Sample records for pure titanium welds

  1. [Effects of laser welding on bond of porcelain fused cast pure titanium].

    PubMed

    Zhu, Juan-fang; He, Hui-ming; Gao, Bo; Wang, Zhong-yi

    2006-04-01

    To investigate the influence of the laser welding on bond of porcelain fused to cast pure titanium. Twenty cast titanium plates were divided into two groups: laser welded group and control group. The low-fusing porcelain was fused to the laser welded cast pure titanium plates at fusion zone. The bond strength of the porcelain to laser welded cast pure titanium was measured by the three-point bending test. The interface of titanium and porcelain was investigated by scanning electron microscopy (SEM) and energy depressive X-ray detector (EDX). The non-welded titanium plates were used as comparison. No significant difference of the bond strength was found between laser-welded samples [(46.85 +/- 0.76) MPa] and the controls [(41.71 +/- 0.55) MPa] (P > 0.05). The SEM displayed the interface presented similar irregularities with a predominance. The titanium diffused to low-fusing porcelain, while silicon and aluminum diffused to titanium basement. Laser welding does not affect low-fusing porcelain fused to pure titanium.

  2. Element mixing distribution and structure feature of fusion zone in laser welding between different alloys and pure titanium.

    PubMed

    Wu, Haishu; Liu, Jihong; Liu, Xuecheng; Li, Changyi; Yu, Zhiwei

    2002-07-01

    To study micro morphology and element-mixing distribution of different alloys welded in laser and analyze the feasibility of laser welding different alloys. Alloys and titanium were matched into 4 groups: Au-Pt with Ni-Cr; Au-Pt with pure Ti; pure Ti with Ni-Cr; Ni-Cr with Co-Cr. They were welded in laser. Changes in metallography after hybridization of crystalline grain, ranges of heat-affected zone and pores were observed through SEM with ultra-thin windowed X-ray energy atlas. Meanwhile 10 testing points were chosen with area of 300 micro m x 900 micro m along the welding surface from the side A alloy to the side B alloy, than the element mixing distribution and tendency were analyzed with X-ray energy atlas. 1. Hybridization of different alloys: (l) in the group of Au-Pt with Ti, there was titanium element mixing into Au-Pt tissue gradually and evenly on the Au-Pt side of the interface without clear boundary and increasing in size of crystalline grain. However, there was titanium crystalline grain increasing in size, irregular morphology and small sacks on the titanium side with clear boundary. (2) in the group of Ni-Cr with Ti, there was mixing regularly, slow transition and interlocks between crystalline grains on the Ni-Cr side of the in terface. Poor transition, clear boundary and small cracks were observed on titanium side. (3) in the group of Co-Cr with Ni-Cr, there was good transition, obscure boundary on both sides resulting from network, cylinder and branch structure growing. 2. Element-mixing distribution of different alloys. In fusion zone, the metal elements in matched groups mixed well and hybridized into new alloys except titanium blocks. The location of wave peak depended on the composition of alloys. Most of elements were from the alloy far from the fusion zone. The hybridization between pure titanium and any other alloys is not good The effect of laser welding different alloys is ideal except with pure titanium.

  3. The Fatigue Behavior of Built-Up Welded Beams of Commercially Pure Titanium

    NASA Astrophysics Data System (ADS)

    Patnaik, Anil; Poondla, Narendra; Bathini, Udaykar; Srivatsan, T. S.

    2011-10-01

    In this article, the results of a recent study aimed at evaluating, understanding, and rationalizing the extrinsic influence of fatigue loading on the response characteristics of built-up welded beams made from commercially pure titanium (Grade 2) are presented and discussed. The beams were made from welding plates and sheets of titanium using the pulsed gas metal arc welding technique to form a structural beam having an I-shaped cross section. The welds made for the test beams of the chosen metal were fillet welds using a matching titanium filler metal wire. The maximum and minimum load values at which the built-up beams were cyclically deformed were chosen to be within the range of 22-45% of the maximum predicted flexural static load. The beams were deformed in fatigue at a stress ratio of 0.1 and constant frequency of 5 Hz. The influence of the ratio of maximum load with respect to the ultimate failure load on fatigue performance, quantified in terms of fatigue life, was examined. The percentage of maximum load to ultimate load that resulted in run-out of one million cycles was established. The overall fracture behavior of the failed beam sample was characterized by scanning electron microscopy observations to establish the conjoint influence of load severity, intrinsic microstructural effects, and intrinsic fracture surface features in governing failure by fracture.

  4. Influence of irradiation conditions on the deformation of pure titanium frames in laser welding.

    PubMed

    Shimakura, Michio; Yamada, Satoshi; Takeuchi, Misao; Miura, Koki; Ikeyama, Joji

    2009-03-01

    Due to its ease of use in connecting metal frames, laser welding is now applied in dentistry. However, to achieve precise laser welding, several problems remain to be resolved. One such problem is the influence of irradiation conditions on the deformation of titanium frameworks during laser welding, which this study sought to investigate. Board-shaped pure titanium specimens were prepared with two different joint types. Two specimens were abutted against each other to form a welding block with gypsum. For welding, three different laser waveforms were used. Deformation of the specimen caused by laser welding was measured as a rise from the gypsum surface at the opposite, free end of the specimen. It was observed that specimens with a beveled edge registered a smaller deformation than specimens with a square edge. In addition, a double laser pulse waveform--whereby a supplementary laser pulse was delivered immediately after the main pulse--resulted in a smaller deformation than with a single laser pulse waveform.

  5. Quality criteria for pure titanium casting, laboratory soldering, intraoral welding, and a device to aid in making uncontaminated castings.

    PubMed

    Hruska, A R; Borelli, P

    1991-10-01

    Procedures for casting, laboratory soldering, and intraoral welding of titanium for dental restorations are described and illustrated. Pure titanium and titanium 6A1-4Va alloy castings may be used for virtually any prosthodontic rehabilitation as well as for implants, with the proper equipment and technique.

  6. Metallurgical effects on titanium by laser welding on dental stone.

    PubMed

    Fujioka, Sonosuke; Kakimoto, Kazutoshi; Inoue, Taro; Okazaki, Joji; Komasa, Yutaka

    2003-12-01

    It is not known for certain that dental stone components influence titanium welding. In this study, we investigated metallurgical problems caused by laser welding on dental stones using wrought commercial pure (CP) titanium. A pulsed Nd:YAG laser irradiated a number of specimens' surfaces which were fixed on either a dental hard stone or a titanium plate. The metallurgical properties of the weld were evaluated using the Vickers hardness test, microstructure observation, fractured surface observation and quantitative analysis of oxygen and hydrogen. In the weld formed on the dental stone there was an increase in hardness, the existence of an acicular structure and a brittle fractured surface, and an increase in the oxygen and hydrogen concentrations compared with base metal. In the weld formed on the titanium plate, these changes were not observed. Therefore, it was demonstrated that laser welding on dental stones made the welds brittle.

  7. Evaluation of anodic behavior of commercially pure titanium in tungsten inert gas and laser welds.

    PubMed

    Orsi, Iara Augusta; Raimundo, Larica B; Bezzon, Osvaldo Luiz; Nóbilo, Mauro Antonio de Arruda; Kuri, Sebastião E; Rovere, Carlos Alberto D; Pagnano, Valeria Oliveira

    2011-12-01

    This study evaluated the resistance to corrosion in welds made with Tungsten Inert Gas (TIG) in specimens made of commercially pure titanium (cp Ti) in comparison with laser welds. A total of 15 circular specimens (10-mm diameter, 2-mm thick) were fabricated and divided into two groups: control group-cp Ti specimens (n = 5); experimental group-cp Ti specimens welded with TIG (n = 5) and with laser (n = 5). They were polished mechanically, washed with isopropyl alcohol, and dried with a drier. In the anodic potentiodynamic polarization assay, measurements were taken using a potentiostat/galvanostat in addition to CorrWare software for data acquisition and CorrView for data visualization and treatment. Three curves were made for each working electrode. Corrosion potential values were statistically analyzed by the Student's t-test. Statistical analysis showed that corrosion potentials and passive current densities of specimens welded with TIG are similar to those of the control group, and had lower values than laser welding. TIG welding provided higher resistance to corrosion than laser welding. Control specimens welded with TIG were more resistant to local corrosion initiation and propagation than those with laser welding, indicating a higher rate of formation and growth of passive film thickness on the surfaces of these alloys than on specimens welded with laser, making it more difficult for corrosion to occur. © 2011 by the American College of Prosthodontists.

  8. Welding of titanium and stainless steel using the composite insert

    NASA Astrophysics Data System (ADS)

    Cherepanov, A. N.; Mali, V. I.; Orishich, A. M.; Malikov, A. G.; Drozdov, V. O.; Malyutina, Y. N.

    2016-11-01

    The paper concerns the possibility of obtaining a lasting permanent joint of dissimilar metals: technically pure titanium and stainless steel using laser welding and an intermediate composite insert. The insert was a four-layer composition of plates of steel, copper, niobium, and titanium welded by explosion. The material layers used in the insert prevented the molten steel and titanium from mixing, which excluded the formation of brittle intermetallic compounds, such as FeTi and Fe2Ti. The optimization of explosion welding parameters provided a high quality of the four-layer composition and the absence of defects in the area of the joint of insert plates. The results of strength tests showed that values of the ultimate strength and yield of the permanent joint with the composite insert welded by explosion are comparable to the strength characteristics of titanium.

  9. Mechanical properties of thin films of laser-welded titanium and their associated welding defects.

    PubMed

    Wu, Yulu; Xin, Haitao; Zhang, Chunbao; Tang, Zhongbin; Zhang, Zhiyuan; Wang, Weifeng

    2014-11-01

    The aim of this study was to evaluate the mechanical properties of thin films of laser-welded cast titanium using an interference strain/displacement gauge (ISDG) and to analyze factors that affect laser welding. Dog-bone-shaped small specimens of cast titanium were prepared by wire cutting after they were laser-welded. The specimens were divided into three groups according to the gap distance of the laser weld; the control was non-welded titanium. Small specimens without cast defects detected by X-ray screening were measured by a tensile test machine using ISDG, and stress-strain curves were drawn. Finally, the fracture texture was analyzed. The ultimate tensile strengths (UTSs) of specimens with a gap distance of 0.00, 0.25, and 0.50 mm were 492.16 ± 33.19, 488.09 ± 43.18, and 558.45 ± 10.80 MPa, respectively. There were no significant differences in UTS between the test groups and the control group (p > 0.05). However, the plastic deformation and the percent elongation increased as the gap distance increased. Incomplete penetration defects appeared in groups that had small gap distances, which may have affected the properties of the laser-welded titanium. However, the welding material was still pure titanium. These results suggest that an appropriate gap distance should be maintained to improve the application of dental laser welding.

  10. Tensile and flexural strength of commercially pure titanium submitted to laser and tungsten inert gas welds.

    PubMed

    Atoui, Juliana Abdallah; Felipucci, Daniela Nair Borges; Pagnano, Valéria Oliveira; Orsi, Iara Augusta; Nóbilo, Mauro Antônio de Arruda; Bezzon, Osvaldo Luiz

    2013-01-01

    This study evaluated the tensile and flexural strength of tungsten inert gas (TIG) welds in specimens made of commercially pure titanium (CP Ti) compared with laser welds. Sixty cylindrical specimens (2 mm diameter x 55 mm thick) were randomly assigned to 3 groups for each test (n=10): no welding (control), TIG welding (10 V, 36 A, 8 s) and Nd:YAG laser welding (380 V, 8 ms). The specimens were radiographed and subjected to tensile and flexural strength tests at a crosshead speed of 1.0 mm/min using a load cell of 500 kgf applied on the welded interface or at the middle point of the non-welded specimens. Tensile strength data were analyzed by ANOVA and Tukey's test, and flexural strength data by the Kruskal-Wallis test (α=0.05). Non-welded specimens presented significantly higher tensile strength (control=605.84 ± 19.83) (p=0.015) and flexural strength (control=1908.75) (p=0.000) than TIG- and laser-welded ones. There were no significant differences (p>0.05) between the welding types for neither the tensile strength test (TIG=514.90 ± 37.76; laser=515.85 ± 62.07) nor the flexural strength test (TIG=1559.66; laser=1621.64). As far as tensile and flexural strengths are concerned, TIG was similar to laser and could be suitable to replace laser welding in implant-supported rehabilitations.

  11. Mechanical Behavior of Commercially Pure Titanium Weldments at Lower Temperatures

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Anil Kumar, V.; Xavier, X. Roshan

    2018-05-01

    Commercially pure titanium is used for low-temperature applications due to good toughness attributed to single-phase microstructure (α). Electron beam welding (EBW) and gas tungsten arc welding (GTAW) processes have been used for welding two grades of commercially pure titanium (Grade 2 and Grade 4). Martensitic microstructure is found to be finer in the case of EBW joint as compared to GTAW joint due to faster rate of cooling in the former process. Weldments have been characterized to study the mechanical behavior at ambient (298 K) and cryogenic temperatures (20 and 77 K). Strength of weldments increases with the decrease in temperature, which is found to be more prominent in case of Grade 4 titanium as compared to Grade 2. Weld efficiency of Grade 4 is found to be higher at all the temperatures (ambient, 77 and 20 K). However, ultimate tensile strength/yield strength ratio is higher for Grade 2 as compared to Grade 4. % Elongation is found to increase/retained at cryogenic temperatures for Grade 2, and it is found to decrease for Grade 4. Electron backscattered diffraction analysis and transmission electron microscopy of deformed samples confirmed the presence of extensive twinning in Grade 2 and the presence of finer martensitic structure in Grade 4. Fractography analysis of tested specimens revealed the presence of cleavage facets in Grade 4 and dimples in specimens of Grade 2. Higher strength in Grade 4 is attributed to higher oxygen restricting the twin-assisted slip, which is otherwise prominent in Grade 2 titanium.

  12. Metallurgy and deformation of electron beam welded similar titanium alloys

    NASA Astrophysics Data System (ADS)

    Pasang, T.; Sabol, J. C.; Misiolek, W. Z.; Mitchell, R.; Short, A. B.; Littlefair, G.

    2012-04-01

    Butt welded joins were produced between commercially pure titanium and various titanium alloys using an electron beam welding technique. The materials used represent commercially pure grade, α-β alloy and β alloy. They were CP Ti, Ti-6Al-4V (Ti64) and Ti-5Al-5V-5Mo-3Cr (Ti5553), respectively. Grains were largest in the FZs of the different weldments, decreasing in size towards the heat affected zones (HAZs) and base metals. Hardness measurements taken across the traverse cross-sections of the weldments were constant from base metal-to-weld-to-base metal for CP Ti/CP Ti and Ti64/Ti64 welds, while the FZ of Ti5553/Ti5553 had a lower hardness compared with the base metal. During tensile testing the CP Ti/CP Ti weldments fractured at the base metal, whereas both the Ti64/Ti64 and Ti5553/Ti5553 broke at the weld zones. Fracture surface analysis suggested microvoid coalescence as the failure mechanism. The compositional analysis showed a relatively uniform distribution of solute elements from base metal-to-weld-to-base metal. CP Ti has always been known for its excellent weldability, Ti64 has good weldability and, preliminary results indicated that Ti5553 alloy is also weldable.

  13. Welding and Joining of Titanium Aluminides

    PubMed Central

    Cao, Jian; Qi, Junlei; Song, Xiaoguo; Feng, Jicai

    2014-01-01

    Welding and joining of titanium aluminides is the key to making them more attractive in industrial fields. The purpose of this review is to provide a comprehensive overview of recent progress in welding and joining of titanium aluminides, as well as to introduce current research and application. The possible methods available for titanium aluminides involve brazing, diffusion bonding, fusion welding, friction welding and reactive joining. Of the numerous methods, solid-state diffusion bonding and vacuum brazing have been most heavily investigated for producing reliable joints. The current state of understanding and development of every welding and joining method for titanium aluminides is addressed respectively. The focus is on the fundamental understanding of microstructure characteristics and processing–microstructure–property relationships in the welding and joining of titanium aluminides to themselves and to other materials. PMID:28788113

  14. Welding of titanium and nickel alloy by combination of explosive welding and spark plasma sintering technologies

    NASA Astrophysics Data System (ADS)

    Malyutina, Yu. N.; Bataev, A. A.; Mali, V. I.; Anisimov, A. G.; Shevtsova, L. I.

    2015-10-01

    A possibility of titanium and nickel-based alloys composite materials formation using combination of explosive welding and spark plasma sintering technologies was demonstrated in the current research. An employment of interlayer consisting of copper and tantalum thin plates makes possible to eliminate a contact between metallurgical incompatible titanium and nickel that are susceptible to intermetallic compounds formation during their interaction. By the following spark plasma sintering process the bonding has been received between titanium and titanium alloy VT20 through the thin powder layer of pure titanium that is distinguished by low defectiveness and fine dispersive structure.

  15. Welding of titanium and nickel alloy by combination of explosive welding and spark plasma sintering technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malyutina, Yu. N., E-mail: iuliiamaliutina@gmail.com; Bataev, A. A., E-mail: bataev@adm.nstu.ru; Shevtsova, L. I., E-mail: edeliya2010@mail.ru

    A possibility of titanium and nickel-based alloys composite materials formation using combination of explosive welding and spark plasma sintering technologies was demonstrated in the current research. An employment of interlayer consisting of copper and tantalum thin plates makes possible to eliminate a contact between metallurgical incompatible titanium and nickel that are susceptible to intermetallic compounds formation during their interaction. By the following spark plasma sintering process the bonding has been received between titanium and titanium alloy VT20 through the thin powder layer of pure titanium that is distinguished by low defectiveness and fine dispersive structure.

  16. Effect of laser welding on the titanium ceramic tensile bond strength.

    PubMed

    Galo, Rodrigo; Ribeiro, Ricardo Faria; Rodrigues, Renata Cristina Silveira; Pagnano, Valéria de Oliveira; Mattos, Maria da Glória Chiarello de

    2011-08-01

    Titanium reacts strongly with elements, mainly oxygen at high temperature. The high temperature of titanium laser welding modifies the surface, and may interfere on the metal-ceramic tensile bond strength. The influence of laser welding on the titanium-ceramic bonding has not yet been established. The purpose of this in vitro study was to analyze the influence of laser welding applied to commercially pure titanium (CpTi) substructure on the bond strength of commercial ceramic. The influence of airborne particle abrasion (Al2O3) conditions was also studied. Forty CpTi cylindrical rods (3 mm x 60 mm) were cast and divided into 2 groups: with laser welding (L) and without laser welding (WL). Each group was divided in 4 subgroups, according to the size of the particles used in airborne particle abrasion: A - Al2O3 (250 µm); B - Al2O3 (180 µm); C - Al2O3 (110 µm); D - Al2O3 (50 µm). Ceramic rings were fused around the CpTi rods. Specimens were invested and their tensile strength was measured at fracture with a universal testing machine at a crosshead speed of 2.0 mm/min and 200 kgf load cell. Statistical analysis was carried out with analysis of variance and compared using the independent t test (p<0.05). Significant differences were found among all subgroups (p<0.05). The highest and the lowest bond strength means were recorded in subgroups WLC (52.62 MPa) and LD (24.02 MPa), respectively. Airborne particle abrasion yielded significantly lower bond strength as the Al2O3 particle size decreased. Mechanical retention decreased in the laser-welded specimens, i.e. the metal-ceramic tensile bond strength was lower.

  17. Welding of gamma titanium aluminide alloys

    NASA Technical Reports Server (NTRS)

    Smashey, Russell W. (Inventor); Snyder, John H. (Inventor); Kelly, Thomas J. (Inventor); Sheranko, Ronald L. (Inventor)

    1998-01-01

    An article made of a gamma titanium aluminide alloy is welded, as for example in the weld repair of surface cracks, by removing foreign matter from the area to be welded, first stress relieving the article, cooling the entire article to a welding temperature of from about 1000.degree. F. to about 1400.degree. F., welding a preselected region in an inert atmosphere at the welding temperature, and second stress relieving the article. Welding is preferably accomplished by striking an arc in the preselected region so as to locally melt the alloy in the preselected region, providing a filler metal having the same composition as the gamma titanium aluminide alloy of the article, and feeding the filler metal into the arc so that the filler metal is melted and fused with the article to form a weldment upon solidification.

  18. Causal Factors of Weld Porosity in Gas Tungsten Arc Welding of Powder-Metallurgy-Produced Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Muth, T. R.; Yamamoto, Y.; Frederick, D. A.; Contescu, C. I.; Chen, W.; Lim, Y. C.; Peter, W. H.; Feng, Z.

    2013-05-01

    An investigation was undertaken using gas tungsten arc (GTA) welding on consolidated powder metallurgy (PM) titanium (Ti) plate to identify the causal factors behind observed porosity in fusion welding. Tramp element compounds of sodium and magnesium, residual from the metallothermic reduction of titanium chloride used to produce the titanium, were remnant in the starting powder and were identified as gas-forming species. PM-titanium made from revert scrap, where sodium and magnesium were absent, showed fusion weld porosity, although to a lesser degree. We show that porosity was attributable to hydrogen from adsorbed water on the surface of the powders prior to consolidation. The removal and minimization of both adsorbed water on the surface of titanium powder and the residues from the reduction process prior to consolidation of titanium powders are critical for achieving equivalent fusion welding success similar to that seen in wrought titanium produced via the Kroll process.

  19. Comparative in vitro biocompatibility of nickel-titanium, pure nickel, pure titanium, and stainless steel: genotoxicity and atomic absorption evaluation.

    PubMed

    Assad, M; Lemieux, N; Rivard, C H; Yahia, L H

    1999-01-01

    The genotoxicity level of nickel-titanium (NiTi) was compared to that of its pure constituents, pure nickel (Ni) and pure titanium (Ti) powders, and also to 316L stainless steel (316L SS) as clinical reference material. In order to do so, a dynamic in vitro semiphysiological extraction was performed with all metals using agitation and ISO requirements. Peripheral blood lymphocytes were then cultured in the presence of all material extracts, and their comparative genotoxicity levels were assessed using electron microscopy-in situ end-labeling (EM-ISEL) coupled to immunogold staining. Cellular chromatin exposition to pure Ni and 316L SS demonstrated a significantly stronger gold binding than exposition to NiTi, pure Ti, or the untreated control. In parallel, graphite furnace atomic absorption spectrophotometry (AAS) was also performed on all extraction media. The release of Ni atoms took the following decreasing distribution for the different resulting semiphysiological solutions: pure Ni, 316L SS, NiTi, Ti, and controls. Ti elements were detected after elution of pure titanium only. Both pure titanium and nickel-titanium specimens obtained a relative in vitro biocompatibility. Therefore, this quantitative in vitro study provides optimistic results for the eventual use of nickel-titanium alloys as surgical implant materials.

  20. Method for producing titanium aluminide weld rod

    DOEpatents

    Hansen, Jeffrey S.; Turner, Paul C.; Argetsinger, Edward R.

    1995-01-01

    A process for producing titanium aluminide weld rod comprising: attaching one end of a metal tube to a vacuum line; placing a means between said vacuum line and a junction of the metal tube to prevent powder from entering the vacuum line; inducing a vacuum within the tube; placing a mixture of titanium and aluminum powder in the tube and employing means to impact the powder in the tube to a filled tube; heating the tube in the vacuum at a temperature sufficient to initiate a high-temperature synthesis (SHS) reaction between the titanium and aluminum; and lowering the temperature to ambient temperature to obtain a intermetallic titanium aluminide alloy weld rod.

  1. Method of manufacturing corrosion resistant tubing from welded stock of titanium or titanium base alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meredith, S.E.; Benjamin, J.F.

    1993-07-13

    A method is described of manufacturing corrosion resistant tubing from seam welded stock of a titanium or titanium based alloy, comprising: cold pilgering a seam welded tube hollow of titanium or titanium based alloy in a single pass to a final sized tubing, the tube hollow comprising a strip which has been bent and welded along opposed edges thereof to form the tube hollow, the tube hollow optionally being heat treated prior to the cold pilgering step provided the tube hollow is not heated to a temperature which would transform the titanium or titanium alloy into the beta phase, themore » cold pilgering effecting a reduction in cross sectional area of the tube hollow of at least 50% and a reduction of wall thickness of at least 50%, in order to achieve a radially oriented crystal structure; and annealing the final sized tubing at a temperature and time sufficient to effect complete recrystallization and reform grains in a weld area along the seam into smaller, homogeneous grains.« less

  2. Repair welding of gamma titanium aluminide castings

    NASA Astrophysics Data System (ADS)

    Kelly, T. J.

    This paper examines the GTA repair welding of cast Ti-48Al-2Cr-2Nb gamma titanium aluminide. Pre-weld heat treatment, preheat and welding parameters are evaluated and discussed. A wide range of GTAW parameters is demonstrated for use with this alloy and the resulting weld structure is examined. The effects of postweld heat treatment on the structure of the weld deposit is also determined.

  3. Microstructural characterization and hardness properties of electric resistance welding titanium joints for dental applications.

    PubMed

    Ceschini, Lorella; Boromei, Iuri; Morri, Alessandro; Nardi, Diego; Sighinolfi, Gianluca; Degidi, Marco

    2015-06-01

    The electric resistance welding procedure is used to join a titanium bar with specific implant abutments in order to produce a framework directly in the oral cavity of the patient. This investigation studied the effects of the welding process on microstructure and hardness properties of commercially pure (CP2 and CP4) Ti components. Different welding powers and cooling procedures were applied to bars and abutments, normally used to produce the framework, in order to simulate the clinical intraoral welding procedure. The analyses highlighted that the joining process did not induce appreciable changes in the geometry of the abutments. However, because of unavoidable microstructural modifications in the welded zones, the hardness decreased to values lower than those of the unwelded CP2 and CP4 Ti grades, irrespective of the welding environments and parameters. © IMechE 2015.

  4. Weld bonding of titanium with polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Sheppard, C. H.; Orell, M. K.

    1975-01-01

    A conductive adhesive primer and a capillary flow adhesive were developed for weld bonding titanium alloy joints. Both formulations contained ingredients considered to be non-carcinogenic. Lap-shear joint test specimens and stringer-stiffened panels were weld bonded using a capillary flow process to apply the adhesive. Static property information was generated for weld bonded joints over the temperature range of 219K (-65 F) to 561K (550 F). The capillary flow process was demonstrated to produce weld bonded joints of equal strength to the weld through weld bonding process developed previously.

  5. Effect of Heat Input on Microstructural Changes and Corrosion Behavior of Commercially Pure Titanium Welds in Nitric Acid Medium

    NASA Astrophysics Data System (ADS)

    Ravi Shankar, A.; Gopalakrishnan, G.; Balusamy, V.; Kamachi Mudali, U.

    2009-11-01

    Commercially pure titanium (Ti) has been selected for the fabrication of dissolver for the proposed fast reactor fuel reprocessing plant at Kalpakkam, India. In the present investigation, microstructural changes and corrosion behavior of tungsten inert gas (TIG) welds of Ti grade-1 and grade-2 with different heat inputs were carried out. A wider heat affected zone was observed with higher heat inputs and coarse grains were observed from base metal toward the weld zone with increasing heat input. Fine and more equiaxed prior β grains were observed at lower heat input and the grain size increased toward fusion zone. The results indicated that Ti grade-1 and grade-2 with different heat inputs and different microstructures were insensitive to corrosion in liquid, vapor, and condensate phases of 11.5 M nitric acid tested up to 240 h. The corrosion rate in boiling liquid phase (0.60-0.76 mm/year) was higher than that in vapor (0.012-0.039 mm/year) and condensate phases (0.04-0.12 mm/year) of nitric acid for Ti grade-1 and grade-2, as well as for base metal for all heat inputs. Potentiodynamic polarization experiment carried out at room temperature indicated higher current densities and better passivation in 11.5 M nitric acid. SEM examination of Ti grade-1 welds for all heat inputs exposed to liquid phase after 240 h showed corrosion attack on the surface, exposing Widmanstatten microstructure containing acicular alpha. The continuous dissolution of the liquid-exposed samples was attributed to the heterogeneous microstructure and non-protective passive film formation.

  6. Laser-TIG Welding of Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Turichin, G.; Tsibulsky, I.; Somonov, V.; Kuznetsov, M.; Akhmetov, A.

    2016-08-01

    The article presents the results of investigation the technological opportunity of laser-TIG welding of titanium alloys. The experimental stand for implementation of process with the capability to feed a filler wire was made. The research of the nature of transfer the filler wire into the welding pool has been demonstrated. The influence of distance between the electrode and the surface of the welded plates on the stability of the arc was shown. The relationship between welding velocity, the position of focal plane of the laser beam and the stability of penetration of plates was determined.

  7. Subminiature eddy-current transducers designed to study welded joints of titanium alloys

    NASA Astrophysics Data System (ADS)

    Malikov, V. N.; Dmitriev, S. F.; Katasonov, A. O.; Sagalakov, A. M.; Ishkov, A. V.

    2017-12-01

    Eddy current transducers (ECT) are used to construct a sensor for investigating titanium sheets connected by a welded joint. The paper provides key technical information about the eddy current transducer used and describes the procedure of measurements that makes it possible to control defects in welded joints of titanium alloys. It is capable of automatically changing the filtering cutoff frequency and operating frequency of the device. Experiments were conducted on welded VT1-0 titanium plates. The paper contains the results of these measurements. The dependence data facilitates the assessment of the quality of the welded joints and helps make an educated conclusion about welding quality.

  8. Effect of laser welding on the titanium composite tensile bond strength.

    PubMed

    Galo, Rodrigo; Ribeiro, Ricardo Faria; Rodrigues, Renata Cristina Silveira; Pagnano, Valéria de Oliveira; de Mattos, Maria da Glória Chiarello

    2009-01-01

    The aim of this study was to analyze the shear bond strength between commercially pure titanium, with and without laser welding, after airbone-particle abrasion (Al(2)O(3)) and 2 indirect composites. Sixty-four specimens were cast and divided into 2 groups with and without laser welding. Each group was divided in 4 subgroups, related to Al(2)O(3) grain size: A - 250 microm; B - 180 microm; C- 110 microm; and D - 50 microm. Composite rings were formed around the rods and light polymerized using UniXS unit. Specimens were invested and their shear bond strength at failure was measured with a universal testing machine at a crosshead speed of 2.0 mm/min. Statistical analysis was carried out with ANOVA and Tukey's test (alpha=0.05). The highest bond strength means were recorded in 250 microm group without laser welding. The lowest shear bond strength means were recorded in 50 microm group with laser welding. Statistically significant differences (p<0.05) were found between all groups. In conclusion, airborne particle abrasion yielded significantly lower bond strength as the Al(2)O(3) particle size decreased. Shear bond strength decreased in the laser welded specimens.

  9. Problems of Pore Formation in Welded Joints of Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Murav'ev, V. I.

    2005-07-01

    Special features of formation of the connection zone in front of the front of molten pool and changes in the macro- and microstructure of the weld metal are considered for conditions of fusion welding of titanium alloys on an example of pseudo-α-titanium alloy VT20.Ways for forming macrotexture on the surface of joined preforms are determined with the aim of obtaining weld metal with structure and properties close to those of the base metal.

  10. Comparative analysis of the fit of 3-unit implant-supported frameworks cast in nickel-chromium and cobalt-chromium alloys and commercially pure titanium after casting, laser welding, and simulated porcelain firings.

    PubMed

    Tiossi, Rodrigo; Rodrigues, Renata Cristina Silveira; de Mattos, Maria da Glória Chiarello; Ribeiro, Ricardo Faria

    2008-01-01

    This study compared the vertical misfit of 3-unit implant-supported nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) alloy and commercially pure titanium (cpTi) frameworks after casting as 1 piece, after sectioning and laser welding, and after simulated porcelain firings. The results on the tightened side showed no statistically significant differences. On the opposite side, statistically significant differences were found for Co-Cr alloy (118.64 microm [SD: 91.48] to 39.90 microm [SD: 27.13]) and cpTi (118.56 microm [51.35] to 27.87 microm [12.71]) when comparing 1-piece to laser-welded frameworks. With both sides tightened, only Co-Cr alloy showed statistically significant differences after laser welding. Ni-Cr alloy showed the lowest misfit values, though the differences were not statistically significantly different. Simulated porcelain firings revealed no significant differences.

  11. Electron Beam Welding to Join Gamma Titanium Aluminide Articles

    NASA Technical Reports Server (NTRS)

    Kelly, Thomas Joseph (Inventor)

    2008-01-01

    A method is provided for welding two gamma titanium aluminide articles together. The method includes preheating the two articles to a welding temperature of from about 1700 F to about 2100 F, thereafter electron beam welding the two articles together at the welding temperature and in a welding vacuum to form a welded structure, and thereafter annealing the welded structure at an annealing temperature of from about 1800 F to about 2200 F, to form a joined structure.

  12. Influence of friction stir welding parameters on titanium-aluminum heterogeneous lap joining configuration

    NASA Astrophysics Data System (ADS)

    Picot, Florent; Gueydan, Antoine; Hug, Éric

    2017-10-01

    Lap joining configuration for Friction Stir Welding process is a methodology mostly dedicated to heterogeneous bonding. This welding technology was applied to join pure titanium with pure aluminum by varying the rotation speed and the movement speed of the tool. Regardless of the process parameters, it was found that the maximum strength of the junction remains almost constant. Microstructural observations by means of Scanning Electron Microscopy and Energy Dispersive Spectrometry analysis enable to describe the interfacial join and reveal asymmetric Cold Lap Defects on the sides of the junction. Chemical analysis shows the presence of one exclusive intermetallic compound through the interface identified as TiAl3. This compound is responsible of the crack spreading of the junction during the mechanical loading. The original version of this article supplied to AIP Publishing contained an accidental inversion of the authors, names. An updated version of this article, with the authors names formatted correctly was published on 20 October 2017.

  13. Yttria Nanoparticle Reinforced Commercially Pure (CP) Titanium

    DTIC Science & Technology

    2011-09-01

    nanoparticles as well as titanium boride (TiB) reinforcements were produced through gas atomization. After consolidation and extrusion, room temperature...pure FE iron O oxygen Ti titanium TiB titanium boride TYS tensile yield strength UTS ultimate tensile strength wt% weight percent Y2O3

  14. Recent Developments and Research Progress on Friction Stir Welding of Titanium Alloys: An Overview

    NASA Astrophysics Data System (ADS)

    Karna, Sivaji; Cheepu, Muralimohan; Venkateswarulu, D.; Srikanth, V.

    2018-03-01

    Titanium and its alloys are joined by various welding processes. However, Fusion welding of titanium alloys resulted solidification problems like porosity, segregation and columnar grains. The problems occurred in conventional welding processes can be resolved using a solid state welding i.e. friction stir welding. Aluminium and Magnesium alloys were welded by friction stir welding. However alloys used for high temperature applications such as titanium alloys and steels are arduous to weld using friction stir welding process because of tool limitations. Present paper summarises the studies on joining of Titanium alloys using friction stir welding with different tool materials. Selection of tool material and effect of welding conditions on mechanical and microstructure properties of weldments were also reported. Major advantage with friction stir welding is, we can control the welding temperature above or below β-transus temperature by optimizing the process parameters. Stir zone in below beta transus condition consists of bi-modal microstructure and microstructure in above β-transus condition has large prior β- grains and α/β laths present in the grain. Welding experiments conducted below β- transus condition has better mechanical properties than welding at above β-transus condition. Hardness and tensile properties of weldments are correlated with the stir zone microstructure.

  15. Custom-made laser-welded titanium implant prosthetic abutment.

    PubMed

    Iglesia-Puig, Miguel A

    2005-10-01

    A technique to create an individually modified implant prosthetic abutment is described. An overcasting is waxed onto a machined titanium abutment, cast in titanium, and joined to it with laser welding. With the proposed technique, a custom-made titanium implant prosthetic abutment is created with adequate volume and contour of metal to support a screw-retained, metal-ceramic implant-supported crown.

  16. Grain fragmentation in ultrasonic-assisted TIG weld of pure aluminum.

    PubMed

    Chen, Qihao; Lin, Sanbao; Yang, Chunli; Fan, Chenglei; Ge, Hongliang

    2017-11-01

    Under the action of acoustic waves during an ultrasonic-assisted tungsten inert gas (TIG) welding process, a grain of a TIG weld of aluminum alloy is refined by nucleation and grain fragmentation. Herein, effects of ultrasound on grain fragmentation in the TIG weld of aluminum alloy are investigated via systematic welding experiments of pure aluminum. First, experiments involving continuous and fixed-position welding are performed, which demonstrate that ultrasound can break the grain of the TIG weld of pure aluminum. The microstructural characteristics of an ultrasonic-assisted TIG weld fabricated by fixed-position welding are analyzed. The microstructure is found to transform from plane crystal, columnar crystal, and uniform equiaxed crystal into plane crystal, deformed columnar crystal, and nonuniform equiaxed crystal after application of ultrasound. Second, factors influencing ultrasonic grain fragmentation are investigated. The ultrasonic amplitude and welding current are found to have a considerable effect on grain fragmentation. The degree of fragmentation first increases and then decreases with an increase in ultrasonic amplitude, and it increases with an increase in welding current. Measurement results of the vibration of the weld pool show that the degree of grain fragmentation is related to the intensity of acoustic nonlinearity in the weld pool. The greater the intensity of acoustic nonlinearity, the greater is the degree of grain fragmentation. Finally, the mechanism of ultrasonic grain fragmentation in the TIG weld of pure aluminum is discussed. A finite element simulation is used to simulate the acoustic pressure and flow in the weld pool. The acoustic pressure in the weld pool exceeds the cavitation threshold, and cavitation bubbles are generated. The flow velocity in the weld pool does not change noticeably after application of ultrasound. It is concluded that the high-pressure conditions induced during the occurrence of cavitation, lead to grain

  17. Joining characteristics of titanium-based orthodontic wires connected by laser and electrical welding methods.

    PubMed

    Matsunaga, Junko; Watanabe, Ikuya; Nakao, Noriko; Watanabe, Etsuko; Elshahawy, Waleed; Yoshida, Noriaki

    2015-01-01

    This study investigated the possibility of electrical and laser welding to connect titanium-based alloy (beta-titanium and nickel-titanium) wires and stainless-steel or cobalt-chromium alloy wires for fabrication of combination arch-wires. Four kinds of straight orthodontic rectangular wires (0.017 × 0.025 inch) were used: stainless-steel (S-S), cobalt-chromium (Co-Cr), beta-titanium alloy (β-Ti), and nickel-titanium (Ni-Ti). Homogeneous and heterogeneous end-to-end joints (15 mm long each) were made by electrical welding and laser welding. Non-welded wires (30 mm long) were also used as a control. Maximum loads at fracture (N) and elongation (%) were measured by conducting tensile test. The data (n = 10) were statistically analyzed using analysis of variance/Tukey test (P < 0.05).The S-S/S-S and Co-Cr/Co-Cr specimens showed significantly higher values of the maximum load (ML) at fracture and elongation (EL) than those of the Ni-Ti/Ni-Ti and β-Ti/β-Ti specimens for electrical welding and those of the S-S/S-S and Co-Cr/Co-Cr specimens welded by laser. On the other hand, the laser-welded Ni-Ti/Ni-Ti and β-Ti/β-Ti specimens exhibited higher values of the ML and EL compared to those of the corresponding specimens welded by electrical method. In the heterogeneously welded combinations, the electrically welded Ni-Ti/S-S, β-Ti/S-S and β-Ti/Co-Cr specimens showed significantly (P < 0.05) higher ML and EL than those of the corresponding specimens welded by laser. Electrical welding exhibited the higher values of maximum load at fracture and elongation for heterogeneously welded combinations than laser-welding.

