplifiers currently dominate optical amplifier usage. These amplifiers absorb pump light at 980 nm and/or 1480 nm, and achieve gain at wavelengths around 1550 nm. 980 nm pumps achieve better noise figures and are therefore used for the amplification of small signals. Due to the quantum defect, 1480 nm lasers deliver more signal photon per incident photon. In addition, 1480 nm lasers are less expensive than 980 nm lasers. Thus, 1480 nm pump lasers are used for amplification in situations where noise is not critical. The combination of these traits leads to the situation where many amplifiers contain 980 nm lasers to pump the input section of the Er- doped fiber with 1480 nm lasers being used to pump the latter section of Er fiber. This can be thought of as using 980 nm lasers to power an optical pre-amplifier with the power amplification function being pump with 1480 nm radiation. This paper will focus on 980 nm pump lasers and the impact that advances in 980 nm pump technology will have on optical amplification systems. Currently, 980 nm technology is rapidly advancing in two areas, power and reliability. Improving reliability is becoming increasingly important as amplifiers move towards employing more pump lasers and using these pump lasers without redundancy

  1. Compact, integrable, and long life time Raman multiline UV-Vis source based on hypocycloid core Kagome HC-PCF

    NASA Astrophysics Data System (ADS)

    Chafer, M.; Lekiefs, Q.; Gorse, A.; Beaudou, B.; Debord, B.; Gérôme, F.; Benabid, F.

    2017-02-01

    Raman-gas filled HC-PCF has proved to be an outstanding Raman-convertor, as illustrated by the generation of more than 5 octaves wide Raman comb using a hydrogen-filled Kagome HC-PCF pumped with high power picosecond-laser, or the generation of multiline Raman-source in the UV-Vis using a very compact system pumped with micro-chip laser. Whilst these demonstrations are promising, a principal challenge for the industrialization of such a Raman source is its lifetime as the H2 diffusion through silica is high enough to leak out from the fiber within only a few months. Here, we report on a HC-PCF based Raman multiline source with a very long life-span. The system consists of hydrogen filled ultra-low loss HC-PCF contained in highly sealed box, coined CombBox, and pumped with a 532 nm micro-chip laser. This combination is a turnkey multiline Raman-source with a "shoe box" size. The CombBox is a robust and compact component that can be integrated and pumped with any common pulsed laser. When pumped with a 32 mW average power and 1 ns frequency-doubled Nd:Yag microchip laser, this Raman-source generates 24 lines spanning from 355 to 745 nm, and a peak power density per line of 260 mW/nm for the strongest lines. Both the output power and the spectrum remained constant over its monitoring duration of more than six months. The spectrum of this multiline laser superimposes with no less than 17 absorption peaks of fluorescent dyes from the Alexa Fluor family used as biological markers.

  2. Risk Factors of On-Pump Conversion during Off-Pump Coronary Artery Bypass Graft

    PubMed Central

    Yoon, Sung Sil; Bang, Jung Hee; Jeong, Sang Seok; Jeong, Jae Hwa; Woo, Jong Soo

    2017-01-01

    Background Off-pump coronary artery bypass grafting (OPCABG) procedures can avoid the complications of an on-pump bypass. However, some cases unexpectedly require conversion to cardiopulmonary bypass during OPCABG. The risk factors associated with a sudden need for cardiopulmonary bypass were analyzed. Methods This retrospective study included 283 subjects scheduled for OPCABG from 2001 to 2010. These were divided into an OPCABG group and an on-pump conversion group. Preoperative, operative, and postoperative variables were compared between the 2 groups. Results Of the 283 patients scheduled for OPCABG, 47 (16%) were switched to on-pump coronary artery bypass grafting (CABG). The mortality of the both the OPCABG and on-pump conversion groups was not significantly different. The major risk factors for conversion to on-pump CABG were congestive heart failure (CHF) (odds ratio [OR], 3.5; p=0.029), ejection fraction (EF) <35% (OR, 4.4; p=0.012), and preoperative beta-blocker (BB) administration (OR, 0.3; p=0.007). The use of intraoperative (p=0.007) and postoperative (p=0.021) inotropics was significantly higher in the conversion group. The amount of postoperative drainage (p<0.001) and transfusion (p<0.001) also was significantly higher in the conversion group. There were no significant differences in stroke or cardiovascular complications between the groups over the course of short-term and long-term follow-up. Conclusion Patients who undergo OPCABG and have CHF or a lower EF (<35%) are more likely to undergo on-pump conversion, while preoperative BB administration could help prevent conversions from OPCABG to on-pump CABG. PMID:29124027

  3. Diode-laser-pump module with integrated signal ports for pumping amplifying fibers and method

    DOEpatents

    Savage-Leuchs,; Matthias, P [Woodinville, WA

    2009-05-26

    Apparatus and method for collimating pump light of a first wavelength from laser diode(s) into a collimated beam within an enclosure having first and second optical ports, directing pump light from the collimated beam to the first port; and directing signal light inside the enclosure between the first and second port. The signal and pump wavelengths are different. The enclosure provides a pump block having a first port that emits pump light to a gain fiber outside the enclosure and that also passes signal light either into or out of the enclosure, and another port that passes signal light either out of or into the enclosure. Some embodiments use a dichroic mirror to direct pump light to the first port and direct signal light between the first and second ports. Some embodiments include a wavelength-conversion device to change the wavelength of at least some of the signal light.

  4. Benefits of the rotary diaphragm pump.

    PubMed

    Borstell, D

    2005-03-01

    The huge variety of applications in the medical field represents a challenge for the design of miniature pumps. There are well-known designs such as piston pumps, eccenter diaphragm pumps and peristaltic pumps. There are lesser-known types such as the rotary diaphragm pump, the subject of this article. Its design features, variants, and advantages and disadvantages are examined.

  5. 46 CFR 64.93 - Pump controls.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Pump controls. 64.93 Section 64.93 Shipping COAST GUARD... SYSTEMS Cargo Handling System § 64.93 Pump controls. (a) A pressure gauge must be installed— (1) On the pump discharge; (2) Near the pump controls; and (3) Visible to the operator. (b) A pump must have a...

  6. 46 CFR 64.93 - Pump controls.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Pump controls. 64.93 Section 64.93 Shipping COAST GUARD... SYSTEMS Cargo Handling System § 64.93 Pump controls. (a) A pressure gauge must be installed— (1) On the pump discharge; (2) Near the pump controls; and (3) Visible to the operator. (b) A pump must have a...

  7. 46 CFR 64.93 - Pump controls.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Pump controls. 64.93 Section 64.93 Shipping COAST GUARD... SYSTEMS Cargo Handling System § 64.93 Pump controls. (a) A pressure gauge must be installed— (1) On the pump discharge; (2) Near the pump controls; and (3) Visible to the operator. (b) A pump must have a...

  8. 46 CFR 64.93 - Pump controls.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Pump controls. 64.93 Section 64.93 Shipping COAST GUARD... SYSTEMS Cargo Handling System § 64.93 Pump controls. (a) A pressure gauge must be installed— (1) On the pump discharge; (2) Near the pump controls; and (3) Visible to the operator. (b) A pump must have a...

  9. 46 CFR 64.93 - Pump controls.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Pump controls. 64.93 Section 64.93 Shipping COAST GUARD... SYSTEMS Cargo Handling System § 64.93 Pump controls. (a) A pressure gauge must be installed— (1) On the pump discharge; (2) Near the pump controls; and (3) Visible to the operator. (b) A pump must have a...

  10. The Causes and Prevention Measures of Stuck Pump Phenomenon of Rod-pumped Well in CBM Field

    NASA Astrophysics Data System (ADS)

    Yonggui, Mei

    2018-02-01

    In the process of CBM field exploitation, in order to realize the drainage equipment to work continuous stably, the article pays attention to study and solve the stuck pump problem, and aim of reducing reservoir damage and lowing production costs. Through coal particles stuck pump experiment and sediment composition analysis, we find out five primary cause of stuck pump phenomenon: sand from coal seam, sediment from ground, iron corrosion, iron scrap caused by eccentric wear, coal cake. According to stuck pump mechanism, the article puts forward 8 measures to prevent stuck pump phenomenon, and the measures are focused on technology optimization, operation management and drainage process control. After 7 years production practice, the yearly stuck pump rate has dropped from 8.9% to 1.2%, and the pump inspection period has prolonged 2 times. The experiment result shows that pure coal particles cannot cause stuck pump, but sand, scrap iron, and iron corrosion are the primary cause of stuck pump. The article study and design the new pipe string structure that the bottom of the pipe string is open. This kind of pipe string applied the sedimentation terminal velocity theory to solve the stuck pump phenomenon, and it can be widely used in CBM drainage development.

  11. 303 nm continuous wave ultraviolet laser generated by intracavity frequency-doubling of diode-pumped Pr3+:LiYF4 laser

    NASA Astrophysics Data System (ADS)

    Zhu, Pengfei; Zhang, Chaomin; Zhu, Kun; Ping, Yunxia; Song, Pei; Sun, Xiaohui; Wang, Fuxin; Yao, Yi

    2018-03-01

    We demonstrate an efficient and compact ultraviolet laser at 303 nm generated by intracavity frequency doubling of a continuous wave (CW) laser diode-pumped Pr3+:YLiF4 laser at 607 nm. A cesium lithium borate (CLBO) crystal, cut for critical type I phase matching at room temperature, is used for second-harmonic generation (SHG) of the fundamental laser. By using an InGaN laser diode array emitting at 444.3 nm with a maximum incident power of 10 W, as high as 68 mW of CW output power at 303 nm is achieved. The output power stability in 4 h is better than 2.85%. To the best of our knowledge, this is high efficient UV laser generated by frequency doubling of an InGaN laser diode array pumped Pr3+:YLiF4 laser.

  12. Keeping Hearts Pumping

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A collaboration between NASA, Dr. Michael DeBakey, Dr. George Noon, and MicroMed Technology, Inc., resulted in a life-saving heart pump for patients awaiting heart transplants. The MicroMed DeBakey VAD functions as a "bridge to heart transplant" by pumping blood throughout the body to keep critically ill patients alive until a donor heart is available. Weighing less than 4 ounces and measuring 1 inch by 3 inches, the pump is approximately one-tenth the size of other currently marketed pulsatile VADs. This makes it less invasive and ideal for smaller adults and children. Because of the pump's small size, less than 5 percent of the patients implanted developed device-related infections. It can operate up to 8 hours on batteries, giving patients the mobility to do normal, everyday activities.The MicroMed DeBakey VAD is a registered trademark of MicroMed Technology, Inc.

  13. 100 J UV glass laser for dynamic compression research

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Fochs, S. F.; Bromage, J.; Broege, D.; Cuffney, R.; Currier, Z.; Dorrer, C.; Ehrich, B.; Engler, J.; Guardalben, M.; Kephalos, N.; Marozas, J.; Roides, R.; Zuegel, J.

    2017-02-01

    A frequency tripled, Nd:Glass laser has been constructed and installed at the Dynamic Compression Sector located at the Advanced Photon Source. This 100-J laser will be used to drive shocks in condensed matter which will then be interrogated by the facility x-ray beam. The laser is designed for reliable operation, utilizing proven designs for all major subsystems. A fiber front-end provides arbitrarily shaped pulses to the amplifier chain. A diode-pumped Nd:glass regenerative amplifier is followed by a four-pass, flashlamp- pumped rod amplifier. The regenerative amplifier produces up to 20 mJ with better than 1% RMS stability. The passively multiplexed four-pass amplifier produces up to 2 J. The final amplifier uses a 15-cm Nd:glass disk amplifier in a six-pass configuration. Over 200 J of infrared energy is produced by the disk amplifier. A KDP Type-II/Type-II frequency tripler configuration, utilizing a dual tripler, converts the 1053-nm laser output to a wavelength of 351 nm and the ultraviolet beam is image relayed to the target chamber. Output energy stability is better than 3%. Smoothing by Spectral Dispersion and polarization smoothing have been optimized to produce a highly uniform focal spot. A distributed phase plate and aspheric lens produce a farfield spot with a measured uniformity of 8.2% RMS. Custom control software collects all data and provides the operator an intuitive interface to operate and maintain the laser.

  14. Thermally Actuated Hydraulic Pumps

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  15. Lunar Base Heat Pump

    NASA Technical Reports Server (NTRS)

    Walker, D.; Fischbach, D.; Tetreault, R.

    1996-01-01

    The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.

