Science.gov

Sample records for pumping system design

  1. TFCX pumped limiter and vacuum pumping system design and analysis

    SciTech Connect

    Haines, J.R.

    1985-04-01

    Impurity control system design and performance studies were performed in support of the Tokamak Fusion Core Experiment (TFCX) pre-conceptual design. Efforts concentrated on pumped limiter and vacuum pumping system design configuration, thermal/mechanical and erosion lifetime performance of the limiter protective surface, and helium ash removal performance. The reference limiter design forms a continuous toroidal belt at the bottom of the device and features a flat surface with a single leading edge. The vacuum pumping system features large vacuum ducts (diameter approximately 1 m) and high-speed, compound cryopumps. Analysis results indicate that the limiter/vacuum pumping system design provides adequate helium ash removal. Erosion, primarily by disruption-induced vaporization and/or melting, limits the protective surface lifetime to about one calendar year or only about 60 full-power hours of operation. In addition to evaluating impurity control system performance for nominal TFCX conditions, these studies attempt to focus on the key plasma physics and engineering design issues that should be addressed in future research and development programs.

  2. Optimal Ground Source Heat Pump System Design

    SciTech Connect

    Ozbek, Metin; Yavuzturk, Cy; Pinder, George

    2015-04-01

    Despite the facts that GSHPs first gained popularity as early as the 1940’s and they can achieve 30 to 60 percent in energy savings and carbon emission reductions relative to conventional HVAC systems, the use of geothermal energy in the U.S. has been less than 1 percent of the total energy consumption. The key barriers preventing this technically-mature technology from reaching its full commercial potential have been its high installation cost and limited consumer knowledge and trust in GSHP systems to deliver the technology in a cost-effective manner in the market place. Led by ENVIRON, with support from University Hartford and University of Vermont, the team developed and tested a software-based a decision making tool (‘OptGSHP’) for the least-cost design of ground-source heat pump (‘GSHP’) systems. OptGSHP combines state of the art optimization algorithms with GSHP-specific HVAC and groundwater flow and heat transport simulation. The particular strength of OptGSHP is in integrating heat transport due to groundwater flow into the design, which most of the GSHP designs do not get credit for and therefore are overdesigned.

  3. Optimum design of a photovoltaic powered pumping system

    NASA Astrophysics Data System (ADS)

    Anis, Wagdy R.; Nour, M. A.

    Photovoltaic (PV)-powered pumping systems are relatively simple and reliable. Hence, they are applied worldwide. Two conventional techniques are currently in use: the first is the 'directly-coupled' system where a PV array is directly coupled to a d.c. motor-pump group; the second is the 'battery-buffered' system where a battery is connected across the array to feed the d.c. motor that drives the pump. Recently, a third system has been proposed, namely, the 'switched-mode' PV-powered pumping system. This system couples the pump to the PV array directly when the storage battery is fully charged. The objective is the maximum utilization of available solar radiation to minimize the cost per pumped cubic meter from a given water depth. For a given location, four main parameters affect the design of this system: (i) d.c. motor-pump group parameters; (ii) PV array size; (iii) battery storage size, and (iv) water storage tank size. It is found that some of the factors are more effective in reducing the cost than others. The PV array size is the predominant factor, while the battery storage and water-tank sizes have relatively less effect. A detailed economic analysis is given.

  4. Design manual. [High temperature heat pump for heat recovery system

    SciTech Connect

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  5. Design and performance of differential pumping system of coating unit

    NASA Astrophysics Data System (ADS)

    Karmakar, P.; Maiti, N.; Bapat, A. V.

    2008-05-01

    A box type coating unit has been developed in view of dual purpose of optical and reactive coating. The system is divided in two parts namely, substrate chamber (800mm × 800 mm × 100 mm) and gun chamber (800mm × 800 mm × 100 mm). Coating material is evaporated in the substrate chamber by traverse (270°) electron beams. Reactive gas is injected in the substrate chamber by up-stream pressure controller to reach set pressures in the range of 1×10-3 mbar to 1×10-4 mbar for gas flow rate in the range of 0-30 sccm. Traverse EB guns (10 kV, 15 kW, 2 No) are mounted inside gun chamber. The gun chamber vacuum should be better than 1×10-5 mbar for the operation of EB guns. Both these chambers are connected by the apertures provided on the intermediate bifurcation plate for the passage of electron beams. Through the apertures the reactive gas leaks from the substrate chamber to the gun chamber due to differential pressure. The differential pumping system consists of individual pumping modules for the substrate chamber and the gun chamber. The paper focuses upon the design of differential pumping system in view of determination of steady state differential pressures for different flow rates of reactive gas. It has been noticed that on introduction of reactive gas in the substrate chamber, the pressures in the substrate chamber and the gun chamber oscillates before converging to steady state values. Theoretically calculated values have been compared with the experimental values as design validation.

  6. Design and evaluation of a primary/secondary pumping system for a heat pump assisted solar thermal loop

    NASA Astrophysics Data System (ADS)

    Krockenberger, Kyle G.

    A heat pump assisted solar thermal system was designed, commissioned, tested and analyzed over a period of two years. The unique system uses solar energy whenever it is available, but switches to heat pump mode at night or whenever there is a lack of solar energy. The solar thermal energy is added by a variety of flat plat solar collectors and an evacuated tube heat pipe solar collector. The working medium in the entire system is a 50% mixture of propylene glycol and water for freeze protection. During the design and evaluation the primary / secondary pumping system was the focus of the evaluation. Testing within this research focused on the operation modes, pump stability, and system efficiency. It was found that the system was in full operation, the pumps were stable and that the efficiency factor of the system was 1.95.

  7. Development and Optimized Design of Propeller Pump System & Structure with VFD in Low-head Pumping Station

    NASA Astrophysics Data System (ADS)

    Rentian, Zhang; Honggeng, Zhu; Arnold, Jaap; Linbi, Yao

    2010-06-01

    Compared with vertical-installed pumps, the propeller (bulb tubular) pump systems can achieve higher hydraulic efficiencies, which are particularly suitable for low-head pumping stations. More than four propeller pumping stations are being, or will be built in the first stage of the S-to-N Water Diversion Project in China, diverting water from Yangtze River to the northern part of China to alleviate water-shortage problems and develop the economy. New structures of propeller pump have been developed for specified pumping stations in Jiangsu and Shandong Provinces respectively and Variable Frequency Drives (VFDs) are used in those pumping stations to regulate operating conditions. Based on the Navier-Stokes equations and the standard k-e turbulent model, numerical simulations of the flow field and performance prediction in the propeller pump system were conducted on the platform of commercial software CFX by using the SIMPLEC algorithm. Through optimal design of bulb dimensions and diffuser channel shape, the hydraulic system efficiency has improved evidently. Furthermore, the structures of propeller pumps have been optimized to for the introduction of conventional as well as permanent magnet motors. In order to improve the hydraulic efficiency of pumping systems, both the pump discharge and the motor diameter were optimized respectively. If a conventional motor is used, the diameter of the pump casing has to be increased to accommodate the motor installed inside. If using a permanent magnet motor, the diameter of motor casing can be decreased effectively without decreasing its output power, thus the cross-sectional area is enlarged and the velocity of flowing water decreased favorably to reduce hydraulic loss of discharge channel and thereby raising the pumping system efficiency. Witness model tests were conducted after numerical optimization on specific propeller pump systems, indicating that the model system hydraulic efficiencies can be improved by 0.5%˜3.7% in

  8. Optical pumping system design for large production of hyperpolarized.

    PubMed

    Ruset, I C; Ketel, S; Hersman, F W

    2006-02-10

    We present a design for a spin-exchange optical pumping system to produce large quantities of highly polarized 129Xe. Low xenon concentrations in the flowing gas mixture allow the laser to maintain high Rb polarization. The large spin-exchange rate between Rb and 129Xe through the long-lived van der Waals molecules at low pressure, combined with a high flow rate, results in large production rates of hyperpolarized xenon. We report a maximum polarization of 64% achieved for a 0.3 l/h Xe flow rate, and maximum magnetization output of 6 l/h at 22% polarization. Our findings regarding the polarization dependence on temperature, nitrogen partial pressure, and gas mixture flow velocity are also reported.

  9. Computer system design description for the spare pump mini-dacs data acquisition and control system

    SciTech Connect

    Vargo, G.F. Jr.

    1994-09-29

    The attached document outlines the computer software design for the mini data acquisition and control system (DACS), that supports the testing of the spare pump for Tank 241-SY-101, at the maintenance and storage facility (MASF).

  10. Pump Design

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A NASA handbook on a general purpose titanium alloy was used by Sundstrand Corporation in design calculation for casting titanium impellers. Information contributed substantially to improved impeller design.

  11. Pumping system

    SciTech Connect

    Kime, J.A.

    1987-05-19

    This patent describes a gas-oil production system for pumping formation fluid in a well through a tubing string within which a down hole pump connects to a hydraulic stroking device through a rod string providing the pump including a plunger reciprocally driven by the hydraulic stroking device toward an upper terminal position during a plunger upstroke. The rod string normally supports the weight of a column of fluid and toward a lower terminal position at the end of a plunger downstroke during which the weight of the column fluid is normally transferred to the tubing string through fluid within the pump. The method for detecting when the well is pumped off comprises: supplying working fluid to the hydraulic stroking device to raise the hydraulic stroking device and thereby move the plunger from the lower terminal position to the upper terminal position; and removing the working fluid at a controlled rate from the hydraulic stroking device.

  12. Design, manufacture, and test of coolant pump-motor assembly for Brayton power conversion system

    NASA Technical Reports Server (NTRS)

    Gabacz, L. E.

    1973-01-01

    The design, development, fabrication, and testing of seven coolant circulating pump-motor assemblies are discussed. The pump-motor assembly is driven by the nominal 44.4-volt, 400-Hz, 3-phase output of a nominal 56-volt dc input inverter. The pump-motor assembly will be used to circulate Dow Corning 200 liquid coolant for use in a Brayton cycle space power system. The pump-motor assembly develops a nominal head of 70 psi at 3.7 gpm with an over-all efficiency of 26 percent. The design description, drawings, photographs, reliability results, and developmental and acceptance test results are included.

  13. Influence of design parameters of discharge passage on the performance of shaft tubular pumping system

    NASA Astrophysics Data System (ADS)

    Zhu, H. G.; Zhang, R. T.; Xia, J.; Zhou, H. B.; Tang, X. C.

    2013-12-01

    Shaft tubular pumping systems with straight discharge passage are more widely adopted because they possesses many advantages such as easier installation of pump sets, better ventilation for motor and transmission devices, open access to inspect pump sets and lower cost for maintenance. The design parameters of a straight discharge passage will directly affect hydraulic loss and energy performance of the shaft pumping system. The optimal hydraulic design of discharge passages is carried out under the guideline of Pump Station Design Code to satisfy optimal design objectives. Computational fluid dynamics is applied to simulate the internal flow of a shaft pumping system the influence of its design parameter on the system performance is investigated. Keeping the shaft and suction box unchanged, six discharge passage design schemes with different length and outlet width are compared based on CFD to analyze the internal flow fields and their energy performances are predicted. The computed results indicate that when the outlet width of discharge passage is fixed, the longer the discharge passage, the better the internal flow fields with smaller backflow and vortex zone inside the passage. When the length of discharge passage is determined, the axial velocity distribution uniformity and bias angle in the outlet section will vary with the value of the outlet width. Optimal hydraulic design of discharge passages can achieve better internal flow and higher pumping efficiency.

  14. Design and optimization of a large flow rate booster pump in SWRO energy recovery system

    NASA Astrophysics Data System (ADS)

    Lai, Z. N.; Wu, P.; Wu, D. Z.; Wang, L. Q.

    2013-12-01

    Seawater reverse osmosis (SWRO) is a high energy-consumption industry, so energy efficiency is an important issue. Energy recovery systems, which contain a pressure exchanger and a booster pump, are widely used in SWRO plants. As a key part of energy recovery system, the difficulty of designing booster pumps lies in high inlet pressure, high medium causticity and large flow rate. High inlet pressure adds difficulties to seal design, and large flow rate and high efficiency requirement bring high demand for hydraulic design. In this paper, a 625 m3/h booster pump is designed and optimized according to the CFD (Computational Fluid Dynamics) simulation results. The impeller and volute is well designed, a new type of high pressure mechanical seal is applied and axial force is well balanced. After optimization based on blade redesign, the efficiency of the pump was improved. The best efficiency reaches more than 85% at design point according to the CFD simulation result.

  15. The analysis and system design for MCG measurement based on optically pumped cesium magnetometer

    NASA Astrophysics Data System (ADS)

    Yang, Zhang; Chong, Kang; Wang, Qingtao; Lei, Cheng; Zheng, Caiping

    2010-11-01

    At present, laser optical pumping magnetometer of sensitivity is continuous improved and can measure the range from Earth magnetic field to the bio-magnetic field. In the bio-magnetic field, magnetocardiography (MCG) is paid also more and more attention. In this paper, we will discuss cesium optically pumped magnetometer theoretical analysis, system design, the magnetic field gradient measuring principle. On this basis, we build optically pumped magnetometer in a gradient structure for the cardiac magnetic measurements and filter through the wavelet transform. Based on optical pumping magnetometer measuring MCG will be applied in life science, clinical medicine and other fields.

  16. An approach to the optimum design of sucker-rod pumping systems

    SciTech Connect

    Han, D.; Wiggins, M.L.; Menzie, D.E.

    1995-12-31

    Sucker-rod pumping system design is often a trial and error process. Many simplifying assumptions are used which may not be consistent with the well conditions. This paper presents a new methodology for the optimum design of pumping unit systems. In this approach, plunger diameter, polished rod stroke length, pumping speed and pump intake pressure are chosen as basic design variables. Production rate and rod string taper are determined by an iteration algorithm which systematically couples well inflow performance and vertical flow effects into the design process. Polished rod load, peak gear box torque, polished rod horse power and counterbalance effect are also determined at the end of the iteration calculation. Different design objective functions can be used to rate the pumping modes. Thus, the optimum design of pumping unit systems becomes a matter of solving for the combination of the four basic design variables which maximize or minimize an objective function within the limitations of available equipment by a mathematical programming method.

  17. Design of a Mechanical NaK Pump for Fission Space Power Systems

    NASA Technical Reports Server (NTRS)

    Mireles, Omar R.; Bradley, David; Godfroy, Thomas

    2010-01-01

    Alkali liquid metal cooled fission reactor concepts are under development for mid-range spaceflight power requirements. One such concept utilizes a sodium-potassium eutectic (NaK) as the primary loop working fluid. Traditionally, linear induction pumps have been used to provide the required flow and head conditions for liquid metal systems but can be limited in performance. This paper details the design, build, and check-out test of a mechanical NaK pump. The pump was designed to meet reactor cooling requirements using commercially available components modified for high temperature NaK service.

  18. Intelligent pumping system developed

    SciTech Connect

    Not Available

    1983-06-01

    The oil field's first intelligent rod pumping system designed specifically to reduce the cost of pumping oil wells now is a reality. As a plus benefit, the system (called Liftronic) is compact and quiet. The new system combines an efficient mechanical design with a computer control system to reduce pumping costs. The unit stands less than 8 ft high, or approx. one-fourth the height of a comparable beam unit. It also mounts directly on the wellhead. The entire system can be concealed behind a fence or enclosed within a small building to make it a more attractive neighbor in residential, commercial, or recreational areas. It is useful also for agricultural areas where overhead irrigation systems restrict the use of many oil field pumping systems.

  19. Designing & Optimizing a Moving Magnet Pump for Liquid Sodium Systems

    NASA Astrophysics Data System (ADS)

    Hvasta, Michael G.

    Advanced materials such as NF-616, NF-709, HT-UPS, and silicon carbide (SiC) have greater strength than traditional structural materials such as 316-SS. Thus, using these high-strength materials to build sodium-cooled fast reactors (SFRs) could potentially reduce construction costs by lessening the required amount of material, and increase the efficiency of electromagnetic pumps by limiting ohmic heating within the pump duct walls. However, information pertaining to the sodium-compatibility of these alloys and ceramics is very sparse. Therefore, two separate test facilities were built to study the impact of both static and dynamic sodium corrosion The dynamic test facility enabled sodium corrosion to be studied under prototypic SFR operating conditions (T = 500 [C], V = 9.35 [m/s], CO = 2-3 [wppm]). The oxygen concentration, CO, within the dynamic test facility was maintained using a cold trap and measured with a plugging meter. The flow rate of the sodium was measured using a calibrated electromagnetic flowmeter. A moving magnet pump (MMP) was used to move the liquid sodium past the corrosion samples at a high velocity. Using newly developed theory, it was found that MMP performance could be accurately modeled and predicted for a wide variety of pump configurations.

  20. [Design push-pull osmotic pump tablets of famotidine based on an expert system for the formulation design of osmotic pump of poor water-soluble drug].

    PubMed

    Zhang, Zhi-Hong; Jin, Jie; Zhang, Hong-Wu; Xin, Wei; Jia, Guo-Bin; Wu, Wen-Fang; Pan, Wei-San

    2011-01-01

    The purpose of this study is to design push-pull osmotic pump (PPOP) tablets of famotidine using the expert system for the formulation design of osmotic pump of poor water-soluble drug which had been established by the authors. Firstly, the parameters which were requisite of the system input were obtained from literatures and experimental tests. Then the parameters were input into the system, and the program was run. The system displayed the designed formulations sequential. Finally, famotidine PPOP was prepared according to the designed formulations and the in vitro dissolution was carried out. It was found out that the target formulation of famotidine PPOP which could release for 24 hours was obtained in a very short period. Meanwhile, the practicability of the established expert system was proved.

  1. Elmo Bumpy Torus proof of principle, Phase II: Title 1 report. Volume V. Vacuum-pumping system. Preliminary design report

    SciTech Connect

    Not Available

    1982-02-26

    This report summarizes Title I Preliminary Design of the EBT-P Vacuum Pumping System. The Vacuum Pumping System has been designed by the McDonnell Douglas Astronautics Co. - St. Louis (MDAC). It includes the necessary vacuum pumps and vacuum valves to evacuate the torus, the Mirror Coil Dewars (MC Dewars), and the Gyrotron Magnet Dewars. The pumping ducts, manifolds, and microwave protection system are also included. A summary of the function of each subsystem and a description of its principle components is provided below. The analyses performed during the system design are also identified.

  2. Design and development of a split-evaporator heat-pump system

    SciTech Connect

    Somerville, M.H.; Penoncello, S.G.

    1981-12-01

    The designs and experimental results of three types of multiple source heat pumps are presented. The three designs are the parallel evaporator, the series evaporator, and the parallel evaporator with active subcooling, with the parallel evaporator with the active subcooling showing the most promise for solving the problem of defrosting of air evaporators. Three design procedures for multiple source heat pumps were developed. One of these is a hand calculational procedure, the others are computer based. The models are based upon the refrigerant flow rate, rather than the refrigeration effect of the evaporator. The technical results of a detailed analytical and experimental model of the heat transfer rates on a flat plate ice maker are presented. It is shown, both analytically and experimentally, that the temperature of the air surrounding the flat plate ice maker can play a dominant role in the rate of ice formation. A detailed weather analysis for forty cities located throughout the nation was completed. These data were processed to allow easy computation of thermal storage requirements for full, partial, or minimum ACES systems, or upon other design requirements, such as off-peak air conditioning. The results of an innovative ice storage system that is thermally coupled to the earth are described. This system has the potential for meeting both the off-peak air conditioning needs and the thermal storage requirements for the heating cycle. An economic and energy comparison of multiple source heat pumps with ACES, and air-to-air heat pump systems is presented.

  3. Vapor Compression and Thermoelectric Heat Pump Heat Exchangers for a Condensate Distillation System: Design and Experiment

    NASA Technical Reports Server (NTRS)

    Erickson, Lisa R.; Ungar, Eugene K.

    2013-01-01

    Maximizing the reuse of wastewater while minimizing the use of consumables is critical in long duration space exploration. One of the more promising methods of reclaiming urine is the distillation/condensation process used in the cascade distillation system (CDS). This system accepts a mixture of urine and toxic stabilizing agents, heats it to vaporize the water and condenses and cools the resulting water vapor. The CDS wastewater flow requires heating and its condensate flow requires cooling. Performing the heating and cooling processes separately requires two separate units, each of which would require large amounts of electrical power. By heating the wastewater and cooling the condensate in a single heat pump unit, mass, volume, and power efficiencies can be obtained. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump performance tests are provided. A summary is provided of the heat pump mass, volume and power trades and a selection recommendation is made.

  4. Geothermal pumping systems

    SciTech Connect

    Hanold, R.J.

    1984-10-18

    After successful field testing of a prototype pressurized lubrication system designed to prevent brine intrusion and loss of lubricating oil from the motor and protector sections of electric submersible pumps, a second-generation lubrication system has been designed, fabricated, and laboratory tested. Based on a sensitive downhole pressure regulator, this system is not depth limited and it accurately controls the differential pressure between the motor oil and the external brine. The first production lengths of metal sheathed power cable have been fabricated by Halpen Engineering and delivered to REDA for testing and evaluation. Laboratory tests performed on prototype metal sheathed cable samples have demonstrated the durability of this power cable design. The East Mesa Pump Test Facility is currently being activated for high-horsepower pumping system tests that are scheduled to commence during the first quarter of FY 85. A 300-horsepower REDA pumping system equipped with a pressure regulator controlled lubrication system and a metal sheathed power cable is being fabricated for testing in this unique facility.

  5. Optimal design of pump-and-treat systems under uncertain hydraulic conductivity and plume distribution.

    PubMed

    Baú, Domenico A; Mayer, Alex S

    2008-08-20

    In this work, we present a stochastic optimal control framework for assisting the management of the cleanup by pump-and-treat of polluted shallow aquifers. In the problem being investigated, hydraulic conductivity distribution and dissolved contaminant plume location are considered as the uncertain variables. The framework considers the subdivision of the cleanup horizon in a number of stress periods over which the pumping policy implemented until that stage is dynamically adjusted based upon new information that has become available in the previous stages. In particular, by following a geostatistical approach, we study the idea of monitoring the cumulative contaminant mass extracted from the installed recovery wells, and using these measurements to generate conditional realizations of the hydraulic conductivity field. These realizations are thus used to obtain a more accurate evaluation of the initial plume distribution, and modify accordingly the design of the pump-and-treat system for the remainder of the remedial process. The study indicates that measurements of contaminant mass extracted from pumping wells retain valuable information about the plume location and the spatial heterogeneity characterizing the hydraulic conductivity field. However, such an information may prove quite soft, particularly in the instances where recovery wells are installed in regions where contaminant concentration is low or zero. On the other hand, integrated solute mass measurements may effectively allow for reducing parameter uncertainty and identifying the plume distribution if more recovery wells are available, in particular in the early stages of the cleanup process.

  6. Photovoltaic pump systems

    NASA Astrophysics Data System (ADS)

    Klockgether, J.; Kiessling, K. P.

    1983-09-01

    Solar pump systems for the irrigation of fields and for water supply in regions with much sunshine are discussed. For surface water and sources with a hoisting depth of 12 m, a system with immersion pumps is used. For deep sources with larger hoisting depths, an underwater motor pump was developed. Both types of pump system meet the requirements of simple installation and manipulation, safe operation, maintenance free, and high efficiency reducing the number of solar cells needed.

  7. Design of Portable Mass Spectrometers with Handheld Probes: Aspects of the Sampling and Miniature Pumping Systems

    PubMed Central

    Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R. Graham; Ouyang, Zheng

    2014-01-01

    Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130g drag pump and Creare 350g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10ng TNT (2,4,6-trinitrotoluene) with Creare 550g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130g drag pump. PMID:25404157

  8. Design of portable mass spectrometers with handheld probes: aspects of the sampling and miniature pumping systems.

    PubMed

    Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R Graham; Ouyang, Zheng

    2015-02-01

    Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130 g drag pump and Creare 350 g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550 g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10 ng TNT (2,4,6-trinitrotoluene) with Creare 550 g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130 g drag pump.

  9. Design of Portable Mass Spectrometers with Handheld Probes: Aspects of the Sampling and Miniature Pumping Systems

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R. Graham; Ouyang, Zheng

    2015-02-01

    Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130 g drag pump and Creare 350 g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550 g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10 ng TNT (2,4,6-trinitrotoluene) with Creare 550 g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130 g drag pump.

  10. Energy saving pump and pumping system

    SciTech Connect

    Chang, K.C.

    1983-08-02

    A centrifugal pump and a pumping system are disclosed that recover hydraulic energy in response to flow capacity reduction and spontaneously provide a recirculating flow at low capacities when pump cooling is needed. From a upstream source the fluid is guided by two suction lines to two parallel pumping mechanisms housed by a common discharge casing. Said pumping mechanisms have a combined hydraulic characteristic that the first pumping mechanism will force a reverse flow through the second pumping mechanism, when pump discharge is reduced by the system below a certain low flow rate. The reverse flow will then return to the upstream fluid source through a suction line. The pump is the protected from overheating by a circulating flow at low flow capacities. At the same time, said reverse flow generates a turbine action on the second pumping mechanism and transmits the contained hydraulic energy back to the rotor and thereby results in power saving at low flow capacities.

  11. Simulation of lakes and surface water heat exchangers for design of surface water heat pump systems

    NASA Astrophysics Data System (ADS)

    Conjeevaram Bashyam, Krishna

    Surface Water Heat Pump (SWHP) system utilize surface water bodies, such as ponds, lakes, rivers, and the sea, as heat sources and/or sinks. These systems may be open-loop, circulating water between the surface water body and a heat exchanger on dry land, or closed-loop, utilizing a submerged surface water heat exchanger (SWHE). Both types of SWHP systems have been widely used, but little in the way of design data, design procedures, or energy calculation procedures is available to aid engineers in the design and analysis of these systems. For either type of SWHP system, the ability to predict the evolution of lake temperature with time is an important aspect of needed design and energy analysis procedures. This thesis describes the development and validation of a lake model that is coupled with a surface water heat exchanger model to predict both the lake dynamics (temperature, stratification, ice/snow cover) and the heat transfer performance of different types of SWHE. This one-dimensional model utilizes a detailed surface heat balance model at the upper boundary, a sediment conduction heat transfer model at the lower boundary, and an eddy diffusion model to predict transport within the lake. The lake model is implemented as part of the developed software design tool, which can be used as an aid in the sizing of SWHE used in closed loop SWHP systems.

  12. Pump system characterization and reliability enhancement

    SciTech Connect

    Staunton, R.H.

    1997-09-01

    Pump characterization studies were performed at the Oak Ridge National Laboratory (ORNL) to review and analyze six years (1990 to 1995) of data from pump systems at domestic nuclear plants. The studies considered not only pumps and pump motors but also pump related circuit breakers and turbine drives (i.e., the pump system). One significant finding was that the number of significant failures of the pump circuit breaker exceeds the number of significant failures of the pump itself. The study also shows how regulatory code testing was designed for the pump only and therefore did not lead to the discovery of other significant pump system failures. Potential diagnostic technologies both experimental and mature, suitable for on-line and off-line pump testing were identified. The study does not select or recommend technologies but proposes diagnostic technologies and monitoring techniques that should be further evaluated/developed for making meaningful and critically needed improvements in the reliability of the pump system.

  13. Flow characteristics of the raw sewage for the design of sewage-source heat pump systems.

    PubMed

    Xu, Ying; Wu, Yuebin; Sun, Qiang

    2014-01-01

    The flow characteristics of raw sewage directly affect the technical and economic performance of sewage-source heat pump systems. The purpose of this research is to characterize the flow characteristics of sewage by experimental means. A sophisticated and flexible experimental apparatus was designed and constructed. Then the flow characteristics of the raw sewage were studied through laboratorial testing and theoretical analyses. Results indicated that raw sewage could be characterized as a power-law fluid with the rheological exponent n being 0.891 and the rheological coefficient k being 0.00175. In addition, the frictional loss factor formula in laminar flow for raw sewage was deduced by theoretical analysis of the power-law fluid. Furthermore, an explicit empirical formula for the frictional loss factor in turbulent flow was obtained through curve fitting of the experimental data. Finally, the equivalent viscosity of the raw sewage is defined in order to calculate the Reynolds number in turbulent flow regions; it was found that sewage had two to three times the viscosity of water at the same temperature. These results contributed to appropriate parameters of fluid properties when designing and operating sewage-source heat pump systems.

  14. Optimal Management Design of a Pump and Treat System at an Industrial Complex using a Parallel Computing Method

    NASA Astrophysics Data System (ADS)

    Park, Y.

    2013-12-01

    Pump and treat systems for groundwater remediation usually require enormous remediation costs which includes remediation time and resources. To reduce remediation costs, it is important to get an optimal management design of a pump and treat system. The optimization of management design requires immense computing time and resources. A parallel computing method, which has been developed to reduce computing time and resources in computer sciences, was applied to get an optimal management design of a pump and treat system. The optimization using a parallel computing method was performed for a pump and treat system of groundwater remediation at an industrial complex site in Korea as an example. Trichloroethylene (TCE) and other solvents have been known as the main contaminants of groundwater at the site. For an optimization technique, a genetic algorithm was selected. For groundwater flow and contaminant transport simulations, MODFLOW, MT3D and RT3D were selected. To test the cost effectiveness, various cases were conceived and optimized. The cost effectiveness of remediation was determined by the total costs, which includes the installation costs of pumping wells and the operational costs of the pump and treat system in addition to the cleaning costs of remediation systems. This subject is supported by Korea Ministry of Environment as "The GAIA Project(173-092-010)".

  15. Computer Simulator for OTEC System Design : Pump Control of Flow Rate

    NASA Astrophysics Data System (ADS)

    Nakamura, Masatoshi; Ikegami, Yasuyuki; Uehara, Haruo

    The purpose of ocean thermal energy conversion (OTEC) is to extract power from temperature differences existing in the oceans. The OTEC system design mainly comprises an OTEC plant design and an OTEC control design. The main purpose of this paper is to demonstrate the importance of a computer simulator for the OTEC system design. The computer simulator, constructed by a computer with A/D and D/A converters, produces analogue input and output signals which are equivalent to those of an actual OTEC plant. By using the computer simulator of an OTEC plant, we can estimate properties of any OTEC plant easily, economically and safely. The computer simulator also plays an important role in detecting difficulties in designing the OTEC controller. We furthermore described the procedure for designing the OTEC controller as follows: (i) statement of the control objective, (ii) modeling of the controlled object, (iii) application of control theory to the model, (iv) characterization of the detector and the input signal part, and (v) construction of the controller. We constructed the computer simulator and the controller for pump flow rate as part of the OTEC plant. We then obtained satisfactory control performance for flow rate control of experiments.

  16. Design and evaluation of osmotic pump-based controlled release system of Ambroxol Hydrochloride.

    PubMed

    Cheng, Xiongkai; Sun, Min; Gao, Yan; Cao, Fengliang; Zhai, Guangxi

    2011-08-01

    The purpose of the present study was to design and evaluate an osmotic pump-based drug delivery system for controlling the release of Ambroxol Hydrochloride (Amb). Citric acid, lactose and polyethylene glycol 6000 (PEG 6000) were employed as osmotic agents. Surelease EC containing polyethylene glycol 400 (PEG 400) controlling the membrane porosity was used as semi-permeable membrane. The formulation of tablet core was optimized by orthogonal design and evaluated by weighted mark method. The influences of the amount of PEG 400 and membrane thickness on Amb release were investigated. The optimal osmotic pump tablet (OPT) was evaluated in different release media and at different stirring rates. The major release power confirmed was osmotic pressure. The release of Amb from OPT was verified at a rate of approximately zero-order, and cumulative release percentage at 12?h was 92.6%. The relative bioavailability of Amb OPT in rabbits relative to the commercial sustained capsule was 109.6%. Our results showed that Amb OPT could be a practical preparation with a good prospect.

  17. Rotating-Pump Design Code

    NASA Technical Reports Server (NTRS)

    Walker, James F.; Chen, Shu-Cheng; Scheer, Dean D.

    2006-01-01

    Pump Design (PUMPDES) is a computer program for designing a rotating pump for liquid hydrogen, liquid oxygen, liquid nitrogen, water, methane, or ethane. Using realistic properties of these fluids provided by another program called GASPAK, this code performs a station-by-station, mean-line analysis along the pump flow path, obtaining thermodynamic properties of the pumped fluid at each station and evaluating hydraulic losses along the flow path. The variables at each station are obtained under constraints that are consistent with the underlying physical principles. The code evaluates the performance of each stage and the overall pump. In addition, by judiciously choosing the givens and the unknowns, the code can perform a geometric inverse design function: that is, it can compute a pump geometry that yields a closest approximation of given design point. The code contains two major parts: one for an axial-rotor/inducer and one for a multistage centrifugal pump. The inducer and the centrifugal pump are functionally integrated. The code can be used in designing and/or evaluating the inducer/centrifugal-pump combination or the centrifugal pump alone. The code is written in standard Fortran 77.

  18. Initial conceptual design study of self-critical nuclear pumped laser systems

    NASA Technical Reports Server (NTRS)

    Rodgers, R. J.

    1979-01-01

    An analytical study of self-critical nuclear pumped laser system concepts was performed. Primary emphasis was placed on reactor concepts employing gaseous uranium hexafluoride (UF6) as the fissionable material. Relationships were developed between the key reactor design parameters including reactor power level, critical mass, neutron flux level, reactor size, operating pressure, and UF6 optical properties. The results were used to select a reference conceptual laser system configuration. In the reference configuration, the 3.2 m cubed lasing volume is surrounded by a graphite internal moderator and a region of heavy water. Results of neutronics calculations yield a critical mass of 4.9 U(235) in the form (235)UF6. The configuration appears capable of operating in a continuous steady-state mode. The average gas temperature in the core is 600 K and the UF6 partial pressure within the lasing volume is 0.34 atm.

  19. Centrifugal pump fuel system

    SciTech Connect

    McGlone, M.E.; Larkins, L.J.; Johnson, R.O.; Moeller, K.A.

    1993-06-22

    A centrifugal pump fuel system for an engine driven fuel pump for an aircraft gas turbine engine is described comprising: a centrifugal pump having at constant speed rising head/flow characteristic at low flows; a plumbing system receiving flow from the pump, and having at least one control valve located down stream of and defining a discrete volume of the plumbing system; a plumbing resonant frequency defined by the discrete volume, the geometry of the plumbing system, and the bulk modulus of the fuel; a pressure difference regulating valve located adjacent to the discharge of the pump, up stream of the vast majority of the discrete volume; and the frequency response of the regulating valve being significantly less than the frequency response of the plumbing system such that the response of the regulating valve is attenuated at the resonant frequency of the plumbing system.

  20. Design and test of a pumped two-phase mounting plate. [for spacecraft thermal control systems

    NASA Technical Reports Server (NTRS)

    Grote, M. G.; Swanson, T. D.

    1985-01-01

    The design, fabrication, and testing of the full-scale development unit of a pumped two-phase mounting plate (TPMP) used in advanced two-phase spacecraft thermal control systems are described. The mounting plate is tested with R-11 in the evaporator mode for total heat loads of over 3000 watts and local heat fluxes over 4 W/sq cm, and in the condenser mode with condenser loads from 60 to 400 watts and inlet qualities from 8 to 94 percent. The calculated heat-transfer coefficients are between 0.66 and 1.0 W/sq cm/C and are nearly independent of the flow rate and heat load except at very low heat loads. It is shown that the TPMP can be run with inlet conditions down to 22 C subcooling without any significant gradients in the plate and that it performs well with nonuniform heat fluxes.

  1. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  2. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  3. Design considerations for bearingless rotary pumps.

    PubMed

    Kung, R T; Hart, R M

    1997-07-01

    The designs of rotary blood pumps have shown substantial technical progress over recent years, especially contact bearing designs. However, the concern for potential thromboembolism remains and can only be eliminated by the use of bearingless pumps. Bearingless designs can be achieved through the application of magnetic, hydrodynamic, and hydrostatic forces or a proper combination of these forces. Although a purely magnetically suspended, actively controlled system can be designed, judicious use of hydraulic forces can allow simplification of device configuration and control. In this study, bearingless designs were evaluated for both axial and centrifugal pump configurations. Trade-offs between shear rates and bearing leak rates were considered based upon constraints imposed by hemolysis and residence time. These principles were used for determining the design feasibility of a rotary pump using combined magnetic and hydraulic stabilizing forces.

  4. Optimum design for LRE centrifugal pumps

    NASA Astrophysics Data System (ADS)

    Zhu, Zuchao; Zhang, Guoqian; Sun, Jiren

    1995-05-01

    We set up a mathematical model to predict low specific speed liquid rocket engine (LRE) centrifugal pump unit performance. Using the model in question, performance predictions were carried out for 10 types of LRE centrifugal pumps. Relative errors between experimental values and predicted values associated with efficiency and lift were all within 4%. Using the model in question, design optimization with efficiency as the target function was carried out on AM-7H and O pumps as well as AM-1R pumps and AM-50 pumps. Results clearly show that, with a presupposition of surety systems possessing high vapor corrosion characteristics, the efficiencies of these four types of pumps can be respectively raised 6.5%, 5.22%, 5.2%, and 4.41%.

  5. Improved Design Tools for Surface Water and Standing Column Well Heat Pump Systems (DE-EE0002961)

    SciTech Connect

    Spitler, J. D.; Culling, J. R.; Conjeevaram, K.; Ramesh, M.; Selvakumar, M.

    2012-11-30

    Ground-source heat pump (GSHP) systems are perhaps the most widely used “sustainable” heating and cooling systems, with an estimated 1.7 million installed units with total installed heating capacity on the order of 18 GW. They are widely used in residential, commercial, and institutional buildings. Standing column wells (SCW) are one form of ground heat exchanger that, under the right geological conditions, can provide excellent energy efficiency at a relatively low capital cost. Closed-loop surface water heat pump (SWHP) systems utilize surface water heat exchangers (SWHE) to reject or extract heat from nearby surface water bodies. For building near surface water bodies, these systems also offer a high degree of energy efficiency at a low capital cost. However, there have been few design tools available for properly sizing standing column wells or surface water heat exchangers. Nor have tools for analyzing the energy consumption and supporting economics-based design decisions been available. The main contributions of this project lie in providing new tools that support design and energy analysis. These include a design tool for sizing surface water heat exchangers, a design tool for sizing standing column wells, a new model of surface water heat pump systems implemented in EnergyPlus and a new model of standing column wells implemented in EnergyPlus. These tools will better help engineers design these systems and determine the economic and technical feasibility.

  6. An economic evaluation comparison of solar water pumping system with engine pumping system for rice cultivation

    NASA Astrophysics Data System (ADS)

    Treephak, Kasem; Thongpron, Jutturit; Somsak, Dhirasak; Saelao, Jeerawan; Patcharaprakiti, Nopporn

    2015-08-01

    In this paper we propose the design and economic evaluation of the water pumping systems for rice cultivation using solar energy, gasoline fuel and compare both systems. The design of the water and gasoline engine pumping system were evaluated. The gasoline fuel cost used in rice cultivation in an area of 1.6 acres. Under same conditions of water pumping system is replaced by the photovoltaic system which is composed of a solar panel, a converter and an electric motor pump which is compose of a direct current (DC) motor or an alternating current (AC) motor with an inverter. In addition, the battery is installed to increase the efficiency and productivity of rice cultivation. In order to verify, the simulation and economic evaluation of the storage energy battery system with batteries and without batteries are carried out. Finally the cost of four solar pumping systems was evaluated and compared with that of the gasoline pump. The results showed that the solar pumping system can be used to replace the gasoline water pumping system and DC solar pump has a payback less than 10 years. The systems that can payback the fastest is the DC solar pumping system without batteries storage system. The system the can payback the slowest is AC solar pumping system with batteries storage system. However, VAC motor pump of 220 V can be more easily maintained than the motor pump of 24 VDC and batteries back up system can supply a more stable power to the pump system.

  7. Well-pump alignment system

    DOEpatents

    Drumheller, Douglas S.

    1998-01-01

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping.

  8. Design method of supercavitating pumps

    NASA Astrophysics Data System (ADS)

    Kulagin, V.; Likhachev, D.; Li, F. C.

    2016-05-01

    The problem of effective supercavitating (SC) pump is solved, and optimum load distribution along the radius of the blade is found taking into account clearance, degree of cavitation development, influence of finite number of blades, and centrifugal forces. Sufficient accuracy can be obtained using the equivalent flat SC-grid for design of any SC-mechanisms, applying the “grid effect” coefficient and substituting the skewed flow calculated for grids of flat plates with the infinite attached cavitation caverns. This article gives the universal design method and provides an example of SC-pump design.

  9. Fluid pumping system

    SciTech Connect

    Heath, R.T.; Gerlach, C.R.

    1986-05-13

    A fluid pumping system is described for use with a natural gas dehydrating system or the like having an absorber apparatus for removing water from wet natural gas to produce dry natural gas by use of a dessicant agent such as glycol, and a glycol treater apparatus for producing a source of dry glycol from wet glycol received from the absorber apparatus. The system consists of: a fluid pump means operatively connected between dry glycol source and absorber apparatus for pumping dry glycol from the dry glycol source to the absorber apparatus; a fluid operable piston motor means operatively associated with the pump means for driving the pump means and having fluid inlet passage means for receiving wet glycol from the absorber and fluid outlet passage means for delivering wet glycol to the glycol reboiler means wherein energy derived from the flow of fluid passing through the fluid inlet passage means provides the entire motivating force for the motor means and the pump means; the fluid pump means comprising a first pair of equal diameter chamber portion of a double acting piston means having a piston rod with two oppositely positioned piston heads at terminal ends thereof received within two oppositely positioned cylinders mounted on a fixed central body which slidably supports the piston rod; the fluid operable motor means comprising a second pair of equal diameter chamber portions of the double acting piston means; the effective areas of outwardly directed faces of the piston heads being substantially greater than the effective areas of inwardly directed faces of the piston heads; and a wet glycol passage shifting means associated with the fluid motor means for automatically changing the porting of the fluid motor means at the end of a piston stroke for producing reciprocal piston motion in the fluid motor means including toggle means actuated by the piston rod.

  10. Axial pumps for propulsion systems

    NASA Technical Reports Server (NTRS)

    Huppert, M. C.; Rothe, K.

    1974-01-01

    The development of axial flow hydrogen pumps is examined. The design features and the performance data obtained during the course of the development programs are discussed. The problems created by the pump characteristics are analyzed. Graphs of four stage pump performance for various turbine blade configurations are developed. The characteristics and performance of a variety of pumps are included.

  11. Heart Pump Design for Cleveland Clinic Foundation

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Through a Lewis CommTech Program project with the Cleveland Clinic Foundation, the NASA Lewis Research Center is playing a key role in the design and development of a permanently implantable, artificial heart pump assist device. Known as the Innovative Ventricular Assist System (IVAS), this device will take on the pumping role of the damaged left ventricle of the heart. The key part of the IVAS is a nonpulsatile (continuous flow) artificial heart pump with centrifugal impeller blades, driven by an electric motor. Lewis is part of an industry and academia team, led by the Ohio Aerospace Institute (OAI), that is working with the Cleveland Clinic Foundation to make IVAS a reality. This device has the potential to save tens of thousands of lives each year, since 80 percent of heart attack victims suffer irreversible damage to the left ventricle, the part of the heart that does most of the pumping. Impeller blade design codes and flow-modeling analytical codes will be used in the project. These codes were developed at Lewis for the aerospace industry but will be applicable to the IVAS design project. The analytical codes, which currently simulate the flow through the compressor and pump systems, will be used to simulate the flow within the blood pump in the artificial heart assist device. The Interdisciplinary Technology Office heads up Lewis' efforts in the IVAS project. With the aid of numerical modeling, the blood pump will address many design issues, including some fluid-dynamic design considerations that are unique to the properties of blood. Some of the issues that will be addressed in the design process include hemolysis, deposition, recirculation, pump efficiency, rotor thrust balance, and bearing lubrication. Optimum pumping system performance will be achieved by modeling all the interactions between the pump components. The interactions can be multidisciplinary and, therefore, are influenced not only by the fluid dynamics of adjacent components but also by

  12. Design and test of a pump failure anticipator

    NASA Technical Reports Server (NTRS)

    Frarey, J. L.; Wilson, D. S.; Burchill, R. F.

    1975-01-01

    Tests were conducted on two different types of pumps in order to refine the concept and to finalize design details of a positive displacement internal gear pump and a shroudless centrifugal pump. A concept and a system that could be used with pumps to allow a rapid judgement to be made of the suitability of the pump for futher service is developed. Test results and detailed data analysis are included.

  13. Blood Pump Bearing System

    NASA Technical Reports Server (NTRS)

    Aber, Gregory S. (Inventor)

    2000-01-01

    An apparatus is provided for a blood pump bearing system within a pump housing to support long-term highspeed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the Ir shaft to support big speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.

  14. Blood Pump Bearing System

    NASA Technical Reports Server (NTRS)

    Aber, Gregory S. (Inventor)

    1999-01-01

    Methods and apparatus are provided for a blood pump bearing system within a pump housing to support long-term high-speed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the shaft to support high speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.

  15. Heat exchanger selection and design analyses for metal hydride heat pump systems

    SciTech Connect

    Mazzucco, Andrea; Voskuilen, Tyler G.; Waters, Essene L.; Pourpoint, Timothee L.; Rokni, Masoud

    2016-01-01

    This paper presents a design analysis for the development of highly efficient heat exchangers within stationary metal hydride heat pumps. The design constraints and selected performance criteria are applied to three representative heat exchangers. The proposed thermal model can be applied to select the most efficient heat exchanger design and provides outcomes generally valid in a pre-design stage. Heat transfer effectiveness is the principal performance parameter guiding the selection analysis, the results of which appear to be mildly (up to 13%) affected by the specific Nusselt correlation used. The thermo-physical properties of the heat transfer medium and geometrical parameters are varied in the sensitivity analysis, suggesting that the length of independent tubes is the physical parameter that influences the performance of the heat exchangers the most. The practical operative regions for each heat exchanger are identified by finding the conditions over which the heat removal from the solid bed enables a complete and continuous hydriding reaction. The most efficient solution is a design example that achieves the target effectiveness of 95%.

  16. Heat exchanger selection and design analyses for metal hydride heat pump systems

    DOE PAGES

    Mazzucco, Andrea; Voskuilen, Tyler G.; Waters, Essene L.; ...

    2016-01-01

    This paper presents a design analysis for the development of highly efficient heat exchangers within stationary metal hydride heat pumps. The design constraints and selected performance criteria are applied to three representative heat exchangers. The proposed thermal model can be applied to select the most efficient heat exchanger design and provides outcomes generally valid in a pre-design stage. Heat transfer effectiveness is the principal performance parameter guiding the selection analysis, the results of which appear to be mildly (up to 13%) affected by the specific Nusselt correlation used. The thermo-physical properties of the heat transfer medium and geometrical parameters aremore » varied in the sensitivity analysis, suggesting that the length of independent tubes is the physical parameter that influences the performance of the heat exchangers the most. The practical operative regions for each heat exchanger are identified by finding the conditions over which the heat removal from the solid bed enables a complete and continuous hydriding reaction. The most efficient solution is a design example that achieves the target effectiveness of 95%.« less

  17. Pumping system for oil production

    SciTech Connect

    Yamato, I.; Yamata, T.

    1984-05-29

    A pumping system for oil production comprises a hydraulic unit set on the ground and adapted to send out a pressure oil, and a pump unit set in an oil well and adapted to draw up crude oil therefrom. The pump unit comprises a pump cylinder, and a plunger reciprocatingly moved in the pump cylinder. The plunger is provided with a clearance formed between the outer circumferential surface of a lower end portion thereof and the inner circumferential surface of the pump cylinder. The pressure oil supplied from the hydraulic unit is ejected from the clearance along the inner surface of the pump cylinder into a cylinder chamber.

  18. Well-pump alignment system

    DOEpatents

    Drumheller, D.S.

    1998-10-20

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump are disclosed, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping. 6 figs.

  19. Absorption heat pump system

    DOEpatents

    Grossman, Gershon; Perez-Blanco, Horacio

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  20. Recovery act. Development of design and simulation tool for hybrid geothermal heat pump system

    SciTech Connect

    Wang, Shaojie; Ellis, Dan

    2014-05-29

    The ground source heat pump (GSHP) system is one of the most energy efficient HVAC technologies in the current market. However, the heat imbalance may degrade the ability of the ground loop heat exchanger (GLHX) to absorb or reject heat. The hybrid GSHP system, which combines a geothermal well field with a supplemental boiler or cooling tower, can balance the loads imposed on the ground loop heat exchangers to minimize its size while retaining superior energy efficiency. This paper presents a recent simulation-based study with an intention to compare multiple common control strategies used in hybrid GSHP systems, including fixed setpoint, outside air reset, load reset, and wetbulb reset. A small office in Oklahoma City conditioned by a hybrid GSHP system was simulated with the latest version of eQUEST 3.7[1]. The simulation results reveal that the hybrid GSHP system has the excellent capability to meet the cooling and heating setpoints during the occupied hours, balance thermal loads on the ground loop, as well as improve the thermal comfort of the occupants with the undersized well field.

  1. Design of Accumulators and Liquid/Gas Charging of Single Phase Mechanically Pumped Fluid Loop Heat Rejection Systems

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Dudik, Brenda; Birur, Gajanana; Karlmann, Paul; Bame, David; Mastropietro, A. J.

    2012-01-01

    For single phase mechanically pumped fluid loops used for thermal control of spacecraft, a gas charged accumulator is typically used to modulate pressures within the loop. This is needed to accommodate changes in the working fluid volume due to changes in the operating temperatures as the spacecraft encounters varying thermal environments during its mission. Overall, the three key requirements on the accumulator to maintain an appropriate pressure range throughout the mission are: accommodation of the volume change of the fluid due to temperature changes, avoidance of pump cavitation and prevention of boiling in the liquid. The sizing and design of such an accumulator requires very careful and accurate accounting of temperature distribution within each element of the working fluid for the entire range of conditions expected, accurate knowledge of volume of each fluid element, assessment of corresponding pressures needed to avoid boiling in the liquid, as well as the pressures needed to avoid cavitation in the pump. The appropriate liquid and accumulator strokes required to accommodate the liquid volume change, as well as the appropriate gas volumes, require proper sizing to ensure that the correct pressure range is maintained during the mission. Additionally, a very careful assessment of the process for charging both the gas side and the liquid side of the accumulator is required to properly position the bellows and pressurize the system to a level commensurate with requirements. To achieve the accurate sizing of the accumulator and the charging of the system, sophisticated EXCEL based spreadsheets were developed to rapidly come up with an accumulator design and the corresponding charging parameters. These spreadsheets have proven to be computationally fast and accurate tools for this purpose. This paper will describe the entire process of designing and charging the system, using a case study of the Mars Science Laboratory (MSL) fluid loops, which is en route to

  2. Efficient analytic model to optimum design laser resonator and optical coupling system of diode-end-pumped solid-state lasers: influence of gain medium length and pump beam M2 factor.

    PubMed

    Shayeganrad, Gholamreza; Mashhadi, Leila

    2008-02-10

    A comprehensive analytical model for optimization longitudinal pumping of ideal four-level lasers is presented for accurate analysis by removing limiting assumptions on active length and pump-beam radius in the gain medium. By taking into account the circular-symmetric Gaussian pump beam including the M2 factor, an analytical formula for the root mean square of the pump beam in the active medium is developed to relate properties of the gain medium and pump beam to the requirement on efficient optimum design. Under the condition of minimum root mean square of pump-beam radius inside the active medium, the key parameters of the optimum optical coupling system have been analytically derived. Using these parameters, optimum mode size and maximum output efficiency are derived as a function of the gain medium length, absorption coefficient, pump-beam M2 factor, and input power. Dependence of the obtained parameters on the gain medium length, absorption coefficient, pump-beam M2 factor, and input power has been investigated. The results of this theory are found to be more comprehensive than the previous theoretical investigations. The present model provides a straightforward procedure to design the optimum laser resonator and the coupling optics for maximizing the output.

  3. Fuel pumping system and method

    DOEpatents

    Shafer, Scott F.; Wang, Lifeng ,

    2006-12-19

    A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.

  4. Fuel Pumping System And Method

    DOEpatents

    Shafer, Scott F.; Wang, Lifeng

    2005-12-13

    A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.

  5. Replacement Saltwell Pumping System Document Bibliography

    SciTech Connect

    BELLOMY, J.R.

    2000-12-07

    This document bibliography is prepared to identify engineering documentation developed during the design of the Replacement Saltwell Pumping System. The bibliography includes all engineering supporting documents and correspondence prepared prior to the deployment of the system in the field. All documents referenced are available electronically through the Records Management Information System (RMIS). Major components of the Replacement Saltwell Pumping System include the Sundyne Canned Motor Pump, the Water Filter Skid, the Injection Water Skid and the Backflow Preventer Assembly. Drawing H-14-104498 provides an index of drawings (fabrication details, P&IDs, etc.) prepared to support development of the Replacement Saltwell Pumping System. Specific information pertaining to new equipment can be found in Certified Vendor Information (CVI) File 50124. This CVI file has been established specifically for new equipment associated with the Replacement Saltwell Pumping System.

  6. Analysis and modeling of flow in rotating spiral microchannels: towards math-aided design of microfluidic systems using centrifugal pumping.