  18. Study of Gravity Effects on Titanium Laser Welding in the Vertical Position

    PubMed Central

    Yuan, Zhang; Pu, Haitao; Li, Haigang; Cheng, Hao; Du, Dong; Shan, Jiguo

    2017-01-01

    To obtain satisfactory welds in positional laser beam welding, it is necessary to know how process parameters will influence the quality of welds in different welding positions. In this study, the titanium alloy Ti6Al4V sheets were laser welded in two vertical welding positions (vertical up and vertical down), and the appearance, porosity, strength, and ductility of the laser joints were evaluated. Results show that undercuts of the vertical up welds were greater than that of vertical down welds, while the porosity contents were much higher in vertical down welds than that in vertical up welds. When welding with a higher heat input, the vertical up welding position resulted in poor weld profiles (undercuts and burn-through holes), whereas the vertical down welding position led to excessive porosity contents in welds. Both severe undercut and excessive porosity were detrimental to the tensile properties of the welds. Weld appearance was improved and porosity contents were reduced by using a lower heat input, achieving better weld quality. Therefore, it is suggested that process parameter settings with relatively high laser powers and welding speeds, which can result in lower heat inputs, are used when laser welding the Ti6Al4V titanium alloys vertically. PMID:28885573

  19. Study of Gravity Effects on Titanium Laser Welding in the Vertical Position.

    PubMed

    Chang, Baohua; Yuan, Zhang; Pu, Haitao; Li, Haigang; Cheng, Hao; Du, Dong; Shan, Jiguo

    2017-09-08

    To obtain satisfactory welds in positional laser beam welding, it is necessary to know how process parameters will influence the quality of welds in different welding positions. In this study, the titanium alloy Ti6Al4V sheets were laser welded in two vertical welding positions (vertical up and vertical down), and the appearance, porosity, strength, and ductility of the laser joints were evaluated. Results show that undercuts of the vertical up welds were greater than that of vertical down welds, while the porosity contents were much higher in vertical down welds than that in vertical up welds. When welding with a higher heat input, the vertical up welding position resulted in poor weld profiles (undercuts and burn-through holes), whereas the vertical down welding position led to excessive porosity contents in welds. Both severe undercut and excessive porosity were detrimental to the tensile properties of the welds. Weld appearance was improved and porosity contents were reduced by using a lower heat input, achieving better weld quality. Therefore, it is suggested that process parameter settings with relatively high laser powers and welding speeds, which can result in lower heat inputs, are used when laser welding the Ti6Al4V titanium alloys vertically.

  20. Electrochemical anodizing treatment to enhance localized corrosion resistance of pure titanium.

    PubMed

    Prando, Davide; Brenna, Andrea; Bolzoni, Fabio M; Diamanti, Maria V; Pedeferri, Mariapia; Ormellese, Marco

    2017-01-26

    Titanium has outstanding corrosion resistance due to the thin protective oxide layer that is formed on its surface. Nevertheless, in harsh and severe environments, pure titanium may suffer localized corrosion. In those conditions, costly titanium alloys containing palladium, nickel and molybdenum are used. This purpose investigated how it is possible to control corrosion, at lower cost, by electrochemical surface treatment on pure titanium, increasing the thickness of the natural oxide layer. Anodic oxidation was performed on titanium by immersion in H2SO4 solution and applying voltages ranging from 10 to 80 V. Different anodic current densities were considered. Potentiodynamic tests in chloride- and fluoride-containing solutions were carried out on anodized titanium to determine the pitting potential. All tested anodizing treatments increased corrosion resistance of pure titanium, but never reached the performance of titanium alloys. The best corrosion behavior was obtained on titanium anodized at voltages lower than 40 V at 20 mA/cm2. Titanium samples anodized at low cell voltage were seen to give high corrosion resistance in chloride- and fluoride-containing solutions. Electrolyte bath and anodic current density have little effect on the corrosion behavior.

  1. [A study on the bond interface between low-fusing dental porcelain and pure titanium].

    PubMed

    Mo, A; Cen, Y; Liao, Y; Wang, J; Shi, X

    2001-09-01

    To evaluate the bond interface between low fusing dental porcelain and pure titanium by observing the topography and detecting the ionic diffusion in the interface area. The low fusing-porcelain La-porcelain produced by the authors or Vita Titankeramik porcelain was fused to the surfaces of pure titanium. The topography of the interface between pure titanium and porcelain, and the structure of experimental materials were observed with SEM. The state of ionic diffusion in the interface area was investigated with EPMA. Excellent permeation and diffusion of La-porcelain were observed on the surfaces of pure titanium. The diffusion of ions of stannum and silicon was discovered in the interface area. The microstructure of La-porcelain to pure titanium bond interface was finer than that of Vita Titankeramik porcelain. Excellent bond can be produced in the interface between La-porcelain and pure titanium. The bonding mechanism may involve mechanical bond and chemical bond. The ionic diffusion of stannum plays an important role in the bonding of porcelain to pure titanium.

  2. Effects of alloying element on weld characterization of laser-arc hybrid welding of pure copper

    NASA Astrophysics Data System (ADS)

    Hao, Kangda; Gong, Mengcheng; Xie, Yong; Gao, Ming; Zeng, Xiaoyan

    2018-06-01

    Effects of alloying elements of Si and Sn on weld characterizations of laser-arc hybrid welded pure copper (Cu) with thickness of 2 mm was studied in detail by using different wires. The weld microstructure was analyzed, and the mechanical properties (micro-hardness and tensile property), conductivity and corrosion resistance were tested. The results showed that the alloying elements benefit the growth of column grains within weld fusion zone (FZ), increase the ultimate tensile strength (UTS) of the FZ and weld corrosion resistance, and decrease weld conductivity. The mechanisms were discussed according to the results.

  3. An Evaluation of Former Soviet Union Welding Processes on Commercially Pure Titanium

    DTIC Science & Technology

    2001-12-01

    welding (GTAW), gas metal arc welding ( GMAW ), and plasma arc welding (PAW) being the most widely used techniques. Of these, the GTAW process is much...quality welds, is free of the spatter that may occur with GMAW , and can be used with or without filler material, depending on the specific application

  4. Tribological Properties of Surface-Textured and Plasma-Nitrided Pure Titanium Under Oil Lubrication Condition

    NASA Astrophysics Data System (ADS)

    Zhang, Baosen; Dong, Qiangsheng; Ba, Zhixin; Wang, Zhangzhong; Shi, Hancheng; Xue, Yanting

    2018-01-01

    Plasma nitriding was conducted as post-treatment for surface texture on pure titanium to obtain a continuous nitriding layer. Supersonic fine particles bombarding (SFPB) was carried out to prepare surface texture. The surface morphologies and chemical composition were analyzed using scanning electron microscope and energy disperse spectroscopy. The microstructures of modified layers were characterized by transmission electron microscope. The tribological properties of surface-textured and duplex-treated pure titanium under oil lubrication condition were systematically investigated in the ball-on-plate reciprocating mode. The effects of applied load and sliding velocity on the tribological behavior were analyzed. The results show that after duplex treatments, the grains size in modified layer becomes slightly larger, and hardness is obviously improved. Wear resistance of duplex-treated pure titanium is significantly improved referenced to untreated and surface-textured pure titanium, which is 3.22 times as much as untreated pure titanium and 2.15 times of that for surface-textured pure titanium, respectively.

  5. Feasibility study of consolidation by direct compaction and friction stir processing of commercially pure titanium powder

    NASA Astrophysics Data System (ADS)

    Nichols, Leannah M.

    Commercially pure titanium can take up to six months to successfully manufacture a six-inch in diameter ingot in which can be shipped to be melted and shaped into other useful components. The applications to the corrosion-resistant, light weight, strong metal are endless, yet so is the manufacturing processing time. At a cost of around $80 per pound of certain grades of titanium powder, the everyday consumer cannot afford to use titanium in the many ways it is beneficial simply because the number of processing steps it takes to manufacture consumes too much time, energy, and labor. In this research, the steps it takes from the raw powder form to the final part are proposed to be reduced from 4-8 steps to only 2 steps utilizing a new technology that may even improve upon the titanium properties at the same time as it is reducing the number of steps of manufacture. The two-step procedure involves selecting a cylindrical or rectangular die and punch to compress a small amount of commercially pure titanium to a strong-enough compact for transportation to the friction stir welder to be consolidated. Friction stir welding invented in 1991 in the United Kingdom uses a tool, similar to a drill bit, to approach a sample and gradually plunge into the material at a certain rotation rate of between 100 to 2,100 RPM. In the second step, the friction stir welder is used to process the titanium powder held in a tight holder to consolidate into a harder titanium form. The resulting samples are cut to expose the cross section and then grinded, polished, and cleaned to be observed and tested using scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS), and a Vickers microhardness tester. The results were that the thicker the sample, the harder the resulting consolidated sample peaking at 2 to 3 times harder than that of the original commercially pure titanium in solid form at a peak value of 435.9 hardness and overall average of 251.13 hardness. The combined

  6. Modeling of laser welding of steel and titanium plates with a composite insert

    NASA Astrophysics Data System (ADS)

    Isaev, V. I.; Cherepanov, A. N.; Shapeev, V. P.

    2017-10-01

    A 3D model of laser welding proposed before by the authors was extended to the case of welding of metallic plates made of dissimilar materials with a composite multilayer intermediate insert. The model simulates heat transfer in the welded plates and takes into account phase transitions. It was proposed to select the composition of several metals and dimensions of the insert to avoid the formation of brittle intermetallic phases in the weld joint negatively affecting its strength properties. The model accounts for key physical phenomena occurring during the complex process of laser welding. It is capable to calculate temperature regimes at each point of the plates. The model can be used to select the welding parameters reducing the risk of formation of intermetallic plates. It can forecast the dimensions and crystalline structure of the solidified melt. Based on the proposed model a numerical algorithm was constructed. Simulations were carried out for the welding of titanium and steel plates with a composite insert comprising four different metals: copper and niobium (intermediate plates) with steel and titanium (outer plates). The insert is produced by explosion welding. Temperature fields and the processes of melting, evaporation, and solidification were studied.

  7. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing.

    PubMed

    Wauthle, Ruben; Ahmadi, Seyed Mohammad; Amin Yavari, Saber; Mulier, Michiel; Zadpoor, Amir Abbas; Weinans, Harrie; Van Humbeeck, Jan; Kruth, Jean-Pierre; Schrooten, Jan

    2015-09-01

    Additive manufacturing techniques are getting more and more established as reliable methods for producing porous metal implants thanks to the almost full geometrical and mechanical control of the designed porous biomaterial. Today, Ti6Al4V ELI is still the most widely used material for porous implants, and none or little interest goes to pure titanium for use in orthopedic or load-bearing implants. Given the special mechanical behavior of cellular structures and the material properties inherent to the additive manufacturing of metals, the aim of this study is to investigate the properties of selective laser melted pure unalloyed titanium porous structures. Therefore, the static and dynamic compressive properties of pure titanium structures are determined and compared to previously reported results for identical structures made from Ti6Al4V ELI and tantalum. The results show that porous Ti6Al4V ELI still remains the strongest material for statically loaded applications, whereas pure titanium has a mechanical behavior similar to tantalum and is the material of choice for cyclically loaded porous implants. These findings are considered to be important for future implant developments since it announces a potential revival of the use of pure titanium for additively manufactured porous implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. [Mechanical properties of weld area soldered by lasers and structural changes in hot reaction zone].

    PubMed

    Wu, H; Cui, Y; Mu, W

    2001-05-01

    To analyse and measure the welding depths and strengths of three kinds of welding materials under different laser welding conditions as well as the structural changes of the heat affected zone. Under different voltages and pulse duration three kinds of measuring sticks, including Co-Cr alloy, Ni-Cr alloy and pure titanium were welded and their strengths were compared with that of control group. At the same time, the structure of the heat-affected zone was analysed by means of the gold-phase method. The welding depth and strength of Co-Cr alloy were in direct proportion to the setting voltage, with averages of 335MPa (250V) to 573MPa(330V). At the heat-affected zone, the crystal particle was small and the end point of welding by laser bean presented the shape of the mountain peak and the interval of finger shape. The center of measuring sticks had a black zone with the circle shape. The setting voltage was in direct proportion to the welding depth of pure titanium and in inverse proportion to the welding strength with averages of 221MPa(250V) to 154MPa (330V). The crystal particle in the heat affected zone grew large and the solid phase expanded, the interval of the crystal oxidised, and the structure showed honeycomb changes. The laser welding is favourable to the welding properties of Co-Cr and Ni-Cr alloys, but its effect on the welding properties of pure titanium needs further discussion.

  9. Titanium Alloys Thin Sheet Welding with the Use of Concentrated Solar Energy

    NASA Astrophysics Data System (ADS)

    Pantelis, D. I.; Kazasidis, M.; Karakizis, P. N.

    2017-12-01

    The present study deals with the welding of titanium alloys thin sheets 1.3 mm thick, with the use of concentrated solar energy. The experimental part of the work took place at a medium size solar furnace at the installation of the Centre National de la Recherche Scientifique, at Odeillo, in Southern France, where similar and dissimilar defect-free welds of titanium Grades 4 and 6 were achieved, in the butt joint configuration. After the determination of the appropriate welding conditions, the optimum welded structures were examined and characterized microstructurally, by means of light optical microscopy, scanning electron microscopy, and microhardness testing. In addition, test pieces extracted from the weldments were tested under uniaxial tensile loading aiming to the estimation of the strength and the ductility of the joint. The analysis of the experimental results and the recorded data led to the basic concluding remarks which demonstrate increased hardness distribution inside the fusion area and severe loss of ductility, but adequate yield and tensile strength of the welds.

  10. Weld-brazing - a new joining process. [combination resistance spot welding and brazing of titanium alloys

    NASA Technical Reports Server (NTRS)

    Bales, T. T.; Royster, D. M.; Arnold, W. E., Jr.

    1972-01-01

    A joining process designated weld brazing which combines resistance spot welding and brazing has been developed. Resistance spot welding is used to position and align the parts as well as to establish a suitable faying surface gap for brazing. Fabrication is then completed by capillary flow of the braze alloy into the joint. The process has been used successfully to fabricate Ti-6Al-4V titanium alloy joints using 3003 aluminum braze alloy. Test results obtained on single overlap and hat-stiffened structural specimens show that weld brazed joints are superior in tensile shear, stress rupture, fatigue, and buckling than joint fabricated by spotwelding or brazing. Another attractive feature of the process is that the brazed joints is hermetically sealed by the braze material.

  11. Electron beam welding of aircraft structures. [joining of titanium alloy wing structures on F-14 aircraft

    NASA Technical Reports Server (NTRS)

    Witt, R. H.

    1972-01-01

    Requirements for advanced aircraft have led to more extensive use of titanium alloys and the resultant search for joining processes which can produce lightweight, high strength airframe structures efficiently. As a result, electron beam welding has been investigated. The following F-14A components are now being EB welded in production and are mainly annealed Ti-6Al-4V except for the upper wing cover which is annealed Ti-6Al-6V-2Sn: F-14A wing center section box, and F-14A lower and upper wing covers joined to wing pivot fitting assemblies. Criteria for selection of welding processes, the EB welding facility, development work on EB welding titanium alloys, and F-14A production and sliding seal electron beam welding are reported.

  12. Hydrogen Transport and Rationalization of Porosity Formation during Welding of Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Huang, Jianglin; Warnken, Nils; Gebelin, Jean-Christophe; Strangwood, Martin; Reed, Roger C.

    2012-02-01

    The transport of hydrogen during fusion welding of the titanium alloy Ti-6Al4V is analyzed. A coupled thermodynamic/kinetic treatment is proposed for the mass transport within and around the weld pool. The modeling indicates that hydrogen accumulates in the weld pool as a consequence of the thermodynamic driving forces that arise; a region of hydrogen depletion exists in cooler, surrounding regions in the heat-affected zone and beyond. Coupling with a hydrogen diffusion-controlled bubble growth model is used to simulate bubble growth in the melt and, thus, to make predictions of the hydrogen concentration barrier needed for pore formation. The effects of surface tension of liquid metal and the radius of preexisting microbubble size on the barrier are discussed. The work provides insights into the mechanism of porosity formation in titanium alloys.

  13. Passive fit of frameworks in titanium and palladium-silver alloy submitted the laser welding.

    PubMed

    de Sousa, S A; de Arruda Nobilo, M A; Henriques, G E P; Mesquita, M F

    2008-02-01

    This study evaluated the precision of fit of implant frameworks cast in titanium (cp Ti) and palladium-silver alloy (Pd-Ag), made by the one-piece cast and laser welding techniques. From a metal matrix with five implants, 20 master casts were obtained, to which replicas of implants were incorporated. On these masters 10 frameworks were made for each type of material (cp Ti and Pd-Ag alloy). Half of these were made by the one-piece cast technique and the other half by the laser welding technique. The implant/prosthesis interface was analysed and measured in the vestibular and lingual regions of the central and distal implants with the help of a measuring microscope. The results indicated that in the central cylinders, the Tukey test (P<0.0005) showed a significant difference in the passive fit between the laser-welded frameworks (34.73 microm) and those one-piece cast frameworks (151.39 microm), and as regards materials, the palladium-silver alloy (66.30 microm) showed better results than the titanium (119.83 microm). In the distal cylinders there was no significant difference between the frameworks cast in titanium and palladium-silver by the one-piece technique. However, after laser welding, there was a significant difference for the frameworks cast in titanium (31.37 microm) and palladium-silver (106.59 microm).

  14. Analysis of Square Cup Deep-Drawing Test of Pure Titanium

    NASA Astrophysics Data System (ADS)

    Ogawa, Takaki; Ma, Ninshu; Ueyama, Minoru; Harada, Yasunori

    2016-08-01

    The prediction of formability of titunium is more difficult than steels since its strong anisotropy. If computer simulation can estimate the formability of titanium, we can select the optimal forming conditions. The purpose of this study was to acquire knowledge for the formability prediction by the computer simulation of the square cup deep-drawing of pure titanium. In this paper, the results of FEM analsis of pure titanium were compared with the experimental results to examine the analysis validity. We analyzed the formability of deepdrawing square cup of titanium by the FEM using solid elements. Compared the analysis results with the experimental results such as the forming shape, the punch load, and the thickness, the validity was confirmed. Further, through analyzing the change of the thickness around the forming corner, it was confirmed that the thickness increased to its maximum value during forming process at the stroke of 35mm more than the maximum stroke.

  15. Formation of A Non-detachable Welded Titanium-aluminium Compound by Laser Action

    NASA Astrophysics Data System (ADS)

    Murzin, Serguei P.

    2018-01-01

    Progressive in the welding of dissimilar materials is the use of laser technology. With the use of the ROFIN StarWeld Manual Performance laser, an aluminium alloy AK4 and a titanium alloy VT5-1 were welded. Processing regimes have been determined, the realization of which during melting of materials in the zone of thermal influence makes it possible to obtain a homogeneous structure without voids and shells, which indicates a potential sufficiently high serviceability of the welded joint. To create the required power density distribution in the cross section of the laser beam, it is expedient to use diffractive optical elements.

  16. Microstructural Evolution During Friction Stir Welding of Near-Alpha Titanium

    DTIC Science & Technology

    2009-02-01

    completion of the weld and the weld end was quenched with cold water. This process was intended to preserve the microstructure surrounding the...limited the statistics supporting this result. 16 Mironov et al. [31] also measured the texture developed from friction stir processing of pure iron

  17. Microstructure and Mechanical Properties of Laser Welded Titanium 6Al-4V

    NASA Astrophysics Data System (ADS)

    Mazumder, J.; Steen, W. M.

    1982-05-01

    Laser butt welds were fabricated in a titanium alloy (Ti-6A1-4V, AMS 4911-Tal0 BSS, annealed) using a Control Laser 2 kW CW CO2 laser. The relationships between the weld microstructure and mechanical properties are described and compared to the theoretical thermal history of the weld zone as calculated from a three-dimensional heat transfer model of the process. The structure of the weld zone was examined by radiography to detect any gross porosity as well as by both optical and electron microscopy in order to identify the microstructure. The oxygen pick-up during gas shielded laser welding was analyzed to correlate further with the observed mechanical properties. It was found that optimally fabricated laser welds have a very good combination of weld microstructure and mechanical properties, ranking this process as one which can produce high quality welds.

  18. The use of Spark Plasma Sintering method for high-rate diffusion welding of high-strength UFG titanium alloys

    NASA Astrophysics Data System (ADS)

    Nokhrin, A. V.; Chuvil'deev, V. N.; Boldin, M. S.; Piskunov, A. V.; Kozlova, N. A.; Chegurov, M. K.; Popov, A. A.; Lantcev, E. A.; Kopylov, V. I.; Tabachkova, N. Yu

    2017-07-01

    The article provides an example of applying the technology of spark plasma sintering (SPS) to ensure high-rate diffusion welding of high-strength ultra-fine-grained UFG titanium alloys. Weld seams produced from Ti-5Al-2V UFG titanium alloy and obtained through SPS are characterized by high density, hardness and corrosion resistance.

  19. Inverse Thermal Analysis of Titanium GTA Welds Using Multiple Constraints

    NASA Astrophysics Data System (ADS)

    Lambrakos, S. G.; Shabaev, A.; Huang, L.

    2015-06-01

    Inverse thermal analysis of titanium gas-tungsten-arc welds using multiple constraint conditions is presented. This analysis employs a methodology that is in terms of numerical-analytical basis functions for inverse thermal analysis of steady-state energy deposition in plate structures. The results of this type of analysis provide parametric representations of weld temperature histories that can be adopted as input data to various types of computational procedures, such as those for prediction of solid-state phase transformations. In addition, these temperature histories can be used to construct parametric function representations for inverse thermal analysis of welds corresponding to other process parameters or welding processes whose process conditions are within similar regimes. The present study applies an inverse thermal analysis procedure that provides for the inclusion of constraint conditions associated with both solidification and phase transformation boundaries.

  20. Fracture resistance of Nd:YAG laser-welded cast titanium joints with various clinical thicknesses and welding pulse energies.

    PubMed

    Lin, Mau-Chin; Lin, Sheng-Chieh; Wang, Yu-Tsai; Hu, Suh-Woan; Lee, Tzu-Hsin; Chen, Li-Kai; Huang, Her-Hsiung

    2007-05-01

    The purpose of this study was to evaluate the fracture resistance of Nd:YAG laser-welded cast titanium (Ti) joints with various clinical thicknesses and welding pulse energies. A four-point bending test was used to assess the effects of various specimen thicknesses (1-3 mm) and welding pulse energies (11-24 J) on the fracture resistance of Nd:YAG laser-welded Ti dental joints. Fracture resistance was evaluated in terms of the ratio of the number of fractured specimens to the number of tested specimens. As for the fracture frequencies, they were compared using the Cochran-Mantel-Haenszel test. Morphology of the fractured Ti joints was observed using a scanning electron microscope. Results showed that decreasing the specimen thickness and/or increasing the welding pulse energy, i.e., increasing the welded area percentage, resulted in an increase in the fracture resistance of the Ti joint. Where fracture occurred, the fracture site would be at the center of the weld metal.

  1. Effect of minor chemistry elements on GTA weld fusion zone characteristics of a commercial grade titanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marya, S.K.

    1996-06-01

    Gas Tungsten Arc Welding (GTAW) is the most common technique employed in the fabrication of rolled thin tubes. One of the major manufacturing problems concerns the stability of weld fusion zone on materials from different casts, notwithstanding stringent monitoring of the process parameters -- current, voltage and travel speed. These parameters determine the theoretical weld heat and are expected to control the instantaneous mass of melt. According to the data compiled by Sahoo et al., oxygen is known to reduce the surface tension of most of the metals. However, investigations on the role of minor changes in concentrations of elementsmore » like sulphur, oxygen, selenium, bismuth, aluminium, and titanium in steels have very often attributed the cast to cast variations to different temperature gradients of surface tension over the weldpool. To the author`s knowledge, no reported work so far has revealed changing weld profiles in autogeneous mechanized GTA welds on titanium due to minor composition changes.« less

  2. Comparison of the passivity between cast alloy and laser-welded titanium overdenture bars.

    PubMed

    Paiva, Jose; Givan, Daniel A; Broome, James C; Lemons, Jack E; McCracken, Michael S

    2009-12-01

    The purpose of this study was to investigate the fit of cast alloy overdenture and laser-welded titanium-alloy bars by measuring induced strain upon tightening of the bars on a master cast as well as a function of screw tightening sequence. Four implant analogs were secured into Type IV dental stone to simulate a mandibular edentulous patient cast, and two groups of four overdenture bars were fabricated. Group I was four cast alloy bars and Group II was four laser-welded titanium bars. The cast alloy bars included Au-Ag-Pd, Pd-Ag-Au, Au-Ag-Cu-Pd, and Ag-Pd-Cu-Au, while the laser-welded bars were all Ti-Al-V alloy. Bars were made from the same master cast, were torqued into place, and the total strain in the bars was measured through five strain gauges bonded to the bar between the implants. Each bar was placed and torqued 27 times to 30 Ncm per screw using three tightening sequences. Data were processed through a strain amplifier and analyzed by computer using StrainSmart software. Data were analyzed by ANOVA and Tukey's post hoc test. Significant differences were found between alloy types. Laser-welded titanium bars tended to have lower strains than corresponding cast bars, although the Au-Ag-Pd bar was not significantly different. The magnitudes of total strain were the least when first tightening the ends of the bar. The passivity of implant overdenture bars was evaluated using total strain of the bar when tightening. Selecting a high modulus of elasticity cast alloy or use of laser-welded bar design resulted in the lowest average strain magnitudes. While the effect of screw tightening sequence was minimal, tightening the distal ends first demonstrated the lowest strain, and hence the best passivity.

  3. Investigation of plasma arc welding as a method for the additive manufacturing of titanium-(6)aluminum-(4)vanadium alloy components

    NASA Astrophysics Data System (ADS)

    Stavinoha, Joe N.

    The process of producing near net-shape components by material deposition is known as additive manufacturing. All additive manufacturing processes are based on the addition of material with the main driving forces being cost reduction and flexibility in both manufacturing and product design. With wire metal deposition, metal is deposited as beads side-by-side and layer-by-layer in a desired pattern to build a complete component or add features on a part. There are minimal waste products, low consumables, and an efficient use of energy and feedstock associated with additive manufacturing processes. Titanium and titanium alloys are useful engineering materials that possess an extraordinary combination of properties. Some of the properties that make titanium advantageous for structural applications are its high strength-to-weight ratio, low density, low coefficient of thermal expansion, and good corrosion resistance. The most commonly used titanium alloy, Ti-6Al-4V, is typically used in aerospace applications, pressure vessels, aircraft gas turbine disks, cases and compressor blades, and surgical implants. Because of the high material prices associated with titanium alloys, the production of near net-shape components by additive manufacturing is an attractive option for the manufacturing of Ti-6Al-4V alloy components. In this thesis, the manufacturing of cylindrical Ti-6Al-4V alloy specimens by wire metal deposition utilizing the plasma arc welding process was demonstrated. Plasma arc welding is a cost effective additive manufacturing technique when compared to other current additive manufacturing methods such as laser beam welding and electron beam welding. Plasma arc welding is considered a high-energy-density welding processes which is desirable for the successful welding of titanium. Metal deposition was performed using a constant current plasma arc welding power supply, flow-purged welding chamber, argon shielding and orifice gas, ERTi-5 filler metal, and Ti-6Al

  4. Fluid Flow Characteristics and Porosity Behavior in Full Penetration Laser Welding of a Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Chang, Baohua; Allen, Chris; Blackburn, Jon; Hilton, Paul; Du, Dong

    2015-04-01

    In this paper, a computational fluid mechanics model is developed for full penetration laser welding of titanium alloy Ti6Al4V. This has been used to analyze possible porosity formation mechanisms, based on predictions of keyhole behavior and fluid flow characteristics in the weld pool. Numerical results show that when laser welding 3 mm thickness titanium alloy sheets with given laser beam focusing optics, keyhole depth oscillates before a full penetration keyhole is formed, but thereafter keyhole collapses are not predicted numerically. For lower power, lower speed welding, the fluid flow behind the keyhole is turbulent and unstable, and vortices are formed. Molten metal is predicted to flow away from the center plane of the weld pool, and leave a gap or void within the weld pool behind the keyhole. For higher power, higher speed welding, fluid flow is less turbulent, and such vortices are not formed. Corresponding experimental results show that porosity was absent in the melt runs made at higher power and higher welding speed. In contrast, large pores were present in melt runs made at lower power and lower welding speed. Based on the combination of experimental results and numerical predictions, it is proposed that porosity formation when keyhole laser welding may result from turbulent fluid flow behind the keyhole, with the larger the value of associated Reynolds number, the higher the possibility of porosity formation. For such fluid flow controlled porosities, measures to decrease Reynolds number of the fluid flow close to the keyhole could prove effective in reducing or avoiding porosity.

  5. Influence of stress corrosion on the mechanical properties of laser-welded titanium.

    PubMed

    de Assis Ferreira, Nancy; Senna, Plinio Mendes; do Lago, Dalva Cristina Baptista; de Senna, Lilian Ferreira; Sampaio-Filho, Helio Rodrigues

    2016-03-01

    Whether laser-welded (LW) titanium can resist the stress corrosion produced by the combination of fluoride ions and stress in the oral environment is unknown. The purpose of this in vitro study was to investigate the influence of stress corrosion on the mechanical properties of LW titanium. Twenty-seven titanium bars (25×2 mm) with a circular cross-section were cut in half and laser-welded, while another 27 nonwelded (NW) bars were used as the control. Thirty bars were submitted to a flexural load of 480 N at 1 Hz and immersed in artificial saliva at pH 6 (S1) or in 1000 ppm fluoride-containing saliva at pH 6.0 (S2) or 2.0 (S3) at room temperature for up to 4000 cycles. After the stress corrosion simulation, the tensile strength and Vickers microhardness were determined (n=5). Twelve LW and NW bars were submitted to the corrosion immersion test media for 51 days (n=2) to determine polarization curves (n=2) in an artificial saliva media. The corroded surface was examined with scanning electron microscopy (SEM). The combination of fluoride and low pH significantly decreased the tensile strength of LW (P<.05). Stress corrosion did not affect the hardness of LW or NW (P>.05). NW bars immersed in S3 exhibited progressive surface dissolution, while LW bars spontaneously fractured at the welded area after 25 days of immersion in the same medium. SEM images demonstrated pitting corrosion without the presence of cracks in both groups immersed in S3. Stress corrosion caused by acidic fluoride-containing saliva and flexural load cycling decreased the tensile strength and hardness of LW titanium bars. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  6. Metallurgical and Mechanical Characterization of High Temperature Titanium Alloys Joined by Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Gangwar, Kapil Dev

    In the world of joining, riveting and additive manufacturing, weight reduction, and omission of defects (at both macro and micro level) remain of paramount. Therefore, in the wake of ubiquitous fusion welding (FW) and widely accepted approach of riveting using Inconel bolts to resist corrosion at higher temperature, friction stir welding (FSW) has emerged as a novice jewel in friction based additive manufacturing industry. With advancements in automation of welding process and tool material, FSW of materials with higher work hardening such as steel and titanium has also become probable. Process and property relations associated with FSW are inevitable in case of dissimilar titanium alloys, due to presence of heterogeneity (whether atrocious or advantageous) in and around the weld nugget. These process property relationships are needed to be studied and addressed properly in order to optimize the processing window for improved mechanical and metallurgical properties. In this study FSWed similar and dissimilar butt joints of α+β, and near α titanium, alloys have been produced for varying processing conditions in order to study the effect of rotation speed (rpm) and traverse speed (TS; mm-min-1). The aim of this study is to assess the effect of tool geometry, tool rpm, TS on microstructure and mechanical properties of most widely used α+β titanium alloy, Ti-6Al-4V (Ti-64), standard grain and fine grain in addition to α+β,Ti-5Al-4V (T-54M), standard grain, and near α, Ti-6Al-2Mo-4Zr-2Sn (Ti-6242), standard grain (SG) and fine grain (FG). During FSW, a unique α+β fine-grained microstructure has been formed depending on whether or not the peak temperature in the weld nugget (WN) reached above or below β transus temperature. The resulting microstructure consists of acicular α+β, emanating from the prior β grain boundary as the weld cools off. The changes in the microstructure are observed by optical microscopy (OM). Later, a detailed analysis of material

  7. Welding of a corrosion-resistant composite material based on VT14 titanium alloy obtained using an electron beam emitted into the atmosphere

    NASA Astrophysics Data System (ADS)

    Golkovski, M. G.; Samoylenko, V. V.; Polyakov, I. A.; Lenivtseva, O. G.; Chakin, I. K.; Komarov, P. N.; Ruktuev, A. A.

    2017-01-01

    The study investigates the possibility of inert gas arc welding of a double layer composite material on a titanium base with an anti-corrosive layer obtained by fused deposition of a powder mix containing tantalum and niobium over a titanium base using an electron beam emitted into the atmosphere. Butt welding and fillet welding options were tested with two types of edge preparation. Welds were subjected to a metallographic examination including a structural study and an analysis of the chemical and phase composition of the welds. A conclusion was made regarding the possibility of using welding for manufacturing of items from the investigated composite material.

  8. Explosive Welding of Aluminum, Titanium and Zirconium to Copper Sheet Metal

    NASA Technical Reports Server (NTRS)

    Hegazy, A. A.; Mote, J. D.

    1985-01-01

    The main material properties affecting the explosive weldability of a certain metal combination are the yield strength, the ductility, the density and the sonic velocity of the two metals. Successful welding of the metal combination depends mainly on the correct choice of the explosive welding parameters; i.e., the stand off distance, the weight of the explosive charge relative to the weight of the flyer plate and the detonation velocity of the explosive. Based on the measured and the handbook values of the properties of interest, the explosive welding parameters were calculated and the arrangements for the explosive welding of the Al alloy 6061-T6, titanium and zirconium to OFHC copper were determined. The relatively small sheet metal thickness (1/8") and the fact that the thickness of the explosive layer must exceed a certain minimum value were considered during the determination of the explosive welding conditions. The results of the metallographic investigations and the measurements of the shear strength at the interface demonstrate the usefulness of these calculations to minimize the number of experimental trials.

  9. A comparative evaluation of laser and GTA welds in a high-strength titanium alloy -- Ti-6-22-22S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baeslack, W.A. III; Hurley, J.; Paskell, T.

    1994-12-31

    Titanium alloy Ti-6Al-2Sn-2Zr-2Mo-2Cr-025Si (hereafter designated Ti-6-22-22S)is an alpha-beta titanium alloy developed for deep hardenability, high strength, intermediate temperature creep resistance, and moderate toughness. As a potential structural material for next-generation aircraft and aerospace systems, the weldability of Ti-6-22-22S has recently become a subject of increasing importance and concern. In the welding of titanium sheet, achieving satisfactory ductility is the principal limitation to alloy weldability, with poor ductility promoted by a coarse beta grain structure in the weld fusion and near-heat-affected zones. Square-butt welds were produced in 1.6 mm thick Ti-6-22-22S sheet using automatic GTA and CO{sub 2} laser welding systems.more » Microstructure analysis and DPH hardness traverses were performed on mounted. polished and etched specimens. Three-point bend and tensile tests were performed on transverse-weld and longitudinal-weld oriented specimens. Microstructure analysis of the laser welds revealed a fine, columnar fusion zone beta grain macrostructure and a fully-martensitic transformed-beta microstructure. Consistent with the microstructural similarities, fusion zone hardnesses of the laser welds were comparable (385 and 390 DPG, respectively) and greater than that of the base metal (330 DPH). In general, laser welds did not exhibit markedly superior ductilities relative to the GTAW, which was attributed to differences in the nature of the intragranular transformed-beta microstructures, being coarser and softer for the GTAW, the response of these as-welded microstructures to heat treatment, and interactions between the transformed-beta microstructure and the beta grain macrostructure.« less

  10. Effect of Glucose Concentration on Electrochemical Corrosion Behavior of Pure Titanium TA2 in Hanks’ Simulated Body Fluid

    PubMed Central

    Liu, Shuyue; Wang, Bing; Zhang, Peirong

    2016-01-01

    Titanium and its alloys have been widely used as implant materials due to their excellent mechanical property and biocompatibility. In the present study, the effect of glucose concentration on corrosion behavior of pure titanium TA2 in Hanks’ simulated body fluid is investigated by the electrochemical impedance spectrum (EIS) and potentiodynamic polarization methods. The range of glucose concentrations investigated in this research includes 5 mmol/L (limosis for healthy people), 7 mmol/L (after diet for healthy people), 10 mmol/L (limosis for hyperglycemia patient), and 12 mmol/L (after diet for hyperglycemia patient), as well as, 15 mmol/L and 20 mmol/L, which represent different body fluid environments. The results indicate that the pure titanium TA2 demonstrates the best corrosion resistance when the glucose concentration is less than 10 mmol/L, which shows that the pure titanium TA2 as implant material can play an effective role in the body fluids with normal and slight high glucose concentrations. Comparatively, the corrosion for the pure titanium implant is more probable when the glucose concentration is over 10 mmol/L due to the premature penetration through passive film on the material surface. Corrosion defects of pitting and crevice exist on the corroded surface, and the depth of corrosion is limited to three microns with a low corrosion rate. The oxidation film on the surface of pure titanium TA2 has a protective effect on the corrosion behavior of the implant inner material. The corrosion behavior of pure titanium TA2 will happen easily once the passive film has been penetrated through. The corrosion rate for TA2 implant will accelerate quickly and a pure titanium implant cannot be used. PMID:28773993

  11. Success and High Predictability of Intraorally Welded Titanium Bar in the Immediate Loading Implants

    PubMed Central

    Fogli, Vaniel; Camerini, Michele; Carinci, Francesco

    2014-01-01

    The implants failure may be caused by micromotion and stress exerted on implants during the phase of bone healing. This concept is especially true in case of implants placed in atrophic ridges. So the primary stabilization and fixation of implants are an important goal that can also allow immediate loading and oral rehabilitation on the same day of surgery. This goal may be achieved thanks to the technique of welding titanium bars on implant abutments. In fact, the procedure can be performed directly in the mouth eliminating possibility of errors or distortions due to impression. This paper describes a case report and the most recent data about long-term success and high predictability of intraorally welded titanium bar in immediate loading implants. PMID:24963419

  12. Clinical experiences with laser-welded titanium frameworks supported by implants in the edentulous mandible: a 10-year follow-up study.

    PubMed

    Ortorp, Anders; Jemt, Torsten

    2006-01-01

    Long-term follow-up studies for more than 5 years are not available on laser-welded titanium frameworks. To report and compare 10-year data on implant-supported prostheses in the edentulous mandible provided with laser-welded titanium frameworks and conventional gold alloy frameworks. Altogether, 155 patients were consecutively treated with prostheses at abutment level with two generations of fixed laser-welded titanium frameworks (test groups). A control group of 53 randomly selected patients with conventional gold alloy castings was used for comparison. Clinical and radiographic 10-year data were collected for the three groups. All patients followed-up for 10 years (n=112) still had fixed prostheses in the mandible (cumulative success rate [CSR] 100%). The overall 10-year cumulative success rate (CSR) was 92.8 and 100.0% for titanium and gold alloy frameworks, respectively. Ten-year implant cumulative survival rate (CSR) was 99.4 and 99.6% for the test and control groups, respectively. Average 10-year bone loss was 0.56 (SD 0.45) mm for the titanium group and 0.77 (SD 0.36) mm for the control group (p < 0.05). The most common complications for titanium frameworks were resin or veneer fractures, soft tissue inflammation, and fractures (12.9%) of the metal frame. Loose and fractured implant screw components were below 3%. Excellent overall long-term results with 100% CSR could be achieved with the present treatment modality. Fractures of the metal frames and remade prostheses were more common for the laser-welded titanium frameworks, and the first generation of titanium frameworks worked poorly when compared with gold alloy frameworks during 10 years (p < 0.05). However, on average more bone loss was observed for implants supporting gold alloy frameworks during 10 years. The reasons for this difference are not clear.

  13. Investigation of the structure and properties of a composite insert applied at laser welding of steel with titanium

    NASA Astrophysics Data System (ADS)

    Pugacheva, N. B.; Cherepanov, A. N.; Orishich, A. M.; Malikov, A. G.; Drozdov, V. O.; Mali, V. I.; Senaeva, E. I.

    2017-10-01

    Production of welded bimetallic structures of titanium and steel using a laser beam is a very urgent and important task in the shipbuilding, airspace and power engineering. Laser welding using an intermediate insert is one of the ways to solve this problem. In this paper, we present the results of experimental studies of formation of the structure and properties of composite insert, obtained by explosion welding, after its application at laser welding steel with titanium. A study of a four-layer composite insert obtained by explosion welding showed that it has no brittle intermetallic phases and defects in the form of cracks and pores. The boundaries between the plates to be welded in the composite insert have a characteristic wavy structure with narrow zones of mutual diffusion penetration of elements of the adjacent metals. It is established that the strength of the composite insert is comparable with the maximum strength of Grade 4 alloy, and the destruction of the product during the tensile tests in most cases occurred along the weakest component of the composite insert, i.e. the copper layer, whose strength was significantly increased due to the hardening that took place in the explosion welding.