  16. Rotary blood pump

    NASA Technical Reports Server (NTRS)

    Benkowski, Robert J. (Inventor); Kiris, Cetin (Inventor); Kwak, Dochan (Inventor); Rosenbaum, Bernard J. (Inventor); Bacak, James W. (Inventor); DeBakey, Michael E. (Inventor)

    1999-01-01

    A blood pump that comprises a pump housing having a blood flow path therethrough, a blood inlet, and a blood outlet; a stator mounted to the pump housing, the stator having a stator field winding for producing a stator magnetic field; a flow straightener located within the pump housing, and comprising a flow straightener hub and at least one flow straightener blade attached to the flow straightener hub; a rotor mounted within the pump housing for rotation in response to the stator magnetic field, the rotor comprising an inducer and an impeller; the inducer being located downstream of the flow straightener, and comprising an inducer hub and at least one inducer blade attached to the inducer hub; the impeller being located downstream of the inducer, and comprising an impeller hub and at least one impeller blade attached to the impeller hub; and preferably also comprising a diffuser downstream of the impeller, the diffuser comprising a diffuser hub and at least one diffuser blade. Blood flow stagnation and clot formation within the pump are minimized by, among other things, providing the inducer hub with a diameter greater than the diameter of the flow straightener hub; by optimizing the axial spacing between the flow straightener hub and the inducer hub, and between the impeller hub and the diffuser hub; by optimizing the inlet angle of the diffuser blades; and by providing fillets or curved transitions between the upstream end of the inducer hub and the shaft mounted therein, and between the impeller hub and the shaft mounted therein.

  17. Heat-Powered Pump for Liquid Metals

    NASA Technical Reports Server (NTRS)

    Campana, R. J.

    1986-01-01

    Proposed thermoelectromagnetic pump for liquid metal powered by waste heat; needs no battery, generator, or other external energy source. Pump turns part of heat in liquid metal into pumping energy. In combination with primary pump or on its own, thermoelectric pump circulates coolant between reactor and radiator. As long as there is decay heat to be removed, unit performs function.

  18. Advanced thermionic converter development

    NASA Technical Reports Server (NTRS)

    Huffman, F. N.; Lieb, D.; Briere, T. R.; Sommer, A. H.; Rufeh, F.

    1976-01-01

    Recent progress at Thermo Electron in developing advanced thermionic converters is summarized with particular attention paid to the development of electrodes, diodes, and triodes. It is found that one class of materials (ZnO, BaO and SrO) provides interesting cesiated work functions (1.3-1.4 eV) without additional oxygen. The second class of materials studied (rare earth oxides and hexaborides) gives cesiated/oxygenated work functions of less than 1.2 eV. Five techniques of oxygen addition to thermionic converters are discussed. Vapor deposited tungsten oxide collector diodes and the reflux converter are considered.

  19. Thermomechanical piston pump development

    NASA Technical Reports Server (NTRS)

    Sabelman, E. E.

    1971-01-01

    A thermally powered reciprocating pump has been devised to replace or augment an electric pump for the transport of temperature-control fluid on the Thermoelectric Outer Planet Spacecraft (TOPS). The thermally powered pump operates cyclically by extracting heat energy from the fluid by means of a vapor-pressure expansion system and by using the heat to perform the mechanical work of pumping. A feasibility test unit has been constructed to provide an output of 7 cu in during a 10- to 100-second cycle. It operates with a fluid input temperature of 200 to 300 F and a heat sink temperature of 0 to 30 F.

  20. Multi-stage internal gear/turbine fuel pump

    DOEpatents

    Maier, Eugen; Raney, Michael Raymond

    2004-07-06

    A multi-stage internal gear/turbine fuel pump for a vehicle includes a housing having an inlet and an outlet and a motor disposed in the housing. The multi-stage internal gear/turbine fuel pump also includes a shaft extending axially and disposed in the housing. The multi-stage internal gear/turbine fuel pump further includes a plurality of pumping modules disposed axially along the shaft. One of the pumping modules is a turbine pumping module and another of the pumping modules is a gerotor pumping module for rotation by the motor to pump fuel from the inlet to the outlet.

  1. The Austrian UV monitoring network

    NASA Astrophysics Data System (ADS)

    Blumthaler, Mario; Klotz, Barbara; Schwarzmann, Michael; Schreder, Josef

    2017-02-01

    The Austrian UV Monitoring network is operational since 1998 providing a large data set of erythemally weighted UV irradiance recorded with broadband UV biometer at 12 stations distributed all over Austria. In order to obtain high quality data all biometer are recalibrated once a year, the detectors are checked regularly for humidity and quality control is done routinely. The collected data are processed and then published on the website http://www.uv-index.at where the UV-Index of all measurement sites is presented in near real time together with a map of the distribution of the UV-Index over Austria. These UV-Index data together with measurements of global radiation and ozone levels from OMI are used to study long term trends for the stations of the monitoring network. Neither for all weather conditions nor for clear sky conditions is a statistically significant trend found for the UV-Index (with one exception) and for ozone. Furthermore, the radiation amplification factor (RAF) is determined experimentally from the power law correlation between UV-Index and ozone level for the site Innsbruck (577 m above sea level, 47.26°N, 11.38°E) for 19°solar elevation. A value of 0.91 ± 0.05 is found for the RAF for clear sky days with low ground albedo and a value of 1.03 ± 0.08 for days with high ground albedo (snow cover).

  2. UV-Induced cell death in plants.

    PubMed

    Nawkar, Ganesh M; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-14

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400-700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280-320 nm) and UV-A (320-390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD).

  3. Assessment of power step performances of variable speed pump-turbine unit by means of hydro-electrical system simulation

    NASA Astrophysics Data System (ADS)

    Béguin, A.; Nicolet, C.; Hell, J.; Moreira, C.

    2017-04-01

    The paper explores the improvement in ancillary services that variable speed technologies can provide for the case of an existing pumped storage power plant of 2x210 MVA which conversion from fixed speed to variable speed is investigated with a focus on the power step performances of the units. First two motor-generator variable speed technologies are introduced, namely the Doubly Fed Induction Machine (DFIM) and the Full Scale Frequency Converter (FSFC). Then a detailed numerical simulation model of the investigated power plant used to simulate power steps response and comprising the waterways, the pump-turbine unit, the motor-generator, the grid connection and the control systems is presented. Hydroelectric system time domain simulations are performed in order to determine the shortest response time achievable, taking into account the constraints from the maximum penstock pressure and from the rotational speed limits. It is shown that the maximum instantaneous power step response up and down depends on the hydro-mechanical characteristics of the pump-turbine unit and of the motor-generator speed limits. As a results, for the investigated test case, the FSFC solution offer the best power step response performances.

  4. Using CeSiC for UV spectrographs for the WSO/UV

    NASA Astrophysics Data System (ADS)

    Reutlinger, A.; Gál, C.; Brandt, C.; Haberler, P.; Zuknik, K.-H.; Sedlmaier, T.; Shustov, B.; Sachkov, M.; Moisheev, A.; Kappelmann, N.; Barnstedt, J.; Werner, K.

    2017-11-01

    The World Space Observatory Ultraviolet (WSO/UV) is a multi-national project lead by the Russian Federal Space Agency (Roscosmos) with the objective of high performance observations in the ultraviolet range. The 1.7 m WSO/UV telescope feeds UV spectrometers and UV imagers. The UV spectrometers comprise two high resolution Echelle spectrographs for the 100 - 170 nm and 170 - 300 nm wavelength range and a long slit spectrograph for the 100 - 300 nm band. All three spectrometers represent individual instruments that are assembled and aligned separately. In order to save mass while maintaining high stiffness, the instruments are combined to a monoblock. Cesic has been selected to reduce CTE related distortions of the instruments. In contrast to aluminium, the stable structure of Cesic is significantly less sensitive to thermal gradients. No further mechanism for focus correction with high functional, technical and operational complexity and dedicated System costs are necessary. Using Cesic also relaxes the thermal control requirements of +/-5°C, which represents a considerable cost driver for the S/C design. The WUVS instrument is currently studied in the context of a phase B2 study by Kayser-Threde GmbH including a Structural Thermal Model (STM) for verification of thermal and mechanical loads, stability due to thermal distortions and Cesic manufacturing feasibility.

  5. Impact on Vitamin D2, Vitamin D4 and Agaritine in Agaricus bisporus Mushrooms after Artificial and Natural Solar UV Light Exposure.

    PubMed

    Urbain, Paul; Valverde, Juan; Jakobsen, Jette

    2016-09-01

    Commercial mushroom production can expose mushrooms post-harvest to UV light for purposes of vitamin D2 enrichment by converting the naturally occurring provitamin D2 (ergosterol). The objectives of the present study were to artificially simulate solar UV-B doses occurring naturally in Central Europe and to investigate vitamin D2 and vitamin D4 production in sliced Agaricus bisporus (button mushrooms) and to analyse and compare the agaritine content of naturally and artificially UV-irradiated mushrooms. Agaritine was measured for safety aspects even though there is no rationale for a link between UV light exposure and agaritine content. The artificial UV-B dose of 0.53 J/cm(2) raised the vitamin D2 content to significantly (P < 0.001) higher levels of 67.1 ± 9.9 μg/g dry weight (DW) than sun exposure (3.9 ± 0.8 μg/g dry DW). We observed a positive correlation between vitamin D4 and vitamin D2 production (r(2) = 0.96, P < 0.001) after artificial UV irradiation, with vitamin D4 levels ranging from 0 to 20.9 μg/g DW. The agaritine content varied widely but remained within normal ranges in all samples. Irrespective of the irradiation source, agaritine dropped dramatically in conjunction with all UV-B doses both artificial and natural solar, probably due to its known instability. The biological action of vitamin D from UV-exposed mushrooms reflects the activity of these two major vitamin D analogues (D2, D4). Vitamin D4 should be analysed and agaritine disregarded in future studies of UV-exposed mushrooms.

  6. Antiradiation UV Vaccine: UV Radiation, Biological effects, lesions and medical management - immune-therapy and immune-protection.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Jones, Jeffrey; Maliev, Slava

    Key Words: Ultraviolet radiation,Standard Erythema Dose(SED), Minimal Erythema Dose(MED), Sun Burns, Solar Dermatitis, Sun Burned Disease, DNA Damage,Cell Damage, Antiradiation UV Vaccine, Immune-Prophylaxis of Sun Burned Diseases, Immune-Prophylaxis of Sun Burns, Immune-Therapy of Sun-Burned Disease and Sun Burns,Basal Cell Carcinoma (BCC), Squamous Cell Carcinoma (SCC), Toxic Epidermal Necrolysis(TEN). Introduction: High doses of UV generated by solar source and artificial sources create an exposure of mammals and other species which can lead to ultraviolet(UV)radiation- associated disease (including erythema, epilation, keratitis, etc.). UV radiation belongs to the non-ionizing part of the electromagnetic spectrum and ranges between 100 nm and 400 nm with 100 nm having been chosen arbitrarily as the boundary between non-ionizing and ionizing radiation, however EMR is a spectrum and UV can produce molecular ionization. UV radiation is conventionally categorized into 3 areas: UV-A (>315-400 nm),UV-B (>280-315 nm)and UV-C (>100-280 nm) [IARC,Working Group Reports,2005] An important consequence of stratospheric ozone depletion is the increased transmission of solar ultraviolet (UV)radiation to the Earth's lower atmosphere and surface. Stratospheric ozone levels have been falling, in certain areas, for the past several decades, so current surface ultraviolet-B (UV-B) radiation levels are thought to be close to their modern day maximum. [S.Madronich et al.1998] Overexposure of ultraviolet radiation a major cause of skin cancer including basal cell carcinoma (BCC), squamous cell carcinoma (SCC) { collectively referred to as “non-melanoma" skin cancer (NMSC) and melanoma as well, with skin cancers being the most common cancer in North America. [Armstrong et al. 1993, Gallagher et al. 2005] Methods and Experimental Design: Our experiments and testing of a novel UV “Antiradiation Vaccine” have employed a wide variety of laboratory animals which include : Chinchilla

  7. High pressure liquid gas pump

    NASA Technical Reports Server (NTRS)

    Acres, R. L.

    1972-01-01

    Design and development of two types of pumps for handling liquefied gases are discussed. One pump uses mechanical valve shift and other uses pneumatic valve shift. Illustrations of pumps are provided and detailed description of operation is included.

  8. Miniature Lightweight Ion Pump

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P.