    PubMed

    Wang, Lin; Kropinski, Mary-Catherine; Li, Paul C H

    2011-06-21

    This paper describes the experimental measurement and mathematical modeling of centrifugally-pumped flow in spiral microchannels. Here, the liquid is delivered by the rotation of a circular microchip as depicted before (X. Y. Peng, P. C. H. Li, H. Z. Yu, M. Parameswaran and W. L. Chou, Sens. Actuators, B, 2007, 128, 64-69). The spiral microchannel in it was specially designed to produce a constant centrifugal force component. From experimental measurements, it was found that the flow velocity inside the spiral microchannels was associated with the rotation speed only, but not with the length of the liquid column. The mathematical modeling of liquid flow was constructed based on solving the Navier-Stokes equations of incompressible flow formulated in a new orthogonal curvilinear coordinate system aligned with the channel geometry. The governing equations were simplified under various assumptions, rendering a mathematically-tractable physical model. In addition, a commercial computational fluid dynamics (CFD) program was used to simulate the flow in the spiral microchannel. The predicted liquid flow velocities from the mathematical model and the CFD program showed reasonable agreement with the experimental data. Under proper assumptions, the mathematical model gave a flexible and rather accurate analytical solution using much less computing power. The proposed study demonstrated the effectiveness of the spiral microchannel design in microfluidic applications using centrifugal force. With modifications, this study could be adapted to the simulation and modeling of other centrifugal-pumping microflow systems.

  7. The design and performance of a geothermal heat pump system using horizontal sub-slab ground coils

    SciTech Connect

    Jensen, J.; Den Braven, K.

    1999-07-01

    The most significant disadvantage of geothermal or ground-coupled heat pumps (GHPs or GCHPs) is the relatively high cost of installing the ground coil. Installation costs can be reduced by effectively utilizing the soil under slab floors in residential installations, taking advantage of the excavation required for the house foundation and other features. A GHP system with six ground coils was installed in a residence on Lake Coeur d'Alene in northern Idaho. Four horizontal sub-slab ground coils were installed beneath the slab floor of the house and garage. Another ground coil was wrapped around the residential septic tank. A sixth coil was placed in a trench outside the basement wall in a spiral-coiled configuration. The primary purpose of this research was to design and install a geothermal heat pump system using different designs of horizontal sub-slab coils, and to compare the performance of the different types of coil placement. Coils that are placed deeper and/or contacting a greater volume of soil tend to have better performance than those which have shallow placement or are in contact with a smaller amount of soil. The below grade basement sub-slab coils and foundation spiral-coil loop consistently absorbed more energy during the heating season and rejected more heat during the cooling season compared to the garage and septic coils.

  8. Septic tank effluent pump systems

    SciTech Connect

    Ball, H.L.; Bounds, T.R.

    1998-07-01

    Septic tank effluent pump (STEP) systems are beginning to be recognized as the preferred and most economical method of collecting and transporting partially-treated wastewater to a treatment facility. A conventional septic tank provides pretreatment, removing most settable and floatable solids from the wastewater. Specially designed pumps convey the septic tank effluent under pressure through a network of small diameter plastic piping to a treatment site. Shallow collection lines, following the contours of the terrain, eliminate the need for costly deep excavations. Changes in both vertical and horizontal alignments may be made in the field. The impetus for this rapidly developing technology has come mainly from the western US. Oregon's Department of Environmental Quality, for example, requires engineers to consider STEP systems whenever a new wastewater collection project is contemplated. The success of a STEP system depends primarily on the skill of the engineer in designing and managing the project. Guidelines for designers are discussed and brief descriptions of several successful STEP systems are included.

  9. IMPROVEMENTS IN PUMP INTAKE BASIN DESIGN

    EPA Science Inventory

    Pump intake basins (or wet wells or pump sumps) designed in accordance with accepted criteria often pose many operation and maintenance problems. The report summarizes field surveys of three trench-type pump intake basins representative of 29 such basins that have been in satisfa...

  10. Designing a combined casting mold for manufacture of a gasoline centrifugal pump body using CAD/CAM-systems

    NASA Astrophysics Data System (ADS)

    Galin, N. E.; Ogol, I. I.; Chervach, Yu B.; Dammer, V. Kh; Ru, Jia Hong

    2017-02-01

    The present paper examines designing of a combined casting mold for manufacture of a gasoline centrifugal pump body. The paper offers technological solutions for obtaining high quality castings at the testing stage of the finished mold. The paper is intended for practical use and prepared by order of JSC ‘Tomsk Electrical Engineering Plant’ using software and equipment of the department ‘Technologies of Computer-Aided Machinery Manufacturing’ of the Tomsk Polytechnic University (TPU) under the economic contract within state import substitution program. In preparing the paper, CAD/CAM-systems KOMPAS-3D and PowerMILL were used. In 2015, the designed casting mold was introduced into the production process at JSC ‘Tomsk Electrical Engineering Plant’.

  11. Design Considerations for the Diode-pumped Laser Ignition Project

    DTIC Science & Technology

    2013-01-01

    ABSTRACT This technical note explores the design of the monolithic neodymium (Nd): yttrium aluminum garnet (YAG) laser used in the diode-pumped laser...manufacturer on fabrication cost, the optimum design can be determined. 15. SUBJECT TERMS Solid state laser, neodymium , diode pumping 16... neodymium (Nd): yttrium aluminum garnet (YAG) laser used in the diode-pumped laser ignition system (DPLIS). Emphasis is placed on the divergence of

  12. Preliminary design package for solar collector and solar pump

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A solar-operated pump using an existing solar collector, for use on solar heating and cooling and hot water systems is described. Preliminary design criteria of the collector and solar-powered pump is given including: design drawings, verification plans, and hazard analysis.

  13. Improving pumping system efficiency at coal plants

    SciTech Connect

    Livoti, W.C.; McCandless, S.; Poltorak, R.

    2009-03-15

    The industry must employ ultramodern technologies when building or upgrading power plant pumping systems thereby using fuels more efficiently. The article discusses the uses and efficiencies of positive displacement pumps, centrifugal pumps and multiple screw pumps. 1 ref., 4 figs.

  14. On sustainable and efficient design of ground-source heat pump systems

    NASA Astrophysics Data System (ADS)

    Grassi, W.; Conti, P.; Schito, E.; Testi, D.

    2015-11-01

    This paper is mainly aimed at stressing some fundamental features of the GSHP design and is based on a broad research we are performing at the University of Pisa. In particular, we focus the discussion on an environmentally sustainable approach, based on performance optimization during the entire operational life. The proposed methodology aims at investigating design and management strategies to find the optimal level of exploitation of the ground source and refer to other technical means to cover the remaining energy requirements and modulate the power peaks. The method is holistic, considering the system as a whole, rather than focusing only on some components, usually considered as the most important ones. Each subsystem is modeled and coupled to the others in a full set of equations, which is used within an optimization routine to reproduce the operative performances of the overall GSHP system. As a matter of fact, the recommended methodology is a 4-in-1 activity, including sizing of components, lifecycle performance evaluation, optimization process, and feasibility analysis. The paper reviews also some previous works concerning possible applications of the proposed methodology. In conclusion, we describe undergoing research activities and objectives of future works.

  15. Heat Pumping in Nanomechanical Systems

    NASA Astrophysics Data System (ADS)

    Chamon, Claudio; Mucciolo, Eduardo R.; Arrachea, Liliana; Capaz, Rodrigo B.

    2011-04-01

    We propose using a phonon pumping mechanism to transfer heat from a cold to a hot body using a propagating modulation of the medium connecting the two bodies. This phonon pump can cool nanomechanical systems without the need for active feedback. We compute the lowest temperature that this refrigerator can achieve.

  16. Mass spectrometer vacuum housing and pumping system

    DOEpatents

    Coutts, Gerald W.; Bushman, John F.; Alger, Terry W.

    1996-01-01

    A vacuum housing and pumping system for a portable gas chromatograph/mass spectrometer (GC/MS). The vacuum housing section of the system has minimum weight for portability while designed and constructed to utilize metal gasket sealed stainless steel to be compatible with high vacuum operation. The vacuum pumping section of the system consists of a sorption (getter) pump to remove atmospheric leakage and outgassing contaminants as well as the gas chromatograph carrier gas (hydrogen) and an ion pump to remove the argon from atmospheric leaks. The overall GC/MS system has broad application to contaminants, hazardous materials, illegal drugs, pollution monitoring, etc., as well as for use by chemical weapon treaty verification teams, due to the light weight and portability thereof.

  17. Mass spectrometer vacuum housing and pumping system

    DOEpatents

    Coutts, G.W.; Bushman, J.F.; Alger, T.W.

    1996-07-23

    A vacuum housing and pumping system is described for a portable gas chromatograph/mass spectrometer (GC/MS). The vacuum housing section of the system has minimum weight for portability while designed and constructed to utilize metal gasket sealed stainless steel to be compatible with high vacuum operation. The vacuum pumping section of the system consists of a sorption (getter) pump to remove atmospheric leakage and outgassing contaminants as well as the gas chromatograph carrier gas (hydrogen) and an ion pump to remove the argon from atmospheric leaks. The overall GC/MS system has broad application to contaminants, hazardous materials, illegal drugs, pollution monitoring, etc., as well as for use by chemical weapon treaty verification teams, due to the light weight and portability thereof. 7 figs.

  18. Switching model photovoltaic pumping system

    NASA Astrophysics Data System (ADS)

    Anis, Wagdy R.; Abdul-Sadek Nour, M.

    Photovoltaic (PV) pumping systems are widely used due to their simplicity, high reliability and low cost. A directly-coupled PV pumping system is the most reliable and least-cost PV system. The d.c. motor-pump group is not, however, working at its optimum operating point. A battery buffered PV pumping system introduces a battery between the PV array and the d.c. motor-pump group to ensure that the motor-pump group is operating at its optimum point. The size of the battery storage depends on system economics. If the battery is fully charged while solar radiation is available, the battery will discharge through the load while the PV array is disconnected. Hence, a power loss takes place. To overcome the above mentioned difficulty, a switched mode PV pumping is proposed. When solar radiation is available and the battery is fully charged, the battery is disconnected and the d.c. motor-pump group is directly coupled to the PV array. To avoid excessive operating voltage for the motor, a part of the PV array is switched off to reduce the voltage. As a result, the energy loss is significantly eliminated. Detailed analysis of the proposed system shows that the discharged water increases by about 10% when compared with a conventional battery-buffered system. The system transient performance just after the switching moment shows that the system returns to a steady state in short period. The variations in the system parameters lie within 1% of the rated values.

  19. Numerical Simulation of Tubular Pumping Systems with Different Regulation Methods

    NASA Astrophysics Data System (ADS)

    Zhu, Honggeng; Zhang, Rentian; Deng, Dongsheng; Feng, Xusong; Yao, Linbi

    2010-06-01

    Since the flow in tubular pumping systems is basically along axial direction and passes symmetrically through the impeller, most satisfying the basic hypotheses in the design of impeller and having higher pumping system efficiency in comparison with vertical pumping system, they are being widely applied to low-head pumping engineering. In a pumping station, the fluctuation of water levels in the sump and discharge pool is most common and at most time the pumping system runs under off-design conditions. Hence, the operation of pump has to be flexibly regulated to meet the needs of flow rates, and the selection of regulation method is as important as that of pump to reduce operation cost and achieve economic operation. In this paper, the three dimensional time-averaged Navier-Stokes equations are closed by RNG κ-ɛ turbulent model, and two tubular pumping systems with different regulation methods, equipped with the same pump model but with different designed system structures, are numerically simulated respectively to predict the pumping system performances and analyze the influence of regulation device and help designers make final decision in the selection of design schemes. The computed results indicate that the pumping system with blade-adjusting device needs longer suction box, and the increased hydraulic loss will lower the pumping system efficiency in the order of 1.5%. The pumping system with permanent magnet motor, by means of variable speed regulation, obtains higher system efficiency partly for shorter suction box and partly for different structure design. Nowadays, the varied speed regulation is realized by varied frequency device, the energy consumption of which is about 3˜4% of output power of the motor. Hence, when the efficiency of variable frequency device is considered, the total pumping system efficiency will probably be lower.

  20. Optimization design and compare of different solar-ground source heat pump system of office building in cold regions

    NASA Astrophysics Data System (ADS)

    Xie, H.; He, S.; Fu, Y.

    2016-08-01

    This paper presents two different operation modes of Solar-Ground Source Heat Pump System (SGSHP(S)). With the simulation tool TRNSYS, two different SGSHP system models were built to taking simulation. After making analysis and compare of different simulation results, series operation mode was believed to be better than parallel in the target building.

  1. Electrode design for electrohydrodynamic conduction pumping

    NASA Technical Reports Server (NTRS)

    Yagoobi, Jamal Seyed (Inventor)

    2007-01-01

    An electrohydrodynamic conduction liquid pumping system includes a vessel configured to contain a liquid or a liquid/vapor therein. This vessel can be of a elongate conduit configuration, an elongate channel configuration or a liquid enclosure configuration. At least a single pair of electrodes are disposed in a spaced apart relation to each other on the vessel and configured to be oriented in the liquid. A power supply is coupled to the electrodes and operable to generate electric fields in between the pair of electrodes, the electric forces inducing a net liquid movement relative to the vessel. Various electrode designs are embraced within the concept of this invention.

  2. Pump control system for windmills

    DOEpatents

    Avery, Don E.

    1983-01-01

    A windmill control system having lever means, for varying length of stroke of the pump piston, and a control means, responsive to the velocity of the wind to operate the lever means to vary the length of stroke and hence the effective displacement of the pump in accordance with available wind energy, with the control means having a sensing member separate from the windmill disposed in the wind and displaceable thereby in accordance with wind velocity.

  3. Pump control system for windmills

    SciTech Connect

    Avery, D.E.

    1983-07-12

    A windmill control system is disclosed having lever means, for varying length of stroke of the pump piston, and a control means, responsive to the velocity of the wind to operate the lever means to vary the length of stroke and hence the effective displacement of the pump in accordance with available wind energy, with the control means having a sensing member separate from the windmill disposed in the wind and displaceable thereby in accordance with wind velocity.

  4. The hydraulic design of pump turbine for Xianyou pumped storage power station

    NASA Astrophysics Data System (ADS)

    Zheng, J. S.; Liu, W. C.; Fu, Z. Y.; Shi, Q. H.

    2012-11-01

    This paper presents the hydraulic design of pump turbines for Xianyou pumped storage power station. The method of improving the hydraulic performance of pump turbine with CFD analysis is given. The results of model test indicate that the final hydraulic design of pump turbine for Xianyou pumped storage power station is of high efficiencies, good

  5. Wind powered direct drive water pumping systems

    SciTech Connect

    Sadhu, D.

    1983-12-01

    Wind turbine of comparatively large capacities are used exclusively for electricity generation, and so far small multiblade horizontal axis turbines are extensively employed for water pumping with reciprocating piston pumps. However, the advent of wind turbines for irrigation, characterised with large discharge volume pumps, require application of large capacity and efficient ones to make the operation viable. An analysis is made in this paper to find matching pump coupled directly with wind turbine for optimum system operation in variable speed. There exist various type of wind turbines, operating on different principles having characteristics different, dependent not only on the types but also on the design criteria of the individuals. Water pumps are also of various types whose operation characteristics vary with the type, mode of operation and design parameters. A nondimensional analysis is carried out to match the two, to operate at optimum, by superimposing the operating characteristics of the one over the other. The transmission method is also taken in account on the investment analysis of the whole system. Positive displacement pumps are best suited for high starting torque turbines e.g. Savonius or Filippini or multiblade horizontal axis rotors, and consequently are less efficient, though is advantageous for high water lift operation.

  6. Mean Line Pump Flow Model in Rocket Engine System Simulation

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Lavelle, Thomas M.

    2000-01-01

    A mean line pump flow modeling method has been developed to provide a fast capability for modeling turbopumps of rocket engines. Based on this method, a mean line pump flow code PUMPA has been written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The pump code can model axial flow inducers, mixed-flow and centrifugal pumps. The code can model multistage pumps in series. The code features rapid input setup and computer run time, and is an effective analysis and conceptual design tool. The map generation capability of the code provides the map information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of the code permit parametric design space exploration of candidate pump configurations and provide pump performance data for engine system evaluation. The PUMPA code has been integrated with the Numerical Propulsion System Simulation (NPSS) code and an expander rocket engine system has been simulated. The mean line pump flow code runs as an integral part of the NPSS rocket engine system simulation and provides key pump performance information directly to the system model at all operating conditions.

  7. Centrifugal and Axial Pump Design and Off-Design Performance Prediction

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    1995-01-01

    A meanline pump-flow modeling method has been developed to provide a fast capability for modeling pumps of cryogenic rocket engines. Based on this method, a meanline pump-flow code PUMPA was written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The design-point rotor efficiency and slip factors are obtained from empirical correlations to rotor-specific speed and geometry. The pump code can model axial, inducer, mixed-flow, and centrifugal pumps and can model multistage pumps in series. The rapid input setup and computer run time for this meanline pump flow code make it an effective analysis and conceptual design tool. The map-generation capabilities of the code provide the information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of PUMPA permit the user to do parametric design space exploration of candidate pump configurations and to provide head-flow maps for engine system evaluation.

  8. Design trade-offs among shunt current, pumping loss and compactness in the piping system of a multi-stack vanadium flow battery

    NASA Astrophysics Data System (ADS)

    Ye, Qiang; Hu, Jing; Cheng, Ping; Ma, Zhiqi

    2015-11-01

    Trade-off between shunt current loss and pumping loss is a major challenge in the design of the electrolyte piping network in a flow battery system. It is generally recognized that longer and thinner ducts are beneficial to reduce shunt current but detrimental to minimize pumping power. Base on the developed analog circuit model and the flow network model, we make case studies of multi-stack vanadium flow battery piping systems and demonstrate that both shunt current and electrolyte flow resistance can be simultaneously minimized by using longer and thicker ducts in the piping network. However, extremely long and/or thick ducts lead to a bulky system and may be prohibited by the stack structure. Accordingly, the intrinsic design trade-off is between system efficiency and compactness. Since multi-stack configurations bring both flexibility and complexity to the design process, we perform systematic comparisons among representative piping system designs to illustrate the complicated trade-offs among numerous parameters including stack number, intra-stack channel resistance and inter-stack pipe resistance. As the final design depends on various technical and economical requirements, this paper aims to provide guidelines rather than solutions for designers to locate the optimal trade-off points according to their specific cases.

  9. Design of a thin disk amplifier with extraction during pumping for high peak and average power Ti:Sa systems (EDP-TD).

    PubMed

    Chvykov, Vladimir; Nagymihaly, Roland S; Cao, Huabao; Kalashnikov, Mikhail; Osvay, Karoly

    2016-02-22

    Combination of the scheme of extraction during pumping (EDP) and the Thin Disk (TD) technology is presented to overcome the limitations associated with thermal cooling of crystal and transverse amplified spontaneous emission in high average power laser systems based on Ti:Sa amplifiers. The optimized design of high repetition rate 1-10 PW Ti:Sapphire EDP-TD power amplifiers are discussed, including their thermal dynamic behavior.

  10. Design of a Bearingless Blood Pump

    NASA Technical Reports Server (NTRS)

    Barletta, Natale; Schoeb, Reto

    1996-01-01

    In the field of open heart surgery, centrifugal blood pumps have major advantages over roller pumps. The main drawbacks to centrifugal pumps are however problems with the bearings and with the sealing of the rotor shaft. In this paper we present a concept for a simple, compact and cost effective solution for a blood pump with a totally magnetically suspended impeller. It is based on the new technology of the 'Bearingless Motor' and is therefore called the 'Bearingless Blood Pump.' A single bearingless slice motor is at the same time a motor and a bearing system and is able to stabilize the six degrees of freedom of the pump impeller in a very simple way. Three degrees of freedom are stabilized actively (the rotation and the radial displacement of the motor slice). The axial and the angular displacement are stabilized passively. The pump itself (without the motor-stator and the control electronics) is built very simply. It consists of two parts only: the impeller with the integrated machine rotor and the housing. So the part which gets in contact with blood and has therefore to be disposable, is cheap. Fabricated in quantities, it will cost less than $10 and will therefore be affordable for the use in a heart-lung-machine.

  11. Negative feedback system reduces pump oscillations

    NASA Technical Reports Server (NTRS)

    Rosenmann, W.

    1967-01-01

    External negative feedback system counteracts low frequency oscillations in rocket engine propellant pumps. The system uses a control piston to sense pump discharge fluid on one side and a gas pocket on the other.

  12. Optically pumped isotopic ammonia laser system

    DOEpatents

    Buchwald, Melvin I.; Jones, Claude R.; Nelson, Leonard Y.

    1982-01-01

    An optically pumped isotopic ammonia laser system which is capable of producing a plurality of frequencies in the middle infrared spectral region. Two optical pumping mechanisms are disclosed, i.e., pumping on R(J) and lasing on P(J) in response to enhancement of rotational cascade lasing including stimulated Raman effects, and, pumping on R(J) and lasing on P(J+2). The disclosed apparatus for optical pumping include a hole coupled cavity and a grating coupled cavity.

  13. A 2D model to design MHD induction pumps

    NASA Astrophysics Data System (ADS)

    Stieglitz, R.; Zeininger, J.

    2006-09-01

    Technical liquid metal systems accompanied by a thermal transfer of energy such as reactor systems, metallurgical processes, metal refinement, casting, etc., require a forced convection of the fluid. The increased temperatures and more often the environmental conditions as, e.g., in a nuclear environment, pumping principles are required, in which rotating parts are absent. Additionally, in many applications a controlled atmosphere is indispensable, in order to ensure the structural integrity of the duct walls. An interesting option to overcome the sealing problem of a mechanical pump towards the surrounding is offered by induction systems. Although their efficiency compared to that of turbo machines is quite low, they have several advantages, which are attractive to the specific requirements in liquid metal applications such as: - low maintenance costs due to the absence of sealings, bearings and moving parts; - low degradation rate of the structural material; - simple replacement of the inductor without cut of the piping system; - fine regulation of flow rate by different inductor connections; - change of pump characteristics without change of the mechanical set-up. Within the article, general design requirements of electromagnetic pumps (EMP) are elaborated. The design of two annular linear induction pumps operating with sodium and lead-bismuth are presented and the calculated pump characteristics and experimentally obtained data are compared. In this context, physical effects leading to deviations between the model and the real data are addressed. Finally, the main results are summarized. Tables 4, Figs 4, Refs 12.

  14. Study of a heat rejection system using capillary pumping

    NASA Technical Reports Server (NTRS)

    Neal, L. G.; Wanous, D. J.; Clausen, O. W.

    1971-01-01

    Results of an analytical study investigating the application of capillary pumping to the heat rejection loop of an advanced Rankine cycle power conversion system are presented. The feasibility of the concept of capillary pumping as an alternate to electromagnetic pumping is analytically demonstrated. Capillary pumping is shown to provide a potential for weight and electrical power saving and reliability through the use of redundant systems. A screen wick pump design with arterial feed lines was analytically developed. Advantages of this design are high thermodynamic and hydrodynamic efficiency, which provide a lightweight easily packaged system. Operational problems were identified which must be solved for successful application of capillary pumping. The most important are the development of start up and shutdown procedures, and development of a means of keeping noncondensibles from the system and of earth-bound testing procedures.

  15. Optimal heat pumps for solar-assisted heat-pump systems

    NASA Astrophysics Data System (ADS)

    Catan, M. A.

    Work at Brookhaven National Laboratory (BNL) investigates the design of optimal heat pumps for solar assisted heat pump (SAPH) systems. Heat pump designs suitable for two generic systems, identified in the course of recent analytical work, are being studied. These are series SAHP systems operating at evaporator temperatures in the -5 to 10 C range and those operating at evaporator temperatures in the 10 to 35 C range. A heat pump simulator has been constructed with liquid based source subsystem and two load subsystems, one for testing air cooled condensers and one for testing water cooled condensers. Heat pumps tested were composed of various components including several types of variable and fixed capacity compressors, two types of expansion devices, and heat exchangers varying in size and type.

  16. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1977-01-01

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  17. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1983-01-01

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  18. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1983-06-21

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  19. Heat pump systems for Spring Creek, Montana

    SciTech Connect

    Engen, I.A.

    1982-03-01

    The use of ground water heat pump systems for space heating in the new town of Spring Creek, Montana, is reviewed in this report. The available information, together with a review of manufacturers' specifications and guidelines, indicates ground water heat pump systems can be competitive with comparable electric space conditioning systems, if electricity cost approaches $0.02/kWh. Due to the low water temperature, large volumes of water will be required to carry the peak heat load and district-type supply systems may not be feasible for single-family residential developments. Due to the large water production rates, shallow depth of the reservoir, and proximity of a large surface reservoir, additional reservoir evaluation seems appropriate; obtaining competent hydrological consultation is recommended. If ground water heat pump systems are used in the development care must be exercised in equipment selection; the requirement for cooling capacity at the site is negligible compared to heating load. Some heat pumps designed for southern climates may not provide adequate heating performance on water below 60/sup 0/F.

  20. Low power, constant-flow air pump systems

    SciTech Connect

    Polito, M.D.; Albert, B.

    1994-01-01

    A rugged, yet small and lightweight constant-flow air pump system has been designed. Flow control is achieved using a novel approach which is three times more power efficient than previous designs. The resultant savings in battery size and weight makes these pumps ideal for sampling air on balloon platforms. The pump package includes meteorological sensors and an onboard computer that stores time and sensor data and turns the constant-flow pump circuit on/off. Some applications of these systems are also presented in this report.

  1. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1982-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  2. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1979-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchangers and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  3. Structural design and analysis of a mixer pump for beyond-design- basis load

    SciTech Connect

    Rezvani, M.A.; Strehlow, J.P.; Baliga, R.; Kok, S.B.

    1994-03-01

    This paper presents the results of the structural evaluation of a mixer pump for a postulated drop accident. The mixer pump will be installed in a double-shell tank at the Hanford Site, near Richland, Washington. This tank has a 1,000,000-gallon (3,785,000 liter) capacity and is used to store radioactive waste before final disposal. The beyond-design-basis load case presented here is a postmulated drop of the pump during installation or removal. It is assumed that the pump assembly might be dropped approximateely 140 ft (15 m) from a height at which the bottom of the pump assembly is slightly above the top of the access riser to the bottom of the tank. The acceptance criterion for this load case is that the pump assembly shall not penetrate the primary tank liner. To ensure the integrity of the liner, the kinetic energy (developed in the pump drop) must be absorbed by some means to limit the impact force on the tank dome and thereby keep the pump from contacting the bottom of the tank. The limited clearance near the mounting assembly warranted an innovative two-step design of the energy absorbing system to limit the impact force on the tank dome to an acceptable value. This innovative design incorporates two energy absorbers in a unique series arrangement, one with the pump assembly and tile other in the pump pit.

  4. Pumping Optimization Model for Pump and Treat Systems - 15091

    SciTech Connect

    Baker, S.; Ivarson, Kristine A.; Karanovic, M.; Miller, Charles W.; Tonkin, M.

    2015-01-15

    Pump and Treat systems are being utilized to remediate contaminated groundwater in the Hanford 100 Areas adjacent to the Columbia River in Eastern Washington. Design of the systems was supported by a three-dimensional (3D) fate and transport model. This model provided sophisticated simulation capabilities but requires many hours to calculate results for each simulation considered. Many simulations are required to optimize system performance, so a two-dimensional (2D) model was created to reduce run time. The 2D model was developed as a equivalent-property version of the 3D model that derives boundary conditions and aquifer properties from the 3D model. It produces predictions that are very close to the 3D model predictions, allowing it to be used for comparative remedy analyses. Any potential system modifications identified by using the 2D version are verified for use by running the 3D model to confirm performance. The 2D model was incorporated into a comprehensive analysis system (the Pumping Optimization Model, POM) to simplify analysis of multiple simulations. It allows rapid turnaround by utilizing a graphical user interface that: 1 allows operators to create hypothetical scenarios for system operation, 2 feeds the input to the 2D fate and transport model, and 3 displays the scenario results to evaluate performance improvement. All of the above is accomplished within the user interface. Complex analyses can be completed within a few hours and multiple simulations can be compared side-by-side. The POM utilizes standard office computing equipment and established groundwater modeling software.

  5. Assessment of hydraulic performance and biocompatibility of a MagLev centrifugal pump system designed for pediatric cardiac or cardiopulmonary support.

    PubMed

    Dasse, Kurt A; Gellman, Barry; Kameneva, Marina V; Woolley, Joshua R; Johnson, Carl A; Gempp, Thomas; Marks, John D; Kent, Stella; Koert, Andrew; Richardson, J Scott; Franklin, Steve; Snyder, Trevor A; Wearden, Peter; Wagner, William R; Gilbert, Richard J; Borovetz, Harvey S

    2007-01-01

    The treatment of children with life-threatening cardiac and cardiopulmonary failure is a large and underappreciated public health concern. We have previously shown that the CentriMag is a magnetically levitated centrifugal pump system, having the utility for treating adults and large children (1,500 utilized worldwide). We present here the PediVAS, a pump system whose design was modified from the CentriMag to meet the physiological requirements of young pediatric and neonatal patients. The PediVAS is comprised of a single-use centrifugal blood pump, reusable motor, and console, and is suitable for right ventricular assist device (RVAD), left ventricular assist device (LVAD), biventricular assist device (BVAD), or extracorporeal membrane oxygenator (ECMO) applications. It is designed to operate without bearings, seals and valves, and without regions of blood stasis, friction, or wear. The PediVAS pump is compatible with the CentriMag hardware, although the priming volume was reduced from 31 to 14 ml, and the port size reduced from 3/8 to (1/4) in. For the expected range of pediatric flow (0.3-3.0 L/min), the PediVAS exhibited superior hydraulic efficiency compared with the CentriMag. The PediVAS was evaluated in 14 pediatric animals for up to 30 days, demonstrating acceptable hydraulic function and hemocompatibility. The current results substantiate the performance and biocompatibility of the PediVAS cardiac assist system and are likely to support initiation of a US clinical trial in the future.

  6. Absorption-heat-pump system

    DOEpatents

    Grossman, G.; Perez-Blanco, H.

    1983-06-16

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  7. Calculator program speeds rod pump design

    SciTech Connect

    Engineer, R.; Davis, C.L.

    1984-02-01

    Matching sucker rod pump characteristics to a specific application is greatly simplified with this program, intended for use with an HP-41CV hand-held computer. The user inputs application data and the program calculates all necessary design criteria, including Mill's acceleration factor, peak and minimum polish rod loads and horsepower required. Sample calculations are provided, together with a thorough discussion of special design considerations involved in huff-and-puff applications.

  8. Screw-fed pump system

    SciTech Connect

    Sprouse, Kenneth M

    2014-11-25

    A pump system includes a pump that includes a first belt and a second belt that are spaced apart from each other to provide generally straight sides of a passage there between. There is an inlet at one end of the passage and an outlet at an opposite end of the passage, with a passage length that extends between the inlet and the outlet. The passage defines a gap distance in a width direction between the straight sides at the passage inlet. A hopper includes an interior space that terminates at a mouth at the passage inlet. At least one screw is located within the interior space of the hopper and includes a screw diameter in the width direction that is less than or equal to the gap distance.

  9. Pump efficiency in solar-energy systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Study investigates characteristics of typical off-the-shelf pumping systems that might be used in solar systems. Report includes discussion of difficulties in predicting pump efficiency from manufacturers' data. Sample calculations are given. Peak efficiencies, flow-rate control, and noise levels are investigated. Review or theory of pumps types and operating characteristics is presented.

  10. Design of a novel pump for bio-applications

    NASA Astrophysics Data System (ADS)

    Chang, Sheng-Li; Chiu, Kuo-Chi; Hsu, Fu-Yuan; Chen, Jhewn-Kuang

    2012-06-01

    Fluid driven devices have been widely used in many applications, such as pumping, circulating, and cooling systems in handling liquid. Their driving conditions are highly dependent on the operation purposes. Some of them work with high pressure and high flow rate without the need of flow stability. On the other hand, the steady flow with low pressure and flow rate is required for bio-applications. In a perfusion system for culturing cells, a suitable shear stress from a cultivated fluid is one of key factors to reproduce the fluid conditions of cells in a living organism. A special pump is needed to provide a steady flow rate and stress in such system. In this study, a novel design of the pump constituted by a housing and a screw-type rotor with micro-channels was proposed. To understand the flow phenomena in this design, both computational modeling and real experiment are utilized. In the experiment, a minimum rotational speed is needed to drive the fluid flow. In the modeling, the steady state with low pulsation was achieved within a short period of time. A perfusion system with 7.8% variation in flow rate could be obtained in comparison with traditional peristaltic pump with up to 29% variation in flow rate. Steady fluid flow for a perfusion system then could be obtained in this screw-type pump.

  11. Design Optimization of a Wave Driven Resonant Sea Water Pump

    NASA Astrophysics Data System (ADS)

    Czitrom, Steven P. R.; Prado, Esteban

    1998-11-01

    Simplified algorithms for the air chamber volume and flow through a wave driven sea water pump at resonance based on solutions of the linearizaed equations of the system constitute powerful design tools for various applications of the pump. These include flushing of contaminated water bodies or the biological management of isolated coastal lagoon ecosystems. The algoritms are used in cost-benefit exercises that incorporate the dimensions of the various design parameters, the wave climate and the tidal range at a given location. The absence of moving parts in the sea water pump allows larvae of various organisms to pass through the system unscathed. This allows it to be used in the biological management of coastal water bodies with ephimerous connection to the adjacent ocean. An ongoing project with a fishermen's community is described.

  12. Reactor coolant pump monitoring and diagnostic system

    SciTech Connect

    Singer, R.M.; Gross, K.C.; Walsh, M. ); Humenik, K.E. )

    1990-01-01

    In order to reliably and safely operate a nuclear power plant, it is necessary to continuously monitor the performance of numerous subsystems to confirm that the plant state is within its prescribed limits. An important function of a properly designed monitoring system is the detection of incipient faults in all subsystems (with the avoidance of false alarms) coupled with an information system that provides the operators with fault diagnosis, prognosis of fault progression and recommended (either automatic or prescriptive) corrective action. In this paper, such a system is described that has been applied to reactor coolant pumps. This system includes a sensitive pattern-recognition technique based upon the sequential probability ratio test (SPRT) that detects incipient faults from validated signals, an expert system embodying knowledge bases on pump and sensor performance, extensive hypertext files containing operating and emergency procedures as well as pump and sensor information and a graphical interface providing the operator with easily perceived information on the location and character of the fault as well as recommended corrective action. This system is in the prototype stage and is currently being validated utilizing data from a liquid-metal cooled fast reactor (EBR-II). 3 refs., 4 figs.

  13. Horizontal pumping system installed at East Texas gas plant

    SciTech Connect

    Lopez, M.; Goodwin, B.

    1998-07-20

    Installation of horizontal, multistage centrifugal pumps in lean-amine service has proven successful and economical at Union Pacific Resources (UPR) East Texas gas plant (ETGP), Carthage, Tex. In the past, UPR had used either vertical can pumps or positive displacement (PD) pumps for amine circulation in gas-treating operations. When the need to replace a PD pump in the No. 4 amine plant arose, UPR solicited bids from both traditional pump suppliers. Additionally, UPR solicited a bid from REDA for its horizontal pumping system (HPS) based on previous success of this type of pump at ETGP for saltwater disposal. The first pump was installed in May 1996 and designed to circulate a maximum of 80 gpm. Since installation of the pump in No. 4 amine-treating unit, UPR has experienced no downtime and realized a significant cost savings on maintenance labor and parts over the previous positive displacement installation. The success of this HPS in amine service has led UPR to invest in five additional HPS pumps for ETGP`s amine service. The paper describes the decision, economics, pumping systems, preventive maintenance, and post installation performance.

  14. DEVELOPMENT OF A SOFTWARE DESIGN TOOL FOR HYBRID SOLAR-GEOTHERMAL HEAT PUMP SYSTEMS IN HEATING- AND COOLING-DOMINATED BUILDINGS

    SciTech Connect

    Yavuzturk, C. C.; Chiasson, A. D.; Filburn, T. P.

    2012-11-29

    This project provides an easy-to-use, menu-driven, software tool for designing hybrid solar-geothermal heat pump systems (GHP) for both heating- and cooling-dominated buildings. No such design tool currently exists. In heating-dominated buildings, the design approach takes advantage of glazed solar collectors to effectively balance the annual thermal loads on the ground with renewable solar energy. In cooling-dominated climates, the design approach takes advantage of relatively low-cost, unglazed solar collectors as the heat rejecting component. The primary benefit of hybrid GHPs is the reduced initial cost of the ground heat exchanger (GHX). Furthermore, solar thermal collectors can be used to balance the ground loads over the annual cycle, thus making the GHX fully sustainable; in heating-dominated buildings, the hybrid energy source (i.e., solar) is renewable, in contrast to a typical fossil fuel boiler or electric resistance as the hybrid component; in cooling-dominated buildings, use of unglazed solar collectors as a heat rejecter allows for passive heat rejection, in contrast to a cooling tower that consumes a significant amount of energy to operate, and hybrid GHPs can expand the market by allowing reduced GHX footprint in both heating- and cooling-dominated climates. The design tool allows for the straight-forward design of innovative GHP systems that currently pose a significant design challenge. The project lays the foundations for proper and reliable design of hybrid GHP systems, overcoming a series of difficult and cumbersome steps without the use of a system simulation approach, and without an automated optimization scheme. As new technologies and design concepts emerge, sophisticated design tools and methodologies must accompany them and be made usable for practitioners. Lack of reliable design tools results in reluctance of practitioners to implement more complex systems. A menu-driven software tool for the design of hybrid solar GHP systems is

  15. Cora valveless pulsatile rotary pump: new design and control.

    PubMed

    Monties, J R; Trinkl, J; Mesana, T; Havlik, P J; Demunck, J L

    1996-01-01

    For decades, research for developing a totally implantable artificial ventricle has been carried on. For 4 to 5 years, two devices have been investigated clinically. For many years, we have studied a rotary (but not centrifugal) pump that furnishes pulsatile flow without a valve and does not need external venting or a compliance chamber. It is a hypocycloidal pump based on the principle of the Maillard-Wankel rotary compressor. Currently made of titanium, it is activated by an electrical brushless direct-current motor. The motor-pump unit is totally sealed and implantable, without noise or vibration. This pump was implanted as a left ventricular assist device in calves. The midterm experiments showed good hemodynamic function. The hemolysis was low, but serious problems were encountered: blood components collecting on the gear mechanism inside the rotor jammed the pump. We therefore redesigned the pump to seal the gear mechanism. We used a double system to seal the open end of the rotor cavity with components polished to superfine optical quality. In addition, we developed a control system based on the study of the predicted shape of the motor current. The new design is now underway. We hope to start chronic experiments again in a few months. If the problem of sealing the bearing could be solved, the Cora ventricle could be used as permanent totally implantable left ventricular assist device.

  16. Design of an expert system for the development and formulation of push-pull osmotic pump tablets containing poorly water-soluble drugs.

    PubMed

    Zhang, Zhi-hong; Dong, Hong-ye; Peng, Bo; Liu, Hong-fei; Li, Chun-lei; Liang, Min; Pan, Wei-san

    2011-05-30

    The purpose of this article was to build an expert system for the development and formulation of push-pull osmotic pump tablets (PPOP). Hundreds of PPOP formulations were studied according to different poorly water-soluble drugs and pharmaceutical acceptable excipients. The knowledge base including database and rule base was built based on the reported results of hundreds of PPOP formulations containing different poorly water-soluble drugs and pharmaceutical excipients and the experiences available from other researchers. The prediction model of release behavior was built using back propagation (BP) neural network, which is good at nonlinear mapping and learning function. Formulation design model was established based on the prediction model of release behavior, which was the nucleus of the inference engine. Finally, the expert system program was constructed by VB.NET associating with SQL Server. Expert system is one of the most popular aspects in artificial intelligence. To date there is no expert system available for the formulation of controlled release dosage forms yet. Moreover, osmotic pump technology (OPT) is gradually getting consummate all over the world. It is meaningful to apply expert system on OPT. Famotidine, a water insoluble drug was chosen as the model drug to validate the applicability of the developed expert system.

  17. Electromagnetic Pumps for Conductive-Propellant Feed Systems

    NASA Technical Reports Server (NTRS)

    Markusic, Thomas E.; Polzin, Kurt A.; Dehoyos, Amado

    2005-01-01

    Prototype electromagnetic pumps for use with lithium and bismuth propellants were constructed and tested. Such pumps may be used to pressurize future electric propulsion liquid metal feed systems, with the primary advantages being the compactness and simplicity versus alternative pressurization technologies. Design details for two different pumps are described: the first was designed to withstand (highly corrosive) lithium propellant, and t he second was designed to tolerate the high temperature required to pump liquid bismuth. Both qualitative and quantitative test results are presented. Open-loop tests demonstrated the capability of each device to electromagnetically pump its design propellant (lithium or bismuth). A second set of tests accurately quantified the pump pressure developed as a function of current. These experiments, which utilized a more easily handled material (gallium), demonstrated continuously-adjustable pump pressure levels ranging from 0-100 Torr for corresponding input current levels of 0-75 A. While the analysis and testing in this study specifically targeted lithium and bismuth propellants, the underlying design principles should be useful in implementing liquid metal pumps in any conductive-propellant feed system.

  18. [Centrifugal blood pumps (new possibilities of design improvement)].

    PubMed

    Leshchinskiĭ, B M; Itkin, G P; Zimin, N K

    1992-01-01

    Based on an analysis of 300 world information sources, 19 types of centrifugal blood pumps were ascertained. Five new designs suggested have an idea in common: combination of the inlet of the disk pump and of the outlet of the impeller pump. This allows uniting the merits of the above pumps and excluding their shortcomings. The designs suggested make it possible to solve the two basic problems: hemolysis and thrombogenesis inside the pumps. The use of the pumps designed on such a basis will afford a simple and reliable approach to heart function replacement.

  19. Flow pumping system for physiological waveforms.

    PubMed

    Tsai, William; Savaş, Omer

    2010-02-01

    A pulsatile flow pumping system is developed to replicate flow waveforms with reasonable accuracy for experiments simulating physiological blood flows at numerous points in the body. The system divides the task of flow waveform generation between two pumps: a gear pump generates the mean component and a piston pump generates the oscillatory component. The system is driven by two programmable servo controllers. The frequency response of the system is used to characterize its operation. The system has been successfully tested in vascular flow experiments where sinusoidal, carotid, and coronary flow waveforms are replicated.

  20. Research on energy conversion mechanism of rotodynamic pump and design of non-overload centrifugal pump

    NASA Astrophysics Data System (ADS)

    Zhang, X. L.; Hu, S. B.; Shen, Z. Z.; Wu, S. P.; Li, K.

    2016-05-01

    In this paper, an attempt has been made for the calculation of an expression for the intrinsic law of input power which has not yet been given by current theory of Rotodynamic pump. By adequate recognition of the characteristics of non-inertial system within the rotating impeller, it is concluded that the input power consists of two power components, the first power component, whose magnitude increases with the increase of the flow rate, corresponds to radial velocity component, and the second power component, whose magnitude decreases with the increase of the flow rate, corresponds to tangential velocity component, therefore, the law of rise, basic levelness and drop of input power curves of centrifugal pump, mixed-flow pump and axial-flow pump can be explained reasonably. Through further analysis, the main ways for realizing non-overload of centrifugal pump are obtained, and its equivalent design factor is found out, the factor correlates with the outlet angle of leading face and back face of the blade, wrap angle, number of blades, outlet width, area ratio, and the ratio of operating flow rate to specified flow rate and so on. These are verified with actual example.

  1. Characteristics of Mechanical Pumps and Energy Saving Automatic Control System

    NASA Astrophysics Data System (ADS)

    Ueda, Tadashi; Uchida, Yoshiyuki; Shingu, Hiroyasu

    In the 21st century, global warming has become a very serious ecological problem. It is necessary to prevent global warming from increasing the greenhouse effect gas such as carbon dioxide. A new energy saving technique using mechanical pump system is proposed as a solution to this problem. The pump carrying the water, which is the heat source, for the air conditioner has an effect on energy saving by using effective automatic control. Since there is a lack of knowledge related to mechanical pump, effective automatic control systems combined with some pumps are implemented only in a few buildings. In this paper, the machine characteristics of a mechanical pump and a system design combined with some pumps are applied to a decrease in energy consumption. Based on the characteristics of the pump, the automatic control techniques are constant discharged pressure control technique, estimated end pressure control technique and real end pressure control technique. In this paper, the estimated end pressure control technique is recommended as a result of testing the automatic control system combined with the pumps. Also, improvement in conditions of the pump is proposed as a new energy saving technique.

  2. Comparison of solar powered water pumping systems which use diaphragm pumps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four solar photovoltaic (PV) powered diaphragm pumps were tested at different simulated pumping depths at the USDA-ARS Conservation and Production Research Laboratory near Bushland, Texas. Two of the pumps were designed for intermediate pumping depths (30 to 70 meters), and the other two pumps were...

  3. Designing Self-powered Nanomotors and Pumps

    NASA Astrophysics Data System (ADS)

    Sen, Ayusman

    Self-powered nano and microscale moving systems are currently the subject of intense interest due in part to their potential applications in nanomachinery, nanoscale assembly, robotics, fluidics, and chemical/biochemical sensing. We will demonstrate that one can build autonomous nanomotors over a wide range of length-scales ``from scratch'' that mimic biological motors by using catalytic reactions to create forces based on chemical gradients. These motors are autonomous in that they do not require external electric, magnetic, or optical fields as energy sources. Instead, the input energy is supplied locally and chemically. These ''bots'' can be directed by information in the form of chemical and light gradients. Furthermore, we have developed systems in which chemical secretions from the translating nano/micromotors initiate long-range, collective interactions among themselves. This behavior is reminiscent of quorum sensing organisms that swarm in response to a minimum threshold concentration of a signaling chemical. In addition, an object that moves by generating a continuous surface force in a fluid can, in principle, be used to pump the fluid by the same catalytic mechanism. Thus, by immobilizing the nano/micromotors, we have developed nano/microfluidic pumps that transduce energy catalytically. These non-mechanical pumps provide precise control over flow rate without the aid of an external power source and are capable of turning on in response to specific analytes in solution.

  4. Reciprocating Pump Systems for Space Propulsion

    SciTech Connect

    Whitehead, J C

    2004-06-10

    Small propellant pumps can reduce rocket hardware mass, while increasing chamber pressure to improve specific impulse. The maneuvering requirements for planetary ascent require an emphasis on mass, while those of orbiting spacecraft indicate that I{sub SP} should be prioritized during pump system development. Experimental efforts include initial testing with prototype lightweight components while raising pump efficiency to improve system I{sub SP}.

  5. APT Blanket System Loss-of-Coolant Analysis Based on Initial Conceptual Design - Case 2: External HR Break HR Break at Pump Outlet with Pump Trip

    SciTech Connect

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal system. These simulations were performed for the Preliminary Safety Analysis Report.

  6. APT Blanket System Loss-of-Coolant Accident (LOCA) Analysis Based on Initial Conceptual Design - Case 3: External HR Break at Pump Outlet without Pump Trip

    SciTech Connect

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal (HR) system. These simulations were performed for the Preliminary Safety Analysis Report.

  7. Geothermal down well pumping system

    NASA Technical Reports Server (NTRS)

    Matthews, H. B.; Mcbee, W. D.

    1974-01-01

    A key technical problem in the exploitation of hot water geothermal energy resources is down-well pumping to inhibit mineral precipitation, improve thermal efficiency, and enhance flow. A novel approach to this problem involves the use of a small fraction of the thermal energy of the well water to boil and super-heat a clean feedwater flow in a down-hole exchanger adjacent to the pump. This steam powers a high-speed turbine-driven pump. The exhaust steam is brought to the surface through an exhaust pipe, condensed, and recirculated. A small fraction of the high-pressure clean feedwater is diverted to lubricate the turbine pump bearings and prevent leakage of brine into the turbine-pump unit. A project demonstrating the feasibility of this approach by means of both laboratory and down-well tests is discussed.

  8. Development of small centrifugal pumps for an electric propellant pump system

    NASA Astrophysics Data System (ADS)

    Johnsson, Göran; Bigert, Mikael

    Small centrifugal pumps with low specific speeds have been designed, manufactured and performance tested at Volvo Flygmotor AB under a contract from the European Space Agency (ESA) over the period mid-1985 to mid-1988. The development of the pumps is a part of the work carried out to develop an Electric Propellant Pump System (EPPS) for the storable propellant monomethyl hydrazine (MMH) and nitrogen tetraoxide (NTO). Supporting technology development has been funded by the Swedish Delegation for Space Activities (DFR) and Swedish Space Corporation (SSC) together with Volvo Flygmotor. The main advantages of a typical EPPS communication satellite application are weight and volume reduction of the propellant system compared with a pressure-fed system. Active engine mixture ratio control and improved propellant utilization are also possible. Refuelling in space is another potential application where EPPS can be used. The development work was focused on communication satellite apogee propulsion and used the MBB 3 kN engine as reference. This paper presents the pump design and analyses and the results from the test campaigns of three different pump configurations, carried out with water as test liquid. The head rise, efficiency and suction performance together with other characteristics are also given. The planned next development step is to demonstrate pump performance in the propellants and primarily in NTO. The step is funded by (DFR)/(SSC) together with Volvo Flygmotor.

  9. Design gain characteristic of dual-pump fiber Raman amplifier

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Zhang, Wei; Liu, Xiaoming; Peng, Jiangde; Zhou, BingKun

    2001-10-01

    To design gain characteristic of dual-pump fiber Raman amplifier, an effect optimal model is investigated under different conditions, such as maximal gain and minimal gain ripper. Impact of pumps interaction, pump wavelength selection, signals interaction and signal saturation are discussed.

  10. Development of an implantable motor-driven assist pump system.

    PubMed

    Mitamura, Y; Okamoto, E; Hirano, A; Mikami, T

    1990-02-01

    A motor-driven artificial pump and its transcutaneous energy transmission (TET) system have been developed. The artificial pump consists of a high-speed dc brushless motor driving a ball screw and magnetic coupling mechanism between the blood pump and ball screw. The ball screw transfers high-speed rotary motion into low-speed rectilinear motion by a single component. Magnetic coupling enables active blood filling without applying an excess negative pressure to the pump. The transcutaneous transformer is formed from a pair of concave/convex ferrite cores. This design minimizes lateral motion of the external core. Information on motor voltage is transmitted through the skin by infrared pulses. The motor voltage is regulated by controlling the duty ratio of the square pulse supplied to the primary coil. Pump flow of 5.6 l/min was obtained with a mean outlet pressure of 100 mmHg at a drive rate of 100 bpm under preload of 15 mmHg. The performance of synchronous pumping has been very satisfactory. Continuous pumping was maintained by the backup battery in the case of interruption of TET. 24 W were transmitted by TET system with 78 percent of efficiency. Temperature rise of the internal core was 0.2 C. The developed system is promising as an implantable assist pump system.

  11. Design method of water jet pump towards high cavitation performances

    NASA Astrophysics Data System (ADS)

    Cao, L. L.; Che, B. X.; Hu, L. J.; Wu, D. Z.

    2016-05-01

    As one of the crucial components for power supply, the propulsion system is of great significance to the advance speed, noise performances, stabilities and other associated critical performances of underwater vehicles. Developing towards much higher advance speed, the underwater vehicles make more critical demands on the performances of the propulsion system. Basically, the increased advance speed requires the significantly raised rotation speed of the propulsion system, which would result in the deteriorated cavitation performances and consequently limit the thrust and efficiency of the whole system. Compared with the traditional propeller, the water jet pump offers more favourite cavitation, propulsion efficiency and other associated performances. The present research focuses on the cavitation performances of the waterjet pump blade profile in expectation of enlarging its advantages in high-speed vehicle propulsion. Based on the specifications of a certain underwater vehicle, the design method of the waterjet blade with high cavitation performances was investigated in terms of numerical simulation.

  12. Geothermal pump dual cycle system

    SciTech Connect

    Matthews, H.B.

    1982-05-11

    Geothermal deep well energy extraction apparatus is provided of the general kind in which solute-bearing hot water is pumped to the earth's surface from a subterranean location by utilizing thermal energy extracted from the hot water for operating a primary turbine-motor for driving a primary electrical generator at the earth's surface, the solute-bearing water being returned by a reinjection well. A surface-located auxiliary turbine-pump combination with both turbine and brine pump elements acting in series with down-well counterparts to furnish the pressure necessary for reinjection of the brine.

  13. Method and system for small scale pumping

    DOEpatents

    Insepov, Zeke; Hassanein, Ahmed

    2010-01-26

    The present invention relates generally to the field of small scale pumping and, more specifically, to a method and system for very small scale pumping media through microtubes. One preferred embodiment of the invention generally comprises: method for small scale pumping, comprising the following steps: providing one or more media; providing one or more microtubes, the one or more tubes having a first end and a second end, wherein said first end of one or more tubes is in contact with the media; and creating surface waves on the tubes, wherein at least a portion of the media is pumped through the tube.

  14. Feasibility of a TinyPump system for pediatric CPB, ECMO, and circulatory assistance: hydrodynamic performances of the modified pump housing for implantable TinyPump.