  14. Thin sol-gel-derived silica coatings on dental pure titanium casting.

    PubMed

    Yoshida, K; Kamada, K; Sato, K; Hatada, R; Baba, K; Atsuta, M

    1999-01-01

    The sol-gel dipping process, in which liquid silicon alkoxide is transformed into a solid silicon-oxygen network, can produce a thin film coating of silica (SiO(2)). The features of this method are high homogeneity and purity of the thin SiO(2) film and a low sinter temperature, which are important in the preparation of coating films that can protect metallic ion release from the metal substrate and prevent attachment of dental plaque. We evaluated the surface properties of dental pure titanium casting coated with a thin SiO(2) or SiO(2)/F-hybrid film by the sol-gel dipping process. The metal specimens were pretreated by dipping in isopropylalcohol solution containing 10 wt% 3-aminopropyl trimethoxysilane and treated by dipping in the silica precursor solution for 5 min, withdrawal at a speed of 2 mm/min, air-drying for 20 min at room temperature, heating at 120 degrees C for 20 min, and then storing at room temperature. Both SiO(2) and SiO(2)/F films bonded strongly (above 55 MPa) to pure titanium substrate by a tensile test. SiO(2(-)) and SiO(2)/F-coated specimens immersed in 1 wt% of lactic acid solution for two weeks showed significantly less release of titanium ions (30. 5 ppb/cm(2) and 9.5 ppb/cm(2), respectively) from the substrate than noncoated specimens (235.2 ppb/cm(2)). Hydrophobilization of SiO(2(-)) and SiO(2)/F-coated surfaces resulted in significant increases of contact angle of water (81.6 degrees and 105.7 degrees, respectively) compared with noncoated metal specimens (62.1 degrees ). The formation of both thin SiO(2) and SiO(2)/F-hybrid films by the sol-gel dipping process on the surface of dental pure titanium casting may be useful clinically in enhancing the bond strength of dental resin cements to titanium, preventing titanium ions release from the substrate, and reducing the accumulation of dental plaque attaching to intraoral dental restorations. Copyright 1999 John Wiley & Sons, Inc.

  15. HAZ and Structural Defects Control in Key-Hole Welding of Titanium Using a Reptitively-Pulsed Nd: Yag Laser

    NASA Astrophysics Data System (ADS)

    Hamudi, Walid K.

    1996-12-01

    HAZ, porosity and cracks were investigated when welding 0.9 mm thick titanium sheets using a 10 J pulsed Nd: Yag laser. The effects of welding speed, joints fit-up, shielding gas, and laser parameters are presented. For optimum welding quality, 0.25 m/min scanning speed, 10 ℓ/min gas flow rate and 72 Watt average power were used. Welds of narrow heat affected zone (HAZ) with small level of porosity were obtained.

  16. Special Features of the Structure of Laser-Welded Joints of Dissimilar Alloys Based on Titanium and Aluminum

    NASA Astrophysics Data System (ADS)

    Nikulina, A. A.; Smirnov, A. I.; Turichin, G. A.; Klimova-Korsmik, O. G.; Babkin, K. D.

    2017-11-01

    The structure of laser-welded joints of parts having different thicknesses fabricated from alloys based on aluminum and titanium has been studied. Results of transmission and scanning electron microscopy measurements and x-ray diffraction analysis show that the diffusion interaction of microvolumes of two alloys in the weld leads to the formation of two interlayers: (i) a continuous intermetallic TiAl layer with thickness below 1 μm adjacent to the titanium alloy and (ii) a layer consisting of TiAl3 intermetallic dendrites with thickness of 2 - 6 μm adjacent to the TiAl layer. The average microhardness of the intermetallic layer is about 490 HV.

  17. [The effect of fluoride on electrochemical corrosion of the dental pure titanium before and after adhesion of Streptococcus mutans].

    PubMed

    Geng, Li; Qiao, Guang-yan; Gu, Kai-ka

    2016-04-01

    To investigate the effect of fluoride on electrochemical corrosion of the dental pure titanium before and after adhesion of Streptococcus mutans. The dental pure titanium specimens were tested by electrochemical measurement system including electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curve (PD) methods in artificial saliva with 0 g/L and 1.0 g/L sodium fluoride before and after dipped into culture medium with Streptococcus mutans for 24 h. The corrosion parameters, including the polarization resistance (R(ct)), corrosion potential (E(corr)), pitting breakdown potential (E(b)), and the difference between E(corr) and E(b) representing the "pseudo-passivation" (ΔE) obtained from the electrochemical tests were used to evaluate the corrosion resistance of dental pure titanium. The data were statistically analyzed by 2×2 factorial statistical analysis to examine the effect of sodium fluoride and adhesion of Streptococcus mutans using SPSS 12.0 software package. The results showed that the corrosion parameters including R(ct), Ecorr, E(b), and ΔE of pure titanium had significant difference between before and after adhesion of Streptococcus mutans in the same solution(P<0.05), and in artificial saliva with 0 g/L and 1.0 g/L sodium fluoride(P<0.05). The dental pure titanium was prone to corrosion in artificial saliva with sodium fluoride. The corrosion resistance of pure titanium decreased distinctly after immersed in culture medium with Streptococcus mutans.

  18. Low-Temperature Nitriding of Pure Titanium by using Hollow Cathode RF-DC Plasma

    NASA Astrophysics Data System (ADS)

    Windajanti, J. M.; S, D. J. Djoko H.; Abdurrouf

    2017-05-01

    Pure titanium is widely used for the structures and mechanical parts due to its high strength, low density, and high corrosion resistance. Unfortunately, titanium products suffer from low hardness and low wear resistance. Titanium’s surface can be modified by nitriding process to overcome such problems, which is commonly conducted at high temperature. Here, we report the low-temperature plasma nitriding process, where pure titanium was utilized by high-density RF-DC plasma combined with hollow cathode device. To this end, a pure titanium plate was set inside a hollow tube placed on the cathode plate. After heating to 450 °C, a pre-sputtering process was conducted for 1 hour to remove the oxide layer and activate the surface for nitriding. Plasma nitriding using N2/H2 gasses was performed in 4 and 8 hours with the RF voltage of 250 V, DC bias of -500 to -600 V, and gas pressure of 75 to 30 Pa. To study the nitriding mechanism as well as the role of hollow cathode, the nitrided specimen was characterized by SEM, EDX, XRD, and micro-hardness equipment. The TiN compound was obtained with the diffusion zone of nitrogen until 5 μm thickness for 4 hours nitriding process, and 8 μm for 8 hours process. The average hardness also increased from 300 HV in the untreated specimen to 624 HV and 792 HV for 4 and 8 hours nitriding, respectively.

  19. Spectral diagnostics of a vapor-plasma plume produced during welding titanium with a high-power ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Uspenskiy, S. A.; Petrovskiy, V. N.; Bykovskiy, D. P.; Mironov, V. D.; Prokopova, N. M.; Tret'yakov, E. V.

    2015-03-01

    This work is devoted to the research of welding plume during high power ytterbium fiber laser welding of a titanium alloy in the Ar shielding gas environment. High speed video observation of a vapor-plasma plume for visualization of processes occurring at laser welding was carried out. The coefficient of the inverse Bremsstrahlung absorption of laser radiation is calculated for a plasma welding plume by results of spectrometer researches. The conclusion deals with the impact of plasma on a high-power fiber laser radiation.

  20. The study of behavior titanium pure commercially coated with hydroxyapatite and zirconia

    NASA Astrophysics Data System (ADS)

    Aneed, Shaymaa Hashim; Salih, Ayad Ahmed; Khazaal, Ahlam Rashid; Hasan, Aqeel F.; Hamodi, Jamal Fadhil; Jasim, Kareem Ali; Mahdi, Shatha H.; AL-Maiyaly, Bushra K. H.; Hassun, Hanan K.

    2018-05-01

    In this research was studied the effect of adding zirconia to hydroxyapatite in the coting of commercially pure titanium (cpTi), by using electrophoretic deposition (EPD) when using micron particle (waves) size limit (0.25-0.5) micron, and deposition was effected with different coating periods(2,4,6) mints, and annealing at 500 °C, it founded there was an improvement in the corrosion properties, as the value of the open circuit potential (OCP) for coated titanium was reach to (-0.262) volt compared with to uncoated titanium was reach to (-0.528)volt. Note that the coating process is perfectly homogeneous to the entire area of the metal used.

  1. Ultrasonic Spot and Torsion Welding of Aluminum to Titanium Alloys: Process, Properties and Interfacial Microstructure

    NASA Astrophysics Data System (ADS)

    Balle, Frank; Magin, Jens

    Hybrid lightweight structures shape the development of future vehicles in traffic engineering and the aerospace industry. For multi-material concepts made out of aluminum and titanium alloys, the ultrasonic welding technique is an alternative effective joining technology. The overlapped structures can be welded in the solid state, even without gas shielding. In this paper the conventional ultrasonic spot welding with longitudinal oscillation mode is compared to the recent ultrasonic torsion welding with a torsional mode at 20 kHz working frequency. For each technique the process parameters welding force, welding energy and oscillation amplitude were optimized for the hybrid joints using design of experiments. Relationships between the process parameters, mechanical properties and related welding zone should be understood. Central aspects of the research project are microscopic studies of the joining zone in cross section and extensive fracture surface analysis. Detailed electron microscopy and spectroscopy of the hybrid interface help to understand the interfacial formation during ultrasonic welding as well as to transfer the gained knowledge for further multi-metal joints.

  2. Investigation of the vapour-plasma plume in the welding of titanium by high-power ytterbium fibre laser radiation

    NASA Astrophysics Data System (ADS)

    Bykovskiy, D. P.; Petrovskii, V. N.; Uspenskiy, S. A.

    2015-03-01

    The vapour-plasma plume produced in the welding of 6-mm thick VT-23 titanium alloy plates by ytterbium fibre laser radiation of up to 10 kW power is studied in the protective Ar gas medium. High-speed video filming of the vapour-plasma plume is used to visualise the processes occurring during laser welding. The coefficient of inverse bremsstrahlung by the welding plasma plume is calculated from the data of the spectrometric study.

  3. Capillary flow weld-bonding

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Jones, R. J. (Inventor)

    1976-01-01

    The invention of a weld-bonding technique for titanium plates was described. This involves fastening at least two plates of titanium together using spot-welding and applying a bead of adhesive along the edge of the resistance spot-welded joint which upon heating, flows and fills the separation between the joint components.

  4. Nanostructure of vortex during explosion welding.

    PubMed

    Rybin, V V; Greenberg, B A; Ivanov, M A; Patselov, A M; Antonova, O V; Elkina, O A; Inozemtsev, A V; Salishchev, G A

    2011-10-01

    The microstructure of a bimetallic joint made by explosion welding of orthorhombic titanium aluminide (Ti-30Al-16Nb-1Zr-1Mo) with commercially pure titanium is studied. It is found that the welded joint has a multilayered structure including a severely deformed zone observed in both materials, a recrystallized zone of titanium, and a transition zone near the interface. Typical elements of the transition zone-a wavy interface, macrorotations of the lattice, vortices and tracks of fragments of the initial materials-are determined. It is shown that the observed vortices are formed most probably due to local melting of the material near the contact surface. Evidence for this assumption is deduced from the presence of dipoles, which consist of two vortices of different helicity and an ultrafine duplex structure of the vortex. Also, high mixing of the material near the vortex is only possible by the turbulent transport whose coefficient is several orders of magnitude larger than the coefficient of atomic diffusion in liquids. The role played by fragmentation in both the formation of lattice macrorotations and the passage of coarse particles of one material through the bulk of the other is determined.

  5. Corrosion-fatigue of laser-repaired commercially pure titanium and Ti-6Al-4V alloy under different test environments.

    PubMed

    Zavanelli, R A; Guilherme, A S; Pessanha-Henriques, G E; de Arruda Nóbilo, M Antônio; Mesquita, M F

    2004-10-01

    This study evaluated the corrosion-fatigue life of laser-repaired specimens fabricated from commercially pure titanium (CP Ti) and Ti-6Al-4V alloy, tested under different storage conditions. For each metal, 30 dumbbell rods with a central 2.3 mm diameter were prepared by lost-wax casting with the Rematitan System. Simulating the failure after service, corrosion-fatigue life in different media at room temperature (air, synthetic saliva and fluoride synthetic saliva) was determined at a testing frequency of 10 Hz for intact specimens and after laser repairing, using a square waveform with equal maximum tensile and compressive stress that was 30% lower than the 0.2% offset yield strength. For laser welding, the fractured specimens were rejoined using a jig to align the sections invested in type-IV dental stone. The adjacent areas of the gap was air-abraded with 100 microm aluminum oxide, laser welded and retested under the same conditions as the initial intact specimens. The number of cycles at failure was recorded, and the fracture surface was examined with a scanning electron microscope (SEM). The number of cycles for failure of the welded and intact specimens was compared by anova and the Tukey test at a 5% probability level. Within the limitations of this study, the number of cycles required for fracture decreased in wet environments and the laser repairing process adversely affected the life of both metals under the corrosion-fatigue conditions.

  6. Clinical experiences with laser-welded titanium frameworks supported by implants in the edentulous mandible: a 5-year follow-up study.

    PubMed

    Ortorp, A; Linden, B; Jemt, T

    1999-01-01

    The purpose of this study was to report the 5-year clinical performance of implant-supported prostheses with laser-welded titanium frameworks and to compare their performance with that of prostheses provided with conventional cast frameworks. On a routine basis, a consecutive group of 824 edentulous patients were provided with fixed prostheses supported by implants in the edentulous mandible. In addition to conventional gold-alloy castings, patients were at random provided with 2 kinds of laser-welded titanium frameworks. In all, 155 patients were included in the 2 titanium framework groups. A control group of 53 randomly selected patients with conventional gold-alloy castings was used for comparison. Clinical and radiographic 5-year data was collected for the 3 groups. All followed patients still had fixed prostheses in the mandible after 5 years. The overall cumulative success rates were 95.9% and 99.7% for titanium-framework prostheses and implants, respectively. The corresponding success rates for the control group were 100% and 99.6%, respectively. Bone loss was 0.5 mm on average during the 5-year follow-up period. The most common complications for titanium frameworks were resin or tooth fractures, gingival inflammation, and fractures of the metal frames (10%). One of the cast frameworks fractured and was resoldered. Loose and fractured implant screw components were few (< 1%). Even though the cast frameworks had a higher success rate, the overall titanium framework treatment result was well in accordance with the result of the control group. The test groups performed better after clinicians had gained some experience with the technique, and laser-welded titanium frameworks seem to be a viable alternative to conventional castings in the edentulous mandible.

  7. Effects of sandblasting and silica-coating procedures on pure titanium.

    PubMed

    Kern, M; Thompson, V P

    1994-10-01

    Silica coating titanium improves chemomechanical bonding. Sandblasting is recommended as a pretreatment to thermal silica coating (Silicoater MD) or as part of a tribochemical silica coating process (Rocatec). This study evaluated the effects of sandblasting and coating techniques on volume loss, surface morphology and composition changes in pure titanium. Volume loss of titanium was similar to values reported for base alloys and does not seem to be critical for the clinical fit of restorations. Embedded alumina particles were found in the titanium after sandblasting and the alumina content increased to a range of 27.5-39.3 wt% as measured by EDS. Following tribochemical silica coating, a layer of small silica particles remained on the surface, increasing the silica content to a range of 17.9-19.5 wt%. Ultrasonic cleaning removed loose alumina or silica particles from the surface, resulting in only slight decreases in alumina or silica contents, suggesting firm attachment of most of the alumina and silica to the titanium surface. Silica content following thermal silica coating treatment increased only slightly from the sandblasted specimen to 1.4 wt%. The silica layer employed by these silica coating methods differs widely in both morphology and thickness. These results provide a basis for explanation of adhesive failure modes in bond strength tests and for developing methods to optimize resin bonding. Clinically, ultrasonic cleaning of sandblasted and tribochemically silica coated titanium should improve resin bonding as loose surface particles are removed without relevant changes in composition.

  8. Attachment of Porphyromonas gingivalis to corroded commercially pure titanium and titanium-aluminum-vanadium alloy.

    PubMed

    Barão, Valentim A R; Yoon, Cheon Joo; Mathew, Mathew T; Yuan, Judy Chia-Chun; Wu, Christine D; Sukotjo, Cortino

    2014-09-01

    Titanium dental material can become corroded because of electrochemical interaction in the oral environment. The corrosion process may result in surface modification. It was hypothesized that a titanium surface modified by corrosion may enhance the attachment of periodontal pathogens. This study evaluates the effects of corroded titanium surfaces on the attachment of Porphyromonas gingivalis. Commercially pure titanium (cp-Ti) and titanium-aluminum-vanadium alloy (Ti-6Al-4V) disks were used. Disks were anodically polarized in a standard three-electrode setting in a simulated oral environment with artificial saliva at pH levels of 3.0, 6.5, or 9.0. Non-corroded disks were used as controls. Surface roughness was measured before and after corrosion. Disks were inoculated with P. gingivalis and incubated anaerobically at 37°C. After 6 hours, the disks with attached P. gingivalis were stained with crystal violet, and attachment was expressed based on dye absorption at optical density of 550 nm. All assays were performed independently three times in triplicate. Data were analyzed by two-way analysis of variance, the Tukey honestly significant difference test, t test, and Pearson's correlation test (α = 0.05). Both cp-Ti and Ti-6Al-4V alloy-corroded disks promoted significantly more bacterial attachment (11.02% and 41.78%, respectively; P <0.0001) than did the non-corroded controls. Significantly more (11.8%) P. gingivalis attached to the cp-Ti disks than to the Ti-6Al-4V alloy disks (P <0.05). No significant difference in P. gingivalis attachment was noted among the corroded groups for both cp-Ti and Ti-6Al-4V alloy (P >0.05). There was no significant correlation between surface roughness and P. gingivalis attachment. A higher degree of corrosion on the titanium surface may promote increased bacterial attachment by oral pathogens.

  9. Preparation of Copper and Chromium Alloyed Layers on Pure Titanium by Plasma Surface Alloying Technology

    NASA Astrophysics Data System (ADS)

    He, Xiaojing; Li, Meng; Wang, Huizhen; Zhang, Xiangyu; Tang, Bin

    2015-05-01

    Cu-Cr alloyed layers with different Cu and Cr contents on pure titanium were obtained by means of plasma surface alloying technology. The microstructure, chemical composition and phase composition of Cu-Cr alloyed layers were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD), respectively. The experimental results demonstrate that the alloyed layers are bonded strongly to pure titanium substrate and consist of unbound Ti, CuTi, Cu3Ti, CuTi3 and Cr2Ti. The thickness of Cu5Cr5 and Cu7Cr3 alloyed layer are about 18 μm and 28 μm, respectively. The antibacterial properties against gram-negative Escherichia coli (E.coli, ATCC10536) and gram-positive Staphylococcus aureus (S. aureus, ATCC6538) of untreated pure titanium and Cu-Cr alloyed specimen were investigated by live/dead fluorescence staining method. The study shows that Cu-Cr alloyed layers exhibit excellent antibacterial activities against both E.coli and S.aureus within 24 h, which may be attributed to the formation of Cu-containing phases.

  10. Effect of bone sialoprotein and collagen coating on cell attachment to TICER and pure titanium implant surfaces.

    PubMed

    Graf, H-L; Stoeva, S; Armbruster, F P; Neuhaus, J; Hilbig, H

    2008-07-01

    To improve integration between implants and biological tissues, this study compared bone sialoprotein (BSP) as a surface-coating material against the major organic and inorganic components of bone, collagen type I and hydroxyapatite (TICER). The expression of osteocalcin, osteonectin and transforming growth factor ss was evaluated using immunohistochemical staining procedures. The distribution patterns of osteoblasts on the surface of pure titanium with a smooth machined surface and a rough surface (TICER) were determined by image processing using confocal laser scanning microscopy. The results compared to uncoated control materials showed that, at all times investigated, the number of cells on the surface of the TICER and pure titanium samples differed significantly (P<0.1), demonstrating the superiority of TICER over pure titanium in this respect. For pure titanium implants, collagen-precoated surfaces were not beneficial for the attachment of bone-derived cells with the exception of day 3 in vitro (P<0.01). BSP-precoated implant surfaces displayed non-significantly higher numbers of settled cells. BSP-precoated implant surfaces were beneficial for osteoinduction as revealed by osteocalcin and osteonectin expression. BSP precoating of the rough TICER implant surface enhanced the osteoinductive effect much more than did collagen precoating. These results contribute to the consideration of at least two distinct pathways of osseointegration.

  11. Investigation of the vapour-plasma plume in the welding of titanium by high-power ytterbium fibre laser radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bykovskiy, D P; Petrovskii, V N; Uspenskiy, S A

    2015-03-31

    The vapour-plasma plume produced in the welding of 6-mm thick VT-23 titanium alloy plates by ytterbium fibre laser radiation of up to 10 kW power is studied in the protective Ar gas medium. High-speed video filming of the vapour-plasma plume is used to visualise the processes occurring during laser welding. The coefficient of inverse bremsstrahlung by the welding plasma plume is calculated from the data of the spectrometric study. (interaction of laser radiation with matter)

  12. Hardness, microstructure and surface characterization of laser gas nitrided commercially pure titanium using high power CO{sub 2} laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selvan, J.S.; Subramanian, K.; Nath, A.K.

    Surface nitriding of commercially pure (CP) titanium was carried out using high power CO{sub 2} laser at pure nitrogen and dilute nitrogen (N{sub 2} + Ar) environment. The hardness, microstructure, and melt pool configuration of the laser melted titanium in helium and argon atmosphere was compared with laser melting at pure and dilute nitrogen environment. The hardness of the nitrided layer was of the order of 1000 to 1600 HV. The hardness of the laser melted titanium in the argon and helium atmosphere was 500 to 1000 HV. Using x-ray analysis of the formation of TiN and Ti{sub 2}N phasemore » was identified in the laser nitrided titanium. The presence of nitrogen in the nitrided zone was confirmed using secondary ion mass spectroscopy (SIMS) analysis. The microstructures revealed densely populated dendrites in the sample nitrided at 100% N{sub 2} environment and thinly populated dendrites in dilute environment. The crack intensity was large in the nitrided sample at pure nitrogen, and few cracks were observed in the 50% N{sub 2} + 50% Ar environment.« less

  13. Difference in metallic wear distribution released from commercially pure titanium compared with stainless steel plates.

    PubMed

    Krischak, G D; Gebhard, F; Mohr, W; Krivan, V; Ignatius, A; Beck, A; Wachter, N J; Reuter, P; Arand, M; Kinzl, L; Claes, L E

    2004-03-01

    Stainless steel and commercially pure titanium are widely used materials in orthopedic implants. However, it is still being controversially discussed whether there are significant differences in tissue reaction and metallic release, which should result in a recommendation for preferred use in clinical practice. A comparative study was performed using 14 stainless steel and 8 commercially pure titanium plates retrieved after a 12-month implantation period. To avoid contamination of the tissue with the elements under investigation, surgical instruments made of zirconium dioxide were used. The tissue samples were analyzed histologically and by inductively coupled plasma atomic emission spectrometry (ICP-AES) for accumulation of the metals Fe, Cr, Mo, Ni, and Ti in the local tissues. Implant corrosion was determined by the use of scanning electron microscopy (SEM). With grades 2 or higher in 9 implants, steel plates revealed a higher extent of corrosion in the SEM compared with titanium, where only one implant showed corrosion grade 2. Metal uptake of all measured ions (Fe, Cr, Mo, Ni) was significantly increased after stainless steel implantation, whereas titanium revealed only high concentrations for Ti. For the two implant materials, a different distribution of the accumulated metals was found by histological examination. Whereas specimens after steel implantation revealed a diffuse siderosis of connective tissue cells, those after titanium exhibited occasionally a focal siderosis due to implantation-associated bleeding. Neither titanium- nor stainless steel-loaded tissues revealed any signs of foreign-body reaction. We conclude from the increased release of toxic, allergic, and potentially carcinogenic ions adjacent to stainless steel that commercially pure Ti should be treated as the preferred material for osteosyntheses if a removal of the implant is not intended. However, neither material provoked a foreign-body reaction in the local tissues, thus cpTi cannot be

  14. Partially degradable friction-welded pure iron-stainless steel 316L bone pin.

    PubMed

    Nasution, A K; Murni, N S; Sing, N B; Idris, M H; Hermawan, H

    2015-01-01

    This article describes the development of a partially degradable metal bone pin, proposed to minimize the occurrence of bone refracture by avoiding the creation of holes in the bone after pin removal procedure. The pin was made by friction welding and composed of two parts: the degradable part that remains in the bone and the nondegradable part that will be removed as usual. Rods of stainless steel 316L (nondegradable) and pure iron (degradable) were friction welded at the optimum parameters: forging pressure = 33.2 kPa, friction time = 25 s, burn-off length = 15 mm, and heat input = 4.58 J/s. The optimum tensile strength and elongation was registered at 666 MPa and 13%, respectively. A spiral defect formation was identified as the cause for the ductile fracture of the weld joint. A 40-µm wide intermetallic zone was identified along the fusion line having a distinct composition of Cr, Ni, and Mo. The corrosion rate of the pin gradually decreased from the undeformed zone of pure iron to the undeformed zone of stainless steel 316L. All metallurgical zones of the pin showed no toxic effect toward normal human osteoblast cells, confirming the ppb level of released Cr and Ni detected in the cell media were tolerable. © 2014 Wiley Periodicals, Inc.

  15. [Influence of deposition time on chromatics during nitrogen-doped diamond like carbon coating on pure titanium].

    PubMed

    Yin, Lu; Yao, Jiang-wu; Xu, De-wen

    2010-10-01

    The aim of this study was to observed the influence of deposition time on chromatics during nitrogen-doped diamond like carbon coating (N-DLC) on pure titanium by multi impulse are plasma plating machine. Applying multi impulse are plasma plating machine to produce TiN coatings on pure titanium in nitrogen atmosphere, then filming with nitrogen-doped DLC on TiN in methane (10-80 min in every 5 min). The colors of N-DLC were evaluated in the CIE1976 L*a*b* uniform color scale and Mussell notation. The surface morphology of every specimen was analyzed using scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). When changing the time of N-DLC coating deposition, N-DLC surface showed different color. Golden yellow was presented when deposition time was 30 min. SEM showed that crystallization was found in N-DLC coatings, the structure changed from stable to clutter by varying the deposition time. The chromatics of N-DLC coatings on pure titanium could get golden yellow when deposition time was 30 min, then the crystallized structure was stable.

  16. Titanium hydride and hydrogen concentration in acid-etched commercially pure titanium and titanium alloy implants: a comparative analysis of five implant systems.

    PubMed

    Szmukler-Moncler, S; Bischof, M; Nedir, R; Ermrich, M

    2010-09-01

    Acid etching is a popular method to texture the surface of dental implants. During etching, the titanium oxide protective layer is dissolved and small native hydrogen ions diffuse into the unprotected implant surface. They enrich the implant surface with hydrogen and precipitate into titanium hydride (TiH). The aim of this study was to measure the concentration of TiH at the implant surface and the total concentration of Hydrogen at five commercially available implant systems, made of either commercially pure (cp) titanium or titanium alloy. X-Ray diffraction (XRD) was conducted on each implant system to determine the compounds present at the implant surface. Following a TiH(2)/Ti calibration curve, the concentration of TiH was determined. Concentration of hydrogen in the implants was measured by the inert gas fusion thermal conductivity/infrared detection method. XRD data showed that TiH was present on all cp titanium implants but not on the alloyed implants. TiH concentration varied between 5% and 37%. Hydrogen concentration varied between 43 and 108 ppm, no difference in uptake was found between the cp titanium and alloyed implants. Low solubility of hydrogen in alpha-titanium is responsible for precipitation into TiH. Stronger etching conditions led to higher concentration of TiH2-x. High solubility of hydrogen in the beta-phase of the alloy is preventing hydrogen from precipitating into TiH. All implants, even those lacking TiH at the surface, were enriched with hydrogen. In all implants, hydrogen concentration was within the normative limit of 130 ppm.

  17. Fiber laser welding of austenitic steel and commercially pure copper butt joint

    NASA Astrophysics Data System (ADS)

    Kuryntsev, S. V.; Morushkin, A. E.; Gilmutdinov, A. Kh.

    2017-03-01

    The fiber laser welding of austenitic stainless steel and commercially pure copper in butt joint configuration without filler or intermediate material is presented. In order to melt stainless steel directly and melt copper via heat conduction a defocused laser beam was used with an offset to stainless steel. During mechanical tests the weld seam was more durable than heat affected zone of copper so samples without defects could be obtained. Three process variants of offset of the laser beam were applied. The following tests were conducted: tensile test of weldment, intermediate layer microhardness, optical metallography, study of the chemical composition of the intermediate layer, fractography. Measurements of electrical resistivity coefficients of stainless steel, copper and copper-stainless steel weldment were made, which can be interpreted or recalculated as the thermal conductivity coefficient. It shows that electrical resistivity coefficient of cooper-stainless steel weldment higher than that of stainless steel. The width of intermediate layer between stainless steel and commercially pure copper was 41-53 μm, microhardness was 128-170 HV0.01.

  18. In-line process control for laser welding of titanium by high dynamic range ratio pyrometry and plasma spectroscopy

    NASA Astrophysics Data System (ADS)

    Lempe, B.; Taudt, C.; Baselt, T.; Rudek, F.; Maschke, R.; Basan, F.; Hartmann, P.

    2014-02-01

    The production of complex titanium components for various industries using laser welding processes has received growing attention in recent years. It is important to know whether the result of the cohesive joint meets the quality requirements of standardization and ultimately the customer requirements. Erroneous weld seams can have fatal consequences especially in the field of car manufacturing and medicine technology. To meet these requirements, a real-time process control system has been developed which determines the welding quality through a locally resolved temperature profile. By analyzing the resulting weld plasma received data is used to verify the stability of the laser welding process. The determination of the temperature profile is done by the detection of the emitted electromagnetic radiation from the material in a range of 500 nm to 1100 nm. As detectors, special high dynamic range CMOS cameras are used. As the emissivity of titanium depends on the wavelength, the surface and the angle of radiation, measuring the temperature is a problem. To solve these a special pyrometer setting with two cameras is used. That enables the compensation of these effects by calculating the difference between the respective pixels on simultaneously recorded images. Two spectral regions with the same emissivity are detected. Therefore the degree of emission and surface effects are compensated and canceled out of the calculation. Using the spatially resolved temperature distribution the weld geometry can be determined and the laser process can be controlled. The active readjustment of parameters such as laser power, feed rate and inert gas injection increases the quality of the welding process and decreases the number of defective goods.

  19. Fatigue limits of titanium-bar joints made with the laser and the electric resistance welding techniques: microstructural characterization and hardness properties.

    PubMed

    Degidi, Marco; Nardi, Diego; Morri, Alessandro; Sighinolfi, Gianluca; Tebbel, Florian; Marchetti, Claudio

    2017-09-01

    Fatigue behavior of the titanium bars is of utmost importance for the safe and reliable operation of dental implants and prosthetic constructions based on these implants. To date, however, only few data are available on the fatigue strength of dental prostheses made with electric resistance welding and laser welding techniques. This in-vitro study highlighted that although the joints made with the laser welding approach are credited of a superior tensile strength, joints made with electric resistance welding exhibited double the minimum fatigue strength with respect to the joints made with laser welding (120 vs 60 N).

  20. Laser Powder Welding of a Ti52Al46.8Cr1Si0.2Titanium Aluminide Alloy at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Smal, C. A.; Meacock, C. G.; Rossouw, H. J.

    2011-04-01

    A method for the joining of a Ti52Al46.8Cr1Si0.2Titanium Aluminide alloy by laser powder welding is presented. The technique acts to join materials by consolidating powder with focused laser beam to form weld beads that fill a V joint. In order to avoid the occurrence of residual thermal stresses and hence cracking of the brittle material, the weld plates were heated to a temperature of 1173 K (= 900 °C) by an ohmic heating device, welded and then slowly cooled to produce pore and crack free welds.

  1. Evaluation of shear bond strength of porcelain bonded to laser welded titanium surface and determination of mode of bond failure.

    PubMed

    Patil, Narendra P; Dandekar, Minal; Nadiger, Ramesh K; Guttal, Satyabodh S

    2010-09-01

    The aim of this study was to evaluate the shear bond strength of porcelain to laser welded titanium surface and to determine the mode of bond failure through scanning electron microscopy (SEM) and energy dispersive spectrophotometry (EDS). Forty five cast rectangular titanium specimens with the dimension of 10 mm x 8 mm x 1 mm were tested. Thirty specimens had a perforation of 2 mm diameter in the centre. These were randomly divided into Group A and B. The perforations in the Group B specimens were repaired by laser welding using Cp Grade II titanium wire. The remaining 15 specimens were taken as control group. All the test specimens were layered with low fusing porcelain and tested for shear bond strength. The debonded specimens were subjected to SEM and EDS. Data were analysed with 1-way analysis of variance and Student's t-test for comparison among the different groups. One-way analysis of variance (ANOVA) showed no statistically significant difference in shear bond strength values at a 5% level of confidence. The mean shear bond strength values for control group, Group A and B was 8.4 +/- 0.5 Mpa, 8.1 +/- 0.4 Mpa and 8.3 +/- 0.3 Mpa respectively. SEM/EDS analysis of the specimens showed mixed and cohesive type of bond failure. Within the limitations of the study laser welding did not have any effect on the shear bond strength of porcelain bonded to titanium.

  2. Characterization of disk-laser dissimilar welding of titanium alloy Ti-6Al-4V to aluminum alloy 2024

    NASA Astrophysics Data System (ADS)

    Caiazzo, Fabrizia; Alfieri, Vittorio; Cardaropoli, Francesco; Corrado, Gaetano; Sergi, Vincenzo

    2013-02-01

    Both technical and economic reasons suggest to join dissimilar metals, benefiting from the specific properties of each material in order to perform flexible design. Adhesive bonding and mechanical joining have been traditionally used although adhesives fail to be effective in high-temperature environments and mechanical joining are not adequate for leak-tight joints. Friction stir welding is a valid alternative, even being difficult to perform for specific joint geometries and thin plates. The attention has therefore been shifted to laser welding. Interest has been shown in welding titanium to aluminum, especially in the aviation industry, in order to benefit from both corrosive resistance and strength properties of the former, and low weight and cost of the latter. Titanium alloy Ti-6Al-4V and aluminum alloy 2024 are considered in this work, being them among the most common ones in aerospace and automotive industries. Laser welding is thought to be particularly useful in reducing the heat affected zones and providing deep penetrative beads. Nevertheless, many challenges arise in welding dissimilar metals and the aim is further complicated considering the specific features of the alloys in exam, being them susceptible to oxidation on the upper surface and porosity formation in the fused zone. As many variables are involved, a systematic approach is used to perform the process and to characterize the beads referring to their shape and mechanical features, since a mixture of phases and structures is formed in the fused zone after recrystallization.

  3. Corrosion Analysis of an Experimental Noble Alloy on Commercially Pure Titanium Dental Implants

    PubMed Central

    Bortagaray, Manuel Alberto; Ibañez, Claudio Arturo Antonio; Ibañez, Maria Constanza; Ibañez, Juan Carlos

    2016-01-01

    Objective: To determine whether the Noble Bond® Argen® alloy was electrochemically suitable for the manufacturing of prosthetic superstructures over commercially pure titanium (c.p. Ti) implants. Also, the electrolytic corrosion effects over three types of materials used on prosthetic suprastructures that were coupled with titanium implants were analysed: Noble Bond® (Argen®), Argelite 76sf +® (Argen®), and commercially pure titanium. Materials and Methods: 15 samples were studied, consisting in 1 abutment and one c.p. titanium implant each. They were divided into three groups, namely: Control group: five c.p Titanium abutments (B&W®), Test group 1: five Noble Bond® (Argen®) cast abutments and, Test group 2: five Argelite 76sf +® (Argen®) abutments. In order to observe the corrosion effects, the surface topography was imaged using a confocal microscope. Thus, three metric parameters (Sa: Arithmetical mean height of the surface. Sp: Maximum height of peaks. Sv: Maximum height of valleys.), were measured at three different areas: abutment neck, implant neck and implant body. The samples were immersed in artificial saliva for 3 months, after which the procedure was repeated. The metric parameters were compared by statistical analysis. Results: The analysis of the Sa at the level of the implant neck, abutment neck and implant body, showed no statistically significant differences on combining c.p. Ti implants with the three studied alloys. The Sp showed no statistically significant differences between the three alloys. The Sv showed no statistically significant differences between the three alloys. Conclusion: The effects of electrogalvanic corrosion on each of the materials used when they were in contact with c.p. Ti showed no statistically significant differences. PMID:27733875

  4. Radiographic inspection of porosity in pure titanium dumbbell castings.

    PubMed

    Nuñez, Juliana Maria Costa; Takahashi, Jessica Mie Ferreira Koyama; Henriques, Guilherme Elias Pessanha; Nóbilo, Mauro Antônio de Arruda; Consani, Rafael Leonardo Xediek; Mesquita, Marcelo Ferraz

    2011-09-01

    Titanium frameworks are frequently indicated for implant supported prostheses; however, voids are usually encountered inside cast titanium.   This study aimed to confirm the efficacy of a radiographic technique for inspection of porosity in commercially pure titanium castings with different diameter.   Sixty dumbbell rods (n=20) with a central 1.5, 2.0 and 3.5mm diameter were prepared by lost-wax casting. Cast specimens were finished and polished and submitted to radiographic examination (90kV, 15mA, 0.6s and 10-13mm of distance) using periapical film. The radiographs were visually analysed for the presence of porosity in the extension of the dumbbell or in the central portion of the rods. Data were submitted to Pearson Chi-square test (5%).   The tested radiographic method proved to be suitable for the evaluation of cast frameworks. Internal porosities were observed in most of the specimens (91.7%) (p=0.0005); however, only 20% occurred on the central portion of the rods (p=0.612).   Internal porosities can be visualised through radiographs and occur mostly in small diameter structures. The radiographic evaluation of metal structures can improve the quality of frameworks and thereby potentially increase the longevity of the rehabilitation. © 2010 The Gerodontology Society and John Wiley & Sons A/S.

  5. Filler wire for aluminum alloys and method of welding

    NASA Technical Reports Server (NTRS)

    Bjorkman, Jr., Gerald W. O. (Inventor); Cho, Alex (Inventor); Russell, Carolyn K. (Inventor)

    2003-01-01

    A weld filler wire chemistry has been developed for fusion welding 2195 aluminum-lithium. The weld filler wire chemistry is an aluminum-copper based alloy containing high additions of titanium and zirconium. The additions of titanium and zirconium reduce the crack susceptibility of aluminum alloy welds while producing good weld mechanical properties. The addition of silver further improves the weld properties of the weld filler wire. The reduced weld crack susceptibility enhances the repair weldability, including when planishing is required.

  6. Bonding titanium to Rene 41 alloy

    NASA Technical Reports Server (NTRS)

    Scott, R. W.

    1972-01-01

    Pair of intermediate materials joined by electron beam welding method welds titanium to Rene 41 alloy. Bond is necessary for combining into one structure high strength-to-density ratio titanium fan blades and temperature resistant nickel-base alloy turbine-buckets in VTOL aircraft lift-fan rotor.

  7. Effect of the combination of different welding parameters on melting characteristics of grade 1 titanium with a pulsed Nd-Yag laser.

    PubMed

    Bertrand, C; Laplanche, O; Rocca, J P; Le Petitcorps, Y; Nammour, S

    2007-11-01

    The laser is a very attractive tool for joining dental metallic alloys. However, the choice of the setting parameters can hardly influence the welding performances. The aim of this research was to evaluate the impact of several parameters (pulse shaping, pulse frequency, focal spot size...) on the quality of the microstructure. Grade 1 titanium plates have been welded with a pulsed Nd-Yag laser. Suitable power, pulse duration, focal spot size, and flow of argon gas were fixed by the operator. Five different pulse shapes and three pulse frequencies were investigated. Two pulse shapes available on this laser unit were eliminated because they considerably hardened the metal. As the pulse frequency rose, the metal was more and more ejected, and a plasma on the surface of the metal increased the oxygen contamination in the welded area. Frequencies of 1 or 2 Hz are optimum for a dental use. Three pulse shapes can be used for titanium but the rectangular shape gives better results.

