Sample records for pure component parameters

  1. Least Squares Best Fit Method for the Three Parameter Weibull Distribution: Analysis of Tensile and Bend Specimens with Volume or Surface Flaw Failure

    NASA Technical Reports Server (NTRS)

    Gross, Bernard

    1996-01-01

    Material characterization parameters obtained from naturally flawed specimens are necessary for reliability evaluation of non-deterministic advanced ceramic structural components. The least squares best fit method is applied to the three parameter uniaxial Weibull model to obtain the material parameters from experimental tests on volume or surface flawed specimens subjected to pure tension, pure bending, four point or three point loading. Several illustrative example problems are provided.

  2. Gradient Theory simulations of pure fluid interfaces using a generalized expression for influence parameters and a Helmholtz energy equation of state for fundamentally consistent two-phase calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahms, Rainer N.

    2014-12-31

    The fidelity of Gradient Theory simulations depends on the accuracy of saturation properties and influence parameters, and require equations of state (EoS) which exhibit a fundamentally consistent behavior in the two-phase regime. Widely applied multi-parameter EoS, however, are generally invalid inside this region. Hence, they may not be fully suitable for application in concert with Gradient Theory despite their ability to accurately predict saturation properties. The commonly assumed temperature-dependence of pure component influence parameters usually restricts their validity to subcritical temperature regimes. This may distort predictions for general multi-component interfaces where temperatures often exceed the critical temperature of vapor phasemore » components. Then, the calculation of influence parameters is not well defined. In this paper, one of the first studies is presented in which Gradient Theory is combined with a next-generation Helmholtz energy EoS which facilitates fundamentally consistent calculations over the entire two-phase regime. Illustrated on pentafluoroethane as an example, reference simulations using this method are performed. They demonstrate the significance of such high-accuracy and fundamentally consistent calculations for the computation of interfacial properties. These reference simulations are compared to corresponding results from cubic PR EoS, widely-applied in combination with Gradient Theory, and mBWR EoS. The analysis reveals that neither of those two methods succeeds to consistently capture the qualitative distribution of obtained key thermodynamic properties in Gradient Theory. Furthermore, a generalized expression of the pure component influence parameter is presented. This development is informed by its fundamental definition based on the direct correlation function of the homogeneous fluid and by presented high-fidelity simulations of interfacial density profiles. As a result, the new model preserves the accuracy of previous temperature-dependent expressions, remains well-defined at supercritical temperatures, and is fully suitable for calculations of general multi-component two-phase interfaces.« less

  3. Application of a constant hole volume Sanchez-Lacombe equation of state to mixtures relevant to polymeric foaming.

    PubMed

    von Konigslow, Kier; Park, Chul B; Thompson, Russell B

    2018-06-06

    A variant of the Sanchez-Lacombe equation of state is applied to several polymers, blowing agents, and saturated mixtures of interest to the polymer foaming industry. These are low-density polyethylene-carbon dioxide and polylactide-carbon dioxide saturated mixtures as well as polystyrene-carbon dioxide-dimethyl ether and polystyrene-carbon dioxide-nitrogen ternary saturated mixtures. Good agreement is achieved between theoretically predicted and experimentally determined solubilities, both for binary and ternary mixtures. Acceptable agreement with swelling ratios is found with no free parameters. Up-to-date pure component Sanchez-Lacombe characteristic parameters are provided for carbon dioxide, dimethyl ether, low-density polyethylene, nitrogen, polylactide, linear and branched polypropylene, and polystyrene. Pure fluid low-density polyethylene and nitrogen parameters exhibit more moderate success while still providing acceptable quantitative estimations. Mixture estimations are found to have more moderate success where pure components are not as well represented. The Sanchez-Lacombe equation of state is found to correctly predict the anomalous reversal of solubility temperature dependence for low critical point fluids through the observation of this behaviour in polystyrene nitrogen mixtures.

  4. Benzoic Acid and Chlorobenzoic Acids: Thermodynamic Study of the Pure Compounds and Binary Mixtures With Water.

    PubMed

    Reschke, Thomas; Zherikova, Kseniya V; Verevkin, Sergey P; Held, Christoph

    2016-03-01

    Benzoic acid is a model compound for drug substances in pharmaceutical research. Process design requires information about thermodynamic phase behavior of benzoic acid and its mixtures with water and organic solvents. This work addresses phase equilibria that determine stability and solubility. In this work, Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) was used to model the phase behavior of aqueous and organic solutions containing benzoic acid and chlorobenzoic acids. Absolute vapor pressures of benzoic acid and 2-, 3-, and 4-chlorobenzoic acid from literature and from our own measurements were used to determine pure-component PC-SAFT parameters. Two binary interaction parameters between water and/or benzoic acid were used to model vapor-liquid and liquid-liquid equilibria of water and/or benzoic acid between 280 and 413 K. The PC-SAFT parameters and 1 binary interaction parameter were used to model aqueous solubility of the chlorobenzoic acids. Additionally, solubility of benzoic acid in organic solvents was predicted without using binary parameters. All results showed that pure-component parameters for benzoic acid and for the chlorobenzoic acids allowed for satisfying modeling phase equilibria. The modeling approach established in this work is a further step to screen solubility and to predict the whole phase region of mixtures containing pharmaceuticals. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  5. Tin whiskers in electronic circuits

    NASA Astrophysics Data System (ADS)

    Stupian, Gary W.

    1992-12-01

    Fibrous, conducting 'whiskers' often grow on pure tin plating. These tin whiskers have, for many years, been known to pose a reliability problem in electronic circuitry; therefore, the use of pure tin coatings in any critical electronic application is not recommended. Despite the warnings of the experts, tin plating is still found on electronic and mechanical components and problems with whiskers still arise. This document summarizes what is known about the growth of tin whiskers. A number of factors (e.g., coating thickness, plating conditions) are thought to be important in determining whether whiskers will grow. Although tin whiskers have been investigated from some decades, there is still disagreement on the effects of virtually every coating parameter. There is no disagreement, however, on the essential fact that it is very difficult to predict with certainty whether whiskers will grow on any specific tin-plated component, which of course is the basis of the 'experts' advice not to use pure tin plating. If tin-plated components are found in an electronic system, replacement is the safest policy. Some additional recommendations to minimize risk are presented here that may be of use in situations in which replacement of all suspect components is not the option of choice because of cost or schedule constraints.

  6. A new approximate sum rule for bulk alloy properties

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John

    1991-01-01

    A new, approximate sum rule is introduced for determining bulk properties of multicomponent systems, in terms of the pure components properties. This expression is applied for the study of lattice parameters, cohesive energies, and bulk moduli of binary alloys. The correct experimental trends (i.e., departure from average values) are predicted in all cases.

  7. Group Contribution Methods for Phase Equilibrium Calculations.

    PubMed

    Gmehling, Jürgen; Constantinescu, Dana; Schmid, Bastian

    2015-01-01

    The development and design of chemical processes are carried out by solving the balance equations of a mathematical model for sections of or the whole chemical plant with the help of process simulators. For process simulation, besides kinetic data for the chemical reaction, various pure component and mixture properties are required. Because of the great importance of separation processes for a chemical plant in particular, a reliable knowledge of the phase equilibrium behavior is required. The phase equilibrium behavior can be calculated with the help of modern equations of state or g(E)-models using only binary parameters. But unfortunately, only a very small part of the experimental data for fitting the required binary model parameters is available, so very often these models cannot be applied directly. To solve this problem, powerful predictive thermodynamic models have been developed. Group contribution methods allow the prediction of the required phase equilibrium data using only a limited number of group interaction parameters. A prerequisite for fitting the required group interaction parameters is a comprehensive database. That is why for the development of powerful group contribution methods almost all published pure component properties, phase equilibrium data, excess properties, etc., were stored in computerized form in the Dortmund Data Bank. In this review, the present status, weaknesses, advantages and disadvantages, possible applications, and typical results of the different group contribution methods for the calculation of phase equilibria are presented.

  8. Utilization of waste glycerin to fuelling of spark ignition engines

    NASA Astrophysics Data System (ADS)

    Stelmasiak, Z.; Pietras, D.

    2016-09-01

    The paper discusses a possibilities of usage a simple alcohols to fuelling of spark ignition engines. Methanol and blends of methanol with glycerin, being a waste product from production of bio-components to fuels based on rapeseed oil, have been used in course of the investigations. The main objective of the research was to determine possibilities of utilization of glycerin to blending of engine fuels. The investigations have been performed using the Fiat 1100 MPI engine. Parameters obtained with the engine powered by pure methanol and by methanol- glycerin mixtures with 10÷30%vol content of glycerin were compared to parameters of the engine fuelled conventionally with the E95 gasoline. The investigations have shown increase of overall efficiency of the engine run on pure methanol with 2.5÷5.0%, and run on the mixture having 10% addition of glycerin with 2.0÷7.8%. Simultaneously, fuelling of the engine with the investigated alcohols results in reduced concentration of toxic components in exhaust gases like: CO, THC and NOx, as well as the greenhouse gas CO2.

  9. Pure spin current manipulation in antiferromagnetically exchange coupled heterostructures

    NASA Astrophysics Data System (ADS)

    Avilés-Félix, L.; Butera, A.; González-Chávez, D. E.; Sommer, R. L.; Gómez, J. E.

    2018-03-01

    We present a model to describe the spin currents generated by ferromagnet/spacer/ferromagnet exchange coupled trilayer systems and heavy metal layers with strong spin-orbit coupling. By exploiting the magnitude of the exchange coupling (oscillatory RKKY-like coupling) and the spin-flop transition in the magnetization process, it has been possible to produce spin currents polarized in arbitrary directions. The spin-flop transition of the trilayer system originates pure spin currents whose polarization vector depends on the exchange field and the magnetization equilibrium angles. We also discuss a protocol to control the polarization sign of the pure spin current injected into the metallic layer by changing the initial conditions of magnetization of the ferromagnetic layers previously to the spin pumping and inverse spin Hall effect experiments. The small differences in the ferromagnetic layers lead to a change in the magnetization vector rotation that permits the control of the sign of the induced voltage components due to the inverse spin Hall effect. Our results can lead to important advances in hybrid spintronic devices with new functionalities, particularly, the ability to control microscopic parameters such as the polarization direction and the sign of the pure spin current through the variation of macroscopic parameters, such as the external magnetic field or the thickness of the spacer in antiferromagnetic exchange coupled systems.

  10. Detection of adulterated commercial Spanish beeswax.

    PubMed

    Serra Bonvehi, J; Orantes Bermejo, F J

    2012-05-01

    The physical and chemical parameters (melting point and saponification number), and the fraction of hydrocarbons, monoesters, acids and alcohols have been determined in 90 samples of Spanish commercial beeswax from Apis mellifera L. The adulteration with paraffins of different melting point, cow tallow, stearic acid, and carnauba wax were determined by HTGC-FID/MS detection, and the research was focussed mainly on paraffins and microcrystallines waxes. In general, the added adulterant can be identified by the presence of non-naturally beeswax components, and by the differences of values of selected components between pure and adulterated beeswax. The detection limits were determined using pure and adulterated beeswax with different amounts of added waxes (5%, 10%, 20% and 30%). Percentages higher than 1-5% of each adulterant can be detected in the mixtures. Paraffin waxes were confirmed in 33 of the 90 samples analysed at concentrations between 5% and 30%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Clinicopathological analysis of mixed endometrial carcinomas: clinical relevance of different neoplastic components.

    PubMed

    Rossi, Esther Diana; Bizzarro, Tommaso; Monterossi, Giorgia; Inzani, Frediano; Fanfani, Francesco; Scambia, Giovanni; Zannoni, Gian Franco

    2017-04-01

    Mixed endometrial carcinomas (MECs) refer to tumors characterized by 2 or more distinct histotypes mostly that comprised endometrioid (EC) and serous/clear cell carcinomas (SC/CC). The specific quantification of these distinct components represents a challenging and critical point for both prognosis and management. Herein, we analyze a large series of MEC and compare them with EC and SC/CC. We evaluated a series of 69 MECs between January 2002 and December 2015. We compared the MEC series with 186 ECs (including 117 endometrioid G3), 31 SCs, and 38 CCs. The prognostic implication of the percentage of each component was analyzed. Among the 69 MECs, those patients older than 45 years represent the significant population, with 52.2% of them with stage III-IV disease. A similar result was found among pure SC. The comparative analysis of some prognostic parameters (multifocality, vascular invasion, and lymph node metastasis) underlined that MECs with a type II component larger than 5% represent a more aggressive entity. However, relapse, disease-free survival, mortality, and overall survival are statistically significant (P<.05) in EC-SC (SC<5%or >5%) and in EC-CC (CC<5%or >5%), whereas they are not significant (P>.05) in SC-CC (SC/CC<%or >5%). MECs, including also cases with less than 5% of SC/CC, show features as aggressive as those of pure SC/CC. In this perspective, MEC should be followed by personalized and tailored managements. The presence of different components suggests different pathogenic and metastatic processes when compared with pure carcinomas. Copyright © 2016. Published by Elsevier Inc.

  12. A Simple Protein Synthesis Model for the PURE System Operation.

    PubMed

    Mavelli, Fabio; Marangoni, Roberto; Stano, Pasquale

    2015-06-01

    The encapsulation of transcription-translation (TX-TL) cell-free machinery inside lipid vesicles (liposomes) is a key element in synthetic cell technology. The PURE system is a TX-TL kit composed of well-characterized parts, whose concentrations are fine tunable, which works according to a modular architecture. For these reasons, the PURE system perfectly fulfils the requirements of synthetic biology and is widely used for constructing synthetic cells. In this work, we present a simplified mathematical model to simulate the PURE system operations. Based on Michaelis-Menten kinetics and differential equations, the model describes protein synthesis dynamics by using 9 chemical species, 6 reactions and 16 kinetic parameters. The model correctly predicts the time course for messenger RNA and protein production and allows quantitative predictions. By means of this model, it is possible to foresee how the PURE system species affect the mechanism of proteins synthesis and therefore help in understanding scenarios where the concentration of the PURE system components has been modified purposely or as a result of stochastic fluctuations (for example after random encapsulation inside vesicles). The model also makes the determination of response coefficients for all species involved in the TX-TL mechanism possible and allows for scrutiny on how chemical energy is consumed by the three PURE system modules (transcription, translation and aminoacylation).

  13. A generalized procedure for the prediction of multicomponent adsorption equilibria

    DOE PAGES

    Ladshaw, Austin; Yiacoumi, Sotira; Tsouris, Costas

    2015-04-07

    Prediction of multicomponent adsorption equilibria has been investigated for several decades. While there are theories available to predict the adsorption behavior of ideal mixtures, there are few purely predictive theories to account for nonidealities in real systems. Most models available for dealing with nonidealities contain interaction parameters that must be obtained through correlation with binary-mixture data. However, as the number of components in a system grows, the number of parameters needed to be obtained increases exponentially. Here, a generalized procedure is proposed, as an extension of the predictive real adsorbed solution theory, for determining the parameters of any activity model,more » for any number of components, without correlation. This procedure is then combined with the adsorbed solution theory to predict the adsorption behavior of mixtures. As this method can be applied to any isotherm model and any activity model, it is referred to as the generalized predictive adsorbed solution theory.« less

  14. Characterization of Co-Cultivation of Cyanobacteria on Growth, Productions of Polysaccharides and Extracellular Proteins, Nitrogenase Activity, and Photosynthetic Activity.

    PubMed

    Xue, Chuizhao; Wang, Libo; Wu, Tong; Zhang, Shiping; Tang, Tao; Wang, Liang; Zhao, Quanyu; Sun, Yuhan

    2017-01-01

    Cyanobacteria as biofertilizers are benefit to reduce the use of chemical fertilizers and reestablish the ecological system in soil. In general, several strains of cyanobacteria were involved in the biofertilizers. The co-cultivation of cyanobacteria were characterized on growth profile, production of polysaccharides and extracellular proteins, nitrogenase activity, and photosynthetic activity for three selected N 2 -fixing cyanobacteria, Anabaena cylindrica (B1611 and F243) and Nostoc sp. (F280). After eight-day culture, the highest dry weights were obtained in F280 pure culture and co-cultivation of B1611 and F280. Higher production of extracellular proteins and cell-bonding polysaccharides (CPS) were observed in co-cultivations compared with pure culture. The highest released polysaccharides (RPS) contents were obtained in pure culture of F280 and co-cultivation of F280 and F243. Galactose and glucose were major components of CPS and RPS in all samples. Trehalose was a specific component of RPS in F280 pure culture. Based on the monosaccharide contents of CPS and RPS, F280 was the dominant species in the related treatments of co-cultivation. The nitrogenase activities in all treatments exhibited a sharp rise at the late stage while a significant decrease existed when three cyanobacteria strains were mixed. Photosynthetic activities for all treatments were determined with rapid light curve, and the related parameters were estimated.

  15. Molecular-dynamics simulation of mutual diffusion in nonideal liquid mixtures

    NASA Astrophysics Data System (ADS)

    Rowley, R. L.; Stoker, J. M.; Giles, N. F.

    1991-05-01

    The mutual-diffusion coefficients, D 12, of n-hexane, n-heptane, and n-octane in chloroform were modeled using equilibrium molecular-dynamics (MD) simulations of simple Lennard-Jones (LJ) fluids. Pure-component LJ parameters were obtained by comparison of simulations to experimental self-diffusion coefficients. While values of “effective” LJ parameters are not expected to simulate accurately diverse thermophysical properties over a wide range of conditions, it was recently shown that effective parameters obtained from pure self-diffusion coefficients can accurately model mutual diffusion in ideal, liquid mixtures. In this work, similar simulations are used to model diffusion in nonideal mixtures. The same combining rules used in the previous study for the cross-interaction parameters were found to be adequate to represent the composition dependence of D 12. The effect of alkane chain length on D 12 is also correctly predicted by the simulations. A commonly used assumption in empirical correlations of D 12, that its kinetic portion is a simple, compositional average of the intradiffusion coefficients, is inconsistent with the simulation results. In fact, the value of the kinetic portion of D 12 was often outside the range of values bracketed by the two intradiffusion coefficients for the nonideal system modeled here.

  16. Intrinsic trapping of stochastic sheared magnetic field lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negrea, M.; Petrisor, I.; Balescu, R.

    2004-10-01

    The decorrelation trajectory method is applied to the diffusion of magnetic field lines in a perturbed sheared slab magnetic configuration. Some interesting decorrelation trajectories for several values of the magnetic Kubo number and of the shear parameter are exhibited. The asymmetry of the decorrelation trajectories appears in comparison with those obtained in the purely electrostatic case studied in earlier work. The running and asymptotic diffusion tensor components are calculated and displayed.

  17. Phenomenology of mixed states: a principal component analysis study.

    PubMed

    Bertschy, G; Gervasoni, N; Favre, S; Liberek, C; Ragama-Pardos, E; Aubry, J-M; Gex-Fabry, M; Dayer, A

    2007-12-01

    To contribute to the definition of external and internal limits of mixed states and study the place of dysphoric symptoms in the psychopathology of mixed states. One hundred and sixty-five inpatients with major mood episodes were diagnosed as presenting with either pure depression, mixed depression (depression plus at least three manic symptoms), full mixed state (full depression and full mania), mixed mania (mania plus at least three depressive symptoms) or pure mania, using an adapted version of the Mini International Neuropsychiatric Interview (DSM-IV version). They were evaluated using a 33-item inventory of depressive, manic and mixed affective signs and symptoms. Principal component analysis without rotation yielded three components that together explained 43.6% of the variance. The first component (24.3% of the variance) contrasted typical depressive symptoms with typical euphoric, manic symptoms. The second component, labeled 'dysphoria', (13.8%) had strong positive loadings for irritability, distressing sensitivity to light and noise, impulsivity and inner tension. The third component (5.5%) included symptoms of insomnia. Median scores for the first component significantly decreased from the pure depression group to the pure mania group. For the dysphoria component, scores were highest among patients with full mixed states and decreased towards both patients with pure depression and those with pure mania. Principal component analysis revealed that dysphoria represents an important dimension of mixed states.

  18. Structural modeling of carbonaceous mesophase amphotropic mixtures under uniaxial extensional flow.

    PubMed

    Golmohammadi, Mojdeh; Rey, Alejandro D

    2010-07-21

    The extended Maier-Saupe model for binary mixtures of model carbonaceous mesophases (uniaxial discotic nematogens) under externally imposed flow, formulated in previous studies [M. Golmohammadi and A. D. Rey, Liquid Crystals 36, 75 (2009); M. Golmohammadi and A. D. Rey, Entropy 10, 183 (2008)], is used to characterize the effect of uniaxial extensional flow and concentration on phase behavior and structure of these mesogenic blends. The generic thermorheological phase diagram of the single-phase binary mixture, given in terms of temperature (T) and Deborah (De) number, shows the existence of four T-De transition lines that define regions that correspond to the following quadrupolar tensor order parameter structures: (i) oblate (perpendicular, parallel), (ii) prolate (perpendicular, parallel), (iii) scalene O(perpendicular, parallel), and (iv) scalene P(perpendicular, parallel), where the symbols (perpendicular, parallel) indicate alignment of the tensor order ellipsoid with respect to the extension axis. It is found that with increasing T the dominant component of the mixture exhibits weak deviations from the well-known pure species response to uniaxial extensional flow (uniaxial perpendicular nematic-->biaxial nematic-->uniaxial parallel paranematic). In contrast, the slaved component shows a strong deviation from the pure species response. This deviation is dictated by the asymmetric viscoelastic coupling effects emanating from the dominant component. Changes in conformation (oblate <==> prolate) and orientation (perpendicular <==> parallel) are effected through changes in pairs of eigenvalues of the quadrupolar tensor order parameter. The complexity of the structural sensitivity to temperature and extensional flow is a reflection of the dual lyotropic/thermotropic nature (amphotropic nature) of the mixture and their cooperation/competition. The analysis demonstrates that the simple structures (biaxial nematic and uniaxial paranematic) observed in pure discotic mesogens under uniaxial extensional flow are significantly enriched by the interaction of the lyotropic/thermotropic competition with the binary molecular architectures and with the quadrupolar nature of the flow.

  19. Effective optical constants of anisotropic materials

    NASA Technical Reports Server (NTRS)

    Aronson, J. R.; Emslie, A. G.

    1980-01-01

    The applicability of a technique for determining the optical constants of soil or aerosol components on the basis of measurements of the reflectance or transmittance of inhomogeneous samples of component material is investigated. Optical constants for a sample of very pure quartzite were obtained by a specular reflection technique and line parameters were calculated by classical dispersion theory. Predictions of the reflectance of powdered quartz were then derived from optical constants measured for the anisotropic quartz and for pure quartz crystals, and compared with experimental measurements. The calculated spectra are found to resemble each other moderately well in shape, however the reflectance level calculated from the psuedo-optical constants (quartzite) is consistently below that calculated from quartz values. The spectrum calculated from the quartz optical constants is also shown to represent the experimental nonrestrahlen features more accurately. It is thus concluded that although optical constants derived from inhomogeneous materials may represent the spectral features of a powdered sample qualitatively a quantitative fit to observed data is not likely.

  20. Optimization of glibenclamide tablet composition through the combined use of differential scanning calorimetry and D-optimal mixture experimental design.

    PubMed

    Mura, P; Furlanetto, S; Cirri, M; Maestrelli, F; Marras, A M; Pinzauti, S

    2005-02-07

    A systematic analysis of the influence of different proportions of excipients on the stability of a solid dosage form was carried out. In particular, a d-optimal mixture experimental design was applied for the evaluation of glibenclamide compatibility in tablet formulations, consisting of four classic excipients (natrosol as binding agent, stearic acid as lubricant, sorbitol as diluent and cross-linked polyvinylpyrrolidone as disintegrant). The goal was to find the mixture component proportions which correspond to the optimal drug melting parameters, i.e. its maximum stability, using differential scanning calorimetry (DSC) to quickly obtain information about possible interactions among the formulation components. The absolute value of the difference between the melting peak temperature of pure drug endotherm and that in each analysed mixture and the absolute value of the difference between the enthalpy of the pure glibenclamide melting peak and that of its melting peak in the different analyzed mixtures, were chosen as indexes of the drug-excipient interaction degree.

  1. Toward Separating Alpha-lactalbumin and Beta-lactoglobulin Proteins from Whey through Cation-exchange Adsorption

    NASA Astrophysics Data System (ADS)

    El-Sayed, Mayyada; Chase, Howard

    2009-05-01

    This paper describes the cation-exchange adsorption of the two major whey proteins, alpha-lactalbumin (ALA) and beta-lactoglobulin (BLG) with the purpose of establishing a process for isolating them from cow's milk whey. The single- and two-component adsorption of 1.5 mg/ml ALA and 3 mg/ml BLG to the cation-exchanger SP Sepharose FF at 20° C using 0.1 M acetate buffer of pH 3.7 was studied. Langmuir isotherm parameters were determined for the pure proteins. In two-component systems, BLG breakthrough curve exhibited an overshoot phenomenon that gave evidence for the presence of a competitive adsorption between the two proteins. Complete separation occurred and it was possible to obtain each of the two proteins in a pure form. The process was then applied to a whey concentrate mixture where incomplete separation took place. However, BLG was produced with 95% purity and a recovery of 80%, while ALA showed an 84% recovery with low purity.

  2. Aircraft noise synthesis system: Version 4 user instructions

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.; Sullivan, Brenda M.; Grandle, Robert E.

    1987-01-01

    A modified version of the Aircraft Noise Synthesis System with improved directivity and tonal content modeling has been developed. The synthesis system is used to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics such as duration or tonal content are independently varied while the remaining characteristics such as broadband content are held constant. The modified version of the system provides improved modeling of noise directivity patterns and an increased number of pure tone components. User instructions for the modified version of the synthesis system are provided.

  3. Improving the thermal stability and electrical parameters of a liquid crystalline material 4-n-(nonyloxy) benzoic acid by using Li ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Kumar, Satendra; Verma, Rohit; Dwivedi, Aanchal; Dhar, R.; Tripathi, Ambuj

    2018-05-01

    Li ion beam irradiation studies on a liquid crystalline material 4-n-(nonyloxy) benzoic acid (NOBA) have been carried out. The material has phase sequence of I-N-SmC-Cr. Thermodynamic studies demonstrate that an irradiation fluence of 1×1013 ions-cm-2 results in the increased thermal stability of the smectic C (SmC) phase of the material. Dielectric measurements illustrate that the transverse component of the dielectric permittivity and hence the dielectric anisotropy of the material in the nematic (N) and SmC phases are increased as compared to those of the pure material due to irradiation. UV-Visible spectrum of the irradiated material shows an additional peak along with the peak of the pure material. The observed change in the thermodynamic and electrical parameters is attributed to the conversion of some of the dimers of NOBA to monomers of NOBA due to irradiation.

  4. Phase-pure eutectic CoFe2O4-Ba1-xSrxTiO3 composites prepared by floating zone melting

    NASA Astrophysics Data System (ADS)

    Breitenbach, Martin; Ebbinghaus, Stefan G.

    2018-02-01

    Composites consisting of ferrimagnetic CoFe2O4 and ferroelectric Ba1-xSrxTiO3 were grown by the floating zone technique. The influence of Sr substitution, growth rate and atmosphere during the floating zone process were investigated. The formation of the non-ferroelectric, hexagonal modification of BaTiO3 was avoided by a slight Sr substitution of 3 mol% and the formation of BaFe12O19 was suppressed using pure nitrogen as atmosphere during the floating zone melting. These synthesis parameters led to phase-pure, but electrically conductive CoFe2O4-Ba1-xSrxTiO3 composites. A thermal treatment at 973 K in air resulted in a strong increase of the electric resistivity accompanied by a decrease of the unit-cell parameters of both components indicating the healing of oxygen defects. SEM investigations revealed a variety of different geometric structures and crack-free interfaces between both phases. The low porosities observed in the micrographs correspond with densities above 90%. Magnetoelectric (ME) measurements confirmed a coupling between the ferroic orders of both phases with a hysteresis and maximum αME of 1.3 mV Oe-1 cm-1.

  5. Molecular dynamics simulation of real-fluid mutual diffusion coefficients with the Lennard-Jones potential model

    NASA Astrophysics Data System (ADS)

    Stoker, J. M.; Rowley, R. L.

    1989-09-01

    Mutual diffusion coefficients for selected alkanes in carbon tetrachloride were calculated using molecular dynamics and Lennard-Jones (LJ) potentials. Use of effective spherical LJ parameters is desirable when possible for two reasons: (i) computer time is saved due to the simplicity of the model and (ii) the number of parameters in the model is kept to a minimum. Results of this study indicate that mutual diffusivity is particularly sensitive to the molecular size cross parameter, σ12, and that the commonly used Lorentz-Berthelot rules are inadequate for mixtures in which the component structures differ significantly. Good agreement between simulated and experimental mutual diffusivities is obtained with a combining rule for σ12 which better represents these asymmetric mixtures using pure component LJ parameters obtained from self-diffusion coefficient data. The effect of alkane chain length on the mutual diffusion coefficient is correctly predicted. While the effects of alkane branching upon the diffusion coefficient are comparable in size to the uncertainty of these calculations, the qualitative trend due to branching is also correctly predicted by the MD results.

  6. Acquisition of a full-resolution image and aliasing reduction for a spatially modulated imaging polarimeter with two snapshots

    PubMed Central

    Zhang, Jing; Yuan, Changan; Huang, Guohua; Zhao, Yinjun; Ren, Wenyi; Cao, Qizhi; Li, Jianying; Jin, Mingwu

    2018-01-01

    A snapshot imaging polarimeter using spatial modulation can encode four Stokes parameters allowing instantaneous polarization measurement from a single interferogram. However, the reconstructed polarization images could suffer a severe aliasing signal if the high-frequency component of the intensity image is prominent and occurs in the polarization channels, and the reconstructed intensity image also suffers reduction of spatial resolution due to low-pass filtering. In this work, a method using two anti-phase snapshots is proposed to address the two problems simultaneously. The full-resolution target image and the pure interference fringes can be obtained from the sum and the difference of the two anti-phase interferograms, respectively. The polarization information reconstructed from the pure interference fringes does not contain the aliasing signal from the high-frequency component of the object intensity image. The principles of the method are derived and its feasibility is tested by both computer simulation and a verification experiment. This work provides a novel method for spatially modulated imaging polarization technology with two snapshots to simultaneously reconstruct a full-resolution object intensity image and high-quality polarization components. PMID:29714224

  7. Effects of sodium citrate and acid citrate dextrose solutions on cell counts and growth factor release from equine pure-platelet rich plasma and pure-platelet rich gel.

    PubMed

    Giraldo, Carlos E; Álvarez, María E; Carmona, Jorge U

    2015-03-14

    There is a lack information on the effects of the most commonly used anticoagulants for equine platelet rich plasmas (PRPs) elaboration on cell counts and growth factor release from platelet rich gels (PRGs). The aims of this study were 1) to compare the effects of the anticoagulants sodium citrate (SC), acid citrate dextrose solution A (ACD-A) and ACD-B on platelet (PLT), leukocyte (WBC) and on some parameters associated to platelet activation including mean platelet volume (MPV) and platelet distribution width (PDW) between whole blood, pure PRP (P-PRP) and platelet-poor plasma (PPP); 2) to compare transforming growth factor beta 1 (TGF-β(1)) and platelet-derived growth factor isoform BB (PDGF-BB) concentrations in supernatants from pure PRG (P-PRG), platelet-poor gel (PPG), P-PRP lysate (positive control) and plasma (negative control); 3) to establish the possible correlations between all the studied cellular and molecular parameters. In all cases the three anticoagulants produced P-PRPs with significantly higher PLT counts compared with whole blood and PPP. The concentrations of WBCs were similar between P-PRP and whole blood, but significantly lower in PPP. The type of anticoagulant did not significantly affect the cell counts for each blood component. The anticoagulants also did not affect the MPV and PDW parameters. Independently of the anticoagulant used, all blood components presented significantly different concentrations of PDGF-BB and TGF-β(1). The highest growth factor (GF) concentrations were observed from P-PRP lysates, followed by PRG supernatants, PPP lysates, PPG supernatants and plasma. Significant correlations were observed between PLT and WBC counts (ρ = 0.80), PLT count and TGF-β(1) concentration (ρ = 0.85), PLT count and PDGF-BB concentration (ρ = 0.80) and PDGF-BB and TGF-β(1) concentrations (ρ = 0.75). The type of anticoagulant was not correlated with any of the variables evaluated. The anticoagulants did not significantly influence cell counts or GF concentrations in equine PRP. However, ACD-B was apparently the worst anticoagulant evaluated. It is necessary to perform additional research to determine the effect of anticoagulants on the kinetics of GF elution from P-PRG.

  8. The isotropic-nematic phase transition of tangent hard-sphere chain fluids—Pure components

    NASA Astrophysics Data System (ADS)

    van Westen, Thijs; Oyarzún, Bernardo; Vlugt, Thijs J. H.; Gross, Joachim

    2013-07-01

    An extension of Onsager's second virial theory is developed to describe the isotropic-nematic phase transition of tangent hard-sphere chain fluids. Flexibility is introduced by the rod-coil model. The effect of chain-flexibility on the second virial coefficient is described using an accurate, analytical approximation for the orientation-dependent pair-excluded volume. The use of this approximation allows for an analytical treatment of intramolecular flexibility by using a single pure-component parameter. Two approaches to approximate the effect of the higher virial coefficients are considered, i.e., the Vega-Lago rescaling and Scaled Particle Theory (SPT). The Onsager trial function is employed to describe the orientational distribution function. Theoretical predictions for the equation of state and orientational order parameter are tested against the results from Monte Carlo (MC) simulations. For linear chains of length 9 and longer, theoretical results are in excellent agreement with MC data. For smaller chain lengths, small errors introduced by the approximation of the higher virial coefficients become apparent, leading to a small under- and overestimation of the pressure and density difference at the phase transition, respectively. For rod-coil fluids of reasonable rigidity, a quantitative comparison between theory and MC simulations is obtained. For more flexible chains, however, both the Vega-Lago rescaling and SPT lead to a small underestimation of the location of the phase transition.

  9. Synergetic Use of Principal Component Analysis Applied to Normed Physicochemical Measurements and GC × GC-MS to Reveal the Stabilization Effect of Selected Essential Oils on Heated Rapeseed Oil.

    PubMed

    Sghaier, Lilia; Cordella, Christophe B Y; Rutledge, Douglas N; Lefèvre, Fanny; Watiez, Mickaël; Breton, Sylvie; Sassiat, Patrick; Thiebaut, Didier; Vial, Jérôme

    2017-06-01

    Lipid oxidation leads to the formation of volatile compounds and very often to off-flavors. In the case of the heating of rapeseed oil, unpleasant odors, characterized as a fishy odor, are emitted. In this study, 2 different essential oils (coriander and nutmeg essential oils) were added to refined rapeseed oil as odor masking agents. The aim of this work was to determine a potential antioxidant effect of these essential oils on the thermal stability of rapeseed oil subject to heating cycles between room temperature and 180 °C. For this purpose, normed determinations of different parameters (peroxide value, anisidine value, and the content of total polar compounds, free fatty acids and tocopherols) were carried out to examine the differences between pure and degraded oil. No significant difference was observed between pure rapeseed oil and rapeseed oil with essential oils for each parameter separately. However, a stabilizing effect of the essential oils, with a higher effect for the nutmeg essential oil was highlighted by principal component analysis applied on physicochemical dataset. Moreover, the analysis of the volatile compounds performed by GC × GC showed a substantial loss of the volatile compounds of the essential oils from the first heating cycle. © 2017 Institute of Food Technologists®.

  10. Bayesian estimation of multicomponent relaxation parameters in magnetic resonance fingerprinting.

    PubMed

    McGivney, Debra; Deshmane, Anagha; Jiang, Yun; Ma, Dan; Badve, Chaitra; Sloan, Andrew; Gulani, Vikas; Griswold, Mark

    2018-07-01

    To estimate multiple components within a single voxel in magnetic resonance fingerprinting when the number and types of tissues comprising the voxel are not known a priori. Multiple tissue components within a single voxel are potentially separable with magnetic resonance fingerprinting as a result of differences in signal evolutions of each component. The Bayesian framework for inverse problems provides a natural and flexible setting for solving this problem when the tissue composition per voxel is unknown. Assuming that only a few entries from the dictionary contribute to a mixed signal, sparsity-promoting priors can be placed upon the solution. An iterative algorithm is applied to compute the maximum a posteriori estimator of the posterior probability density to determine the magnetic resonance fingerprinting dictionary entries that contribute most significantly to mixed or pure voxels. Simulation results show that the algorithm is robust in finding the component tissues of mixed voxels. Preliminary in vivo data confirm this result, and show good agreement in voxels containing pure tissue. The Bayesian framework and algorithm shown provide accurate solutions for the partial-volume problem in magnetic resonance fingerprinting. The flexibility of the method will allow further study into different priors and hyperpriors that can be applied in the model. Magn Reson Med 80:159-170, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  11. Molecular dynamics simulations of aqueous solutions of ethanolamines.

    PubMed

    López-Rendón, Roberto; Mora, Marco A; Alejandre, José; Tuckerman, Mark E

    2006-08-03

    We report on molecular dynamics simulations performed at constant temperature and pressure to study ethanolamines as pure components and in aqueous solutions. A new geometric integration algorithm that preserves the correct phase space volume is employed to study molecules having up to three ethanol chains. The most stable geometry, rotational barriers, and atomic charges were obtained by ab initio calculations in the gas phase. The calculated dipole moments agree well with available experimental data. The most stable conformation, due to intramolecular hydrogen bonding interactions, has a ringlike structure in one of the ethanol chains, leading to high molecular stability. All molecular dynamics simulations were performed in the liquid phase. The interaction parameters are the same for the atoms in the ethanol chains, reducing the number of variables in the potential model. Intermolecular hydrogen bonding is also analyzed, and it is shown that water associates at low water mole fractions. The force field reproduced (within 1%) the experimental liquid densities at different temperatures of pure components and aqueous solutions at 313 K. The excess and partial molar volumes are analyzed as a function of ethanolamine concentration.

  12. Optimization of intermolecular potential parameters for the CO2/H2O mixture.

    PubMed

    Orozco, Gustavo A; Economou, Ioannis G; Panagiotopoulos, Athanassios Z

    2014-10-02

    Monte Carlo simulations in the Gibbs ensemble were used to obtain optimized intermolecular potential parameters to describe the phase behavior of the mixture CO2/H2O, over a range of temperatures and pressures relevant for carbon capture and sequestration processes. Commonly used fixed-point-charge force fields that include Lennard-Jones 12-6 (LJ) or exponential-6 (Exp-6) terms were used to describe CO2 and H2O intermolecular interactions. For force fields based on the LJ functional form, changes of the unlike interactions produced higher variations in the H2O-rich phase than in the CO2-rich phase. A major finding of the present study is that for these potentials, no combination of unlike interaction parameters is able to adequately represent properties of both phases. Changes to the partial charges of H2O were found to produce significant variations in both phases and are able to fit experimental data in both phases, at the cost of inaccuracies for the pure H2O properties. By contrast, for the Exp-6 case, optimization of a single parameter, the oxygen-oxygen unlike-pair interaction, was found sufficient to give accurate predictions of the solubilities in both phases while preserving accuracy in the pure component properties. These models are thus recommended for future molecular simulation studies of CO2/H2O mixtures.

  13. Supervised nonlinear spectral unmixing using a postnonlinear mixing model for hyperspectral imagery.

    PubMed

    Altmann, Yoann; Halimi, Abderrahim; Dobigeon, Nicolas; Tourneret, Jean-Yves

    2012-06-01

    This paper presents a nonlinear mixing model for hyperspectral image unmixing. The proposed model assumes that the pixel reflectances are nonlinear functions of pure spectral components contaminated by an additive white Gaussian noise. These nonlinear functions are approximated using polynomial functions leading to a polynomial postnonlinear mixing model. A Bayesian algorithm and optimization methods are proposed to estimate the parameters involved in the model. The performance of the unmixing strategies is evaluated by simulations conducted on synthetic and real data.

  14. The Rapid Transit System That Achieves Higher Performance with Lower Life-Cycle Costs

    NASA Astrophysics Data System (ADS)

    Sone, Satoru; Takagi, Ryo

    In the age of traction system made of inverter and ac traction motors, distributed traction system with pure electric brake of regenerative mode has been recognised very advantageous. This paper proposes a new system as the lowest life-cycle cost system for high performance rapid transit, a new architecture and optimum parameters of power feeding system, and a new running method of trains. In Japan, these components of this proposal, i.e. pure electric brake and various countermeasures of reducing loss of regeneration have been already popular but not as yet the new running method for better utilisation of the equipment and for lower life-cycle cost. One example of what are proposed in this paper will be made as Tsukuba Express, which is under construction as the most modern commuter railway in Greater Tokyo area.

  15. Inverse Opal Photonic Crystals as an Optofluidic Platform for Fast Analysis of Hydrocarbon Mixtures.

    PubMed

    Xu, Qiwei; Mahpeykar, Seyed Milad; Burgess, Ian B; Wang, Xihua

    2018-06-13

    Most of the reported optofluidic devices analyze liquid by measuring its refractive index. Recently, the wettability of liquid on various substrates has also been used as a key sensing parameter in optofluidic sensors. However, the above-mentioned techniques face challenges in the analysis of the relative concentration of components in an alkane hydrocarbon mixture, as both refractive indices and wettabilities of alkane hydrocarbons are very close. Here, we propose to apply volatility of liquid as the key sensing parameter, correlate it to the optical property of liquid inside inverse opal photonic crystals, and construct powerful optofluidic sensors for alkane hydrocarbon identification and analysis. We have demonstrated that via evaporation of hydrocarbons inside the periodic structure of inverse opal photonic crystals and observation of their reflection spectra, an inverse opal film could be used as a fast-response optofluidic sensor to accurately differentiate pure hydrocarbon liquids and relative concentrations of their binary and ternary mixtures in tens of seconds. In these 3D photonic crystals, pure chemicals with different volatilities would have different evaporation rates and can be easily identified via the total drying time. For multicomponent mixtures, the same strategy is applied to determine the relative concentration of each component simply by measuring drying time under different temperatures. Using this optofluidic sensing platform, we have determined the relative concentrations of ternary hydrocarbon mixtures with the difference of only one carbon between alkane hydrocarbons, which is a big step toward detailed hydrocarbon analysis for practical use.

  16. Lattice model for water-solute mixtures.

    PubMed

    Furlan, A P; Almarza, N G; Barbosa, M C

    2016-10-14

    A lattice model for the study of mixtures of associating liquids is proposed. Solvent and solute are modeled by adapting the associating lattice gas (ALG) model. The nature of interaction of solute/solvent is controlled by tuning the energy interactions between the patches of ALG model. We have studied three set of parameters, resulting in, hydrophilic, inert, and hydrophobic interactions. Extensive Monte Carlo simulations were carried out, and the behavior of pure components and the excess properties of the mixtures have been studied. The pure components, water (solvent) and solute, have quite similar phase diagrams, presenting gas, low density liquid, and high density liquid phases. In the case of solute, the regions of coexistence are substantially reduced when compared with both the water and the standard ALG models. A numerical procedure has been developed in order to attain series of results at constant pressure from simulations of the lattice gas model in the grand canonical ensemble. The excess properties of the mixtures, volume and enthalpy as the function of the solute fraction, have been studied for different interaction parameters of the model. Our model is able to reproduce qualitatively well the excess volume and enthalpy for different aqueous solutions. For the hydrophilic case, we show that the model is able to reproduce the excess volume and enthalpy of mixtures of small alcohols and amines. The inert case reproduces the behavior of large alcohols such as propanol, butanol, and pentanol. For the last case (hydrophobic), the excess properties reproduce the behavior of ionic liquids in aqueous solution.

  17. Origin of long-lived oscillations in 2D-spectra of a quantum vibronic model: Electronic versus vibrational coherence

    NASA Astrophysics Data System (ADS)

    Plenio, M. B.; Almeida, J.; Huelga, S. F.

    2013-12-01

    We demonstrate that the coupling of excitonic and vibrational motion in biological complexes can provide mechanisms to explain the long-lived oscillations that have been obtained in nonlinear spectroscopic signals of different photosynthetic pigment protein complexes and we discuss the contributions of excitonic versus purely vibrational components to these oscillatory features. Considering a dimer model coupled to a structured spectral density we exemplify the fundamental aspects of the electron-phonon dynamics, and by analyzing separately the different contributions to the nonlinear signal, we show that for realistic parameter regimes purely electronic coherence is of the same order as purely vibrational coherence in the electronic ground state. Moreover, we demonstrate how the latter relies upon the excitonic interaction to manifest. These results link recently proposed microscopic, non-equilibrium mechanisms to support long lived coherence at ambient temperatures with actual experimental observations of oscillatory behaviour using 2D photon echo techniques to corroborate the fundamental importance of the interplay of electronic and vibrational degrees of freedom in the dynamics of light harvesting aggregates.

  18. The effect of relative solubility on crystal purity

    NASA Astrophysics Data System (ADS)

    Givand, Jeffrey Christopher

    This study establishes the relationship between impurity incorporation in a crystal by lattice substitution and the solubility of that impurity in solution. The model system studied was L-isoleucine crystals contaminated by the isomorphic impurity L-leucine. Upon crystallization from aqueous solution by cooling, leucine is concentrated in the isoleucine unit cell through lattice substitution mechanisms. Attempts to reduce the degree of leucine incorporation via adjustments of the rate at which supersaturation is generated yielded marginal success. This work demonstrates that incorporation of leucine in the crystal can be considerably suppressed by reducing the solubility of product relative to the solubility of impurity. Changes to the relative solubility of the impurity were accomplished by the addition of various electrolytes and organic co-solvents to the aqueous amino acid solutions. The solubilities of the two amino acids were measured and compared to their solubilities in pure water. Changes in the ratio of pure-component solubilities were directly related to changes in crystal purity. This thermodynamic quantity of relative solubility was shown to be a key factor in determining impurity uptake by lattice substitution. In addition to the experimental observations, a fundamental thermodynamic link between relative solubility and crystal purity is established through this research. First, the amino acid solubility data as a function of temperature in all solvent mixtures were accurately correlated using a thermodynamic model. The parameters from this model were then adapted to a novel solid-solution thermodynamic model to express the crystal purity in terms of equilibrium solution impurity concentration. After the determination of one system specific parameter, the model is able to predict the crystal purity in a new solvent in which the pure-component solubilities are known. The ability of an electrolyte or co-solvent to improve crystal purity from a given level can now be determined based on existing solubility and purity measurements and solubilities of the product and impurity in the new solvent mixture.

  19. Spectral studies on the interaction of pinacyanol chloride with binary surfactants in aqueous medium.

    PubMed

    Manna, Kausik; Panda, Amiya Kumar

    2009-12-01

    Interaction of pinacyanol chloride (PIN) with pure and binary mixtures of cetyltrimethylammonium bromide (CTAB) and sodium deoxycholate (NaDC) was spectroscopically studied. Interaction of PIN with pure NaDC produced a blue shifted metachromatic band (at approximately 502 nm), which gradually shifted to higher wavelength region as the concentration of NaDC increased in the pre-micellar stage. For CTAB only intensity of both the bands increased without any shift. Mixed surfactant systems behaved differently than the pure components. Absorbance of monomeric band with a slight red-shift, and a simultaneous decrease in the absorbance of dimeric band of PIN, were observed for all the combinations in the post-micellar region. PIN-micelle binding constant (K(b)) for pure as well as mixed was determined from spectral data using Benesi-Hildebrand equation. Using the idea of Regular Solution Theory, micellar aggregates were assumed to be predominant than other aggregated state, like vesicles. Aggregation number was determined by fluorescence quenching method. Spectral analyses were also done to evaluate CMC values. Rubinigh's model for Regular Solution Theory was employed to evaluate the interaction parameters and micellar composition. Strong synergistic interaction between the oppositely charged surfactants was noted. Bulkier nature of NaDC lowered down its access in mixed micellar system.

  20. The mixing effects for real gases and their mixtures

    NASA Astrophysics Data System (ADS)

    Gong, M. Q.; Luo, E. C.; Wu, J. F.

    2004-10-01

    The definitions of the adiabatic and isothermal mixing effects in the mixing processes of real gases were presented in this paper. Eight substances with boiling-point temperatures from cryogenic temperature to the ambient temperature were selected from the interest of low temperature refrigeration to study their binary and multicomponent mixing effects. Detailed analyses were made on the parameters of the mixing process to know their influences on mixing effects. Those parameters include the temperatures, pressures, and mole fraction ratios of pure substances before mixing. The results show that the maximum temperature variation occurs at the saturation state of each component in the mixing process. Those components with higher boiling-point temperatures have higher isothermal mixing effects. The maximum temperature variation which is defined as the adiabatic mixing effect can even reach up to 50 K, and the isothermal mixing effect can reach about 20 kJ/mol. The possible applications of the mixing cooling effect in both open cycle and closed cycle refrigeration systems were also discussed.

  1. Application of Box-Behnken Design and Response Surface Methodology for Surface Roughness Prediction Model of CP-Ti Powder Metallurgy Components Through WEDM

    NASA Astrophysics Data System (ADS)

    Das, Arunangsu; Sarkar, Susenjit; Karanjai, Malobika; Sutradhar, Goutam

    2018-04-01

    The present work was undertaken to investigate and characterize the machining parameters (such as surface roughness, etc.) of uni-axially pressed commercially pure titanium sintered powder metallurgy components. Powder was uni-axially pressed at designated pressure of 840 MPa to form cylindrical samples and the green compacts were sintered at 0.001 mbar for about 4 h with sintering temperature varying from 1350 to 1450 °C. The influence of the sintering temperature, pulse-on and pulse-off time at wire-EDM on the surface roughness of the preforms has been investigated thoroughly. Experiments were conducted under different machining parameters in a CNC operated wire-cut EDM. The surface roughness of the machined surface was measured and critically analysed. The optimum surface roughness was achieved under the conditions of 6 μs pulse-on time, 9 μs pulse-off time and at sintering temperature of 1450 °C.

  2. Colorimetry and magnitudes of asteroids

    NASA Technical Reports Server (NTRS)

    Bowell, E.; Lumme, K.

    1979-01-01

    In the present paper, 1500 UBV observations are analyzed by a new rather general multiple scattering theory which provided clear insight into previously poorly-recognized optical nature of asteroid surfaces. Thus, phase curves are shown to consist of a surface-texture controlled component, due to singly scattered light, and a component due to multiple scattering. Phase curve shapes can be characterized by a single parameter, the multiple scattering factor, Q. As Q increases, the relative importance of the opposition effect diminishes. Asteroid surfaces are particulate and strikingly similar to texture, being moderately porous and moderately rough on a scale greater than the wavelength of light. In concequence, Q (and also the phase coefficient) correlate well with geometric albedo, and there exists a purely photometric means of determining albedos and diameters.

  3. Physical-Chemical Characterization of Fruit Purees and Relationship with Sensory Analysis Carried out by Infants (12 to 24 mo).

    PubMed

    Inarejos-García, A M; Mancebo-Campos, V; Cañizares, P; Llanos, J

    2015-05-01

    Fruit purees are one of the foods earliest introduced foods in infants' diet during the complementary period. The rheological characteristics together with the sensory analysis are decisive factors for the acceptance of the food product by the infant. The sensory analysis of three commercial fruit purees (mixed fruits, pear, and plum) was studied by employing a new objective sensory parameter named as SAIR (Sensory Acceptance by Infants Ratio), which is the quotient between the percentage of puree consumed (%) by the time (seconds) throughout the storage time. In parallel, the rheological characteristics of the purees were analyzed in order to obtain a relationship with the SAIR parameter. It was proved that the best acceptance of the product (higher SAIR) was observed for such purees showing a lower apparent viscosity (lower consistency index, "K") and a less pseudoplastic behavior (higher flow behavior index, "n"). These results may help to obtain higher acceptance values based on easy obtainable and objective parameters. © 2015 Institute of Food Technologists®

  4. Estimation of antioxidant components of tomato using VIS-NIR reflectance data by handheld portable spectrometer

    NASA Astrophysics Data System (ADS)

    Szuvandzsiev, Péter; Helyes, Lajos; Lugasi, Andrea; Szántó, Csongor; Baranowski, Piotr; Pék, Zoltán

    2014-10-01

    Processing tomato production represents an important part of the total production of processed vegetables in the world. The quality characteristics of processing tomato, important for the food industry, are soluble solids content and antioxidant content (such as lycopene and polyphenols) of the fruit. Analytical quantification of these components is destructive, time and labour consuming. That is why researchers try to develop a non-destructive and rapid method to assess those quality parameters. The present study reports the suitability of a portable handheld visible near infrared spectrometer to predict soluble solids, lycopene and polyphenol content of tomato fruit puree. Spectral ranges of 500-1000 nm were directly acquired on fruit puree of five different tomato varieties using a FieldSpec HandHeld 2™ Portable Spectroradiometer. Immediately after spectral measurement, each fruit sample was analysed to determine soluble solids, lycopene and polyphenol content. Partial least square regressions were carried out to create models of prediction between spectral data and the values obtained from the analytical results. The accuracy of the predictions was analysed according to the coefficient of determination value (R2), the root mean square error of calibration/ cross-validation.

  5. Melatonin charge transfer complex with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone: Molecular structure, DFT studies, thermal analyses, evaluation of biological activity and utility for determination of melatonin in pure and dosage forms

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; Hamed, Maher M.; Zaki, Nadia G.; Abdou, Mohamed M.; Mohamed, Marwa El-Badry; Abdallah, Abanoub Mosaad

    2017-07-01

    A simple, accurate and fast spectrophotometric method for the quantitative determination of melatonin (ML) drug in its pure and pharmaceutical forms was developed based on the formation of its charge transfer complex with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as an electron acceptor. The different conditions for this method were optimized accurately. The Lambert-Beer's law was found to be valid over the concentration range of 4-100 μg mL- 1 ML. The solid form of the CT complex was structurally characterized by means of different spectral methods. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations were carried out. The different quantum chemical parameters of the CT complex were calculated. Thermal properties of the CT complex and its kinetic thermodynamic parameters were studied, as well as its antimicrobial and antifungal activities were investigated. Molecular docking studies were performed to predict the binding modes of the CT complex components towards E. coli bacterial RNA and the receptor of breast cancer mutant oxidoreductase.

  6. Melatonin charge transfer complex with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone: Molecular structure, DFT studies, thermal analyses, evaluation of biological activity and utility for determination of melatonin in pure and dosage forms.

    PubMed

    Mohamed, Gehad G; Hamed, Maher M; Zaki, Nadia G; Abdou, Mohamed M; Mohamed, Marwa El-Badry; Abdallah, Abanoub Mosaad

    2017-07-05

    A simple, accurate and fast spectrophotometric method for the quantitative determination of melatonin (ML) drug in its pure and pharmaceutical forms was developed based on the formation of its charge transfer complex with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as an electron acceptor. The different conditions for this method were optimized accurately. The Lambert-Beer's law was found to be valid over the concentration range of 4-100μgmL -1 ML. The solid form of the CT complex was structurally characterized by means of different spectral methods. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations were carried out. The different quantum chemical parameters of the CT complex were calculated. Thermal properties of the CT complex and its kinetic thermodynamic parameters were studied, as well as its antimicrobial and antifungal activities were investigated. Molecular docking studies were performed to predict the binding modes of the CT complex components towards E. coli bacterial RNA and the receptor of breast cancer mutant oxidoreductase. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Processing of pure Ti by rapid prototyping based on laser cladding

    NASA Astrophysics Data System (ADS)

    Arias-González, F.; del Val, J.; Comesaña, R.; Lusquiños, F.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pou, J.

    2013-11-01

    Rapid prototyping based on laser cladding is an additive manufacturing (AM) process based on the overlapping of cladding tracks to produce functional components. Powder or wire are fed into a melting pool created using laser radiation as a heat source and the relative movement between the beam and the work piece makes possible to generate pieces layer-by-layer. This technique can be applied for any material which can be melted and the components can be manufactured directly according to a computer aided design (CAD) model. Additive manufacturing is particularly interesting to produce titanium components because, in this case, the loss of material produced by subtractive manufacturing methods is highly costly. Moreover, titanium and its alloys are widely used in biomedical, aircraft, chemical and marine industries due to their biocompatibility, excellent corrosion resistance and superior strength-to-weight ratio. In this research work, a near-infrared laser delivering a maximum power of 500W is used to produce pure titanium thin parts. Dimensions and surface morphology are characterized using Optical Microscopy (OM) and Scanning Electron Microscopy (SEM), the hardness by nanoindentation and the composition by X-Ray Diffraction (XRD) and Energy Dispersive X-Ray Spectroscopy (EDS). The aim of this work is to establish the conditions under which satisfactory properties are obtained and to understand the relationship between microstructure/properties and deposition parameters.

  8. Spin-component-scaled Møller-Plesset (SCS-MP) perturbation theory: a generalization of the MP approach with improved properties.

    PubMed

    Fink, Reinhold F

    2010-11-07

    A rigorous perturbation theory is proposed, which has the same second order energy as the spin-component-scaled Møller-Plesset second order (SCS-MP2) method of Grimme [J. Chem. Phys. 118, 9095 (2003)]. This upgrades SCS-MP2 to a systematically improvable, true wave-function-based method. The perturbation theory is defined by an unperturbed Hamiltonian, Ĥ(0), that contains the ordinary Fock operator and spin operators Ŝ(2) that act either on the occupied or the virtual orbital spaces. Two choices for Ĥ(0) are discussed and the importance of a spin-pure Ĥ((0)) is underlined. Like the SCS-MP2 approach, the theory contains two parameters (c(os) and c(ss)) that scale the opposite-spin and the same-spin contributions to the second order perturbation energy. It is shown that these parameters can be determined from theoretical considerations by a Feenberg scaling approach or a fit of the wave functions from the perturbation theory to the exact one from a full configuration interaction calculation. The parameters c(os)=1.15 and c(ss)=0.75 are found to be optimal for a reasonable test set of molecules. The meaning of these parameters and the consequences following from a well defined improved MP method are discussed.

  9. Handy elementary algebraic properties of the geometry of entanglement

    NASA Astrophysics Data System (ADS)

    Blair, Howard A.; Alsing, Paul M.

    2013-05-01

    The space of separable states of a quantum system is a hyperbolic surface in a high dimensional linear space, which we call the separation surface, within the exponentially high dimensional linear space containing the quantum states of an n component multipartite quantum system. A vector in the linear space is representable as an n-dimensional hypermatrix with respect to bases of the component linear spaces. A vector will be on the separation surface iff every determinant of every 2-dimensional, 2-by-2 submatrix of the hypermatrix vanishes. This highly rigid constraint can be tested merely in time asymptotically proportional to d, where d is the dimension of the state space of the system due to the extreme interdependence of the 2-by-2 submatrices. The constraint on 2-by-2 determinants entails an elementary closed formformula for a parametric characterization of the entire separation surface with d-1 parameters in the char- acterization. The state of a factor of a partially separable state can be calculated in time asymptotically proportional to the dimension of the state space of the component. If all components of the system have approximately the same dimension, the time complexity of calculating a component state as a function of the parameters is asymptotically pro- portional to the time required to sort the basis. Metric-based entanglement measures of pure states are characterized in terms of the separation hypersurface.

  10. Effect of process parameters on microstructure and electrical conductivity during FSW of Al-6101 and Pure Copper

    NASA Astrophysics Data System (ADS)

    Sharma, Nidhi; Khan, Zahid A.; Siddiquee, Arshad Noor; Shihab, Suha K.; Atif Wahid, Mohd

    2018-04-01

    Copper (Cu) is predominantly used material as a conducting element in electrical and electronic components due to its high conductivity. Aluminum (Al) being lighter in weight and more conductive on weight basis than that of Cu is able to replace or partially replace Cu to make lighter and cost effective electrical components. Conventional methods of joining Al to Cu, such as, fusion welding process have many shortcomings. Friction Stir Welding (FSW) is a solid state welding process which overcomes the shortcoming of the fusion welding. FSW parameters affect the mechanical and electrical properties of the joint. This study aims to evaluate the effect of different process parameters such as shoulder diameter, pin offset, welding and rotational speed on the microstructure and electrical conductivity of the dissimilar Al-Cu joint. FSW is performed using cylindrical pin profile, and four process parameters. Each parameter at different levels is varied according to Taguchi’s L18 standard orthogonal array. It is found that the electrical conductivity of the FSWed joints are equal to that of aluminum at all the welded sections. FSW is found to be an effective technique to join Al to Cu without compromising with the electrical properties. However, the electrical conductivity gets influenced by the process parameters in the stir zone. The optimal combination of the FSW parameters for maximum electrical conductivity is determined. The analysis of variance (ANOVA) technique applied on stir zone suggests that the rotational speed and tool pin offset are the significant parameters to influence the electrical conductivity.

  11. Impact of Uncertainties in Meteorological Forcing Data and Land Surface Parameters on Global Estimates of Terrestrial Water Balance Components

    NASA Astrophysics Data System (ADS)

    Nasonova, O. N.; Gusev, Ye. M.; Kovalev, Ye. E.

    2009-04-01

    Global estimates of the components of terrestrial water balance depend on a technique of estimation and on the global observational data sets used for this purpose. Land surface modelling is an up-to-date and powerful tool for such estimates. However, the results of modelling are affected by the quality of both a model and input information (including meteorological forcing data and model parameters). The latter is based on available global data sets containing meteorological data, land-use information, and soil and vegetation characteristics. Now there are a lot of global data sets, which differ in spatial and temporal resolution, as well as in accuracy and reliability. Evidently, uncertainties in global data sets will influence the results of model simulations, but to which extent? The present work is an attempt to investigate this issue. The work is based on the land surface model SWAP (Soil Water - Atmosphere - Plants) and global 1-degree data sets on meteorological forcing data and the land surface parameters, provided within the framework of the Second Global Soil Wetness Project (GSWP-2). The 3-hourly near-surface meteorological data (for the period from 1 July 1982 to 31 December 1995) are based on reanalyses and gridded observational data used in the International Satellite Land-Surface Climatology Project (ISLSCP) Initiative II. Following the GSWP-2 strategy, we used a number of alternative global forcing data sets to perform different sensitivity experiments (with six alternative versions of precipitation, four versions of radiation, two pure reanalysis products and two fully hybridized products of meteorological data). To reveal the influence of model parameters on simulations, in addition to GSWP-2 parameter data sets, we produced two alternative global data sets with soil parameters on the basis of their relationships with the content of clay and sand in a soil. After this the sensitivity experiments with three different sets of parameters were performed. As a result, 16 variants of global annual estimates of water balance components were obtained. Application of alternative data sets on radiation, precipitation, and soil parameters allowed us to reveal the influence of uncertainties in input data on global estimates of water balance components.

  12. The effect of azeotropism on combustion characteristics of blended fuel pool fire.

    PubMed

    Ding, Yanming; Wang, Changjian; Lu, Shouxiang

    2014-04-30

    The effect of azeotropism on combustion characteristics of blended fuel pool fire was experimentally studied in an open fire test space of State Key Laboratory of Fire Science. A 30 cm × 30 cm square pool filled with n-heptane and ethanol blended fuel was employed. Flame images, burning rate and temperature distribution were collected and recorded in the whole combustion process. Results show that azeotropism obviously dominates the combustion behavior of n-heptane/ethanol blended fuel pool fire. The combustion process after ignition exhibits four typical stages: initial development, azeotropic burning, single-component burning and decay stage. Azeotropism appears when temperature of fuel surface reaches azeotropic point and blended fuel burns at azeotropic ratio. Compared with individual pure fuel, the effect of azeotropism on main fire parameters, such as flame height, burning rate, flame puffing frequency and centerline temperature were analyzed. Burning rate and centerline temperature of blended fuel are higher than that of individual pure fuel respectively at azeotropic burning stage, and flame puffing frequency follows the empirical formula between Strouhal and Froude number for pure fuel. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Speed-dependent Voigt lineshape parameter database from dual frequency comb measurements up to 1305 K. Part I: Pure H2O absorption, 6801-7188 cm-1

    NASA Astrophysics Data System (ADS)

    Schroeder, Paul J.; Cich, Matthew J.; Yang, Jinyu; Giorgetta, Fabrizio R.; Swann, William C.; Coddington, Ian; Newbury, Nathan R.; Drouin, Brian J.; Rieker, Gregory B.

    2018-05-01

    We measure speed-dependent Voigt lineshape parameters with temperature-dependence exponents for several hundred spectroscopic features of pure water spanning 6801-7188 cm-1. The parameters are extracted from broad bandwidth, high-resolution dual frequency comb absorption spectra with multispectrum fitting techniques. The data encompass 25 spectra ranging from 296 K to 1305 K and 1 to 17 Torr of pure water vapor. We present the extracted parameters, compare them to published data, and present speed-dependence, self-shift, and self-broadening temperature-dependent parameters for the first time. Lineshape data is extracted using a quadratic speed-dependent Voigt profile and a single self-broadening power law temperature-dependence exponent over the entire temperature range. The results represent an important step toward a new high-temperature database using advanced lineshape profiles.

  14. Predicting mixed-gas adsorption equilibria on activated carbon for precombustion CO2 capture.

    PubMed

    García, S; Pis, J J; Rubiera, F; Pevida, C

    2013-05-21

    We present experimentally measured adsorption isotherms of CO2, H2, and N2 on a phenol-formaldehyde resin-based activated carbon, which had been previously synthesized for the separation of CO2 in a precombustion capture process. The single component adsorption isotherms were measured in a magnetic suspension balance at three different temperatures (298, 318, and 338 K) and over a large range of pressures (from 0 to 3000-4000 kPa). These values cover the temperature and pressure conditions likely to be found in a precombustion capture scenario, where CO2 needs to be separated from a CO2/H2/N2 gas stream at high pressure (~1000-1500 kPa) and with a high CO2 concentration (~20-40 vol %). Data on the pure component isotherms were correlated using the Langmuir, Sips, and dual-site Langmuir (DSL) models, i.e., a two-, three-, and four-parameter model, respectively. By using the pure component isotherm fitting parameters, adsorption equilibrium was then predicted for multicomponent gas mixtures by the extended models. The DSL model was formulated considering the energetic site-matching concept, recently addressed in the literature. Experimental gas-mixture adsorption equilibrium data were calculated from breakthrough experiments conducted in a lab-scale fixed-bed reactor and compared with the predictions from the models. Breakthrough experiments were carried out at a temperature of 318 K and five different pressures (300, 500, 1000, 1500, and 2000 kPa) where two different CO2/H2/N2 gas mixtures were used as the feed gas in the adsorption step. The DSL model was found to be the one that most accurately predicted the CO2 adsorption equilibrium in the multicomponent mixture. The results presented in this work highlight the importance of performing experimental measurements of mixture adsorption equilibria, as they are of utmost importance to discriminate between models and to correctly select the one that most closely reflects the actual process.

  15. Surface complexation modeling of Cu(II) adsorption on mixtures of hydrous ferric oxide and kaolinite

    PubMed Central

    Lund, Tracy J; Koretsky, Carla M; Landry, Christopher J; Schaller, Melinda S; Das, Soumya

    2008-01-01

    Background The application of surface complexation models (SCMs) to natural sediments and soils is hindered by a lack of consistent models and data for large suites of metals and minerals of interest. Furthermore, the surface complexation approach has mostly been developed and tested for single solid systems. Few studies have extended the SCM approach to systems containing multiple solids. Results Cu adsorption was measured on pure hydrous ferric oxide (HFO), pure kaolinite (from two sources) and in systems containing mixtures of HFO and kaolinite over a wide range of pH, ionic strength, sorbate/sorbent ratios and, for the mixed solid systems, using a range of kaolinite/HFO ratios. Cu adsorption data measured for the HFO and kaolinite systems was used to derive diffuse layer surface complexation models (DLMs) describing Cu adsorption. Cu adsorption on HFO is reasonably well described using a 1-site or 2-site DLM. Adsorption of Cu on kaolinite could be described using a simple 1-site DLM with formation of a monodentate Cu complex on a variable charge surface site. However, for consistency with models derived for weaker sorbing cations, a 2-site DLM with a variable charge and a permanent charge site was also developed. Conclusion Component additivity predictions of speciation in mixed mineral systems based on DLM parameters derived for the pure mineral systems were in good agreement with measured data. Discrepancies between the model predictions and measured data were similar to those observed for the calibrated pure mineral systems. The results suggest that quantifying specific interactions between HFO and kaolinite in speciation models may not be necessary. However, before the component additivity approach can be applied to natural sediments and soils, the effects of aging must be further studied and methods must be developed to estimate reactive surface areas of solid constituents in natural samples. PMID:18783619

  16. A Monte Carlo Approach to Magnetar-powered Transients. II. Broad-lined Type Ic Supernovae Not Associated with GRBs

    NASA Astrophysics Data System (ADS)

    Wang, L. J.; Cano, Z.; Wang, S. Q.; Zheng, W. K.; Liu, L. D.; Deng, J. S.; Yu, H.; Dai, Z. G.; Han, Y. H.; Xu, D.; Qiu, Y. L.; Wei, J. Y.; Li, B.; Song, L. M.

    2017-12-01

    Broad-lined type Ic supernovae (SNe Ic-BL) are a subclass of rare core-collapse SNe whose energy source is debated in the literature. Recently, a series of investigations on SNe Ic-BL with the magnetar (plus 56Ni) model were carried out. Evidence for magnetar formation was found for the well-observed SNe Ic-BL 1998bw and 2002ap. In this paper, we systematically study a large sample of SNe Ic-BL not associated with gamma-ray bursts (GRBs). We use photospheric velocity data determined in a homogeneous way. We find that the magnetar+56Ni model provides a good description of the light curves and velocity evolution of our sample of SNe Ic-BL, although some SNe (not all) can also be described by the pure-magnetar model or by the two-component pure-56Ni model (three out of 12 are unlikely to be explained by two-component model). In the magnetar+56Ni model, the amount of 56Ni required to explain their luminosity is significantly reduced, and the derived initial explosion energy is, in general, in accordance with neutrino heating. Some correlations between different physical parameters are evaluated, and their implications regarding magnetic field amplification and the total energy reservoir are discussed.

  17. Molecular Analysis of Mixed Endometrioid and Serous Adenocarcinoma of the Endometrium

    PubMed Central

    Lawrenson, Kate; Pakzamir, Elham; Liu, Biao; Lee, Janet M.; Delgado, Melissa K.; Duncan, Kara; Gayther, Simon A.; Liu, Song; Roman, Lynda; Mhawech-Fauceglia, Paulette

    2015-01-01

    Background The molecular biology and cellular origins of mixed type endometrial carcinomas (MT-ECs) are poorly understood, and a Type II component of 10 percent or less may confer poorer prognoses. Methodology/Principal Findings We studied 10 cases of MT-EC (containing endometrioid and serous differentiation), 5 pure low-grade endometrioid adenocarcinoma (EAC) and 5 pure uterine serous carcinoma (USC). Endometrioid and serous components of the MT-ECs were macrodissected and the expression of 60 candidate genes compared between MT-EC, pure USC and pure EAC. We found that four genes were differentially expressed when MT-ECs were compared to pure low-grade EAC: CDKN2A (P = 0.006), H19 (P = 0.010), HOMER2 (P = 0.009) and TNNT1 (P = 0.006). Also while we found that even though MT-ECs closely resembled the molecular profiles of pure USCs, they also exhibit lower expression of PAX8 compared to all pure cases combined (P = 0.035). Conclusion Our data suggest that MT-EC exhibits the closest molecular and epidemiological similarities to pure USC and supports clinical observations that suggest patients with MT-EC should receive the same treatment as patients with pure serous carcinoma. Novel specific markers of MT-EC could be of diagnostic utility and could represent novel therapeutic targets in the future. PMID:26132201

  18. Formability behavior studies on CP-Al sheets processed through the helical tool path of incremental forming process

    NASA Astrophysics Data System (ADS)

    Markanday, H.; Nagarajan, D.

    2018-02-01

    Incremental sheet forming (ISF) is a novel die-less sheet metal forming process, which can produce components directly from the CAD geometry using a CNC milling machine at less production time and cost. The formability of the sheet material used is greatly affected by the process parameters involved and tool path adopted, and the present study is aimed to investigate the influence of different process parameter values using the helical tool path strategy on the formability of a commercial pure Al and to achieve maximum formability in the material. ISF experiments for producing an 80 mm diameter axisymmetric dome were carried out on 2 mm thickness commercially pure Al sheets for different tool speeds and feed rates in a CNC milling machine with a 10 mm hemispherical forming tool. The obtained parts were analyzed for springback, amount of thinning and maximum forming depth. The results showed that when the tool speed was increased by keeping the feed rate constant, the forming depth and thinning were also increased. On contrary, when the feed rate was increased by keeping the tool speed constant, the forming depth and thinning were decreased. Springback was found to be higher when the feed rate was increased rather than the tool speed was increased.

  19. Effect of Laser Power and Scan Speed on Melt Pool Characteristics of Commercially Pure Titanium (CP-Ti)

    NASA Astrophysics Data System (ADS)

    Kusuma, Chandrakanth; Ahmed, Sazzad H.; Mian, Ahsan; Srinivasan, Raghavan

    2017-07-01

    Selective laser melting (SLM) is an additive manufacturing technique that creates complex parts by selectively melting metal powder layer-by-layer using a laser. In SLM, the process parameters decide the quality of the fabricated component. In this study, single beads of commercially pure titanium (CP-Ti) were melted on a substrate of the same material using an in-house built SLM machine. Multiple combinations of laser power and scan speed were used for single bead fabrication, while the laser beam diameter and powder layer thickness were kept constant. This experimental study investigated the influence of laser power, scan speed, and laser energy density on the melt pool formation, surface morphology, geometry (width and height), and hardness of solidified beads. In addition, the observed unfavorable effect such as inconsistency in melt pool width formation is discussed. The results show that the quality, geometry, and hardness of solidified melt pool are significantly affected by laser power, scanning speed, and laser energy density.

  20. On the orbital period of the magnetic cataclysmic variable HU Aquarii

    NASA Astrophysics Data System (ADS)

    Vogel, J.; Schwope, A.; Schwarz, R.; Kanbach, G.; Dhillon, V. S.; Marsh, T. R.

    2008-02-01

    We present an analysis of ULTRACAM light curves of the magnetic cataclysmic variable HU Aquarii which were taken at the VLT in May 2005. Since the light curves were serendipitously obtained during a low state, they allowed us to determine the binary and the stellar parameters with high accuracy. The light curve was decomposed into the components originating from the accretion spot, the photosphere surrounding it and the white dwarf itself, which allowed us to extract the eclipse light curve for the pure white dwarf. Combined with high-time resolution observations with different instruments over a 12 year baseline it was possible to get exact eclipse timings of the white dwarf and thus establish a significant deviation from a linear ephemeris. If described by a quadratic term, the period decreases by -1.13×10-11 ss-1. Interpreting this change in period as a pure angular momentum loss (AML) effect, the rate of J˙ = -4.9×1035 erg is much too high to be explained by gravitational radiation alone.

  1. High Precision Rovibrational Spectroscopy of OH+

    NASA Astrophysics Data System (ADS)

    Markus, Charles R.; Hodges, James N.; Perry, Adam J.; Kocheril, G. Stephen; Müller, Holger S. P.; McCall, Benjamin J.

    2016-02-01

    The molecular ion OH+ has long been known to be an important component of the interstellar medium. Its relative abundance can be used to indirectly measure cosmic ray ionization rates of hydrogen, and it is the first intermediate in the interstellar formation of water. To date, only a limited number of pure rotational transitions have been observed in the laboratory making it necessary to indirectly calculate rotational levels from high-precision rovibrational spectroscopy. We have remeasured 30 transitions in the fundamental band with MHz-level precision, in order to enable the prediction of a THz spectrum of OH+. The ions were produced in a water cooled discharge of O2, H2, and He, and the rovibrational transitions were measured with the technique Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy. These values have been included in a global fit of field free data to a 3Σ- linear molecule effective Hamiltonian to determine improved spectroscopic parameters which were used to predict the pure rotational transition frequencies.