    2010-01-01

    This design offers a larger surface area for pumping of active gases and reduces the mass of the pump by eliminating the additional vacuum enclosure. There are three main components to this ion pump: the cathode and anode pumping elements assembly, the vacuum enclosure (made completely of titanium and used as the cathode and maintained at ground potential) containing the assembly, and the external magnet. These components are generally put in a noble diode (or differential) configuration of the ion pump technology. In the present state of the art, there are two cathodes, one made of titanium and the other of tantalum. The anodes are made up of an array of stainless steel cylinders positioned between the two cathodes. All the elements of the pump are in a vacuum enclosure. After the reduction of pressure in this enclosure to a few microns, a voltage is applied between the cathode and the anode elements. Electrons generated by the ionization are accelerated toward the anodes that are confined in the anode space by the axial magnetic field. For the generation of the axial field along the anode elements, the magnet is designed in a C-configuration and is fabricated from rare earth magnetic materials (Nd-B-Fe or Sm-Co) possessing high energy product values, and the yoke is fabricated from the high permeability material (Hiperco-50A composed of Fe-Co-V). The electrons in this region collide with the gas molecules and generate their positive ions. These ions are accelerated into the cathode and eject cathode material (Ti). The neutral atoms deposit on the anode surfaces. Because of the chemical activity of Ti, the atoms combine with chemically active gas molecules (e.g. N2, O2, etc.) and remove them. New layers of Ti are continually deposited, and the pumping of active gases is thus accomplished. Pumping of the inert gases is accomplished by their burial several atomic layers deep into the cathode. However, they tend to re-emit if the entrapping lattice atoms are

  9. UV-LIGA technique for ECF micropumps using back UV exposure and self-alignment

    NASA Astrophysics Data System (ADS)

    Han, D.; Xia, Y.; Yokota, S.; Kim, J. W.

    2017-12-01

    This paper proposes and develops a novel UV-LIGA technique using back UV exposure and self-alignment to realize high aspect ratio micromachining (HARM) in high power density electro-conjugate fluid (ECF) micropumps. ECF is a functional fluid designed to be able to generate strong and active jet flow (ECF jetting) between anode and cathode in ECF when high DC voltage is applied. We have developed high power density ECF micropumps consisting of triangular prism and slit electrode pairs (TPSEs) fabricated by HARM. The traditional UV-LIGA technique for HARM is mainly divided into two approaches: (a) single thick layer and (b) multiple thin layers. Both methods have limitations—deformed molds in the former and misalignment between layers in the latter. Using the finite element method software COMSOL Multiphysics, we demonstrate that the deformed micro-molds critically impair the performance of ECF micropumps. In addition, we experimentally prove that the misalignment would easily trigger electric discharge in the ECF micropumps. To overcome these limitations, we conceive a new concept utilizing the seed electrode layer for electroforming as the UV shield and pattern photoresist (KMPR) by back UV exposure. The seed electrode layer should be composed of a non-transparent conductor (Au/Ti) for patterning and a transparent conductor (ITO) for wiring. Instead of ITO, we propose the concept of transparency-like electrodes comprised of thin metal line patterns. To verify this concept, KMPR layers with thicknesses of 70, 220, and 500 µm are experimentally investigated. In the case of 500 µm KMPR thickness, the concept of transparency-like electrode was partially proved. As a result, TPSEs with a height of 440 µm were successfully fabricated. Characteristic experiments demonstrated that ECF micropumps (367 mW cm-3) fabricated by back UV achieved almost the same output power density as ECF micropumps (391 mW cm-3) fabricated by front UV. This paper proves that the proposed

  10. Heat pump study: Tricks of the trade that can pump up efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, V.

    Two years ago, many homeowners in an area near Auburn, California were unhappy with their heat pumps. The local utility, Pacific Gas Electric (PG E), received unusually large numbers of complaints from them of high electricity bills and poor system operation. PG E wanted to know whether correctable mechanical problems were to blame. It hired John Proctor, then of Building Resources Management Corp., to design and implement a study to address the heat pump customers' complaints. The Pacific Gas Electric Heat Pump Efficiency and Super Weatherization Pilot Project was the result. The first objective of the Pilot Project was tomore » identify the major problems and their prevalence in the existing residential heat pump installations. The second was to design a correction strategy that would cost PG E $400 or less per site. Participating homeowners would also share some of the costs. Project goals were improved homeowner comfort and satisfaction, increased energy efficiency of mechanical systems, and 10-20% space heating energy savings. By improving system operations, the project wished to increase customer acceptance of heat pumps in general.« less

  11. Prediction of pump cavitation performance

    NASA Technical Reports Server (NTRS)

    Moore, R. D.

    1974-01-01

    A method for predicting pump cavitation performance with various liquids, liquid temperatures, and rotative speeds is presented. Use of the method requires that two sets of test data be available for the pump of interest. Good agreement between predicted and experimental results of cavitation performance was obtained for several pumps operated in liquids which exhibit a wide range of properties. Two cavitation parameters which qualitatively evaluate pump cavitation performance are also presented.

  12. The UV Survey Mission Concept, CETUS

    NASA Astrophysics Data System (ADS)

    Heap, Sara; and the CETUS Team

    2018-01-01

    In March 2017, NASA selected CETUS for study of a Probe-class mission concept. W. Danchi is the CETUS PI, and S. Heap is the Science PI. CETUS is primarily a UV survey telescope to complement survey telescopes of the 2020’s including E-ROSITA, Subaru Hyper Suprime Cam and Prime-Focus Spectrograph, WFIRST, and the Square Kilometer Array. CETUS comprises a 1.5-m wide-field telescope and three science instruments: a wide-field (1045” on a side) far-UV and near-UV camera; a similarly wide-field near-UV multi-object spectrograph utilizing a next-generation micro-shutter array; and a single-object spectrograph with options of spectral region (far-UV or near-UV) and spectral resolving power (2,000 or 40,000). The survey instruments will operate simultaneously thereby producing wide-field images in the near-UV and far-UV and a spectrogram containing near-UV spectra of up to 100 sources free of spectral overlap and astronomical background. ln concert with other survey telescopes, CETUS will focus on understanding galaxy evolution at cosmic noon (z~1-2).

  13. Two-inductor boost and buck converters

    NASA Astrophysics Data System (ADS)

    White, J. L.; Muldoon, W. J.

    The derivation, analysis and design of a coupled inductor boost converter is presented. Aspects of the qualitative ac behavior of coupled inductor converters are discussed. Considerations for the design of the magnetics for such converters are addressed.

  14. Ultrafast, superhigh gain visible-blind UV detector and optical logic gates based on nonpolar a-axial GaN nanowire

    NASA Astrophysics Data System (ADS)

    Wang, Xingfu; Zhang, Yong; Chen, Xinman; He, Miao; Liu, Chao; Yin, Yian; Zou, Xianshao; Li, Shuti

    2014-09-01

    Nonpolar a-axial GaN nanowire (NW) was first used to construct the MSM (metal-semiconductor-metal) symmetrical Schottky contact device for application as visible-blind ultraviolet (UV) detector. Without any surface or composition modifications, the fabricated device demonstrated a superior performance through a combination of its high sensitivity (up to 104 A W-1) and EQE value (up to 105), as well as ultrafast (<26 ms) response speed, which indicates that a balance between the photocurrent gain and the response speed has been achieved. Based on its excellent photoresponse performance, an optical logic AND gate and OR gate have been demonstrated for performing photo-electronic coupled logic devices by further integrating the fabricated GaN NW detectors, which logically convert optical signals to electrical signals in real time. These results indicate the possibility of using a nonpolar a-axial GaN NW not only as a high performance UV detector, but also as a stable optical logic device, both in light-wave communications and for future memory storage.Nonpolar a-axial GaN nanowire (NW) was first used to construct the MSM (metal-semiconductor-metal) symmetrical Schottky contact device for application as visible-blind ultraviolet (UV) detector. Without any surface or composition modifications, the fabricated device demonstrated a superior performance through a combination of its high sensitivity (up to 104 A W-1) and EQE value (up to 105), as well as ultrafast (<26 ms) response speed, which indicates that a balance between the photocurrent gain and the response speed has been achieved. Based on its excellent photoresponse performance, an optical logic AND gate and OR gate have been demonstrated for performing photo-electronic coupled logic devices by further integrating the fabricated GaN NW detectors, which logically convert optical signals to electrical signals in real time. These results indicate the possibility of using a nonpolar a-axial GaN NW not only as a high

  15. A compact cryogenic pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Gang; Caldwell, Shane; Clark, Jason A.

    2016-04-01

    A centrifugal cryogenic pump has been designed at Argonne National Laboratory to circulate liquid nitrogen (LN2) in a closed circuit allowing the recovery of excess fluid. The pump can circulate LN2 at rates of 2-10 L/min, into a head of 0.5-3 m. Over four years of laboratory use the pump has proven capable of operating continuously for 50-100 days without maintenance.

  16. Ultra-broadband infrared pump-probe spectroscopy using synchrotron radiation and a tuneable pump.

    PubMed

    Carroll, Lee; Friedli, Peter; Lerch, Philippe; Schneider, Jörg; Treyer, Daniel; Hunziker, Stephan; Stutz, Stefan; Sigg, Hans

    2011-06-01

    Synchrotron infrared sources have become popular mainly because of their excellent broadband brilliance, which enables spectroscopically resolved spatial-mapping of stationary objects at the diffraction limit. In this article we focus on an often-neglected further advantage of such sources - their unique time-structure - to bring such broadband spectroscopy to the time domain, for studying dynamic phenomenon down to the 100 ps limit. We describe the ultra-broadband (12.5 to 1.1 μm) Fourier transform pump-probe setup, for condensed matter transmission- and reflection-spectroscopy, installed at the X01DC infrared beam-line of the Swiss Light Source (SLS). The optical pump consists of a widely tuneable 100 ps 1 kHz laser system, covering 94% of the 16 to 1.1 μm range. A thorough description of the system is given, including (i) the vector-modulator providing purely electronic tuning of the pump-probe overlap up to 1 ms with sub-ps time resolution, (ii) the 500 MHz data acquisition system interfaced with the experimental physics and industrial control system (EPICS) based SLS control system for consecutive pulse sampling, and (iii) the step-scan time-slice Fourier transform scheme for simultaneous recording of the dual-channel pumped, un-pumped, and difference spectra. The typical signal/noise ratio of a single interferogram in a 100 ps time slice is 300 (measured during one single 140 s TopUp period). This signal/noise ratio is comparable to that of existing gated Globar pump-probe Fourier transform spectroscopy, but brings up to four orders of magnitude better time resolution. To showcase the utility of broadband pump-probe spectroscopy, we investigate a Ge-on-Si material system similar to that in which optically pumped direct-gap lasing was recently reported. We show that the mid-infrared reflection-spectra can be used to determine the optically injected carrier density, while the mid- and near-infrared transmission-spectra can be used to separate the strong pump

  17. UV-Induced Cell Death in Plants

    PubMed Central

    Nawkar, Ganesh M.; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-01

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400–700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280–320 nm) and UV-A (320–390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD). PMID:23344059

  18. A simulation-based study on different control strategies for variable speed pump in distributed ground source heat pump systems

    DOE PAGES

    Liu, Xiaobing; Zheng, O'Neill; Niu, Fuxin

    2016-01-01

    Most commercial ground source heat pump systems (GSHP) in the United States are in a distributed configuration. These systems circulate water or an anti-freeze solution through multiple heat pump units via a central pumping system, which usually uses variable speed pump(s). Variable speed pumps have potential to significantly reduce pumping energy use; however, the energy savings in reality could be far away from its potential due to improper pumping system design and controls. In this paper, a simplified hydronic pumping system was simulated with the dynamic Modelica models to evaluate three different pumping control strategies. This includes two conventional controlmore » strategies, which are to maintain a constant differential pressure across either the supply and return mains, or at the most hydraulically remote heat pump; and an innovative control strategy, which adjusts system flow rate based on the demand of each heat pump. The simulation results indicate that a significant overflow occurs at part load conditions when the variable speed pump is controlled to main a constant differential pressure across the supply and return mains of the piping system. On the other hand, an underflow occurs at part load conditions when the variable speed pump is controlled to maintain a constant differential pressure across the furthest heat pump. The flow-demand-based control can provide needed flow rate to each heat pump at any given time, and with less pumping energy use than the two conventional controls. Finally, a typical distributed GSHP system was studied to evaluate the energy saving potential of applying the flow-demand-based pumping control strategy. This case study shows that the annual pumping energy consumption can be reduced by 62% using the flow-demand-based control compared with that using the conventional pressure-based control to maintain a constant differential pressure a cross the supply and return mains.« less

  19. UV dose measurements of photosensitive dermatosis patients by polycrystalline GaN-based portable self-data-acquisition UV monitors.

    PubMed

    Yagi, Shigeru; Iwanaga, Takeshi; Kojima, Hiroshi; Shoji, Yoshio; Suzuki, Seiji; Seno, Kunihiro; Mori, Hisayoshi; Tokura, Yoshiki; Takigawa, Masahiro; Moriwaki, Shin-Ichi

    2002-12-01

    We have developed a UV monitor with polycrystalline (poly-) gallium nitride (GaN) UV sensors and evaluated its performance from the viewpoint of its effectiveness for use with photosensitive dermatosis patients. The poly-GaN UV sensor is sensitive to UV light from 280 to 410 nm even without optical filters. The UV monitor is a portable self-data-acquisition instrument with a minimum detection level (defined as average UV intensity over 290 to 400 nm) of 2 microW/cm2 and can store UV dose data for 128 days. It allows easy measurement of four orders of magnitude of ambient UV intensity and dose from indoor light to direct solar radiation in summer. Trial use of the UV monitor by five xeroderma pigmentosum patients started in June 2000 and was carried out for 1 year. It was demonstrated that the UV monitor was useful in improving their quality of life.