  8. Full-Field Strain Measurement On Titanium Welds And Local Elasto-Plastic Identification With The Virtual Fields Method

    NASA Astrophysics Data System (ADS)

    Tattoli, F.; Pierron, F.; Rotinat, R.; Casavola, C.; Pappalettere, C.

    2011-01-01

    One of the main problems in welding is the microstructural transformation within the area affected by the thermal history. The resulting heterogeneous microstructure within the weld nugget and the heat affected zones is often associated with changes in local material properties. The present work deals with the identification of material parameters governing the elasto—plastic behaviour of the fused and heat affected zones as well as the base material for titanium hybrid welded joints (Ti6Al4V alloy). The material parameters are identified from heterogeneous strain fields with the Virtual Fields Method. This method is based on a relevant use of the principle of virtual work and it has been shown to be useful and much less time consuming than classical finite element model updating approaches applied to similar problems. The paper will present results and discuss the problem of selection of the weld zones for the identification.

  9. Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation.

    PubMed

    Huang, Yong; Wang, Yingjun; Ning, Chengyun; Nan, Kaihui; Han, Yong

    2007-09-01

    A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and beta-glycerol phosphate disodium salt pentahydrate (beta-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 microm, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints.

  10. Titanium

    USGS Publications Warehouse

    Bedinger, G.M.

    2013-01-01

    Titanium is the ninth most abundant element in the earth’s crust and can be found in nearly all rocks and sediments. It is a lithophile element with a strong affinity for oxygen and is not found as a pure metal in nature. Titanium was first isolated as a pure metal in 1910, but it was not until 1948 that metal was produced commercially using the Kroll process (named after its developer, William Kroll) to reduce titanium tetrachloride with magnesium to produce titanium metal.

  11. Clinical experiences of implant-supported prostheses with laser-welded titanium frameworks in the partially edentulous jaw: a 5-year follow-up study.

    PubMed

    Ortorp, A; Jemt, T

    1999-01-01

    Titanium frameworks have been used in the endentulous implant patient for the last 10 years. However, knowledge of titanium frameworks for the partially dentate patient is limited. To report the 5-year clinical performance of implant-supported prostheses with laser-welded titanium frameworks in the partially edentulous jaw. A consecutive group of 383 partially edentulous patients were, on a routine basis, provided with fixed partial prostheses supported by Brånemark implants in the mandible or maxilla. Besides conventional frameworks in cast gold alloy, 58 patients were provided with titanium frameworks with three different veneering techniques, and clinical and radiographic 5-year data were collected for this group. The overall cumulative survival rate was 95.6% for titanium-framework prostheses and 93.6% for implants. Average bone loss during the follow-up period was 0.4 mm. The most common complications were minor veneering fractures. Loose and fractured implant screw components were fewer than 2%. An observation was that patients on medications for cardiovascular problems may lose more implants than others (p < .05). The clinical performance of prostheses with implant-supported laser-welded titanium frameworks was similar to that reported for conventional cast frames in partially edentulous jaws. Low-fusing porcelain veneers also showed clinical performance comparable to that reported for conventional porcelain-fused-to-metal techniques.

  12. Fabrication of the Ti5Si3/Ti composite inoculants and its refining mechanism on pure titanium

    NASA Astrophysics Data System (ADS)

    Li, Nuo; Cui, Chunxiang; Liu, Shaungjin; Zhao, Long; Liu, Shuiqing

    2017-03-01

    The in situ Ti5Si3/Ti inoculants were successfully prepared by vacuum arc-melting and melt-spinning method. An efficient route by adding a small quantity of Ti5Si3/Ti inoculants to Ti melt has been first proposed to modify the coarse grains of as cast microstructure of pure titanium in this paper. It was found that the microstructure of ribbon inoculants was cellular structure that composed of Ti5Si3 and α-Ti phases. The grain refining effect of the inoculants was significantly improved with the adding ratio range from 0.2% to 0.5% in weight. With the increase of addition amount of inoculants on Ti melt, the tensile strength, yield strength and microhardness of pure titanium are significantly improved except elongation. The excellent grain refining effect can be attributed to the heterogeneous nucleation of the titanium grain on the precipitated Ti5Si3 phases in the Si-rich regions and the constitutional supercooling of Si in the Si-poverty regions. It is suggested that the in situ Ti5Si3/Ti inoculants is a promising inoculants for titanium alloys.

  13. Titanium removable denture based on a one-metal rehabilitation concept.

    PubMed

    Ohkubo, Chikahiro; Sato, Yohei; Nishiyama, Yuichiro; Suzuki, Yasunori

    2017-09-26

    The use of a single metal for all restorations would be necessary because it protects against metal corrosion caused by the contact of different metals. For this "one-metal rehabilitation" concept, non-alloyed commercially pure (CP) titanium should be used for all restorations. Titanium frameworks have been cast and used for the long term without catastrophic failure, whereas they have been fabricated recently using computer-aided design/computer-aided manufacturing (CAD/CAM). However, the milling process for the frameworks of removable partial dentures (RPDs) is not easy because they have very complicated shapes and consist of many components. Currently, the fabrication of RPD frameworks has been challenged by one-process molding using repeated laser sintering and high-speed milling. Laser welding has also been used typically for repairing and rebuilding titanium frameworks. Although laboratory and clinical problems still remain, the one-metal rehabilitation concept using CP titanium as a bioinert metal can be recommended for all restorations.

  14. A Quantitative Model of Keyhole Instability Induced Porosity in Laser Welding of Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Pang, Shengyong; Chen, Weidong; Wang, Wen

    2014-06-01

    Quantitative prediction of the porosity defects in deep penetration laser welding has generally been considered as a very challenging task. In this study, a quantitative model of porosity defects induced by keyhole instability in partial penetration CO2 laser welding of a titanium alloy is proposed. The three-dimensional keyhole instability, weld pool dynamics, and pore formation are determined by direct numerical simulation, and the results are compared to prior experimental results. It is shown that the simulated keyhole depth fluctuations could represent the variation trends in the number and average size of pores for the studied process conditions. Moreover, it is found that it is possible to use the predicted keyhole depth fluctuations as a quantitative measure of the average size of porosity. The results also suggest that due to the shadowing effect of keyhole wall humps, the rapid cooling of the surface of the keyhole tip before keyhole collapse could lead to a substantial decrease in vapor pressure inside the keyhole tip, which is suggested to be the mechanism by which shielding gas enters into the porosity.

  15. Underwater Laser Micromilling of Commercially-Pure Titanium Using Different Scan Overlaps

    NASA Astrophysics Data System (ADS)

    Charee, Wisan; Tangwarodomnukun, Viboon

    2018-01-01

    Underwater laser milling process is a technique for minimizing the thermal damage and gaining a higher material removal rate than processing in air. This paper presents the effect of laser scan overlap on cavity width, depth and surface roughness in the laser milling of commercially-pure titanium in water. The effects of laser pulse energy and pulse repetition rate were also examined, in which a nanosecond pulse laser emitting a 1064-nm wavelength was used in this study. The experimental results indicated that a wide and deep cavity was achievable under high laser energy and large scan overlap. According to the surface roughness, the use of high pulse repetition rate together with low laser energy can promote a smooth laser-milled surface particularly at 50% scan overlap. These findings can further suggest a suitable laser micromilling condition for titanium in roughing and finishing operations.

  16. High-Powered, Ultrasonically Assisted Thermal Stir Welding

    NASA Technical Reports Server (NTRS)

    Ding, Robert

    2013-01-01

    distance equal to the thickness of the material being welded. The TSW process can be significantly improved by reducing the draw forces. This can be achieved by reducing the friction forces between the weld workpieces and the containment plates. High-power ultrasonic (HPU) vibrations of the containment plates achieve friction reduction in the TSW process. Furthermore, integration of the HPU energy into the TSW stir rod can increase tool life of the stir rod, and can reduce shear forces to which the stir rod is subjected during the welding process. TSW has been used to successfully join 0.500-in (˜13-mm) thick commercially pure (CP) titanium, titanium 6AL- 4V, and titanium 6AL-4V ELI in weld joint lengths up to 9 ft (˜2.75-m) long. In addition, the TSW process was used to fabricate a sub-scale hexagonally shaped gun turret component for the U.S. Navy. The turret is comprised of six 0.5000-in (˜13-mm) thick angled welds. Each angled weld joint was prepared by machining the mating surfaces to 120deg. The angled weld joint was then fixtured using an upper and lower containment plate of the same geometry of the angled weld joint. The weld joint was then stirred by the stir rod as it and the upper and lower containment plates traverse through the angled joint prep.

  17. [Effect of sintering gold paste coating on the bonding strength of pure titanium and three low-fusing porcelains].

    PubMed

    Zhang, Ya-li; Luo, Xiao-ping; Zhou, Li

    2012-05-01

    To study the effect of sintering gold paste coating of pure titanium on the adhesion of three porcelains following the protocol ISO 9693, and to investigate the titanium-porcelains interfaces. Sixty machined pure titanium samples were prepared in a rectangular shape according to ISO 9693 and divided equally into six groups. Half of the strips were coated with gold paste (Deckgold) and sintered. Three ultra-low-fusing dental porcelains (I: Initial Ti, S: Super porcelain Ti-22, T: TitanKeramik) were fused onto the titanium surfaces. A thin layer of bonding agent was only applied on the surfaces of uncoated gold specimens. The interface of the porcelain and titanium was observed with a field emission scanning electron microscope (FE-SEM) after metallographic preparation and sputtered with a very thin carbon layer of the embedded titanium-porcelain interface. After three-point bending test was performed, optical stereomicroscope was used to characterize the titanium-porcelains adhesion and determine the mode of failure. FE-SEM illustrated intermetallic compounds of Au-Ti formed with some visible microcracks in the gold layer and the interface of gold layer and ceramic. All the uncoated gold titanium-porcelain system showed predominately adhesive fracture at the titanium oxidation, whereas the failure modes in all gold coated systems were cohesive and adhesive, mainly cohesive. The three-point-bending test showed that the bonding strength of GS and GI groups [(37.08 ± 4.32) and (36.20 ± 2.40) MPa] were higher than those in uncoated groups [(31.56 ± 3.74) and (30.88 ± 2.60) MPa, P < 0.05], while no significant difference was found between T group and GT group (P > 0.05). The gold paste intermediate coatings can improve bond strengths of Super porcelain Ti-22 system and Initial Ti system, which have potential applications in clinical fields.

  18. Flexural strength of pure Ti, Ni-Cr and Co-Cr alloys submitted to Nd:YAG laser or TIG welding.

    PubMed

    Rocha, Rick; Pinheiro, Antônio Luiz Barbosa; Villaverde, Antonio Balbin

    2006-01-01

    Welding of metals and alloys is important to Dentistry for fabrication of dental prostheses. Several methods of soldering metals and alloys are currently used. The purpose of this study was to assess, using the flexural strength testing, the efficacy of two processes Nd:YAG laser and TIG (tungsten inert gas) for welding of pure Ti, Co-Cr and Ni-Cr alloys. Sixty cylindrical specimens were prepared (20 of each material), bisected and welded using different techniques. Four groups were formed (n=15). I: Nd:YAG laser welding; II- Nd:YAG laser welding using a filling material; III- TIG welding and IV (control): no welding (intact specimens). The specimens were tested in flexural strength and the results were analyzed statistically by one-way ANOVA. There was significant differences (p<0.001) among the non-welded materials, the Co-Cr alloy being the most resistant to deflection. Comparing the welding processes, significant differences (p<0.001) where found between TIG and laser welding and also between laser alone and laser plus filling material. In conclusion, TIG welding yielded higher flexural strength means than Nd:YAG laser welding for the tested Ti, Co-Cr and Ni-Cr alloys.

  19. Structure of welded joints obtained by contact weld in nanostructured titanium

    NASA Astrophysics Data System (ADS)

    Klimenov, V. A.; Klopotov, A. A.; Gnysov, S. F.; Vlasov, V. A.; Lychagin, D. V.; Chumaevskii, A. V.

    2015-10-01

    The paper presents the research of the weld structure of two Ti specimens of the type VT6 that have nano- and submicrocrystalline structures. Electrical contact welding is used to obtain welds. The acicular structure is formed in the weld area. Two types of defects are detected, namely micropores and microcracks.

  20. Effect of heat treatment and diffusion welding conditions on the structure and properties of porous material workpieces made of titanium fibers

    NASA Astrophysics Data System (ADS)

    Kollerov, M. Yu.; Shlyapin, S. D.; Gusev, D. E.; Senkevich, K. S.; Runova, Yu. E.

    2015-11-01

    The effect of the diffusion welding conditions on the structure and properties of a porous material (PM) made of titanium fibers is studied. It is shown that the use of fibers produced by melt quenching and then joined to form workpieces or articles by diffusion welding can be a promising trend in the production of PMs for medicine applications. A change in the solidification rate of fibers and their contact substantially affects the mechanical properties of PM workpieces. As the diffusion welding temperature of both sheet and cylindrical workpieces increases, the strength of PM increases and the plasticity of PM decreases.

  1. Dynamic Yielding and Spall Behavior of Commercially Pure Grade 4 Titanium

    NASA Astrophysics Data System (ADS)

    Thadhani, Naresh; Whelchel, R. L.; Sanders, Tom; Mehkote, D. S.; Iyer, K. A.; Georgia Instiutute of Technology Collaboration; Johns Hopkins University, Applied Physics Labortaory Collaboration

    2015-06-01

    The dynamic yielding and fracture (spalling) of commercially pure (grade 4) titanium are investigated using symmetric plate impact experiments over a peak stress range of 5.6 GPa to 12.5 GPa, using the 80-mm single-stage gas-gun. VISAR rear free surface velocity profiles display both a Hugoniot elastic limit (HEL) and a velocity pullback, which are indicative of dynamic compressive yielding and tensile fracture (spalling), respectively. The HEL values appear to show a slight decrease with peak stress from 2.2 GPa to 2.0 GPa along with a corresponding increase in twinning observed in recovered impacted samples. The spall strength on the other hand increases with peak stress from a value of 3.3 GPa to 3.8 GPa and shows a good power law fit with the decompression strain rate. The differing responses in dynamic yield and fracture behavior suggest that void nucleation may be the dominant mechanism affecting the spall strength of grade 4 titanium.

  2. COMMERCIALLY PURE TITANIUM-ARSENIC ALLOYS. CONSTITUTION AND ROOM- TEMPERATURE TENSILE PROPERTIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haynes, R.

    1960-02-01

    Titanium--arsenic alloys undergo a peritectoid reaction at approximately 900 deg C, in which beta solid solution reacts with a compound, shown to be Ti/sub 4/As, to form alpha phase containing approximately 0.05 wt.% (0.03 at.%) arsenic. Solubility of arsenic in beta phase increases slowly with temperature, reaching a maximum of approximately 1.6 wt.% (1 at.%) at the eutectic temperature, 1351 plus or minus 15 deg C. The eutectic composition is approximately 17.5 wt.% (12 at.%) arsenic. Up to 1 wt.% arsenic exerts only a slight strengthening effect on commercially pure titanium, accompanied by a small loss in ductility. Solution-treatment atmore » temperatures in the beta field increases the strength above the level obtained by annealing in the ( alpha + Ti/ sub 4/As) field and this strengthening can be further enhanced by ageing at 550 deg C. Optimum properties obtainable are similar to those of low-strength titunium alloys. (auth)« less

  3. Influence of laser-welding and electroerosion on passive fit of implant-supported prosthesis.

    PubMed

    Silva, Tatiana Bernardon; De Arruda Nobilo, Mauro Antonio; Pessanha Henriques, Guilherme Elias; Mesquita, Marcelo Ferraz; Guimaraes, Magali Beck

    2008-01-01

    This study investigated the influence of laser welding and electroerosion procedure on the passive fit of interim fixed implant-supported titanium frameworks. Twenty frameworks were made from a master model, with five parallel placed implants in the inter foramen region, and cast in commercially pure titanium. The frameworks were divided into 4 groups: 10 samples were tested before (G1) and after (G2) electroerosion application; and another 10 were sectioned into five pieces and laser welded before (G3) and after (G4) electroerosion application. The passive fit between the UCLA abutment of the framework and the implant was evaluated using an optical microscope Olympus STM (Olympus Optical Co., Tokyo, Japan) with 0.0005mm of accuracy. Statistical analyses showed significant differences between G1 and G2, G1 and G3, G1 and G4, G2 and G4. However, no statistical difference was observed when comparing G2 and G3. These results indicate that frameworks may show a more precise adaptation if they are sectioned and laser welded. In the same way, electroerosion improves the precision in the framework adaptation.

  4. On the passive and semiconducting behavior of severely deformed pure titanium in Ringer's physiological solution at 37°C: A trial of the point defect model.

    PubMed

    Ansari, Ghazaleh; Fattah-Alhosseini, Arash

    2017-06-01

    The effects of sever plastic deformation through multi-pass accumulative roll bonding on the passive and semiconducting behavior of pure titanium is evaluated in Ringer's physiological solution at 37°C in the present paper. Produced results by polarization plots and electrochemical impedance spectroscopy measurements revealed a significant advance in the passive response of the nano-grained sample compared to that of the annealed pure titanium. Also, Mott-Schottky test results of the nano-grained pure titanium represented a lower donor density and reduced flat-band potential in the formed passive film in comparison with the annealed sample. Moreover, based on the Mott-Schottky analysis in conjunction with the point defect model, it was suggested that with increase in formation potential, the calculated donor density of both annealed and nano-grained samples decreases exponentially and the thickness of the passive film linearly increases. These observations were consistent with the point defect model predictions, considering that the point defects within the passive film are metal interstitials, oxygen vacancies, or both. From the viewpoint of passive and semiconducting behavior, nano-grained pure titanium appeared to be more suitable for implant applications in simulate human body environment compared to annealed pure titanium. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Fusion zone microstructure and porosity in electron beam welds of an α+β titanium alloy

    NASA Astrophysics Data System (ADS)

    Mohandas, T.; Banerjee, D.; Kutumba Rao, V. V.

    1999-03-01

    The effect of electron beam welding parameters on fusion zone (FZ) microstructure and porosity in a Ti -6.8 Al -3.42 Mo -1.9 Zr -0.21 Si alloy (Russian designation VT 9) has been investigated. It has been observed that the FZ grain width increased continuously with increase in heat input when the base metal was in the β heat-treated condition, while in the α+β heat-treated base metal welds, the FZ grain width increased only after a threshold energy input. The difference is attributed to both the weld thermal cycle and the pinning effect of equiaxed primary alpha on grain growth in the heat-affected zone (HAZ) of α+β heat-treated base metal. Postweld heat treatment (PWHT) in the subtransus and supertransus regions did not alter the columnar grain morphology in the FZ, possibly due to the lack of enough driving force for the formation of new grains by the breaking up of the columnar grains and grain boundary movement for grain growth. As the PWHTs were conducted in a furnace, the role of thermal gradients can be ruled out. Intragranular microstructure in the aswelded condition consisted of hexagonal martensite. The scale of the martensite laths depended on welding speed. The highest porosity was observed at intermediate welding speeds. At low speeds, a majority of pores formed at the fusion boundary, while at high speeds, occurrence of porosity was maximum at the weld center. The trends on porosity can be explained on the basis of solubility of hydrogen in titanium as a function of temperature and the influence of weld thermal cycle on nucleation, growth, and escape of hydrogen gas bubbles. The porosity at slow welding speeds is low because sufficient time exists for the nucleation, growth, and escape of hydrogen gas bubbles, while insufficient time exists for the nucleation of gas bubbles at high welding speeds. The effect of pickling of joint surface, vacuum annealing of the base metal, and successive remelting of the weld metal has also been investigated.

  6. Anodic oxidation of commercially pure titanium for purification of polluted water

    NASA Astrophysics Data System (ADS)

    Benkafada, Faouzia; Kerdoud, Djahida; Bouchoucha, Ali

    2018-05-01

    Anodisation of pure titanium has been carried out in sulphuric acid solution at potentials ranging from 40 V to 5 days. We studied the parameters influencing the anodic deposition such as acid concentration and anodic periods. Anodic oxides thin films were characterized by X-ray diffraction, cyclic polarization and electrochemical impedance spectroscopy. The I-V curves and electrochemical impedance measurements were carried out in 0.1 N NaOH solution. The results indicated that although the thin films obtained by anodic oxidation are nonstoichiometric, they have an electric behaviour like n-type semiconducting material.

  7. Titanium 2013

    USGS Publications Warehouse

    2014-01-01

    Titanium is the ninth most abundant element in the earth's crust and can be found in nearly all rocks and sediments. It is a lithophile element with a strong affinity for oxygen and is not found as a pure metal in nature. Titanium was first isolated as a pure metal in 1910, but it was not until 1948 that the metal was produced commercially using the Kroll process (named after its developer, William Kroll) to reduce titanium tetrachloride with magnesium to produce titanium metal.

  8. A comparison of laser-welded titanium and conventional cast frameworks supported by implants in the partially edentulous jaw: a 3-year prospective multicenter study.

    PubMed

    Jemt, T; Henry, P; Lindén, B; Naert, I; Weber, H; Bergström, C

    2000-01-01

    The purpose of this prospective multicenter study was to evaluate and compare the clinical performance of laser-welded titanium fixed partial implant-supported prostheses with conventional cast frameworks. Forty-two partially edentulous patients were provided with Brånemark system implants and arranged into 2 groups. Group A was provided with a conventional cast framework with porcelain veneers in one side of the jaw and a laser-welded titanium framework with low-fusing porcelain on the other side. The patients in group B had an old implant prosthesis replaced by a titanium framework prosthesis. The patients were followed for 3 years after prosthesis placement. Clinical and radiographic data were collected and analyzed. Only one implant was lost, and all prostheses were still in function after 3 years. The 2 framework designs showed similar clinical performance with few clinical complications. Only one abutment screw (1%) and 9 porcelain tooth units (5%) fractured. Four prostheses experienced loose gold screws (6%). In group A, marginal bone loss was similar for both designs of prostheses, with a mean of 1.0 mm and 0.3 mm in the maxilla and mandible, respectively. No bone loss was observed on average in group B. No significant relationship (P > 0.05) was observed between marginal bone loss and placement of prosthesis margin or prosthesis design. The use of laser-welded titanium frameworks seems to present similar clinical performance to conventional cast frameworks in partial implant situations after 3 years.

  9. Laser-Arc Hybrid Welding of Dissimilar Titanium Alloy and Stainless Steel Using Copper Wire

    NASA Astrophysics Data System (ADS)

    Gao, Ming; Chen, Cong; Wang, Lei; Wang, Zemin; Zeng, Xiaoyan

    2015-05-01

    Laser-arc hybrid welding with Cu3Si filler wire was employed to join dissimilar Ti6Al4V titanium alloy and AISI316 stainless steel (316SS). The effects of welding parameters on bead shape, microstructure, mechanical properties, and fracture behavior were investigated in detail. The results show that cross-weld tensile strength of the joints is up to 212 MPa. In the joint, obvious nonuniformity of the microstructure is found in the fusion zone (FZ) and at the interfaces from the top to the bottom, which could be improved by increasing heat input. For the homogeneous joint, the FZ is characterized by Fe67- x Si x Ti33 dendrites spreading on α-Cu matrix, and the two interfaces of 316SS/FZ and FZ/Ti6Al4V are characterized by a bamboo-like 316SS layer and a CuTi2 layer, respectively. All the tensile samples fractured in the hardest CuTi2 layer at Ti6Al4V side of the joints. The fracture surface is characterized by river pattern revealing brittle cleavage fracture. The bead formation mechanisms were discussed according to the melt flow and the thermodynamic calculation.

  10. Optimization of Oxidation Temperature for Commercially Pure Titanium to Achieve Improved Corrosion Resistance

    NASA Astrophysics Data System (ADS)

    Bansal, Rajesh; Singh, J. K.; Singh, Vakil; Singh, D. D. N.; Das, Parimal

    2017-03-01

    Thermal oxidation of commercially pure titanium (cp-Ti) was carried out at different temperatures, ranging from 200 to 900 °C to achieve optimum corrosion resistance of the thermally treated surface in simulated body fluid. Scanning electron microscopy, x-ray diffraction, Raman spectroscopy and electrochemical impedance spectroscopy techniques were used to characterize the oxides and assess their protective properties exposed in the test electrolyte. Maximum resistance toward corrosion was observed for samples oxidized at 500 °C. This was attributed to the formation of a composite layer of oxides at this temperature comprising Ti2O3 (titanium sesquioxide), anatase and rutile phases of TiO2 on the surface of cp-Ti. Formation of an intact and pore-free oxide-substrate interface also improved its corrosion resistance.

  11. Investigation of the structure and properties of titanium-stainless steel permanent joints obtained by laser welding with the use of intermediate inserts and nanopowders

    NASA Astrophysics Data System (ADS)

    Cherepanov, A. N.; Orishich, A. M.; Pugacheva, N. B.; Shapeev, V. P.

    2015-03-01

    Results of an experimental study of the structure, the phase composition, and the mechanical properties of laser-welded joints of 3-mm thick titanium and 12Kh18N10T steel sheets obtained with the use of intermediate inserts and nanopowdered modifying additives are reported. It is shown that that such parameters as the speed of welding, the radiation power, and the laser-beam focal spot position all exert a substantial influence on the welding-bath process and on the seam structure formed. In terms of chemical composition, most uniform seams with the best mechanical strength are formed at a 1-m/min traverse speed of laser and 2.35-kW laser power, with the focus having been positioned at the lower surface of the sheets. Under all other conditions being identical, uplift of the focus to workpiece surface or to a higher position results in unsteady steel melting, in a decreased depth and reduced degree of the diffusion-induced mixing of elements, and in an interpolate connection formed according to the soldering mechanism in the root portion of the seam. The seam material is an over-saturated copper-based solid solution of alloying elements with homogeneously distributed intermetallic disperse particles (Ti(Fe, Cr)2 and TiCu3) contained in this alloy. Brittle fracture areas exhibiting cleavage and quasi-cleavage facets correspond to coarse Ti(Fe, Cr)2 intermetallic particles or to diffusion zones primarily occurring at the interface with the titanium alloy. The reported data and the conclusions drawn from the numerical calculations of the thermophysical processes of welding of 3-mm thick titanium and steel sheets through an intermediate copper insert are in qualitative agreement with the experimental data. The latter agreement points to adequacy of the numerical description of the melting processes of contacting materials versus welding conditions and focal-spot position in the system.

  12. Microstructure Evolution during Friction Stir Welding of Mill-Annealed Ti-6Al-4V (Preprint)

    DTIC Science & Technology

    2011-05-01

    welding . One of the primary concerns regarding FSW of higher temperature materials like titanium is the welding tool. High temperature materials... welds as compared to aluminum alloys. This is related to the low thermal conductivity of titanium alloys which is typically lower than that of the...of the tools and workpieces in aluminum and titanium friction stir welds . Aluminum has a greater conductivity and thermal diffusivity than the tool

  13. Study of weld offset in longitudinally welded SSME HPFTP inlet

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Spanyer, K. S.; Brunair, R. M.

    1992-01-01

    Welded joints are an essential part of rocket engine structures such as the Space Shuttle Main Engine (SSME) turbopumps. Defects produced in the welding process can be detrimental to weld performance. Recently, review of the SSME high pressure fuel turbopump (HPFTP) titanium inlet X-rays revealed several weld discrepancies such as penetrameter density issues, film processing discrepancies, weld width discrepancies, porosity, lack of fusion, and weld offsets. Currently, the sensitivity of welded structures to defects is of concern. From a fatigue standpoint, weld offset may have a serious effect since local yielding, in general, aggravates cyclic stress effects. Therefore, the weld offset issue is considered in this report. Using the FEM and beamlike plate approximations, parametric studies were conducted to determine the influence of weld offsets and a variation of weld widths in longitudinally welded cylindrical structures with equal wall thicknesses on both sides of the joint. Following the study, some conclusions are derived for the weld offsets.

  14. Laser welded versus resistance spot welded bone implants: analysis of the thermal increase and strength.

    PubMed

    Fornaini, Carlo; Meleti, Marco; Bonanini, Mauro; Lagori, Giuseppe; Vescovi, Paolo; Merigo, Elisabetta; Nammour, Samir

    2014-01-01

    The first aim of this "ex vivo split mouth" study was to compare the thermal elevation during the welding process of titanium bars to titanium implants inserted in pig jaws by a thermal camera and two thermocouples. The second aim was to compare the strength of the joints by a traction test with a dynamometer. Six pigs' jaws were used and three implants were placed on each side of them for a total of 36 fixtures. Twelve bars were connected to the abutments (each bar on three implants) by using, on one side, laser welding and, on the other, resistance spot welding. Temperature variations were recorded by thermocouples and by thermal camera while the strength of the welded joint was analyzed by a traction test. For increasing temperature, means were 36.83 and 37.06, standard deviations 1.234 and 1.187, and P value 0.5763 (not significant). For traction test, means were 195.5 and 159.4, standard deviations 2.00 and 2.254, and P value 0.0001 (very significant). Laser welding was demonstrated to be able to connect titanium implant abutments without the risk of thermal increase into the bone and with good results in terms of mechanical strength.

  15. Laser Welded versus Resistance Spot Welded Bone Implants: Analysis of the Thermal Increase and Strength

    PubMed Central

    Fornaini, Carlo; Meleti, Marco; Bonanini, Mauro; Lagori, Giuseppe; Vescovi, Paolo; Merigo, Elisabetta; Nammour, Samir

    2014-01-01

    Introduction. The first aim of this “ex vivo split mouth” study was to compare the thermal elevation during the welding process of titanium bars to titanium implants inserted in pig jaws by a thermal camera and two thermocouples. The second aim was to compare the strength of the joints by a traction test with a dynamometer. Materials and Methods. Six pigs' jaws were used and three implants were placed on each side of them for a total of 36 fixtures. Twelve bars were connected to the abutments (each bar on three implants) by using, on one side, laser welding and, on the other, resistance spot welding. Temperature variations were recorded by thermocouples and by thermal camera while the strength of the welded joint was analyzed by a traction test. Results. For increasing temperature, means were 36.83 and 37.06, standard deviations 1.234 and 1.187, and P value 0.5763 (not significant). For traction test, means were 195.5 and 159.4, standard deviations 2.00 and 2.254, and P value 0.0001 (very significant). Conclusion. Laser welding was demonstrated to be able to connect titanium implant abutments without the risk of thermal increase into the bone and with good results in terms of mechanical strength. PMID:25110731

  16. Tailoring properties of commercially pure titanium by gradation extrusion

    NASA Astrophysics Data System (ADS)

    Bergmann, Markus; Rautenstrauch, Anja; Selbmann, René; de Oliveira, Raoni Barreto; Coelho, Rodrigo Santiago; Landgrebe, Dirk

    2016-10-01

    Commercially pure titanium (CP Ti) is of great importance in medical applications due to its attractive properties, such as high biocompatibility, excellent corrosion resistance and relatively low density and suitable stiffness. Compared to the commonly used Ti-6Al-4V alloy, its lower strength has to be increased. The most attractive approach is to subject CP Ti to severe plastic deformation (SPD) processes such as Equal Channel Angular Pressing (ECAP). The resulting decreased grain size in CP Ti yields a significant increase in hardness and strength. Common SPD-processes typically provide a uniform modification of the material. Their material efficiency and productivity are critical and limiting factors. A new approach is to tailor the material properties by using Gradation Extrusion, which produces a distinct gradient in microstructure and strength. The forming process combines a regular impact extrusion process and severe plastic deformation in the lateral area of the material. This efficient process can be integrated easily into forming process chains, for instance for dental implants. This paper presents the forming process and the applied die geometry. The results of numerical simulations are used to illustrate the potential of the process to modify and strengthen the titanium material. Experiments show that the material is successfully processed by gradation extrusion. By characterizing the hardness and its distribution within the formed parts the effects of the process are investigated.

  17. Understanding the effects of process parameters on the properties of cold gas dynamic sprayed pure titanium coatings

    NASA Astrophysics Data System (ADS)

    Wong, Wilson

    The cold gas dynamic spraying of commercially pure titanium coatings was investigated. Specifically, the relationship between several key cold spray parameters on the quality of the resulting coatings was studied in order to gain a more thorough understanding of the cold spray process. To achieve this goal, three distinct investigations were performed. The first part of the investigation focussed on the effect of propelling gas, particularly helium and nitrogen, during the cold spraying of titanium coatings. Coatings were characterised by SEM and were evaluated for their deposition efficiency (DE), microhardness, and porosity. In selected conditions, three particle velocities were investigated such that for each condition, the propelling gasses temperature and pressure were attuned to attain similar particle velocities for each gas. In addition, a thick and fully dense cold sprayed titanium coating was achieved with optimised spray parameters and nozzle using helium. The corresponding average particle velocity was 1173 m/s. The second part of the investigation studied the effect of particle morphology (spherical, sponge, and irregular) and size distributions (mean particle sizes of 20, 29, and 36 mum) of commercially pure titanium on the mechanical properties of the resulting cold sprayed coatings. Numerous powder and coating characterisations were performed. From these data, semi-empirical flow (stress-strain) curves were generated based on the Johnson-Cook plasticity model which could be used as a measure of cold sprayability. Cold sprayability can be defined as the ease with which a powder can be cold sprayed. It was found that the sponge and irregular commercially pure titanium powders had higher oxygen content, poorer powder flowability, higher compression ratio, lower powder packing factor, and higher average particle impact velocities compared to the spherical powders. XRD results showed no new phases present when comparing the various feedstock powders to

  18. Thermal Stir Welding Development at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2008-01-01

    Solid state welding processes have become the focus of welding process development at NASA's Marshall Space Flight Center. Unlike fusion weld processes such as tungsten inert gas (TIG), variable polarity plasma arc (VPPA), electron beam (EB), etc., solid state welding processes do not melt the material during welding. The resultant microstructure can be characterized as a dynamically recrystallized morphology much different than the casted, dentritic structure typical of fusion weld processes. The primary benefits of solid state processes over fusion weld processes include superior mechanic properties and the elimination of thermal distortion and residual stresses. These solid state processes attributes have profoundly influenced the direction of advanced welding research and development within the NASA agency. Thermal Stir Welding (TSW) is a new solid state welding process being developed at the Marshall Space Flight Center. Unlike friction stir welding, the heating, stirring and forging elements of the weld process can be decoupled for independent control. An induction coil induces energy into a workpiece to attain a desired plastic temperature. An independently controlled stir rod, captured within non-rotating containment plates, then stirs the plasticized material followed by forging plates/rollers that work the stirred weld joint. The independent control (decoupling) of heating, stirring and forging allows, theoretically, for the precision control of microstructure morphology. The TSW process is being used to evaluate the solid state joining of Haynes 230 for ARES J-2X applications. It is also being developed for 500-in (12.5 mm) thick commercially pure grade 2 titanium for navy applications. Other interests include Inconel 718 and stainless steel. This presentation will provide metallurgical and mechanical property data for these high melting temperature alloys.

  19. Influence of Solute Content and Solidification Parameters on Grain Refinement of Aluminum Weld Metal

    NASA Astrophysics Data System (ADS)

    Schempp, Philipp; Cross, Carl Edward; Pittner, Andreas; Rethmeier, Michael

    2013-07-01

    Grain refinement provides an important possibility to enhance the mechanical properties ( e.g., strength and ductility) and the weldability (susceptibility to solidification cracking) of aluminum weld metal. In the current study, a filler metal consisting of aluminum base metal and different amounts of commercial grain refiner Al Ti5B1 was produced. The filler metal was then deposited in the base metal and fused in a GTA welding process. Additions of titanium and boron reduced the weld metal mean grain size considerably and resulted in a transition from columnar to equiaxed grain shape ( CET). In commercial pure aluminum (Alloy 1050A), the grain-refining efficiency was higher than that in the Al alloys 6082 and 5083. Different welding and solidification parameters influenced the grain size response only slightly. Furthermore, the observed grain-size reduction was analyzed by means of the undercooling parameter P and the growth restriction parameter Q, which revealed the influence of solute elements and nucleant particles on grain size.

  20. Mondani intraoral welding: historical process and main practical applications.

    PubMed

    Dal Carlo, L; Pasqualini, M E; Mondani, P M; Rossi, F; Moglioni, E; Shulman, M

    2017-01-01

    The intraoral welder was invented by Dr. Pierluigi Mondani during the early 70’s to weld titanium needle implants to a titanium bar in patient’s mouth and to load them immediately by means of resin prosthesis. The clinical use documented dates back to 1972. Over the years, many practical applications have been added to the initial one, which have expanded the use of this device. In this scientific work, main applications are described. The aim of the work was to trace the historical process of intra-oral welding according to Mondani and describe the main practical applications. Intra-oral welding is a process introduced by dr. Pier Luigi Mondani of Genova (Italy) which allows to firmly conjoin titanium implants of any shape by means of a titanium bar or also directly between them in the mouth during surgery. The immediate stabilization achieved by intraoral welding increases implants success rate, allows immediate loading even in situations of bone atrophy, saves implants that are running into failure, re-evaluates fractured implants, allows to stabilize submerged implants postponing prosthesis management, allows to achieve efficient rehabilitation protocols to deal with difficult cases. The 40-years’ experience with intra-oral welding described in this article, confirms the ease of use and efficiency in providing immediate stabilization of titanium implants of all types.

  1. Equal channel angular pressing (ECAP) and forging of commercially pure titanium (CP-Ti)

    NASA Astrophysics Data System (ADS)

    Krystian, Maciej; Huber, Daniel; Horky, Jelena

    2017-10-01

    Pure titanium with ultra-fine grained (UFG) microstructure is an exceptionally interesting material for biomedical and dental applications due to its very good biocompatibility and high strength. Such bulk, high-strength UFG materials are commonly produced by different Severe Plastic Deformation (SPD) techniques, whereof Equal Channel Angular Pressing (ECAP) is the most commonly used one. In this investigation commercially pure (CP) titanium (grade 2) was processed by ECAP using a die with a channel diameter of 20mm and an intersection angle of 105°. Six passes using route B120 (in which the billet is rotated between subsequent passes by 120°) at a temperature of 400°C were performed leading to a substantial grain refinement and an increase of strength and hardness. Subsequently, a thermal treatment study on ECAP-processed samples at different temperatures and for different time periods was carried out revealing the stability limit for ECAP CP-Ti as well as the best conditions leading to an improvement in both, strength and ductility. Furthermore, room temperature forging of the as-received (AR; hot-rolled and annealed) as well as ECAP-processed material was conducted. Tensile tests and hardness mappings revealed that forging is capable to further increase the strength of ECAP CP-Ti by more than 20%. Moreover, the mechanical properties are significantly more homogenous than after forging only.

  2. Parametric study in weld mismatch of longitudinally welded SSME HPFTP inlet

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Spanyer, K. L.; Brunair, R. M.

    1991-01-01

    Welded joints are an essential part of pressure vessels such as the Space Shuttle Main Engine (SSME) Turbopumps. Defects produced in the welding process can be detrimental to weld performance. Recently, review of the SSME high pressure fuel turbopump (HPFTP) titanium inlet x rays revealed several weld discrepancies such as penetrameter density issues, film processing discrepancies, weld width discrepancies, porosity, lack of fusion, and weld offsets. Currently, the sensitivity of welded structures to defects is of concern. From a fatigue standpoint, weld offset may have a serious effect since local yielding, in general, aggravates cyclic stress effects. Therefore, the weld offset issue is considered. Using the finite element method and mathematical formulations, parametric studies were conducted to determine the influence of weld offsets and a variation of weld widths in longitudinally welded cylindrical structures with equal wall thickness on both sides of the joint. From the study, the finite element results and theoretical solutions are presented.

  3. Micromechanical properties of single crystals and polycrystals of pure α-titanium: anisotropy of microhardness, size effect, effect of the temperature (77-300 K)

    NASA Astrophysics Data System (ADS)

    Lubenets, S. V.; Rusakova, A. V.; Fomenko, L. S.; Moskalenko, V. A.

    2018-01-01

    The anisotropy of microhardness of pure α-Ti single crystals, indentation size effect in single-crystal, course grained (CG) pure and nanocrystalline (NC) VT1-0 titanium, as well as the temperature dependences of the microhardness of single-crystal and CG Ti in the temperature range 77-300 K were studied. The minimum value of hardness was obtained when indenting into the basal plane (0001). The indentation size effect (ISE) was clearly observed in the indentation of soft high-purity single-crystal iodide titanium while it was the least pronounced in a sample of nanocrystalline VT1-0 titanium. It has been demonstrated that the ISE can be described within the model of geometrically necessary dislocations (GND), which follows from the theory of strain gradient plasticity. The true hardness and others parameters of the GND model were determined for all materials. The temperature dependence of the microhardness is in agreement with the idea of the governing role of Peierls relief in the dislocation thermally-activated plastic deformation of pure titanium as has been earlier established and justified in macroscopic tensile investigations at low temperatures. The activation energy and activation volume of dislocation motion in the strained region under the indenter were estimated.