  2. The pure rotational spectrum of TiF (X 4Φr): 3d transition metal fluorides revisited

    NASA Astrophysics Data System (ADS)

    Sheridan, P. M.; McLamarrah, S. K.; Ziurys, L. M.

    2003-11-01

    The pure rotational spectrum of TiF in its X 4Φr (v=0) ground state has been measured using millimeter/sub-millimeter wave direct absorption techniques in the range 140-530 GHz. In ten out of the twelve rotational transitions recorded, all four spin-orbit components were observed, confirming the 4Φr ground state assignment. Additional small splittings were resolved in several of the spin components in lower J transitions, which appear to arise from magnetic hyperfine interactions of the 19F nucleus. In contrast, no evidence for Λ-doubling was seen in the data. The rotational transitions of TiF were analyzed using a case (a) Hamiltonian, resulting in the determination of rotational and fine structure constants, as well as hyperfine parameters for the fluorine nucleus. The data were readily fit in a case (a) basis, indicating strong first order spin-orbit coupling and minimal second-order effects, as also evidenced by the small value of λ, the spin-spin parameter. Moreover, only one higher order term, η, the spin-orbit/spin-spin interaction term, was needed in the analysis, again suggesting limited perturbations in the ground state. The relative values of the a, b, and c hyperfine constants indicate that the three unpaired electrons in this radical lie in orbitals primarily located on the titanium atom and support the molecular orbital picture of TiF with a σ1δ1π1 single electron configuration. The bond length of TiF (1.8342 Å) is significantly longer than that of TiO, suggesting that there are differences in the bonding between 3d transition metal fluorides and oxides.

  3. Effect of fermentation parameters on bio-alcohols production from glycerol using immobilized Clostridium pasteurianum: an optimization study.

    PubMed

    Khanna, Swati; Goyal, Arun; Moholkar, Vijayanand S

    2013-01-01

    This article addresses the issue of effect of fermentation parameters for conversion of glycerol (in both pure and crude form) into three value-added products, namely, ethanol, butanol, and 1,3-propanediol (1,3-PDO), by immobilized Clostridium pasteurianum and thereby addresses the statistical optimization of this process. The analysis of effect of different process parameters such as agitation rate, fermentation temperature, medium pH, and initial glycerol concentration indicated that medium pH was the most critical factor for total alcohols production in case of pure glycerol as fermentation substrate. On the other hand, initial glycerol concentration was the most significant factor for fermentation with crude glycerol. An interesting observation was that the optimized set of fermentation parameters was found to be independent of the type of glycerol (either pure or crude) used. At optimum conditions of agitation rate (200 rpm), initial glycerol concentration (25 g/L), fermentation temperature (30°C), and medium pH (7.0), the total alcohols production was almost equal in anaerobic shake flasks and 2-L bioreactor. This essentially means that at optimum process parameters, the scale of operation does not affect the output of the process. The immobilized cells could be reused for multiple cycles for both pure and crude glycerol fermentation.

  4. Electrostatic shock structures in dissipative multi-ion dusty plasmas

    NASA Astrophysics Data System (ADS)

    Elkamash, I. S.; Kourakis, I.

    2018-06-01

    A comprehensive analytical model is introduced for shock excitations in dusty bi-ion plasma mixtures, taking into account collisionality and kinematic (fluid) viscosity. A multicomponent plasma configuration is considered, consisting of positive ions, negative ions, electrons, and a massive charged component in the background (dust). The ionic dynamical scale is focused upon; thus, electrons are assumed to be thermalized, while the dust is stationary. A dissipative hybrid Korteweg-de Vries/Burgers equation is derived. An analytical solution is obtained, in the form of a shock structure (a step-shaped function for the electrostatic potential, or an electric field pulse) whose maximum amplitude in the far downstream region decays in time. The effect of relevant plasma configuration parameters, in addition to dissipation, is investigated. Our work extends earlier studies of ion-acoustic type shock waves in pure (two-component) bi-ion plasma mixtures.

  5. Fisher-Symmetric Informationally Complete Measurements for Pure States.

    PubMed

    Li, Nan; Ferrie, Christopher; Gross, Jonathan A; Kalev, Amir; Caves, Carlton M

    2016-05-06

    We introduce a new kind of quantum measurement that is defined to be symmetric in the sense of uniform Fisher information across a set of parameters that uniquely represent pure quantum states in the neighborhood of a fiducial pure state. The measurement is locally informationally complete-i.e., it uniquely determines these parameters, as opposed to distinguishing two arbitrary quantum states-and it is maximal in the sense of a multiparameter quantum Cramér-Rao bound. For a d-dimensional quantum system, requiring only local informational completeness allows us to reduce the number of outcomes of the measurement from a minimum close to but below 4d-3, for the usual notion of global pure-state informational completeness, to 2d-1.

  6. Simple and short synthesis of trans-(R)-nerolidol, a pheromone component of fruit spotting bug.

    PubMed

    Le Thanh, C; Chauhan, Kamlesh R

    2014-03-01

    A three-step synthesis of enantiomerically pure (R) and (S)-trans nerolidol from commercially available E,E-fanesol is described. Trans nerolidol is an abundant sesquiterpene in many plant species, almost enantiomerically pure; however, the configuration of chirality is S. There is no natural resource for R-trans nerolidol, which has recently been identified as a pheromone component of the fruit spotting bug Amblypelta lutescens. The simple syntheses reported here will make enantiomerically pure R- and S-trans nerolidol and homologues available for further research and ultimately for use in integrated pest management strategies comprising pheromones.

  7. Stabilization and discontinuity-capturing parameters for space-time flow computations with finite element and isogeometric discretizations

    NASA Astrophysics Data System (ADS)

    Takizawa, Kenji; Tezduyar, Tayfun E.; Otoguro, Yuto

    2018-04-01

    Stabilized methods, which have been very common in flow computations for many years, typically involve stabilization parameters, and discontinuity-capturing (DC) parameters if the method is supplemented with a DC term. Various well-performing stabilization and DC parameters have been introduced for stabilized space-time (ST) computational methods in the context of the advection-diffusion equation and the Navier-Stokes equations of incompressible and compressible flows. These parameters were all originally intended for finite element discretization but quite often used also for isogeometric discretization. The stabilization and DC parameters we present here for ST computations are in the context of the advection-diffusion equation and the Navier-Stokes equations of incompressible flows, target isogeometric discretization, and are also applicable to finite element discretization. The parameters are based on a direction-dependent element length expression. The expression is outcome of an easy to understand derivation. The key components of the derivation are mapping the direction vector from the physical ST element to the parent ST element, accounting for the discretization spacing along each of the parametric coordinates, and mapping what we have in the parent element back to the physical element. The test computations we present for pure-advection cases show that the parameters proposed result in good solution profiles.

  8. Determination of deuterium–tritium critical burn-up parameter by four temperature theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazirzadeh, M.; Ghasemizad, A.; Khanbabei, B.

    Conditions for thermonuclear burn-up of an equimolar mixture of deuterium-tritium in non-equilibrium plasma have been investigated by four temperature theory. The photon distribution shape significantly affects the nature of thermonuclear burn. In three temperature model, the photon distribution is Planckian but in four temperature theory the photon distribution has a pure Planck form below a certain cut-off energy and then for photon energy above this cut-off energy makes a transition to Bose-Einstein distribution with a finite chemical potential. The objective was to develop four temperature theory in a plasma to calculate the critical burn up parameter which depends upon initialmore » density, the plasma components initial temperatures, and hot spot size. All the obtained results from four temperature theory model are compared with 3 temperature model. It is shown that the values of critical burn-up parameter calculated by four temperature theory are smaller than those of three temperature model.« less

  9. Electrolyte CPA equation of state for very high temperature and pressure reservoir and basin applications

    NASA Astrophysics Data System (ADS)

    Courtial, Xavier; Ferrando, Nicolas; de Hemptinne, Jean-Charles; Mougin, Pascal

    2014-10-01

    In this work, an electrolyte version of the Cubic Plus Association (eCPA) equation of state has been adapted to systems containing CH4, CO2, H2O and NaCl (up to 5 molal) at pressures up to 200 MPa and temperatures up to 773 K for salt-free systems and 573 K for salt-containing systems. Its purpose is to represent the phase behavior (including salting-out effect and critical point) and the phase densities in a range of temperature and pressure encountered in deep reservoirs and basins. The goal of the parameterization proposed is not to reach a very high accuracy for phase equilibrium and volumetric properties, but rather to develop a semi-predictive approach to model the phase and volumetric behavior of this system while allowing an easy extension to other compounds. Without salt, predictions for pure component vapor pressures and liquid molar volumes present an average absolute deviation (AAD) lower than 3% compared to experimental reference values. The pure component molar volumes out of saturation show an AAD lower than 4%. The highest deviations in densities are observed as expected in the vicinity of the critical coordinates of pure water and this effect increases when gases or salts are added to the system. For each binary system, CH4 + CO2, CH4 + H2O and CO2 + H2O, binary interaction parameters have been fitted to correctly represent the shape of the fluid phase envelopes (including all critical points) in the entire temperature and pressure range considered (219 K to 633 K and up to 250 MPa). The methane concentration in both phases of the CH4 + CO2 binary system is represented with an AAD lower than 9%. The methane solubility in water is represented within 16% and 8% for the methane content of the vapor. The CO2 solubility in water is within 26%, while the CO2 in the vapor phase shows an average deviation of 12%. All molar volumes are represented with an AAD lower than 3%. The few VLE experimental data for the CH4 + CO2 + H2O ternary system are fairly well predicted with the model without extra parameter, which confirm the ability of the eCPA equation of state to be extended to multi-component systems. In the presence of salts, gas + ion binary interaction parameters have been fitted, and all phase equilibrium are qualitatively correctly described, and more specifically the salting out effect. The solubility of methane or CO2 in brines, up to 5 molal, is represented with an AAD of 33% in a large temperature and pressure range (up to 673 K and 150 MPa). It should be noticed that for high temperatures, experimental data are relatively scarce and not always consistent. No data exist for water content of the vapor phase in these conditions. The new eCPA model can be easily extended to other components (including ions) to better represent real fluid behavior in very deep reservoir conditions.

  10. Evidence that molecular changes in cells occur before morphological alterations during the progression of breast ductal carcinoma

    PubMed Central

    Castro, Nadia P; Osório, Cynthia ABT; Torres, César; Bastos, Elen P; Mourão-Neto, Mário; Soares, Fernando A; Brentani, Helena P; Carraro, Dirce M

    2008-01-01

    Introduction Ductal carcinoma in situ (DCIS) of the breast includes a heterogeneous group of preinvasive tumors with uncertain evolution. Definition of the molecular factors necessary for progression to invasive disease is crucial to determining which lesions are likely to become invasive. To obtain insight into the molecular basis of DCIS, we compared the gene expression pattern of cells from the following samples: non-neoplastic, pure DCIS, in situ component of lesions with co-existing invasive ductal carcinoma, and invasive ductal carcinoma. Methods Forty-one samples were evaluated: four non-neoplastic, five pure DCIS, 22 in situ component of lesions with co-existing invasive ductal carcinoma, and 10 invasive ductal carcinoma. Pure cell populations were isolated using laser microdissection. Total RNA was purified, DNase treated, and amplified using the T7-based method. Microarray analysis was conducted using a customized cDNA platform. The concept of molecular divergence was applied to classify the sample groups using analysis of variance followed by Tukey's test. Results Among the tumor sample groups, cells from pure DCIS exhibited the most divergent molecular profile, consequently identifying cells from in situ component of lesions with co-existing invasive ductal carcinoma as very similar to cells from invasive lesions. Additionally, we identified 147 genes that were differentially expressed between pure DCIS and in situ component of lesions with co-existing invasive ductal carcinoma, which can discriminate samples representative of in situ component of lesions with co-existing invasive ductal carcinoma from 60% of pure DCIS samples. A gene subset was evaluated using quantitative RT-PCR, which confirmed differential expression for 62.5% and 60.0% of them using initial and partial independent sample groups, respectively. Among these genes, LOX and SULF-1 exhibited features that identify them as potential participants in the malignant process of DCIS. Conclusions We identified new genes that are potentially involved in the malignant transformation of DCIS, and our findings strongly suggest that cells from the in situ component of lesions with co-existing invasive ductal carcinoma exhibit molecular alterations that enable them to invade the surrounding tissue before morphological changes in the lesion become apparent. PMID:18928525

  11. Evidence that molecular changes in cells occur before morphological alterations during the progression of breast ductal carcinoma.

    PubMed

    Castro, Nadia P; Osório, Cynthia A B T; Torres, César; Bastos, Elen P; Mourão-Neto, Mário; Soares, Fernando A; Brentani, Helena P; Carraro, Dirce M

    2008-01-01

    Ductal carcinoma in situ (DCIS) of the breast includes a heterogeneous group of preinvasive tumors with uncertain evolution. Definition of the molecular factors necessary for progression to invasive disease is crucial to determining which lesions are likely to become invasive. To obtain insight into the molecular basis of DCIS, we compared the gene expression pattern of cells from the following samples: non-neoplastic, pure DCIS, in situ component of lesions with co-existing invasive ductal carcinoma, and invasive ductal carcinoma. Forty-one samples were evaluated: four non-neoplastic, five pure DCIS, 22 in situ component of lesions with co-existing invasive ductal carcinoma, and 10 invasive ductal carcinoma. Pure cell populations were isolated using laser microdissection. Total RNA was purified, DNase treated, and amplified using the T7-based method. Microarray analysis was conducted using a customized cDNA platform. The concept of molecular divergence was applied to classify the sample groups using analysis of variance followed by Tukey's test. Among the tumor sample groups, cells from pure DCIS exhibited the most divergent molecular profile, consequently identifying cells from in situ component of lesions with co-existing invasive ductal carcinoma as very similar to cells from invasive lesions. Additionally, we identified 147 genes that were differentially expressed between pure DCIS and in situ component of lesions with co-existing invasive ductal carcinoma, which can discriminate samples representative of in situ component of lesions with co-existing invasive ductal carcinoma from 60% of pure DCIS samples. A gene subset was evaluated using quantitative RT-PCR, which confirmed differential expression for 62.5% and 60.0% of them using initial and partial independent sample groups, respectively. Among these genes, LOX and SULF-1 exhibited features that identify them as potential participants in the malignant process of DCIS. We identified new genes that are potentially involved in the malignant transformation of DCIS, and our findings strongly suggest that cells from the in situ component of lesions with co-existing invasive ductal carcinoma exhibit molecular alterations that enable them to invade the surrounding tissue before morphological changes in the lesion become apparent.

  12. Analytical approach to entropy generation and heat transfer in CNT-nanofluid dynamics through a ciliated porous medium

    NASA Astrophysics Data System (ADS)

    Akbar, Noreen Sher; Shoaib, M.; Tripathi, Dharmendra; Bhushan, Shashi; Bég, O. Anwar

    2018-04-01

    The transportation of biological and industrial nanofluids by natural propulsion like cilia movement and self-generated contraction-relaxation of flexible walls has significant applications in numerous emerging technologies. Inspired by multi-disciplinary progress and innovation in this direction, a thermo-fluid mechanical model is proposed to study the entropy generation and convective heat transfer of nanofluids fabricated by the dispersion of single-wall carbon nanotubes (SWCNT) nanoparticles in water as the base fluid. The regime studied comprises heat transfer and steady, viscous, incompressible flow, induced by metachronal wave propulsion due to beating cilia, through a cylindrical tube containing a sparse (i.e., high permeability) homogenous porous medium. The flow is of the creeping type and is restricted under the low Reynolds number and long wavelength approximations. Slip effects at the wall are incorporated and the generalized Darcy drag-force model is utilized to mimic porous media effects. Cilia boundary conditions for velocity components are employed to determine analytical solutions to the resulting non-dimensionalized boundary value problem. The influence of pertinent physical parameters on temperature, axial velocity, pressure rise and pressure gradient, entropy generation function, Bejan number and stream-line distributions are computed numerically. A comparative study between SWCNT-nanofluids and pure water is also computed. The computations demonstrate that axial flow is accelerated with increasing slip parameter and Darcy number and is greater for SWCNT-nanofluids than for pure water. Furthermore the size of the bolus for SWCNT-nanofluids is larger than that of the pure water. The study is applicable in designing and fabricating nanoscale and microfluidics devices, artificial cilia and biomimetic micro-pumps.

  13. Analytical approach to entropy generation and heat transfer in CNT-nanofluid dynamics through a ciliated porous medium

    NASA Astrophysics Data System (ADS)

    Akbar, Noreen Sher; Shoaib, M.; Tripathi, Dharmendra; Bhushan, Shashi; Bég, O. Anwar

    2018-03-01

    The transportation of biological and industrial nanofluids by natural propulsion like cilia movement and self-generated contraction-relaxation of flexible walls has significant applications in numerous emerging technologies. Inspired by multi-disciplinary progress and innovation in this direction, a thermo-fluid mechanical model is proposed to study the entropy generation and convective heat transfer of nanofluids fabricated by the dispersion of single-wall carbon nanotubes (SWCNT) nanoparticles in water as the base fluid. The regime studied comprises heat transfer and steady, viscous, incompressible flow, induced by metachronal wave propulsion due to beating cilia, through a cylindrical tube containing a sparse (i.e., high permeability) homogenous porous medium. The flow is of the creeping type and is restricted under the low Reynolds number and long wavelength approximations. Slip effects at the wall are incorporated and the generalized Darcy drag-force model is utilized to mimic porous media effects. Cilia boundary conditions for velocity components are employed to determine analytical solutions to the resulting non-dimensionalized boundary value problem. The influence of pertinent physical parameters on temperature, axial velocity, pressure rise and pressure gradient, entropy generation function, Bejan number and stream-line distributions are computed numerically. A comparative study between SWCNT-nanofluids and pure water is also computed. The computations demonstrate that axial flow is accelerated with increasing slip parameter and Darcy number and is greater for SWCNT-nanofluids than for pure water. Furthermore the size of the bolus for SWCNT-nanofluids is larger than that of the pure water. The study is applicable in designing and fabricating nanoscale and microfluidics devices, artificial cilia and biomimetic micro-pumps.

  14. The electronic structures of AlN and InN wurtzite nanowires

    NASA Astrophysics Data System (ADS)

    Xiong, Wen; Li, Dong-Xiao

    2017-07-01

    We derive the relations between the analogous seven Luttinger-Kohn parameters and six Rashba-Sheka-Pikus parameters for wurtzite semiconductors, which can be used to investigate the electronic structures of some wurtzite semiconductors such as AlN and InN materials, including their low-dimensional structures. As an example, the electronic structures of AlN and InN nanowires are calculated by using the derived relations and six-band effective-mass k · p theory. Interestingly, it is found that the ground hole state of AlN nanowires is always a pure S state whether the radius R is small (1 nm) or large (6 nm), and the ground hole state only contains | Z 〉 Bloch orbital component. Therefore, AlN nanowires is the ideal low-dimensional material for the production of purely linearly polarized π light, unlike ZnO nanowires, which emits plane-polarized σ light. However, the ground hole state of InN nanowires can be tuned from a pure S state to a mixed P state when the radius R is larger than 2.6 nm, which will make the polarized properties of the lowest optical transition changes from linearly polarized π light to plane-polarized σ light. Meanwhile, the valence band structures of InN nanowires will present strong band-crossings when the radius R increases to 6 nm, and through the detail analysis of possible transitions of InN nanowires at the Γ point, we find some of the neighbor optical transitions are almost degenerate, because the spin-orbit splitting energy of InN material is only 0.001 eV. Therefore, it is concluded that the electronic structures and optical properties of InN nanowires present great differences with that of AlN nanowires.

  15. Corrosion of pure aluminium and aluminium alloy: a comparative study using a slow positron beam

    NASA Astrophysics Data System (ADS)

    Wu, Y. C.; Li, P. H.; Xue, X. D.; Wang, S. J.; Kallis, A.; Coleman, P. G.; Zhai, T.

    2011-01-01

    Corrosion-related defects in pure Al and AA 2037 Al alloy have been investigated by positron beam-based Doppler broadening energy spectroscopy. Defect profiles have been analyzed by measuring the S parameter as a function of incident positron energy up to 30 keV. When pure Al samples are immersed in 1M NaOH for various times, a significant increase in the S parameter near the surface is observed. This implies that the corrosion process involves the creation of defects and nanometer voids. In contrast, a significant decrease in the S parameter is observed after the corrosion of water-quenched Al alloy by the same method, which is interpreted as being a result of Cu enrichment near the metal-oxide interface layer.

  16. Calculating the surface tension of binary solutions of simple fluids of comparable size

    NASA Astrophysics Data System (ADS)

    Zaitseva, E. S.; Tovbin, Yu. K.

    2017-11-01

    A molecular theory based on the lattice gas model (LGM) is used to calculate the surface tension of one- and two-component planar vapor-liquid interfaces of simple fluids. Interaction between nearest neighbors is considered in the calculations. LGM is applied as a tool of interpolation: the parameters of the model are corrected using experimental surface tension data. It is found that the average accuracy of describing the surface tension of pure substances (Ar, N2, O2, CH4) and their mixtures (Ar-O2, Ar-N2, Ar-CH4, N2-CH4) does not exceed 2%.

  17. The Work Softening Behavior of Pure Mg Wire during Cold Drawing.

    PubMed

    Sun, Liuxia; Bai, Jing; Xue, Feng; Chu, Chenglin; Meng, Jiao

    2018-04-13

    We performed multiple-pass cold drawing for pure Mg wire which showed excellent formability (~138% accumulative true strain) at room temperature. Different from the continuous work hardening occurring during cold drawing of Mg alloy wires, for pure Mg, an initially rapid increase in hardness and strength was followed by significant work softening and finally reached a steady-state level, approximately 40~45 HV. The work softening can be attributed to the dynamic recovery and recrystallization of pure Mg at room temperature. Meanwhile, an abrupt change in texture component also was detected with the transition from work hardening to softening in the strain range of 28~34%. During the whole drawing, the strongest texture component gradually transformed from as-extruded basal to <10 1 ¯ 0> fiber (~28% accumulative true strain), and then rapidly returned to the weak basal texture.

  18. Use of Raman microscopy and multivariate data analysis to observe the biomimetic growth of carbonated hydroxyapatite on bioactive glass.

    PubMed

    Seah, Regina K H; Garland, Marc; Loo, Joachim S C; Widjaja, Effendi

    2009-02-15

    In the present contribution, the biomimetic growth of carbonated hydroxyapatite (HA) on bioactive glass were investigated by Raman microscopy. Bioactive glass samples were immersed in simulated body fluid (SBF) buffered solution at pH 7.40 up to 17 days at 37 degrees C. Raman microscopy mapping was performed on the bioglass samples immersed in SBF solution for different periods of time. The collected data was then analyzed using the band-target entropy minimization technique to extract the observable pure component Raman spectral information. In this study, the pure component Raman spectra of the precursor amorphous calcium phosphate, transient octacalcium phosphate, and matured HA were all recovered. In addition, pure component Raman spectra of calcite, silica glass, and some organic impurities were also recovered. The resolved pure component spectra were fit to the normalized measured Raman data to provide the spatial distribution of these species on the sample surfaces. The current results show that Raman microscopy and multivariate data analysis provide a sensitive and accurate tool to characterize the surface morphology, as well as to give more specific information on the chemical species present and the phase transformation of phosphate species during the formation of HA on bioactive glass.

  19. Spectral multivariate calibration without laboratory prepared or determined reference analyte values.

    PubMed

    Ottaway, Josh; Farrell, Jeremy A; Kalivas, John H

    2013-02-05

    An essential part to calibration is establishing the analyte calibration reference samples. These samples must characterize the sample matrix and measurement conditions (chemical, physical, instrumental, and environmental) of any sample to be predicted. Calibration usually requires measuring spectra for numerous reference samples in addition to determining the corresponding analyte reference values. Both tasks are typically time-consuming and costly. This paper reports on a method named pure component Tikhonov regularization (PCTR) that does not require laboratory prepared or determined reference values. Instead, an analyte pure component spectrum is used in conjunction with nonanalyte spectra for calibration. Nonanalyte spectra can be from different sources including pure component interference samples, blanks, and constant analyte samples. The approach is also applicable to calibration maintenance when the analyte pure component spectrum is measured in one set of conditions and nonanalyte spectra are measured in new conditions. The PCTR method balances the trade-offs between calibration model shrinkage and the degree of orthogonality to the nonanalyte content (model direction) in order to obtain accurate predictions. Using visible and near-infrared (NIR) spectral data sets, the PCTR results are comparable to those obtained using ridge regression (RR) with reference calibration sets. The flexibility of PCTR also allows including reference samples if such samples are available.

  20. Application of Molecular Interaction Volume Model for Phase Equilibrium of Sn-Based Binary System in Vacuum Distillation

    NASA Astrophysics Data System (ADS)

    Kong, Lingxin; Yang, Bin; Xu, Baoqiang; Li, Yifu

    2014-09-01

    Based on the molecular interaction volume model (MIVM), the activities of components of Sn-Sb, Sb-Bi, Sn-Zn, Sn-Cu, and Sn-Ag alloys were predicted. The predicted values are in good agreement with the experimental data, which indicate that the MIVM is of better stability and reliability due to its good physical basis. A significant advantage of the MIVM lies in its ability to predict the thermodynamic properties of liquid alloys using only two parameters. The phase equilibria of Sn-Sb and Sn-Bi alloys were calculated based on the properties of pure components and the activity coefficients, which indicates that Sn-Sb and Sn-Bi alloys can be separated thoroughly by vacuum distillation. This study extends previous investigations and provides an effective and convenient model on which to base refining simulations for Sn-based alloys.

  1. Cross Sections, relic abundance, and detection rates for neutralino dark matter

    NASA Technical Reports Server (NTRS)

    Griest, Kim

    1988-01-01

    Neutralino annihilation and elastic scattering cross sections are derived which differ in important ways from previous work. These are applied to relic abundance calculations and to direct detection of neutralino dark matter from the galactic halo. Assuming the neutralino to be the lightest supersymmetric particle and that it is less massive than the Z sup 0, we find relic densities of neutralinos greater than 4 percent of critical density for almost all values of the supersymmetric parameters. We constrain the parameter space by using results from PETRA (chargino mass less than 23 GeV) and ASP, and then assuming a critical density of neutralinos, display event rates in a cryogenic detector for a variety of models. A new term implies spin independent elastic scattering even for those majorana particles and inclusion of propagator momenta increases detection rates by 10 to 300 percent for pure photinos. Z sup 0-squark interference leads to very low detection rates for some values of the parameters. The new term in the elastic cross section dominates for heavy, mostly spinless materials and mitigates the negative interference cancellations in light materials; except for the pure photino or pure higgsinos cases where it does not contribute. In general, the rates can be substantially different from the pure photino and pure higgsino special cases usually considered.

  2. Does topological information matter for power grid vulnerability?

    PubMed

    Ouyang, Min; Yang, Kun

    2014-12-01

    Power grids, which are playing an important role in supporting the economy of a region as well as the life of its citizens, could be attacked by terrorists or enemies to damage the region. Depending on different levels of power grid information collected by the terrorists, their attack strategies might be different. This paper groups power grid information into four levels: no information, purely topological information (PTI), topological information with generator and load nodes (GLNI), and full information (including component physical properties and flow parameters information), and then identifies possible attack strategies for each information level. Analyzing and comparing power grid vulnerability under these attack strategies from both terrorists' and utility companies' point of view give rise to an approach to quantify the relative values of these three types of information, including PTI, GLNI, and component parameter information (CPI). This approach can provide information regarding the extent to which topological information matters for power system vulnerability decisions. Taking several test systems as examples, results show that for small attacks with p ≤ 0.1, CPI matters the most; when taking attack cost into consideration and assuming that the terrorists take the optimum cost-efficient attack intensity, then CPI has the largest cost-based information value.

  3. Does topological information matter for power grid vulnerability?

    NASA Astrophysics Data System (ADS)

    Ouyang, Min; Yang, Kun

    2014-12-01

    Power grids, which are playing an important role in supporting the economy of a region as well as the life of its citizens, could be attacked by terrorists or enemies to damage the region. Depending on different levels of power grid information collected by the terrorists, their attack strategies might be different. This paper groups power grid information into four levels: no information, purely topological information (PTI), topological information with generator and load nodes (GLNI), and full information (including component physical properties and flow parameters information), and then identifies possible attack strategies for each information level. Analyzing and comparing power grid vulnerability under these attack strategies from both terrorists' and utility companies' point of view give rise to an approach to quantify the relative values of these three types of information, including PTI, GLNI, and component parameter information (CPI). This approach can provide information regarding the extent to which topological information matters for power system vulnerability decisions. Taking several test systems as examples, results show that for small attacks with p ≤ 0.1, CPI matters the most; when taking attack cost into consideration and assuming that the terrorists take the optimum cost-efficient attack intensity, then CPI has the largest cost-based information value.

  4. Acyl chain conformational ordering of individual components in liquid-crystalline bilayers of mixtures of phosphatidylcholines and phosphatidic acids. A comparative FTIR and 2H NMR study

    NASA Astrophysics Data System (ADS)

    Ziegler, Wolfgang; Blume, Alfred

    1995-09-01

    The conformational ordering of the acyl chains of all possible binary 1:1 mixtures containing the phospholipids DMPC, DMPA, DPPC, and DPPA was investigated using FTIR and 2H NMR spectroscopy. One of the components was always labelled with perdeuterated chains to be able to observe the individual behaviour of the two components. From the temperature dependence of the frequencies of the symmetric and antisymmetric CH 2- and CD 2-stretching vibrations the transition temperatures were determined. The integral intensities of the conformation sensitive CH 2-wagging bands at ca. 1368 cm -1(gtg' and gtg sequences), 1356 cm -1 (double gauche), and 1342 cm -1 (end gauche) can be converted to numbers of gauche conformers per acyl chain using calibration factors published by Senak et al. J. Phys. Chem. 95 (1991) 2565. The 2H NMR quadrupolar splittings of the CD 2-segments of the perdeuterated lipid components are affected not only by trans-gauche isomerizations but also by long axis rotations and restricted wobbling motions of the acyl chains. The values of the average gauche probability overlinep3 from FTIR spectroscopy and the average order parameters overlineSCD, the order parameter of the terminal methyl groups SCDCD 3 and the average order parameter for the plateau region overlineSCDPlat of components in the mixtures are compared to those of the pure lipids evaluated in a previous publication Tuchtenhagen et al. Eur. Biophys. J. 23 (1994) 323. The conformational behaviour of lipids in mixtures is mainly influenced by head groups interactions, PAs always being more ordered than the corresponding PCs. Depending on absolute chain length and on chain length differences between the two components different conformational behaviour is observed for the two components in the mixtures, indicating non-ideal mixing and formation of micro-domains in the liquid-crystalline phase. Increases in order at the chain ends with a concomitant decrease in probabilities for end gauche conformations give hints to chain interdigitation in the liquid-crystalline phase.

  5. Heuristic rule for binary superlattice coassembly: mixed plastic mesophases of hard polyhedral nanoparticles.

    PubMed

    Khadilkar, Mihir R; Escobedo, Fernando A

    2014-10-17

    Sought-after ordered structures of mixtures of hard anisotropic nanoparticles can often be thermodynamically unfavorable due to the components' geometric incompatibility to densely pack into regular lattices. A simple compatibilization rule is identified wherein the particle sizes are chosen such that the order-disorder transition pressures of the pure components match (and the entropies of the ordered phases are similar). Using this rule with representative polyhedra from the truncated-cube family that form pure-component plastic crystals, Monte Carlo simulations show the formation of plastic-solid solutions for all compositions and for a wide range of volume fractions.

  6. Testing the performance of pure spectrum resolution from Raman hyperspectral images of differently manufactured pharmaceutical tablets.

    PubMed

    Vajna, Balázs; Farkas, Attila; Pataki, Hajnalka; Zsigmond, Zsolt; Igricz, Tamás; Marosi, György

    2012-01-27

    Chemical imaging is a rapidly emerging analytical method in pharmaceutical technology. Due to the numerous chemometric solutions available, characterization of pharmaceutical samples with unknown components present has also become possible. This study compares the performance of current state-of-the-art curve resolution methods (multivariate curve resolution-alternating least squares, positive matrix factorization, simplex identification via split augmented Lagrangian and self-modelling mixture analysis) in the estimation of pure component spectra from Raman maps of differently manufactured pharmaceutical tablets. The batches of different technologies differ in the homogeneity level of the active ingredient, thus, the curve resolution methods are tested under different conditions. An empirical approach is shown to determine the number of components present in a sample. The chemometric algorithms are compared regarding the number of detected components, the quality of the resolved spectra and the accuracy of scores (spectral concentrations) compared to those calculated with classical least squares, using the true pure component (reference) spectra. It is demonstrated that using appropriate multivariate methods, Raman chemical imaging can be a useful tool in the non-invasive characterization of unknown (e.g. illegal or counterfeit) pharmaceutical products. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Use of Raman microscopy and band-target entropy minimization analysis to identify dyes in a commercial stamp. Implications for authentication and counterfeit detection.

    PubMed

    Widjaja, Effendi; Garland, Marc

    2008-02-01

    Raman microscopy was used in mapping mode to collect more than 1000 spectra in a 100 microm x 100 microm area from a commercial stamp. Band-target entropy minimization (BTEM) was then employed to unmix the mixture spectra in order to extract the pure component spectra of the samples. Three pure component spectral patterns with good signal-to-noise ratios were recovered, and their spatial distributions were determined. The three pure component spectral patterns were then identified as copper phthalocyanine blue, calcite-like material, and yellow organic dye material by comparison to known spectral libraries. The present investigation, consisting of (1) advanced curve resolution (blind-source separation) followed by (2) spectral data base matching, readily suggests extensions to authenticity and counterfeit studies of other types of commercial objects. The presence or absence of specific observable components form the basis for assessment. The present spectral analysis (BTEM) is applicable to highly overlapping spectral information. Since a priori information such as the number of components present and spectral libraries are not needed in BTEM, and since minor signals arising from trace components can be reconstructed, this analysis offers a robust approach to a wide variety of material problems involving authenticity and counterfeit issues.

  8. Solving the Mystery of Galaxy Bulges and Bulge Substructure

    NASA Astrophysics Data System (ADS)

    Erwin, Peter

    2017-08-01

    Understanding galaxy bulges is crucial for understanding galaxy evolution and the growth of supermassive black holes (SMBHs). Recent studies have shown that at least some - perhaps most - disk-galaxy bulges are actually composite structures, with both classical-bulge (spheroid) and pseudobulge (disky) components; this calls into question the standard practice of using simple, low-resolution bulge/disk decompositions to determine spheroid and SMBH mass functions. We propose WFC3 optical and near-IR imaging of a volume- and mass-limited sample of local disk galaxies to determine the full range of pure-classical, pure-pseudobulge, and composite-bulge frequencies and parameters, including stellar masses for classical bulges, disky pseudobulges, and boxy/peanut-shaped bulges. We will combine this with ground-based spectroscopy to determine the stellar-kinematic and population characteristics of the different substructures revealed by our WFC3 imaging. This will help resolve growing uncertainties about the status and nature of bulges and their relation to SMBH masses, and will provide an essential local-universe reference for understanding bulge (and SMBH) formation and evolution.

  9. Engineering stategies and implications of using higher plants for throttling gas and water exchange in a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Chamberland, Dennis; Wheeler, Raymond M.; Corey, Kenneth A.

    1993-01-01

    Engineering stategies for advanced life support systems to be used on Lunar and Mars bases involve a wide spectrum of approaches. These range from purely physical-chemical life support strategies to purely biological approaches. Within the context of biological based systems, a bioengineered system can be devised that would utilize the metabolic mechanisms of plants to control the rates of CO2 uptake and O2 evolution (photosynthesis) and water production (transpiration). Such a mechanism of external engineering control has become known as throttling. Research conducted at the John F. Kennedy Space Center's Controlled Ecological Life Support System Breadboard Project has demonstrated the potential of throttling these fluxes by changing environmental parameters affecting the plant processes. Among the more effective environmental throttles are: light and CO2 concentration for controllingthe rate of photsynthesis and humidity and CO2 concentration for controlling transpiration. Such a bioengineered strategy implies control mechanisms that in the past have not been widely attributed to life support systems involving biological components and suggests a broad range of applications in advanced life support system design.

  10. Specific heat in the pure gauge SU(2) theory

    NASA Astrophysics Data System (ADS)

    Mitrjushkin, V. K.; Zadorozhny, A. M.

    1989-12-01

    We calculated the specific heat Cv in pure gauge SU(2) theory. Calculations were done on the 3·8 3 lattice in the vicinity of the phase transition temperature. It is shown that the dependence of its electric ( CEv) and magnetic ( CMV) compone nts differ drastically near the phase transition point. Their behaviour is in full agreement with our previous calculations of the electric and magnetic components of the internal energy density and pressure.

  11. WT1 immunoreactivity in breast carcinoma: selective expression in pure and mixed mucinous subtypes.

    PubMed

    Domfeh, Akosua B; Carley, AnnaMarie L; Striebel, Joan M; Karabakhtsian, Rouzan G; Florea, Anca V; McManus, Kim; Beriwal, Sushil; Bhargava, Rohit

    2008-10-01

    Current literature suggests that strong WT1 expression in a carcinoma of unknown origin virtually excludes a breast primary. Our previous pilot study on WT1 expression in breast carcinomas has shown WT1 expression in approximately 10% of carcinomas that show mixed micropapillary and mucinous morphology (Mod Pathol 2007;20(Suppl 2):38A). To definitively assess as to what subtype of breast carcinoma might express WT1 protein, we examined 153 cases of invasive breast carcinomas. These consisted of 63 consecutive carcinomas (contained 1 mucinous tumor), 20 cases with micropapillary morphology (12 pure and 8 mixed), 6 micropapillary 'mimics' (ductal no special type carcinomas with retraction artifacts), 33 pure mucinous carcinomas and 31 mixed mucinous carcinomas (mucinous mixed with other morphologic types). Overall, WT1 expression was identified in 33 carcinomas, that is, 22 of 34 (65%) pure mucinous carcinomas and in 11 of 33 (33%) mixed mucinous carcinomas. The non-mucinous component in these 11 mixed mucinous carcinomas was either a ductal no special type carcinoma (8 cases) or a micropapillary component (3 cases). WT1 expression level was similar in both the mucinous and the non-mucinous components. The degree of WT1 expression was generally weak to moderate (>90% cases) and rarely strong (<10% cases). None of the breast carcinoma subtype unassociated with mucinous component showed WT1 expression.

  12. Study on Process Parameters of Extraction of γ-aminobutyric Acid Instant Moringa oleifera Powder

    NASA Astrophysics Data System (ADS)

    Tiaokun, Fu; Suhui, Zhang; Neng, Liu; Jihua, Li; Shaodan, Peng; Changqing, Guo; Wei, Zhou

    2017-12-01

    To preliminary optimize the extraction of γ-aminobutyric acid instant tea powder from Moringa oleifera leaves,taking γ-aminobutyric acid Moringa oleifera leaves as raw material and pure water as extraction solvent and GABA content as the main evaluation index,the effects of extraction temperature, ratio of liquid to material and extraction time on biochemical components and sensory qualities of Moringa oleifera leaves extractor was studied by using one-factor-at-a-time experiment.The results showed shat the optimal extraction conditions for γ-aminobutyric acid instant tea powder were extraction temperature of 60 °C, material-to-water ration of 1:10 and extraction time of 40 min.

  13. Antileishmanial activity of essential oil from Chenopodium ambrosioides and its main components against experimental cutaneous leishmaniasis in BALB/c mice.

    PubMed

    Monzote, L; Pastor, J; Scull, R; Gille, L

    2014-01-01

    Chenopodium ambrosioides have been used during centuries by native people to treat parasitic diseases. To compare the in vivo anti-leishmanial activity of the essential oil (EO) from C. ambrosioides and its major components (ascaridole, carvacrol and caryophyllene oxide). Anti-leishmanial effect was evaluated in BALB/c mice infected with Leishmania amazonensis and treated with the EO, main compounds and artificial mix of pure components by intralesional route at 30 mg/kg every 4 days during 14 days. Diseases progression and parasite burden in infected tissues were determined. EO prevented lesion development compared (p<0.05) with untreated animals and treated with vehicle. In addition, the efficacy of EO was also statistically superior (p<0.05) compared with the glucantime-treated animals. No potential effects were observed with pure components treatment. Mix of pure compounds cause death of animals after 3 days of treatment. Our results demonstrate the superiority of EO against experimental cutaneous leishmaniasis caused by L. amazonensis. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. Original predictive approach to the compressibility of pharmaceutical powder mixtures based on the Kawakita equation.

    PubMed

    Mazel, Vincent; Busignies, Virginie; Duca, Stéphane; Leclerc, Bernard; Tchoreloff, Pierre

    2011-05-30

    In the pharmaceutical industry, tablets are obtained by the compaction of two or more components which have different physical properties and compaction behaviours. Therefore, it could be interesting to predict the physical properties of the mixture using the single-component results. In this paper, we have focused on the prediction of the compressibility of binary mixtures using the Kawakita model. Microcrystalline cellulose (MCC) and L-alanine were compacted alone and mixed at different weight fractions. The volume reduction, as a function of the compaction pressure, was acquired during the compaction process ("in-die") and after elastic recovery ("out-of-die"). For the pure components, the Kawakita model is well suited to the description of the volume reduction. For binary mixtures, an original approach for the prediction of the volume reduction without using the effective Kawakita parameters was proposed and tested. The good agreement between experimental and predicted data proved that this model was efficient to predict the volume reduction of MCC and L-alanine mixtures during compaction experiments. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. 6-C polarization analysis using point measurements of translational and rotational ground-motion: theory and applications

    NASA Astrophysics Data System (ADS)

    Sollberger, David; Greenhalgh, Stewart A.; Schmelzbach, Cedric; Van Renterghem, Cédéric; Robertsson, Johan O. A.

    2018-04-01

    We provide a six-component (6-C) polarization model for P-, SV-, SH-, Rayleigh-, and Love-waves both inside an elastic medium as well as at the free surface. It is shown that single-station 6-C data comprised of three components of rotational motion and three components of translational motion provide the opportunity to unambiguously identify the wave type, propagation direction, and local P- and S-wave velocities at the receiver location by use of polarization analysis. To extract such information by conventional processing of three-component (3-C) translational data would require large and dense receiver arrays. The additional rotational components allow the extension of the rank of the coherency matrix used for polarization analysis. This enables us to accurately determine the wave type and wave parameters (propagation direction and velocity) of seismic phases, even if more than one wave is present in the analysis time window. This is not possible with standard, pure-translational 3-C recordings. In order to identify modes of vibration and to extract the accompanying wave parameters, we adapt the multiple signal classification algorithm (MUSIC). Due to the strong nonlinearity of the MUSIC estimator function, it can be used to detect the presence of specific wave types within the analysis time window at very high resolution. We show how the extracted wavefield properties can be used, in a fully automated way, to separate the wavefield into its different wave modes using only a single 6-C recording station. As an example, we apply the method to remove surface wave energy while preserving the underlying reflection signal and to suppress energy originating from undesired directions, such as side-scattered waves.

  16. Pure field theories and MACSYMA algorithms

    NASA Technical Reports Server (NTRS)

    Ament, W. S.

    1977-01-01

    A pure field theory attempts to describe physical phenomena through singularity-free solutions of field equations resulting from an action principle. The physics goes into forming the action principle and interpreting specific results. Algorithms for the intervening mathematical steps are sketched. Vacuum general relativity is a pure field theory, serving as model and providing checks for generalizations. The fields of general relativity are the 10 components of a symmetric Riemannian metric tensor; those of the Einstein-Straus generalization are the 16 components of a nonsymmetric. Algebraic properties are exploited in top level MACSYMA commands toward performing some of the algorithms of that generalization. The light cone for the theory as left by Einstein and Straus is found and simplifications of that theory are discussed.

  17. Characterization of Type Ia Supernova Light Curves Using Principal Component Analysis of Sparse Functional Data

    NASA Astrophysics Data System (ADS)

    He, Shiyuan; Wang, Lifan; Huang, Jianhua Z.

    2018-04-01

    With growing data from ongoing and future supernova surveys, it is possible to empirically quantify the shapes of SNIa light curves in more detail, and to quantitatively relate the shape parameters with the intrinsic properties of SNIa. Building such relationships is critical in controlling systematic errors associated with supernova cosmology. Based on a collection of well-observed SNIa samples accumulated in the past years, we construct an empirical SNIa light curve model using a statistical method called the functional principal component analysis (FPCA) for sparse and irregularly sampled functional data. Using this method, the entire light curve of an SNIa is represented by a linear combination of principal component functions, and the SNIa is represented by a few numbers called “principal component scores.” These scores are used to establish relations between light curve shapes and physical quantities such as intrinsic color, interstellar dust reddening, spectral line strength, and spectral classes. These relations allow for descriptions of some critical physical quantities based purely on light curve shape parameters. Our study shows that some important spectral feature information is being encoded in the broad band light curves; for instance, we find that the light curve shapes are correlated with the velocity and velocity gradient of the Si II λ6355 line. This is important for supernova surveys (e.g., LSST and WFIRST). Moreover, the FPCA light curve model is used to construct the entire light curve shape, which in turn is used in a functional linear form to adjust intrinsic luminosity when fitting distance models.

  18. Study on superconducting state parameters of Cu1-xZrx metallic glasses using model potentials

    NASA Astrophysics Data System (ADS)

    Jambusarwala, Tasneem S.; Gajjar, P. N.

    2018-05-01

    The superconducting state parameters (SSP) of Cu1-xZrx metallic glasses over the full range of concentration x of Zr have been investigated to study influence of various local pseudopotentials. The study includes the computation of electron-phonon coupling strength (λ), transition temperature (TC), isotope effect exponent (α) and effective interaction strength (N0V) using fourteen different forms of local model potentials. The local field correction function proposed by Taylor (T) is used. The influence of model potential on various parameters is ranging from 6% to 83% for pure Zr and 28% to 84% for pure Cu. The present study confirms that the identification of model potential is vital in studying Superconducting State Parameters.

  19. A group contribution method for associating chain molecules based on the statistical associating fluid theory (SAFT-γ)

    NASA Astrophysics Data System (ADS)

    Lymperiadis, Alexandros; Adjiman, Claire S.; Galindo, Amparo; Jackson, George

    2007-12-01

    A predictive group-contribution statistical associating fluid theory (SAFT-γ) is developed by extending the molecular-based SAFT-VR equation of state [A. Gil-Villegas et al. J. Chem. Phys. 106, 4168 (1997)] to treat heteronuclear molecules which are formed from fused segments of different types. Our models are thus a heteronuclear generalization of the standard models used within SAFT, comparable to the optimized potentials for the liquid state OPLS models commonly used in molecular simulation; an advantage of our SAFT-γ over simulation is that an algebraic description for the thermodynamic properties of the model molecules can be developed. In our SAFT-γ approach, each functional group in the molecule is modeled as a united-atom spherical (square-well) segment. The different groups are thus characterized by size (diameter), energy (well depth) and range parameters representing the dispersive interaction, and by shape factor parameters (which denote the extent to which each group contributes to the overall molecular properties). For associating groups a number of bonding sites are included on the segment: in this case the site types, the number of sites of each type, and the appropriate association energy and range parameters also have to be specified. A number of chemical families (n-alkanes, branched alkanes, n-alkylbenzenes, mono- and diunsaturated hydrocarbons, and n-alkan-1-ols) are treated in order to assess the quality of the SAFT-γ description of the vapor-liquid equilibria and to estimate the parameters of various functional groups. The group parameters for the functional groups present in these compounds (CH3, CH2, CH3CH, ACH, ACCH2, CH2, CH , and OH) together with the unlike energy parameters between groups of different types are obtained from an optimal description of the pure component phase equilibria. The approach is found to describe accurately the vapor-liquid equilibria with an overall %AAD of 3.60% for the vapor pressure and 0.86% for the saturated liquid density. The fluid phase equilibria of some larger compounds comprising these groups, which are not included in the optimization database and some binary mixtures are examined to confirm the predictive capability of the SAFT-γ approach. A key advantage of our method is that the binary interaction parameters between groups can be estimated directly from an examination of pure components alone. This means that as a first approximation the fluid-phase equilibria of mixtures of compounds comprising the groups considered can be predicted without the need for any adjustment of the binary interaction parameters (which is common in other approaches). The special case of molecular models comprising tangentially bonded (all-atom and united-atom) segments is considered separately; we comment on the adequacy of such models in representing the properties of real molecules.

  20. A group contribution method for associating chain molecules based on the statistical associating fluid theory (SAFT-gamma).

    PubMed

    Lymperiadis, Alexandros; Adjiman, Claire S; Galindo, Amparo; Jackson, George

    2007-12-21

    A predictive group-contribution statistical associating fluid theory (SAFT-gamma) is developed by extending the molecular-based SAFT-VR equation of state [A. Gil-Villegas et al. J. Chem. Phys. 106, 4168 (1997)] to treat heteronuclear molecules which are formed from fused segments of different types. Our models are thus a heteronuclear generalization of the standard models used within SAFT, comparable to the optimized potentials for the liquid state OPLS models commonly used in molecular simulation; an advantage of our SAFT-gamma over simulation is that an algebraic description for the thermodynamic properties of the model molecules can be developed. In our SAFT-gamma approach, each functional group in the molecule is modeled as a united-atom spherical (square-well) segment. The different groups are thus characterized by size (diameter), energy (well depth) and range parameters representing the dispersive interaction, and by shape factor parameters (which denote the extent to which each group contributes to the overall molecular properties). For associating groups a number of bonding sites are included on the segment: in this case the site types, the number of sites of each type, and the appropriate association energy and range parameters also have to be specified. A number of chemical families (n-alkanes, branched alkanes, n-alkylbenzenes, mono- and diunsaturated hydrocarbons, and n-alkan-1-ols) are treated in order to assess the quality of the SAFT-gamma description of the vapor-liquid equilibria and to estimate the parameters of various functional groups. The group parameters for the functional groups present in these compounds (CH(3), CH(2), CH(3)CH, ACH, ACCH(2), CH(2)=, CH=, and OH) together with the unlike energy parameters between groups of different types are obtained from an optimal description of the pure component phase equilibria. The approach is found to describe accurately the vapor-liquid equilibria with an overall %AAD of 3.60% for the vapor pressure and 0.86% for the saturated liquid density. The fluid phase equilibria of some larger compounds comprising these groups, which are not included in the optimization database and some binary mixtures are examined to confirm the predictive capability of the SAFT-gamma approach. A key advantage of our method is that the binary interaction parameters between groups can be estimated directly from an examination of pure components alone. This means that as a first approximation the fluid-phase equilibria of mixtures of compounds comprising the groups considered can be predicted without the need for any adjustment of the binary interaction parameters (which is common in other approaches). The special case of molecular models comprising tangentially bonded (all-atom and united-atom) segments is considered separately; we comment on the adequacy of such models in representing the properties of real molecules.

  1. Miscibility comparison for three refrigerant mixtures and four component refrigerants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, H.M.; Pate, M.B.

    1999-07-01

    Miscibility data were taken and compared for seven different refrigerants when mixed with the same polyol ester (POE) lubricant. Four of the seven refrigerants were single-component refrigerants while three of the refrigerants were mixtures composed of various combinations of the pure refrigerants. The purpose of this research was to investigate the difference in miscibility characteristics between refrigerant mixtures and their respective component refrigerants. The POE lubricant was a penta erythritol mixed-acid type POE which has a viscosity ISO32. The four pure refrigerants were R-32, R-125, R-134a, and R-143a and the three refrigerant mixtures were R-404A, R407C, and R-410A. The miscibilitymore » tests were performed in a test facility consisting of a series of miniature test cells submerged in a constant temperature bath. The test cells were constructed to allow for complete visibility of the refrigerant/lubricant mixtures under all test conditions. The tests were performed over a concentration range of 0 to 100% and a temperature range of {minus}40 to 194 F. The miscibility test results for refrigerant mixtures are compared to component refrigerants. In all cases, the refrigerant mixtures appear to have better miscibility than their most immiscible pure component.« less

  2. Human skin penetration of the major components of Australian tea tree oil applied in its pure form and as a 20% solution in vitro.

    PubMed

    Cross, Sheree E; Russell, Michael; Southwell, Ian; Roberts, Michael S

    2008-05-01

    The safety of topical application of Australian tea tree Oil (TTO) is confounded by a lack of transdermal penetration data, which adequately informs opinions and recommendations. In this study we applied TTO in its pure form and as a 20% solution in ethanol in vitro to human epidermal membranes from three different donors, mounted in horizontal Franz-type diffusion cells, using normal 'in use' dosing conditions (10 mg/cm2). In addition, we examined the effect of partially occluding the application site on the penetration of TTO components. Our data showed that only a small quantity of TTO components, 1.1-1.9% and 2-4% of the applied amount following application of a 20% TTO solution and pure TTO, respectively, penetrated into or through human epidermis. The largest TTO component penetrating the skin was terpinen-4-ol. Following partial occlusion of the application site, the penetration of terpinen-4-ol increased to approximately 7% of the applied TTO. Measurement of the rate of evaporation of tea tree oil from filter paper (7.4 mg/cm2) showed that 98% of the oil evaporated in 4 hours. Overall, it is apparent that the penetration of TTO components through human skin is limited.

  3. The effect of gamma irradiation on curcumin component of Curcuma domestica

    NASA Astrophysics Data System (ADS)

    Chosdu, R.; Erizal; Iriawan, T.; Hilmy, N.

    1995-02-01

    The effect of gamma irradiation on curcumin component of Curcuma domestica rhizome were investigated. Pure curcumin, sliced and powdered rhizome with 10% of moisture content were irradiated at 0, 10, 30 and 50 kGy (dose rate of 6 kGy/h). Curcumin content was analysed using HPLC method and ESR spectra. Results show that free radicals are already present in unirradiated rhizome. Gamma irradiation at the doses of 10, 30 and 50 kGy induced the free radicals formation of pure curcumin and Curcuma domestica rhizome. The ESR spectra of irradiated rhizome gave a very similar spectra to the signal of irradiated pure curcumin. The percentage of free radicals intensity from pure curcumin was very stable at room temperature up to 670 hours of storage. However, the percentage intensity of free radicals in the irradiated rhizome were decay during storage. Irradiation treatment and storage time did not give a significant change on curcumin content, water activity, pH and moisture content of rhizome investigated.

  4. Nonlinear dynamics and anisotropic structure of rotating sheared turbulence.

    PubMed

    Salhi, A; Jacobitz, F G; Schneider, K; Cambon, C

    2014-01-01

    Homogeneous turbulence in rotating shear flows is studied by means of pseudospectral direct numerical simulation and analytical spectral linear theory (SLT). The ratio of the Coriolis parameter to shear rate is varied over a wide range by changing the rotation strength, while a constant moderate shear rate is used to enable significant contributions to the nonlinear interscale energy transfer and to the nonlinear intercomponental redistribution terms. In the destabilized and neutral cases, in the sense of kinetic energy evolution, nonlinearity cannot saturate the growth of the largest scales. It permits the smallest scale to stabilize by a scale-by-scale quasibalance between the nonlinear energy transfer and the dissipation spectrum. In the stabilized cases, the role of rotation is mainly nonlinear, and interacting inertial waves can affect almost all scales as in purely rotating flows. In order to isolate the nonlinear effect of rotation, the two-dimensional manifold with vanishing spanwise wave number is revisited and both two-component spectra and single-point two-dimensional energy components exhibit an important effect of rotation, whereas the SLT as well as the purely two-dimensional nonlinear analysis are unaffected by rotation as stated by the Proudman theorem. The other two-dimensional manifold with vanishing streamwise wave number is analyzed with similar tools because it is essential for any shear flow. Finally, the spectral approach is used to disentangle, in an analytical way, the linear and nonlinear terms in the dynamical equations.

  5. Pure Maple Syrup: Nutritive Value.

    PubMed

    Leaf, A L

    1964-02-28

    Variations in concentrations of sugar, nitrogen, phosphorus, potassium, calcium, and magnesium of sap from sugar maple (Acer saccharum, Marsh.) trees are related to the time of sap collection and result in variation of the same components in pure maple syrup. Thirty milliliters (one fluid ounce) of pure maple syrup may contain 3 to 6 mg of phosphorus, 10 to 30 mg of potassium, 40 to 80 mg of calcium, and 4 to 25 mg of magnesium.

  6. Steam tables for pure water as an ActiveX component in Visual Basic 6.0

    NASA Astrophysics Data System (ADS)

    Verma, Mahendra P.

    2003-11-01

    The IAPWS-95 formulation for the thermodynamic properties of pure water was implemented as an ActiveX component ( SteamTables) in Visual Basic 6.0. For input parameters as temperature ( T=190-2000 K) and pressure ( P=3.23×10 -8-10,000 MPa) the program SteamTables calculates the following properties: volume ( V), density ( D), compressibility factor ( Z0), internal energy ( U), enthalpy ( H), Gibbs free energy ( G), Helmholtz free energy ( A), entropy ( S), heat capacity at constant pressure ( Cp), heat capacity at constant volume ( Cv), coefficient of thermal expansion ( CTE), isothermal compressibility ( Ziso), velocity of sound ( VelS), partial derivative of P with T at constant V (d Pd T), partial derivative of T with V at constant P (d Td V), partial derivative of V with P at constant T (d Vd P), Joule-Thomson coefficient ( JTC), isothermal throttling coefficient ( IJTC), viscosity ( Vis), thermal conductivity ( ThrmCond), surface tension ( SurfTen), Prandtl number ( PrdNum) and dielectric constant ( DielCons) for the liquid and vapor phases of pure water. It also calculates T as a function of P (or P as a function of T) along the sublimation, saturation and critical isochor curves, depending on the values of P (or T). The SteamTables can be incorporated in a program in any computer language, which supports object link embedding (OLE) in the Windows environment. An application of SteamTables is illustrated in a program in Visual Basic 6.0 to tabulate the values of the thermodynamic properties of water and vapor. Similarly, four functions, Temperature(Press), Pressure(Temp), State(Temp, Press) and WtrStmTbls(Temp, Press, Nphs, Nprop), where Temp, Press, Nphs and Nprop are temperature, pressure, phase number and property number, respectively, are written in Visual Basic for Applications (VBA) to use the SteamTables in a workbook in MS-Excel.

  7. Statistical mechanics of binary mixture adsorption in metal-organic frameworks in the osmotic ensemble.

    PubMed

    Dunne, Lawrence J; Manos, George

    2018-03-13

    Although crucial for designing separation processes little is known experimentally about multi-component adsorption isotherms in comparison with pure single components. Very few binary mixture adsorption isotherms are to be found in the literature and information about isotherms over a wide range of gas-phase composition and mechanical pressures and temperature is lacking. Here, we present a quasi-one-dimensional statistical mechanical model of binary mixture adsorption in metal-organic frameworks (MOFs) treated exactly by a transfer matrix method in the osmotic ensemble. The experimental parameter space may be very complex and investigations into multi-component mixture adsorption may be guided by theoretical insights. The approach successfully models breathing structural transitions induced by adsorption giving a good account of the shape of adsorption isotherms of CO 2 and CH 4 adsorption in MIL-53(Al). Binary mixture isotherms and co-adsorption-phase diagrams are also calculated and found to give a good description of the experimental trends in these properties and because of the wide model parameter range which reproduces this behaviour suggests that this is generic to MOFs. Finally, a study is made of the influence of mechanical pressure on the shape of CO 2 and CH 4 adsorption isotherms in MIL-53(Al). Quite modest mechanical pressures can induce significant changes to isotherm shapes in MOFs with implications for binary mixture separation processes.This article is part of the theme issue 'Modern theoretical chemistry'. © 2018 The Author(s).

  8. HEARTBEAT STARS: SPECTROSCOPIC ORBITAL SOLUTIONS FOR SIX ECCENTRIC BINARY SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smullen, Rachel A.; Kobulnicky, Henry A., E-mail: rsmullen@email.arizona.edu

    2015-08-01

    We present multi-epoch spectroscopy of “heartbeat stars,” eccentric binaries with dynamic tidal distortions and tidally induced pulsations originally discovered with the Kepler satellite. Optical spectra of six known heartbeat stars using the Wyoming Infrared Observatory 2.3 m telescope allow measurement of stellar effective temperatures and radial velocities from which we determine orbital parameters including the periods, eccentricities, approximate mass ratios, and component masses. These spectroscopic solutions confirm that the stars are members of eccentric binary systems with eccentricities e > 0.34 and periods P = 7–20 days, strengthening conclusions from prior works that utilized purely photometric methods. Heartbeat stars inmore » this sample have A- or F-type primary components. Constraints on orbital inclinations indicate that four of the six systems have minimum mass ratios q = 0.3–0.5, implying that most secondaries are probable M dwarfs or earlier. One system is an eclipsing, double-lined spectroscopic binary with roughly equal-mass mid-A components (q = 0.95), while another shows double-lined behavior only near periastron, indicating that the F0V primary has a G1V secondary (q = 0.65). This work constitutes the first measurements of the masses of secondaries in a statistical sample of heartbeat stars. The good agreement between our spectroscopic orbital elements and those derived using a photometric model support the idea that photometric data are sufficient to derive reliable orbital parameters for heartbeat stars.« less

  9. Statistical mechanics of binary mixture adsorption in metal-organic frameworks in the osmotic ensemble

    NASA Astrophysics Data System (ADS)

    Dunne, Lawrence J.; Manos, George

    2018-03-01

    Although crucial for designing separation processes little is known experimentally about multi-component adsorption isotherms in comparison with pure single components. Very few binary mixture adsorption isotherms are to be found in the literature and information about isotherms over a wide range of gas-phase composition and mechanical pressures and temperature is lacking. Here, we present a quasi-one-dimensional statistical mechanical model of binary mixture adsorption in metal-organic frameworks (MOFs) treated exactly by a transfer matrix method in the osmotic ensemble. The experimental parameter space may be very complex and investigations into multi-component mixture adsorption may be guided by theoretical insights. The approach successfully models breathing structural transitions induced by adsorption giving a good account of the shape of adsorption isotherms of CO2 and CH4 adsorption in MIL-53(Al). Binary mixture isotherms and co-adsorption-phase diagrams are also calculated and found to give a good description of the experimental trends in these properties and because of the wide model parameter range which reproduces this behaviour suggests that this is generic to MOFs. Finally, a study is made of the influence of mechanical pressure on the shape of CO2 and CH4 adsorption isotherms in MIL-53(Al). Quite modest mechanical pressures can induce significant changes to isotherm shapes in MOFs with implications for binary mixture separation processes. This article is part of the theme issue `Modern theoretical chemistry'.

  10. Extraction of pure components from overlapped signals in gas chromatography-mass spectrometry (GC-MS)

    PubMed Central

    Likić, Vladimir A

    2009-01-01

    Gas chromatography-mass spectrometry (GC-MS) is a widely used analytical technique for the identification and quantification of trace chemicals in complex mixtures. When complex samples are analyzed by GC-MS it is common to observe co-elution of two or more components, resulting in an overlap of signal peaks observed in the total ion chromatogram. In such situations manual signal analysis is often the most reliable means for the extraction of pure component signals; however, a systematic manual analysis over a number of samples is both tedious and prone to error. In the past 30 years a number of computational approaches were proposed to assist in the process of the extraction of pure signals from co-eluting GC-MS components. This includes empirical methods, comparison with library spectra, eigenvalue analysis, regression and others. However, to date no approach has been recognized as best, nor accepted as standard. This situation hampers general GC-MS capabilities, and in particular has implications for the development of robust, high-throughput GC-MS analytical protocols required in metabolic profiling and biomarker discovery. Here we first discuss the nature of GC-MS data, and then review some of the approaches proposed for the extraction of pure signals from co-eluting components. We summarize and classify different approaches to this problem, and examine why so many approaches proposed in the past have failed to live up to their full promise. Finally, we give some thoughts on the future developments in this field, and suggest that the progress in general computing capabilities attained in the past two decades has opened new horizons for tackling this important problem. PMID:19818154

  11. Heterogeneous enantioselective hydrogenation of beta-keto esters using chirally modified supported Ni nanoparticles

    NASA Astrophysics Data System (ADS)

    Acharya, Sushma

    Enantioselective heterogeneous catalysis is an important and rapidly expanding research area. The two most heavily researched examples of this type of catalysis are the enantioselective hydrogenation of α-keto-esters over Pt-based catalysts and the enantioselective hydrogenation of β-keto-esters over Ni-based catalysts. These enantioselective surface reactions are controlled by the presence of adsorbed chiral molecules i.e. tartaric acid on the surface of the metal component of the catalyst. The work presented in this thesis focuses on two parts, the synthesis of pure nickel nanoparticles and enantioselective behavior of the modified nickel nanoparticles. The works on the synthesis of pure nickel nanoparticles were carried out using two methods, the reverse microemulsion and the reduction method. It was discovered that the reverse microemulsion method produced nickel oxide nanoparticles, whereas the reduction method produced pure nickel nanoparticles. Chiral modifications of Raney nickel (RNi) and C-supported catalysts were studied. The catalysts were employed in enantioselective hydrogenation of methyl acetoacetate (MAA) to (R) - and (S)-enantiomers of methyl 3-hydroxybutyrate (MHB). The effects of modification and hydrogenation parameters such as concentration of modifier temperature, pressure and solvent on the enantioselectivity of MAA hydrogenation were discussed. For RNi methanol was found to be the best solvent, with tartaric acid concentration 0.2 mol/L for achieving the highest enantiomeric excess under 8 bar at 70 oC. Characteristic features of the in-situ modification of Raney nickel and C-supported Ni were also evaluated and the results obtained were compared with the conventional (pre-modification) approach. Parameters for the conventional and in-situ methods were optimised in a series of experiments for both types of catalysts. The in-situ modified catalyst was found more active for both RNi and C-supported catalysts with 98 % and 42% enantiomeric excess, respectively.

  12. Novel methods to estimate the enantiomeric ratio and the kinetic parameters of enantiospecific enzymatic reactions.

    PubMed

    Machado, G D.C.; Paiva, L M.C.; Pinto, G F.; Oestreicher, E G.

    2001-03-08

    1The Enantiomeric Ratio (E) of the enzyme, acting as specific catalysts in resolution of enantiomers, is an important parameter in the quantitative description of these chiral resolution processes. In the present work, two novel methods hereby called Method I and II, for estimating E and the kinetic parameters Km and Vm of enantiomers were developed. These methods are based upon initial rate (v) measurements using different concentrations of enantiomeric mixtures (C) with several molar fractions of the substrate (x). Both methods were tested using simulated "experimental data" and actual experimental data. Method I is easier to use than Method II but requires that one of the enantiomers is available in pure form. Method II, besides not requiring the enantiomers in pure form shown better results, as indicated by the magnitude of the standard errors of estimates. The theoretical predictions were experimentally confirmed by using the oxidation of 2-butanol and 2-pentanol catalyzed by Thermoanaerobium brockii alcohol dehydrogenase as reaction models. The parameters E, Km and Vm were estimated by Methods I and II with precision and were not significantly different from those obtained experimentally by direct estimation of E from the kinetic parameters of each enantiomer available in pure form.

  13. [The effect of fluoride on electrochemical corrosion of the dental pure titanium before and after adhesion of Streptococcus mutans].

    PubMed

    Geng, Li; Qiao, Guang-yan; Gu, Kai-ka

    2016-04-01

    To investigate the effect of fluoride on electrochemical corrosion of the dental pure titanium before and after adhesion of Streptococcus mutans. The dental pure titanium specimens were tested by electrochemical measurement system including electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curve (PD) methods in artificial saliva with 0 g/L and 1.0 g/L sodium fluoride before and after dipped into culture medium with Streptococcus mutans for 24 h. The corrosion parameters, including the polarization resistance (R(ct)), corrosion potential (E(corr)), pitting breakdown potential (E(b)), and the difference between E(corr) and E(b) representing the "pseudo-passivation" (ΔE) obtained from the electrochemical tests were used to evaluate the corrosion resistance of dental pure titanium. The data were statistically analyzed by 2×2 factorial statistical analysis to examine the effect of sodium fluoride and adhesion of Streptococcus mutans using SPSS 12.0 software package. The results showed that the corrosion parameters including R(ct), Ecorr, E(b), and ΔE of pure titanium had significant difference between before and after adhesion of Streptococcus mutans in the same solution(P<0.05), and in artificial saliva with 0 g/L and 1.0 g/L sodium fluoride(P<0.05). The dental pure titanium was prone to corrosion in artificial saliva with sodium fluoride. The corrosion resistance of pure titanium decreased distinctly after immersed in culture medium with Streptococcus mutans.

  14. Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis.

    PubMed

    Burnett, Andrew D; Fan, Wenhui; Upadhya, Prashanth C; Cunningham, John E; Hargreaves, Michael D; Munshi, Tasnim; Edwards, Howell G M; Linfield, Edmund H; Davies, A Giles

    2009-08-01

    Terahertz frequency time-domain spectroscopy has been used to analyse a wide range of samples containing cocaine hydrochloride, heroin and ecstasy--common drugs-of-abuse. We investigated real-world samples seized by law enforcement agencies, together with pure drugs-of-abuse, and pure drugs-of-abuse systematically adulterated in the laboratory to emulate real-world samples. In order to investigate the feasibility of automatic spectral recognition of such illicit materials by terahertz spectroscopy, principal component analysis was employed to cluster spectra of similar compounds.

  15. Static electric polarizabilities and first hyperpolarizabilities of molecular ions RgH + (Rg = He, Ne, Ar, Kr, Xe): ab initio study

    NASA Astrophysics Data System (ADS)

    Cukras, Janusz; Antušek, Andrej; Holka, Filip; Sadlej, Joanna

    2009-06-01

    Extensive ab initio calculations of static electric properties of molecular ions of general formula RgH + (Rg = He, Ne, Ar, Kr, Xe) involving the finite field method and coupled cluster CCSD(T) approach have been done. The relativistic effects were taken into account by Douglas-Kroll-Hess approximation. The numerical stability and reliability of calculated values have been tested using the systematic sequence of Dunning's cc-pVXZ-DK and ANO-RCC-VQZP basis sets. The influence of ZPE and pure vibrational contribution has been discussed. The component αzz has increasing trend in RgH + while the relativistic effect on αzz leads to a small increase of this molecular parameter.

  16. Binary chromatographic data and estimation of adsorbent porosities. [data for system n-heptane/n-pentane

    NASA Technical Reports Server (NTRS)

    Meisch, A. J.

    1972-01-01

    Data for the system n-pentane/n-heptane on porous Chromosorb-102 adsorbent were obtained at 150, 175, and 200 C for mixtures containing zero to 100% n-pentane by weight. Prior results showing limitations on superposition of pure component data to predict multicomponent chromatograms were verified. The thermodynamic parameter MR0 was found to be a linear function of sample composition. A nonporous adsorbent failed to separate the system because of large input sample dispersions. A proposed automated data processing scheme involving magnetic tape recording of the detector signals and processing by a minicomputer was rejected because of resolution limitations of the available a/d converters. Preliminary data on porosity and pore size distributions of the adsorbents were obtained.

  17. Feasibility experiments on time-resolved fluorosensing applied to oil slicks

    NASA Technical Reports Server (NTRS)

    Camagni, P.; Colombo, G.; Koechler, C.; Pedrini, A.; Omenetto, N.; Rossi, G.

    1986-01-01

    The introduction of time resolved observations can provide a very penetrating tool in the practice of laser fluorosensing. The investigations have demonstrated a relevance of multispectral, time resolved analysis for oil fingerprinting. By comparative studies on a variety of crude oils and their most significant fractions, it was found that the process of time decay in a composite oil is characterized by a few steps, which are associated with specific components in the medium light range. The average decay times of these pure fractions are markedly differentiated as to absolute values and spectral spread; as a consequence, the corresponding parameters in the resultant crude are quite sensitive to the particular mixture of these components. Measurements of the time response give then a finer discrimination between oil classes, depending on the relative content of certain fractions. Experiments were pursued with an improved fluorosensor facility, in order to test the application of time resolved fluorosensing to remote samples on water.

  18. Designing Domain-Specific HUMS Architectures: An Automated Approach

    NASA Technical Reports Server (NTRS)

    Mukkamala, Ravi; Agarwal, Neha; Kumar, Pramod; Sundaram, Parthiban

    2004-01-01

    The HUMS automation system automates the design of HUMS architectures. The automated design process involves selection of solutions from a large space of designs as well as pure synthesis of designs. Hence the whole objective is to efficiently search for or synthesize designs or parts of designs in the database and to integrate them to form the entire system design. The automation system adopts two approaches in order to produce the designs: (a) Bottom-up approach and (b) Top down approach. Both the approaches are endowed with a Suite of quantitative and quantitative techniques that enable a) the selection of matching component instances, b) the determination of design parameters, c) the evaluation of candidate designs at component-level and at system-level, d) the performance of cost-benefit analyses, e) the performance of trade-off analyses, etc. In short, the automation system attempts to capitalize on the knowledge developed from years of experience in engineering, system design and operation of the HUMS systems in order to economically produce the most optimal and domain-specific designs.

  19. Highlights of DAMA/LIBRA

    NASA Astrophysics Data System (ADS)

    Bernabei, R.; Belli, P.; d'Angelo, A.; d'Angelo, S.; Di Marco, A.; Montecchia, F.; Incicchitti, A.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Dai, C. J.; He, H. L.; Kuang, H. H.; Ma, X. H.; Sheng, X. D.; Wang, R. G.; Ye, Z. P.

    2016-11-01

    The DAMA project develops and uses new/improved low background scintillation detectors to investigate the Dark Matter (DM) particle component(s) in the galactic halo and rare processes deep underground at the Gran Sasso National Laboratory (LNGS) of the I.N.F.N.. Here some highlights of DAMA/LIBRA (Large sodium Iodide Bulk for Rare processes) as a unique apparatus in direct DM investigation for its full sensitive mass, target material, intrinsic radio-purity, methodological approach and all the controls performed on the experimental parameters are outlined. The DAMA/LIBRA-phase1 and the former DAMA/NaI data (cumulative exposure 1.33 ton × yr, corresponding to 14 annual cycles) have reached a model-independent evidence at 9.3 σ C.L. for the presence of DM particles in the galactic halo exploiting the DM annual modulation signature with highly radio-pure NaI(Tl) target. Some of the perspectives of the presently running DAMA/LIBRA-phase2 are summarised and the powerful tools offered by a model independent strategy of DM investigation are pointed out.

  20. Social imitation versus strategic choice, or consensus versus cooperation, in the networked Prisoner's Dilemma

    NASA Astrophysics Data System (ADS)

    Vilone, Daniele; Ramasco, José J.; Sánchez, Angel; Miguel, Maxi San

    2014-08-01

    The interplay of social and strategic motivations in human interactions is a largely unexplored topic in collective social phenomena. Whether individuals' decisions are taken in a purely strategic basis or due to social pressure without a rational background crucially influences the model outcome. Here we study a networked Prisoner's Dilemma in which decisions are made either based on the replication of the most successful neighbor's strategy (unconditional imitation) or by pure social imitation following an update rule inspired by the voter model. The main effects of the voter dynamics are an enhancement of the final consensus, i.e., asymptotic states are generally uniform, and a promotion of cooperation in certain regions of the parameter space as compared to the outcome of purely strategic updates. Thus, voter dynamics acts as an interface noise and has a similar effect as a pure random noise; furthermore, its influence is mostly independent of the network heterogeneity. When strategic decisions are made following other update rules such as the replicator or Moran processes, the dynamic mixed state found under unconditional imitation for some parameters disappears, but an increase of cooperation in certain parameter regions is still observed. Comparing our results with recent experiments on the Prisoner's Dilemma, we conclude that such a mixed dynamics may explain moody conditional cooperation among the agents.