  20. Another way of pumping blood with a rotary but noncentrifugal pump for an artificial heart.

    PubMed

    Monties, J R; Mesana, T; Havlik, P; Trinkl, J; Demunck, J L; Candelon, B

    1990-01-01

    This article describes an alternative mode of pumping blood inside the body. The device is a non centrifugal, valveless, low speed rotary pump, electrically powered, based on Wankel engine principle. The authors developed an implantable electrical actuator resulting in a compact, sealed motor-pump unit with electrical and magnetic components insulated from fluids. The results in the flow curve and in the pumping action show some common points but also some basic differences compared to classical pulsatile pumps or centrifugal pumps. The blood coming from the atrium follows a continuous movement without any stop flow but with variations creating pulsatility. Ejection and filling of the pump are simultaneous. It is always an active filling. Hydraulic efficiency depends on clearance in the pumping chamber and outlet port pressure. A 60 cc device allows flows up to 8-9 liters. The implantable motor is cyclindrical in shape, has a moderate weight (490 grams) and presents a good efficiency (32% for a rotary speed of 90 rpm against a mean aortic pressure of 150 mm of Hg). The authors conclude that their device could be proposed after further experimental studies, as an LVAD for shortterm assistance with a good promise for permanent application.

  1. A seal-less centrifugal pump (Baylor Gyro Pump) for application to long-term circulatory support.

    PubMed

    Minato, N; Sakuma, I; Sasaki, T; Shiono, M; Ohara, Y; Takatani, S; Noon, G P; Nosé, Y

    1993-01-01

    We are developing a new centrifugal pump, the Baylor Gyro Centrifugal Pump (Gyro Pump), which can function for more than 2 weeks. The concept of the Gyro Pump is that a one-piece rotor-impeller with embedded permanent magnets, driven directly by a brushless direct current motor stator placed outside, rotates like a "gyroscope," and the rotor-impeller is supported by one pivot bearing at the bottom in accordance with the gyroscopic principle. This concept enables us to eliminate a driving shaft and a seal between the driving shaft and the blood chamber, which results in extending the life of the centrifugal pump. The blood passes through the space between the motor stator and the rotor to the impeller portion. In this preliminary phase, two pivot bearings were applied to support the rotor-impeller at the top and the bottom inside the blood chamber. Both pivot bearings showed less blood trauma and less thrombogenicity in in vitro and in vivo studies. The Gyro Pump is a promising second-generation centrifugal pump for long-term circulatory support in the near future.

  2. Thermoelectric converters for alternating current standards

    NASA Astrophysics Data System (ADS)

    Anatychuk, L. I.; Taschuk, D. D.

    2012-06-01

    Thermoelectric converters of alternating current remain priority instruments when creating standard equipment. This work presents the results of design and manufacture of alternating current converter for a military standard of alternating current in Ukraine. Results of simulation of temperature distribution in converter elements, ways of optimization to improve the accuracy of alternating current signal reproduction are presented. Results of metrological trials are given. The quality of thermoelectric material specially created for alternating current metrology is verified. The converter was used in alternating current standard for the frequency range from 10 Hz to 30 MHz. The efficiency of using thermoelectric signal converters in measuring instruments is confirmed.

  3. Visualization of UV exposure of the human body based on data from a scanning UV-measuring system.

    PubMed

    Hoeppe, P; Oppenrieder, A; Erianto, C; Koepke, P; Reuder, J; Seefeldner, M; Nowak, D

    2004-09-01

    In general, measurements of UV radition are related to horizontal surfaces, as in the case of the internationally standardized and applied UV index, for example. In order to obtain more relevant information on UV exposure of humans the new measuring system ASCARATIS (Angle SCAnning RAdiometer for determination of erythemally weighted irradiance on TIlted Surfaces) was developed and built. Three systems of ASCARATIS have been in operation at different locations in Bavaria for 3 years, providing erythemally weighted UV irradiation data for 27 differently inclined surfaces every 2 min. On the basis of these data virtual three-dimensional models of the human body surface consisting of about 20,000 triangles could be created and each of these triangles coloured according to its UV irradiation. This allowed the UV exposure of the human body to be visualized for any kind of body posture and spatial orientation on the basis of real measuring data. The results of the UV measurements on inclined surfaces have shown that measuring UV radiation on horizontal surfaces, as done routinely worldwide, often underestimates the UV exposure of the human skin. Especially at times of the day or year with low solar elevations the UV exposure of parts of the human skin can be many times higher than that of the horizontal surface. Examples of three-dimensional modelling of the human UV irradiation are shown for different times of the day and year, altitudes above sea level, body postures and genders. In these examples the UV "hotspots" can be detected and, among other things, used to inform and educate the public about UV radiation.

  4. Ultra-high speed vacuum pump system with first stage turbofan and second stage turbomolecular pump

    DOEpatents

    Jostlein, Hans

    2006-04-04

    An ultra-high speed vacuum pump evacuation system includes a first stage ultra-high speed turbofan and a second stage conventional turbomolecular pump. The turbofan is either connected in series to a chamber to be evacuated, or is optionally disposed entirely within the chamber. The turbofan employs large diameter rotor blades operating at high linear blade velocity to impart an ultra-high pumping speed to a fluid. The second stage turbomolecular pump is fluidly connected downstream from the first stage turbofan. In operation, the first stage turbofan operates in a pre-existing vacuum, with the fluid asserting only small axial forces upon the rotor blades. The turbofan imparts a velocity to fluid particles towards an outlet at a high volume rate, but moderate compression ratio. The second stage conventional turbomolecular pump then compresses the fluid to pressures for evacuation by a roughing pump.

  5. Turbomolecular Pumps for Holding Gases in Open Containers

    NASA Technical Reports Server (NTRS)

    Keller, John W.; Lorenz, John E.

    2010-01-01

    Proposed special-purpose turbomolecular pumps denoted turbotraps would be designed, along with mating open containers, to prevent the escape of relatively slowly (thermal) moving gas molecules from the containers while allowing atoms moving at much greater speeds to pass through. In the original intended applications, the containers would be electron-attachment cells, and the contained gases would be vapors of alkali metal atoms moving at thermal speeds that would be of the order of a fraction of 300 meters per second. These cells would be parts of apparatuses used to measure fluxes of neutral atoms incident at kinetic energies in the approximate range of 10 eV to 10 keV (corresponding to typical speeds of the order of 40,000 m/s and higher). The incident energetic neutral atoms would pass through the cells, wherein charge-exchange reactions with the alkali metal atoms would convert the neutral atoms to negative ions, which, in turn, could then be analyzed by use of conventional charged-particle optics.

  6. High-Capacity, Portable Firefighting Pump

    NASA Technical Reports Server (NTRS)

    Burns, Ralph A.

    1988-01-01

    Report describes an evaluation of firefighting module that delivers water at 5,000 gal/min (320 L/s). Is compact, self-contained, portable water pump. Besides firefighting, module used for flood control, pumping water into large vessels, and pump water from sinking ships.

  7. Apparatus for Pumping a Fluid

    NASA Technical Reports Server (NTRS)

    van Boeyen, Roger W. (Inventor); Reeh, Jonathan A. (Inventor); Kesmez, Mehmet (Inventor); Heselmeyer, Eric A. (Inventor); Parkey, Jeffrey S. (Inventor)

    2016-01-01

    An electrochemically actuated pump and an electrochemical actuator for use with a pump. The pump includes one of various stroke volume multiplier configurations with the pressure of a pumping fluid assisting actuation of a driving fluid bellows. The electrochemical actuator has at least one electrode fluidically coupled to the driving fluid chamber of the first pump housing and at least one electrode fluidically coupled to the driving fluid chamber of the second pump housing. Accordingly, the electrochemical actuator selectively pressurizes hydrogen gas within a driving fluid chamber. The actuator may include a membrane electrode assembly including an ion exchange membrane with first and second catalyzed electrodes in contact with opposing sides of the membrane, and first and second hydrogen gas chambers in fluid communication with the first and second electrodes, respectively. A controller may reverse the polarity of a voltage source electrically coupled to the current collectors.

  8. Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R.

    2016-05-01

    A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery.

  9. Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes.

    PubMed

    Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R

    2016-05-19

    A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery.

  10. UV-blocking spectacle lens protects against UV-induced decline of visual performance.

    PubMed

    Liou, Jyh-Cheng; Teng, Mei-Ching; Tsai, Yun-Shan; Lin, En-Chieh; Chen, Bo-Yie

    2015-01-01

    Excessive exposure to sunlight may be a risk factor for ocular diseases and reduced visual performance. This study was designed to examine the ability of an ultraviolet (UV)-blocking spectacle lens to prevent visual acuity decline and ocular surface disorders in a mouse model of UVB-induced photokeratitis. Mice were divided into 4 groups (10 mice per group): (1) a blank control group (no exposure to UV radiation), (2) a UVB/no lens group (mice exposed to UVB rays, but without lens protection), (3) a UVB/UV400 group (mice exposed to UVB rays and protected using the CR-39™ spectacle lens [UV400 coating]), and (4) a UVB/photochromic group (mice exposed to UVB rays and protected using the CR-39™ spectacle lens [photochromic coating]). We investigated UVB-induced changes in visual acuity and in corneal smoothness, opacity, and lissamine green staining. We also evaluated the correlation between visual acuity decline and changes to the corneal surface parameters. Tissue sections were prepared and stained immunohistochemically to evaluate the structural integrity of the cornea and conjunctiva. In blank controls, the cornea remained undamaged, whereas in UVB-exposed mice, the corneal surface was disrupted; this disruption significantly correlated with a concomitant decline in visual acuity. Both the UVB/UV400 and UVB/photochromic groups had sharper visual acuity and a healthier corneal surface than the UVB/no lens group. Eyes in both protected groups also showed better corneal and conjunctival structural integrity than unprotected eyes. Furthermore, there were fewer apoptotic cells and less polymorphonuclear leukocyte infiltration in corneas protected by the spectacle lenses. The model established herein reliably determines the protective effect of UV-blocking ophthalmic biomaterials, because the in vivo protection against UV-induced ocular damage and visual acuity decline was easily defined.

  11. Human Aorta Is a Passive Pump

    NASA Astrophysics Data System (ADS)

    Pahlevan, Niema; Gharib, Morteza

    2012-11-01

    Impedance pump is a simple valveless pumping mechanism that operates based on the principles of wave propagation and reflection. It has been shown in a zebrafish that a similar mechanism is responsible for the pumping action in the embryonic heart during early stages before valve formation. Recent studies suggest that the cardiovascular system is designed to take advantage of wave propagation and reflection phenomena in the arterial network. Our aim in this study was to examine if the human aorta is a passive pump working like an impedance pump. A hydraulic model with different compliant models of artificial aorta was used for series of in-vitro experiments. The hydraulic model includes a piston pump that generates the waves. Our result indicates that wave propagation and reflection can create pumping mechanism in a compliant aorta. Similar to an impedance pump, the net flow and the flow direction depends on the frequency of the waves, compliance of the aorta, and the piston stroke.

  12. Method for Reducing Pumping Damage to Blood

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George Arthur (Inventor); Bacak, James W. (Inventor); Svejkovsky, Robert J. (Inventor); Benkowski, Robert J. (Inventor)

    1997-01-01

    Methods are provided for minimizing damage to blood in a blood pump wherein the blood pump comprises a plurality of pump components that may affect blood damage such as clearance between pump blades and housing, number of impeller blades, rounded or flat blade edges, variations in entrance angles of blades, impeller length, and the like. The process comprises selecting a plurality of pump components believed to affect blood damage such as those listed herein before. Construction variations for each of the plurality of pump components are then selected. The pump components and variations are preferably listed in a matrix for easy visual comparison of test results. Blood is circulated through a pump configuration to test each variation of each pump component. After each test, total blood damage is determined for the blood pump. Preferably each pump component variation is tested at least three times to provide statistical results and check consistency of results. The least hemolytic variation for each pump component is preferably selected as an optimized component. If no statistical difference as to blood damage is produced for a variation of a pump component, then the variation that provides preferred hydrodynamic performance is selected. To compare the variation of pump components such as impeller and stator blade geometries, the preferred embodiment of the invention uses a stereolithography technique for realizing complex shapes within a short time period.

  13. Pump for molten metal or other fluid

    DOEpatents

    Horton, James A.; Brown, Donald L.