  4. Severe Plastic Deformation of Commercial Pure Titanium (CP-Ti) for Biomedical Applications: A Brief Review

    NASA Astrophysics Data System (ADS)

    Mahmoodian, Reza; Annuar, N. Syahira M.; Faraji, Ghader; Bahar, Nadia Dayana; Razak, Bushroa Abd; Sparham, Mahdi

    2017-11-01

    This paper reviews severe plastic deformation (SPD) techniques for producing ultrafine-grained (UFG) and nanostructured commercial pure titanium (CP-Ti) for biomedical applications as the best alternative to titanium alloys. SPD processes, effective parameters, and advantages of nanostructured CP-Ti over coarse-grained (CG) material and Ti alloys are briefly reviewed. It is reported that nanostructured CP-Ti processed via SPD exhibits higher mechanical strength comparable to Ti alloys but better biological response and superior biocompatibility. Also, different surface modification techniques offer different results on UFG and CG CP-Ti, leading to nanoscale surface topography in UFG samples. Overall, it is reported that nanostructured CP-Ti processed by SPD could be considered to be the best candidate for biomedical implants.

  5. Characteristics and Corrosion Behavior of Pure Titanium Subjected to Surface Mechanical Attrition

    NASA Astrophysics Data System (ADS)

    Fu, Tianlin; Wang, Xiao; Liu, Jianxiong; Li, Li; Yu, Xiaohua; Zhan, Zhaolin

    2017-10-01

    A stable passive film exhibiting good corrosion resistance in a 3.5 wt.% NaCl solution was formed on the surface of pure titanium (Ti) subjected to a surface mechanical attrition treatment (SMAT). The corrosion potential (-0.21 V) of the film was significantly higher than that (-0.92 V) of the untreated sample. Moreover, the corrosion current density was an order of magnitude lower than that of the untreated sample. SMAT resulted in a decrease in the vacancy condensation in the TiO2 film, thereby inhibiting the invasion and diffusion of Cl- in the film.

  6. Microstructure and crystallographic texture of pure titanium parts generated by laser additive manufacturing

    NASA Astrophysics Data System (ADS)

    Arias-González, Felipe; del Val, Jesús; Comesaña, Rafael; Penide, Joaquín; Lusquiños, Fernando; Quintero, Félix; Riveiro, Antonio; Boutinguiza, Mohamed; Gil, Francisco Javier; Pou, Juan

    2018-01-01

    In this paper, the microstructure and crystallographic texture of pure Ti thin walls generated by Additive Manufacturing based on Laser Cladding (AMLC) are analyzed in depth. From the results obtained, it is possible to better understand the AMLC process of pure titanium. The microstructure observed in the samples consists of large elongated columnar prior β grains which have grown epitaxially from the substrate to the top, in parallel to the building direction. Within the prior β grains, α-Ti lamellae and lamellar colonies are the result of cooling from above the β-transus temperature. This transformation follows the Burgers relationship and the result is a basket-weave microstructure with a strong crystallographic texture. Finally, a thermal treatment is proposed to transform the microstructure of the as-deposited samples into an equiaxed microstructure of α-Ti grains.

  7. Adhesive-Bonded Tab Attaches Thermocouples to Titanium

    NASA Technical Reports Server (NTRS)

    Cook, C. F.

    1982-01-01

    Mechanical strength of titanium-alloy structures that support thermocouples is preserved by first spotwelding thermocouples to titanium tabs and then attaching tabs to titanium with a thermosetting adhesive. In contrast to spot welding, a technique previously used for thermocouples, fatigue strength of the titanium is unaffected by adhesive bonding. Technique is also gentler than soldering or attaching thermocouples with a tap screw.

  8. Automatic orbital GTAW welding: Highest quality welds for tomorrow's high-performance systems

    NASA Technical Reports Server (NTRS)

    Henon, B. K.

    1985-01-01

    Automatic orbital gas tungsten arc welding (GTAW) or TIG welding is certain to play an increasingly prominent role in tomorrow's technology. The welds are of the highest quality and the repeatability of automatic weldings is vastly superior to that of manual welding. Since less heat is applied to the weld during automatic welding than manual welding, there is less change in the metallurgical properties of the parent material. The possibility of accurate control and the cleanliness of the automatic GTAW welding process make it highly suitable to the welding of the more exotic and expensive materials which are now widely used in the aerospace and hydrospace industries. Titanium, stainless steel, Inconel, and Incoloy, as well as, aluminum can all be welded to the highest quality specifications automatically. Automatic orbital GTAW equipment is available for the fusion butt welding of tube-to-tube, as well as, tube to autobuttweld fittings. The same equipment can also be used for the fusion butt welding of up to 6 inch pipe with a wall thickness of up to 0.154 inches.

  9. Ultrasonic Stir Welding

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  10. Titanium Brazing for Structures and Survivability

    DTIC Science & Technology

    2007-05-01

    materials, such as ceramics. This work focuses on vacuum brazing of titanium (both Ti- 6Al - 4V and commercially pure titanium ) and the effect of...such as ceramics. This work focuses on vacuum brazing of titanium (both Ti- 6Al - 4V and commercially pure titanium ) and the effect of processing...Suzumura, and Onzawa, reported the joining of Ti- 6Al - 4V and CP titanium alloys with zirconium-rich braze alloys.5 They found that these alloys could

  11. Bacterial adhesion on commercially pure titanium and anatase-coated titanium healing screws: an in vivo human study.

    PubMed

    Scarano, Antonio; Piattelli, Adriano; Polimeni, Antonella; Di Iorio, Donato; Carinci, Francesco

    2010-10-01

    Little is known about the mechanisms of bacterial interaction with implant materials in the oral cavity. Other surface characteristics, in addition to surface roughness, seem to be extremely important in relation to plaque formation. Different adhesion affinities of bacteria were reported for different materials. Anatase is a nanoparticle that can be applied to titanium surfaces as a coating. The anatase coating gives special characteristics to the implant surface, including some genetic effects on osteoblasts. In this study, the antibacterial effect of anatase is investigated. The aim of this study is to characterize the percentages of surfaces covered by bacteria on commercially pure (cp) titanium and anatase-coated healing screws. Ten patients participated in this study. The protocol of the study was approved by the ethics committee of the University of Chieti-Pescara. A total of 20 healing screws (10 test and 10 control screws) were used in the study. The control screws were made of cp titanium, whereas the test screws were coated with anatase. Cleaning procedures and agents for chemical plaque control were not applied to the healing screws for the complete duration of the test period. After 7 days, all healing screws were removed, substituted, and processed under scanning electron microscopy for evaluation of the portions of the surfaces covered by bacteria. The supracrestal screw surfaces covered by bacteria on test specimens were not significantly lower than those of control screws (P = 0.174). The subcrestal screw surfaces and threads covered by bacteria on test specimens were significantly lower than those of control screws, and P values were 0.001 and 0.000, respectively. Results show that anatase could be a suitable material for coating implant abutments, with a low colonization potential.

  12. Effect of zirconium addition on welding of aluminum grain refined by titanium plus boron

    NASA Astrophysics Data System (ADS)

    Zaid, A. I. O.

    2014-06-01

    Aluminum oxidizes freely in ordinary atmosphere which makes its welding difficult and weak, particularly it solidifies in columnar structure with large grains. Therefore, it is anticipated that the effect of addition of some grain refiners to its melt before solidification is worth while investigating as it may enhance its weldabilty and improve its mechanical strength. In this paper, the effect of addition of zirconium at a weight of 0.1% (which corresponds to the peretictic limit on the aluminum-zirconium base phase diagram) to commercially pure aluminum, grain refined by Ti+B on its weldability, using gas tungsten arc welding, GTAW, method which was formerly known as TIG. A constant current level of 30 AC Ampere was used because it removes the oxides during the welding process. Metallographic examination of the weldments of the different combinations of Al with Al and Al with its microalloys: in the heat affected zone, HAZ, and away from it was carried out and examined for HAZ width, porosity, cracks and microhardness. It was found that grain refining by Ti+B or Zr resulted in enhancement of the weldment.

  13. Corrosion-fatigue life of commercially pure titanium and Ti-6Al-4V alloys in different storage environments.

    PubMed

    Zavanelli, R A; Pessanha Henriques, G E; Ferreira, I; De Almeida Rollo, J M

    2000-09-01

    Removable partial dentures are affected by fatigue because of the cyclic mechanism of the masticatory system and frequent insertion and removal. Titanium and its alloys have been used in the manufacture of denture frameworks; however, preventive agents with fluorides are thought to attack titanium alloy surfaces. This study evaluated, compared, and analyzed the corrosion-fatigue life of commercially pure titanium and Ti-6Al-4V alloy in different storage environments. For each metal, 33 dumbbell rods, 2.3 mm in diameter at the central segment, were cast in the Rematitan system. Corrosion-fatigue strength test was carried out through a universal testing machine with a load 30% lower than the 0.2% offset yield strength and a combined influence of different environments: in air at room temperature, with synthetic saliva, and with fluoride synthetic saliva. After failure, the number of cycles were recorded, and fracture surfaces were examined with an SEM. ANOVA and Tukey's multiple comparison test indicated that Ti-6Al-4V alloy achieved 21,269 cycles (SD = 8,355) against 19,157 cycles (SD = 3, 624) for the commercially pure Ti. There were no significant differences between either metal in the corrosion-fatigue life for dry specimens, but when the solutions were present, the fatigue life was significantly reduced, probably because of the production of corrosion pits caused by superficial reactions.

  14. Heat Source - Materials Interactions during Fusion Welding.

    DTIC Science & Technology

    1982-04-30

    calcium, chromium and tungsten lines have been identified. In the titanium spectra (Figure 6), argon, titanium, aluminum, calcium and tungsten lines have...Stainless Steel," Weld J.,5(12), 1974, p. 5 4 9 -r. 3. C. B. Shaw, Jr. "Diagnostic Studies of the GTAW Arc," Weld J. 54(2), p.33-s. 4. J. F. Key, M. E...black body radiation curve. The diagram is valid only in the manganese m.p.-b.p. range. Fig.-8 Chromium isopleths plotted against log of pressure, log

  15. Nonchamber, Root-Side, Inert-Gas Purging During Welding

    NASA Technical Reports Server (NTRS)

    Mcgee, William F.; Rybicki, Daniel J.

    1995-01-01

    Improved apparatus distributes inert gas to protect against oxidation on root side of weld during welding and after welding while joint remains hot. Simple and lightweight; readily moved along weld path in synchronism with torch. Because it concentrates inert gas where needed, consumes gas at relatively low rate, and not necessary to monitor oxygen content of protective atmosphere. Apparatus does not obscure view of root side of weld. Used for full-penetration plasma-arc welding of such reactive metals as aluminum/lithium alloys and titanium.

  16. Numerical Study of Mechanical Response of Pure Titanium during Shot Peening

    NASA Astrophysics Data System (ADS)

    Wang, Y. M.; Cheng, J. P.; Yang, H. P.; Zhang, C. H.

    2018-05-01

    Mechanical response of pure titanium impacted by a steel ball was simulated using finite element method to investigate stress and strain evolution during shot peening. It is indicated that biaxial residual stress was obtained in the surface layer while in the interior triaxial residual stress existed because the S33 was comparable to S11 and S22. With decreasing the depth from the top surface, the stress was higher during impacting, but the stress relief extent became more significant when the ball rebounded. Therefore the maximum residual stress was formed in the subsurface layer with depth of 130 μm. As for the residual strain, it is shown that the maximum residual strain LE33 was obtained at the depth of 60 μm corresponding to the maximum shear stress during impacting.

  17. Development of the weldbond process for joining titanium

    NASA Technical Reports Server (NTRS)

    Fields, D.

    1972-01-01

    High quality resistance spot welds were produced by welding through epoxy adhesive on titanium alloys. Weldbond joints were consistently stronger than those of either mechanical fasteners, structural adhesive bonds, or mechanical fasteners with adhesive at the joint interface. Weldbond joints and/or spot weld joints showed superior strength at all temperature ranges as compared to other joints tested.

  18. Comparative study of two commercially pure titanium casting methods

    PubMed Central

    RODRIGUES, Renata Cristina Silveira; FARIA, Adriana Claudia Lapria; ORSI, Iara Augusta; de MATTOS, Maria da Gloria Chiarello; MACEDO, Ana Paula; RIBEIRO, Ricardo Faria

    2010-01-01

    The interest in using titanium to fabricate removable partial denture (RPD) frameworks has increased, but there are few studies evaluating the effects of casting methods on clasp behavior. Objective This study compared the occurrence of porosities and the retentive force of commercially pure titanium (CP Ti) and cobalt-chromium (Co-Cr) removable partial denture circumferential clasps cast by induction/centrifugation and plasma/vacuum-pressure. Material and Methods 72 frameworks were cast from CP Ti (n=36) and Co-Cr alloy (n=36; control group). For each material, 18 frameworks were casted by electromagnetic induction and injected by centrifugation, whereas the other 18 were casted by plasma and injected by vacuum-pressure. For each casting method, three subgroups (n=6) were formed: 0.25 mm, 0.50 mm, and 0.75 mm undercuts. The specimens were radiographed and subjected to an insertion/removal test simulating 5 years of framework use. Data were analyzed by ANOVA and Tukey's to compare materials and cast methods (α=0.05). Results Three of 18 specimens of the induction/centrifugation group and 9 of 18 specimens of plasma/vacuum-pressure cast presented porosities, but only 1 and 7 specimens, respectively, were rejected for simulation test. For Co-Cr alloy, no defects were found. Comparing the casting methods, statistically significant differences (p<0.05) were observed only for the Co-Cr alloy with 0.25 mm and 0.50 mm undercuts. Significant differences were found for the 0.25 mm and 0.75 mm undercuts dependent on the material used. For the 0.50 mm undercut, significant differences were found when the materials were induction casted. Conclusion Although both casting methods produced satisfactory CP Ti RPD frameworks, the occurrence of porosities was greater in the plasma/vacuum-pressure than in the induction/centrifugation method, the latter resulting in higher clasp rigidity, generating higher retention force values. PMID:21085805

  19. Effect of joint design and welding type on the flexural strength and weld penetration of Ti-6Al-4V alloy bars.

    PubMed

    Simamoto Júnior, Paulo Cézar; Resende Novais, Veridiana; Rodrigues Machado, Asbel; Soares, Carlos José; Araújo Raposo, Luís Henrique

    2015-05-01

    Framework longevity is a key factor for the success of complete-arch prostheses and commonly depends on the welding methods. However, no consensus has been reached on the joint design and welding type for improving framework resistance. The purpose of this study was to assess the effect of different joint designs and welding methods with tungsten inert gas (TIG) or laser to join titanium alloy bars (Ti-6Al-4V). Seventy titanium alloy bar specimens were prepared (3.18 mm in diameter × 40.0 mm in length) and divided into 7 groups (n=10): the C-control group consisting of intact specimens without joints and the remaining 6 groups consisting of specimens sectioned perpendicular to the long-axis and rejoined using an I-, X30-, or X45-shaped joint design with TIG welding (TI, TX30, and TX45) or laser welding (LI, LX30, and LX45). The specimens were tested with 3-point bending. The fracture surfaces were first evaluated with stereomicroscopy to measure the weld penetration area and then analyzed with scanning electron microscopy (SEM). The data were statistically analyzed with 2-way ANOVA and the Tukey post hoc test, 1-way ANOVA and the Dunnett test, and the Pearson correlation test (α=.05). Specimens from the X30 and X45 groups showed higher flexural strength (P<.05) and welded area (P<.05) than specimens from the I groups, regardless of the welding type. TIG welded groups showed significantly higher flexural strength than the laser groups (P<.05), regardless of the joint design. TIG welding also resulted in higher welded areas than laser welding for the I-shaped specimens. No significant differences were found for the weld penetration area in the X45 group, either for laser or TIG welding. SEM analysis showed more pores at the fracture surfaces of the laser specimens. Fracture surfaces indicative of regions of increased ductility were detected for the TIG specimens. TIG welding resulted in higher flexural strength for the joined titanium specimens than laser welding

  20. Titanium

    USGS Publications Warehouse

    Woodruff, Laurel G.; Bedinger, George M.; Piatak, Nadine M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Titanium is a mineral commodity that is essential to the smooth functioning of modern industrial economies. Most of the titanium produced is refined into titanium dioxide, which has a high refractive index and is thus able to impart a durable white color to paint, paper, plastic, rubber, and wallboard. Because of their high strength-to-weight ratio and corrosion resistance, titanium metal and titanium metal alloys are used in the aerospace industry as well as for welding rod coatings, biological implants, and consumer goods.Ilmenite and rutile are currently the principal titanium-bearing ore minerals, although other minerals, including anatase, perovskite, and titanomagnetite, could have economic importance in the future. Ilmenite is currently being mined from two large magmatic deposits hosted in rocks of Proterozoic-age anorthosite plutonic suites. Most rutile and nearly one-half of the ilmenite produced are from heavy-mineral alluvial, fluvial, and eolian deposits. Titanium-bearing minerals occur in diverse geologic settings, but many of the known deposits are currently subeconomic for titanium because of complications related to the mineralogy or because of the presence of trace contaminants that can compromise the pigment production process.Global production of titanium minerals is currently dominated by Australia, Canada, Norway, and South Africa; additional amounts are produced in Brazil, India, Madagascar, Mozambique, Sierra Leone, and Sri Lanka. The United States accounts for about 4 percent of the total world production of titanium minerals and is heavily dependent on imports of titanium mineral concentrates to meet its domestic needs.Titanium occurs only in silicate or oxide minerals and never in sulfide minerals. Environmental considerations for titanium mining are related to waste rock disposal and the impact of trace constituents on water quality. Because titanium is generally inert in the environment, human health risks from titanium and titanium

  1. DC electrical conductivity measurements for pure and titanium oxide doped KDP Crystals grown by gel medium

    NASA Astrophysics Data System (ADS)

    Mareeswaran, S.; Asaithambi, T.

    2016-10-01

    Now a day's crystals are the pillars of current technology. Crystals are applied in various fields like fiber optic communications, electronic industry, photonic industry, etc. Crystal growth is an interesting and innovative field in the subject of physics, chemistry, material science, metallurgy, chemical engineering, mineralogy and crystallography. In recent decades optically good quality of pure and metal doped KDP crystals have been grown by gel growth method in room temperature and its characterizations were studied. Gel method is a very simple and one of the easiest methods among the various crystal growth methods. Potassium dihydrogen phosphate KH2PO4 (KDP) continues to be an interesting material both academically and technologically. KDP is a delegate of hydrogen bonded materials which possess very good electrical and nonlinear optical properties in addition to interesting electro-optic properties. We made an attempt to grow pure and titanium oxide doped KDP crystals with various doping concentrations (0.002, 0.004, 0.006, 0.008 and 0.010) using gel method. The grown crystals were collected after 20 days. We get crystals with good quality and shaped crystals. The dc electrical conductivity (resistance, capacitance and dielectric constant) values of the above grown crystals were measured at two different frequencies (1KHz and 100 Hz) with a temperature range of 500C to 1200C using simple two probe setup with Q band digital LCR meter present in our lab. The electrical conductivity increases with the increase of temperature. Dielectric constants value of titanium oxide doped KDP crystal was slightly decreased compared with pure KDP crystals. Results were discussed in details.

  2. Spherical nanoindentation stress-strain curves of commercially pure titanium and Ti-6Al-4V

    DOE Data Explorer

    Weaver, Jordan S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Priddy, Matthew W. [Georgia Inst. of Technology, Atlanta, GA (United States); McDowell, David L. [Georgia Inst. of Technology, Atlanta, GA (United States); Kalidindi, Surya R. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2016-07-27

    Spherical nanoindentation combined with electron back-scattered diffraction was employed to characterize the grain-scale elastic and plastic anisotropy of single crystal alpha-Ti for commercially pure (CP-Ti) and alloyed (Ti-64) titanium. In addition, alpha-beta Ti (single colony) grains were characterized. The data set includes the nanoindentation force, displacement, and contact stiffness, the nanoindentation stress-strain analysis, and the alpha-Ti crystal orientations. Details of the samples and experimental protocols can be found in Weaver et al. (2016) Acta Materialia doi:10.1016/j.actamat.2016.06.053.

  3. Tissue stimulator enclosure welding fixture

    NASA Technical Reports Server (NTRS)

    Mcclure, S. R.

    1977-01-01

    It was demonstrated that the thickness of the stimulator titanium enclosure is directly related to the battery recharge time cycle. Reduction of the titanium enclosure thickness from approximately 0.37 mm (0.015 inch) to 0.05 mm (0.002 inch) significantly reduced the recharge time cycle and thereby patient inconvenience. However, fabrication of titanium enclosures from the thinner material introduced problems in forming, holding, and welding that required improvement in state of the art shop practices. The procedures that were utilized to resolve these fabrication problems are described.

  4. Small-scale explosive seam welding. [using ribbon explosive encased in lead sheath

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1972-01-01

    A unique small scale explosive seam welding technique is reported that has successfully joined a variety of aluminum alloys and alloy combinations in thicknesses to 0.125 inch, as well as titanium in thicknesses to 0.056 inch. The explosively welded joints are less than one-half inch in width and apparently have no long length limitation. The ribbon explosive developed in this study contains very small quantities of explosive encased in a flexible thin lead sheath. The evaluation and demonstration of this welding technique was accomplished in three phases: evaluation and optimization of ten major explosive welding variables, the development of four weld joints, and an applicational analysis which included photomicrographs, pressure integrity tests, vacuum effects, and fabrication of some potentially useful structures in aluminum and titanium.

  5. High Power Laser Welding. [of stainless steel and titanium alloy structures

    NASA Technical Reports Server (NTRS)

    Banas, C. M.

    1972-01-01

    A review of recent developments in high power, carbon dixoide laser welding is presented. Deep penetration welding in stainless steel to 0.5-in. thick, high speed welding in thin gage rimmed steel and gas shielded welding in Ti-6Al-4V alloy are described. The effects of laser power, power density, focusing optics, gas-shielding techniques, material properties and weld speed on weld quality and penetration are discussed. It is shown that laser welding performance in thin materials is comparable to that of electron beams. It is further shown that high quality welds, as evidenced by NDT, mechanical and metal-lographic tests, can be achieved. The potential of the laser for industrial welding applications is indicated.

  6. Truss Assembly and Welding by Intelligent Precision Jigging Robots

    NASA Technical Reports Server (NTRS)

    Komendera, Erik; Dorsey, John T.; Doggett, William R.; Correll, Nikolaus

    2014-01-01

    This paper describes an Intelligent Precision Jigging Robot (IPJR) prototype that enables the precise alignment and welding of titanium space telescope optical benches. The IPJR, equipped with micron accuracy sensors and actuators, worked in tandem with a lower precision remote controlled manipulator. The combined system assembled and welded a 2 m truss from stock titanium components. The calibration of the IPJR, and the difference between the predicted and the truss dimensions as-built, identified additional sources of error that should be addressed in the next generation of IPJRs in 2D and 3D.

  7. In-situ laser ultrasonic measurement of the hcp to bcc transformation in commercially pure titanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinbine, A., E-mail: alyssa.shinbine@gmail.com; Garcin, T.; Sinclair, C.

    2016-07-15

    Using a novel in-situ laser ultrasonic technique, the evolution of longitudinal velocity was used to measure the α − β transformation during cyclic heating and cooling in commercially pure titanium. In order to quantify the transformation kinetics, it is shown that changes in texture can not be ignored. This is particularly important in the case of titanium where significant grain growth occurs in the β-phase leading to the ultrasonic wave sampling a decreasing number of grains on each thermal treatment cycle. Electron backscatter diffraction measurements made postmortem in the region where the ultrasonic pulse traveled were used to obtain anmore » estimate of such local texture and grain size changes. An analysis technique for including the anisotropy of wave velocity depending on local texture is presented and shown to give self consistent results for the transformation kinetics. - Highlights: • Laser ultrasound and EBSD interpret the hcp/bcc phase transformation in cp-Ti. • Grain growth and texture produced variation in velocity during similar treatments. • Texture was deconvoluted from phase addition to obtain transformation kinetics.« less

  8. Effect of plasma welding parameters on the flexural strength of Ti-6Al-4V alloy.

    PubMed

    Lyra e Silva, João Paulo; Fernandes Neto, Alfredo Júlio; Raposo, Luís Henrique Araújo; Novais, Veridiana Resende; de Araujo, Cleudmar Amaral; Cavalcante, Luisa de Andrade Lima; Simamoto Júnior, Paulo Cezar

    2012-01-01

    The aim of this study was to assess the effect of different plasma arc welding parameters on the flexural strength of titanium alloy beams (Ti-6Al-4V). Forty Ti-6Al-4V and 10 NiCr alloy beam specimens (40 mm long and 3.18 mm diameter) were prepared and divided into 5 groups (n=10). The titanium alloy beams for the control group were not sectioned or subjected to welding. Groups PL10, PL12, and PL14 contained titanium beams sectioned and welded at current 3 A for 10, 12 or 14 ms, respectively. Group NCB consisted of NiCr alloy beams welded using conventional torch brazing. After, the beams were subjected to a three-point bending test and the values obtained were analyzed to assess the flexural strength (MPa). Statistical analysis was carried out by one-way ANOVA and Tukey's HSD test at 0.05 confidence level. Significant difference was verified among the evaluated groups (p<0.001), with higher flexural strength for the control group (p<0.05). No significant differences was observed among the plasma welded groups (p>0.05). The NCB group showed the lowest flexural strength, although it was statistically similar to the PL 14 group (p>0.05). The weld depth penetration was not significantly different among the plasma welded groups (p=0.05). Three representative specimens were randomly selected to be evaluated under scanning electron microcopy. The composition of the welded regions was analyzed by energy dispersive X-ray spectroscopy. This study provides an initial set of parameters supporting the use of plasma welding during fabrication of titanium alloy dental frameworks.

  9. A Comparison Between Mechanical And Electrochemical Tests on Ti6Al4V Welded By LBW

    NASA Astrophysics Data System (ADS)

    Serroni, G.; Bitondo, C.; Astarita, A.; Scala, A.; Gloria, A.; Prisco, U.; Squillace, A.; Bellucci, F.

    2011-05-01

    Titanium and its alloys are nowadays widely used in many sectors: in the medical field (orthopedic and dental ones), in the architectural field, in the chemical plants field and in aeronautic. In this last field it is more and more used both for its contribution to make lightweight and time durable structures and for its compatibility with new materials, first of all Carbon Fiber Reinforced Plastics (CFRP). To this aim, lots of researches are now focusing on new and emerging technologies capable to make titanium objects and, at the same time, reducing the scrap, since titanium alloys for aeronautic application are very expensive. This paper examines Grade 5 Titanium Alloy (Ti6Al4V) welded by Laser Beam (LBW) in butt-joint configuration. The source was Nd:YAG laser, moreover two inert gases were used, in order to provide a shield both on the top and on the bottom of the weld bead. The joints were studied by varying two process parameters: welding speed and power of the laser beam. It was not possible to realize a full experimental plan, due to technological limits in making titanium laser beam welds. The joints were tested to measure their mechanical properties and the corrosion resistance. The process parameters do not significantly affect the maximum static strength of the joints. Microscopic analysis showed that welds made with high power and low welding speed have a uniform weld bead, and no macroscopic defect occurs. Fatigue test results, instead, show a marked influence of the morphology of the weld bead: the occurrence of some defects, such as the undercut, both on the top and on the bottom of the weld bead, dramatically reduced fatigue resistance of the joints. Corrosion resistance was studied using the electrochemical micro cell technique, which allows to distinguish electrochemical properties of each zone of the weld bead, even when, as in this case, they are very narrow. By a general point of view, it has been demonstrated that the joints showing the best

  10. Laser-welded titanium frameworks supported by implants in the partially edentulous mandible: a 10-year comparative follow-up study.

    PubMed

    Ortorp, Anders; Jemt, Torsten

    2008-09-01

    Comparative long-term knowledge of different framework materials in the partially edentulous implant patient is not available. To report and compare 10-year data on free-standing implant-supported partial prostheses with laser-welded titanium (test) and conventional gold alloy (control) frameworks. Altogether, 52 partially edentulous patients were consecutively provided with laser-welded prostheses (n = 60) in the partially edentulous lower jaw (test group). A control group of 52 randomly selected patients with gold alloy castings (n = 60) was used for comparison. Clinical and radiographic 10-year data were retrospectively collected and evaluated for both groups. The overall 10-year implant cumulative survival rate (CSR) was 93.0% (loaded implants, 96.4%), with a 10-year implant CSR of 91.5 and 94.7% for test and control implants, respectively (p > .05). Out of a total of 22 lost implants, 17 implants (77.3%) were shorter than 10 mm. The overall 10-year prosthesis CSR was 93.7%, with a corresponding 10-year CSR of 88.4 and 100% for test and control groups, respectively (p < .05). Average 10-year bone loss was 0.46 mm (SD 0.47) and 0.69 mm (SD 0.53) for the test and control groups (p < .001), respectively. Only 1% of the implants had >3 mm accumulated bone loss after 10 years. Altogether, 10 of the prostheses in both groups had implant component mechanical problems (8.3%). None of the frameworks or implants fractured, but more fractures of porcelain veneers were observed in the test group (p < .05). The protocol of implant treatment in the partially edentulous jaw functioned well during 10 years, although prosthodontic maintenance was required. However, laser-welded titanium frameworks presented more problems as compared with gold alloy frameworks. More loaded implants were lost (p < .05), and higher incidence of porcelain chipping was noted in the test group (p < .05). However, bone loss was on an average lower for the test group during the 10 years of follow-up (p

  11. Effect of alkaline treatment of pure titanium and its alloys on the bonding strength of dental veneering resins.

    PubMed

    Ban, Seiji

    2003-07-01

    Commercially pure titanium (cpTi), Ti6Al4V, an experimental beta-type titanium (Ti 53.4 wt%, Nb 29 wt %, Ta 13 wt %, and Zr 4.6 wt %), and 12% AuPdAg alloy plates were sandblasted, cleaned in water, and dried. cpTi plates were treated with nine alkaline treatments that differed in the type of alkali, alkaline concentration, soaking temperature, soaking time, and heating temperature. cpTi plates that were only sandblasted or sandblasted and oxidized at 600 degrees C for 1 h in air were also prepared. Finally, the bonding strengths of 11 kinds of surface-treated cpTi to resin were measured using a pull-shear bonding method after immersion in physiologic saline solution at 37 degrees C for 24 h. The bonds of the standard alkaline-treated cpTi and two titanium alloys to resins were 1.5-1.9 times stronger than those of sandblasted specimens (p < 0.01), but no significant effects of the alkaline treatment were observed on the 12% AuPdAg alloy. The greatest bonding strengths were found for cpTi treated with NaOH and KOH and then heated at 600 degrees C (p < 0.01). In conclusion, alkaline treatment is a simple, effective surface modification of titanium that improves bonding to veneering resin. Copyright 2003 Wiley Periodicals, Inc.

  12. Welded Titanium Case for Space-Probe Rocket Motor

    NASA Technical Reports Server (NTRS)

    Brothers, A. J.; Boundy, R. A.; Martens, H. E.; Jaffe, L. D.

    1959-01-01

    The high strength-to-weight ratio of titanium alloys suggests their use for solid-propellant rocket-motor cases for high-performance orbiting or space-probe vehicles. The paper describes the fabrication of a 6-in.-diam., 0.025-in.-wall rocket-motor from the 6A1-4V titanium alloy. The rocket-motor case, used in the fourth stage of a successful JPL-NASA lunar-probe flight, was constructed using a design previously proven satisfactory for Type 410 stainless steel. The nature and scope of the problems peculiar to the use of the titanium alloy, which effected an average weight saving of 34%, are described.

  13. Metallographic Preparation of Space Shuttle Reaction Control System Thruster Electron Beam Welds for Electron Backscatter Diffraction

    NASA Technical Reports Server (NTRS)

    Martinez, James

    2011-01-01

    A Space Shuttle Reaction Control System (RCS) thruster failed during a firing test at the NASA White Sands Test Facility (WSTF), Las Cruces, New Mexico. The firing test was being conducted to investigate a previous electrical malfunction. A number of cracks were found associated with the fuel closure plate/injector assembly (Fig 1). The firing test failure generated a flight constraint to the launch of STS-133. A team comprised of several NASA centers and other research institutes was assembled to investigate and determine the root cause of the failure. The JSC Materials Evaluation Laboratory was asked to compare and characterize the outboard circumferential electron beam (EB) weld between the fuel closure plate (Titanium 6Al-4V) and the injector (Niobium C-103 alloy) of four different RCS thrusters, including the failed RCS thruster. Several metallographic challenges in grinding/polishing, and particularly in etching were encountered because of the differences in hardness, ductility, and chemical resistance between the two alloys and the bimetallic weld. Segments from each thruster were sectioned from the outboard weld. The segments were hot-compression mounted using a conductive, carbon-filled epoxy. A grinding/polishing procedure for titanium alloys was used [1]. This procedure worked well on the titanium; but a thin, disturbed layer was visible on the niobium surface by means of polarized light. Once polished, each sample was micrographed using bright field, differential interference contrast optical microscopy, and scanning electron microscopy (SEM) using a backscatter electron (BSE) detector. No typical weld anomalies were observed in any of the cross sections. However, areas of large atomic contrast were clearly visible in the weld nugget, particularly along fusion line interfaces between the titanium and the niobium. This prompted the need to better understand the chemistry and microstructure of the weld (Fig 2). Energy Dispersive X-Ray Spectroscopy (EDS

  14. Low temperature heat treatments of AA5754-Ti6Al4V dissimilar laser welds: Microstructure evolution and mechanical properties

    NASA Astrophysics Data System (ADS)

    Leo, P.; D'Ostuni, S.; Casalino, G.

    2018-03-01

    This paper presents the effects of the post welding heat treatments (PWHT) performed at 350 °C and 450 °C on the microstructure evolution and mechanical properties of AA5754 and Ti6Al4V dissimilar laser welds. The microstructure and tensile properties of the welds before and after low temperature treatment were analyzed. The off-set welding technique was applied to limit the formation of brittle intermetallic compounds during the welding process. The laser beam was directed onto the titanium side at a small distance from the aluminum edge. The keyhole formed and the full penetration was reached in the titanium side of the weld. Thereafter, the aluminum side melted as the heat that formed the keyhole transferred from the titanium fused zone. Two different energy lines (32 J/mm and 76 J/mm) were used. In this manner, a fused and a heat affected zones was revealed on both sides of the weld. Several intermetallic compounds formed in the intermetallic layer between the two metals. The thickness and the composition of the intermetallic layer depended on the welding parameters and the post welding heat treatment. The hardness and tensile properties of the welds before and after the post welding heat treatment were measured and analyzed.

  15. Effect of a microstructure and surface hydrogen alloying of a VT6 alloy on diffusion welding

    NASA Astrophysics Data System (ADS)

    Senkevich, K. S.; Skvortsova, S. V.; Kudelina, I. M.; Knyazev, M. I.; Zasypkin, V. V.

    2014-01-01

    The effect of a structural type (lamellar, fine, gradient) and additional surface alloying with hydrogen on the diffusion bonding of titanium alloy VT6 samples is studied. It is shown that the surface alloying of VT6 alloy parts with hydrogen allows one to decrease the diffusion welding temperature by 50-100°C, to obtain high-quality pore-free bonding, and to remove the "structural" boundary between materials to be welded that usually forms during welding of titanium alloys with a lamellar structure.

  16. [Corrosion resistant properties of different anodized microtopographies on titanium surfaces].

    PubMed

    Fangjun, Huo; Li, Xie; Xingye, Tong; Yueting, Wang; Weihua, Guo; Weidong, Tian

    2015-12-01

    To investigate the corrosion resistant properties of titanium samples prepared by anodic oxidation with different surface morphologies. Pure titanium substrates were treated by anodic oxidation to obtain porous titanium films in micron, submicron, and micron-submicron scales. The surface morphologies, coating cross-sectional morphologies, crystalline structures, and surface roughness of these samples were characterized. Electrochemical technique was used to measure the corrosion potential (Ecorr), current density of corrosion (Icorr), and polarization resistance (Rp) of these samples in a simulated body fluid. Pure titanium could be modified to exhibit different surface morphologies by the anodic oxidation technique. The Tafel curve results showed that the technique can improve the corrosion resistance of pure titanium. Furthermore, the corrosion resistance varied with different surface morphologies. The submicron porous surface sample demonstrated the best corrosion resistance, with maximal Ecorr and Rp and minimal Icorr. Anodic oxidation technology can improve the corrosion resistance of pure titanium in a simulated body fluid. The submicron porous surface sample exhibited the best corrosion resistance because of its small surface area and thick barrier layer.

  17. Deflection load characteristics of laser-welded orthodontic wires.

    PubMed

    Watanabe, Etsuko; Stigall, Garrett; Elshahawy, Waleed; Watanabe, Ikuya

    2012-07-01

    To compare the deflection load characteristics of homogeneous and heterogeneous joints made by laser welding using various types of orthodontic wires. Four kinds of straight orthodontic rectangular wires (0.017 inch × 0.025 inch) were used: stainless-steel (SS), cobalt-chromium-nickel (Co-Cr-Ni), beta-titanium alloy (β-Ti), and nickel-titanium (Ni-Ti). Homogeneous and heterogeneous end-to-end joints (12 mm long each) were made by Nd:YAG laser welding. Two types of welding methods were used: two-point welding and four-point welding. Nonwelded wires were also used as a control. Deflection load (N) was measured by conducting the three-point bending test. The data (n  =  5) were statistically analyzed using analysis of variance/Tukey test (P < .05). The deflection loads for control wires measured were as follows: SS: 21.7 ± 0.8 N; Co-Cr-Ni: 20.0 ± 0.3 N; β-Ti: 13.9 ± 1.3 N; and Ni-Ti: 6.6 ± 0.4 N. All of the homogeneously welded specimens showed lower deflection loads compared to corresponding control wires and exhibited higher deflection loads compared to heterogeneously welded combinations. For homogeneous combinations, Co-Cr-Ni/Co-Cr-Ni showed a significantly (P < .05) higher deflection load than those of the remaining homogeneously welded groups. In heterogeneous combinations, SS/Co-Cr-Ni and β-Ti/Ni-Ti showed higher deflection loads than those of the remaining heterogeneously welded combinations (significantly higher for SS/Co-Cr-Ni). Significance (P < .01) was shown for the interaction between the two factors (materials combination and welding method). However, no significant difference in deflection load was found between four-point and two-point welding in each homogeneous or heterogeneous combination. Heterogeneously laser-welded SS/Co-Cr-Ni and β-Ti/Ni-Ti wires provide a deflection load that is comparable to that of homogeneously welded orthodontic wires.