    PubMed

    Yokoyama, Naoyuki; Suzuki, Masaaki; Hoshi, Hideo; Ohuchi, Katsuhiro; Fujimoto, Tetsuo; Takatani, Setsuo

    2007-01-01

    The TinyPump is a miniature centrifugal blood pump with an extremely small priming volume of 5 ml, allowing blood transfusion free cardiopulmonary bypass as well as extracorporeal membrane oxygenation in pediatric patients. In this study, a new pump housing with the angled inlet port (25 degrees toward impeller center with respect to the flow axis) was designed to optimize the pump displaced volume and to extend the application of the TinyPump to implantable support The fluid dynamic performance analysis revealed that the head pressure losses increased from 3 to 17 mm Hg in comparison with straight port design as the pump rotational speed increased from 2,000 to 4,000 rpm. This was probably caused by perturbed flow patterns at the site of the inlet bent port area and streamline hitting the off-center of the impeller. No significant effect on pumping efficiency was observed because of modification in inlet port design. Modification in the inflow and outflow port designs together with the drive mechanism reduces the height of the pump system, including the motor, to 27 mm yielding the displaced volume of 68 ml in comparison with 40 mm of the paracorporeal system with the displaced volume of 105 ml. Further analysis in terms of hemolytic as well as antithrombogenic performance will be carried out to finalize the housing design for the implantable version of the TinyPump.

  15. Integrated Heat Pump (IHP) System Development - Air-Source IHP Control Strategy and Specifications and Ground-Source IHP Conceptual Design

    SciTech Connect

    Murphy, Richard W; Rice, C Keith; Baxter, Van D

    2007-05-01

    The integrated heat pump (IHP), as one appliance, can provide space cooling, heating, ventilation, and dehumidification while maintaining comfort and meeting domestic water heating needs in near-zero-energy home (NZEH) applications. In FY 2006 Oak Ridge National Laboratory (ORNL) completed development of a control strategy and system specification for an air-source IHP. The conceptual design of a ground-source IHP was also completed. Testing and analysis confirm the potential of both IHP concepts to meet NZEH energy services needs while consuming 50% less energy than a suite of equipment that meets current minimum efficiency requirements. This report is in fulfillment of an FY06 DOE Building Technologies (BT) Joule Milestone.

  16. CFD analyses for advanced pump design

    NASA Technical Reports Server (NTRS)

    Dejong, F. J.; Choi, S.-K.; Govindan, T. R.

    1994-01-01

    As one of the activities of the NASA/MSFC Pump Stage Technology Team, the present effort was focused on using CFD in the design and analysis of high performance rocket engine pumps. Under this effort, a three-dimensional Navier-Stokes code was used for various inducer and impeller flow field calculations. An existing algebraic grid generation procedure was-extended to allow for nonzero blade thickness, splitter blades, and hub/shroud cavities upstream or downstream of the (main) blades. This resulted in a fast, robust inducer/impeller geometry/grid generation package. Problems associated with running a compressible flow code to simulate an incompressible flow were resolved; related aspects of the numerical algorithm (viz., the matrix preconditioning, the artificial dissipation, and the treatment of low Mach number flows) were addressed. As shown by the calculations performed under the present effort, the resulting code, in conjunction with the grid generation package, is an effective tool for the rapid solution of three-dimensional viscous inducer and impeller flows.

  17. Performance enhancement of a pump impeller using optimal design method

    NASA Astrophysics Data System (ADS)

    Jeon, Seok-Yun; Kim, Chul-Kyu; Lee, Sang-Moon; Yoon, Joon-Yong; Jang, Choon-Man

    2017-04-01

    This paper presents the performance evaluation of a regenerative pump to increase its efficiency using optimal design method. Two design parameters which define the shape of the pump impeller, are introduced and analyzed. Pump performance is evaluated by numerical simulation and design of experiments(DOE). To analyze three-dimensional flow field in the pump, general analysis code, CFX, is used in the present work. Shear stress turbulence model is employed to estimate the eddy viscosity. Experimental apparatus with an open-loop facility is set up for measuring the pump performance. Pump performance, efficiency and pressure, obtained from numerical simulation are validated by comparison with the results of experiments. Throughout the shape optimization of the pump impeller at the operating flow condition, the pump efficiency is successfully increased by 3 percent compared to the reference pump. It is noted that the pressure increase of the optimum pump is mainly caused by higher momentum force generated inside blade passage due to the optimal blade shape. Comparisons of pump internal flow on the reference and optimum pump are also investigated and discussed in detail.

  18. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 4: System planning studies

    NASA Astrophysics Data System (ADS)

    1981-04-01

    Preliminary design and planning studies of water compensated compressed air energy storage (CAES) and underground pumped hydroelectric (UPH) power plants are presented. The costs of the CAES and UPH plant designs, and the results of economic evaluations performed for the PEPCO system are presented. The PEPCO system planning analysis was performed in parallel stages with plant design development. Analyses performed early in the project indicated a requirement for 1000 MW/10,000 MWH of energy storage on a daily operating schedule, with economic installation in two segments of 500 MW in 1990 and 1997. The analysis was updated eighteen months later near the end of the project to reflect the impact of new growth projections and revised plant costs. The revised results indicated economic installations for either UPH or CAES of approximately 675 MW/6750 MWH on a daily cycle, installed in blocks of approximately 225 MW in 1990, 1993 and 1995. Significant savings in revenue requirements and oil fuel over the combustion turbine alternative were identified for both CAES and UPH.

  19. Redesign of turbine-pump impeller and diffuser using hydrodynamic design techniques. Final report

    SciTech Connect

    Hamrick, J.T.

    1980-04-01

    It is indicated that in 1976 the average operating efficiency of well irrigation pumps in the US, including losses in the column pipe and line shaft, was 55.5%, but information is presented to show that losses in a pumping system can be reduced and that it is possible to reach a goal of 82% system efficiency. Hydrodynamic design methods which are used to analyze and modify a commercially available pump are presented. The results of tests with the pump are presented for which delivery losses were reduced by means of a packer at the pump and for which line shaft losses were reduced by means of a high strength line shaft. Methods of designing pumps that have a broader high efficiency range are explored, and a design approach for doing so is presented. The method was not evaluated experimentally. (MCW)

  20. Self-pumping solar heating system with geyser pumping action

    SciTech Connect

    Haines, E.L.; Bartera, R.E.

    1984-10-23

    A self-pumping solar heating system having a collector including a multitude of small diameter riser tubes from which heated liquid is pumped into a header by a geyser action. A vapor condenser assures a header pressure conducive to bubble nucleation in the riser tube upper end segments. The level of liquid within the header or its outlet is higher than the liquid level in the riser tubes to produce a gravity imbalance capable of circulating heated liquid past a storage heat exchanger, below the header, and then upwardly through the closed vapor condenser in the header prior to return to a collector inlet manifold. A modified header utilizes an open vapor condenser in vapor communication with the collector header.

  1. A microfluidic two-pump system inspired by liquid feeding in mosquitoes

    NASA Astrophysics Data System (ADS)

    Marino, Andrew; Goad, Angela; Stremler, Mark; Socha, John; Jung, Sunghwan

    Mosquitoes feed on nectar and blood using a two-pump system in the head-a smaller cibarial pump in line with a larger a pharyngeal pump, with a valve in between. To suck, mosquitoes transport the liquid (which may be a multi-component viscous fluid, blood) through a long micro-channel, the proboscis. In the engineering realm, microfluidic devices in biomedical applications, such as lab-on-a-chip technology, necessitate implementing a robust pump design to handle clogging and increase flow control compared to a single-pump system. In this talk, we introduce a microfluidic pump design inspired by the mosquito's two-pump system. The pumping performance (flow rate) in presence of impurities (air bubbles, soft clogs) is quantified as a function of phase difference and volume expansion of the pumps, and the elasticity of the valve.

  2. Design and performance evaluation of a simplified dynamic model for combined sewer overflows in pumped sewer systems

    NASA Astrophysics Data System (ADS)

    van Daal-Rombouts, Petra; Sun, Siao; Langeveld, Jeroen; Bertrand-Krajewski, Jean-Luc; Clemens, François

    2016-07-01

    Optimisation or real time control (RTC) studies in wastewater systems increasingly require rapid simulations of sewer systems in extensive catchments. To reduce the simulation time calibrated simplified models are applied, with the performance generally based on the goodness of fit of the calibration. In this research the performance of three simplified and a full hydrodynamic (FH) model for two catchments are compared based on the correct determination of CSO event occurrences and of the total discharged volumes to the surface water. Simplified model M1 consists of a rainfall runoff outflow (RRO) model only. M2 combines the RRO model with a static reservoir model for the sewer behaviour. M3 comprises the RRO model and a dynamic reservoir model. The dynamic reservoir characteristics were derived from FH model simulations. It was found that M2 and M3 are able to describe the sewer behaviour of the catchments, contrary to M1. The preferred model structure depends on the quality of the information (geometrical database and monitoring data) available for the design and calibration of the model. Finally, calibrated simplified models are shown to be preferable to uncalibrated FH models when performing optimisation or RTC studies.

  3. Compendium of electrical submersible pump systems testing criteria

    SciTech Connect

    Durham, M.O.; Lea, J.F.

    1995-12-31

    The maturing electrical submersible pump industry has numerous recommended practices and procedures addressing various facets of the operation. Ascertaining the appropriate technique is tedious for experienced engineers as well as novices. Seldom are all the documents available at one location. This synopsis of all the industry practices provides a ready reference for testing, design, and application of electrical submersible pumping systems. An extensive bibliography identifies significant documents for further reference.

  4. Research on design multi-points performance curves of pump

    NASA Astrophysics Data System (ADS)

    Li, L.; Li, H.; Xu, D. H.

    2012-11-01

    The centrifugal pump's performance curves are the most important chart to reveal relevance of different performance parameters. They can show pump's function comprehensively and graphically. However these curves can't be predicted and designed precisely, duo to the complicated flow inside the impeller and the incomplete way to design pump. The complete shape of performance curves can be gained only after test. With the development of industry, many applications need the pump operating well at different flow conditions. It means the pump's performance curves should pass some specific points. This is a problem to the designer who still uses the traditional way to design pumps. In this paper, the Design of experiments was applied to arrange a plan of experiments. Because the theory equations of performance curves contain many geometry factors of impeller, changing these factors have different influence on the shape of curves, the relationship between geometry factors and the performance under different operation points been attained after using variance analysis to deal with experiment data. The relevant regression models and graphs were drawn to help understand these relationships. Depending on the predicted values of geometry factors pump's impeller was redesigned, and the pump's performance been simulated for saving time and cost. Test shows that the shape of performance curves satisfy design objective, this example can be taken as a reference of pump's specific designs.

  5. Heat pump concepts for nZEB Technology developments, design tools and testing of heat pump systems for nZEB in the USA: Country report IEA HPT Annex 40 Task 2, Task 3 and Task 4 of the USA

    SciTech Connect

    Baxter, Van D.; Payne, W. Vance; Ling, Jiazhen; Radermacher, Reinhard

    2015-12-01

    The IEA HPT Annex 40 "Heat pump concepts for Nearly Zero Energy Buildings" deals with the application of heat pumps as a core component of the HVAC system for Nearly or Net Zero energy buildings (nZEB). This report covers Task 2 on the system comparison and optimisation and Task 3 dedicated to the development of adapted technologies for nZEB and field monitoring results of heat pump systems in nZEB. In the US team three institutions are involved and have worked on the following projects: The Oak Ridge National Laboratory (ORNL) will summarize development activities through the field demonstration stage for several integrated heat pump (IHP) systems electric ground-source (GS-IHP) and air-source (AS-IHP) versions and an engine driven AS-IHP version. The first commercial GS-IHP product was just introduced to the market in December 2012. This work is a contribution to Task 3 of the Annex. The University of Maryland will contribute a software development project to Task 2 of the Annex. The software ThermCom evaluates occupied space thermal comfort conditions accounting for all radiative and convective heat transfer effects as well as local air properties. The National Institute of Standards and Technology (NIST) is working on a field study effort on the NIST Net Zero Energy Residential Test Facility (NZERTF). This residential building was constructed on the NIST campus and officially opened in summer 2013. During the first year, between July 2013 and June 2014, baseline performance of the NZERTF was monitored under a simulated occupancy protocol. The house was equipped with an air-to-air heat pump which included a dedicated dehumidification operating mode. Outdoor conditions, internal loads and modes of heat pump operation were monitored. Field study results with respect to heat pump operation will be reported and recommendations on heat pump optimization for a net zero energy building will be provided. This work is a contribution to Task 3 of the Annex.

  6. Advanced Electric Submersible Pump Design Tool for Geothermal Applications

    SciTech Connect

    Xuele Qi; Norman Turnquist; Farshad Ghasripoor

    2012-05-31

    Electrical Submersible Pumps (ESPs) present higher efficiency, larger production rate, and can be operated in deeper wells than the other geothermal artificial lifting systems. Enhanced Geothermal Systems (EGS) applications recommend lifting 300 C geothermal water at 80kg/s flow rate in a maximum 10-5/8-inch diameter wellbore to improve the cost-effectiveness. In this paper, an advanced ESP design tool comprising a 1D theoretical model and a 3D CFD analysis has been developed to design ESPs for geothermal applications. Design of Experiments was also performed to optimize the geometry and performance. The designed mixed-flow type centrifugal impeller and diffuser exhibit high efficiency and head rise under simulated EGS conditions. The design tool has been validated by comparing the prediction to experimental data of an existing ESP product.

  7. Electromagnetic Pumps for Conductive-Propellant Feed Systems

    NASA Technical Reports Server (NTRS)

    Markusic, T. E.; Polzin, K. A.

    2005-01-01

    There has been a recent, renewed interest in high-power electric thrusters for application in nuclear-electric propulsion systems. Two of the most promising thrusters utilize liquid metal propellants: the lithium-fed magnetoplasmadynamic thruster and the bismuth-fed Hall thruster. An important element of part of the maturation of these thrusters will be the development of compact, reliable conductive-propellant feed system components. In the present paper we provide design considerations and experimental calibration data for electromagnetic (EM) pumps. The role of an electromagnetic pump in a liquid metal feed system is to establish a pressure gradient between the propellant reservoir and the thruster - to establish the requisite mass flow rate. While EM pumps have previously been used to a limited extent in nuclear reactor cooling loops, they have never been implemented in electric propulsion (EP) systems. The potential benefit of using EM pumps for EP are reliability (no moving parts) and the ability to precisely meter the propellant flow rate. We have constructed and tested EM pumps that use gallium, lithium, and bismuth propellants. Design details, test results (pressure developed versus current), and material compatibility issues are reported. It is concluded that EM pumps are a viable technology for application in both laboratory and flight EP conductive-propellant feed systems.

  8. Submersible well pump and well completion system

    SciTech Connect

    Bayh, R.I.

    1990-04-03

    This patent describes a well completion system for a downhole submersible pump and motor. It comprises: a production tubing string with a landing nipple forming an integral part thereof and defining in part a downhole location for releasably anchoring a submersible pump and related components within the production tubing string; a power cable having electrical conductors and fluid conductors to supply both electricity and treating fluid from the well surface to the submersible pump and related components; and a fluid flow path extending through the submersible pump motor and its related components to receive treating fluid from the power cable. Also described is the method of installing and operating a downhole submersible pump and motor.

  9. Submersible pumping system with heat transfer mechanism

    DOEpatents

    Hunt, Daniel Francis Alan; Prenger, F. Coyne; Hill, Dallas D; Jankowski, Todd Andrew

    2014-04-15

    A submersible pumping system for downhole use in extracting fluids containing hydrocarbons from a well. In one embodiment, the pumping system comprises a rotary induction motor, a motor casing, one or more pump stages, and a cooling system. The rotary induction motor rotates a shaft about a longitudinal axis of rotation. The motor casing houses the rotary induction motor such that the rotary induction motor is held in fluid isolation from the fluid being extracted. The pump stages are attached to the shaft outside of the motor casing, and are configured to impart fluid being extracted from the well with an increased pressure. The cooling system is disposed at least partially within the motor casing, and transfers heat generated by operation of the rotary induction motor out of the motor casing.

  10. Design of a Mechanical NaK Pump for Fission Space Power

    NASA Technical Reports Server (NTRS)

    Mireles, Omar R.; Bradley, David E.; Godfroy, Thomas

    2011-01-01

    Alkali liquid metal cooled fission reactor concepts are under development for spaceflight power requirements. One such concept utilizes a sodium-potassium eutectic (NaK) as the primary loop working fluid, which has specific pumping requirements. Traditionally, electromagnetic linear induction pumps have been used to provide the required flow and pressure head conditions for NaK systems but they can be limited in performance, efficiency, and number of available vendors. The objective of the project was to develop a mechanical NaK centrifugal pump that takes advantages of technology advances not available in previous liquid metal mechanical pump designs. This paper details the design, build, and performance test of a mechanical NaK pump developed at NASA Marshall Space Flight Center. The pump was designed to meet reactor cooling requirements using commercially available components modified for high temperature NaK service.

  11. Study and development of an air conditioning system operating on a magnetic heat pump cycle (design and testing of flow directors)

    NASA Technical Reports Server (NTRS)

    Wang, Pao-Lien

    1992-01-01

    This report describes the fabrication, design of flow director, fluid flow direction analysis and testing of flow director of a magnetic heat pump. The objectives of the project are: (1) to fabricate a demonstration magnetic heat pump prototype with flow directors installed; and (2) analysis and testing of flow director and to make sure working fluid loops flow through correct directions with minor mixing. The prototype was fabricated and tested at the Development Testing Laboratory of Kennedy Space Center. The magnetic heat pump uses rear earth metal plates rotate in and out of a magnetic field in a clear plastic housing with water flowing through the rotor plates to provide temperature lift. Obtaining the proper water flow direction has been a problem. Flow directors were installed as flow barriers between separating point of two parallel loops. Function of flow directors were proven to be excellent both analytically and experimentally.

  12. Full 3-D viscous optimization design of a reversible pump turbine runner

    NASA Astrophysics Data System (ADS)

    Wang, X. H.; Zhu, B. S.; Cao, S. L.; Tan, L.

    2013-12-01

    The bi-directional operation of reversible pump turbines presents a great challenge in terms of runner design. In the present paper, an optimal design system for the pump turbine runner is presented by coupling three-dimensional (3-D) inverse design with the Computational Fluid Dynamics (CFD), Design of Experiment (DoE), Response Surface Methodology (RSM) and Multi Objective Genetic Algorithm (MOGA). A pump-turbine runner was designed using the system, with selecting blade loading distributions and blade lean as the input parameters, and the runner efficiency for both pump and turbine mode as optimization objectives. The CFD results show that a high efficiency runner can be designed using the present system.

  13. Design and installation package for a solar powered pump

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The design and installation procedures of a solar powered pump developed by Calmac Manufacturing Company are presented. Subsystem installation, operation and maintenance requirements, subsystem performance specifications, and detailed design drawings are included.

  14. Report on New Pumping System Software on Pumping Instrumentation and Control Skids

    SciTech Connect

    HORNER, T.M.

    2001-04-19

    This report documents the details of the Programmable Logic Controller (PLC) and the Data Table Access Module (DTAM) logic developed for the new pumping system employed for saltwell pumping. The new system is planned first for pumping A-101 where Pumping Instrumentation and Control (PIC) skid ''F'' is located. The new pump requires a bump start under certain conditions that will be controlled by the PLC. The bump start is to ensure sufficient water to the pump bearing cavities. The PLC logic is required to control the shutdown of the injection pump that supplies the water to the saltwell pump bearing cavities. Allowance to start and stop the injection pump will be controlled by the PLC at the PIC skid. This report is written for PIC skid ''P'', but will apply to other PIC skids where the new pumping system is deployed. The logic will remain the same, but the ladder rung-numbers may change from skid to skid.

  15. Sliding mode controller for a photovoltaic pumping system

    NASA Astrophysics Data System (ADS)

    ElOugli, A.; Miqoi, S.; Boutouba, M.; Tidhaf, B.

    2017-03-01

    In this paper, a sliding mode control scheme (SMC) for maximum power point tracking controller for a photovoltaic pumping system, is proposed. The main goal is to maximize the flow rate for a water pump, by forcing the photovoltaic system to operate in its MPP, to obtain the maximum power that a PV system can deliver.And this, through the intermediary of a sliding mode controller to track and control the MPP by overcoming the power oscillation around the operating point, which appears in most implemented MPPT techniques. The sliding mode control approach is recognized as one of the efficient and powerful tools for nonlinear systems under uncertainty conditions.The proposed controller with photovoltaic pumping system is designed and simulated using MATLAB/SIMULINK environment. In addition, to evaluate its performances, a classical MPPT algorithm using perturb and observe (P&O) has been used for the same system to compare to our controller. Simulation results are shown.

  16. Advanced Design Heat PumpRadiator for EVA Suits

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Passow, Christian; Phillips, Scott; Trevino, Luis

    2009-01-01

    Absorption cooling using a LiCl/water heat pump can enable lightweight and effective thermal control for EVA suits without venting water to the environment. The key components in the system are an absorber/radiator that rejects heat to space and a flexible evaporation cooling garment that absorbs heat from the crew member. This paper describes progress in the design, development, and testing of the absorber/radiator and evaporation cooling garment. New design concepts and fabrication approaches will significantly reduce the mass of the absorber/radiator. We have also identified materials and demonstrated fabrication approaches for production of a flexible evaporation cooling garment. Data from tests of the absorber/radiator s modular components have validated the design models and allowed predictions of the size and weight of a complete system.

  17. Hydrodynamic design of generic pump components

    NASA Technical Reports Server (NTRS)

    Eastland, A. H. J.; Dodson, H. C.

    1991-01-01

    Inducer and impellar base geometries were defined for a fuel pump for a generic generator cycle. Blade surface data and inlet flowfield definition are available in sufficient detail to allow computational fluid dynamic analysis of the two components.

  18. Temperature and Humidity Independent Control Research on Ground Source Heat Pump Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Chen, G.; Wang, L. L.

    Taking green demonstration center building air conditioning system as an example, this paper presents the temperature and humidity independent control system combined with ground source heat pump system, emphasis on the design of dry terminal device system, fresh air system and ground source heat pump system.

  19. Concept designs of nonrotating-type centrifugal blood pump and basic study on output characteristics of the oscillating disk-type centrifugal pump.

    PubMed

    Kabei, N; Tuichiya, K; Sakurai, Y

    1994-09-01

    When designing a turbo-type blood pump as an artificial heart, the gap between a rotating shaft and a pump housing should be perfectly sealed to prevent any leakage or contamination through a seal. In addition, blood coagulation in a blood chamber must be avoided. To overcome these problems, we proposed five different nonrotating-type turbo pumps: a caudal-fin-type axial-flow pump, a caudal-fin-type centrifugal pump, a nutating-column-type centrifugal pump, a nutating-collapsible-tube-type centrifugal pump, and an oscillating-disk-type centrifugal pump. We selected and developed the oscillating-disk-type centrifugal pump that consists of a disk, a driving rod, a seal, an oscillation mechanism, and a pump housing. The disk is mounted on the end of the rod, which is connected to a high-speed DC motor through an oscillation mechanism. The rod and the disk do not rotate, but they oscillate in the pump housing. This movement of the disk generates forward fluid flow around the axis (i.e., the rotational fluid flow). Centrifugal force due to fluid rotation supports the pressure difference between the outlet and the inlet. The diameter of the disk is 39 mm, the maximum inner diameter of the pump housing is 40 mm, and the volume of the blood chamber for 25 degrees' oscillation is 16.9 ml. The performance of the pump was tested in a mock circulatory system.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Calcium pumps in the central nervous system.

    PubMed

    Mata, Ana M; Sepúlveda, M Rosario

    2005-09-01

    Two families of Ca2+ transport ATPases are involved in the maintenance of Ca2+ homeostasis in the nervous system, the plasma membrane Ca2+-ATPase that pumps Ca2+ to the extracellular medium and the intracellular sarco/endoplasmic reticulum Ca2+-ATPase that transports Ca2+ from the cytosol to the endoplasmic reticulum. Both types of calcium pumps show precise regulatory properties and they are localized in specific subcellular regions. In this review, we describe the functional and regulatory properties of both families of calcium pumps, their distribution in nerve cells, and their involvement in neurological disorders. The functional characterization of neuronal calcium pumps is very important in order to understand the biochemical processes involved in the maintenance of intracellular calcium in synaptic terminals.

  1. Development of a photo-voltaic pumping system using a brushless D.C. motor and helical rotor pump

    SciTech Connect

    Langridge, D.; Lawrance, W.; Wichert, B.

    1996-12-31

    A PV pumping system based on a brushless d.c. motor and helical rotor pump has been designed, simulated and a prototype constructed. The paper describes the operation of the system and the development of component models for the array, the brushless d.c. motor and helical rotor pump. Simulation results and subsequent test results for the complete system are included. Efficiencies of between 30 and 50% for the system (excluding the array) have been achieved over a range of loads and operating conditions for 4 x 1 and 4 x 2 array configurations. 9 refs., 10 figs., 2 tabs.

  2. Rotating and positive-displacement pumps for low-thrust rocket engines. Volume 1: Pump Evaluation and design. [of centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Macgregor, C.; Csomor, A.

    1974-01-01

    Rotating and positive displacement pumps of various types were studied for pumping liquid fluorine for low-thrust, high-performance rocket engines. Included in the analysis were: centrifugal, pitot, Barske, Tesla, drag, gear, vane, axial piston, radial piston, diaphragm, and helirotor pump concepts. The centrifugal pump and the gear pump were selected and these were carried through detailed design and fabrication. Mechanical difficulties were encountered with the gear pump during the preliminary tests in Freon-12. Further testing and development was therefore limited to the centrifugal pump. Tests on the centrifugal pump were conducted in Freon-12 to determine the hydrodynamic performance and in liquid fluorine to demonstrate chemical compatibility.

  3. Temperature field study of hot water circulation pump shaft system

    NASA Astrophysics Data System (ADS)

    Liu, Y. Y.; Kong, F. Y.; Daun, X. H.; Zhao, R. J.; Hu, Q. L.

    2016-05-01

    In the process of engineering application under the condition of hot water circulation pump, problems of stress concentration caused by the temperature rise may happen. In order to study the temperature field in bearing and electric motor chamber of the hot water circulation pump and optimize the structure, in present paper, the model of the shaft system is created through CREO. The model is analyzed by ANSYS workbench, in which the thermal boundary conditions are applied to calculate, which include the calorific values from the bearings, the thermal loss from electric motor and the temperature from the transporting medium. From the result, the finite element model can reflect the distribution of thermal field in hot water circulation pump. Further, the results show that the maximum temperature locates in the bearing chamber.The theoretical guidance for the electric motor heat dissipation design of the hot water circulation pump can be achieved.

  4. Micro-porous surfaces in controlled drug delivery systems: design and evaluation of diltiazem hydrochloride controlled porosity osmotic pump using non-ionic surfactants as pore-former.

    PubMed

    Adibkia, Khosro; Ghanbarzadeh, Saeed; Shokri, Mohammad Hosein; Arami, Zahra; Arash, Zeinab; Shokri, Javad

    2014-06-01

    The major problem associated with conventional drug delivery systems is unpredictable plasma concentrations. The aim of this study was to design a controlled porosity osmotic pump (CPOP) of diltiazem hydrochloride to deliver the drug in a controlled manner. CPOP tablets were prepared by incorporation of drug in the core and subsequent coating with cellulose acetate as semi-permeable membrane. Non-ionic surfactants were applied as pore-formers as well. The effect of pore-formers concentration on the in vitro release of diltiazem was also studied. The formulations were compared based on four comparative parameters, namely, total drug released after 24 h (D24 h), lag-time (tL), squared correlation coefficient of zero order equation (RSQzero) and mean percent deviation from zero order kinetic (MPDzero). Results of scanning electron microscopy studies exhibited formation of pores in the membrane from where the drug release occurred. It was revealed that drug release rate was directly proportional to the concentration of the pore-formers. The value of D24 h in the formulations containing Tween 80 (10%) and Brij 35 (5%) were found to be more than 94.9%, and drug release followed zero order kinetic (RSQzero > 0.99 and MPDzero < 8%) with acceptable tL (lower than 1 h).

  5. [The design of bionic left ventricular auxiliary pump].

    PubMed

    Jin, Henglin; Hu, Xiaobing; Du, Lei

    2015-01-01

    This paper reports a novel design of bionic left ventricular auxiliary pump, and the characteristic is that elastic diaphragm of pump driven by hydraulic, having smooth, reliable blood supply, can prevent blood clots, can use the flow sensor, pressure sensor detection showing the blood pressure and blood volume at the inlet and outlet of the pump. The pump can go with heart rate synchronization or asynchronous auxiliary by the R wave of human body's ECG. The design goal is realization of bionic throb. Through the animal experiment, the blood pressure waveforms are close to expectations, stable flow can stroke according to the set value, which prove that the pump can meet the requirement for heart disease patients for bionic left ventricular assistant.

  6. Solar-powered turbocompressor heat pump system

    DOEpatents

    Landerman, A.M.; Biancardi, F.R.; Melikian, G.; Meader, M.D.; Kepler, C.E.; Anderson, T.J.; Sitler, J.W.

    1982-08-12

    The turbocompressor comprises a power turbine and a compressor turbine having respective rotors and on a common shaft, rotatably supported by bearings. A first working fluid is supplied by a power loop and is expanded in the turbine. A second working fluid is compressed in the turbine and is circulated in a heat pump loop. A lubricant is mixed with the second working fluid but is excluded from the first working fluid. The bearings are cooled and lubricated by a system which circulates the second working fluid and the intermixed lubricant through the bearings. Such system includes a pump, a thermostatic expansion valve for expanding the working fluid into the space between the bearings, and a return conduit system for withdrawing the expanded working fluid after it passes through the bearings and for returning the working fluid to the evaporator. A shaft seal excludes the lubricant from the power turbine. The power loop includes a float operable by liquid working fluid in the condenser for controlling a recirculation valve so as to maintain a minimum liquid level in the condenser, while causing a feed pump to pump most of the working fluid into the vapor generator. The heat pump compressor loop includes a float in the condenser for operating and expansion valve to maintain a minimum liquid working fluid level in the condenser while causing most of the working fluid to be expanded into the evaporator.

  7. Solar-powered turbocompressor heat pump system

    SciTech Connect

    Landerman, A.M.; Anderson, T.J.; Biancardi, F.; Kepler, C.E.; Meader, M.D.; Melikian, G.; Sitler, J.W.

    1984-08-14

    The turbocompressor comprises a power turbine and a compressor turbine having respective rotors on a common shaft, rotatably supported by bearings. A first working fluid is supplied by a power loop and is expanded in the turbine. A second working fluid is compressed in the turbine and is circulated in a heat pump loop. A lubricant is mixed with the second working fluid but is excluded from the first working fluid. Bearings are cooled and lubricated by a system which circulates the second working fluid and the intermixed lubricant through the bearings. Such system includes a pump, a thermostatic expansion valve for expanding the working fluid into the space between the bearings, and a return conduit system for withdrawing the expanded working fluid after it passes through the bearings and for returning the working fluid to the evaporator. A shaft seal excludes the lubricant from the power turbine. The power loop includes a float operable by liquid working fluid in the condenser for controlling a recirculation valve so as to maintain a minimum liquid level in the condenser, while causing a feed pump to pump most of the working fluid into the vapor generator. The heat pump compressor loop includes a float in the condenser for operating an expansion valve to maintain a minimum liquid working fluid level in the condenser while causing most of the working fluid to be expanded into the evaporator.

  8. Custom Unit Pump Design and Testing for the EVA PLSS

    NASA Technical Reports Server (NTRS)

    Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis

    2009-01-01

    This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design and test a pre-flight prototype pump for use in the Extra-vehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump must accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting non-condensable gas without becoming air locked. The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the pre-flight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES verified that the pump meets the design requirements for range of flow rates, pressure drop, power consumption, working fluid temperature, operating time, gas ingestion , and restart capability under both ambient and vacuum conditions. The pump operated between 40 and 240 lbm/hr flowrate, 35 to 100 F

  9. Preliminary design of a Primary Loop Pump Assembly (PLPA), using electromagnetic pumps

    NASA Technical Reports Server (NTRS)

    Moss, T. A.; Matlin, G.; Donelan, L.; Johnson, J. L.; Rowe, I.

    1972-01-01

    A preliminary design study of flight-type dc conduction-permanent magnetic, ac helical induction, and ac linear induction pumps for circulating 883 K (1130 F) NaK at 9.1 kg/sec (20 lb/sec) is described. Various electromagnetic pump geometrics are evaluated against hydraulic performance, and the effects of multiple windings and numbers of pumps per assembly on overall reliability were determined. The methods used in the electrical-hydraulic, stress, and thermal analysis are discussed, and the high temperature electrical materials selected for the application are listed.

  10. Diode-pumped laser with improved pumping system

    DOEpatents

    Chang, Jim J.

    2004-03-09

    A laser wherein pump radiation from laser diodes is delivered to a pump chamber and into the lasing medium by quasi-three-dimensional compound parabolic concentrator light channels. The light channels have reflective side walls with a curved surface and reflective end walls with a curved surface. A flow tube between the lasing medium and the light channel has a roughened surface.

  11. Feed-pump hydraulic performance and design improvement. Final report

    SciTech Connect

    Dunfee, J.D.; Anwar, I.M.; Rusak, V.; Silvaggio, J.A. Jr.; Spring, H.

    1982-03-01

    As a result of surveys of the industry and the literature (1960 to 1980), which are described in detail, a proposed research plan is presented that is designed to improve the reliability of boiler feed pumps, which are a key factor in power plant availability. The proposed research tasks can be divided into three major categories: studies of flow phenomena in the pump, improvement of mechanical components supporting and sealing the rotor, and utility aids designed to offer immediate help to the utilities in areas of pump specification, procurement, maintenance, and reliability. A method is presented of estimating the anticipated payback versus estimated research costs.

  12. Design Guidelines for Quiet Fans and Pumps for Space Vehicles

    NASA Technical Reports Server (NTRS)

    Lovell, John S.; Magliozzi, Bernard

    2008-01-01

    This document presents guidelines for the design of quiet fans and pumps of the class used on space vehicles. A simple procedure is presented for the prediction of fan noise over the meaningful frequency spectrum. A section also presents general design criteria for axial flow fans, squirrel cage fans, centrifugal fans, and centrifugal pumps. The basis for this report is an experimental program conducted by Hamilton Standard under NASA Contract NAS 9-12457. The derivations of the noise predicting methods used in this document are explained in Hamilton Standard Report SVHSER 6183, "Fan and Pump Noise Control," dated May 1973 (6).

  13. Athermal diode-pumped laser designator modules for targeting application

    NASA Astrophysics Data System (ADS)

    Crepy, B.; Closse, G.; Da Cruz, J.; Sabourdy, D.; Montagne, J.; Nguyen, L.

    2012-10-01

    We report on the development and characteristics of athermal diode-pumped designator modules as Original Equipment Manufacturer (OEM) for targeting application. These modules are designed with the latest diode-pumped technology minimizing volume and power consumption. The core technology allows to address multi-platforms requirements such as land or airborne. Products are composed of a Laser Transmitter Unit (LTU) and Laser Electronic Unit (LEU) for modular approach.

  14. A modified pump laser system to pump the titanium sapphire laser

    NASA Technical Reports Server (NTRS)

    Petway, Larry B.

    1990-01-01

    As a result of the wide tunability of the titanium sapphire laser NASA has sited it to be used to perform differential absorption lidar (DIAL) measurements of H2O vapor in the upper and lower troposphere. The titanium sapphire laser can provide a spectrally narrow (0.3 to 1.0 pm), high energy (0.5 to 1.0 J) output at 727, 762, and 940 nm which are needed in the DIAL experiments. This laser performance can be obtained by addressing the line-narrowing issues in a master oscillator and the high energy requirement in a fundamental mode oscillator. By injection seeding, the single frequency property of the master oscillator can produce a line narrow high energy power oscillator. A breadboard model of the titanium sapphire laser that will ultimately be used in NASA lidar atmospheric sensing experiment is being designed. The task was to identify and solve any problem that would arise in the actual laser system. One such problem was encountered in the pump laser system. The pump laser that is designed to pump both the master oscillator and power oscillator is a Nd:YLF laser. Nd:YLF exhibits a number of properties which renders this material an attractive option to be used in the laser system. The Nd:YLF crystal is effectively athermal; it produces essentially no thermal lensing and thermally induced birefringence is generally insignificant in comparison to the material birefringence resulting from the uniaxial crystal structure. However, in application repeated fracturing of these laser rods was experience. Because Nd:YLF rods are not commercially available at the sizes needed for this application a modified pump laser system to replace the Nd:YLF laser rod was designed to include the more durable Nd:YAG laser rods. In this design, compensation for the thermal lensing effect that is introduced because of the Nd:YAG laser rods is included.

  15. Study into a small-scale water-driven domestic heat pump: Design and performance analysis

    SciTech Connect

    Yilbas, B.S.; Al-Garni, A.Z.; Sahin, A.Z.

    1996-12-01

    A heat pump of domestic capacity and applicable for a water-powered system is studied. A design of the necessary parts is carried out and realization of the heat pump system is achieved. In realization of the system, output power of a small-scale water turbine is considered, and an electrical motor requiring similar power is employed. The estimation of capital cost and payback period is not included in the study.

  16. Heat pump having improved defrost system

    DOEpatents

    Chen, Fang C.; Mei, Viung C.; Murphy, Richard W.

    1998-01-01

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger.

  17. Heat pump having improved defrost system

    DOEpatents

    Chen, F.C.; Mei, V.C.; Murphy, R.W.

    1998-12-08

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger. 2 figs.

  18. Optimal design of multi-conditions for axial flow pump

    NASA Astrophysics Data System (ADS)

    Shi, L. J.; Tang, F. P.; Liu, C.; Xie, R. S.; Zhang, W. P.

    2016-11-01

    Passage components of the pump device will have a negative flow state when axial pump run off the design condition. Combined with model tests of axial flow pump, this paper use numerical simulation and numerical optimization techniques, and change geometric design parameters of the impeller to optimal design of multi conditions for Axial Flow Pump, in order to improve the efficiency of non-design conditions, broad the high efficient district and reduce operating cost. The results show that, efficiency curve of optimized significantly wider than the initial one without optimization. The efficiency of low flow working point increased by about 2.6%, the designed working point increased by about 0.5%, and the high flow working point increased the most, about 7.4%. The change range of head is small, so all working point can meet the operational requirements. That will greatly reduce operating costs and shorten the period of optimal design. This paper adopted the CFD simulation as the subject analysis, combined with experiment study, instead of artificial way of optimization design with experience, which proves the reliability and efficiency of the optimization design of multi-operation conditions of axial-flow pump device.

  19. Muscle powered blood pump: design and initial test results.

    PubMed

    Trumble, D R; Magovern, J A

    1999-01-01

    A pneumatic ventricular assist device (Sarns/3M) has been redesigned for low volume hydraulic actuation to accommodate muscle powered drive systems. Design modifications include adding a bellows/piston mechanism (to compress the blood sac) and a compliance chamber for volume compensation. A simple prototype device was constructed to measure the efficacy of piston pump actuation and to validate pusher plate design. Device manufacture was affected by removing the drive line housing from the pneumatic pump and replacing it with a piston/bushing mechanism. A convex piston profile was chosen to maximize ejection fraction and minimize device size. Stroke volume was found to be a linear function of piston displacement (approximately 3 ml/mm) and reached a maximum value of 45 ml. Mean compression forces of 46-56 N acting during a 12 mm stroke (2.1 L/min at 60 cycles/min) were sufficient to generate mean afterload pressures of 70-110 mm Hg in a mock circulatory loop. Peak compression forces ranged from 72 to 86 N and work input was calculated to be 552-672 mJ/stroke. These data indicate that this method for delivering muscle power to the bloodstream is both mechanically viable and compatible with the functional capacity of conditioned latissimus dorsi muscle.

  20. A generic pump/compressor design for circulation of cryogenic fluids

    NASA Astrophysics Data System (ADS)

    Jasinski, T.; Stacy, W. Dodd; Honkonen, S. C.; Sixsmith, H.

    This paper describes the development of a second-generation centrifugal circulator for cryogenic fluids. The circulator is designed to operate over a wide range of flow rate and pressure rise and can be used for the pumping of liquid and compression of vapor at temperatures down to liquid helium (4 K). The machine incorporates self-acting gas journal bearings, a permanent magnet axial thrust bearing, and a variable speed induction motor drive to provide for reliable, maintenance-free operation. Design details of the pump are described. Calculated performance characteristics for a liquid helium pumping application are presented along with a general discussion regarding limitations of the present system.

  1. Computer-aided design of a proton pump

    NASA Technical Reports Server (NTRS)

    New, Michael H.; Pohorille, Andrew; Chang, Sherwood (Technical Monitor)

    1997-01-01

    The use of transmembrane proton gradients in energy transduction is an almost universal feature of life on earth. These proton gradients are established and maintained by specialized assemblies of proteins which actively pump protons across membranes. One broad class of proton pumps uses captured light energy to drive the proton pumping. Our goal is to elucidate the minimum structural requirements of a light-driven proton-pump. There are two basic components to a simple light-driven proton pump: a source of photo-generated protons and a "gate-keeper" which prevents these protons from reattaching themselves to their source. A wide variety of molecules in the membrane, even as simple as polycyclic aromatic hydrocarbons, are capable of releasing protons when illuminated. Our work is therefore focused on the design of the "gate-keeper." Our initial model involves a pair of proton acceptors, coupled to each other by a transient water bridge, and supported in the membrane by a small bundle of peptide helices. Upon illumination, the proton source transfers its proton to the:- first acceptor of the gate-keeper. While the reverse reaction is highly probable, all that is needed to ensure irreversibility is a nonvanishing probability that the proton will be transferred to the second acceptor across a transient water bridge. Back transfer of the proton to the first acceptor, and thence to the proton source, is impeded by the free energy required to move the proton uphill towards the. proton source and by the disruption of the transient water bridge. As a prototypical water-bridged proton transfer system, we are studying the transfer of a proton across a water bridge from a formic acid to a formate anion. With a pK(sub alpha), of 3.7. formic acid is a good model for the acidic amino acids glutamate and aspartate which are good candidates for gate-keeper proton acceptors. Simulations of proton transfer reactions in a membrane are complicated by the quantum mechanical nature of

  2. Design of a cost effective solar powered water pump

    NASA Astrophysics Data System (ADS)

    Chadwick, D. G.

    1980-04-01

    The basic design consists of an expanding gaseous piston confined inside a chamber which is located in series with, and between, an inlet and an outlet check valve. The gas is generated by volatilizing cyclopentane or hexane. Four variations of this basic design concept were built and evaluated. Considerations in the choice of a cost effective solar collector are also reviewed. A 70 C heat source temperature is required to operate the pump if cyclopentane is used as the volatile fluid, 90 C is required if hexane is used. The pumps have a capacity of approximately 6 liters/minute when pumped to a height of 2 meters. Two square meters of sunshine are sufficient to operate the pump.

  3. Miscellaneous component design for Tank 241SY101 pump removal

    SciTech Connect

    Huang, F.H.

    1995-03-02

    A mixer pump has been used to mitigate the hydrogen build-up in tank 241SY101 (SY101), located in the 200 West Area of the Hanford Site. New equipment is being prepared for the removal, transport, storage, and disposal of the test pump. The disposal equipment for the test pump now in tank SY101 includes a shipping container, a strong back, a lifting beam, a test weight, container support stands, a modified mock-up pump, a flexible receiver blast shield, a lifting yoke, and a yoke brace. The structural evaluations of container and strong back are detailed in another supporting document (WHC 1994a), the engineering analyses of flexible receiver blast shield/lifting yoke and yoke brace are given in other supporting documents (WHC 1994b, WHC 1994c), respectively. Engineering tasks that were contracted to Advanced Engineering Consultants (AEC) include the design and analysis of the following. Two spreader-beam lifting devices. a Container test weight. Container support saddles. Mock-up pump modification. This report documents the work description, design basis, assumptions, and design calculations provided by AEC for the above components. All AEC documents appear in Appendix A. Additional work conducted by Westinghouse Hanford Company (WHC) on the modified container test weight, modification to the mock-up pump, the removable support for the transport assembly, and saddle modification for air pallets also are included in this document.

  4. Design considerations of volute geometry of a centrifugal blood pump.

    PubMed

    Chan, Weng Kong; Wong, Yew Wah; Hu, Wei

    2005-12-01

    This article compares two different design techniques that are conventionally used in the design of volutes for centrifugal pumps. The imbalanced forces due to the geometry of the volute need to be taken into consideration especially in centrifugal blood pumps with magnetically suspended impeller. A reduction of these forces can reduce the instability of the impeller motion as well as the power needed to counteract its influence. Volutes using the constant angular momentum (CAM) and the constant mean velocity (CMV) methods were developed and modeled numerically. The computational results on the effect of volute geometry on the performance of a centrifugal blood pump impeller for six different volutes are presented here. For volutes designed using the CAM method, model B (volute expansion angle of 3 degrees ) had the lowest radial force of 0.26 N while the pressure head generated was 12,900 Pa. For volutes designed using the CMV method, model F (1.6 m/s) had the lowest imbalanced force of 0.45 N. However, the pressure developed by this pump was also one of the lowest at 10,652 Pa. Furthermore, when the peak scalar stresses and the mean exposure time of particles for all designs were determined using Lagrangian particle tracking method, it was observed that in general, the peak scalar stresses in CAM designed volutes are lower than those designed using CMV method. The mean exposure time of particles in the pump ranged from 400 to 500 ms. The simulation results showed that the volute designed using CAM method was superior to that of a CMV volute in terms of the magnitude of the radial force and the peak scalar stresses for the same pressure head generated. Results show that the design of volutes for blood pumps should go beyond conventional empirical methods to obtain optimal results.

  5. Development of a Compact, Efficient Cooling Pump for Space Suit Life Support Systems

    NASA Technical Reports Server (NTRS)

    van Boeyen, Roger; Reeh, Jonathan; Trevino, Luis

    2009-01-01

    A compact, low-power electrochemically-driven fluid cooling pump is currently being developed by Lynntech, Inc. With no electric motor and minimal lightweight components, the pump is significantly lighter than conventional rotodynamic and displacement pumps. Reliability and robustness is achieved with the absence of rotating or moving components (apart from the bellows). By employing sulfonated polystyrene-based proton exchange membranes, rather than conventional Nafion membranes, a significant reduction in the actuator power consumption was demonstrated. Lynntech also demonstrated that these membranes possess the necessary mechanical strength, durability, and temperature range for long life space operation. The preliminary design for a Phase II prototype pump compares very favorably to the fluid cooling pumps currently used in space suit primary life support systems (PLSSs). Characteristics of the electrochemically-driven pump are described and the benefits of the technology as a replacement for electric motor pumps in mechanically pumped single-phase fluid loops is discussed.

  6. Pump/Control System Minimum Operating Cost Testing

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A preliminary evaluation of pump performance was initiated to determine the efficiencies of an arbitrary group of small pumps. Trends in factors affecting energy usage in typical prime movers which might be used in liquid transport solar systems were assessed. Comparisons of centrifugal pump efficiencies were made from one manufacturer to another. Tests were also made on two positive-displacement pumps and comparisons with centrifugal pumps were observed.

  7. Electric Fuel Pump Condition Monitor System Using Electricalsignature Analysis

    DOEpatents

    Haynes, Howard D [Knoxville, TN; Cox, Daryl F [Knoxville, TN; Welch, Donald E [Oak Ridge, TN

    2005-09-13

    A pump diagnostic system and method comprising current sensing probes clamped on electrical motor leads of a pump for sensing only current signals on incoming motor power, a signal processor having a means for buffering and anti-aliasing current signals into a pump motor current signal, and a computer having a means for analyzing, displaying, and reporting motor current signatures from the motor current signal to determine pump health using integrated motor and pump diagnostic parameters.

  8. Heat pump system for residential use

    SciTech Connect

    Kinsell, R.C.; Noe, J.C.

    1984-05-01

    An air conditioning system of the air cycle heat pump type is disclosed for selectively heating and cooling a residence or similar space environment. In one embodiment, a combustor and associated Brayton cycle turbine provide the primary drive to a compessor constituting the heat pump. In a second embodiment, the Brayton turbine is replaced by an electric motor coupled to drive the compressor shaft. An auxiliary turbine is also coupled to the drive shaft to provide auxiliary drive derived from the operation of a portion of the system at sub-atmospheric pressure. In this portion, during the cooling mode, water is evaporated into the system to further assist in cooling by removing the latent heat of vaporization.

  9. Heat pump systems for residential use

    SciTech Connect

    Kinsell, R.C.; Noe, J.C.

    1984-04-24

    An air conditioning system of the air cycle heat pump type for selectively heating and cooling a residence or similar space environment. In one embodiment, a combustor and associated Brayton cycle turbine provide the primary drive to a compressor constituting the heat pump. In a second embodiment, the Brayton turbine is replaced by an electric motor coupled to drive the compressor shaft. An auxiliary turbine is also coupled to the drive shaft to provide auxiliary drive derived from the operation of a portion of the system at sub-atmospheric pressure. In this portion, during the cooling mode, water is evaporated into the system to further assist in cooling by removing the latent heat of vaporization.

  10. Computational fluid dynamic design of rocket engine pump components

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Chung; Prueger, George H.; Chan, Daniel C.; Eastland, Anthony H.

    1992-01-01

    Integration of computational fluid dynamics (CFD) for design and analysis of turbomachinery components is needed as the requirements of pump performance and reliability become more stringent for the new generation of rocket engine. A fast grid generator, designed specially for centrifugal pump impeller, which allows a turbomachinery designer to use CFD to optimize the component design will be presented. The CFD grid is directly generated from the impeller blade G-H blade coordinates. The grid points are first generated on the meridional plane with the desired clustering near the end walls. This is followed by the marching of grid points from the pressure side of one blade to the suction side of a neighboring blade. This fast grid generator has been used to optimize the consortium pump impeller design. A grid dependency study has been conducted for the consortium pump impeller. Two different grid sizes, one with 10,000 grid points and one with 80,000 grid points were used for the grid dependency study. The effects of grid resolution on the turnaround time, including the grid generation and completion of the CFD analysis, is discussed. The impeller overall mass average performance is compared for different designs. Optimum design is achieved through systematic change of the design parameters. In conclusion, it is demonstrated that CFD can be effectively used not only for flow analysis but also for design and optimization of turbomachinery components.

  11. Application of hot-melt extrusion technology for designing an elementary osmotic pump system combined with solid dispersion for a novel poorly water-soluble antidepressant.

    PubMed

    Zhang, Xuemei; Wang, Meng; Li, Pei; Wang, Aiping; Liang, Rongcai; Gai, Yunyun; Liu, Wanhui; Li, Youxin; Sun, Kaoxiang

    2016-12-01

    TP1 is a novel antidepressant with poor solubility. To reduce fluctuations in blood concentration and increase oral bioavailability, a controlled-release system was developed by combining a solid dispersion (SD) and an elementary osmotic pump (EOP). The study compared different methods of preparing SDs. Hot-melt extrusion (HME) exhibited clear advantages over the traditional melting technique. An in vitro release study demonstrated that HME-EOP tablets released TP1 in a zero-order manner over 12 h and the drug release was in dependent of the release medium and agitation speed, whereas release from molten-EOP tablets lasted only 8 h. In contrast to immediate-release tablets, the HME-EOP tablets exhibited less fluctuation in blood concentration and higher bioavailability in vivo. In summary, the osmotic pump system combined with an HME-based SD of TP1 presented controlled release in vitro, high bioavailability in vivo and a good in vivo-in vitro correlation.

  12. Prototype expert system for infusion pump maintenance.

    PubMed

    Mataban, B A

    1994-01-01

    With today's object-oriented software, knowledge-base building becomes simple. Using ServiceSoft's Service Power tools, an IMED PC-1 infusion pump prototype expert system was built. Approximately three man-weeks of work was expended to build the prototype expert system providing advice on repair to the board level. The prototype was demonstrated to the Department of Defense, and they are considering the inclusion of expert systems technology in medical equipment maintenance as one facet of their consolidation of logistic and administrative functions of the four military services' health care delivery.

  13. Cradle/pump heating system operation and maintenance manual

    SciTech Connect

    Taylor, S.L., Fluor Daniel Hanford

    1997-02-01

    This is the operation and maintenance manual for the 241-SY-101 Cradle/Pump Heating System. The Heating System provides the means to heat the pump (HMT {number_sign}2) during cold weather to assure safe and smooth pump installation.

  14. Vacuum pumps and systems: A review of current practice

    NASA Technical Reports Server (NTRS)

    Giles, Stuart

    1986-01-01

    A review of the fundamental characteristics of the many types of vacuum pumps and vacuum pumping systems is given. The optimum pumping range, relative cost, performance limitations, maintenance problems, system operating costs and similar subjects are discussed. Experiences from the thin film deposition, chemical processing, material handling, food processing and other industries, as well as space simulation are used to support conclusions and recommendations.

  15. Improving the Energy Effciency of Pump Systems - PSAT

    SciTech Connect

    2005-05-01

    PSAT software uses data that are typically available or easily obtained in the field (e.g., pump head, flow rate, and motor power) to estimate potential energy and dollar savings in industrial pump systems.

  16. Hourly simulation of a Ground-Coupled Heat Pump system

    NASA Astrophysics Data System (ADS)

    Naldi, C.; Zanchini, E.