  1. Social imitation versus strategic choice, or consensus versus cooperation, in the networked Prisoner's Dilemma.

    PubMed

    Vilone, Daniele; Ramasco, José J; Sánchez, Angel; San Miguel, Maxi

    2014-08-01

    The interplay of social and strategic motivations in human interactions is a largely unexplored topic in collective social phenomena. Whether individuals' decisions are taken in a purely strategic basis or due to social pressure without a rational background crucially influences the model outcome. Here we study a networked Prisoner's Dilemma in which decisions are made either based on the replication of the most successful neighbor's strategy (unconditional imitation) or by pure social imitation following an update rule inspired by the voter model. The main effects of the voter dynamics are an enhancement of the final consensus, i.e., asymptotic states are generally uniform, and a promotion of cooperation in certain regions of the parameter space as compared to the outcome of purely strategic updates. Thus, voter dynamics acts as an interface noise and has a similar effect as a pure random noise; furthermore, its influence is mostly independent of the network heterogeneity. When strategic decisions are made following other update rules such as the replicator or Moran processes, the dynamic mixed state found under unconditional imitation for some parameters disappears, but an increase of cooperation in certain parameter regions is still observed. Comparing our results with recent experiments on the Prisoner's Dilemma, we conclude that such a mixed dynamics may explain moody conditional cooperation among the agents.

  2. Contribution to modeling the viscosity Arrhenius-type equation for saturated pure fluids

    NASA Astrophysics Data System (ADS)

    Tian, Jianxiang; Zhang, Laibin

    2016-09-01

    Recently, Haj-Kacem et al. proposed an equation modeling the relationship between the two parameters of viscosity Arrhenius-type equations [Fluid Phase Equilibria 383, 11 (2014)]. The authors found that the two parameters are dependent upon each other in an exponential function form. In this paper, we reconsidered their ideas and calculated the two parameter values for 49 saturated pure fluids by using the experimental data in the NIST WebBook. Our conclusion is different with the ones of Haj-Kacem et al. We found that (the linearity shown by) the Arrhenius equation stands strongly only in low temperature range and that the two parameters of the Arrhenius equation are independent upon each other in the whole temperature range from the triple point to the critical point.

  3. Fourier Transform Ultrasound Spectroscopy for the determination of wave propagation parameters.

    PubMed

    Pal, Barnana

    2017-01-01

    The reported results for ultrasonic wave attenuation constant (α) in pure water show noticeable inconsistency in magnitude. A "Propagating-Wave" model analysis of the most popular pulse-echo technique indicates that this is a consequence of the inherent wave propagation characteristics in a bounded medium. In the present work Fourier Transform Ultrasound Spectroscopy (FTUS) is adopted to determine ultrasonic wave propagation parameters, the wave number (k) and attenuation constant (α) at 1MHz frequency in tri-distilled water at room temperature (25°C). Pulse-echo signals obtained under same experimental conditions regarding the exciting input signal and reflecting boundary wall of the water container for various lengths of water columns are captured. The Fast Fourier Transform (FFT) components of the echo signals are taken to compute k, α and r, the reflection constant at the boundary, using Oak Ridge and Oxford method. The results are compared with existing literature values. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Selective laser melting of high-performance pure tungsten: parameter design, densification behavior and mechanical properties

    PubMed Central

    Zhou, Kesong; Ma, Wenyou; Attard, Bonnie; Zhang, Panpan; Kuang, Tongchun

    2018-01-01

    Abstract Selective laser melting (SLM) additive manufacturing of pure tungsten encounters nearly all intractable difficulties of SLM metals fields due to its intrinsic properties. The key factors, including powder characteristics, layer thickness, and laser parameters of SLM high density tungsten are elucidated and discussed in detail. The main parameters were designed from theoretical calculations prior to the SLM process and experimentally optimized. Pure tungsten products with a density of 19.01 g/cm3 (98.50% theoretical density) were produced using SLM with the optimized processing parameters. A high density microstructure is formed without significant balling or macrocracks. The formation mechanisms for pores and the densification behaviors are systematically elucidated. Electron backscattered diffraction analysis confirms that the columnar grains stretch across several layers and parallel to the maximum temperature gradient, which can ensure good bonding between the layers. The mechanical properties of the SLM-produced tungsten are comparable to that produced by the conventional fabrication methods, with hardness values exceeding 460 HV0.05 and an ultimate compressive strength of about 1 GPa. This finding offers new potential applications of refractory metals in additive manufacturing. PMID:29707073

  5. Selective laser melting of high-performance pure tungsten: parameter design, densification behavior and mechanical properties.

    PubMed

    Tan, Chaolin; Zhou, Kesong; Ma, Wenyou; Attard, Bonnie; Zhang, Panpan; Kuang, Tongchun

    2018-01-01

    Selective laser melting (SLM) additive manufacturing of pure tungsten encounters nearly all intractable difficulties of SLM metals fields due to its intrinsic properties. The key factors, including powder characteristics, layer thickness, and laser parameters of SLM high density tungsten are elucidated and discussed in detail. The main parameters were designed from theoretical calculations prior to the SLM process and experimentally optimized. Pure tungsten products with a density of 19.01 g/cm 3 (98.50% theoretical density) were produced using SLM with the optimized processing parameters. A high density microstructure is formed without significant balling or macrocracks. The formation mechanisms for pores and the densification behaviors are systematically elucidated. Electron backscattered diffraction analysis confirms that the columnar grains stretch across several layers and parallel to the maximum temperature gradient, which can ensure good bonding between the layers. The mechanical properties of the SLM-produced tungsten are comparable to that produced by the conventional fabrication methods, with hardness values exceeding 460 HV 0.05 and an ultimate compressive strength of about 1 GPa. This finding offers new potential applications of refractory metals in additive manufacturing.

  6. Research on the Applicable Method of Valuation of Pure Electric Used vehicles

    NASA Astrophysics Data System (ADS)

    Cai, yun; Tan, zhengping; Wang, yidong; Mao, pan

    2018-03-01

    With the rapid growth in the ownership of pure electric vehicles, the research on the valuation of used electric vehicles has become the key to the development of the pure electric used vehicle market. The paper analyzed the application of the three value assessment methods, current market price method, capitalized earning method and replacement cost method, in pure electric used vehicles, and draws a conclusion that the replacement cost method is more suitable for pure electric used car. At the same time, the article also conducted a parametric correction exploration research, aiming at the characteristics of pure electric vehicles and replacement cost of the constituent factors. Through the analysis of the applicability parameters of physical devaluation, functional devaluation and economic devaluation, the revised replacement cost method can be used for the valuation of purely used electric vehicles for private use.

  7. ThermoData Engine (TDE): software implementation of the dynamic data evaluation concept. 9. Extensible thermodynamic constraints for pure compounds and new model developments.

    PubMed

    Diky, Vladimir; Chirico, Robert D; Muzny, Chris D; Kazakov, Andrei F; Kroenlein, Kenneth; Magee, Joseph W; Abdulagatov, Ilmutdin; Frenkel, Michael

    2013-12-23

    ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported in this journal. The present article describes the background and implementation for new additions in latest release of TDE. Advances are in the areas of program architecture and quality improvement for automatic property evaluations, particularly for pure compounds. It is shown that selection of appropriate program architecture supports improvement of the quality of the on-demand property evaluations through application of a readily extensible collection of constraints. The basis and implementation for other enhancements to TDE are described briefly. Other enhancements include the following: (1) implementation of model-validity enforcement for specific equations that can provide unphysical results if unconstrained, (2) newly refined group-contribution parameters for estimation of enthalpies of formation for pure compounds containing carbon, hydrogen, and oxygen, (3) implementation of an enhanced group-contribution method (NIST-Modified UNIFAC) in TDE for improved estimation of phase-equilibrium properties for binary mixtures, (4) tools for mutual validation of ideal-gas properties derived through statistical calculations and those derived independently through combination of experimental thermodynamic results, (5) improvements in program reliability and function that stem directly from the recent redesign of the TRC-SOURCE Data Archival System for experimental property values, and (6) implementation of the Peng-Robinson equation of state for binary mixtures, which allows for critical evaluation of mixtures involving supercritical components. Planned future developments are summarized.

  8. Pure Erythroleukemia (Variant Acute Myeloid Leukemia-vAML-M6) with Deletion of Chromosome 20, Mainly Presenting as Late Erythroblasts, a Unique Case Report with Review of Literature.

    PubMed

    Rasool, Javid; Geelani, Sajad; Khursheed; Yasir; Lone, Mohd Suhail; Shaban, Mohd

    2014-03-01

    Acute erythroleukemia is characterized by a predominant immature erythroid population and accounts for approximately 2-5 % of all cases of acute leukemia. Two subtypes are recognized based on the presence or absence of a significant myeloid component: erythroleukemia and pure erythroid leukemia. Erythroleukemia is predominantly a disease of adults, while pure erythroid leukemia can be seen in any age including children. Here is a case of pure erythroleukemia presenting mainly as late erythroblasts which was diagnosed on bone marrow examination, cytochemistry and was confirmed on immunophenotyping. Possibly this is the only case so for demonstrating deletion of long arm of chromosome 20 in pure erythroleukemia.

  9. Effect of Compressive Mode I on the Mixed Mode I/II Fatigue Crack Growth Rate of 42CrMo4

    NASA Astrophysics Data System (ADS)

    Heirani, Hasan; Farhangdoost, Khalil

    2018-01-01

    Subsurface cracks in mechanical contact loading components are subjected to mixed mode I/II, so it is necessary to evaluate the fatigue behavior of materials under mixed mode loading. For this purpose, fatigue crack propagation tests are performed with compact tension shear specimens for several stress intensity factor (SIF) ratios of mode I and mode II. The effect of compressive mode I loading on mixed mode I/II crack growth rate and fracture surface is investigated. Tests are carried out for the pure mode I, pure mode II, and two different mixed mode loading angles. On the basis of the experimental results, mixed mode crack growth rate parameters are proposed according to Tanaka and Richard with Paris' law. Results show neither Richard's nor Tanaka's equivalent SIFs are very useful because these SIFs depend strongly on the loading angle, but Richard's equivalent SIF formula is more suitable than Tanaka's formula. The compressive mode I causes the crack closure, and the friction force between the crack surfaces resists against the crack growth. In compressive loading with 45° angle, d a/d N increases as K eq decreases.

  10. Identification of (antioxidative) plants in herbal pharmaceutical preparations and dietary supplements.

    PubMed

    Deconinck, Eric; Custers, Deborah; De Beer, Jacques Omer

    2015-01-01

    The standard procedures for the identification, authentication, and quality control of medicinal plants and herbs are nowadays limited to pure herbal products. No guidelines or procedures, describing the detection or identification of a targeted plant or herb in pharmaceutical preparations or dietary supplements, can be found. In these products the targeted plant is often present together with other components of herbal or synthetic origin. This chapter describes a strategy for the fast development of a chromatographic fingerprint approach that allows the identification of a targeted plant in herbal preparations and dietary supplements. The strategy consists of a standard chromatographic gradient that is tested for the targeted plant with different extraction solvents and different mobile phases. From the results obtained, the optimal fingerprint is selected. Subsequently the samples are analyzed according to the selected methodological parameters, and the obtained fingerprints can be compared with the one obtained for the pure herbal product or a standard preparation. Calculation of the dissimilarity between these fingerprints will result in a probability of presence of the targeted plant. Optionally mass spectrometry can be used to improve specificity, to confirm identification, or to identify molecules with a potential medicinal or antioxidant activity.

  11. Two-mode bosonic quantum metrology with number fluctuations

    NASA Astrophysics Data System (ADS)

    De Pasquale, Antonella; Facchi, Paolo; Florio, Giuseppe; Giovannetti, Vittorio; Matsuoka, Koji; Yuasa, Kazuya

    2015-10-01

    We search for the optimal quantum pure states of identical bosonic particles for applications in quantum metrology, in particular, in the estimation of a single parameter for the generic two-mode interferometric setup. We consider the general case in which the total number of particles is fluctuating around an average N with variance Δ N2 . By recasting the problem in the framework of classical probability, we clarify the maximal accuracy attainable and show that it is always larger than the one reachable with a fixed number of particles (i.e., Δ N =0 ). In particular, for larger fluctuations, the error in the estimation diminishes proportionally to 1 /Δ N , below the Heisenberg-like scaling 1 /N . We also clarify the best input state, which is a quasi-NOON state for a generic setup and, for some special cases, a two-mode Schrödinger-cat state with a vacuum component. In addition, we search for the best state within the class of pure Gaussian states with a given average N , which is revealed to be a product state (with no entanglement) with a squeezed vacuum in one mode and the vacuum in the other.

  12. Experimental and Theoretical Studies of the Pure Rotational Spectra of Lead Halides: PbF and PbCl

    NASA Astrophysics Data System (ADS)

    Norman, Spencer; Dawes, Richard; Grubbs, G. S., II; Cooke, S. A.; Long, B. E.; Dewberry, Chris

    2014-06-01

    The pure rotational spectrum of lead monochloride, PbCl, has been measured and analyzed using chirped pulse and cavity Fourier transform microwave (CP-FTMW and FTMW) spectrometers equipped with an ablation source. Refined parameters of an effective Hamiltonian including fine and hyperfine interactions similar to those previously reported by Fink et al. [1] were determined. Dynamically-weighted, explicitly-correlated MRCI-F12 calculations [2] were performed for both PbF and the valence isoelectronic PbCl to predict potential energy curves (PEC). Spin-orbit coupling was included in the calculations, which is known to split the X12Π1/2 and X22Π3/2 components of the ground electronic state by roughly 8280 wn in both lead halide systems. Calculated rotational levels were obtained using the PECs and compared with experiment including previously published results for PbF [3]. References: 1- K. Ziebarth, K. D. Setzer, O. Shestakov,1 and E. H. Fink, J. Mol. Spec. 191, 108 (1998). 2- B. J. Barker et al. J. Chem. Phys. 137, 214313 (2012). 3- R. J. Mawhorter et al. Phys. Rev. A 84, 022508 (2011).

  13. Characterisation, solubility and intrinsic dissolution behaviour of benzamide: dibenzyl sulfoxide cocrystal.

    PubMed

    Grossjohann, Christine; Eccles, Kevin S; Maguire, Anita R; Lawrence, Simon E; Tajber, Lidia; Corrigan, Owen I; Healy, Anne Marie

    2012-01-17

    This study examined the 1:1 cocrystal benzamide:dibenzyl sulfoxide, comprising the poorly water soluble dibenzyl sulfoxide (DBSO) and the more soluble benzamide (BA), to establish if this cocrystal shows advantages in terms of solubility and dissolution in comparison to its pure components and to a physical mixture. Solubility studies were performed by measuring DBSO solubility as a function of BA concentration, and a ternary phase diagram was constructed. Dissolution was examined through intrinsic dissolution studies. Solid-state characterisation was carried out by powder X-ray diffraction (PXRD), energy-dispersive X-ray diffraction (EDX), infra-red spectroscopy (ATR-FTIR) and thermal analysis. DBSO solubility was increased by means of complexation with BA. For the cocrystal, the solubility of both components was decreased in comparison to pure components. The cocrystal was identified as metastable and incongruently saturating. Dissolution studies revealed that dissolution of DBSO from the cocrystal was not enhanced in comparison to the pure compound or a physical mix, while BA release was retarded and followed square root of time kinetics. At the disk surface a layer of DBSO was found. The extent of complexation in solution can change the stability of the complex substantially. Incongruent solubility and dissolution behaviour of a cocrystal can result in no enhancement in the dissolution of the less soluble component and retardation of release of the more soluble component. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. [Investigations on the effect of an electrostatic field free of residual waves on the motility of the mouse (author's transl)].

    PubMed

    Fischer, G

    1977-08-01

    Comparative investigations were carried out concerning the influence on the motility of mice of different electrobioclimatic conditions (electrostatic field with a residual wave component of 1% and a field strength of 4.500 V/m; pure residual wave component: 32 Vs/s, field strength 120 V/m/ss; electrostatic field established by batteries: initial voltage 900 V, field strength 4.500 V/m; shielded from ambient atmospheric electrical fields: damping efficiency at 99%). The Faraday condition represented the control as absolutely objective physical magnitude. All experimental chambers were positioned under Faraday shields. Following a 20 day period of acclimatization to the unaccustomed surroundings for the animals (adaptation period), we established the previously described electrophysical conditions in the cages for a further period of 20 days (experimental period). The lowest values measured during the daily readings were found in the Faraday cage, resp. in the pure electrostatic field, the highest in the DC-field with residual wave component resp. in the residual wave component alone. We draw the following conclusion from the findings: the pure DC-field apparently does not possess those bioclimatologically decisive importance that has been and is being postulated from several sides. Many of the stimtng effects observed and attributed to the electrostatic field are most probably due to the residual wave component resulting from the high-voltage generators employed.

  15. Calculation of Sensitivity Derivatives in an MDAO Framework

    NASA Technical Reports Server (NTRS)

    Moore, Kenneth T.

    2012-01-01

    During gradient-based optimization of a system, it is necessary to generate the derivatives of each objective and constraint with respect to each design parameter. If the system is multidisciplinary, it may consist of a set of smaller "components" with some arbitrary data interconnection and process work ow. Analytical derivatives in these components can be used to improve the speed and accuracy of the derivative calculation over a purely numerical calculation; however, a multidisciplinary system may include both components for which derivatives are available and components for which they are not. Three methods to calculate the sensitivity of a mixed multidisciplinary system are presented: the finite difference method, where the derivatives are calculated numerically; the chain rule method, where the derivatives are successively cascaded along the system's network graph; and the analytic method, where the derivatives come from the solution of a linear system of equations. Some improvements to these methods, to accommodate mixed multidisciplinary systems, are also presented; in particular, a new method is introduced to allow existing derivatives to be used inside of finite difference. All three methods are implemented and demonstrated in the open-source MDAO framework OpenMDAO. It was found that there are advantages to each of them depending on the system being solved.

  16. The effects of intraspecific competition and stabilizing selection on a polygenic trait.

    PubMed Central

    Bürger, Reinhard; Gimelfarb, Alexander

    2004-01-01

    The equilibrium properties of an additive multilocus model of a quantitative trait under frequency- and density-dependent selection are investigated. Two opposing evolutionary forces are assumed to act: (i) stabilizing selection on the trait, which favors genotypes with an intermediate phenotype, and (ii) intraspecific competition mediated by that trait, which favors genotypes whose effect on the trait deviates most from that of the prevailing genotypes. Accordingly, fitnesses of genotypes have a frequency-independent component describing stabilizing selection and a frequency- and density-dependent component modeling competition. We study how the equilibrium structure, in particular, number, degree of polymorphism, and genetic variance of stable equilibria, is affected by the strength of frequency dependence, and what role the number of loci, the amount of recombination, and the demographic parameters play. To this end, we employ a statistical and numerical approach, complemented by analytical results, and explore how the equilibrium properties averaged over a large number of genetic systems with a given number of loci and average amount of recombination depend on the ecological and demographic parameters. We identify two parameter regions with a transitory region in between, in which the equilibrium properties of genetic systems are distinctively different. These regions depend on the strength of frequency dependence relative to pure stabilizing selection and on the demographic parameters, but not on the number of loci or the amount of recombination. We further study the shape of the fitness function observed at equilibrium and the extent to which the dynamics in this model are adaptive, and we present examples of equilibrium distributions of genotypic values under strong frequency dependence. Consequences for the maintenance of genetic variation, the detection of disruptive selection, and models of sympatric speciation are discussed. PMID:15280253

  17. Lommel modes

    NASA Astrophysics Data System (ADS)

    Kovalev, Alexey A.; Kotlyar, Victor V.

    2015-03-01

    We study a non-paraxial family of nondiffracting laser beams whose complex amplitude is proportional to an n-th order Lommel function of two variables. These beams are referred to as Lommel modes. Explicit analytical relations for the angular spectrum of plane waves and orbital angular momentum of the Lommel beams have been derived. The even (n=2p) and odd (n=2p+1) Lommel modes are mutually orthogonal, as are the Lommel modes characterized by different projections of the wave vector on the optical axis. At a definite parameter, the Lommel modes change to conventional Bessel beams. Asymmetry of the Lommel modes depends on a complex parameter с, with its modulus in the polar notation defining the intensity pattern in the beam‧s cross-section and the argument defining the angle of rotation of the intensity pattern about the optical axis. If the parameter с is real or purely imaginary, the transverse intensity component of the Lommel modes is specularly symmetric about the Cartesian coordinate axes. Besides, with the modulus of the с parameter increasing from 0 to 1, the orbital angular momentum of the Lommel modes increases from a finite value proportional to the topological charge n to infinity. The orbital angular momentum of the Lommel modes undergoes continuous variations, in contrast to its discrete changes in the Bessel modes.

  18. Comparison of isorhamnetin absorption properties in total flavones of Hippophae rhamnoides L. with its pure form in a Caco-2 cell model mediated by multidrug resistance-associated protein.

    PubMed

    Xie, Yan; Duan, Jingze; Fu, Qingxue; Xia, Mengxin; Zhang, Lei; Li, Guowen; Wu, Tao; Ji, Guang

    2015-06-20

    Total flavones of Hippophae rhamnoides L. (TFH) are extracted from the widely distributed thorny bush Sea buckthorn (Hippophae rhamnoides L.). Isorhamnetin (IS) is one of the representative ingredients in TFH. In this study, the absorption properties of IS in TFH and its pure form were compared through transepithelial transport and cellular uptake experiments in a Caco-2 cell model. Our results show that the absorption properties of IS in TFH and its pure form were remarkably different: (1) Both PappAB and PappBA of IS in TFH were dramatically increased compared with those of IS pure form; consequently, its Pratio was 2.3-fold higher than that of IS; (2) Both the accumulation and efflux of IS in TFH were significantly enhanced compared with the single compound. One likely reason for these differences is that the multiple components in TFH significantly down regulated the mRNA expression level of MRP2, which lead to a decrease in the protein level of MRP2, based on western blotting and RT-PCR assays. This study highlights the significant differences in the absorption properties of flavonoid components in different forms and the potential multi-component interactions in TFH. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. NIST Libraries of Peptide Fragmentation Mass Spectra Databass

    National Institute of Standards and Technology Data Gateway

    SRD 4 NIST Libraries of Peptide Fragmentation Mass Spectra Databass (PC database for purchase)   Interactive computer program for predicting thermodynamic and transport properties of pure fluids and fluid mixtures containing up to 20 components. The components are selected from a database of 196 components, mostly hydrocarbons.

  20. On decomposing stimulus and response waveforms in event-related potentials recordings.

    PubMed

    Yin, Gang; Zhang, Jun

    2011-06-01

    Event-related potentials (ERPs) reflect the brain activities related to specific behavioral events, and are obtained by averaging across many trial repetitions with individual trials aligned to the onset of a specific event, e.g., the onset of stimulus (s-aligned) or the onset of the behavioral response (r-aligned). However, the s-aligned and r-aligned ERP waveforms do not purely reflect, respectively, underlying stimulus (S-) or response (R-) component waveform, due to their cross-contaminations in the recorded ERP waveforms. Zhang [J. Neurosci. Methods, 80, pp. 49-63, 1998] proposed an algorithm to recover the pure S-component waveform and the pure R-component waveform from the s-aligned and r-aligned ERP average waveforms-however, due to the nature of this inverse problem, a direct solution is sensitive to noise that disproportionally affects low-frequency components, hindering the practical implementation of this algorithm. Here, we apply the Wiener deconvolution technique to deal with noise in input data, and investigate a Tikhonov regularization approach to obtain a stable solution that is robust against variances in the sampling of reaction-time distribution (when number of trials is low). Our method is demonstrated using data from a Go/NoGo experiment about image classification and recognition.

  1. Pure thermal sensitisation and pre-dose effect of OSL in both unfired and annealed quartz samples

    NASA Astrophysics Data System (ADS)

    Oniya, Ebenezer O.; Polymeris, George S.; Jibiri, Nnamdi N.; Tsirliganis, Nestor C.; Babalola, Israel A.; Kitis, George

    2017-06-01

    The sensitisation of quartz has attracted much attention since its thorough understanding is important in luminescence studies and dating applications. The present investigation examines the influence of pure thermal activation and predose treatments on the sensitisation of different components of linearly modulated optically stimulated luminescence (LM-OSL) measured at room temperature (RT) thereby eliminating undesired thermal quenching effects. Annealed and unfired quartz samples from Nigeria were used. The OSL measurements were carried out using an automated RISØTL/OSL reader (model-TL/OSL-DA-15). A new approach was adopted to match each of the resolved components of the RT-LM-OSL to respective thermoluminescence (TL) peaks that share the same electron trap and recombination centers. Pure thermal activation and pre-dose treatments respectively affect the sensitisation of all the components of the RT-LM-OSL in a similar manner as the one reported for the 110 °C TL peak but without thermal quenching contributions. Component C4 in annealed samples that was identified to share the same electron trap and recombination centers with the 110 °C TL peak was also proved appropriate for RT-LM-OSL, instead of the initial part of the continuous wave (CW) OSL signal, thus the methods can serve as complementary dating methods.

  2. Pure akinesia: a kinematic analysis in a case responsive to rotigotine

    PubMed Central

    Di Fabio, Roberto; Serrao, Mariano; Pierelli, Francesco; Fragiotta, Gaia; Sandrini, Giorgio

    2013-01-01

    Summary A patient with pure akinesia is described. This rare gait disorder, poorly responsive to therapy, is characterized by gait impairment which may be associated with handwriting and speech difficulties, in the absence of further signs of extrapyramidal involvement. Here, we report the improvement in a patient suffering from pure akinesia after low doses of rotigotine, a non-ergolinic dopamine agonist, detailing the kinematic analysis before and after the treatment. After therapy, an improvement in all of the gait parameters, particularly gait speed, was observed with a trend toward normalization. Our case report suggests that rotigotine may be a therapeutic option in cases of pure akinesia. PMID:24125564

  3. Animal population dynamics: Identification of critical components

    USGS Publications Warehouse

    Emlen, J.M.; Pikitch, E.K.

    1989-01-01

    There is a growing interest in the use of population dynamics models in environmental risk assessment and the promulgation of environmental regulatory policies. Unfortunately, because of species and areal differences in the physical and biotic influences on population dynamics, such models must almost inevitably be both complex and species- or site-specific. Given the emormous variety of species and sites of potential concern, this fact presents a problem; it simply is not possible to construct models for all species and circumstances. Therefore, it is useful, before building predictive population models, to discover what input parameters are of critical importance to the desired output. This information should enable the construction of simpler and more generalizable models. As a first step, it is useful to consider population models as composed to two, partly separable classes, one comprising the purely mechanical descriptors of dynamics from given demographic parameter values, and the other describing the modulation of the demographic parameters by environmental factors (changes in physical environment, species interactions, pathogens, xenobiotic chemicals). This division permits sensitivity analyses to be run on the first of these classes, providing guidance for subsequent model simplification. We here apply such a sensitivity analysis to network models of mammalian and avian population dynamics.

  4. The pure rotational spectrum of ruthenium monocarbide, RuC, and relativistic ab initio predictions.

    PubMed

    Wang, Fang; Steimle, Timothy C; Adam, Allan G; Cheng, Lan; Stanton, John F

    2013-11-07

    The J = 1 ← J = 0 and J = 2 ← J = 1 rotational transitions of ruthenium monocarbide, RuC, have been recorded using the separated field pump/probe microwave optical double resonance technique and analyzed to determine the fine and hyperfine parameters for the X(1)Σ(+) state. The (101)Ru(I = 5/2) electric quadrupole parameter, eq0Q, and nuclear spin-rotation interaction parameter, C(I)(eff), were determined to be 433.19(8) MHz and -0.049(6) MHz, respectively. The equilibrium bond distance, r(e), was determined to be 1.605485(2) Å. Hartree-Fock and coupled-cluster calculations were carried out for the properties of the X(1)Σ(+) state. Electron-correlation effects are pronounced for all properties studied. It is shown that (a) the moderate scalar-relativistic contribution to eq0Q is entirely due to the coupling between scalar-relativistic and electron-correlation effects, (b) the spin-free exact two-component theory in its one-electron variant offers a reliable and efficient treatment of scalar-relativistic effects, and (c) non-relativistic theory performs quite well for the prediction of C(I)(elec), provided that electron correlation is treated accurately.

  5. The pure rotational spectrum of ruthenium monocarbide, RuC, and relativistic ab initio predictions

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Steimle, Timothy C.; Adam, Allan G.; Cheng, Lan; Stanton, John F.

    2013-11-01

    The J = 1 ← J = 0 and J = 2 ← J = 1 rotational transitions of ruthenium monocarbide, RuC, have been recorded using the separated field pump/probe microwave optical double resonance technique and analyzed to determine the fine and hyperfine parameters for the X1Σ+ state. The 101Ru(I = 5/2) electric quadrupole parameter, eq0Q, and nuclear spin-rotation interaction parameter, C_I^{eff}, were determined to be 433.19(8) MHz and -0.049(6) MHz, respectively. The equilibrium bond distance, re, was determined to be 1.605485(2) Å. Hartree-Fock and coupled-cluster calculations were carried out for the properties of the X1Σ+ state. Electron-correlation effects are pronounced for all properties studied. It is shown that (a) the moderate scalar-relativistic contribution to eq0Q is entirely due to the coupling between scalar-relativistic and electron-correlation effects, (b) the spin-free exact two-component theory in its one-electron variant offers a reliable and efficient treatment of scalar-relativistic effects, and (c) non-relativistic theory performs quite well for the prediction of C_I^{elec}, provided that electron correlation is treated accurately.

  6. Enzymatic hydrolysis of short-chain lecithin/long-chain phospholipid unilamellar vesicles: sensitivity of phospholipases to matrix phase state.

    PubMed

    Gabriel, N E; Agman, N V; Roberts, M F

    1987-11-17

    Short-chain lecithin/long-chain phospholipid unilamellar vesicles (SLUVs), unlike pure long-chain lecithin vesicles, are excellent substrates for water-soluble phospholipases. Hemolysis assays show that greater than 99.5% of the short-chain lecithin is partitioned in the bilayer. In these binary component vesicles, the short-chain species is the preferred substrate, while the long-chain phospholipid can be treated as an inhibitor (phospholipase C) or poor substrate (phospholipase A2). For phospholipase C Bacillus cereus, apparent Km and Vmax values show that bilayer-solubilized diheptanoylphosphatidylcholine (diheptanoyl-PC) is nearly as good a substrate as pure micellar diheptanoyl-PC, although the extent of short-chain lecithin hydrolysis depends on the phase state of the long-chain lipid. For phospholipase A2 Naja naja naja, both Km and Vmax values show a greater range: in a gel-state matrix, diheptanoyl-PC is hydrolyzed with micellelike kinetic parameters; in a liquid-crystalline matrix, the short-chain lecithin becomes comparable to the long-chain component. Both enzymes also show an anomalous increase in specific activity toward diheptanoyl-PC around the phase transition temperature of the long-chain phospholipid. Since the short-chain lecithin does not exhibit a phase transition, this must reflect fluctuations in head-group area or vertical motions of the short-chain lecithin caused by surrounding long-chain lecithin molecules. These results are discussed in terms of a specific model for SLUV hydrolysis and a general explanation for the "interfacial activation" observed with water-soluble phospholipases.

  7. Preparation of finasteride capsules-loaded drug nanoparticles: formulation, optimization, in vitro, and pharmacokinetic evaluation

    PubMed Central

    Ahmed, Tarek A

    2016-01-01

    In this study, optimized freeze-dried finasteride nanoparticles (NPs) were prepared from drug nanosuspension formulation that was developed using the bottom–up technique. The effects of four formulation and processing variables that affect the particle size and solubility enhancement of the NPs were explored using the response surface optimization design. The optimized formulation was morphologically characterized using transmission electron microscopy (TEM). Physicochemical interaction among the studied components was investigated. Crystalline change was investigated using X-ray powder diffraction (XRPD). Crystal growth of the freeze-dried NPs was compared to the corresponding aqueous drug nanosuspension. Freeze-dried NPs formulation was subsequently loaded into hard gelatin capsules that were examined for in vitro dissolution and pharmacokinetic behavior. Results revealed that in most of the studied variables, some of the quadratic and interaction effects had a significant effect on the studied responses. TEM image illustrated homogeneity and shape of the prepared NPs. No interaction among components was noticed. XRPD confirmed crystalline state change in the optimized NPs. An enhancement in the dissolution rate of more than 2.5 times from capsules filled with optimum drug NPs, when compared to capsules filled with pure drug, was obtained. Crystal growth, due to Ostwald ripening phenomenon and positive Gibbs free energy, was reduced following lyophilization of the nanosuspension formulation. Pharmacokinetic parameters from drug NPs were superior to that of pure drug and drug microparticles. In conclusion, freeze-dried NPs based on drug nanosuspension formulation is a successful technique in enhancing stability, solubility, and in vitro dissolution of poorly water-soluble drugs with possible impact on the drug bioavailability. PMID:26893559

  8. Generation of a sub-half-wavelength focal spot with purely transverse spin angular momentum

    NASA Astrophysics Data System (ADS)

    Hang, Li; Fu, Jian; Yu, Xiaochang; Wang, Ying; Chen, Peifeng

    2017-11-01

    We theoretically demonstrate that optical focus fields with purely transverse spin angular momentum (SAM) can be obtained when a kind of special incident fields is focused by a high numerical aperture (NA) aplanatic lens (AL). When the incident pupil fields are refracted by an AL, two transverse Cartesian components of the electric fields at the exit pupil plane do not have the same order of sinusoidal or cosinoidal components, resulting in zero longitudinal SAMs of the focal fields. An incident field satisfying above conditions is then proposed. Using the Richard-Wolf vectorial diffraction theory, the energy density and SAM density distributions of the tightly focused beam are calculated and the results clearly validate the proposed theory. In addition, a sub-half-wavelength focal spot with purely transverse SAM can be achieved and a flattop energy density distribution parallel to z-axis can be observed around the maximum energy density point.

  9. Structural and chemical degradation mechanisms of pure YSZ and its components ZrO2 and Y2O3 in carbon-rich fuel gases.

    PubMed

    Köck, Eva-Maria; Kogler, Michaela; Götsch, Thomas; Klötzer, Bernhard; Penner, Simon

    2016-05-25

    Structural and chemical degradation mechanisms of metal-free yttria stabilized zirconia (YSZ-8, 8 mol% Y2O3 in ZrO2) in comparison to its pure oxidic components ZrO2 and Y2O3 have been studied in carbon-rich fuel gases with respect to coking/graphitization and (oxy)carbide formation. By combining operando electrochemical impedance spectroscopy (EIS), operando Fourier-transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS), the removal and suppression of CH4- and CO-induced carbon deposits and of those generated in more realistic fuel gas mixtures (syngas, mixtures of CH4 or CO with CO2 and H2O) was examined under SOFC-relevant conditions up to 1273 K and ambient pressures. Surface-near carbidization is a major problem already on the "isolated" (i.e. Nickel-free) cermet components, leading to irreversible changes of the conduction properties. Graphitic carbon deposition takes place already on the "isolated" oxides under sufficiently fuel-rich conditions, most pronounced in the pure gases CH4 and CO, but also significantly in fuel gas mixtures containing H2O and CO2. For YSZ, a comparative quantification of the total amount of deposited carbon in all gases and mixtures is provided and thus yields favorable and detrimental experimental approaches to suppress the carbon formation. In addition, the effectivity and reversibility of removal of the coke/graphite layers was comparably studied in the pure oxidants O2, CO2 and H2O and their effective contribution upon addition to the pure fuel gases CO and CH4 verified.

  10. Characterizing commercial pureed foods: sensory, nutritional, and textural analysis.

    PubMed

    Ettinger, Laurel; Keller, Heather H; Duizer, Lisa M

    2014-01-01

    Dysphagia (swallowing impairment) is a common consequence of stroke and degenerative diseases such as Parkinson's and Alzheimer's. Limited research is available on pureed foods, specifically the qualities of commercial products. Because research has linked pureed foods, specifically in-house pureed products, to malnutrition due to inferior sensory and nutritional qualities, commercial purees also need to be investigated. Proprietary research on sensory attributes of commercial foods is available; however direct comparisons of commercial pureed foods have never been reported. Descriptive sensory analysis as well as nutritional and texture analysis of commercially pureed prepared products was performed using a trained descriptive analysis panel. The pureed foods tested included four brands of carrots, of turkey, and two of bread. Each commercial puree was analyzed for fat (Soxhlet), protein (Dumas), carbohydrate (proximate analysis), fiber (total fiber), and sodium content (Quantab titrator strips). The purees were also texturally compared with a line spread test and a back extrusion test. Differences were found in the purees for sensory attributes as well as nutritional and textural properties. Findings suggest that implementation of standards is required to reduce variability between products, specifically regarding the textural components of the products. This would ensure all commercial products available in Canada meet standards established as being considered safe for swallowing.

  11. Remote sensing of plant-water relations: An overview and future perspectives.

    PubMed

    Damm, A; Paul-Limoges, E; Haghighi, E; Simmer, C; Morsdorf, F; Schneider, F D; van der Tol, C; Migliavacca, M; Rascher, U

    2018-04-25

    Vegetation is a highly dynamic component of the Earth surface and substantially alters the water cycle. Particularly the process of oxygenic plant photosynthesis determines vegetation connecting the water and carbon cycle and causing various interactions and feedbacks across Earth spheres. While vegetation impacts the water cycle, it reacts to changing water availability via functional, biochemical and structural responses. Unravelling the resulting complex feedbacks and interactions between the plant-water system and environmental change is essential for any modelling approaches and predictions, but still insufficiently understood due to currently missing observations. We hypothesize that an appropriate cross-scale monitoring of plant-water relations can be achieved by combined observational and modelling approaches. This paper reviews suitable remote sensing approaches to assess plant-water relations ranging from pure observational to combined observational-modelling approaches. We use a combined energy balance and radiative transfer model to assess the explanatory power of pure observational approaches focussing on plant parameters to estimate plant-water relations, followed by an outline for a more effective use of remote sensing by their integration into soil-plant-atmosphere continuum (SPAC) models. We apply a mechanistic model simulating water movement in the SPAC to reveal insight into the complexity of relations between soil, plant and atmospheric parameters, and thus plant-water relations. We conclude that future research should focus on strategies combining observations and mechanistic modelling to advance our knowledge on the interplay between the plant-water system and environmental change, e.g. through plant transpiration. Copyright © 2018 Elsevier GmbH. All rights reserved.

  12. Interaction-component analysis of the hydration and urea effects on cytochrome c

    NASA Astrophysics Data System (ADS)

    Yamamori, Yu; Ishizuka, Ryosuke; Karino, Yasuhito; Sakuraba, Shun; Matubayasi, Nobuyuki

    2016-02-01

    Energetics was analyzed for cytochrome c in pure-water solvent and in a urea-water mixed solvent to elucidate the solvation effect in the structural variation of the protein. The solvation free energy was computed through all-atom molecular dynamics simulation combined with the solution theory in the energy representation, and its correlations were examined over sets of protein structures against the electrostatic and van der Waals components in the average interaction energy of the protein with the solvent and the excluded-volume component in the solvation free energy. It was observed in pure-water solvent that the solvation free energy varies in parallel to the electrostatic component with minor roles played by the van der Waals and excluded-volume components. The effect of urea on protein structure was then investigated in terms of the free-energy change upon transfer of the protein solute from pure-water solvent to the urea-water mixed solvent. The decomposition of the transfer free energy into the contributions from urea and water showed that the urea contribution is partially canceled by the water contribution and governs the total free energy of transfer. When correlated against the change in the solute-solvent interaction energy upon transfer and the corresponding changes in the electrostatic, van der Waals, and excluded-volume components, the transfer free energy exhibited strong correlations with the total change in the solute-solvent energy and its van der Waals component. The solute-solvent energy was decomposed into the contributions from the protein backbone and side chain, furthermore, and neither of the contributions was seen to be decisive in the correlation to the transfer free energy.

  13. Corrosion phenomena in sodium-potassium coolant resulting from solute interaction in multicomponent solution

    NASA Astrophysics Data System (ADS)

    Krasin, V. P.; Soyustova, S. I.

    2018-03-01

    The solubility of Fe, Cr, Ni, V, Mn and Mo in sodium-potassium melt has been calculated using the mathematical framework of pseudo-regular solution model. The calculation results are compared with available published experimental data on mass transfer of components of austenitic stainless steel in sodium-potassium loop under non-isothermal conditions. It is shown that the parameters of pair interaction of oxygen with transition metal can be used to predict the corrosion behavior of structural materials in sodium-potassium melt in the presence of oxygen impurity. The results of calculation of threshold concentration of oxygen of ternary oxide formation of sodium with transitional metals (Fe, Cr, Ni, V, Mn, Mo) are given in conditions when pure solid metal comes in contact with sodium-potassium melt.

  14. Spectral parameters for Dawn FC color data: Carbonaceous chondrites and aqueous alteration products as potential cerean analog materials

    NASA Astrophysics Data System (ADS)

    Schäfer, Tanja; Nathues, Andreas; Mengel, Kurt; Izawa, Matthew R. M.; Cloutis, Edward A.; Schäfer, Michael; Hoffmann, Martin

    2016-02-01

    We identified a set of spectral parameters based on Dawn Framing Camera (FC) bandpasses, covering the wavelength range 0.4-1.0 μm, for mineralogical mapping of potential chondritic material and aqueous alteration products on dwarf planet Ceres. Our parameters are inferred from laboratory spectra of well-described and clearly classified carbonaceous chondrites representative for a dark component. We additionally investigated the FC signatures of candidate bright materials including carbonates, sulfates and hydroxide (brucite), which can possibly be exposed on the cerean surface by impact craters or plume activity. Several materials mineralogically related to carbonaceous chondrites, including pure ferromagnesian phyllosilicates, and serpentinites were also investigated. We tested the potential of the derived FC parameters for distinguishing between different carbonaceous chondritic materials, and between other plausible cerean surface materials. We found that the major carbonaceous chondrite groups (CM, CO, CV, CK, and CR) are distinguishable using the FC filter ratios 0.56/0.44 μm and 0.83/0.97 μm. The absorption bands of Fe-bearing phyllosilicates at 0.7 and 0.9 μm in terrestrial samples and CM carbonaceous chondrites can be detected by a combination of FC band parameters using the filters at 0.65, 0.75, 0.83, 0.92 and 0.97 μm. This set of parameters serves as a basis to identify and distinguish different lithologies on the cerean surface by FC multispectral data.

  15. Catalytic effects of inorganic acids on the decomposition of ammonium nitrate.

    PubMed

    Sun, Jinhua; Sun, Zhanhui; Wang, Qingsong; Ding, Hui; Wang, Tong; Jiang, Chuansheng

    2005-12-09

    In order to evaluate the catalytic effects of inorganic acids on the decomposition of ammonium nitrate (AN), the heat releases of decomposition or reaction of pure AN and its mixtures with inorganic acids were analyzed by a heat flux calorimeter C80. Through the experiments, the different reaction mechanisms of AN and its mixtures were analyzed. The chemical reaction kinetic parameters such as reaction order, activation energy and frequency factor were calculated with the C80 experimental results for different samples. Based on these parameters and the thermal runaway models (Semenov and Frank-Kamenestkii model), the self-accelerating decomposition temperatures (SADTs) of AN and its mixtures were calculated and compared. The results show that the mixtures of AN with acid are more unsteady than pure AN. The AN decomposition reaction is catalyzed by acid. The calculated SADTs of AN mixtures with acid are much lower than that of pure AN.

  16. Pure electronic metal-insulator transition at the interface of complex oxides

    DOE PAGES

    Meyers, D.; Liu, Jian; Freeland, J. W.; ...

    2016-06-21

    We observed complex materials in electronic phases and transitions between them often involve coupling between many degrees of freedom whose entanglement convolutes understanding of the instigating mechanism. Metal-insulator transitions are one such problem where coupling to the structural, orbital, charge, and magnetic order parameters frequently obscures the underlying physics. We demonstrate a way to unravel this conundrum by heterostructuring a prototypical multi-ordered complex oxide NdNiO3 in ultra thin geometry, which preserves the metal-to-insulator transition and bulk-like magnetic order parameter, but entirely suppresses the symmetry lowering and long-range charge order parameter. Furthermore, these findings illustrate the utility of heterointerfaces as amore » powerful method for removing competing order parameters to gain greater insight into the nature of the transition, here revealing that the magnetic order generates the transition independently, leading to an exceptionally rare purely electronic metal-insulator transition with no symmetry change.« less

  17. An algorithm for the kinetics of tire pyrolysis under different heating rates.

    PubMed

    Quek, Augustine; Balasubramanian, Rajashekhar

    2009-07-15

    Tires exhibit different kinetic behaviors when pyrolyzed under different heating rates. A new algorithm has been developed to investigate pyrolysis behavior of scrap tires. The algorithm includes heat and mass transfer equations to account for the different extents of thermal lag as the tire is heated at different heating rates. The algorithm uses an iterative approach to fit model equations to experimental data to obtain quantitative values of kinetic parameters. These parameters describe the pyrolysis process well, with good agreement (r(2)>0.96) between the model and experimental data when the model is applied to three different brands of automobile tires heated under five different heating rates in a pure nitrogen atmosphere. The model agrees with other researchers' results that frequencies factors increased and time constants decreased with increasing heating rates. The model also shows the change in the behavior of individual tire components when the heating rates are increased above 30 K min(-1). This result indicates that heating rates, rather than temperature, can significantly affect pyrolysis reactions. This algorithm is simple in structure and yet accurate in describing tire pyrolysis under a wide range of heating rates (10-50 K min(-1)). It improves our understanding of the tire pyrolysis process by showing the relationship between the heating rate and the many components in a tire that depolymerize as parallel reactions.

  18. Processing of harmonics in the lateral belt of macaque auditory cortex.

    PubMed

    Kikuchi, Yukiko; Horwitz, Barry; Mishkin, Mortimer; Rauschecker, Josef P

    2014-01-01

    Many speech sounds and animal vocalizations contain components, referred to as complex tones, that consist of a fundamental frequency (F0) and higher harmonics. In this study we examined single-unit activity recorded in the core (A1) and lateral belt (LB) areas of auditory cortex in two rhesus monkeys as they listened to pure tones and pitch-shifted conspecific vocalizations ("coos"). The latter consisted of complex-tone segments in which F0 was matched to a corresponding pure-tone stimulus. In both animals, neuronal latencies to pure-tone stimuli at the best frequency (BF) were ~10 to 15 ms longer in LB than in A1. This might be expected, since LB is considered to be at a hierarchically higher level than A1. On the other hand, the latency of LB responses to coos was ~10 to 20 ms shorter than to the corresponding pure-tone BF, suggesting facilitation in LB by the harmonics. This latency reduction by coos was not observed in A1, resulting in similar coo latencies in A1 and LB. Multi-peaked neurons were present in both A1 and LB; however, harmonically-related peaks were observed in LB for both early and late response components, whereas in A1 they were observed only for late components. Our results suggest that harmonic features, such as relationships between specific frequency intervals of communication calls, are processed at relatively early stages of the auditory cortical pathway, but preferentially in LB.

  19. Processing of harmonics in the lateral belt of macaque auditory cortex

    PubMed Central

    Kikuchi, Yukiko; Horwitz, Barry; Mishkin, Mortimer; Rauschecker, Josef P.

    2014-01-01

    Many speech sounds and animal vocalizations contain components, referred to as complex tones, that consist of a fundamental frequency (F0) and higher harmonics. In this study we examined single-unit activity recorded in the core (A1) and lateral belt (LB) areas of auditory cortex in two rhesus monkeys as they listened to pure tones and pitch-shifted conspecific vocalizations (“coos”). The latter consisted of complex-tone segments in which F0 was matched to a corresponding pure-tone stimulus. In both animals, neuronal latencies to pure-tone stimuli at the best frequency (BF) were ~10 to 15 ms longer in LB than in A1. This might be expected, since LB is considered to be at a hierarchically higher level than A1. On the other hand, the latency of LB responses to coos was ~10 to 20 ms shorter than to the corresponding pure-tone BF, suggesting facilitation in LB by the harmonics. This latency reduction by coos was not observed in A1, resulting in similar coo latencies in A1 and LB. Multi-peaked neurons were present in both A1 and LB; however, harmonically-related peaks were observed in LB for both early and late response components, whereas in A1 they were observed only for late components. Our results suggest that harmonic features, such as relationships between specific frequency intervals of communication calls, are processed at relatively early stages of the auditory cortical pathway, but preferentially in LB. PMID:25100935

  20. Improvement of the relaxation time and the order parameter of nematic liquid crystal using a hybrid alignment mixture of carbon nanotube and polyimide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyojin; Yang, Seungbin; Lee, Ji-Hoon, E-mail: jihoonlee@jbnu.ac.kr

    2014-05-12

    We examined the electrooptical properties of a nematic liquid crystal (LC) sample whose substrates were coated with a mixture of carbon nanotube (CNT) and polyimide (PI). The relaxation time of the sample coated with 1.5 wt. % CNT mixture was about 35% reduced compared to the pure polyimide sample. The elastic constant and the order parameter of the CNT-mixture sample were increased and the fast relaxation of LC could be approximated to the mean-field theory. We found the CNT-mixed polyimide formed more smooth surface than the pure PI from atomic force microscopy images, indicating the increased order parameter is related to themore » smooth surface topology of the CNT-polyimide mixture.« less

  1. Effect of monospecific and mixed sea-buckthorn (Hippophae rhamnoides) plantations on the structure and activity of soil microbial communities.

    PubMed

    Yu, Xuan; Liu, Xu; Zhao, Zhong; Liu, Jinliang; Zhang, Shunxiang

    2015-01-01

    This study aims to evaluate the effect of different afforestation models on soil microbial composition in the Loess Plateau in China. In particular, we determined soil physicochemical properties, enzyme activities, and microbial community structures in the top 0 cm to 10 cm soil underneath a pure Hippophae rhamnoides (SS) stand and three mixed stands, namely, H. rhamnoides and Robinia pseucdoacacia (SC), H. rhamnoides and Pinus tabulaeformis (SY), and H. rhamnoides and Platycladus orientalis (SB). Results showed that total organic carbon (TOC), total nitrogen, and ammonium (NH4(+)) contents were higher in SY and SB than in SS. The total microbial biomass, bacterial biomass, and Gram+ biomass of the three mixed stands were significantly higher than those of the pure stand. However, no significant difference was found in fungal biomass. Correlation analysis suggested that soil microbial communities are significantly and positively correlated with some chemical parameters of soil, such as TOC, total phosphorus, total potassium, available phosphorus, NH4(+) content, nitrate content (NH3(-)), and the enzyme activities of urease, peroxidase, and phosphatase. Principal component analysis showed that the microbial community structures of SB and SS could clearly be discriminated from each other and from the others, whereas SY and SC were similar. In conclusion, tree species indirectly but significantly affect soil microbial communities and enzyme activities through soil physicochemical properties. In addition, mixing P. tabulaeformis or P. orientalis in H. rhamnoides plantations is a suitable afforestation model in the Loess Plateau, because of significant positive effects on soil nutrient conditions, microbial community, and enzyme activities over pure plantations.

  2. Applications of the Soave-Redlich-Kwong Equations of State Using Mathematic

    NASA Astrophysics Data System (ADS)

    Sun, Lanyi; Zhai, Cheng; Zhang, Hui

    The application of the Peng-Robinson equations of state (PR EOS) using Matlab and Mathematic has already been demonstrated. In this paper, using Mathematic to solve Soave-Redlich-Kwong (SRK) EOS, as well as the estimation of pure component properties, plotting of vapor-liquid equilibrium (VLE) diagram and calculation of chemical equilibrium, is presented. First the SRK EOS is used to predict several pure-component properties, such as liquid and gas molar volumes for isobutane. The vapor-liquid isobaric diagram is then plotted for a binary mixture composed of n-pentane and n-hexane under the pressures of 2*10^5 and 8*10^5 Pa respectively.

  3. Polarization-dependent optical reflection ultrasonic detection

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoyi; Huang, Zhiyu; Wang, Guohe; Li, Wenzhao; Li, Changhui

    2017-03-01

    Although ultrasound transducers based on commercial piezoelectric-material have been widely used, they generally have limited bandwidth centered at the resonant frequency. Currently, several pure-optical ultrasonic detection methods have gained increasing interest due to their wide bandwidth and high sensitivity. However, most of them require customized components (such as micro-ring, SPR, Fabry-Perot film, etc), which limit their broad implementations. In this study, we presented a simple pure-optical ultrasound detection method, called "Polarization-dependent Reflection Ultrasonic Detection" (PRUD). It detects the intensity difference between two polarization components of the probe beam that is modulated by ultrasound waves. PRUD detect the two components by using a balanced detector, which effectively suppressed much of the unwanted noise. We have achieved the sensitivity (noise equivalent pressure) to be 1.7kPa, and this can be further improved. In addition, like many other pure-optical ultrasonic detection methods, PRUD also has a flat and broad bandwidth from almost zero to over 100MHz. Besides theoretical analysis, we did a phantom study by imaging a tungsten filament to demonstrate the performance of PRUD. We believe this simple and economic method will attract both researchers and engineers in optical and ultrasound fields.

  4. Determination of malignancy and characterization of hepatic tumor type with diffusion-weighted magnetic resonance imaging: comparison of apparent diffusion coefficient and intravoxel incoherent motion-derived measurements.

    PubMed

    Doblas, Sabrina; Wagner, Mathilde; Leitao, Helena S; Daire, Jean-Luc; Sinkus, Ralph; Vilgrain, Valérie; Van Beers, Bernard E

    2013-10-01

    The objective of this study was to compare the value of the apparent diffusion coefficient (ADC) determined with 3 b values and the intravoxel incoherent motion (IVIM)-derived parameters in the determination of malignancy and characterization of hepatic tumor type. Seventy-six patients with 86 solid hepatic lesions, including 8 hemangiomas, 20 lesions of focal nodular hyperplasia, 9 adenomas, 30 hepatocellular carcinomas, 13 metastases, and 6 cholangiocarcinomas, were assessed in this prospective study. Diffusion-weighted images were acquired with 11 b values to measure the ADCs (with b = 0, 150, and 500 s/mm) and the IVIM-derived parameters, namely, the pure diffusion coefficient and the perfusion-related diffusion fraction and coefficient. The diffusion parameters were compared between benign and malignant tumors and between tumor types, and their diagnostic value in identifying tumor malignancy was assessed. The apparent and pure diffusion coefficients were significantly higher in benign than in malignant tumors (benign: 2.32 [0.87] × 10 mm/s and 1.42 [0.37] × 10 mm/s vs malignant: 1.64 [0.51] × 10 mm/s and 1.14 [0.28] × 10 mm/s, respectively; P < 0.0001 and P = 0.0005), whereas the perfusion-related diffusion parameters did not differ significantly between the 2 groups. The apparent and pure diffusion coefficients provided similar accuracy in assessing tumor malignancy (areas under the receiver operating characteristic curve of 0.770 and 0.723, respectively). In the multigroup analysis, the ADC was found to be significantly higher in hemangiomas than in hepatocellular carcinomas, metastases, and cholangiocarcinomas. In the same manner, it was higher in lesions of focal nodular hyperplasia than in metastases and cholangiocarcinomas. However, the pure diffusion coefficient was significantly higher only in hemangiomas versus hepatocellular and cholangiocellular carcinomas. Compared with the ADC, the diffusion parameters derived from the IVIM model did not improve the determination of malignancy and characterization of hepatic tumor type.

  5. Isolation of high purity americium metal via distillation

    NASA Astrophysics Data System (ADS)

    Squires, Leah N.; King, James A.; Fielding, Randall S.; Lessing, Paul

    2018-03-01

    Pure americium metal is a crucial component for the fabrication of transmutation fuels. Unfortunately, americium in pure metal form is not available; however, a number of mixed metals and mixed oxides that include americium are available. In this manuscript a method is described to obtain high purity americium metal from a mixture of americium and neptunium metals with lead impurity via distillation.

  6. Detection of goat body fat adulteration in pure ghee using ATR-FTIR spectroscopy coupled with chemometric strategy.

    PubMed

    Upadhyay, Neelam; Jaiswal, Pranita; Jha, Shyam Narayan

    2016-10-01

    Ghee forms an important component of the diet of human beings due to its rich flavor and high nutritive value. This high priced fat is prone to adulteration with cheaper fats. ATR-FTIR spectroscopy coupled with chemometrics was applied for determining the presence of goat body fat in ghee (@1, 3, 5, 10, 15 and 20% level in the laboratory made/spiked samples). The spectra of pure (ghee and goat body fat) and spiked samples were taken in the wavenumber range of 4000-500 cm -1 . Separated clusters of pure ghee and spiked samples were obtained on applying principal component analysis at 5% level of significance in the selected wavenumber range (1786-1680, 1490-919 and 1260-1040 cm -1 ). SIMCA was applied for classification of samples and pure ghee showed 100% classification efficiency. The value of R 2 was found to be >0.99 for calibration and validation sets using partial least square method at all the selected wavenumber range which indicate that the model was well developed. The study revealed that the spiked samples of goat body fat could be detected even at 1% level in ghee.

  7. Histogenesis of pure and combined Merkel cell carcinomas: An immunohistochemical study of 14 cases.

    PubMed

    Narisawa, Yutaka; Koba, Shinichi; Inoue, Takuya; Nagase, Kotaro

    2015-05-01

    The histogenesis of Merkel cell carcinoma (MCC) has remained unresolved. Moreover, one of the questions is whether pure MCC and combined MCC represent the same histogenesis and entity. The existence of combined MCC suggests that MCC likely arise from pluripotent stem cells. Merkel cells (MC) localize within the bulge area, which is populated by hair follicle stem cells. We used hair follicle stem cell markers to investigate whether MCC share certain characteristics of these stem cells. Fourteen MCC specimens were examined histologically and immunohistochemically. There were six pure MCC and eight combined MCC. In six combined MCC, both MCC components and squamous components at least focally shared the expression of one or more of cytokeratin (CK)15, CK19 and CD200, which are hair follicle stem cell markers. On the other hand, four cases of pure MCC showed partially distinct CK19 expression, but did not show CK15 and/or CD200 expression. There was a distinct difference between pure MCC and combined MCC on the expression of hair follicle stem cell markers. The normal skin expressed CK15, CK19 and CD200 in the bulge area, whereas CK15 and CD200 were absent in the MC-rich glabrous skin and touch domes. The results led us to hypothesize that combined MCC originate from the hair follicle stem cells. We postulate that combined MCC undergo multidirectional differentiation into squamous, glandular, mesenchymal and Merkel cells. Further investigation is warranted to confirm the histogenesis of pure MCC and combined MCC. © 2015 Japanese Dermatological Association.

  8. The bulge-disc decomposed evolution of massive galaxies at 1 < z < 3 in CANDELS

    NASA Astrophysics Data System (ADS)

    Bruce, V. A.; Dunlop, J. S.; McLure, R. J.; Cirasuolo, M.; Buitrago, F.; Bowler, R. A. A.; Targett, T. A.; Bell, E. F.; McIntosh, D. H.; Dekel, A.; Faber, S. M.; Ferguson, H. C.; Grogin, N. A.; Hartley, W.; Kocevski, D. D.; Koekemoer, A. M.; Koo, D. C.; McGrath, E. J.

    2014-10-01

    We present the results of a new and improved study of the morphological and spectral evolution of massive galaxies over the redshift range 1 < z < 3. Our analysis is based on a bulge-disc decomposition of 396 galaxies with M* > 1011 M⊙ uncovered from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) Wide Field Camera 3 (WFC3)/IR imaging within the Cosmological Evolution Survey (COSMOS) and UKIRT Infrared Deep Sky Survey (UKIDSS) UDS survey fields. We find that, by modelling the H160 image of each galaxy with a combination of a de Vaucouleurs bulge (Sérsic index n = 4) and an exponential disc (n = 1), we can then lock all derived morphological parameters for the bulge and disc components, and successfully reproduce the shorter-wavelength J125, i814, v606 HST images simply by floating the magnitudes of the two components. This then yields sub-divided four-band HST photometry for the bulge and disc components which, with no additional priors, is well described by spectrophotometric models of galaxy evolution. Armed with this information, we are able to properly determine the masses and star formation rates for the bulge and disc components, and find that: (i) from z = 3 to 1 the galaxies move from disc dominated to increasingly bulge dominated, but very few galaxies are pure bulges/ellipticals by z = 1; (ii) while most passive galaxies are bulge dominated, and most star-forming galaxies disc dominated, 18 ± 5 per cent of passive galaxies are disc dominated, and 11 ± 3 per cent of star-forming galaxies are bulge dominated, a result which needs to be explained by any model purporting to connect star formation quenching with morphological transformations; (iii) there exists a small but significant population of pure passive discs, which are generally flatter than their star-forming counterparts (whose axial ratio distribution peaks at b/a ≃ 0.7); (iv) flatter/larger discs re-emerge at the highest star formation rates, consistent with recent studies of sub-mm galaxies, and with the concept of a maximum surface density for star formation activity.

  9. Two-step nitrification in a pure moving bed biofilm reactor-membrane bioreactor for wastewater treatment: nitrifying and denitrifying microbial populations and kinetic modeling.

    PubMed

    Leyva-Díaz, J C; González-Martínez, A; Muñío, M M; Poyatos, J M

    2015-12-01

    The moving bed biofilm reactor-membrane bioreactor (MBBR-MBR) is a novel solution to conventional activated sludge processes and membrane bioreactors. In this study, a pure MBBR-MBR was studied. The pure MBBR-MBR mainly had attached biomass. The bioreactor operated with a hydraulic retention time (HRT) of 9.5 h. The kinetic parameters for heterotrophic and autotrophic biomasses, mainly nitrite-oxidizing bacteria (NOB), were evaluated. The analysis of the bacterial community structure of the ammonium-oxidizing bacteria (AOB), NOB, and denitrifying bacteria (DeNB) from the pure MBBR-MBR was carried out by means of pyrosequencing to detect and quantify the contribution of the nitrifying and denitrifying bacteria in the total bacterial community. The relative abundance of AOB, NOB, and DeNB were 5, 1, and 3%, respectively, in the mixed liquor suspended solids (MLSS), and these percentages were 18, 5, and 2%, respectively, in the biofilm density (BD) attached to carriers. The pure MBBR-MBR had a high efficiency of total nitrogen (TN) removal of 71.81±16.04%, which could reside in the different bacterial assemblages in the fixed biofilm on the carriers. In this regard, the kinetic parameters for autotrophic biomass had values of YA=2.3465 mg O2 mg N(-1), μm, A=0.7169 h(-1), and KNH=2.0748 mg NL(-1).

  10. Molybdenum disilicide composites reinforced with zirconia and silicon carbide

    DOEpatents

    Petrovic, John J.

    1995-01-01

    Compositions consisting essentially of molybdenum disilicide, silicon carbide, and a zirconium oxide component. The silicon carbide used in the compositions is in whisker or powder form. The zirconium oxide component is pure zirconia or partially stabilized zirconia or fully stabilized zirconia.

  11. Continuum Model for Decontamination of Chemical Warfare Agent from a Rubbery Polymer using the Maxwell-Stefan Formulation

    NASA Astrophysics Data System (ADS)

    Varady, Mark; Bringuier, Stefan; Pearl, Thomas; Stevenson, Shawn; Mantooth, Brent

    Decontamination of polymers exposed to chemical warfare agents (CWA) often proceeds by application of a liquid solution. Absorption of some decontaminant components proceed concurrently with extraction of the CWA, resulting in multicomponent diffusion in the polymer. In this work, the Maxwell-Stefan equations were used with the Flory-Huggins model of species activity to mathematically describe the transport of two species within a polymer. This model was used to predict the extraction of the nerve agent O-ethyl S-[2(diisopropylamino)ethyl] methylphosphonothioate (VX) from a silicone elastomer into both water and methanol. Comparisons with experimental results show good agreement with minimal fitting of model parameters from pure component uptake data. Reaction of the extracted VX with sodium hydroxide in the liquid-phase was also modeled and used to predict the overall rate of destruction of VX. Although the reaction proceeds more slowly in the methanol-based solution compared to the aqueous solution, the extraction rate is faster due to increasing VX mobility as methanol absorbs into the silicone, resulting in an overall faster rate of VX destruction.

  12. Mixed material formation and erosion

    NASA Astrophysics Data System (ADS)

    Linsmeier, Ch.; Luthin, J.; Goldstraß, P.

    2001-03-01

    The formation of mixed phases on materials relevant for first wall components of fusion devices is studied under well-defined conditions in ultra-high vacuum (UHV). This is necessary in order to determine fundamental parameters governing the basic processes of chemical reaction, material mixing and erosion. We examined the binary systems comprising of the wall materials beryllium, silicon, tungsten and titanium and carbon, the latter being both a wall material and a plasma impurity. Experiments were carried out to study the interaction of carbon in the form of a vapor-deposited component on clean, well-defined elemental surfaces. The chemical composition and the binding state are measured by X-ray photoelectron spectroscopy (XPS) after annealing treatments. For all materials, a limited carbide formation is found at room temperature. Annealing carbon films on elemental substrate leads to a complete carbidization of the carbon layer. The carbide layers on Be and Si are stable even at very high temperatures, whereas the carbides of Ti and W dissolve. The erosion of these two metals by sputtering is then identical to the pure metals, whereas for Be and Si a protective carbide layer can reduce the sputtering yields.

  13. The pure rotational spectrum of CaNC

    NASA Astrophysics Data System (ADS)

    Scurlock, C. T.; Steimle, T. C.; Suenram, R. D.; Lovas, F. J.

    1994-03-01

    The pure rotational spectrum of calcium isocyanide, CaNC, in its (0,0,0) X 2Σ+ vibronic state was measured using a combination of Fourier transform microwave (FTMW) and pump/probe microwave-optical double resonance (PPMODR) spectroscopy. Gaseous CaNC was generated using a laser ablation/supersonic expansion source. The determined spectroscopic parameters are (in MHz), B=4048.754 332 (29); γ=18.055 06 (23); bF=12.481 49 (93); c=2.0735 (14); and eQq0=-2.6974 (11). The hyperfine parameters are qualitatively interpreted in terms of a plausible molecular orbital descriptions and a comparison with the alkaline earth monohalides and the alkali monocyanides is given.

  14. Improved ferroelectric and pyroelectric parameters in iminodiacetic acid doped TGS crystal

    NASA Astrophysics Data System (ADS)

    Rai, Chitharanjan; Sreenivas, K.; Dharmaprakash, S. M.

    2010-01-01

    Single crystals of Iminodiacetic acid (HN(CH 2COOH) 2) doped Triglycine sulphate (IDATGS) has been grown from aqueous solution at constant temperature by slow evaporation technique. The concentration of the dopant in the TGS solution was 2 mol%. The X-ray diffraction analysis indicates that there is significant change in the lattice parameters compared to pure TGS crystal. The IDATGS crystal has larger transition temperature and observed higher and uniform figure of merit over most part of the ferroelectric phase. These crystals also exhibit higher internal bias field and micro-hardness number compared to pure TGS. Therefore IDATGS may be a potential material for IR detectors.

  15. Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Michael C.; Gao, Pan; Hawk, Jeffrey A.

    This study provides a short review on computational modeling on the formation, thermodynamics, and elasticity of single-phase high-entropy alloys (HEAs). Hundreds of predicted single-phase HEAs were re-examined using various empirical thermo-physical parameters. Potential BCC HEAs (CrMoNbTaTiVW, CrMoNbReTaTiVW, and CrFeMoNbReRuTaVW) were suggested based on CALPHAD modeling. The calculated vibrational entropies of mixing are positive for FCC CoCrFeNi, negative for BCC MoNbTaW, and near-zero for HCP CoOsReRu. The total entropies of mixing were observed to trend in descending order: CoCrFeNi > CoOsReRu > MoNbTaW. Calculated lattice parameters agree extremely well with averaged values estimated from the rule of mixtures (ROM) if themore » same crystal structure is used for the elements and the alloy. The deviation in the calculated elastic properties from ROM for select alloys is small but is susceptible to the choice used for the structures of pure components.« less

  16. Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity

    DOE PAGES

    Gao, Michael C.; Gao, Pan; Hawk, Jeffrey A.; ...

    2017-10-12

    This study provides a short review on computational modeling on the formation, thermodynamics, and elasticity of single-phase high-entropy alloys (HEAs). Hundreds of predicted single-phase HEAs were re-examined using various empirical thermo-physical parameters. Potential BCC HEAs (CrMoNbTaTiVW, CrMoNbReTaTiVW, and CrFeMoNbReRuTaVW) were suggested based on CALPHAD modeling. The calculated vibrational entropies of mixing are positive for FCC CoCrFeNi, negative for BCC MoNbTaW, and near-zero for HCP CoOsReRu. The total entropies of mixing were observed to trend in descending order: CoCrFeNi > CoOsReRu > MoNbTaW. Calculated lattice parameters agree extremely well with averaged values estimated from the rule of mixtures (ROM) if themore » same crystal structure is used for the elements and the alloy. The deviation in the calculated elastic properties from ROM for select alloys is small but is susceptible to the choice used for the structures of pure components.« less

  17. Assessment of the Use of Nanofluids in Spacecraft Active Thermal Control Systems

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Erickson, Lisa R.

    2011-01-01

    The addition of metallic nanoparticles to a base heat transfer fluid can dramatically increase its thermal conductivity. These nanofluids have been shown to have advantages in some heat transport systems. Their enhanced properties can allow lower system volumetric flow rates and can reduce the required pumping power. Nanofluids have been suggested for use as working fluids for spacecraft Active Thermal Control Systems (ATCSs). However, there are no studies showing the end-to-end effect of nanofluids on the design and performance of spacecraft ATCSs. In the present work, a parametric study is performed to assess the use of nanofluids in a spacecraft ATCSs. The design parameters of the current Orion capsule and the tabulated thermophysical properties of nanofluids are used to assess the possible benefits of nanofluids and how their incorporation affects the overall design of a spacecraft ATCS. The study shows that the unique system and component-level design parameters of spacecraft ATCSs render them best suited for pure working fluids. The addition of nanoparticles to typical spacecraft thermal control working fluids actually results in an increase in the system mass and required pumping power.

  18. Effects of Fuel Laminar Flame Speed Compared to Engine Tumble Ratio, Ignition Energy, and Injection Strategy on Lean and EGR Dilute Spark Ignition Combustion

    DOE PAGES

    Kolodziej, Christopher P.; Pamminger, Michael; Sevik, James; ...

    2017-03-28

    Previously we show that fuels with higher laminar flame speed also have increased tolerance to EGR dilution. In this work, the effects of fuel laminar flame speed on both lean and EGR dilute spark ignition combustion stability were examined. Fuels blends of pure components (iso-octane, n-heptane, toluene, ethanol, and methanol) were derived at two levels of laminar flame speed. Each fuel blend was tested in a single-cylinder spark-ignition engine under both lean-out and EGR dilution sweeps until the coefficient of variance of indicated mean effective pressure increased above thresholds of 3% and 5%. The relative importance of fuel laminar flamemore » speed to changes to engine design parameters (spark ignition energy, tumble ratio, and port vs. direct injection) was also assessed. Our results showed that fuel laminar flame speed can have as big an effect on lean or EGR dilute engine operation as engine design parameters, with the largest effects seen during EGR dilute operation and when changes were made to cylinder charge motion.« less

  19. Effects of Fuel Laminar Flame Speed Compared to Engine Tumble Ratio, Ignition Energy, and Injection Strategy on Lean and EGR Dilute Spark Ignition Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolodziej, Christopher P.; Pamminger, Michael; Sevik, James

    Previously we show that fuels with higher laminar flame speed also have increased tolerance to EGR dilution. In this work, the effects of fuel laminar flame speed on both lean and EGR dilute spark ignition combustion stability were examined. Fuels blends of pure components (iso-octane, n-heptane, toluene, ethanol, and methanol) were derived at two levels of laminar flame speed. Each fuel blend was tested in a single-cylinder spark-ignition engine under both lean-out and EGR dilution sweeps until the coefficient of variance of indicated mean effective pressure increased above thresholds of 3% and 5%. The relative importance of fuel laminar flamemore » speed to changes to engine design parameters (spark ignition energy, tumble ratio, and port vs. direct injection) was also assessed. Our results showed that fuel laminar flame speed can have as big an effect on lean or EGR dilute engine operation as engine design parameters, with the largest effects seen during EGR dilute operation and when changes were made to cylinder charge motion.« less

  20. Microbial Transformation of Esters of Chlorinated Carboxylic Acids

    PubMed Central

    Paris, D. F.; Wolfe, N. L.; Steen, W. C.

    1984-01-01

    Two groups of compounds were selected for microbial transformation studies. In the first group were carboxylic acid esters having a fixed aromatic moiety and an increasing length of the alkyl component. Ethyl esters of chlorine-substituted carboxylic acids were in the second group. Microorganisms from environmental waters and a pure culture of Pseudomonas putida U were used. The bacterial populations were monitored by plate counts, and disappearance of the parent compound was followed by gas-liquid chromatography as a function of time. The products of microbial hydrolysis were the respective carboxylic acids. Octanol-water partition coefficients (Kow) for the compounds were measured. These values spanned three orders of magnitude, whereas microbial transformation rate constants (kb) varied only 50-fold. The microbial rate constants of the carboxylic acid esters with a fixed aromatic moiety increased with an increasing length of alkyl substituents. The regression coefficient for the linear relationships between log kb and log Kow was high for group 1 compounds, indicating that these parameters correlated well. The regression coefficient for the linear relationships for group 2 compounds, however, was low, indicating that these parameters correlated poorly. PMID:16346459

  1. Mixture optimization for mixed gas Joule-Thomson cycle

    NASA Astrophysics Data System (ADS)

    Detlor, J.; Pfotenhauer, J.; Nellis, G.

    2017-12-01

    An appropriate gas mixture can provide lower temperatures and higher cooling power when used in a Joule-Thomson (JT) cycle than is possible with a pure fluid. However, selecting gas mixtures to meet specific cooling loads and cycle parameters is a challenging design problem. This study focuses on the development of a computational tool to optimize gas mixture compositions for specific operating parameters. This study expands on prior research by exploring higher heat rejection temperatures and lower pressure ratios. A mixture optimization model has been developed which determines an optimal three-component mixture based on the analysis of the maximum value of the minimum value of isothermal enthalpy change, ΔhT , that occurs over the temperature range. This allows optimal mixture compositions to be determined for a mixed gas JT system with load temperatures down to 110 K and supply temperatures above room temperature for pressure ratios as small as 3:1. The mixture optimization model has been paired with a separate evaluation of the percent of the heat exchanger that exists in a two-phase range in order to begin the process of selecting a mixture for experimental investigation.