  18. Effects of joint configuration for the arc welding of cast Ti-6Al-4V alloy rods in argon.

    PubMed

    Taylor, J C; Hondrum, S O; Prasad, A; Brodersen, C A

    1998-03-01

    Titanium and its alloys are more commonly used in prosthodontics and welding has become the most common modality for their joining. Studies on the welding of titanium and its alloys have not quantified this value, though its importance has been suggested. This study compared the strength and properties of the joint achieved at various butt joint gaps by the arc-welding of cast Ti-6Al-4V alloy tensile bars in an argon atmosphere. Forty of 50 specimens were sectioned and welded at four gaps. All specimens underwent tensile testing to determine ultimate tensile strength and percentage elongation, then oxygen analysis and scanning electron microscopy. As no more than 3 samples in any group of 10 actually fractured in the weld itself, a secondary analysis that involved fracture location was initiated. There were no differences in ultimate tensile strength or percentage elongation between specimens with weld gaps of 0.25, 0.50, 0.75, and 1.00 mm and the as-cast specimens. There were no differences in ultimate tensile strength between specimens fracturing in the weld and those fracturing in the gauge in welded specimens; however, as-cast specimens demonstrated a higher ultimate tensile strength than welded specimens that fractured in the weld. Specimens that fractured in the weld site demonstrated less ductility than those that fractured in the gauge in both welded and as-cast specimens, as confirmed by scanning electron microscopy examination. The weld wire showed an oxygen scavenging effect from the as-cast parent alloy. The effects of the joint gap were not significant, whereas the characteristics of the joint itself were, which displayed slightly lower strength and significantly lower ductility (and thus decreased toughness). The arc-welding of cast titanium alloy in argon atmosphere appears to be a reliable and efficient prosthodontic laboratory modality producing predictable results, although titanium casting and joining procedures must be closely controlled to

  19. A comparison of two types of neural network for weld quality prediction in small scale resistance spot welding

    NASA Astrophysics Data System (ADS)

    Wan, Xiaodong; Wang, Yuanxun; Zhao, Dawei; Huang, YongAn

    2017-09-01

    Our study aims at developing an effective quality monitoring system in small scale resistance spot welding of titanium alloy. The measured electrical signals were interpreted in combination with the nugget development. Features were extracted from the dynamic resistance and electrode voltage curve. A higher welding current generally indicated a lower overall dynamic resistance level. A larger electrode voltage peak and higher change rate of electrode voltage could be detected under a smaller electrode force or higher welding current condition. Variation of the extracted features and weld quality was found more sensitive to the change of welding current than electrode force. Different neural network model were proposed for weld quality prediction. The back propagation neural network was more proper in failure load estimation. The probabilistic neural network model was more appropriate to be applied in quality level classification. A real-time and on-line weld quality monitoring system may be developed by taking advantages of both methods.

  20. Simulation of Texture Evolution during Uniaxial Deformation of Commercially Pure Titanium

    NASA Astrophysics Data System (ADS)

    Bishoyi, B.; Debta, M. K.; Yadav, S. K.; Sabat, R. K.; Sahoo, S. K.

    2018-03-01

    The evolution of texture in commercially pure (CP) titanium during uniaxial tension and compression through VPSC (Visco-plastic self-consistent) simulation is reported in the present study. CP-titanium was subjected to both uniaxial tension and compression upto 35% deformation. During uniaxial tension, tensile twin of \\{10\\bar{1}2\\}\\unicode{x003C;}\\bar{1}011\\unicode{x003E;} type and compressive twin of \\{11\\bar{2}2\\}\\unicode{x003C;}11\\bar{2}\\bar{3}\\unicode{x003E;} type were observed in the samples. However, only tensile twin of \\{10\\bar{1}2\\}\\unicode{x003C;}\\bar{1}011\\unicode{x003E;} type and compressive twin of type was observed in the samples during uniaxial compression. Volume fractions of the twins were increased linearly as a function of percentage deformation during uniaxial tension. Whereas, during uniaxial compression the twinning volume fraction was increased up to 20% deformation and then decreased rapidly on further increasing the percentage deformation. During uniaxial tension, the general t-type textures were observed in the samples irrespective of the percentage deformation. The initial non-basal texture was oriented to split basal texture during uniaxial compression of the sample. VPSC formulation was used for simulating the texture development in the material. Different hardening parameters were estimated through correlating the simulated stress-strain curve with the experimental stress-strain data. It was observed that, prismatic slip \\{10\\bar{1}0\\}\\unicode{x003C;}11\\bar{2}0\\unicode{x003E;} operated as the primary deformation mode during uniaxial tension whereas basal slip \\{0001\\}\\unicode{x003C;}11\\bar{2}0\\unicode{x003E;} acquired the leading role during deformation through uniaxial compression. It was also revealed that active deformation modes were fully depending on percentage deformation, loading direction, and orientation of grains.

  1. [Apatite-forming ability of pure titanium implant after micro-arc oxidation treatment].

    PubMed

    Tian, Zhihui; Zhang, Yu; Wang, Lichao; Nan, Kaihui

    2013-10-01

    To investigate the apatite forming ability of pure titanium implant after micro-arc oxidation treatment in simulated body fluid (SBF) and obtain implants with calcium phosphate (Ca-P) layers. The implants were immersed in (SBF) after micro-arc oxidation treatment for different time lengths, and their apatite forming ability and the morphology and constituents of the Ca-P layers formed on the sample surface were analyzed using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive electron probe. After immersion in SBF, large quantities of Ca-P layers were induced on the surface of the samples. The Ca-P layers were composed of octacalcium phosphate and carbonated hydroxyapatite, and the crystals showed a plate-like morphology with an oriented growth. The implants with micro-arc oxidation treatment show good apatite forming ability on the surface with rich calcium and phosphorus elements. The formed layers are composed of bone-like apatite including octacalcium phosphate and carbonated hydroxyapatite.

  2. Laser welding and syncristallization techniques comparison: “Ex vivo” study

    PubMed Central

    Meleti, Marco; Vescovi, Paolo; Merigo, Elisabetta; Rocca, Jean-Paul

    2013-01-01

    Background and aims: Stabilization of implant abutments through electric impulses at high voltage for a very short time (electrowelding) was developed in the Eighties. In 2009, the same procedure was performed through the use of laser (laser welding) The aim of this study is to compare electrowelding and laser welding for intra-oral implant abutments stabilization on “ex vivo models” (pig jaws). Materials and methods: Six bars were welded with two different devices (Nd:YAG laser and Electrowelder) to eighteen titanium implant abutment inserted in three pig jaws. During the welding process, thermal increase was recorded, through the use of k-thermocouples, in the bone close to the implants. The strength of the welded joints was evaluated by a traction test after the removal of the implants. For temperature measurements a descriptive analysis and for traction test “values unpaired t test with Welch's correction” were performed: the significance level was set at P<0.05. Results: Laser welding gives a lower thermal increase than Electrowelding at the bone close to implants (Mean: 1.97 and 5.27); the strength of laser welded joints was higher than that of Electrowelding even if nor statistically significant. (Mean: 184.75 and 168.29) Conclusion: Electrowelding seems to have no advantages, in term of thermal elevation and strength, while laser welding may be employed to connect titanium implants for immediate load without risks of thermal damage at surrounding tissues. PMID:24511205

  3. Influence of the height of the external hexagon and surface treatment on fatigue life of commercially pure titanium dental implants.

    PubMed

    Gil, Francisco Javier; Aparicio, Conrado; Manero, Jose M; Padros, Alejandro

    2009-01-01

    This study evaluated the effect of external hexagon height and commonly applied surface treatments on the fatigue life of titanium dental implants. Electropolished commercially pure titanium dental implants (seven implants per group) with three different external hexagon heights (0.6, 1.2, and 1.8 mm) and implants with the highest external hexagon height (1.8 mm) and different surface treatments (electropolishing, grit blasting with aluminium oxide, and acid etching with sulfuric acid) were tested to evaluate their mechanical fatigue life. To do so, 10-Hz triangular flexural load cycles were applied at 37 degrees C in artificial saliva, and the number of load cycles until implant fracture was determined. Tolerances of the hexagon/abutment fit and implant surface roughness were analyzed by scanning electron microscopy and light interferometry. Transmission electron microscopy and electron diffraction analyses of titanium hydrides were performed. First, the fatigue life of implants with the highest hexagon (8,683 +/- 978 load cycles) was more than double that of the implants with the shortest hexagons (3,654 +/- 789 load cycles) (P < .02). Second, the grit-blasted implants had the longest fatigue life of the tested materials (21,393 +/- 2,356 load cycles), which was significantly greater than that of the other surfaces (P < .001). The compressive surface residual stresses induced when blasting titanium are responsible for this superior mechanical response. Third, precipitation of titanium hydrides in grain boundaries of titanium caused by hydrogen adsorption from the acid solution deteriorates the fatigue life of acid-etched titanium dental implants. These implants had the shortest fatigue life (P < .05). The fatigue life of threaded root-form dental implants varies with the height of the external hexagon and/or the surface treatment of the implant. An external hexagon height of 1.8 mm and/or a blasting treatment appear to significantly increase fatigue life of

  4. Chemical composition and morphology of welding fume particles and grinding dusts.

    PubMed

    Karlsen, J T; Farrants, G; Torgrimsen, T; Reith, A

    1992-05-01

    Elemental composition and morphology of pure manual metal arc (MMA) welding fumes, pure grinding dust, and combined fume/dust air samples were collected and determined separately under semilaboratory conditions. The base material was stainless steel. The purpose of the present study was to create a "synthetic" work situation under semilaboratory conditions by combining one grinding period and two MMA welding periods and comparing these results with results during welding in a workshop. The duty cycles of pure welding and of pure grinding were also observed. A comparison was also made between metal inert gas (MIG) and MMA welding on stainless steel as well as a nickel-rich alloy under regular conditions. The amount of collected material was determined by weighing the membrane filters before and after exposure, and the element contents were determined by atomic spectroscopy. Other transmission electron microscopy (TEM) filters were used for TEM and computer-image analysis, in which the amount of collected material and its morphological characteristics were observed. The arcing time and the consumption of filler material were estimated for different kinds of electrodes. Chemical analysis showed that the contents of manganese and total chromium were lower in grinding dust than in welding fumes. The contents of hexavalent chromium, Cr(VI), in grinding dust were undetectable. Samples collected in welding shops where concomitant grinding was performed contained about 30% less Cr(VI) than those collected under laboratory conditions during welding only. The sizes and shapes of the particles depend on the welding process and distance of collection from the plume of the fume. To compare laboratory experiments with regular welding situations, the experiment must resemble industrial welding.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Layer Structure of a Refractory Multilayer Ti/Al Composite After Pressure Diffusion Welding

    NASA Astrophysics Data System (ADS)

    Karpov, M. I.; Korzhov, V. P.; Zheltyakova, I. S.

    2016-05-01

    A composite refractory material with layer structure obtained by the method of pressure diffusion welding of multilayer Ti/Al packets composed of Ti- and Al-foils is studied. The welding temperature of the packets does not exceed 1200 - 1250°C. A layer structure forms in the process of interdiffusion of titanium and aluminum during welding of the packets.

  6. The Effect of Welding Energy on the Microstructural and Mechanical Properties of Ultrasonic-Welded Copper Joints

    PubMed Central

    Yang, Jingwei; Cao, Biao; Lu, Qinghua

    2017-01-01

    The effects of welding energy on the mechanical and microstructural characteristics of ultrasonic-welded pure copper plates were investigated. Complex dynamic recrystallization and grain growth occurred inside the weld zone during ultrasonic welding. At a low welding energy, a thin band of straight weld interfaces was observed and had an ultra-fine grain structure. With an increase in welding energy, the weld interface progressively changed from flat to sinusoidal, and eventually turned into a convoluted wavy pattern, bearing similarities to shear instabilities, as observed in fluid dynamics. The lap shear load of the joints initially increased and then remained stable as the welding energy increased. The tensile characteristics of the joints significantly depended on the development of plastic deformation at the interface. The influence of the microstructure on the hardness was also discussed. PMID:28772553

  7. The Effect of Welding Energy on the Microstructural and Mechanical Properties of Ultrasonic-Welded Copper Joints.

    PubMed

    Yang, Jingwei; Cao, Biao; Lu, Qinghua

    2017-02-16

    The effects of welding energy on the mechanical and microstructural characteristics of ultrasonic-welded pure copper plates were investigated. Complex dynamic recrystallization and grain growth occurred inside the weld zone during ultrasonic welding. At a low welding energy, a thin band of straight weld interfaces was observed and had an ultra-fine grain structure. With an increase in welding energy, the weld interface progressively changed from flat to sinusoidal, and eventually turned into a convoluted wavy pattern, bearing similarities to shear instabilities, as observed in fluid dynamics. The lap shear load of the joints initially increased and then remained stable as the welding energy increased. The tensile characteristics of the joints significantly depended on the development of plastic deformation at the interface. The influence of the microstructure on the hardness was also discussed.

  8. Full-Field Strain Behavior of Friction Stir-Welded Titanium Alloy

    DTIC Science & Technology

    2008-01-01

    and slag formed on the upper weld surface by the FSW process and the remnant laser weld bead on the underside of the FSW surface were removed from...using 3M brand ‘Super 77’ spray adhesive and then hand sanding against a mechanically flat ceramic backing surface using silicon 32 carbide...weld surface using Loctite brand “5-minute Epoxy” and allowing to cure. Following the required cure period, the aluminum grating glass backing was

  9. A new corrective technique for adolescent idiopathic scoliosis: convex manipulation using 6.35 mm diameter pure titanium rod followed by concave fixation using 6.35 mm diameter titanium alloy

    PubMed Central

    2015-01-01

    Background It has been thought that corrective posterior surgery for adolescent idiopathic scoliosis (AIS) should be started on the concave side because initial convex manipulation would increase the risk of vertebral malrotation, worsening the rib hump. With the many new materials, implants, and manipulation techniques (e.g., direct vertebral rotation) now available, we hypothesized that manipulating the convex side first is no longer taboo. Methods Our technique has two major facets. (1) Curve correction is started from the convex side with a derotation maneuver and in situ bending followed by concave rod application. (2) A 6.35 mm diameter pure titanium rod is used on the convex side and a 6.35 mm diameter titanium alloy rod on the concave side. Altogether, 52 patients were divided into two groups. Group N included 40 patients (3 male, 37 female; average age 15.9 years) of Lenke type 1 (23 patients), type 2 (2), type 3 (3), type 5 (10), type 6 (2). They were treated with a new technique using 6.35 mm diameter different-stiffness titanium rods. Group C included 12 patients (all female, average age 18.8 years) of Lenke type 1 (6 patients), type 2 (3), type 3 (1), type 5 (1), type 6 (1). They were treated with conventional methods using 5.5 mm diameter titanium alloy rods. Radiographic parameters (Cobb angle/thoracic kyphosis/correction rates) and perioperative data were retrospectively collected and analyzed. Results Preoperative main Cobb angles (groups N/C) were 56.8°/60.0°, which had improved to 15.2°/17.1° at the latest follow-up. Thoracic kyphosis increased from 16.8° to 21.3° in group N and from 16.0° to 23.4° in group C. Correction rates were 73.2% in group N and 71.7% in group C. There were no significant differences for either parameter. Mean operating time, however, was significantly shorter in group N (364 min) than in group C (456 min). Conclusion We developed a new corrective surgical technique for AIS using a 6.35 mm diameter pure titanium

  10. Electrochemical Behavior Assessment of Micro- and Nano-Grained Commercial Pure Titanium in H2SO4 Solutions

    NASA Astrophysics Data System (ADS)

    Fattah-alhosseini, Arash; Ansari, Ali Reza; Mazaheri, Yousef; Karimi, Mohsen

    2017-02-01

    In this study, the electrochemical behavior of commercial pure titanium with both coarse-grained (annealed sample with the average grain size of about 45 µm) and nano-grained microstructure was compared by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and Mott-Schottky analysis. Nano-grained Ti, which typically has a grain size of about 90 nm, is successfully made by six-cycle accumulative roll-bonding process at room temperature. Potentiodynamic polarization plots and impedance measurements revealed that as a result of grain refinement, the passive behavior of the nano-grained sample was improved compared to that of annealed pure Ti in H2SO4 solutions. Mott-Schottky analysis indicated that the passive films behaved as n-type semiconductors in H2SO4 solutions and grain refinement did not change the semiconductor type of passive films. Also, Mott-Schottky analysis showed that the donor densities decreased as the grain size of the samples reduced. Finally, all electrochemical tests showed that the electrochemical behavior of the nano-grained sample was improved compared to that of annealed pure Ti, mainly due to the formation of thicker and less defective oxide film.

  11. Investigation of Conditions of Titanium Carbonization - IV

    NASA Technical Reports Server (NTRS)

    Meerson, G. A.; Lipkes, Y. M.

    1949-01-01

    In a previous paper, results are presented of accurate investigations of the processes of titanium carbonization and the succeeding titanium carbide decarbonization as related to the phenomenon of the graphitization of soot by heating at a constant temperature in atmospheres of pure hydrogen and carbon monoxide. These tests showed that the processes of titanium carbonization-decarbonization in an atmosphere of pure gases without nitrogen proceed in the same direction as the analogous processes under the conditions of the production furnace. In this case, however, the presence of admixtures of nitrogen changes the quantitative results of the decarbonization process. Thermodynamic computations confirming the results of previous tests conducted at atmospheric pressure and additional tests of titanium carbonization at lowered pressures are presented herein.

  12. Fabrication and evaluation of superplastically formed/weld-brazed corrugated compression panels with beaded webs

    NASA Technical Reports Server (NTRS)

    Royster, D. M.; Davis, R. C.; Shinn, J. M., Jr.; Bales, T. T.; Wiant, H. R.

    1985-01-01

    A study was made to investigate the feasibility of superplastically forming corrugated panels with beaded webs and to demonstrate the structural integrity of these panels by testing. The test panels in the study consist of superplastically formed titanium alloy Ti-6Al-4V half-hat elements that are joined by weld-brazing to titanium alloy Ti-6Al-4V caps to form either single-corrugation compression panels or multiple-corrugation compression panels. Stretching and subsequent thinning of the titanium sheet during superplastic forming is reduced by approximately 35 percent with a shallow half-hat die concept instead of a deep die concept and results in a more uniform thickness across the beaded webs. The complete panels are tested in end compression at room temperature and the results compared with analysis. The heavily loaded panels failed at loads approaching the yield strength of the titanium material. At maximum load, the caps wrinkled locally accompanied with separation of the weld-braze joint in the wrinkle. None of the panels tested, however, failed catastrophically in the weld-braze joint. Experimental test results are in good agreement with structural analysis of the panels.

  13. Reduction of Residual Stress and Distortion in HY100 and HY130 High Strength Steels During Welding

    DTIC Science & Technology

    1989-06-01

    SMAW), Gas Tungsten Arc Welding ( GTAW ), Gas Metal Arc Welding (GMAW), Submerged Arc Welding (SAW), and Stud Welding (SW) the recommended joint...3.2 4.83 Cr Chromium -(3) 1.5 .55 M0 Molybdium -(3) .40 .40 V Vanadium -(3) .08 T i Titanium -(3) .005 Identifier ABS Class B USX TAG328 Lukens

  14. A comparative study of the mechanical behaviour of thermally oxidised commercially pure titanium and zirconium.

    PubMed

    Alansari, A; Sun, Y

    2017-10-01

    The objective of this study is to compare the mechanical behaviour of thermally oxidised commercially pure titanium (CP-Ti) and commercially pure zirconium (CP-Zr). For this purpose, these two bio-metals were thermally oxidised under the same condition (650°C for 6h) and the oxidised specimens were characterised using various analytical and experimental techniques, including oxygen uptake analysis, layer thickness and hardness measurements, scratch tests, dry sliding friction and wear tests and tribocorrosion tests in Ringer's solution. The results show that under the present thermal oxidation condition, 4 times more oxygen is introduced into CP-Zr than into CP-Ti and the oxide layer produced on CP-Zr is nearly 6 times thicker than that on CP-Ti. Thermally oxidised CP-Zr possesses a higher hardness, a deeper hardening depth and better scratch resistance than thermally oxidised CP-Ti. Under dry sliding and tribocorrosion conditions, thermally oxidised CP-Zr also possesses much better resistance to material removal and a higher load bearing capacity than thermally oxidised CP-Ti. Thus, thermally oxidised Zr possesses much better mechanical behaviour than thermally oxidised Ti. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Intermetallic alloy welding wires and method for fabricating the same

    DOEpatents

    Santella, M.L.; Sikka, V.K.

    1996-06-11

    Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined. 4 figs.

  16. Intermetallic alloy welding wires and method for fabricating the same

    DOEpatents

    Santella, Michael L.; Sikka, Vinod K.

    1996-01-01

    Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined.

  17. Interfacial Microstructure and Mechanical Properties of Friction Stir Welded Joints of Commercially Pure Aluminum and 304 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Murugan, Balamagendiravarman; Thirunavukarasu, Gopinath; Kundu, Sukumar; Kailas, Satish V.; Chatterjee, Subrata

    2018-05-01

    In the present investigation, friction stir welding of commercially pure aluminum and 304 stainless steel was carried out at varying tool rotational speeds from 200 to 1000 rpm in steps of 200 rpm using 60 mm/min traverse speed at 2 (degree) tool tilt angle. Microstructural characterization of the interfacial zone was carried out using optical microscope and scanning electron microscope. Energy-dispersive spectroscopy indicated the presence of FeAl3 intermetallic phase. Thickness of the intermetallic layer increased with the increase in tool rotational speed. X-ray diffraction studies indicated the formation of intermetallic phases like FeAl2, Fe4Al13, Fe2Al5, and FeAl3. A maximum tensile strength of 90% that of aluminum along with 4.5% elongation was achieved with the welded sample at tool rotational speed of 400 rpm. The stir zone showed higher hardness as compared to base metals, heat affected zone, and thermo-mechanically affected zone due to the presence of intermetallics. The maximum hardness value at the stir zone was achieved at 1000 rpm tool rotational speed.

  18. Characterization and morphology of prepared titanium dioxide nanofibers by electrospinning.

    PubMed

    Park, Ju-Young; Lee, In-Hwa

    2010-05-01

    Dispersed titanium dioxide in polymer nanofibers were prepared by sol-gel processing and electrospinning techniques using titanium isopropoxide (TiP)/polyvinylpyrrolidone (PVP) solution. The prepared titanium dioxide nanofibers were characterized by FE-SEM, TEM, XRD, and FT-IR. Pure titanium dioxide nanofibers were obtained from calcination of inorganic-organic composite fiber. The diameter of titanium oxide nanofibers were in the range of 70 nm to 150 nm. Prepared titanium dioxide nanofibers show rough surface and rather small diameter compare with TiP/PVP composite nanofibers. After calcined at 500 degrees C, TiO2 nanofibers convert into anatase and rutile mixed phased from amorphous structure. Calcination of these composite fibers above 600 degrees C resulted in pure rutile TiO2 nanofibers.

  19. Experimental investigations of tungsten inert gas assisted friction stir welding of pure copper plates

    NASA Astrophysics Data System (ADS)

    Constantin, M. A.; Boșneag, A.; Nitu, E.; Iordache, M.

    2017-10-01

    Welding copper and its alloys is usually difficult to join by conventional fusion welding processes because of high thermal diffusivity of the copper, alloying elements, necessity of using a shielding gas and a clean surface. To overcome this inconvenience, Friction Stir Welding (FSW), a solid state joining process that relies on frictional heating and plastic deformation, is used as a feasible welding process. In order to achieve an increased welding speed and a reduction in tool wear, this process is assisted by another one (WIG) which generates and adds heat to the process. The aim of this paper is to identify the influence of the additional heat on the process parameters and on the welding joint properties (distribution of the temperature, hardness and roughness). The research includes two experiments for the FSW process and one experiment for tungsten inert gas assisted FSW process. The outcomes of the investigation are compared and analysed for both welding variants. Adding a supplementary heat source, the plates are preheated and are obtain some advantages such as reduced forces used in process and FSW tool wear, faster and better plasticization of the material, increased welding speed and a proper weld quality.

  20. Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy

    DOE PAGES

    Mazumder, Baishakhi; Yu, Xinghua; Edmondson, Philip D.; ...

    2015-12-08

    Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygenenriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the sizemore » of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.« less

  1. Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazumder, Baishakhi; Yu, Xinghua; Edmondson, Philip D.

    Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygenenriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the sizemore » of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.« less

  2. An investigation of pore cracking in titanium welds

    NASA Astrophysics Data System (ADS)

    Khaled, Z.

    1994-06-01

    Two welded Ti-6A1- 4V pressure vessels leaked prematurely in service. The leaks were caused by cracks emanating from weld porosity. The cracks originated during fabrication, with subsequent growth in serv-ice leading to the formation of the leak paths. Pore cracking is thought to be caused by a mechanism that involves both sustained- load and cyclic contributions, with the former being the more prominent. It is shown that the tendency for cracking is influenced by pore position and that pore size is not a deciding factor in that regard. The factors that govern pore cracking are discussed, and the possible role of inter-stitial embrittlement is assessed.

  3. An investigation of pore cracking in titanium welds

    NASA Astrophysics Data System (ADS)

    Khaled, T.

    1994-02-01

    Two welded Ti-6A1-4V pressure vessels leaked prematurely in service. The leaks were caused by cracks emanating from weld porosity. The cracks originated during fabrication, with subsequent growth in service leading to the formation of the leak paths. Pore cracking is thought to be caused by a mechanism that involves both sustained-load and cyclic contributions, with the former being the more prominent. It is shown that the tendency for cracking is influenced by pore position and that pore size is not a deciding factor in that regard. The factors that govern pore cracking are discussed, and the possible role of interstitial embrittlement is assessed.

  4. Effects of Long Term Thermal Exposure on Chemically Pure (CP) Titanium Grade 2 Room Temperature Tensile Properties and Microstructure

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2007-01-01

    Room temperature tensile testing of Chemically Pure (CP) Titanium Grade 2 was conducted for as-received commercially produced sheet and following thermal exposure at 550 and 650 K for times up to 5,000 h. No significant changes in microstructure or failure mechanism were observed. A statistical analysis of the data was performed. Small statistical differences were found, but all properties were well above minimum values for CP Ti Grade 2 as defined by ASTM standards and likely would fall within normal variation of the material.

  5. The influence of surface roughness and high pressure torsion on the growth of anodic titania nanotubes on pure titanium

    NASA Astrophysics Data System (ADS)

    Hu, Nan; Gao, Nong; Starink, Marco J.

    2016-11-01

    Anodic titanium dioxide nanotube (TNT) arrays have wide applications in photocatalytic, catalysis, electronics, solar cells and biomedical implants. When TNT coatings are combined with severe plastic deformation (SPD), metal processing techniques which efficiently improve the strength of metals, a new generation of biomedical implant is made possible with both improved bulk and surface properties. This work investigated the effect of processing by high pressure torsion (HPT) and different mechanical preparations on the substrate and subsequently on the morphology of TNT layers. HPT processing was applied to refine the grain size of commercially pure titanium samples and substantially improved their strength and hardness. Subsequent anodization at 30 V in 0.25 wt.% NH4F for 2 h to form TNT layers on sample surfaces prepared with different mechanical preparation methods was carried out. It appeared that the local roughness of the titanium surface on a microscopic level affected the TNT morphology more than the macroscopic surface roughness. For HPT-processed sample, the substrate has to be pre-treated by a mechanical preparation finer than 4000 grit for HPT to have a significant influence on TNTs. During the formation of TNT layers the oxide dissolution rate was increased for the ultrafine-grained microstructure formed due to HPT processing.

  6. Slow fatigue testing of titanium grade 29 in air and seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atteraas, L.; Hersvik, G.; Solbakken, H.

    1999-07-01

    ASTM Grade 29 titanium has been fatigue tested in air and seawater at 110 C at a low frequency. The possible influence of seawater is completely masked by the fact that all the specimens of welded titanium, and most of the parent metal samples, had internal fracture initiations. Compared to the parent metal, the welded pipe specimens (5G orbital TIG) had a significantly lower fatigue life at the relatively high cyclic stress levels employed ({sigma}{sub max} = 0.85 {sigma}{sub y}). This is attributed to the presence of pores. Fractographic studies of failed weld metal specimens indicate that the fracture initiationmore » takes place in the material immediately surrounding a pore, with an abrupt crack formation, marking the beginning of the crack growth phase. The duration of the crack initiation phase shows large variations, whereas the growth phase duration varies little.« less

  7. Instant loading with intraoral welding technique and PRAMA implants: a new prosthetic approach.

    PubMed

    Celletti, R; Fanali, S; Laici, C U; Santori, C; Pignatelli, P; Sinjari, B

    2017-01-01

    When splinting multiple implants passive fit of the framework should be achieved to avoid excessive force distribution on the implants. Recently, a protocol was suggested for immediate loading of multiple implants by welding a titanium bar to implant abutments directly in the oral cavity so as to create a customized, precise and passive metal-reinforced provisional restoration. The intraoral welding technique subsequently proves to be a successful option in the full-arch immediate restorations of the mandible and maxilla. The aim of this article is to present a case report in which a new prosthetic approach, using trans-mucosal implants, is described. Dental implants are instantly loaded with a provisional prosthesis supported by an intraoral welded titanium framework to obtain a precise passive fit of the immediate loaded prosthesis.

  8. Titanium-Oxygen Reactivity Study

    NASA Technical Reports Server (NTRS)

    Chafey, J. E.; Scheck, W. G.; Witzell, W. E.

    1962-01-01

    A program has been conducted at Astronautics to investigate the likelihood of occurrence of the catastrophic oxidation of titanium alloy sheet under conditions which simulate certain cases of accidental failure of the metal while it is in contact with liquid or gaseous oxygen. Three methods of fracturing the metal were used; they consisted of mechanical puncture, tensile fracture of welded joints, and perforation by very high velocity particles. The results of the tests which have been conducted provide further evidence of the reactivity of titanium with liquid and gaseous oxygen. The evidence indicates that the rapid fracturing of titanium sheet while it is in contact with oxygen initiates the catastrophic oxidation reaction. Initiation occurred when the speed of the fracture was some few feet per second, as in both the drop-weight puncture tests and the static tensile fracture tests of welded joints, as well as when the speed was several thousand feet per second, as in the simulated micrometeoroid penetration tests. The slow propagation of a crack, however, did not initiate the reaction. It may logically be concluded that the localized frictional heat of rapid fracture and/or spontaneous oxidation (exothermic) of minute particles emanating from the fracture cause initiation of the reaction. Under conditions of slow fracture, however, the small heat generated may be adequately dissipated and the reaction is not initiated. A portion of the study conducted consisted of investigating various means by which the reaction might be retarded or prevented. Providing a "barrier" at the titanium-oxygen interface consisting of either aluminum metal or a coating of a petroleum base corrosion inhibitor appeared to be only partially effective in retarding the reaction. The accidental puncturing or similar rupturing of thin-walled pressurized oxygen tanks on missiles and space vehicle will usually constitute loss of function, and may sometimes cause their catastrophic destruction

  9. Influence of a fluoridated medium with different pHs on commercially pure titanium-based implants.

    PubMed

    Sartori, Rafael; Correa, Cassia Bellotto; Marcantonio, Elcio; Vaz, Luis Geraldo

    2009-02-01

    The objective of this study was to assess the influence of a fluoride medium with different pHs on the corrosion resistance of three commercially pure titanium-based dental implant commercial brands, under scanning electron microscopy (SEM) and EDS. Forty-two dental implants, from three commercial brands, were used. Five years of regular use of mouth rinsing, with NaF 1500 ppm content and two different pHs, were simulated by immersing the specimens into that medium for 184 hours. SEM and EDS analyses demonstrated no evidence of corrosion on the specimens' surfaces after being submitted to fluoride ions or incorporation of fluoride ions to the set surface. It was possible to conclude that both the fluoride concentration and the pH of the solutions did not exert any influence upon implant corrosion resistance.

  10. More About Cutting Tool For Shaving Weld Beads

    NASA Technical Reports Server (NTRS)

    Oelgoetz, Peter A.; Davis, William M.

    1996-01-01

    Report describes modification and testing of proposed tool discussed in "Cutting Tool For Shaving Weld Beads" (MFS-30056). Modified version of commercial pneumatically driven rotary cutting tool removes such hard metals as nickel alloys, titanium, and stainless steels.

  11. The structure of Ti-Ta welded joint and microhardness distribution over the cross section

    NASA Astrophysics Data System (ADS)

    Fomin, Aleksandr A.; Koshuro, Vladimir A.; Egorov, Ivan S.; Shelkunov, Andrey Yu.; Zakharevich, Andrey M.; Steinhauer, Natalia N.; Rodionov, Igor V.

    2018-04-01

    In order to create highly efficient medical systems and measuring biosensors, an approach is frequently used, in which the constructive basis of the product is made of a high-strength biocompatible material (titanium, stainless steel), and the functional layer is made of a more expensive metal (Ta, Zr, Au, Pt, etc.) or ceramics (Ta2O5, ZrO2, CaTiO3, etc.). For a strong connection, e.g. titanium with tantalum, it is proposed to use diffusion butt welding. The heat generated by passing electric current (I is not less than 1.95-2.05 kA, P - not less than 9 kW, t = 250-1000 ms) and applied pressure (30-50 MPa) ensure an integral connection. To improve the quality of the joint, i.e. to exclude cracks and tightness, it is necessary to choose the right combination of the thickness of the welded parts. It was established that when titanium (2 mm thick) and tantalum (0.1-0.5 mm) are combined, a better Ti-Ta welded joint is formed when tantalum foil is used (0.5 mm). Here the distribution of hardness over the cross section of the sample, including the welding areas, is uniform and has no extremely high residual stresses of the tensile type.

  12. Thermo-mechanical modeling of the gas-tungsten-arc (GTA) welding process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, D.B.

    1980-01-18

    A fundamental study of gas-tungsten-arc (GTA) welding was undertaken. This was initiated with a review of the GTA welding process which lead to the decision to focus experimental and analytical efforts on stationary welds on a pure material. Pure nickel was selected for the test material. Temperature, strain, and distortion measurements were made during the formation of spot welds on circular plates. Transient thermal data were obtained with thermocouples, a radiation pyrometer, and from motion pictures. Local strain was observed qualitatively from Moire interference fringe patterns. Distortion during welding was measured with displacement gages and residual distortion with a profilometer.more » Experimental measurements are compared with predictions of thermal and mechanical finite element codes.« less

  13. An Investigation into Stress Corrosion Cracking of Dissimilar Metal Welds with 304L Stainless Steel and Alloy 82 in High Temperature Pure Water

    NASA Astrophysics Data System (ADS)

    Yeh, Tsung-Kuang; Huang, Guan-Ru; Tsai, Chuen-Horng; Wang, Mei-Ya

    For a better understanding toward stress corrosion cracking (SCC) in dissimilar metal welds with 304L stainless steel and Alloy 82, the SCC growth behavior in the transition regions of weld joints was investigated via slow strain rate tensile (SSRT) tests in 280 oC pure water with a dissolve oxygen level of 300 ppb. Prior to the SSRT tests, samples with dissimilar metal welds were prepared and underwent various pretreatments, including post-weld heat treatment (PWHT), shot peening, solution annealing, and mechanical grinding. In addition to the SSRT tests, measurements of degree of sensitization and micro-hardness on the transition regions of the metal welds were also conducted. According to the test results, the samples having undergone PWHTs exhibited relatively high degrees of sensitization. Distinct decreases in hardness were observed in the heat-affected zones of the base metals in all samples. Furthermore, the fracture planes of all samples after the SSRT tests were located at the stainless steel sides and were in parallel with the fusion lines. Among the treating conditions investigated in this study, a PWHT would pose a detrimental effect on the samples in the aspects of mechanical property and degree of SCC. Solution annealing would lead to the greatest improvement in ductility and SCC retardation, and shot peening would provide the treated samples with a positive improvement in ductility and corrosion retardation, but not to a great extent.

  14. Heavy-section welding with very high power laser beams: the challenge

    NASA Astrophysics Data System (ADS)

    Goussain, Jean-Claude; Becker, Ahim; Chehaibou, A.; Leca, P.

    1997-08-01

    The 45 kW CO2 laser system of Institut de Soudure was used to evaluate and explore the possibilities offered by the high power laser beams for welding different materials in various thickness and in different welding positions. Stainless steels, low carbon steels, aluminum and titanium alloys were studied. Butt joints in 10 to 35 mm thick plates were achieved and evaluated by radiographic, metallurgical and mechanical tests. Gaps and alignment tolerances were determined with and without filler wire in order to obtain acceptable welds concerning the weld geometry, the aspect on front and end root sides. The main problem raised by heavy section welding concerns weld porosity in the weld which increases drastically with the thickness of the weld. Indications are given on their origin and the way to proceed in order to better control them. Lastly some large parts, recently welded on the system, are presented and discussed before drawing some conclusions on the prospects of very high power laser welding.

  15. [Effect of TiO2-SiO2-SnOx film with different firing temperatures on bond strength of low-fusing dental porcelain to pure titanium].

    PubMed

    Zhang, Zichuan; Zhang, Pei

    2015-07-01

    To evaluate the influence of TiO(2)-SiO(2)-SnOx nano-coatings with different firing temperatures on the bond strength of low-fusing dental porcelain to pure titanium. The surface of pure titanium was coated uniformly with TiO(2)-SiO(2)-SnOx nano-coatings by solution-gelatin (Sol-Gel) technology and then fired at 300 °C (group A) or 750 °C (group B) for 1 h. The specimens without any coatings were the control group (group C). There were 10 specimens in each group. Dental porcelain was sintered on the surface of titanium specimens. Surface roughness and contact angle of the coatings were also detected. The titanium-porcelain bond strength was investigated according to YY 0621-2008 standards using three-point flexure bond test. The phase composition of the TiO(2)-SiO(2)-SnOx nano-coatings was characterized by X-ray diffraction(XRD). The interface of titanium-porcelain and TiO(2)-SiO(2)-SnOx nano-coatings were observed using scanning electron microscope (SEM). No rutile phase was found in these specimens of group A and group B. The surface roughness of group A, B, C was (0.97 ± 0.06), (0.99 ± 0.03), (0.96 ± 0.07) µm, respectively. No significant difference was found among the three groups. Compared with that of group C (64.37° ± 3.01°), contact angles detected in group A (52.04° ± 3.15°) and group B (85.27° ± 4.17°) were significantly different (P < 0.05). The bond strength of titanium-porcelain in group A [(35.66 ± 2.65) MPa] was significantly increased compared with those in group B [(26.18 ± 2.22) MPa] and group C [(31.66 ± 3.52) MPa]. SEM photomicrographs of titanium-porcelain interface morphology of the specimens before porcelain sintering showed that TiO(2)-SiO(2)-SnOx nano-coatings in group A were compact and homogeneous with petty cracks and those in group B was loose and arranged disorderly. TiO(2)-SiO(2)-SnOx nano-coating fired at 300 °C is significantly effective in improving the titanium-porcelain bond strength.

  16. Cracks growth behaviors of commercial pure titanium under nanosecond laser irradiation for formation of nanostructure-covered microstructures (with sub-5-μm)

    NASA Astrophysics Data System (ADS)

    Pan, A. F.; Wang, W. J.; Mei, X. S.; Zheng, B. X.; Yan, Z. X.

    2016-11-01

    This study reported on the formation of sub-5-μm microstructures covered on titanium by cracks growth under 10-ns laser radiation at the wavelength of 532 nm and its induced light modification for production of nanostructures. The electric field intensity and laser power density absorbed by commercial pure titanium were computed to investigate the self-trapping introduced by cracks and the effect of surface morphology on laser propagation characteristics. It is found that nanostructures can form at the surface with the curvature radius below 20 μm. Meanwhile, variable laser fluences were applied to explore the evolution of cracks on commercial pure titanium with or without melt as spot overlap number increased. Experimental study was first performed at the peak laser fluence of 1.063 J/cm2 to investigate the microstructures induced only by cracks growth. The results demonstrated that angular microstructures with size between 1.68 μm and 4.74 μm was obtained and no nanostructure covered. Then, at the peak laser fluence of 2.126 J/cm2, there were some nanostructures covered on the melt-induced curved microstructured surface. However, surface molten material submerged in the most of cracks at the spot overlap number of 744, where the old cracks disappeared. The results indicated that there was too much molten material and melting time at the peak laser fluence of 2.126 J/cm2, which was not suitable for obtainment of perfect micro-nano structures. On this basis, peak laser fluence was reduced down to 1.595 J/cm2 and the sharp sub-5 μm microstructures with nanostructures covered was obtained at spot overlap number of 3720.

  17. [Experimental study on the retentive force of cobalt-chromium alloy, pure titanium and vitallium cast clasps in the simulated 3-year clinical use].

    PubMed

    Yan, Hai-xin; Zhao, Yan-bo; Qin, Li-mei; Zhu, Hai-ting; Wu, Lin

    2015-12-01

    To investigate the changes of retentive force of cobalt-chromium alloy, pure titanium and vitallium cast clasps in the simulated 3-year clinical use. Fifteen metal abutment crowns made of No.QT800-2 nodular cast iron were used in the test. Five clasps from each of the following alloys: cobalt-chromium alloy, pure titanium and vitallium were fabricated. The undercut depth was 0.25 mm. A masticatory simulator was used to cycle the clasp on and off the metal abutment crown 5000 times, simulating 3-year clinical use. Retentive force was measured 11 times during this process. SPSS13.0 software package was used to analyze the results. Casting defects were observed using X-ray non destructive testing (X-ray NDT) before cyclic test. Surface characteristics were qualitatively evaluated using scanning electron microscope (SEM) before and after cyclic test. The results indicated that there were significant differences (P=0.000) in the retentive force of the 3 groups before and after the cyclic test. The highest retentive force was recorded in the vitallium clasps, and the lowest retentive force was measured in the pure titanium clasps. The results of X-ray NDT depicted the typical casting defect seen at the end of the connector. SEM examination revealed that no evidence of pores and cracks in the inner surfaces of the 3 groups was found before cyclic test. Wear was evident in the inner surfaces of the 3 groups but none of the clasps exhibited any evidence of cracks after cyclic test through SEM examination. In this in vitro test, vitallium clasps show the best retentive force in the 3 groups before and after 5000 cycles at 0.25 mm undercut depth. Cobalt-chromium alloy and vitallium clasps can maintain ideal retentive force at 0.25mm undercut depth in the long-term use. Wear may be one of the reasons for the loss of retentive force of clasps in the cyclic test.