    2017-01-01

    In this paper, we present a MATLAB code for the hourly simulation of a whole Ground-Coupled Heat Pump (GCHP) system, based on the g-functions previously obtained by Zanchini and Lazzari. The code applies both to on-off heat pumps and to inverter-driven ones. It is employed to analyse the effects of the inverter and of the total length of the Borehole Heat Exchanger (BHE) field on the mean seasonal COP (SCOP) and on the mean seasonal EER (SEER) of a GCHP system designed for a residential house with 6 apartments in Bologna, North-Center Italy, with dominant heating loads. A BHE field with 3 in line boreholes is considered, with length of each BHE either 75 m or 105 m. The results show that the increase of the BHE length yields a SCOP enhancement of about 7%, while the SEER remains nearly unchanged. The replacement of the on-off heat pump by an inverter-driven one yields a SCOP enhancement of about 30% and a SEER enhancement of about 50%. The results demonstrate the importance of employing inverter-driven heat pumps for GCHP systems.

  17. Evaluation of performance parameters of indigenously developed roots pumping system

    NASA Astrophysics Data System (ADS)

    Maqsood, M.; Usman, A.; Bodla, M. F.; Ali, J.

    2016-08-01

    Roots pumping systems are widely used in industries to generate vacuum with high pumping speed. In the present work, the performance parameters of indigenously developed Roots pumping system have been studied. The performance parameters being studied are the ultimate pressure, working temperature, compression ratio and pumping speed. Ultimate pressure of the Roots pump after continuous running of eight hours is found to be 1.1x10-3 mbar. The most important parameter of the roots pump is the zero-gas flow compression Ratio (Ko) which is found to be 18 for the pumping system under study. Efficiency of Roots pump is found to be 76% which is in good agreement as reported in the literature.

  18. Low-thrust chemical propulsion system pump technology

    NASA Technical Reports Server (NTRS)

    Sabiers, R. L.; Siebenhaar, A.

    1981-01-01

    Candidate pump and driver systems for low thrust cargo orbit transfer vehicle engines which deliver large space structures to geosynchronous equatorial orbit and beyond are evaluated. The pumps operate to 68 atmospheres (1000 psi) discharge pressure and flowrates suited to cryogenic engines using either LOX/methane or LOX/hydrogen propellants in thrust ranges from 445 to 8900 N (100 to 2000 lb F). Analysis of the various pumps and drivers indicate that the low specific speed requirement will make high fluid efficiencies difficult to achieve. As such, multiple stages are required. In addition, all pumps require inducer stages. The most attractive main pumps are the multistage centrifugal pumps.

  19. Design of a 37 kw waste-fired pump engine

    SciTech Connect

    Abernathy, G.H.; Patterson, R.S.

    1981-01-01

    High Cost and possible shortages of irrigation pumping fuel are prompted the evaluation of alternate fuel engines. This engine is a steam turbine powered by a milo-stalk-fired boiler. Some short runs were accomplished in 1982 but further design will be required. ref.

  20. Primary-secondary pumping conversion: Retrofit of an existing campus chilled water distribution system

    SciTech Connect

    Sczomak, D.P.; Nguyen, P.N.

    1996-08-01

    The chilled water distribution system within an existing 8,300 ton (29,200 kW) capacity regional chilled water plant at Michigan State University (MSU) is being converted from a primary pumping arrangement to a primary-secondary arrangement. The plant presently provides chilled water for air conditioning to twelve remote buildings. In the future, MSU plans to increase the plant`s capacity to 10,800 tons (38,000 kW) in order to serve seven more buildings. The addition of buildings to the distribution system has caused the existing primary pumps to be incapable of producing enough pressure to offset system losses at design flow rates. The existing system has become unable to concurrently provide adequate flow, design supply water temperature and efficient chiller operation due to the distribution system deficiencies. The primary-secondary pumping conversion will include modifications to the distribution piping, the addition of five variable speed secondary pumps, additions and modifications to the control systems, the trimming of impellers on six of the existing primary pumps and replacement of two primary pumps. The campus central control system will be utilized to provide automatic chiller staging, interface with the packaged secondary pump control systems, and control of the building interconnections. The total construction cost is approximately $1,400,000 and is scheduled for completion prior to the 1996 cooling season. Provisions have been made for two additional secondary pumps to accommodate the connection of additional buildings to the distribution system in the future.

  1. Jet Pump Design Optimization by Multi-Surrogate Modeling

    NASA Astrophysics Data System (ADS)

    Mohan, S.; Samad, A.

    2014-09-01

    A basic approach to reduce the design and optimization time via surrogate modeling is to select a right type of surrogate model for a particular problem, where the model should have better accuracy and prediction capability. A multi-surrogate approach can protect a designer to select a wrong surrogate having high uncertainty in the optimal zone of the design space. Numerical analysis and optimization of a jet pump via multi-surrogate modeling have been reported in this work. Design variables including area ratio, mixing tube length to diameter ratio and setback ratio were introduced to increase the hydraulic efficiency of the jet pump. Reynolds-averaged Navier-Stokes equations were solved and responses were computed. Among different surrogate models, Sheppard function based surrogate shows better accuracy in data fitting while the radial basis neural network produced highest enhanced efficiency. The efficiency enhancement was due to the reduction of losses in the flow passage.

  2. Jet Pump Design Optimization by Multi-Surrogate Modeling

    NASA Astrophysics Data System (ADS)

    Mohan, S.; Samad, A.

    2015-01-01

    A basic approach to reduce the design and optimization time via surrogate modeling is to select a right type of surrogate model for a particular problem, where the model should have better accuracy and prediction capability. A multi-surrogate approach can protect a designer to select a wrong surrogate having high uncertainty in the optimal zone of the design space. Numerical analysis and optimization of a jet pump via multi-surrogate modeling have been reported in this work. Design variables including area ratio, mixing tube length to diameter ratio and setback ratio were introduced to increase the hydraulic efficiency of the jet pump. Reynolds-averaged Navier-Stokes equations were solved and responses were computed. Among different surrogate models, Sheppard function based surrogate shows better accuracy in data fitting while the radial basis neural network produced highest enhanced efficiency. The efficiency enhancement was due to the reduction of losses in the flow passage.

  3. Evaluation of Geothermal Heat Pump Systems under Various Conditions

    NASA Astrophysics Data System (ADS)

    Lee, S.; Bae, G.; Lee, K.

    2006-12-01

    Experimental and numerical test were accomplished to evaluate the relations between the geothermal system and the hydrogeological condition. Sand tank experiment was designed. Combinations of different gradients and temperature gradients were applied for testing the real-time monitoring performance. Numerical modeling results were compared with the experimental data. Water injection-system imitating open- and closed-loop geothermal heat pumps were applied to estimate the change of the distribution of ambient groundwater temperature. The experimental results of different settings were used to estimate the effects of shallow depth geothermal energy utilization on the groundwater system.

  4. A ferrofluidic seal specially designed for rotary blood pumps.

    PubMed

    Mitamura, Y; Fujiyoshi, M; Yoshida, T; Yozu, R; Okamoto, E; Tanaka, T; Kawada, S

    1996-06-01

    One of the key technologies required for rotary blood pumps is sealing of the motor shaft. A ferrofluidic seal was developed for an axial flow pump. The seal body was composed of a plastic magnet and two pole pieces. This seal was formed by injecting ferrofluid into the gap between the pole pieces and the motor shaft. To contain the ferrofluid in the seal and to minimize the possibility of ferrofluid making contact with blood, a shield with a small cavity was provided on the pole piece. Sealing pressure of the seal was measured. The sealing pressure was maintained at more than 23.3 kPa (175 mm Hg) for a motor speed up to 11,000 rpm. The specially designed ferrofluidic seal for sealing out liquids is useful for axial flow blood pumps.

  5. Artificial heartbeat: design and fabrication of a biologically inspired pump.

    PubMed

    Walters, Peter; Lewis, Amy; Stinchcombe, Andrew; Stephenson, Robert; Ieropoulos, Ioannis

    2013-12-01

    We present a biologically inspired actuator exhibiting a novel pumping action. The design of the 'artificial heartbeat' actuator is inspired by physical principles derived from the structure and function of the human heart. The actuator employs NiTi artificial muscles and is powered by electrical energy generated by microbial fuel cells (MFCs). We describe the design and fabrication of the actuator and report the results of tests conducted to characterize its performance. This is the first artificial muscle-driven pump to be powered by MFCs fed on human urine. Results are presented in terms of the peak pumping pressure generated by the actuator, as well as for the volume of fluid transferred, when the actuator was powered by energy stored in a capacitor bank, which was charged by 24 MFCs fed on urine. The results demonstrate the potential for the artificial heartbeat actuator to be employed as a fluid circulation pump in future generations of MFC-powered robots ('EcoBots') that extract energy from organic waste. We also envisage that the actuator could in the future form part of a bio-robotic artwork or 'bio-automaton' that could help increase public awareness of research in robotics, bio-energy and biologically inspired design.

  6. Ultra-high speed vacuum pump system with first stage turbofan and second stage turbomolecular pump

    SciTech Connect

    Jostlein, Hans

    2006-04-04

    An ultra-high speed vacuum pump evacuation system includes a first stage ultra-high speed turbofan and a second stage conventional turbomolecular pump. The turbofan is either connected in series to a chamber to be evacuated, or is optionally disposed entirely within the chamber. The turbofan employs large diameter rotor blades operating at high linear blade velocity to impart an ultra-high pumping speed to a fluid. The second stage turbomolecular pump is fluidly connected downstream from the first stage turbofan. In operation, the first stage turbofan operates in a pre-existing vacuum, with the fluid asserting only small axial forces upon the rotor blades. The turbofan imparts a velocity to fluid particles towards an outlet at a high volume rate, but moderate compression ratio. The second stage conventional turbomolecular pump then compresses the fluid to pressures for evacuation by a roughing pump.

  7. Pump

    SciTech Connect

    Johnson, J.W.; Abdul.Hye, A.B.M.

    1983-10-25

    A pump for injecting chemicals into a well employs a pivot arm for synchronous movement with a well pump. The pivot arm causes reciprocation of a plunger within the body of the chemical pump. The plunger, during its upward stroke causes the entry of chemicals from an outside source into the pump body and, during its downward stroke, causes the exiting of the chemicals into the well. (2 claims.

  8. Fuel system for rotary distributor fuel injection pump

    SciTech Connect

    Klopfer, K.H.; Kelly, W.W.

    1993-06-01

    In a fuel injection pump having a drive shaft, a pump rotor driven by the drive shaft, reciprocating pumping means with periodic intake and pumping strokes to periodically receive an intake charge of fuel and deliver fuel at high pressure for fuel injection is described; a distributor head with a plurality of angularly spaced distributor outlets, the pump rotor providing a distributor rotor with a distributor port connected to the pumping means, the distributor rotor being rotatably mounted in the distributor head for sequential registration of the distributor port with the distributor outlets for distributing said high pressure delivery of fuel thereto; a fuel system for supplying fuel to the pumping means, having an end chamber at one end of the pump rotor and a fuel supply pump driven by the drive shaft and having an inlet and outlet, the supply pump outlet being connected to the end chamber for supplying fuel thereto, and a pressure regulator for regulating the fuel pressure in the end chamber; and a control valve connected between the pumping means and the end chamber and selectively opened during the intake strokes to supply fuel to the pumping means from the end chamber and during the pumping strokes to spill fuel from the pumping means into the end chamber to terminate said high pressure delivery of fuel; the improvement wherein the fuel system comprises a fuel return passage connected in series with the end chamber downstream thereof, wherein the pressure regulator is mounted in the return passage for regulating the upstream fuel pressure, including the upstream fuel pressure within the end chamber, and is connected for conducting excess fuel for return to the supply pump inlet, and wherein the supply pump is driven by the drive shaft to supply fuel at a rate exceeding the rate of said high pressure delivery of fuel for fuel injection and to provide excess fuel flow continuously through the end chamber and return passage to the pressure regulator.

  9. An implantable centrifugal blood pump with a recirculating purge system (Cool-Seal system).

    PubMed

    Yamazaki, K; Litwak, P; Tagusari, O; Mori, T; Kono, K; Kameneva, M; Watach, M; Gordon, L; Miyagishima, M; Tomioka, J; Umezu, M; Outa, E; Antaki, J F; Kormos, R L; Koyanagi, H; Griffith, B P

    1998-06-01

    A compact centrifugal blood pump has been developed as an implantable left ventricular assist system. The impeller diameter is 40 mm, and pump dimensions are 55 x 64 mm. This first prototype, fabricated from titanium alloy, resulted in a pump weight of 400 g including a brushless DC motor. The weight of a second prototype pump was reduced to 280 g. The entire blood contacting surface is coated with diamond like carbon (DLC) to improve blood compatibility. Flow rates of over 7 L/min against 100 mm Hg pressure at 2,500 rpm with 9 W total power consumption have been measured. A newly designed mechanical seal with a recirculating purge system (Cool-Seal) is used for the shaft seal. In this seal system, the seal temperature is kept under 40 degrees C to prevent heat denaturation of blood proteins. Purge fluid also cools the pump motor coil and journal bearing. Purge fluid is continuously purified and sterilized by an ultrafiltration unit which is incorporated in the paracorporeal drive console. In vitro experiments with bovine blood demonstrated an acceptably low hemolysis rate (normalized index of hemolysis = 0.005 +/- 0.002 g/100 L). In vivo experiments are currently ongoing using calves. Via left thoracotomy, left ventricular (LV) apex descending aorta bypass was performed utilizing an expanded polytetrafluoroethylene (ePTFE) vascular graft with the pump placed in the left thoracic cavity. In 2 in vivo experiments, the pump flow rate was maintained at 5-9 L/min, and pump power consumption remained stable at 9-10 W. All plasma free Hb levels were measured at less than 15 mg/dl. The seal system has demonstrated good seal capability with negligible purge fluid consumption (<0.5 ml/day). In both calves, the pumps demonstrated trouble free continuous function over 6 month (200 days and 222 days).

  10. Experimental study on runaway characteristics of pump system

    NASA Astrophysics Data System (ADS)

    Yang, F.; Liu, C.; Tang, F. P.; Zhou, J. R.

    2013-12-01

    Experiments on runaway characteristics were conducted for two sets of tubular pump systems and two sets of vertical axial pump systems. The measurement results show that at different blade angles the unit runaway speeds are different and increase with the increase of the blade angle. For the same pump system at the same blade angle the unit runaway speeds decrease with decrease of reverse-water-head of the system. The different outflow passages of pumps also caused variation of the unit runaway speeds. Through the calculation of resistance torque the variable factors of runaway speed with same blade angle are analyzed under different operation conditions of reverse-water-head. It is evident that the unit runaway speed obtained from model pump system is applicable and safe for conversion to prototype pump system.

  11. Designing the modern pump: engineering aspects of continuous subcutaneous insulin infusion software.

    PubMed

    Welsh, John B; Vargas, Steven; Williams, Gary; Moberg, Sheldon

    2010-06-01

    Insulin delivery systems attracted the efforts of biological, mechanical, electrical, and software engineers well before they were commercially viable. The introduction of the first commercial insulin pump in 1983 represents an enduring milestone in the history of diabetes management. Since then, pumps have become much more than motorized syringes and have assumed a central role in diabetes management by housing data on insulin delivery and glucose readings, assisting in bolus estimation, and interfacing smoothly with humans and compatible devices. Ensuring the integrity of the embedded software that controls these devices is critical to patient safety and regulatory compliance. As pumps and related devices evolve, software engineers will face challenges and opportunities in designing pumps that are safe, reliable, and feature-rich. The pumps and related systems must also satisfy end users, healthcare providers, and regulatory authorities. In particular, pumps that are combined with glucose sensors and appropriate algorithms will provide the basis for increasingly safe and precise automated insulin delivery-essential steps to developing a fully closed-loop system.

  12. Experimental analysis of direct-expansion ground-coupled heat pump systems

    NASA Astrophysics Data System (ADS)

    Mei, V. C.; Baxter, V. D.

    1991-09-01

    Direct-expansion ground-coil-coupled (DXGC) heat pump systems have certain energy efficiency advantages over conventional ground-coupled heat pump (GCHP) systems. Principal among these advantages are that the secondary heat transfer fluid heat exchanger and circulating pump are eliminated. While the DXGC concept can produce higher efficiencies, it also produces more system design and environmental problems (e.g., compressor starting, oil return, possible ground pollution, and more refrigerant charging). Furthermore, general design guidelines for DXGC systems are not well documented. A two-pronged approach was adopted for this study: (1) a literature survey, and (2) a laboratory study of a DXGC heat pump system with R-22 as the refrigerant, for both heating and cooling mode tests done in parallel and series tube connections. The results of each task are described in this paper. A set of general design guidelines was derived from the test results and is also presented.

  13. Design acceptance summary report for the new generation transfer pump (NGTP)

    SciTech Connect

    IRONS, J.

    1999-10-27

    This report documents design review of the New Generation Transfer Pump versus the functions and requirements of the SY-101 Rapid Mitigation Project. Previously unpublished documentation for the pump is included in support of the design.

  14. Jet pump-drive system for heat removal

    NASA Technical Reports Server (NTRS)

    French, James R. (Inventor)

    1987-01-01

    The invention does away with the necessity of moving parts such as a check valve in a nuclear reactor cooling system. Instead, a jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A main flow exists for a reactor coolant. A point of withdrawal is provided for a secondary flow. A TEMP, responsive to the heat from said coolant in the secondary flow path, automatically pumps said withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature where the heat is no longer a problem. At this lower temperature, the TEMP/jet pump combination ceases its circulation boosting operation. When the nuclear reactor is restarted and the coolant again exceeds the lower temperature setting, the TEMP/jet pump automatically resumes operation. The TEMP/jet pump combination is thus automatic, self-regulating and provides an emergency pumping system free of moving parts.

  15. Analysis of the reliability of submersible centrifugal electric pumping systems

    SciTech Connect

    Shilyaev, V.A.; Solodovnikov, G.G.; Vikhman, R.G.; Koshelev, V.A.; Zhitina, G.S.; Chirkova, N.I.

    1987-01-01

    A modern submersible centrifugal electric pumping system (SCEPS) for oil production consists of a submersible part which includes a centrifugal pump, an electric motor, a hydroprotection arrangement, a cable line, and an aboveground part that includes a control station and a transformer. The author discusses the mean service life of the submersible part of the SCEPS as the most important parameter of reliability of the SCEPS. The effect of the operating factors is assessed by calculating the mean service life of the submersible part of the typical SCEPS, making allowance for failures resulting from all causes. The mean operating time until failure of the submersible part of the new SCEPS due to design and technological error was determined.

  16. A regional comparison of solar, heat pump, and solar-heat pump systems

    NASA Astrophysics Data System (ADS)

    Manton, B. E.; Mitchell, J. W.

    1982-08-01

    A comparative study of the thermal and economic performance of the parallel and series solar heat pump systems, stand alone solar and stand alone heat pump systems for residential space and domestic hot water heating for the U.S. using FCHART 4.0 is presented. Results show that the parallel solar heat pump system yields the greatest energy savings in the south. Very low cost collectors (50-150 dollars/sq m) are required for a series solar heat pump system in order for it to compete economically with the better of the parallel or solar systems. Conventional oil or gas furnaces need to have a seasonal efficiency of at least 70-85% in order to save as much primary energy as the best primary system in the northeast. In addition, the implications of these results for current or proposed federal tax credit measures are discussed.

  17. A new design and computational fluid dynamics study of an implantable axial blood pump.

    PubMed

    Koochaki, Mojtaba; Niroomand-Oscuii, Hanieh

    2013-12-01

    Considering small thoracic space, using implantable ventricular assist device requires reduction in a pump size. Among many available blood pumps, axial blood pumps have attracted greatly because of their small size. In this article, a new miniature axial blood pump has been designed and studied which can be easily implanted in the human body. In this design, the pump overall length decreased by a little increasing in the pump diameter, and new blade geometry is used to produce a streamlined, idealized, and nonobstructing blood flow path in the pump. By means of computational fluid dynamic, the flow pattern through the pump has been predicted and overall pump performance and efficiency has been computed. Also, to ensure a reliable VAD design, two methods for checking wall shear stress were used to confirm that this pump wouldn't cause serious blood damage.

  18. Design and evaluation of a single-pivot supported centrifugal blood pump.

    PubMed

    Yoshino, M; Uemura, M; Takahashi, K; Watanabe, N; Hoshi, H; Ohuchi, K; Nakamura, M; Fujita, H; Sakamoto, T; Takatani, S

    2001-09-01

    In order to develop a centrifugal blood pump that meets the requirements of a long-term, implantable circulatory support device, in this study a single-pivot bearing supported centrifugal blood pump was designed to evaluate its basic performance. The single-pivot structure consisted of a ceramic ball male pivot mounted on the bottom surface of the impeller and a polyethylene female pivot incorporated in the bottom pump casing. The follower magnet mounted inside the impeller was magnetically coupled to the driver magnet mounted on the shaft of the direct current brushless motor. As the motor rotated, the impeller rotated supported entirely by a single-pivot bearing system. The static pump performance obtained in the mock circulatory loop revealed an acceptable performance as a left ventricular assist device in terms of flow and head pressure. The pump flow of 5 L/min against the head pressure of 100 mm Hg was obtained at rotational speeds of 2,000 to 2,200 rpm. The maximum pump flow was 9 L/min with 2,200 rpm. The maximum electrical-to-hydraulic power conversion efficiency was around 14% at pump flows of 4 to 5 L/min. The stability of the impeller was demonstrated at the pump rpm higher than 1,400 with a single-pivot bearing without an additional support at its top. The single-pivot supported centrifugal pump can provide adequate flow and pressure as a ventricular assist device, but its mechanical stability and hemolytic as well as thrombotic performances must be tested prior to clinical use.

  19. Jostra Rota Flow RF-30 pump system: a new centrifugal blood pump for cardiopulmonary bypass.

    PubMed

    Orime, Y; Shiono, M; Yagi, S; Yamamoto, T; Okumura, H; Nakata, K; Kimura, S; Hata, M; Sezai, A; Kashiwazaki, S; Choh, S; Negishi, N; Sezai, Y; Matsui, T; Suzuki, M

    2000-06-01

    The Rota Flow pump is a fully integrated centrifugal pump system in the Jostra heart-lung machine HL-20 with features such as a less friction mono-pivot bearing system, sealless pump housing, and spiral housing. To evaluate its biocompatibility, antithrombogenesity, and hemolysis, we used it as a main pump of cardiopulmonary bypass (CPB) in coronary artery bypass grafting (CABG) cases and compared it with the BioMedicus pump. From February 1999 to May 1999, 30 consecutive patients underwent CABG under conventional CPB. Fifteen cases were supported by the Rota Flow RF-32 (Group R), and the remaining 15 were pumped by the BioMedicus BP-80 (Group B). In both groups, the flow rate was controlled in an equivalent value. Blood sampling was as follows: preoperative, 60 min after, postoperative Days (POD) 0, 1, and 2. We evaluated the plasma free hemoglobin (fHb) as the hemolysis parameter, beta-thromboglobulin (beta-TG) and platelet factor IV (PF-4) as the platelet deterioration index, C3, C4, and CH50 as complement activation, coagulation function, fibrinolytic factor and thrombomodulin, nitric oxide (NO), and endothelin as endothelial deterioration. This system was very easily and simply controlled and had excellent response. Perioperative laboratory data were not markedly changed in either group. The Rota Flow demonstrated equivalent value of biocompatibility and hemolysis as compared with the BioMedicus BP-80, which is a standard centrifugal pump. After pumping, no thrombus formation or pivot wear was observed inside the pump. This atraumatic, small centrifugal pump is suitable not only for CPB but also for long-term circulatory support.

  20. Development of a Compact Efficient Cooling Pump for Space Suit Life Support Systems

    NASA Technical Reports Server (NTRS)

    vanBoeyen, Roger W.; Reeh, Jonathan A.; Trevino, Luis

    2008-01-01

    With the increasing demands placed on extravehicular activity (EVA) for the International Space Station (ISS) assembly and maintenance, along with planned lunar and Martian missions, the need for increased human productivity and capability becomes ever more critical. This is most readily achieved by reduction in space suit weight and volume, and increased hardware reliability, durability, and operating lifetime. Considerable progress has been made with each successive generation of space suit design; from the Apollo A7L suit, to the current Shuttle Extravehicular Mobile Unit (EMU) suit, and the next generation Constellation Space Suit Element (CSSE). However, one area of space suit design which has continued to lag is the fluid pump used to drive the water cooling loop of the Primary Life Support System (PLSS). The two main types of fluid pumps typically used in space applications are rotodynamic pumps (pumping is achieved through a rotary vaned impeller) and displacement pumps (which includes rotary and diaphragm pumps). The rotating and moving parts found in the pumps and electric motor add significantly to the susceptibility to wear and friction, thermal mismatch, and complexity of the pumps. Electric motor-driven pumps capable of achieving high operational reliability are necessarily large, heavy, and energy inefficient. This report describes a development effort conducted for NASA by Lynntech, Inc., who recently demonstrated the feasibility of an electrochemically-driven fluid cooling pump. With no electric motor and minimal lightweight components, an electrochemically-driven pump is expected to be significantly smaller, lighter and achieve a longer life time than conventional rotodynamic and displacement pumps. By employing sulfonated polystyrene-based proton exchange membranes, rather than conventional Nafion membranes, a significant reduction in the actuator power consumption was demonstrated. It was also demonstrated that these membranes possess the

  1. Expert system for online surveillance of nuclear reactor coolant pumps

    DOEpatents

    Gross, Kenny C.; Singer, Ralph M.; Humenik, Keith E.

    1993-01-01

    An expert system for online surveillance of nuclear reactor coolant pumps. This system provides a means for early detection of pump or sensor degradation. Degradation is determined through the use of a statistical analysis technique, sequential probability ratio test, applied to information from several sensors which are responsive to differing physical parameters. The results of sequential testing of the data provide the operator with an early warning of possible sensor or pump failure.

  2. Stirling heat pump external heat systems: An appliance perspective

    NASA Astrophysics Data System (ADS)

    Vasilakis, A. D.; Thomas, J. F.

    1992-08-01

    A major issue facing the Stirling Engine Heat Pump is system cost, and, in particular, the cost of the External Heat System (EHS). The need for high temperature at the heater head (600 C to 700 C) results in low combustion system efficiencies unless efficient heat recovery is employed. The balance between energy efficiency and use of costly high temperature materials is critical to design and cost optimization. Blower power consumption and NO(x) emissions are also important. A new approach to the design and cost optimization of the EHS system was taken by viewing the system from a natural gas-fired appliance perspective. To develop a design acceptable to gas industry requirements, American National Standards Institute (ANSI) code considerations were incorporated into the design process and material selections. A parametric engineering design and cost model was developed to perform the analysis, including the impact of design on NO(x) emissions. Analysis results and recommended EHS design and material choices are given.

  3. Recovery Act: Hybrid Geothermal Heat Pump Systems Research

    SciTech Connect

    Hackel, Scott Paul; Pertzborn, Amanda

    2011-06-30

    One innovation to ground-source heat pump (GSHP, or geothermal systems is the hybrid GSHP (HyGSHP) system. A HyGSHP system can dramatically decrease the first cost of GSHP systems by using conventional technology (such as a cooling tower or a boiler) to meet a portion of the peak heating or cooling load. We monitored and analyzed three buildings employing HyGSHP systems (two cooling-dominated, one heating-dominated) to demonstrate the performance of the hybrid approach. The buildings were monitored for a year and the measured data was used to validate models of each system. Additionally, we used the models to analyze further improvements to the hybrid approach and established that it has positive impacts, both economically and environmentally. We also documented the lessons learned by those who design and operate the three systems, including discussions of equipment sizing, pump operation, and cooling tower control. Finally, we described the measured data sets and models from this work and have made them freely available for further study of hybrid systems.

  4. Design modification in rotor blade of turbo molecular pump

    NASA Astrophysics Data System (ADS)

    Iqbal, Munawar; Wasy, Abdul; Batani, Dimitri; Rashid, Haris; Lodhi, M. A. K.

    2012-06-01

    Performance of a Turbo Molecular Pump (TMP) is strongly related to the frequency of the rotor. As rpm increases deflection in the rotor blades starts to occur. Therefore, quality of material and blade design has been modified in order to obtain stable performance at higher speed. To reduce the deformation, stiffer material and change in blade design have been calculated. Significant improvement has been achieved in modeling the blade design using CATIA software. The analysis has been performed by ANSYS workbench. It is shown that the modification in the blade design of TMP rotor has reduced the structural deformation up to 66 percent of the deformation produced in the original blade design under the same conditions. Modified design achieved additional 23 percent rpm which increased TMP's efficiency.

  5. A simple inverse design method for pump turbine

    NASA Astrophysics Data System (ADS)

    Yin, Junlian; Li, Jingjing; Wang, Dezhong; Wei, Xianzhu

    2014-03-01

    In this paper, a simple inverse design method is proposed for pump turbine. The main point of this method is that the blade loading distribution is first extracted from an existing model and then applied in the new design. As an example, the blade loading distribution of the runner designed with head 200m, was analyzed. And then, the combination of the extracted blade loading and a meridional passage suitable for 500m head is applied to design a new runner project. After CFD and model test, it is shown that the new runner performs very well in terms of efficiency and cavitation. Therefore, as an alternative, the inverse design method can be extended to other design applications.

  6. Design methodology for multi-pumped discrete Raman amplifiers: case-study employing photonic crystal fibers.

    PubMed

    Castellani, C E S; Cani, S P N; Segatto, M E; Pontes, M J; Romero, M A

    2009-08-03

    This paper proposes a new design methodology for discrete multi-pumped Raman amplifier. In a multi-objective optimization scenario, in a first step the whole solution-space is inspected by a CW analytical formulation. Then, the most promising solutions are fully investigated by a rigorous numerical treatment and the Raman amplification performance is thus determined by the combination of analytical and numerical approaches. As an application of our methodology we designed an photonic crystal fiber Raman amplifier configuration which provides low ripple, high gain, clear eye opening and a low power penalty. The amplifier configuration also enables to fully compensate the dispersion introduced by a 70-km singlemode fiber in a 10 Gbit/s system. We have successfully obtained a configuration with 8.5 dB average gain over the C-band and 0.71 dB ripple with almost zero eye-penalty using only two pump lasers with relatively low pump power.

  7. Development of a new disposable pulsatile pump for cardiopulmonary bypass: computational fluid-dynamic design and in vitro tests.

    PubMed

    Fiore, Gianfranco B; Redaelli, Alberto; Guadagni, Gualtiero; Inzoli, Fabio; Fumero, Roberto

    2002-01-01

    A newly conceived blood pump for pulsatile cardiopulmonary bypass (CPB) is presented. The new device's main design features (fully disposable pumping head with ring shaped valves) were intended to overcome the factors that today limit the use of pulsatile blood pumps, i.e., the complexity and costs of devices. The pump was designed and analyzed by means of three-dimensional computational models, including solid computer assisted design of the pumping head and computational fluid-dynamic (CFD) analyses of the fluid domain and of its interaction with deformable components. A prototype of the device, integrated with the venous reservoir, was built to perform hydraulic in vitro tests with aims of both validating CFD results and verifying the new device's pumping behavior. Functional evaluation of the pump was carried out by using the device in a model circuit made with standard CPB components plus a mock hydraulic bench representing an adult patient's systemic circulation. A roller pump used in pulsatile mode (RP-PM) was used for comparison. At a 5 L/min flow rate, the pulsatile hydraulic power () delivered to the patient was approximately 15 mW for the RP-PM. The new pump proved to be able to deliver up to 40 mW, thus providing a more physiological condition, closer to the delivered by the natural heart (90-140 mW).

  8. Liquid pump for astronaut cooling

    NASA Technical Reports Server (NTRS)

    Carson, M. A.

    1972-01-01

    The Apollo portable life support system water-recirculation pump used for astronaut cooling is described. The problems associated with an early centrifugal pump and how these problems were overcome by the use of a new diaphragm pump are discussed. Performance comparisons of the two pump designs are given. Developmental problems and flight results with the diaphragm pump are discussed.

  9. Stirling heat pump external heat systems - An appliance perspective

    NASA Astrophysics Data System (ADS)

    Vasilakis, Andrew D.; Thomas, John F.

    A major issue facing the Stirling Engine Heat Pump is system cost, and, in particular, the cost of the External Heat System (EHS). The need for high temperature at the heater head (600 C to 700 C) results in low combustion system efficiencies unless efficient heat recovery is employed. The balance between energy efficiency and use of costly high temperature materials is critical to design and cost optimization. Blower power consumption and NO(x) emissions are also important. A new approach to the design and cost optimization of the EHS was taken by viewing the system from a natural gas-fired appliance perspective. To develop a design acceptable to gas industry requirements, American National Standards Institute (ANSI) code considerations were incorporated into the design process and material selections. A parametric engineering design and cost model was developed to perform the analysis, including the impact of design on NO(x) emissions. Analysis results and recommended EHS design and material choices are given.

  10. Thermal management, beam control, and packaging designs for high power diode laser arrays and pump cavity designs for diode laser array pumped rod shaped lasers

    NASA Astrophysics Data System (ADS)

    Chung, Te-Yuan

    Several novel techniques for controlling, managing and utilizing high power diode lasers are described. Low pressure water spray cooling for a high heat flux system is developed and proven to be an ideal cooling method for high power diode laser arrays. In order to enable better thermal and optical performance of diode laser arrays, a new and simple optical element, the beam control prism, is invented. It provides the ability to accomplish beam shaping and beam tilting at the same time. Several low thermal resistance diode packaging designs using beam control prisms are proposed, studied and produced. Two pump cavity designs using a diode laser array to uniformly pump rod shape gain media are also investigated.

  11. Vacuum Pump System Optimization Saves Energy at a Dairy Farm

    SciTech Connect

    2001-08-01

    In 1998, S&S Dairy optimized the vacuum pumping system at their dairy farm in Modesto, California. In an effort to reduce energy costs, S&S Dairy evaluated their vacuum pumping system to determine if efficiency gains and energy savings were possible.

  12. Design of a centrifugal blood pump: Heart Turcica Centrifugal.

    PubMed

    Demir, Onur; Biyikli, Emre; Lazoglu, Ismail; Kucukaksu, Suha

    2011-07-01

    A prototype of a new implantable centrifugal blood pump system named Heart Turcica Centrifugal (HTC) was developed as a left ventricular assist device (LVAD) for the treatment of end-stage cardiac failure. In the development of HTC, effects of blade height and volute tongue profiles on the hydraulic and hemolytic performances of the pump were investigated. As a result, the prototype was manufactured using the best blade height and volute tongue profiles. Performance of the prototype model was experimentally evaluated in a closed-loop flow system using water as the medium. The hydraulic performance requirement of an LVAD (5 L/min flow rate against a pressure difference of 100 mm Hg) was attained at 2800 rpm rotational speed.

  13. Development of a compact, highly efficient, totally implantable motor-driven assist pump system.

    PubMed

    Okamoto, E; Tomoda, K; Yamamoto, K; Mitamura, Y; Mikami, T

    1994-12-01

    We have developed a compact, highly efficient, totally implantable assist pump system, which consists of a motor-driven assist pump and a transcutaneous energy and optical information transmission system. The motor-driven assist pump consists of a.d.c. brushless motor and a specially designed miniature ball screw. A magnetic coupling mechanism between the blood pump and an actuator provides active blood filling via mild suction force. The controller consists of a PID follow-up controller using an 8-bit one-chip microcomputer. The volume of the pump is 350 ml, and its controller is 210 ml. Pump outflow of 5.8 L/min was obtained against a mean after-load of 100 mm Hg. The pump showed a high efficiency rate and good durability. An efficiency rate of 19-21% (pump output/motor input) was obtained during 87 days of continuous pumping. No mechanical trouble occurred for an accumulated period of 6 months.

  14. RND efflux pump and its interrelationship with quorum sensing system.

    PubMed

    Zhibin, Liang; Yumei, Chen; Yufan, Chen; Yingying, Cheng; Lianhui, Zhang

    2016-10-20

    Antibiotic resistance has become a serious concern in treatment of bacterial infections. Overexpression of efflux pump is one of the important mechanisms in antibiotic resistance. In Gram negative bacteria, RND (Resistance-nodulation-cell division) superfamily efflux pump plays a vital important role in antibiotics resistance. Recent research progress unveils an intriguing interrelationship between RND efflux pump and the bacterial quorum sensing system, whose regulation is dependent on small signal molecules. This article reviews the latest findings on the structure and transport mechanism of RND efflux pump, as well as the general features and regulatory mechanisms of quorum sensing, with a special focus on the role and mechanism of quorum sensing system in regulation of RND efflux pump, and the influence of efflux pump on quorum sensing signal transportation. Further investigation of the interrelationship between RND efflux pumps and the bacterial quorum sensing systems is critical for elucidation of the regulatory mechanisms that govern the expression of the RND efflux pumps genes, and may also provide useful clues to overcome the efflux pump mediated antibiotic resistance.

  15. Comparison of two arthroscopic pump systems based on image quality.

    PubMed

    Tuijthof, G J M; van den Boomen, H; van Heerwaarden, R J; van Dijk, C N

    2008-06-01

    The effectiveness of arthroscopic pump systems has been investigated with either subjective measures or measures that were unrelated to the image quality. The goal of this study is to determine the performance of an automated pump in comparison to a gravity pump based on objective assessment of the quality of the arthroscopic view. Ten arthroscopic operations performed with a gravity pump and ten performed with an automated pump (FMS Duo system) were matched on duration of the surgery and shaver usage, type of operation, and surgical experience. Quality of the view was defined by means of the presence or absence of previously described definitions of disturbances (bleeding, turbidity, air bubbles, and loose fibrous tissue). The percentage of disturbances for all operations was assessed with a time-disturbance analysis of the recorded operations. The Mann-Whitney U test shows a significant difference in favor of the automated pump for the presence of turbidity only (Exact Sig. [2*(1-tailed Sig.)] = 0.015). Otherwise, no differences were determined (Exact Sig. [2*(1-tailed Sig.)] > 0.436). A new objective method is successfully applied to assess efficiency of pump systems based on the quality of the arthroscopic view. Important disturbances (bleeding, air bubbles, and loose fibrous tissue) are not reduced by an automated pump used in combination with a tourniquet. The most frequent disturbance turbidity is reduced by around 50%. It is questionable if this result justifies the use of an automated pump for straightforward arthroscopic knee surgeries using a tourniquet.

  16. Ground coupled heat-pump-system experimental results

    NASA Astrophysics Data System (ADS)

    Metz, P. D.

    1983-06-01

    Since October 1980, a small house in Upton, Long Island, New York has been heated and cooled by a liquid source heat pump using a shallow serpentine earth coil as a heat source/sink. After a brief introduction and system description, system performance data are presented, for the winter of 1981-82 and the summer of 1982, followed by a discussion of these results. The experimental test house is a 104 m(2) (1120 ft(2)) 3 bedroom ranch of energy saving construction with a heating load of 7.8 x 10 to the 6th power J/0C-day (4.1 x 10 to the 3rd power Btu/0F-day). The heat pump used during most of the period reported on here is a commercially available water to air unit sized to just meet the building design heating load with no auxiliary heat. The earth coil contains 155 m (507 ft) of nominal 1-1/2 in. medium density polyethylene pipe, and is approximately 25% ethylene glycol in water, is employed to permit subfreezing earth coil operation. Two independent data acquisition systems, a datalogger microcomputer system backed up by a Btu meter, monitor the space conditioning system performance.

  17. Flow measurement at the pump head of centrifugal pumps: comparison of ultrasonic transit time and ultrasonic Doppler systems.

    PubMed

    Schima, H; Huber, L; Schmallegger, H; Drost, C J; Droudt, A; Wieselthaler, G; Losert, U

    1997-07-01

    Determination of blood flow is essential for monitoring rotary blood pumps. However, accurate measurement directly adjacent to the pump housing is difficult because of the highly irregular flow profiles near the fast spinning rotor. Therefore, a specially adapted flow probe based on the ultrasound transit time (USTT) principle was designed to evaluate the flow in centrifugal blood pumps. The probe can be directly mounted at the housing and creates 2 crossed measuring ultrasound beams. The mean value, Qm, of the 2 output signals corresponds to the blood flow and the difference, Qd, correlates to the vorticity of the flow profile in the pump outflow tract. In vitro measurements obtained an accuracy for mean flow values of better than +/-0.6 L/min in extreme working points and for vorticity values even as high as Qd = 3.5 L/min. Because of vorticity, however, the output signal contained considerable noise, and that required the application of a 10 Hz filter. Positioning of the ultrasound (US) beams parallel to the axial direction of the pump was superior to radial positioning. Additional measurement of the flow profile demonstrated that a large vorticity occurred (up to Qd equal to 3.5 L/min), and this vorticity was highly dependent upon the afterload of the pump. In vivo experiments demonstrated the reliability of the method. We concluded that USTT flow measurement can determine blood flow immediately adjacent to the pump housing with sufficient accuracy, and these measurements are superior to those from US-Doppler systems (which cannot handle the vorticity accurately enough) and electromagnetic devices (which lack zero stability).

  18. Assessment of solar-assisted gas-fired heat pump systems

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1981-01-01

    As a possible application for the Goldstone Energy Project, the performance of a 10 ton heat pump unit using a hybrid solar gas energy source was evaluated in an effort to optimize the solar collector size. The heat pump system is designed to provide all the cooling and/or heating requirements of a selected office building. The system performance is to be augmented in the heating mode by utilizing the waste heat from the power cycle. A simplified system analysis is described to assess and compute interrrelationships of the engine, heat pump, and solar and building performance parameters, and to optimize the solar concentrator/building area ratio for a minimum total system cost. In addition, four alternative heating cooling systems, commonly used for building comfort, are described; their costs are compared, and are found to be less competitive with the gas solar heat pump system at the projected solar equipment costs.

  19. Assessment of solar-assisted gas-fired heat pump systems

    NASA Astrophysics Data System (ADS)

    Lansing, F. L.

    1981-06-01

    As a possible application for the Goldstone Energy Project, the performance of a 10 ton heat pump unit using a hybrid solar gas energy source was evaluated in an effort to optimize the solar collector size. The heat pump system is designed to provide all the cooling and/or heating requirements of a selected office building. The system performance is to be augmented in the heating mode by utilizing the waste heat from the power cycle. A simplified system analysis is described to assess and compute interrrelationships of the engine, heat pump, and solar and building performance parameters, and to optimize the solar concentrator/building area ratio for a minimum total system cost. In addition, four alternative heating cooling systems, commonly used for building comfort, are described; their costs are compared, and are found to be less competitive with the gas solar heat pump system at the projected solar equipment costs.

  20. Blue-green diode-pumped solid state laser system for transcutaneous bilirubinometry in neonatal jaundice

    NASA Astrophysics Data System (ADS)

    Hamza, Mostafa; El-Ahl, Mohammad H. S.; Hamza, Ahmad M.

    2001-01-01

    The authors introduce the design of a blue-green diode- pumped solid-state laser system for transcutaneous measurement of serum bilirubin level in jaundiced new born infant. The system follows the principles of optical bilirubinometry. The choice of wavelengths provides correction for the presence of hemoglobin. The new design is more compact and less expensive.

  1. Jet pump-drive system for heat removal

    NASA Technical Reports Server (NTRS)

    French, J. R. (Inventor)

    1985-01-01

    A jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A TEMP, responsive to the heat from the coolant in the secondary flow path, automatically pumps the withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature. At this lower temperature, the TEMP/jet jump combination ceases its circulation boosting operation. The TEMP/jet pump combination is automatic, self-regulating and provides an emergency pumping system free of moving parts.

  2. PUMPS

    DOEpatents

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  3. Vapor Compression and Thermoelectric Heat Pumps for a Cascade Distillation Subsystem: Design and Experiment

    NASA Technical Reports Server (NTRS)

    Erickson, Lisa R.; Ungar, Eugene K.

    2012-01-01

    Humans on a spacecraft require significant amounts of water for drinking, food, hydration, and hygiene. Maximizing the reuse of wastewater while minimizing the use of consumables is critical for long duration space exploration. One of the more promising consumable-free methods of reclaiming wastewater is the distillation/condensation process used in the Cascade Distillation Subsystem (CDS). The CDS heats wastewater to the point of vaporization then condenses and cools the resulting water vapor. The CDS wastewater flow requires heating for evaporation and the product water flow requires cooling for condensation. Performing the heating and cooling processes separately would require two separate units, each of which would demand large amounts of electrical power. Mass, volume, and power efficiencies can be obtained by heating the wastewater and cooling the condensate in a single heat pump unit. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the CDS system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump analysis and performance tests are provided. The mass, volume, and power requirement for each heat pump option is compared and the advantages and disadvantages of each system are listed.

  4. A novel all-in-one magnetic pump and power harvester design for bio-medical applications

    NASA Astrophysics Data System (ADS)

    Kim, Sung Hoon; Shin, Jaewon; Hashi, Shuichiro; Ishiyama, Kazushi

    2011-03-01

    This paper presents a magnetic centrifugal pump with a magnetic power harvester (all-in-one system) for medical applications. The proposed pump is driven by an external rotating magnetic field. To produce pressure and electrical power, an all-in-one device consisting of a pump and a power harvester was designed. It consists of a multi-stage impeller, a disc type NdFeB permanent magnet, and a fixed wound coil on the pump case. The rotation of the rotor creates a continuous flow of liquid through the pump, with a pressure head, and an electrical power is generated in the wound coil because of the rotating magnetic field. The maximum flow rate and pressure are 5000 ml min-1 and 16 kPa, respectively, at 100 Hz. These results meet the requirements of an artificial heart assistance blood pump. Under these operating conditions, the harvested voltage can reach a maximum of 8.2 Vp-p. With this configuration and control method, wireless and battery-free operation is possible, which is required in the medical field. Moreover, the power harvester can monitor the pump conditions without additional electrical power and can provide electrical power to other implanted electrical devices. The performances of the pump and power harvester were verified in a laboratory experiment. Overall, the proposed system acts as a pump and a power harvester that is fully wireless and battery-free.

  5. Elements for Effective Management of Operating Pump and Treat Systems

    EPA Pesticide Factsheets

    This fact sheet summarizes key aspects of effective management for operating pump and treat (P&T) systems based on lessons learned from conducting optimization evaluations at 20 Superfund-financed P&T systems.

  6. The Oak Ridge Heat Pump Models: I. A Steady-State Computer Design Model of Air-to-Air Heat Pumps

    SciTech Connect

    Fischer, S.K. Rice, C.K.

    1999-12-10

    The ORNL Heat Pump Design Model is a FORTRAN-IV computer program to predict the steady-state performance of conventional, vapor compression, electrically-driven, air-to-air heat pumps in both heating and cooling modes. This model is intended to serve as an analytical design tool for use by heat pump manufacturers, consulting engineers, research institutions, and universities in studies directed toward the improvement of heat pump performance. The Heat Pump Design Model allows the user to specify: system operating conditions, compressor characteristics, refrigerant flow control devices, fin-and-tube heat exchanger parameters, fan and indoor duct characteristics, and any of ten refrigerants. The model will compute: system capacity and COP (or EER), compressor and fan motor power consumptions, coil outlet air dry- and wet-bulb temperatures, air- and refrigerant-side pressure drops, a summary of the refrigerant-side states throughout the cycle, and overall compressor efficiencies and heat exchanger effectiveness. This report provides thorough documentation of how to use and/or modify the model. This is a revision of an earlier report containing miscellaneous corrections and information on availability and distribution of the model--including an interactive version.

  7. Design of a small centrifugal blood pump with magnetic bearings.

    PubMed

    Jahanmir, Said; Hunsberger, Andrew Z; Ren, Zhaohui; Heshmat, Hooshang; Heshmat, Crystal; Tomaszewski, Michael J; Walton, James F

    2009-09-01

    Design of a blood pump with a magnetically levitated rotor requires rigorous evaluation of the magnetic bearing and motor requirements and analysis of rotor dynamics and hydraulic performance with attention to hemolysis and thrombosis potential. Given the desired geometric dimensions, the required operating speed, flow in both the main and wash flow regions, and magnetic bearing performance, one of several design approaches was selected for a new prototype. Based on the estimated operating speed and clearance between the rotor and stator, the motor characteristics and dimensions were estimated. The motor stiffness values were calculated and used along with the hydraulic loading due to the fluid motion to determine the best design for the axial and radial magnetic bearings. Radial and axial stability of the left ventricular assist device prototype was verified using finite element rotor dynamic analysis. The analysis indicated that the rotor could be completely levitated and spun to the desired operating speed with low power loss and no mechanical contact. In vitro experiments with a mock loop test setup were performed to evaluate the performance of the new blood pump prototype.

  8. Downhole liquid trap for a geothermal pumping system

    SciTech Connect

    Aplenc, A.M.

    1984-05-15

    In a geothermal energy conversion system having a boiler and a turbine driven pumping unit, a separator is disposed between the boiler and the turbine driven pump for separating entrained liquid droplets from the vaporized working fluid exhausted from the boiler.

  9. Submersible pump installation, methods and safety system

    SciTech Connect

    Bayh, R.I. III

    1986-12-02

    This patent describes a well completion having a hydraulically powered submersible pump with an intake and a discharge disposed within a first well flow conductor, comprising: a. well packer means for forming a fluid seal with the interior of the first well flow conductor at a downhole location to direct formation fluid flow to the pump intake; b. a landing nipple releasable secured to the upper portion of the well packer means; c. a longitudinal passageway extending through the landing nipple; d. a safety valve releasable secured within the longitudinal passageway for controlling fluid flow therethrough; e. means for attaching the submersible pump to the landing nipple above the safety valve; f. the longitudinal passageway providing a portion of the means for directing formation fluid flow to the pump intake; g. the landing nipple further comprising a tubular housing means with the longitudinal passageway extending therethrough; h. locking grooves formed on the interior of the longitudinal passageway intermediate the ends thereof; i. the locking grooves providing means for releasably securing the safety valve within the longitudinal passageway; j. a second flow conductor extending from the well surface and coaxially disposed within the first flow conductor to form an annulus therebetween; and k. the second flow conductor and the annulus cooperating to provide separate flow paths for supplying input power fluid to the submersible pump and for returning fluid discharged from the pump to the well surface.

  10. Reciprocating piston pump system with screw drive

    NASA Technical Reports Server (NTRS)

    Perkins, Gerald S. (Inventor); Moore, Nicholas R. (Inventor)

    1981-01-01

    A pump system of the reciprocating piston type is described, which facilitates direct motor drive and cylinder sealing. A threaded middle potion of the piston is engaged by a nut connected to rotate with the rotor of an electric motor, in a manner that minimizes loading on the rotor by the use of a coupling that transmits torque to the nut but permits it to shift axially and radially with respect to the rotor. The nut has a threaded hydrostatic bearing for engaging the threaded piston portion, with an oil-carrying groove in the nut being interrupted. A fluid emitting seal located at the entrance to each cylinder, can serve to center the piston within the cylinder, wash the piston, and to aid in sealing. The piston can have a long stroke to diameter ratio to minimize reciprocations and wear on valves at high pressures. The voltage applied to the motor can be reversed prior to the piston reaching the end of its stroke, to permit pressure on the piston to aid in reversing the motor.

  11. Design and testing of a tandem row pump inducer

    NASA Technical Reports Server (NTRS)

    Etter, R. J.

    1974-01-01

    The design and testing of a tandem row pump inducer having a supercavitating first stage with a 0.60 hub ratio is presented. The second stage tested was a helical impeller with a 0.70 hub ratio. A cubic arc transition was utilized to accomplish the hub change. The first stage had two blades and the free-vortex design approach was empirically modified based on previous experience. The recommended second stage design having four blades and using cambered blade section is presented but the model was not built or tested. The more simple helix was built instead to reduce cost. Data taken included head generation, cavitation observations and unsteady head fluctuations over the 0-100Hz range.

  12. Failure and Reliability Analysis for the Master Pump Shutdown System

    SciTech Connect

    BEVINS, R.R.

    2000-09-05

    The Master Pump Shutdown System (MPSS) will be installed in the 200 Areas of the Hanford Site to monitor and control the transfer of liquid waste between tank farms and between the 200 West and 200 East areas through the Cross-Site Transfer Line. The Safety Function provided by the MPSS is to shutdown any waste transfer process within or between tank farms if a waste leak should occur along the selected transfer route. The MPSS, which provides this Safety Class Function, is composed of Programmable Logic Controllers (PLCs), interconnecting wires, relays, Human to Machine Interfaces (HMI), and software. These components are defined as providing a Safety Class Function and will be designated in this report as MPSS/PLC. Input signals to the MPSS/PLC are provided by leak detection systems from each of the tank farm leak detector locations along the waste transfer route. The combination of the MPSS/PLC, leak detection system, and transfer pump controller system will be referred to as MPSS/SYS. The components addressed in this analysis are associated with the MPSS/SYS. The purpose of this failure and reliability analysis is to address the following design issues of the Project Development Specification (PDS) for the MPSS/SYS (HNF 2000a): (1) Single Component Failure Criterion, (2) System Status Upon Loss of Electrical Power, (3) Physical Separation of Safety Class cables, (4) Physical Isolation of Safety Class Wiring from General Service Wiring, and (5) Meeting the MPSS/PLC Option 1b (RPP 1999) Reliability estimate. The failure and reliability analysis examined the system on a component level basis and identified any hardware or software elements that could fail and/or prevent the system from performing its intended safety function.

  13. Optimization of testing system and experiment research for pump turbine model

    NASA Astrophysics Data System (ADS)

    Y Li, D.; Wang, H. J.; Zhao, J. L.; Gong, R. Z.; Wei, X. Z.; Qin, D. Q.