  2. Breast cancer risk factor associations differ for pure versus invasive carcinoma with an in situ component in case-control and case-case analyses

    PubMed Central

    Ruszczyk, Melanie; Zirpoli, Gary; Kumar, Shicha; Bandera, Elisa V.; Bovbjerg, Dana H.; Jandorf, Lina; Khoury, Thaer; Hwang, Helena; Ciupak, Gregory; Pawlish, Karen; Schedin, Pepper; Masso-Welch, Patricia; Ambrosone, Christine B.; Hong, Chi-Chen

    2015-01-01

    Purpose Invasive ductal carcinoma (IDC) is diagnosed with or without a ductal carcinoma in situ (DCIS) component. Previous analyses have found significant differences in tumor characteristics between pure IDC lacking DCIS and mixed IDC with DCIS. We will test our hypothesis that pure IDC represents a form of breast cancer with etiology and risk factors distinct from mixed IDC/DCIS. Methods We compared reproductive risk factors for breast cancer risk, as well as family and smoking history between 831 women with mixed IDC/DCIS (n=650) or pure IDC (n=181), and 1,620 controls, in the context of the Women's Circle of Health Study (WCHS), a case-control study of breast cancer in African-American and European-American women. Data on reproductive and lifestyle factors were collected during interviews, and tumor characteristics were abstracted from pathology reports. Case-control and case-case analyses were conducted using unconditional logistic regression. Results Most risk factors were similarly associated with pure IDC and mixed IDC/DCIS. However, among postmenopausal women, risk for pure IDC was lower in women with body mass index (BMI) 25 to <30 kg/m2 (Odds Ratio (OR)=0.66; 95% confidence interval (CI), 0.35-1.23) and BMI≥30 kg/m2 (OR=0.33; 95% CI, 0.18-0.67) compared to women with BMI<25 kg/m2, with no associations with mixed IDC/DCIS. In case-case analyses, women who breastfed up to 12 months (OR=0.55; 95% CI, 0.32-0.94) or longer (OR=0.47; 95% CI, 0.26-0.87) showed decreased odds of pure IDC than mixed IDC/DCIS compared to those who did not breastfeed. Conclusions Associations with some breast cancer risk factors differed between mixed IDC/DCIS and pure IDC, potentially suggesting differential developmental pathways. These findings, if confirmed in a larger study, will provide a better understanding of the development patterns of breast cancer and the influence of modifiable risk factors, which in turn could lead to better preventive measures for pure IDC, which have worse disease prognosis compared to mixed IDC/DCIS. PMID:26621543

  3. Development of Viscosity Model for Petroleum Industry Applications

    NASA Astrophysics Data System (ADS)

    Motahhari, Hamed reza

    Heavy oil and bitumen are challenging to produce and process due to their very high viscosity, but their viscosity can be reduced either by heating or dilution with a solvent. Given the key role of viscosity, an accurate viscosity model suitable for use with reservoir and process simulators is essential. While there are several viscosity models for natural gases and conventional oils, a compositional model applicable to heavy petroleum and diluents is lacking. The objective of this thesis is to develop a general compositional viscosity model that is applicable to natural gas mixtures, conventional crudes oils, heavy petroleum fluids, and their mixtures with solvents and other crudes. The recently developed Expanded Fluid (EF) viscosity correlation was selected as a suitable compositional viscosity model for petroleum applications. The correlation relates the viscosity of the fluid to its density over a broad range of pressures and temperatures. The other inputs are pressure and the dilute gas viscosity. Each fluid is characterized for the correlation by a set of fluid-specific parameters which are tuned to fit data. First, the applicability of the EF correlation was extended to asymmetric mixtures and liquid mixtures containing dissolved gas components. A new set of mass-fraction based mixing rules was developed to calculate the fluid-specific parameters for mixtures. The EF correlation with the new set of mixing rules predicted the viscosity of over 100 mixtures of hydrocarbon compounds and carbon dioxide with overall average absolute relative deviations (AARD) of less than 10% either with measured densities or densities estimated by Advanced Peng-Robinson equation of state (APR EoS). To improve the viscosity predictions with APR EoS-estimated densities, general correlations were developed for non-zero viscosity binary interaction parameters. The EF correlation was extended to non-hydrocarbon compounds typically encountered in natural gas industry. It was demonstrated that the framework of the correlation is valid for these compounds, except for compounds with strong hydrogen bonding such as water. A temperature dependency was introduced into the correlation for strongly hydrogen bonding compounds. The EF correlation fit the viscosity data of pure non-hydrocarbon compounds with AARDs below 6% and predicted the viscosity of sour and sweet natural gases and aqueous solutions of organic alcohols with overall AARDs less than 9%. An internally consistent estimation method was also developed to calculate the fluid-specific parameters for hydrocarbons when no experimental viscosity data are available. The method correlates the fluid-specific parameters to the molecular weight and specific gravity. The method was evaluated against viscosity data of over 250 pure hydrocarbon compounds and petroleum distillations cuts. The EF correlation predictions were found to be within the same order of magnitude of the measurements with an overall AARD of 31%. A methodology was then proposed to apply the EF viscosity correlation to crude oils characterized as mixtures of the defined components and pseudo-components. The above estimation methods are used to calculate the fluid-specific parameters for pseudo-components. Guidelines are provided for tuning of the correlation to available viscosity data, calculating the dilute gas viscosities, and improving the densities calculated with the Peng-Robinson EoS. The viscosities of over 10 dead and live crude oils and bitumen were predicted within a factor of 3 of the measured values using the measured density of the oils as the input. It was shown that single parameter tuning of the model improved the viscosity prediction to within 30% of the measured values. Finally, the performance of the EF correlation was evaluated for diluted heavy oils and bitumens. The required density and viscosity data were collected for over 20 diluted dead and live bitumen mixtures using an in-house capillary viscometer also equipped with an in-line density-meter at temperatures and pressures up to 175 °C and 10 MPa. The predictions of the correlation were found within the same order of magnitude of the measured values with overall AARDs less than 20%. It was shown that the predictions of the correlation with generalized non-zero interaction parameters for the solvent-oil pairs were improved to overall AARDs less than 10%.

  4. Investigation on Insar Time Series Deformation Model Considering Rheological Parameters for Soft Clay Subgrade Monitoring

    NASA Astrophysics Data System (ADS)

    Xing, X.; Yuan, Z.; Chen, L. F.; Yu, X. Y.; Xiao, L.

    2018-04-01

    The stability control is one of the major technical difficulties in the field of highway subgrade construction engineering. Building deformation model is a crucial step for InSAR time series deformation monitoring. Most of the InSAR deformation models for deformation monitoring are pure empirical mathematical models, without considering the physical mechanism of the monitored object. In this study, we take rheology into consideration, inducing rheological parameters into traditional InSAR deformation models. To assess the feasibility and accuracy for our new model, both simulation and real deformation data over Lungui highway (a typical highway built on soft clay subgrade in Guangdong province, China) are investigated with TerraSAR-X satellite imagery. In order to solve the unknows of the non-linear rheological model, three algorithms: Gauss-Newton (GN), Levenberg-Marquarat (LM), and Genetic Algorithm (GA), are utilized and compared to estimate the unknown parameters. Considering both the calculation efficiency and accuracy, GA is chosen as the final choice for the new model in our case study. Preliminary real data experiment is conducted with use of 17 TerraSAR-X Stripmap images (with a 3-m resolution). With the new deformation model and GA aforementioned, the unknown rheological parameters over all the high coherence points are obtained and the LOS deformation (the low-pass component) sequences are generated.

  5. Molybdenum disilicide composites reinforced with zirconia and silicon carbide

    DOEpatents

    Petrovic, J.J.

    1995-01-17

    Compositions are disclosed consisting essentially of molybdenum disilicide, silicon carbide, and a zirconium oxide component. The silicon carbide used in the compositions is in whisker or powder form. The zirconium oxide component is pure zirconia or partially stabilized zirconia or fully stabilized zirconia.

  6. Aerodynamic Characteristics of Two Waverider-Derived Hypersonic Cruise Configurations

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.; Huebner, Lawrence D.; Finley, Dennis B.

    1996-01-01

    An evaluation was made on the effects of integrating the required aircraft components with hypersonic high-lift configurations known as waveriders to create hypersonic cruise vehicles. Previous studies suggest that waveriders offer advantages in aerodynamic performance and propulsion/airframe integration (PAI) characteristics over conventional non-waverider hypersonic shapes. A wind-tunnel model was developed that integrates vehicle components, including canopies, engine components, and control surfaces, with two pure waverider shapes, both conical-flow-derived waveriders for a design Mach number of 4.0. Experimental data and limited computational fluid dynamics (CFD) solutions were obtained over a Mach number range of 1.6 to 4.63. The experimental data show the component build-up effects and the aerodynamic characteristics of the fully integrated configurations, including control surface effectiveness. The aerodynamic performance of the fully integrated configurations is not comparable to that of the pure waverider shapes, but is comparable to previously tested hypersonic models. Both configurations exhibit good lateral-directional stability characteristics.

  7. Pure silver ohmic contacts to N- and P- type gallium arsenide materials

    DOEpatents

    Hogan, Stephen J.

    1986-01-01

    Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components an n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffused layer and the substrate layer, wherein the n-type layer comprises a substantially low doping carrier concentration.

  8. Use of a torsional pendulum as a high-pressure gage and determination of viscosity of helium gas at high pressures

    NASA Technical Reports Server (NTRS)

    Maisel, J. E.; Webeler, R. W. H.; Grimes, H. H.

    1973-01-01

    Three torsional crystal parameters were examined for suitability in sensing pressure in gases up to 131 million newtons per square meter. The best parameters were found to be the change in crystal decrement at resonance and the change in crystal electrical resistance at resonance. The change in crystal resonant frequency did not appear to be a reliable pressure measuring parameter. Pure argon and pure helium gases were studied for use as working fluids. Helium functioned better over a wider pressure range. Calibration of the gage also provided a measure of the viscosity-density product of the gas as a function of pressure. These data, together with known extrapolated density data, permitted the determination of the viscosity of helium to 131 million N/square meter.

  9. Irradiation creep of dispersion strengthened copper alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokrovsky, A.S.; Barabash, V.R.; Fabritsiev, S.A.

    1997-04-01

    Dispersion strengthened copper alloys are under consideration as reference materials for the ITER plasma facing components. Irradiation creep is one of the parameters which must be assessed because of its importance for the lifetime prediction of these components. In this study the irradiation creep of a dispersion strengthened copper (DS) alloy has been investigated. The alloy selected for evaluation, MAGT-0.2, which contains 0.2 wt.% Al{sub 2}O{sub 3}, is very similar to the GlidCop{trademark} alloy referred to as Al20. Irradiation creep was investigated using HE pressurized tubes. The tubes were machined from rod stock, then stainless steel caps were brazed ontomore » the end of each tube. The creep specimens were pressurized by use of ultra-pure He and the stainless steel caps subsequently sealed by laser welding. These specimens were irradiated in reactor water in the core position of the SM-2 reactors to a fluence level of 4.5-7.1 x 10{sup 21} n/cm{sup 2} (E>0.1 MeV), which corresponds to {approx}3-5 dpa. The irradiation temperature ranged from 60-90{degrees}C, which yielded calculated hoop stresses from 39-117 MPa. A mechanical micrometer system was used to measure the outer diameter of the specimens before and after irradiation, with an accuracy of {+-}0.001 mm. The irradiation creep was calculated based on the change in the diameter. Comparison of pre- and post-irradiation diameter measurements indicates that irradiation induced creep is indeed observed in this alloy at low temperatures, with a creep rate as high as {approx}2 x 10{sup {minus}9}s{sup {minus}1}. These results are compared with available data for irradiation creep for stainless steels, pure copper, and for thermal creep of copper alloys.« less

  10. Canal–Otolith Interactions and Detection Thresholds of Linear and Angular Components During Curved-Path Self-Motion

    PubMed Central

    MacNeilage, Paul R.; Turner, Amanda H.

    2010-01-01

    Gravitational signals arising from the otolith organs and vertical plane rotational signals arising from the semicircular canals interact extensively for accurate estimation of tilt and inertial acceleration. Here we used a classical signal detection paradigm to examine perceptual interactions between otolith and horizontal semicircular canal signals during simultaneous rotation and translation on a curved path. In a rotation detection experiment, blindfolded subjects were asked to detect the presence of angular motion in blocks where half of the trials were pure nasooccipital translation and half were simultaneous translation and yaw rotation (curved-path motion). In separate, translation detection experiments, subjects were also asked to detect either the presence or the absence of nasooccipital linear motion in blocks, in which half of the trials were pure yaw rotation and half were curved path. Rotation thresholds increased slightly, but not significantly, with concurrent linear velocity magnitude. Yaw rotation detection threshold, averaged across all conditions, was 1.45 ± 0.81°/s (3.49 ± 1.95°/s2). Translation thresholds, on the other hand, increased significantly with increasing magnitude of concurrent angular velocity. Absolute nasooccipital translation detection threshold, averaged across all conditions, was 2.93 ± 2.10 cm/s (7.07 ± 5.05 cm/s2). These findings suggest that conscious perception might not have independent access to separate estimates of linear and angular movement parameters during curved-path motion. Estimates of linear (and perhaps angular) components might instead rely on integrated information from canals and otoliths. Such interaction may underlie previously reported perceptual errors during curved-path motion and may originate from mechanisms that are specialized for tilt-translation processing during vertical plane rotation. PMID:20554843

  11. The vertical variability of hyporheic fluxes inferred from riverbed temperature data

    NASA Astrophysics Data System (ADS)

    Cranswick, Roger H.; Cook, Peter G.; Shanafield, Margaret; Lamontagne, Sebastien

    2014-05-01

    We present detailed profiles of vertical water flux from the surface to 1.2 m beneath the Haughton River in the tropical northeast of Australia. A 1-D numerical model is used to estimate vertical flux based on raw temperature time series observations from within downwelling, upwelling, neutral, and convergent sections of the hyporheic zone. A Monte Carlo analysis is used to derive error bounds for the fluxes based on temperature measurement error and uncertainty in effective thermal diffusivity. Vertical fluxes ranged from 5.7 m d-1 (downward) to -0.2 m d-1 (upward) with the lowest relative errors for values between 0.3 and 6 m d-1. Our 1-D approach provides a useful alternative to 1-D analytical and other solutions because it does not incorporate errors associated with simplified boundary conditions or assumptions of purely vertical flow, hydraulic parameter values, or hydraulic conditions. To validate the ability of this 1-D approach to represent the vertical fluxes of 2-D flow fields, we compare our model with two simple 2-D flow fields using a commercial numerical model. These comparisons showed that: (1) the 1-D vertical flux was equivalent to the mean vertical component of flux irrespective of a changing horizontal flux; and (2) the subsurface temperature data inherently has a "spatial footprint" when the vertical flux profiles vary spatially. Thus, the mean vertical flux within a 2-D flow field can be estimated accurately without requiring the flow to be purely vertical. The temperature-derived 1-D vertical flux represents the integrated vertical component of flux along the flow path intersecting the observation point. This article was corrected on 6 JUN 2014. See the end of the full text for details.

  12. An experimental investigation of the interior noise control effects of propeller synchrophasing

    NASA Technical Reports Server (NTRS)

    Jones, J. D.; Fuller, C. R.

    1986-01-01

    A simplified cylindrical model of an aircraft fuselage is used to investigate the mechanisms of interior noise suppression using synchrophasing techniques. This investigation allows isolation of important parameters to define the characteristics of synchrophasing. The optimum synchrophase angle for maximum noise reduction is found for several interior microphone positions with pure tone source excitation. Noise reductions of up to 30 dB are shown for some microphone positions, however, overall reductions are less. A computer algorithm is developed to decompose the cylinder vibration into modal components over a wide range of synchrophase angles. The circumferential modal response of the shell vibration is shown to govern the transmission of sound into the cylinder rather than localized transmission. As well as investigating synchrophasing, the interior sound field due to sources typical of propellers has been measured and discussed.

  13. Seeded hot dark matter models with inflation

    NASA Technical Reports Server (NTRS)

    Gratsias, John; Scherrer, Robert J.; Steigman, Gary; Villumsen, Jens V.

    1993-01-01

    We examine massive neutrino (hot dark matter) models for large-scale structure in which the density perturbations are produced by randomly distributed relic seeds and by inflation. Power spectra, streaming velocities, and the Sachs-Wolfe quadrupole fluctuation are derived for this model. We find that the pure seeded hot dark matter model without inflation produces Sachs-Wolfe fluctuations far smaller than those seen by COBE. With the addition of inflationary perturbations, fluctuations consistent with COBE can be produced. The COBE results set the normalization of the inflationary component, which determines the large-scale (about 50/h Mpc) streaming velocities. The normalization of the seed power spectrum is a free parameter, which can be adjusted to obtain the desired fluctuations on small scales. The power spectra produced are very similar to those seen in mixed hot and cold dark matter models.

  14. Mean centering of ratio spectra and concentration augmented classical least squares in a comparative approach for quantitation of spectrally overlapped bands of antihypertensives in formulations

    NASA Astrophysics Data System (ADS)

    Hegazy, Maha Abdel Monem; Fayez, Yasmin Mohammed

    2015-04-01

    Two different methods manipulating spectrophotometric data have been developed, validated and compared. One is capable of removing the signal of any interfering components at the selected wavelength of the component of interest (univariate). The other includes more variables and extracts maximum information to determine the component of interest in the presence of other components (multivariate). The applied methods are smart, simple, accurate, sensitive, precise and capable of determination of spectrally overlapped antihypertensives; hydrochlorothiazide (HCT), irbesartan (IRB) and candesartan (CAN). Mean centering of ratio spectra (MCR) and concentration residual augmented classical least-squares method (CRACLS) were developed and their efficiency was compared. CRACLS is a simple method that is capable of extracting the pure spectral profiles of each component in a mixture. Correlation was calculated between the estimated and pure spectra and was found to be 0.9998, 0.9987 and 0.9992 for HCT, IRB and CAN, respectively. The methods were successfully determined the three components in bulk powder, laboratory-prepared mixtures, and combined dosage forms. The results obtained were compared statistically with each other and to those of the official methods.

  15. Generalized Grueneisen tensor from solid nonlinearity parameters

    NASA Technical Reports Server (NTRS)

    Cantrell, J. H., Jr.

    1980-01-01

    Anharmonic effects in solids are often described in terms of generalized Grueneisen parameters which measure the strain dependence of the lattice vibrational frequencies. The relationship between these parameters and the solid nonlinearity parameters measured directly in ultrasonic harmonic generation experiments is derived using an approach valid for normal-mode elastic wave propagation in any crystalline direction. The resulting generalized Grueneisen parameters are purely isentropic in contrast to the Brugger-Grueneisen parameters which are of a mixed thermodynamic state. Experimental data comparing the isentropic generalized Grueneisen parameters and the Brugger-Grueneisen parameters are presented.

  16. Ultrasound assisted cocrystallization from solution (USSC) containing a non-congruently soluble cocrystal component pair: Caffeine/maleic acid.

    PubMed

    Aher, Suyog; Dhumal, Ravindra; Mahadik, Kakasaheb; Paradkar, Anant; York, Peter

    2010-12-23

    Ultrasound assisted solution cocrystallization (USSC) has been studied using a non-congruently soluble pair of caffeine and maleic acid in methanol. USSC was compared with solvent cooling and slurry sonication using different molar ratios of caffeine:maleic acid (1:0.5, 1:1, 1:2, 1:3 and 1:3.5) in solution/slurry. Products were characterized by PXRD and Raman spectroscopy techniques. In USSC trials, the content of cocrystal in the product was observed to increase with increase in amount of maleic acid in solution. Only USSC offered pure caffeine/maleic acid 2:1 cocrystal product when caffeine:maleic acid; 1:3.5 molar ratio was taken in solution. Caffeine/maleic acid 1:1 cocrystal and maleic acid were not obtained in neither of the techniques. Products of solvent cooling and slurry sonication experiments were mixtures of caffeine and caffeine/maleic acid 2:1 cocrystal in varying amounts. In USSC, ultrasound application must have attained simultaneous supersaturation of cocrystal components in solution due to altered supersaturation conditions resulting in cocrystal formation. For this simultaneous attainment of supersaturation, molar ratio of cocrystal components in solution was identified as an important parameter while designing experiments for a non-congruently soluble pair having large solubility difference. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Developments for the 6He beta - nu angular correlation experiment

    NASA Astrophysics Data System (ADS)

    Zumwalt, David W.

    This thesis describes developments toward the measurement of the angular correlation between the beta and the antineutrino in the beta decay of 6He. This decay is a pure Gamow-Teller decay which is described in the Standard Model as a purely axial vector weak interaction. The angular correlation is characterized by the parameter abetanu = -1/3 in the Standard Model. Any deviation from this value would be evidence for tensor components in the weak interaction and would constitute new physics. A new method will be used to measure the parameter a betanu from 6He decays, featuring a magneto-optical trap that will measure the beta particle in coincidence with the recoiling 6Li daughter ion. This neutral atom trapping scheme provides cold, tightly confined atoms which will reduce systematic uncertainties related to the initial position of the decay. By knowing the initial position of the decay and measuring the time of flight of the recoiling 6Li daughter ion in coincidence with the beta, the angular correlation between the beta and the antineutrino can be deduced. We aim to measure a betanu first to the level of 1%, and eventually to the 0.1% level, which would represent an order of magnitude improvement in precision over past experiments. Towards this goal, we have designed, built, and successfully tested a liquid lithium target to provide >2×10. {10} 6He atoms/sto a low-background environment, which is the most intense source of 6He presently available. This allowed for an additional measurement of the 6He half-life (806.89 +/- 0.11stat +0.23-0.19syst ms) to be made with unprecedented precision, resolving discrepancies in past measurements. We have also tested our trapping and detection apparatus and have begun to record preliminary coincidence events.

  18. Combined processing of lead concentrates

    NASA Astrophysics Data System (ADS)

    Kubasov, V. L.; Paretskii, V. M.; Sidorin, G. N.; Travkin, V. F.

    2013-06-01

    A combined scheme of processing of lead concentrates with the production of pure metallic lead and the important components containing in these concentrates is considered. This scheme includes sulfating roasting of the lead concentrates and two-stage leaching of the formed cinder with the formation of a sulfate solution and lead sulfate. When transformed into a carbonate form, lead sulfate is used for the production of pure metallic lead. Silver, indium, copper, cadmium, nickel, cobalt, and other important components are separately extracted from a solution. At the last stage, zinc is extracted by either extraction followed by electrolytic extraction of a metal or the return of the forming solution of sulfuric acid to cinder leaching.

  19. Pure topographical disorientation in a patient with right occipito-temporal lesion.

    PubMed

    Caglio, Marcella; Castelli, Lorys; Cerrato, Paolo; Latini-Corazzini, Luca

    2011-01-01

    We describe a patient who presented with a pure topographical disorientation after a stroke involving the right mesial occipito-temporal cortex. He could not point to external unseen landmarks or draw a map of his city, while he could recognize landmarks, and judge the distance, and describe the route between pairs of landmarks of the same city. He underwent standardized cognitive tests, and 6 tasks were used to assess a topographical orientation route-survey. This study provides evidence that topographical disorientation can be subdivided into very specific components. The results suggest that one of these components might refer to the processing of an allocentric map separable from the representation of route knowledge.

  20. Lattice energy calculation - A quick tool for screening of cocrystals and estimation of relative solubility. Case of flavonoids

    NASA Astrophysics Data System (ADS)

    Kuleshova, L. N.; Hofmann, D. W. M.; Boese, R.

    2013-03-01

    Cocrystals (or multicomponent crystals) have physico-chemical properties that are different from crystals of pure components. This is significant in drug development, since the desired properties, e.g. solubility, stability and bioavailability, can be tailored by binding two substances into a single crystal without chemical modification of an active component. Here, the FLEXCRYST program suite, implemented with a data mining force field, was used to estimate the relative stability and, consequently, the relative solubility of cocrystals of flavonoids vs their pure crystals, stored in the Cambridge Structural Database. The considerable potency of this approach for in silico screening of cocrystals, as well as their relative solubility, was demonstrated.

  1. Measuring Dispersion Effects of Factors in Factorial Experiments.

    DTIC Science & Technology

    1988-01-01

    error is MSE =i=l j=1 i n r (SSE/(N-p)), the sum of squares of pure error is SSPE = Z E Y i=1 j=1 and the mean square of pure error is MSPE - ( SSPE /n...the level of the factor in the ith run is 0. 3.1. First Measure We have n r n r SSPE = 1 Is it -yi) 2 + E r (1-8 )(yjj li-l j=l (iYjj +i= j=l l - i...The first component in SSPE corresponds to level I of the factor and has n degrees of freedom ( E 6i)(r-I). The second component corresponds to i=l n

  2. Review of the fermionic dark matter model applied to galactic structures

    NASA Astrophysics Data System (ADS)

    Krut, A.; Argüelles, C. R.; Rueda, J.; Ruffini, R.

    2015-12-01

    Baryonic components (e.g. bulge and disk) of galactic structures are assumed to be embedded in an isothermal dark matter halo of fermionic nature. Besides the Pauli principle only gravitational interaction is considered. Using the underlying Fermi-Dirac phase space distribution, typical of collisionless relaxation processes, it yields an one-parameter family of scaled solutions which reproduces the observed flat rotation curves in galaxies, and additionally predicts a degenerate core through their centers. In order to provide the right DM halo properties of galaxies a set of four parameters (particle mass, degeneracy parameter at the galactic center, central density and the velocity dispersion) is necessary. The more general density profile shows three regimes depending on radius: an almost uniform very dense quantum core followed by a steep fall, a plateau in the diluted regime and a Boltzmannian tail representing the halo. In contrast to purely Boltzmannian configurations the fermionic DM model containing a quantum core allows to determine the particle mass. We show that the quantum core can be well approximated by a polytrope of index n = 3/2, while the halo can be perfectly described by an isothermal sphere with a halo scale length radius equal to approximately 3/4 of the King-radius.

  3. Review of the fermionic dark matter model applied to galactic structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krut, A.; Argüelles, C. R.; Rueda, J.

    2015-12-17

    Baryonic components (e.g. bulge and disk) of galactic structures are assumed to be embedded in an isothermal dark matter halo of fermionic nature. Besides the Pauli principle only gravitational interaction is considered. Using the underlying Fermi-Dirac phase space distribution, typical of collisionless relaxation processes, it yields an one-parameter family of scaled solutions which reproduces the observed flat rotation curves in galaxies, and additionally predicts a degenerate core through their centers. In order to provide the right DM halo properties of galaxies a set of four parameters (particle mass, degeneracy parameter at the galactic center, central density and the velocity dispersion)more » is necessary. The more general density profile shows three regimes depending on radius: an almost uniform very dense quantum core followed by a steep fall, a plateau in the diluted regime and a Boltzmannian tail representing the halo. In contrast to purely Boltzmannian configurations the fermionic DM model containing a quantum core allows to determine the particle mass. We show that the quantum core can be well approximated by a polytrope of index n = 3/2, while the halo can be perfectly described by an isothermal sphere with a halo scale length radius equal to approximately 3/4 of the King-radius.« less

  4. The pure rotational spectrum of ruthenium monocarbide, RuC, and relativistic ab initio predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Fang; Steimle, Timothy C.; Adam, Allan G.

    2013-11-07

    The J = 1 ← J = 0 and J = 2 ← J = 1 rotational transitions of ruthenium monocarbide, RuC, have been recorded using the separated field pump/probe microwave optical double resonance technique and analyzed to determine the fine and hyperfine parameters for the X{sup 1}Σ{sup +} state. The {sup 101}Ru(I = 5/2) electric quadrupole parameter, eq{sub 0}Q, and nuclear spin-rotation interaction parameter, C{sub I}{sup eff}, were determined to be 433.19(8) MHz and −0.049(6) MHz, respectively. The equilibrium bond distance, r{sub e}, was determined to be 1.605485(2) Å. Hartree-Fock and coupled-cluster calculations were carried out for the propertiesmore » of the X{sup 1}Σ{sup +} state. Electron-correlation effects are pronounced for all properties studied. It is shown that (a) the moderate scalar-relativistic contribution to eq{sub 0}Q is entirely due to the coupling between scalar-relativistic and electron-correlation effects, (b) the spin-free exact two-component theory in its one-electron variant offers a reliable and efficient treatment of scalar-relativistic effects, and (c) non-relativistic theory performs quite well for the prediction of C{sub I}{sup elec}, provided that electron correlation is treated accurately.« less

  5. White OLED with a single-component europium complex.

    PubMed

    Law, Ga-Lai; Wong, Ka-Leung; Tam, Hoi-Lam; Cheah, Kok-Wai; Wong, Wing-Tak

    2009-11-16

    A new direction for white organic light-emitting devices is shown, fabricated from a novel europium complex; this single component contains a double emission center of bluish-green and red, combined to a give a pure white emission (CIE x = 0.34 and y = 0.35).

  6. Magnetic Control of Convection in Electrically Nonconducting Fluids

    NASA Technical Reports Server (NTRS)

    Huang, Jie; Gray, Donald D.; Edwards, Boyd F.

    1999-01-01

    Inhomogeneous magnetic fields exert a body force on electrically nonconducting, magnetically permeable fluids. This force can be used to compensate for gravity and to control convection. The effects of uniform and nonuniform magnetic fields on a laterally unbounded fluid layer heated from below or above are studied using a linear stability analysis of the Navier-Stokes equations supplemented by Maxwell's equations and the appropriate magnetic body force. For a uniform oblique field, the analysis shows that longitudinal rolls with axes parallel to the horizontal component of the field are the rolls most unstable to convection. The corresponding critical Rayleigh number and critical wavelength for the onset of such rolls are less than the well-known Rayleigh-Benard values in the absence of magnetic fields. Vertical fields maximize these deviations, which vanish for horizontal fields. Horizontal fields increase the critical Rayleigh number and the critical wavelength for all rolls except longitudinal rolls. For a nonuniform field, our analysis shows that the magnetic effect on convection is represented by a dimensionless vector parameter which measures the relative strength of the induced magnetic buoyancy force due to the applied field gradient. The vertical component of this parameter competes with the gravitational buoyancy effect, and a critical relationship between this component and the Rayleigh number is identified for the onset of convection. Therefore, Rayleigh-Benard convection in such fluids can be enhanced or suppressed by the field. It also shows that magnetothermal convection is possible in both paramagnetic and diamagnetic fluids. Our theoretical predictions for paramagnetic fluids agree with experiments. Magnetically driven convection in diamagnetic fluids should be observable even in pure water using current technology.

  7. Explosive decomposition of ethylene oxide at elevated condition: effect of ignition energy, nitrogen dilution, and turbulence.

    PubMed

    Pekalski, A A; Zevenbergen, J F; Braithwaite, M; Lemkowitz, S M; Pasman, H J

    2005-02-14

    Experimental and theoretical investigation of explosive decomposition of ethylene oxide (EO) at fixed initial experimental parameters (T=100 degrees C, P=4 bar) in a 20-l sphere was conducted. Safety-related parameters, namely the maximum explosion pressure, the maximum rate of pressure rise, and the Kd values, were experimentally determined for pure ethylene oxide and ethylene oxide diluted with nitrogen. The influence of the ignition energy on the explosion parameters was also studied. All these dependencies are quantified in empirical formulas. Additionally, the effect of turbulence on explosive decomposition of ethylene oxide was investigated. In contrast to previous studies, it is found that turbulence significantly influences the explosion severity parameters, mostly the rate of pressure rise. Thermodynamic models are used to calculate the maximum explosion pressure of pure and of nitrogen-diluted ethylene oxide, at different initial temperatures. Soot formation was experimentally observed. Relation between the amounts of soot formed and the explosion pressure was experimentally observed and was calculated.

  8. Preparation of pure chitosan film using ternary solvents and its super absorbency.

    PubMed

    Wang, Xuejun; Lou, Tao; Zhao, Wenhua; Song, Guojun

    2016-11-20

    Chemical modification and graft copolymerization were commonly adopted to prepare super absorbent materials. However, physical microstructure of pure chitosan film was optimized to improve the water uptake capacity in this study. Chitosan films with micro-nanostructure were prepared by a ternary solvent system. The optimal process parameters are 1% acetic acid water solution: dioxane: dimethyl sulfoxide=90: 2.5: 7.5 (v/v/v) with chitosan concentration at 1.25% (w/v). The water uptake capacity of the chitosan film prepared under the optimal process parameters was 896g/g. The prepared chitosan films also exhibited high water uptake capacity in response to external stimuli such as temperature, pH and salt. This finding may provide another way for improving the water absorbency. The pure chitosan film may find potential applications especially in the fields of hygienic products and biomedicine due to its super water absorbency and nontoxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Electrically-driven pure amplitude and frequency modulation in a quantum cascade laser.

    PubMed

    Shehzad, Atif; Brochard, Pierre; Matthey, Renaud; Blaser, Stéphane; Gresch, Tobias; Maulini, Richard; Muller, Antoine; Südmeyer, Thomas; Schilt, Stéphane

    2018-04-30

    We present pure amplitude modulation (AM) and frequency modulation (FM) achieved electrically in a quantum cascade laser (QCL) equipped with an integrated resistive heater (IH). The QCL output power scales linearly with the current applied to the active region (AR), but decreases with the IH current, while the emission frequency decreases with both currents. Hence, a simultaneous modulation applied to the current of the AR and IH sections with a proper relative amplitude and phase can suppress the AM, resulting in a pure FM, or vice-versa. The adequate modulation parameters depend on the applied modulation frequency. Therefore, they were first determined from the individual measurements of the AM and FM transfer functions obtained for a modulation applied to the current of the AR or IH section, respectively. By optimizing the parameters of the two modulations, we demonstrate a reduction of the spurious AM or FM by almost two orders of magnitude at characteristic frequencies of 1 and 10 kHz compared to the use of the AR current only.

  10. Adaptive Neural Control for a Class of Pure-Feedback Nonlinear Systems via Dynamic Surface Technique.

    PubMed

    Liu, Zongcheng; Dong, Xinmin; Xue, Jianping; Li, Hongbo; Chen, Yong

    2016-09-01

    This brief addresses the adaptive control problem for a class of pure-feedback systems with nonaffine functions possibly being nondifferentiable. Without using the mean value theorem, the difficulty of the control design for pure-feedback systems is overcome by modeling the nonaffine functions appropriately. With the help of neural network approximators, an adaptive neural controller is developed by combining the dynamic surface control (DSC) and minimal learning parameter (MLP) techniques. The key features of our approach are that, first, the restrictive assumptions on the partial derivative of nonaffine functions are removed, second, the DSC technique is used to avoid "the explosion of complexity" in the backstepping design, and the number of adaptive parameters is reduced significantly using the MLP technique, third, smooth robust compensators are employed to circumvent the influences of approximation errors and disturbances. Furthermore, it is proved that all the signals in the closed-loop system are semiglobal uniformly ultimately bounded. Finally, the simulation results are provided to demonstrate the effectiveness of the designed method.

  11. The Pure Rotational Spectrum of KO

    NASA Astrophysics Data System (ADS)

    Burton, Mark; Russ, Benjamin; Sheridan, Phillip M.; Bucchino, Matthew; Ziurys, Lucy M.

    2017-06-01

    The pure rotational spectrum of potassium monoxide (KO) has been recorded using millimeter-wave direct absorption spectroscopy. KO was synthesized by the reaction of potassium vapor, produced in a Broida-type oven, with nitrous oxide. No DC discharge was necessary. Eleven rotational transitions belonging to the ^{2}Π_{3/2} spin-orbit component have been measured and have been fit successfully to a case (c) Hamiltonian. Rotational and lambda-doubling constants for this spin-orbit component have been determined. It has been suggested that the ground electronic state of KO is either ^{2}Π (as for LiO and NaO) or ^{2}Σ (as for RbO and CsO), both of which lie close in energy. Recent computational studies favor a ^{2}Σ ground state. Further measurements of the rotational transitions of the ^{2}Π_{1/2} spin-orbit component and the ^{2}Σ state are currently in progress, as well as the potassium hyperfine structure.

  12. Application of band-target entropy minimization to infrared emission spectroscopy and the reconstruction of pure component emissivities from thin films and liquid samples.

    PubMed

    Cheng, Shuying; Rajarathnam, D; Meiling, Tan; Garland, Marc

    2006-05-01

    Thermal emission spectral data sets were collected for a thin solid film (parafilm) and a thin liquid film (isopropanol) on the interval of 298-348 K. The measurements were performed using a conventional Fourier transform infrared (FT-IR) spectrometer with external optical bench and in-house-designed emission cell. Both DTGS and MCT detectors were used. The data sets were analyzed with band-target entropy minimization (BTEM), which is a pure component spectral reconstruction program. Pure component emissivities of the parafilm, isopropanol, and thermal background were all recovered without any a priori information. Furthermore, the emissivities were obtained with increased signal-to-noise ratios, and the signals due to absorbance of thermal radiation by gas-phase moisture and CO2 were significantly reduced. As expected, the MCT results displayed better signal-to-noise ratios than the DTGS results, but the latter results were still rather impressive given the low temperatures used in this study. Comparison is made with spectral reconstruction using the orthogonal projection approach-alternating least squares (OPA-ALS) technique. This contribution introduces the primary equation for emission spectral reconstruction using BTEM and discusses some of the unusual characteristics of thermal emission and their impact on the analysis.

  13. The complex roles of space and environment in structuring functional, taxonomic and phylogenetic beta diversity of frogs in the Atlantic Forest

    PubMed Central

    Luiz, Amom Mendes; Sawaya, Ricardo J.

    2018-01-01

    Ecological communities are complex entities that can be maintained and structured by niche-based processes such as environmental conditions, and spatial processes such as dispersal. Thus, diversity patterns may be shaped simultaneously at different spatial scales by very distinct processes. Herein we assess whether and how functional, taxonomic, and phylogenetic beta diversities of frog tadpoles are explained by environmental and/or spatial predictors. We implemented a distance–based redundancy analysis to explore variation in components of beta diversity explained by pure environmental and pure spatial predictors, as well as their interactions, at both fine and broad spatial scales. Our results indicated important but complex roles of spatial and environmental predictors in structuring phylogenetic, taxonomic and functional beta diversities. The pure fine-scales spatial fraction was more important in structuring all beta diversity components, especially to functional and taxonomical spatial turnover. Environmental variables such as canopy cover and vegetation structure were important predictors of all components, but especially to functional and taxonomic beta diversity. We emphasize that distinct factors related to environment and space are affecting distinct components of beta diversity in different ways. Although weaker, phylogenetic beta diversity, which is structured more on biogeographical scales, and thus can be represented by spatially structured processes, was more related to broad spatial processes than other components. However, selected fine-scale spatial predictors denoted negative autocorrelation, which may be revealing the existence of differences in unmeasured habitat variables among samples. Although overall important, local environmental-based processes explained better functional and taxonomic beta diversity, as these diversity components carry an important ecological value. We highlight the importance of assessing different components of diversity patterns at different scales by spatially explicit models in order to improve our understanding of community structure and help to unravel the complex nature of biodiversity. PMID:29672575

  14. Process for forming pure silver ohmic contacts to N- and P-type gallium arsenide materials

    DOEpatents

    Hogan, S.J.

    1983-03-13

    Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components a n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffuse layer and the substrate layer wherein the n-type layer comprises a substantially low doping carrier concentration.

  15. Absolute Hounsfield unit measurement on noncontrast computed tomography cannot accurately predict struvite stone composition.

    PubMed

    Marchini, Giovanni Scala; Gebreselassie, Surafel; Liu, Xiaobo; Pynadath, Cindy; Snyder, Grace; Monga, Manoj

    2013-02-01

    The purpose of our study was to determine, in vivo, whether single-energy noncontrast computed tomography (NCCT) can accurately predict the presence/percentage of struvite stone composition. We retrospectively searched for all patients with struvite components on stone composition analysis between January 2008 and March 2012. Inclusion criteria were NCCT prior to stone analysis and stone size ≥4 mm. A single urologist, blinded to stone composition, reviewed all NCCT to acquire stone location, dimensions, and Hounsfield unit (HU). HU density (HUD) was calculated by dividing mean HU by the stone's largest transverse diameter. Stone analysis was performed via Fourier transform infrared spectrometry. Independent sample Student's t-test and analysis of variance (ANOVA) were used to compare HU/HUD among groups. Spearman's correlation test was used to determine the correlation between HU and stone size and also HU/HUD to % of each component within the stone. Significance was considered if p<0.05. Fourty-four patients met the inclusion criteria. Struvite was the most prevalent component with mean percentage of 50.1%±17.7%. Mean HU and HUD were 820.2±357.9 and 67.5±54.9, respectively. Struvite component analysis revealed a nonsignificant positive correlation with HU (R=0.017; p=0.912) and negative with HUD (R=-0.20; p=0.898). Overall, 3 (6.8%) had <20% of struvite component; 11 (25%), 25 (56.8%), and 5 (11.4%) had 21% to 40%, 41% to 60%, and 61% to 80% of struvite, respectively. ANOVA revealed no difference among groups regarding HU (p=0.68) and HUD (p=0.37), with important overlaps. When comparing pure struvite stones (n=5) with other miscellaneous stones (n=39), no difference was found for HU (p=0.09) but HUD was significantly lower for pure stones (27.9±23.6 v 72.5±55.9, respectively; p=0.006). Again, significant overlaps were seen. Pure struvite stones have significantly lower HUD than mixed struvite stones, but overlap exists. A low HUD may increase the suspicion for a pure struvite calculus.

  16. TMPRSS2-ERG gene fusions are infrequent in prostatic ductal adenocarcinomas.

    PubMed

    Lotan, Tamara L; Toubaji, Antoun; Albadine, Roula; Latour, Mathieu; Herawi, Mehsati; Meeker, Alan K; DeMarzo, Angelo M; Platz, Elizabeth A; Epstein, Jonathan I; Netto, George J

    2009-03-01

    Ductal adenocarcinoma of the prostate is an unusual subtype that may be associated with a more aggressive clinical course, and is less responsive to conventional therapies than the more common prostatic acinar adenocarcinoma. However, given its frequent association with an acinar component at prostatectomy, some have challenged the concept of prostatic ductal adenocarcinoma as a distinct clinicopathologic entity. We studied the occurrence of the TMPRSS2-ERG gene fusion, in 40 surgically resected ductal adenocarcinoma cases, and in their associated acinar component using fluorescence in situ hybridization. A group of 38 'pure' acinar adenocarcinoma cases matched with the ductal adenocarcinoma group for pathological grade and stage was studied as a control. Compared with the matched acinar adenocarcinoma cases, the TMPRSS2-ERG gene fusion was significantly less frequently observed in ductal adenocarcinoma (45 vs 11% of cases, P=0.002, Fisher's exact test). Here, of the ductal adenocarcinoma cases with the gene fusion, 75% were fused through deletion, and the remaining case was fused through translocation. The TMPRSS2-ERG gene fusion was also rare in the acinar component of mixed ductal-acinar tumors when compared with the pure acinar adenocarcinoma controls (5 vs 45%, P=0.001, Fisher's exact test). In 95% of the ductal adenocarcinoma cases in which a concurrent acinar component was analyzed, there was concordance for presence/absence of the TMPRSS2-ERG gene fusion between the different histologic subtypes. In the control group of pure acinar adenocarcinoma cases, 59% were fused through deletion and 41% were fused through translocation. The presence of the TMPRSS2-ERG gene fusion in some cases of prostatic ductal adenocarcinoma supports the concept that ductal adenocarcinoma and acinar adenocarcinoma may be related genetically. However, the significantly lower rate of the gene fusion in pure ductal adenocarcinoma cases underscores the fact that genetic and biologic differences exist between these two tumors that may be important for future therapeutic strategies.

  17. Solubility of sugars and sugar alcohols in ionic liquids: measurement and PC-SAFT modeling.

    PubMed

    Carneiro, Aristides P; Held, Christoph; Rodríguez, Oscar; Sadowski, Gabriele; Macedo, Eugénia A

    2013-08-29

    Biorefining processes using ionic liquids (ILs) require proper solubility data of biomass-based compounds in ILs, as well as an appropriate thermodynamic approach for the modeling of such data. Carbohydrates and their derivatives such as sugar alcohols represent a class of compounds that could play an important role in biorefining. Thus, in this work, the pure IL density and solubility of xylitol and sorbitol in five different ILs were measured between 288 and 339 K. The ILs under consideration were 1-ethyl-3-methylimidazolium dicyanamide, 1-butyl-3-methylimidazolium dicyanamide ([bmim][DCA]), Aliquat dicyanamide, trihexyltetradecylphosphonium dicyanamide, and 1-ethyl-3-methylimidazolium trifluoroacetate. Comparison with the literature data was performed, showing good agreement. With the exception of [bmim][DCA], the solubility of these sugar alcohols in the other ILs is presented for the first time. The measured data as well as previously published solubility data of glucose and fructose in these ILs were modeled by means of PC-SAFT using a molecular-based associative approach for ILs. PC-SAFT was used in this work as it has shown to be applicable to model the solubility of xylitol and sorbitol in ILs (Paduszyński; et al. J. Phys. Chem. B 2013, 117, 7034-7046). For this purpose, three pure IL parameters were fitted to pure IL densities, activity coefficients of 1-propanol at infinite dilution in ILs, and/or xylitol solubility in ILs. This approach allows accurate modeling of the pure IL data and the mixture data with only one binary interaction parameter k(ij) between sugar and the IL or sugar alcohol and the IL. In cases where only the pure IL density and activity coefficients of 1-propanol at infinite dilution in ILs were used for the IL parameter estimation, the solubility of the sugars and sugar alcohols in the ILs could be predicted (k(ij) = 0 between sugar and the IL or sugar alcohol and the IL) with reasonable accuracy.

  18. Interference of qubits in pure dephasing and almost pure dephasing environments

    NASA Astrophysics Data System (ADS)

    Łobejko, Marcin; Mierzejewski, Marcin; Dajka, Jerzy

    2015-07-01

    Two-path interference of quantum particles with internal spin (qubits) interacting on one arm of the interferometer with bosonic environment is studied. It is assumed that the energy exchange between the qubit and its environment is either absent, which is a pure dephasing (decoherence) model, or very weak. Both the amplitude and the position of maximum of an output intensity discussed as a function of a phase shift can serve as a quantifier of parameters describing coupling between qubit and its environment. The time evolution of the qubit-environment system is analyzed in the Schrödinger picture and the output intensity for qubit-environment interaction close to pure decoherence is analyzed by means of perturbation theory. Quality of the applied approximation is verified by comparison with numerical results.

  19. Assessing composition and structure of soft biphasic media from Kelvin-Voigt fractional derivative model parameters

    NASA Astrophysics Data System (ADS)

    Zhang, Hongmei; Wang, Yue; Fatemi, Mostafa; Insana, Michael F.

    2017-03-01

    Kelvin-Voigt fractional derivative (KVFD) model parameters have been used to describe viscoelastic properties of soft tissues. However, translating model parameters into a concise set of intrinsic mechanical properties related to tissue composition and structure remains challenging. This paper begins by exploring these relationships using a biphasic emulsion materials with known composition. Mechanical properties are measured by analyzing data from two indentation techniques—ramp-stress relaxation and load-unload hysteresis tests. Material composition is predictably correlated with viscoelastic model parameters. Model parameters estimated from the tests reveal that elastic modulus E 0 closely approximates the shear modulus for pure gelatin. Fractional-order parameter α and time constant τ vary monotonically with the volume fraction of the material’s fluid component. α characterizes medium fluidity and the rate of energy dissipation, and τ is a viscous time constant. Numerical simulations suggest that the viscous coefficient η is proportional to the energy lost during quasi-static force-displacement cycles, E A . The slope of E A versus η is determined by α and the applied indentation ramp time T r. Experimental measurements from phantom and ex vivo liver data show close agreement with theoretical predictions of the η -{{E}A} relation. The relative error is less than 20% for emulsions 22% for liver. We find that KVFD model parameters form a concise features space for biphasic medium characterization that described time-varying mechanical properties. The experimental work was carried out at the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Methodological development, including numerical simulation and all data analysis, were carried out at the school of Life Science and Technology, Xi’an JiaoTong University, 710049, China.

  20. Effect of Monospecific and Mixed Sea-Buckthorn (Hippophae rhamnoides) Plantations on the Structure and Activity of Soil Microbial Communities

    PubMed Central

    Yu, Xuan; Liu, Xu; Zhao, Zhong; Liu, Jinliang; Zhang, Shunxiang

    2015-01-01

    This study aims to evaluate the effect of different afforestation models on soil microbial composition in the Loess Plateau in China. In particular, we determined soil physicochemical properties, enzyme activities, and microbial community structures in the top 0 cm to 10 cm soil underneath a pure Hippophae rhamnoides (SS) stand and three mixed stands, namely, H. rhamnoides and Robinia pseucdoacacia (SC), H. rhamnoides and Pinus tabulaeformis (SY), and H. rhamnoides and Platycladus orientalis (SB). Results showed that total organic carbon (TOC), total nitrogen, and ammonium (NH4 +) contents were higher in SY and SB than in SS. The total microbial biomass, bacterial biomass, and Gram+ biomass of the three mixed stands were significantly higher than those of the pure stand. However, no significant difference was found in fungal biomass. Correlation analysis suggested that soil microbial communities are significantly and positively correlated with some chemical parameters of soil, such as TOC, total phosphorus, total potassium, available phosphorus, NH4 + content, nitrate content (NH3 −), and the enzyme activities of urease, peroxidase, and phosphatase. Principal component analysis showed that the microbial community structures of SB and SS could clearly be discriminated from each other and from the others, whereas SY and SC were similar. In conclusion, tree species indirectly but significantly affect soil microbial communities and enzyme activities through soil physicochemical properties. In addition, mixing P. tabulaeformis or P. orientalis in H. rhamnoides plantations is a suitable afforestation model in the Loess Plateau, because of significant positive effects on soil nutrient conditions, microbial community, and enzyme activities over pure plantations. PMID:25658843

  1. Pharmacokinetics of chlorogenic acid and corydaline in DA-9701, a new botanical gastroprokinetic agent, in rats.

    PubMed

    Jung, Ji Won; Kim, Ju Myung; Jeong, Jin Seok; Son, Miwon; Lee, Hye Suk; Lee, Myung Gull; Kang, Hee Eun

    2014-07-01

    1.Few studies describing the pharmacokinetic properties of chlorogenic acid (CA) and corydaline (CRD) which are marker compounds of a new prokinetic botanical agent, DA-9701, have been reported. The aim of the present study is to evaluate the pharmacokinetic properties CA and CRD following intravenous and oral administration of pure CA (1-8 mg/kg) or CRD (1.1-4.5 mg/kg) and their equivalent dose of DA-9701 to rats. 2.  Dose-proportional AUC and dose-independent clearance (10.3-12.1 ml/min/kg) of CA were observed following its administration. Oral administration of CA as DA-9701 did not influence the oral pharmacokinetic parameters of CA. Incomplete absorption of CA, its decomposition in the gastrointestinal tract, and/or pre-systemic metabolism resulted in extremely low oral bioavailability (F) of CA (0.478-0.899%). 3.  CRD showed greater dose-normalized AUC in the higher dose group than that in lower dose group(s) after its administration due to saturation of its metabolism via decreased non-renal clearance (by 51.3%) and first-pass extraction. As a result, the F of CRD following 4.5 mg/kg oral CRD (21.1%) was considerably greater than those of the lower dose groups (9.10 and 13.8%). However, oral administration of CRD as DA-9701 showed linear pharmacokinetics as a result of increased AUC and F in lower-dose groups (by 182% and 78.5%, respectively) compared to those of pure CRD. The greater oral AUC of CRD for DA-9701 than for pure CRD could be due to decreased hepatic and/or GI first-pass extraction of CRD by other components in DA-9701.

  2. The effect of relativistic Compton scattering on thermonuclear burn of pure deuterium fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghasemizad, A.; Nazirzadeh, M.; Khanbabaei, B.

    The relativistic effects of the Compton scattering on the thermonuclear burn-up of pure deuterium fuel in non-equilibrium plasma have been studied by four temperature (4T) theory. In the limit of low electron temperatures and photon energies, the nonrelativistic Compton scattering is valid and a convenient approximation, but in the high energy exchange rates between electrons and photons, is seen to break down. The deficiencies of the nonrelativistic approximation can be overcome by using the relativistic correction in the photons kinetic equation. In this research, we have utilized the four temperature (4T) theory to calculate the critical burn-up parameter for puremore » deuterium fuel, while the Compton scattering is considered as a relativistic phenomenon. It was shown that the measured critical burn-up parameter in ignition with relativistic Compton scattering is smaller than that of the parameter in the ignition with the nonrelativistic Compton scattering.« less

  3. Detection of {sup 14}N and {sup 35}Cl in cocaine base and hydrochloride using NQR, NMR, and SQUID techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yesinowski, J.P.; Buess, M.L.; Garroway, A.N.

    1995-07-01

    Results from {sup 14}N pure NQR of cocaine in the free base form (cocaine base) yield a nuclear quadrupole coupling constant (NQCC) e{sup 2}Qq/h of 5.0229 ({+-}0.0001) MHz and an asymmetry parameter {eta} of 0.0395 ({+-}0.0001) at 295 K, with corresponding values of 5.0460 ({+-}0.0013) MHz and 0.0353 ({+-}0.0008) at 77 K. Both pure NQR (at 295-77 K) and a superconducting quantum interference device (SQUID) detector (at 4.2 K) were used to measure the very low (<1 MHz) {sup 14}N transition frequencies in cocaine hydrochloride; at 295 K the NQCC is 1.1780 ({+-}0.0014) MHz and the asymmetry parameter is 0.2632more » ({+-}0.0034). Stepping the carrier frequency enables one to obtain a powder pattern without the severe intensity distortions that otherwise arise from finite pulse power. A powder pattern simulation using an NQCC value of 5.027 MHz and an asymmetry parameter {eta} of 0.2 agrees reasonably well with the experimental stepped-frequency spectrum. The use of pure NQR for providing nondestructive, quantitative, and highly specific detection of crystalline compounds is discussed, as are experimental strategies. 31 refs., 8 figs., 1 tab.« less

  4. Determination of the diffusion coefficient and phase-transfer rate parameter in LaNi{sub 5} and MmNi{sub 3.6}Co{sub 0.8}Mn{sub 0.4}Al{sub 0.3} using microelectrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundqvist, A.; Lindbergh, G.

    1998-11-01

    A potential-step method for determining the diffusion coefficient and phase-transfer parameter in metal hydrides by using microelectrodes was investigated. It was shown that a large potential step is not enough to ensure a completely diffusion-limited mass transfer if a surface-phase transfer reaction takes place at a finite rate. It was shown, using a kinetic expression for the surface phase-transfer reaction, that the slope of the logarithm of the current vs. time curve will be constant both in the case of the mass-transfer limited by diffusion or by diffusion and a surface-phase transfer. The diffusion coefficient and phase-transfer rate parameter weremore » accurately determined for MmNi{sub 3.6}Co{sub 0.8}Mn{sub 0.4}Al{sub 0.3} using a fit to the whole transient. The diffusion coefficient was found to be (1.3 {+-} 0.3) {times} 10{sup {minus}13} m{sup 2}/s. The fit was good and showed that a pure diffusion model was not enough to explain the observed transient. The diffusion coefficient and phase-transfer rate parameter were also estimated for pure LaNi{sub 5}. A fit of the whole curve showed that neither a pure diffusion model nor a model including phase transfer could explain the whole transient.« less

  5. Detection of a new 'nematic-like' phase in liquid crystal-amphiphile mixture by differential scanning calorimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dan, Kaustabh, E-mail: kaustabhdan@gmail.com; Roy, Madhusudan, E-mail: kaustabhdan@gmail.com; Datta, Alokmay, E-mail: kaustabhdan@gmail.com

    2014-04-24

    Differential Scanning Calorimetry (DSC) studies on phase transitions of the pure liquid crystalline material N-4-methoxybenzylidene-4-butylaniline (MBBA) and mixtures of MBBA and the amphiphile Stearic Acid (StA) show significant changes in the behavior of mixture from pure MBBA, as regards the nematic-isotropic (N-I) transition temperature (T{sub c}) and other thermodynamic parameters like enthalpy, specific heat and activation energy with concentration of StA. In particular, the convexity of the Arrhenius plot in pure MBBA vanishes with StA concentration pointing to the formation of a new, perhaps 'nematic-like', phase in the mixtures.

  6. Passing from Mesoscopy to Macroscopy. The Mesoscopic Parameter \\bar k

    NASA Astrophysics Data System (ADS)

    Maslov, V. P.

    2018-01-01

    In previous papers of the author it was shown that, depending on the hidden parameter, purely quantum problems behave like classical ones. In the present paper, it is shown that the Bose-Einstein and the Fermi-Dirac distributions, which until now were regarded as dealing with quantum particles, describe, for the appropriate values of the hidden parameter, the macroscopic thermodynamics of classical molecules.

  7. Pure E and B polarization maps via Wiener filtering

    NASA Astrophysics Data System (ADS)

    Bunn, Emory F.; Wandelt, Benjamin

    2017-08-01

    In order to draw scientific conclusions from observations of cosmic microwave background (CMB) polarization, it is necessary to separate the contributions of the E and B components of the data. For data with incomplete sky coverage, there are ambiguous modes, which can be sourced by either E or B signals. Techniques exist for producing "pure" E and B maps, which are guaranteed to be free of cross-contamination, although the standard method, which involves constructing an eigenbasis, has a high computational cost. We show that such pure maps can be thought of as resulting from the application of a Wiener filter to the data. This perspective leads to far more efficient methods of producing pure maps. Moreover, by expressing the idea of purification in the general framework of Wiener filtering (i.e., maximization of a posterior probability), it leads to a variety of generalizations of the notion of pure E and B maps, e.g., accounting for noise or other contaminants in the data as well as correlations with temperature anisotropy.

  8. Study of metal whiskers growth and mitigation technique using additive manufacturing

    NASA Astrophysics Data System (ADS)

    Gullapalli, Vikranth

    For years, the alloy of choice for electroplating electronic components has been tin-lead (Sn-Pb) alloy. However, the legislation established in Europe on July 1, 2006, required significant lead (Pb) content reductions from electronic hardware due to its toxic nature. A popular alternative for coating electronic components is pure tin (Sn). However, pure tin has the tendency to spontaneously grow electrically conductive Sn whisker during storage. Sn whisker is usually a pure single crystal tin with filament or hair-like structures grown directly from the electroplated surfaces. Sn whisker is highly conductive, and can cause short circuits in electronic components, which is a very significant reliability problem. The damages caused by Sn whisker growth are reported in very critical applications such as aircraft, spacecraft, satellites, and military weapons systems. They are also naturally very strong and are believed to grow from compressive stresses developed in the Sn coating during deposition or over time. The new directive, even though environmentally friendly, has placed all lead-free electronic devices at risk because of whisker growth in pure tin. Additionally, interest has occurred about studying the nature of other metal whiskers such as zinc (Zn) whiskers and comparing their behavior to that of Sn whiskers. Zn whiskers can be found in flooring of data centers which can get inside electronic systems during equipment reorganization and movement and can also cause systems failure. Even though the topic of metal whiskers as reliability failure has been around for several decades to date, there is no successful method that can eliminate their growth. This thesis will give further insights towards the nature and behavior of Sn and Zn whiskers growth, and recommend a novel manufacturing technique that has potential to mitigate metal whiskers growth and extend life of many electronic devices.

  9. 78 FR 36786 - Linking Marketplace Heparin Product Attributes and Manufacturing Processes to Bioactivity and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ... heparin. The condition leads to formation of abnormal blood clots and concomitant complications associated... antibody formation although these smaller chain length heparins are much less likely to lead to clinical... components of heparin that lead to the pathogenesis of HIT is the lack of pure component heparin standards...

  10. LOX/GOX sensitivity of fluoroelastomers. [effect of formulation components and addition of fire retardants

    NASA Technical Reports Server (NTRS)

    Kirshen, N.; Mill, T.

    1973-01-01

    The effect of formulation components and the addition of fire retardants on the impact sensitivity of Viton B fluoroelastomer in liquid oxygen was studied with the objective of developing a procedure for reliably reducing this sensitivity. Component evaluation, carried out on more than 40 combinations of components and cure cycles, showed that almost all the standard formulation agents, including carbon, MgO, Diak-3, and PbO2, will sensitize the Viton stock either singly or in combinations, some combinations being much more sensitive than others. Cure and postcure treatments usually reduced the sensitivity of a given formulation, often dramatically, but no formulated Viton was as insensitive as the pure Viton B stock. Coating formulated Viton with a thin layer of pure Viton gave some indication of reduced sensitivity, but additional tests are needed. It is concluded that sensitivity in formulated Viton arises from a variety of sources, some physical and some chemical in origin. Elemental analyses for all the formulated Vitons are reported as are the results of a literature search on the subject of LOX impact sensitivity.

  11. Cinematique et dynamique des galaxies spirales barrees

    NASA Astrophysics Data System (ADS)

    Hernandez, Olivier

    The total mass (luminous and dark) of galaxies is derived from their circular velocities. Spectroscopic Fabry-Perot observations of the ionized gas component of spiral galaxies allow one to derive their kinematics. In the case of purely axisymmetric velocity fields--as in non-active and unbarred spirals galaxies-- the circular velocities can be derived directly. However, the velocity fields of barred galaxies (which constitute two thirds of the spirals) exhibit strong non-circular motions and need a careful analysis to retrieve the circular component. This thesis proposes the necessary steps to recover the axisymmetric component of barred spiral galaxies. The first step was to develop the best instrumentation possible for this work. [Special characters omitted.] , which is the most sensitive photon counting camera ever developed, was coupled to a Fabry-Perot interferometer. The observations of a sample of barred spiral galaxies--the BH a BAR sample--was assembled in order to obtain the most rigourous velocity fields. Then, the Tremaine-Weinberg method, which can determine the bar pattern speed and is usually used with the observations of stellar component, has been tested on the ionised gas and gave satisfactory results. Finally, all the above techniques have been applied to the BH a BAR sample in order to study the key parameters of the galaxies' evolution--bar pattern speeds, multiple stationary waves, resonances etc.--which will allow one to use N-body+SPH simulations to model properly the non-circular motions and determine the true total mass of barred spiral galaxies.

  12. Undersampling power-law size distributions: effect on the assessment of extreme natural hazards

    USGS Publications Warehouse

    Geist, Eric L.; Parsons, Thomas E.

    2014-01-01

    The effect of undersampling on estimating the size of extreme natural hazards from historical data is examined. Tests using synthetic catalogs indicate that the tail of an empirical size distribution sampled from a pure Pareto probability distribution can range from having one-to-several unusually large events to appearing depleted, relative to the parent distribution. Both of these effects are artifacts caused by limited catalog length. It is more difficult to diagnose the artificially depleted empirical distributions, since one expects that a pure Pareto distribution is physically limited in some way. Using maximum likelihood methods and the method of moments, we estimate the power-law exponent and the corner size parameter of tapered Pareto distributions for several natural hazard examples: tsunamis, floods, and earthquakes. Each of these examples has varying catalog lengths and measurement thresholds, relative to the largest event sizes. In many cases where there are only several orders of magnitude between the measurement threshold and the largest events, joint two-parameter estimation techniques are necessary to account for estimation dependence between the power-law scaling exponent and the corner size parameter. Results indicate that whereas the corner size parameter of a tapered Pareto distribution can be estimated, its upper confidence bound cannot be determined and the estimate itself is often unstable with time. Correspondingly, one cannot statistically reject a pure Pareto null hypothesis using natural hazard catalog data. Although physical limits to the hazard source size and by attenuation mechanisms from source to site constrain the maximum hazard size, historical data alone often cannot reliably determine the corner size parameter. Probabilistic assessments incorporating theoretical constraints on source size and propagation effects are preferred over deterministic assessments of extreme natural hazards based on historic data.

  13. Laser-induced breakdown spectroscopy is a reliable method for urinary stone analysis

    PubMed Central

    Mutlu, Nazım; Çiftçi, Seyfettin; Gülecen, Turgay; Öztoprak, Belgin Genç; Demir, Arif

    2016-01-01

    Objective We compared laser-induced breakdown spectroscopy (LIBS) with the traditionally used and recommended X-ray diffraction technique (XRD) for urinary stone analysis. Material and methods In total, 65 patients with urinary calculi were enrolled in this prospective study. Stones were obtained after surgical or extracorporeal shockwave lithotripsy procedures. All stones were divided into two equal pieces. One sample was analyzed by XRD and the other by LIBS. The results were compared by the kappa (κ) and Spearman’s correlation coefficient (rho) tests. Results Using LIBS, 95 components were identified from 65 stones, while XRD identified 88 components. LIBS identified 40 stones with a single pure component, 20 stones with two different components, and 5 stones with three components. XRD demonstrated 42 stones with a single component, 22 stones with two different components, and only 1 stone with three different components. There was a strong relationship in the detection of stone types between LIBS and XRD for stones components (Spearman rho, 0.866; p<0.001). There was excellent agreement between the two techniques among 38 patients with pure stones (κ index, 0.910; Spearman rho, 0.916; p<0.001). Conclusion Our study indicates that LIBS is a valid and reliable technique for determining urinary stone composition. Moreover, it is a simple, low-cost, and nondestructive technique. LIBS can be safely used in routine daily practice if our results are supported by studies with larger numbers of patients. PMID:27011877

  14. Plasma emission spectroscopy and its relation to the refractive index of silicon nitride thin films deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Sanginés, R.; Abundiz-Cisneros, N.; Hernández Utrera, O.; Diliegros-Godines, C.; Machorro-Mejía, R.

    2018-03-01

    In this work, we present a thorough study on the relation between the plasma emission and the change of the silicon nitride thin films refractive index. Thin films were grown by reactive magnetron direct current sputtering technique and deposited onto silicon wafers at different fluxes of Ar and N2 and at different working pressures. This procedure, at certain deposition parameters, produced poor quality films, i.e. films with refractive index other than pure Si3N4 films. The emission of the plasma was interrogated in real time by means of optical emission spectroscopy (OES) observing at the vicinity of the trget location. In addition, optical properties of the films were measured by in situ ellipsometric-spectroscopy and then correlated with OES observations. Changes in the film refractive index could be deduced from changes in plasma emission applying a principal component analysis.

  15. Rotating Flow of Magnetite-Water Nanofluid over a Stretching Surface Inspired by Non-Linear Thermal Radiation.

    PubMed

    Mustafa, M; Mushtaq, A; Hayat, T; Alsaedi, A

    2016-01-01

    Present study explores the MHD three-dimensional rotating flow and heat transfer of ferrofluid induced by a radiative surface. The base fluid is considered as water with magnetite-Fe3O4 nanoparticles. Novel concept of non-linear radiative heat flux is considered which produces a non-linear energy equation in temperature field. Conventional transformations are employed to obtain the self-similar form of the governing differential system. The arising system involves an interesting temperature ratio parameter which is an indicator of small/large temperature differences in the flow. Numerical simulations with high precision are determined by well-known shooting approach. Both uniform stretching and rotation have significant impact on the solutions. The variation in velocity components with the nanoparticle volume fraction is non-monotonic. Local Nusselt number in Fe3O4-water ferrofluid is larger in comparison to the pure fluid even at low particle concentration.

  16. Electrical and optical properties of Ar/NH{sub 3} atmospheric pressure plasma jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Zheng-Shi, E-mail: changzhsh1984@163.com, E-mail: gjzhang@xjtu.edu.cn; Yao, Cong-Wei; Chen, Si-Le

    Inspired by the Penning effect, we obtain a glow-like plasma jet by mixing ammonia (NH{sub 3}) into argon (Ar) gas under atmospheric pressure. The basic electrical and optical properties of an atmospheric pressure plasma jet (APPJ) are investigated. It can be seen that the discharge mode transforms from filamentary to glow-like when a little ammonia is added into the pure argon. The electrical and optical analyses contribute to the explanation of this phenomenon. The discharge mode, power, and current density are analyzed to understand the electrical behavior of the APPJ. Meanwhile, the discharge images, APPJ's length, and the components ofmore » plasma are also obtained to express its optical characteristics. Finally, we diagnose several parameters, such as gas temperature, electron temperature, and density, as well as the density number of metastable argon atoms of Ar/NH{sub 3} APPJ to help judge the usability in its applications.« less

  17. Static axisymmetric equilibria in general relativistic magnetohydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nunez, Manuel

    2008-01-15

    While the definition of static equilibria is not clear in a general relativistic context, in many cases of astrophysical interest a natural 3+1 split exists which allows us to define physically meaningful spatial and temporal coordinates. We study the possibility of axisymmetric magnetohydrodynamic equilibria in this setting. The presence of a nontrivial shift velocity provides a constraint not present in the Newtonian case, while the momentum equation may be set in a Grad-Shafranov-like form with the presence of additional terms involving the space-time metric coefficients. It is found that whenever the magnetic field or the shift velocity possesses poloidal component,more » the existence of even local static equilibria demands that the metric parameters satisfy such strong conditions that these equilibria are extremely unlikely. Only very particular cases such as purely toroidal fields and shifts yield existence of equilibria, provided we are able to choose arbitrarily the plasma pressure and density.« less

  18. Densities, Ultrasonic Speeds, and Excess Properties of Binary Mixtures of Diethylene Glycol with 1-Butanol, 2-Butanol, and 1,4-Butanediol at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Ali, Anwar; Ansari, Sana; Uzair, Sahar; Tasneem, Shadma; Nabi, Firdosa

    2015-11-01

    Densities ρ and ultrasonic speeds u for pure diethylene glycol, 1-butanol, 2-butanol, and 1,4-butanediol and for their binary mixtures over the entire composition range were measured at 298.15 K, 303.15 K, 308.15 K, and 313.15 K. Using these data, the excess molar volumes, VE_m, deviations in isentropic compressibilities, {\\varDelta }ks, apparent molar volumes, V_{φi} , partial molar volumes, overline{V}_{m,i} , and excess partial molar volumes, overline{V}_{m,i}^E , have been calculated over the entire composition range, and also the excess partial molar volumes of the components at infinite dilution, overline{V}_{m,i}^{E,infty } have been calculated. The excess functions have been correlated using the Redlich-Kister equation at different temperatures. The variations of these derived parameters with composition and temperature are presented graphically.

  19. Microstructural characterization and hardness properties of electric resistance welding titanium joints for dental applications.

    PubMed

    Ceschini, Lorella; Boromei, Iuri; Morri, Alessandro; Nardi, Diego; Sighinolfi, Gianluca; Degidi, Marco

    2015-06-01

    The electric resistance welding procedure is used to join a titanium bar with specific implant abutments in order to produce a framework directly in the oral cavity of the patient. This investigation studied the effects of the welding process on microstructure and hardness properties of commercially pure (CP2 and CP4) Ti components. Different welding powers and cooling procedures were applied to bars and abutments, normally used to produce the framework, in order to simulate the clinical intraoral welding procedure. The analyses highlighted that the joining process did not induce appreciable changes in the geometry of the abutments. However, because of unavoidable microstructural modifications in the welded zones, the hardness decreased to values lower than those of the unwelded CP2 and CP4 Ti grades, irrespective of the welding environments and parameters. © IMechE 2015.

  20. Fretting corrosion of CoCr alloy: Effect of load and displacement on the degradation mechanisms.

    PubMed

    Bryant, Michael; Neville, Anne

    2017-02-01

    Fretting corrosion of medical devices is of growing concern, yet, the interactions between tribological and electrochemical parameters are not fully understood. Fretting corrosion of CoCr alloy was simulated, and the components of damage were monitored as a function of displacement and contact pressure. Free corrosion potential (E corr ), intermittent linear polarisation resistance and cathodic potentiostatic methods were used to characterise the system. Interferometry was used to estimate material loss post rubbing. The fretting regime influenced the total material lost and the dominant degradation mechanism. At high contact pressures and low displacements, pure corrosion was dominant with wear and its synergies becoming more important as the contact pressure and displacement decreased and increased, respectively. In some cases, an antagonistic effect from the corrosion-enhanced wear contributor was observed suggesting that film formation and removal may be present. The relationship between slip mechanism and the contributors to tribocorrosion degradation is presented.

  1. Multiple energetic injections in a strong spike-like solar burst

    NASA Technical Reports Server (NTRS)

    Kaufmann, P.; Correia, E.; Costa, J. E. R.; Dennis, B. R.; Hurford, G. H.; Brown, J. C.

    1983-01-01

    An intense and fast spike-like solar burst was built up of short time scale structures superimposed on an underlying gradual emission, the time evolution of which shows remarkable proportionality between hard X-ray and microwave fluxes. The finer time structure were best defined at mm-microwaves. At the peak of the event, the finer structures repeat every 30x60ms. The more slowly varying component with a time scale of about 1 second was identified in microwave hard X-rays throughout the burst duration. It is suggested that X-ray fluxes might also be proportional to the repetition rate of basic units of energy injection (quasi-quantized). The relevant parameters of one primary energy release site are estimated both in the case where hard X-rays are produced primarily by thick-target bremsstrahlung, and when they are purely thermal. The relation of this figure to global energy considerations is discussed.

  2. Hybrid grammar-based approach to nonlinear dynamical system identification from biological time series

    NASA Astrophysics Data System (ADS)

    McKinney, B. A.; Crowe, J. E., Jr.; Voss, H. U.; Crooke, P. S.; Barney, N.; Moore, J. H.

    2006-02-01

    We introduce a grammar-based hybrid approach to reverse engineering nonlinear ordinary differential equation models from observed time series. This hybrid approach combines a genetic algorithm to search the space of model architectures with a Kalman filter to estimate the model parameters. Domain-specific knowledge is used in a context-free grammar to restrict the search space for the functional form of the target model. We find that the hybrid approach outperforms a pure evolutionary algorithm method, and we observe features in the evolution of the dynamical models that correspond with the emergence of favorable model components. We apply the hybrid method to both artificially generated time series and experimentally observed protein levels from subjects who received the smallpox vaccine. From the observed data, we infer a cytokine protein interaction network for an individual’s response to the smallpox vaccine.

  3. Solid-solution aqueous-solution equilibria: thermodynamic theory and representation

    USGS Publications Warehouse

    Glynn, P.D.; Reardon, E.J.

    1990-01-01

    Thorstenson and Plummer's (1977) "stoichiometric saturation' model is reviewed, and a general relation between stoichiometric saturation Kss constants and excess free energies of mixing is derived for a binary solid-solution B1-xCxA: GE = RT[ln Kss - xln(xKCA) - (l-x)ln((l-x)KBA)]. This equation allows a suitable excess free energy function, such as Guggenheim's (1937) sub-regular function, to be fitted from experimentally determined Kss constants. Solid-phase free energies and component activity-coefficients can then be determined from one or two fitted parameters and from the endmember solubility products KBA and KCA. A general form of Lippmann's (1977,1980) "solutus equation is derived from an examination of Lippmann's (1977,1980) "total solubility product' model. Lippmann's ??II or "total solubility product' variable is used to represent graphically not only thermodynamic equilibrium states and primary saturation states but also stoichiometric saturation and pure phase saturation states. -from Authors

  4. Mercury and neuromotor function among children in a rural town in Chile

    PubMed Central

    Huber, Stella Maria; Schomaker, Michael; Heumann, Christian; Schierl, Rudolf; Michalke, Bernhard; Jenni, Oskar G.; Caflisch, Jon; Muñoz, Daniel Moraga; von Ehrenstein, Ondine S.; Radon, Katja

    2016-01-01

    Background Mercury (Hg) exposure from artisanal gold mining has adverse effects on the neuromotor function in adults. However, few studies have examined this relationship in children. Objectives To investigate the impact of Hg exposure on children’s neuromotor function. Methods Cross-sectional data on Hg risk factors and demographics were collected from n = 288 children (response = 68.9%). Based on complete cases (CCs) (n = 130) and multiple imputations (n = 288), associations between fingernail Hg and four different neuromotor function components were calculated using multiple logistic regression adjusted for confounders. Results Of the children, 11.1, 14.9, 63.9, and 10.4% had pathologic pure motor skills, adaptive fine motor skills, adaptive gross motor skills, and static balance, respectively. No significant association between fingernail Hg and any neuromotor component was found. However, Hg burning in the household was significantly associated with children’s pathologic pure motor skills (OR 3.07 95% CI 1.03–9.18). Conclusion Elemental Hg exposure in the household might have adverse long-term effects on children’s pure motor skills. PMID:27078174

  5. The Comparison Between Nmf and Ica in Pigment Mixture Identification of Ancient Chinese Paintings

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Lyu, S.; Hou, M.; Yin, Q.

    2018-04-01

    Since the colour in painting cultural relics observed by our naked eyes or hyperspectral cameras is usually a mixture of several kinds of pigments, the mixed pigments analysis will be an important subject in the field of ancient painting conservation and restoration. This paper aims to find a more effective method to confirm the types of every pure pigment from mixture on the surface of paintings. Firstly, we adopted two kinds of blind source separation algorithms, which are independent component analysis and non-negative matrix factorization, to extract the pure pigment component from mixed spectrum respectively. Moreover, we matched the separated pure spectrum with the pigments spectra library built by our team to determine the pigment type. Furthermore, three kinds of data including simulation data, mixed pigments spectral data measured in laboratory, and the spectral data of an ancient painting were chosen to evaluate the performance of the different algorithms. And the accuracy was compared between the two algorithms. Finally, the experimental results show that non-negative matrix factorization method is more suitable for endmember extraction in the field of ancient painting conservation and restoration.

  6. Structural, morphological and magnetic properties of pure and Ni-doped ZnO nanoparticles synthesized by sol-gel method

    NASA Astrophysics Data System (ADS)

    Undre, Pallavi G.; Birajdar, Shankar D.; Kathare, R. V.; Jadhav, K. M.