    1994-01-01

    A pump having no moving parts which can be used to pump high temperature molten metal or other fluids in a vacuum or low pressure environment, and a method for pumping such fluids. The pump combines elements of a bubble pump with a trap which isolates the vacuum or low pressure region from the gas used to create the bubbles. When used in a vacuum the trap prevents the pumping gas from escaping into the isolated region and thereby reducing the quality of the vacuum. The pump includes a channel in which a pumping gas is forced under pressure into a cavity where bubbles are formed. The cavity is in contact with a reservoir which contains the molten metal or other fluid which is to be pumped. The bubbles rise up into a column (or pump tube) carrying the fluid with them. At the top of the column is located a deflector which causes the bubbles to burst and the drops of pumped fluid to fall into a trap. The fluid accumulates in the trap, eventually forcing its way to an outlet. A roughing pump can be used to withdraw the pumping gas from the top of the column and assist with maintaining the vacuum or low pressure environment.

  14. Optically pumped isotopic ammonia laser system

    DOEpatents

    Buchwald, Melvin I.; Jones, Claude R.; Nelson, Leonard Y.

    1982-01-01

    An optically pumped isotopic ammonia laser system which is capable of producing a plurality of frequencies in the middle infrared spectral region. Two optical pumping mechanisms are disclosed, i.e., pumping on R(J) and lasing on P(J) in response to enhancement of rotational cascade lasing including stimulated Raman effects, and, pumping on R(J) and lasing on P(J+2). The disclosed apparatus for optical pumping include a hole coupled cavity and a grating coupled cavity.

  15. Bipropellant propulsion with reciprocating pumps

    NASA Astrophysics Data System (ADS)

    Whitehead, John C.

    1993-06-01

    A pressure regulated gas generator rocket cycle with alternately pressurized pairs of reciprocating pumps offers thrust-on-demand operation with significantly lower inert mass than conventional spacecraft liquid propulsion systems. The operation of bipropellant feed systems with reciprocating pumps is explained, with consideration for both short and long term missions. There are several methods for startup and shutdown of this self-starting pump-fed system, with preference determined by thrust duty cycle and mission duration. Progress to date includes extensive development testing of components unique to this type of system, and several live tests with monopropellant hydrazine. Pneumatic pump control valves which render pistons and bellows automatically responsive to downstream liquid demand are significantly simpler than those described previously. A compact pumpset mounted to central liquid manifolds has a pair of oxidizer pumps pneumatically slaved to a pair of fuel pumps to reduce vibration. A warm gas pressure reducer for tank expulsion can eliminate any remaining need for inert gas storage.

  16. Electron beam pumped semiconductor laser

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Electron-beam-pumped semiconductor ultra-violet optical sources (ESUVOSs) are disclosed that use ballistic electron pumped wide bandgap semiconductor materials. The sources may produce incoherent radiation and take the form of electron-beam-pumped light emitting triodes (ELETs). The sources may produce coherent radiation and take the form of electron-beam-pumped laser triodes (ELTs). The ELTs may take the form of electron-beam-pumped vertical cavity surface emitting lasers (EVCSEL) or edge emitting electron-beam-pumped lasers (EEELs). The semiconductor medium may take the form of an aluminum gallium nitride alloy that has a mole fraction of aluminum selected to give a desired emission wavelength, diamond, or diamond-like carbon (DLC). The sources may be produced from discrete components that are assembled after their individual formation or they may be produced using batch MEMS-type or semiconductor-type processing techniques to build them up in a whole or partial monolithic manner, or combination thereof.

  17. Quantum coherent π-electron rotations in a non-planar chiral molecule induced by using a linearly polarized UV laser pulse

    NASA Astrophysics Data System (ADS)

    Mineo, Hirobumi; Fujimura, Yuichi

    2015-06-01

    We propose an ultrafast quantum switching method of π-electron rotations, which are switched among four rotational patterns in a nonplanar chiral aromatic molecule (P)-2,2’- biphenol and perform the sequential switching among four rotational patterns which are performed by the overlapped pump-dump laser pulses. Coherent π-electron dynamics are generated by applying the linearly polarized UV pulse laser to create a pair of coherent quasidegenerated excited states. We also plot the time-dependent π-electron ring current, and discussed ring current transfer between two aromatic rings.

  18. 14 CFR 25.991 - Fuel pumps.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.991 Fuel pumps. (a) Main pumps. Each fuel pump required for proper engine operation, or required to meet the fuel system... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel pumps. 25.991 Section 25.991...

  19. 14 CFR 25.991 - Fuel pumps.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.991 Fuel pumps. (a) Main pumps. Each fuel pump required for proper engine operation, or required to meet the fuel system... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel pumps. 25.991 Section 25.991...

  20. 14 CFR 25.991 - Fuel pumps.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.991 Fuel pumps. (a) Main pumps. Each fuel pump required for proper engine operation, or required to meet the fuel system... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel pumps. 25.991 Section 25.991...

  1. 14 CFR 25.991 - Fuel pumps.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.991 Fuel pumps. (a) Main pumps. Each fuel pump required for proper engine operation, or required to meet the fuel system... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel pumps. 25.991 Section 25.991...

  2. 14 CFR 25.991 - Fuel pumps.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.991 Fuel pumps. (a) Main pumps. Each fuel pump required for proper engine operation, or required to meet the fuel system... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel pumps. 25.991 Section 25.991...

  3. High power resonant pumping of Tm-doped fiber amplifiers in core- and cladding-pumped configurations.

    PubMed

    Creeden, Daniel; Johnson, Benjamin R; Rines, Glen A; Setzler, Scott D

    2014-11-17

    We have demonstrated ultra-high efficiency amplification in Tm-doped fiber with both core- and cladding-pumped configurations using a resonant tandem-pumping approach. These Tm-doped fiber amplifiers are pumped in-band with a 1908 nm Tm-doped fiber laser and operate at 1993 nm with >90% slope efficiency. In a core-pumped configuration, we have achieved 92.1% slope efficiency and 88.4% optical efficiency at 41 W output power. In a cladding-pumped configuration, we have achieved 123.1 W of output power with 90.4% optical efficiency and a 91.6% slope efficiency. We believe these are the highest optical efficiencies achieved in a Tm-doped fiber amplifier operating in the 2-micron spectral region.

  4. Tribology of hydraulic pumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaguchi, A.

    To obtain much higher performance than that of alternative power transmission systems, hydraulic systems have been continuously evolving to use high-pressure. Adoption of positive displacement pumps and motors is based on this reason. Therefore, tribology is a key terminology for hydraulic pumps and motors to obtain excellent performance and durability. In this paper the following topics are investigated: (1) the special feature of tribology of hydraulic pumps and motors; (2) indication of the important bearing/sealing parts in piston pumps and effects of the frictional force and leakage flow to performance; (3) the methods to break through the tribological limitation ofmore » hydraulic equipment; and (4) optimum design of the bearing/sealing parts used in the fluid to mixed lubrication regions.« less

  5. High-frequency matrix converter with square wave input

    DOEpatents

    Carr, Joseph Alexander; Balda, Juan Carlos

    2015-03-31

    A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.

  6. UV Disinfection System for Cabin Air

    NASA Astrophysics Data System (ADS)

    Lim, Soojung

    Ultraviolet (UV) radiation is commonly used for disinfection of water. As a result of advancements made in the last 10-15 years, the analysis and design of UV disinfection systems for water is well developed. UV disinfection is also used for disinfection of air; however, despite the fact the UV-air systems have a longer record of application than UV-water systems, the methods used to analyze and design UV-air disinfection systems remain quite empirical. It is well-established that the effectiveness of UV-air systems is strongly affected by the type of microorganisms, the irradiation level/type (lamp power and wavelength), duration of irradiation (exposure time), air movement pattern (mixing degree), and relative humidity. This paper will describe ongoing efforts to evaluate, design and test a UV-air system based on first principles. Specific issues to be addressed in this work will include laboratory measurements of relevant kinetics (i.e., UV dose-response behavior) and numerical simulations designed to represent fluid mechanics and the radiation intensity field. UV dose-response behavior of test microorganism was measured using a laboratory (bench-scale) system. Target microorganisms (e.g., bacterial spores) were first applied to membrane filters at sub-monolayer coverage. The filters were then transferred to an environmental chamber at fixed relative humidity (RH) and allowed to equilibrate with their surroundings. Microorganisms were then subjected to UV exposure under a collimated beam. The experiment was repeated at RH values ranging from 20% to 100%. UV dose-response behavior was observed to vary with RH. For example, at 100% RH, a UV dose of 20 mJ/cm2 accomplished 90% (1 log10 units) of the B. subtilis spore inactivation, whereas 99 % (2 log10 units) inactivation was accomplished at this same UV dose under 20% RH conditions. However, at higher doses, the result was opposite of that in low dose. Reactor behavior is simulated using an integrated application

  7. UV-Vis-NIR luminescence properties and energy transfer mechanism of LiSrPO4:Eu2+, Pr3+ suitable for solar spectral convertor.

    PubMed

    Chen, Yan; Wang, Jing; Liu, Chunmeng; Tang, Jinke; Kuang, Xiaojun; Wu, Mingmei; Su, Qiang

    2013-02-11

    An efficient near-infrared (NIR) phosphor LiSrPO(4):Eu(2+), Pr(3+) is synthesized by solid-state reaction and systematically investigated using x-ray diffraction, diffuse reflection spectrum, photoluminescence spectra at room temperature and 3 K, and the decay curves. The UV-Vis-NIR energy transfer mechanism is proposed based on these results. The results demonstrate Eu(2+) can be an efficient sensitizer for harvesting UV photon and greatly enhancing the NIR emission of Pr(3+) between 960 and 1060 nm through efficient energy feeding by allowed 4f-5d absorption of Eu(2+) with high oscillator strength. Eu(2+)/Pr(3+) may be an efficient donor-acceptor pair as solar spectral converter for Si solar cells.

  8. Magnetic Pumping as a Source of Particle Heating and Power-Law Distributions in the Solar Wind

    DOE PAGES

    Lichko, Emily Rose; Egedal, Jan; Daughton, William Scott; ...

    2017-11-27

    Based on the rate of expansion of the solar wind, the plasma should cool rapidly as a function of distance to the Sun. Observations show this is not the case. In this work, a magnetic pumping model is developed as a possible explanation for the heating and the generation of power-law distribution functions observed in the solar wind plasma. Most previous studies in this area focus on the role that the dissipation of turbulent energy on microscopic kinetic scales plays in the overall heating of the plasma. However, with magnetic pumping, particles are energized by the largest-scale turbulent fluctuations, thusmore » bypassing the energy cascade. In contrast to other models, we include the pressure anisotropy term, providing a channel for the large-scale fluctuations to heat the plasma directly. A complete set of coupled differential equations describing the evolution, and energization, of the distribution function are derived, as well as an approximate closed-form solution. Numerical simulations using the VPIC kinetic code are applied to verify the model's analytical predictions. The results of the model for realistic solar wind scenario are computed, where thermal streaming of particles are important for generating a phase shift between the magnetic perturbations and the pressure anisotropy. In turn, averaged over a pump cycle, the phase shift permits mechanical work to be converted directly to heat in the plasma. Here, the results of this scenario show that magnetic pumping may account for a significant portion of the solar wind energization.« less

  9. Magnetic Pumping as a Source of Particle Heating and Power-Law Distributions in the Solar Wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lichko, Emily Rose; Egedal, Jan; Daughton, William Scott

    Based on the rate of expansion of the solar wind, the plasma should cool rapidly as a function of distance to the Sun. Observations show this is not the case. In this work, a magnetic pumping model is developed as a possible explanation for the heating and the generation of power-law distribution functions observed in the solar wind plasma. Most previous studies in this area focus on the role that the dissipation of turbulent energy on microscopic kinetic scales plays in the overall heating of the plasma. However, with magnetic pumping, particles are energized by the largest-scale turbulent fluctuations, thusmore » bypassing the energy cascade. In contrast to other models, we include the pressure anisotropy term, providing a channel for the large-scale fluctuations to heat the plasma directly. A complete set of coupled differential equations describing the evolution, and energization, of the distribution function are derived, as well as an approximate closed-form solution. Numerical simulations using the VPIC kinetic code are applied to verify the model's analytical predictions. The results of the model for realistic solar wind scenario are computed, where thermal streaming of particles are important for generating a phase shift between the magnetic perturbations and the pressure anisotropy. In turn, averaged over a pump cycle, the phase shift permits mechanical work to be converted directly to heat in the plasma. Here, the results of this scenario show that magnetic pumping may account for a significant portion of the solar wind energization.« less

  10. Ultraviolet radiation exposure from UV-transilluminators.

    PubMed

    Akbar-Khanzadeh, Farhang; Jahangir-Blourchian, Mahdi

    2005-10-01

    UV-transilluminators use ultraviolet radiation (UVR) to visualize proteins, DNA, RNA, and their precursors in a gel electrophoresis procedure. This study was initiated to evaluate workers' exposure to UVR during their use of UV-transilluminators. The levels of irradiance of UV-A, UV-B, and UV-C were determined for 29 UV-transilluminators at arbitrary measuring locations of 6, 25, 62, and 125 cm from the center of the UV-transilluminator's filter surface in the direction of the operator's head. The operators (faculty, research staff, and graduate students) worked within 62 cm of the transilluminators, with most subjects commonly working at < or =25 cm from the UV-transilluminator's filter surface. Daily exposure time ranged from 1 to 60 min. Actinic hazard (effective irradiance level of UVR) was also determined for three representative UV-transilluminators at arbitrary measuring locations of 2.5, 5, 10, 15, 20, 30, 40, and 50 cm from these sets' filter surface in the direction of the operator's head. The allowable exposure time for these instruments was less than 20 sec within 15 cm, less than 35 sec within 25 cm, and less than 2 min within 50 cm from the UV-transilluminators' filter surface. The results of this study suggest that the use of UV-transilluminators exposes operators to levels of UVR in excess of exposure guidelines. It is recommended that special safety training be provided for the affected employees and that exposure should be controlled by one or the combination of automation, substitution, isolation, posted warning signs, shielding, and/or personal protective equipment.