    2013-12-01

    The pump turbine is key component of Pump Storage Power Plants. Moreover, the model testing proves significant guidance on design of pump turbine. Since pump turbine model testing is different from turbine model resulting from four quadrant experiment, point acquisition for transient operation conditions and special data processing, the optimization is made for these technological difficulties. In order to obtain a higher efficiency, a higher precision and a high degree of automation, the system of data acquisition is designed, in which the PXI platform was adopted, and the virtual instrument software LabVIEW was employed. And this system was successfully applied for the testing platform of Harbin Institute of Large Electric Machinery which achieves functions of transient conditions acquisition, measurement for positive and negative flow and speed, data processing, generating report, analysis for pressure fluctuation and so on. Finally four quadrant experiment was carried out in this test platform, results show that steady for the experiment operation conditions and repeatability for data which can better reflect the characteristic for "S-shaped" and reverse pump conditions. The system of pump turbine model test is significant for the research of pump turbine and has some guiding significance for the application of engineering.

  14. Design and test of a resonance control system for suppressing the pump vibration effects for the PEFP 13-MHz RF cavity

    NASA Astrophysics Data System (ADS)

    Li, Ying-Min; Cha, Sung-Su; Jang, Ji-Ho; Kwon, Hyeok-Jung; Song, Young-Gi; Kim, Han-Sung; Seol, Kyung-Tae; Cho, Yong-Sub; Trinh, Tu-Anh

    2013-11-01

    The Proton Engineering Frontier Project developed a 13-MHz pulsed, RF cavity for heavy-ion implanter applications. Typically, slow changes in the room temperature and the mechanical vibrations of the vacuum device may be primary sources of disturbances, and the accelerating cavity of the implanter may not be able to operate at the resonance frequency owing to disturbance effects. We need a voltage-controlled oscillator phased-locked loop circuit to make a control system that could suppress the disturbance effects; thus, the accelerating gradient of the cavity always reached a peak level for a given input power and coupling. An analog-circuit-based RF-frequency-tracking system was developed. Next, we obtained the optimal control parameters for the key control components. Finally, we measured the system performance between an open loop and a closed loop. The key point of the system design is to control the driving frequency that is used to operate the RF source by keeping the phase at around 0 degrees with respect to the resonance peak of the cavity. The experimental results showed that the fluctuations of the control loop error signal were suppressed by about a factor of 10. The presented feedback loop is implemented as a standard proportional controller. The loop p-gain is 120 k.

  15. Optimized System to Improve Pumping Rate Stability During Aquifer Tests

    NASA Astrophysics Data System (ADS)

    Young, M. H.; Rasmussen, T. C.; Lyons, C.; Pennell, K. D.

    2001-12-01

    Aquifer hydraulic properties are commonly estimated using aquifer tests, which are based on an assumption of a uniform and constant pumping rate. Uncertainties in the flow rate across the borehole-formation interface can be caused by rapid changes in borehole water levels early in an aquifer test, increasing the dynamic head losses. A system is presented that substantially reduces these sources of uncertainty by explicitly accounting for dynamic head losses. The system optimizes the flow rate at the borehole-formation interface, lending it suitable for any type of aquifer test, including constant, step, or ramped withdrawal and injection, as well as sinusoidal. The system was demonstrated for both withdrawal and injection tests in three aquifers at the Savannah River Site. It employs commonly available components (e.g., datalogger, pressure transducers, a variable-speed pump motor, a flow controller, and flow meters), and is inexpensive, highly mobile, and easily set up. No modifications to the control system were required, though a small number of characteristics of the pumping and monitoring system were added to the operating program. The pumping system provided a statistically-significant, constant flow rate with time. The range in pumping variability (95 percent CI) was from +/-0.0041 gpm to +/-0.0144 gpm, across a wide range in field conditions. Additional analyses show that errors in early time pumping rates cause errors in aquifer property estimates, and that optimizing the pumping rates would provide a more error-free data set for estimating aquifer hydraulic properties.

  16. Computational design and in vitro characterization of an integrated maglev pump-oxygenator.

    PubMed

    Zhang, Juntao; Taskin, M Ertan; Koert, Andrew; Zhang, Tao; Gellman, Barry; Dasse, Kurt A; Gilbert, Richard J; Griffith, Bartley P; Wu, Zhongjun J

    2009-10-01

    For the need for respiratory support for patients with acute or chronic lung diseases to be addressed, a novel integrated maglev pump-oxygenator (IMPO) is being developed as a respiratory assist device. IMPO was conceptualized to combine a magnetically levitated pump/rotor with uniquely configured hollow fiber membranes to create an assembly-free, ultracompact system. IMPO is a self-contained blood pump and oxygenator assembly to enable rapid deployment for patients requiring respiratory support or circulatory support. In this study, computational fluid dynamics (CFD) and computer-aided design were conducted to design and optimize the hemodynamics, gas transfer, and hemocompatibility performances of this novel device. In parallel, in vitro experiments including hydrodynamic, gas transfer, and hemolysis measurements were conducted to evaluate the performance of IMPO. Computational results from CFD analysis were compared with experimental data collected from in vitro evaluation of the IMPO. The CFD simulation demonstrated a well-behaved and streamlined flow field in the main components of this device. The results of hydrodynamic performance, oxygen transfer, and hemolysis predicted by computational simulation, along with the in vitro experimental data, indicate that this pump-lung device can provide the total respiratory need of an adult with lung failure, with a low hemolysis rate at the targeted operating condition. These detailed CFD designs and analyses can provide valuable guidance for further optimization of this IMPO for long-term use.

  17. A new model of centrifugal blood pump for cardiopulmonary bypass: design improvement, performance, and hemolysis tests.

    PubMed

    Leme, Juliana; Fonseca, Jeison; Bock, Eduardo; da Silva, Cibele; da Silva, Bruno Utiyama; Dos Santos, Alex Eugênio; Dinkhuysen, Jarbas; Andrade, Aron; Biscegli, José F

    2011-05-01

    A new model of blood pump for cardiopulmonary bypass (CPB) application has been developed and evaluated in our laboratories. Inside the pump housing is a spiral impeller that is conically shaped and has threads on its surface. Worm gears provide an axial motion of the blood column. Rotational motion of the conical shape generates a centrifugal pumping effect and improves pumping performance. One annular magnet with six poles is inside the impeller, providing magnetic coupling to a brushless direct current motor. In order to study the pumping performance, a mock loop system was assembled. Mock loop was composed of Tygon tubes (Saint-Gobain Corporation, Courbevoie, France), oxygenator, digital flowmeter, pressure monitor, electronic driver, and adjustable clamp for flow control. Experiments were performed on six prototypes with small differences in their design. Each prototype was tested and flow and pressure data were obtained for rotational speed of 1000, 1500, 2000, 2500, and 3000 rpm. Hemolysis was studied using pumps with different internal gap sizes (1.35, 1.45, 1.55, and 1.7 mm). Hemolysis tests simulated CPB application with flow rate of 5 L/min against total pressure head of 350 mm Hg. The results from six prototypes were satisfactory, compared to the results from the literature. However, prototype #6 showed the best results. Best hemolysis results were observed with a gap of 1.45 mm, and showed a normalized index of hemolysis of 0.013 g/100 L. When combined, axial and centrifugal pumping principles produce better hydrodynamic performance without increasing hemolysis.

  18. A Strip-Type Microthrottle Pump: Modeling, Design and Fabrication

    PubMed Central

    Pečar, Borut; Vrtačnik, Danilo; Resnik, Drago; Možek, Matej; Aljančič, Uroš; Dolžan, Tine; Amon, Slavko; Križaj, Dejan

    2013-01-01

    A novel design for a strip-type microthrottle pump with a rectangular actuator geometry is proposed, with more efficient chip surface consumption compared to existing micropumps with circular actuators. Due to the complex structure and operation of the proposed device, determination of detailed structural parameters is essential. Therefore, we developed an advanced, fully coupled 3D electro-fluid-solid mechanics simulation model in COMSOL that includes fluid inertial effects and a hyperelastic model for PDMS and no-slip boundary condition in fluid-wall interface. Numerical simulation resulted in accurate virtual prototyping of the proposed device only after inclusion of all mentioned effects. Here, we provide analysis of device operation at various frequencies which describes the basic pumping effects, role of excitation amplitude and backpressure and provides optimization of critical design parameters such as optimal position and height of the microthrottles. Micropump prototypes were then fabricated and characterized. Measured characteristics proved expected micropump operation, achieving maximal flow-rate 0.43 mL·min−1 and maximal backpressure 12.4 kPa at 300 V excitation. Good agreement between simulation and measurements on fabricated devices confirmed the correctness of the developed simulation model. PMID:23459391

  19. A strip-type microthrottle pump: modeling, design and fabrication.

    PubMed

    Pečar, Borut; Vrtačnik, Danilo; Resnik, Drago; Možek, Matej; Aljančič, Uroš; Dolžan, Tine; Amon, Slavko; Križaj, Dejan

    2013-03-04

    A novel design for a strip-type microthrottle pump with a rectangular actuator geometry is proposed, with more efficient chip surface consumption compared to existing micropumps with circular actuators. Due to the complex structure and operation of the proposed device, determination of detailed structural parameters is essential. Therefore, we developed an advanced, fully coupled 3D electro-fluid-solid mechanics simulation model in COMSOL that includes fluid inertial effects and a hyperelastic model for PDMS and no-slip boundary condition in fluid-wall interface. Numerical simulation resulted in accurate virtual prototyping of the proposed device only after inclusion of all mentioned effects. Here, we provide analysis of device operation at various frequencies which describes the basic pumping effects, role of excitation amplitude and backpressure and provides optimization of critical design parameters such as optimal position and height of the microthrottles. Micropump prototypes were then fabricated and characterized. Measured characteristics proved expected micropump operation, achieving maximal flow-rate 0.43 mL·min(-1) and maximal backpressure 12.4 kPa at 300 V excitation. Good agreement between simulation and measurements on fabricated devices confirmed the correctness of the developed simulation model.

  20. Steady-state computer design model for air-to-air heat pumps

    NASA Astrophysics Data System (ADS)

    Fischer, S. K.; Rice, C. K.

    1981-12-01

    A FORTRAN-4 computer program to predict the steady-state performance of conventional, vapor compression, electrically-driven, air-to-air heat pumps in both heating and cooling modes is described. This model is intended to serve as an analytical design tool for use by heat pump manufacturers, consulting engineers, research institutions, and universities in studies directed toward the improvement of heat pump performance. The heat pump design model allows the user to specify: system operating conditions, compressor characteristics, refrigerant flow control devices, fin-and-tube heat exchanger parameters, fan and indoor duct characteristics, and any of ten refrigerants. The model will compute: system capacity and COP (or EER), compressor and fan motor power consumptions, coil outlet air dry- and wet-bulb temperatures, air- and refrigerant-side pressure drops, a summary of the refrigerant-side states throughout the cycle, and overall compressor efficiencies and heat exchanger effectiveness. Documentation of how to use and/or modify the model is provided.

  1. Preliminary design activities for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information on the development of solar heating and cooling systems is presented. The major emphasis is placed on program organization, system size definition, site identification, system approaches, heat pump and equipment design, collector procurement, and other preliminary design activities.

  2. A Review of the Security of Insulin Pump Infusion Systems

    PubMed Central

    Paul, Nathanael; Kohno, Tadayoshi; Klonoff, David C

    2011-01-01

    Insulin therapy has enabled patients with diabetes to maintain blood glucose control to lead healthier lives. Today, rather than injecting insulin manually using syringes, a patient can use a device such as an insulin pump to deliver insulin programmatically. This allows for more granular insulin delivery while attaining blood glucose control. Insulin pump system features have increasingly benefited patients, but the complexity of the resulting system has grown in parallel. As a result, security breaches that can negatively affect patient health are now possible. Rather than focus on the security of a single device, we concentrate on protecting the security of the entire system. In this article, we describe the security issues as they pertain to an insulin pump system that includes an embedded system of components, which include the insulin pump, continuous glucose management system, blood glucose monitor, and other associated devices (e.g., a mobile phone or personal computer). We detail not only the growing wireless communication threat in each system component, but also describe additional threats to the system (e.g., availability and integrity). Our goal is to help create a trustworthy infusion pump system that will ultimately strengthen pump safety, and we describe mitigating solutions to address identified security issues. PMID:22226278

  3. A review of the security of insulin pump infusion systems.

    PubMed

    Paul, Nathanael; Kohno, Tadayoshi; Klonoff, David C

    2011-11-01

    Insulin therapy has enabled patients with diabetes to maintain blood glucose control to lead healthier lives. Today, rather than injecting insulin manually using syringes, a patient can use a device such as an insulin pump to deliver insulin programmatically. This allows for more granular insulin delivery while attaining blood glucose control. Insulin pump system features have increasingly benefited patients, but the complexity of the resulting system has grown in parallel. As a result, security breaches that can negatively affect patient health are now possible. Rather than focus on the security of a single device, we concentrate on protecting the security of the entire system. In this article, we describe the security issues as they pertain to an insulin pump system that includes an embedded system of components, which include the insulin pump, continuous glucose management system, blood glucose monitor, and other associated devices (e.g., a mobile phone or personal computer). We detail not only the growing wireless communication threat in each system component, but also describe additional threats to the system (e.g., availability and integrity). Our goal is to help create a trustworthy infusion pump system that will ultimately strengthen pump safety, and we describe mitigating solutions to address identified security issues.

  4. A Review of the Security of Insulin Pump Infusion Systems

    SciTech Connect

    Klonoff, David C.; Paul, Nathanael R; Kohno, Tadayoshi

    2011-01-01

    Insulin therapy has enabled diabetic patients to maintain blood glucose control to lead healthier lives. Today, rather than manually injecting insulin using syringes, a patient can use a device, such as an insulin pump, to programmatically deliver insulin. This allows for more granular insulin delivery while attaining blood glucose control. The insulin pump system features have increasingly benefited patients, but the complexity of the resulting system has grown in parallel. As a result security breaches that can negatively affect patient health are now possible. Rather than focus on the security of a single device, we concentrate on protecting the security of the entire system. In this paper we describe the security issues as they pertain to an insulin pump system that includes an embedded system of components including the insulin pump, continuous glucose management system, blood glucose monitor, and other associated devices (e.g., a mobile phone or personal computer). We detail not only the growing wireless communication threat in each system component, but we also describe additional threats to the system (e.g., availability and integrity). Our goal is to help create a trustworthy infusion pump system that will ultimately strengthen pump safety, and we describe mitigating solutions to address identified security issues both for now and in the future.

  5. Selection of a pump-fed propulsion system for planetary exploration missions

    NASA Technical Reports Server (NTRS)

    Auslander, T. W.; Estey, P. N.; Boretz, J. E.

    1981-01-01

    A study has been conducted to select the most desirable pump-fed propellant feed system approach for planetary spacecraft. Four systems, including two battery powered and two gas generator driven systems, were considered. Complete propulsion system schematics were developed, including preliminary detailed design of both the electric motor and the gas turbine pump drives. Utilizing a Figure-of-Merit system which included consideration for reliability, development risk, complexity and growth potential as well as weight, the advanced battery powered electric motor drive system was selected for continued development at JPL.

  6. Design of an artificial left ventricular muscle: an innovative way to actuate blood pumps?

    PubMed

    Van Der Smissen, Benjamin; Claessens, Tom; Verdonck, Pascal; Van Ransbeeck, Peter; Segers, Patrick

    2009-06-01

    Blood pumps assist or take over the pump function of a failing heart. They are essentially activated by a pusher plate, a pneumatic compression of collapsible sacs, or they are driven by centrifugal pumps. Blood pumps relying upon one of these actuator mechanisms do not account for realistic wall deformation. In this study, we propose an innovative design of a blood pump actuator device which should be able to mimic fairly well global left ventricular (LV) wall deformation patterns in terms of circumferential and longitudinal contraction, as well as torsion. In order to reproduce these basic wall deformation patterns in our actuator device, we designed a novel kind of artificial LV "muscle" composed of multiple actively contracting cells. Its contraction is based on a mechanism by which pressurized air, inside such a cell, causes contraction in one direction and expansion perpendicular to this direction. The organization and geometry of the contractile cells within one artificial LV muscle, the applied pressure in the cells, and the governing LV loading conditions (preload and afterload) together determine the global deformation of the LV wall. Starting from a simple plastic bag, an experimental model based on the above mentioned principle was built and connected to a lumped hydraulic model of the vascular system (including compliance and resistance). The wall deformation pattern of this device was validated visually and its pump performance was studied in terms of LV volume and pressure and heart rate. Our experimental results revealed (i) a global LV motion resembling a real LV, and (ii) a close correlation between our model and a real LV in terms of end-systolic volume and pressure, end-diastolic volume and pressure, stroke volume, ejection fraction and pressure-volume relationship. Our proposed model appears promising and it can be considered as a step forward when compared to currently applied actuator mechanisms, as it will likely result in more physiological

  7. Phase 1-B development of kinematic Stirling/Rankine commercial gas-fired heat pump system

    NASA Astrophysics Data System (ADS)

    Johansson, L.; Agno, J. G.; Percival, W. H.

    1985-07-01

    The goal of this project is to develop a commercial size Stirling engine-driven gas heat pump with a cooling capacity of 10-ton, and a COP (heating) of 1.8 and COP (cooling) of 1.1. The project is a multi-phase development with commercialization planned for 1989. To date, a piston type open shaft refrigeration compressor has been selected as the best match for the engine. Both the engine and compressor have been tested and characterized by performance maps, and the experimental heat pump systems designed. The manufacturer has continued to focus on improving the Stirling engine performance and reliability for the gas heat pump application.

  8. Feed-pump hydraulic performance and design improvement, Phase I: research program design. Final report

    SciTech Connect

    Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G.

    1982-03-01

    As a result of prior EPRI-sponsored studies, it was concluded that a research program should be designed and implemented to provide an improved basis for the design, procurement, testing, and operation of large feed pumps with increased reliability and stability over the full range of operating conditions. This two-volume report contains a research plan which is based on a review of the present state of the art and which defines the necessary R and D program and estimates the benefits and costs of the program. The recommended research program consists of 30 interrelated tasks. It is designed to perform the needed research; to verify the results; to develop improved components; and to publish computer-aided design methods, pump specification guidelines, and a troubleshooting manual. Most of the technology proposed in the research plan is applicable to nuclear power plants as well as to fossil-fired plants. This volume discusses the design, performance and failures of feed pumps, and recommendations for research on pump dynamics, design, and specifications.

  9. High head pump-turbine: Pumping mode numerical simulations with a cavitation model for off-design conditions

    NASA Astrophysics Data System (ADS)

    Jese, U.; Fortes-Patella, R.; Antheaume, S.

    2014-03-01

    Flexibility and energy storage are one of the main challenges of the energy industry at the present time. Pumped Storage Power Plants (PSP), using reversible pump-turbines, are among the most cost-efficient solutions to answer these needs. To provide a rapid adjustment to the electricity grid, pump-turbines are subject of quick switching between pumping and generating modes and to extended operation under off-design conditions. In particular, at part load, instabilities in pump characteristics can occur. It can lead to unsteadiness and even to a shift of the operating point with significant modification of discharge and drop of efficiency. This unstable area is often exposed to the cavitation phenomenon, which can lead to vibrations, loss of performance and sometimes erosion. The paper focuses on the numerical analysis of the pumping mode regime, especially on the part load off-design instabilities, observed as a saddle shaped pump-turbine head curve and the presence and development of the cavitation in the part load area. The investigations were made on the reduce-scaled model of a high head pump-turbine design. Numerical calculations were performed using commercial code with implemented barotropic cavitation model. Some of the numerical results were compared to the experimental data. Flow analysis was stressed on the cavitation influence on the flow behavior and the performance of the machine. The analysis was made for various flow rates and a wide range of NPSH values. The importance of specific parts of the numerical domain for obtained results was investigated and evaluated.

  10. DOE/ORNL heat pump design model, overview and application to R-22 alternatives

    SciTech Connect

    Rice, C.K.

    1997-12-01

    This computer program is a public-domain system design tool for application to air-to-air heat pumps. The main aspects of the program are reviewed with emphasis on the newest features of the current fifth-generation version (Mark V) and an upcoming more fully HFC-capable release (Mark VI). Current model predictions are compared to test data for a leading HFC alternative to HCFC-22 in heat pumps. Examples are shown of some user interfaces that have been recently developed for the program. To demonstrate the design capabilities of the model for R-22 alternatives, a refrigerant-side optimization was conducted to find the best balance of heat transfer versus pressure drop for HCFC R-22, HFCs R-134a and R-410A, and the natural refrigerant propane. COP was maximized while refrigerant charge and tube size were minimized. Independent design parameters were fraction of total area in the outdoor coil, tube diameter and number of circuits for each heat exchanger, and condenser subcooling. Heat exchanger design tradeoffs are discussed for a heat pump relative to air conditioners and heating-only units. A design optimized for heating-only operation is presented.

  11. Modelling contaminant transport for pumping wells in riverbank filtration systems.

    PubMed

    Mustafa, Shaymaa; Bahar, Arifah; Aziz, Zainal Abdul; Suratman, Saim

    2016-01-01

    Analytical study of the influence of both the pumping well discharge rate and pumping time on contaminant transport and attenuation is significant for hydrological and environmental science applications. This article provides an analytical solution for investigating the influence of both pumping time and travelling time together for one-dimensional contaminant transport in riverbank filtration systems by using the Green's function approach. The basic aim of the model is to understand how the pumping time and pumping rate, which control the travelling time, can affect the contaminant concentration in riverbank filtration systems. Results of analytical solutions are compared with the results obtained using a MODFLOW numerical model. Graphically, it is found that both analytical and numerical solutions have almost the same behaviour. Additionally, the graphs indicate that any increase in the pumping rate or simulation pumping time should increase the contamination in groundwater. The results from the proposed analytical model are well matched with the data collected from a riverbank filtration site in France. After this validation, the model is then applied to the first pilot project of a riverbank filtration system conducted in Malaysia. Sensitivity analysis results highlight the importance of degradation rates of contaminants on groundwater quality, for which higher utilization rates lead to the faster consumption of pollutants.

  12. Ultrahigh head pump/turbine development program: Volume 4, Advanced design: Strength manufacturability, controls, and reliability: Final report

    SciTech Connect

    Yokoyama, T.

    1987-01-01

    The commercial availability of an ultrahigh head pump/turbine whose output can be regulated makes underground and ultrahigh head-pumped storage creditable options for utility use by reducing construction costs and plant complexity. This new turbine operates at double the head of existing equipment yet uses commercial materials, proven design concepts, and manageable manufacturing techniques. This volume discusses the stress analysis and fatigue evaluation, manufacturability, control system, and reliability and maintainability analyses.

  13. Feed-pump hydraulic performance and design improvement, Phase I: research program design. Final report

    SciTech Connect

    Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G.

    1982-03-01

    As a result of prior EPRI-sponsored studies, it was concluded that a research program should be designed and implemented to provide an improved basis for the design, procurement, testing, and operation of large feed pumps with increased reliability and stability over the full range of operating conditions. This two-volume report contains a research plan which is based on a review of the present state of the art and which defines the necessary R and D program and estimates the benefits and costs of the program. The recommended research program consists of 30 interrelated tasks. It is designed to perform the needed research; to verify the results; to develop improved components; and to publish computer-aided design methods, pump specification guidelines, and a troubleshooting manual. Most of the technology proposed in the research plan is applicable to nuclear power plants as well as to fossil-fired plants. This volume contains appendixes on pump design, cavitation damage, performance testing, hydraulics, two-phase flow in pumps, flow stability, and rotor dynamics.

  14. Investigation of pump and pump switch failures in rainwater harvesting systems

    NASA Astrophysics Data System (ADS)

    Moglia, Magnus; Gan, Kein; Delbridge, Nathan; Sharma, Ashok K.; Tjandraatmadja, Grace

    2016-07-01

    Rainwater harvesting is an important technology in cities that can contribute to a number of functions, such as sustainable water management in the face of demand growth and drought as well as the detention of rainwater to increase flood protection and reduce damage to waterways. The objective of this article is to investigate the integrity of residential rainwater harvesting systems, drawing on the results of the field inspection of 417 rainwater systems across Melbourne that was combined with a survey of householders' situation, maintenance behaviour and attitudes. Specifically, the study moves beyond the assumption that rainwater systems are always operational and functional and draws on the collected data to explore the various reasons and rates of failure associated with pumps and pump switches, leaving for later further exploration of the failure in other components such as the collection area, gutters, tank, and overflows. To the best of the authors' knowledge, there is no data like this in academic literature or in the water sector. Straightforward Bayesian Network models were constructed in order to analyse the factors contributing to various types of failures, including system age, type of use, the reason for installation, installer, and maintenance behaviour. Results show that a number of issues commonly exist, such as failure of pumps (5% of systems), automatic pump switches that mediate between the tank and reticulated water (9% of systems), and systems with inadequate setups (i.e. no pump) limiting their use. In conclusion, there appears to be a lack of enforcement or quality controls in both installation practices by sometimes unskilled contractors and lack of ongoing maintenance checks. Mechanisms for quality control and asset management are required, but difficult to promote or enforce. Further work is needed into how privately owned assets that have public benefits could be better managed.

  15. Computer modeling of interactions of an electric motor, circulatory system, and rotary blood pump.

    PubMed

    Xu, L; Fu, M

    2000-01-01

    The innovative ventricular assist systems (IVAS) is the next generation ventricular assist device for use as a permanent implantable device. Its practical application depends upon control of the electric motor and interactions of the electric motor, blood pump, and circulatory system. Computer modeling and simulation are necessary to investigate and evaluate the interactions and feasibility of sophisticated control algorithms. In this paper, a computer model of the complete system, including the cardiovascular system, blood pump, and electric motor, is proposed. The model is obtained based on an electric circuit model of the cardiovascular system, a parametric model of the blood pump, and a dynamic model of the electric motor. The cardiovascular system uses nonlinear parameters to simulate the time-varying property of the ventricles, and the cannula collapse effect caused by over-pumping. The blood pump model can be obtained either from pump design data, or test data. The motor control can be operated with closed-loop regulation, depending upon physiologic requirements. Different operation modes (current or speed) of the electric motor can be simulated. The computer model is implemented using MATLAB. Various motor operation modes are simulated and their effects are evaluated. By adjusting the motor input, the pump can achieve proper output so that normal physiology can be obtained. In addition to evaluating existing operation modes and their effect on the physiologic system, the computer simulation results show that this computer model can contribute significantly to the development of new physiologic control algorithms. It is demonstrated that, using this motor-pump-physiology interaction model, development of an innovative ventricular assist system can be greatly facilitated.

  16. Hydrodynamic optimization of trust ring pump and lubricating oil system for large hydroelectric units thrust bearing

    NASA Astrophysics Data System (ADS)

    Lai, X.; Lu, Z.; Zhang, X.; Yang, S.

    2014-03-01

    Thrust-ring-pump is a kind of extreme-low specific speed centrifugal pump with special structure as numerous restrictions form thrust bearing and operation conditions of hydro turbine generator unit. Because the oil circulating and cooling system with thrust-ring- pump has a lot of advantages in maintenance and compactness in structure, it has widely been used in large and medium-sized hydro-generator units. Since the diameter and the speed of the thrust ring is limited by the generator set, the matching relationship between the flow passage inside the thrust ring (equivalent to impeller) and oil bath (equivalent to volute) has great influence on hydrodynamic performance of thrust-ring-pump, additionally, the head and discharge are varying with the operation conditions of hydro-generator unit and characteristic of the oil circulating and cooling system. As so far, the empirical calculation method is employed during the actual engineering design, in order to guarantee the operating performance of the oil circulating and cooling system with thrust-ring-pump at different conditions, a collaborative hydrodynamic design and optimization of both the oil circulating and cooling system and thrust-ring-pump is purposed in this paper. Firstly, the head and discharge required at different conditions are decided by 1D flow numerical simulation of the oil circulating and cooling system. Secondly, the flow passages of thrust-ring-pump are empirically designed under the restrictions of diameter and the speed of the thrust ring according to the head and discharge from the simulation. Thirdly, the flow passage geometry matching optimization between holes inside the thrust ring and oil bath is implemented by means of 3D flow simulation and performance prediction. Then, the pumps and the oil circulating and cooling system are collaborative hydrodynamic optimized with predicted head- discharge curve and the efficiency-discharge curve of thrust-ring-pump. The presented methodology has

  17. Simulation/optimization modeling for robust pumping strategy design.

    PubMed

    Kalwij, Ineke M; Peralta, Richard C

    2006-01-01

    A new simulation/optimization modeling approach is presented for addressing uncertain knowledge of aquifer parameters. The Robustness Enhancing Optimizer (REO) couples genetic algorithm and tabu search as optimizers and incorporates aquifer parameter sensitivity analysis to guide multiple-realization optimization. The REO maximizes strategy robustness for a pumping strategy that is optimal for a primary objective function (OF), such as cost. The more robust a strategy, the more likely it is to achieve management goals in the field, even if the physical system differs from the model. The REO is applied to trinitrotoluene and Royal Demolition Explosive plumes at Umatilla Chemical Depot in Oregon to develop robust least cost strategies. The REO efficiently develops robust pumping strategies while maintaining the optimal value of the primary OF-differing from the common situation in which a primary OF value degrades as strategy reliability increases. The REO is especially valuable where data to develop realistic probability density functions (PDFs) or statistically derived realizations are unavailable. Because they require much less field data, REO-developed strategies might not achieve as high a mathematical reliability as strategies developed using many realizations based upon real aquifer parameter PDFs. REO-developed strategies might or might not yield a better OF value in the field.

  18. Design and parameter estimation of hybrid magnetic bearings for blood pump applications

    NASA Astrophysics Data System (ADS)

    Lim, Tau Meng; Zhang, Dongsheng; Yang, Juanjuan; Cheng, Shanbao; Low, Sze Hsien; Chua, Leok Poh; Wu, Xiaowei

    2009-10-01

    This paper discusses the design and parameter estimation of the dynamics characteristics of a high-speed hybrid magnetic bearings (HMBs) system for axial flow blood pump applications. The rotor/impeller of the pump is driven by a three-phase permanent magnet (PM) brushless and sensorless DC motor. It is levitated by two HMBs at both ends in five-degree-of-freedom with proportional-integral-derivative (PID) controllers; among which four radial directions are actively controlled and one axial direction is passively controlled. Test results show that the rotor can be stably supported to speeds of 14,000 rpm. The frequency domain parameter estimation technique with statistical analysis is adopted to validate the stiffness and damping coefficients of the HMBs system. A specially designed test rig facilitated the estimation of the bearing's coefficients in air—in both the radial and axial directions. The radial stiffness of the HMBs is compared to the Ansoft's Maxwell 2D/3D finite element magnetostatic results. Experimental estimation showed that the dynamics characteristics of the HMBs system are dominated by the frequency-dependent stiffness coefficients. The actuator gain was also successfully calibrated and may potentially extend the parameter estimation technique developed in the study of identification and monitoring of the pump's dynamics properties under normal operating conditions with fluid.

  19. Design Document for Control Dewar and Vacuum Pump Platforms

    SciTech Connect

    Rucinksi, R.; /Fermilab

    1997-08-27

    This engineering note documents the design of the control dewar and vacuum pump platform that is to be installed on the D-Zero detector. It's purpose is twofold. Firstly it is a summary and repository of the final design calculations of the structure. Secondly, it documents that design follows the American Institute of Steel Construction (AISC) manual and applicable OSHA requirements with respect to walking working surfaces. The information contained in the main body of this note is supported by raw calculations included as the appendix. The platform is a truss type frame strucrure constructed primarily of rectangular steel tubing. The upper platform is for support of the control dewar (cryogenic/electrical interface for the solenoid), visible light photon counter (VLPC) cryogenic bayonet can, and infrequently, personnel during the connection and disconnection of the detector to building services. Figure 1 shows a layout of the structure as mounted on the detector and with the installed equipment. The connection of the platform to the detector is not conventional. Two main booms cantilever the structure to a location outside of the detector. The mounting location and support booms allow for the uninhibited motion of the detector components.

  20. A new box system for a high pressure tritium pump

    SciTech Connect

    Wilson, S.W.; Borree, R.J.; Chambers, D.I.; Souers, P.C.; Merrill, J.T.; Wiggins, R.K.

    1988-01-01

    A 200 MPa (30 kpsi) high pressure tritium pump inside a box system is described. This system is currently under construction but all representative mechanical parts have been fabricated and tested. The pump is a conventional mechanical-plus-cryostaged system, so that most of the interesting features are in the box. The system contains nine separate sections, with automatic pressure balancing and venting systems. Five sections are hood-to-box convertible enclosures with inflatable door seals. The procedure of cryostaging with liquid argon is described. Special detail is given to valves and motor shaft seals. 3 refs., 4 figs.

  1. Peristaltic pump-based low range pressure sensor calibration system

    NASA Astrophysics Data System (ADS)

    Vinayakumar, K. B.; Naveen Kumar, G.; Nayak, M. M.; Dinesh, N. S.; Rajanna, K.

    2015-11-01

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.

  2. Peristaltic pump-based low range pressure sensor calibration system

    SciTech Connect

    Vinayakumar, K. B.; Naveen Kumar, G.; Rajanna, K. E-mail: krajanna2011@gmail.com; Nayak, M. M.; Dinesh, N. S.

    2015-11-15

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.

  3. Peristaltic pump-based low range pressure sensor calibration system.

    PubMed

    Vinayakumar, K B; Naveen Kumar, G; Nayak, M M; Dinesh, N S; Rajanna, K

    2015-11-01

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.

  4. Design, development and test of a capillary pump loop heat pipe

    NASA Technical Reports Server (NTRS)

    Kroliczek, E. J.; Ku, J.; Ollendorf, S.

    1984-01-01

    The development of a capillary pump loop (CPL) heat pipe, including computer modeling and breadboard testing, is presented. The computer model is a SINDA-type thermal analyzer, combined with a pressure analyzer, which predicts the transients of the CPL heat pipe during operation. The breadboard is an aluminum/ammonia transport system which contains multiple parallel evaporator and condenser zones within a single loop. Test results have demonstrated the practicality and reliability of such a design, including heat load sharing among evaporators, liquid inventory/temperature control feature, and priming under load. Transport capability for this system is 65 KW-M with individual evaporator pumps managing up to 1.7 KW at a heat flux of 15 W/sq cm. The prediction of the computer model for heat transport capabilities is in good agreement with experimental results.

  5. Evaluation of a novel portable micro-pump and infusion system for drug delivery.

    PubMed

    Pankhurst, Paul; Abdollahi, Zahra McGuinness

    2016-08-01

    In this paper the design, fabrication and experimental results of a novel portable fixed-displacement micro-pump for controlled dosing and timing is described. The new pump is developed especially for high efficiency, high accuracy, ease of use and very low cost for single use drug delivery systems which can overcome many of the deficiencies of current portable pumps. Primary tests have been conducted and the results have demonstrated that the pump has the ability to deliver high performance and accuracy with less than +/-1% error over the whole operating flow rate range of 0.05-120 (mL/h). The pump is designed to be used with a motor drive, which has been configured to be the size of a typical pen, improving the patient's mobility and wellbeing. The new micro-pump can be used for a variety of applications including chemotherapy, insulin delivery, pain management and antibiotic therapy. A complete therapy system is enabled by providing physicians with devices that programme the Pendrive for patient specific therapies.

  6. Optimized system to improve pumping rate stability during aquifer tests.

    PubMed

    Young, Michael H; Rasmussen, Todd C; Lyons, F Comer; Pennell, Kurt D

    2002-01-01

    Aquifer hydraulic properties are commonly estimated using aquifer tests, which are based on an assumption of a uniform and constant pumping rate. Substantial uncertainties in the flow rate across the borehole-formation interface can be induced by dynamic head losses, caused by rapid changes in borehole water levels early in an aquifer test. A system is presented that substantially reduces these sources of uncertainty by explicitly accounting for dynamic head losses. The system which employs commonly available components (including a datalogger, pressure transducers, a variable-speed pump motor, a flow controller, and flowmeters), is inexpensive, highly mobile, and easily set up. It optimizes the flow rate at the borehole-formation interface, making it suitable for any type of aquifer test, including constant, step, or ramped withdrawal and injection, as well as sinusoidal. The system was demonstrated for both withdrawal and injection tests in three aquifers at the Savannah River Site. No modifications to the control system were required, although a small number of characteristics of the pumping and monitoring system were added to the operating program. The pumping system provided a statistically significant, constant flow rate with time. The range in pumping variability (95% confidence interval) was from +/- 2.58 x 10(-4) L/sec to +/- 9.07 x 10(-4) L/sec, across a wide range in field and aquifer conditions.

  7. Low power integrated pumping and valving arrays for microfluidic systems

    DOEpatents

    Krulevitch, Peter A.; Benett, William J.; Rose, Klint A.; Hamilton, Julie; Maghribi, Mariam

    2006-04-11

    Low power integrated pumping and valving arrays which provide a revolutionary approach for performing pumping and valving approach for performing pumping and valving operations in microfabricated fluidic systems for applications such as medical diagnostic microchips. Traditional methods rely on external, large pressure sources that defeat the advantages of miniaturization. Previously demonstrated microfabrication devices are power and voltage intensive, only function at sufficient pressure to be broadly applicable. This approach integrates a lower power, high-pressure source with a polymer, ceramic, or metal plug enclosed within a microchannel, analogous to a microsyringe. When the pressure source is activated, the polymer plug slides within the microchannel, pumping the fluid on the opposite side of the plug without allowing fluid to leak around the plug. The plugs also can serve as microvalves.

  8. Computer simulation of processes in solid-state laser oscillators and amplifiers with phototube pumping: Laser pumping systems

    NASA Astrophysics Data System (ADS)

    Gradov, V. M.; Kromskiy, G. I.; Mak, A. A.; Sklizkov, G. V.; Fedotov, S. I.; Shcherbakov, A. A.

    1986-03-01

    Optical pumping systems for solid state lasers are evaluated comparatively on the basis of a mathematical model of processes and the results of computer simulation. The principal criterion for comparison is the overall energy efficiency, assuming that two essential requirements are met: a pumping power level adequate for attainment of the emission or amplification threshold and uniform distribution of the pumping radiation density above the threshold level over the active medium. The method covers spherical and cylindrical surfaces. The general algorithm of the solution of the corresponding integral and differential equations was programmed for a self consistent calculation of the pumping system characteristics. The method is applied to two different pumping systems where discharge produces an optically dense plasma and an optically thin plasma respectively. Analysis and calculations are particularized for several known variants of these pumping systems with various modes of laser emission tuning.

  9. Pump Operation Workshop. Third Edition (Revised).

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    Presented is the learner's manual for a five-day workshop designed to supplement the skills of water and wastewater treatment personnel. The program consists of lecture-discussions and hands-on sessions covering the operation of water and wastewater pumps. Areas addressed include: material pumped, pump systems, types of pumps, pump controls,…

  10. Heat pump system with selective space cooling

    DOEpatents

    Pendergrass, J.C.

    1997-05-13

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

  11. Heat pump system with selective space cooling

    DOEpatents

    Pendergrass, Joseph C.

    1997-01-01

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.

  12. Determining the optimum solar water pumping system for domestic use, livestock water, or irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For several years we have field tested many different types of solar powered water pumping systems. In this paper, several steps are given to select a solar-PV water pumping system. The steps for selection of stand-alone water pumping system were: deciding whether a wind or solar water pumping sys...

  13. Heat pump system for the LDS church office building

    SciTech Connect

    Wagstaff, W.

    1982-12-01

    The headquarters building for the Church of Jesus Christ of Latter-Day Saints (LDS) is a 28-story office building in downtown Salt Lake City, Utah. Completed in 1972, the building is heated and cooled by ground-water heat pumps. The heat-pump system allows considerable flexibility in balancing heating and cooling requirements, and allows for the recovery and use of heat which otherwise would be lost. Although there are a few problems associated with the system, officials in the Operations and Maintenance Division express general satisfaction with it and with the equipment. No firm figures are available on the economics of the heat-pump system, but it appears to be more economic than a comparable conventional system.

  14. Design of diode-pumped solid-state laser applied in laser fuses

    NASA Astrophysics Data System (ADS)

    Deng, FangLin; Zhang, YiFei

    2005-04-01

    The function of laser fuzes which are parts of certain weapon systems is to control the blasting height of warheads. Commonly the battle environment these weapon systems are confronted with is very complicated and the tactical demand for them is very rigor, so laser fuzes equipped for them must fulfill some special technical requirements, such as high repetition rate, long ranging scope, etc. Lasers are one of key components which constitute fuze systems. Whether designed lasers are advanced and reasonable will determine whether laser fuzes can be applied in these weapon systems or not. So we adopt the novel technology of diode-pumped solid-state laser (DPSSL) to design lasers applied in fuzes. Nd:YVO4 crystal is accepted as gain material, which has wide absorption band and large absorption efficient for 808nm pumping laser. As warhead's temperature is usually very high, wider absorption band is beneficial to reduce the influence of temperature fluctuation. Passive Q-switching with Cr4+:YAG is used to reduce the power consumption farthest. Design the end-pumped microchip sandwich-architecture to decrease lasers' size and increase the reliability, further it's advantageous to produce short pulses and increase peak power of lasers. The designed DPSSL features small size and weight, high repetition rate and peak power, robustness, etc. The repetition rate is expected to reach 1 kHz; peak power will exceed 300 kW; pulse width is only 5 ns; and divergence angle of laser beams is less than 5 mrad. So DPSSL is suitable for laser fuzes as an emitter.

  15. Computational Fluid Dynamics-Based Design Optimization Method for Archimedes Screw Blood Pumps.

    PubMed

    Yu, Hai; Janiga, Gábor; Thévenin, Dominique

    2016-04-01

    An optimization method suitable for improving the performance of Archimedes screw axial rotary blood pumps is described in the present article. In order to achieve a more robust design and to save computational resources, this method combines the advantages of the established pump design theory with modern computer-aided, computational fluid dynamics (CFD)-based design optimization (CFD-O) relying on evolutionary algorithms and computational fluid dynamics. The main purposes of this project are to: (i) integrate pump design theory within the already existing CFD-based optimization; (ii) demonstrate that the resulting procedure is suitable for optimizing an Archimedes screw blood pump in terms of efficiency. Results obtained in this study demonstrate that the developed tool is able to meet both objectives. Finally, the resulting level of hemolysis can be numerically assessed for the optimal design, as hemolysis is an issue of overwhelming importance for blood pumps.

  16. Recent developments in the design of high head pump/turbines

    SciTech Connect

    Schmidt, S.M. )

    1989-01-01

    The design of high head pump/turbines requires unique considerations because of severe operating conditions, such as turbine peaking, frequent starting and stopping turbining, pump starts, synchronous condensing, etc. The optimum pump/turbine design is a balance between performance, structural integrity, manufacturability, ease of installation, long term reliability and equipment cost. The optimization process is dependent upon design considerations such as allowable stress levels, deflections and vibration amplitude and frequency. The hydraulic and mechanical design optimization of such major components as the stay ring/spiral case, discharge ring, wicket gates, impeller, shaft and wearing ring/seals is discussed in this paper relative to recent design developments.

  17. Packaging design criteria, transfer and disposal of 102-AP mixer pump

    SciTech Connect

    Carlstrom, R.F.

    1994-11-23

    A mixer pump installed in storage tank 241-AP-102 (102-AP) has failed. This pump is referred to as the 102-AP mixer pump (APMP). The APMP will be removed from 102-AP 1 and a new pump will be installed. The main purpose of the Packaging Design Criteria (PDC) is to establish criteria necessary to design and fabricate a shipping container for the transfer and storage of the APMP from 102-AP. The PDC will be used as a guide to develop a Safety Evaluation for Packaging (SEP).

  18. The development and testing of a fieldworthy system of improved fluid pumping device and liquid sensor for oil wells

    SciTech Connect

    Buckman, W.G.

    1991-12-31

    A major expenditure to maintain oil and gas leases is the support of pumpers, those individuals who maintain the pumping systems on wells to achieve optimum production. Many leases are marginal and are in remote areas and this requires considerable driving time for the pumper. The Air Pulse Oil Pump System is designed to be an economical system for the shallow stripper wells. To improve on the economics of this system, we have designed a Remote Oil Field Monitor and Controller to enable us to acquire data from the lease to our central office at anytime and to control the pumping activities from the central office by using a personal computer. The advent and economics of low-power microcontrollers have made it feasible to use this type of system for numerous remote control systems. We can also adapt this economical system to monitor and control the production of gas wells and/or pump jacks.

  19. Steady-state performance characteristics of latent heat TES/heat pump systems

    NASA Astrophysics Data System (ADS)

    Sigmon, T. W.

    1982-03-01

    Two projects are currently being completed that wholly or in part address various technical issues involved in the implementation of heat pump systems combined with thermal energy storage (TES). The first of these involves the determination of steady state performance characteristics for six generic TES/heat pump configurations and the comparison of the operational performance of these systems with other space heating and cooling TES technologies. Of these latter systems four are commercial or near commerical air conditioner or heat pump coupled TES systems. Steady state performance has been established for all systems. Operational performance and system life cycle cost has been determined for the six generic designs for a limited set of application conditions. The intent of the second project is to establish a reliable method of estimating seasonal energy use by TES/heat pump systems, to utilize this methodology to evaluate a large number of possible system designs, identify a small number of systems that merit more detailed analysis, and, to the extent possible, conduct these detailed studies.

  20. Development of a differential pumping system for soft X-ray beamlines for windowless experiments under normal atmospheric conditions.

    PubMed

    Tamenori, Y

    2010-03-01

    A novel design for a differential pumping system has been investigated. This system allows windowless experiments in a soft X-ray beamline under normal atmospheric conditions. The new design consists of an aperture-based four-stage differential pumping system, based on a simple model calculation. A prototype system with a total length of 600 mm was constructed to confirm the validity of the design concept. Relatively short conductance-limiting components allow easy installation and alignment of the system on a synchrotron beamline. The fabricated system was installed on a beamline to test the transmission of soft X-rays through atmospheric helium.

  1. A new glove-box system for a high-pressure tritium pump

    SciTech Connect

    Wilson, S.W.; Borree, R.J.; Chambers, D.I.; Chang, Y.; Merrill, J.T.; Souers, P.C.; Wiggins, R.K.

    1988-05-26

    A new glove-box system that was designed around a high-pressure tritium pump is described. The system incorporates new containment ideas such as ''burpler'' passive pressure controls, valves that can be turned from outside the box, inflatable door seals, ferro-fluidic motor-shaft seals, and rapid box-to-hood conversion during cryostaging. Currently under construction, the system will contain nine separate sections with automatic pressure-balancing and venting systems. 3 refs., 5 figs.

  2. Entropy, pricing and macroeconomics of pumped-storage systems

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Georgios; Mamassis, Nikos; Koutsoyiannis, Demetris; Efstratiadis, Andreas

    2014-05-01

    We propose a pricing scheme for the enhancement of macroeconomic performance of pumped-storage systems, based on the statistical properties of both geophysical and economic variables. The main argument consists in the need of a context of economic values concerning the hub energy resource; defined as the resource that comprises the reference energy currency for all involved renewable energy sources (RES) and discounts all related uncertainty. In the case of pumped-storage systems the hub resource is the reservoir's water, as a benchmark for all connected intermittent RES. The uncertainty of all involved natural and economic processes is statistically quantifiable by entropy. It is the relation between the entropies of all involved RES that shapes the macroeconomic state of the integrated pumped-storage system. Consequently, there must be consideration on the entropy of wind, solar and precipitation patterns, as well as on the entropy of economic processes -such as demand preferences on either current energy use or storage for future availability. For pumped-storage macroeconomics, a price on the reservoir's capacity scarcity should also be imposed in order to shape a pricing field with upper and lower limits for the long-term stability of the pricing range and positive net energy benefits, which is the primary issue of the generalized deployment of pumped-storage technology. Keywords: Entropy, uncertainty, pricing, hub energy resource, RES, energy storage, capacity scarcity, macroeconomics

  3. DPAL pump system exceeding 3kW at 766nm and 30 GHz bandwidth

    NASA Astrophysics Data System (ADS)

    Koenning, Tobias; McCormick, Dan; Irwin, David; Stapleton, Dean; Guiney, Tina; Patterson, Steve

    2016-03-01

    Due to their low quantum defect, diode pumped alkali metal vapor lasers (DPALs) offer the promise of scalability to very high average power levels while maintaining excellent beam quality. Research on DPALs has progressed to ever increasing power levels across multiple gain media species over the last years, necessitating pump power in the kW range. Each material requires a specific pump wavelength: near 852nm for cesium, 780nm for rubidium, 766nm for potassium, and 670nm for lithium atoms. The shorter pump wavelength below 800nm are outside the typical wavelength range for pump diodes developed for diode pumped solid state lasers (DPSS). The biggest challenge in pumping these materials efficiently is the need for maintaining the narrow gain media absorption band of approximately 0.01nm while greatly increasing power. Typical high power diode lasers achieve spectral widths around 3nm (FWHM) in the near infrared spectrum, but optical gratings may be used internal or external to the cavity to reduce the spectral width. Recently, experimental results have shown yet narrower line widths ranging from picometers at very low power levels to sub-100 picometers for water cooled stacks around 1kW of output power. The focus of this work is the development of a fiber-based pump system for potassium DPAL. The individual tasks are the development of high power 766nm chip material, a fiber-coupled module as a building block, and a scalable system design to address power requirements from hundreds of watts to tens of kilowatts. Results for a 3kW system achieving ~30GHz bandwidth at 766nm will be shown. Approaches for power-scaling and size reduction will be discussed.

  4. Multi-objective optimization of water quality, pumps operation, and storage sizing of water distribution systems.

    PubMed

    Kurek, Wojciech; Ostfeld, Avi

    2013-01-30

    A multi-objective methodology utilizing the Strength Pareto Evolutionary Algorithm (SPEA2) linked to EPANET for trading-off pumping costs, water quality, and tanks sizing of water distribution systems is developed and demonstrated. The model integrates variable speed pumps for modeling the pumps operation, two water quality objectives (one based on chlorine disinfectant concentrations and one on water age), and tanks sizing cost which are assumed to vary with location and diameter. The water distribution system is subject to extended period simulations, variable energy tariffs, Kirchhoff's laws 1 and 2 for continuity of flow and pressure, tanks water level closure constraints, and storage-reliability requirements. EPANET Example 3 is employed for demonstrating the methodology on two multi-objective models, which differ in the imposed water quality objective (i.e., either with disinfectant or water age considerations). Three-fold Pareto optimal fronts are presented. Sensitivity analysis on the storage-reliability constraint, its influence on pumping cost, water quality, and tank sizing are explored. The contribution of this study is in tailoring design (tank sizing), pumps operational costs, water quality of two types, and reliability through residual storage requirements, in a single multi-objective framework. The model was found to be stable in generating multi-objective three-fold Pareto fronts, while producing explainable engineering outcomes. The model can be used as a decision tool for both pumps operation, water quality, required storage for reliability considerations, and tank sizing decision-making.

  5. Unique submersible pumps system used in rig deck loadout

    SciTech Connect

    Not Available

    1984-02-01

    In one of the largest offshore skidding operations ever undertaken in the UK, a unique system of submersible pumps linked through central control stations was used to load out the deck of a new-built semisubmersible rig onto three barges. Ninety-three submersible pumps and a hydraulic track system were required to move the deck onto the 100 x 14 x 7.5-meter barges. The most critical task was to maintain the barges at a constant level as they took on the load. The problem was overcome with combined dewatering and ballasting actions, carried out simultaneously from each control center and from each barge.

  6. 46 CFR 28.255 - Bilge pumps, bilge piping, and dewatering systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... same rate as water is introduced. Pumps used as part of the processing of fish do not count for meeting this requirement. The dewatering system must be interlocked with the pump(s) supplying water to the... 46 Shipping 1 2011-10-01 2011-10-01 false Bilge pumps, bilge piping, and dewatering systems....

  7. Rotary Drum Separator and Pump for the Sabatier Carbon Dioxide Reduction System

    NASA Technical Reports Server (NTRS)

    Holder, Don; Fort, James; Barone, Michael; Murdoch, Karen

    2005-01-01

    A trade study conducted in 2001 selected a rotary disk separator as the best candidate to meet the requirements for an International Space Station (ISS) Carbon Dioxide Reduction Assembly (CRA). The selected technology must provide micro-gravity gasfliquid separation and pump the liquid from 10 psia at the gasfliquid interface to 18 psia at the wastewater bus storage tank. The rotary disk concept, which has pedigree in other systems currently being built for installation on the ISS, failed to achieve the required pumping head within the allotted power. The separator discussed in this paper is a new design that was tested to determine compliance with performance requirements in the CRA. The drum separator and pump @SP) design is similar to the Oxygen Generator Assembly (OGA) Rotary Separator Accumulator (RSA) in that it has a rotating assembly inside a stationary housing driven by a integral internal motor. The innovation of the DSP is the drum shaped rotating assembly that acts as the accumulator and also pumps the liquid at much less power than its predecessors. In the CRA application, the separator will rotate at slow speed while accumulating water. Once full, the separator will increase speed to generate sufficient head to pump the water to the wastewater bus. A proof-of- concept (POC) separator has been designed, fabricated and tested to assess the separation efficiency and pumping head of the design. This proof-of-concept item was flown aboard the KC135 to evaluate the effectiveness of the separator in a microgravity environment. This separator design has exceeded all of the performance requirements. The next step in the separator development is to integrate it into the Sabatier Carbon Dioxide Reduction System. This will be done with the Sabatier Engineering Development Unit at the Johnson Space Center.