    2018-05-01

    In this work pure and Ni-doped ZnO nanoparticles have been prepared by sol-gel method. Influence of nickel doping on structural, morphological and magnetic properties of prepared nanoparticles was investigated by X-ray diffraction technique (XRD), Scanning electron microscopy (SEM) and Pulse field magnetic hysteresis loop. X-ray diffraction pattern shows the formation of a single phase with hexagonal wurtzite structure of both pure and Ni-doped ZnO nanoparticles. The lattice parameters `an' and `c' of Ni-doped ZnO is slightly less than that of pure ZnO nanoparticles. The crystalline size of prepared nanoparticles is found to be in 29 and 31 nm range. SEM technique used to examine the surface morphology of samples, SEM image confirms the nanocrystalline nature of present samples. From the pulse field hysteresis loop technique pure and Ni-doped ZnO nanoparticles show diamagnetic and ferromagnetic behavior at room temperature respectively.

  7. Structural, optical, mechanical and dielectric studies of pure and doped L-Prolinium trichloroacetate single crystals.

    PubMed

    Renuka, N; Ramesh Babu, R; Vijayan, N; Vasanthakumar, Geetha; Krishna, Anuj; Ramamurthi, K

    2015-02-25

    In the present work, pure and metal substituted L-Prolinium trichloroacetate (LPTCA) single crystals were grown by slow evaporation method. The grown crystals were subjected to single crystal X-ray diffraction (XRD), powder X-ray diffraction, FTIR, UV-Visible-NIR, hardness, photoluminescence and dielectric studies. The dopant concentration in the crystals was measured by inductively coupled plasma (ICP) analysis. Single crystal X-ray diffraction studies of the pure and metal substituted LPTCA revealed that the grown crystals belong to the trigonal system. Ni(2+) and Co(2+) doping slightly altered the lattice parameters of LPTCA without affecting the basic structure of the crystal. FTIR spectral analysis confirms the presence of various functional groups in the grown crystals. The mechanical behavior of pure and doped crystals was analyzed by Vickers's microhardness test. The optical transmittance, dielectric and photoluminescence properties of the pure and doped crystals were analyzed. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Simultaneous Effect of Mechanical Tension on Electrical Lifetime of Some Inorganic Composites

    NASA Astrophysics Data System (ADS)

    Özcanli, Y. Lenger; BoydaǦ, F. Ş.; Alekberov, V. A.; Hikmet, I.; Cantürk, M.

    In this work, the simultaneous effect of mechanical tension (σ) and electrical strength (E) on electrical lifetime (τE) for pure low density polyethylene (LDPE)/polypropylene (PP) and composites with different commercial diamond-additive/glass fiber additive percentages is experimentally studied. The role of this effect on degradation mechanisms is investigated. logτE,σ-f(E) and Eσ-f(σ) graphs are drawn, new equations are proposed and determined parameters at constant temperature for pure LDPE and PP, and for optimum composites (LDPE/0.5% diamond, PP/0.5% glass fiber) are listed. The results indicate that the degradation speed decreases more for composites than for pure LDPE and PP. The electrical durability for composites after the simultaneous effect of σ decreases 18-20%, while for pure LDPE and PP, it decreases 50-55%.

  9. A Short-Segment Fourier Transform Methodology

    DTIC Science & Technology

    2009-03-01

    defined sampling of the continuous-valued discrete-time Fourier transform, superresolution in the frequency domain and allowance of Dirac delta functions associated with pure sinusoidal input data components.

  10. Diverse action of lipoteichoic acid and lipopolysaccharide on neuroinflammation, blood-brain barrier disruption, and anxiety in mice.

    PubMed

    Mayerhofer, Raphaela; Fröhlich, Esther E; Reichmann, Florian; Farzi, Aitak; Kogelnik, Nora; Fröhlich, Eleonore; Sattler, Wolfgang; Holzer, Peter

    2017-02-01

    Microbial metabolites are known to affect immune system, brain, and behavior via activation of pattern recognition receptors such as Toll-like receptor 4 (TLR4). Unlike the effect of the TLR4 agonist lipopolysaccharide (LPS), the role of other TLR agonists in immune-brain communication is insufficiently understood. We therefore hypothesized that the TLR2 agonist lipoteichoic acid (LTA) causes immune activation in the periphery and brain, stimulates the hypothalamic-pituitary-adrenal (HPA) axis and has an adverse effect on blood-brain barrier (BBB) and emotional behavior. Since LTA preparations may be contaminated by LPS, an extract of LTA (LTA extract ), purified LTA (LTA pure ), and pure LPS (LPS ultrapure ) were compared with each other in their effects on molecular and behavioral parameters 3h after intraperitoneal (i.p.) injection to male C57BL/6N mice. The LTA extract (20mg/kg) induced anxiety-related behavior in the open field test, enhanced the circulating levels of particular cytokines and the cerebral expression of cytokine mRNA, and blunted the cerebral expression of tight junction protein mRNA. A dose of LPS ultrapure matching the amount of endotoxin/LPS contaminating the LTA extract reproduced several of the molecular and behavioral effects of LTA extract . LTA pure (20mg/kg) increased plasma levels of tumor necrosis factor-α (TNF-α), interleukin-6 and interferon-γ, and enhanced the transcription of TNF-α, interleukin-1β and other cytokines in the amygdala and prefrontal cortex. These neuroinflammatory effects of LTA pure were associated with transcriptional down-regulation of tight junction-associated proteins (claudin 5, occludin) in the brain. LTA pure also enhanced circulating corticosterone, but failed to alter locomotor and anxiety-related behavior in the open field test. These data disclose that TLR2 agonism by LTA causes peripheral immune activation and initiates neuroinflammatory processes in the brain that are associated with down-regulation of BBB components and activation of the HPA axis, although emotional behavior (anxiety) is not affected. The results obtained with an LTA preparation contaminated with LPS hint at a facilitatory interaction between TLR2 and TLR4, the adverse impact of which on long-term neuroinflammation, disruption of the BBB and mental health warrants further analysis. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Modeling of crack growth under mixed-mode loading by a molecular dynamics method and a linear fracture mechanics approach

    NASA Astrophysics Data System (ADS)

    Stepanova, L. V.

    2017-12-01

    Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is the Embedded Atom Method (EAM) potential. Plane specimens with an initial central crack are subjected to mixed-mode loadings. The simulation cell contains 400,000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide range of temperatures (from 0.1 K to 800 K) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields. The multi-parameter fracture criteria are based on the multi-parameter stress field description taking into account the higher order terms of the Williams series expansion of the crack tip fields.

  12. Environmentally Friendly Production of D(-) Lactic Acid by Sporolactobacillus nakayamae: Investigation of Fermentation Parameters and Fed-Batch Strategies.

    PubMed

    Michelz Beitel, Susan; Fontes Coelho, Luciana; Sass, Daiane Cristina; Contiero, Jonas

    2017-01-01

    The interest in the production of lactic acid has increased due to its wide range of applications. In the present study, the variables that affect fermentative D(-) lactic acid production were investigated: neutralizing agents, pH, temperature, inoculum percentage, agitation, and concentration of the medium components. An experimental design was applied to determine the optimal concentrations of the medium components and fermentation was studied using different feeding strategies. High production (122.41 g/L) and productivity (3.65 g/L·h) were efficiently achieved by Sporolactobacillus nakayamae in 54 h using a multipulse fed-batch technique with an initial medium containing 35 g/L of yeast extract (byproduct of alcohol production), 60 g/L of crystallized sugar, and 7.5 mL/L of salts. The fermentation process was conducted at 35°C and pH 6.0 controlled by NaOH with a 20% volume of inoculum and agitation at 125 rpm. The production of a high optically pure concentration of D(-) lactic acid combined with an environmentally friendly NaOH-based process demonstrates that S. nakayamae is a promising strain for D(-) lactic acid production.

  13. High-performance liquid chromatography of quinoidal imminium compounds derived from triphenylmethanes

    USGS Publications Warehouse

    Abidi, S.L.

    1983-01-01

    A series of eleven p-aminotriphenylmethane dyes have been studied by high-performance liquid chromatography (HPLC). The combined use of HPLC and spectrophotometry permits specific detection of these compounds in the visible range around 600 nm. As the high affinity of the imminium cations for the active sites of the hydrocarbonaceous stationary phase has presented difficulties for reversed-phase HPLC with pure solvents, organic electrolytes were added to the mobile phase to facilitate the elution of the components with improved selectivity, sensitivity (minimum detection limit, 0.1 μg/ml), and peak symmetry. The effects of chromatographic variables on the component retentivity were investigated. Retention times of the dye analytes decreased with increasing concentration of the added ionic reagent and with decreasing number of the hydrophobic alkyl substituents on the nitrogen atom. The influence of pH on the retention parameters appears to parallel that observed previously for cationic quaternary ammonium compounds. Among the acidic reagents employed, naphthalenesulfonic acid yielded the most satisfactory results. The use of binary electrolyte systems invariably improved the chromatographic behavior of the imminium solutes analyzed. Results obtained with two different octadecylsilica columns have been compared.

  14. Hexagonal ice in pure water and biological NMR samples.

    PubMed

    Bauer, Thomas; Gath, Julia; Hunkeler, Andreas; Ernst, Matthias; Böckmann, Anja; Meier, Beat H

    2017-01-01

    Ice, in addition to "liquid" water and protein, is an important component of protein samples for NMR spectroscopy at subfreezing temperatures but it has rarely been observed spectroscopically in this context. We characterize its spectroscopic behavior in the temperature range from 100 to 273 K, and find that it behaves like pure water ice. The interference of magic-angle spinning (MAS) as well as rf multiple-pulse sequences with Bjerrum-defect motion greatly influences the ice spectra.

  15. Estimation of Solvation Quantities from Experimental Thermodynamic Data: Development of the Comprehensive CompSol Databank for Pure and Mixed Solutes

    NASA Astrophysics Data System (ADS)

    Moine, Edouard; Privat, Romain; Sirjean, Baptiste; Jaubert, Jean-Noël

    2017-09-01

    The Gibbs energy of solvation measures the affinity of a solute for its solvent and is thus a key property for the selection of an appropriate solvent for a chemical synthesis or a separation process. More fundamentally, Gibbs energies of solvation are choice data for developing and benchmarking molecular models predicting solvation effects. The Comprehensive Solvation—CompSol—database was developed with the ambition to propose very large sets of new experimental solvation chemical-potential, solvation entropy, and solvation enthalpy data of pure and mixed components, covering extended temperature ranges. For mixed compounds, the solvation quantities were generated in infinite-dilution conditions by combining experimental values of pure-component and binary-mixture thermodynamic properties. Three types of binary-mixture properties were considered: partition coefficients, activity coefficients at infinite dilution, and Henry's-law constants. A rigorous methodology was implemented with the aim to select data at appropriate conditions of temperature, pressure, and concentration for the estimation of solvation data. Finally, our comprehensive CompSol database contains 21 671 data associated with 1969 pure species and 70 062 data associated with 14 102 binary mixtures (including 760 solvation data related to the ionic-liquid class of solvents). On the basis of the very large amount of experimental data contained in the CompSol database, it is finally discussed how solvation energies are influenced by hydrogen-bonding association effects.

  16. Evaluation of the Three Parameter Weibull Distribution Function for Predicting Fracture Probability in Composite Materials

    DTIC Science & Technology

    1978-03-01

    for the risk of rupture for a unidirectionally laminat - ed composite subjected to pure bending. (5D This equation can be simplified further by use of...C EVALUATION OF THE THREE PARAMETER WEIBULL DISTRIBUTION FUNCTION FOR PREDICTING FRACTURE PROBABILITY IN COMPOSITE MATERIALS. THESIS / AFIT/GAE...EVALUATION OF THE THREE PARAMETER WE1BULL DISTRIBUTION FUNCTION FOR PREDICTING FRACTURE PROBABILITY IN COMPOSITE MATERIALS THESIS Presented

  17. Analysis of water sorption isotherms of amorphous food materials by solution thermodynamics with relevance to glass transition: evaluation of plasticizing effect of water by the thermodynamic parameters.

    PubMed

    Shimazaki, Eriko; Tashiro, Akiko; Kumagai, Hitomi; Kumagai, Hitoshi

    2017-04-01

    Relation between the thermodynamic parameters obtained from water sorption isotherms and the degree of reduction in the glass transition temperature (T g ), accompanied by water sorption, was quantitatively studied. Two well-known glassy food materials namely, wheat gluten and maltodextrin were used as samples. The difference between the chemical potential of water in a solution and that of pure water ([Formula: see text]), the difference between the chemical potential of solid in a solution and that of a pure solid ([Formula: see text]), and the change in the integral Gibbs free energy ([Formula: see text]) were obtained by analyzing the water sorption isotherms using solution thermodynamics. The parameter [Formula: see text] correlated well with ΔT g (≡T g  - T g0 ; where T g0 is the glass transition temperature of dry material), which had been taken to be an index of plasticizing effect. This indicates that plasticizing effect of water on foods can be evaluated through the parameter [Formula: see text].

  18. Application of attenuated total reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) in MIR range coupled with chemometrics for detection of pig body fat in pure ghee (heat clarified milk fat)

    NASA Astrophysics Data System (ADS)

    Upadhyay, Neelam; Jaiswal, Pranita; Jha, Shyam Narayan

    2018-02-01

    Pure ghee is superior to other fats and oils due to the presence of bioactive lipids and its rich flavor. Adulteration of ghee with cheaper fats and oils is a prevalent fraudulent practice. ATR-FTIR spectroscopy was coupled with chemometrics for the purpose of detection of presence of pig body fat in pure ghee. Pure mixed ghee was spiked with pig body fat @ 3, 4, 5, 10, 15% level. The spectra of pure (ghee and pig body fat) along with the spiked samples was taken in MIR from 4000 to 500 cm-1. Some wavenumber ranges were selected on the basis of differences in the spectra obtained. Separate clusters of the samples were obtained by employing principal component analysis at 5% level of significance on the selected wavenumber range. Probable class membership was predicted by applying SIMCA approach. Approximately, 90% of the samples classified into their respective class and pure ghee and pig body fat never misclassified themselves. The value of R2 was >0.99 for both calibration and validation sets using partial least square method. The study concluded that spiking of pig body fat in pure ghee can be detected even at a level of 3%.

  19. Thermodynamic and structure-property study of liquid-vapor equilibrium for aroma compounds.

    PubMed

    Tromelin, Anne; Andriot, Isabelle; Kopjar, Mirela; Guichard, Elisabeth

    2010-04-14

    Thermodynamic parameters (T, DeltaH degrees , DeltaS degrees , K) were collected from the literature and/or calculated for five esters, four ketones, two aldehydes, and three alcohols, pure compounds and compounds in aqueous solution. Examination of correlations between these parameters and the range values of DeltaH degrees and DeltaS degrees puts forward the key roles of enthalpy for vaporization of pure compounds and of entropy in liquid-vapor equilibrium of compounds in aqueous solution. A structure-property relationship (SPR) study was performed using molecular descriptors on aroma compounds to better understand their vaporization behavior. In addition to the role of polarity for vapor-liquid equilibrium of compounds in aqueous solution, the structure-property study points out the role of chain length and branching, illustrated by the correlation between the connectivity index CHI-V-1 and the difference between T and log K for vaporization of pure compounds and compounds in aqueous solution. Moreover, examination of the esters' enthalpy values allowed a probable conformation adopted by ethyl octanoate in aqueous solution to be proposed.

  20. Raman spectroscopy for the characterization of different fractions of hemp essential oil extracted at 130 °C using steam distillation method

    NASA Astrophysics Data System (ADS)

    Hanif, Muhammad Asif; Nawaz, Haq; Naz, Saima; Mukhtar, Rubina; Rashid, Nosheen; Bhatti, Ijaz Ahmad; Saleem, Muhammad

    2017-07-01

    In this study, Raman spectroscopy along with Principal Component Analysis (PCA) is used for the characterization of pure essential oil (pure EO) isolated from the leaves of the Hemp (Cannabis sativa L.,) as well as its different fractions obtained by fractional distillation process. Raman spectra of pure Hemp essential oil and its different fractions show characteristic key bands of main volatile terpenes and terpenoids, which significantly differentiate them from each other. These bands provide information about the chemical composition of sample under investigation and hence can be used as Raman spectral markers for the qualitative monitoring of the pure EO and different fractions containing different active compounds. PCA differentiates the Raman spectral data into different clusters and loadings of the PCA further confirm the biological origin of the different fractions of the essential oil.

  1. Phase Behavior of Binary Blends of AB+AC Block Copolymers with compatible B and C blocks

    NASA Astrophysics Data System (ADS)

    Pryamitsyn, Victor; Ganesan, Venkat

    2012-02-01

    Recently the experimental studies of phase behavior of binary blends of PS-b-P2VP and PS-b-PHS demonstrated an interesting effect: blends of symmetric PS-b-P2VP and shorter symmetric (PS-b-PHS) formed cylindrical HEX and spherical BCC phases, while each pure component formed lamellas. The miscibility of P2VP and PHS is caused by the hydrogen bonding between P2VP and PHS,which can be described as a negative Flory ?-parameter between P2VP and PHS. We developed a theory of the microphase segregation of AB+AC blends of diblock copolymers based on strong stretching theory. The main result of our theory is that in the copolymer brush-like layer formed by longer B chain and shorter C chains, the attraction between B and shorter C chains causes relative stretching of short C chains and compression of longer B chains. The latter manifests in an excessive bending force towards the grafting surface (BC|AA interface). Such bending force causes a transition from a symmetric lamella phase to a HEX cylinder or BCC spherical phases with the BC phase being a ``matrix'' component. In a blend of asymmetric BCC sphere forming copolymers (where B and C segments are the minor components), such bending force may unfold BCC spherical phase to a HEX cylinder phase, or even highly uneven lamella phases.

  2. Microstructural Evolution at Micro/Meso-Scale in an Ultrafine-Grained Pure Aluminum Processed by Equal-Channel Angular Pressing with Subsequent Annealing Treatment.

    PubMed

    Xu, Jie; Li, Jianwei; Zhu, Xiaocheng; Fan, Guohua; Shan, Debin; Guo, Bin

    2015-11-04

    Micro-forming with ultrafine-grained (UFG) materials is a promising direction for the fabrication of micro-electro-mechanical systems (MEMS) components due to the improved formability, good surface quality, and excellent mechanical properties it provides. In this paper, micro-compression tests were performed using UFG pure aluminum processed by equal-channel angular pressing (ECAP) with subsequent annealing treatment. Microstructural evolution was investigated by electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). The results show that microstructural evolutions during compression tests at the micro/meso-scale in UFG pure Al are absolutely different from the coarse-grained (CG) materials. A lot of low-angle grain boundaries (LAGBs) and recrystallized fine grains are formed inside of the original large grains in CG pure aluminum after micro-compression. By contrast, ultrafine grains are kept with few sub-grain boundaries inside the grains in UFG pure aluminum, which are similar to the original microstructure before micro-compression. The surface roughness and coordinated deformation ability can be signmicrostructure; micro/meso-forming; ultrafine grains; ECAP; aluminumificantly improved with UFG pure aluminum, which demonstrates that the UFG materials have a strong potential application in micro/meso-forming.

  3. Recent advances concerning an understanding of sound transmission through engine nozzles and jets

    NASA Technical Reports Server (NTRS)

    Bechert, D.; Michel, U.; Dfizenmaier, E.

    1978-01-01

    Experiments on the interaction between a turbulent jet and pure tone sound coming from inside the jet nozzle are reported. This is a model representing the sound transmission from sound sources in jet engines through the nozzle and the jet flow into the far field. It is shown that pure tone sound at low frequencies is considerably attenuated by the jet flow, whereas it is conserved at higher frequencies. On the other hand, broadband jet noise can be amplified considerably by a pure tone excitation. Both effects seem not to be interdependent. Knowledge on how they are created and on relevant parameter dependences allow new considerations for the development of sound attenuators.

  4. Group contribution methodology based on the statistical associating fluid theory for heteronuclear molecules formed from Mie segments.

    PubMed

    Papaioannou, Vasileios; Lafitte, Thomas; Avendaño, Carlos; Adjiman, Claire S; Jackson, George; Müller, Erich A; Galindo, Amparo

    2014-02-07

    A generalization of the recent version of the statistical associating fluid theory for variable range Mie potentials [Lafitte et al., J. Chem. Phys. 139, 154504 (2013)] is formulated within the framework of a group contribution approach (SAFT-γ Mie). Molecules are represented as comprising distinct functional (chemical) groups based on a fused heteronuclear molecular model, where the interactions between segments are described with the Mie (generalized Lennard-Jonesium) potential of variable attractive and repulsive range. A key feature of the new theory is the accurate description of the monomeric group-group interactions by application of a high-temperature perturbation expansion up to third order. The capabilities of the SAFT-γ Mie approach are exemplified by studying the thermodynamic properties of two chemical families, the n-alkanes and the n-alkyl esters, by developing parameters for the methyl, methylene, and carboxylate functional groups (CH3, CH2, and COO). The approach is shown to describe accurately the fluid-phase behavior of the compounds considered with absolute average deviations of 1.20% and 0.42% for the vapor pressure and saturated liquid density, respectively, which represents a clear improvement over other existing SAFT-based group contribution approaches. The use of Mie potentials to describe the group-group interaction is shown to allow accurate simultaneous descriptions of the fluid-phase behavior and second-order thermodynamic derivative properties of the pure fluids based on a single set of group parameters. Furthermore, the application of the perturbation expansion to third order for the description of the reference monomeric fluid improves the predictions of the theory for the fluid-phase behavior of pure components in the near-critical region. The predictive capabilities of the approach stem from its formulation within a group-contribution formalism: predictions of the fluid-phase behavior and thermodynamic derivative properties of compounds not included in the development of group parameters are demonstrated. The performance of the theory is also critically assessed with predictions of the fluid-phase behavior (vapor-liquid and liquid-liquid equilibria) and excess thermodynamic properties of a variety of binary mixtures, including polymer solutions, where very good agreement with the experimental data is seen, without the need for adjustable mixture parameters.

  5. A lumped parameter method of characteristics approach and multigroup kernels applied to the subgroup self-shielding calculation in MPACT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stimpson, Shane G.; Liu, Yuxuan; Collins, Benjamin S.

    An essential component of the neutron transport solver is the resonance self-shielding calculation used to determine equivalence cross sections. The neutron transport code, MPACT, is currently using the subgroup self-shielding method, in which the method of characteristics (MOC) is used to solve purely absorbing fixed-source problems. Recent efforts incorporating multigroup kernels to the MOC solvers in MPACT have reduced runtime by roughly 2×. Applying the same concepts for self-shielding and developing a novel lumped parameter approach to MOC, substantial improvements have also been made to the self-shielding computational efficiency without sacrificing any accuracy. These new multigroup and lumped parameter capabilitiesmore » have been demonstrated on two test cases: (1) a single lattice with quarter symmetry known as VERA (Virtual Environment for Reactor Applications) Progression Problem 2a and (2) a two-dimensional quarter-core slice known as Problem 5a-2D. From these cases, self-shielding computational time was reduced by roughly 3–4×, with a corresponding 15–20% increase in overall memory burden. An azimuthal angle sensitivity study also shows that only half as many angles are needed, yielding an additional speedup of 2×. In total, the improvements yield roughly a 7–8× speedup. Furthermore given these performance benefits, these approaches have been adopted as the default in MPACT.« less

  6. A lumped parameter method of characteristics approach and multigroup kernels applied to the subgroup self-shielding calculation in MPACT

    DOE PAGES

    Stimpson, Shane G.; Liu, Yuxuan; Collins, Benjamin S.; ...

    2017-07-17

    An essential component of the neutron transport solver is the resonance self-shielding calculation used to determine equivalence cross sections. The neutron transport code, MPACT, is currently using the subgroup self-shielding method, in which the method of characteristics (MOC) is used to solve purely absorbing fixed-source problems. Recent efforts incorporating multigroup kernels to the MOC solvers in MPACT have reduced runtime by roughly 2×. Applying the same concepts for self-shielding and developing a novel lumped parameter approach to MOC, substantial improvements have also been made to the self-shielding computational efficiency without sacrificing any accuracy. These new multigroup and lumped parameter capabilitiesmore » have been demonstrated on two test cases: (1) a single lattice with quarter symmetry known as VERA (Virtual Environment for Reactor Applications) Progression Problem 2a and (2) a two-dimensional quarter-core slice known as Problem 5a-2D. From these cases, self-shielding computational time was reduced by roughly 3–4×, with a corresponding 15–20% increase in overall memory burden. An azimuthal angle sensitivity study also shows that only half as many angles are needed, yielding an additional speedup of 2×. In total, the improvements yield roughly a 7–8× speedup. Furthermore given these performance benefits, these approaches have been adopted as the default in MPACT.« less

  7. Spectral characterization of the fluorescent components present in humic substances, fulvic acid and humic acid mixed with pure benzo(a)pyrene solution.

    PubMed

    El Fallah, Rawa; Rouillon, Régis; Vouvé, Florence

    2018-06-15

    The fate of benzo(a)pyrene (BaP), a ubiquitous contaminant reported to be persistent in the environment, is largely controlled by its interactions with the soil organic matter. In the present study, the spectral characteristics of fluorophores present in the physical fractions of the soil organic matter were investigated in the presence of pure BaP solution. After extraction of humic substances (HSs), and their fractionation into fluvic acid (FA) and humic acid (HA), two fluorescent compounds (C 1 and C 2 ) were identified and characterized in each physical soil fraction, by means of fluorescence excitation-emission matrices (FEEMs) and Parallel Factor Analysis (PARAFAC). Then, to each type of fraction having similar DOC content, was added an increasing volume of pure BaP solution in attempt to assess the behavior of BaP with the fluorophores present in each one. The application of FEEMs-PARAFAC method validated a three-component model that consisted of the two resulted fluorophores from HSs, FA and HA (C 1 and C 2 ) and a BaP-like fluorophore (C 3 ). Spectral modifications were noted for components C 2 HSs (C 2 in humic substances fraction) (λex/λem: 420/490-520 nm), C 2 FA (C 2 in fulvic acid fraction) (λex/λem: 400/487(517) nm) and C 1 HA (C 1 in humic acid fraction) (λex/λem: 350/452(520) nm). We explored the impact of increasing the volume of the added pure BaP solution on the scores of the fluorophores present in the soil fractions. It was found that the scores of C 2 HSs, C 2 FA, and C 1 HA increased when the volume of the added pure BaP solution increased. Superposition of the excitation spectra of these fluorophores with the emission spectrum of BaP showed significant overlaps that might explain the observed interactions between BaP and the fluorescent compounds present in SOM physical fractions. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Spectral characterization of the fluorescent components present in humic substances, fulvic acid and humic acid mixed with pure benzo(a)pyrene solution

    NASA Astrophysics Data System (ADS)

    El Fallah, Rawa; Rouillon, Régis; Vouvé, Florence

    2018-06-01

    The fate of benzo(a)pyrene (BaP), a ubiquitous contaminant reported to be persistent in the environment, is largely controlled by its interactions with the soil organic matter. In the present study, the spectral characteristics of fluorophores present in the physical fractions of the soil organic matter were investigated in the presence of pure BaP solution. After extraction of humic substances (HSs), and their fractionation into fluvic acid (FA) and humic acid (HA), two fluorescent compounds (C1 and C2) were identified and characterized in each physical soil fraction, by means of fluorescence excitation-emission matrices (FEEMs) and Parallel Factor Analysis (PARAFAC). Then, to each type of fraction having similar DOC content, was added an increasing volume of pure BaP solution in attempt to assess the behavior of BaP with the fluorophores present in each one. The application of FEEMs-PARAFAC method validated a three-component model that consisted of the two resulted fluorophores from HSs, FA and HA (C1 and C2) and a BaP-like fluorophore (C3). Spectral modifications were noted for components C2HSs (C2 in humic substances fraction) (λex/λem: 420/490-520 nm), C2FA (C2 in fulvic acid fraction) (λex/λem: 400/487(517) nm) and C1HA (C1 in humic acid fraction) (λex/λem: 350/452(520) nm). We explored the impact of increasing the volume of the added pure BaP solution on the scores of the fluorophores present in the soil fractions. It was found that the scores of C2HSs, C2FA, and C1HA increased when the volume of the added pure BaP solution increased. Superposition of the excitation spectra of these fluorophores with the emission spectrum of BaP showed significant overlaps that might explain the observed interactions between BaP and the fluorescent compounds present in SOM physical fractions.

  9. Proton irradiation studies on Al and Al5083 alloy

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, P.; Gayathri, N.; Bhattacharya, M.; Gupta, A. Dutta; Sarkar, Apu; Dhar, S.; Mitra, M. K.; Mukherjee, P.

    2017-10-01

    The change in the microstructural parameters and microhardness values in 6.5 MeV proton irradiated pure Al and Al5083 alloy samples have been evaluated using different model based techniques of X-ray diffraction Line Profile Analysis (XRD) and microindendation techniques. The detailed line profile analysis of the XRD data showed that the domain size increases and saturates with irradiation dose both in the case of Al and Al5083 alloy. The corresponding microstrain values did not show any change with irradiation dose in the case of the pure Al but showed an increase at higher irradiation doses in the case of Al5083 alloy. The microindendation results showed that unirradiated Al5083 alloy has higher hardness value compared to that of unirradiated pure Al. The hardness increased marginally with irradiation dose in the case of Al5083, whereas for pure Al, there was no significant change with dose.

  10. Diagnosing pure-electron plasmas with internal particle flux probes.

    PubMed

    Kremer, J P; Pedersen, T Sunn; Marksteiner, Q; Lefrancois, R G; Hahn, M

    2007-01-01

    Techniques for measuring local plasma potential, density, and temperature of pure-electron plasmas using emissive and Langmuir probes are described. The plasma potential is measured as the least negative potential at which a hot tungsten filament emits electrons. Temperature is measured, as is commonly done in quasineutral plasmas, through the interpretation of a Langmuir probe current-voltage characteristic. Due to the lack of ion-saturation current, the density must also be measured through the interpretation of this characteristic thereby greatly complicating the measurement. Measurements are further complicated by low densities, low cross field transport rates, and large flows typical of pure-electron plasmas. This article describes the use of these techniques on pure-electron plasmas in the Columbia Non-neutral Torus (CNT) stellarator. Measured values for present baseline experimental parameters in CNT are phi(p)=-200+/-2 V, T(e)=4+/-1 eV, and n(e) on the order of 10(12) m(-3) in the interior.

  11. Pure animal phobia is more specific than other specific phobias: epidemiological evidence from the Zurich Study, the ZInEP and the PsyCoLaus.

    PubMed

    Ajdacic-Gross, Vladeta; Rodgers, Stephanie; Müller, Mario; Hengartner, Michael P; Aleksandrowicz, Aleksandra; Kawohl, Wolfram; Heekeren, Karsten; Rössler, Wulf; Angst, Jules; Castelao, Enrique; Vandeleur, Caroline; Preisig, Martin

    2016-09-01

    Interest in subtypes of mental disorders is growing in parallel with continuing research progress in psychiatry. The aim of this study was to examine pure animal phobia in contrast to other specific phobias and a mixed subtype. Data from three representative Swiss community samples were analysed: PsyCoLaus (n = 3720), the ZInEP Epidemiology Survey (n = 1500) and the Zurich Study (n = 591). Pure animal phobia and mixed animal/other specific phobias consistently displayed a low age at onset of first symptoms (8-12 years) and clear preponderance of females (OR > 3). Meanwhile, other specific phobias started up to 10 years later and displayed almost a balanced sex ratio. Pure animal phobia showed no associations with any included risk factors and comorbid disorders, in contrast to numerous associations found in the mixed subtype and in other specific phobias. Across the whole range of epidemiological parameters examined in three different samples, pure animal phobia seems to represent a different entity compared to other specific phobias. The etiopathogenetic mechanisms and risk factors associated with pure animal phobias appear less clear than ever.

  12. Differential effect of pure isoflavones and soymilk on estrogen receptor activity in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rando, Gianpaolo; Ramachandran, Balaji; Rebecchi, Monica

    2009-06-15

    Background: Because of the complexity of estrogen receptor (ER) physiological activity, the interaction of pure isoflavones or soy-based diets on ER needs to be clearly demonstrated. Objectives: To investigate the effects of the administration of isoflavones as a pure compound or as a component of diet on the ER transcriptional activity in adult mice. Methods: Effects of acute (6 h) and chronic (21 days) oral administration of soy milk, pure genistein and a mix of genistein and daidzein was studied in living ERE-Luc mice. In this animal model, the synthesis of luciferase is under the state of ER transcriptional activity.more » Luciferase activity was measured in living mice by daily bioluminescence imaging sessions and in tissue extracts by enzymatic assay. Results: Acute, oral administration of genistein or soymilk caused a significant increase of ER activity in liver. In a 20 day long treatment, soymilk was more potent than genistein in liver and appeared to extend its influence on ER transcriptional activity in other tissues, such as the digestive tract. A mixture of pure genistein and daidzein at the same concentration as in soymilk failed to induce significant changes during acute and chronic studies suggesting an important, uncharacterized role of the soymilk matrix. Consistent with this observation, synergistic effects of the matrix plus isoflavones were observed in MCF-7 cells stably transfected with the ERE-luc construct. Conclusions: This study underlines the limitations of the analysis of single food components in the evaluation of their effects on estrogen receptor activity and advocates the necessity to use complex organisms for the full comprehension of the effects of compounds altering the endocrine balance.« less

  13. Critical point and phase behavior of the pure fluid and a Lennard-Jones mixture

    NASA Astrophysics Data System (ADS)

    Potoff, Jeffrey J.; Panagiotopoulos, Athanassios Z.

    1998-12-01

    Monte Carlo simulations in the grand canonical ensemble were used to obtain liquid-vapor coexistence curves and critical points of the pure fluid and a binary mixture of Lennard-Jones particles. Critical parameters were obtained from mixed-field finite-size scaling analysis and subcritical coexistence data from histogram reweighting methods. The critical parameters of the untruncated Lennard-Jones potential were obtained as Tc*=1.3120±0.0007, ρc*=0.316±0.001 and pc*=0.1279±0.0006. Our results for the critical temperature and pressure are not in agreement with the recent study of Caillol [J. Chem. Phys. 109, 4885 (1998)] on a four-dimensional hypersphere. Mixture parameters were ɛ1=2ɛ2 and σ1=σ2, with Lorentz-Berthelot combining rules for the unlike-pair interactions. We determined the critical point at T*=1.0 and pressure-composition diagrams at three temperatures. Our results have much smaller statistical uncertainties relative to comparable Gibbs ensemble simulations.

  14. Slow crack growth in glass in combined mode I and mode II loading

    NASA Technical Reports Server (NTRS)

    Shetty, D. K.; Rosenfield, A. R.

    1991-01-01

    Slow crack growth in soda-lime glass under combined mode I and mode II loading was investigated in precracked disk specimens in which pure mode I, pure mode II, and various combinations of mode I and mode II were achieved by loading in diametral compression at selected angles with respect to symmetric radial cracks. It is shown that slow crack growth under these conditions can be described by a simple exponential relationship with elastic strain energy release rate as the effective crack-driving force parameter. It is possible to interpret this equation in terms of theoretical models that treat subcritical crack growth as a thermally activated bond-rupture process with an activation energy dependent on the environment, and the elastic energy release rate as the crack-driving force parameter.

  15. EQ3NR, a computer program for geochemical aqueous speciation-solubility calculations: Theoretical manual, user`s guide, and related documentation (Version 7.0); Part 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolery, T.J.

    1992-09-14

    EQ3NR is an aqueous solution speciation-solubility modeling code. It is part of the EQ3/6 software package for geochemical modeling. It computes the thermodynamic state of an aqueous solution by determining the distribution of chemical species, including simple ions, ion pairs, and complexes, using standard state thermodynamic data and various equations which describe the thermodynamic activity coefficients of these species. The input to the code describes the aqueous solution in terms of analytical data, including total (analytical) concentrations of dissolved components and such other parameters as the pH, pHCl, Eh, pe, and oxygen fugacity. The input may also include a desiredmore » electrical balancing adjustment and various constraints which impose equilibrium with special pure minerals, solid solution end-member components (of specified mole fractions), and gases (of specified fugacities). The code evaluates the degree of disequilibrium in terms of the saturation index (SI = 1og Q/K) and the thermodynamic affinity (A = {minus}2.303 RT log Q/K) for various reactions, such as mineral dissolution or oxidation-reduction in the aqueous solution itself. Individual values of Eh, pe, oxygen fugacity, and Ah (redox affinity) are computed for aqueous redox couples. Equilibrium fugacities are computed for gas species. The code is highly flexible in dealing with various parameters as either model inputs or outputs. The user can specify modification or substitution of equilibrium constants at run time by using options on the input file.« less

  16. A Comparative Study on Formation of Polar Components, Fatty Acids and Sterols during Frying of Refined Olive Pomace Oil Pure and Its Blend Coconut Oil.

    PubMed

    Ben Hammouda, Ibtissem; Triki, Mehdi; Matthäus, Bertrand; Bouaziz, Mohamed

    2018-04-04

    The frying performance of pure refined olive-pomace oil (ROPO) and blended with refined coconut oil (RCO) (80:20) was compared during a frying operation of French fries at 180 °C. Blending polyunsaturated oils with highly saturated or monounsaturated oils has been studied extensively, however in literature there is no study has been reported so far on blending ROPO (rich in monounsaturated fatty acids) with RCO (rich in saturated fatty acids) to formulate new frying oils. At the end of the frying process, the blend of ROPO/RCO exhibited a higher chemical stability than the pure ROPO based on total polar compounds (TPC), and polymers. The rate of TPC formation was achieved 23.3% and 30.6% for the blend and the pure oil, respectively. Trans and free fatty acids content, as well as anisidine value were also observed to be the highest in the pure ROPO. This study evaluated the frying performance in the search for appropriate frying oils to deliver healthy fried products with optimized nutritional qualities.

  17. Optical components damage parameters database system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Jin, Yuquan; Xie, Dongmei; Tang, Dingyong

    2012-10-01

    Optical component is the key to large-scale laser device developed by one of its load capacity is directly related to the device output capacity indicators, load capacity depends on many factors. Through the optical components will damage parameters database load capacity factors of various digital, information technology, for the load capacity of optical components to provide a scientific basis for data support; use of business processes and model-driven approach, the establishment of component damage parameter information model and database systems, system application results that meet the injury test optical components business processes and data management requirements of damage parameters, component parameters of flexible, configurable system is simple, easy to use, improve the efficiency of the optical component damage test.

  18. The application of BTEM to UV-vis and UV-vis CD spectroscopies: the reaction of Rh4(CO)12 with chiral and achiral ligands.

    PubMed

    Cheng, Shuying; Gao, Feng; Krummel, Karl I; Garland, Marc

    2008-02-15

    Two different organometallic ligand substitution reactions were investigated: (1) an achiral reactive system consisting of Rh(4)(CO)(12)+PPh(3)right harpoon over left harpoonRh(4)(CO)(11)PPh(3)+CO in n-hexane under argon; and (2) a chiral reactive system consisting of Rh(4)(CO)(12)+(S)-BINAPright harpoon over left harpoonRh(4)(CO)(10)BINAP+2CO in cyclohexane under argon. These two reactions were run at ultra high dilution. In both multi-component reactive systems the concentrations of all the solutes were less than 40ppm and many solute concentrations were just 1-10ppm. In situ spectroscopic measurements were carried out using UV-vis (Ultraviolet-visible) spectroscopy and UV-vis CD spectroscopy on the reactive organometallic systems (1) and (2), respectively. The BTEM algorithm was applied to these spectroscopic data sets. The reconstructed UV-vis pure component spectra of Rh(4)(CO)(12), Rh(4)(CO)(11)PPh(3) and Rh(4)(CO)(10)BINAP as well as the reconstructed UV-vis CD pure component spectra of Rh(4)(CO)(10)BINAP were successfully obtained from BTEM analyses. All these reconstructed pure component spectra are in good agreement with the experimental reference spectra. The concentration profiles of the present species were obtained by performing a least square fit with mass balance constraints for the reactions (1) and (2). The present results indicate that UV-vis and UV-vis-CD spectroscopies can be successfully combined with an appropriate chemometric technique in order to monitor reactive organometallic systems having UV and Vis chromophores.

  19. Many-particle theory of nuclear systems with application to neutron star matter

    NASA Technical Reports Server (NTRS)

    Chakkalakal, D. A.; Yang, C. H.

    1974-01-01

    The energy-density relation was calculated for pure neutron matter in the density range relevant for neutron stars, using four different hard-core potentials. Calculations are also presented of the properties of the superfluid state of the neutron component, along with the superconducting state of the proton component and the effects of polarization in neutron star matter.

  20. Hygienic quality of traditional processing and stability of tomato (Lycopersicon esculentum) puree in Togo.

    PubMed

    Ameyapoh, Yaovi; de Souza, Comlan; Traore, Alfred S

    2008-09-01

    Microbiological and physicochemical qualities of a tomato (Lycopersicon esculentum) puree production line (ripe tomato, washing, cutting, pounding, bleaching, straining, bottling and pasteurization) and its preservation in Togo, West Africa, were studied using the HACCP method. Samples generated during the steps described previously were analyzed by determining sensory, chemical and microbiological characteristics. Samples were analyzed using MPN for coliform populations and plate count methodology for other bacteria. The microorganisms involved in spoilage of the opened products were moulds of genera Penicillium, Aspergillus, Fusarium, Geotrichum, Mucor and gram-positive Bacillus bacteria. The preserved tomato puree exhibited a pH value of 4.3, 90% water content, 0.98 water activity (aw) and an average ascorbic acid level of 27.3mg/100g. Results showed that the critical control point (CCP) of this tomato puree processing line is the pasteurization stage. The analysis of selected microbiological and physicochemical parameters during the preservation of bottled tomato puree indicated that this product was stable over 22 months at 29 degrees C. But the stability of the opened product stored at 29 degrees C did not exceed two months.

  1. Impact of processing on odour-active compounds of a mixed tomato-onion puree.

    PubMed

    Koutidou, Maria; Grauwet, Tara; Van Loey, Ann; Acharya, Parag

    2017-08-01

    Gas chromatography-olfactometry revealed thirty-two odour-active compounds in a heat-processed tomato-onion puree, among which twenty-seven were identified by gas chromatography-olfactometry-mass spectrometry (GC-O-MS) and comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOF MS). Based on the results of two olfactometric methods, i.e. detection frequency and aroma extract dilution analysis, the most potent aroma components include: dipropyl disulfide, S-propyl thioacetate, dimethyl trisulfide, 1-octen-3-one, methional, dipropyl trisulfide, 4,5-dimethylthiazole, 2-phenylacetaldehyde and sotolone. Processing of mixed vegetable systems can add complexity in their aroma profiles due to (bio)chemical interactions between the components. Therefore, the impact of different processing steps (i.e. thermal blanching, all-in-one and split-stream processes) on the volatile profile and aroma of a mixed tomato-onion puree has been investigated using a GC-MS fingerprinting approach. Results showed the potential to control the aroma in a mixed tomato-onion system through process-induced enzymatic modulations for producing tomato-onion food products with distinct aroma characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. On-line pH modification of carbonate eluents using an electrolytic potassium hydroxide generator for ion chromatography.

    PubMed

    Novic, Milko; Liu, Yan; Avdalovic, Nebojsa; Pihlar, Boris

    2002-05-31

    Classical gradient elution, based on the application of a gradient pump used for mixing two or more prepared eluent components in pre-determined concentrations, was replaced by a chromatography system equipped with an isocratic pump and an electrolytic KOH generator. The isocratic pump delivered a constant concentration eluent composed of pure hydrogencarbonate solution. Carbonate ions, the main component of carbonate/hydrogencarbonate-based eluents, were formed by titration of hydrogencarbonate with KOH formed on-line in the electrolytic KOH generator. By changing the concentration of electrolytically-generated KOH, the eluent composition could be changed from pure hydrogencarbonate to a carbonate/hydrogencarbonate buffer, and finally to a carbonate/hydroxide-based eluent. The described system was tested to achieve pH-based changes of retention behavior of phosphate under constant inflow eluent composition conditions.

  3. Mineral Composition of Uroliths Obtained from Sheep and Goats with Obstructive Urolithiasis.

    PubMed

    Jones, M L; Gibbons, P M; Roussel, A J; Dominguez, B J

    2017-07-01

    Knowledge of the mineral composition of the causative urolith is important to develop preventative strategies. Advances in analytic techniques have led to detection of urolith components not previously recognized. The objectives of this study were to characterize uroliths in sheep and goats structurally and clinically. We hypothesized that amorphous magnesium calcium phosphate (AMCP) would be a naturally occurring urolith type in sheep and goats. Forty-nine sheep and goats presenting for obstructive urolithiasis from June 15, 2014 through June 14, 2016 were reviewed along with the demographic data of all small ruminants admitted during that same period. Medical records were reviewed for demographic and historical data, and 36 uroliths obtained from these cases during diagnostic or therapeutic procedures were analyzed by infrared spectroscopy to determine chemical composition. AMCP is a naturally occurring urolith type in obstructed male sheep and goats and was the most common urolith type in this study, where it occurred as a majority component with struvite (39% of uroliths) or as a pure component (11%). Pure struvite was found in 1 urolith (2%). Calcium carbonate was the second most frequent urolith with 31% of uroliths being pure calcium carbonate. This study demonstrates that uroliths, which appear consistent with struvite, could actually be calcium-containing AMCP. Urolith analysis is critical in determining mineral content of uroliths to guide dietary recommendations for prevention. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  4. Final-state effect on x-ray photoelectron spectrum of nominally d1 and n -doped d0 transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Lin, Chungwei; Posadas, Agham; Hadamek, Tobias; Demkov, Alexander A.

    2015-07-01

    We investigate the x-ray photoelectron spectroscopy (XPS) of nominally d1 and n -doped d0 transition-metal oxides including NbO2,SrVO3, and LaTiO3 (nominally d1), as well as n -doped SrTiO3 (nominally d0). In the case of single phase d1 oxides, we find that the XPS spectra (specifically photoelectrons from Nb 3 d , V 2 p , Ti 2 p core levels) all display at least two, and sometimes three distinct components, which can be consistently identified as d0,d1, and d2 oxidation states (with decreasing order in binding energy). Electron doping increases the d2 component but decreases the d0 component, whereas hole doping reverses this trend; a single d1 peak is never observed, and the d0 peak is always present even in phase-pure samples. In the case of n -doped SrTiO3, the d1 component appears as a weak shoulder with respect to the main d0 peak. We argue that these multiple peaks should be understood as being due to the final-state effect and are intrinsic to the materials. Their presence does not necessarily imply the existence of spatially localized ions of different oxidation states nor of separate phases. A simple model is provided to illustrate this interpretation, and several experiments are discussed accordingly. The key parameter to determine the relative importance between the initial-state and final-state effects is also pointed out.

  5. Competition Between Two Large-Amplitude Motion Models: New Hybrid Hamiltonian Versus Old Pure-Tunneling Hamiltonian

    NASA Astrophysics Data System (ADS)

    Kleiner, Isabelle; Hougen, Jon T.

    2017-06-01

    In this talk we report on our progress in trying to make the hybrid Hamiltonian competitive with the pure-tunneling Hamiltonian for treating large-amplitude motions in methylamine. A treatment using the pure-tunneling model has the advantages of: (i) requiring relatively little computer time, (ii) working with relatively uncorrelated fitting parameters, and (iii) yielding in the vast majority of cases fits to experimental measurement accuracy. These advantages are all illustrated in the work published this past year on a gigantic v_{t} = 1 data set for the torsional fundamental band in methyl amine. A treatment using the hybrid model has the advantages of: (i) being able to carry out a global fit involving both v_{t} = 0 and v_{t} = 1 energy levels and (ii) working with fitting parameters that have a clearer physical interpretation. Unfortunately, a treatment using the hybrid model has the great disadvantage of requiring a highly correlated set of fitting parameters to achieve reasonable fitting accuracy, which complicates the search for a good set of molecular fitting parameters and a fit to experimental accuracy. At the time of writing this abstract, we have been able to carry out a fit with J up to 15 that includes all available infrared data in the v_{t} = 1-0 torsional fundamental band, all ground-state microwave data with K up to 10 and J up to 15, and about a hundred microwave lines within the v_{t} = 1 torsional state, achieving weighted root-mean-square (rms) deviations of about 1.4, 2.8, and 4.2 for these three categories of data. We will give an update of this situation at the meeting. I. Gulaczyk, M. Kreglewski, V.-M. Horneman, J. Mol. Spectrosc., in Press (2017).

  6. Reconstruction of signals with unknown spectra in information field theory with parameter uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ensslin, Torsten A.; Frommert, Mona

    2011-05-15

    The optimal reconstruction of cosmic metric perturbations and other signals requires knowledge of their power spectra and other parameters. If these are not known a priori, they have to be measured simultaneously from the same data used for the signal reconstruction. We formulate the general problem of signal inference in the presence of unknown parameters within the framework of information field theory. To solve this, we develop a generic parameter-uncertainty renormalized estimation (PURE) technique. As a concrete application, we address the problem of reconstructing Gaussian signals with unknown power-spectrum with five different approaches: (i) separate maximum-a-posteriori power-spectrum measurement and subsequentmore » reconstruction, (ii) maximum-a-posteriori reconstruction with marginalized power-spectrum, (iii) maximizing the joint posterior of signal and spectrum, (iv) guessing the spectrum from the variance in the Wiener-filter map, and (v) renormalization flow analysis of the field-theoretical problem providing the PURE filter. In all cases, the reconstruction can be described or approximated as Wiener-filter operations with assumed signal spectra derived from the data according to the same recipe, but with differing coefficients. All of these filters, except the renormalized one, exhibit a perception threshold in case of a Jeffreys prior for the unknown spectrum. Data modes with variance below this threshold do not affect the signal reconstruction at all. Filter (iv) seems to be similar to the so-called Karhune-Loeve and Feldman-Kaiser-Peacock estimators for galaxy power spectra used in cosmology, which therefore should also exhibit a marginal perception threshold if correctly implemented. We present statistical performance tests and show that the PURE filter is superior to the others, especially if the post-Wiener-filter corrections are included or in case an additional scale-independent spectral smoothness prior can be adopted.« less

  7. Quantitative Rheological Model Selection

    NASA Astrophysics Data System (ADS)

    Freund, Jonathan; Ewoldt, Randy

    2014-11-01

    The more parameters in a rheological the better it will reproduce available data, though this does not mean that it is necessarily a better justified model. Good fits are only part of model selection. We employ a Bayesian inference approach that quantifies model suitability by balancing closeness to data against both the number of model parameters and their a priori uncertainty. The penalty depends upon prior-to-calibration expectation of the viable range of values that model parameters might take, which we discuss as an essential aspect of the selection criterion. Models that are physically grounded are usually accompanied by tighter physical constraints on their respective parameters. The analysis reflects a basic principle: models grounded in physics can be expected to enjoy greater generality and perform better away from where they are calibrated. In contrast, purely empirical models can provide comparable fits, but the model selection framework penalizes their a priori uncertainty. We demonstrate the approach by selecting the best-justified number of modes in a Multi-mode Maxwell description of PVA-Borax. We also quantify relative merits of the Maxwell model relative to powerlaw fits and purely empirical fits for PVA-Borax, a viscoelastic liquid, and gluten.

  8. Study of linear optical parameters of sodium sulphide nano-particles added ADP crystals

    NASA Astrophysics Data System (ADS)

    Kochuparampil, A. P.; Joshi, J. H.; Dixit, K. P.; Jethva, H. O.; Joshi, M. J.

    2017-05-01

    Ammonium Dihydrogen Phosphate (ADP) is one of the nonlinear optical crystals. It is having various applications like optical mixing, electro-optical modulator, harmonic generators, etc. Chalcogenide compounds are poorly soluble in water and difficult to add in the water soluble ADP crystals. The solubility of Chalcogenide compounds can be increased by synthesizing the nano-structured samples with suitable capping agent. In the present study sodium sulphide was added in to ADP to modify its linear optical parameters. Sodium sulphide nano particles were synthesized by co-precipitation technique using Ethylene diamine as capping agent followed by microwave irradiation. The powder XRD confirmed the nano-structured nature of sodium sulphide nano particles. The solubility of nanoparticles of sodium sulphide increased significantly in water compared to the bulk. Pure and Na2S added ADP crystals were grown by slow solvent evaporation method at room temperature. The presence of sodium in ADP was confirmed by AAS. The UV-Vis spectra were recorded for all crystals. Various optical parameters like, transmittance, energy band gap, extinction coefficient, refractive index, optical conductivity, etc. were evaluated. The electronic polarizibility of pure and doped crystals calculated from energy band gap. The effect of doping concentration was found on various parameters.

  9. The pure rotational spectra of the open-shell diatomic molecules PbI and SnI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Corey J., E-mail: cje8@le.ac.uk, E-mail: nick.walker@newcastle.ac.uk; Needham, Lisa-Maria E.; Walker, Nicholas R., E-mail: cje8@le.ac.uk, E-mail: nick.walker@newcastle.ac.uk

    2015-12-28

    Pure rotational spectra of the ground electronic states of lead monoiodide and tin monoiodide have been measured using a chirped pulsed Fourier transform microwave spectrometer over the 7-18.5 GHz region for the first time. Each of PbI and SnI has a X {sup 2}Π{sub 1/2} ground electronic state and may have a hyperfine structure that aids the determination of the electron electric dipole moment. For each species, pure rotational transitions of a number of different isotopologues and their excited vibrational states have been assigned and fitted. A multi-isotopologue Dunham-type analysis was carried out on both species producing values for Y{submore » 01}, Y{sub 02}, Y{sub 11}, and Y{sub 21}, along with Λ-doubling constants, magnetic hyperfine constants and nuclear quadrupole coupling constants. The Born-Oppenheimer breakdown parameters for Pb have been evaluated and the parameter rationalized in terms of finite nuclear field effects. Analysis of the bond lengths and hyperfine interaction indicates that the bonding in both PbI and SnI is ionic in nature. Equilibrium bond lengths have been evaluated for both species.« less

  10. On the Origin and Evolution of Stellar Chromospheres, Coronae and Winds

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    2000-01-01

    This grant was awarded by NASA to The University of Alabama in Huntsville (UAH) to construct state-of-the-art, theoretical, two-component, chromospheric models for single stars of different spectral types and different evolutionary status. In our proposal, we suggested to use these models to predict the level of the "basal flux", the observed range of variation of chromospheric activity for a given spectral type, and the decrease of this activity with stellar age. In addition, for red giants and supergiants, we also proposed to construct self-consistent, purely theoretical wind models, and used these models to investigate the origin of "dividing lines" in the H-R diagram. In the following, we describe our completed work. We have accomplished the first main goal of our proposal by constructing first purely theoretical, time-dependent and two-component models of stellar chromospheres.1 The models require specifying only three basic stellar parameters, namely, the effective temperature, gravity and rotation rate, and they take into account non-magnetic and magnetic regions in stellar chromospheres. The non-magnetic regions are heated by acoustic waves generated by the turbulent convection in the stellar subphotospheric layers. The magnetic regions are identified with magnetic flux tubes uniformly distributed over the entire stellar surface and they are heated by longitudinal tube waves generated by turbulent motions in the subphotospheric and photospheric layers. The coverage of stellar surface by magnetic regions (the so-called filling factor) is estimated for a given rotation rate from an observational relationship. The constructed models are time-dependent and are based on the energy balance between the amount of mechanical energy supplied by waves and radiative losses in strong Ca II and Mg II emission lines. To calculate the amount of wave energy in the non-magnetic regions, we have used the Lighthill-Stein theory for sound generation.

  11. Negative DC corona discharge current characteristics in a flowing two-phase (air + suspended smoke particles) fluid

    NASA Astrophysics Data System (ADS)

    Berendt, Artur; Domaszka, Magdalena; Mizeraczyk, Jerzy

    2017-04-01

    The electrical characteristics of a steady-state negative DC corona discharge in a two-phase fluid (air with suspended cigarette smoke particles) flowing along a chamber with a needle-to-plate electrode arrangement were experimentally investigated. The two-phase flow was transverse in respect to the needle-to-plate axis. The velocity of the transverse two-phase flow was limited to 0.8 m/s, typical of the electrostatic precipitators. We found that three discharge current modes of the negative corona exist in the two-phase (air + smoke particles) fluid: the Trichel pulses mode, the "Trichel pulses superimposed on DC component" mode and the DC component mode, similarly as in the corona discharge in air (a single-phase fluid). The shape of Trichel pulses in the air + suspended particles fluid is similar to that in air. However, the Trichel pulse amplitudes are higher than those in "pure" air while their repetition frequency is lower. As a net consequence of that the averaged corona discharge current in the two-phase fluid is lower than in "pure" air. It was also found that the average discharge current decreases with increasing suspended particle concentration. The calculations showed that the dependence of the average negative corona current (which is a macroscopic corona discharge parameter) on the particle concentration can be explained by the particle-concentration dependencies of the electric charge of Trichel pulse and the repetition frequency of Trichel pulses, both giving a microscopic insight into the electrical phenomena in the negative corona discharge. Our investigations showed also that the average corona discharge current in the two-phase fluid is almost unaffected by the transverse fluid flow up to a velocity of 0.8 m/s. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder

  12. Pulsatile blood flow and oxygen transport past a circular cylinder.

    PubMed

    Zierenberg, Jennifer R; Fujioka, Hideki; Hirschl, Ronald B; Bartlett, Robert H; Grotberg, James B

    2007-04-01

    The fundamental study of blood flow past a circular cylinder filled with an oxygen source is investigated as a building block for an artificial lung. The Casson constitutive equation is used to describe the shear-thinning and yield stress properties of blood. The presence of hemoglobin is also considered. Far from the cylinder, a pulsatile blood flow in the x direction is prescribed, represented by a time periodic (sinusoidal) component superimposed on a steady velocity. The dimensionless parameters of interest for the characterization of the flow and transport are the steady Reynolds number (Re), Womersley parameter (alpha), pulsation amplitude (A), and the Schmidt number (Sc). The Hill equation is used to describe the saturation curve of hemoglobin with oxygen. Two different feed-gas mixtures were considered: pure O(2) and air. The flow and concentration fields were computed for Re=5, 10, and 40, 0< or =A< or =0.75, alpha=0.25, 0.4, and Schmidt number, Sc=1000. The Casson fluid properties result in reduced recirculations (when present) downstream of the cylinder as compared to a Newtonian fluid. These vortices oscillate in size and strength as A and alpha are varied. Hemoglobin enhances mass transport and is especially important for an air feed which is dominated by oxyhemoglobin dispersion near the cylinder. For a pure O(2) feed, oxygen transport in the plasma dominates near the cylinder. Maximum oxygen transport is achieved by operating near steady flow (small A) for both feed-gas mixtures. The time averaged Sherwood number, Sh, is found to be largely influenced by the steady Reynolds number, increasing as Re increases and decreasing with A. Little change is observed with varying alpha for the ranges investigated. The effect of pulsatility on Sh is greater at larger Re. Increasing Re aids transport, but yields a higher cylinder drag force and shear stresses on the cylinder surface which are potentially undesirable.

  13. Linear data mining the Wichita clinical matrix suggests sleep and allostatic load involvement in chronic fatigue syndrome.

    PubMed

    Gurbaxani, Brian M; Jones, James F; Goertzel, Benjamin N; Maloney, Elizabeth M

    2006-04-01

    To provide a mathematical introduction to the Wichita (KS, USA) clinical dataset, which is all of the nongenetic data (no microarray or single nucleotide polymorphism data) from the 2-day clinical evaluation, and show the preliminary findings and limitations, of popular, matrix algebra-based data mining techniques. An initial matrix of 440 variables by 227 human subjects was reduced to 183 variables by 164 subjects. Variables were excluded that strongly correlated with chronic fatigue syndrome (CFS) case classification by design (for example, the multidimensional fatigue inventory [MFI] data), that were otherwise self reporting in nature and also tended to correlate strongly with CFS classification, or were sparse or nonvarying between case and control. Subjects were excluded if they did not clearly fall into well-defined CFS classifications, had comorbid depression with melancholic features, or other medical or psychiatric exclusions. The popular data mining techniques, principle components analysis (PCA) and linear discriminant analysis (LDA), were used to determine how well the data separated into groups. Two different feature selection methods helped identify the most discriminating parameters. Although purely biological features (variables) were found to separate CFS cases from controls, including many allostatic load and sleep-related variables, most parameters were not statistically significant individually. However, biological correlates of CFS, such as heart rate and heart rate variability, require further investigation. Feature selection of a limited number of variables from the purely biological dataset produced better separation between groups than a PCA of the entire dataset. Feature selection highlighted the importance of many of the allostatic load variables studied in more detail by Maloney and colleagues in this issue [1] , as well as some sleep-related variables. Nonetheless, matrix linear algebra-based data mining approaches appeared to be of limited utility when compared with more sophisticated nonlinear analyses on richer data types, such as those found in Maloney and colleagues [1] and Goertzel and colleagues [2] in this issue.

  14. Study of thermal stability of Cu{sub 2}Se thermoelectric material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohra, Anil, E-mail: anilbohra786@gmail.com; Bhatt, Ranu; Bhattacharya, Shovit

    2016-05-23

    Sustainability of thermoelectric parameter in operating temperature range is a key consideration factor for fabricating thermoelectric generator or cooler. In present work, we have studied the stability of thermoelectric parameter of Cu{sub 2}Se within the temperature range of 50-800°C. Temperature dependent Seebeck coefficients and electrical resistivity measurement are performed under three continuous thermal cycles. X-ray diffraction pattern shows the presence of mixed cubic-monoclinic Cu{sub 2}Se phase in bare pellet which transforms to pure α-Cu{sub 2}Se phase with repeating thermal cycle. Significant enhancement in Seebeck coefficient and electrical resistivity is observed which may be attributed to (i) Se loss observed inmore » EDS and (ii) the phase transformation from mixed cubic-monoclinic structure to pure monoclinic α-Cu{sub 2}Se phase.« less

  15. Identifying isotropic events using a regional moment tensor inversion

    DOE PAGES

    Ford, Sean R.; Dreger, Douglas S.; Walter, William R.

    2009-01-17

    We calculate the deviatoric and isotropic source components for 17 explosions at the Nevada Test Site, as well as 12 earthquakes and 3 collapses in the surrounding region of the western United States, using a regional time domain full waveform inversion for the complete moment tensor. The events separate into specific populations according to their deviation from a pure double-couple and ratio of isotropic to deviatoric energy. The separation allows for anomalous event identification and discrimination between explosions, earthquakes, and collapses. Confidence regions of the model parameters are estimated from the data misfit by assuming normally distributed parameter values. Wemore » investigate the sensitivity of the resolved parameters of an explosion to imperfect Earth models, inaccurate event depths, and data with low signal-to-noise ratio (SNR) assuming a reasonable azimuthal distribution of stations. In the band of interest (0.02–0.10 Hz) the source-type calculated from complete moment tensor inversion is insensitive to velocity model perturbations that cause less than a half-cycle shift (<5 s) in arrival time error if shifting of the waveforms is allowed. The explosion source-type is insensitive to an incorrect depth assumption (for a true depth of 1 km), and the goodness of fit of the inversion result cannot be used to resolve the true depth of the explosion. Noise degrades the explosive character of the result, and a good fit and accurate result are obtained when the signal-to-noise ratio is greater than 5. We assess the depth and frequency dependence upon the resolved explosive moment. As the depth decreases from 1 km to 200 m, the isotropic moment is no longer accurately resolved and is in error between 50 and 200%. Furthermore, even at the most shallow depth the resultant moment tensor is dominated by the explosive component when the data have a good SNR.« less

  16. From progressive to finite deformation, and back: the universal deformation matrix

    NASA Astrophysics Data System (ADS)

    Provost, A.; Buisson, C.; Merle, O.

    2003-04-01

    It is widely accepted that any finite strain recorded in the field may be interpreted in terms of the simultaneous combination of a pure shear component with one or several simple shear components. To predict strain in geological structures, approximate solutions may be obtained by multiplying successive small increments of each elementary strain component. A more rigorous method consists in achieving the simultaneous combination in the velocity gradient tensor but solutions already proposed in the literature are valid for special cases only and cannot be used, e.g., for the general combination of a pure shear component and six elementary simple shear components. In this paper, we show that the combination of any strain components is as simple as a mouse click, both analytically and numerically. The finite deformation matrix is given by L=exp(L.Δt) where L.Δt is the time-integrated velocity gradient tensor. This method makes it possible to predict finite strain for any combination of strain components. Reciprocally, L.Δt=ln(D) , which allows to unravel the simplest deformation history that might be liable for a given finite deformation. Given the strain ellipsoid only, it is still possible to constrain the range of compatible deformation matrices and thus the range of strain component combinations. Interestingly, certain deformation matrices, though geologically sensible, have no real logarithm so cannot be explained by a deformation history implying strain rate components with constant proportions, what implies significant changes of the stress field during the history of deformation. The study as a whole opens the possibility for further investigations on deformation analysis in general, the method could be used wathever the configuration is.

  17. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOEpatents

    Mayer, Anton

    1988-01-01

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  18. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOEpatents

    Mayer, A.

    1988-01-21

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  19. Transport properties of mixtures by the soft-SAFT + free-volume theory: application to mixtures of n-alkanes and hydrofluorocarbons.

    PubMed

    Llovell, F; Marcos, R M; Vega, L F

    2013-05-02

    In a previous paper (Llovell et al. J. Phys. Chem. B, submitted for publication), the free-volume theory (FVT) was coupled with the soft-SAFT equation of state for the first time to extend the capabilities of the equation to the calculation of transport properties. The equation was tested with molecular simulations and applied to the family of n-alkanes. The capability of the soft-SAFT + FVT treatment is extended here to other chemical families and mixtures. The compositional rules of Wilke (Wilke, C. R. J. Chem. Phys. 1950, 18, 517-519) are used for the diluted term of the viscosity, while the dense term is evaluated using very simple mixing rules to calculate the viscosity parameters. The theory is then used to predict the vapor-liquid equilibrium and the viscosity of mixtures of nonassociating and associating compounds. The approach is applied to determine the viscosity of a selected group of hydrofluorocarbons, in a similar manner as previously done for n-alkanes. The soft-SAFT molecular parameters are taken from a previous work, fitted to vapor-liquid equilibria experimental data. The application of FVT requires three additional parameters related to the viscosity of the pure fluid. Using a transferable approach, the α parameter is taken from the equivalent n-alkane, while the remaining two parameters B and Lv are fitted to viscosity data of the pure fluid at several isobars. The effect of these parameters is then investigated and compared to those obtained for n-alkanes, in order to better understand their effect on the calculations. Once the pure fluids are well characterized, the vapor-liquid equilibrium and the viscosity of nonassociating and associating mixtures, including n-alkane + n-alkane, hydrofluorocarbon + hydrofluorocarbon, and n-alkane + hydrofluorocarbon mixtures, are calculated. One or two binary parameters are used to account for deviations in the vapor-liquid equilibrium diagram for nonideal mixtures; these parameters are used in a transferable manner to predict the viscosity of the mixtures. Very good agreement with available experimental data is found in all cases, with an average absolute deviation ranging between 1.0% and 5.5%, even when the system presents azeotropy, reinforcing the robustness of the approach.

  20. [The corrosion of pure iron in five different mediums].

    PubMed

    Xu, Li; Zhu, Shengfa; Huang, Nan; Li, Xinchang; Zhang, Yu

    2009-08-01

    The sectional test was adopted in this study to investigate the corrosion of pure iron in 0.15 mol/L NaCl solution, Ringer solution, PBS(-) solution, SBF solution and M199 cell culture medium at three different times. The result shows that different mediums have different corrosion effects on pure iron. The arrangement according to the medium's corrosion ability from the strongest to weakest is 0.15 mol/L NaCl solution (Ringer solution), PBS(-) solution, SBF solution and M199 cell culture medium. The results of scanning electron microscopy and energy dispersive X-ray spectrum analyses show that the addition of HPO4(2-), H2POC4-, Ca2+, Mg2+, SO4(2-) and the organic component can inhibit the corrosion to some degree.

  1. Preface to Special Topic: Collective Effects in Particle Beams and Nonneutral Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilson, Erik P.; Qin, Hong

    Nonneutral plasmas are plasma systems in which there is no overall charge neutrality, including the limit of systems that are fully unneutralized in which there are particles of only a single sign of charge. Here, examples of nonneutral plasmas include charged-particle beams, pure electron plasmas, pure positron plasmas, and pure-ion plasmas consisting of a variety of ion charge states in a single trap. A key feature of nonneutral plasmas which distinguishes them from quasineutral plasmas is that their self-electric and self-magnetic fields can play a dominant role in the behavior of the system. Moreover, single-component plasmas can be confined inmore » states of global thermal equilibrium, enabling detailed theoretical and experimental studies of fundamental plasma phenomena and precise testing of models.« less

  2. Preface to Special Topic: Collective Effects in Particle Beams and Nonneutral Plasmas

    DOE PAGES

    Gilson, Erik P.; Qin, Hong

    2018-01-30

    Nonneutral plasmas are plasma systems in which there is no overall charge neutrality, including the limit of systems that are fully unneutralized in which there are particles of only a single sign of charge. Here, examples of nonneutral plasmas include charged-particle beams, pure electron plasmas, pure positron plasmas, and pure-ion plasmas consisting of a variety of ion charge states in a single trap. A key feature of nonneutral plasmas which distinguishes them from quasineutral plasmas is that their self-electric and self-magnetic fields can play a dominant role in the behavior of the system. Moreover, single-component plasmas can be confined inmore » states of global thermal equilibrium, enabling detailed theoretical and experimental studies of fundamental plasma phenomena and precise testing of models.« less

  3. Corrosion of Cu-xZn alloys in slightly alkaline chloride solutions studied by stripping voltammetry and microanalysis.

    PubMed

    Milosev, I; Minović, A

    2001-01-01

    The mechanism of corrosion of Cu-xZn alloys (x = 10-40 wt %) in slightly alkaline chloride solutions was investigated by analysing solid reaction products by energy dispersive X-ray analysis (EDS) and dissolved reaction products by differential anodic pulse stripping (DAPS) voltammetry. The corrosion process was studied under open circuit and under potentiostatic conditions at selected potentials. Pure metals were studied comparatively so that an interacting effect of particular metal components in the alloy could be determined. All four Cu-xZn alloys show an improved behaviour compared to pure metals. Under open-circuit condition both components dissolve simultaneously in the solution. With increasing immersion time the preferential, dissolution of zinc in the solution becomes pronounced. It is the highest for Cu-10Zn and the lowest for Cu-30Zn alloy. Under potentiostatic control the dissolution mechanism depends on the electrode potential and changes from exclusive dissolution of zinc to simultaneous dissolution of both components with preferential dissolution of zinc. The latter decreases, as the electrode potential becomes more positive.

  4. Effect of Barium Titanate Particles on Dielectric and Electro-Optical Properties of a Smectic-a Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Ramazanov, M. A.; Imamaliyev, A. R.; Humbatov, Sh. A.; Agamaliev, Z. A.

    2018-02-01

    The effect of submicron ferroelectric BaTiO3 particles on the dielectric and electro-optical properties of the smectic-A liquid crystal (LC) with a high negative dielectric anisotropy is investigated. It is shown that the addition of BaTiO3 particles with a weight amount of 1% reduces insignificantly the transverse dielectric permittivity component ɛ ⊥ of, but significantly increases the longitudinal dielectric permittivity component ɛ // of the smectic-A LC. As a result, the anisotropy of the dielectric permittivity Δɛ = ɛ // - ɛ ⊥ of the smectic-A LC decreases. The addition of BaTiO3 particles shifts the dispersion ɛ ⊥ toward lower frequencies. Both components of the electrical conductivity of LC colloid + BaTiO3 are an order of magnitude higher than of the pure LC. The threshold voltage of the homeotropic-planar transition of the colloid is twice smaller, and its velocity is 6 times higher in comparison with the pure LC. A simple model explaining qualitatively all results obtained is presented.

  5. Operators manual for the magnetograph program (section 2)

    NASA Technical Reports Server (NTRS)

    November, L.; Title, A. M.

    1974-01-01

    This manual for use of the magnetograph program describes: (1) black box use of the programs; (2) the magtape data formats used; (3) the adjustable control parameters in the program; and (4) the algorithms. With no adjustments on the control parameters this program may be used purely as a black box. For optimal use, however, the control parameters may be varied. The magtape data formats are of use in adopting other programs to look at raw data or final magnetograph data.

  6. Unravelling the influence of carbon dioxide on the adsorptive recovery of butanol from fermentation broth using ITQ-29 and ZIF-8.

    PubMed

    Martin-Calvo, Ana; Van der Perre, Stijn; Claessens, Benjamin; Calero, Sofia; Denayer, Joeri F M

    2018-04-18

    The vapor phase adsorption of butanol from ABE fermentation at the head space of the fermenter is an interesting route for the efficient recovery of biobutanol. The presence of gases such as carbon dioxide that are produced during the fermentation process causes a stripping of valuable compounds from the aqueous into the vapor phase. This work studies the effect of the presence of carbon dioxide on the adsorption of butanol at a molecular level. With this aim in mind Monte Carlo simulations were employed to study the adsorption of mixtures containing carbon dioxide, butanol and ethanol. Molecular models for butanol and ethanol that reproduce experimental properties of the molecules such as polarity, vapor-liquid coexistence or liquid density have been developed. Pure component isotherms and heats of adsorption have been computed and compared to experimental data to check the accuracy of the interacting parameters. Adsorption of butanol/ethanol mixtures has been studied in absence and presence of CO2 on two representative materials, a pure silica LTA zeolite and a hydrophobic metal-organic framework ZIF-8. To get a better understanding of the molecular mechanism that governs the adsorption of the targeted mixture in the selected materials, the distribution of the molecules inside the structures was analyzed. The combination of these features allows obtaining a deeper understanding of the process and to identify the role of carbon dioxide in the butanol purification process.

  7. Physiological effects following administration of Citrus aurantium for 28 days in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Deborah K., E-mail: deborah.hansen@fda.hhs.gov; George, Nysia I.; White, Gene E.

    Background: Since ephedra-containing dietary supplements were banned from the US market, manufacturers changed their formulations by eliminating ephedra and replacing with other botanicals, including Citrus aurantium, or bitter orange. Bitter orange contains, among other compounds, synephrine, a chemical that is chemically similar to ephedrine. Since ephedrine may have cardiovascular effects, the goal of this study was to investigate the cardiovascular effects of various doses of bitter orange extract and pure synephrine in rats. Method: Female Sprague–Dawley rats were dosed daily by gavage for 28 days with synephrine from two different extracts. One extract contained 6% synephrine, and the other extractmore » contained 95% synephrine. Doses were 10 or 50 mg synephrine/kg body weight from each extract. Additionally, caffeine was added to these doses, since many dietary supplements also contain caffeine. Telemetry was utilized to monitor heart rate, blood pressure, body temperature and QT interval in all rats. Results and conclusion: Synephrine, either as the bitter orange extract or as pure synephrine, increased heart rate and blood pressure. Animals treated with 95% synephrine showed minimal effects on heart rate and blood pressure; more significant effects were observed with the bitter orange extract suggesting that other components in the botanical can alter these physiological parameters. The increases in heart rate and blood pressure were more pronounced when caffeine was added. None of the treatments affected uncorrected QT interval in the absence of caffeine.« less

  8. Physicochemical and sensory properties of fresh potato-based pasta (gnocchi).

    PubMed

    Alessandrini, Laura; Balestra, Federica; Romani, Santina; Rocculi, Pietro; Rosa, Marco Dalla

    2010-01-01

    This study dealt with the characterization and quality assessment of 3 kinds of potato-based pasta (gnocchi) made with steam-cooked, potato puree (water added to potato flakes), and reconstituted potatoes as main ingredients. The aim of the research was to evaluate the quality of the products in terms of physicochemical, textural, and sensory characteristics. Water content, water activity, color (L* and h°), and texture (texture profile analysis [TPA] and shearing test) were evaluated on both raw and cooked samples. In addition, on the recovered cooking water the loss of solid substances was determined and on the cooked gnocchi a sensory assessment was performed. Eight sensory attributes (yellowness, hardness, gumminess, adhesiveness, potato taste, sweet taste, flour taste, and sapidity) were investigated. Statistically significant differences among products were obtained, especially concerning textural properties. In fact, sample made with reconstituted potatoes and emulsifiers resulted the hardest (8.53 ± 1.22 N), the gummiest (2.90 ± 0.05 N), and the "chewiest" (2.90 ± 0.58 N) after cooking. Gnocchi made with potato puree or reconstituted potatoes significantly differed from the one produced with steam-cooked potatoes in terms of sensory properties (yellowness, hardness, flour taste, and sapidity). Pearson's correlation analysis between some textural instrumental and sensory parameters showed significant correlation coefficients (0.532 < r < 0.810). Score plot of principal component analysis (PCA) confirmed obtained results from physicochemical and sensory analyses, in terms of high discriminant capacity of colorimetric and textural characteristics. © 2010 Institute of Food Technologists®

  9. Identification of mineral compositions in some renal calculi by FT Raman and IR spectral analysis

    NASA Astrophysics Data System (ADS)

    Tonannavar, J.; Deshpande, Gouri; Yenagi, Jayashree; Patil, Siddanagouda B.; Patil, Nikhil A.; Mulimani, B. G.