  11. Preliminary design of a Primary Loop Pump Assembly (PLPA), using electromagnetic pumps

    NASA Technical Reports Server (NTRS)

    Moss, T. A.; Matlin, G.; Donelan, L.; Johnson, J. L.; Rowe, I.

    1972-01-01

    A preliminary design study of flight-type dc conduction-permanent magnetic, ac helical induction, and ac linear induction pumps for circulating 883 K (1130 F) NaK at 9.1 kg/sec (20 lb/sec) is described. Various electromagnetic pump geometrics are evaluated against hydraulic performance, and the effects of multiple windings and numbers of pumps per assembly on overall reliability were determined. The methods used in the electrical-hydraulic, stress, and thermal analysis are discussed, and the high temperature electrical materials selected for the application are listed.

  12. Laser dye DCM: CW, synchronously pumped, cavity pumped and single-frequency performance

    NASA Astrophysics Data System (ADS)

    Marason, E. G.

    1981-04-01

    Laser dye DCM exhibits a tuning range of 605 to 725 nm with a lasing efficiency as high as 34% when pumped by the 488 nm line of the argon ion laser, placing it among the most efficient and broadly tunable dyes known. Performance of the dye is characterized for four laser systems: 1) continuous wave, 2) synchronously pumped (SP), 3) cavity dumped synchrompously pumped (SPCD) and 4) single-frequency ring dye laser. Pulse peak powers were as high as 520 W and 2.8 kW for SP and SPCD systems respectively.

  13. Pump for delivering heated fluids

    NASA Technical Reports Server (NTRS)

    Sabelman, E. E. (Inventor)

    1973-01-01

    A thermomechanical pump particularly suited for use in pumping a warming fluid obtained from an RTG (Radioisotope Thermal Generator) through science and flight instrumentation aboard operative spacecraft is described. The invention is characterized by a pair of operatively related cylinders, each including a reciprocating piston head dividing the cylinder into a pressure chamber confining therein a vaporizable fluid, and a pumping chamber for propelling the warming fluid, and a fluid delivery circuit for alternately delivering the warming fluid from the RTG through the pressure chamber of one cylinder to the pumping chamber of the other cylinder, whereby the vaporizable fluid within the pair of pressure chambers alternately is vaporized and condensed for driving the associated pistons in pumping and intake strokes.

  14. 33 CFR 183.524 - Fuel pumps.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Fuel pumps. 183.524 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.524 Fuel pumps. (a) Each diaphragm pump must not leak fuel from the pump if the primary diaphragm fails. (b) Each electrically...

  15. 33 CFR 183.524 - Fuel pumps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel pumps. 183.524 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.524 Fuel pumps. (a) Each diaphragm pump must not leak fuel from the pump if the primary diaphragm fails. (b) Each electrically...

  16. 33 CFR 183.524 - Fuel pumps.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Fuel pumps. 183.524 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.524 Fuel pumps. (a) Each diaphragm pump must not leak fuel from the pump if the primary diaphragm fails. (b) Each electrically...

  17. 33 CFR 183.524 - Fuel pumps.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel pumps. 183.524 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.524 Fuel pumps. (a) Each diaphragm pump must not leak fuel from the pump if the primary diaphragm fails. (b) Each electrically...

  18. 33 CFR 183.524 - Fuel pumps.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Fuel pumps. 183.524 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.524 Fuel pumps. (a) Each diaphragm pump must not leak fuel from the pump if the primary diaphragm fails. (b) Each electrically...

  19. 46 CFR 169.654 - Bilge pumps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and... bilge pump or fixed power bilge pump having a minimum capacity of 10 gpm. If a fixed hand pump is... section, vessels of 40 feet but less than 65 feet must have a fixed power bilge pump having a minimum...

  20. 46 CFR 169.654 - Bilge pumps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and... bilge pump or fixed power bilge pump having a minimum capacity of 10 gpm. If a fixed hand pump is... section, vessels of 40 feet but less than 65 feet must have a fixed power bilge pump having a minimum...

  1. 46 CFR 169.654 - Bilge pumps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and... bilge pump or fixed power bilge pump having a minimum capacity of 10 gpm. If a fixed hand pump is... section, vessels of 40 feet but less than 65 feet must have a fixed power bilge pump having a minimum...

  2. 46 CFR 169.654 - Bilge pumps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and... bilge pump or fixed power bilge pump having a minimum capacity of 10 gpm. If a fixed hand pump is... section, vessels of 40 feet but less than 65 feet must have a fixed power bilge pump having a minimum...

  3. 46 CFR 169.654 - Bilge pumps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and... bilge pump or fixed power bilge pump having a minimum capacity of 10 gpm. If a fixed hand pump is... section, vessels of 40 feet but less than 65 feet must have a fixed power bilge pump having a minimum...

  4. Universal Quantum Noise in Adiabatic Pumping

    NASA Astrophysics Data System (ADS)

    Herasymenko, Yaroslav; Snizhko, Kyrylo; Gefen, Yuval

    2018-06-01

    We consider charge pumping in a system of parafermions, implemented at fractional quantum Hall edges. Our pumping protocol leads to a noisy behavior of the pumped current. As the adiabatic limit is approached, not only does the noisy behavior persist but the counting statistics of the pumped current becomes robust and universal. In particular, the resulting Fano factor is given in terms of the system's topological degeneracy and the pumped quasiparticle charge. Our results are also applicable to the more conventional Majorana fermions.

  5. Impact of insulin pumps on glycaemic control in a pump-naïve paediatric regional population.

    PubMed

    de Bock, Martin; Gunn, Alistair Jan; Holt, Jean-Ann; Derraik, José G B; Reed, Peter; Cutfield, Wayne; Mouat, Fran; Hofman, Paul; Jefferies, Craig

    2012-03-01

    To examine the clinical impact of insulin-pump therapy for children with type 1 diabetes mellitus (T1DM) in a regional paediatric service, Auckland, New Zealand. Retrospective analysis of children with T1DM from the Starship paediatric diabetes database who started on insulin-pump therapy from 2002 to 2008 compared with the whole T1DM population and with an equal number of non-pump patients matched by age, sex, ethnicity and duration of diabetes. From 621 subjects with 6680 clinic visits, 75 children were treated with insulin-pump therapy for more than 12 months. Transitioning to insulin-pump treatment was associated with an improvement in HbA1c compared with baseline (-0.3%/year, P < 0.001) for up to 3 years. In contrast, despite similar deprivation scores, non-pump controls showed a continuing trend to higher HbA1C values (+0.2%/year, P < 0.01). The risk of severe hypoglycaemia fell after pump start (from 27 (0-223) to 5 (0-0.91) events/100 patient years) with no change in non-pump controls; the rate of diabetic ketoacidosis remained low in both groups. In a pump-naïve regional paediatric population, insulin-pump therapy for T1DM was safe and effective, and associated with sustained improvements in HbA1c and lower risk of hypoglycaemia. © 2011 The Authors. Journal of Paediatrics and Child Health © 2011 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  6. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein

    PubMed Central

    Ando, Ryoko; Hama, Hiroshi; Yamamoto-Hino, Miki; Mizuno, Hideaki; Miyawaki, Atsushi

    2002-01-01

    We have cloned a gene encoding a fluorescent protein from a stony coral, Trachyphyllia geoffroyi, which emits green, yellow, and red light. The protein, named Kaede, includes a tripeptide, His-Tyr-Gly, that acts as a green chromophore that can be converted to red. The red fluorescence is comparable in intensity to the green and is stable under usual aerobic conditions. We found that the green-red conversion is highly sensitive to irradiation with UV or violet light (350–400 nm), which excites the protonated form of the chromophore. The excitation lights used to elicit red and green fluorescence do not induce photoconversion. Under a conventional epifluorescence microscope, Kaede protein expressed in HeLa cells turned red in a graded fashion in response to UV illumination; maximal illumination resulted in a 2,000-fold increase in the ratio of red-to-green signal. These color-changing properties provide a simple and powerful technique for regional optical marking. A focused UV pulse creates an instantaneous plane source of red Kaede within the cytosol. The red spot spreads rapidly throughout the cytosol, indicating its free diffusibility in the compartment. The extensive diffusion allows us to delineate a single neuron in a dense culture, where processes originating from many different somata are present. Illumination of a focused UV pulse onto the soma of a Kaede-expressing neuron resulted in filling of all processes with red fluorescence, allowing visualization of contact sites between the red and green neurons of interest. PMID:12271129

  7. Heat driven pulse pump

    NASA Technical Reports Server (NTRS)

    Benner, Steve M (Inventor); Martins, Mario S. (Inventor)

    2000-01-01

    A heat driven pulse pump includes a chamber having an inlet port, an outlet port, two check valves, a wick, and a heater. The chamber may include a plurality of grooves inside wall of the chamber. When heated within the chamber, a liquid to be pumped vaporizes and creates pressure head that expels the liquid through the outlet port. As liquid separating means, the wick, disposed within the chamber, is to allow, when saturated with the liquid, the passage of only liquid being forced by the pressure head in the chamber, preventing the vapor from exiting from the chamber through the outlet port. A plurality of grooves along the inside surface wall of the chamber can sustain the liquid, which is amount enough to produce vapor for the pressure head in the chamber. With only two simple moving parts, two check valves, the heat driven pulse pump can effectively function over the long lifetimes without maintenance or replacement. For continuous flow of the liquid to be pumped a plurality of pumps may be connected in parallel.

  8. [Light protection: principles of UV protection].

    PubMed

    Stege, H; Mang, R

    2006-05-01

    UV radiation is responsible for the induction of epithelial and melanocytic skin cancer, photoaging, and photodermatoses. UV protection is necessary to prevent damage caused by non-physiologic exposure. UV protection includes not only reduction of sun exposure but also use of sun protective filters, UV protective clothes, DNA repair enzymes, and antioxidant supplementation. Consumers are uncertain about the possibilities and limitations of commercial sun protection measures. Dermatologists must explain protective measures to the general public which continues to believe that UV-tanned skin is healthy. The sunscreen market is a highly competitive but lucrative market. The range of products with different designations and promises makes difficult for both consumers and dermatologists to determine what is sensible UV protection.

  9. Lunar base heat pump

    NASA Technical Reports Server (NTRS)

    Goldman, Jeffrey H.; Tetreault, R.; Fischbach, D.; Walker, D.

    1994-01-01

    A heat pump is a device which elevates the temperature of a heat flow by a means of an energy input. By doing this, the heat pump can cause heat to transfer faster from a warm region to a cool region, or it can cause heat to flow from a cool region to a warmer region. The second case is the one which finds vast commercial applications such as air conditioning, heating, and refrigeration. Aerospace applications of heat pumps include both cases. The NASA Johnson Space Center is currently developing a Life Support Systems Integration Facility (LSSIF, previously SIRF) to provide system-level integration, operational test experience, and performance data that will enable NASA to develop flight-certified hardware for future planetary missions. A high lift heat pump is a significant part of the TCS hardware development associated with the LSSIF. The high lift heat pump program discussed here is being performed in three phases. In Phase 1, the objective is to develop heat pump concepts for a lunar base, a lunar lander, and for a ground development unit for the SIRF. In Phase 2, the design of the SIRF ground test unit is being performed, including identification and evaluation of safety and reliability issues. In Phase 3, the SIRF unit will be manufactured, tested, and delivered to the NASA Johnson Space Center.

  10. Parametric study of laser photovoltaic energy converters

    NASA Technical Reports Server (NTRS)

    Walker, G. H.; Heinbockel, J. H.