  8. Design, development and testing of a solar-powered multi-family residential-size prototype turbocompressor heat pump

    SciTech Connect

    Not Available

    1982-10-01

    An experimental program was conducted to further define, improve and demonstrate the performance characteristics and operational features of an existing 18-ton solar-powered prototype heat pump. The prototype heat pump is nominally sized for multi-family residential applications and provides both space heating and cooling. It incorporates a turbocompressor specially designed to operate at peak temperatures consistent with medium concentration collectors. The major efforts in this program phase included modification and improvement of the instrumentation sensors, the laboratory simulation equipment and selected heat pump components. After implementing these modifications, performance testing was conducted for a total operating time of approximately 250 hours. Experimental test results compared favorably with performance data calculated using the UTRC computer prediction program for the same boundary conditions. A series of tests was conducted continuously over a 12-h period to simulate operation (in the cooling mode) of the prototype heat pump under conditions typical of an actual installation. The test demonstrated that the heat pump could match the cooling load profile of a multi-family residential building. During the system performance testing, sufficient data were taken to identify the performance of each of the major components (e.g. turbine, compressor, heat exchangers, R11 pump). Component performance is compared with that calculated using the UTRC computer predict program and with data supplied by their manufacturers. The performance capabilities of the prototype heat pump system have been documented and recommendations are made for further design improvements which could be included in a MOD-2 configuration. The MOD-2 configuration would incorporate features that would improve system performance, reduce capital cost and most importantly improve system reliability.

  9. Use of an Irrigation Pump System in Arthroscopic Procedures.

    PubMed

    Hsiao, Mark S; Kusnezov, Nicholas; Sieg, Ryan N; Owens, Brett D; Herzog, Joshua P

    2016-05-01

    Since its inception, arthroscopic surgery has become widely adopted among orthopedic surgeons. It is therefore important to have an understanding of the basic principles of arthroscopy. Compared with open techniques, arthroscopic procedures are associated with smaller incisions, less structural damage, improved intra-articular visualization, less pain in the immediate postoperative period, and faster recovery for patients. Pump systems used for arthroscopic surgery have evolved over the years to provide improved intraoperative visualization. Gravity flow systems were described first and are still commonly used today. More recently, automated pump systems with pressure or dual pressure and volume control have been developed. The advantages of automated irrigation systems over gravity irrigation include a more consistent flow, a greater degree of joint distention, improved visualization especially with motorized instrumentation, decreased need for tourniquet use, a tamponade effect on bleeding, and decreased operative time. Disadvantages include the need for additional equipment with increased cost and maintenance, the initial learning curve for the surgical team, and increased risk of extra-articular fluid dissection and associated complications such as compartment syndrome. As image quality and pump systems improve, so does the list of indications including diagnostic and treatment modalities to address intra-articular pathology of the knee, shoulder, hip, wrist, elbow, and ankle joints. This article reviews the current literature and presents the history of arthroscopy, basic science of pressure and flow, types of irrigation pumps and their functions, settings, applications, and complications. [Orthopedics. 2016; 39(3):e474-e478.].

  10. Operation of the counter-rotating type pump-turbine unit installed in the power stabilizing system

    NASA Astrophysics Data System (ADS)

    Kanemoto, T.; Honda, H.; Kasahara, R.; Miyaji, T.

    2014-03-01

    This serial research intends to put a unique power stabilization system with a pumped storage into practical use. The pumped storage is equipped with a counter-rotating type pump-turbine unit whose operating mode can be shifted instantaneously in response to the fluctuation of power from renewable resources. This paper verifies that the system is reasonably effective to stabilize the fluctuating power. It is necessary to quickly increase the rotational speed when the operation is shifted from the turbine to the pumping modes, because the unit cannot pump-up water from a lower reservoir at a slow rotational speed while keeping gross/geodetic head constant. The maximum hydraulic efficiency at the turbine mode is close to the efficiency of the counter-rotating type hydroelectric unit designed exclusively for the turbine mode. The system is also provided for a pilot plant to be operated in the field.

  11. Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems

    NASA Astrophysics Data System (ADS)

    Bai, Lihui; Harder, M.; Chen, Y. P.; Fan, X.; Xiao, J. Q.; Hu, C.-M.

    2015-06-01

    We use electrical detection, in combination with microwave transmission, to investigate both resonant and nonresonant magnon-photon coupling at room temperature. Spin pumping in a dynamically coupled magnon-photon system is found to be distinctly different from previous experiments. Characteristic coupling features such as modes anticrossing, linewidth evolution, peculiar line shape, and resonance broadening are systematically measured and consistently analyzed by a theoretical model set on the foundation of classical electrodynamic coupling. Our experimental and theoretical approach paves the way for pursuing microwave coherent manipulation of pure spin current via the combination of spin pumping and magnon-photon coupling.

  12. Highly sensitive vacuum ion pump current measurement system

    DOEpatents

    Hansknecht, John Christopher

    2006-02-21

    A vacuum system comprising: 1) an ion pump; 2) power supply; 3) a high voltage DC--DC converter drawing power from the power supply and powering the vacuum pump; 4) a feedback network comprising an ammeter circuit including an operational amplifier and a series of relay controlled scaling resistors of different resistance for detecting circuit feedback; 5) an optional power block section intermediate the power supply and the high voltage DC--DC converter; and 6) a microprocessor receiving feedback information from the feedback network, controlling which of the scaling resistors should be in the circuit and manipulating data from the feedback network to provide accurate vacuum measurement to an operator.

  13. Study and Development of an Air Conditioning System Operating on a Magnetic Heat Pump Cycle

    NASA Technical Reports Server (NTRS)

    Wang, Pao-Lien

    1991-01-01

    This report describes the design of a laboratory scale demonstration prototype of an air conditioning system operating on a magnetic heat pump cycle. Design parameters were selected through studies performed by a Kennedy Space Center (KSC) System Simulation Computer Model. The heat pump consists of a rotor turning through four magnetic fields that are created by permanent magnets. Gadolinium was selected as the working material for this demonstration prototype. The rotor was designed to be constructed of flat parallel disks of gadolinium with very little space in between. The rotor rotates in an aluminum housing. The laboratory scale demonstration prototype is designed to provide a theoretical Carnot Cycle efficiency of 62 percent and a Coefficient of Performance of 16.55.

  14. 19. Heat Pump, view to the southwest. This system provides ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Heat Pump, view to the southwest. This system provides ventilation air heating and cooling throughout the powerhouse. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  15. Saltwell pumping systems R.A.M. analysis

    SciTech Connect

    DEFORD, D.K.

    1999-10-25

    This study characterizes the reliability, availability, and maintainability of saltwell pumping systems based on historical data, and identifies recommendations to improve operating efficiency. The report was initially issued as a letter report on September 9, 1999, reference no. NHC-9956343. The text is reproduced here with minor edits and without the appendices.

  16. Test Procedure - pumping system for caustic addition project

    SciTech Connect

    Leshikar, G.A.

    1994-10-01

    This test procedure provides the requirements for sub-system testing and integrated operational testing of the submersible mixer pump and caustic addition equipment by WHC and Kaiser personnel at the Rotating Equipment Shop run-in pit (Bldg. 272E).

  17. Comparative analysis of DG and solar PV water pumping system

    NASA Astrophysics Data System (ADS)

    Tharani, Kusum; Dahiya, Ratna

    2016-03-01

    Looking at present day electricity scenario, there is a major electricity crisis in rural areas. The farmers are still dependant on the monsoon rains for their irrigation needs and livestock maintenance. Some of the agrarian population has opted to use Diesel Generators for pumping water in their fields. But taking into consideration the economics and environmental conditions, the above choice is not suitable for longer run. An effort to shift from non-renewable sources such as diesel to renewable energy source such as solar has been highlighted. An approximate comparative analysis showing the life cycle costs of a PV pumping system with Diesel Generator powered water pumping is done using MATLAB/STMULTNK.

  18. Design of an Annular Linear Induction Pump for Nuclear Space Applications

    SciTech Connect

    Carloa O. Maidana; James E. Werner; Daniel M. Wachs

    2011-02-01

    Abstract. The United States Department of Energy's (DOE) Office of Nuclear Energy, Science, and Technology is supporting the National Aeronautics and Space Administration (NASA) in evaluating space mission power, propulsion systems and technologies to support the implementation of the Vision for Space Exploration (VSE). NASA will need increased power for propulsion and for surface power applications to support both robotic and human space exploration missions. As part of the Fission Surface Power Technology Project for the development of nuclear reactor technologies for multi-mission spacecrafts, an Annular Linear Induction Pump, a type of Electromagnetic Pump for liquid metals, able to operate in space has to be designed. Results of such design work are described as well as the fundamental ideas behind the development of an optimized design methodology. This project, which is a collaboration between Idaho National Laboratory (INL), Pacific Northwest National Laboratory (PNNL) and Marshall Space Flight Center (MSFC), involves the use of theoretical, computational and experimental tools for multi-physics analysis as well as advanced engineering design methods and techniques.

  19. Small-signal modelling and control of photovoltaic based water pumping system.

    PubMed

    Ghosh, Arun; Ganesh Malla, Siva; Narayan Bhende, Chandrasekhar

    2015-07-01

    This paper studies small-signal modelling and control design for a photovoltaic (PV) based water pumping system without energy storage. First, the small-signal model is obtained and then, using this model, two proportional-integral (PI) controllers, where one controller is used to control the dc-link voltage and the other one to control the speed of induction motor, are designed to meet control goals such as settling time and peak overshoot of the closed loop responses. The loop robustness of the design is also studied. For a given set of system parameters, simulations are carried out to validate the modelling and the control design.

  20. Vein-style air pumping tube and tire system and method of assembly

    DOEpatents

    Benedict, Robert Leon; Gobinath, Thulasiram; Lin, Cheng-Hsiung; Lamgaday, Robin; Losey, Robert Allen; Griffoin, Jean-Claude Patrice Philippe

    2017-01-03

    An air pumping tube and tire system and method of assembling is provided in which a tire groove is formed to extend into a flexing region of a tire sidewall and a complementary air pumping tube inserts into the tire groove. In the green, uncured air pumping tube condition, one or more check valves are assembled into the air pumping tube through access shafts and align with an internal air passageway of the air pumping tube. Plug components of the system enclose the check valves in the air pumping tube and the check valve-containing green air pumping tube is then cured.

  1. Note: Development of a compact electromagnetic hydraulic pump for a microrobot joint driving system.

    PubMed

    Chen, Naijian; Wang, Sun'an; Zhang, Jinhua

    2010-04-01

    This note describes a compact electromagnetic hydraulic pump (EMHP) designed primarily to build a microdriving system for a robot joint actuator. A characteristic mathematical model integrating electricity, magnetism, and hydraulics is constructed to represent the working process of the EMHP. Tests show that a volumetric flow rate of up to 430 cm(3)/min and load pressure of up to 2.5 MPa can be achieved. The prototype pump can supply stable pressure of 0-2.4 MPa and acceleration of 1.2 MPa/s for the robot joint actuator.

  2. A novel subcutaneous infusion delivery system based on osmotic pump: in vitro and in vivo evaluation.

    PubMed

    Gong, Wei; Ma, Rui; Mei, Danyu; Jing, Pei; Dong, Xiao; Li, Bingsheng; Yang, Yanfang; Du, Lina; Mei, Xing-Guo; Hu, Fu-Qiang

    2014-02-01

    An economical, convenient portable drug delivery system combining osmotic pump with subcutaneous infusion was developed, which was composed of three primary components: water chamber, osmotic pump chamber and support base. Ceftriaxone sodium (CRO) was selected as the model drug and osmotic pump tablets were prepared. The influence of osmotic agents on drug release profiles was evaluated. As the adjustment made by the osmotic agents was limited, the compositions of semipermeable membrane were investigated to determine significant associations of factors based on orthogonal design. The in vitro release profiles of the optimum formulation achieved to the predetermined value (15 ± 3 min for the initial release time T(i) and 5.75 ± 0.25 h for the extent release time T(e)). The pharmacokinetic profiles of this drug delivery system were evaluated in Beagle dogs. In vivo results demonstrated that the osmotic pump subcutaneous infusion administration was equivalent to intravenous injection administration in terms of bioavailability. Moreover, constant drug plasma levels with minimized fluctuations could be achieved with this osmotic pump subcutaneous infusion system, compared with intravenous injection.

  3. Phase 1-B development of kinematic Stirling/Rankine commercial gas-fired heat pump system

    NASA Astrophysics Data System (ADS)

    Monahan, R. E.

    1986-07-01

    The Kinematic Stirling/Rankine gas heat pump concept is based on the application of a Stirling engine that has been under development for over a decade. The engine has been converted to natural gas and is characterized with many thousand hours of operating experience. The goal of the project is to develop a commercial size Stirling engine-driven gas heat pump with a cooling capacity of 10 tons and a COP (heating) of 1.8 and COP (cooling) of 1.1. The project is a multiphase development with commercialization planned for 1989. In this phase, an HVAC systems manufacturer (Borg-Warner) is working with SPS to develop a prototype gas heat pump system. To date, a piston type open shaft refrigeration compressor has been selected as the best match for the engine. Both the engine and compressor have been tested and characterized by performance maps, and the experimental heat pump systems designed, built and preliminary testing performed. Close agreement with computer model output has been achieved. SPS has continued to focus on improving the Stirling engine performance and reliability for the gas heat pump application.

  4. Design rules for pumping and metering of highly viscous fluids in microfluidics.

    PubMed

    Perry, Sarah L; Higdon, Jonathan J L; Kenis, Paul J A

    2010-11-21

    The use of fluids that are significantly more viscous than water in microfluidics has been limited due to their high resistance to flow in microscale channels. This paper reports a theoretical treatment for the flow of highly viscous fluids in deforming microfluidic channels, particularly with respect to transient effects, and discusses the implications of these effects on the design of appropriate microfluidic devices for highly viscous fluids. We couple theory describing flow in a deforming channel with design equations, both for steady-state flows and for the transient periods associated with the initial deformation and final relaxation of a channel. The results of this analysis allow us to describe these systems and also to assess the significance of different parameters on various deformation and/or transient effects. To exemplify their utility, we apply these design rules to two applications: (i) pumping highly viscous fluids for a nanolitre scale mixing application and (ii) precise metering of fluids in microfluidics.

  5. Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade.

    SciTech Connect

    Liu, Xiaobing

    2014-06-01

    High initial cost and lack of public awareness of ground source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights findings of a case study of one of the ARRA-funded GSHP demonstration projects, which is a heating only central GSHP system using shallow aquifer as heat source and installed at a warehouse and truck bay at Kalispell, MT. This case study is based on the analysis of measured performance data, utility bills, and calculations of energy consumptions of conventional central heating systems for providing the same heat outputs as the central GSHP system did. The evaluated performance metrics include energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of GSHP system compared with conventional heating systems. This case study also identified areas for reducing uncertainties in performance evaluation, improving operational efficiency, and reducing installed cost of similar GSHP systems in the future. Publication of ASHRAE at the annual conference in Seattle June 2014.

  6. Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade

    SciTech Connect

    Liu, Xiaobing

    2014-06-01

    High initial cost and lack of public awareness of ground source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights findings of a case study of one of the ARRA-funded GSHP demonstration projects, which is a heating only central GSHP system using shallow aquifer as heat source and installed at a warehouse and truck bay at Kalispell, MT. This case study is based on the analysis of measured performance data, utility bills, and calculations of energy consumptions of conventional central heating systems for providing the same heat outputs as the central GSHP system did. The evaluated performance metrics include energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of GSHP system compared with conventional heating systems. This case study also identified areas for reducing uncertainties in performance evaluation, improving operational efficiency, and reducing installed cost of similar GSHP systems in the future. Publication of ASHRAE at the annual conference in Seattle.

  7. LOX/LH2 vane pump for auxiliary propulsion systems

    NASA Technical Reports Server (NTRS)

    Hemminger, J. A.; Ulbricht, T. E.

    1985-01-01

    Positive displacement pumps offer potential efficiency advantages over centrifugal pumps for future low thrust space missions. Low flow rate applications, such as space station auxiliary propulsion or dedicated low thrust orbiter transfer vehicles, are typical of missions where low flow and high head rise challenge centrifugal pumps. The positive displacement vane pump for pumping of LOX and LH2 is investigated. This effort has included: (1) a testing program in which pump performance was investigated for differing pump clearances and for differing pump materials while pumping LN2, LOX, and LH2; and (2) an analysis effort, in which a comprehensive pump performance analysis computer code was developed and exercised. An overview of the theoretical framework of the performance analysis computer code is presented, along with a summary of analysis results. Experimental results are presented for pump operating in liquid nitrogen. Included are data on the effects on pump performance of pump clearance, speed, and pressure rise. Pump suction performance is also presented.

  8. Solar heating and cooling systems design and development

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Solar heating and heating/cooling systems were designed for single family, multifamily, and commercial applications. Subsystems considered included solar collectors, heat storage systems, auxiliary energy sources, working fluids, and supplementary controls, piping, and pumps.

  9. Entropy, pumped-storage and energy system finance

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Georgios

    2015-04-01

    Pumped-storage holds a key role for integrating renewable energy units with non-renewable fuel plants into large-scale energy systems of electricity output. An emerging issue is the development of financial engineering models with physical basis to systematically fund energy system efficiency improvements across its operation. A fundamental physically-based economic concept is the Scarcity Rent; which concerns the pricing of a natural resource's scarcity. Specifically, the scarcity rent comprises a fraction of a depleting resource's full price and accumulates to fund its more efficient future use. In an integrated energy system, scarcity rents derive from various resources and can be deposited to a pooled fund to finance the energy system's overall efficiency increase; allowing it to benefit from economies of scale. With pumped-storage incorporated to the system, water upgrades to a hub resource, in which the scarcity rents of all connected energy sources are denominated to. However, as available water for electricity generation or storage is also limited, a scarcity rent upon it is also imposed. It is suggested that scarcity rent generation is reducible to three (3) main factors, incorporating uncertainty: (1) water's natural renewability, (2) the energy system's intermittent components and (3) base-load prediction deviations from actual loads. For that purpose, the concept of entropy is used in order to measure the energy system's overall uncertainty; hence pumped-storage intensity requirements and generated water scarcity rents. Keywords: pumped-storage, integration, energy systems, financial engineering, physical basis, Scarcity Rent, pooled fund, economies of scale, hub resource, uncertainty, entropy Acknowledgement: This research was funded by the Greek General Secretariat for Research and Technology through the research project Combined REnewable Systems for Sustainable ENergy DevelOpment (CRESSENDO; grant number 5145)

  10. 33 CFR 157.126 - Pumps.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157.126 Pumps. (a) Crude oil must be supplied to the COW machines by COW system pumps or cargo pumps. (b) The pumps under paragraph...) A sufficient pressure and flow is supplied to allow the simultaneous operation of those COW...

  11. Design, performance validation, and reliability testing of a new photochemical dispense pump

    NASA Astrophysics Data System (ADS)

    Bowers, William F.; Hunt, Stephen; Lee, Ben; Anantharaman, Ven; Rice, Mike; Rim, Jung S.

    1992-06-01

    The continued reduction in device linewidths and film thicknesses has led to the need for tighter control of the photochemical dispense process. Accurate and repeatable application of thin films of photoresist is complicated by the need for point-of-use filtration as close to the dispense nozzle as possible. This paper describes the design, validation, and reliability testing of a new photochemical pump whose primary requirements were cleanliness and repeatability. Both the dispense rate and the dispense volume were to be unaffected by changes in temperature, fluid viscosity, filter loading, or air in the filter. The Wafergard GEN-2TM photochemical dispense system is a stepper-motor driven, diaphragm-dispense pump which provides point-of-use filtration to reduce contamination (gels, microbubbles, and particles) and provide precise and repeatable dispense of photochemicals. The pump is a two-stage system in which a 0.1 micrometers stacked disk TeflonTM filter is isolated from the dispense chamber, thus allowing the filtration rate to be uncoupled from the dispense rate. The chemical flowpath is all-Teflon. The dispense diaphragm is hydraulically coupled through a metal bellows to a zero-backlash stepper linear actuator. These design features make the dispense rate, profile, and volume independent of the filter loading. Performance validation testing has been done. Long term (greater than 100,000 cycles) testing using 30 cps positive photoresist with typical operating conditions (2 mL dispense volume at a 2 mL/sec dispense rate through a ten foot 5/32' I.D. section of tubing) showed total volume repeatability to be within +/- 0.02 grams (3 Std Dev). A new method for quantifying the dispense flowrate profile has been developed and used to record the effect of system compliancy on flow dynamics. Wafer coating performance studies using an SVG 90 Series Resist Processing System addressed uniformity and resist consumption. Extensive reliability testing of GEN-2 has been

  12. Designing a Broadband Pump for High-Quality Micro-Lasers via Modified Net Radiation Method

    NASA Astrophysics Data System (ADS)

    Nechayev, Sergey; Reusswig, Philip D.; Baldo, Marc A.; Rotschild, Carmel

    2016-12-01

    High-quality micro-lasers are key ingredients in non-linear optics, communication, sensing and low-threshold solar-pumped lasers. However, such micro-lasers exhibit negligible absorption of free-space broadband pump light. Recently, this limitation was lifted by cascade energy transfer, in which the absorption and quality factor are modulated with wavelength, enabling non-resonant pumping of high-quality micro-lasers and solar-pumped laser to operate at record low solar concentration. Here, we present a generic theoretical framework for modeling the absorption, emission and energy transfer of incoherent radiation between cascade sensitizer and laser gain media. Our model is based on linear equations of the modified net radiation method and is therefore robust, fast converging and has low complexity. We apply this formalism to compute the optimal parameters of low-threshold solar-pumped lasers. It is revealed that the interplay between the absorption and self-absorption of such lasers defines the optimal pump absorption below the maximal value, which is in contrast to conventional lasers for which full pump absorption is desired. Numerical results are compared to experimental data on a sensitized Nd3+:YAG cavity, and quantitative agreement with theoretical models is found. Our work modularizes the gain and sensitizing components and paves the way for the optimal design of broadband-pumped high-quality micro-lasers and efficient solar-pumped lasers.

  13. Designing a Broadband Pump for High-Quality Micro-Lasers via Modified Net Radiation Method.

    PubMed

    Nechayev, Sergey; Reusswig, Philip D; Baldo, Marc A; Rotschild, Carmel

    2016-12-07

    High-quality micro-lasers are key ingredients in non-linear optics, communication, sensing and low-threshold solar-pumped lasers. However, such micro-lasers exhibit negligible absorption of free-space broadband pump light. Recently, this limitation was lifted by cascade energy transfer, in which the absorption and quality factor are modulated with wavelength, enabling non-resonant pumping of high-quality micro-lasers and solar-pumped laser to operate at record low solar concentration. Here, we present a generic theoretical framework for modeling the absorption, emission and energy transfer of incoherent radiation between cascade sensitizer and laser gain media. Our model is based on linear equations of the modified net radiation method and is therefore robust, fast converging and has low complexity. We apply this formalism to compute the optimal parameters of low-threshold solar-pumped lasers. It is revealed that the interplay between the absorption and self-absorption of such lasers defines the optimal pump absorption below the maximal value, which is in contrast to conventional lasers for which full pump absorption is desired. Numerical results are compared to experimental data on a sensitized Nd(3+):YAG cavity, and quantitative agreement with theoretical models is found. Our work modularizes the gain and sensitizing components and paves the way for the optimal design of broadband-pumped high-quality micro-lasers and efficient solar-pumped lasers.

  14. Design of a high-pressure circulating pump for viscous liquids.

    PubMed

    Seifried, Bernhard; Temelli, Feral

    2009-07-01

    The design of a reciprocating dual action piston pump capable of circulating viscous fluids at pressures of up to 34 MPa (5000 psi) and temperatures up to 80 degrees C is described. The piston of this pump is driven by a pair of solenoids energized alternatively by a 12 V direct current power supply controlled by an electronic controller facilitating continuously adjustable flow rates. The body of this seal-less pump is constructed using off-the-shelf parts eliminating the need for custom made parts. Both the electronic controller and the pump can be assembled relatively easily. Pump performance has been evaluated at room temperature (22 degrees C) and atmospheric pressure using liquids with low and moderately high viscosities, such as ethanol and corn oil, respectively. At ambient conditions, the pump delivered continuous flow of ethanol and corn oil at a flow rate of up to 170 and 17 cm3/min, respectively. For pumping viscous fluids comparable to corn oil, an optimum reciprocation frequency was ascertained to maximize flow rate. For low viscosity liquids such as ethanol, a linear relationship between the flow rate and reciprocation frequency was determined up to the maximum reciprocation frequency of the pump. Since its fabrication, the pump has been used in our laboratory for circulating triglycerides in contact with supercritical carbon dioxide at pressures of up to 25 MPa (3600 psi) and temperatures up to 70 degrees C on a daily basis for a total of more than 1500 h of operation functioning trouble free.

  15. Designing a Broadband Pump for High-Quality Micro-Lasers via Modified Net Radiation Method

    PubMed Central

    Nechayev, Sergey; Reusswig, Philip D.; Baldo, Marc A.; Rotschild, Carmel

    2016-01-01

    High-quality micro-lasers are key ingredients in non-linear optics, communication, sensing and low-threshold solar-pumped lasers. However, such micro-lasers exhibit negligible absorption of free-space broadband pump light. Recently, this limitation was lifted by cascade energy transfer, in which the absorption and quality factor are modulated with wavelength, enabling non-resonant pumping of high-quality micro-lasers and solar-pumped laser to operate at record low solar concentration. Here, we present a generic theoretical framework for modeling the absorption, emission and energy transfer of incoherent radiation between cascade sensitizer and laser gain media. Our model is based on linear equations of the modified net radiation method and is therefore robust, fast converging and has low complexity. We apply this formalism to compute the optimal parameters of low-threshold solar-pumped lasers. It is revealed that the interplay between the absorption and self-absorption of such lasers defines the optimal pump absorption below the maximal value, which is in contrast to conventional lasers for which full pump absorption is desired. Numerical results are compared to experimental data on a sensitized Nd3+:YAG cavity, and quantitative agreement with theoretical models is found. Our work modularizes the gain and sensitizing components and paves the way for the optimal design of broadband-pumped high-quality micro-lasers and efficient solar-pumped lasers. PMID:27924844

  16. Slurry pumping: Pump performance prediction

    SciTech Connect

    Taccani, R.; Pediroda, V.; Reini, M.; Giadrossi, A.

    2000-07-01

    Centrifugal pumps are being used increasingly for transportation of slurries through pipelines. To design a slurry handling system it is essential to have a knowledge of the effects of suspended solids on the pump performance. A new test loop has been realized in the laboratory of the Energetics Department of the University of Trieste which allows pump performance to be determined at various pump speeds, with many different mixture concentrations and rheologies. The pump test rig consists of 150 mm diameter pipe with facilities for measuring suction and discharge pressure, flowrate, pump input power and speed, slurry density and temperature. In particular flowrate is measured by diverting flow into a weighing tank and timing a specified volume of slurry. An automatic PC based data acquisition system has been implemented. Preliminary tests with clear water show that performance can be measured with good repeatability and accuracy. The new test rig is used to verify the range of validity of the correlations to predict pump performance, available in literature and of that proposed by authors. This correlation, based on a Neural Network and not on a predefined analytical expression, can be easily improved with new experimental data.

  17. Microfabricated electrolysis pump system for isolating rare cells in blood

    NASA Astrophysics Data System (ADS)

    Furdui, Vasile I.; Kariuki, James K.; Jed Harrison, D.

    2003-07-01

    An integrated system for immunomagnetic separation of rare cells from blood is presented. A micromachined device was fabricated by bonding silicon die with etched structures to a glass cover plate on which electrodes are defined. Electrolytic generation of gas from 0.50 M KNO3 (aqueous) provided pumping actuation for a device that performed the capture and purification of rare cells spiked into a 7.5 µl reconstituted blood sample. The system consisted of two pumps, a sample and a wash buffer meander reservoir, and a main channel for magnetic field trapping of rare cells captured by antibody-coated magnetic beads. A maximum pumping rate of 1.4 +/- 0.1 µl min-1 was obtained at a current of 180 µA, and the maximum blood sample volume delivered to the capture bed was 6.5-7 µl. The trapped cells could be washed with the buffer from the second pump and then delivered to the exit port of the chip after removing the magnetic field.

  18. Heat pump assisted geothermal heating system for Felix Spa, Romania

    SciTech Connect

    Rosca, Marcel; Maghiar, Teodor

    1996-01-24

    The paper presents a pre-feasibility type study of a proposed heat pump assisted geothermal heating system for an average hotel in Felix Spa, Romania. After a brief presentation of the geothermal reservoir, the paper gives the methodology and the results of the technical and economical calculations. The technical and economical viability of the proposed system is discussed in detail in the final part of the paper.

  19. An intraventricular axial flow blood pump integrated with a bearing purge system.

    PubMed

    Yamazaki, K; Kormos, R; Mori, T; Umezu, M; Kameneva, M; Antaki, J; Outa, E; Litwak, P; Kerrigan, J; Tomczak, J

    1995-01-01

    The future development of implantable axial flow blood pumps must address two major issues: mechanically induced hemolysis and shaft seal reliability. The recent revisions to our miniature intraventricular axial flow left ventricular assist device (LVAD) were aimed particularly at addressing these concerns. To improve hemocompatibility, a new impeller has been designed according to the following criteria: 1) gradual pressure rise along the blade chord; 2) minimized local fluid acceleration to prevent cavitation; 3) minimum surface roughness; and 4) radius edges. Subsequent in vitro hemolysis tests conducted with bovine and ovine blood have demonstrated very low hemolysis (normalized index of hemolysis = 0.0051 +/- 0.0047 g/100 L) with this new impeller design. To address the need for a reliable seal, we have developed a purged seal system consisting of a miniature lip seal and ceramic pressure groove journal bearing that also acts as a purge pump. Several spiral grooves formed on the bearing surface provide viscous pumping of the purge fluid, generating more than 3,000 mmHg at 10,000 rpm. This purge flow flushes the lip seal and prevents blood backflow into the bearing. We have found this purge pump to offer several advantages because it is simple, compact, durable, does not require separate actuation, and offers a wide range of flow, depending upon the groove design. In vivo animal tests demonstrated the potential of the purged seal system.

  20. Design, development and testing of a solar-powered multi-family residential size prototype turbocompressor heat pump

    SciTech Connect

    1981-03-01

    A program described to design, fabricate, and conduct preliminary testing of a prototype solar-powered Rankine cycle turbocompressor heat pump module for a multi-family residential building is presented. A solar system designed to use the turbocompressor heat pump module including all of the subsystems required and the various system operating modes is described in Section I. Section II includes the preliminary design analyses conducted to select the heat pump module components and operating features, working fluid, configuration, size and performance goals, and estimated performance levels in the cooling and heating modes. Section III provides a detailed description of the other subsystems and components required for a complete solar installation. Using realistic performance and cost characteristics for all subsystems, the seasonal performance of the UTC heat pump is described in various US locations. In addition, the estimated energy savings and an assessment of the economic viability of the solar system is presented in Section III. The detailed design of the heat pump module and the arrangement of components and controls selected to conduct the laboratory performance tests are described in Section IV. Section V provides a description of the special laboratory test facility, including the subsystems to simulate the collectors and storage tanks for building load and ambient conditions and the instrumentation, monitoring, and data acquisition equipment. The test results and sample computer analyses and comparisons with predicted performance levels are presented in Section VI. Various appendices provide supplementary and background information concerning working fluid selection (A), configuration selection (B), capacity control concepts (C), building models (D), computer programs used to determine component and system performance and total system economics (E), and weather data (F).

  1. Design and test of a mechanically pumped two-phase thermal control flight experiment

    NASA Technical Reports Server (NTRS)

    Grote, M. G.; Stark, J. A.; Butler, C. D.; Mcintosh, R.

    1987-01-01

    A flight experiment of a mechanically pumped two-phase ammonia thermal control system, incorporating a number of new component designs, has been assembled and tested in a 1-g environment. Additional microgravity tests are planned on the Space Shuttle when Shuttle flights are resumed. The primary purpose of this experiment is to evaluate the operation of a mechanically pumped two-phase ammonia system, with emphasis on determining the performance of an evaporative Two-Phase Mounting Plate. The experiment also evaluates the performance of other specially designed components, such as the two-phase reservoir for temperature control, condensing radiator/heat sink, spiral tube boiler, and pressure drop experiment. The 1-g tests have shown that start-up of the two-phase experiment is easily accomplished with only a partial fill of ammonia. The experiment maintained a constant mounting plate temperature without flow rate controls over a very wide range of heat loads, flow rates, inlet flow conditions and exit qualities. The tests also showed the successful operation of the mounting plate in the heat sharing condensing mode.

  2. Ignition experiment design based on γ-pumping gas lasers

    NASA Astrophysics Data System (ADS)

    Bonyushkin, E. K.; Il'kaev, R. I.; Morovov, A. P.; Pavlovskii, A. I.; Lazhintsev, B. V.; Basov, N.; Gus'kov, S. Yu.; Rosanov, V. B.; Zmitrenko, N. V.

    1996-05-01

    Comparative analysis of gas lasers pumped by γ-radiation for ignition experiment is carried out. The possibilities of frequency-time pulse shaping are discussed for these kinds of laser drivers. New type of ICF target (LIGHT-target), which is able to provide an uniform deposition of laser driver energy is proposed as a target for ignition experiment.

  3. PNEUMATIC PUMP TEST FOR DESIGN OF SOIL VACUUM EXTRACTION

    EPA Science Inventory

    In-situ pneumatic pumping tests were performed to estimate the pneumatic permeability at a site containing soils contaminated with aviation gasoline. Determination of pneumatic permeability was necessary to evaluate soil-air discharge or pore volume exchange rates. Pressure propa...

  4. Introduction to Design and Analysis of High Speed Pumps

    DTIC Science & Technology

    2006-11-01

    decades because of the use of more efficient CFD methods and sophisticated non intrusive measurement techniques allowing to take into account the flow...the head equivalent to the vapour pressure of the liquid at a particular temperature. For a given mass flow rate, pump total head suddenly decrease

  5. Jet pumps for thermoacoustic applications: Design guidelines based on a numerical parameter study.

    PubMed

    Oosterhuis, Joris P; Bühler, Simon; Wilcox, Douglas; van der Meer, Theo H

    2015-10-01

    The oscillatory flow through tapered cylindrical tube sections (jet pumps) is characterized by a numerical parameter study. The shape of a jet pump results in asymmetric hydrodynamic end effects which cause a time-averaged pressure drop to occur under oscillatory flow conditions. Hence, jet pumps are used as streaming suppressors in closed-loop thermoacoustic devices. A two-dimensional axisymmetric computational fluid dynamics model is used to calculate the performance of a large number of conical jet pump geometries in terms of time-averaged pressure drop and acoustic power dissipation. The investigated geometrical parameters include the jet pump length, taper angle, waist diameter, and waist curvature. In correspondence with previous work, four flow regimes are observed which characterize the jet pump performance and dimensionless parameters are introduced to scale the performance of the various jet pump geometries. The simulation results are compared to an existing quasi-steady theory and it is shown that this theory is only applicable in a small operation region. Based on the scaling parameters, an optimum operation region is defined and design guidelines are proposed which can be directly used for future jet pump design.

  6. Experimental study on the performance of an inverter heat pump system with bypass orifices

    SciTech Connect

    Choi, J.; Kim, Y.

    1999-07-01

    An experimental study was performed to investigate the optimum cycle of an inverter heat pump as a function of frequency. The performance of an inverter heat pump was measured with a variation of frequency and length of capillary tube, and applying a newly designed bypass orifice. The inverter heat pump with the standard capillary tube that was optimum size at the rated frequency and ASHRAE test condition ``A'' was tested by varying frequency. The optimum cycles were also investigated by changing the length of capillary tube at individual level of low, rated, and high frequency. Since the inverter heat pump with a capillary tube does not provide optimal cycles at all operating frequencies, a bypass orifice was invented to improve the performance of the system at the wide frequency range. The flow rate change of the bypass orifice with respect to frequency was higher than that of the capillary tube. As a results of applying the bypass orifice to the inverter heat pump system, the performance was enhanced in the low frequency level compared with the conventional expansion device of a capillary tube.

  7. Acceptance for Beneficial Use (ABU) Plan for Double Shell Tank (DST) Annulus Emergency Pumping System

    SciTech Connect

    SHIPLER, C.E.

    2001-07-03

    This documents is to facilitate the transfer of the DST annulus emergency pumping system. This document describes the project deliverables that will allow tank farms operations to deploy a pump and transfer system for timely removal of leaked waste etc..

  8. New Electronic-Transition Laser Systems. Part 1. Electron Pumped Systems. Part 2. Chemically Pumped Systems

    DTIC Science & Technology

    1976-12-01

    laser development . There has not yet been a demonstration of gain in a visible chemical laser systems, and it appears unlikely that practical lasers of this type will be developed in the near future. Substantial progress has been made

  9. The design and application of a pediatric centrifugal pump.

    PubMed

    Ding, W X; Yu, X Q; Su, Z K; Huang, H M

    1997-12-01

    This centrifugal pump (CP) includes two parts: the blood pump and the driving apparatus. They are connected by six twin magnetic disc plates and driven by a magnetic DC motor (120W). The blood pump had six leaves deadlocked between two plastic discs. Six leaves were set at 30 degrees angles, separately. In the lower chamber of the CP, there was an inlay magnetic disc, which is connected with the disc leaves by an axis. This axis was sealed by silicon rubber and a ceramic ring. The priming volume of the blood chamber was 34 ml. In vitro testing showed that the free hemoglobin caused by the CP was much less than that caused by a roller pump after 180 min. The effect of this CP on blood cell damage was also studied in an animal model. Six goats were placed on cardiopulmonary bypass for 180 min. Perfusion flow rates were maintained between 1.5 and 2.5 L/min. The plasma free hemoglobin was lower in the CP group (6.04 mg/dL) than in the roller pump group (32.25 mg/dL), p < 0.01. The CP has been used in ten pediatric patients undergoing cardiopulmonary bypass surgery. The patients' ages were from three to five years, and body weights were from 15 to 20 kg. Perfusion flow rates were maintained between 1.8 and 2.5 L/min, and bypass times were from 30 to 50 min. The rotation speeds were from 2000 to 2500 rpm. All the patients recovered smoothly, and no hemoglobinuria occurred.

  10. Stability analysis of the governor-turbine-hydraulic system of pumped storage plant during small load variation

    NASA Astrophysics Data System (ADS)

    Yu, X. D.; Zhang, J.; Chen, S.; Liu, J. C.

    2016-11-01

    Governor-turbine-hydraulic (GTH) system is complex because of strong couplings of hydraulic, mechanical and electrical system. This paper presents a convenient mathematical model of the GTH system of a pumped storage plant (PSP) during small load variation. By using state space method and eigenvalue method, the stability of the GTH system is analyzed and the stable regions of the system can be given as well, which would help to optimize system design or the turning of governors. The proposed method is used to analyze the stability of a practical pumped storage plant during small load variation, which is also simulated in time domain on the basis of characteristics method. The theoretical analysis is in good agreement with numerical simulations. Based on the proposed method, the effect of the system parameters and operating conditions on the stable regions is investigated. These results are useful for the design of the GTH system of pumped storage plants.

  11. An Energy Saving System for a Beam Pumping Unit

    PubMed Central

    Lv, Hongqiang; Liu, Jun; Han, Jiuqiang; Jiang, An

    2016-01-01

    Beam pumping units are widely used in the oil production industry, but the energy efficiency of this artificial lift machinery is generally low, especially for the low-production well and high-production well in the later stage. There are a number of ways for energy savings in pumping units, with the periodic adjustment of stroke speed and rectification of balance deviation being two important methods. In the paper, an energy saving system for a beam pumping unit (ESS-BPU) based on the Internet of Things (IoT) was proposed. A total of four types of sensors, including load sensor, angle sensor, voltage sensor, and current sensor, were used to detect the operating conditions of the pumping unit. Data from these sensors was fed into a controller installed in an oilfield to adjust the stroke speed automatically and estimate the degree of balance in real-time. Additionally, remote supervision could be fulfilled using a browser on a computer or smartphone. Furthermore, the data from a practical application was recorded and analyzed, and it can be seen that ESS-BPU is helpful in reducing energy loss caused by unnecessarily high stroke speed and a poor degree of balance. PMID:27187402

  12. An Energy Saving System for a Beam Pumping Unit.

    PubMed

    Lv, Hongqiang; Liu, Jun; Han, Jiuqiang; Jiang, An

    2016-05-13

    Beam pumping units are widely used in the oil production industry, but the energy efficiency of this artificial lift machinery is generally low, especially for the low-production well and high-production well in the later stage. There are a number of ways for energy savings in pumping units, with the periodic adjustment of stroke speed and rectification of balance deviation being two important methods. In the paper, an energy saving system for a beam pumping unit (ESS-BPU) based on the Internet of Things (IoT) was proposed. A total of four types of sensors, including load sensor, angle sensor, voltage sensor, and current sensor, were used to detect the operating conditions of the pumping unit. Data from these sensors was fed into a controller installed in an oilfield to adjust the stroke speed automatically and estimate the degree of balance in real-time. Additionally, remote supervision could be fulfilled using a browser on a computer or smartphone. Furthermore, the data from a practical application was recorded and analyzed, and it can be seen that ESS-BPU is helpful in reducing energy loss caused by unnecessarily high stroke speed and a poor degree of balance.

  13. Generic Guide Specification for Geothermal Heat Pump Systems

    SciTech Connect

    Thomas, WKT

    2000-04-12

    The attached Geothermal (Ground-Source) Heat Pump (GHP) Guide Specifications have been developed by Oak Ridge National Laboratory (ORNL) with the intent to assist federal agency sites and engineers in the preparation of construction specifications for GHP projects. These specifications have been developed in the industry-standard Construction Specification Institute (CSI) format and cover several of the most popular members of the family of GHP systems. These guide specifications are applicable to projects whether the financing is with conventional appropriations, arranged by GHP specialty ESCOs under the U.S. Department of Energy's Technology-Specific GHP Super ESPCs, arranged by utilities under Utility Energy Service Contracts (UESCs) or arranged by generalist ESCOs under the various regional ESPCs. These specifications can provide several benefits to the end user that will help ensure successful GHP system installations. GHP guide specifications will help to streamline the specification development, review, and approval process because the architecture and engineering (AE) firm will be working from the familiar CSI format instead of developing the specifications from other sources. The guide specifications help to provide uniformity, standardization, and consistency in both the construction specifications and system installations across multiple federal sites. This standardization can provide future benefits to the federal sites in respect to both maintenance and operations. GHP guide specifications can help to ensure that the agency is getting its money's worth from the GHP system by preventing the use of marginal or inferior components and equipment. The agency and its AE do not have to start from scratch when developing specifications and can use the specification as a template and/or a checklist in developing both the design and the contract documents. The guide specifications can save project costs by reducing the engineering effort required during the

  14. Design of a cost effective solar powered water pump. Hydrology and hydraulics series report

    SciTech Connect

    Chadwick, D.G.

    1980-04-01

    The design and performance of a vacuum lift, solar powered water pump is discussed. The basic design consists of an expanding gaseous piston confined inside a chamber which is located in series with, and between, an inlet and an outlet check valve. The gas is generated by volatilizing cyclopentane or hexane. Four variations of this basic design concept were built and evaluated. The various features of each are discussed. Considerations in the choice of a cost-effective solar collector are also reviewed. Several of the more promising types of solar collectors were built and evaluated for use on the pump. A 70C heat source temperature is required to operate the pump if cyclopentane is used as the volatile fluid, 90C is required if hexane is used. The volatile fluid is not expended in the pumping process. The pumps constructed on this project have a capacity of approximately 6 liters/minute when pumped to a height of 2 meters. Two square meters of sunshine are sufficient to operate the pump.

  15. Research on the performance of low-lift diving tubular pumping system by CFD and Test

    NASA Astrophysics Data System (ADS)

    Xia, Chenzhi; Cheng, Li; Liu, Chao; Zhou, Jiren; Tang, Fangping; Jin, Yan

    2016-11-01

    Post-diving tubular pump is always used in large-discharge & low-head irrigation or storm drainage pumping station, its impeller and motor share the same shaft. Considering diving tubular pump system's excellent hydraulic performance, compact structure, good noise resistance and low operating cost, it is used in Chinese pump stations. To study the hydraulic performance and pressure fluctuation of inlet and outlet passage in diving tubular pump system, both of steady and unsteady full flow fields are numerically simulated at three flow rate conditions by using CFD commercial software. The asymmetry of the longitudinal structure of inlet passage affects the flow pattern on outlet. Especially at small flow rate condition, structural asymmetry will result in the uneven velocity distribution on the outlet of passage inlet. The axial velocity distribution uniformity increases as the flow rate increases on the inlet of passage inlet, and there is a positive correlation between hydraulic loss in the passage inlet and flow rate's quadratic. The axial velocity distribution uniformity on the outlet of passage inlet is 90% at design flow rate condition. The predicted result shows the same trend with test result, and the range of high efficiency area between predicted result and test result is almost identical. The dominant frequency of pressure pulsation is low frequency in inlet passage at design condition. The dominant frequency is high frequency in inlet passage at small and large flow rate condition. At large flow rate condition, the flow pattern is significantly affected by the rotation of impeller in inlet passage. At off-design condition, the pressure pulsation is strong at outlet passage. At design condition, the dominant frequency is 35.57Hz, which is double rotation frequency.

  16. Review on applications of 3D inverse design method for pump

    NASA Astrophysics Data System (ADS)

    Yin, Junlian; Wang, Dezhong

    2014-05-01

    The 3D inverse design method, which methodology is far superior to the conventional design method that based on geometrical description, is gradually applied in pump blade design. However, no complete description about the method is outlined. Also, there are no general rules available to set the two important input parameters, blade loading distribution and stacking condition. In this sense, the basic theory and the mechanism why the design method can suppress the formation of secondary flow are summarized. And also, several typical pump design cases with different specific speeds ranging from centrifugal pump to axial pump are surveyed. The results indicates that, for centrifugal pump and mixed pump or turbine, the ratio of blade loading on the hub to that on the shroud is more than unit in the fore part of the blade, whereas in the aft part, the ratio is decreased to satisfy the same wrap angle for hub and shroud. And the choice of blade loading type depends on the balancing of efficiency and cavitation. If the cavitation is more weighted, the better choice is aft-loaded, otherwise, the fore-loaded or mid-loaded is preferable to improve the efficiency. The stacking condition, which is an auxiliary to suppress the secondary flow, can have great effect on the jet-wake outflow and the operation range for pump. Ultimately, how to link the design method to modern optimization techniques is illustrated. With the know-how design methodology and the know-how systematic optimization approach, the application of optimization design is promising for engineering. This paper summarizes the 3D inverse design method systematically.

  17. Blade design loads on the flow exciting force in centrifugal pump

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Yang, A. L.; Langand, D. P.; Dai, R.

    2012-11-01

    The three-dimensional viscous flow field of two centrifugal pumps, which have the same volute, design head, design flow rate and rotational speed but the blade design load, are analyzed based on large eddy simulation. The comparisons are implemented including the hydraulic efficiencies, flow field characteristics, pressure pulsations and unsteady forces applied on the impellers to investigate the effect of the design blade load on hydraulic performance and flow exciting force. The numerical results show that the efficiency of the pump, the impeller blade of which has larger design load, is improved by 1.1%~2.9% compared to the centrifugal pump with lower blade design load. The pressure fluctuation of the pump with high design load is more remarkable. Its maximum amplitude of coefficient of static pressure is higher by 43% than the latter. At the same time the amplitude of unsteady radial force is increased by 11.6% in the time domain. The results also imply that the blade design load is an important factor on the excitation force in centrifugal pumps.

  18. Analysis and design of a uniform-clearance, pumping-ring rod seal for the Stirling engine

    NASA Technical Reports Server (NTRS)

    Etsion, I.

    1980-01-01

    A uniform clearance pumping ring, as opposed to the conventional taper clearance one, is described. The uniform clearance concept eliminates complex elastohydrodynamic problems and enables a simple analytical treatment to be made. An analytical expression is derived for the pumping rate showing the effect of various design parameters on the pumping ring's performance. An optimum clearance is found by which the pumping rate is maximized and a numerical example is presented to demonstrate the potential of the uniform clearance design.

  19. Thermally conductive cementitious grout for geothermal heat pump systems

    DOEpatents

    Allan, Marita

    2001-01-01

    A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.

  20. The development and testing of a fieldworthy system of improved fluid pumping device and liquid sensor for oil wells

    SciTech Connect

    Buckman, W.G.

    1992-10-05

    An economical gas lift system has been designed that uses the airlift principles of the APOP system to enable one to pump deep wells which have been initially pumped using jack pumps. It can be constructed and installed in oil and/or gas wells where jack pumps have been operating. The 2 in. tubing in the bore hole is left in place and the rods are pulled from the normally 2 in. tubing. A 1 in. or greater diameter tubing containing a one way valve near its bottom and several small holes near the bottom of the 1 in. tube and just above the one way valve is installed into the 2 in. tubing. The one inch tube extends the total length of the 2 in. tubing and is seated on the seating nipple at the bottom of the 2 in. tubing. The space between the concentric tubes can serve as the gas(air) line and the center 1 in. tube serves as the liquid discharge line. This enables this pump to be used in many marginal wells which ordinarily would be uneconomical to pump. This is especially true for deep wells because the cost of jack pumps and the tubing as well as the maintenance to pump liquids from bore holes that are several thousand feet deep is substantial.

  1. Reactor Coolant Pump seal issues and their applicability to new reactor designs

    SciTech Connect

    Ruger, C.J.; Higgins, J.C.

    1993-11-01

    Reactor Coolant Pumps (RCPs) of various types are used to circulate the primary coolant through the reactor in most reactor designs. RCPs generally contain mechanical seals to limit the leakage of pressurized reactor coolant along the pump drive shaft into the containment. The relatively large number of RCP seal and seal auxiliary system failures experienced at US operating plants during the 1970`s and early 1980`s raised concerns from the US Nuclear Regulatory Commission (NRC) that gross failures may lead to reactor core uncovery and subsequent core damage. Some seal failure events resulted in a loss of primary coolant to the containment at flow rates greater than the normal makeup capacity of Pressurized Water Reactor (PWR) plants. This is an example of RCP seal failures resulting in a small Loss of Coolant Accident (LOCA). This paper discusses observed and potential causes of RCP seal failure and the recommendations for limiting the likelihood of a seal induced small LOCA. Issues arising out of the research supporting these recommendations and subsequent public comments by the utility industry on them, serve as lessons learned, which are applicable to the design of new reactor plants.

  2. Self-Calibrating, Variable-Flow Pumping System

    NASA Technical Reports Server (NTRS)

    Walls, Joe T.

    1994-01-01

    Pumping system provides accurate, controlled flows of two chemical liquids mixed in spray head and react to form rigid or flexible polyurethane or polyisocyanurate foam. Compatible with currently used polyurethane-based coating materials and gas-bubble-forming agents (called "blowing agents" in industry) and expected to be compatible with materials that used in near future. Handles environmentally acceptable substitutes for chlorofluorocarbon foaming agents.

  3. Stationary density matrix of a pumped polariton system.

    PubMed

    Vera, Carlos Andrés; Cabo, Alejandro; González, Augusto

    2009-03-27

    The density matrix rho of a model polariton system is obtained numerically from a master equation which takes account of pumping and losses. In the stationary limit, the coherences between eigenstates of the Hamiltonian are 3 orders of magnitude smaller than the occupations, meaning that the stationary density matrix is approximately diagonal in the energy representation. A weakly distorted grand canonical Gibbs distribution fits well the occupations.

  4. Method and system for homogenizing diode laser pump arrays

    DOEpatents

    Bayramian, Andy J

    2013-10-01

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  5. Method and system for homogenizing diode laser pump arrays

    DOEpatents

    Bayramian, Andrew James

    2016-05-03

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  6. Analytical and Semi-Analytical Tools for the Design of Oscillatory Pumping Tests.

    PubMed

    Cardiff, Michael; Barrash, Warren

    2015-01-01

    Oscillatory pumping tests-in which flow is varied in a periodic fashion-provide a method for understanding aquifer heterogeneity that is complementary to strategies such as slug testing and constant-rate pumping tests. During oscillatory testing, pressure data collected at non-pumping wells can be processed to extract metrics, such as signal amplitude and phase lag, from a time series. These metrics are robust against common sensor problems (including drift and noise) and have been shown to provide information about aquifer heterogeneity. Field implementations of oscillatory pumping tests for characterization, however, are not common and thus there are few guidelines for their design and implementation. Here, we use available analytical solutions from the literature to develop design guidelines for oscillatory pumping tests, while considering practical field constraints. We present two key analytical results for design and analysis of oscillatory pumping tests. First, we provide methods for choosing testing frequencies and flow rates which maximize the signal amplitude that can be expected at a distance from an oscillating pumping well, given design constraints such as maximum/minimum oscillator frequency and maximum volume cycled. Preliminary data from field testing helps to validate the methodology. Second, we develop a semi-analytical method for computing the sensitivity of oscillatory signals to spatially distributed aquifer flow parameters. This method can be quickly applied to understand the "sensed" extent of an aquifer at a given testing frequency. Both results can be applied given only bulk aquifer parameter estimates, and can help to optimize design of oscillatory pumping test campaigns.