    2016-02-01

    We present in this paper accurate and reliable Raman and IR spectral identification of mineral constituents in nine samples of renal calculi (kidney stones) removed from patients suffering from nephrolithiasis. The identified mineral components include Calcium Oxalate Monohydrate (COM, whewellite), Calcium Oxalate Dihydrate (COD, weddellite), Magnesium Ammonium Phosphate Hexahydrate (MAPH, struvite), Calcium Hydrogen Phosphate Dihydrate (CHPD, brushite), Pentacalcium Hydroxy Triphosphate (PCHT, hydroxyapatite) and Uric Acid (UA). The identification is based on a satisfactory assignment of all the observed IR and Raman bands (3500-400 cm- 1) to chemical functional groups of mineral components in the samples, aided by spectral analysis of pure materials of COM, MAPH, CHPD and UA. It is found that the eight samples are composed of COM as the common component, the other mineral species as common components are: MAPH in five samples, PCHT in three samples, COD in three samples, UA in three samples and CHPD in two samples. One sample is wholly composed of UA as a single component; this inference is supported by the good agreement between ab initio density functional theoretical spectra and experimental spectral measurements of both sample and pure material. A combined application of Raman and IR techniques has shown that, where the IR is ambiguous, the Raman analysis can differentiate COD from COM and PCHT from MAPH.

  10. Identification of mineral compositions in some renal calculi by FT Raman and IR spectral analysis.

    PubMed

    Tonannavar, J; Deshpande, Gouri; Yenagi, Jayashree; Patil, Siddanagouda B; Patil, Nikhil A; Mulimani, B G

    2016-02-05

    We present in this paper accurate and reliable Raman and IR spectral identification of mineral constituents in nine samples of renal calculi (kidney stones) removed from patients suffering from nephrolithiasis. The identified mineral components include Calcium Oxalate Monohydrate (COM, whewellite), Calcium Oxalate Dihydrate (COD, weddellite), Magnesium Ammonium Phosphate Hexahydrate (MAPH, struvite), Calcium Hydrogen Phosphate Dihydrate (CHPD, brushite), Pentacalcium Hydroxy Triphosphate (PCHT, hydroxyapatite) and Uric Acid (UA). The identification is based on a satisfactory assignment of all the observed IR and Raman bands (3500-400c m(-1)) to chemical functional groups of mineral components in the samples, aided by spectral analysis of pure materials of COM, MAPH, CHPD and UA. It is found that the eight samples are composed of COM as the common component, the other mineral species as common components are: MAPH in five samples, PCHT in three samples, COD in three samples, UA in three samples and CHPD in two samples. One sample is wholly composed of UA as a single component; this inference is supported by the good agreement between ab initio density functional theoretical spectra and experimental spectral measurements of both sample and pure material. A combined application of Raman and IR techniques has shown that, where the IR is ambiguous, the Raman analysis can differentiate COD from COM and PCHT from MAPH. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. PSYCHE Pure Shift NMR Spectroscopy.

    PubMed

    Foroozandeh, Mohammadali; Morris, Gareth; Nilsson, Mathias

    2018-03-13

    Broadband homodecoupling techniques in NMR, also known as "pure shift" methods, aim to enhance spectral resolution by suppressing the effects of homonuclear coupling interactions to turn multiplet signals into singlets. Such techniques typically work by selecting a subset of "active" nuclear spins to observe, and selectively inverting the remaining, "passive", spins to reverse the effects of coupling. Pure Shift Yielded by Chirp Excitation (PSYCHE) is one such method; it is relatively recent, but has already been successfully implemented in a range of different NMR experiments. Paradoxically, PSYCHE is one of the trickiest of pure shift NMR techniques to understand but one of the easiest to use. Here we offer some insights into theoretical and practical aspects of the method, and into the effects and importance of the experimental parameters. Some recent improvements that enhance the spectral purity of PSYCHE spectra will be presented, and some experimental frameworks including examples in 1D and 2D NMR spectroscopy, for the implementation of PSYCHE will be introduced. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. CORRIGENDUM: Supersymmetric Kaluza-Klein reductions of M-waves and MKK-monopoles

    NASA Astrophysics Data System (ADS)

    Figueroa-O'Farrill, J.; Simón, J.

    2004-01-01

    In this paper we classified the smooth supersymmetric Kaluza-Klein reductions of the purely gravitational half-BPS backgrounds of M-theory: the purely gravitational plane wave and the Kaluza-Klein monopole. The analysis of the Kaluza-Klein monopole yielded seven possible Kaluza-Klein reductions labelled (A)-(G). In truth, we failed to discard two of the reductions: those labelled (F) and (G). These reductions fail to be smooth due to the fact that the orbits of the Killing vector effecting the reduction have different topological type: at those points where the null rotation component vanishes, the orbits are circles, whereas at the other points they are diffeomorphic to the real line. In other words, although the action is free, some points (corresponding to the circular orbits) possess nontrivial stabilizers: namely the infinite cyclic subgroup generated by the period. A similar argument has already been used in [1] to discard one of the possible reductions of the M2 brane. Even though the discarded reductions exist, and some of them can even be supersymmetric, one of the purposes of the paper was to present a full classification of smooth reductions of the purely gravitational half-BPS backgrounds of M-theory. As a result the following changes must be made. At the very end of section 3.2, the two cases (F) and (G) must be deleted. In section 3.3, the paragraphs discussing the supersymmetry of these reductions should be omitted. Similarly the entries in table 7 which are in parentheses should also be omitted. In section 3.4, the parameter β in the expression for λ in the unnumbered equation preceding (3.14) should be put to zero, with the corresponding change in equation (3.14). Finally the entry in table10 containing the nullbrane (N) disappears. References [1] Figueroa-O'Farrill J and SimA~3n J 2002 Supersymmetric Kaluza-Klein reductions of M2 and M5-branes Adv. Theor. Math. Phys. 6 703-93 (Preprint hep-th/0208107)

  13. Application of the weighted total field-scattering field technique to 3D-PSTD light scattering model

    NASA Astrophysics Data System (ADS)

    Hu, Shuai; Gao, Taichang; Liu, Lei; Li, Hao; Chen, Ming; Yang, Bo

    2018-04-01

    PSTD (Pseudo Spectral Time Domain) is an excellent model for the light scattering simulation of nonspherical aerosol particles. However, due to the particularity of its discretization form of the Maxwell's equations, the traditional Total Field/Scattering Field (TF/SF) technique for FDTD (Finite Differential Time Domain) is not applicable to PSTD, and the time-consuming pure scattering field technique is mainly applied to introduce the incident wave. To this end, the weighted TF/SF technique proposed by X. Gao is generalized and applied to the 3D-PSTD scattering model. Using this technique, the incident light can be effectively introduced by modifying the electromagnetic components in an inserted connecting region between the total field and the scattering field region with incident terms, where the incident terms are obtained by weighting the incident field by a window function. To optimally determine the thickness of connection region and the window function type for PSTD calculations, their influence on the modeling accuracy is firstly analyzed. To further verify the effectiveness and advantages of the weighted TF/SF technique, the improved PSTD model is validated against the PSTD model equipped with pure scattering field technique in both calculation accuracy and efficiency. The results show that, the performance of PSTD seems to be not sensitive to variation of window functions. The number of the connection layer required decreases with the increasing of spatial resolution, where for spatial resolution of 24 grids per wavelength, a 6-layer region is thick enough. The scattering phase matrices and integral scattering parameters obtained by the improved PSTD show an excellent consistency with those well-tested models for spherical and nonspherical particles, illustrating that the weighted TF/SF technique can introduce the incident precisely. The weighted TF/SF technique shows higher computational efficiency than pure scattering technique.

  14. Low-Temperature Blanching as a Tool to Modulate the Structure of Pectin in Blueberry Purees.

    PubMed

    Chevalier, Laura M; Rioux, Laurie-Eve; Angers, Paul; Turgeon, Sylvie L

    2017-09-01

    Blueberry composition was characterized for 6 cultivars. It contains a good amount of dietary fiber (10% to 20%) and pectin (4% to 7%) whose degree of methylation (DM) is sensitive to food processing. A low temperature blanching (LTB: 60 °C/1 h) was applied on blueberry purees to decrease pectin DM, in order to modulate puree properties and functionalities (that is, viscosity and stability), and to enhance pectin affinity toward other components within food matrices. Fiber content, viscosity, pectin solubility, DM, and monosaccharide composition were determined for both pasteurized, and LTB+pasteurized blueberry purees. The results showed that neither the amount of fiber, nor the viscosity were affected by LTB, indicating that this treatment did not result in any significant pectin depolymerization and degradation. LTB caused a decrease both in pectin DM from 58-67% to 45-47% and in the amount of water-soluble pectin fraction, the latter remaining the major fraction of total pectin at 52% to 57%. A LTB is a simple and mild process to produce blueberry purees with mostly soluble and low-methylated pectin in order to extend functionality and opportunities for interactions with other food ingredients. © 2017 Institute of Food Technologists®.

  15. A hybrid sensing approach for pure and adulterated honey classification.

    PubMed

    Subari, Norazian; Mohamad Saleh, Junita; Md Shakaff, Ali Yeon; Zakaria, Ammar

    2012-10-17

    This paper presents a comparison between data from single modality and fusion methods to classify Tualang honey as pure or adulterated using Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA) statistical classification approaches. Ten different brands of certified pure Tualang honey were obtained throughout peninsular Malaysia and Sumatera, Indonesia. Various concentrations of two types of sugar solution (beet and cane sugar) were used in this investigation to create honey samples of 20%, 40%, 60% and 80% adulteration concentrations. Honey data extracted from an electronic nose (e-nose) and Fourier Transform Infrared Spectroscopy (FTIR) were gathered, analyzed and compared based on fusion methods. Visual observation of classification plots revealed that the PCA approach able to distinct pure and adulterated honey samples better than the LDA technique. Overall, the validated classification results based on FTIR data (88.0%) gave higher classification accuracy than e-nose data (76.5%) using the LDA technique. Honey classification based on normalized low-level and intermediate-level FTIR and e-nose fusion data scored classification accuracies of 92.2% and 88.7%, respectively using the Stepwise LDA method. The results suggested that pure and adulterated honey samples were better classified using FTIR and e-nose fusion data than single modality data.

  16. Modelling galaxy spectra in presence of interstellar dust - III. From nearby galaxies to the distant Universe

    NASA Astrophysics Data System (ADS)

    Cassarà, L. P.; Piovan, L.; Chiosi, C.

    2015-07-01

    Improving upon the standard evolutionary population synthesis technique, we present spectrophotometric models of galaxies with morphology going from spherical structures to discs, properly accounting for the effect of dust in the interstellar medium (ISM). The models contain three main physical components: the diffuse ISM made of gas and dust, the complexes of molecular clouds where active star formation occurs, and stars of any age and chemical composition. These models are based on robust evolutionary chemical description providing the total amount of gas and stars present at any age, and matching the properties of galaxies of different morphological types. We have considered the results obtained by Piovan et al. for the properties of the ISM, and those by Cassarà et al. for the spectral energy distribution (SED) of single stellar populations, both in presence of dust, to model the integral SEDs of galaxies of different morphological types, going from pure bulges to discs passing through a number of composite systems with different combinations of the two components. The first part of the paper is devoted to recall the technical details of the method and the basic relations driving the interaction between the physical components of the galaxy. Then, the main parameters are examined and their effects on the SED of three prototype galaxies are highlighted. The theoretical SEDs nicely match the observational ones both for nearby galaxies and those at high redshift.

  17. Quantitative structure property relationships for the adsorption of pharmaceuticals onto activated carbon.

    PubMed

    Dickenson, E R V; Drewes, J E

    2010-01-01

    Isotherms were determined for the adsorption of five pharmaceutical residues, primidone, carbamazepine, ibuprofen, naproxen and diclofenac, to Calgon Filtrasorb 300 powdered activated carbon (PAC). The sorption behavior was examined in ultra-pure and wastewater effluent organic matter (EfOM) matrices, where more sorption was observed in the ultra-pure water for PAC doses greater than 10 mg/L suggesting the presence of EfOM hinders the sorption of the pharmaceuticals to the PAC. Adsorption behaviors were described by the Freundlich isotherm model. Quantitative structure property relationships (QSPRs) in the form of polyparameter linear solvation energy relationships were developed for simulating the Freundlich adsorption capacity in both ultra-pure and EfOM matrices. The significant 3D-based descriptors for the QSPRs were the molar volume, polarizability and hydrogen-bond donor parameters.

  18. A DFT study of pure and lithium doped gold clusters

    NASA Astrophysics Data System (ADS)

    Rani, Babita

    2018-05-01

    First principles calculations on Aun and Aun-1Li (n=1-6) clusters are performed to understand the effect of size and composition on their structural and energy parameters. It has been found that binding energy increases continuously with increase in the size of pure Aun and doped Aun-1Li clusters and attains its maximum at n=6. Also, Li doping results in the improvement of relative stabilities of pure gold clusters, owing to higher bond strength (i.e. shorter bond length) of Au- Li bond as compared to Au-Au bonds. Moreover, Aun-1Li clusters are found to be more compact. Structural transformations are observed in case of gold clusters doped with Li atom which may affect their application in the field of catalysis.

  19. Effect of L-aspartic acid on the growth, structure and spectral studies of Zinc (tris) Thiourea Sulphate (ZTS) single crystals

    NASA Astrophysics Data System (ADS)

    Samuel, Bincy Susan; Krishnamurthy, R.; Rajasekaran, R.

    2014-11-01

    Single crystals of pure and L-aspartic acid doped Zinc (Tris) Thiourea Sulphate (ZTS) were grown from aqueous solution by solution growth method. The cell parameters and structure of the grown crystals were determined by X-ray diffraction studies. The presence of functional group in the compound has been confirmed by FTIR and FT-Raman analysis. The optical transparency range has been studied through UV-Vis spectroscopy. TGA/DTA studies show thermal stability of the grown crystals. Microhardness study reveals that the hardness number (Hv) increases with load for pure and doped ZTS crystals. Dielectric studies have been carried out and the results are discussed. The second harmonic generation was confirmed for L-aspartic acid doped ZTS which is greater than pure ZTS.

  20. Dichlorido[(S,R(S))-1-diphenylphosphino-2-(ethylsulfanylmethyl)ferrocene]palladium(II).

    PubMed

    Diab, Lisa; Daran, Jean-Claude; Gouygou, Maryse; Manoury, Eric; Urrutigoïty, Martine

    2007-12-01

    The reaction of enantiomerically pure planar chiral ferrocene phosphine thioether with bis(acetonitrile)dichloridopalladium yields the title square-planar mononuclear palladium complex as an enantiomerically pure single diastereoisomer, [PdFe(C5H5)(C20H20PS)Cl2]. The planar chirality of the ligand is retained in the complex and fully controls the central chirality on the S atom. The absolute configuration, viz. S for the planar chirality and R for the S atom, is unequivocally determined by refinement of the Flack parameter.

  1. Identification of different bacterial species in biofilms using confocal Raman microscopy

    NASA Astrophysics Data System (ADS)

    Beier, Brooke D.; Quivey, Robert G.; Berger, Andrew J.

    2010-11-01

    Confocal Raman microspectroscopy is used to discriminate between different species of bacteria grown in biofilms. Tests are performed using two bacterial species, Streptococcus sanguinis and Streptococcus mutans, which are major components of oral plaque and of particular interest due to their association with healthy and cariogenic plaque, respectively. Dehydrated biofilms of these species are studied as a simplified model of dental plaque. A prediction model based on principal component analysis and logistic regression is calibrated using pure biofilms of each species and validated on pure biofilms grown months later, achieving 96% accuracy in prospective classification. When biofilms of the two species are partially mixed together, Raman-based identifications are achieved within ~2 μm of the boundaries between species with 97% accuracy. This combination of spatial resolution and predication accuracy should be suitable for forming images of species distributions within intact two-species biofilms.

  2. Spin-wave diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Jin; Yu, Weichao; Wu, Ruqian

    A diode, a device allowing unidirectional signal transmission, is a fundamental element of logic structures, and it lies at the heart of modern information systems. The spin wave or magnon, representing a collective quasiparticle excitation of the magnetic order in magnetic materials, is a promising candidate for an information carrier for the next-generation energy-saving technologies. Here, we propose a scalable and reprogrammable pure spin-wave logic hardware architecture using domain walls and surface anisotropy stripes as waveguides on a single magnetic wafer. We demonstrate theoretically the design principle of the simplest logic component, a spin-wave diode, utilizing the chiral bound statesmore » in a magnetic domain wall with a Dzyaloshinskii-Moriya interaction, and confirm its performance through micromagnetic simulations. As a result, these findings open a new vista for realizing different types of pure spin-wave logic components and finally achieving an energy-efficient and hardware-reprogrammable spin-wave computer.« less

  3. AmeriFlux US-Me4 Metolius-old aged ponderosa pine

    DOE Data Explorer

    Law, Bev [Oregon State University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Me4 Metolius-old aged ponderosa pine. Site Description - The site is located on land designated as a Research Natural Area (RNA). The site is very open, with even-aged stands of old-growth trees, young trees and mixed aged stands. The eddy-flux tower footprint was classified as ~ 48% mixed aged, ~27% pure old growth and ~25% young aged stands. The data in this workbook describes the mixed aged component. A separate workbook describes the pure old growth component. Law et al (2001) Global Change Biology 7, 755-777; Law et al (2001) Agricultural and Forest Meteorology 110, 27-43; Anthoni et al (2002) Agricultural and Forest Meteorology 111, 203-222; Irvine & Law (2002) Global Change biology 8,1183-1194, Irivne et al (2004) Tree Physiology 24,753-763.

  4. Spin-wave diode

    DOE PAGES

    Lan, Jin; Yu, Weichao; Wu, Ruqian; ...

    2015-12-28

    A diode, a device allowing unidirectional signal transmission, is a fundamental element of logic structures, and it lies at the heart of modern information systems. The spin wave or magnon, representing a collective quasiparticle excitation of the magnetic order in magnetic materials, is a promising candidate for an information carrier for the next-generation energy-saving technologies. Here, we propose a scalable and reprogrammable pure spin-wave logic hardware architecture using domain walls and surface anisotropy stripes as waveguides on a single magnetic wafer. We demonstrate theoretically the design principle of the simplest logic component, a spin-wave diode, utilizing the chiral bound statesmore » in a magnetic domain wall with a Dzyaloshinskii-Moriya interaction, and confirm its performance through micromagnetic simulations. As a result, these findings open a new vista for realizing different types of pure spin-wave logic components and finally achieving an energy-efficient and hardware-reprogrammable spin-wave computer.« less

  5. A nanostructured graphene/polyaniline hybrid material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Hualan; Hao, Qingli; Yang, Xujie; Lu, Lude; Wang, Xin

    2010-10-01

    A flexible graphene/polyaniline hybrid material as a supercapacitor electrode was synthesized by an in situ polymerization-reduction/dedoping-redoping process. This product was first prepared in an ethylene glycol medium, then treated with hot sodium hydroxide solution to obtain the reduced graphene oxide/polyaniline hybrid material. Sodium hydroxide also acted as a dedoping reagent for polyaniline in the composite. After redoping in an acidic solution, the thin, uniform and flexible conducting graphene/polyaniline product was obtained with unchanged morphology. The chemical structure of the materials was characterized by X-ray photoelectron spectroscopy and Raman spectroscopy. The composite material showed better electrochemical performances than the pure individual components. A high specific capacitance of 1126 F g-1 was obtained with a retention life of 84% after 1000 cycles for supercapacitors. The energy density and power density were also better than those of pure component materials.

  6. A nanostructured graphene/polyaniline hybrid material for supercapacitors.

    PubMed

    Wang, Hualan; Hao, Qingli; Yang, Xujie; Lu, Lude; Wang, Xin

    2010-10-01

    A flexible graphene/polyaniline hybrid material as a supercapacitor electrode was synthesized by an in situ polymerization-reduction/dedoping-redoping process. This product was first prepared in an ethylene glycol medium, then treated with hot sodium hydroxide solution to obtain the reduced graphene oxide/polyaniline hybrid material. Sodium hydroxide also acted as a dedoping reagent for polyaniline in the composite. After redoping in an acidic solution, the thin, uniform and flexible conducting graphene/polyaniline product was obtained with unchanged morphology. The chemical structure of the materials was characterized by X-ray photoelectron spectroscopy and Raman spectroscopy. The composite material showed better electrochemical performances than the pure individual components. A high specific capacitance of 1126 F g(-1) was obtained with a retention life of 84% after 1000 cycles for supercapacitors. The energy density and power density were also better than those of pure component materials.

  7. BinCat: a Catalog of Nearby Binary Stars with Tools for Calculating Light-Leakage for Direct Imaging Missions

    NASA Astrophysics Data System (ADS)

    Holte, Elias Peter; Sirbu, Dan; Belikov, Ruslan

    2018-01-01

    Binary stars have been largely left out of direct imaging surveys for exoplanets, specifically for earth-sized planets in their star's habitable zone. Utilizing new direct imaging techniques brings us closer to being able to detect earth-like exoplanets around binary stars. In preparation for the upcoming WFIRST mission and other direct imaging-capable missions (HabEx, LUVIOR) it is important to understand the expected science yield resulting from the implementation of these imaging techniques. BinCat is a catalog of binary systems within 30 parsecs to be used as a target list for future direct imaging missions. There is a non-static component along with BinCat that allows researchers to predict the expected light-leakage between a binary component and its off-axis companion (a value critical to the aforementioned techniques) at any epoch. This is accomplished by using orbital elements from the Sixth Orbital Catalog to model the orbits of the binaries. The software was validated against the historical data used to generate the orbital parameters. When orbital information is unknown or the binaries are purely optical the proper motion of the pair taken from the Washington Double Star catalog is integrated in time to estimate expected light-leakage.

  8. Environmentally Friendly Production of D(−) Lactic Acid by Sporolactobacillus nakayamae: Investigation of Fermentation Parameters and Fed-Batch Strategies

    PubMed Central

    Michelz Beitel, Susan; Fontes Coelho, Luciana; Sass, Daiane Cristina

    2017-01-01

    The interest in the production of lactic acid has increased due to its wide range of applications. In the present study, the variables that affect fermentative D(−) lactic acid production were investigated: neutralizing agents, pH, temperature, inoculum percentage, agitation, and concentration of the medium components. An experimental design was applied to determine the optimal concentrations of the medium components and fermentation was studied using different feeding strategies. High production (122.41 g/L) and productivity (3.65 g/L·h) were efficiently achieved by Sporolactobacillus nakayamae in 54 h using a multipulse fed-batch technique with an initial medium containing 35 g/L of yeast extract (byproduct of alcohol production), 60 g/L of crystallized sugar, and 7.5 mL/L of salts. The fermentation process was conducted at 35°C and pH 6.0 controlled by NaOH with a 20% volume of inoculum and agitation at 125 rpm. The production of a high optically pure concentration of D(−) lactic acid combined with an environmentally friendly NaOH-based process demonstrates that S. nakayamae is a promising strain for D(−) lactic acid production. PMID:29081803

  9. Phase equillibria and solidification behaviour in the vanillin- p-anisidine system

    NASA Astrophysics Data System (ADS)

    Singh, N. B.; Das, S. S.; Gupta, Preeti; Dwivedi, M. K.

    2008-12-01

    Phase diagram of the vanillin- p-anisidine system has been studied by the thaw melt method. Congruent melting-type phase diagram exhibiting two eutectic points was obtained. Vanillin and p-anisidine react in 1:1 M ratio and form N-(4-methoxy phenyl)-4-hydroxy-3-methoxy phenyl methanimine (NHM) and water. Heats of fusion of pure components and the eutectic mixtures ( E1 and E2) were obtained from DSC studies. Jackson's roughness parameters ( α) were calculated. Excess Gibbs free energy ( GE), excess entropy ( SE) and excess enthalpy ( HE) of mixing of pre-, post- and eutectic mixtures were also calculated by using activity coefficient data. Linear velocities of solidification of components and eutectic mixtures were determined at different undercoolings. The values of excess thermodynamic functions and linear velocity data have indicated the non-ideal nature of the eutectic mixtures. Interaction energies in the gaseous state, calculated from computer simulation, have also indicated that the eutectics are non-ideal mixtures. Microstructural studies of vanillin, p-anisidine and NHM show the formation of broken lamellar type structures. However, for the eutectic E1, an irregular type and for the eutectic E2, a lamellar type structures were obtained. The effect of impurity on the microstructures of eutectic mixtures was also studied.

  10. Bianchi cosmologies with p-form gauge fields

    NASA Astrophysics Data System (ADS)

    Normann, Ben David; Hervik, Sigbjørn; Ricciardone, Angelo; Thorsrud, Mikjel

    2018-05-01

    In this paper the dynamics of free gauge fields in Bianchi type I–VII h space-times is investigated. The general equations for a matter sector consisting of a p-form field strength (p \\in \\{1, 3\\} ), a cosmological constant (4-form) and perfect fluid in Bianchi type I–VII h space-times are computed using the orthonormal frame method. The number of independent components of a p-form in all Bianchi types I–IX are derived and, by means of the dynamical systems approach, the behaviour of such fields in Bianchi type I and V are studied. Both a local and a global analysis are performed and strong global results regarding the general behaviour are obtained. New self-similar cosmological solutions appear both in Bianchi type I and Bianchi type V, in particular, a one-parameter family of self-similar solutions, ‘Wonderland (λ)’ appears generally in type V and in type I for λ=0 . Depending on the value of the equation of state parameter other new stable solutions are also found (‘The Rope’ and ‘The Edge’) containing a purely spatial field strength that rotates relative to the co-moving inertial tetrad. Using monotone functions, global results are given and the conditions under which exact solutions are (global) attractors are found.

  11. Novel EGCG assisted ultrasound synthesis of self-assembled Ca2SiO4:Eu(3+) hierarchical superstructures: Photometric characteristics and LED applications.

    PubMed

    Venkataravanappa, M; Nagabhushana, H; Darshan, G P; Daruka Prasad, B; Vijayakumar, G R; Premkumar, H B; Udayabhanu

    2016-11-01

    This paper reports for the first time ultrasound, EGCG assisted synthesis of pure and Eu(3+) (1-5mol%) activated Ca2SiO4 nanophosphors having self-assembled superstructures with high purity. The shape, size and morphology of the product were tuned by controlling influential parameters. It was found that morphology was highly dependent on EGCG concentration, sonication time, pH and sonication power. The probable formation mechanism for various hierarchical superstructures was proposed. The PL studies of Ca2SiO4:Eu(3+) phosphors can be effectively excited by the near ultraviolet (UV) (396nm) light and exhibited strong red emission around 613nm, which was attributed to the Eu(3+) ((5)D0→(7)F2) transition. The concentration quenching phenomenon was explained based on energy transfer between defect and Eu(3+) ions, electron-phonon coupling and Eu(3+)-Eu(3+) interaction. The Judd-Ofelt intensity parameters and radiative properties were estimated by using PL emission spectra. The photometric studies indicate that the obtained phosphors could be a promising red component for possible applications in the field of white light emitting diodes. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. From convection rolls to finger convection in double-diffusive turbulence

    NASA Astrophysics Data System (ADS)

    Yang, Yantao; Verzicco, Roberto; Lohse, Detlef

    2015-11-01

    The double diffusive convection (DDC), where the fluid density depends on two scalar components with very different molecular diffusivities, is frequently encountered in oceanography, astrophysics, and electrochemistry. In this talk we report a systematic study of vertically bounded DDC for various control parameters. The flow is driven by an unstable salinity difference between two plates and stabilized by a temperature difference. As the relative strength of temperature difference becomes stronger, the flow transits from a state with large-scale convection rolls, which is similar to the Rayleigh-Bénard (RB) flow, to a state with well-organised salt fingers. When the temperature difference increases further, the flow breaks down to a purely conductive state. During this transit the velocity decreases monotonically. Counterintuitively, the salinity transfer can be enhanced when a stabilising temperature field is applied to the system. This happens when convection rolls are replaced by salt fingers. In addition, we show that the Grossmann-Lohse theory originally developed for RB flow can be directly applied to the current problem and accurately predicts the salinity transfer rate for a wide range of control parameters. Supported by Stichting FOM and the National Computing Facilities (NCF), both sponsored by NWO. The simulations were conducted on the Dutch supercomputer Cartesius at SURFsara.

  13. Experimental density measurements of bis(2-ethylhexyl) phthalate at elevated temperatures and pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamgbade, Babatunde A; Wu, Yue; Baled, Hseen O

    2013-08-01

    Experimental high-temperature, high-pressure (HTHP) density data for bis(2-ethylhexyl) phthalate (DEHP) are reported in this study. DEHP is a popular choice as a reference fluid for viscosity calibrations in the HTHP region. However, reliable HTHP density values are needed for accurate viscosity calculations for certain viscometers (e.g. rolling ball). HTHP densities are determined at T = (373, 424, 476, 492, and 524) K and P to 270 MPa using a variable-volume, high-pressure view cell. The experimental density data are satisfactorily correlated by the modified Tait equation with a mean absolute percent deviation (δ) of 0.15. The experimental data are modeled withmore » the Peng–Robinson (PREoS), volume-translated PREoS (VT-PREoS), and perturbed chain statistical associating fluid theory (PC-SAFT EoS) models. The required parameters for the two PREoS and the PC-SAFT EoS models are determined using group contribution methods. The PC-SAFT EoS performs the best of the three models with a δ of 2.12. The PC-SAFT EoS is also fit to the experimental data to obtain a new set of pure component parameters that yield a δ of 0.20 for these HTHP conditions.« less

  14. Comparative behavioral effects between synthetic 2,4,5-trimethylthiazoline (TMT) and the odor of natural fox (Vulpes vulpes) feces in mice.

    PubMed

    Buron, Gaelle; Hacquemand, Romain; Pourie, Gregory; Lucarz, Annie; Jacquot, Laurence; Brand, Gerard

    2007-10-01

    Synthetic 2,4,5-trimethylthiazoline (TMT)--a component of red fox (Vulpes vulpes) feces--is frequently used to induce unconditioned fear in rodents. Surprisingly, direct comparison between TMT and natural fox feces odor is almost nonexistent. In this study, Experiment 1 compared the avoidance in relation to TMT concentration, natural fox feces, and gender of fox and mice. Results show that the avoidance is (a) higher with either pure or 50% TMT as compared to natural fox feces, whereas the difference is slight with 10% TMT, and (b) significantly higher for the female mouse group compared to the male mouse group with TMT as well as natural fox feces. In addition, no clear difference in effect was observed between male and female fox feces. Experiment 2 compared behavioral parameters recorded as an index of fear and anxiety, general activity, and avoidance in elevated plus-maze and open-field chamber between 10% TMT and natural fox feces in relation to the estrus cycle of the mice. Results show no cycle period effect--except for the avoidance parameter "distance to odorant"--and no different effects between 10% TMT and natural fox feces except for freezing. (PsycINFO Database Record (c) 2007 APA, all rights reserved).

  15. Mechanistic modelling of drug release from a polymer matrix using magnetic resonance microimaging.

    PubMed

    Kaunisto, Erik; Tajarobi, Farhad; Abrahmsen-Alami, Susanna; Larsson, Anette; Nilsson, Bernt; Axelsson, Anders

    2013-03-12

    In this paper a new model describing drug release from a polymer matrix tablet is presented. The utilization of the model is described as a two step process where, initially, polymer parameters are obtained from a previously published pure polymer dissolution model. The results are then combined with drug parameters obtained from literature data in the new model to predict solvent and drug concentration profiles and polymer and drug release profiles. The modelling approach was applied to the case of a HPMC matrix highly loaded with mannitol (model drug). The results showed that the drug release rate can be successfully predicted, using the suggested modelling approach. However, the model was not able to accurately predict the polymer release profile, possibly due to the sparse amount of usable pure polymer dissolution data. In addition to the case study, a sensitivity analysis of model parameters relevant to drug release was performed. The analysis revealed important information that can be useful in the drug formulation process. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Application of interleaving models for the description of intrusive layering at the fronts of deep polar water in the Eurasian Basin (Arctic)

    NASA Astrophysics Data System (ADS)

    Kuzmina, N. P.; Zhurbas, N. V.; Emelianov, M. V.; Pyzhevich, M. L.

    2014-09-01

    Interleaving models of pure thermohaline and baroclinic frontal zones are applied to describe intrusions at the fronts found in the upper part of the Deep Polar Water (DPW) when the stratification was absolutely stable. It is assumed that differential mixing is the main mechanism of the intrusion formation. Important parameters of the interleaving such as the growth rate, vertical scale, and slope of the most unstable modes relative to the horizontal plane are calculated. It was found that the interleaving model for a pure thermohaline front satisfactory describes the important intrusion parameters observed at the frontal zone. In the case of a baroclinic front, satisfactory agreement over all the interleaving parameters is observed between the model calculations and observations provided that the vertical momentum diffusivity significantly exceeds the corresponding coefficient of mass diffusivity. Under specific (reasonable) constraints of the vertical momentum diffusivity, the most unstable mode has a vertical scale approximately two-three times smaller than the vertical scale of the observed intrusions. A thorough discussion of the results is presented.

  17. Revisiting crash spatial heterogeneity: A Bayesian spatially varying coefficients approach.

    PubMed

    Xu, Pengpeng; Huang, Helai; Dong, Ni; Wong, S C

    2017-01-01

    This study was performed to investigate the spatially varying relationships between crash frequency and related risk factors. A Bayesian spatially varying coefficients model was elaborately introduced as a methodological alternative to simultaneously account for the unstructured and spatially structured heterogeneity of the regression coefficients in predicting crash frequencies. The proposed method was appealing in that the parameters were modeled via a conditional autoregressive prior distribution, which involved a single set of random effects and a spatial correlation parameter with extreme values corresponding to pure unstructured or pure spatially correlated random effects. A case study using a three-year crash dataset from the Hillsborough County, Florida, was conducted to illustrate the proposed model. Empirical analysis confirmed the presence of both unstructured and spatially correlated variations in the effects of contributory factors on severe crash occurrences. The findings also suggested that ignoring spatially structured heterogeneity may result in biased parameter estimates and incorrect inferences, while assuming the regression coefficients to be spatially clustered only is probably subject to the issue of over-smoothness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. On the nature of fast sausage waves in coronal loops

    NASA Astrophysics Data System (ADS)

    Bahari, Karam

    2018-05-01

    The effect of the parameters of coronal loops on the nature of fast sausage waves are investigated. To do this three models of the coronal loop considered, a simple loop model, a current-carrying loop model and a model with radially structured density called "Inner μ" profile. For all the models the Magnetohydrodynamic (MHD) equations solved analytically in the linear approximation and the restoring forces of oscillations obtained. The ratio of the magnetic tension force to the pressure gradient force obtained as a function of the distance from the axis of the loop. In the simple loop model for all values of the loop parameters the fast sausages wave have a mixed nature of Alfvénic and fast MHD waves, in the current-carrying loop model with thick annulus and low density contrast the fast sausage waves can be considered as purely Alfvénic wave in the core region of the loop, and in the "Inner μ" profile for each set of the parameters of the loop the wave can be considered as a purely Alfvénic wave in some regions of the loop.

  19. Two-dimensional multi-component photometric decomposition of CALIFA galaxies

    NASA Astrophysics Data System (ADS)

    Méndez-Abreu, J.; Ruiz-Lara, T.; Sánchez-Menguiano, L.; de Lorenzo-Cáceres, A.; Costantin, L.; Catalán-Torrecilla, C.; Florido, E.; Aguerri, J. A. L.; Bland-Hawthorn, J.; Corsini, E. M.; Dettmar, R. J.; Galbany, L.; García-Benito, R.; Marino, R. A.; Márquez, I.; Ortega-Minakata, R. A.; Papaderos, P.; Sánchez, S. F.; Sánchez-Blazquez, P.; Spekkens, K.; van de Ven, G.; Wild, V.; Ziegler, B.

    2017-02-01

    We present a two-dimensional multi-component photometric decomposition of 404 galaxies from the Calar Alto Legacy Integral Field Area data release 3 (CALIFA-DR3). They represent all possible galaxies with no clear signs of interaction and not strongly inclined in the final CALIFA data release. Galaxies are modelled in the g, r, and I Sloan Digital Sky Survey (SDSS) images including, when appropriate, a nuclear point source, bulge, bar, and an exponential or broken disc component. We use a human-supervised approach to determine the optimal number of structures to be included in the fit. The dataset, including the photometric parameters of the CALIFA sample, is released together with statistical errors and a visual analysis of the quality of each fit. The analysis of the photometric components reveals a clear segregation of the structural composition of galaxies with stellar mass. At high masses (log (M⋆/M⊙) > 11), the galaxy population is dominated by galaxies modelled with a single Sérsic or a bulge+disc with a bulge-to-total (B/T) luminosity ratio B/T > 0.2. At intermediate masses (9.5 < log (M⋆/M⊙) < 11), galaxies described with bulge+disc but B/T < 0.2 are preponderant, whereas, at the low mass end (log (M⋆/M⊙) < 9.5), the prevailing population is constituted by galaxies modelled with either purediscs or nuclear point sources+discs (I.e., no discernible bulge). We obtain that 57% of the volume corrected sample of disc galaxies in the CALIFA sample host a bar. This bar fraction shows a significant drop with increasing galaxy mass in the range 9.5 < log (M⋆/M⊙) < 11.5. The analyses of the extended multi-component radial profile result in a volume-corrected distribution of 62%, 28%, and 10% for the so-called Type I (pure exponential), Type II (down-bending), and Type III (up-bending) disc profiles, respectively. These fractions are in discordance with previous findings. We argue that the different methodologies used to detect the breaks are the main cause for these differences. The catalog of fitted parameters is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A32

  20. Reader Architectures for Wireless Surface Acoustic Wave Sensors.

    PubMed

    Lurz, Fabian; Ostertag, Thomas; Scheiner, Benedict; Weigel, Robert; Koelpin, Alexander

    2018-05-28

    Wireless surface acoustic wave (SAW) sensors have some unique features that make them promising for industrial metrology. Their decisive advantage lies in their purely passive operation and the wireless readout capability allowing the installation also at particularly inaccessible locations. Furthermore, they are small, low-cost and rugged components on highly stable substrate materials and thus particularly suited for harsh environments. Nevertheless, a sensor itself does not carry out any measurement but always requires a suitable excitation and interrogation circuit: a reader. A variety of different architectures have been presented and investigated up to now. This review paper gives a comprehensive survey of the present state of reader architectures such as time domain sampling (TDS), frequency domain sampling (FDS) and hybrid concepts for both SAW resonators and reflective SAW delay line sensors. Furthermore, critical performance parameters such as measurement accuracy, dynamic range, update rate, and hardware costs of the state of the art in science and industry are presented, compared and discussed.

  1. Extended Investigation on the Delicate Correlations Between Thermal Behavior and Physical Characteristics of Multi-component Blends

    NASA Astrophysics Data System (ADS)

    Shokoohi, Shirin

    2015-11-01

    Polypropylene (PP)/polyamide6 (PA6)/ethylene propylene diene rubber (EPDM) (70/15/15) ternary polymer blends compatibilized with maleic anhydride-grafted EPDM (EPDM-g-MA) were prepared under various processing parameters (barrel temperature, screw speed, and blending sequence). Thermal studies on the prepared blend samples were carried out using differential scanning calorimetry and dynamic mechanical thermal analysis. According to the results, heterogeneous nucleation phenomenon was observed due to the solidification of the PA6 particles dispersed within the PP melt leading to a significant increase in the crystallinity degree and exotherm crystallization peak temperature of PP compared to the pure homopolymer. This was suppressed in the samples with core-shell morphology due to the reduced PP/PA6 interfacial contact. Fractionated crystallization was observed when PA6 droplets dispersed too fine within the matrix (in this case bar{d}_M˜ 0.3 \\upmu {m}). Scanning electron microscopy micrographs were consistent with the melting and crystallization behavior of the blend samples.

  2. I in generalized supergravity

    NASA Astrophysics Data System (ADS)

    Araujo, T.; Ó Colgáin, E.; Sakamoto, J.; Sheikh-Jabbari, M. M.; Yoshida, K.

    2017-11-01

    We showed in previous work that for homogeneous Yang-Baxter (YB) deformations of AdS_5× S^5 the open string metric and coupling and as a result the closed string density e^{-2 Φ } √{g} remain undeformed. In this work, in addition to extending these results to the deformation associated with the modified CYBE or η -deformation, we identify the Page forms as the open string counterpart for RR fields and demonstrate case by case that the non-zero Page forms remain invariant under YB deformations. We give a physical meaning to the Killing vector I of generalized supergravity and show for all YB deformations: (1) I appears as a current for the center of mass motion on the worldvolume of a D-brane probing the background, (2) I is equal to the divergence of the noncommutativity parameter, (3) I exhibits "holographic" behavior where the radial component of I vanishes at the AdS boundary and (4) in pure spinor formalism I is related to a certain state in the BRST cohomology.

  3. Multiple energetic injections in a strong spike-like solar burst

    NASA Technical Reports Server (NTRS)

    Kaufmann, P.; Correia, E.; Costa, J. E. R.; Dennis, B. R.; Hurford, G. J.; Brown, J. C.

    1984-01-01

    An intense and fast spike-like solar burst was built up of short time scale structures superimposed on an underlying gradual emission, the time evolution of which shows remarkable proportionality between hard X-ray and microwave fluxes. The finer time structures were best defined at mm-microwaves. At the peak of the event, the finer structures repeat every 30 x 60 ms. The more slowly varying component with a time scale of about 1 second was identified in microwave hard X-rays throughout the burst duration. It is suggested that X-ray fluxes might also be proportional to the repetition rate of basic units of energy injection (quasi-quantized). The relevant parameters of one primary energy release site are estimated both in the case where hard X-rays are produced primarily by thick-target bremsstrahlung, and when they are purely thermal. The relation of this figure to global energy considerations is discussed. Previously announced in STAR as N83-35983

  4. Coupling a single electron spin to a microwave resonator: Part I: controlling transverse and longitudinal couplings

    NASA Astrophysics Data System (ADS)

    Lachance-Quirion, Dany; Beaudoin, Félix; Camirand Lemyre, Julien; Coish, William A.; Pioro-Ladrière, Michel

    Novel quantum technologies can be combined within hybrid systems to benefit from the complementary capabilities of individual components. For example, microwave-frequency superconducting resonators are ideally suited to perform qubit readout and to mediate two-qubit gates, while spin qubits offer long coherence times and high-fidelity single-qubit gates. In this talk, we consider strong coupling between a microwave resonator and an electron-spin qubit in a double quantum dot due to an inhomogeneous magnetic field generated by a nearby nanomagnet.. Considering realistic parameters, we estimate spin-resonator couplings of order 1 MHz. Further, we show that the position of the double dot relative to the nanomagnet allows us to select between purely longitudinal and transverse couplings. While the transverse coupling may be used for quantum state transfer between the spin qubit and the resonator, the longitudinal coupling could be used in a new qubit readout scheme recently introduced for superconducting qubits.

  5. Investigation of the Deposition and Densification Parameters on the Mechanical Properties of Pressurized Spray Deposited (PSD) 3-D Printed Ceramic Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menchhofer, Paul A.; Becker, Benjamin

    Oak Ridge National Laboratory (ORNL) and HotEnd Works teamed to investigate the use of pressurized spray deposition (PSD) technology for the production of ceramic parts via additive manufacturing. Scanning electron microscopy of sintered parts provided by HotEnd Works revealed voids large enough to compromise the mechanical properties of PSD manufactured parts. Scanning electron microscopy and particle size analysis of the alumina oxide powder feedstocks indicated that the powders contained some large particles and some agglomerations in the powder. Further classification of the powder feedstocks and removal of the agglomerates by sonication in the liquid used for the PSD process aremore » recommended. Analysis of sintered parts indicated that the sonic modulus for the alumina part is consistent with other known values for alumina. The density for this part was determined by standard Archimedes immersion density methods and was found to be > 99.7 % of the theoretical density for pure alumina.« less

  6. From convection rolls to finger convection in double-diffusive turbulence

    PubMed Central

    Verzicco, Roberto; Lohse, Detlef

    2016-01-01

    Double-diffusive convection (DDC), which is the buoyancy-driven flow with fluid density depending on two scalar components, is ubiquitous in many natural and engineering environments. Of great interests are scalars' transfer rate and flow structures. Here we systematically investigate DDC flow between two horizontal plates, driven by an unstable salinity gradient and stabilized by a temperature gradient. Counterintuitively, when increasing the stabilizing temperature gradient, the salinity flux first increases, even though the velocity monotonically decreases, before it finally breaks down to the purely diffusive value. The enhanced salinity transport is traced back to a transition in the overall flow pattern, namely from large-scale convection rolls to well-organized vertically oriented salt fingers. We also show and explain that the unifying theory of thermal convection originally developed by Grossmann and Lohse for Rayleigh–Bénard convection can be directly applied to DDC flow for a wide range of control parameters (Lewis number and density ratio), including those which cover the common values relevant for ocean flows. PMID:26699474

  7. Greenhouse effect in planetary atmospheres caused by molecular symmetry breaking in intermolecular interactions

    NASA Astrophysics Data System (ADS)

    Vigasin, A. A.; Mokhov, I. I.

    2017-03-01

    It is believed that the greenhouse effect is related to the parameters of absorption spectra of polyatomic molecules, usually trace gases, in planetary atmospheres. The main components of all known atmospheres of celestial bodies are symmetrical molecules that do not possess the dipole-allowed purely rotational (and in the case of diatomic molecules, vibrational-rotational) absorption spectrum. Upon increased pressure, a weak absorption appears, induced by intermolecular interaction, which can lead to a greenhouse effect. The contribution of the induced absorption in radiative forcing of a dense atmosphere may amount to a few or even tens of W/m2. In conditions typical for the atmospheres of terrestrial planets (including paleoatmospheres), the collision-induced absorption and associated greenhouse effect may lead to an increase in surface temperature above the freezing point of water. There is a correlation between the temperature of an atmosphere and the intermolecular bonding energy of gases that dominate in planetary atmospheres of the Solar System.

  8. Formulation development of physiological environment responsive periodontal drug delivery system for local delviery of metronidazole benzoate.

    PubMed

    Dabhi, Mahesh R; Sheth, Navin R

    2013-03-01

    The objective of the present investigation was to develop and evaluate physiological environment responsive periodontal drug delivery system (PERPDDS) for local delivery of metronidazole benzoate. Poly-ϵ-caprolactone an in situ precipitating polymer was used in combination with, carbopol 934P, a pH simulative polymer to develop PERPDDS. The prepared PERPDDS was evaluated for various parameters such as in vitro gelling capacity, viscosity, rheology, compatibility study, and in vitro diffusion study. A 3(2) full factorial design was used to investigate the influence of formulation variables. Drug release data from all formulations were fitted to different kinetic models and the korsemeyer-peppas model was found the best fit model. The value of diffusional exponent (n) was in between 0.3283 and 0.3979 indicating purely fickian diffusion release mechanism. Increasing the concentration of each polymeric component increases viscosity, and time for 50% and 90% drug release was observed and graphically represented by the surface response and contour plots.

  9. Polarizing Beam Splitter: A New Approach Based on Transformation Optics

    NASA Astrophysics Data System (ADS)

    Mueller, Jonhatan; Wegener, Martin

    Standard optical elements (e.g. lenses, prisms) are mostly designed of piecewise homogeneous and isotropic dielectrics. However, in theory one has far more possibilities to influence electromagnetic waves, namely all the components of the permittivity and permeability tensors. In the past few years, on the one hand, new micro fabrication methods allowed for new freedom in controlling of the optical parameters using so called artificial metamaterials. On the other hand, the theory of transformation optics has given a somewhat intuitive approach for the design of such structures. The most popular feature of this kind is certainly optical cloaking (i.e. [1,2]). However, the full capabilities of other transformation optical devices are far from being fully explored. In my work, I focused on pure dielectric structures in a non-resonant and therefore non-lossy regime. Although the relative permittivity one can achieve this way is limited by the available natural dielectrics, a broad spectrum of features can be realized.

  10. A geometric measure of dark energy with pairs of galaxies.

    PubMed

    Marinoni, Christian; Buzzi, Adeline

    2010-11-25

    Observations indicate that the expansion of the Universe is accelerating, which is attributed to a ‘dark energy’ component that opposes gravity. There is a purely geometric test of the expansion of the Universe (the Alcock–Paczynski test), which would provide an independent way of investigating the abundance (Ω(X)) and equation of state (W(X)) of dark energy. It is based on an analysis of the geometrical distortions expected from comparing the real-space and redshift-space shape of distant cosmic structures, but it has proved difficult to implement. Here we report an analysis of the symmetry properties of distant pairs of galaxies from archival data. This allows us to determine that the Universe is flat. By alternately fixing its spatial geometry at Ω(k)≡0 and the dark energy equation-of-state parameter at W(X)≡-1, and using the results of baryon acoustic oscillations, we can establish at the 68.3% confidence level that and -0.85>W(X)>-1.12 and 0.60<Ω(X)<0.80.

  11. Mechanochemical synthesis and intercalation of Ca(II)Fe(III)-layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Ferencz, Zs.; Szabados, M.; Varga, G.; Csendes, Z.; Kukovecz, Á.; Kónya, Z.; Carlson, S.; Sipos, P.; Pálinkó, I.

    2016-01-01

    A mechanochemical method (grinding the components without added water - dry grinding, followed by further grinding in the presence of minute amount of water or NaOH solution - wet grinding) was used in this work for the preparation and intercalation of CaFe-layered double hydroxides (LDHs). Both the pristine LDHs and the amino acid anion (cystinate and tyrosinate) intercalated varieties were prepared by the two-step grinding procedure in a mixer mill. By systematically changing the conditions of the preparation method, a set of parameters could be determined, which led to the formation of close to phase-pure LDH. The optimisation procedure was also applied for the intercalation processes of the amino acid anions. The resulting materials were structurally characterised by a range of methods (X-ray diffractometry, scanning electron microscopy, energy dispersive analysis, thermogravimetry, X-ray absorption and infra-red spectroscopies). It was proven that this simple mechanochemical procedure was able to produce complex organic-inorganic nanocomposites: LDHs intercalated with amino acid anions.

  12. Development of high-power CO2 lasers and laser material processing

    NASA Astrophysics Data System (ADS)

    Nath, Ashish K.; Choudhary, Praveen; Kumar, Manoj; Kaul, R.

    2000-02-01

    Scaling laws to determine the physical dimensions of the active medium and optical resonator parameters for designing convective cooled CO2 lasers have been established. High power CW CO2 lasers upto 5 kW output power and a high repetition rate TEA CO2 laser of 500 Hz and 500 W average power incorporated with a novel scheme for uniform UV pre- ionization have been developed for material processing applications. Technical viability of laser processing of several engineering components, for example laser surface hardening of fine teeth of files, laser welding of martensitic steel shroud and titanium alloy under-strap of turbine, laser cladding of Ni super-alloy with stellite for refurbishing turbine blades were established using these lasers. Laser alloying of pre-placed SiC coating on different types of aluminum alloy, commercially pure titanium and Ti-6Al-4V alloy, and laser curing of thermosetting powder coating have been also studied. Development of these lasers and results of some of the processing studies are briefly presented here.

  13. Near-Infrared Band Strengths of Molecules Diluted in N2 and H2O Ice Mixtures Relevant to Interstellar and Planetary Ices

    NASA Technical Reports Server (NTRS)

    Richey, Christina Rae; Gerakines, P.A.

    2012-01-01

    The relative abundances of ices in astrophysical environments rely on accurate laboratory measurements of physical parameters, such as band strengths (or absorption intensities), determined for the molecules of interest in relevant mixtures. In an extension of our previous study on pure-ice samples, here we focus on the near-infrared absorption features of molecules in mixtures with the dominant components of interstellar and planetary ices, H2O and N2. We present experimentally measured near-infrared spectral information (peak positions, widths, and band strengths) for both H2O- and N2-dominated mixtures of CO (carbon monoxide), CO2 (carbon dioxide), CH4 (methane), and NH3 (ammonia). Band strengths were determined during sample deposition by correlating the growth of near-infrared features (10,000-4000 per centimeter, 1-2.5 micrometers) with better-known mid-infrared features (4000-400 per centimeter, 2.5-25 micrometers) at longer wavelengths.

  14. Aircraft noise synthesis system

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.; Grandle, Robert E.

    1987-01-01

    A second-generation Aircraft Noise Synthesis System has been developed to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying, audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure-tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics, such as duration or tonal content, are independently varied, while the remaining characteristics, such as broadband content, are held constant. The system can also generate simulations of the predicted noise characteristics of future aircraft. A description of the synthesis system and a discussion of the algorithms and methods used to generate the simulations are provided. An appendix describing the input data and providing user instructions is also included.

  15. 21 CFR 888.3670 - Shoulder joint metal/polymer/metal nonconstrained or semi-constrained porous-coated uncemented...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... as cobalt-chromium-molybdenum (Co-Cr-Mo) and titanium-aluminum-vanadium (Ti-6Al-4V) alloys, and a... Ti-6Al-4V components, beads or fibers of commercially pure titanium or Ti-6Al-4V alloy, or... and Ti-6Al-4V. The humeral component and glenoid backing have a porous coating made of, in the case of...

  16. 21 CFR 888.3670 - Shoulder joint metal/polymer/metal nonconstrained or semi-constrained porous-coated uncemented...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... as cobalt-chromium-molybdenum (Co-Cr-Mo) and titanium-aluminum-vanadium (Ti-6Al-4V) alloys, and a... Ti-6Al-4V components, beads or fibers of commercially pure titanium or Ti-6Al-4V alloy, or... and Ti-6Al-4V. The humeral component and glenoid backing have a porous coating made of, in the case of...

  17. 21 CFR 888.3670 - Shoulder joint metal/polymer/metal nonconstrained or semi-constrained porous-coated uncemented...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... as cobalt-chromium-molybdenum (Co-Cr-Mo) and titanium-aluminum-vanadium (Ti-6Al-4V) alloys, and a... Ti-6Al-4V components, beads or fibers of commercially pure titanium or Ti-6Al-4V alloy, or... and Ti-6Al-4V. The humeral component and glenoid backing have a porous coating made of, in the case of...

  18. 21 CFR 888.3670 - Shoulder joint metal/polymer/metal nonconstrained or semi-constrained porous-coated uncemented...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... as cobalt-chromium-molybdenum (Co-Cr-Mo) and titanium-aluminum-vanadium (Ti-6Al-4V) alloys, and a... Ti-6Al-4V components, beads or fibers of commercially pure titanium or Ti-6Al-4V alloy, or... and Ti-6Al-4V. The humeral component and glenoid backing have a porous coating made of, in the case of...

  19. [Gene method for inconsistent hydrological frequency calculation. I: Inheritance, variability and evolution principles of hydrological genes].

    PubMed

    Xie, Ping; Wu, Zi Yi; Zhao, Jiang Yan; Sang, Yan Fang; Chen, Jie

    2018-04-01

    A stochastic hydrological process is influenced by both stochastic and deterministic factors. A hydrological time series contains not only pure random components reflecting its inheri-tance characteristics, but also deterministic components reflecting variability characteristics, such as jump, trend, period, and stochastic dependence. As a result, the stochastic hydrological process presents complicated evolution phenomena and rules. To better understand these complicated phenomena and rules, this study described the inheritance and variability characteristics of an inconsistent hydrological series from two aspects: stochastic process simulation and time series analysis. In addition, several frequency analysis approaches for inconsistent time series were compared to reveal the main problems in inconsistency study. Then, we proposed a new concept of hydrological genes origined from biological genes to describe the inconsistent hydrolocal processes. The hydrologi-cal genes were constructed using moments methods, such as general moments, weight function moments, probability weight moments and L-moments. Meanwhile, the five components, including jump, trend, periodic, dependence and pure random components, of a stochastic hydrological process were defined as five hydrological bases. With this method, the inheritance and variability of inconsistent hydrological time series were synthetically considered and the inheritance, variability and evolution principles were fully described. Our study would contribute to reveal the inheritance, variability and evolution principles in probability distribution of hydrological elements.

  20. Nonassociative Plasticity Alters Competitive Interactions Among Mixture Components In Early Olfactory Processing

    PubMed Central

    Locatelli, Fernando F; Fernandez, Patricia C; Villareal, Francis; Muezzinoglu, Kerem; Huerta, Ramon; Galizia, C. Giovanni; Smith, Brian H.

    2012-01-01

    Experience related plasticity is an essential component of networks involved in early olfactory processing. However, the mechanisms and functions of plasticity in these neural networks are not well understood. We studied nonassociative plasticity by evaluating responses to two pure odors (A and X) and their binary mixture using calcium imaging of odor elicited activity in output neurons of the honey bee antennal lobe. Unreinforced exposure to A or X produced no change in the neural response elicited by the pure odors. However, exposure to one odor (e.g. A) caused the response to the mixture to become more similar to the other component (X). We also show in behavioral analyses that unreinforced exposure to A caused the mixture to become perceptually more similar to X. These results suggest that nonassociative plasticity modifies neural networks in such a way that it affects local competitive interactions among mixture components. We used a computational model to evaluate the most likely targets for modification. Hebbian modification of synapses from inhibitory local interneurons to projection neurons most reliably produces the observed shift in response to the mixture. These results are consistent with a model in which the antennal lobe acts to filter olfactory information according to its relevance for performing a particular task. PMID:23167675

  1. Novel pure component contribution, mean centering of ratio spectra and factor based algorithms for simultaneous resolution and quantification of overlapped spectral signals: An application to recently co-formulated tablets of chlorzoxazone, aceclofenac and paracetamol

    NASA Astrophysics Data System (ADS)

    Toubar, Safaa S.; Hegazy, Maha A.; Elshahed, Mona S.; Helmy, Marwa I.

    2016-06-01

    In this work, resolution and quantitation of spectral signals are achieved by several univariate and multivariate techniques. The novel pure component contribution algorithm (PCCA) along with mean centering of ratio spectra (MCR) and the factor based partial least squares (PLS) algorithms were developed for simultaneous determination of chlorzoxazone (CXZ), aceclofenac (ACF) and paracetamol (PAR) in their pure form and recently co-formulated tablets. The PCCA method allows the determination of each drug at its λmax. While, the mean centered values at 230, 302 and 253 nm, were used for quantification of CXZ, ACF and PAR, respectively, by MCR method. Partial least-squares (PLS) algorithm was applied as a multivariate calibration method. The three methods were successfully applied for determination of CXZ, ACF and PAR in pure form and tablets. Good linear relationships were obtained in the ranges of 2-50, 2-40 and 2-30 μg mL- 1 for CXZ, ACF and PAR, in order, by both PCCA and MCR, while the PLS model was built for the three compounds each in the range of 2-10 μg mL- 1. The results obtained from the proposed methods were statistically compared with a reported one. PCCA and MCR methods were validated according to ICH guidelines, while PLS method was validated by both cross validation and an independent data set. They are found suitable for the determination of the studied drugs in bulk powder and tablets.

  2. Thermal diffusivity of peat, sand and their mixtures at different water contents

    NASA Astrophysics Data System (ADS)

    Gvozdkova, Anna; Arkhangelskaya, Tatiana

    2014-05-01

    Thermal diffusivity of peat, sand and their mixtures at different water contents was studied using the unsteady-state method described in (Parikh et al., 1979). Volume sand content in studied samples was 0 % (pure peat), 5, 10, 15, 20, 30, 40, 50, 55 and 62 % (pure sand). Thermal diffusivity of air-dry samples varied from 0.6×10-7m2s-1 for pure peat to 7.0×10-7m2s-1 for pure sand. Adding 5 and 10 vol. % of sand didn't change the thermal diffusivity of studied mixture as compared with that of the pure air-dry peat. Adding 15 % of sand resulted in significant increase of thermal diffusivity by approximately 1.5 times: from 0.6×10-7m2s-1 to 0.9×10-7m2s-1. It means that small amounts of sand with separate sand particles distributed within the peat don't contribute much to the heat transfer through the studied media. And there is a kind of threshold between the 10 and 15 vol. % of sand, after which the continuous sandy chains are formed within the peat, which can serve as preferential paths of heat transport. Adding 20 and 30 % of sand resulted in further increase of thermal diffusivity to 1.3×10-7m2s-1 and 1.7×10-7m2s-1, which is more than two and three times greater than the initial value for pure peat. Thermal diffusivity vs. moisture content dependencies had different shapes. For sand contents of 0 to 40 vol. % the thermal diffusivity increased with water content in the whole studied range from air-dry samples to the capillary moistened ones. For pure peat the experimental curves were almost linear; the more sand was added the more pronounced became the S-shape of the curves. For sand contents of 50 % and more the curves had a pronounced maximum within the range of water contents between 0.10 and 0.25 m3m-3 and then decreased. The experimental k(θ) curves, where k is soil thermal diffusivity, θ is water content, were parameterized with a 4-parameter approximating function (Arkhangelskaya, 2009, 2014). The suggested approximation has an advantage of clear physical interpretation: the parameters are (1) the thermal diffusivity of the dry sample; (2) the difference between the highest thermal diffusivity at some optional water content and that of the dry sample; (3) the optional water content at which the thermal diffusivity reaches its maximum; (4) half-width of the peak of the k(θ) curve. The increase of sand contents in studied mixtures was accompanied by the increase of the parameters (1), (2) and (4) and the decrease of the parameter (3). References Parikh R.J., Havens J.A., Scott H.D., 1979. Thermal diffusivity and conductivity of moist porous media. Soil Science Society of America Journal 43, 1050-1052. Arkhangel'skaya T.A., 2009. Parameterization and mathematical modeling of the dependence of soil thermal diffusivity on the water content. Eurasian Soil Science 42 (2), 162-172. doi: 10.1134/S1064229309020070 Arkhangelskaya T.A., 2014. Diversity of thermal conditions within the paleocryogenic soil complexes of the East European Plain: The discussion of key factors and mathematical modeling // Geoderma. Vol. 213. P. 608-616. doi 10.1016/j.geoderma.2013.04.001

  3. As-built design specification for PARCLS

    NASA Technical Reports Server (NTRS)

    Tompkins, M. A. (Principal Investigator)

    1981-01-01

    The PARCLS program, part of the CLASFYG package, reads a parameter file created by the CLASFYG program and a pure pixel ground truth file in order to create to classification file of three separate crop categories in universal format.

  4. Perspectives on the Pure-Tone Audiogram.

    PubMed

    Musiek, Frank E; Shinn, Jennifer; Chermak, Gail D; Bamiou, Doris-Eva

    The pure-tone audiogram, though fundamental to audiology, presents limitations, especially in the case of central auditory involvement. Advances in auditory neuroscience underscore the considerably larger role of the central auditory nervous system (CANS) in hearing and related disorders. Given the availability of behavioral audiological tests and electrophysiological procedures that can provide better insights as to the function of the various components of the auditory system, this perspective piece reviews the limitations of the pure-tone audiogram and notes some of the advantages of other tests and procedures used in tandem with the pure-tone threshold measurement. To review and synthesize the literature regarding the utility and limitations of the pure-tone audiogram in determining dysfunction of peripheral sensory and neural systems, as well as the CANS, and to identify other tests and procedures that can supplement pure-tone thresholds and provide enhanced diagnostic insight, especially regarding problems of the central auditory system. A systematic review and synthesis of the literature. The authors independently searched and reviewed literature (journal articles, book chapters) pertaining to the limitations of the pure-tone audiogram. The pure-tone audiogram provides information as to hearing sensitivity across a selected frequency range. Normal or near-normal pure-tone thresholds sometimes are observed despite cochlear damage. There are a surprising number of patients with acoustic neuromas who have essentially normal pure-tone thresholds. In cases of central deafness, depressed pure-tone thresholds may not accurately reflect the status of the peripheral auditory system. Listening difficulties are seen in the presence of normal pure-tone thresholds. Suprathreshold procedures and a variety of other tests can provide information regarding other and often more central functions of the auditory system. The audiogram is a primary tool for determining type, degree, and configuration of hearing loss; however, it provides the clinician with information regarding only hearing sensitivity, and no information about central auditory processing or the auditory processing of real-world signals (i.e., speech, music). The pure-tone audiogram offers limited insight into functional hearing and should be viewed only as a test of hearing sensitivity. Given the limitations of the pure-tone audiogram, a brief overview is provided of available behavioral tests and electrophysiological procedures that are sensitive to the function and integrity of the central auditory system, which provide better diagnostic and rehabilitative information to the clinician and patient. American Academy of Audiology

  5. Electron irradiation induced effects on the physico-chemical properties of L-Arginine Maleate Dihydrate (LAMD) single crystals

    NASA Astrophysics Data System (ADS)

    Thomas, Prince; Dhole, S. D.; Joseph, Ginson P.

    2018-07-01

    Single crystals of L-Arginine Maleate Dihydrate (LAMD) have been synthesized by slow solvent evaporation technique and irradiated with 6 MeV electrons at fluences of 0.5 ×1015e /cm2 , 1.0 ×1015e /cm2 and 1.5 ×1015e /cm2 . The Powder X-ray Diffraction (PXRD) studies showed that the intensity of the diffraction peaks of the Electron Beam (EB) irradiated crystals decreases with irradiation fluence. The electron irradiation induced effects on the optical parameters such as cut-off wavelength, band gap, Urbach energy and refractive index have been studied and the results are tabulated. The electronic parameters such as valence electron plasma energy, ℏωp , Penn gap, Ep , Fermi energy, EF and Electronic polarizability, α for pure and irradiated LAMD crystals are calculated. The electrical and thermal properties of the pure and irradiated LAMD crystals are also investigated.

  6. Impact of spherical nanoparticles on nematic order parameters

    NASA Astrophysics Data System (ADS)

    Kyrou, C.; Kralj, S.; Panagopoulou, M.; Raptis, Y.; Nounesis, G.; Lelidis, I.

    2018-04-01

    We study experimentally the impact of spherical nanoparticles on the orientational order parameters of a host nematic liquid crystal. We use spherical core-shell quantum dots that are surface functionalized to promote homeotropic anchoring on their interface with the liquid crystal host. We show experimentally that the orientational order may be strongly affected by the presence of spherical nanoparticles even at low concentrations. The orientational order of the composite system is probed by means of polarized micro-Raman spectroscopy and by optical birefringence measurements as function of temperature and concentration. Our data show that the orientational order depends on the concentration in a nonlinear way, and the existence of a crossover concentration χc≈0.004 pw . It separates two different regimes exhibiting pure-liquid crystal like (χ <χc ) and distorted-nematic ordering (χ >χc ), respectively. In the latter phase the degree of ordering is lower with respect to the pure-liquid crystal nematic phase.

  7. Rapidly rotating neutron stars with a massive scalar field—structure and universal relations

    NASA Astrophysics Data System (ADS)

    Doneva, Daniela D.; Yazadjiev, Stoytcho S.

    2016-11-01

    We construct rapidly rotating neutron star models in scalar-tensor theories with a massive scalar field. The fact that the scalar field has nonzero mass leads to very interesting results since the allowed range of values of the coupling parameters is significantly broadened. Deviations from pure general relativity can be very large for values of the parameters that are in agreement with the observations. We found that the rapid rotation can magnify the differences several times compared to the static case. The universal relations between the normalized moment of inertia and quadrupole moment are also investigated both for the slowly and rapidly rotating cases. The results show that these relations are still EOS independent up to a large extend and the deviations from pure general relativity can be large. This places the massive scalar-tensor theories amongst the few alternative theories of gravity that can be tested via the universal I-Love-Q relations.

  8. On the falsifiability of matching theory.

    PubMed Central

    McDowell, J J

    1986-01-01

    Herrnstein's matching theory requires the parameter, k, which appears in the single-alternative form of the matching equation, to remain invariant with respect to changes in reinforcement parameters like magnitude or immediacy. Recent experiments have disconfirmed matching theory by showing that the invariant-k requirement does not hold. However, the theory can be asserted in a purely algebraic form that does not require an invariant k and that is not disconfirmed by the recent findings. In addition, both the original and the purely algebraic versions of matching theory can be asserted in forms that allow for commonly observed deviations from matching (bias, undermatching, and overmatching). The recent finding of a variable k does not disconfirm these versions of matching theory either. As a consequence, matching remains a viable theory of behavior, the strength of which lies in its general conceptualization of all behavior as choice, and in its unified mathematical treatment of single- and multialternative environments. PMID:3950535

  9. Nonlinear analysis of 0-3 polarized PLZT microplate based on the new modified couple stress theory

    NASA Astrophysics Data System (ADS)

    Wang, Liming; Zheng, Shijie

    2018-02-01

    In this study, based on the new modified couple stress theory, the size- dependent model for nonlinear bending analysis of a pure 0-3 polarized PLZT plate is developed for the first time. The equilibrium equations are derived from a variational formulation based on the potential energy principle and the new modified couple stress theory. The Galerkin method is adopted to derive the nonlinear algebraic equations from governing differential equations. And then the nonlinear algebraic equations are solved by using Newton-Raphson method. After simplification, the new model includes only a material length scale parameter. In addition, numerical examples are carried out to study the effect of material length scale parameter on the nonlinear bending of a simply supported pure 0-3 polarized PLZT plate subjected to light illumination and uniform distributed load. The results indicate the new model is able to capture the size effect and geometric nonlinearity.

  10. Gravity-darkening exponents in semi-detached binary systems from their photometric observations. II.

    NASA Astrophysics Data System (ADS)

    Djurašević, G.; Rovithis-Livaniou, H.; Rovithis, P.; Georgiades, N.; Erkapić, S.; Pavlović, R.

    2006-01-01

    This second part of our study concerning gravity-darkening presents the results for 8 semi-detached close binary systems. From the light-curve analysis of these systems the exponent of the gravity-darkening (GDE) for the Roche lobe filling components has been empirically derived. The method used for the light-curve analysis is based on Roche geometry, and enables simultaneous estimation of the systems' parameters and the gravity-darkening exponents. Our analysis is restricted to the black-body approximation which can influence in some degree the parameter estimation. The results of our analysis are: 1) For four of the systems, namely: TX UMa, β Per, AW Cam and TW Cas, there is a very good agreement between empirically estimated and theoretically predicted values for purely convective envelopes. 2) For the AI Dra system, the estimated value of gravity-darkening exponent is greater, and for UX Her, TW And and XZ Pup lesser than corresponding theoretical predictions, but for all mentioned systems the obtained values of the gravity-darkening exponent are quite close to the theoretically expected values. 3) Our analysis has proved generally that with the correction of the previously estimated mass ratios of the components within some of the analysed systems, the theoretical predictions of the gravity-darkening exponents for stars with convective envelopes are highly reliable. The anomalous values of the GDE found in some earlier studies of these systems can be considered as the consequence of the inappropriate method used to estimate the GDE. 4) The empirical estimations of GDE given in Paper I and in the present study indicate that in the light-curve analysis one can apply the recent theoretical predictions of GDE with high confidence for stars with both convective and radiative envelopes.

  11. Pure alexia as a disconnection syndrome: new diffusion imaging evidence for an old concept.

    PubMed

    Epelbaum, Stéphane; Pinel, Philippe; Gaillard, Raphael; Delmaire, Christine; Perrin, Muriel; Dupont, Sophie; Dehaene, Stanislas; Cohen, Laurent

    2008-09-01

    Functional neuroimaging and studies of brain-damaged patients made it possible to delineate the main components of the cerebral system for word reading. However, the anatomical connections subtending the flow of information within this network are still poorly defined. Here we study the connectivity of the Visual Word Form Area (VWFA), a pivotal component of the reading network achieving the invariant identification of letter strings, and reproducibly located in the left lateral occipitotemporal sulcus. Diffusion images and functional imaging data were gathered in a patient who developed pure alexia following a small surgical lesion in the vicinity of his VWFA. We had a unique opportunity to compare images obtained before, early after, and late after surgery. Analysis of diffusion images with white matter tractography and voxel-based morphometry showed that the VWFA was mainly linked to the occipital cortex through the inferior longitudinal fasciculus (ILF), and to perisylvian language areas (supramarginal gyrus) through the arcuate fasciculus. After surgery, we observed the progressive and selective degeneration of the ILF, while the VWFA was anatomically intact. This allowed us to establish the critical causal role of this fiber tract in normal reading, and to show that its disruption is one pathophysiological mechanism of pure alexia, thus clarifying a long-standing debate on the role of disconnection in neurocognitive disorders.

  12. 21 CFR 111.3 - What definitions apply to this part?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... production. Water activity (aw) is a measure of the free moisture in a component or dietary supplement and is the quotient of the water vapor pressure of the substance divided by the vapor pressure of pure water...

  13. 21 CFR 111.3 - What definitions apply to this part?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... production. Water activity (aw) is a measure of the free moisture in a component or dietary supplement and is the quotient of the water vapor pressure of the substance divided by the vapor pressure of pure water...

  14. 21 CFR 111.3 - What definitions apply to this part?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... production. Water activity (aw) is a measure of the free moisture in a component or dietary supplement and is the quotient of the water vapor pressure of the substance divided by the vapor pressure of pure water...

  15. Effect of high hydrostatic pressure processing on the background microbial loads and quality of cantaloupe puree.

    PubMed

    Mukhopadhyay, Sudarsan; Sokorai, Kimberly; Ukuku, Dike; Fan, Xuetong; Juneja, Vijay

    2017-01-01

    The objective of this study was to investigate and evaluate the effects of high hydrostatic pressure (HHP) applied to cantaloupe puree (CP) on microbial loads and product quality during storage for 10days at 4°C. Freshly prepared, double sealed and double bagged CP (ca. 5g) was pressure treated at 300, 400 and 500MPa at 8°C and 15°C for 5min. Microflora populations, soluble solid content, pH, color, antioxidant activity, appearance and aroma were measured at 1, 6, and 10d of storage. Results showed that high pressure treatment of 300MPa (8°C and 15°C) resulted in reduction of total aerobic plate count from 3.3 to 1.8logCFU/g. The treatment reduced the populations of native aerobic plate count to non-detectable levels (detection limit 1logCFU/g) at 400MPa and 500MPa pressures at 15°C. Pressure treatment completely inactivated mold and yeast in puree below the limits of detection at day 1 and no regrowth was observed during 10days of storage at 4°C while mold and yeast in untreated puree survived during the storage. High pressure treatment did not show any adverse impact on physical properties as soluble solid content (SSC, 11.2°Brix) and acidity (pH, 6.9). The instrumental color parameters (L*, a*, b*) were affected due to HHP treatment creating a slightly lighter product, compared to control, as indicated by higher L.* and lower a* values. However the change was not detected by the sensory panel while evaluating appearance scores. Pressure treatment did not affect the antioxidant capacity of puree product compared to control. Visual appearance and sniffing aroma test by panel revealed no adverse changes in the sensory parameters as a result of HHP treatment. HHP method described in this study appears to be a promising way to inactivate spoilage microorganisms in the cantaloupe puree and maintain quality. This study provides a viable option for preservation and marketing this product. Published by Elsevier Ltd.