    1987-01-01

    Photovoltaic converters are of interest for converting laser power to electrical power in a space-based laser power system. This paper describes a model for photovoltaic laser converters and the application of this model to a neodymium laser silicon photovoltaic converter system. A parametric study which defines the sensitivity of the photovoltaic parameters is described. An optimized silicon photovoltaic converter has an efficiency greater than 50 percent for 1000 W/sq cm of neodymium laser radiation.

  11. Efficient Ti:LiNbO3 ridge waveguide lasers: investigation of Er and Yb:Er doped waveguides pumped at 980nm and 1486nm

    NASA Astrophysics Data System (ADS)

    Brüske, Dominik; Suntsov, Sergiy; Volk, Martin F.; Rüter, Christian E.; Kip, Detlef

    2018-02-01

    Erbium-ytterbium-codoped titanium in-diffused ridge waveguides optical amplifiers in x-cut congruent LiNbO3 substrates pumped at 980.5 nm and 1486 nm are reported for the first time. An internal gain of 2.8 dB/cm has been measured in 2.3 cm long Yb:Er:Ti:LiNbO3 ridge waveguides for the coupled pump power of 145 mW at 980.5 nm, which is the highest gain ever reported, to the best of our knowledge, for erbium-based LiNbO3 waveguide amplifiers under 980 nm excitation. Furthermore, we realized an internal gain of 3.2 dB/cm for the coupled pump power of 200 mW at 1486 nm, which also exceeds the best literature values for Er:Ti:LiNbO3 waveguide amplifiers pumped at this wavelength. In addition, we report on a method for local periodic poling (periods of 30 μm and 18.4 μm) of ridge waveguides in LiNbO3, which allows for future integration of waveguide lasers and nonlinear frequency converters on the same substrate.

  12. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, K. S.

    1986-01-01

    During this period the parametric studies of the iodine laser oscillator pumped by a Vortek simulator were carried out before amplifier studies. The amplifier studies are postponed to the extended period after completing the parametric studies. In addition, the kinetic modeling of a solar-pumped iodine laser amplifier, and the experimental work for a solar pumped dye laser amplifier are in progress. This report contains three parts: (1) a 10 W CW iodine laser pumped by a Vortek solar simulator; (2) kinetic modeling to predict the time to lasing threshold, lasing time, and energy output of solar-pumped iodine laser; and (3) the study of the dye laser amplifier pumped by a Tamarack solar simulator.

  13. Fan and pump noise control

    NASA Technical Reports Server (NTRS)

    Misoda, J.; Magliozzi, B.

    1973-01-01

    The development is described of improved, low noise level fan and pump concepts for the space shuttle. In addition, a set of noise design criteria for small fans and pumps was derived. The concepts and criteria were created by obtaining Apollo hardware test data to correlate and modify existing noise estimating procedures. A set of space shuttle selection criteria was used to determine preliminary fan and pump concepts. These concepts were tested and modified to obtain noise sources and characteristics which yield the design criteria and quiet, efficient space shuttle fan and pump concepts.

  14. Topological Floquet-Thouless Energy Pump

    NASA Astrophysics Data System (ADS)

    Kolodrubetz, Michael H.; Nathan, Frederik; Gazit, Snir; Morimoto, Takahiro; Moore, Joel E.

    2018-04-01

    We explore adiabatic pumping in the presence of a periodic drive, finding a new phase in which the topologically quantized pumped quantity is energy rather than charge. The topological invariant is given by the winding number of the micromotion with respect to time within each cycle, momentum, and adiabatic tuning parameter. We show numerically that this pump is highly robust against both disorder and interactions, breaking down at large values of either in a manner identical to the Thouless charge pump. Finally, we suggest experimental protocols for measuring this phenomenon.

  15. Polycyclic aromatic hydrocarbons (PAHs) skin permeation rates change with simultaneous exposures to solar ultraviolet radiation (UV-S).

    PubMed

    Hopf, Nancy B; Spring, Philipp; Hirt-Burri, Nathalie; Jimenez, Silvia; Sutter, Benjamin; Vernez, David; Berthet, Aurelie

    2018-05-01

    Road construction workers are simultaneously exposed to two carcinogens; solar ultraviolet (UV-S) radiation and polycyclic aromatic hydrocarbons (PAHs) in bitumen emissions. The combined exposure may lead to photogenotoxicity and enhanced PAH skin permeation rates. Skin permeation rates (J) for selected PAHs in a mixture (PAH-mix) or in bitumen fume condensate (BFC) with and without UV-S co-exposures were measured with in vitro flow-through diffusion cells mounted with human viable skin and results compared. Possible biomarkers were explored. Js were greater with UV-S for naphthalene, anthracene, and pyrene in BFC (0.08-0.1 ng/cm 2 /h) compared to without (0.02-0.26 ng/cm 2 /h). This was true for anthracene, pyrene, and chrysene in the PAH-mix. Naphthalene and benzo(a)pyrene (BaP) in the PAH-mix had greater Js without (0.97-13.01 ng/cm 2 /h) compared to with UV-S (0.40-6.35 ng/cm 2 /h). Time until permeation (T lags ) in the PAH-mix were generally shorter compared to the BFC, and they ranged from 1 to 13 h. The vehicle matrix could potentially be the reason for this discrepancy as BFC contains additional not identified substances. Qualitative interpretation of p53 suggested a dose-response with UV-S, and somewhat with the co-exposures. MMP1, p65 and cKIT were not exploitable. Although not statistically different, PAHs permeate human viable skin faster with simultaneous exposures to UV. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Intense excitation source of blue-green laser

    NASA Astrophysics Data System (ADS)

    Han, Kwang S.

    1986-10-01

    An intense and efficient source for blue green laser useful for the space-based satellite laser applications, underwater strategic communication, and measurement of ocean bottom profile is being developed. The source in use, the hypocycloidal pinch plasma (HCP), and the dense plasma focus (DPF) can produce intense uv photons (200 to 400nm) which match the absorption spectra of both near UV and blue green dye lasers (300 to 400nm). As a result of optimization of the DPF light at 355nm, the blue green dye (LD490) laser output exceeding 4mJ was obtained at the best cavity tunning of the laser system. With the HCP pumped system a significant enhancement of the blue green laser outputs with dye LD490 and coumarin 503 has been achieved through the spectrum conversion of the pumping light by mixing a converter dye BBQ. The maximum increase of laser output with the dye mixture of LD490+BBQ and coumarin 503+BBQ was greater than 80%. In addition, the untunned near UV lasers were also obtained. The near UV laser output energy of P-terphenyl dye was 0.5mJ at lambda sub C=337nm with the bandwidth of 3n m for the pulse duration of 0.2us. Another near UV laser output energy obtained with BBQ dye was 25 mJ at lambda sub C=383nm with the bandwidth of 3nm for the pulse duration of 0.2us. Another near UV laser output energy obtained with BBQ dye was 25 mJ at lambda sub C=383nm with the bandwidth of 3nm for the pulse duration of 0.2microsec.

  17. 46 CFR 169.559 - Fire pumps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Fire pumps. 169.559 Section 169.559 Shipping COAST GUARD... Firefighting Equipment Firefighting Equipment § 169.559 Fire pumps. (a) Each sailing school vessel must be equipped with fire pumps as required in Table 169.559(a). Table 169.559(a)—Fire Pumps Length Exposed and...

  18. 21 CFR 880.5725 - Infusion pump.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Infusion pump. 880.5725 Section 880.5725 Food and... Infusion pump. (a) Identification. An infusion pump is a device used in a health care facility to pump... means to detect a fault condition, such as air in, or blockage of, the infusion line and to activate an...

  19. 21 CFR 880.5725 - Infusion pump.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Infusion pump. 880.5725 Section 880.5725 Food and... Infusion pump. (a) Identification. An infusion pump is a device used in a health care facility to pump... means to detect a fault condition, such as air in, or blockage of, the infusion line and to activate an...

  20. Experimental analysis of the flow pattern of a pump turbine model in pump mode

    NASA Astrophysics Data System (ADS)

    Guggenberger, Mark; Senn, Florian; Jaberg, Helmut; Gehrer, Arno; Sallaberger, Manfred; Widmer, Christian

    2016-11-01

    Reversible pump turbines are the only means to store primary energy in an highly efficient way. Within a short time their operation can be switched between the different operational regimes thus enhancing the stabilization of the electric grid. These qualities in combination with the operation even at off-design conditions offer a high flexibility to the energy market. However, pump turbines pass through operational regimes where their behaviour becomes unstable. One of these effects occurs when the flowrate is decreased continuously down to a minimum. This point is the physical limitation of the pump operation and is very difficult to predict properly by numerical design without a model test. The purpose of the present study is to identify the fluid mechanical phenomena leading to the occurrence of instabilities of pump turbines in pump mode. A reduced scale model of a ANDRITZ pump turbine was installed on a 4-quadrant test rig for the experimental investigation of unstable conditions in pump mode. The performed measurements are based on the IEC60193-standard. Characteristic measurements at a single guide vane opening were carried out to get a detailed insight into the instabilities in pump mode. The interaction between runner and guide vane was analysed by Particle Image Velocimetry. Furthermore, high-speed visualizations of the suction side part load flow and the suction recirculation were performed. Like never before the flow pattern in the draft tube cone became visible with the help of a high-speed camera by intentionally caused cavitation effects which allow a qualitative view on the flow pattern in the draft tube cone. Suction recirculation is observed in form of single vortices separating from each runner blade and stretching into the draft tube against the main flow direction. To find an explanation for the flow phenomena responsible for the appearance of the unstable head curve also characteristic velocity distributions on the pressure side were combined

  1. 12 CFR 1.6 - Convertible securities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Convertible securities. 1.6 Section 1.6 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY INVESTMENT SECURITIES § 1.6 Convertible securities. A national bank may not purchase securities convertible into stock at the option of...

  2. 12 CFR 1.6 - Convertible securities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 1 2013-01-01 2013-01-01 false Convertible securities. 1.6 Section 1.6 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY INVESTMENT SECURITIES § 1.6 Convertible securities. A national bank may not purchase securities convertible into stock at the option of...

  3. 12 CFR 1.6 - Convertible securities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Convertible securities. 1.6 Section 1.6 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY INVESTMENT SECURITIES § 1.6 Convertible securities. A national bank may not purchase securities convertible into stock at the option of...

  4. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, K. S.

    1985-01-01

    This semiannual progress report covers the period from April 1, 1985 to Sept. 30, 1985 under NASA grant NAS1-441 entitled direct solar pumped iodine laser amplifier. During this period the parametric studies of the iodine laser oscillator pumped by a Vortek simulator was carried out before the amplifier studies. The amplifier studies are postponed to the extended period following completion of the parametric studies. In addition, the kinetic modeling of a solar pumped iodine laser amplifier, and the experimental work for a solar pumped dye laser amplifier are in progress. This report contains three parts: (1) the radiation characteristics of solar simulator and the parametric characteristics of photodissociation iodine laser continuously pumped by a Vortek solar simulator; (2) kinetic modeling of a solar pumped iodine laser amplifier; and (3) the study of the dye laser amplifier pumped by a Tamarack solar simulator.

  5. Photodegradation of sulfasalazine and its human metabolites in water by UV and UV/peroxydisulfate processes.

    PubMed

    Ji, Yuefei; Yang, Yan; Zhou, Lei; Wang, Lu; Lu, Junhe; Ferronato, Corinne; Chovelon, Jean-Marc

    2018-04-15

    The widespread occurrence of pharmaceuticals and their metabolites in natural waters has raised great concerns about their potential risks on human health and ecological systems. This study systematically investigates the degradation of sulfasalazine (SSZ) and its two human metabolites, sulfapyridine (SPD) and 5-aminosalicylic acid (5-ASA), by UV and UV/peroxydisulfate (UV/PDS) processes. Experimental results show that SPD and 5-ASA were readily degraded upon UV 254 nm direct photolysis, with quantum yields measured to be (8.6 ± 0.8) × 10 -3 and (2.4 ± 0.1) × 10 -2  mol Einstein -1 , respectively. Although SSZ was resistant to direct UV photolysis, it could be effectively removed by both UV/H 2 O 2 and UV/PDS processes, with fluence-based pseudo-first-order rate constants determined to be 0.0030 and 0.0038 cm 2  mJ -1 , respectively. Second-order rate constant between SO 4 •- and SSZ was measured as (1.33 ± 0.01) × 10 9  M -1 s -1 by competition kinetic method. A kinetic model was established for predicting the degradation rate of SSZ in the UV/PDS process. Increasing the dosage of PDS significantly enhanced the degradation of SSZ in the UV/PDS process, which can be well predicted by the developed kinetic model. Natural water constituents, such as natural organic matter (NOM) and bicarbonate (HCO 3 - ), influenced the degradation of SSZ differently. The azo functional group of SSZ molecule was predicted as the reactive site susceptible to electrophilic attack by SO 4 •- by frontier electron densities (FEDs) calculations. Four intermediate products arising from azo bond cleavage and SO 2 extrusion were identified by solid phase extraction-liquid chromatography-triple quadrupole mass spectrometry (SPE-LC-MS/MS). Based on the products identified, detailed transformation pathways for SSZ degradation in the UV/PDS system were proposed. Results reveal that UV/PDS could be an efficient approach for remediation of water

  6. UV-B measurements in India

    NASA Astrophysics Data System (ADS)

    Prasad, B. S. N.; Gayathri, H. B.; Muralikrishnan, N.