  7. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 1: Executive summary

    NASA Astrophysics Data System (ADS)

    1981-05-01

    A preliminary design study of water compensated Compressed Air Energy Storage (CAES) and Underground Pumped Hydroelectric (UPH) plants for siting in geological conditions suitable for hard rock excavations was performed. The study was divided into five primary tasks as follows: establishment of design criteria and analysis of impact on power system; selection of site and establishment of site characteristics; formulation of design approaches; assessment of environmental and safety aspects; and preparation of preliminary design of plant. The salient aspects considered and the conclusions reached during the consideration of the five primary tasks for both CAES and UPH are presented.

  8. Designing an enhanced groundwater sample collection system

    SciTech Connect

    Schalla, R.

    1994-10-01

    As part of an ongoing technical support mission to achieve excellence and efficiency in environmental restoration activities at the Laboratory for Energy and Health-Related Research (LEHR), Pacific Northwest Laboratory (PNL) provided guidance on the design and construction of monitoring wells and identified the most suitable type of groundwater sampling pump and accessories for monitoring wells. The goal was to utilize a monitoring well design that would allow for hydrologic testing and reduce turbidity to minimize the impact of sampling. The sampling results of the newly designed monitoring wells were clearly superior to those of the previously installed monitoring wells. The new wells exhibited reduced turbidity, in addition to improved access for instrumentation and hydrologic testing. The variable frequency submersible pump was selected as the best choice for obtaining groundwater samples. The literature references are listed at the end of this report. Despite some initial difficulties, the actual performance of the variable frequency, submersible pump and its accessories was effective in reducing sampling time and labor costs, and its ease of use was preferred over the previously used bladder pumps. The surface seals system, called the Dedicator, proved to be useful accessory to prevent surface contamination while providing easy access for water-level measurements and for connecting the pump. Cost savings resulted from the use of the pre-production pumps (beta units) donated by the manufacturer for the demonstration. However, larger savings resulted from shortened field time due to the ease in using the submersible pumps and the surface seal access system. Proper deployment of the monitoring wells also resulted in cost savings and ensured representative samples.

  9. Survey of electrical submersible systems design, application, and testing

    SciTech Connect

    Durham, M.O.; Lea, J.F.

    1996-05-01

    The electrical submersible pump industry has numerous recommended practices and procedures addressing various facets of the operation. Ascertaining the appropriate technique is tedious. Seldom are all the documents available at one location. This synopsis of all the industry practices provides a ready reference for testing, design, and application of electrical submersible pumping systems. An extensive bibliography identifies significant documents for further reference.

  10. COMPARATIVE STUDY AMONG HYBRID GROUND SOURCE HEAT PUMP SYSTEM, COMPLETE GROUND SOURCE HEAT PUMP AND CONVENTIONAL HVAC SYSTEM

    SciTech Connect

    Jiang Zhu; Yong X. Tao

    2011-11-01

    In this paper, a hotel with hybrid geothermal heat pump system (HyGSHP) in the Pensacola is selected and simulated by the transient simulation software package TRNSYS [1]. To verify the simulation results, the validations are conducted by using the monthly average entering water temperature, monthly facility consumption data, and etc. And three types of HVAC systems are compared based on the same building model and HVAC system capacity. The results are presented to show the advantages and disadvantages of HyGSHP compared with the other two systems in terms of energy consumptions, life cycle cost analysis.

  11. Ultra high vacuum pumping system and high sensitivity helium leak detector

    DOEpatents

    Myneni, G.R.

    1997-12-30

    An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10{sup {minus}13} atm cc/s. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces back streaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium. 2 figs.

  12. Ultra high vacuum pumping system and high sensitivity helium leak detector

    DOEpatents

    Myneni, Ganapati Rao

    1997-01-01

    An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10.sup.-13 atm cc s.sup.-1. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces backstreaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium.

  13. Heat pump systems with direct expansion ground coils

    NASA Astrophysics Data System (ADS)

    Svec, O. J.; Baxter, V. D.

    This paper is a summary of an International research project organized within the framework of the International Energy Agency (IEA), Implementing Agreement on Heat Pumps. This cooperative project, based on a task sharing principle, was proposed by the Canadian team and joined by the national teams of the United States of America, Japan and Austria. The Institute for Research in Construction (IRC) of the National Research Council of Canada (NRCC), has been acting as the Operating Agent for this project, known as Annex XV. The need for this research work is based on the recognition of the state-of-the-art of Ground Source Heat Pump (GSHP) technology, which can simply be described by the following two statements: (1) GSHP technology is the most successful among all renewable technologies in North American and northern European countries; and (2) installation cost of GSHP systems is currently too high for a meaningful worldwide penetration into the heating/cooling market.

  14. 46 CFR 28.255 - Bilge pumps, bilge piping, and dewatering systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Bilge pumps, bilge piping, and dewatering systems. 28... the Aleutian Trade § 28.255 Bilge pumps, bilge piping, and dewatering systems. (a) Each vessel must be equipped with a bilge pump and bilge piping capable of draining any watertight compartment, other...

  15. 46 CFR 28.255 - Bilge pumps, bilge piping, and dewatering systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Bilge pumps, bilge piping, and dewatering systems. 28... the Aleutian Trade § 28.255 Bilge pumps, bilge piping, and dewatering systems. (a) Each vessel must be equipped with a bilge pump and bilge piping capable of draining any watertight compartment, other...

  16. 46 CFR 28.255 - Bilge pumps, bilge piping, and dewatering systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Bilge pumps, bilge piping, and dewatering systems. 28... the Aleutian Trade § 28.255 Bilge pumps, bilge piping, and dewatering systems. (a) Each vessel must be equipped with a bilge pump and bilge piping capable of draining any watertight compartment, other...

  17. 46 CFR 28.255 - Bilge pumps, bilge piping, and dewatering systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Bilge pumps, bilge piping, and dewatering systems. 28... the Aleutian Trade § 28.255 Bilge pumps, bilge piping, and dewatering systems. (a) Each vessel must be equipped with a bilge pump and bilge piping capable of draining any watertight compartment, other...

  18. Design and Testing of D.C. Conduction Pump for Sodium Cooled Fast Reactor

    SciTech Connect

    Nashine, B.K.; Dash, S.K.; Gurumurthy, K.; Rajan, M.; Vaidyanathan, G.

    2006-07-01

    DC Conduction pump immersed in sodium forms a part of Failed Fuel Location Module (FFLM) of 500 MWe Fast Breeder Reactor (PFBR) currently under construction. FFLM housed in control plug of the reactor, is used to locate the failed fuel sub-assembly due to clad rupture in the fuel pin. The DC conduction pump sucks the sodium from the top of fuel sub-assemblies through the selector valve and pumps the sodium to hold up for detecting the presence of delayed neutrons. Presence of delayed neutron is the indication of failure in the sampled fuel sub-assembly. The DC Conduction Pump was chosen because of its low voltage operation (2 V) where argon/alumina ceramic can provide required electrical insulation even at operating temperature of 560 deg. C without much complication on the manufacturing front. Sampling of sodium from top of different sub-assemblies is achieved by operation of selector valve in-conjunction with the drive motor. FFLM requires the pump to be immersed in sodium pool at {approx} 560 deg. C located above the fuel sub-assemblies in the reactor. The Pump of 0.36 m{sup 3}/h capacity and developing 1.45 Kg/ cm{sup 2} pressure was designed, manufactured and tested. The DC Conduction Pump has a stainless steel duct filled with liquid sodium, which is to be pumped. The stainless steel duct is kept in magnetic field obtained by means of electromagnet. The electromagnet is made of soft iron and the coil made of copper conductor surrounds the yoke portion of electromagnet. The external DC source of 2000 Amps, 2 Volt is used to send current through sodium placed in the stainless steel duct and the same current is sent through copper coil of electromagnet for producing required magneto motive force, which in turn produces required magnetic field. The interaction of current in sodium (placed in stainless steel duct) and magnetic field produced by the electromagnet in the duct region produces pumping force in the sodium. Electromagnet, copper coil, stainless steel

  19. Long life coolant pump technology

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Design concepts were investigated to improve space system coolant pump technology to be suitable for mission durations of two years and greater. These design concepts included an improved bearing system for the pump rotating elements, consisting of pressurized conical bearings. This design was satisfactorily endurance tested as was a new prototype pump built using various other improved design concepts. Based upon an overall assessment of the results of the program it is concluded that reliable coolant pumps can be designed for three year space missions.

  20. Control and monitoring system for clinically employed pneumatic blood pumps.

    PubMed

    Normann, N A; Henrichsen, D W; Cooper, T G; King, R E; Noon, G P; DeBakey, M E

    1977-01-01

    Instantaneous position of the flexing member in pneumatic blood pumps is monitored on-line by measuring the electrical capacitance across the gas space within the pump. Monitor output is utilized in closed-loop pump control and for automatic pump shutdown in response to operational abnormalities. Thus, safety and efficacy are enhanced through operational optimization, automatic safety features, and facilitated evaluation.

  1. Human Health Science Building Geothermal Heat Pump Systems

    SciTech Connect

    Leidel, James

    2014-12-22

    The grant objectives of the DOE grant funded project have been successfully completed. The Human Health Building (HHB) was constructed and opened for occupancy for the Fall 2012 semester of Oakland University. As with any large construction project, some issues arose which all were overcome to deliver the project on budget and on time. The facility design is a geothermal / solar-thermal hybrid building utilizing both desiccant dehumidification and variable refrigerant flow heat pumps. It is a cooling dominant building with a 400 ton cooling design day load, and 150 ton heating load on a design day. A 256 vertical borehole (320 ft depth) ground source heat pump array is located south of the building under the existing parking lot. The temperature swing and performance over 2013 through 2015 shows the ground loop is well sized, and may even have excess capacity for a future building to the north (planned lab facility). The HHB achieve a US Green Building Counsel LEED Platinum rating by collecting 52 of the total 69 available LEED points for the New Construction v.2 scoring checklist. Being Oakland's first geothermal project, we were very pleased with the building outcome and performance with the energy consumption approximately 1/2 of the campus average facility, on a square foot basis.

  2. Chemical heat pump and chemical energy storage system

    DOEpatents

    Clark, Edward C.; Huxtable, Douglas D.

    1985-08-06

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  3. Design of axial blood pumps for patients with dysfunctional fontan physiology: computational studies and performance testing.

    PubMed

    Kafagy, Dhyaa H; Dwyer, Thomas W; McKenna, Kelli L; Mulles, Jean P; Chopski, Steven G; Moskowitz, William B; Throckmorton, Amy L

    2015-01-01

    Limited treatment options for patients having dysfunctional single ventricle physiology motivate the necessity for alternative therapeutic options. To address this unmet need, we are developing a collapsible axial flow blood pump. This study investigated the impact of geometric simplicity to facilitate percutaneous placement and maintain optimal performance. Three new pump designs were numerically evaluated. A transient simulation explored the impact of respiration on blood flow conditions over the entire respiratory cycle. Prototype testing of the top performing pump design was completed. The top performing Rec design generated the highest pressure rise range of 2-38 mm Hg for flow rates of 1-4 L/min at 4000-7000 RPM, exceeding the performance of the other two configurations by more than 26%. The blood damage indices for the new pump designs were determined to be below 0.5% and predicted hemolysis levels remained low at less than 7 × 10(-5)  g/100 L. Prototype testing of the Rec design confirmed numerical predictions to within an average of approximately 22%. These findings demonstrate that the pumps are reasonably versatile in operational ability, meet pressure-flow requirements to support Fontan patients, and are expected to have low levels of blood trauma.

  4. Preliminary Feasibility Study of a Hybrid Solar and Modular Pumped Storage Hydro System at Biosphere 2

    SciTech Connect

    Lansey, Kevin; Hortsman, Chris

    2016-10-01

    In this study, the preliminary feasibility of a hybrid solar and modular pumped storage system designed for high energy independence at Biosphere 2 is assessed. The system consists of an array of solar PV panels that generate electricity during the day to power both Biosphere 2 and a pump that sends water through a pipe to a tank at a high elevation. When solar power is not available, the water is released back down the pipe towards a tank at a lower elevation, where it passes through a hydraulic water turbine to generate hydroelectricity to power Biosphere 2. The hybrid system is sized to generate and store enough energy to enable Biosphere 2 to operate without a grid interconnection on an average day.

  5. Some heat pump concepts for residual heat utilization. [Absorption-cycle and open-cycle systems

    SciTech Connect

    Perez-Blanco, H.; Chen, F. C.

    1980-01-01

    Large quantities of low temperature heat in the industrial sector are rejected in the cooling water, condensate, and process water streams. While the energy rejected in these streams at temperatures between 40 and 80/sup 0/C amounts to 2.95 x 10/sup 9/ GJ/y, 2.42 x 10/sup 9/ GJ/y of process energy in the form of hot water and steam are needed in the United States. Industrial heat pumps, that recover the low temperature heat energy and upgrade it to a more usable temperature level, may improve the energy supply and demand situation. Two heat activated heat pump concepts - an absorption cycle system and an open cycle system are analyzed from the conceptual systems design and energy savings point of view. The results of the analysis and further research needs are presented.

  6. Development of a component design tool for metal hydride heat pumps

    NASA Astrophysics Data System (ADS)

    Waters, Essene L.

    Given current demands for more efficient and environmentally friendly energy sources, hydrogen based energy systems are an increasingly popular field of interest. Within the field, metal hydrides have become a prominent focus of research due to their large hydrogen storage capacity and relative system simplicity and safety. Metal hydride heat pumps constitute one such application, in which heat and hydrogen are transferred to and from metal hydrides. While a significant amount of work has been done to study such systems, the scope of materials selection has been quite limited. Typical studies compare only a few metal hydride materials and provide limited justification for the choice of those few. In this work, a metal hydride component design tool has been developed to enable the targeted down-selection of an extensive database of metal hydrides to identify the most promising materials for use in metal hydride thermal systems. The material database contains over 300 metal hydrides with various physical and thermodynamic properties included for each material. Sub-models for equilibrium pressure, thermophysical data, and default properties are used to predict the behavior of each material within the given system. For a given thermal system, this tool can be used to identify optimal materials out of over 100,000 possible hydride combinations. The selection tool described herein has been applied to a stationary combined heat and power system containing a high-temperature proton exchange membrane (PEM) fuel cell, a hot water tank, and two metal hydride beds used as a heat pump. A variety of factors can be used to select materials including efficiency, maximum and minimum system pressures, pressure difference, coefficient of performance (COP), and COP sensitivity. The targeted down-selection of metal hydrides for this system focuses on the system's COP for each potential pair. The values of COP and COP sensitivity have been used to identify pairs of highest interest for

  7. Simple systems for treating pumped, turbid water with flocculants and a geotextile dewatering bag.

    PubMed

    Kang, Jihoon; McLaughlin, Richard A

    2016-11-01

    Pumping sediment-laden water from excavations is often necessary on construction sites. This water is often treated by pumping it through geotextile dewatering bags. The bags are not designed to filter the fine sediments that create high turbidity, but dosing with a flocculant prior to the bag could result in greater turbidity control. This study compared two systems for introducing flocculant: passive dosing of commercial solid biopolymer (chitosan) and injection of dissolved polyacrylamide (PAM) in a length of corrugated pipe connected to the bag. The biopolymer system consisted of sequential porous socks containing a "charging agent" followed by chitosan in the corrugated pipe with two levels of dosing. The dissolved PAM was injected into turbid water at a flow-weighted concentration at 1 mg L(-1). For each treatment, sediment-laden turbid water in the range of 2000 to 3500 nephelometric turbidity units (NTU) was pumped into the upstream of corrugated pipe and samples were taken from pipe entrance, pipe exit, and dewatering bag exit. Without flocculant treatment, the dewatering bag reduced turbidity by 70% but the addition of flocculant increased the turbidity reduction up to 97% relative to influent. At the pipe exit, the low-dose biopolymer was less effective in reducing turbidity (37%) but it was equally effective as the high-dose biopolymer or PAM injection after the bag. Our results suggest that a relatively simple treatment with flocculants, either passively or actively, can be very effective in reducing turbidity for pumped water on construction sites.

  8. Design and implementation of a five-hp, switched reluctance, fuel-lube, pump motor drive for a gas turbine engine

    SciTech Connect

    Ferreira, C.A.; Jones, S.R.; Drager, B.T.; Heglund, W.S. )

    1995-01-01

    A new switched reluctance (SR) fuel/lube (F/L) pump system has been developed for a gas turbine engine application. The system is rated at 5 hp, 270 Vdc, 12.5 krpm maximum operating speed, and consists of a SR machine mounted on the F/L pump shaft, an inverter, and an electronic controller. This paper focuses on the design, implementation, and performance of the system. The system can use one of two methods for rotor position sensing, either a resolver or electronic position sensing (EPS). The F/L pump system has undergone extensive performance testing with the resolver. Currently, testing is underway using electronic position sensing. Test results are given to validate the system design and compare the performance using both approaches to position sensing. System efficiency is about 82% at full load.

  9. Accuracy of a New Patch Pump Based on a Microelectromechanical System (MEMS) Compared to Other Commercially Available Insulin Pumps

    PubMed Central

    Borot, Sophie; Franc, Sylvia; Cristante, Justine; Penfornis, Alfred; Benhamou, Pierre-Yves; Guerci, Bruno; Hanaire, Hélène; Renard, Eric; Reznik, Yves; Simon, Chantal

    2014-01-01

    The JewelPUMP™ (JP) is a new patch pump based on a microelectromechanical system that operates without any plunger. The study aimed to evaluate the infusion accuracy of the JP in vitro and in vivo. For the in vitro studies, commercially available pumps meeting the ISO standard were compared to the JP: the MiniMed® Paradigm® 712 (MP), Accu-Chek® Combo (AC), OmniPod® (OP), Animas® Vibe™ (AN). Pump accuracy was measured over 24 hours using a continuous microweighing method, at 0.1 and 1 IU/h basal rates. The occlusion alarm threshold was measured after a catheter occlusion. The JP, filled with physiological serum, was then tested in 13 patients with type 1 diabetes simultaneously with their own pump for 2 days. The weight difference was used to calculate the infused insulin volume. The JP showed reduced absolute median error rate in vitro over a 15-minute observation window compared to other pumps (1 IU/h): ±1.02% (JP) vs ±1.60% (AN), ±1.66% (AC), ±2.22% (MP), and ±4.63% (OP), P < .0001. But there was no difference over 24 hours. At 0.5 IU/h, the JP was able to detect an occlusion earlier than other pumps: 21 (19; 25) minutes vs 90 (85; 95), 58 (42; 74), and 143 (132; 218) minutes (AN, AC, MP), P < .05 vs AN and MP. In patients, the 24-hour flow error was not significantly different between the JP and usual pumps (–2.2 ± 5.6% vs –0.37 ± 4.0%, P = .25). The JP was found to be easier to wear than conventional pumps. The JP is more precise over a short time period, more sensitive to catheter occlusion, well accepted by patients, and consequently, of potential interest for a closed-loop insulin delivery system. PMID:25079676

  10. Design of TEM00 mode side-pumped Nd:YAG solar laser

    NASA Astrophysics Data System (ADS)

    Almeida, Joana; Liang, Dawei

    2014-12-01

    An alternative solar laser pumping approach is here proposed to improve substantially TEM00 mode solar laser power. The solar radiation is both collected and concentrated by four Fresnel lenses, and redirected towards a laser head by four plane folding mirrors. A secondary concentrator with four semi-cylindrical fused silica lenses is designed to compress the highly concentrated solar radiation to a Nd:YAG single-crystal rod. Optimum pumping conditions and laser resonator parameters are found through ZEMAX© and LASCAD© numerical analysis. The proposed design offers a uniform absorbed pump distribution along the laser rod which has a minimum in its central region, reducing considerably thermal lensing effects. High order mode laser power of 83 W is numerically attained with a short symmetric laser resonant cavity, leading to high collection efficiency of 20.8 W/m2 for side-pumped Nd:YAG solar laser. Large spatial overlap between the pumped volume and the fundamental mode volume is found for an asymmetric laser resonator with concave end mirrors of large radius of curvature. 47.4 W TEM00 laser output power is numerically achieved, leading to a solar laser beam brightness figure of merit of 32 W. This value is 16.8 times more than the previous record for solar-pumped laser.

  11. Analytical design curves to maximize pumping or minimize injection in coastal aquifers.

    PubMed

    Park, Namsik; Cui, Lei; Shi, Lei

    2009-01-01

    Explicit algebraic equations are derived to determine approximate maximum pumping rates or minimum injection rates to limit sea water intrusion to a prespecified distance from the coastline. The equations are based on Strack's (1976) single-potential solution. The maximum pumping rates and minimum injection rates applied at wells with uniform spacing to control the inland movement of the fresh water-salt water interface in a coastal aquifer could be calculated from Strack's (1976) solution without the need of a numerical optimization algorithm. When wells are distributed in a simple fashion, the maximum intrusion location can be identified precisely for pumping cases and approximately for injection cases. For pumping cases, critical points are the limit of allowable salt water intrusion, whereas no such limit exists for injection cases. Once an application site is identified, a series of design curves for pumping and injection rates can be developed for arbitrary intrusion limits. When a user is interested only in the largest pumping rates associated with critical points, one design curve can yield complete information.

  12. Design of a high-pressure circulating pump for viscous liquids

    NASA Astrophysics Data System (ADS)

    Seifried, Bernhard; Temelli, Feral

    2009-07-01

    The design of a reciprocating dual action piston pump capable of circulating viscous fluids at pressures of up to 34 MPa (5000 psi) and temperatures up to 80 °C is described. The piston of this pump is driven by a pair of solenoids energized alternatively by a 12 V direct current power supply controlled by an electronic controller facilitating continuously adjustable flow rates. The body of this seal-less pump is constructed using off-the-shelf parts eliminating the need for custom made parts. Both the electronic controller and the pump can be assembled relatively easily. Pump performance has been evaluated at room temperature (22 °C) and atmospheric pressure using liquids with low and moderately high viscosities, such as ethanol and corn oil, respectively. At ambient conditions, the pump delivered continuous flow of ethanol and corn oil at a flow rate of up to 170 and 17 cm3/min, respectively. For pumping viscous fluids comparable to corn oil, an optimum reciprocation frequency was ascertained to maximize flow rate. For low viscosity liquids such as ethanol, a linear relationship between the flow rate and reciprocation frequency was determined up to the maximum reciprocation frequency of the pump. Since its fabrication, the pump has been used in our laboratory for circulating triglycerides in contact with supercritical carbon dioxide at pressures of up to 25 MPa (3600 psi) and temperatures up to 70 °C on a daily basis for a total of more than 1500 h of operation functioning trouble free.

  13. Control system design guide

    SciTech Connect

    Sellers, David; Friedman, Hannah; Haasl, Tudi; Bourassa, Norman; Piette, Mary Ann

    2003-05-01

    The ''Control System Design Guide'' (Design Guide) provides methods and recommendations for the control system design process and control point selection and installation. Control systems are often the most problematic system in a building. A good design process that takes into account maintenance, operation, and commissioning can lead to a smoothly operating and efficient building. To this end, the Design Guide provides a toolbox of templates for improving control system design and specification. HVAC designers are the primary audience for the Design Guide. The control design process it presents will help produce well-designed control systems that achieve efficient and robust operation. The spreadsheet examples for control valve schedules, damper schedules, and points lists can streamline the use of the control system design concepts set forth in the Design Guide by providing convenient starting points from which designers can build. Although each reader brings their own unique questions to the text, the Design Guide contains information that designers, commissioning providers, operators, and owners will find useful.

  14. 46 CFR 28.815 - Bilge pumps, bilge piping, and dewatering systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Bilge pumps, bilge piping, and dewatering systems. 28... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.815 Bilge pumps, bilge... fixed, self priming, powered, bilge pump, having a minimum capacity rating of 50 gallons per...

  15. 46 CFR 28.815 - Bilge pumps, bilge piping, and dewatering systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Bilge pumps, bilge piping, and dewatering systems. 28... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.815 Bilge pumps, bilge... fixed, self priming, powered, bilge pump, having a minimum capacity rating of 50 gallons per...

  16. 46 CFR 28.815 - Bilge pumps, bilge piping, and dewatering systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Bilge pumps, bilge piping, and dewatering systems. 28... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.815 Bilge pumps, bilge... fixed, self priming, powered, bilge pump, having a minimum capacity rating of 50 gallons per...

  17. 46 CFR 28.815 - Bilge pumps, bilge piping, and dewatering systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Bilge pumps, bilge piping, and dewatering systems. 28... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.815 Bilge pumps, bilge... fixed, self priming, powered, bilge pump, having a minimum capacity rating of 50 gallons per...

  18. 46 CFR 28.815 - Bilge pumps, bilge piping, and dewatering systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Bilge pumps, bilge piping, and dewatering systems. 28... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.815 Bilge pumps, bilge... fixed, self priming, powered, bilge pump, having a minimum capacity rating of 50 gallons per...

  19. Performance monitoring of ground-coupled solar-assisted heat pump systems

    NASA Astrophysics Data System (ADS)

    Parker, J. D.; Frierson, B.

    1981-02-01

    Three Oklahoma Gas and Electric Company demonstration houses in Perkins, Oklahoma, and the data acquisition systems are described. The project involves comparison of the performance of a ground-coupled, solar-assisted heat pump system with that of a ground coupled heat pump system without solar assist, and with a conventional air source heat pump system. Details of the data acquisition and processing system are given. Problems encountered and anticipated are discussed.

  20. Graded pitch electromagnetic pump for thin strip metal casting systems

    DOEpatents

    Kuznetsov, Stephen B.

    1986-01-01

    A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel.

  1. Graded pitch electromagnetic pump for thin strip metal casting systems

    DOEpatents

    Kuznetsov, S.B.

    1986-04-01

    A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel. 4 figs.

  2. Geothermal pump down-hole energy regeneration system

    DOEpatents

    Matthews, Hugh B.

    1982-01-01

    Geothermal deep well energy extraction apparatus is provided of the general kind in which solute-bearing hot water is pumped to the earth's surface from a subterranean location by utilizing thermal energy extracted from the hot water for operating a turbine motor for driving an electrical power generator at the earth 3 s surface, the solute bearing water being returned into the earth by a reinjection well. Efficiency of operation of the total system is increased by an arrangement of coaxial conduits for greatly reducing the flow of heat from the rising brine into the rising exhaust of the down-well turbine motor.

  3. Geothermal pump down-hole energy regeneration system

    SciTech Connect

    Matthews, H.B.

    1982-08-03

    Geothermal deep well energy extraction apparatus is provided of the general kind in which solute-bearing hot water is pumped to the earth's surface from a subterranean location by utilizing thermal energy extracted from the hot water for operating a turbine motor for driving an electrical power generator at the earth 3 S surface, the solute bearing water being returned into the earth by a reinjection well. Efficiency of operation of the total system is increased by an arrangement of coaxial conduits for greatly reducing the flow of heat from the rising brine into the rising exhaust of the down-well turbine motor.

  4. Water Treatment Technology - Pumps.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on pumps provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pumps in plant and distribution systems, pump…

  5. Municipal water-based heat pump heating and/or cooling systems: Findings and recommendations. Final report

    SciTech Connect

    Bloomquist, R.G.; Wegman, S.

    1998-04-01

    The purpose of the present work was to determine if existing heat pump systems based on municipal water systems meet existing water quality standards, to analyze water that has passed through a heat pump or heat exchanger to determine if corrosion products can be detected, to determine residual chlorine levels in municipal waters on the inlet as well as the outlet side of such installations, to analyses for bacterial contaminants and/or regrowth due to the presence of a heat pump or heat exchanger, to develop and suggest criteria for system design and construction, to provide recommendations and specifications for material and fluid selection, and to develop model rules and regulations for the installation, operation, and monitoring of new and existing systems. In addition, the Washington State University (WSU) has evaluated availability of computer models that would allow for water system mapping, water quality modeling and system operation.

  6. Aerodynamic Design and Numerical Analysis of Supersonic Turbine for Turbo Pump

    NASA Astrophysics Data System (ADS)

    Fu, Chao; Zou, Zhengping; Kong, Qingguo; Cheng, Honggui; Zhang, Weihao

    2016-09-01

    Supersonic turbine is widely used in the turbo pump of modern rocket. A preliminary design method for supersonic turbine has been developed considering the coupling effects of turbine and nozzle. Numerical simulation has been proceeded to validate the feasibility of the design method. As the strong shockwave reflected on the mixing plane, additional numerical simulated error would be produced by the mixing plane model in the steady CFD. So unsteady CFD is employed to investigate the aerodynamic performance of the turbine and flow field in passage. Results showed that the preliminary design method developed in this paper is suitable for designing supersonic turbine. This periodical variation of complex shockwave system influences the development of secondary flow, wake and shock-boundary layer interaction, which obviously affect the secondary loss in vane passage. The periodical variation also influences the strength of reflecting shockwave, which affects the profile loss in vane passage. Besides, high circumferential velocity at vane outlet and short blade lead to high radial pressure gradient, which makes the low kinetic energy fluid moves towards hub region and produces additional loss.

  7. Optimization and testing of the Beck Engineering free-piston cryogenic pump for LNG systems on heavy vehicles. Final technical report

    SciTech Connect

    Beck, Douglas S.

    2003-01-10

    Task 7 was completed by reaching Milestone 7: Test free piston cryogenic pump (FPCP) in Integrated LNG System. Task 4: Alternative Pump Design was also completed. The type of performance of the prototype LNG system is consistent with requirements of fuel systems for heavy vehicles; however, the maximum flow capacity of the prototype LNG system is significantly less than the total flow requirement. The flow capacity of the prototype LNG system is determined by a cavitation limit for the FPCP.

  8. Performance analysis of photovoltaic-powered water-pumping systems using switched reluctance motor drives

    NASA Astrophysics Data System (ADS)

    Metwally, Hamid M. B.; Anis, Wagdy R.

    A photovoltaic-powered (PV) pumping system that uses a switched reluctance motor (SRM) is investigated. The motor is supplied by a d.c. voltage through a switching circuit. The drive circuit is much simpler than the normal d.c./a.c. inverter that is required to supply the induction motor. The efficiency of the SRM is considerably higher than that of equivalent d.c. or induction motors. In addition, because of the simple construction, the SRM is cheaper. By virtue of these advantages of the SRM, the proposed system has higher efficiency and lower cost compared with other systems. A design example is studied in detail to explore the advantages of PV pumping systems based on this new drive. It is found that the operating efficiency of the motor is about 85% during most of its working time. The matching efficiency between the PV array and the proposed system approaches 95%. The major part of the losses takes place in the pump and the riser pipes; this loss represents one-third of the total available energy.

  9. System design package for a solar heating and cooling system installed at Akron, Ohio

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Information used to evaluate the design of a solar heating, cooling, and domestic hot water system is given. A conventional heat pump provides summer cooling items as the design data brochure, system performance specification, system hazard analysis, spare parts list, and detailed design drawings. A solar system is installed in a single-family dwelling at Akron, Ohio, and at Duffield, Virginia.

  10. Model for Polarization-Dependent Gain Due to Pump Depletion in a WDM System With Forward-Pumped Raman Amplification

    NASA Astrophysics Data System (ADS)

    Zhou, Xiang; Magill, Peter; Birk, Martin

    2005-03-01

    We study polarization-dependent gain (PDG) due to signal-induced pump depletion (SIPD) in a wavelength-division-multiplexing (WDM) system with forward-pumped Raman amplification. It is found that SIPD can polarize the pump significantly in fiber with very low polarization-mode dispersion (PMD). To quantify the impact of fiber PMD on SIPD-induced PDG for a practical WDM system with many signal channels and multiple Raman pumps, an approximate vector model has been developed. The developed model allows us to directly calculate PDG from both SIPD and signal-signal Raman interaction (SSRI) with greatly reduced computation time. Based on the developed model, detailed numerical investigations for two typical C-band WDM systems are presented. It is shown that significant PDG can be introduced by SIPD when the fiber PMD coefficient is lower than 0.01 ps/km? even if the pumps are fully depolarized. It is also shown that PDG due to SIPD and PDG due to SSRI are in phase at shorter wavelength channels but out of phase at longer wavelength channels.

  11. Contamination Effects of Getter Ion and Titanium Sublimation Pumped Systems on Optical Surfaces

    NASA Technical Reports Server (NTRS)

    Visentine, James T.; Richmond, Robert G.

    1973-01-01

    Previous studies have indicated that ultraclean vacuum can be produced when titanium sublimation pumps are used in conjunction with getter-ion pumps. Experiments are described in which the degrees of cleanliness of a typical getter-ion, titanium sublimation-pumped system were monitored by measuring the effects of surface contamination on the reflectance of evaporated vacuum ultraviolet mirrors. Results are presented which indicate that severe reflectance losses occurred when startup of a getter-ion pump was initiated at too high a chamber pressure. Significant reflectance losses also occurred as a result of titanium sublimation-pump operation. These data are reviewed and recommendations for improved system performance are presented.

  12. Magnetohydrodynamic pump with a system for promoting flow of fluid in one direction

    DOEpatents

    Lemoff, Asuncion V.; Lee, Abraham P.

    2010-07-13

    A magnetohydrodynamic pump for pumping a fluid. The pump includes a microfluidic channel for channeling the fluid, a MHD electrode/magnet system operatively connected to the microfluidic channel, and a system for promoting flow of the fluid in one direction in the microfluidic channel. The pump has uses in the medical and biotechnology industries for blood-cell-separation equipment, biochemical assays, chemical synthesis, genetic analysis, drug screening, an array of antigen-antibody reactions, combinatorial chemistry, drug testing, medical and biological diagnostics, and combinatorial chemistry. The pump also has uses in electrochromatography, surface micromachining, laser ablation, inkjet printers, and mechanical micromilling.

  13. Design analysis and performance assessment of hybrid magnetic bearings for a rotary centrifugal blood pump.

    PubMed

    Ren, Zhaohui; Jahanmir, Said; Heshmat, Hooshang; Hunsberger, Andrew Z; Walton, James F

    2009-01-01

    A hybrid magnetic bearing system was designed for a rotary centrifugal blood pump being developed to provide long-term circulatory support for heart failure patients. This design consists of two compact bearings to suspend the rotor in five degrees-of-freedom with single axis active control. Permanent magnets are used to provide passive radial support and electromagnets to maintain axial stability of the rotor. Characteristics of the passive radial and active thrust magnetic bearing system were evaluated by the electromagnetic finite element analysis. A proportional-integral-derivative controller with force balance algorithm was implemented for closed loop control of the magnetic thrust bearing. The control position is continuously adjusted based on the electrical energy in the bearing coils, and thus passive magnetic forces carry static thrust loads to minimize the bearing current. Performance of the magnetic bearing system with associated control algorithm was evaluated at different operating conditions. The bearing current was significantly reduced with the force balance control method and the power consumption was below 0.5 W under various thrust loads. The bearing parameters predicted by the analysis were validated by the experimental data.

  14. Energy efficiency of Pacific Northwest agriculture irrigation pumping systems

    SciTech Connect

    Wilfert, G.L.; Harrer, B.J.

    1987-03-01

    This document addresses the energy use and efficiency characteristics of pumping plants used to irrigate agricultural cropland in the Pacific Northwest. The principal focus of this document is on field information obtained from tests of irrigation pumping plants.

  15. Design of an advanced absorption heat pump for minimum payback period

    NASA Astrophysics Data System (ADS)

    Patterson, M. R.; Perez-Blanco, H.

    1985-11-01

    Absorption heat pumps of the type analyzed here provide process heat from waste heat. A simulation model with optimization capability is now operational for an advanced sodium hydroxide-water absorption heat pump with a regenerative loop. In this type of heat pump, increasing the area of the heat exchangers increases the dollar value of the process heat output, but it also increases the capital cost. The designer is then faced with the decision of how to allocate the heat exchanger area among the several heat pump components for optimal economic benefits. The optimization feature of the program allows the user to minimize the payback period for recovery of the capital investment in the heat pump. The computer program employs proprietary software for the optimization. The program is relatively short, about 400 lines of FORTRAN, and can readily be used with different optimization subroutines if desired. Results from the model indicate that the payback period is short, about 1 to 2 years for the standard case. These predictions make this regenerative-loop heat pump an attractive cycle for further investigation.

  16. A compact centrifugal blood pump for extracorporeal circulation: design and performance.

    PubMed

    Tanaka, S; Yamamoto, S; Yamakoshi, K; Kamiya, A

    1987-08-01

    A new compact centrifugal blood pump driven by a miniature DC servomotor has been designed for use for short-term extra corporeal and cardiac-assisted circulation. The impeller of the pump was connected directly to the motor by using a simple-gear coupling. The shaft for the impeller was sealed from blood by both a V-ring and a seal bearing. Either pulsatile or nonpusatile flow was produced by controlling the current supply to the motor. The pump characteristics and the degree of hemolysis were evaluated with regard to the configuration of the impeller with a 38-mm outer diameter in vitro tests; the impeller having the blade angles at the inlet of 20 deg and at the outlet of 50 deg was the most appropriate as a blood pump. The performance in an operation, hemolysis and thrombus formation in the pump were assessed by a left ventricular bypass experiment in dogs. It was suggested by this study that this prototype pump appears promising for use not only in animal experiments but also in clinical application.

  17. The design of an open Rankine-cycle industrial heat pump

    NASA Astrophysics Data System (ADS)

    Chaudoir, D. W.; Leibowitz, H. M.

    1982-03-01

    An open Rankine cycle heat pump is ideally suited for producing low pressure industrial process steam. Because steam serves as both the heat pump motive fluid and process fluid, the system achieves a unique simplicity and versatility. No intermediate refrigerant fluid exists for which to construct a process interface or impose a temperature limit. Interface components such as the heat pump condenser are not required. Moreover, the use of water vapor eliminates toxicity and flammability risks inherent with most closed cycle heat pump fluids. The control strategy is simple. Low pressure (subatmospheric) water vapor, generated by flashing steam at a temperature below that of the waste stream, is compressed to the process pressure and temperature by an electric motor driven, multistage compressor train.

  18. Design improvement of a pump wear ring labyrinth seal

    NASA Technical Reports Server (NTRS)

    Rhode, David L.; Morrison, G. L.; Ko, S. H.; Waughtal, S. P.

    1987-01-01

    The investigation was successful in obtaining two improved designs for the impeller wear ring seal of the liquid hydrogen turbopump of interest. A finite difference computer code was extensively used in a parametric computational study in determining a cavity configuration with high flow resistance due to turbulence dissipation. These two designs, along with that currently used, were fabricated and tested. The improved designs were denoted Type O and Type S. The measurements showed that Type O and Type S given 67 and 30 percent reduction in leakage over the current design, respectively. It was found that the number of cavities, the step height and the presence of a small stator groove are quite important design features. Also, the tooth thickness is of some significance. Finally, the tooth height and an additional large cavity cut out from the stator (upstream of the step) are of negligible importance.

  19. Cavitation optimization for a centrifugal pump impeller by using orthogonal design of experiment

    NASA Astrophysics Data System (ADS)

    Pei, Ji; Yin, Tingyun; Yuan, Shouqi; Wang, Wenjie; Wang, Jiabin

    2017-01-01

    Cavitation is one of the most important performance of centrifugal pumps. However, the current optimization works of centrifugal pump are mostly focusing on hydraulic efficiency only, which may result in poor cavitation performance. Therefore, it is necessary to find an appropriate solution to improve cavitation performance with acceptable efficiency. In this paper, to improve the cavitation performance of a centrifugal pump with a vaned diffuser, the influence of impeller geometric parameters on the cavitation of the pump is investigated using the orthogonal design of experiment (DOE) based on computational fluid dynamics. The impeller inlet diameter D 1, inlet incidence angle Δ β, and blade wrap angle φ are selected as the main impeller geometric parameters and the orthogonal experiment of L9(3*3) is performed. Three-dimensional steady simulations for cavitation are conducted by using constant gas mass fraction model with second-order upwind, and the predicated cavitation performance is validated by laboratory experiment. The optimization results are obtained by the range analysis method to improve cavitation performance without obvious decreasing the efficiency of the centrifugal pump. The internal flow of the pump is analyzed in order to identify the flow behavior that can affect cavitation performance. The results show that D 1 has the greatest influence on the pump cavitation and the final optimized impeller provides better flow distribution at blade leading edge. The final optimized impeller accomplishes better cavitation and hydraulic performance and the NPSHR decreases by 0.63m compared with the original one. The presented work supplies a feasible route in engineering practice to optimize a centrifugal pump impeller for better cavitation performance.

  20. Modeling forces on a beam-pump system during pumping of highly viscous crude

    SciTech Connect

    Lea, J.F. )

    1991-11-01

    In previous dynamic predictive models of beam-pump performance, drag forces o the rod string commonly are modeled by an input empirical drag coefficient multiplying the local rod velocity. This paper shows how forces on the rods and pump plunger can be modeled theoretically and calculated for viscous flow. Results of viscous-flow calculations to develop drag coefficients compare well with measured field data.

  1. Performance of a small wind powered water pumping system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lorentz helical pumps (Henstedt-Ulzburg, Germany) have been powered by solar energy for remote water pumping applications for many years, but from October 2005 to March 2008 a Lorentz helical pump was powered by wind energy at the USDA-ARS Conservation and Production Research Laboratory (CPRL) near ...

  2. Computational fluid dynamics design and analysis of a passively suspended Tesla pump left ventricular assist device.

    PubMed

    Medvitz, Richard B; Boger, David A; Izraelev, Valentin; Rosenberg, Gerson; Paterson, Eric G

    2011-05-01

    This article summarizes the use of computational fluid dynamics (CFD) to design a novel suspended Tesla left ventricular assist device. Several design variants were analyzed to study the parameters affecting device performance. CFD was performed at pump speeds of 6500, 6750, and 7000 rpm and at flow rates varying from 3 to 7 liters per minute (LPM). The CFD showed that shortening the plates nearest the pump inlet reduced the separations formed beneath the upper plate leading edges and provided a more uniform flow distribution through the rotor gaps, both of which positively affected the device hydrodynamic performance. The final pump design was found to produce a head rise of 77 mm Hg with a hydraulic efficiency of 16% at the design conditions of 6 LPM through flow and a 6750 rpm rotation rate. To assess the device hemodynamics the strain rate fields were evaluated. The wall shear stresses demonstrated that the pump wall shear stresses were likely adequate to inhibit thrombus deposition. Finally, an integrated field hemolysis model was applied to the CFD results to assess the effects of design variation and operating conditions on the device hemolytic performance.

  3. CFD Design and Analysis of a Passively Suspended Tesla Pump Left Ventricular Assist Device

    PubMed Central

    Medvitz, Richard B.; Boger, David A.; Izraelev, Valentin; Rosenberg, Gerson; Paterson, Eric G.

    2012-01-01

    This paper summarizes the use of computational fluid dynamics (CFD) to design a novelly suspended Tesla LVAD. Several design variants were analyzed to study the parameters affecting device performance. CFD was performed at pump speeds of 6500, 6750 and 7000 RPM and at flow rates varying from 3 to 7 liter-per-minute (LPM). The CFD showed that shortening the plates nearest the pump inlet reduced the separations formed beneath the upper plate leading edges and provided a more uniform flow distribution through the rotor gaps, both of which positively affected the device hydrodynamic performance. The final pump design was found to produce a head rise of 77 mmHg with a hydraulic efficiency of 16% at the design conditions of 6 LPM throughflow and a 6750 RPM rotation rate. To assess the device hemodynamics the strain rate fields were evaluated. The wall shear stresses demonstrated that the pump wall shear stresses were likely adequate to inhibit thrombus deposition. Finally, an integrated field hemolysis model was applied to the CFD results to assess the effects of design variation and operating conditions on the device hemolytic performance. PMID:21595722

  4. Injection System for Multi-Well Injection Using a Single Pump

    PubMed Central

    Wovkulich, Karen; Stute, Martin; Protus, Thomas J.; Mailloux, Brian J.; Chillrud, Steven N.

    2015-01-01

    Many hydrological and geochemical studies rely on data resulting from injection of tracers and chemicals into groundwater wells. The even distribution of liquids to multiple injection points can be challenging or expensive, especially when using multiple pumps. An injection system was designed using one chemical metering pump to evenly distribute the desired influent simultaneously to 15 individual injection points through an injection manifold. The system was constructed with only one metal part contacting the fluid due to the low pH of the injection solutions. The injection manifold system was used during a three-month pilot scale injection experiment at the Vineland Chemical Company Superfund site. During the two injection phases of the experiment (Phase I = 0.27 L/min total flow, Phase II = 0.56 L/min total flow), flow measurements were made 20 times over three months; an even distribution of flow to each injection well was maintained (RSD <4%). This durable system is expandable to at least 16 injection points and should be adaptable to other injection experiments that require distribution of air-stable liquids to multiple injection points with a single pump. PMID:26140014

  5. Modular pump head design of diffused, metal, and hybrid pump geometry for diode-side-pumped high power Nd:YAG laser.

    PubMed

    Sundar, R; Ranganathan, K; Hedaoo, P; Bindra, K S

    2016-09-20

    In this paper, we present a comparative study on pump heads for a high power diode-side-pumped Nd:YAG laser. The pump head is a modular type, which is in the form of discs, with each disc holding three pump diodes kept at 120° with respect to each other. Unabsorbed pump light from the active medium is reflected by reflectors mounted adjacent to the pump diodes. The performance of a high power pump head made of modular discs mounted with specular or diffused type reflectors was studied. Hybrid pump geometry was also investigated, where the pump head is made up of discs loaded with metal and diffused reflectors, alternately. The discs are loaded around the active medium in such a way that successive discs are rotated by sixty degrees with respect to each other. Fluorescence profiles, thermal lensing, laser output power, and M2 values were studied for pump heads made up of metal, diffused, and hybrid type reflectors. All of the pump heads were studied for three different resonator lengths to maximize the output power with the best beam quality. The experimental results show that the diffused reflector-based geometry in a sixty degree rotated configuration produced the maximum output power and best beam quality in terms of the M2 value.

  6. Design and analysis of linear oscillating motor for linear pump application-magnetic field, dynamics and thermotics

    NASA Astrophysics Data System (ADS)

    Jiao, Zongxia; Wang, Tianyi; Yan, Liang

    2016-12-01

    A linear oscillating motor is an electromagnetic actuator that can achieve short-stroke reciprocating movement directly without auxiliary transmission mechanisms. It has been widely used in linear pump applications as the source of power and motion. However, because of the demand of high power density in a linear actuation system, the performance of linear oscillating motors has been the focus of studies and deserves further research for high power density. In this paper, a general framework of linear oscillating motor design and optimization is addressed in detail, including the electromagnetic, dynamics, and thermal aspects. First, the electromagnetic and dynamics characteristics are modeled to reveal the principle for optimization. Then, optimization and analysis on magnetic structure, resonant system, and thermal features are conducted, which provide the foundation for prototype development. Finally, experimental results are provided for validation. As a whole, this process offers complete guidance for high power density linear oscillating motors in linear pump applications.

  7. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 8: Design approaches: UPH

    NASA Astrophysics Data System (ADS)

    1981-06-01

    The development of the design approaches used to determine the plant and overall layout for a underground pumped hydroelectric (UPH) storage facility having a maximum generating capacity of 2000 MW and a storage capacity of 20,000 MWh is discussed. Key factors were the selection of the high head pump-turbine equipment and the geotechnical considerations relevant to the underground cavern designs. The comparison of pump-turbine alternatives is described leading to the selection for detailed study of both a single-step configurations, using multistage reversible pump-turbines, and a two-step configuration, with single-stage reversible pump-turbines.

  8. Design of optimal pump-and-treat strategies for contaminated groundwater remediation using the simulated annealing algorithm

    NASA Astrophysics Data System (ADS)

    Kuo, Chin-Hwa; Michel, Anthony N.; Gray, William G.

    The problem of the placement of pumps and the selection of pumping rates are the most important issues in designing contaminated groundwater remediation systems using a pump-and-treat strategy. Three nonlinear optimization formulations are proposed to address these problems. The first problem formulation considers hydraulic constraints and reduces the plume concentration to a specified regulation standard value within a given planning time while minimizing capital cost. The second formulation minimizes residual contaminant in a fixed period under hydraulic contraints only. The third formulation is similar to the second formulation; however, in this formulation the number of pumps is prespecified by using the results from the first formulation. The inclusion of well installation costs in the first problem formulation results in a nonsmooth objective function. For such problems, only local optimum solutions can be expected by the use of conventional nonlinear optimization techniques. In the present paper, the simulated annealing algorithm is used to overcome these difficulties. Specific simulation studies indicate that the method advanced herein is promising and involves acceptable computation times.

  9. Pumped Fluid Loop Heat Rejection and Recovery Systems for Thermal Control of the Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Birur, Gajanana; Prina, Mauro; Ramirez, Brenda; Paris, Anthony; Novak, Keith; Pauken, Michael

    2006-01-01

    This viewgraph presentation reviews the heat rejection and heat recovery system for thermal control of the Mars Science Laboratory (MSL). The MSL mission will use mechanically pumped fluid loop based architecture for thermal control of the spacecraft and rover. The architecture is designed to harness waste heat from an Multi Mission Radioisotope Thermo-electric Generator (MMRTG) during Mars surface operations for thermal control during cold conditions and also reject heat during the cruise aspect of the mission. There are several test that are being conducted that will insure the safety of this concept. This architecture can be used during any future interplanetary missions utilizing radioisotope power systems for power generation.

  10. Development of a diagnostic system for an axial-plunger pump

    NASA Astrophysics Data System (ADS)

    Vakulich, E. A.; Gamov, S. V.; Zhukovskii, A. E.; Mordvintsev, E. Iu.

    An algorithm for diagnosing axial-plunger pumps operating as part of an oil pump station is described. The algorithm has been used in developing a technical diagnostic system for axial-plunger pumps. The system consists of pressure fluctuation transducers, a signal amplifier, a diagnostic module, a controller, an analog-to-digital converter, and a microcomputer. The operation of the diagnostic system is briefly described.

  11. Turbine Aerodynamic Design System Improvements

    NASA Technical Reports Server (NTRS)

    Huber, Frank W.; Griffin, Lisa W.; Simpson, Steven P.

    2003-01-01

    Presentation outline includes the following: 1. Volute manifold design and analysis methodology. 2. Meanline modification for compatibility with engine analysis code. Objective is to develop a manifold design methodology for turbines and pumps, and to enable rapid screening of candidate flow paths.

  12. High pressure slurry pump. Sand slurry test loop design and results. Wear parts lifetime analysis

    SciTech Connect

    Fongaro, S.; Severini, P.; Vinciguerra, G.

    2000-07-01

    This paper shows the experimental phase, following previous work presented at the Sixth International Conference on ``Multiphase Flow in Industrial Plants'', Milan, September 98. A Sand Water Slurry Test Loop has been tested using different sand percentages for a total power of 680 HP with a flow-rate of 35,000 [gpm] and pressure of 2300 [psig]. Its design considered, carefully, the particles build-up effect respecting flow velocity and dead space along the loop and into the hydraulics. The test pump is a TRIPLEX SINGLE ACTING that is one third of the COAL SLURRY SEPTUPLEX PUMP designed for a CHINA PROJECT. Wear rate on the main parts of an high pressure slurry pump have been analyzed running at 145 rpm (piston mean speed of 3.3 [ft/s]) with a net flow of 33,290 [gpm] and pressures between 1216 and 1575 [psig]. Tests gave indications of a damaging process on valves, piston seals and the relative weight on the overall damages. Design changes of piston-seal and its material have been done, results being a longer parts lifetime. The authors compared the results with literature on coal slurry and other sand tests. The pump speed, i.e., valve cycle, isn't the main wear factor, while the fluid speed under the valve is. Their goals are to improve the wear parts lifetime and define functions to relate the wear to operating parameters, design choice, and materials used.

  13. Heart pump system in "heart-mural coronary artery-myocardial bridge" simulative device.

    PubMed

    Ding, H; Chen, Z; Shen, L; Xu, M; Zhou, Y; Xu, S; Zeng, Y

    2009-06-01

    The myocardial tissue covering the artery is termed a myocardial bridge. But so far many researches on the myocardial bridge have been involved with clinical patients or animals, which have some limitations (e.g. lack of systematicness, difficulties in measuring the flow in the mural coronary artery and so on). Designing a "Heart-Mural coronary artery-Myocardial Bridge" Simulative Device provides a good approach to solve above problems; however, documents on this subject have seldom been reported until now. The heart pump as the key part of the whole simulative device should be able to simulate the waveform of blood pressure, adjust blood flow and regulate heart rate. Our experimental results basically met above requirements. The heart pump proposed in the paper presented an alternative experimental method to go further into other issues about the cardiovascular circulation system.

  14. The development and testing of a fieldworthy system of improved fluid pumping device and liquid sensor for oil wells. Fourth quarter technical progress report, 1991

    SciTech Connect

    Buckman, W.G.

    1991-12-31

    A major expenditure to maintain oil and gas leases is the support of pumpers, those individuals who maintain the pumping systems on wells to achieve optimum production. Many leases are marginal and are in remote areas and this requires considerable driving time for the pumper. The Air Pulse Oil Pump System is designed to be an economical system for the shallow stripper wells. To improve on the economics of this system, we have designed a Remote Oil Field Monitor and Controller to enable us to acquire data from the lease to our central office at anytime and to control the pumping activities from the central office by using a personal computer. The advent and economics of low-power microcontrollers have made it feasible to use this type of system for numerous remote control systems. We can also adapt this economical system to monitor and control the production of gas wells and/or pump jacks.