  18. Solid Particle Erosion Behaviors of Carbon-Fiber Epoxy Composite and Pure Titanium

    NASA Astrophysics Data System (ADS)

    Cai, Feng; Gao, Feng; Pant, Shashank; Huang, Xiao; Yang, Qi

    2016-01-01

    Rotor blades of Bell CH-146 Griffon helicopter experience excessive solid particle erosion at low altitudes in desert environment. The rotor blade is made of an advanced light-weight composite which, however, has a low resistance to solid particle erosion. Coatings have been developed and applied to protect the composite blade. However, due to the influence of coating process on composite material, the compatibility between coating and composite base, and the challenges of repairing damaged coatings as well as the inconsistency between the old and new coatings, replaceable thin metal shielding is an alternative approach; and titanium, due to its high-specific strength and better formability, is an ideal candidate. This work investigates solid particle erosion behaviors of carbon-fiber epoxy composite and titanium in order to assess the feasibility of titanium as a viable candidate for erosion shielding. Experiment results showed that carbon-fiber epoxy composite showed a brittle erosion behavior, whereas titanium showed a ductile erosion mode. The erosion rate on composite was 1.5 times of that on titanium at impingement angle 15° and increased to 5 times at impact angle 90°.

  19. Fatigue performance of joints executed in pure titanium structures with several diameters.

    PubMed

    Nuñez-Pantoja, Juliana Maria Costa; Vaz, Luis Geraldo; Nóbilo, Mauro Antônio de Arruda; Mesquita, Marcelo Ferraz

    2011-01-01

    This study evaluated fatigue strength of CP-Ti laser-welded joints. Sixty (20/diameter) CP-Ti casted dumbbell rods with diameters of 1.5, 2.0, and 3.5 mm were sectioned and welded using two joint openings (0.0 (00) and 0.6 mm (06)). Six groups were formed, amounting to a total of 9 (n=10) with inclusion of intact groups. Welding was executed using 360 V/8 ms (1.5 and 2.0 mm) and 380 V/9 ms (3.5 mm). Joints were finished, polished, and submitted to radiographic examination to visually analyze presence of porosity (PP). Specimens were submitted to cyclic tests, and the number of cycles until failure (NC) was recorded. Fractured surfaces were examined by SEM. Kruskal-Wallis and Dunn (α=0.05) tests demonstrated that NC was lower for all diameters with 06, and for 3.5 mm/00. NC and PP were found to have a negative correlation (Spearman Coefficient). For CP-Ti frameworks with thin diameters, laser welding is better when structures are juxtaposed.

  20. Fusion welding studies using laser on Ti-SS dissimilar combination

    NASA Astrophysics Data System (ADS)

    Shanmugarajan, B.; Padmanabham, G.

    2012-11-01

    Laser welding investigations were carried out on dissimilar Ti-SS combination. The study is aimed to improve the weld strength and ductility by minimizing harmful intermetallics and taking advantage of high cooling rates in laser welding. Results of continuous wave 3.5 kW CO2 laser welding of totally dissimilar combination of Titanium and stainless steel (304) have been discussed. Bead on plate welding experiments were conducted to identify the laser welding parameters using depth of penetration as criteria. The welding of dissimilar combination has been attempted both autogenously and with interlayers such as Vanadium (V) and Tantalum (Ta) in the form of laser cladding as well as strip. Autogenous welds were carried out by varying the laser power, welding speed and position of the laser beam with respect to the joint centre. The resultant welds are characterized by macrostructure analysis, SEM/EDAX and XRD and as welded tensile test in UTM. The autogenous welds have exhibited extensive cracking even when welded at high speeds or by manipulating the beam position with respect to the joint. Similarly Vandaium as interlayer could not achieve crack free joint. A joint with 40 MPa strength could be made with Ta as interlayer. Results and analysis of these variants of laser welded joints are reported and discussed.

  1. Effects of Long-Term Thermal Exposure on Commercially Pure Titanium Grade 2 Elevated-Temperature Tensile Properties

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2012-01-01

    Elevated-temperature tensile testing of commercially pure titanium (CP Ti) Grade 2 was conducted for as-received commercially produced sheet and following thermal exposure at 550 and 650 K (531 and 711 F) for times up to 5000 h. The tensile testing revealed some statistical differences between the 11 thermal treatments, but most thermal treatments were statistically equivalent. Previous data from room temperature tensile testing was combined with the new data to allow regression and development of mathematical models relating tensile properties to temperature and thermal exposure. The results indicate that thermal exposure temperature has a very small effect, whereas the thermal exposure duration has no statistically significant effects on the tensile properties. These results indicate that CP Ti Grade 2 will be thermally stable and suitable for long-duration space missions.

  2. The structure and properties of the modified nitrogenated high-chromium steel for welding the parts of oil and gas equipment

    NASA Astrophysics Data System (ADS)

    Sokolov, G. N.; Artem'ev, A. A.; Dubcov, Yu. N.; Eremin, E. N.; Litvinenko-Ar'kov, V. B.

    2017-08-01

    The influence of nitrogen and titanium carbonitride particles on the structure and properties of high-chromium steel, deposited by flux cored wire, has been studied. It has been shown that the quality formation of the weld metal and pore absence in it are achieved with nitrogen concentration in wire filler no more than 0.32 mass%. It has been found that in adding titanium carbonitride particles from 0.2 to 0.6 mass% to wire filler the effect of weld Fe-C-Cr-Mo-Ni-N system metal modification is implemented and its operational properties increase. The developed flux cored wire has been recommended for oil and gas equipment welding.

  3. Retention strength of cobalt-chromium vs nickel-chromium titanium vs CP titanium in a cast framework association of removable partial overdenture.

    PubMed

    Souza, Jose Everaldo de Aquino; Silva, Nelson Renato Franca Alves da; Coelho, Paulo Guilherme; Zavanelli, Adriana Cristina; Ferracioli, Renata Cristina Silveira Rodrigues; Zavanelli, Ricardo Alexandre

    2011-05-01

    There is little information considering the framework association between cast clasps and attachments. The aim of this study was to evaluate the retention strength of frameworks match circumferential clasps and extra resilient attachment cast in three different alloys (cobalt-chromium, nickel-chromium titanium and commercially pure titanium), using two undercut (0.25 and 0.75 mm) and considering different period of time (0, 1/2, 1, 2, 3, 4 and 5 years). Using two metallic matrices, representing a partially edentulous mandibular right hemiarch with the first molar crown, canine root and without premolars, 60 frameworks were fabricated. Three groups (n = 20) of each metal were cast and each group was divided into two subgroups (n = 10), corresponding the molar undercut of 0.25 mm and 0.75 mm. The nylon male was positioned at the matrix and attached to the acrylic resin of the prosthetic base. The samples were subjected to an insertion and removal test under artificial saliva environment. The data were analyzed and compared with ANOVAs and Tukey's test at 95% of probability. The groups cast in cobaltchromium and nickel-chromium-titanium had the highest mean retention strength (5.58 N and 6.36 N respectively) without significant difference between them, but statistically different from the group cast in commercially pure titanium, which had the lowest mean retention strength in all the periods (3.46 N). The association frameworks using nickel-chromium- titanium and cobalt-chromium could be used with 0.25 mm and 0.75 mm of undercut, but the titanium samples seems to decrease the retention strength, mainly in the 0.75 mm undercut. The circumferential clasps cast in commercially pure titanium used in 0.75 mm undercuts have a potential risk of fractures, especially after the 2nd year of use. This in vitro study showed that the framework association between cast clasp and an extra resilient attachment are suitable to the three metals evaluated, but strongly suggest extra

  4. Welded Titanium Case for Space-Probe Rocket Motor

    NASA Technical Reports Server (NTRS)

    Brothers, A. J.; Boundy, R. A.; Martens, H. E.; Jaffe, L. D.

    1959-01-01

    Early in 1958, the Jet Propulsion Laboratory of the California Institute of Technology was requested to participate in a lunar-probe mission code-named Juno II which would place a 15-lb Instrumented payload (Pioneer IV) in the vicinity of the moon. The vehicle was to use the same high-speed upper-stage assembly as flown on the successful Jupiter-C configuration; however, the first-stage booster was to be a Jupiter rather than a Redstone. An analysis of the intended flight and payload configuration Indicated that the feasibility of accomplishing the mission was questionable and that additional performance would have to be obtained if the mission was to be feasible. Since the most efficient way of Increasing the performance of a staged vehicle is to increase the performance of the last stage, a study of possible ways of doing this was made.. Because of the time schedule placed on this effort It was decided to reduce the weight of the fourth-stage rocket-motor case by substituting the annealed 6Al--4V titanium alloy for the Type 410 stainless steel. Although this introduced an unfamiliar material, It reduced the changes in design and fabrication techniques. This particular titanium alloy was chosen on the basis of previous tests which proved the suitability of the alloy as a pressure-vessel material when used at an annealed yield strength of about 120, 000 psi. The titanium-case fourth stage of Juno U is shown with the payload and on the missile in Fig. 1; the stainless-steel motor cases used in the Jupiter-C vehicle are shown in Fig. 2. The fourth-stage motor case has a diameter of 6 in., a length of approximately 38 in. center dot and a nominal cylindrical wall thickness of 0.025 in. As shown in Fig. 1, the case serves as the structural support of the payload and is aligned to the upper stage assembly through an alignment ring. The nozzle is threaded into the end of the motor case, and is of the ceramic-coated steel design. Figure 3 shows a comparison of the

  5. Weld geometry strength effect in 2219-T87 aluminum

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.; Novak, H. L.; Mcilwain, M. C.

    1981-01-01

    A theory of the effect of geometry on the mechanical properties of a butt weld joint is worked out based upon the soft interlayer weld model. Tensile tests of 45 TIG butt welds and 6 EB beads-on-plate in 1/4-in. 2219-T87 aluminum plate made under a wide range of heat sink and power input conditions are analyzed using this theory. The analysis indicates that purely geometrical effects dominate in determining variations in weld joint strength with heat sink and power input. Variations in weld dimensions with cooling rate are significant as well as with power input. Weld size is suggested as a better indicator of the condition of a weld joint than energy input.

  6. In vitro comparative analysis of the fit of gold alloy or commercially pure titanium implant-supported prostheses before and after electroerosion.

    PubMed

    Sartori, Ivete Aparecida de Mattias; Ribeiro, Ricardo Faria; Francischone, Carlos Eduardo; de Mattos, Maria da Gloria Chiarello

    2004-08-01

    For implant-supported prostheses, passive fit is critical for the success of rehabilitation, especially when alternative materials are used. The purpose of this study was to compare interfacial fit of implant-supported prostheses cast in titanium to those cast in gold alloy. Five 3-unit fixed partial dentures were fabricated in gold alloy (Degudent U) as 1-piece castings, and 5 others were similarly cast in commercially pure titanium (Grade 1). The interfacial gaps between the prostheses and the abutments were evaluated with an optical microscope, before and after electroerosion. Readings were made with both screws tightened (10 N.cm torque), and with only 1 side tightened, so as to also evaluate the passive fit of the prostheses. Data were compared statistically by 2-way analysis of variance and the post hoc Tukey multiple range test (alpha=.05). Before electroerosion, the interfacial gaps for the 1-piece prostheses were significantly smaller (P<.001) in the gold alloy group when the screws were tightened (Au=12.6 +/- 3.0 microm, compared to Ti=30.1 +/- 6.4 microm). When the side opposite the tightened side was analyzed, there was no significant difference between the gold alloy and titanium groups (Au=69.2 +/- 24.9 microm and Ti=94.2 +/- 39.6 microm). The electroerosion procedure significantly (P<.001) reduced the gaps at the interfaces for both groups under all conditions. Comparison between groups after electroerosion did not present significant differences when the side opposite the tightened side was analyzed, but the gold alloy group showed better fit when the tightened side was analyzed (12.8 +/- 1.4 microm for gold alloy; 29.6 +/- 4.4 microm for titanium) and when both screws were tightened (5.4 +/- 2.3 microm for gold alloy; 16.1 +/- 5.5 microm for titanium). Cast titanium prostheses, despite showing larger interfacial gaps between the prosthesis and abutment than those obtained with gold alloy, had improved fit after being subjected to electroerosion.

  7. Gentamicin-Eluting Titanium Dioxide Nanotubes Grown on the Ultrafine-Grained Titanium.

    PubMed

    Nemati, Sima Hashemi; Hadjizadeh, Afra

    2017-08-01

    Titanium (Ti)-based materials is the most appropriate choices for the applications as orthopedic and dental implants. In this regard, ultrafine-grained (UFG) titanium with an enhanced mechanical properties and surface energy has attracted more attention. Titanium dioxide (TiO 2 ) nanotubes grown on the titanium could enhance bone bonding, cellular response and are good reservoirs for loading drugs and antibacterial agents. This article investigates gentamicin loading into and release from the TiO 2 nanotubes, grown on the UFG compared to coarse-grained (CG) titanium substrate surfaces. Equal Channel Angular Pressing (ECAP) was employed to produce the UFG structure titanium. TiO 2 nanotubes were grown by the anodizing technique on both UFG and CG titanium substrate surfaces. Scanning electron microscopy (SEM) imaging confirmed TiO 2 nanotube growth on the surface. The UV-vis spectroscopy analysis results show that the amount of gentamicin load-release in the anodized UFG titanium sample is higher than that of CG one which can be explained in terms of thicker TiO 2 nanotube arrays layer formed on UFG sample. Moreover, the anodized UFG titanium samples released the drug in a longer time than CG (1 day for the UFG titanium vs. 3 h for the CG one). Regarding wettability analysis, anodized UFG titanium sample showed more enhanced hydrophilicity than CG counterpart. Therefore, the significantly smaller grain size of pure titanium provided by the ECAP technique coupled with appropriate subsequent anodization treatment not only offers a good combination of biocompatibility and adequate mechanical properties but also it provides a delayed release condition for gentamicin.

  8. Cutting Tool For Shaving Weld Beads

    NASA Technical Reports Server (NTRS)

    Hoffman, David S.; Mcferrin, David C.; Daniel, Ronald L., Jr.; Coby, John B., Jr.; Dawson, Sidney G.

    1995-01-01

    Cutting tool proposed for use in shaving weld beads flush with adjacent surfaces of weldments. Modified version of commercial pneumatically driven rotary cutting tool, cutting wheel of which turns at speeds sufficient for machining nickel alloys, titanium, and stainless steels. Equipped with forward-mounted handle and rear-mounted skid plate to maximize control and reduce dependence on skill of technician.

  9. Investigation of Laser Welding of Ti Alloys for Cognitive Process Parameters Selection.

    PubMed

    Caiazzo, Fabrizia; Caggiano, Alessandra

    2018-04-20

    Laser welding of titanium alloys is attracting increasing interest as an alternative to traditional joining techniques for industrial applications, with particular reference to the aerospace sector, where welded assemblies allow for the reduction of the buy-to-fly ratio, compared to other traditional mechanical joining techniques. In this research work, an investigation on laser welding of Ti⁻6Al⁻4V alloy plates is carried out through an experimental testing campaign, under different process conditions, in order to perform a characterization of the produced weld bead geometry, with the final aim of developing a cognitive methodology able to support decision-making about the selection of the suitable laser welding process parameters. The methodology is based on the employment of artificial neural networks able to identify correlations between the laser welding process parameters, with particular reference to the laser power, welding speed and defocusing distance, and the weld bead geometric features, on the basis of the collected experimental data.

  10. Investigation of Laser Welding of Ti Alloys for Cognitive Process Parameters Selection

    PubMed Central

    2018-01-01

    Laser welding of titanium alloys is attracting increasing interest as an alternative to traditional joining techniques for industrial applications, with particular reference to the aerospace sector, where welded assemblies allow for the reduction of the buy-to-fly ratio, compared to other traditional mechanical joining techniques. In this research work, an investigation on laser welding of Ti–6Al–4V alloy plates is carried out through an experimental testing campaign, under different process conditions, in order to perform a characterization of the produced weld bead geometry, with the final aim of developing a cognitive methodology able to support decision-making about the selection of the suitable laser welding process parameters. The methodology is based on the employment of artificial neural networks able to identify correlations between the laser welding process parameters, with particular reference to the laser power, welding speed and defocusing distance, and the weld bead geometric features, on the basis of the collected experimental data. PMID:29677114

  11. Corrosion resistance of nanostructured titanium.

    PubMed

    Garbacz, H; Pisarek, M; Kurzydłowski, K J

    2007-11-01

    The present work reports results of studies of corrosion resistance of pure nano-Ti-Grade 2 after hydrostatic extrusion. The grain size of the examined samples was below 90 nm. Surface analytical technique including AES combined with Ar(+) ion sputtering, were used to investigate the chemical composition and thicknesses of the oxides formed on nano-Ti. It has been found that the grain size of the titanium substrate did not influence the thickness of oxide formed on the titanium. The thickness of the oxide observed on the titanium samples before and after hydrostatic extrusion was about 6 nm. Tests carried out in a NaCl solution revealed a slightly lower corrosion resistance of nano-Ti in comparison with the titanium with micrometric grain size.

  12. Analysis of weld geometry and liquid flow in laser transmission welding between polyethylene terephthalate (PET) and Ti6Al4V based on numerical simulation

    NASA Astrophysics Data System (ADS)

    Ai, Yuewei; Zheng, Kang; Shin, Yung C.; Wu, Benxin

    2018-07-01

    The laser transmission welding of polyethylene terephthalate (PET) and titanium alloy Ti6Al4V involving the evaluating of the resultant geometry and quality of welds is investigated using a fiber laser in this paper. A 3D transient numerical model considering the melting and fluid flow is developed to predict the weld geometry and porosity formation. The temperature field, molten pool and liquid flow are simulated with varying laser power and welding speed based on the model. It is observed that the weld geometry predictions from the numerical simulation are in good agreement with the experimental data. The results show that the porosity consistently appears in the high temperature region due to the decomposition of PET. In addition, it has also been found that the molten pool with a vortex flow pattern is formed only in the PET layer and the welding processing parameters have significant effects on the fluid flow, which eventually affects the heat transfer, molten pool geometry and weld formation. Consequently, it is shown adopting appropriate welding processing parameters based on the proposed model is essential for the sound weld without defects.

  13. Latest MIG, TIG arc-YAG laser hybrid welding systems for various welding products

    NASA Astrophysics Data System (ADS)

    Ishide, Takashi; Tsubota, Shuho; Watanabe, Masao

    2003-03-01

    Laser welding is capable of high-efficiency low-strain welding, and so its applications are started to various products. We have also put the high-power YAG laser of up to 10 kW to practical welding use for various products. On the other hand the weakest point of this laser welding is considered to be strict in the welding gap aiming allowance. In order to solve this problem, we have developed hybrid welding of TIG, MIG arc and YAG laser, taking the most advantages of both the laser and arc welding. Since the electrode is coaxial to the optical axis of the YAG laser in this process, it can be applied to welding of various objects. In the coaxial MIG, TIG-YAG welding, in order to make irradiation positions of the YAG laser beams having been guided in a wire or an electrode focused to the same position, the beam transmitted in fibers is separated to form a space between the separated beams, in which the laser is guided. With this method the beam-irradiating area can be brought near or to the arc-generating point. This enables welding of all directions even for the member of a three-dimensional shape. This time we carried out welding for various materials and have made their welding of up to 1 mm or more in welding groove gap possible. We have realized high-speed 1-pass butt welding of 4m/min in welding speed with the laser power of 3 kW for an aluminum alloy plate of approximately 4 mm thick. For a mild steel plate also we have realized butt welding of 1m/min with 5 kW for 6 mm thick. Further, in welding of stainless steel we have shown its welding possibility, by stabilizing the arc with the YAG laser in the welding atmosphere of pure argon, and shown that this welding is effective in high-efficiency welding of various materials. Here we will report the fundamental welding performances and applications to various objects for the coaxial MIG, TIG-YAG welding we have developed.

  14. The process development of laser surface modification of commercially pure titanium (Grade 2) with rhenium

    NASA Astrophysics Data System (ADS)

    Kobiela, K.; Smolina, I.; Dziedzic, R.; Szymczyk, P.; Kurzynowski, T.; Chlebus, E.

    2016-12-01

    The paper presents the results of the process development of laser surface modification of commercially pure titanium with rhenium. The criterion of the successful/optimal process is the repetitive geometry of the surface, characterized by predictable and repetitive chemical composition over its entire surface as well as special mechanical properties (hardness and wear resistance). The analysis of surface geometry concluded measurements of laser penetration depth and heat affected zone (HAZ), the width of a single track as well as width of a clad. The diode laser installed on the industrial robot carried out the laser treatment. This solution made possible the continuous supply of powder to the substrate during the process. The aim of an investigation is find out the possibility of improving the tribological characteristics of the surface due to the rhenium alloying. The verification of the surface properties (tribological) concluded geometry measurements, microstructure observation, hardness tests and evaluation of wear resistance.

  15. Nanostructured severe plastic deformation processed titanium for orthodontic mini-implants.

    PubMed

    Serra, Glaucio; Morais, Liliane; Elias, Carlos Nelson; Semenova, Irina P; Valiev, Ruslan; Salimgareeva, Gulnaz; Pithon, Matheus; Lacerda, Rogério

    2013-10-01

    Titanium mini-implants have been successfully used as anchorage devices in Orthodontics. Commercially pure titanium (cpTi) was recently replaced by Ti-6Al-4V alloy as the mini-implant material base due to the higher strength properties of the alloy. However, the lower corrosion resistance and the lower biocompatibility have been lowering the success rate of Ti-6Al-4V mini-implants. Nanostructured titanium (nTi) is commercially pure titanium that was nanostructured by a specific technique of severe plastic deformation. It is bioinert, does not contain potentially toxic or allergic additives, and has higher specific strength properties than any other titanium applied in medical implants. The higher strength properties associated to the higher biocompatibility make nTi potentially useful for orthodontic mini-implant applications, theoretically overcoming cpTi and Ti-6Al-4V mini-implants. The purposes of the this work were to process nTi, to mechanically compare cpTi, Ti-6Al-4V, and nTi mini-implants by torque test, and to evaluate both the surface morphology and the fracture surface characteristics of them by SEM. Torque test results showed significant increase in the maximum torque resistance of nTi mini-implants when compared to cpTi mini-implants, and no statistical difference between Ti-6Al-4V and nTi mini-implants. SEM analysis demonstrated smooth surface morphology and transgranular fracture aspect for nTi mini-implants. Since nanostructured titanium mini-implants have mechanical properties comparable to titanium alloy mini-implants, and biocompatibility comparable to commercially pure titanium mini-implants, it is suggestive that nanostructured titanium can replace Ti-6Al-4V alloy as the material base for mini-implants. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Advances in Solid State Joining of High Temperature Alloys

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeff; Schneider, Judy; Walker, Bryant

    2011-01-01

    Many of the metals used in the oil and gas industry are difficult to fusion weld including titanium and its alloys. Thus solid state joining processes, such as friction stir welding (FSWing) and a patented modification termed thermal stir welding (TSWing), are being pursued as alternatives to produce robust structures more amenable to high pressure applications. Unlike the FSWing process where the tool is used to heat the workpiece, TSWing utilizes an induction coil to preheat the material prior to stirring thus minimizing the burden on the weld tool and thereby extending its life. This study reports on the initial results of using a hybrid (H)-TSW process to join commercially pure, 1.3cm thick panels of titanium (CP Ti) Grade 2.

  17. Optical properties of pure and PbSe doped TiS2 nanodiscs

    NASA Astrophysics Data System (ADS)

    Parvaz, M.; Islamuddin; Khan, Zishan H.

    2018-06-01

    Titanium disulfide, being one of the popular transition-metal dichalcogenide (TMD) materials, shows wonderful properties owing to tunable optical band gap. Pure and PbSe doped titanium disulfide nanodiscs have been synthesized by solid-state reaction method. FESEM, TEM and Raman images confirm the synthesis of nanodiscs. XRD spectra suggest the polycrystalline structure of as-prepared as well as PbSe doped TiS2 nanodiscs. PL spectra of the as-synthesized nanodiscs has been studied in the wavelength range of (300–550 nm), at room temperature. The position of the peak shifts towards the lower wavelength (blue shift) and intensity of the PL increases after the doping of PbSe, which may be due to a broadening of the optical band gap. UV–vis spectra has been used to calculate optical band gap of pure and PbSe doped titanium disulfide nanodiscs. The calculated value are found to be 1.93 eV and 2.03 eV respectively. Various optical constants such as n and k have been calculated. The value of extinction coefficient (k) of pure and doped titanium disulfide increases while the value of the refractive index (n) decreases with increase in photon energy.

  18. In vitro toxicity evaluation of silver soldering, electrical resistance, and laser welding of orthodontic wires.

    PubMed

    Sestini, Silvia; Notarantonio, Laura; Cerboni, Barbara; Alessandrini, Carlo; Fimiani, Michele; Nannelli, Pietro; Pelagalli, Antonio; Giorgetti, Roberto

    2006-12-01

    The long-term effects of orthodontic appliances in the oral environment and the subsequent leaching of metals are relatively unknown. A method for determining the effects of various types of soldering and welding, both of which in turn could lead to leaching of metal ions, on the growth of osteoblasts, fibroblasts, and oral keratinocytes in vitro, is proposed. The effects of cell behaviour of metal wires on osteoblast differentiation, expressed by alkaline phosphatase (ALP) activity; on fibroblast proliferation, assayed by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphophenil)-2H-tetrazolium-phenazine ethosulphate method; and on keratinocyte viability and migration on the wires, observed by scanning electron microscopy (SEM), were tested. Two types of commercially available wires normally used for orthodontic appliances, with a similar chemical composition (iron, carbon, silicon, chromium, molybdenum, phosphorus, sulphur, vanadium, and nitrogen) but differing in nickel and manganese content, were examined, as well as the joints obtained by electrical resistance welding, traditional soldering, and laser welding. Nickel and chromium, known as possible toxic metals, were also examined using pure nickel- and chromium-plated titanium wires. Segments of each wire, cut into different lengths, were added to each well in which the cells were grown to confluence. The high nickel and chromium content of orthodontic wires damaged both osteoblasts and fibroblasts, but did not affect keratinocytes. Chromium strongly affected fibroblast growth. The joint produced by electrical resistance welding was well tolerated by both osteoblasts and fibroblasts, whereas traditional soldering caused a significant (P < 0.05) decrease in both osteoblast ALP activity and fibroblast viability, and prevented the growth of keratinocytes in vitro. Laser welding was the only joining process well tolerated by all tested cells.

  19. Manufacturing Methods and Technology Application of High Energy Laser Welding Process.

    DTIC Science & Technology

    1980-08-01

    surface appearance and the lowest porosity of the three beam shapes evaluated. Welds made with the pure annular beam resembled a TIG weld in both surface...improper starts and stops when welding with a conventional MIG or TIG process. Figure 16 left and center illustrates cracking due to fast freezing conditions...REPORT RL-82-2 0 MANUFACTURING METHODS AND TECHNOLOGY APPLICATION _OF HIGH ENERGY LASER WELDING PROCESS 0John V. Melonas Structures Directorate, U S

  20. Comparative evaluation of the three different surface treatments - conventional, laser and Nano technology methods in enhancing the surface characteristics of commercially pure titanium discs and their effects on cell adhesion: An in vitro study.

    PubMed

    Vignesh; Nayar, Sanjna; Bhuminathan; Mahadevan; Santhosh, S

    2015-04-01

    The surface area of the titanium dental implant materials can be increased by surface treatments without altering their shape and form, thereby increasing the biologic properties of the biomaterial. A good biomaterial helps in early cell adhesion and cell signaling. In this study, the commercially pure titanium surfaces were prepared to enable machined surfaces to form a control material and to be compared with sandblasted and acid-etched surfaces, laser treated surfaces and titanium dioxide (20 nm) Nano-particle coated surfaces. The surface elements were characterized. The biocompatibility was evaluated by cell culture in vitro using L929 fibroblasts. The results suggested that the titanium dioxide Nano-particle coated surfaces had good osteoconductivity and can be used as a potential method for coating the biomaterial.

  1. Commercially pure titanium (cp-Ti) versus titanium alloy (Ti6Al4V) materials as bone anchored implants - Is one truly better than the other?

    PubMed

    Shah, Furqan A; Trobos, Margarita; Thomsen, Peter; Palmquist, Anders

    2016-05-01

    Commercially pure titanium (cp-Ti) and titanium alloys (typically Ti6Al4V) display excellent corrosion resistance and biocompatibility. Although the chemical composition and topography are considered important, the mechanical properties of the material and the loading conditions in the host have, conventionally, influenced material selection for different clinical applications: predominantly Ti6Al4V in orthopaedics while cp-Ti in dentistry. This paper attempts to address three important questions: (i) To what extent do the surface properties differ when cp-Ti and Ti6Al4V materials are manufactured with the same processing technique?, (ii) Does bone tissue respond differently to the two materials, and (iii) Do bacteria responsible for causing biomaterial-associated infections respond differently to the two materials? It is concluded that: (i) Machined cp-Ti and Ti6Al4V exhibit similar surface morphology, topography, phase composition and chemistry, (ii) Under experimental conditions, cp-Ti and Ti6Al4V demonstrate similar osseointegration and biomechanical anchorage, and (iii) Experiments in vitro fail to disclose differences between cp-Ti and Ti6Al4V to harbour Staphylococcus epidermidis growth. No clinical comparative studies exist which could determine if long-term, clinical differences exist between the two types of bulk materials. It is debatable whether cp-Ti or Ti6Al4V exhibit superiority over the other, and further comparative studies, particularly in a clinical setting, are required. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Cadmium Telluride-Titanium Dioxide Nanocomposite for Photodegradation of Organic Substance.

    PubMed

    Ontam, Areeporn; Khaorapapong, Nithima; Ogawa, Makoto

    2015-12-01

    Cadmium telluride-titanium dioxide nanocomposite was prepared by hydrothermal reaction of sol-gel derived titanium dioxide and organically modified cadmium telluride. The crystallinity of titanium dioxide in the nanocomposite was higher than that of pure titanium dioxide obtained by the reaction under the same temperature and pressure conditions, showing that cadmium telluride induced the crystallization of titanium dioxide. Diffuse reflectance spectrum of the nanocomposite showed the higher absorption efficiency in the UV-visible region due to band-gap excitation of titanium dioxide. The nanocomposite significantly showed the improvement of photocatalytic activity for 4-chlorophenol with UV light.

  3. Structural transformations and properties of titanium-aluminum composite during heat treatment

    NASA Astrophysics Data System (ADS)

    Pervukhin, L. B.; Kryukov, D. B.; Krivenkov, A. O.; Chugunov, S. N.

    2017-08-01

    The link between the parameters of heat treatment of a layered titanium-aluminum composite material obtained by explosive welding with the formation of intermetallic compounds in it has been analyzed. The results of measurements of the microhardness of the composite and the thickness of the interlayer of the intermetallic phase obtained using different regimes of heat treatment have been discussed. Special attention has been paid to estimating the composition of the intermetallic phase in the composite prepared by explosive welding.

  4. Interfacial microstructure and properties of copper clad steel produced using friction stir welding versus gas metal arc welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Z.; Chen, Y.; Haghshenas, M., E-mail: mhaghshe@uwaterloo.ca

    A preliminary study compares the feasibility and microstructures of pure copper claddings produced on a pressure vessel A516 Gr. 70 steel plate, using friction stir welding versus gas metal arc welding. A combination of optical and scanning electron microscopy is used to characterize the grain structures in both the copper cladding and heat affected zone in the steel near the fusion line. The friction stir welding technique produces copper cladding with a grain size of around 25 μm, and no evidence of liquid copper penetration into the steel. The gas metal arc welding of copper cladding exhibits grain sizes overmore » 1 mm, and with surface microcracks as well as penetration of liquid copper up to 50 μm into the steel substrate. Transmission electron microscopy reveals that metallurgical bonding is produced in both processes. Increased diffusion of Mn and Si into the copper cladding occurs when using gas metal arc welding, although some nano-pores were detected in the FSW joint interface. - Highlights: • Cladding of steel with pure copper is possible using either FSW or GMAW. • The FSW yielded a finer grain structure in the copper, with no evidence of cracking. • The FSW joint contains some evidence of nano-pores at the interface of the steel/copper. • Copper cladding by GMAW contained surface cracks attributed to high thermal stresses. • The steel adjacent to the fusion line maintained a hardness value below 248 HV.« less

  5. Influence of different tightening forces before laser welding to the implant/framework fit.

    PubMed

    da Silveira-Júnior, Clebio Domingues; Neves, Flávio Domingues; Fernandes-Neto, Alfredo Júlio; Prado, Célio Jesus; Simamoto-Júnior, Paulo César

    2009-06-01

    The aim of the present study was to evaluate the influence of abutment screw tightening force before laser welding procedures on the vertical fit of metal frameworks over four implants. To construct the frameworks, prefabricated titanium abutments and cylindrical titanium bars were joined by laser welding to compose three groups: group of manual torque (GMT), GT10 and GT20. Before welding, manual torque simulating routine laboratory procedure was applied to GTM. In GT10 and GT20, the abutment screws received 10 and 20 Ncm torque, respectively. After welding, the implant/framework interfaces were assessed by optical comparator microscope using two methods. First, the single screw test (SST) was used, in which the interfaces of the screwed and non-screwed abutments were assessed, considering only the abutments at the framework extremities. Second, the interfaces of all the abutments were evaluated when they were screwed. In the SST, intergroup analysis (Kruskal Wallis) showed no significant difference among the three conditions of tightening force; that is, the different tightening force before welding did not guarantee smaller distortions. Intragroup analysis (Wilcoxon) showed that for all groups, the interfaces of the non-screwed abutments were statistically greater than the interfaces of the screwed abutments, evidencing distortions in all the frameworks. ANOVA was applied for the comparison of interfaces when all the abutments were screwed and showed no significant difference among the groups. Under the conditions of this study, pre-welding tightness on abutment screws did not influence the vertical fit of implant-supported metal frameworks.

  6. Effect of surface contamination on adhesive bonding of cast pure titanium and Ti-6Al-4V alloy.

    PubMed

    Watanabe, I; Watanabe, E; Yoshida, K; Okabe, T

    1999-03-01

    There is little information regarding bond strengths of resin cements to cast titanium surfaces contaminated by investment material. This study examined the effect of surface contamination on the shear bond strength of resin cements to cast titanium and Ti-6Al-4V alloy. Two types of disks were cast from commercially pure titanium (CP-Ti) and Ti-6Al-4V alloy ingots using an argon-arc pressure casting unit and a phosphate-bonded Al2 O3 /LiAlSiO6 investment. After casting, disks were subjected to 3 surface treatments: (1) cast surface sandblasted (50 microm-sized Al2 O3 ) for 30 seconds; (2) metal surface sanded with silicon-carbide paper (600 grit) after grinding the contaminated cast surface (approximately 200 microm in thickness); and (3) metal surface sandblasted for 30 seconds after treatment 2. Surface structures were examined after each treatment with SEM and optical microscopy. Each type of disk was then bonded with 2 types of luting materials. Bonded specimens were subjected to thermocycling for up to 50,000 cycles, and shear bond strengths were determined after 0 (baseline) and 50,000 thermocycles. Results were statistically analyzed with 3-way ANOVA (P <.05). Microscopic observation of cast CP-Ti and Ti-6Al-4V exhibited noticeable structures on the cast surfaces apparently contaminated with investment material. However, there were no statistical differences (P >.05) in the bond strengths of both cements between contaminated (treatment 1) and uncontaminated surfaces (treatment 3) for both metals at baseline and after 50,000 thermocycles. The bond strength of specimens sanded with silicon-carbide paper (treatment 2) deteriorated dramatically after 50,000 thermocycles. Contamination of the cast metal surfaces by elements of the investment during casting did not affect bond strengths of the luting materials to CP-Ti and Ti-6Al-4V.

  7. T-joints of Ti alloys with hybrid laser-MIG welding: macro-graphic and micro-hardness analyses

    NASA Astrophysics Data System (ADS)

    Spina, R.; Sorgente, D.; Palumbo, G.; Scintilla, L. D.; Brandizzi, M.; Satriano, A. A.; Tricarico, L.

    2012-03-01

    Titanium alloys are characterized by high mechanical properties and elevated corrosion resistance. The combination of laser welding with MIG/GMAW has proven to improve beneficial effects of both processes (keyhole, gap-bridging ability) while limiting their drawbacks (high thermal gradient, low mechanical resistance) In this paper, the hybrid Laser-GMAW welding of Ti-6Al-4V 3-mm thick sheets is investigated using a specific designed trailing shield. The joint geometry was the double fillet welded T-joint. Bead morphologies, microstructures and mechanical properties (micro-hardness) of welds were evaluated and compared to those achieved for the base metals.

  8. Laser induced single spot oxidation of titanium

    NASA Astrophysics Data System (ADS)

    Jwad, Tahseen; Deng, Sunan; Butt, Haider; Dimov, S.

    2016-11-01

    Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels' colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.

  9. Assessment of weld quality of aerospace grade metals by using ultrasonic matrix phased array technology

    NASA Astrophysics Data System (ADS)

    Na, Jeong K.; Gleeson, Sean T.

    2014-03-01

    Advantages of two dimensional electronic ultrasonic beam focusing, steering and scanning with the matrix phased array (MPA) technology has been used to visualize the conditions of resistance spot welds in auto vehicle grade advanced high strength steel carbon steels nondestructively. Two of the commonly used joining techniques, resistance spot welding and resistance seam welding, for thin aerospace grade plates made of aluminum, titanium, and stainless steels have also been inspected with the same MPA NDE system. In this study, a detailed discussions of the current MPA based ultrasonic real time imaging methodology has been made followed by some of the NDT results obtained with various welded test coupons.

  10. Particulate and gaseous emissions when welding aluminum alloys.

    PubMed

    Cole, Homer; Epstein, Seymour; Peace, Jon

    2007-09-01

    Fabrication and repair of aluminum components and structures commonly involves the use of electric arc welding. The interaction of the arc and the metal being welded generates ultraviolet radiation, metallic oxides, fumes, and gases. Aluminum is seldom used as the pure metal but is often alloyed with other metals to improve strength and other physical properties. Therefore, the exact composition of any emissions will depend on the welding process and the particular aluminum alloy being welded. To quantify such emissions, The Aluminum Association sponsored several studies to characterize arc welding emissions by the gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW) processes for various combinations of base and filler alloys. In all cases, the tests were conducted under conditions that could be found in a production weld shop without forced ventilation. The concentrations of each analyte that a welder could be exposed to were greatly affected by the welding process, the composition of the base and filler alloys, the position of the welder, and the welding helmet. The results obtained can be used by employers to identify and control potential hazards associated with the welding of aluminum alloys and can provide the basis for hazard communication to employees involved in the welding of these alloys.

  11. Characterisation of fume from hyperbaric welding operations

    NASA Astrophysics Data System (ADS)

    Ross, John A. S.; Semple, Sean; Duffin, Rodger; Kelly, Frank; Seldmann, Joerg; Raab, Andrea

    2009-02-01

    We report preliminary work characterising dust from hyperbaric welding trials carried out at increased pressure in a helium and oxygen atmosphere. Particle size and concentration were measured during welding. Samples for quartz and metal analysis and toxicity assessment were taken from a filter in the local fume extraction system. The residue of dust after metal extraction by nitric acid in hydrogen peroxide predominantly a non-metallic white powder assumed to be dust from welding rod coatings and thermal insulation material. Metallic analysis showed predominantly calcium, from the welding rod coating, and period 4 transition metals such as iron, manganese, magnesium and titanium (inductively coupled mass spectrometry, Agilent 7500c). The presence of zirconium indicated a contribution from grinding. The fume was nanoparticulate in nature with a mean particle diameter of 20-30 nm (MSI Inc WPS 1000XP). It showed an intermediate level of oxidative potential regarding the low-molecular weight respiratory tract lining fluid antioxidants ascorbate and glutathione and caused release of the inflammatory marker IL-8 in a human lung A 549 epithelial cell culture with no indication of cytotoxicity. The study findings have strong implications for the measurement techniques needed to assess fume exposure in hyperbaric welding and the provision of respiratory protection.