    1992-01-01

    Global UV-B flux (sum of direct and diffuse radiations) data at four wavelengths 280, 290, 300 and 310 nm are recorded at several locations in India as part of Indian Middle Atmosphere Programme (IMAP). The stations have been selected considering distinct geographic features and possible influence of atmospheric aerosols and particulates on the ground reaching UV-B flux. Mysore (12.6°N, 76.6°E) has been selected as a continental station largely free from any industrial pollution and large scale bio-mass burning. An examination of the ground reaching UV-B flux at Mysore shows a marked dirunal and seasonal asymmetry. This can be attributed to the seasonally varying atmospheric aerosols and particulates which influence the scattering of UV-B radiation. The available parameterization models are used to reproduce the experimental UV-B irradiance by varying the input parameters to the model. These results on the dirunal and seasonal variation of global UV-B flux from experiment and models are discussed in this paper.

  7. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis

    NASA Astrophysics Data System (ADS)

    Caputo, Fanny; de Nicola, Milena; Sienkiewicz, Andrzej; Giovanetti, Anna; Bejarano, Ignacio; Licoccia, Silvia; Traversa, Enrico; Ghibelli, Lina

    2015-09-01

    Efficient inorganic UV shields, mostly based on refracting TiO2 particles, have dramatically changed the sun exposure habits. Unfortunately, health concerns have emerged from the pro-oxidant photocatalytic effect of UV-irradiated TiO2, which mediates toxic effects on cells. Therefore, improvements in cosmetic solar shield technology are a strong priority. CeO2 nanoparticles are not only UV refractors but also potent biological antioxidants due to the surface 3+/4+ valency switch, which confers anti-inflammatory, anti-ageing and therapeutic properties. Herein, UV irradiation protocols were set up, allowing selective study of the extra-shielding effects of CeO2vs. TiO2 nanoparticles on reporter cells. TiO2 irradiated with UV (especially UVA) exerted strong photocatalytic effects, superimposing their pro-oxidant, cell-damaging and mutagenic action when induced by UV, thereby worsening the UV toxicity. On the contrary, irradiated CeO2 nanoparticles, via their Ce3+/Ce4+ redox couple, exerted impressive protection on UV-treated cells, by buffering oxidation, preserving viability and proliferation, reducing DNA damage and accelerating repair; strikingly, they almost eliminated mutagenesis, thus acting as an important tool to prevent skin cancer. Interestingly, CeO2 nanoparticles also protect cells from the damage induced by irradiated TiO2, suggesting that these two particles may also complement their effects in solar lotions. CeO2 nanoparticles, which intrinsically couple UV shielding with biological and genetic protection, appear to be ideal candidates for next-generation sun shields.

  8. Wavelength-tunable Hermite-Gaussian modes and an orbital-angular-momentum-tunable vortex beam in a dual-off-axis pumped Yb:CALGO laser.

    PubMed

    Shen, Yijie; Meng, Yuan; Fu, Xing; Gong, Mali

    2018-01-15

    A dual-off-axis pumping scheme is presented to generate wavelength-tunable high-order Hermite-Gaussian (HG) modes in Yb:CaGdAlO 4 lasers. The mode and wavelength can be actively controlled by the off-axis displacements and pump power. The purities of the output HG modes are quantified by intensity distributions and the measured M 2 values. The highest order reaches m=15 for stable HG m,0 mode, and wavelength-tunable width is about 10 nm. Moreover, through externally converting the HG m,0 modes, the vortex beams carrying orbital angular momentum (OAM) with a large OAM-tunable range from ±1ℏ to ±15ℏ are produced. This work is effective for largely scaling the spectral and OAM tunable ranges of optical vortex beams.

  9. A regional comparison of solar, heat pump, and solar-heat pump systems

    NASA Astrophysics Data System (ADS)

    Manton, B. E.; Mitchell, J. W.

    1982-08-01

    A comparative study of the thermal and economic performance of the parallel and series solar heat pump systems, stand alone solar and stand alone heat pump systems for residential space and domestic hot water heating for the U.S. using FCHART 4.0 is presented. Results show that the parallel solar heat pump system yields the greatest energy savings in the south. Very low cost collectors (50-150 dollars/sq m) are required for a series solar heat pump system in order for it to compete economically with the better of the parallel or solar systems. Conventional oil or gas furnaces need to have a seasonal efficiency of at least 70-85% in order to save as much primary energy as the best primary system in the northeast. In addition, the implications of these results for current or proposed federal tax credit measures are discussed.

  10. Electrokinetic pump

    DOEpatents

    Hencken, Kenneth R.; Sartor, George B.

    2004-08-03

    An electrokinetic pump in which the porous dielectric medium of conventional electrokinetic pumps is replaced by a patterned microstructure. The patterned microstructure is fabricated by lithographic patterning and etching of a substrate and is formed by features arranged so as to create an array of microchannels. The microchannels have dimensions on the order of the pore spacing in a conventional porous dielectric medium. Embedded unitary electrodes are vapor deposited on either end of the channel structure to provide the electric field necessary for electroosmotic flow.

  11. WATER PUMP HOUSE, TRA619, PUMP INSTALLATION. CAMERA FACING NORTHEAST CORNER. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WATER PUMP HOUSE, TRA-619, PUMP INSTALLATION. CAMERA FACING NORTHEAST CORNER. CARD IN LOWER RIGHT WAS INSERTED BY INL PHOTOGRAPHER TO COVER AN OBSOLETE SECURITY RESTRICTION PRINTED ON THE ORIGINAL NEGATIVE. INL NEGATIVE NO. 3998. Unknown Photographer, 12/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  12. DC/DC Converter Stability Testing Study

    NASA Technical Reports Server (NTRS)

    Wang, Bright L.

    2008-01-01

    This report presents study results on hybrid DC/DC converter stability testing methods. An input impedance measurement method and a gain/phase margin measurement method were evaluated to be effective to determine front-end oscillation and feedback loop oscillation. In particular, certain channel power levels of converter input noises have been found to have high degree correlation with the gain/phase margins. It becomes a potential new method to evaluate stability levels of all type of DC/DC converters by utilizing the spectral analysis on converter input noises.

  13. Pneumatically Actuated Miniature Peristaltic Vacuum Pumps

    NASA Technical Reports Server (NTRS)

    Feldman, Sabrina; Feldman, Jason; Svehla, Danielle

    2003-01-01

    Pneumatically actuated miniature peristaltic vacuum pumps have been proposed for incorporation into advanced miniature versions of scientific instruments that depend on vacuum for proper operation. These pumps are expected to be capable of reaching vacuum-side pressures in the torr to millitorr range (from .133 down to .0.13 Pa). Vacuum pumps that operate in this range are often denoted roughing pumps. In comparison with previously available roughing pumps, these pumps are expected to be an order of magnitude less massive and less power-hungry. In addition, they would be extremely robust, and would operate with little or no maintenance and without need for oil or other lubricants. Portable mass spectrometers are typical examples of instruments that could incorporate the proposed pumps. In addition, the proposed pumps could be used as roughing pumps in general laboratory applications in which low pumping rates could be tolerated. The proposed pumps could be designed and fabricated in conventionally machined and micromachined versions. A typical micromachined version (see figure) would include a rigid glass, metal, or plastic substrate and two layers of silicone rubber. The bottom silicone layer would contain shallow pump channels covered by silicone arches that could be pushed down pneumatically to block the channels. The bottom silicone layer would be covered with a thin layer of material with very low gas permeability, and would be bonded to the substrate everywhere except in the channel areas. The top silicone layer would be attached to the bottom silicone layer and would contain pneumatic- actuation channels that would lie crosswise to the pump channels. This version is said to be micromachined because the two silicone layers containing the channels would be fabricated by casting silicone rubber on micromachined silicon molds. The pneumatic-actuation channels would be alternately connected to a compressed gas and (depending on pump design) either to atmospheric

  14. Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes

    PubMed Central

    Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R.

    2016-01-01

    A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery. PMID:27193507

  15. Capillary-Condenser-Pumped Heat-Transfer Loop

    NASA Technical Reports Server (NTRS)

    Silverstein, Calvin C.

    1989-01-01

    Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.

  16. 46 CFR 154.1135 - Pumps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Pumps. 154.1135 Section 154.1135 Shipping COAST GUARD...-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Firefighting § 154.1135 Pumps. (a) Water to the water spray system must be supplied by: (1) A pump that is only for the use of...

  17. Passive Resonant Bidirectional Converter with Galvanic Barrier

    NASA Technical Reports Server (NTRS)

    Rosenblad, Nathan S. (Inventor)

    2014-01-01

    A passive resonant bidirectional converter system that transports energy across a galvanic barrier includes a converter using at least first and second converter sections, each section including a pair of transfer terminals, a center tapped winding; a chopper circuit interconnected between the center tapped winding and one of the transfer terminals; an inductance feed winding interconnected between the other of the transfer terminals and the center tap and a resonant tank circuit including at least the inductance of the center tap winding and the parasitic capacitance of the chopper circuit for operating the converter section at resonance; the center tapped windings of the first and second converter sections being disposed on a first common winding core and the inductance feed windings of the first and second converter sections being disposed on a second common winding core for automatically synchronizing the resonant oscillation of the first and second converter sections and transferring energy between the converter sections until the voltage across the pairs of transfer terminals achieves the turns ratio of the center tapped windings.

  18. All-Glass Fiber Amplifier Pumped by Ultra-High Brightness Pumps

    DTIC Science & Technology

    2016-02-15

    coated triple-clad fibers, we are developing triple-clad Yb fiber with gold coating for improved thermal management. 2.1 Pump laser The two...amplifier results using gain fiber with metalized fiber coating . Keywords: Fiber laser , specialty fiber, pump laser , beam combining, fiber metal coating ... coating can exceed its long-term damage threshold. Such a concern obviously does not apply to a fiber with gold protective coating [14]. Thus in

  19. Experimental and Numerical Analysis of Performance Discontinuity of a Pump-Turbine under Pumping Mode

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Burgstaller, R.; Lai, X.; Gehrer, A.; Kefalas, A.; Pang, Y.

    2016-11-01

    The performance discontinuity of a pump-turbine under pumping mode is harmful to stable operation of units in hydropower station. In this paper, the performance discontinuity phenomenon of the pump-turbine was studied by means of experiment and numerical simulation. In the experiment, characteristics of the pump-turbine with different diffuser vane openings were tested in order to investigate the effect of pumping casing to the performance discontinuity. While other effects such as flow separation and rotating stall are known to have an effect on the discontinuity, the present studied test cases show that prerotation is the dominating effect for the instability, positions of the positive slope of characteristics are almost the same in different diffuser vane opening conditions. The impeller has principal effect to the performance discontinuity. In the numerical simulation, CFD analysis of tested pump-turbine has been done with k-ω and SST turbulence model. It is found that the position of performance curve discontinuity corresponds to flow recirculation at impeller inlet. Flow recirculation at impeller inlet is the cause of the discontinuity of characteristics curve. It is also found that the operating condition of occurrence of flow recirculation at impeller inlet is misestimated with k-ω and SST turbulence model. Furthermore, the original SST model has been modified. We predict the occurrence position of flow recirculation at impeller inlet correctly with the modified SST turbulence model, and it also can improve the prediction accuracy of the pump- turbine performance at the same time.

  20. Efficiency of ocular UV protection by clear lenses

    PubMed Central

    Rifai, Katharina; Hornauer, Matthias; Buechinger, Ramona; Schoen, Roland; Barraza-Bernal, Maria; Habtegiorgis, Selam; Glasenapp, Carsten; Wahl, Siegfried; Mappes, Timo

    2018-01-01

    Ocular UV doses accumulate all-day, not only during periods of direct sun exposure. The UV protection efficiency of three clear lenses was evaluated experimentally, validated by simulation, and compared to non-UV protection: a first spectacle lens with a tailored UV absorber, a second spectacle lens, minimizing UV back reflections, as well as a third spectacle lens, combining both. A tailored UV-absorber efficiently reduced overall UV irradiance to 7 %, whereas reduction of back-reflections still left UV irradiance at 42 %. Thus, clear lenses with a tailored UV absorber efficiently protect the eye from UV, supplementing sun glasses wear to an all-day protection scenario. PMID:29675331