  15. Operational adaptability evaluation index system of pumped storage in UHV receiving-end grids

    NASA Astrophysics Data System (ADS)

    Yuan, Bo; Zong, Jin; Feng, Junshu

    2017-01-01

    Pumped storage is an effective solution to deal with the emergency reserve shortage, renewable energy accommodating and peak-shaving problems in ultra-high voltage (UHV) transmission receiving-end grids. However, governments and public opinion in China tend to evaluate the operational effectiveness of pumped storage using annual utilization hour, which may result in unreasonable and unnecessary dispatch of pumped storage. This paper built an operational adaptability evaluation index system for pumped storage in UHV-receiving end grids from three aspects: security insurance, peak-shaving and renewable energy accommodating, which can provide a comprehensive and objective way to evaluate the operational performance of a pumped storage station.

  16. Skeletal Muscle Pump Drives Control of Cardiovascular and Postural Systems

    PubMed Central

    Verma, Ajay K.; Garg, Amanmeet; Xu, Da; Bruner, Michelle; Fazel-Rezai, Reza; Blaber, Andrew P.; Tavakolian, Kouhyar

    2017-01-01

    The causal interaction between cardio-postural-musculoskeletal systems is critical in maintaining postural stability under orthostatic challenge. The absence or reduction of such interactions could lead to fainting and falls often experienced by elderly individuals. The causal relationship between systolic blood pressure (SBP), calf electromyography (EMG), and resultant center of pressure (COPr) can quantify the behavior of cardio-postural control loop. Convergent cross mapping (CCM) is a non-linear approach to establish causality, thus, expected to decipher nonlinear causal cardio-postural-musculoskeletal interactions. Data were acquired simultaneously from young participants (25 ± 2 years, n = 18) during a 10-minute sit-to-stand test. In the young population, skeletal muscle pump was found to drive blood pressure control (EMG → SBP) as well as control the postural sway (EMG → COPr) through the significantly higher causal drive in the direction towards SBP and COPr. Furthermore, the effect of aging on muscle pump activation associated with blood pressure regulation was explored. Simultaneous EMG and SBP were acquired from elderly group (69 ± 4 years, n = 14). A significant (p = 0.002) decline in EMG → SBP causality was observed in the elderly group, compared to the young group. The results highlight the potential of causality to detect alteration in blood pressure regulation with age, thus, a potential clinical utility towards detection of fall proneness. PMID:28345674

  17. Heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter

    NASA Astrophysics Data System (ADS)

    Sung, Hae-Jin; Go, Byeong-Soo; Jiang, Zhenan; Park, Minwon; Yu, In-Keun

    2016-11-01

    The development of an effective high-temperature superconducting (HTS) generator is currently a research focus; however, the reduction of heat loss of a large-scale HTS generator is a challenge. This study deals with a heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter. The generator module consists of an HTS rotor of the generator and an HTS flux pump exciter. The specifications of the module were described, and the detailed configuration of the module was illustrated. For the heat loss analysis of the module, the excitation loss of the flux pump exciter, eddy current loss of all of the structures in the module, radiation loss, and conduction loss of an HTS coil supporter were assessed using a 3D finite elements method program. In the case of the conduction loss, different types of the supporters were compared to find out the supporter of the lowest conduction loss in the module. The heat loss analysis results of the module were reflected in the design of the generator module and discussed in detail. The results will be applied to the design of large-scale superconducting generators for wind turbines including a cooling system.

  18. Induction generator-induction motor wind-powered pumping system

    SciTech Connect

    Miranda, M.S.; Lyra, R.O.C.; Silva, S.R.

    1997-12-31

    The energy storage matter plays an important role in wind-electric conversion systems for isolated applications. Having that in mind, two different approaches can be basically considered: either the immediate conversion of the generated electric energy, as in a water pumping system or electric energy storage for later use, as in a battery charging system. Due to some features such as no need of an external reactive power source and, sometimes, a gearbox, permanent-magnet synchronous generators have been broadly used in low rated power isolated systems. Despite that, system performance can be affected when the generator is feeding an inductive load (e.g., an induction motor) under variable-speed-variable-frequency operational conditions. Since there is no effective flux control, motor overload may occur at high wind speeds. Thus, good system performance can be obtained through additional control devices which may increase system cost. Although being rugged and cheap, induction machines always work as a reactive power drain; therefore, they demand an external reactive power source. Considering that, reactive static compensators appear as an attractive alternative to the cost x performance problem. In addition to that, different control strategies can be used so that system performance can be improved.

  19. Pumping power considerations in the designs of NASA-Redox flow cells

    NASA Technical Reports Server (NTRS)

    Hoberecht, M. A.

    1981-01-01

    Pressure drop data for six different cell geometries of various flow port, manifold, and cavity dimensions are presented. The redox/energy/storage system uses two fully soluble redox couples as anode and cathode fluids. Both fluids are pumped through a redox cell, or stack of cells, where the electrochemical reactions take place at porous carbon felt electrodes. Pressure drop losses are therefore associated with this system due to the continuous flow of reactant solutions. The exact pressure drop within a redox flow cell is directly dependent on the flow rate as well as the various cell dimensions. Pumping power requirements for a specific set of cell operating conditions are found for various cell geometries once the flow rate and pressure drop are determined. These pumping power requirements contribute to the overall system parasitic energy losses which must be minimized, the choice of cell geometry becomes critical.

  20. Formal design review report project W-151 mixer pump procurement

    SciTech Connect

    Crass, D.W.

    1997-01-21

    A formal design review for WHC-S-0040 was held on January 21, 1993. The review was completed January 29, 1993. No outstanding action items existed. Comments were recorded on Record Comment Record (RCR) forms and incorporated into the specification. The specification was considered acceptable, approved and issued as WHC-S-0040, Rev. 0 on March 4, 1993.

  1. Heat pumps

    NASA Astrophysics Data System (ADS)

    Gilli, P. V.

    1982-11-01

    Heat pumps for residential/commercial space heating and hot tap water make use of free energy of direct or indirect solar heat and save from about 40 to about 70 percent of energy if compared to a conventional heating system with the same energy basis. In addition, the electrically driven compressor heat pump is able to substitute between 40% (bivalent alternative operation) to 100% (monovalent operation) of the fuel oil of an oilfired heating furnace. For average Central European conditions, solar space heating systems with high solar coverage factor show the following sequence of increasing cost effectiveness: pure solar systems (without heat pumps); heat pump assisted solar systems; solar assisted heat pump systems; subsoil/water heat pumps; air/water heat pumps; air/air heat pumps.

  2. Designing automatic resupply systems.

    PubMed

    Harding, M L

    1999-02-01

    This article outlines the process for designing and implementing autoresupply systems. The planning process includes determination of goals and appropriate participation. Different types of autoresupply mechanisms include kanban, breadman, consignment, systems contracts, and direct shipping from an MRP schedule.

  3. An analysis of water-to-air heat pump systems for use in government facilities

    NASA Astrophysics Data System (ADS)

    Fretzs, R. G.

    1980-09-01

    Energy consumption is an important issue for government managers. Examined in this thesis is one source of potential energy savings: a method of heating and cooling buildings. Water-to-air heat pumps are analyzed and cost comparisons to conventional heating/cooling systems (gas, fuel oil, electric resistance, and air-to-air heat pumps) are made. The theory of heat pump technology is presented to show how water source heat pumps achieve improved efficiencies over conventional systems. Sources of and disposal of water to support the systems are discussed. Cost comparisons are presented based on computer simulations and fuel cost graphs. Twenty-one percent of U.S. energy consumption is used to heat and cool buildings. Water-to-air heat pumps provide a 30-50 percent savings over other systems. Therefore, a potential 10 percent savings in total energy consumption exists through the use of water source heat pumps.

  4. 46 CFR 105.25-7 - Ventilation systems for cargo tank or pumping system compartment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Ventilation systems for cargo tank or pumping system... Requirements-When Cargo Tanks Are Installed Below Decks § 105.25-7 Ventilation systems for cargo tank or... ventilation outlets shall terminate more than 10 feet from any opening to the interior of the vessel...

  5. 46 CFR 105.25-7 - Ventilation systems for cargo tank or pumping system compartment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Ventilation systems for cargo tank or pumping system... Requirements-When Cargo Tanks Are Installed Below Decks § 105.25-7 Ventilation systems for cargo tank or... ventilation outlets shall terminate more than 10 feet from any opening to the interior of the vessel...

  6. 46 CFR 105.25-7 - Ventilation systems for cargo tank or pumping system compartment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Ventilation systems for cargo tank or pumping system... Requirements-When Cargo Tanks Are Installed Below Decks § 105.25-7 Ventilation systems for cargo tank or... ventilation outlets shall terminate more than 10 feet from any opening to the interior of the vessel...

  7. Design and performance of an axial air-gap solution pump motor

    NASA Astrophysics Data System (ADS)

    Hawsey, R. A.; Sohns, C. W.; Daniel, D. S.; Bailey, J. M.

    1990-05-01

    An axial air gap, permanent magnet, brushless dc motor was designed and was evaluated on a dynamometer to measure operating characteristics. The motor must deliver 0.167 hp (approx. 120 W) to the pump rotor at 1800 rpm. Initial performance data with a half-bridge, Hall-probe synchronized drive system and a dry motor bearing did not achieve the desired motor performance. Subsequently, a commercial full-bridge, speed regulated sensorless drive system was used to test the motor. The motor delivered the required 90 oz-in. of torque at 1800 rpm. These data revealed the need for rewinding the stator core to improve motor efficiency. A second stator core, with deeper slots and additional turns of wire, was subsequently fabricated and tested. At 1800 rpm, the drive system could produce only 60 oz-in. of torque due to an unexpectedly high generated voltage. Motor efficiency was 60 to 70 pct. at this torque level when the data were corrected for bearing and coupling drag.

  8. Nature's pumps

    NASA Astrophysics Data System (ADS)

    Vogel, Steven

    1994-10-01

    Although diverse in both form and function, the fluid-forcing devices in organisms have many of the capabilities and limitations of pumps of human design. Nature's pumps certainly look quite different from those of our technology, but all of them perform the same task. The author examines a few of these with an eye toward technological parallels and the two functional classes -- positive-displacement pumps and fluid-dynamic pumps.

  9. An Nd:YAG laser with a 'light reactor' pump system

    NASA Astrophysics Data System (ADS)

    Gondra, A. D.; Gradov, V. M.; Dybko, V. V.; Konstantinov, B. A.; Kromskii, G. I.

    1987-12-01

    New capabilities of a light-reactor pump system associated with high lasing and energy-storage efficiencies are predicted theoretically and confirmed experimentally. For a pump system comprising four Nd:YAG rods placed around the pump lamp, a lasing efficiency of about 2.85 percent was obtained for Q-switched operation with a single-rod output energy of 300 mJ. It is predicted that the efficiency can be raised to a value above 3 percent.

  10. [A review of drive system for pulsatile blood pump].

    PubMed

    Han, Yuan-jie; Yang, Ming

    2009-01-01

    Many varieties of pulsatile blood pumps exist in the fields of artificial hearts and ventricular assist devices. Effective sorts can be achieved with the differences in power source and transmission mechanism. Horizontal comparison across different pulsatile blood pumps, together with evolution of similar species is studied to find the commonness and evolution laws for pulsatile blood pumps. After a review of typical pulsatile blood pumps from the angle of power source and transmission mechanism, much analysis is focus on a pulsatile drive structure with flexible electro-hydraulic transmission, and importance of hydraulic transmission to improve the implantation property of pulsatile blood pumps is discussed. Finally new application of electro-hydraulic pulsatile blood pumps in the future, such as the application in Direct Mechanical Ventricular Assistant Device (DMVAD) is given.

  11. Role of Pumped Storage Hydro Resources in Electricity Markets and System Operation: Preprint

    SciTech Connect

    Ela, E.; Kirby, B.; Botterud, A.; Milostan, C.; Krad, I.; Koritarov, V.

    2013-05-01

    The most common form of utility- sized energy storage system is the pumped storage hydro system. Originally, these types of storage systems were economically viable simply because they displace more expensive generating units. However, over time, as those expensive units became more efficient and costs declined, pumped hydro storage units no longer have the operational edge. As a result, in the current electricity market environment, pumped storage hydro plants are struggling. To offset this phenomenon, certain market modifications should be addressed. This paper will introduce some of the challenges faced by pumped storage hydro plants in today's markets and purpose some solutions to those problems.

  12. Design and Characterization of a Sensorized Microfluidic Cell-Culture System with Electro-Thermal Micro-Pumps and Sensors for Cell Adhesion, Oxygen, and pH on a Glass Chip

    PubMed Central

    Bonk, Sebastian M.; Stubbe, Marco; Buehler, Sebastian M.; Tautorat, Carsten; Baumann, Werner; Klinkenberg, Ernst-Dieter; Gimsa, Jan

    2015-01-01

    We combined a multi-sensor glass-chip with a microfluidic channel grid for the characterization of cellular behavior. The grid was imprinted in poly-dimethyl-siloxane. Mouse-embryonal/fetal calvaria fibroblasts (MC3T3-E1) were used as a model system. Thin-film platinum (Pt) sensors for respiration (amperometric oxygen electrode), acidification (potentiometric pH electrodes) and cell adhesion (interdigitated-electrodes structures, IDES) allowed us to monitor cell-physiological parameters as well as the cell-spreading behavior. Two on-chip electro-thermal micro-pumps (ETμPs) permitted the induction of medium flow in the system, e.g., for medium mixing and drug delivery. The glass-wafer technology ensured the microscopic observability of the on-chip cell culture. Connecting Pt structures were passivated by a 1.2 μm layer of silicon nitride (Si3N4). Thin Si3N4 layers (20 nm or 60 nm) were used as the sensitive material of the pH electrodes. These electrodes showed a linear behavior in the pH range from 4 to 9, with a sensitivity of up to 39 mV per pH step. The oxygen sensors were circular Pt electrodes with a sensor area of 78.5 μm2. Their sensitivity was 100 pA per 1% oxygen increase in the range from 0% to 21% oxygen (air saturated). Two different IDES geometries with 30- and 50-μm finger spacings showed comparable sensitivities in detecting the proliferation rate of MC3T3 cells. These cells were cultured for 11 days in vitro to test the biocompatibility, microfluidics and electric sensors of our system under standard laboratory conditions. PMID:26263849

  13. Pump RIN-induced impairments in unrepeatered transmission systems using distributed Raman amplifier.

    PubMed

    Cheng, Jingchi; Tang, Ming; Lau, Alan Pak Tao; Lu, Chao; Wang, Liang; Dong, Zhenhua; Bilal, Syed Muhammad; Fu, Songnian; Shum, Perry Ping; Liu, Deming

    2015-05-04

    High spectral efficiency modulation format based unrepeatered transmission systems using distributed Raman amplifier (DRA) have attracted much attention recently. To enhance the reach and optimize system performance, careful design of DRA is required based on the analysis of various types of impairments and their balance. In this paper, we study various pump RIN induced distortions on high spectral efficiency modulation formats. The vector theory of both 1st and higher-order stimulated Raman scattering (SRS) effect using Jones-matrix formalism is presented. The pump RIN will induce three types of distortion on high spectral efficiency signals: intensity noise stemming from SRS, phase noise stemming from cross phase modulation (XPM), and polarization crosstalk stemming from cross polarization modulation (XPolM). An analytical model for the statistical property of relative phase noise (RPN) in higher order DRA without dealing with complex vector theory is derived. The impact of pump RIN induced impairments are analyzed in polarization-multiplexed (PM)-QPSK and PM-16QAM-based unrepeatered systems simulations using 1st, 2nd and 3rd-order forward pumped Raman amplifier. It is shown that at realistic RIN levels, negligible impairments will be induced to PM-QPSK signals in 1st and 2nd order DRA, while non-negligible impairments will occur in 3rd order case. PM-16QAM signals suffer more penalties compared to PM-QPSK with the same on-off gain where both 2nd and 3rd order DRA will cause non-negligible performance degradations. We also investigate the performance of digital signal processing (DSP) algorithms to mitigate such impairments.

  14. 46 CFR 108.471 - Water pump.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Water pump. 108.471 Section 108.471 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.471 Water pump. Each water pump in a foam...

  15. 46 CFR 108.471 - Water pump.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Water pump. 108.471 Section 108.471 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.471 Water pump. Each water pump in a foam...

  16. 46 CFR 108.471 - Water pump.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Water pump. 108.471 Section 108.471 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.471 Water pump. Each water pump in a foam...

  17. 46 CFR 108.471 - Water pump.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Water pump. 108.471 Section 108.471 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.471 Water pump. Each water pump in a foam...

  18. 46 CFR 108.471 - Water pump.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Water pump. 108.471 Section 108.471 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.471 Water pump. Each water pump in a foam...

  19. System Modeling and Building Energy Simulations of Gas Engine Driven Heat Pump

    SciTech Connect

    Mahderekal, Isaac; Vineyard, Edward

    2013-01-01

    To improve the system performance of a gas engine driven heat pump (GHP) system, an analytical modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated with a detailed vapor compression heat pump system design model. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using the desiccant system the sensible heat ratio (SHR- sensible heat ratio) can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% at rated operating conditions. In addtion,using EnergyPlus, building energy simulations have been conducted to assess annual energy consumptions of GHP in sixteen US cities, and the performances are compared to a baseline unit, which has a electrically-driven air conditioner with the seasonal COP of 4.1 for space cooling and a gas funace with 90% fuel efficiency for space heating.

  20. Optimization and Thermoeconomics Research of a Large Reclaimed Water Source Heat Pump System

    PubMed Central

    Zhang, Zi-ping; Du, Fang-hui

    2013-01-01

    This work describes a large reclaimed water source heat pump system (RWSHPS) and elaborates on the composition of the system and its design principles. According to the characteristics of the reclaimed water and taking into account the initial investment, the project is divided into two stages: the first stage adopts distributed heat pump heating system and the second adopts the combination of centralized and decentralized systems. We analyze the heating capacity of the RWSHPS, when the phase II project is completed, the system can provide hydronic heating water with the supply and return water temperature of 55°C/15°C and meet the hydronic heating demand of 8 million square meters of residential buildings. We make a thermal economics analysis by using Thermal Economics theory on RWSHPS and gas boiler system, it is known that the RWSHPS has more advantages, compared with the gas boiler heating system; both its thermal efficiency and economic efficiency are relatively high. It provides a reference for future applications of the RWSHPS. PMID:24089607

  1. Optimization and thermoeconomics research of a large reclaimed water source heat pump system.

    PubMed

    Zhang, Zi-ping; Du, Fang-hui

    2013-01-01

    This work describes a large reclaimed water source heat pump system (RWSHPS) and elaborates on the composition of the system and its design principles. According to the characteristics of the reclaimed water and taking into account the initial investment, the project is divided into two stages: the first stage adopts distributed heat pump heating system and the second adopts the combination of centralized and decentralized systems. We analyze the heating capacity of the RWSHPS, when the phase II project is completed, the system can provide hydronic heating water with the supply and return water temperature of 55°C/15°C and meet the hydronic heating demand of 8 million square meters of residential buildings. We make a thermal economics analysis by using Thermal Economics theory on RWSHPS and gas boiler system, it is known that the RWSHPS has more advantages, compared with the gas boiler heating system; both its thermal efficiency and economic efficiency are relatively high. It provides a reference for future applications of the RWSHPS.

  2. Requirements Analysis Study for Master Pump Shutdown System Project Development Specification [SEC 1 and 2

    SciTech Connect

    BEVINS, R.R.

    2000-03-24

    This document has been updated during the definitive design portion of the first phase of the W-314 Project to capture additional software requirements and is planned to be updated during the second phase of the W-314 Project to cover the second phase of the Project's scope. The objective is to provide requirement traceability by recording the analysis/basis for the functional descriptions of the master pump shutdown system. This document identifies the sources of the requirements and/or how these were derived. Each requirement is validated either by quoting the source or an analysis process involving the required functionality, performance characteristics, operations input or engineering judgment.

  3. A new design for a compact centrifugal blood pump with a magnetically levitated rotor.

    PubMed

    Asama, Junichi; Shinshi, Tadahiko; Hoshi, Hideo; Takatani, Setsuo; Shimokohbe, Akira

    2004-01-01

    A compact centrifugal blood pump has been developed using a radial magnetic bearing with a two-degree of freedom active control. The proposed magnetic bearing exhibits high stiffness, even in passively controlled directions, and low power consumption because a permanent magnet, incorporated with the rotor, suspends its weight. The rotor is driven by a Lorentz force type of built-in motor, avoiding mechanical friction and material wear. The built-in motor is designed to generate only rotational torque, without radial and axial attractive forces on the rotor, leading to low power consumption by the magnetic bearing. The fabricated centrifugal pump measured 65 mm in diameter and 45 mm in height and weighed 0.36 kg. In the closed loop circuit filled with water, the pump provided a flow rate of 4.5 L/min at 2,400 rpm against a pressure head of 100 mm Hg. Total power consumption at that point was 18 W, including 2 W required for magnetic levitation, with a total efficiency of 5.7%. The experimental results showed that the design of the compact magnetic bearing was feasible and effective for use in a centrifugal blood pump.

  4. Design of Nano Screw Pump for Water Transport and its Mechanisms

    NASA Astrophysics Data System (ADS)

    Wang, Liya; Wu, Hengan; Wang, Fengchao

    2017-02-01

    Nanopumps conducting fluids through nanochannels have attracted considerable interest for their potential applications in nanofiltration, water desalination and drug delivery. Here, we demonstrate by molecular dynamics (MD) simulations that a nano screw pump is designed with helical nanowires embedded in a nanochannel, which can be used to drive unidirectional water flow. Such helical nanowires have been successfully synthesized in many experiments. By investigating the water transport mechanism through nano screw pumps with different configuration parameters, three transport modes were observed: cluster-by-cluster, pseudo-continuous, and linear-continuous, in which the water flux increases linearly with the rotating speed. The influences of the nanowires’ surface energy and the screw’s diameter on water transport were also investigated. Results showed that the water flux rate increases as the decreasing wettability of helical nanowires. The deviation in water flux in screw pumps with smaller radius is attributed to the weak hydrogen bonding due to space confinement and the hydrophobic blade. Moreover, we also proposed that such screw pumps with appropriate diameter and screw pitch can be used for water desalination. The study provides an insight into the design of multifunctional nanodevices for not only water transport but water desalination in practical applications.

  5. Design of Nano Screw Pump for Water Transport and its Mechanisms.

    PubMed

    Wang, LiYa; Wu, HengAn; Wang, FengChao

    2017-02-03

    Nanopumps conducting fluids through nanochannels have attracted considerable interest for their potential applications in nanofiltration, water desalination and drug delivery. Here, we demonstrate by molecular dynamics (MD) simulations that a nano screw pump is designed with helical nanowires embedded in a nanochannel, which can be used to drive unidirectional water flow. Such helical nanowires have been successfully synthesized in many experiments. By investigating the water transport mechanism through nano screw pumps with different configuration parameters, three transport modes were observed: cluster-by-cluster, pseudo-continuous, and linear-continuous, in which the water flux increases linearly with the rotating speed. The influences of the nanowires' surface energy and the screw's diameter on water transport were also investigated. Results showed that the water flux rate increases as the decreasing wettability of helical nanowires. The deviation in water flux in screw pumps with smaller radius is attributed to the weak hydrogen bonding due to space confinement and the hydrophobic blade. Moreover, we also proposed that such screw pumps with appropriate diameter and screw pitch can be used for water desalination. The study provides an insight into the design of multifunctional nanodevices for not only water transport but water desalination in practical applications.

  6. Design of Nano Screw Pump for Water Transport and its Mechanisms

    PubMed Central

    Wang, LiYa; Wu, HengAn; Wang, FengChao

    2017-01-01

    Nanopumps conducting fluids through nanochannels have attracted considerable interest for their potential applications in nanofiltration, water desalination and drug delivery. Here, we demonstrate by molecular dynamics (MD) simulations that a nano screw pump is designed with helical nanowires embedded in a nanochannel, which can be used to drive unidirectional water flow. Such helical nanowires have been successfully synthesized in many experiments. By investigating the water transport mechanism through nano screw pumps with different configuration parameters, three transport modes were observed: cluster-by-cluster, pseudo-continuous, and linear-continuous, in which the water flux increases linearly with the rotating speed. The influences of the nanowires’ surface energy and the screw’s diameter on water transport were also investigated. Results showed that the water flux rate increases as the decreasing wettability of helical nanowires. The deviation in water flux in screw pumps with smaller radius is attributed to the weak hydrogen bonding due to space confinement and the hydrophobic blade. Moreover, we also proposed that such screw pumps with appropriate diameter and screw pitch can be used for water desalination. The study provides an insight into the design of multifunctional nanodevices for not only water transport but water desalination in practical applications. PMID:28155898

  7. SHINE Vacuum Pump Test Verification

    SciTech Connect

    Morgan, Gregg A; Peters, Brent

    2013-09-30

    Normetex pumps used world-wide for tritium service are no longer available. DOE and other researchers worldwide have spent significant funds characterizing this pump. Identification of alternate pumps is required for performance and compatibility with tritium gas. Many of the pumps that could be used to meet the functional performance requirements (e.g. pressure and flow conditions) of the Normetex pump have features that include the use of polymers or oils and greases that are not directly compatible with tritium service. This study assembles a test system to determine the flow characteristics for candidate alternate pumps. These tests are critical to the movement of tritium through the SHINE Tritium Purification System (TPS). The purpose of the pump testing is two-fold: (1) obtain baseline vacuum pump characteristics for an alternate (i.e. ''Normetex replacement'') pump intended for use in tritium service; and (2) verify that low pressure hydrogen gas can be transported over distances up to 300 feet by the candidate pumps. Flow rates and nominal system pressures have been identified for the SHINE Mo-99 production process Tritium Purification System (TPS). To minimize the line sizes for the transfer of low pressure tritium from the Neutron Driver Accelerator System (NDAS) to the primary processing systems in the TPS, a ''booster'' pump has been located near the accelerator in the design. A series of pump tests were performed at various configurations using hydrogen gas (no tritium) to ensure that this concept is practical and maintains adequate flow rates and required pressures. This report summarizes the results of the tests that have been performed using various pump configurations. The current design of the Tritium Purification System requires the ''booster'' pump to discharge to or to be backed by another vacuum pump. Since Normetex pumps are no longer manufactured, a commercially available Edwards scroll pump will be used to back the booster pump. In this

  8. Design, Analysis, Fabrication, and Testing of a Novel Piezoelectric Pump

    SciTech Connect

    Jansen, J.F.

    2003-10-16

    While there is a wide range of actuation technologies, none currently rivals the overall performance (power density, bandwidth, stress, stroke) of conventional hydraulic actuation. It is well known in the actuation community that the power-to-weight ratios and the power-to-volume ratios of hydraulic actuators are, respectively, around 5 times and 10 to 20 times larger than comparable electric motors. Due to fundamental limitations in the magnetic flux density in the supporting structures and limitations in the heat transfer out of electric actuators, significant changes in these ratios are not likely in the near future. Thermal limitations associated with electric motors do no apply to hydraulic actuators since the hydraulic fluid cools and lubricates the system. Hydraulic actuators are capable of holding a load without any energy expenditure, resilient to high impact loads, and typically do no need a transmission system. However, with all of these virtues, hydraulic actuators have serious practical implementation problems. Typically, hydraulic actuators have moderate to poor reliability when compared to electric actuators, leaky (at least in reputation), poor energy efficiencies and poor controllability due to either overlapping or underlapping in the spool of the control valves. This work addresses a new type of electric actuator that attempts to combine the best of both the electric and hydraulic mediums. Easy controllability as with electric actuators, scalability, and high power densities associated with hydraulics were the goals of this work.

  9. Spin pumping in electrodynamically coupled magnon-photon systems

    NASA Astrophysics Data System (ADS)

    Bai, Lihui

    The electronics industry is quickly approaching the limitation of Moore's Law due to Joule heating in high density-integrated devices. To achieve new higher-speed devices and reduce energy consumption, researchers are turning to spintronics where the intrinsic spin, rather than the charge of electrons, is used to carry information in devices. Advances in spintronics have led to the discovery of giant magnetoresistance (GMR), spin transfer torque etc. Another subject, cavity electrodynamics, promises a completely new quantum algorithm by studying the properties of a single electron interacting with photons inside of a cavity. By merging both spintronics and cavity electrodynamics, a new cutting edge field called Cavity Spintronics is forming, which draws on the advantages of both subjects to develop new spintronics devices utilizing light-matter interaction. In this work, we use electrical detection, in combination with microwave transmission, to investigate both resonant and nonresonant magnon-photon coupling in a microwave cavity at room temperature. Spin pumping in a dynamically coupled magnon-photon system is found to be distinctly different from previous experiments. Characteristic coupling features such as modes anticrossing, linewidth evolution, peculiar line shape, and resonance broadening are systematically measured and consistently analyzed by a theoretical model set on the foundation of classical electrodynamic coupling. Our experimental and theoretical approach paves the way for pursuing microwave coherent manipulation of pure spin current via the combination of spin pumping and magnon-photon coupling. Co-authored with M. Harder, C.-M. Hu from University of Manitoba, Y. P. Chen, J. Q. Xiao from University of Delaware, and X. Fan from Univeristy of Denver.

  10. Thermal and economic assessment of ground-coupled storage for residential solar heat pump systems

    NASA Astrophysics Data System (ADS)

    Choi, M. K.; Morehouse, J. H.

    1980-11-01

    This study performed an analysis of ground-coupled stand-alone and series configured solar-assisted liquid-to-air heat pump systems for residences. The year-round thermal performance of these systems for space heating, space cooling, and water heating were determined by simulation and compared against non-ground-coupled solar heat pump systems as well as conventional heating and cooling systems in three geographic locations: Washington, D.C., Fort Worth, Tex., and Madison, Wis. The results indicate that without tax credits a combined solar/ground-coupled heat pump system for space heating and cooling is not cost competitive with conventional systems. Its thermal performance is considerably better than non-ground-coupled solar heat pumps in Forth Worth. Though the ground-coupled stand-alone heat pump provides 51% of the heating and cooling load with non-purchased energy in Forth Worth, its thermal performance in Washington and Madison is poor.

  11. Control system design method

    DOEpatents

    Wilson, David G [Tijeras, NM; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  12. The mechanical design of a vapor compressor for a heat pump to be used in space

    NASA Technical Reports Server (NTRS)

    Berner, F.; Oesch, H.; Goetz, K.; Savage, C. J.

    1982-01-01

    A heat pump developed for use in Spacelab as a stand-alone refrigeration unit as well as within a fluid loop system is discussed. It will provide an active thermal control for payloads. Specifications for the heat pump were established: (1) heat removal rates at the source; (2) heat source temperatures from room temperature; (3) heat-sink fluid temperatures at condenser inlet; and (4) minimum power consumption. A reversed Carnot cycle heat pump using Freon 12 as working fluid incorporating a one-cylinder reciprocating compressor was selected. The maximum crankshaft speed was fixed relatively high at 100 rpm. The specified cooling rates then made it necessary to select a cylinder volume of 10 cu cm, which was obtained with a bore of 40 mm and a stroke of 8 mm.

  13. Development of magnetic bearing system for a new third-generation blood pump.

    PubMed

    Lee, Jung Joo; Ahn, Chi Bum; Choi, Jaesoon; Park, Jun Woo; Song, Seung-Joon; Sun, Kyung

    2011-11-01

    A magnetic bearing system is a crucial component in a third-generation blood pump, particularly when we consider aspects such as system durability and blood compatibility. Many factors such as efficiency, occupying volume, hemodynamic stability in the flow path, mechanical stability, and stiffness need to be considered for the use of a magnetic bearing system in a third-generation blood pump, and a number of studies have been conducted to develop novel magnetic bearing design for better handling of these factors. In this study, we developed and evaluated a new magnetic bearing system having a motor for a new third-generation blood pump. This magnetic bearing system consists of a magnetic levitation compartment and a brushless direct current (BLDC) motor compartment. The active-control degree of freedom is one; this control is used for controlling the levitation in the axial direction. The levitation in the radial direction has a passive magnetic levitation structure. In order to improve the system efficiency, we separated the magnetic circuit for axial levitation by using a magnetic circuit for motor drive. Each magnetic circuit in the bearing system was designed to have a minimum gap by placing mechanical parts, such as the impeller blades, outside the circuit. A custom-designed noncontact gap sensor was used for minimizing the system volume. We fabricated an experimental prototype of the proposed magnetic bearing system and evaluated its performance by a control system using the Matlab xPC Target system. The noncontact gap sensor was an eddy current gap sensor with an outer diameter of 2.38 mm, thickness of 0.88 mm, and resolution of 5 µm. The BLDC motor compartment was designed to have an outer diameter of 20 mm, length of 28.75 mm, and power of 4.5 W. It exhibited a torque of 8.6 mNm at 5000 rpm. The entire bearing system, including the motor and the sensor, had an outer diameter of 22 mm and a length of 97 mm. The prototype exhibited sufficient levitation

  14. A novel design of spiral groove bearing in a hydrodynamically levitated centrifugal rotary blood pump.

    PubMed

    Han, Qing; Zou, Jun; Ruan, Xiaodong; Fu, Xin; Yang, Huayong

    2012-08-01

    Good washout is very important in spiral groove bearing (SGB) designs when applied to blood pumps due to the micrometer scales of lubrication films and groove depths. To improve washout, flow rate or leakage through SGBs should be as large as possible. However, this special goal violates conventional SGB designs in which no leakage is desired as the leakage would decrease load-carrying capacity significantly. So, a design concept is formed fulfilling the two goals of high load-carrying capacity and large flow rate: let groove width decrease along flow path and the mating surface of the rotor rotate with a direction facilitating the flow through the grooves. Under this concept, a novel SGB is designed, contrary to conventional ones, with groove width decreasing with increasing spiral radius. This SGB is mounted on the motionless upper plate of our designed centrifugal blood pump, with the mating surface of rotor rotating with a direction facilitating the outward flow. To assess SGB designs, a characteristic plane is originally presented relating to pressure-normalized load-carrying capacity and flow rate. Comparisons between various kinds of SGB designs are made, and computational fluid dynamics (CFD) results are plotted in this characteristic plane from which load/flow performances can be directly read out. CFD and comparison results show that the new designs have superior load/flow characteristics. However, the impact of SGB designs upon hemolysis/thrombus formation is still to be verified according to the concept presented.

  15. Method for eliminating gas blocking in electrokinetic pumping systems

    DOEpatents

    Arnold, Don W.; Paul, Phillip H.; Schoeniger, Joseph S.

    2001-09-11

    A method for eliminating gas bubble blockage of current flow during operation of an electrokinetic pump. By making use of the ability to modify the surface charge on the porous dielectric medium used in electrokinetic pumps, it becomes possible to place electrodes away from the pressurized region of the electrokinetic pump. While gas is still generated at the electrodes they are situated such that the generated gas can escape into a larger buffer reservoir and not into the high pressure region of the pump where the gas bubbles can interrupt current flow. Various combinations of porous dielectric materials and ionic conductors can be used to create pumps that have desirable electrical, material handling, and flow attributes.

  16. Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems

    SciTech Connect

    Ally, Moonis Raza; Munk, Jeffrey D; Baxter, Van D

    2011-01-01

    This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

  17. Wind systems for pumping water: a training manual

    SciTech Connect

    Eschenbach, W.

    1984-01-01

    The manual contains information on design and construction of wind systems. Divided into 21 training sessions with schedule of activities and approximate time required for each. Includes many illustrations and tables plus descriptive bibliography of other sources.

  18. Hybrid space heating/cooling system with Trombe wall, underground venting, and assisted heat pump

    NASA Astrophysics Data System (ADS)

    Shirley, J. W.; James, L. C.; Stevens, S.; Autry, A. N.; Nussbaum, M.; McQueen, S. V.

    1983-06-01

    A hybrid solar system/ground loop which automatically assists the standard, thermostatically controlled home heating/cooling system was designed and monitored. The input from the homeowner was limited to normal thermostat operations. During the course of the project it was determined that to effectively gather data and control the various component interactions, a microcomputer based control system would also allow the HVAC system to be optimized by simple changes to software. This flexibility in an untested concept helped us to achieve optimum system performance. Control ranged from direct solar heating and direct ground loop cooling modes, to assistance of the heat pump by both solar space and ground loop. Sensors were strategically placed to provide data on response of the Trombe wall (surface, 4 in. deep, 8 in. deep), and the ground loop (inlet, 3/4 length, outlet). Microcomputer hardware and computer programs were developed to make cost effective decisions between the various modes of operation.

  19. Finite Volume Based Computer Program for Ground Source Heat Pump System

    SciTech Connect

    Menart, James A.

    2013-02-22

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ?Finite Volume Based Computer Program for Ground Source Heat Pump Systems.? The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump

  20. Recovery Act: Finite Volume Based Computer Program for Ground Source Heat Pump Systems

    SciTech Connect

    James A Menart, Professor

    2013-02-22

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled Finite Volume Based Computer Program for Ground Source Heat Pump Systems. The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The

  1. Designing Interactive Learning Systems.

    ERIC Educational Resources Information Center

    Barker, Philip

    1990-01-01

    Describes multimedia, computer-based interactive learning systems that support various forms of individualized study. Highlights include design models; user interfaces; design guidelines; media utilization paradigms, including hypermedia and learner-controlled models; metaphors and myths; authoring tools; optical media; workstations; four case…

  2. Instructional Design: System Strategies.

    ERIC Educational Resources Information Center

    Ledford, Bruce R.; Sleeman, Phillip J.

    This book is intended as a source for those who desire to apply a coherent system of instructional design, thereby insuring accountability. Chapter 1 covers the instructional design process, including: instructional technology; the role of evaluation; goal setting; the psychology of teaching and learning; task analysis; operational objectives;…

  3. Commercialization of PV-powered pumping systems for use in utility PV service programs. Final report

    SciTech Connect

    1997-03-01

    The project described in this report was a commercialization effort focused on cost-effective remote water pumping systems for use in utility-based photovoltaic (PV) service programs. The project combined a commercialization strategy tailored specifically for electric utilities with the development of a PV-powered pumping system that operates conventional ac pumps rather than relying on the more expensive and less reliable PV pumps on the market. By combining these two attributes, a project goal was established of creating sustained utility purchases of 250 PV-powered water pumping systems per year. The results of each of these tasks are presented in two parts contained in this Final Summary Report. The first part summarizes the results of the Photovoltaic Services Network (PSN) as a new business venture, while the second part summarizes the results of the Golden Photon system installations. Specifically, results and photographs from each of the system installations are presented in this latter part.

  4. Geothermal Heat Pump System for New Student Housing Project at the University at Albany Main Campus

    SciTech Connect

    Lnu, Indumathi

    2015-08-27

    University at Albany successfully designed, constructed and is operating a new student housing building that utilizes ground source heat pump (GSHP) for heating and cooling the entire 191,500SF building. The installed system consists of a well field with 150 bores, 450 feet deep and (189) terminal heat pump units for a total capacity of 358 Tons cooling and 4,300 MBtu/h heating. The building opened in Fall 2012. The annual energy use and cost intensity of the building, after the changes made during the first 2 years’ of operation is 57kBtu/SF/Year and $1.30/SF/Year respectively. This is approximately 50% lower than the other residential quads on campus, despite the fact that the quads are not air-conditioned. The total project cost from design through 3-years of operations is approximately $6 Million, out of which $5.7 Million is for construction of the GSHP system including the well field. The University received a $2.78 Million grant from the Department of Energy. The estimated utility cost savings, compared to a baseline building with conventional HVAC system, is approximately $185,000. The estimated simple payback, after grant incentives, is 15 years. Additionally, the project has created 8.5FTE equivalent jobs.

  5. Evaluation and testing of metering pumps for high-level nuclear waste slurries

    SciTech Connect

    Peterson, M.E.; Perez, J.M. Jr.; Blair, H.T.

    1986-06-01

    The metering pump system that delivers high-level liquid wastes (HLLW) slurry to a melter is an integral subsystem of the vitrification process. The process of selecting a pump for this application began with a technical review of pumps typically used for slurry applications. The design and operating characteristics of numerous pumps were evaluated against established criteria. Two pumps, an air-displacement slurry (ADS) pump and an air-lift pump, were selected for further development. In the development activity, from FY 1983 to FY 1985, the two pumps were subjected to long-term tests using simulated melter feed slurries to evaluate the pumps' performances. Throughout this period, the designs of both pumps were modified to better adapt them for this application. Final reference designs were developed for both the air-displacement slurry pump and the air-lift pump. Successful operation of the final reference designs has demonstrated the feasibility of both pumps. A fully remote design of the ADS pump has been developed and is currently undergoing testing at the West Valley Demonstration Project. Five designs of the ADS pump were tested and evaluated. The initial four designs proved the operating concept of the ADS pump. Weaknesses in the ADS pump system were identified and eliminated in later designs. A full-scale air-lift pump was designed and tested as a final demonstration of the air-lift pump's capabilities.

  6. Remote Systems Design & Deployment

    SciTech Connect

    Bailey, Sharon A.; Baker, Carl P.; Valdez, Patrick LJ

    2009-08-28

    The Pacific Northwest National Laboratory (PNNL) was tasked by Washington River Protection Solutions, LLC (WRPS) to provide information and lessons learned relating to the design, development and deployment of remote systems, particularly remote arm/manipulator systems. This report reflects PNNL’s experience with remote systems and lays out the most important activities that need to be completed to successfully design, build, deploy and operate remote systems in radioactive and chemically contaminated environments. It also contains lessons learned from PNNL’s work experiences, and the work of others in the national laboratory complex.

  7. Design optimization and testing of a pump wear ring labyrinth seal

    NASA Technical Reports Server (NTRS)

    Rhode, D. L.; Morrison, G. L.; Ko, S. H.

    1988-01-01

    It has been demonstrated that design optimization of labyrinth seals using the present numerical model is quite beneficial. The results shown include important, but previously unknown effects on the leakage rate, especially that of step height. Further, complete details are given of a very effective seal designed using this technique for the SSME high pressure hydrogen turbopump. Measurements using turbine flow meters revealed that the optimized configuration gives 67 percent leakage reduction over the original design. These measurements also reveal important leakage effects of the axial straining of the stator, which begins during pump start-up.

  8. Today's ground source heat pumps

    SciTech Connect

    Bose, J.E.

    1993-01-01

    Ground source heat pumps are one of the nation's fastest growing businesses in terms of increased sales of equipment as reported by water source heat pump manufacturers. The success can be attributed in part to these heat pump's reputation as a cost saving system and more recently as an environmentally sound concept. Engineers having an interest in ground source technology come from a large and diverse audience consisting of those who have heard about ground source systems and are contemplating entering the business and those who are experienced and looking to broaden their application base. This article discusses the water source heat pump and its benefits, the commercial Water Loop Heat Pump (WLHP), the ground source heat pump, the commercial Closed Loop/Ground Coupled WLHP, designing a ground heat exchanger, information available for design, and successful systems.

  9. Anti-foam System design description

    SciTech Connect

    White, M.A.

    1994-09-30

    The Anti-foam System is a sub-system of the 242-A Evaporator facility. The Anti-foam is used within the C-A-1 Vapor-Liquid Separator, to reduce the effect of foaming and reduce fluid bumping while the vapor and liquid are separated within the C-A-1 Vapor-Liquid Separator. Excessive foaming within the vessel may possibly cause the liquid slurry mixture in the evaporator vessel to foul the de-entrainment pads and cause plant shutdown. The Anti-foam System consists of the following primary elements: the Anti-foam Tank and the Metering Pump. The upgrades to Anti-foam System include the following: installation of a new pump, instruments, and valves; and connection of the instruments, pump and agitator associated with the Anti-foam System to the Monitoring and Control System (MCS). The 242-A Evaporator is a waste treatment facility designed to reduce liquid waste volumes currently stored in the Hanford Area double shell Waste Storage Tanks. The evaporator uses evaporative concentration to achieve this volume reduction, returning the concentrated slurry to the double-shell tanks for storage and, at the same time, releasing the process effluent to a retention facilities for eventual treatment and release to the environment.

  10. Design and manufacturing of a piezoelectric traveling-wave pumping device.

    PubMed

    Hernandez, Camilo; Bernard, Yves; Razek, Adel

    2013-09-01

    In this article, we present the design and construction of a micropump exhibiting a nontraditional pumping principle whose design is achievable at very low scales. The operation is based on the action of a mechanical traveling wave deforming the bottom wall of a flexible channel containing a fluid. The paper treats for the first time the influence of the traveling wave parameters on the performance of the pump with the help of finite element simulations. The results obtained from the simulation are subsequently used for the dimensioning of the linear ultrasonic traveling wave actuator that drives the device. Finally, a very simple channel-reservoirs structure was conceived to test the device. At this point, several measurements of flow rate and back pressure were carried out to estimate the performance of the prototype for different values of wave amplitude. The article finishes with a comparison between the numerical and experimental results and a brief section of discussion and conclusions.

  11. Rheological measurements on different types of sewage sludge for pumping design.

    PubMed

    Lotito, Vincenzo; Lotito, Adriana Maria

    2014-05-01

    Sewage sludge pumping could represent an optimal solution to assure adequate treatment of sludge in centralized plants, with a consequent reduction of the environmental impact of sludge disposal (volume, odour, putrescence), because small wastewater treatment plants usually do not provide an adequate treatment due to high costs. An accurate knowledge of rheological parameters is required to compute head loss for pipeline design, but only few data are available. In order to circumvent the problem of the scarcity of sludge rheological data, we have performed tests on different types of sludge, with solids concentration and temperature in the typical range of a conventional wastewater treatment plant. Bingham rheological parameters and sludge thixotropy values have been processed by regression analysis to identify their dependence on solids concentration or temperature. The results of this study allow the definition of guidelines and optimal strategies for designers in order to reduce pumping costs.

  12. Operational fact-finding report on heat pump systems for industrial use

    NASA Astrophysics Data System (ADS)

    Kamisawa, Jun

    1988-03-01

    Operational circumstances of heat pump systems for industrial use were widely investigated to open their successful cases in practical applications to the public and to widely spread them throughout the industrial sector. As a summary of questionaire totaled 144 cases, 79 cases were motor-operated heat pumps, 37 cases absorption heat pumps and 28 cases engine-driven heat pumps, and, in application, 65 cases were manufacturing process use, 46 cases for factory air conditioning and 5 cases for others (such as snow melting and pool water heating). Most of them were motor-operated heat pumps in application of heat sources for manufacturing process and air conditioning, however, it was recognized a trend toward spreading uses for primary industries and increasing absorption heat pumps and engine-driven heat pumps. As for successful examples, outlines of a motor-operated heat pump system for distilling alcohol at Osaka Plant of Suntory Ltd. and an absorption heat pump system for refining alcohol at Ishioka Alcohol Factory of NEDO (New Energy and Industrial Technology Development Organization) and others were illustrated. Their operational circumstances and energy conservation results were investigated.

  13. Designing future photovoltaic systems

    SciTech Connect

    Jones, G.J.

    1984-01-01

    The large scale use of photovoltaic systems to generate our electricity is a dream for the future; but if this dream is to be realized, we must understand these systems today. As a result, there has been extensive research into the design and economic tradeoffs of utility interconnected photovoltaic applications. The understanding gained in this process has shown that photovoltaic system design can be a very simple and straight-forward endeavor. This paper reviews those past studies and shows how we have reached the present state of system design evolution. The concept of the utility interactive PV system with energy value determined by the utility's avoided cost will be explored. This concept simplifies the screening of potential applications for economic viability, and we will present several rules-of-thumb for this purpose.

  14. Hazard Evaluation for the Saltwell Chempump and a Saltwell Centrifugal Pump Design using Service Water for Lubrication and Cooling

    SciTech Connect

    GRAMS, W.H.

    2000-11-16

    This report documents results of a preliminary hazard analysis (PHA) covering the existing Crane Chempump and the new salt well pumping design. Three hazardous conditions were identified for the Chempump and ten hazardous conditions were identified for the new salt well pump design. This report also presents the results of the control decision/allocation process. A backflow preventer and associated limiting condition for operation were assigned to one hazardous condition with the new design.

  15. Numerical design of a Knudsen pump with curved channels operating in the slip flow regime

    NASA Astrophysics Data System (ADS)

    Leontidis, Vlasios; Chen, Jie; Baldas, Lucien; Colin, Stéphane

    2014-08-01

    A numerical procedure has been developed for modeling 2D thermal creep flows with Fluent®. Complete first order velocity slip, including thermal creep and walls curvature effects, as well as temperature jump, boundary conditions, are implemented via C routines. After validation on benchmark flows, the technique is used for designing a Knudsen pump with curved microchannels and it is demonstrated that this micropump can be efficient in the slip flow regime.

  16. Hazard Evaluation for a Salt Well Centrifugal Pump Design Using Service Water for Lubrication and Cooling

    SciTech Connect

    GRAMS, W.H.

    2000-10-09

    This report documents the results of a preliminary hazard analysis (PHA) covering the new salt well pump design. The PHA identified ten hazardous conditions mapped to four analyzed accidents: flammable gas deflagrations, fire in contaminated area, tank failure due to excessive loads, and waste transfer leaks. This document also presents the results of the control decision/allocation process. A backflow preventer and associated limiting condition were assigned.

  17. Design of the ONR AxWJ-2 Axial Flow Water Jet Pump

    DTIC Science & Technology

    2008-11-01

    performance of a water jet pump design. The mesh for Fluent is created using Ansys IcemCFD Hexa. ICEM is used to create a structured topology domain...both generated by rotating and scaling data from the Tecplot output of NCBLADE. Once the geometry is imported to ICEM , the topology domain is divided...edges not on surfaces are given an imported curve to snap to. Once the topology is fitted to the geometry, ICEM writes out a Fluent input mesh. The

  18. Study of hybrid power system potential to power agricultural water pump in mountain area

    NASA Astrophysics Data System (ADS)

    Syuhada, Ahmad; Mubarak, Amir Zaki; Maulana, M. Ilham

    2016-03-01

    As industry and Indonesian economy grow fast, there are a lot of agricultural land has changed into housing and industrial land. This causes the agricultural land moves to mountain area. In mountainous agricultural area, farmers use the water resources of small rivers in the groove of the mountain to irrigate the farmland. Farmers use their power to lift up water from the river to their land which causes inefectivity in the work of the farmers. Farmers who have capital utilize pump to raise water to their land. The only way to use pump in mountain area is by using fuel energy as there is no electricity, and the fuel price in mountain area is very expensive. Based on those reasons it is wise to consider the exploration of renewable energy available in the area such as solar energy, wind energy and hybrid energy. This study analyses the potential of the application of hybrid power plant, which is the combination of solar and wind energy, to power agricultural pump. In this research, the data of wind speed and solar radiation are collected from the measurement of BMKG SMPK Plus Sare. Related to the solar energy, the photovoltaic output power calculation is 193 W with duration of irradiation of 5 hours/day. While for the wind energy, the output power of the wind turbine is 459.84 W with blade diameter of 3 m and blow duration of 7 hours/day. The power of the pump is 558 W with 8 hours of usage, and the water capacity is 2.520 liters/hour for farmland with the area of 15 ha. Based on the analysis result, the designed system will generate electricity of 3.210 kW/year with initial investment of US 14,938.

  19. A novel integrated rotor of axial blood flow pump designed with computational fluid dynamics.

    PubMed

    Zhang, Yan; Xue, Song; Gui, Xing-min; Sun, Han-song; Zhang, Hao; Zhu, Xiao-dong; Hu, Sheng-Shou

    2007-07-01

    Due to the smaller size, smaller artificial surface, and higher efficiency, axial blood pumps have been widely applied in clinic in recent years. However, because of its high rotor speed, axial flow pump always has a high risk for hemolysis, which the red blood cells devastated by the shearing of tip clearance flow. We reported a novel design with the integrated blade-shroud structure that was expected to solve this problem by abolishing the radial clearance between blade and casing designed with the techniques of computational fluid dynamics (CFD). However, the numerical simulation result of the newly designed structure showed an unexpected backflow (where flow velocity is reverse of the main flow direction) at the blade tip. In order to eliminate this backflow, four flow passes were attempted, and the expansion angles (which reflect the radial amplification of the flow pass, on the meridional section, and should be defined as the angle between the center line of the flow pass and the axial direction) of the blades of the integrated rotor are 0 degrees, 8 degrees, 15 degrees, and 20 degrees, respectively. In the CFD result, it could be easily found as the expansion angles increased, the backflow was restrained gradually, and was eliminated at last. After numerous "cut and try" circles, the pump model was finally optimized. The numerical simulation of this model also showed a stable hydraulic characteristic.

  20. Multiphysics Modeling of an Annular Linear Induction Pump With Applications to Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Kilbane, J.; Polzin, K. A.

    2014-01-01

    An annular linear induction pump (ALIP) that could be used for circulating liquid-metal coolant in a fission surface power reactor system is modeled in the present work using the computational COMSOL Multiphysics package. The pump is modeled using a two-dimensional, axisymmetric geometry and solved under conditions similar to those used during experimental pump testing. Real, nonlinear, temperature-dependent material properties can be incorporated into the model for both the electrically-conducting working fluid in the pump (NaK-78) and structural components of the pump. The intricate three-phase coil configuration of the pump is implemented in the model to produce an axially-traveling magnetic wave that is qualitatively similar to the measured magnetic wave. The model qualitatively captures the expected feature of a peak in efficiency as a function of flow rate.