  16. Transfiguring structural, optical and dielectric properties of cadmium thiourea acetate crystal by the addition of L-threonine for laser assisted device applications

    NASA Astrophysics Data System (ADS)

    Kulkarni, Rupali B.; Anis, Mohd; Hussaini, S. S.; Shirsat, Mahendra D.

    2018-03-01

    Present investigation reports the growth of pure and L-threonine (LT) doped cadmium thiourea acetate (CTA) crystals by slow solution evaporation technique followed by structural, optical and dielectric characterization studies. A bulk single crystal of LT-CTA has been grown at temperature 38 °C. The single crystal x-ray diffraction technique has been employed to confirm the structural parameters of pure and LT doped CTA crystals. The increase in optical transparency of LT-CTA crystal was ascertained in the range of 200 to 900 nm using UV-visible spectral analysis. The widened optical band gap of the LT-CTA crystal is found to be 4.7 eV. Pure and doped crystals are subjected to FT-IR analysis to indicate the presence of functional groups quantitatively. Appreciable enhancement in second harmonic generation (SHG) efficiency of LT-CTA crystal with reference to parent CTA was confirmed from Kurtz-Perry SHG test (1.31 times of CTA crystal). The assertive influence of LT on electrical properties of grown crystals has been investigated in the temperature range 35 °C-120 °C. Electronic purity and the color centered photoluminescence emission nature of pure and IA-CTA crystals were justified by luminescence analysis. With the aid of single beam Z-scan analysis, the Kerr lensing nonlinearity was identified and the magnitude of TONLO parameters has been determined. The cubic susceptibility (χ3) and figure of merit (FOM) was found to be 4.81 × 10-4esu and 978.35. Results vitalize LT-CTA for laser stabilization systems.

  17. Ag nanoparticle effects on the thermoluminescent properties of monoclinic ZrO2 exposed to ultraviolet and gamma radiation

    NASA Astrophysics Data System (ADS)

    Villa-Sanchéz, G.; Mendoza-Anaya, D.; Gutiérrez-Wing, C.; Pérez-Hernández, R.; González-Martínez, P. R.; Ángeles-Chavez, C.

    2007-07-01

    The goal of this work was to analyse ZrO2 in the pure state and when doped with Ag nanoparticles, by electron microscopy, x-ray diffraction and thermoluminescence methods. According to the results obtained, Ag nanoparticles did not modify the morphology or the crystalline structure of the ZrO2. The thermoluminescent (TL) response of pure ZrO2 showed two peaks, one at 334 K and the other at 417 K, when it was exposed to ultraviolet (UV) radiation, and at 342 and 397 K when gamma radiation was used. For ZrO2 impregnated with Ag nanoparticles a diminished TL intensity due to nanoparticle shielding was observed, but the glow curve shape was similar. However, when Ag nanoparticles were added during the ZrO2 synthesis, a shift of the TL peaks towards higher temperature values with reference to pure ZrO2 was observed. A linear dependence of the integrated TL signal as a function of the irradiation dose was observed in all analysed samples. It was possible to determine some kinetic parameters, such as activation energy, kinetic order and frequency factor, using the sequential quadratic programming glow curve deconvolution; it was found that these values are highly dependent on the type of radiation used. Ag nanoparticles present in ZrO2 also modified the kinetic parameters, mainly when they were added during the synthesis of ZrO2. Our results reinforce the possibilities of using pure and doped ZrO2 as an appropriate dosimetric material in radiation physics.

  18. [Soil humus differentiation and correlation with other soil biochemical properties in pure forests in semi-arid low-hilly area of Inner Mongolia, China].

    PubMed

    Zhang, Xiao-Xi; Liu, Zeng-Wen; Bing, Yuan-Hao; Zhu, Bo-Chao; Huang, Liang-Jia

    2014-10-01

    Whether the content and composition of soil humus in pure forest change due to its simple component of litter and specificity of single-species dominant community is a key problem for forest sustainable management. In this study, soils from 6 kind of pure forests in semi-arid low-hilly area of Inner Mongolia were collected and their humus and other biochemical properties were measured to investigate the differentiation of soil humus and the impact factors. The results showed that the soil of Picea asperata and Betula platyphylla pure forests had the highest contents of humus and better condensation degrees and stabilities, followed by that of Populus simonii, Larix principis-rupprechtii and Ulmus pumila pure forests, while the soil of Pinus tabuliformis pure forest had the lowest content of humus, condensation degree and stability. There were significant positive correlations between soil microorganism biomass, activity of phosphatase and the content and stability of soil humus. In contrast, the soil peroxidate, dehydrogenase activity and soil humus content showed significant negative correlations with each other. Furthermore, the enhancement of dehydrogenase activity might decrease the stability of humus. There were significant positive correlations between available N and the content and stability of soil humus, but total Cu, Zn and Fe had negative correlations with them, and total Cu and Fe might reduce the stability of humus as well. The particularity of pure forest environment and litter properties might be the key inducement to soil humus differentiation, thus reforming the pure forest through mixing with other tree species or planting understory vegetation would be the fundamental way to improve the soil humus composition and stability.

  19. Atomistic modeling of grain boundary behavior under shear conditions in magnesium and magnesium-based binary alloys

    NASA Astrophysics Data System (ADS)

    Nahhas, M. K.; Groh, S.

    2018-02-01

    In this study, the structure, the energetic, and the strength of a { 10 1 bar 1 } < 11 2 bar 0 > symmetric tilt grain boundary in magnesium and magnesium binary alloys were analyzed in the framework of (semi-)empirical potentials. Following a systematic investigation of the transferability and accuracy of the interatomic potentials, atomistic calculations of the grain boundary energy, the grain boundary sliding energy, and the grain boundary strength were performed in pure magnesium and in binary MgX alloys (X = Al, Ca, Gd, Li, Sn, Y, Ag, Nd, and Pb). The data gained in this study were analyzed to identify the most critical material parameters controlling the strength of the grain boundary, and their consequence on atomic shuffling motions occurring at the grain boundary. From the methodology perspective, the role of in-plane and out-of plane relaxation on the grain boundary sliding energy curves was investigated. In pure magnesium, the results showed that in-plane relaxation is critical in activating b2{ 10 1 bar 1 } twinning dislocation resulting in grain boundary migration. In the alloy systems, however, grain boundary migration was disabled as a consequence of the pinning of the grain boundary by segregated elements. Finally, while the grain boundary energy, the shape of the grain boundary sliding energy curves, and the grain boundary sliding energy are critical parameters controlling the grain boundary strength in pure magnesium, only the grain boundary energy and the segregation energy of the alloying elements at the grain boundary were identified as critical material parameters in the alloys system.

  20. Hygroscopic growth and cloud droplet activation of xanthan gum as a proxy for marine hydrogels

    NASA Astrophysics Data System (ADS)

    Dawson, K. W.; Petters, M. D.; Meskhidze, N.; Petters, S. Suda; Kreidenweis, S. M.

    2016-10-01

    Knowledge of the physical characteristics and chemical composition of marine organic aerosols is needed for the quantification of their effects on cloud microphysical processes and solar radiative transfer. Here we use xanthan gum (XG)—a bacterial biopolymer—as a proxy for marine hydrogels. Measurements were performed for pure XG particles and mixtures of XG with sodium chloride, calcium nitrate, and calcium carbonate. The aerosol hygroscopicity parameter (κ) is derived from hygroscopic growth factor measurements (κgf) at variable water activity (aw) and from cloud condensation nuclei activation efficiency (κccn). The Zdanovskii, Stokes, and Robinson (ZSR) hygroscopicity parameter derived for multicomponent systems (κmix, sol) is used to compare measurements of κgf and κccn. Pure XG shows close agreement of κgf (at aw = 0.9) and κccn of 0.09 and 0.10, respectively. Adding salts to the system results in deviations of κgf (at aw = 0.9) from κccn. The measured κgf and ZSR-derived hygroscopicity parameter (κmix, sol) values for different solutions show close agreement at aw > 0.9, while κgf is lower in comparison to κmix, sol at aw < 0.9. The differences between predicted κmix, sol and measured κgf and κccn values are explained by the effects of hydration and presence of salt ions on the structure of the polymer networks. Results from this study imply that at supersaturations of 0.1 and 0.5%, the presence of 30% sea salt by mass can reduce the activation diameter of pure primary marine organic aerosols from 257 to 156 nm and from 87 to 53 nm, respectively.

  1. Parametrization of 2,2,2-trifluoroethanol based on the generalized AMBER force field provides realistic agreement between experimental and calculated properties of pure liquid as well as water-mixed solutions.

    PubMed

    Vymětal, Jiří; Vondrášek, Jiří

    2014-09-04

    We present a novel force field model of 2,2,2-trifluoroethanol (TFE) based on the generalized AMBER force field. The model was exhaustively parametrized to reproduce liquid-state properties of pure TFE, namely, density, enthalpy of vaporization, self-diffusion coefficient, and population of trans and gauche conformers. The model predicts excellently other liquid-state properties such as shear viscosity, thermal expansion coefficient, and isotropic compressibility. The resulting model describes unexpectedly well the state equation of the liquid region in the range of 100 K and 10 MPa. More importantly, the proposed TFE model was optimized for use in combination with the TIP4P/Ew and TIP4P/2005 water models. It does not manifest excessive aggregation, which is known for other models, and therefore, it is supposed to more realistically describe the behavior of TFE/water mixtures. This was demonstrated by means of the Kirkwood-Buff theory of solutions and reasonable agreement with experimental data. We explored a considerable part of the parameter space and systematically tested individual combinations of parameters for performance in combination with the TIP4P/Ew and TIP4P/2005 water models. We observed ambiguity in parameters describing pure liquid TFE; however, most of them failed for TFE/water mixtures. We clearly demonstrated the necessity for balanced TFE-TFE, TFE-water, and water-water interactions which can be acquired only by employing implicit polarization correction in the course of parametrization.

  2. Mathematical modeling of the crack growth in linear elastic isotropic materials by conventional fracture mechanics approaches and by molecular dynamics method: crack propagation direction angle under mixed mode loading

    NASA Astrophysics Data System (ADS)

    Stepanova, Larisa; Bronnikov, Sergej

    2018-03-01

    The crack growth directional angles in the isotropic linear elastic plane with the central crack under mixed-mode loading conditions for the full range of the mixity parameter are found. Two fracture criteria of traditional linear fracture mechanics (maximum tangential stress and minimum strain energy density criteria) are used. Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-scale Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is Embedded Atom Method (EAM) potential. The plane specimens with initial central crack were subjected to Mixed-Mode loadings. The simulation cell contains 400000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide diapason of temperatures (from 0.1 К to 800 К) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics method coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields.

  3. Factorial design studies of antiretroviral drug-loaded stealth liposomal injectable: PEGylation, lyophilization and pharmacokinetic studies

    NASA Astrophysics Data System (ADS)

    Sudhakar, Beeravelli; Krishna, Mylangam Chaitanya; Murthy, Kolapalli Venkata Ramana

    2016-01-01

    The aim of the present study was to formulate and evaluate the ritonavir-loaded stealth liposomes by using 32 factorial design and intended to delivered by parenteral delivery. Liposomes were prepared by ethanol injection method using 32 factorial designs and characterized for various physicochemical parameters such as drug content, size, zeta potential, entrapment efficiency and in vitro drug release. The optimization process was carried out using desirability and overlay plots. The selected formulation was subjected to PEGylation using 10 % PEG-10000 solution. Stealth liposomes were characterized for the above-mentioned parameters along with surface morphology, Fourier transform infrared spectrophotometer, differential scanning calorimeter, stability and in vivo pharmacokinetic studies in rats. Stealth liposomes showed better result compared to conventional liposomes due to effect of PEG-10000. The in vivo studies revealed that stealth liposomes showed better residence time compared to conventional liposomes and pure drug solution. The conventional liposomes and pure drug showed dose-dependent pharmacokinetics, whereas stealth liposomes showed long circulation half-life compared to conventional liposomes and pure ritonavir solution. The results of statistical analysis showed significance difference as the p value is (<0.05) by one-way ANOVA. The result of the present study revealed that stealth liposomes are promising tool in antiretroviral therapy.

  4. Sterilization by pure oxygen plasma and by oxygen-hydrogen peroxide plasma: an efficacy study.

    PubMed

    Boscariol, M R; Moreira, A J; Mansano, R D; Kikuchi, I S; Pinto, T J A

    2008-04-02

    Plasma is an innovative sterilization method characterized by a low toxicity to operators and patients, and also by its operation at temperatures close to room temperatures. The use of different parameters for this method of sterilization and the corresponding results were analyzed in this study. A low-pressure inductive discharge was used to study the plasma sterilization processes. Oxygen and a mixture of oxygen and hydrogen peroxide were used as plasma source gases. The efficacy of the processes using different combinations of parameters such as plasma-generation method, type of gas, pressure, gas flow rate, temperature, power, and exposure time was evaluated. Two phases were developed for the processes, one using pure oxygen and the other a mixture of gases. Bacillus subtilis var. niger ATCC 9372 (Bacillus atrophaeus) spores inoculated on glass coverslips were used as biological indicators to evaluate the efficacy of the processes. All cycles were carried out in triplicate for different sublethal exposure times to calculate the D value by the enumeration method. The pour-plate technique was used to quantify the spores. D values of between 8 and 3 min were obtained. Best results were achieved at high power levels (350 and 400 W) using pure oxygen, showing that plasma sterilization is a promising alternative to other sterilization methods.

  5. Prediction of the PVTx and VLE properties of natural gases with a general Helmholtz equation of state. Part I: Application to the CH4-C2H6-C3H8-CO2-N2 system

    NASA Astrophysics Data System (ADS)

    Mao, Shide; Lü, Mengxin; Shi, Zeming

    2017-12-01

    A general equation of state (EOS) explicit in Helmholtz free energy has been developed to predict the pressure-volume-temperature-composition (PVTx) and vapor-liquid equilibrium (VLE) properties of the CH4-C2H6-C3H8-CO2-N2 fluid mixtures (main components of natural gases). This EOS, which is a function of temperature, density and composition, with four mixing parameters used, is based on the improved EOS of Sun and Ely (2004) for the pure components (CH4, C2H6, C3H8, CO2 and N2) and contains a simple generalized departure function presented by Lemmon and Jacobsen (1999). Comparison with the experimental data available indicates that the EOS can calculate the PVTx and VLE properties of the CH4-C2H6-C3H8-CO2-N2 fluid mixtures within or close to experimental uncertainties up to 623 K and 1000 bar within full range of composition. Isochores of the CH4-C2H6-C3H8-CO2-N2 system can be directly calculated from this EOS to interpret the corresponding microthermometric and Raman analysis data of fluid inclusions. The general EOS can calculate other thermodynamic properties if the ideal Helmholtz free energy of fluids is combined, and can also be extended to the multi-component natural gases including the secondary alkanes (carbon number above three) and none-alkane components such as H2S, SO2, O2, CO, Ar and H2O. This part of work will be finished in the near future.

  6. Control system health test system and method

    DOEpatents

    Hoff, Brian D.; Johnson, Kris W.; Akasam, Sivaprasad; Baker, Thomas M.

    2006-08-15

    A method is provided for testing multiple elements of a work machine, including a control system, a component, a sub-component that is influenced by operations of the component, and a sensor that monitors a characteristic of the sub-component. In one embodiment, the method is performed by the control system and includes sending a command to the component to adjust a first parameter associated with an operation of the component. Also, the method includes detecting a sensor signal from the sensor reflecting a second parameter associated with a characteristic of the sub-component and determining whether the second parameter is acceptable based on the command. The control system may diagnose at least one of the elements of the work machine when the second parameter of the sub-component is not acceptable.

  7. A binaural beat constructed from a noise

    PubMed Central

    Akeroyd, Michael A

    2012-01-01

    The binaural beat has been used for over one hundred years as a stimulus for generating the percept of motion. Classically the beat consists of a pure tone at one ear (e.g. 500 Hz) and the same pure tone at the other ear but shifted upwards or downwards in frequency (e.g., 501 Hz). An experiment and binaural computational analysis are reported which demonstrate that a more powerful motion percept can be obtained by applying the concept of the frequency shift to a noise, via an upwards or downwards shift in the frequency of the Fourier components of its spectrum. PMID:21218863

  8. Cluster kinetics model for mixtures of glassformers

    NASA Astrophysics Data System (ADS)

    Brenskelle, Lisa A.; McCoy, Benjamin J.

    2007-10-01

    For glassformers we propose a binary mixture relation for parameters in a cluster kinetics model previously shown to represent pure compound data for viscosity and dielectric relaxation as functions of either temperature or pressure. The model parameters are based on activation energies and activation volumes for cluster association-dissociation processes. With the mixture parameters, we calculated dielectric relaxation times and compared the results to experimental values for binary mixtures. Mixtures of sorbitol and glycerol (seven compositions), sorbitol and xylitol (three compositions), and polychloroepihydrin and polyvinylmethylether (three compositions) were studied.

  9. Raman Microspectroscopic Mapping with Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) Applied to the High-Pressure Polymorph of Titanium Dioxide, TiO2-II.

    PubMed

    Smith, Joseph P; Smith, Frank C; Ottaway, Joshua; Krull-Davatzes, Alexandra E; Simonson, Bruce M; Glass, Billy P; Booksh, Karl S

    2017-08-01

    The high-pressure, α-PbO 2 -structured polymorph of titanium dioxide (TiO 2 -II) was recently identified in micrometer-sized grains recovered from four Neoarchean spherule layers deposited between ∼2.65 and ∼2.54 billion years ago. Several lines of evidence support the interpretation that these layers represent distal impact ejecta layers. The presence of shock-induced TiO 2 -II provides physical evidence to further support an impact origin for these spherule layers. Detailed characterization of the distribution of TiO 2 -II in these grains may be useful for correlating the layers, estimating the paleodistances of the layers from their source craters, and providing insight into the formation of the TiO 2 -II. Here we report the investigation of TiO 2 -II-bearing grains from these four spherule layers using multivariate curve resolution-alternating least squares (MCR-ALS) applied to Raman microspectroscopic mapping. Raman spectra provide evidence of grains consisting primarily of rutile (TiO 2 ) and TiO 2 -II, as shown by Raman bands at 174 cm -1 (TiO 2 -II), 426 cm -1 (TiO 2 -II), 443 cm -1 (rutile), and 610 cm -1 (rutile). Principal component analysis (PCA) yielded a predominantly three-phase system comprised of rutile, TiO 2 -II, and substrate-adhesive epoxy. Scanning electron microscopy (SEM) suggests heterogeneous grains containing polydispersed micrometer- and submicrometer-sized particles. Multivariate curve resolution-alternating least squares applied to the Raman microspectroscopic mapping yielded up to five distinct chemical components: three phases of TiO 2 (rutile, TiO 2 -II, and anatase), quartz (SiO 2 ), and substrate-adhesive epoxy. Spectral profiles and spatially resolved chemical maps of the pure chemical components were generated using MCR-ALS applied to the Raman microspectroscopic maps. The spatial resolution of the Raman microspectroscopic maps was enhanced in comparable, cost-effective analysis times by limiting spectral resolution and optimizing spectral acquisition parameters. Using the resolved spectra of TiO 2 -II generated from MCR-ALS analysis, a Raman spectrum for pure TiO 2 -II was estimated to further facilitate its identification.

  10. Interactions between Flight Dynamics and Propulsion Systems of Air-Breathing Hypersonic Vehicles

    DTIC Science & Technology

    2013-01-01

    coupled with combustor – Combustor, component for subsonic or supersonic combustion – Nozzle , expands flow for high thrust and may provide lift... supersonic solution method that is used for both the inlet and nozzle components. The supersonic model SAMURI is a substantial improvement over previous models...purely supersonic inviscid flow. As a result, the model is also appropriate for other applications, including the nozzle , which is important 19 Figure

  11. Determination of the Fracture Parameters in a Stiffened Composite Panel

    NASA Technical Reports Server (NTRS)

    Lin, Chung-Yi

    2000-01-01

    A modified J-integral, namely the equivalent domain integral, is derived for a three-dimensional anisotropic cracked solid to evaluate the stress intensity factor along the crack front using the finite element method. Based on the equivalent domain integral method with auxiliary fields, an interaction integral is also derived to extract the second fracture parameter, the T-stress, from the finite element results. The auxiliary fields are the two-dimensional plane strain solutions of monoclinic materials with the plane of symmetry at x(sub 3) = 0 under point loads applied at the crack tip. These solutions are expressed in a compact form based on the Stroh formalism. Both integrals can be implemented into a single numerical procedure to determine the distributions of stress intensity factor and T-stress components, T11, T13, and thus T33, along a three-dimensional crack front. The effects of plate thickness and crack length on the variation of the stress intensity factor and T-stresses through the thickness are investigated in detail for through-thickness center-cracked plates (isotropic and orthotropic) and orthotropic stiffened panels under pure mode-I loading conditions. For all the cases studied, T11 remains negative. For plates with the same dimensions, a larger size of crack yields larger magnitude of the normalized stress intensity factor and normalized T-stresses. The results in orthotropic stiffened panels exhibit an opposite trend in general. As expected, for the thicker panels, the fracture parameters evaluated through the thickness, except the region near the free surfaces, approach two-dimensional plane strain solutions. In summary, the numerical methods presented in this research demonstrate their high computational effectiveness and good numerical accuracy in extracting these fracture parameters from the finite element results in three-dimensional cracked solids.

  12. Component spectra extraction from terahertz measurements of unknown mixtures.

    PubMed

    Li, Xian; Hou, D B; Huang, P J; Cai, J H; Zhang, G X

    2015-10-20

    The aim of this work is to extract component spectra from unknown mixtures in the terahertz region. To that end, a method, hard modeling factor analysis (HMFA), was applied to resolve terahertz spectral matrices collected from the unknown mixtures. This method does not require any expertise of the user and allows the consideration of nonlinear effects such as peak variations or peak shifts. It describes the spectra using a peak-based nonlinear mathematic model and builds the component spectra automatically by recombination of the resolved peaks through correlation analysis. Meanwhile, modifications on the method were made to take the features of terahertz spectra into account and to deal with the artificial baseline problem that troubles the extraction process of some terahertz spectra. In order to validate the proposed method, simulated wideband terahertz spectra of binary and ternary systems and experimental terahertz absorption spectra of amino acids mixtures were tested. In each test, not only the number of pure components could be correctly predicted but also the identified pure spectra had a good similarity with the true spectra. Moreover, the proposed method associated the molecular motions with the component extraction, making the identification process more physically meaningful and interpretable compared to other methods. The results indicate that the HMFA method with the modifications can be a practical tool for identifying component terahertz spectra in completely unknown mixtures. This work reports the solution to this kind of problem in the terahertz region for the first time, to the best of the authors' knowledge, and represents a significant advance toward exploring physical or chemical mechanisms of unknown complex systems by terahertz spectroscopy.

  13. Industrial application of green chromatography--I. Separation and analysis of niacinamide in skincare creams using pure water as the mobile phase.

    PubMed

    Yang, Yu; Strickland, Zackary; Kapalavavi, Brahmam; Marple, Ronita; Gamsky, Chris

    2011-03-15

    In this work, chromatographic separation of niacin and niacinamide using pure water as the sole component in the mobile phase has been investigated. The separation and analysis of niacinamide have been optimized using three columns at different temperatures and various flow rates. Our results clearly demonstrate that separation and analysis of niacinamide from skincare products can be achieved using pure water as the eluent at 60°C on a Waters XTerra MS C18 column, a Waters XBridge C18 column, or at 80°C on a Hamilton PRP-1 column. The separation efficiency, quantification quality, and analysis time of this new method are at least comparable with those of the traditional HPLC methods. Compared with traditional HPLC, the major advantage of this newly developed green chromatography technique is the elimination of organic solvents required in the HPLC mobile phase. In addition, the pure water chromatography separations described in this work can be directly applied in industrial plant settings without further modification of the existing HPLC equipment. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Structural properties of zirconia - in-situ high temperature XRD characterization

    NASA Astrophysics Data System (ADS)

    Kurpaska, Lukasz

    2018-07-01

    In this work, the effect of high temperature on structural properties of pure zirconium have been investigated. In-situ X-ray diffraction analysis of the oxide layer formed at temperature window 25-600 °C on pure zirconium were performed. Conducted experiment aimed at investigation of the zirconia phases developed on surface of the metallic substrate. Based on the conducted studies, possible stress state (during heating, continuous oxidation and cooling), cell parameters and HWHM factor were analyzed. A tetragonal and monoclinic phases peak shifts and intensities change were observed, suggesting that different phases react in different way upon temperature effect.

  15. Anodic oxidation of commercially pure titanium for purification of polluted water

    NASA Astrophysics Data System (ADS)

    Benkafada, Faouzia; Kerdoud, Djahida; Bouchoucha, Ali

    2018-05-01

    Anodisation of pure titanium has been carried out in sulphuric acid solution at potentials ranging from 40 V to 5 days. We studied the parameters influencing the anodic deposition such as acid concentration and anodic periods. Anodic oxides thin films were characterized by X-ray diffraction, cyclic polarization and electrochemical impedance spectroscopy. The I-V curves and electrochemical impedance measurements were carried out in 0.1 N NaOH solution. The results indicated that although the thin films obtained by anodic oxidation are nonstoichiometric, they have an electric behaviour like n-type semiconducting material.

  16. Effect of bone sialoprotein and collagen coating on cell attachment to TICER and pure titanium implant surfaces.

    PubMed

    Graf, H-L; Stoeva, S; Armbruster, F P; Neuhaus, J; Hilbig, H

    2008-07-01

    To improve integration between implants and biological tissues, this study compared bone sialoprotein (BSP) as a surface-coating material against the major organic and inorganic components of bone, collagen type I and hydroxyapatite (TICER). The expression of osteocalcin, osteonectin and transforming growth factor ss was evaluated using immunohistochemical staining procedures. The distribution patterns of osteoblasts on the surface of pure titanium with a smooth machined surface and a rough surface (TICER) were determined by image processing using confocal laser scanning microscopy. The results compared to uncoated control materials showed that, at all times investigated, the number of cells on the surface of the TICER and pure titanium samples differed significantly (P<0.1), demonstrating the superiority of TICER over pure titanium in this respect. For pure titanium implants, collagen-precoated surfaces were not beneficial for the attachment of bone-derived cells with the exception of day 3 in vitro (P<0.01). BSP-precoated implant surfaces displayed non-significantly higher numbers of settled cells. BSP-precoated implant surfaces were beneficial for osteoinduction as revealed by osteocalcin and osteonectin expression. BSP precoating of the rough TICER implant surface enhanced the osteoinductive effect much more than did collagen precoating. These results contribute to the consideration of at least two distinct pathways of osseointegration.

  17. A Hybrid Sensing Approach for Pure and Adulterated Honey Classification

    PubMed Central

    Subari, Norazian; Saleh, Junita Mohamad; Shakaff, Ali Yeon Md; Zakaria, Ammar

    2012-01-01

    This paper presents a comparison between data from single modality and fusion methods to classify Tualang honey as pure or adulterated using Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA) statistical classification approaches. Ten different brands of certified pure Tualang honey were obtained throughout peninsular Malaysia and Sumatera, Indonesia. Various concentrations of two types of sugar solution (beet and cane sugar) were used in this investigation to create honey samples of 20%, 40%, 60% and 80% adulteration concentrations. Honey data extracted from an electronic nose (e-nose) and Fourier Transform Infrared Spectroscopy (FTIR) were gathered, analyzed and compared based on fusion methods. Visual observation of classification plots revealed that the PCA approach able to distinct pure and adulterated honey samples better than the LDA technique. Overall, the validated classification results based on FTIR data (88.0%) gave higher classification accuracy than e-nose data (76.5%) using the LDA technique. Honey classification based on normalized low-level and intermediate-level FTIR and e-nose fusion data scored classification accuracies of 92.2% and 88.7%, respectively using the Stepwise LDA method. The results suggested that pure and adulterated honey samples were better classified using FTIR and e-nose fusion data than single modality data. PMID:23202033

  18. Determination of the combustion behavior for pure components and mixtures using a 20-liter sphere

    NASA Astrophysics Data System (ADS)

    Mashuga, Chad Victor

    1999-11-01

    The safest method to prevent fires and explosions of flammable vapors is to prevent the existence of flammable mixtures in the first place. This methodology requires detailed knowledge of the flammability region as a function of the fuel, oxygen, and nitrogen concentrations. A triangular flammability diagram is the most useful tool to display the flammability region, and to determine if a flammable mixture is present during plant operations. An automated apparatus for assessing the flammability region and for determining the potential effect of confined fuel-air explosions is described. Data derived from the apparatus included the limits of combustion, maximum combustion pressure, and the deflagration index, or KG. Accurate measurement of these parameters can be influenced by numerous experimental conditions, including igniter energy, humidity and gas composition. Gas humidity had a substantial effect on the deflagration index, but had little effect on the maximum combustion pressure. Small changes in gas compositions had a greater effect on the deflagration index than the maximum combustion pressure. Both the deflagration indices and the maximum combustion pressure proved insensitive to the range of igniter energies examined. Estimation of flammability limits using a calculated adiabatic flame temperature (CAFT) method is demonstrated. The CAFT model is compared with the extensive experimental data from this work for methane, ethylene and a 50/50 mixture of methane and ethylene. The CAFT model compares well to methane and ethylene throughout the flammability zone when using a 1200K threshold temperature. Deviations between the method and the experimental data occurs in the fuel rich region. For the 50/50 fuel mixture the CAFT deviates only in the fuel rich region---the inclusion of carbonaceous soot as one of the equilibrium products improved the fit. Determination of burning velocities from a spherical flame model utilizing the extensive pressure---time data was also completed. The burning velocities determined compare well to other investigators using this method. The data collected for the methane/ethylene mixture was used to evaluate mixing rules for the flammability limits, maximum combustion pressure, deflagration index, and burning velocity. These rules attempt to predict the behavior of fuel mixtures from pure component data. Le Chatelier's law and averaging both work well for predicting the flammability boundary in the fuel lean region and for mixtures of inerted fuel and air. Both methods underestimate the flammability boundary in the fuel rich region. For a mixture of methane and ethylene, we were unable to identify mixing rules for estimating the maximum combustion pressure and the burning velocity from pure component data. Averaging the deflagration indices for fuel air mixtures did provide a adequate estimation of the mixture behavior. Le Chatelier's method overestimated the maximum deflagration index in air but provided a satisfactory estimation in the extreme fuel lean and rich regions.

  19. [Research on the method of interference correction for nondispersive infrared multi-component gas analysis].

    PubMed

    Sun, You-Wen; Liu, Wen-Qing; Wang, Shi-Mei; Huang, Shu-Hua; Yu, Xiao-Man

    2011-10-01

    A method of interference correction for nondispersive infrared multi-component gas analysis was described. According to the successive integral gas absorption models and methods, the influence of temperature and air pressure on the integral line strengths and linetype was considered, and based on Lorentz detuning linetypes, the absorption cross sections and response coefficients of H2O, CO2, CO, and NO on each filter channel were obtained. The four dimension linear regression equations for interference correction were established by response coefficients, the absorption cross interference was corrected by solving the multi-dimensional linear regression equations, and after interference correction, the pure absorbance signal on each filter channel was only controlled by the corresponding target gas concentration. When the sample cell was filled with gas mixture with a certain concentration proportion of CO, NO and CO2, the pure absorbance after interference correction was used for concentration inversion, the inversion concentration error for CO2 is 2.0%, the inversion concentration error for CO is 1.6%, and the inversion concentration error for NO is 1.7%. Both the theory and experiment prove that the interference correction method proposed for NDIR multi-component gas analysis is feasible.

  20. Influences of Different Components on Agglomeration Behavior of MoS2 During Oxidation Roasting Process in Air

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Zhang, Guo-Hua; Wang, Jing-Song; Chou, Kuo-Chih

    2016-08-01

    An agglomeration of the furnace charge always takes place during the oxidation roasting process of molybdenite concentrate (with the main component of MoS2) in multiple hearth furnaces, which greatly affects the production process and furnace service life. In the present work, a preliminary study about the influence of various components on the agglomeration phenomenon of pure MoS2 have been carried out. The results show that reaction temperature, impurity content, and air flow rate have significant effects on the agglomeration extent. Meanwhile, the impurity type added into the pure MoS2 plays a crucial role. It was found that CaO and MgO have a stronger sulfur-fixing effect and that the desulphurization of the roasted product was uncompleted. It was also concluded that the agglomeration is due to the formation of low-melting-point eutectics, including that between MoO3 and impurities and that between MoO3 and Mo4O11. It is suggested that decreasing the impurities contents, especially K, Cu, Pb, and Fe, is an effective method for reducing the extent of agglomeration.

  1. Estimation of nonlinear pilot model parameters including time delay.

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.; Roland, V. R.; Wells, W. R.

    1972-01-01

    Investigation of the feasibility of using a Kalman filter estimator for the identification of unknown parameters in nonlinear dynamic systems with a time delay. The problem considered is the application of estimation theory to determine the parameters of a family of pilot models containing delayed states. In particular, the pilot-plant dynamics are described by differential-difference equations of the retarded type. The pilot delay, included as one of the unknown parameters to be determined, is kept in pure form as opposed to the Pade approximations generally used for these systems. Problem areas associated with processing real pilot response data are included in the discussion.

  2. Depth-dependent positron annihilation in different polymers

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zhang, P.; Cheng, G. D.; Li, D. X.; Wu, H. B.; Li, Z. X.; Cao, X. Z.; Jia, Q. J.; Yu, R. S.; Wang, B. Y.

    2013-09-01

    Depth-dependent positron annihilation Doppler broadening measurements were conducted for polymers with different chemical compositions. Variations of the S parameter with respect to incident positron energy were observed. For pure hydrocarbons PP, HDPE and oxygen-containing polymer PC, S parameter rises with increasing positron implantation depth. While for PI and fluoropolymers like PTFE, ETFE and PVF, S parameter decreases with higher positron energy. For chlorine-containing polymer PVDC, S parameter remains nearly constant at all incident positron energies. It is suggested that these three variation trends are resulted from a competitive effect between the depth-dependent positronium formation and the influence of highly electronegative atoms on positron annihilation characteristics.

  3. 77 FR 17539 - Self-Regulatory Organizations; NYSE Arca, Inc.; Notice of Filing of Proposed Rule Change To List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ... electronic components such as smartphones and notebooks and in emerging technology such as nanoparticles... similar) for gold coinage. Each coin contains the stated amount of pure gold, plus small amounts of silver...

  4. Synthesis, Optical and Photoluminescence Properties of Cu-Doped Zno Nano-Fibers Thin Films: Nonlinear Optics

    NASA Astrophysics Data System (ADS)

    Ganesh, V.; Salem, G. F.; Yahia, I. S.; Yakuphanoglu, F.

    2018-03-01

    Different concentrations of copper-doped zinc oxide thin films were coated on a glass substrate by sol-gel/spin-coating technique. The structural properties of pure and Cu-doped ZnO films were characterized by different techniques, i.e., atomic force microscopy (AFM), photoluminescence and UV-Vis-NIR spectroscopy. The AFM study revealed that pure and doped ZnO films are formed as nano-fibers with a granular structure. The photoluminescence spectra of these films showed a strong ultraviolet emission peak centered at 392 nm and a strong blue emission peak cantered at 450 nm. The optical band gap of the pure and copper-doped ZnO thin films calculated from optical transmission spectra (3.29-3.23 eV) were found to be increasing with increasing copper doping concentration. The refractive index dispersion curve of pure and Cu-doped ZnO film obeyed the single-oscillator model. The optical dispersion parameters such as E o , E d , and n_{∞}2 were calculated. Further, the nonlinear refractive index and nonlinear optical susceptibility were also calculated and interpreted.

  5. Fundamental data on the desorption of pure interstellar ices

    NASA Astrophysics Data System (ADS)

    Brown, Wendy A.; Bolina, Amandeep S.

    2007-01-01

    The desorption of molecular ices from grain surfaces is important in a number of astrophysical environments including dense molecular clouds, cometary nuclei and the surfaces and atmospheres of some planets. With this in mind, we have performed a detailed investigation of the desorption of pure water, pure methanol and pure ammonia ices from a model dust-grain surface. We have used these results to determine the desorption energy, order of desorption and the pre-exponential factor for the desorption of these molecular ices from our model surface. We find good agreement between our desorption energies and those determined previously; however, our values for the desorption orders, and hence also the pre-exponential factors, are different to those reported previously. The kinetic parameters derived from our data have been used to model desorption on time-scales relevant to astrophysical processes and to calculate molecular residence times, given in terms of population half-life as a function of temperature. These results show the importance of laboratory data for the understanding of astronomical situations whereby icy mantles are warmed by nearby stars and by other dynamical events.

  6. A Study of Fermi-LAT GeV γ-Ray Emission toward the Magnetar-harboring Supernova Remnant Kesteven 73 and Its Molecular Environment

    NASA Astrophysics Data System (ADS)

    Liu, Bing; Chen, Yang; Zhang, Xiao; Liu, Qian-Cheng; He, Ting-Lan; Zhou, Xin; Zhou, Ping; Su, Yang

    2017-12-01

    We report our independent GeV γ-ray study of the young shell-type supernova remnant (SNR) Kes 73, which harbors a central magnetar, and CO-line millimeter observations toward the SNR. Using 7.6 years of Fermi-LAT observation data, we detected an extended γ-ray source (“source A”) with centroid on the west of the SNR, with a significance of 21σ in 0.1-300 GeV and an error circle of 5.‧4 in angular radius. The γ-ray spectrum cannot be reproduced by a pure leptonic emission or a pure emission from the magnetar, and thus a hadronic emission component is needed. The CO-line observations reveal a molecular cloud (MC) at V LSR ˜ 90 km s-1, which demonstrates morphological correspondence with the western boundary of the SNR brightened in multiwavelength. The 12CO (J = 2 - 1)/12CO (J = 1 - 0) ratio in the left (blue) wing 85-88 km s-1 is prominently elevated to ˜1.1 along the northwestern boundary, providing kinematic evidence of the SNR-MC interaction. This SNR-MC association yields a kinematic distance 9 kpc to Kes 73. The MC is shown to be capable of accounting for the hadronic γ-ray emission component. The γ-ray spectrum can be interpreted with a pure hadronic emission or a magnetar+hadronic hybrid emission. In the case of pure hadronic emission, the spectral index of the protons is 2.4, very similar to that of the radio-emitting electrons, essentially consistent with the diffusive shock acceleration theory. In the case of magnetar+hadronic hybrid emission, a magnetic field decay rate ≳1036 erg s-1 is needed to power the magnetar’s curvature radiation.

  7. Combustion-derived nanoparticulate induces the adverse vascular effects of diesel exhaust inhalation

    PubMed Central

    Mills, Nicholas L.; Miller, Mark R.; Lucking, Andrew J.; Beveridge, Jon; Flint, Laura; Boere, A. John F.; Fokkens, Paul H.; Boon, Nicholas A.; Sandstrom, Thomas; Blomberg, Anders; Duffin, Rodger; Donaldson, Ken; Hadoke, Patrick W.F.; Cassee, Flemming R.; Newby, David E.

    2011-01-01

    Aim Exposure to road traffic and air pollution may be a trigger of acute myocardial infarction, but the individual pollutants responsible for this effect have not been established. We assess the role of combustion-derived-nanoparticles in mediating the adverse cardiovascular effects of air pollution. Methods and results To determine the in vivo effects of inhalation of diesel exhaust components, 16 healthy volunteers were exposed to (i) dilute diesel exhaust, (ii) pure carbon nanoparticulate, (iii) filtered diesel exhaust, or (iv) filtered air, in a randomized double blind cross-over study. Following each exposure, forearm blood flow was measured during intra-brachial bradykinin, acetylcholine, sodium nitroprusside, and verapamil infusions. Compared with filtered air, inhalation of diesel exhaust increased systolic blood pressure (145 ± 4 vs. 133 ± 3 mmHg, P< 0.05) and attenuated vasodilatation to bradykinin (P= 0.005), acetylcholine (P= 0.008), and sodium nitroprusside (P< 0.001). Exposure to pure carbon nanoparticulate or filtered exhaust had no effect on endothelium-dependent or -independent vasodilatation. To determine the direct vascular effects of nanoparticulate, isolated rat aortic rings (n= 6–9 per group) were assessed in vitro by wire myography and exposed to diesel exhaust particulate, pure carbon nanoparticulate and vehicle. Compared with vehicle, diesel exhaust particulate (but not pure carbon nanoparticulate) attenuated both acetylcholine (P< 0.001) and sodium-nitroprusside (P= 0.019)-induced vasorelaxation. These effects were partially attributable to both soluble and insoluble components of the particulate. Conclusion Combustion-derived nanoparticulate appears to predominately mediate the adverse vascular effects of diesel exhaust inhalation. This provides a rationale for testing environmental health interventions targeted at reducing traffic-derived particulate emissions. PMID:21753226

  8. Speaker verification system using acoustic data and non-acoustic data

    DOEpatents

    Gable, Todd J [Walnut Creek, CA; Ng, Lawrence C [Danville, CA; Holzrichter, John F [Berkeley, CA; Burnett, Greg C [Livermore, CA

    2006-03-21

    A method and system for speech characterization. One embodiment includes a method for speaker verification which includes collecting data from a speaker, wherein the data comprises acoustic data and non-acoustic data. The data is used to generate a template that includes a first set of "template" parameters. The method further includes receiving a real-time identity claim from a claimant, and using acoustic data and non-acoustic data from the identity claim to generate a second set of parameters. The method further includes comparing the first set of parameters to the set of parameters to determine whether the claimant is the speaker. The first set of parameters and the second set of parameters include at least one purely non-acoustic parameter, including a non-acoustic glottal shape parameter derived from averaging multiple glottal cycle waveforms.

  9. Survival Of Pure Disc Galaxies Over The Last 8 Billion Years

    NASA Astrophysics Data System (ADS)

    Sachdeva, Sonali

    2016-09-01

    The presence of pure disk galaxies without any bulge component, i.e., neither classical nor pseudo, poses a severe challenge not just to the hierarchical galaxy formation models but also to the theories of internal secular evolution. We discover that a significant fraction of disk galaxies ( 15-18 %) in the Hubble Deep Field (0.4 < z < 1.0) as well as in the local Universe (0.02 < z < 0.05) are such pure disk systems (PDS). We trace the evolution of this population to find how they survived the merger violence and other disk instabilities to remain dynamically undisturbed. We find that smooth accretion of cold gas via cosmic filaments is the most probable mode of their growth in mass and size since z 1. We speculate that PDSs are dynamically hotter and cushioned in massive dark matter haloes which may prevent them from undergoing strong secular evolution.

  10. Pure circular polarization electroluminescence at room temperature with spin-polarized light-emitting diodes.

    PubMed

    Nishizawa, Nozomi; Nishibayashi, Kazuhiro; Munekata, Hiro

    2017-02-21

    We report the room-temperature electroluminescence (EL) with nearly pure circular polarization (CP) from GaAs-based spin-polarized light-emitting diodes (spin-LEDs). External magnetic fields are not used during device operation. There are two small schemes in the tested spin-LEDs: first, the stripe-laser-like structure that helps intensify the EL light at the cleaved side walls below the spin injector Fe slab, and second, the crystalline AlO x spin-tunnel barrier that ensures electrically stable device operation. The purity of CP is depressively low in the low current density ( J ) region, whereas it increases steeply and reaches close to the pure CP when J > 100 A/cm 2 There, either right- or left-handed CP component is significantly suppressed depending on the direction of magnetization of the spin injector. Spin-dependent reabsorption, spin-induced birefringence, and optical spin-axis conversion are suggested to account for the observed experimental results.

  11. Characteristic chromatographic fingerprint study of short-chain fatty acids in human milk, infant formula, pure milk and fermented milk by gas chromatography-mass spectrometry.

    PubMed

    Jiang, Zhenzuo; Liu, Yanan; Zhu, Yan; Yang, Jing; Sun, Lili; Chai, Xin; Wang, Yuefei

    2016-09-01

    Human milk, infant formula, pure milk and fermented milk as food products or dietary supplements provide a range of nutrients required to both infants and adults. Recently, a growing body of evidence has revealed the beneficial roles of short-chain fatty acids (SCFAs), a subset of fatty acids produced from the fermentation of dietary fibers by gut microbiota. The objective of this study was to establish a chromatographic fingerprint technique to investigate SCFAs in human milk and dairy products by gas chromatography coupled with mass spectrometry. The multivariate method for principal component analysis assessed differences between milk types. Human milk, infant formula, pure milk and fermented milk were grouped independently, mainly because of differences in formic acid, acetic acid, propionic acid and hexanoic acid levels. This method will be important for the assessment of SCFAs in human milk and various dairy products.

  12. Complementarity between tripartite quantum correlation and bipartite Bell-inequality violation in three-qubit states

    NASA Astrophysics Data System (ADS)

    Pandya, Palash; Misra, Avijit; Chakrabarty, Indranil

    2016-11-01

    We find a single parameter family of genuinely entangled three-qubit pure states, called the maximally Bell-inequality violating states (MBV), which exhibit maximum Bell-inequality violation by the reduced bipartite system for a fixed amount of genuine tripartite entanglement quantified by the so-called tangle measure. This in turn implies that there holds a complementary relation between the Bell-inequality violation by the reduced bipartite systems and the tangle present in the three-qubit states, not necessarily pure. The MBV states also exhibit maximum Bell-inequality violation by the reduced bipartite systems of the three-qubit pure states with a fixed amount of genuine tripartite correlation quantified by the generalized geometric measure, a genuine entanglement measure of multiparty pure states, and the discord monogamy score, a multipartite quantum correlation measure from information-theoretic paradigm. The aforementioned complementary relation has also been established for three-qubit pure states for the generalized geometric measure and the discord monogamy score, respectively. The complementarity between the Bell-inequality violation by the reduced bipartite systems and the genuine tripartite correlation suggests that the Bell-inequality violation in the reduced two-qubit system comes at the cost of the total tripartite correlation present in the entire system.

  13. Kinetics of trichloroethylene cometabolism and toluene biodegradation: Model application to soil batch experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Farhan, Y.H.; Scow, K.M.; Fan, S.

    Trichloroethylene (TCE) biodegradation in soil under aerobic conditions requires the presence of another compound, such as toluene, to support growth of microbial populations and enzyme induction. The biodegradation kinetics of TCE and toluene were examined by conducting three groups of experiments in soil: toluene only, toluene combined with low TCE concentrations, and toluene with TCE concentrations similar to or higher than toluene. The biodegradation of TCE and toluene and their interrelationships were modeled using a combination of several biodegradation functions. In the model, the pollutants were described as existing in the solid, liquid, and gas phases of soil, with biodegradationmore » occurring only in the liquid phase. The distribution of the chemicals between the solid and liquid phase was described by a linear sorption isotherm, whereas liquid-vapor partitioning was described by Henry's law. Results from 12 experiments with toluene only could be described by a single set of kinetic parameters. The same set of parameters could describe toluene degradation in 10 experiments where low TCE concentrations were present. From these 10 experiments a set of parameters describing TCE cometabolism induced by toluene also was obtained. The complete set of parameters was used to describe the biodegradation of both compounds in 15 additional experiments, where significant TCE toxicity and inhibition effects were expected. Toluene parameters were similar to values reported for pure culture systems. Parameters describing the interaction of TCE with toluene and biomass were different from reported values for pure cultures, suggesting that the presence of soil may have affected the cometabolic ability of the indigenous soil microbial populations.« less

  14. Drug recrystallization using supercritical anti-solvent (SAS) process with impinging jets: Effect of process parameters

    NASA Astrophysics Data System (ADS)

    Careno, Stéphanie; Boutin, Olivier; Badens, Elisabeth

    2012-03-01

    The aim of this study is to improve mixing in supercritical anti-solvent process (SAS) with impinging jets in order to form finer particles of sulfathiazole, a poorly water-soluble drug. The influence of several process parameters upon the powder characteristics is studied. Parameters are jets' velocity (0.25 m s-1 to 25.92 m s-1), molar ratio solvent/CO2 (2.5% to 20%), temperature (313 K to 343 K), pressure (10 MPa to 20 MPa) and sulfathiazole concentration in the organic solution (0.5% to 1.8%). Two solvents are used: acetone and methanol. Smaller particles with a more homogeneous morphology are obtained from acetone solutions. For the smallest jets' velocity, corresponding to a non-atomized jet, the stable polymorphic form is obtained, pure or in mixture. At this velocity, pressure is the most influential parameter controlling the polymorphic nature of the powder formed. The pure stable polymorph is formed at 20 MPa. Concerning the particle size, the most influential parameters are temperature and sulfathiazole concentration. The use of impinging jets with different process parameters allows the crystallization of four polymorphs among the five known, and particle sizes are varied. This work demonstrates the studied device ability of the polymorph and the size control. A comparison with the classical SAS process shows that particle size, size distribution and morphology of particles crystallized with impinging jets are different from the ones obtained with classical SAS introduction device in similar operating conditions. Mean particle sizes are significantly smaller and size distributions are narrower with impinging jets device.

  15. Bio-mathematical analysis for the peristaltic flow of single wall carbon nanotubes under the impact of variable viscosity and wall properties.

    PubMed

    Shahzadi, Iqra; Sadaf, Hina; Nadeem, Sohail; Saleem, Anber

    2017-02-01

    The main objective of this paper is to study the Bio-mathematical analysis for the peristaltic flow of single wall carbon nanotubes under the impact of variable viscosity and wall properties. The right and the left walls of the curved channel possess sinusoidal wave that is travelling along the outer boundary. The features of the peristaltic motion are determined by using long wavelength and low Reynolds number approximation. Exact solutions are determined for the axial velocity and for the temperature profile. Graphical results have been presented for velocity profile, temperature and stream function for various physical parameters of interest. Symmetry of the curved channel is disturbed for smaller values of the curvature parameter. It is found that the altitude of the velocity profile increases for larger values of variable viscosity parameter for both the cases (pure blood as well as single wall carbon nanotubes). It is detected that velocity profile increases with increasing values of rigidity parameter. It is due to the fact that an increase in rigidity parameter decreases tension in the walls of the blood vessels which speeds up the blood flow for pure blood as well as single wall carbon nanotubes. Increase in Grashof number decreases the fluid velocity. This is due to the reason that viscous forces play a prominent role that's why increase in Grashof number decreases the velocity profile. It is also found that temperature drops for increasing values of nanoparticle volume fraction. Basically, higher thermal conductivity of the nanoparticles plays a key role for quick heat dissipation, and this justifies the use of the single wall carbon nanotubes in different situations as a coolant. Exact solutions are calculated for the temperature and the velocity profile. Symmetry of the curved channel is destroyed due to the curvedness for velocity, temperature and contour plots. Addition of single wall carbon nanotubes shows a decrease in fluid temperature. Trapping phenomena show that the size of the trapped bolus is smaller for pure blood case as compared to the single wall carbon nanotubes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Differences in egg nutrient availability and embryo development in white layer breeder genotypes.

    PubMed

    Onbasilar, E E; Kahraman, M; Ahlat, O; Güngör, Ö F; Çalik, A; Taban, S; Yalçin, S

    2017-10-01

    Because of consumers' preferences and also due to changes in production systems, the importance of pure breeds has increased again. There are a lot of differences among breeds which have been studied extensively, however, the differences during the incubation period are not yet fully known. Therefore, the present study was conducted to evaluate the composition of the egg parts, absorption of nutrients, and development of embryos from different genotypes. A total of 354 fresh hatching eggs were obtained from one hybrid (Lohman White, LW) and two pure breeds (Denizli and Gerze). Hatching eggs from each genotype were examined on the day of setting for egg analysis and then at the beginning of the embryonic d 19 (E19) and embryonic d 21 (E21) for egg, embryo, jejunum, and tibia analysis. On d 21 of incubation, the healthy chicks were removed and weighed. Egg weight, shell thickness, percentages of albumen, and some parameters of albumen composition (dry matter, water, ash, protein, energy, Na, Ca, K, and Mg) were higher in fresh eggs obtained from LW hens. Furthermore, the relative yolk sac and embryo weight, some yolk parameters (dry matter, water, protein, fat, and energy) and some shell parameters (dry matter, ash, Na, Ca, and K) were also higher in eggs obtained from LW hens during incubation. However, tibia deformation and villus width were lower in LW embryos than the other genotypes. Relative chick weights were 68.9, 72.0, and 68.0% in LW, Denizli, and Gerze genotypes, respectively. During incubation, differences in all examined parameters were significant except thickness and weight of shell, tibia deformation, and crypt depth. Yolk sac weight, some yolk composition parameters, K level in the shell, Cu level in the tibia, and villus height were also affected by genotype and period interaction. Based on these results, LW was found advantageous in terms of egg composition, however, regarding villus development and tibia deformation in embryos during incubation, pure breeds showed better results. © 2017 Poultry Science Association Inc.

  17. Fast sodium ionic conduction in Na2B10H10-Na2B12H12 pseudo-binary complex hydride and application to a bulk-type all-solid-state battery

    NASA Astrophysics Data System (ADS)

    Yoshida, Koji; Sato, Toyoto; Unemoto, Atsushi; Matsuo, Motoaki; Ikeshoji, Tamio; Udovic, Terrence J.; Orimo, Shin-ichi

    2017-03-01

    In the present work, we developed highly sodium-ion conductive Na2B10H10-Na2B12H12 pseudo-binary complex hydride via mechanically ball-milling admixtures of the pure Na2B10H10 and Na2B12H12 components. Both of these components show a monoclinic phase at room temperature, but ball-milled mixtures partially stabilized highly ion-conductive, disordered cubic phases, whose fraction and favored structural symmetry (body-centered cubic or face-centered cubic) depended on the conditions of mechanical ball-milling and molar ratio of the component compounds. First-principles molecular-dynamics simulations demonstrated that the total energy of the closo-borane mixtures and pure materials is quite close, helping to explain the observed stabilization of the mixed compounds. The ionic conductivity of the closo-borane mixtures appeared to be correlated with the fraction of the body-centered-cubic phase, exhibiting a maximum at a molar ratio of Na2B10H10:Na2B12H12 = 1:3. A conductivity as high as log(σ/S cm-1) = -3.5 was observed for the above ratio at 303 K, being approximately 2-3 orders of magnitude higher than that of either pure material. A bulk-type all-solid-state sodium-ion battery with a closo-borane-mixture electrolyte, sodium-metal negative-electrode, and TiS2 positive-electrode demonstrated a high specific capacity, close to the theoretical value of NaTiS2 formation and a stable discharge/charge cycling for at least eleven cycles, with a high discharge capacity retention ratio above 91% from the second cycle.

  18. Differentiation of Microbial Species and Strains in Coculture Biofilms by Multivariate Analysis of Laser Desorption Postionization Mass Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    University of Illinois at Chicago; Montana State University; Bhardwaj, Chhavi

    2013-04-01

    7.87 to 10.5 eV vacuum ultraviolet (VUV) photon energies were used in laser desorption postionization mass spectrometry (LDPI-MS) to analyze biofilms comprised of binary cultures of interacting microorganisms. The effect of photon energy was examined using both tunable synchrotron and laser sources of VUV radiation. Principal components analysis (PCA) was applied to the MS data to differentiate species in Escherichia coli-Saccharomyces cerevisiae coculture biofilms. PCA of LDPI-MS also differentiated individual E. coli strains in a biofilm comprised of two interacting gene deletion strains, even though these strains differed from the wild type K-12 strain by no more than four genemore » deletions each out of approximately 2000 genes. PCA treatment of 7.87 eV LDPI-MS data separated the E. coli strains into three distinct groups two ?pure? groups and a mixed region. Furthermore, the ?pure? regions of the E. coli cocultures showed greater variance by PCA when analyzed by 7.87 eV photon energies than by 10.5 eV radiation. Comparison of the 7.87 and 10.5 eV data is consistent with the expectation that the lower photon energy selects a subset of low ionization energy analytes while 10.5 eV is more inclusive, detecting a wider range of analytes. These two VUV photon energies therefore give different spreads via PCA and their respective use in LDPI-MS constitute an additional experimental parameter to differentiate strains and species.« less

  19. Process technologies of MPACVD planar waveguide devices and fiber attachment

    NASA Astrophysics Data System (ADS)

    Li, Cheng-Chung; Qian, Fan; Boudreau, Robert A.; Rowlette, John R., Sr.; Bowen, Terry P.

    1999-03-01

    Optical circuits based on low-loss glass waveguide on silicon are a practical and promising approach to integrate different functional components. Fiber attachment to planar waveguide provides a practical application for optical communications. Microwave Plasma Assisted Chemical Vapor Deposition (MPACVD) produces superior quality, low birefringence, low-loss, planar waveguides for integrated optical devices. Microwave plasma initiates the chemical vapor of SiCl4, GeCl4 and oxygen. A Ge-doped silica layer is thus deposited with a compatible high growth rate (i.e. 0.4 - 0.5 micrometer/min). Film properties are based on various parameters, such as chemical flow rates, chamber pressure and temperature, power level and injector design. The resultant refractive index can be varied between 1.46 (i.e. pure silica) and 1.60 (i.e. pure germania). Waveguides can be fabricated with any desired refractive index profile. Standard photolithography defines the waveguide pattern on a mask layer. The core layer is removed by plasma dry etch which has been investigated by both reactive ion etch (RIE) and inductively coupled plasma (ICP) etch. Etch rates of 3000 - 4000 angstrom/min have been achieved using ICP compared to typical etch rates of 200 - 300 angstrom/min using conventional RIE. Planar waveguides offer good mode matching to optical fiber. A polished fiber end can be glued to the end facet of waveguide with a very low optical coupling loss. In addition, anisotropic etching of silicon V- grooves provides a passive alignment capability. Epoxy and solder were used to fix the fiber within the guiding groove. Several designs of waveguide-fiber attachment will be discussed.

  20. A Hybrid Neuro-Fuzzy Model For Integrating Large Earth-Science Datasets

    NASA Astrophysics Data System (ADS)

    Porwal, A.; Carranza, J.; Hale, M.

    2004-12-01

    A GIS-based hybrid neuro-fuzzy approach to integration of large earth-science datasets for mineral prospectivity mapping is described. It implements a Takagi-Sugeno type fuzzy inference system in the framework of a four-layered feed-forward adaptive neural network. Each unique combination of the datasets is considered a feature vector whose components are derived by knowledge-based ordinal encoding of the constituent datasets. A subset of feature vectors with a known output target vector (i.e., unique conditions known to be associated with either a mineralized or a barren location) is used for the training of an adaptive neuro-fuzzy inference system. Training involves iterative adjustment of parameters of the adaptive neuro-fuzzy inference system using a hybrid learning procedure for mapping each training vector to its output target vector with minimum sum of squared error. The trained adaptive neuro-fuzzy inference system is used to process all feature vectors. The output for each feature vector is a value that indicates the extent to which a feature vector belongs to the mineralized class or the barren class. These values are used to generate a prospectivity map. The procedure is demonstrated by an application to regional-scale base metal prospectivity mapping in a study area located in the Aravalli metallogenic province (western India). A comparison of the hybrid neuro-fuzzy approach with pure knowledge-driven fuzzy and pure data-driven neural network approaches indicates that the former offers a superior method for integrating large earth-science datasets for predictive spatial mathematical modelling.

  1. Combined Electrophysiological and Behavioral Evidence for the Suppression of Salient Distractors.

    PubMed

    Gaspelin, Nicholas; Luck, Steven J

    2018-05-15

    Researchers have long debated how salient-but-irrelevant features guide visual attention. Pure stimulus-driven theories claim that salient stimuli automatically capture attention irrespective of goals, whereas pure goal-driven theories propose that an individual's attentional control settings determine whether salient stimuli capture attention. However, recent studies have suggested a hybrid model in which salient stimuli attract visual attention but can be actively suppressed by top-down attentional mechanisms. Support for this hybrid model has primarily come from ERP studies demonstrating that salient stimuli, which fail to capture attention, also elicit a distractor positivity (P D ) component, a putative neural index of suppression. Other support comes from a handful of behavioral studies showing that processing at the salient locations is inhibited compared with other locations. The current study was designed to link the behavioral and neural evidence by combining ERP recordings with an experimental paradigm that provides a behavioral measure of suppression. We found that, when a salient distractor item elicited the P D component, processing at the location of this distractor was suppressed below baseline levels. Furthermore, the magnitude of behavioral suppression and the magnitude of the P D component covaried across participants. These findings provide a crucial connection between the behavioral and neural measures of suppression, which opens the door to using the P D component to assess the timing and neural substrates of the behaviorally observed suppression.

  2. Application of Raman microscopy to biodegradable double-walled microspheres.

    PubMed

    Widjaja, Effendi; Lee, Wei Li; Loo, Say Chye Joachim

    2010-02-15

    Raman mapping measurements were performed on the cross section of the ternary-phase biodegradable double-walled microsphere (DWMS) of poly(D,L-lactide-co-glycolide) (50:50) (PLGA), poly(L-lactide) (PLLA), and poly(epsilon-caprolactone) (PCL), which was fabricated by a one-step solvent evaporation method. The collected Raman spectra were subjected to a band-target entropy minimization (BTEM) algorithm in order to reconstruct the pure component spectra of the species observed in this sample. Seven pure component spectral estimates were recovered, and their spatial distributions within DWMS were determined. The first three spectral estimates were identified as PLLA, PLGA 50:50, and PCL, which were the main components in DWMS. The last four spectral estimates were identified as semicrystalline polyglycolic acid (PGA), dichloromethane (DCM), copper-phthalocyanine blue, and calcite, which were the minor components in DWMS. PGA was the decomposition product of PLGA. DCM was the solvent used in DWMS fabrication. Copper-phthalocyanine blue and calcite were the unexpected contaminants. The current result showed that combined Raman microscopy and BTEM analysis can provide a sensitive characterization tool to DWMS, as it can give more specific information on the chemical species present as well as the spatial distributions. This novel analytical method for microsphere characterization can serve as a complementary tool to other more established analytical techniques, such as scanning electron microscopy and optical microscopy.

  3. Longer aftershocks duration in extensional tectonic settings.

    PubMed

    Valerio, E; Tizzani, P; Carminati, E; Doglioni, C

    2017-11-27

    Aftershocks number decay through time, depending on several parameters peculiar to each seismogenic regions, including mainshock magnitude, crustal rheology, and stress changes along the fault. However, the exact role of these parameters in controlling the duration of the aftershock sequence is still unknown. Here, using two methodologies, we show that the tectonic setting primarily controls the duration of aftershocks. On average and for a given mainshock magnitude (1) aftershock sequences are longer and (2) the number of earthquakes is greater in extensional tectonic settings than in contractional ones. We interpret this difference as related to the different type of energy dissipated during earthquakes. In detail, (1) a joint effect of gravitational forces and pure elastic stress release governs extensional earthquakes, whereas (2) pure elastic stress release controls contractional earthquakes. Accordingly, normal faults operate in favour of gravity, preserving inertia for a longer period and seismicity lasts until gravitational equilibrium is reached. Vice versa, thrusts act against gravity, exhaust their inertia faster and the elastic energy dissipation is buffered by the gravitational force. Hence, for seismic sequences of comparable magnitude and rheological parameters, aftershocks last longer in extensional settings because gravity favours the collapse of the hangingwall volumes.

  4. Creep of a Silicon Nitride Under Various Specimen/Loading Configurations

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Powers, Lynn M.; Holland, Frederic A.; Gyekenyesi, John P.; Holland, F. A. (Technical Monitor)

    2000-01-01

    Extensive creep testing of a hot-pressed silicon nitride (NC132) was performed at 1300 C in air using five different specimen/loading configurations, including pure tension, pure compression, four-point uniaxial flexure, ball-on-ring biaxial flexure, and ring-on-ring biaxial flexure. Nominal creep strain and its rate for a given nominal applied stress were greatest in tension, least in compression, and intermediate in uniaxial and biaxial flexure. Except for the case of compressive loading, nominal creep strain generally decreased with time, resulting in less-defined steady-state condition. Of the four different creep formulations - power-law, hyperbolic sine, step, redistribution models - the conventional power-law model still provides the most convenient and reasonable means to estimate simple, quantitative creep parameters of the material. Predictions of creep deformation for the case of multiaxial stress state (biaxial flexure) were made based on pure tension and compression creep data by using the design code CARES/Creep.

  5. Poisoning of mixed matrix membranes by fermentation components in pervaporation of ethanol

    USDA-ARS?s Scientific Manuscript database

    Pervaporation is an alternative to distillation for recovering ethanol produced by fermentation of grains and biomass. Ethanol-selective mixed matrix membranes of the hydrophobic zeolite ZSM-5 in polydimethylsiloxane (PDMS) have superior performance compared to pure PDMS membranes in pervaporation o...

  6. Investigation of the degradation of cresols in the treatments with ozone

    EPA Science Inventory

    The reaction between ozone and the three cresol isomers was investigated in pure water. Cresols were selected as model substrates representing an important component of humic material. Cresols carry both a hydroxyl and a methyl group, each theoretically increasing the reactivity ...

  7. Alternative polymer separation technology by centrifugal force in a melted state.

    PubMed

    Dobrovszky, Károly; Ronkay, Ferenc

    2014-11-01

    In order to upgrade polymer waste during recycling, separation should take place at high purity. The present research was aimed to develop a novel, alternative separation opportunity, where the polymer fractions were separated by centrifugal force in melted state. The efficiency of the constructed separation equipment was verified by two immiscible plastics (polyethylene terephthalate, PET; low density polyethylene, LDPE), which have a high difference of density, and of which large quantities can also be found in the municipal solid waste. The results show that the developed equipment is suitable not only for separating dry blended mixtures of PET/LDPE into pure components again, but also for separating prefabricated polymer blends. By this process it becomes possible to recover pure polymer substances from multi-component products during the recycling process. The adequacy of results was verified by differential scanning calorimetry (DSC) measurement as well as optical microscopy and Raman spectroscopy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. High pressure and temperature optical flow cell for near-infra-red spectroscopic analysis of gas mixtures.

    PubMed

    Norton, C G; Suedmeyer, J; Oderkerk, B; Fieback, T M

    2014-05-01

    A new optical flow cell with a new optical arrangement adapted for high pressures and temperatures using glass fibres to connect light source, cell, and spectrometer has been developed, as part of a larger project comprising new methods for in situ analysis of bio and hydrogen gas mixtures in high pressure and temperature applications. The analysis is based on measurements of optical, thermo-physical, and electromagnetic properties in gas mixtures with newly developed high pressure property sensors, which are mounted in a new apparatus which can generate gas mixtures with up to six components with an uncertainty of composition of as little as 0.1 mol. %. Measurements of several pure components of natural gases and biogases to a pressure of 20 MPa were performed on two isotherms, and with binary mixtures of the same pure gases at pressures to 17.5 MPa. Thereby a new method of analyzing the obtained spectra based on the partial density of methane was investigated.

  9. Ti-doped isotropic graphite: A promising armour material for plasma-facing components

    NASA Astrophysics Data System (ADS)

    García-Rosales, C.; López-Galilea, I.; Ordás, N.; Adelhelm, C.; Balden, M.; Pintsuk, G.; Grattarola, M.; Gualco, C.

    2009-04-01

    Finely dispersed Ti-doped isotropic graphites with 4 at.% Ti have been manufactured using synthetic mesophase pitch 'AR' as raw material. These new materials show a thermal conductivity at room temperature of ˜200 W/mK and flexural strength close to 100 MPa. Measurement of the total erosion yield by deuterium bombardment at ion energies and sample temperatures for which pure carbon shows maximum values, resulted in a reduction of at least a factor of 4, mainly due to dopant enrichment at the surface caused by preferential erosion of carbon. In addition, ITER relevant thermal shock loads were applied with an energetic electron beam at the JUDITH facility. The results demonstrated a significantly improved performance of Ti-doped graphite compared to pure graphite. Finally, Ti-doped graphite was successfully brazed to a CuCrZr block using a Mo interlayer. These results let assume that Ti-doped graphite can be a promising armour material for divertor plasma-facing components.

  10. Food adulteration analysis without laboratory prepared or determined reference food adulterant values.

    PubMed

    Kalivas, John H; Georgiou, Constantinos A; Moira, Marianna; Tsafaras, Ilias; Petrakis, Eleftherios A; Mousdis, George A

    2014-04-01

    Quantitative analysis of food adulterants is an important health and economic issue that needs to be fast and simple. Spectroscopy has significantly reduced analysis time. However, still needed are preparations of analyte calibration samples matrix matched to prediction samples which can be laborious and costly. Reported in this paper is the application of a newly developed pure component Tikhonov regularization (PCTR) process that does not require laboratory prepared or reference analysis methods, and hence, is a greener calibration method. The PCTR method requires an analyte pure component spectrum and non-analyte spectra. As a food analysis example, synchronous fluorescence spectra of extra virgin olive oil samples adulterated with sunflower oil is used. Results are shown to be better than those obtained using ridge regression with reference calibration samples. The flexibility of PCTR allows including reference samples and is generic for use with other instrumental methods and food products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Selective oxidation of cube textured Ni and Ni-Cr substrate for the formation of cube textured NiO as a component buffer layer for REBa 2Cu 3O 7+ x (REBCO) coated conductors

    NASA Astrophysics Data System (ADS)

    Lockman, Z.; Goldacker, W.; Nast, R.; deBoer, B.; MacManus-Driscoll, J. L.

    2002-08-01

    Thermal oxidation of cube textured, pure Ni and Ni-Cr tapes was undertaken under different oxidation conditions to form cube textured NiO for the use as a first component of buffer layer for the coated conductor. Cube textured NiO was formed on pure Ni after oxidising for more than 130 min in O 2 at 1250 °C. The oxide thickness was >30 μm. Much shorter oxidation times (20-40 min, NiO thickness of ∼5 μm) and lower temperature (1050 °C) were required to form a similar texture on Ni-Cr foils. In addition, NiO formed on Ni-13%Cr was more highly textured than Ni-10%Cr. A Cr 2O 3 inner layer and NiO outer layer was formed on the Ni-Cr alloys.

  12. Molecular Dynamics Evaluation of Dielectric-Constant Mixing Rules for H2O-CO2 at Geologic Conditions

    PubMed Central

    Mountain, Raymond D.; Harvey, Allan H.

    2015-01-01

    Modeling of mineral reaction equilibria and aqueous-phase speciation of C-O-H fluids requires the dielectric constant of the fluid mixture, which is not known from experiment and is typically estimated by some rule for mixing pure-component values. In order to evaluate different proposed mixing rules, we use molecular dynamics simulation to calculate the dielectric constant of a model H2O–CO2 mixture at temperatures of 700 K and 1000 K at pressures up to 3 GPa. We find that theoretically based mixing rules that depend on combining the molar polarizations of the pure fluids systematically overestimate the dielectric constant of the mixture, as would be expected for mixtures of nonpolar and strongly polar components. The commonly used semiempirical mixing rule due to Looyenga works well for this system at the lower pressures studied, but somewhat underestimates the dielectric constant at higher pressures and densities, especially at the water-rich end of the composition range. PMID:26664009

  13. Molecular Dynamics Evaluation of Dielectric-Constant Mixing Rules for H2O-CO2 at Geologic Conditions.

    PubMed

    Mountain, Raymond D; Harvey, Allan H

    2015-10-01

    Modeling of mineral reaction equilibria and aqueous-phase speciation of C-O-H fluids requires the dielectric constant of the fluid mixture, which is not known from experiment and is typically estimated by some rule for mixing pure-component values. In order to evaluate different proposed mixing rules, we use molecular dynamics simulation to calculate the dielectric constant of a model H 2 O-CO 2 mixture at temperatures of 700 K and 1000 K at pressures up to 3 GPa. We find that theoretically based mixing rules that depend on combining the molar polarizations of the pure fluids systematically overestimate the dielectric constant of the mixture, as would be expected for mixtures of nonpolar and strongly polar components. The commonly used semiempirical mixing rule due to Looyenga works well for this system at the lower pressures studied, but somewhat underestimates the dielectric constant at higher pressures and densities, especially at the water-rich end of the composition range.

  14. pureS2HAT: S 2HAT-based Pure E/B Harmonic Transforms

    NASA Astrophysics Data System (ADS)

    Grain, J.; Stompor, R.; Tristram, M.

    2011-10-01

    The pS2HAT routines allow efficient, parallel calculation of the so-called 'pure' polarized multipoles. The computed multipole coefficients are equal to the standard pseudo-multipoles calculated for the apodized sky maps of the Stokes parameters Q and U subsequently corrected by so-called counterterms. If the applied apodizations fullfill certain boundary conditions, these multipoles correspond to the pure multipoles. Pure multipoles of one type, i.e., either E or B, are ensured not to contain contributions from the other one, at least to within numerical artifacts. They can be therefore further used in the estimation of the sky power spectra via the pseudo power spectrum technique, which has to however correctly account for the applied apodization on the one hand, and the presence of the counterterms, on the other. In addition, the package contains the routines permitting calculation of the spin-weighted apodizations, given an input scalar, i.e., spin-0 window. The former are needed to compute the counterterms. It also provides routines for maps and window manipulations. The routines are written in C and based on the S2HAT library, which is used to perform all required spherical harmonic transforms as well as all inter-processor communication. They are therefore parallelized using MPI and follow the distributed-memory computational model. The data distribution patterns, pixelization choices, conventions etc are all as those assumed/allowed by the S2HAT library.

  15. Marangoni Flow Induced Evaporation Enhancement on Binary Sessile Drops.

    PubMed

    Chen, Pin; Harmand, Souad; Ouenzerfi, Safouene; Schiffler, Jesse

    2017-06-15

    The evaporation processes of pure water, pure 1-butanol, and 5% 1-butanol aqueous solution drops on heated hydrophobic substrates are investigated to determine the effect of temperature on the drop evaporation behavior. The evolution of the parameters (contact angle, diameter, and volume) during evaporation measured using a drop shape analyzer and the infrared thermal mapping of the drop surface recorded by an infrared camera were used in investigating the evaporation process. The pure 1-butanol drop does not show any thermal instability at different substrate temperatures, while the convection cells created by the thermal Marangoni effect appear on the surface of the pure water drop from 50 °C. Because 1-butanol and water have different surface tensions, the infrared video of the 5% 1-butanol aqueous solution drop shows that the convection cells are generated by the solutal Marangoni effect at any substrate temperature. Furthermore, when the substrate temperature exceeds 50 °C, coexistence of the thermal and solutal Marangoni flows is observed. By analyzing the relation between the ratio of the evaporation rate of pure water and 1-butanol aqueous solution drops and the Marangoni number, a series of empirical equations for predicting the evaporation rates of pure water and 1-butanol aqueous solution drops at the initial time as well as the equations for the evaporation rate of 1-butanol aqueous solution drop before the depletion of alcohol are derived. The results of these equations correspond fairly well to the experimental data.

  16. Estimating the number of pure chemical components in a mixture by X-ray absorption spectroscopy.

    PubMed

    Manceau, Alain; Marcus, Matthew; Lenoir, Thomas

    2014-09-01

    Principal component analysis (PCA) is a multivariate data analysis approach commonly used in X-ray absorption spectroscopy to estimate the number of pure compounds in multicomponent mixtures. This approach seeks to describe a large number of multicomponent spectra as weighted sums of a smaller number of component spectra. These component spectra are in turn considered to be linear combinations of the spectra from the actual species present in the system from which the experimental spectra were taken. The dimension of the experimental dataset is given by the number of meaningful abstract components, as estimated by the cascade or variance of the eigenvalues (EVs), the factor indicator function (IND), or the F-test on reduced EVs. It is shown on synthetic and real spectral mixtures that the performance of the IND and F-test critically depends on the amount of noise in the data, and may result in considerable underestimation or overestimation of the number of components even for a signal-to-noise (s/n) ratio of the order of 80 (σ = 20) in a XANES dataset. For a given s/n ratio, the accuracy of the component recovery from a random mixture depends on the size of the dataset and number of components, which is not known in advance, and deteriorates for larger datasets because the analysis picks up more noise components. The scree plot of the EVs for the components yields one or two values close to the significant number of components, but the result can be ambiguous and its uncertainty is unknown. A new estimator, NSS-stat, which includes the experimental error to XANES data analysis, is introduced and tested. It is shown that NSS-stat produces superior results compared with the three traditional forms of PCA-based component-number estimation. A graphical user-friendly interface for the calculation of EVs, IND, F-test and NSS-stat from a XANES dataset has been developed under LabVIEW for Windows and is supplied in the supporting information. Its possible application to EXAFS data is discussed, and several XANES and EXAFS datasets are also included for download.

  17. X-ray and optical crystallographic parameters investigations of high frequency induction melted Al-(alpha-Al(2)O(3)) alloys.

    PubMed

    Bourbia, A; Draissia, M; Bedboudi, H; Boulkhessaim, S; Debili, M Y

    2010-01-01

    This article deals with the microstructural strengthening mechanisms of aluminium by means of hard alpha-Al(2)O(3) alumina fine particles. A broad of understanding views covering materials preparations, elaboration process, characterization techniques and associated microstructural characteristic parameters measurements is given. In order to investigate the microstructural characteristic parameters and the mechanical strengthening mechanisms of pure aluminium by hard fine particles, a set of Al-(alpha-Al(2)O(3)) alloys samples were made under vacuum by high fusion temperature melting, the high frequency (HF) process, and rapidly solidified under ambient temperature from a mixture of cold-compacted high-pure fine Al and alpha-Al(2)O(3) powders. The as-solidified Al-(alpha-Al(2)O(3)) alloys were characterized by means of X-ray diffraction (XRD) analyses, optical microscopy observations and Vickers microhardness tests in both brut and heat-treated states. It was found that the as-solidified HF Al-(alpha-Al(2)O(3)) alloys with compositions below 4 wt.% (alpha-Al(2)O(3)) are single-phase microstructures of the solid solution FCC Al phase and over two-phase microstructures of the solid solution FCC Al and the Rhombohedral alpha-Al(2)O(3) phases. The optical micrographs reveal the presence of a grain size refinement in these alloys. Vickers microhardness of the as-solidified Al-(alpha-Al(2)O(3)) is increased by means of pure fine alpha-Al(2)O(3) alumina particles. These combined effects of strengthening and grain size refinement observed in the as-solidified Al-(alpha-Al(2)O(3)) alloys are essentially due to a strengthening of Al by the alpha-Al(2)O(3) alumina particles insertion in the (HF) melted and rapidly solidified alloys.

  18. Combination of multivariate curve resolution and multivariate classification techniques for comprehensive high-performance liquid chromatography-diode array absorbance detection fingerprints analysis of Salvia reuterana extracts.

    PubMed

    Hakimzadeh, Neda; Parastar, Hadi; Fattahi, Mohammad

    2014-01-24

    In this study, multivariate curve resolution (MCR) and multivariate classification methods are proposed to develop a new chemometric strategy for comprehensive analysis of high-performance liquid chromatography-diode array absorbance detection (HPLC-DAD) fingerprints of sixty Salvia reuterana samples from five different geographical regions. Different chromatographic problems occurred during HPLC-DAD analysis of S. reuterana samples, such as baseline/background contribution and noise, low signal-to-noise ratio (S/N), asymmetric peaks, elution time shifts, and peak overlap are handled using the proposed strategy. In this way, chromatographic fingerprints of sixty samples are properly segmented to ten common chromatographic regions using local rank analysis and then, the corresponding segments are column-wise augmented for subsequent MCR analysis. Extended multivariate curve resolution-alternating least squares (MCR-ALS) is used to obtain pure component profiles in each segment. In general, thirty-one chemical components were resolved using MCR-ALS in sixty S. reuterana samples and the lack of fit (LOF) values of MCR-ALS models were below 10.0% in all cases. Pure spectral profiles are considered for identification of chemical components by comparing their resolved spectra with the standard ones and twenty-four components out of thirty-one components were identified. Additionally, pure elution profiles are used to obtain relative concentrations of chemical components in different samples for multivariate classification analysis by principal component analysis (PCA) and k-nearest neighbors (kNN). Inspection of the PCA score plot (explaining 76.1% of variance accounted for three PCs) showed that S. reuterana samples belong to four clusters. The degree of class separation (DCS) which quantifies the distance separating clusters in relation to the scatter within each cluster is calculated for four clusters and it was in the range of 1.6-5.8. These results are then confirmed by kNN. In addition, according to the PCA loading plot and kNN dendrogram of thirty-one variables, five chemical constituents of luteolin-7-o-glucoside, salvianolic acid D, rosmarinic acid, lithospermic acid and trijuganone A are identified as the most important variables (i.e., chemical markers) for clusters discrimination. Finally, the effect of different chemical markers on samples differentiation is investigated using counter-propagation artificial neural network (CP-ANN) method. It is concluded that the proposed strategy can be successfully applied for comprehensive analysis of chromatographic fingerprints of complex natural samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Collision induced broadening of ν1 band and ground state spectral lines of sulfur dioxide perturbed by N2 and O2

    NASA Astrophysics Data System (ADS)

    Ceselin, Giorgia; Tasinato, Nicola; Puzzarini, Cristina; Charmet, Andrea Pietropolli; Stoppa, Paolo; Giorgianni, Santi

    2017-09-01

    To monitor the constituents and trace pollutants of Earth atmosphere and understand its evolution, accurate spectroscopic parameters are fundamental information. SO2 is produced by both natural and anthropogenic sources and it is one of the principal causes of acid rains as well as an important component of fine aerosol particles, once oxidized to sulfate. The present work aims at determining SO2 broadening parameters using N2 and O2 as atmospherically relevant damping gases. Measurements are carried out in the infrared (IR) and mm-/sub-mm wave regions, around 8.8 μm and in the 104 GHz-1.1 THz interval, respectively. IR ro-vibrational transitions are recorded by using a tunable diode laser spectrometer, whereas the microwave spectra are recorded by using a frequency-modulated millimeter-/submillimeter-wave spectrometer. SO2-N2 and SO2-O2 collisional cross sections are retrieved for several ν1 band ro-vibrational transitions of 32S16O2, for some transitions belonging to either ν1 + ν2 - ν2 of 32S16O2 or ν1 of 34S16O2 as well as for about 20 pure rotational transitions in the vibrational ground state of the main isotopic species. From N2- and O2- broadening coefficients the broadening parameters of SO2 in air are derived. The work is completed with the study of the dependence of foreign broadening coefficients on the rotational quantum numbers.

  20. Line shape parameters of the 22-GHz water line for accurate modeling in atmospheric applications

    NASA Astrophysics Data System (ADS)

    Koshelev, M. A.; Golubiatnikov, G. Yu.; Vilkov, I. N.; Tretyakov, M. Yu.

    2018-01-01

    The paper concerns refining parameters of one of the major atmospheric diagnostic lines of water vapor at 22 GHz. Two high resolution microwave spectrometers based on different principles of operation covering together the pressure range from a few milliTorr up to a few Torr were used. Special efforts were made to minimize possible sources of systematic measurement errors. Satisfactory self-consistency of the obtained data was achieved ensuring reliability of the obtained parameters. Collisional broadening and shifting parameters of the line in pure water vapor and in its mixture with air were determined at room temperature. Comparative analysis of the obtained parameters with previous data is given. The speed dependence effect impact on the line shape was evaluated.

  1. Thermal inactivation of Botrytis cinerea conidia in synthetic medium and strawberry puree.

    PubMed

    Villa-Rojas, R; Sosa-Morales, M E; López-Malo, A; Tang, J

    2012-04-16

    Botrytis cinerea is one of the most important post-harvest molds that cause quality deterioration of strawberries and other fruits even during refrigeration storage. This research studied the effects of thermal inactivation of B. cinerea in synthetic medium and strawberry puree using hot water baths at different temperatures. These media were studied in order to determine if results obtained in a solution with the major components of the fruit (synthetic media), are comparable to the ones obtained in fruit purees. The results demonstrated that B. cinerea spores can be inactivated by heat treatments using relatively low temperatures (42-46 °C). Inactivation curves were well described by first order kinetics (R² 0.91-0.99). B. cinerea conidia inoculated in synthetic medium required less time to achieve one log reduction in population than those inoculated in the fruit puree. D values were 22, 8.5, 4 and 1.4 min at 42, 44, 46 and 48 °C, respectively, in synthetic medium; while D values in strawberry puree were 44.9, 13.8, 4.7 and 1.4 min at 42, 44, 46 and 48 °C, respectively. The z values obtained were 4.15 and 5.08 °C for the strawberry puree and synthetic medium respectively, showing higher sensitivity of B. cinerea in fruit purees than in the synthetic medium. Thus, a change in the medium composition had a marked difference in the heat inactivation of B. cinerea conidia, and the results obtained in synthetic medium are not accurate to describe the behavior of the microorganism in the fruit. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Rapid detection of milk adulteration using intact protein flow injection mass spectrometric fingerprints combined with chemometrics.

    PubMed

    Du, Lijuan; Lu, Weiying; Cai, Zhenzhen Julia; Bao, Lei; Hartmann, Christoph; Gao, Boyan; Yu, Liangli Lucy

    2018-02-01

    Flow injection mass spectrometry (FIMS) combined with chemometrics was evaluated for rapidly detecting economically motivated adulteration (EMA) of milk. Twenty-two pure milk and thirty-five counterparts adulterated with soybean, pea, and whey protein isolates at 0.5, 1, 3, 5, and 10% (w/w) levels were analyzed. The principal component analysis (PCA), partial least-squares-discriminant analysis (PLS-DA), and support vector machine (SVM) classification models indicated that the adulterated milks could successfully be classified from the pure milks. FIMS combined with chemometrics might be an effective method to detect possible EMA in milk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Hard-thermal-loop perturbation theory to two loops

    NASA Astrophysics Data System (ADS)

    Andersen, Jens O.; Braaten, Eric; Petitgirard, Emmanuel; Strickland, Michael

    2002-10-01

    We calculate the pressure for pure-glue QCD at high temperature to two-loop order using hard-thermal-loop (HTL) perturbation theory. At this order, all the ultraviolet divergences can be absorbed into renormalizations of the vacuum energy density and the HTL mass parameter. We determine the HTL mass parameter by a variational prescription. The resulting predictions for the pressure fail to agree with results from lattice gauge theory at temperatures for which they are available.

  4. Direct perturbation theory for the dark soliton solution to the nonlinear Schroedinger equation with normal dispersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Jialu; Yang Chunnuan; Cai Hao

    2007-04-15

    After finding the basic solutions of the linearized nonlinear Schroedinger equation by the method of separation of variables, the perturbation theory for the dark soliton solution is constructed by linear Green's function theory. In application to the self-induced Raman scattering, the adiabatic corrections to the soliton's parameters are obtained and the remaining correction term is given as a pure integral with respect to the continuous spectral parameter.

  5. Modelling the light absorption coefficients of oceanic waters: Implications for underwater optical applications

    NASA Astrophysics Data System (ADS)

    Prabhakaran, Sai Shri; Sahu, Sanjay Kumar; Dev, Pravin Jeba; Shanmugam, Palanisamy

    2018-05-01

    Spectral absorption coefficients of particulate (algal and non-algal components) and dissolved substances are modelled and combined with the pure seawater component to determine the total light absorption coefficients of seawater in the Bay of Bengal. Two parameters namely chlorophyll-a (Chl) concentration and turbidity were measured using commercially available instruments with high sampling rates. For modelling the light absorption coefficients of oceanic waters, the measured data are classified into two broad groups - algal dominant and non-algal particle (NAP) dominant. With these criteria the individual absorption coefficients of phytoplankton and NAP were established based on their concentrations using an iterative method. To account for the spectral dependence of absorption by phytoplankton, the wavelength-dependent coefficients were introduced into the model. The CDOM absorption was determined by subtracting the individual absorption coefficients of phytoplankton and NAP from the measured total absorption data and then related to the Chl concentration. Validity of the model is assessed based on independent in-situ data from certain discrete locations in the Bay of Bengal. The total absorption coefficients estimated using the new model by considering the contributions of algal, non-algal and CDOM have good agreement with the measured total absorption data with the error range of 6.9 to 28.3%. Results obtained by the present model are important for predicting the propagation of the radiant energy within the ocean and interpreting remote sensing observation data.

  6. Linear Models for Systematics and Nuisances

    NASA Astrophysics Data System (ADS)

    Luger, Rodrigo; Foreman-Mackey, Daniel; Hogg, David W.

    2017-12-01

    The target of many astronomical studies is the recovery of tiny astrophysical signals living in a sea of uninteresting (but usually dominant) noise. In many contexts (i.e., stellar time-series, or high-contrast imaging, or stellar spectroscopy), there are structured components in this noise caused by systematic effects in the astronomical source, the atmosphere, the telescope, or the detector. More often than not, evaluation of the true physical model for these nuisances is computationally intractable and dependent on too many (unknown) parameters to allow rigorous probabilistic inference. Sometimes, housekeeping data---and often the science data themselves---can be used as predictors of the systematic noise. Linear combinations of simple functions of these predictors are often used as computationally tractable models that can capture the nuisances. These models can be used to fit and subtract systematics prior to investigation of the signals of interest, or they can be used in a simultaneous fit of the systematics and the signals. In this Note, we show that if a Gaussian prior is placed on the weights of the linear components, the weights can be marginalized out with an operation in pure linear algebra, which can (often) be made fast. We illustrate this model by demonstrating the applicability of a linear model for the non-linear systematics in K2 time-series data, where the dominant noise source for many stars is spacecraft motion and variability.

  7. High-Throughput Nuclear Magnetic Resonance Metabolomic Footprinting for Tissue Engineering

    PubMed Central

    Seagle, Christopher; Christie, Megan A.; Winnike, Jason H.; McClelland, Randall E.; Ludlow, John W.; O'Connell, Thomas M.; Gamcsik, Michael P.

    2008-01-01

    Abstract We report a high-throughput (HTP) nuclear magnetic resonance (NMR) method for analysis of media components and a metabolic schematic to help easily interpret the data. Spin-lattice relaxation values and concentrations were measured for 19 components and 2 internal referencing agents in pure and 2-day conditioned, hormonally defined media from a 3-dimensional (3D) multicoaxial human bioartificial liver (BAL). The 1H NMR spectral signal-to-noise ratio is 21 for 0.16 mM alanine in medium and is obtained in 12 min using a 400 MHz NMR spectrometer. For comparison, 2D gel cultures and 3D multicoaxial BALs were batch cultured, with medium changed every day for 15 days after inoculation with human liver cells in Matrigel–collagen type 1 gels. Glutamine consumption was higher by day 8 in the BAL than in 2D culture; lactate production was lower through the 15-day culture period. Alanine was the primary amino acid produced and tracked with lactate or urea production. Glucose and pyruvate consumption were similar in the BAL and 2D cultures. NMR analysis permits quality assurance of the bioreactor by identifying contaminants. Ethanol was observed because of a bioreactor membrane “wetting” procedure. A biochemical scheme is presented illustrating bioreactor metabolomic footprint results and demonstrating how this can be translated to modify bioreactor operational parameters or quality assurance issues. PMID:18544027

  8. Molecules in high spin states: The millimeter and submillimeter spectrum of the MnS radical (X 6Sigma+)

    NASA Astrophysics Data System (ADS)

    Thompsen, J. M.; Brewster, M. A.; Ziurys, L. M.

    2002-06-01

    The pure rotational spectrum of MnS (v=0) in its X 6Sigma+ ground state has been recorded using millimeter and submillimeter direct absorption techniques in the range 160-502 GHz. MnS was synthesized in the gas phase by the reaction of manganese vapor and CS2 in a high-temperature Broida-type oven. Fourteen rotational transitions for this radical were measured, each consisting of six fine-structure components. In the lower rotational lines, hyperfine structure, arising from the 55Mn nuclear spin of 5/2, was also resolved in each spin component. These data were analyzed using a case (b) Hamiltonian, and rotational, fine structure, and hyperfine parameters determined for MnS. In the analysis, the third-order correction to the spin-rotation interaction, gammaS, and the fourth-order spin-spin coupling term, theta, were found necessary for an acceptable fit. The hyperfine constants determined suggest that MnS is more covalent than MnO, but more ionic than MnH. There additionally appears to be considerable sdsigma hybridization in molecular orbital formation for this molecule. Bond lengths of the 3d transition-metal sulfides were compared as well, and those of MnS, CuS, and TiS do not follow the trend of their oxide analogs. This result indicates that there are significant bonding differences between transition-metal sulfides and transition-metal oxides.

  9. Sensitivity of WallDYN material migration modeling to uncertainties in mixed-material surface binding energies

    DOE PAGES

    Nichols, J. H.; Jaworski, M. A.; Schmid, K.

    2017-03-09

    The WallDYN package has recently been applied to a number of tokamaks to self-consistently model the evolution of mixed-material plasma facing surfaces. A key component of the WallDYN model is the concentration-dependent surface sputtering rate, calculated using SDTRIM.SP. This modeled sputtering rate is strongly influenced by the surface binding energies (SBEs) of the constituent materials, which are well known for pure elements but often are poorly constrained for mixed-materials. This work examines the sensitivity of WallDYN surface evolution calculations to different models for mixed-material SBEs, focusing on the carbon/lithium/oxygen/deuterium system present in NSTX. A realistic plasma background is reconstructed frommore » a high density, H-mode NSTX discharge, featuring an attached outer strike point with local density and temperature of 4 × 10 20 m -3 and 4 eV, respectively. It is found that various mixed-material SBE models lead to significant qualitative and quantitative changes in the surface evolution profile at the outer divertor, with the highest leverage parameter being the C-Li binding model. Uncertainties of order 50%, appearing on time scales relevant to tokamak experiments, highlight the importance of choosing an appropriate mixed-material sputtering representation when modeling the surface evolution of plasma facing components. Lastly, these results are generalized to other fusion-relevant materials with different ranges of SBEs.« less

  10. Analyzing the relationships between reflection source DPOAEs and SFOAEs using a computational model

    NASA Astrophysics Data System (ADS)

    Wen, Haiqi; Bowling, Thomas; Meaud, Julien

    2018-05-01

    Distortion product otoacoustic emissions (DPOAEs) are sounds generated by the cochlea in response to a stimulus that consists of two primary tones. DPOAEs consist of a mixture of emissions arising from two different mechanisms: nonlinear distortion and coherent reflection. Stimulus Frequency Otoacoustic Emissions (SFOAEs) are sounds generated by the cochlea in response to a pure tone; SFOAEs are commonly hypothesized to be generated due to coherent reflection. Nonlinearity of the outer hair cells (OHCs) provides nonlinear amplification to the traveling wave while reflections occur due to pre-existing micromechanical impedance perturbations. In this work, DPOAEs are obtained from a time domain computational model coupling a lumped parameter middle ear model with a multiphysics mechanical-electrical-acoustical model of cochlea. Cochlear roughness is intro-duced by perturbing the value of the OHC electromechanical coupling coefficient to account for the putative inhomogeneities inside the cochlea. The DPOAEs emitted in the ear canal are decomposed into distortion source and reflection source components. The reflection source component of DPOAEs is compared to SFOAEs obtained using a frequency-domain implementation of the model, to help us understand how distortion source and reflection source contributes to total DPOAEs. Moreover, the group delays of reflection sources OAEs are compared to group delays in the basilar membrane velocity to clarify the relationship between basilar membrane and OAE group delays.

  11. Sensitivity of WallDYN material migration modeling to uncertainties in mixed-material surface binding energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, J. H.; Jaworski, M. A.; Schmid, K.

    The WallDYN package has recently been applied to a number of tokamaks to self-consistently model the evolution of mixed-material plasma facing surfaces. A key component of the WallDYN model is the concentration-dependent surface sputtering rate, calculated using SDTRIM.SP. This modeled sputtering rate is strongly influenced by the surface binding energies (SBEs) of the constituent materials, which are well known for pure elements but often are poorly constrained for mixed-materials. This work examines the sensitivity of WallDYN surface evolution calculations to different models for mixed-material SBEs, focusing on the carbon/lithium/oxygen/deuterium system present in NSTX. A realistic plasma background is reconstructed frommore » a high density, H-mode NSTX discharge, featuring an attached outer strike point with local density and temperature of 4 × 10 20 m -3 and 4 eV, respectively. It is found that various mixed-material SBE models lead to significant qualitative and quantitative changes in the surface evolution profile at the outer divertor, with the highest leverage parameter being the C-Li binding model. Uncertainties of order 50%, appearing on time scales relevant to tokamak experiments, highlight the importance of choosing an appropriate mixed-material sputtering representation when modeling the surface evolution of plasma facing components. Lastly, these results are generalized to other fusion-relevant materials with different ranges of SBEs.« less

  12. Critical Analysis of Cluster Models and Exchange-Correlation Functionals for Calculating Magnetic Shielding in Molecular Solids.

    PubMed

    Holmes, Sean T; Iuliucci, Robbie J; Mueller, Karl T; Dybowski, Cecil

    2015-11-10

    Calculations of the principal components of magnetic-shielding tensors in crystalline solids require the inclusion of the effects of lattice structure on the local electronic environment to obtain significant agreement with experimental NMR measurements. We assess periodic (GIPAW) and GIAO/symmetry-adapted cluster (SAC) models for computing magnetic-shielding tensors by calculations on a test set containing 72 insulating molecular solids, with a total of 393 principal components of chemical-shift tensors from 13C, 15N, 19F, and 31P sites. When clusters are carefully designed to represent the local solid-state environment and when periodic calculations include sufficient variability, both methods predict magnetic-shielding tensors that agree well with experimental chemical-shift values, demonstrating the correspondence of the two computational techniques. At the basis-set limit, we find that the small differences in the computed values have no statistical significance for three of the four nuclides considered. Subsequently, we explore the effects of additional DFT methods available only with the GIAO/cluster approach, particularly the use of hybrid-GGA functionals, meta-GGA functionals, and hybrid meta-GGA functionals that demonstrate improved agreement in calculations on symmetry-adapted clusters. We demonstrate that meta-GGA functionals improve computed NMR parameters over those obtained by GGA functionals in all cases, and that hybrid functionals improve computed results over the respective pure DFT functional for all nuclides except 15N.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreutzbruck, M.; Brackrock, D.; Brekow, G.

    Lightweight components are increasingly used in different industrial sectors such as transportation, energy generation and automotive. This growing field includes different types of CFRP-structures, hybrid materials and glued components showing - compared to their pure metallic counterparts- a significant more complicated structure in terms of internal interfaces and anisotropy of material parameters. In this work we present the use of matrix phased array to increase the amount of obtained information to enhance the inspection quality. We used different types of carbon materials such as 6 mm thick uni- and bidirectional prepreg specimens containing impact damages. The latter were introduced withmore » different energy levels ranging from 1.3 to 7.2 J. By scanning a 2.25 MHz matrix array with 6 × 10 elements above the prepreg surface and using different angels of incidence a complete 3D-image was generated which allows the detection of defects as small as 1mm in a depth of 4 mm. A comparison with conventional approaches show that the signal-to-noise ratio can be highly increased. This enables us to visualize the region of damage within the impact zone, clearly showing the cone-like damage distribution along increasing material depth. The detection quality allows the estimation of the opening angles of the cone shaped damage, which can be used for further evaluation and quantitation of energy dependent impact damages.« less

  14. Guidelines for Finite Element Modeling of Acoustic Radiation Force-Induced Shear Wave Propagation in Tissue-Mimicking Media

    PubMed Central

    Palmeri, Mark L.; Qiang, Bo; Chen, Shigao; Urban, Matthew W.

    2017-01-01

    Ultrasound shear wave elastography is emerging as an important imaging modality for evaluating tissue material properties. In its practice, some systematic biases have been associated with ultrasound frequencies, focal depths and configuration, transducer types (linear versus curvilinear), along with displacement estimation and shear wave speed estimation algorithms. Added to that, soft tissues are not purely elastic, so shear waves will travel at different speeds depending on their spectral content, which can be modulated by the acoustic radiation force excitation focusing, duration and the frequency-dependent stiffness of the tissue. To understand how these different acquisition and material property parameters may affect measurements of shear wave velocity, simulations of the propagation of shear waves generated by acoustic radiation force excitations in viscoelastic media are a very important tool. This article serves to provide an in-depth description of how these simulations are performed. The general scheme is broken into three components: (1) simulation of the three-dimensional acoustic radiation force push beam, (2) applying that force distribution to a finite element model, and (3) extraction of the motion data for post-processing. All three components will be described in detail and combined to create a simulation platform that is powerful for developing and testing algorithms for academic and industrial researchers involved in making quantitative shear wave-based measurements of tissue material properties. PMID:28026760

  15. Ceramic components manufacturing by selective laser sintering

    NASA Astrophysics Data System (ADS)

    Bertrand, Ph.; Bayle, F.; Combe, C.; Goeuriot, P.; Smurov, I.

    2007-12-01

    In the present paper, technology of selective laser sintering/melting is applied to manufacture net shaped objects from pure yttria-zirconia powders. Experiments are carried out on Phenix Systems PM100 machine with 50 W fibre laser. Powder is spread by a roller over the surface of 100 mm diameter alumina cylinder. Design of experiments is applied to identify influent process parameters (powder characteristics, powder layering and laser manufacturing strategy) to obtain high-quality ceramic components (density and micro-structure). The influence of the yttria-zirconia particle size and morphology onto powder layering process is analysed. The influence of the powder layer thickness on laser sintering/melting is studied for different laser beam velocity V ( V = 1250-2000 mm/s), defocalisation (-6 to 12 mm), distance between two neighbour melted lines (so-called "vectors") (20-40 μm), vector length and temperature in the furnace. The powder bed density before laser sintering/melting also has significant influence on the manufactured samples density. Different manufacturing strategies are applied and compared: (a) different laser beam scanning paths to fill the sliced surfaces of the manufactured object, (b) variation of vector length (c) different strategies of powder layering, (d) temperature in the furnace and (e) post heat treatment in conventional furnace. Performance and limitations of different strategies are analysed applying the following criteria: geometrical accuracy of the manufactured samples, porosity. The process stability is proved by fabrication of 1 cm 3 volume cube.

  16. The Effect of Combined Magnetic Geometries on Thermally Driven Winds. I. Interaction of Dipolar and Quadrupolar Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, Adam J.; Matt, Sean P., E-mail: af472@exeter.ac.uk

    Cool stars with outer convective envelopes are observed to have magnetic fields with a variety of geometries, which on large scales are dominated by a combination of the lowest-order fields such as the dipole, quadrupole, and octupole modes. Magnetized stellar wind outflows are primarily responsible for the loss of angular momentum from these objects during the main sequence. Previous works have shown the reduced effectiveness of the stellar wind braking mechanism with increasingly complex but singular magnetic field geometries. In this paper, we quantify the impact of mixed dipolar and quadrupolar fields on the spin-down torque using 50 MHD simulationsmore » with mixed fields, along with 10 each of the pure geometries. The simulated winds include a wide range of magnetic field strength and reside in the slow-rotator regime. We find that the stellar wind braking torque from our combined geometry cases is well described by a broken power-law behavior, where the torque scaling with field strength can be predicted by the dipole component alone or the quadrupolar scaling utilizing the total field strength. The simulation results can be scaled and apply to all main-sequence cool stars. For solar parameters, the lowest-order component of the field (dipole in this paper) is the most significant in determining the angular momentum loss.« less

  17. High-pressure Phase Relation In The MgAl2O4-Mg2SiO4 System

    NASA Astrophysics Data System (ADS)

    Kojitani, H.; Hisatomi, R.; Akaogi, M.

    2005-12-01

    High-pressure and high-temperature experiments indicate that high-pressure phases of oceanic basalts contain Al-rich phases. MgAl2O4 with calcium ferrite-type crystal structure is considered as a main component of such the Al-rich phases. Since the calcium ferrite-type MgAl2O4 can be synthesized at only the maximum pressure of a Kawai-type high-pressure apparatus with tungsten carbide (WC) anvils, the amount of a synthesized sample is very limited. Therefore, the crystal structure of the calcium ferrite-type MgAl2O4 has been hardly known in detail due to these difficulties in sample synthesis. In our high-pressure experiments in the MgO-Al2O3-SiO2 system, it was shown that Mg2SiO4 component could be dissolved in the MgAl2O4 calcium ferrite. In this study, we tried to synthesize a single phase MgAl2O4 calcium ferrite sample and to make the Rietveld refinement of the XRD pattern of the sample. The high-pressure phase relations in the MgAl2O4-Mg2SiO4 system were studied to know the stability field of the MgAl2O4-Mg2SiO4 calcium ferrite solid solutions. Lattice parameters-composition relation of the MgAl2O4-Mg2SiO4 calcium ferrite solid solutions was also determined. High-pressure and high-temperature experiments were performed by using a Kawai-type high-pressure apparatus at Gakushuin University. WC anvils with truncated edge length of 1.5 mm were used. Heating was made by a Re heater. Temperature was measured by a Pt/Pt-13%Rh thermocouple. Starting materials for the phase relation experiments were the mixture of MgO, Al2O3 and SiO2 with bulk compositions of MgAl2O4:Mg2SiO4 = 90:10, 78:22, 70:30 and 50:50. The starting materials were held at 21-27 GPa and 1600 °C for 3 hours and then were recovered by the quenching method. The MgAl2O4 calcium ferrite sample for the Rietveld analysis was prepared by heating MgAl2O4 spinel at 27 GPa and about 2200 °C for one hour. Powder X-ray diffraction (XRD) profiles of obtained samples were measured by using a X-ray diffractometer at Gakushuin University (RINT 2500V, Cr Kα, 45 kV, 250 mA). Composition analysis of the recovered samples was made using SEM-DES. The RIETAN-2000 program was used to perform the Rietveld refinement. The results of the high-pressure phase relation experiments show that stability field of single phase of MgAl2O4-Mg2SiO4 solid solutions spreads at lower pressure than that of pure MgAl2O4 calcium ferrite. The lowest pressure at which the calcium ferrite solid solution can be synthesized is about 23 GPa. The maximum solubility of Mg2SiO4 component is about 35%. Lattice parameters of pure MgAl2O4 calcium ferrite were determined as a = 9.9495(6) Å, b = 8.6466(5) Å, c = 2.7901(2) Å ( Pbnm space group) by the Rietveld refinement. Obtained atomic positions for calcium ferrite-type MgAl2O4 are very similar to those of CaFe2O4 calcium ferrite. Lattice parameters of MgAl2O4-Mg2SiO4 calcium ferrite solid solutions with various compositions indicate that c-axis does not change with the composition and that a- and b-axes have a linear increase and decrease trend with increasing Mg2SiO4 component, respectively.

  18. Stress and strain evolution of folding rocks

    NASA Astrophysics Data System (ADS)

    Llorens, Maria-Gema; Griera, Albert; Bons, Paul; Gomez-Rivas, Enrique; Weikusat, Ilka

    2015-04-01

    One of the main objectives of structural geology is to unravel rock deformation histories. Fold shapes can be used to estimate the orientation and amount of strain associated with folding. However, much more information on rheology and kinematics can potentially be extracted from fold geometries (Llorens et al., 2013a). We can study the development of folds, quantify the relationships between the different parameters that determine their geometries and estimate their mechanical evolution. This approach allows us to better understand and predict not only rock but also ice deformation. One of the main parameters in fold development is the viscosity contrast between the folding layer and the matrix in which it is embedded (m), since it determines the initial fold wavelength and the amplification rate of the developing folds. Moreover, non-linear viscous rheology influences fold geometry too (Llorens et al., 2013b). We present a series of 2-dimensional simulations of folding of viscous single layers in pure and simple shear. We vary different parameters in order to compare and determine their influence on the resulting fold patterns and the associated mechanical response of the material. To perform these simulations we use the software platform ELLE (www.elle.ws) with the non-linear viscous finite element code BASIL. The results show that layers thicken at the beginning of deformation in all simulations, and visible folds start earlier or later depending on the viscosity contrast. When folds start to nucleate the layer maximum shear strain decreases, moving away from the theoretical trend for homogeneous strain (no folding). This allows the accurate determination of the onset of folding. Maximum deviatoric stresses are higher in power-law than in linear-viscosity materials, and it is initially double in pure shear than in simple shear conditions. Therefore, folding a competent layer requires less work in simple than in pure shear. The maximum deviatoric stress difference between pure and simple shear is less pronounced in power-law materials. It also depends on the original orientation of the layer relative to the shear plane, being the shortening rate initially relatively low when the layer makes a low angle with the shear plane. The mechanical behaviour is similar in pure and simple shear when the layer is oriented at a relative high angle (45°). M-G Llorens, PD Bons, A Griera and E Gomez-Rivas (2013a) When do folds unfold during progressive shear?. Geology, 41, 563-566. M-G Llorens, PD Bons, A Griera, E Gomez-Rivas and LA Evans (2013b) Single layer folding in simple shear. Journal of Structural Geology, 50, 209-220.

  19. Beyond the Spin Model Approximation for Ramsey Spectroscopy

    DTIC Science & Technology

    2014-03-26

    December 2013; revised manuscript received 31 January 2014; published 26 March 2014) Ramsey spectroscopy has become a powerful technique for probing...atomic systems without the need for ultralow temperatures. It is thus important to determine the parameter regime in which a pure interacting-spins picture

  20. Spectroscopic and Chemometric Analysis of Binary and Ternary Edible Oil Mixtures: Qualitative and Quantitative Study.

    PubMed

    Jović, Ozren; Smolić, Tomislav; Primožič, Ines; Hrenar, Tomica

    2016-04-19

    The aim of this study was to investigate the feasibility of FTIR-ATR spectroscopy coupled with the multivariate numerical methodology for qualitative and quantitative analysis of binary and ternary edible oil mixtures. Four pure oils (extra virgin olive oil, high oleic sunflower oil, rapeseed oil, and sunflower oil), as well as their 54 binary and 108 ternary mixtures, were analyzed using FTIR-ATR spectroscopy in combination with principal component and discriminant analysis, partial least-squares, and principal component regression. It was found that the composition of all 166 samples can be excellently represented using only the first three principal components describing 98.29% of total variance in the selected spectral range (3035-2989, 1170-1140, 1120-1100, 1093-1047, and 930-890 cm(-1)). Factor scores in 3D space spanned by these three principal components form a tetrahedral-like arrangement: pure oils being at the vertices, binary mixtures at the edges, and ternary mixtures on the faces of a tetrahedron. To confirm the validity of results, we applied several cross-validation methods. Quantitative analysis was performed by minimization of root-mean-square error of cross-validation values regarding the spectral range, derivative order, and choice of method (partial least-squares or principal component regression), which resulted in excellent predictions for test sets (R(2) > 0.99 in all cases). Additionally, experimentally more demanding gas chromatography analysis of fatty acid content was carried out for all specimens, confirming the results obtained by FTIR-ATR coupled with principal component analysis. However, FTIR-ATR provided a considerably better model for prediction of mixture composition than gas chromatography, especially for high oleic sunflower oil.

  1. Dynamics of poly(ethylene oxide) in a blend with poly(methyl methacrylate): a quasielastic neutron scattering and molecular dynamics simulations study.

    PubMed

    Genix, A-C; Arbe, A; Alvarez, F; Colmenero, J; Willner, L; Richter, D

    2005-09-01

    In this paper, we have addressed the question of the dynamic miscibility in a blend characterized by very different glass-transition temperatures, Tg, for the components: poly(ethylene oxide) and poly(methyl methacrylate) (PEO/PMMA). The combination of quasielastic neutron scattering with isotopic labeling and fully atomistic molecular dynamics simulations has allowed us to selectively investigate the dynamics of the two components in the picosecond-10 nanoseconds scale at temperatures close and above the Tg of the blend. The main focus was on the PEO component, i.e., that of the lowest Tg, but first we have characterized the dynamics of the other component in the blend and of the pure PEO homopolymer as reference. In the region investigated, the dynamics of PMMA in the blend is strongly affected by the alpha-methyl rotation; an additional process detected in the experimental window 65 K above the blend-Tg can be identified as the merged alphabeta process of this component that shows strong deviations from Gaussian behavior. On the other hand, pure PEO displays entropy driven dynamics up to very large momentum transfers. Such kind of motion seems to freeze when the PEO chains are in the blend. There, we have directly observed a very heterogeneous and moreover confined dynamics for the PEO component. The presence of the hardly moving PMMA matrix leads to the creation of little pockets of mobility where PEO can move. The characteristic size of such confined islands of mobility might be estimated to be of approximately 1 nm. These findings are corroborated by the simulation study, which has been an essential support and guide in our data analysis procedure.

  2. On the validity of cosmological Fisher matrix forecasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolz, Laura; Kilbinger, Martin; Weller, Jochen

    2012-09-01

    We present a comparison of Fisher matrix forecasts for cosmological probes with Monte Carlo Markov Chain (MCMC) posterior likelihood estimation methods. We analyse the performance of future Dark Energy Task Force (DETF) stage-III and stage-IV dark-energy surveys using supernovae, baryon acoustic oscillations and weak lensing as probes. We concentrate in particular on the dark-energy equation of state parameters w{sub 0} and w{sub a}. For purely geometrical probes, and especially when marginalising over w{sub a}, we find considerable disagreement between the two methods, since in this case the Fisher matrix can not reproduce the highly non-elliptical shape of the likelihood function.more » More quantitatively, the Fisher method underestimates the marginalized errors for purely geometrical probes between 30%-70%. For cases including structure formation such as weak lensing, we find that the posterior probability contours from the Fisher matrix estimation are in good agreement with the MCMC contours and the forecasted errors only changing on the 5% level. We then explore non-linear transformations resulting in physically-motivated parameters and investigate whether these parameterisations exhibit a Gaussian behaviour. We conclude that for the purely geometrical probes and, more generally, in cases where it is not known whether the likelihood is close to Gaussian, the Fisher matrix is not the appropriate tool to produce reliable forecasts.« less

  3. Membrane triangles with corner drilling freedoms. II - The ANDES element

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.; Militello, Carmelo

    1992-01-01

    This is the second article in a three-part series on the construction of 3-node, 9-dof membrane elements with normal-to-its-plane rotational freedoms (the so-called drilling freedoms) using parametrized variational principles. In this part, one such element is derived within the context of the assumed natural deviatoric strain (ANDES) formulation. The higher-order strains are obtained by constructing three parallel-to-sides pure-bending modes from which natural strains are obtained at the corner points and interpolated over the element. To attain rank sufficiency, an additional higher-order 'torsional' mode, corresponding to equal hierarchical rotations at each corner with all other motions precluded, is incorporated. The resulting formulation has five free parameters. When these parameters are optimized against pure bending by energy balance methods, the resulting element is found to coalesce with the optimal EFF element derived in Part I. Numerical integration as a strain filtering device is found to play a key role in this achievement.

  4. Modeling and flow analysis of pure nylon polymer for injection molding process

    NASA Astrophysics Data System (ADS)

    Nuruzzaman, D. M.; Kusaseh, N.; Basri, S.; Oumer, A. N.; Hamedon, Z.

    2016-02-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured.

  5. A Positron Annihilation Study of Corrosion of Aluminum and Aluminum Alloy by NaOH

    NASA Astrophysics Data System (ADS)

    Wu, Y. C.; Zhai, T.; Coleman, P. G.

    2012-08-01

    Corrosion of fully-annealed pure aluminum and a continuous-cast AA2037 aluminum alloy (solutionized and water quenched) in a 1M NaOH solution for various periods of time were analyzed with positron beam-based Doppler broadening spectroscopy. By varying the energy of the incident positron beam, corrosion-induced defects at different depths from the surface were detected. It was found that the Doppler-broadened annihilation line-width parameter was significantly increased near the surface of pure aluminum after corrosion, probably due to the interaction between positrons and nanometer-sized voids formed near the aluminum surface during corrosion. Examination by atomic force microscopy indicated that many pits were formed on the aluminum surface after corrosion. In contrast, a significant decrease in the line-width parameter was observed in AA2037 alloy after corrosion and interpreted as being caused by copper enrichment at the metal-oxide interface during corrosion; such enrichment at large cavity sites was confirmed by energy dispersion spectrometry.

  6. Effect of Reynolds and Grashof numbers on mixed convection inside a lid-driven square cavity filled with water-Al2O3 nanofluid

    NASA Astrophysics Data System (ADS)

    Jaman, Md. Shah; Islam, Showmic; Saha, Sumon; Hasan, Mohammad Nasim; Islam, Md. Quamrul

    2016-07-01

    A numerical analysis is carried out to study the performance of steady laminar mixed convection flow inside a square lid-driven cavity filled with water-Al2O3 nanofluid. The top wall of the cavity is moving at a constant velocity and is heated by an isothermal heat source. Two-dimensional Navier-stokes equations along with the energy equations are solved using Galerkin finite element method. Results are obtained for a range of Reynolds and Grashof numbers by considering with and without the presence of nanoparticles. The parametric studies for a wide range of governing parameters in case of pure mixed convective flow show significant features of the present problem in terms of streamline and isotherm contours, average Nusselt number and average temperature profiles. The computational results indicate that the heat transfer coeffcient is strongly influenced by the above governing parameters at the pure mixed convection regime.

  7. Rapidly rotating neutron stars with a massive scalar field—structure and universal relations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doneva, Daniela D.; Yazadjiev, Stoytcho S., E-mail: daniela.doneva@uni-tuebingen.de, E-mail: yazad@phys.uni-sofia.bg

    We construct rapidly rotating neutron star models in scalar-tensor theories with a massive scalar field. The fact that the scalar field has nonzero mass leads to very interesting results since the allowed range of values of the coupling parameters is significantly broadened. Deviations from pure general relativity can be very large for values of the parameters that are in agreement with the observations. We found that the rapid rotation can magnify the differences several times compared to the static case. The universal relations between the normalized moment of inertia and quadrupole moment are also investigated both for the slowly andmore » rapidly rotating cases. The results show that these relations are still EOS independent up to a large extend and the deviations from pure general relativity can be large. This places the massive scalar-tensor theories amongst the few alternative theories of gravity that can be tested via the universal I -Love- Q relations.« less

  8. Influence of friction stir welding parameters on titanium-aluminum heterogeneous lap joining configuration

    NASA Astrophysics Data System (ADS)

    Picot, Florent; Gueydan, Antoine; Hug, Éric

    2017-10-01

    Lap joining configuration for Friction Stir Welding process is a methodology mostly dedicated to heterogeneous bonding. This welding technology was applied to join pure titanium with pure aluminum by varying the rotation speed and the movement speed of the tool. Regardless of the process parameters, it was found that the maximum strength of the junction remains almost constant. Microstructural observations by means of Scanning Electron Microscopy and Energy Dispersive Spectrometry analysis enable to describe the interfacial join and reveal asymmetric Cold Lap Defects on the sides of the junction. Chemical analysis shows the presence of one exclusive intermetallic compound through the interface identified as TiAl3. This compound is responsible of the crack spreading of the junction during the mechanical loading. The original version of this article supplied to AIP Publishing contained an accidental inversion of the authors, names. An updated version of this article, with the authors names formatted correctly was published on 20 October 2017.

  9. Physicochemical characterization of pure persimmon juice: nutritional quality and food acceptability.

    PubMed

    González, Eva; Vegara, Salud; Martí, Nuria; Valero, Manuel; Saura, Domingo

    2015-03-01

    Technological process for production of non-astringent persimmon (Diospyros kaki Thunb. cv. "Rojo Brillante") juice was described. The degree of fruit ripening expressed as color index (CI) varied between 12.37 and 16.33. Persimmon juice was characterized by determining physicochemical quality parameters as yield, total soluble solids (TSS), pH, titratable acidity (TA), organic acids, and main sugars. A thermal treatment of 90 ºC for 10 s was effective in controlling naturally occurring microorganisms for at least 105 d of storage without significantly affecting production of soluble brown pigments (BPs) and 5-hydroxymethyl furfural (5-HMF), total phenolic compounds (TPC), antioxidant capacity and acceptability of juice by panelists. Storage time affected all and each of the above parameters, reducing BPs, TPC and antioxidant capacity but increasing 5-HMF content. Refrigerated storage enhanced the acceptability of the juices. This information may be used by the juice industry as a starting point for production of pure persimmon juices. © 2015 Institute of Food Technologists®

  10. Neutron diffraction study of the in situ oxidation of UO(2).

    PubMed

    Desgranges, Lionel; Baldinozzi, Gianguido; Rousseau, Gurvan; Nièpce, Jean-Claude; Calvarin, Gilbert

    2009-08-17

    This paper discusses uranium oxide crystal structure modifications that are observed during the low-temperature oxidation which transforms UO(2) into U(3)O(8). The symmetries and the structural parameters of UO(2), beta-U(4)O(9), beta-U(3)O(7), and U(3)O(8) were determined by refining neutron diffraction patterns on pure single-phase samples. Neutron diffraction patterns were also collected during the in situ oxidation of powder samples at 483 K. The lattice parameters and relative ratios of the four pure phases were measured during the progression of the isothermal oxidation. The transformation of UO(2) into U(3)O(8) involves a complex modification of the oxygen sublattice and the onset of complex superstructures for U(4)O(9) and U(3)O(7), associated with regular stacks of complex defects known as cuboctahedra, which consist of 13 oxygen atoms. The kinetics of the oxidation process are discussed on the basis of the results of the structural analysis.

  11. Analytical investigation of the influence of ornidazole on the native protein fluorescence.

    PubMed

    Ali, Hazim M; El-Hashemy, Mohammed A

    2018-05-03

    A novel spectrofluorimetric method for the determination of ornidazole (ORN) in pure form and dosage forms was developed based on the influence of ORN on the native fluorescence of bovine serum albumin (BSA) in a stimulated physiological environment. The obtained data reveal that the presence of ORN has a strong quenching effect on the fluorescence of BSA through both a dynamic and a static process. The parameters of the binding of ORN to BSA were calculated at different temperatures. Thermodynamic parameters values suggest a role of electrostatic and hydrophobic forces in the binding of ORN to BSA. The investigated method for the determination of ORN is accurate, precise and sensitive with a detection limit of 0.106 μg/mL and a quantification limit of 0.353 μg/mL. The quenching method was applied successfully in the determination of ORN in pure form and dosage forms. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. The Dripping Handrail Model: Transient Chaos in Accretion Systems

    NASA Technical Reports Server (NTRS)

    Young, Karl; Scargle, Jeffrey D.; Cuzzi, Jeffrey (Technical Monitor)

    1995-01-01

    We define and study a simple dynamical model for accretion systems, the "dripping handrail" (DHR). The time evolution of this spatially extended system is a mixture of periodic and apparently random (but actually deterministic) behavior. The nature of this mixture depends on the values of its physical parameters - the accretion rate, diffusion coefficient, and density threshold. The aperiodic component is a special kind of deterministic chaos called transient chaos. The model can simultaneously exhibit both the quasiperiodic oscillations (QPO) and very low frequency noise (VLFN) that characterize the power spectra of fluctuations of several classes of accretion systems in astronomy. For this reason, our model may be relevant to many such astrophysical systems, including binary stars with accretion onto a compact object - white dwarf, neutron star, or black hole - as well as active galactic nuclei. We describe the systematics of the DHR's temporal behavior, by exploring its physical parameter space using several diagnostics: power spectra, wavelet "scalegrams," and Lyapunov exponents. In addition, we note that for large accretion rates the DHR has periodic modes; the effective pulse shapes for these modes - evaluated by folding the time series at the known period - bear a resemblance to the similarly- determined shapes for some x-ray pulsars. The pulsing observed in some of these systems may be such periodic-mode accretion, and not due to pure rotation as in the standard pulsar model.

  13. Mechanochemical synthesis and intercalation of Ca(II)Fe(III)-layered double hydroxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferencz, Zs.; Szabados, M.; Varga, G.

    2016-01-15

    A mechanochemical method (grinding the components without added water – dry grinding, followed by further grinding in the presence of minute amount of water or NaOH solution – wet grinding) was used in this work for the preparation and intercalation of CaFe-layered double hydroxides (LDHs). Both the pristine LDHs and the amino acid anion (cystinate and tyrosinate) intercalated varieties were prepared by the two-step grinding procedure in a mixer mill. By systematically changing the conditions of the preparation method, a set of parameters could be determined, which led to the formation of close to phase-pure LDH. The optimisation procedure wasmore » also applied for the intercalation processes of the amino acid anions. The resulting materials were structurally characterised by a range of methods (X-ray diffractometry, scanning electron microscopy, energy dispersive analysis, thermogravimetry, X-ray absorption and infra-red spectroscopies). It was proven that this simple mechanochemical procedure was able to produce complex organic–inorganic nanocomposites: LDHs intercalated with amino acid anions. - Graphical abstract: Amino acid anion-Ca(II)Fe(III)-LDHs were successfully prepared by a two-step milling procedure. - Highlights: • Synthesis of pristine and amino acid intercalated CaFe-LDHs by two-step milling. • Identifying the optimum synthesis and intercalation parameters. • Characterisation of the samples with a range of instrumental methods.« less

  14. Characterization of photochromic and photorefractive chromophores

    NASA Astrophysics Data System (ADS)

    Moylan, Christopher R.; McComb, I. H.; Twieg, Robert J.; Wortmann, Ruediger W.

    1997-01-01

    Although photorefractive materials are those that exhibit both appreciable electro-optic and photoconductive behavior, the chromophore parameters that lead to large electro-optic coefficients have not so far led to similar photorefractive performance. Recently, it has been shown that the electro- optic contribution is one of two principal contributions to the overall photorefractive behavior, and that it is usually the smaller of the two. The larger factor, first referred to in the literature as an 'orientational enhancement,' is due to the birefringence of the chromophore: the difference in polarizability parallel to the dipole moment and perpendicular to it. A figure of merit incorporating both effects has been derived, although its determination is more difficult than that for purely electro-optic materials. The polarizability anisotropy is a function of all three components of the diagonalized polarizability tensor. Two expressions for these three parameters can be obtained by index of refraction and light scattering measurements on chromophores in solution. The third must be estimated. Results from this new characterization protocol are presented and compared with the results of photorefractive experiments on materials containing the tested chromophores. Another class of compounds has also been found to be of potential use in holographic storage, in this case write- once applications. These chromophores undergo an irreversible photochromic reaction that is triplet sensitized. A mechanism is proposed for this reaction and supporting data provided.

  15. An optimized computational method for determining the beta dose distribution using a multiple-element thermoluminescent dosimeter system.

    PubMed

    Shen, L; Levine, S H; Catchen, G L

    1987-07-01

    This paper describes an optimization method for determining the beta dose distribution in tissue, and it describes the associated testing and verification. The method uses electron transport theory and optimization techniques to analyze the responses of a three-element thermoluminescent dosimeter (TLD) system. Specifically, the method determines the effective beta energy distribution incident on the dosimeter system, and thus the system performs as a beta spectrometer. Electron transport theory provides the mathematical model for performing the optimization calculation. In this calculation, parameters are determined that produce calculated doses for each of the chip/absorber components in the three-element TLD system. The resulting optimized parameters describe an effective incident beta distribution. This method can be used to determine the beta dose specifically at 7 mg X cm-2 or at any depth of interest. The doses at 7 mg X cm-2 in tissue determined by this method are compared to those experimentally determined using an extrapolation chamber. For a great variety of pure beta sources having different incident beta energy distributions, good agreement is found. The results are also compared to those produced by a commonly used empirical algorithm. Although the optimization method produces somewhat better results, the advantage of the optimization method is that its performance is not sensitive to the specific method of calibration.

  16. Film-forming properties of castor oil polyol ester blends in elastohydrodynamic conditions

    USDA-ARS?s Scientific Manuscript database

    The viscosities and elastohydrodynamic (EHD) film thickness properties of binary blends of castor oil with polyol esters were determined experimentally. Predicted blend viscosity was calculated from the viscosity of the pure blend components. Measured viscosity values were closer to the values pre...

  17. Structural, micro-structural and kinematic analyses of channel flow in the Karmostaj salt diapir in the Zagros foreland folded belt, Fars province, Iran

    NASA Astrophysics Data System (ADS)

    Sarkarinejad, Khalil; Sarshar, Maryam Asadi; Adineh, Sadegh

    2018-02-01

    One of the main characteristic of the Zagros foreland fold-and-thrust belt and the Zagros foreland folded belt are wide distributions of surface extrusion from the Hormuz salt diapirs. This study examines the structure and kinematic of channel flow in the Karmostaj salt diapir in the southwestern part of the Zagros foreland folded belt. This diapir has reached the surface as a result of the channel flow mechanism and has extruded in the southern limb of the Kuh-Gach anticline which is an asymmetric décollement fold with convergence to the south. Structural and microstructural studies and quantitative finite strain (Rs) and kinematic vorticity number (Wk) analyses were carried out within this salt diapir and its namakier. This was in order to investigate the structural evolution in the salt diapiric system, the characteristics and mechanism of the salt flow and the distribution of flow regimes within the salt diapir and interaction of regional tectonics and salt diaprism. The extruded salt has developed a flow foliation sub-parallel to the remnant bedding recorded by different colors, a variety of internal folds including symmetrical and asymmetrical folds and interference fold patterns, shear zones, and boudins. These structures were used to analyze mechanisms and history of diapiric flow and extrusion. The microstructures, reveal various deformation mechanisms in various parts of salt diapir. The measurements of finite strain show that Rs values in the margin of salt diapir are higher than within its namakier which is consistent with the results of structural studies. Mean kinematic vorticity number (Wm) measured in steady state deformation of diapir and namakier is Wm = 0.45-0.48 ± 0.13. The estimated mean finite deformation (Wm) values indicate that 67.8% pure shear and 32.2% simple shear deformation were involved; the implications of which are discussed. The vorticity of flow indicates that in the early stage of growth, Poiseuille flow was the dominate mechanism, especially in the core of diapir with higher pure shear component relative to simple shear component, whilst a Couette flow at the margins of diapir is the dominate mechanism with higher simple shear component relative to pure shear component. The obtained kinematic vorticity number reflects spatial partitioning of dominantly Poiseuille flow in core and Couette flow along edges of diapir. These two mechanisms reflect a persistent flow governed by a simultaneous combination of pure shear and simple shear in a hybrid Poiseuille-Coutte Flow.

  18. Benefit of Complete State Monitoring For GPS Realtime Applications With Geo++ Gnsmart

    NASA Astrophysics Data System (ADS)

    Wübbena, G.; Schmitz, M.; Bagge, A.

    Today, the demand for precise positioning at the cm-level in realtime is worldwide growing. An indication for this is the number of operational RTK network installa- tions, which use permanent reference station networks to derive corrections for dis- tance dependent GPS errors and to supply corrections to RTK users in realtime. Gen- erally, the inter-station distances in RTK networks are selected at several tens of km in range and operational installations cover areas of up to 50000 km x km. However, the separation of the permanent reference stations can be increased to sev- eral hundred km, while a correct modeling of all error components is applied. Such networks can be termed as sparse RTK networks, which cover larger areas with a reduced number of stations. The undifferenced GPS observable is best suited for this task estimating the complete state of a permanent GPS network in a dynamic recursive Kalman filter. A rigorous adjustment of all simultaneous reference station data is re- quired. The sparse network design essentially supports the state estimation through its large spatial extension. The benefit of the approach and its state modeling of all GPS error components is a successful ambiguity resolution in realtime over long distances. The above concepts are implemented in the operational GNSMART (GNSS State Monitoring and Representation Technique) software of Geo++. It performs a state monitoring of all error components at the mm-level, because for RTK networks this accuracy is required to sufficiently represent the distance dependent errors for kine- matic applications. One key issue of the modeling is the estimation of clocks and hard- ware delays in the undifferenced approach. This pre-requisite subsequently allows for the precise separation and modeling of all other error components. Generally most of the estimated parameters are considered as nuisance parameters with respect to pure positioning tasks. As the complete state vector of GPS errors is available in a GPS realtime network, additional information besides position can be derived e.g. regional precise satellite clocks, orbits, total ionospheric electron content, tropospheric water vapor distribution, and also dynamic reference station movements. The models of GNSMART are designed to work with regional, continental or even global data. Results from GNSMART realtime networks with inter-station distances of several hundred km are presented to demonstrate the benefits of the operational implemented concepts.

  19. 40 CFR 60.485a - Test methods and procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 0.3 kPa at 20 °C (1.2 in. H2O at 68 °F). Standard reference texts or ASTM D2879-83, 96, or 97... concentration of the pure organic components having a vapor pressure greater than 0.3 kPa at 20 °C (1.2 in. H2O... Hi = net heat of combustion of sample component “i” at 25 °C and 760 mm Hg (77 °F and 14.7 psi), kcal...

  20. 40 CFR 60.485a - Test methods and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 0.3 kPa at 20 °C (1.2 in. H2O at 68 °F). Standard reference texts or ASTM D2879-83, 96, or 97... concentration of the pure organic components having a vapor pressure greater than 0.3 kPa at 20 °C (1.2 in. H2O...,” ppm Hi = net heat of combustion of sample component “i” at 25 °C and 760 mm Hg (77 °F and 14.7 psi...

  1. 40 CFR 60.485a - Test methods and procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 0.3 kPa at 20 °C (1.2 in. H2O at 68 °F). Standard reference texts or ASTM D2879-83, 96, or 97... concentration of the pure organic components having a vapor pressure greater than 0.3 kPa at 20 °C (1.2 in. H2O... Hi = net heat of combustion of sample component “i” at 25 °C and 760 mm Hg (77 °F and 14.7 psi), kcal...

  2. 40 CFR 60.485a - Test methods and procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 0.3 kPa at 20 °C (1.2 in. H2O at 68 °F). Standard reference texts or ASTM D2879-83, 96, or 97... concentration of the pure organic components having a vapor pressure greater than 0.3 kPa at 20 °C (1.2 in. H2O...,” ppm Hi = net heat of combustion of sample component “i” at 25 °C and 760 mm Hg (77 °F and 14.7 psi...

  3. 40 CFR 60.485a - Test methods and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 0.3 kPa at 20 °C (1.2 in. H2O at 68 °F). Standard reference texts or ASTM D2879-83, 96, or 97... concentration of the pure organic components having a vapor pressure greater than 0.3 kPa at 20 °C (1.2 in. H2O...,” ppm Hi = net heat of combustion of sample component “i” at 25 °C and 760 mm Hg (77 °F and 14.7 psi...

  4. Activity of Pure Streptovaricins and Fractionated Streptovaricin Complex Against Friend Virus

    PubMed Central

    Horoszewicz, Julius S.; Rinehart, Kenneth L.; Leong, Susan S.; Carter, William A.

    1975-01-01

    Chromatographic fractionation of streptovaricin complex yields two stable components enriched (4- to 16-fold) in activity directed against the polycythemic strain of Friend virus; both components apparently contain no streptovaricins. When compared with their unfractionated parent streptovaricin complex, eight individual intact streptovaricins (A through G and J) show at least a 30-fold reduction in antiviral activity. These results further support the conclusion that the diversified biological properties of streptovaricin complex probably reside in different molecular structures. PMID:237470

  5. The effects of r- and K-selection on components of variance for two quantitative traits.

    PubMed

    Long, T; Long, G

    1974-03-01

    The genetic and environmental components of variance for two quantitative characters were measured in the descendants of Drosophila melanogaster populations which had been grown for several generations at densities of 100, 200, 300, and 400 eggs per vial. Populations subject to intermediate densities had a greater proportion of phenotypic variance available for selection than populations from either extreme. Selection on either character would be least effective under pure r-selection, a frequent attribute of selection programs.

  6. Selective Laser Melting of Pure Copper

    NASA Astrophysics Data System (ADS)

    Ikeshoji, Toshi-Taka; Nakamura, Kazuya; Yonehara, Makiko; Imai, Ken; Kyogoku, Hideki

    2017-12-01

    Appropriate building parameters for selective laser melting of 99.9% pure copper powder were investigated at relatively high laser power of 800 W for hatch pitch in the range from 0.025 mm to 0.12 mm. The highest relative density of the built material was 99.6%, obtained at hatch pitch of 0.10 mm. Building conditions were also studied using transient heat analysis in finite element modeling of the liquidation and solidification of the powder layer. The estimated melt pool length and width were comparable to values obtained by observations using a thermoviewer. The trend for the melt pool width versus the hatch pitch agreed with experimental values.

  7. Selective Laser Melting of Pure Copper

    NASA Astrophysics Data System (ADS)

    Ikeshoji, Toshi-Taka; Nakamura, Kazuya; Yonehara, Makiko; Imai, Ken; Kyogoku, Hideki

    2018-03-01

    Appropriate building parameters for selective laser melting of 99.9% pure copper powder were investigated at relatively high laser power of 800 W for hatch pitch in the range from 0.025 mm to 0.12 mm. The highest relative density of the built material was 99.6%, obtained at hatch pitch of 0.10 mm. Building conditions were also studied using transient heat analysis in finite element modeling of the liquidation and solidification of the powder layer. The estimated melt pool length and width were comparable to values obtained by observations using a thermoviewer. The trend for the melt pool width versus the hatch pitch agreed with experimental values.

  8. Gamma radiation-induced blue shift of resonance peaks of Bragg gratings in pure silica fibres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faustov, A V; Mégret, P; Wuilpart, M

    2016-02-28

    We report the first observation of a significant gamma radiation-induced blue shift of the reflection/transmission peak of fibre Bragg gratings inscribed into pure-silica core fibres via multiphoton absorption of femtosecond pulses. At a total dose of ∼100 kGy, the shift is ∼20 pm. The observed effect is attributable to the ionising radiation-induced decrease in the density of the silica glass when the rate of colour centre formation is slow. We present results of experimental measurements that provide the key parameters of the dynamics of the gratings for remote dosimetry and temperature sensing. (laser crystals and braggg ratings)

  9. A study of enhancing critical current densities (J(sub c)) and critical temperature (T(sub c)) of high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Vlasse, Marcus

    1992-01-01

    The development of pure phase 123 and Bi-based 2223 superconductors has been optimized. The pre-heat processing appears to be a very important parameter in achieving optimal physical properties. The synthesis of pure phases in the Bi-based system involves effects due to oxygen partial pressure, time, and temperature. Orientation/melt-sintering effects include the extreme c-axis orientation of Yttrium 123 and Bismuth 2223, 2212, and 2201 phases. This orientation is conductive to increasing critical currents. A procedure was established to substitute Sr for Ba in Y-123 single crystals.

  10. Power-based Shift Schedule for Pure Electric Vehicle with a Two-speed Automatic Transmission

    NASA Astrophysics Data System (ADS)

    Wang, Jiaqi; Liu, Yanfang; Liu, Qiang; Xu, Xiangyang

    2016-11-01

    This paper introduces a comprehensive shift schedule for a two-speed automatic transmission of pure electric vehicle. Considering about driving ability and efficiency performance of electric vehicles, the power-based shift schedule is proposed with three principles. This comprehensive shift schedule regards the vehicle current speed and motor load power as input parameters to satisfy the vehicle driving power demand with lowest energy consumption. A simulation model has been established to verify the dynamic and economic performance of comprehensive shift schedule. Compared with traditional dynamic and economic shift schedules, simulation results indicate that the power-based shift schedule is superior to traditional shift schedules.

  11. Pure endmember extraction using robust kernel archetypoid analysis for hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Sun, Weiwei; Yang, Gang; Wu, Ke; Li, Weiyue; Zhang, Dianfa

    2017-09-01

    A robust kernel archetypoid analysis (RKADA) method is proposed to extract pure endmembers from hyperspectral imagery (HSI). The RKADA assumes that each pixel is a sparse linear mixture of all endmembers and each endmember corresponds to a real pixel in the image scene. First, it improves the re8gular archetypal analysis with a new binary sparse constraint, and the adoption of the kernel function constructs the principal convex hull in an infinite Hilbert space and enlarges the divergences between pairwise pixels. Second, the RKADA transfers the pure endmember extraction problem into an optimization problem by minimizing residual errors with the Huber loss function. The Huber loss function reduces the effects from big noises and outliers in the convergence procedure of RKADA and enhances the robustness of the optimization function. Third, the random kernel sinks for fast kernel matrix approximation and the two-stage algorithm for optimizing initial pure endmembers are utilized to improve its computational efficiency in realistic implementations of RKADA, respectively. The optimization equation of RKADA is solved by using the block coordinate descend scheme and the desired pure endmembers are finally obtained. Six state-of-the-art pure endmember extraction methods are employed to make comparisons with the RKADA on both synthetic and real Cuprite HSI datasets, including three geometrical algorithms vertex component analysis (VCA), alternative volume maximization (AVMAX) and orthogonal subspace projection (OSP), and three matrix factorization algorithms the preconditioning for successive projection algorithm (PreSPA), hierarchical clustering based on rank-two nonnegative matrix factorization (H2NMF) and self-dictionary multiple measurement vector (SDMMV). Experimental results show that the RKADA outperforms all the six methods in terms of spectral angle distance (SAD) and root-mean-square-error (RMSE). Moreover, the RKADA has short computational times in offline operations and shows significant improvement in identifying pure endmembers for ground objects with smaller spectrum differences. Therefore, the RKADA could be an alternative for pure endmember extraction from hyperspectral images.

  12. The development of novel simulation methodologies and intermolecular potential models for real fluids

    NASA Astrophysics Data System (ADS)

    Errington, Jeffrey Richard

    This work focuses on the development of intermolecular potential models for real fluids. United-atom models have been developed for both non-polar and polar fluids. The models have been optimized to the vapor-liquid coexistence properties. Histogram reweighting techniques were used to calculate phase behavior. The Hamiltonian scaling grand canonical Monte Carlo method was developed to enable the determination of thermodynamic properties of several related Hamiltonians from a single simulation. With this method, the phase behavior of variations of the Buckingham exponential-6 potential was determined. Reservoir grand canonical Monte Carlo simulations were developed to simulate molecules with complex architectures and/or stiff intramolecular constraints. The scheme is based on the creation of a reservoir of ideal chains from which structures are selected for insertion during a simulation. New intermolecular potential models have been developed for water, the n-alkane homologous series, benzene, cyclohexane, carbon dioxide, ammonia and methanol. The models utilize the Buckingham exponential-6 potential to model non-polar interactions and point charges to describe polar interactions. With the exception of water, the new models reproduce experimental saturated densities, vapor pressures and critical parameters to within a few percent. In the case of water, we found a set of parameters that describes the phase behavior better than other available point charge models while giving a reasonable description of the liquid structure. The mixture behavior of water-hydrocarbon mixtures has also been examined. The Henry's law constants of methane, ethane, benzene and cyclohexane in water were determined using Widom insertion and expanded ensemble techniques. In addition the high-pressure phase behavior of water-methane and water-ethane systems was studied using the Gibbs ensemble method. The results from this study indicate that it is possible to obtain a good description of the phase behavior of pure components using united-atom models. The mixture behavior of non-polar systems, including highly asymmetric components, was in good agreement with experiment. The calculations for the highly non-ideal water-hydrocarbon mixtures reproduced experimental behavior with varying degrees of success. The results indicate that multibody effects, such as polarizability, must be taken into account when modeling mixtures of polar and non-polar components.

  13. Jellyfish collagen and alginate: Combined marine materials for superior chondrogenesis of hMSC.

    PubMed

    Pustlauk, W; Paul, B; Gelinsky, M; Bernhardt, A

    2016-07-01

    Marine, hybrid constructs of porous scaffolds from fibrillized jellyfish collagen and alginate hydrogel are mimicking both of the main tissue components of cartilage, thus being a promising approach for chondrogenic differentiation of human mesenchymal stem cells (hMSC). Investigating their potential for articular cartilage repair, the present study examined scaffolds being either infiltrated with an alginate-cell-suspension (ACS) or seeded with hMSC and embedded in alginate after cell adhesion (EAS). Hybrid constructs with 2×10(5) and 4.5×10(5)hMSC/scaffold were compared to hMSC encapsulated in pure alginate discs, both chondrogenically stimulated for 21days. Typical round, chondrocyte-like morphology was observed in pure alginate gels and ACS scaffolds, while cells in EAS were elongated and tightly attached to the collagen pores. Col 2 gene expression was comparable in all scaffold types examined. However, the Col 2/Col 1 ratio was higher for pure alginate discs and ACS scaffolds compared to EAS. In contrast, cells in EAS scaffolds displayed higher gene expression of Sox 9, Col 11 and ACAN compared to ACS and pure alginate. Secretion of sulfated glycosaminoglycans (sGAG) was comparable for ACS and EAS scaffolds. In conclusion hybrid constructs of jellyfish collagen and alginate support hMSC chondrogenic differentiation and provide more stable and constructs compared to pure hydrogels. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. [Alpha competitive structure in children with attention deficit hyperactivity disorder with/without learning disabilities].

    PubMed

    Sun, Li; Wang, Yu-feng; He, Hua; Chen, Jin

    2007-10-18

    To explore the alpha competitive structure in children with attention deficit hyperactivity disorder (ADHD) with/without learning disabilities (LD). According to DSM-IV diagnostic criteria, the study involved ADHD children with LD, pure ADHD children and normal controls. Each group consisted of 68 subjects. All subjects were between the ages of 7 and 14 years, and the groups were matched by sex, age and ADHD subtypes. EEG data were recorded during an eye-closed resting period and then were analyzed with EEG-encephaloflutuographic technology (EEG-ET). (1) The pure ADHD children showed significantly more 8 Hz activity (25.84%+/-14.81%) than that of the normal control group (16.50%+/-11.42%, P=0.000); The main frequency of alpha band was 10 Hz in the pure ADHD children, while the energy distribution among alpha components was diffuse. (2) ADHD children with LD showed significantly more 8 Hz and 13 Hz activity (25.11%+/-11.88%, 1.14%+/-1.14%, separately) than that of the normal control (16.50%+/-11.42%, 0.74%+/-0.97%, P=0.000, P=0.009, separately); The dominant probability of 10 Hz (27.80%+/-13.28%) in this group was significantly lower than that of the control group (36.06%+/-17.21%, P=0.011); The energy distribution among alpha components was diffuse in ADHD children with LD, whose main frequency of alpha band was 9 Hz; The entropy value of the ADHD children with LD was significantly higher than that of the control group in the right brain and the left parietal region, temporal region, occipital region (P<0.01). In the right temporal region and right occipital region, the entropy value of the ADHD children with LD was significantly higher than that of the pure ADHD children (P<0.05). The pathogenic mechanisms are different between ADHD children with or without LD. The pure ADHD children show more maturational lag pattern in the central nervous system, while ADHD children with LD have a developmental deviation from normal children, whose brain function is in a lower efficient state.

  15. [Comparison of the effects of exchange forms on social solidarity].

    PubMed

    Inaba, Misato; Takahashi, Nobuyuki

    2012-04-01

    Although social solidarity is an essential component that helps maintaining social order, what produces solidarity and how does it work have not been fully investigated. We conducted an experiment to examine whether experiencing different forms of social exchange produces different levels of solidarity. We compared four forms of social exchange: reciprocal exchange (exchange resources without negotiation), negotiated exchange (with negotiation), pure-generalized exchange (giver can choose who to give) and chain-generalized exchange (giver cannot choose who to give). Two dimensions classify these exchanges: the number of players (two vs. more than two), and involvement of negotiation. Reciprocal and negotiated exchanges occur within dyads, while pure- and chain-generalized exchanges involve three or more players. Only the negotiated exchange involves negotiation process; the other exchanges are purely unilateral giving. Participants played a one-shot social dilemma game (SDG) before and after social exchange session. The more the players cooperated in SDG, the stronger the social solidarity. Results show that the cooperation rate in SDG increased more in the reciprocal, pure- and chain-generalized exchange conditions than that in the negotiated exchange condition, suggesting that social solidarity is facilitated by experiencing social exchange which does not involve negotiation.

  16. Effect of crude glycerol-derived inhibitors on ethanol production by Enterobacter aerogenes.

    PubMed

    Lee, Sang Jun; Kim, Sung Bong; Kang, Seong Woo; Han, Sung Ok; Park, Chulhwan; Kim, Seung Wook

    2012-01-01

    In this study, ethanol production from pure and crude glycerol using Enterobacter aerogenes ATCC 29007 was evaluated under anaerobic culture conditions. Inhibitory effects of substrate concentrations, pH, and salt concentrations were investigated based on crude glycerol components. Ethanol production was performed with pure glycerol concentrations ranging from 5 to 30 g/L to evaluate the effects of substrate concentration and osmotic pressure. The consumed glycerol was 5-14.33 g/L, and the yield of ethanol was higher than 0.75 mol ethanol/mol glycerol after 24 h of cultivation. To evaluate the inhibitory effects of salts (NaCl and KCl), experiments were performed with 0-20 g/L of each salt. Inhibitory effects of salts were strongest at high salt concentrations. The inhibitory effect of pH was performed in the pH range 4-10, and cell growth and ethanol production were highest at pH 5-6. Also, ethanol production was slightly inhibited at low concentration of crude glycerol comparison with pure glycerol. However, significant inhibitory effects were not observed at 1.5 and 2% crude glycerol which showed higher ethanol production compared to pure glycerol.

  17. Co-generating synthetic parts toward a self-replicating system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jun; Haas, Wilhelm; Jackson, Kirsten

    To build replicating systems with new functions, the engineering of existing biological machineries requires a sensible strategy. Protein synthesis Using Recombinant Elements (PURE) system consists of the desired components for transcription, translation, aminoacylation and energy regeneration. PURE, might be the basis for a radically alterable, lifelike system after optimization. Here, we regenerated 54 E. coli ribosomal (r-) proteins individually from DNA templates in the PURE system. We show that using stable isotope labeling with amino acids, mass spectrometry based quantitative proteomics could detect 26 of the 33 50S and 20 of the 21 30S subunit r-proteins when co-expressed in batchmore » format PURE system. By optimizing DNA template concentrations and adapting a miniaturized Fluid Array Device with optimized feeding solution, we were able to cogenerate and detect at least 29 of the 33 50S and all of the 21 30S subunit r-proteins in one pot. The boost on yield of a single r-protein in co-expression pool varied from ~1.5 to 5-fold compared to the batch mode, with up to ~ 2.4 µM yield for a single r-protein. Reconstituted ribosomes under physiological condition from PURE system synthesized 30S r-proteins and native 16S rRNA showed ~13% activity of native 70S ribosomes, which increased to 21% when supplemented with GroEL/ES. As a result, this work also points to what is still needed to obtain self-replicating synthetic ribosomes in-situ in the PURE system.« less

  18. Co-generating synthetic parts toward a self-replicating system

    DOE PAGES

    Li, Jun; Haas, Wilhelm; Jackson, Kirsten; ...

    2017-03-23

    To build replicating systems with new functions, the engineering of existing biological machineries requires a sensible strategy. Protein synthesis Using Recombinant Elements (PURE) system consists of the desired components for transcription, translation, aminoacylation and energy regeneration. PURE, might be the basis for a radically alterable, lifelike system after optimization. Here, we regenerated 54 E. coli ribosomal (r-) proteins individually from DNA templates in the PURE system. We show that using stable isotope labeling with amino acids, mass spectrometry based quantitative proteomics could detect 26 of the 33 50S and 20 of the 21 30S subunit r-proteins when co-expressed in batchmore » format PURE system. By optimizing DNA template concentrations and adapting a miniaturized Fluid Array Device with optimized feeding solution, we were able to cogenerate and detect at least 29 of the 33 50S and all of the 21 30S subunit r-proteins in one pot. The boost on yield of a single r-protein in co-expression pool varied from ~1.5 to 5-fold compared to the batch mode, with up to ~ 2.4 µM yield for a single r-protein. Reconstituted ribosomes under physiological condition from PURE system synthesized 30S r-proteins and native 16S rRNA showed ~13% activity of native 70S ribosomes, which increased to 21% when supplemented with GroEL/ES. As a result, this work also points to what is still needed to obtain self-replicating synthetic ribosomes in-situ in the PURE system.« less

  19. Microgravity

    NASA Image and Video Library

    2004-04-15

    The Wake Shield Facility (WSF) is a free-flying research and development facility that is designed to use the pure vacuum of space to conduct scientific research in the development of new materials. The thin film materials technology developed by the WSF could some day lead to applications such as faster electronics components for computers.

  20. A System-Science Approach towards Model Construction for Curriculum Development.

    ERIC Educational Resources Information Center

    Chang, Ren-Jung; Yang, Hui-Chin

    A new morphological model based on modern system science and engineering is constructed and proposed for curriculum research and development. A curriculum system is recognized as an engineering system that constitutes three components: clients, resources, and knowledge. Unlike the objective models that are purely rational and neatly sequential in…

Top