  12. Use of the Plasma Spectrum RMS Signal for Arc-Welding Diagnostics.

    PubMed

    Mirapeix, Jesus; Cobo, Adolfo; Fuentes, Jose; Davila, Marta; Etayo, Juan Maria; Lopez-Higuera, Jose-Miguel

    2009-01-01

    A new spectroscopic parameter is used in this paper for on-line arc-welding quality monitoring. Plasma spectroscopy applied to welding diagnostics has typically relied on the estimation of the plasma electronic temperature, as there is a known correlation between this parameter and the quality of the seams. However, the practical use of this parameter gives rise to some uncertainties that could provoke ambiguous results. For an efficient on-line welding monitoring system, it is essential to prevent the appearance of false alarms, as well as to detect all the possible defects. In this regard, we propose the use of the root mean square signal of the welding plasma spectra, as this parameter will be proven to exhibit a good correlation with the quality of the resulting seams. Results corresponding to several arc-welding field tests performed on Inconel and titanium specimens will be discussed and compared to non-destructive evaluation techniques.

  13. Use of the Plasma Spectrum RMS Signal for Arc-Welding Diagnostics

    PubMed Central

    Mirapeix, Jesus; Cobo, Adolfo; Fuentes, Jose; Davila, Marta; Etayo, Juan Maria; Lopez-Higuera, Jose-Miguel

    2009-01-01

    A new spectroscopic parameter is used in this paper for on-line arc-welding quality monitoring. Plasma spectroscopy applied to welding diagnostics has typically relied on the estimation of the plasma electronic temperature, as there is a known correlation between this parameter and the quality of the seams. However, the practical use of this parameter gives rise to some uncertainties that could provoke ambiguous results. For an efficient on-line welding monitoring system, it is essential to prevent the appearance of false alarms, as well as to detect all the possible defects. In this regard, we propose the use of the root mean square signal of the welding plasma spectra, as this parameter will be proven to exhibit a good correlation with the quality of the resulting seams. Results corresponding to several arc-welding field tests performed on Inconel and titanium specimens will be discussed and compared to non-destructive evaluation techniques. PMID:22346696

  14. Stress corrosion cracking of titanium alloys

    NASA Technical Reports Server (NTRS)

    Statler, G. R.; Spretnak, J. W.; Beck, F. H.; Fontana, M. G.

    1974-01-01

    The effect of hydrogen on the properties of metals, including titanium and its alloys, was investigated. The basic theories of stress corrosion of titanium alloys are reviewed along with the literature concerned with the effect of absorbed hydrogen on the mechanical properties of metals. Finally, the basic modes of metal fracture and their importance to this study is considered. The experimental work was designed to determine the effects of hydrogen concentration on the critical strain at which plastic instability along pure shear directions occurs. The materials used were titanium alloys Ti-8Al-lMo-lV and Ti-5Al-2.5Sn.

  15. The Effect of Nitrogen and Titanium on the Toughness of High Strength Saw Weld Deposits

    DTIC Science & Technology

    1989-05-12

    2.3 CCT diagram for typical SAW steel welds [8]. 26 Figure 2.4 Oxygen and nitrogen levels expected from several arc 31 welding processes [10]. Figure...alloyed ferritic weld metal such formation is achieved if the CCT diagram is displaced towards longer times. However, it is worth noting that too large...dilution and cooling rate [5]. In this context, the CCT diagram is often used to denote the transformations that occur in weld metal samples which

  16. Manufacture of a four-sheet complex component from different titanium alloys by superplastic forming

    NASA Astrophysics Data System (ADS)

    Allazadeh, M. R.; Zuelli, N.

    2017-10-01

    A superplastic forming (SPF) technology process was deployed to form a complex component with eight-pocket from a four-sheet sandwich panel sheetstock. Six sheetstock packs were composed of two core sheets made of Ti-6Al-4V or Ti-5Al-4Cr-4Mo-2Sn-2Zr titanium alloy and two skin sheets made of Ti-6Al-4V or Ti-6Al-2Sn-4Zr-2Mo titanium alloy in three different combinations. The sheets were welded with two subsequent welding patterns over the core and skin sheets to meet the required component's details. The applied welding methods were intermittent and continuous resistance seam welding for bonding the core sheets to each other and the skin sheets over the core panel, respectively. The final component configuration was predicted based on the die drawings and finite element method (FEM) simulations for the sandwich panels. An SPF system set-up with two inlet gas pipe feeding facilitated the trials to deliver two pressure-time load cycles acting simultaneously which were extracted from FEM analysis for specific forming temperature and strain rate. The SPF pressure-time cycles were optimized via GOM scanning and visually inspecting some sections of the packs in order to assess the levels of core panel formation during the inflation process of the sheetstock. Two sets of GOM scan results were compared via GOM software to inspect the surface and internal features of the inflated multisheet packs. The results highlighted the capability of the tested SPF process to form complex components from a flat multisheet pack made of different titanium alloys.

  17. Effects of Mars Atmosphere on Arc Welds: Phase 2

    NASA Technical Reports Server (NTRS)

    Courtright, Z. S.

    2018-01-01

    Gas tungsten arc welding (GTAW) is a vital fusion welding process widely used throughout the aerospace industry. Its use may be critical for the repair or manufacture of systems, rockets, or facilities on the Martian surface. Aluminum alloy AA2219-T87 and titanium alloy Ti-6Al-4V butt welds have been investigated for weldability and weld properties in a simulated Martian gas environment. The resulting simulated Martian welds were compared to welds made in a terrestrial atmosphere, all of which used argon shielding gas. It was found that GTAW is a process that may be used in a Martian gas environment, not accounting for pressure and gravitational effects, as long as adequate argon shielding gas is used to protect the weld metal. Simulated Martian welds exhibited higher hardness in all cases and higher tensile strength in the case of AA2219-T87. This has been attributed to the absorption of carbon into the fusion zone, causing carbide precipitates to form. These precipitates may act to pin dislocations upon tensile testing of AA2219-T87. Dissolved carbon may have also led to carburization, which may have caused the increase in hardness within the fusion zone of the welds. Based on the results of this experiment and other similar experiments, GTAW appears to be a promising process for welding in a Martian gas environment. Additional funding and experimentation is necessary to determine the effects of the low pressure and low gravity environment found on Mars on GTAW.

  18. Rapid Repairs: Surface Preparation of Ti-3 Al-2.5V Alloy Tubes by Fiber Laser and Welding

    DTIC Science & Technology

    2008-11-01

    processing of titanium 6Al - 4V alloy for potential aerospace component cleaning application, Appl Surf Sci 2005;247:623-630. [11] Turner MW, Crouse...Debroy T, Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti- 6Al - 4V , 304 Stainless Steel and Vanadium, J Phy D : Appl Phy...14Titanium alloys are used extensively in aerospace applications mainly due to their superior strength to weight ratio. Different grades of titanium

  19. Characterization of yttrium-rich precipitates in a titanium alloy weld

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolli, R. Prakash, E-mail: pkolli@umd.edu

    The yttrium-rich (Y-rich) precipitates that form in the fusion zone (FZ) of a Ti–5Al–1Sn–1Zr–1V–0.8Mo (wt.%) alloy, or Ti-5111, gas-tungsten arc welds (GTAW) were characterized. The filler metal was modified by a small concentration of Y in order to refine the microstructure and thus improve the FZ ductility. A high number density of nanoscale Y-rich precipitates were characterized in the weld FZ by atom probe tomography (APT) and scanning transmission electron microscopy (STEM). - Highlights: •A high number density of nanoscale precipitates were observed in the FZ matrix. •The nanoscale precipitates are enriched in yttrium. •Oxygen and sulfur are also presentmore » in the Y-rich precipitates and their interfaces.« less

  20. Is there scientific evidence favoring the substitution of commercially pure titanium with titanium alloys for the manufacture of dental implants?

    PubMed

    Cordeiro, Jairo M; Barão, Valentim A R

    2017-02-01

    The development of Ti alloys to manufacture dental implants has emerged in recent years due to the increased failure of commercially pure titanium (cpTi) implants. Thus, this study reviews existing information about the mechanical, chemical, electrochemical, and biological properties of the main Ti alloys developed over the past few years to provide scientific evidence in favor of using Ti-based alloys as alternative to cpTi. Ti alloys may be considered viable substitutes in the fabrication of dental implants. Such evidence is given by the enhanced properties of alloys, such as a low elastic modulus, high tensile strength, satisfactory biocompatibility, and good corrosion and wear resistances. In addition, Ti alloys may be modified at the structural, chemical, and thermomechanical levels, which allows the development of materials in accordance with the demands of several situations encountered in clinical practice. Although several in vitro studies have established the superiority of Ti alloys over cpTi, mainly in terms of their mechanical properties, there is no scientific evidence that supports the total replacement of this material in vivo. This review demonstrates the superiority of β-type alloys. However, it is evident that in vivo studies are encouraged to test new alloys to consolidate their use as substitutes for cpTi. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Low-Temperature Forming of Beta Titanium Alloys

    NASA Technical Reports Server (NTRS)

    Kaneko, R. S.; Woods, C. A.

    1983-01-01

    Low cost methods for titanium structural fabrication using advanced cold-formable beta alloys were investigated for application in a Mach 2.7 supersonic cruise vehicle. This work focuses on improving processing and structural efficiencies as compared with standard hot formed and riveted construction of alpha-beta alloy sheet structure. Mechanical property data and manufacturing parameters were developed for cold forming, brazing, welding, and processing Ti-15V-3Cr-3Sn-3Al sheet, and Ti-3Al-8V-6Cr-4Zr on a more limited basis. Cost and structural benefits were assessed through the fabrication and evaluation of large structural panels. The feasibility of increasing structural efficiency of beta titanium structure by selective reinforcement with metal matrix composite was also explored.

  2. Correlation between rate of bony ingrowth to stainless steel, pure titanium, and titanium alloy implants in vivo and formation of hydroxyapatite on their surfaces in vitro.

    PubMed

    Oron, A; Agar, G; Oron, U; Stein, A

    2009-12-15

    The rate of bony ingrowth to identical metal implants made of either pure titanium (cpTi), titanium alloy (Ti-6Al-4V), or stainless steel 316L (SS) inserted to the medullar canal of the femur in rats was investigated. The kinetics of spontaneous deposition of hydroxyapatite (HA) globules on the aforementioned metals in vitro during incubation in simulated body fluid (SBF) was also studied. It was found that the rate of increased bonding strength between the cpTi implants and the host bone was the highest, whereas around the SS implants it was the slowest. At 10 days postimplant insertion, the shear strength of the cpTi implants was 2.2- and 4-fold significantly higher than for the Ti-6Al-4V and the SS implants, respectively. Spontaneous formation of the HA globules on the cpTi and Ti-6Al-4V implants that were incubated in the SBF was observed as early as 6 and 10 days after incubation in SBF, respectively, whereas on SS implants, deposition of HA was evident only after 2 weeks of in vitro incubation in SBF. It is concluded that the chemical surface characteristics and the biocompatibility of the implants probably play a key role in the process of bone growth next to them, during the formation of bone in vivo. The rate of bony ingrowth to various metal implants alloys inserted into the medullar canal of rats correlates well with the induction of apatite formation on them during incubation in vitro with SBF.

  3. Effect of Laser Power and Scan Speed on Melt Pool Characteristics of Commercially Pure Titanium (CP-Ti)

    NASA Astrophysics Data System (ADS)

    Kusuma, Chandrakanth; Ahmed, Sazzad H.; Mian, Ahsan; Srinivasan, Raghavan

    2017-07-01

    Selective laser melting (SLM) is an additive manufacturing technique that creates complex parts by selectively melting metal powder layer-by-layer using a laser. In SLM, the process parameters decide the quality of the fabricated component. In this study, single beads of commercially pure titanium (CP-Ti) were melted on a substrate of the same material using an in-house built SLM machine. Multiple combinations of laser power and scan speed were used for single bead fabrication, while the laser beam diameter and powder layer thickness were kept constant. This experimental study investigated the influence of laser power, scan speed, and laser energy density on the melt pool formation, surface morphology, geometry (width and height), and hardness of solidified beads. In addition, the observed unfavorable effect such as inconsistency in melt pool width formation is discussed. The results show that the quality, geometry, and hardness of solidified melt pool are significantly affected by laser power, scanning speed, and laser energy density.

  4. Interfacial Reaction During Dissimilar Joining of Aluminum Alloy to Magnesium and Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Robson, J. D.; Panteli, A.; Zhang, C. Q.; Baptiste, D.; Cai, E.; Prangnell, P. B.

    Ultrasonic welding (USW), a solid state joining process, has been used to produce welds between AA6111 aluminum alloy and AZ31 magnesium alloys or titanium alloy Ti-6Al-4V. The mechanical properties of the welds have been assessed and it has been shown that it is the nature and thickness of the intermetallic compounds (IMCs) at the joint line that are critical in determining joint strength and particularly fracture energy. Al-Mg welds suffer from a very low fracture energy, even when strength is comparable with that of similar metal Mg-Mg welds, due to a thick IMC layer always being formed. It is demonstrated that in USW of Al-Ti alloy the slow interdiffusion kinetics means that an IMC layer does not form during welding, and fracture energy is greater. A model has been developed to predict IMC formation during welding and provide an understanding of the critical factors that determine the IMC thickness. It is predicted that in Al-Mg welds, most of the lMC thickening occurs whilst the IMC regions grow as separate islands, prior to the formation of a continuous layer.

  5. [The bonding characteristic of titanium and RG experiment porcelain].

    PubMed

    Ren, Wei-hong; Guo, Tian-wen; Tian, Jie-mo; Zhang, Yun-long

    2003-07-01

    To study the bonding characteristic of Titanium and RG experiment porcelain. 5 specimens with a size of 10 mm x 5 mm x 1.4 mm were cast from pure titanium. Then 1 mm of RG experiment opaque and body porcelain were fused on the surface of the titanium specimens. The interface of titanium and porcelain was analyzed with a scanning electron microscope with energy-despersive spectrometry; 6 metal specimens with the size of 25 mm x 3 mm x 0.5 mm were cast from Ni-Cr alloy and a uniform thickness of 1 mm of VMK 99 porcelain was veneered on the central area of 8 mm x 3 mm 18 metal specimens as the same size were cast from pure titanium. The uniform thickness of 1 mm of VITA TITANKERAMIK porcelain, of Noritake super porcelain Ti-22 and of RG experiment porcelain were veneered on every 6 specimens respectively in the central area of 8 mm x 3 mm. The specimens were subjected to a three-point bending test on a load-test machine with a span of 20 mm, then the failure loads were recorded and statistically analysised. The RG porcelain/titanium crown was fabricated by fusing RG opaque porcelain and body porcelain to cast titanium substrate crown. The SEM results show no porosity and crackle were found in the interface. The energy-dispersive spectrometry show that there are Si, Ti and O in the 1 micro m layer between porcelain and titanium, which suggesting titanium and experiment porcelain bonding well. The three point test showed the fracture force for the combinations of titanium/VITA TITANKERAMIK porcelain, titanium/Noritake super porcelain Ti-22 and titanium/RG experiment porcelain were (7.233 +/- 2.539) N, (5.533 +/- 1.199) N and (6.316 +/- 1.433) N respectively. There were not statistically significant differences among them (t test, P < 0.01). The fracture force for the Ni-Cr alloy/VMK99 porcelain combination (12.733 +/- 3.297) N was significantly greater than those of the cast titanium/porcelain (t test, P > 0.05). The crown was translucent with no crack. RG porcelain is

  6. Effect of laser beam offset on microstructure and mechanical properties of pulsed laser welded BTi-6431S/TA15 dissimilar titanium alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Hu, Shengsun; Shen, Junqi; Li, Dalong; Bu, Xianzheng

    2015-11-01

    Laser beam welding was used to weld dissimilar joints in BTi-6431S/TA15 titanium alloys. The effect of laser beam offset on microstructural characterizations and mechanical properties of the joints were investigated. Microstructural evolution of the joints was characterized by optical microscopy (OM) and X-ray diffraction (XRD). Tensile testing was conducted at room temperature and at 550 °C. The results demonstrated that with the exception of some porosity, a good quality joint could be achieved. Martensite α' and acicular α structures were present in the fusion zone (FZ). The amount of martensite α' present with the -0.2 mm beam offset was less than that with the 0.2 mm beam offset. Acicular α and martensite α' transformations occurred in the high temperature heat-affected zone (HT-HAZ) of both the BTi-6431S and TA15 alloys. In the low-temperature heat-affected zone (LT-HAZ), the BTi-6431S and TA15 alloy microstructures exhibited a mixture of secondary α, primary α, and prior β phases. The microhardness values in the FZ followed the order: -0.2 mm> 0 mm> 0.2 mm. Tensile testing at room temperature and at 550 °C resulted in fracture of the TA15 alloy base metal. The fracture morphology exhibited a ductile dimple feature.

  7. Machinability assessment of commercially pure titanium (CP-Ti) during turning operation: Application potential of GRA method

    NASA Astrophysics Data System (ADS)

    Khan, Akhtar; Maity, Kalipada

    2018-03-01

    This paper explores some of the vital machinability characteristics of commercially pure titanium (CP-Ti) grade 2. Experiments were conducted based on Taguchi’s L9 orthogonal array. The selected material was machined on a heavy duty lathe (Model: HMT NH26) using uncoated carbide inserts in dry cutting environment. The selected inserts were designated by ISO as SNMG 120408 (Model: K313) and manufactured by Kennametal. These inserts were rigidly mounted on a right handed tool holder PSBNR 2020K12. Cutting speed, feed rate and depth of cut were selected as three input variables whereas tool wear (VBc) and surface roughness (Ra) were the major attentions. In order to confirm an appreciable machinability of the work part, an optimal parametric combination was attained with the help of grey relational analysis (GRA) approach. Finally, a mathematical model was developed to exhibit the accuracy and acceptability of the proposed methodology using multiple regression equations. The results indicated that, the suggested model is capable of predicting overall grey relational grade within acceptable range.

  8. Solid State Joining of Dissimilar Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Morton, Todd W.

    Solid state joining of titanium via friction stir welding and diffusion bonding have emerged as enablers of efficient monolithic structural designs by the eliminations fasteners for the aerospace industry. As design complexity and service demands increase, the need for joints of dissimilar alloys has emerged. Complex thermomechanical conditions in friction stir weld joints and high temperature deformation behavior differences between alloys used in dissimilar joints gives rise to a highly variable flow pattern within a stir zone. Experiments performed welding Ti-6Al-4V to beta21S show that mechanical intermixing of the two alloys is the primary mechanism for the generation of the localized chemistry and microstructure, the magnitude of which can be directly related to pin rotation and travel speed weld parameters. Mechanical mixing of the two alloys is heavily influenced by strain rate softening phenomena, and can be used to manipulate weld nugget structure by switching which alloy is subjected to the advancing side of the pin. Turbulent mixing of a weld nugget and a significant reduction in defects and weld forces are observed when the beta21S is put on the advancing side of the weld where higher strain rates are present. Chemical diffusion driven by the heat of weld parameters is characterized using energy dispersive x-ray spectroscopy (EDS) and is shown to be a secondary process responsible for generating short-range chemical gradients that lead to a gradient of alpha particle structures. Diffusion calculations are inconsistent with an assumption of steady-state diffusion and show that material interfaces in the weld nugget evolve through the break-down of turbulent interface features generated by material flows. A high degree of recrystallization is seen throughout the welds, with unique, hybrid chemistry grains that are generated at material interfaces in the weld nugget that help to unify the crystal structure of dissimilar alloys. The degree of

  9. In situ hydride formation in titanium during focused ion milling.

    PubMed

    Ding, Rengen; Jones, Ian P

    2011-01-01

    It is well known that titanium and its alloys are sensitive to electrolytes and thus hydrides are commonly observed in electropolished foils. In this study, focused ion beam (FIB) milling was used to prepare thin foils of titanium and its alloys for transmission electron microscopy. The results show the following: (i) titanium hydrides were observed in pure titanium, (ii) the preparation of a bulk sample in water or acid solution resulted in the formation of more hydrides and (iii) FIB milling aids the precipitation of hydrides, but there were never any hydrides in Ti64 and Ti5553.

  10. The influence of screw type, alloy and cylinder position on the marginal fit of implant frameworks before and after laser welding.

    PubMed

    Castilio, Daniela; Pedreira, Ana Paula Ribeiro do Vale; Rossetti, Paulo Henrique Orlato; Rossetti, Leylha Maria Nunes; Bonachela, Wellington Cardoso

    2006-04-01

    Misfit at the abutment-prosthetic cylinder interface can cause loss of preload, leading to loosening or fracture of gold and titanium screws. To evaluate the influence of screw type, alloy, and cylinder position on marginal fit of implant frameworks before and after laser welding. After Estheticone-like abutments were screwed to the implants, thirty plastic prosthetic cylinders were mounted and waxed-up to fifteen cylindrical bars. Each specimen had three interconnected prosthetic components. Five specimens were one-piece cast in titanium and five in cobalt-chromium alloy. On each specimen, tests were conducted with hexagonal titanium and slotted gold screws separately, performing a total of thirty tested screws. Measurements at the interfaces were performed using an optical microscope with 5mm accuracy. After sectioning, specimens were laser welded and new measurements were obtained. Data were submitted to a four-way ANOVA and Tukey's multiple comparisons test (alpha=0.05). Slotted and hexagonal screws did not present significant differences regarding to the fit of cylinders cast in titanium, either in one-piece casting framework or after laser welding. When slotted and hexagonal screws were tested on the cobalt-chromium specimens, statistically significant differences were found for the one-piece casting condition, with the slotted screws presenting better fit (24.13 microm) than the hexagonal screws (27.93 microm). Besides, no statistically significant differences were found after laser welding. 1) The use of different metal alloys do exert influence on the marginal fit, 2) The slotted and hexagonal screws play the exclusive role of fixing the prosthesis, and did not improve the fit of cylinders, and 3) cylinder position did not affect marginal fit values.

  11. Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds

    NASA Astrophysics Data System (ADS)

    Bhatt, R. B.; Kamat, H. S.; Ghosal, S. K.; de, P. K.

    1999-10-01

    The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 °C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improved pitting corrosion resistance of the weldments of this steel. However, the resistance to pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constitutent phases, which are responsible for improved resistance to pitting corrosion.

  12. Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, R.B.; Kamat, H.S.; Ghosal, S.K.

    1999-10-01

    The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improvedmore » pitting corrosion resistance of the weldments of this steel. However, the resistance of pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constituent phases, which are responsible for improved resistance to pitting corrosion.« less

  13. Nitriding of titanium and titanium: 8 percent aluminum, 1 percent molybdenum, 1 percent vanadium alloy with an ion-beam source

    NASA Technical Reports Server (NTRS)

    Gill, A.

    1983-01-01

    Titanium and Ti-8Al-1Mo-1V alloy were nitrided with an ion-beam source of nitrogen or argon and nitrogen at a total pressure of 2 x 10 to the minus 4th power to 10 x 10 to the minus 4th power torr. The treated surface was characterized by surface profilometry, X-ray diffractometry, Auger electron spectroscopy and microhardness measurements. The tetragonal Ti2N phase formed in pure titanium and Ti-8Al-1Mo-1V alloy with traces of AlN in the alloy. Two opposite processes competed during the ion-beam-nitriding process: (1) formation of nitrides in the surface layer and (2) sputtering of the nitrided layers by the ion beam. The highest surface hardnesses, about 500 kg/sq mm in titanium and 800 kg/sq mm in Ti-8Al-1Mo-1V, were obtained by ion nitriding with an ion beam of pure nitrogen at 4.2 x 10 to the minus 4th power torr at a beam voltage of 1000 V.

  14. Evaluation of Mechanical Properties and Marginal Fit of Crowns Fabricated Using Commercially Pure Titanium and FUS-Invest

    PubMed Central

    Wu, Jinshuang; Wang, Xianli; Xing, Helin; Guo, Tianwen; Dong, Chaofang

    2017-01-01

    This study investigated the mechanical properties and single crown accuracy of the tailor-made Fourth University Stomatology investment (FUS-invest) for casting titanium. Background. Current investment for casting titanium is not optimal for obtaining high-quality castings, and the commercially available titanium investment is costly. Methods. Titanium specimens were cast using the tailor-made FUS-invest. The mechanical properties were tested using a universal testing machine. Fractured castings were characterized by energy-dispersive spectroscopy. 19 titanium crowns were produced using FUS-invest and another 19 by Symbion. The accuracy of crowns was evaluated. Results. The mechanical properties of the titanium cast by FUS-invest were elastic modulus 125.6 ± 8.8 GPa, yield strength 567.5 ± 11.1 MPa, tensile strength 671.2 ± 15.6 MPa, and elongation 4.6 ± 0.2%. For marginal fit, no significant difference (P > 0.05) was found at four marker points of each group. For internal fit, no significant difference (P > 0.05) was found between two groups, whereas significant difference (P < 0.01) was found at different mark point of each group. Conclusions. The mechanical properties of titanium casted using FUS-invest fulfilled the ISO 9693 criteria. The marginal and internal fit of the titanium crowns using either the FUS-invest or Symbion were similar. PMID:28913355

  15. The Growth Behavior of Titanium Boride Layers in α and β Phase Fields of Titanium

    NASA Astrophysics Data System (ADS)

    Lv, Xiaojun; Hu, Lingyun; Shuang, Yajing; Liu, Jianhua; Lai, Yanqing; Jiang, Liangxing; Li, Jie

    2016-07-01

    In this study, the commercially pure titanium was successfully electrochemical borided in a borax-based electrolyte. The process was carried out at a constant cathodic current density of 300 mA cm-2 and at temperatures of 1123 K and 1223 K (850 °C and 950 °C) for 0.5, 1, 2, 3, and 5 hours. The growth behavior of titanium boride layers in the α phase field of titanium was compared with that in the β phase field. After boriding, the presence of both the TiB2 top layer and TiB whisker sub-layer was confirmed by the X-ray diffraction (XRD) and scanning electron microscope. The relationship between the thickness of boride layers and boriding time was found to have a parabolic character in both α and β phase fields of titanium. The TiB whiskers showed ultra-fast growth rate in the β phase field. Its growth rate constant was found to be as high as 3.2002 × 10-13 m2 s-1. Besides, the chemical resistance of the TiB2 layer on the surface of titanium substrate was characterized by immersion tests in molten aluminum.

  16. Effect of hydrogen on the mechanical properties of titanium and its alloys

    NASA Technical Reports Server (NTRS)

    Beck, F. H.

    1975-01-01

    Occluded hydrogen resulting from cathodic charging of commercially pure titanium and titanium alloys, Ti-8Al-1Mo-1V and Ti-6Al-4V, was shown to cause embrittlement of the alloys. Embrittlement was a function of the interstitial hydrogen content rather than the amount of precipitated titanium hydride. The effects of hydrogen concentration on the critical strain for plastic instability along pure shear directions was determined for alloys Ti-8Al-1Mo-1V and Ti-5Al-2.5Sn. Hydrogen, in concentrations below that necessary for spontaneous hydride precipitation, increased the strain necessary for instability formation or instability failure. The strain rate sensitivity also increased with increasing hydrogen concentration. The effect of hydrogen on slip and twinning was determined for titanium single crystals. The critical resolved shear stress for prism slip was increased and the critical resolved shear stress for twinning was decreased with increasing hydrogen concentration.

  17. Titanium honeycomb acoustic lining structural and thermal test report. [for acoustic tailpipe for JT8D engine

    NASA Technical Reports Server (NTRS)

    Joynes, D.; Balut, J. P.

    1974-01-01

    The results are presented of static, fatigue and thermal testing of titanium honeycomb acoustic panels representing the acoustic tailpipe for the Pratt and Whitney Aircraft JT8D Refan engine which is being studied for use on the Boeing 727-200 airplane. Test specimens represented the engine and tailpipe flange joints, the rail to which the thrust reverser is attached and shear specimens of the tailpipe honeycomb. Specimens were made in four different batches with variations in configuration, materials and processes in each. Static strength of all test specimens exceeded the design ultimate load requirements. Fatigue test results confirmed that aluminum brazed titanium, as used in the Refan tailpipe design, meets the fatigue durability objectives. Quality of welding was found to be critical to life, with substandard welding failing prematurely, whereas welding within the process specification exceeded the panel skin life. Initial fatigue testing used short grip length bolts which failed prematurely. These were replaced with longer bolts and subsequent testing demonstrated the required life. Thermal tests indicate that perforated skin acoustic honeycomb has approximately twice the heat transfer of solid skin honeycomb.

  18. Biocorrosion study of titanium-cobalt alloys.

    PubMed

    Chern Lin, J H; Lo, S J; Ju, C P

    1995-05-01

    The present work provides experimental results of corrosion behaviour in Hank's physiological solution and some other properties of in-house fabricated titanium-cobalt alloys with cobalt ranging from 25-30% in weight. X-ray diffraction (XRD) shows that, in water-quenched (WQ) alloys, beta-titanium is largely retained, whereas in furnace-cooled (FC) alloys, little beta-titanium is found. Hardness of the alloys increases with increasing cobalt content, ranging from 455 VHN for WQ Ti-25 wt% Co to 525 VHN for WQ Ti-30 wt% Co. Differential thermal analysis (DTA) indicates that melting temperatures of the alloys are lower than that of pure titanium by about 600 degrees C. Potentiodynamic polarization results show that all measured break-down potentials in Hank's solution at 37 degrees C are higher than 800 mV. The breakdown potential for the FC Ti-25 Wt% Co alloy is even as high as nearly 1200 mV.

  19. Bone response to a titanium aluminium nitride coating on metallic implants.

    PubMed

    Freeman, C O; Brook, I M

    2006-05-01

    The design, surface characteristics and strength of metallic implants are dependant on their intended use and clinical application. Surface modifications of materials may enable reduction of the time taken for osseointegration and improve the biological response of bio-mechanically favourable metals and alloys. The influence of a titanium aluminium nitride (TAN) coating on the response of bone to commercially pure titanium and austenitic 18/8 stainless steel wire is reported. TAN coated and plain rods of stainless steel and commercially pure titanium were implanted into the mid-shaft of the femur of Wistar rats. The femurs were harvested at four weeks and processed for scanning electron and light microscopy. All implants exhibited a favourable response in bone with no evidence of fibrous encapsulation. There was no significant difference in the amount of new bone formed around the different rods (osseoconduction), however, there was a greater degree of shrinkage separation of bone from the coated rods than from the plain rods (p = 0.017 stainless steel and p = 0.0085 titanium). TAN coating may result in reduced osseointegration between bone and implant.

  20. THE INFLUENCE OF SCREW TYPE, ALLOY AND CYLINDER POSITION ON THE MARGINAL FIT OF IMPLANT FRAMEWORKS BEFORE AND AFTER LASER WELDING

    PubMed Central

    Castilio, Daniela; Pedreira, Ana Paula Ribeiro do Vale; Rossetti, Paulo Henrique Orlato; Rossetti, Leylha Maria Nunes; Bonachela, Wellington Cardoso

    2006-01-01

    Misfit at the abutment-prosthetic cylinder interface can cause loss of preload, leading to loosening or fracture of gold and titanium screws. Objectives: To evaluate the influence of screw type, alloy, and cylinder position on marginal fit of implant frameworks before and after laser welding. Methods: After Estheticone-like abutments were screwed to the implants, thirty plastic prosthetic cylinders were mounted and waxed-up to fifteen cylindrical bars. Each specimen had three interconnected prosthetic components. Five specimens were one-piece cast in titanium and five in cobalt-chromium alloy. On each specimen, tests were conducted with hexagonal titanium and slotted gold screws separately, performing a total of thirty tested screws. Measurements at the interfaces were performed using an optical microscope with 5 μm accuracy. After sectioning, specimens were laser welded and new measurements were obtained. Data were submitted to a four-way ANOVA and Tukey's multiple comparisons test (α =0.05). Results: Slotted and hexagonal screws did not present significant differences regarding to the fit of cylinders cast in titanium, either in one-piece casting framework or after laser welding. When slotted and hexagonal screws were tested on the cobalt-chromium specimens, statistically significant differences were found for the one-piece casting condition, with the slotted screws presenting better fit (24.13μm) than the hexagonal screws (27.93 μm). Besides, no statistically significant differences were found after laser welding. Conclusions: 1) The use of different metal alloys do exert influence on the marginal fit, 2) The slotted and hexagonal screws play the exclusive role of fixing the prosthesis, and did not improve the fit of cylinders, and 3) cylinder position did not affect marginal fit values. PMID:19089035

  1. Direct reduction processes for titanium oxide in molten salt

    NASA Astrophysics Data System (ADS)

    Suzuki, Ryosuke O.

    2007-02-01

    Molten salt electrolysis using CaCl2 is employed to produce pure titanium and its alloys directly from TiO2 and a mixture of elemental oxides, respectively, as an alternate to the Kroll process. This is because CaO, which is a reduction by-product, is highly soluble in CaCl2. Good-quality titanium containing only a small amount of residual oxygen has been successfully produced and scaled to industrial levels. Thermochemical and electrochemical bases are reviewed to optimize the process conditions. Several processes using molten salt are being examined for future progress in titanium processing.

  2. The crevice corrosion of cathodically modified titanium in chloride solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lingen, E. van der

    1995-12-01

    The susceptibility of titanium to crevice corrosion in low-pH chloride solutions at elevated temperatures can result in major practical problems. Although Grade 7 titanium is considered the most crevice-corrosion resistant material available for these environments, the price increase of palladium has limited the utilization of this alloy. A cost-effective titanium alloy, containing 0.2% ruthenium by mass, has been developed for use in environments of increased chloride concentration and temperature. The crevice corrosion resistance of the Ti-0.2% Ru alloy has been evaluated and compared with that of ASTM commercially pure Grade 2 titanium, Grade 7 titanium (Ti-0.12 to 0.25% palladium bymore » mass) and Grade 12 titanium (Ti-0.8% Ni-0.3% Mo). The results indicated that the cathodically modified titanium alloys, Ti-0.2% Ru and Grade 7 titanium, showed similar resistance to crevice corrosion attack in all the solutions tested, and that their behavior was significantly better than that of Grade 2 and Grade 12 titanium.« less

  3. The black and white coatings on Ti-6Al-4V alloy or pure titanium by plasma electrolytic oxidation in concentrated silicate electrolyte

    NASA Astrophysics Data System (ADS)

    Han, Jun-xiang; Cheng, Yu-lin; Tu, Wen-bin; Zhan, Ting-Yan; Cheng, Ying-liang

    2018-01-01

    Black TiO2 has triggered scientific interest due to its unique properties such as enhanced solar-driven photocatalytic activity. In this paper, plasma electrolytic oxidation (PEO) treatment of Ti-6Al-4V alloy has been carried out in concentrated sodium silicate electrolyte. Silica-based black and white TiO2 coatings respectively have been obtained by controlling the oxidation time. The black coating, which was formed with a short treatment time, shows good corrosion resistance and the black appearance can be attributed to the presence of Ti2+ and Ti3+ in the coating. The lower valence titanium ions are absent in the white coatings and they also contain relatively higher Na content compared to the black coatings. The white coatings have great surface roughnesses and super hydrophilicity. The bonding strengths of the black and white coatings on the Ti-6Al-4V alloy are ∼14.4 and 4.3 MPa, respectively. The vanadium contributes little to the black appearance of the coating on Ti6Al4V alloy, since the same phenomena occur for the PEO of a pure titanium substrate.

  4. Decreasing biotoxicity of fume particles produced in welding process.

    PubMed

    Yu, Kuei-Min; Topham, Nathan; Wang, Jun; Kalivoda, Mark; Tseng, Yiider; Wu, Chang-Yu; Lee, Wen-Jhy; Cho, Kuk

    2011-01-30

    Welding fumes contain heavy metals, such as chromium, manganese, and nickel, which cause respiratory diseases and cancer. In this study, a SiO(2) precursor was evaluated as an additive to the shielding gas in an arc welding process to reduce the biotoxicity caused by welding fume particles. Transmission electron micrographic images show that SiO(2) coats on the surface of welding fume particles and promotes particle agglomeration. Energy dispersive X-ray spectroscopy further shows that the relative amount of silicon in these SiO(2)-coated agglomerates is higher than in baseline agglomerates. In addition, Escherichia coli (E. coli) exposed to different concentrations of pure SiO(2) particles generated from the arc welding process exhibits similar responses, suggesting that SiO(2) does not contribute to welding fume particle toxicity. The trend of E. coli growth in different concentrations of baseline welding fume particle shows the most significant inhibition occurs in higher exposure concentrations. The 50% lethal logarithmic concentrations for E. coli in arc welding particles of baseline, 2%, and 4.2% SiO(2) precursor additives were 823, 1605, and 1800 mg/L, respectively. Taken together, these results suggest that using SiO(2) precursors as an additive to arc welding shielding gas can effectively reduce the biotoxicity of welding fume. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Microstructural investigation of hardfacing weld deposit obtained from CrB paste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kr. Ray, S.; Sarker, B.; Kr. Bhattacharya, S.

    Hardfacing weld deposits are used as a protective layer on engineering components and tools subjected to different modes of wear. Cheaper iron-based alloys with chromium and carbon or relatively expensive alloys with some niobium or titanium have long been used as standard hardfacing materials. In recent years boron has substituted the costlier alloying elements and the newly developed Fe-B-C alloys have shown encouraging results. The microstructure of the welded hardfacing deposit is one of the most important factors that determine its performance. The amount, size, distribution and hardness of the individual constituents play important roles in imparting the desired properties.more » Recently Colomonoy sweat on paste containing fine CrB particles (of about 12 {mu}m average size) suspended in an organic binder has been marketed as the new generation hardfacing material. A thin coating of the paste is applied on the component surface, allowed to dry and welded. The welded deposit has been found to offer good wear resistance in many industrial applications. This paper reports the microstructural investigation of the welded deposit obtained from this paste.« less

  6. Investigation of Interface Bonding Mechanism of an Explosively Welded Tri-Metal Titanium/Aluminum/Magnesium Plate by Nanoindentation

    NASA Astrophysics Data System (ADS)

    Zhang, T. T.; Wang, W. X.; Zhou, J.; Cao, X. Q.; Yan, Z. F.; Wei, Y.; Zhang, W.

    2018-04-01

    A tri-metal titanium/aluminum/magnesium (Ti/Al/Mg) cladding plate, with an aluminum alloy interlayer plate, was fabricated for the first time by explosive welding. Nanoindentation tests and associated microstructure analysis were conducted to investigate the interface bonding mechanisms of the Ti/Al/Mg cladding plate. A periodic wavy bonding interface (with an amplitude of approximately 30 μm and a wavelength of approximately 160 μm) without a molten zone was formed between the Ti and Al plates. The bonding interface between the Al and the Mg demonstrated a similar wavy shape, but the wave at this location was much larger with an amplitude of approximately 390 μm and a wavelength of approximately 1580 μm, and some localized melted zones also existed at this location. The formation of the wavy interface was found to result from a severe deformation at the interface, which was caused by the strong impact or collision. The nanoindentation tests showed that the material hardness decreased with increasing distance from the bonding interface. Material hardness at a location was found to be correlated with the degree of plastic deformation at that site. A larger plastic deformation was correlated with an increase in hardness.

  7. Microstructural Characteristics and Mechanical Properties of an Electron Beam-Welded Ti/Cu/Ni Joint

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Wang, Ting; Jiang, Siyuan; Zhang, Binggang; Feng, Jicai

    2018-04-01

    Electron beam welding experiments of TA15 titanium alloy to GH600 nickel superalloy with and without a copper sheet interlayer were carried out. Surface appearance, microstructure and phase constitution of the joint were examined by optical microscopy, scanning electron microscopy and x-ray diffraction analysis. Mechanical properties of Ti/Ni and Ti/Cu/Ni joint were evaluated based on tensile strength and microhardness tests. The results showed that cracking occurred in Ti/Ni electron beam weldment for the formation of brittle Ni-Ti intermetallics, while a crack-free electron beam-welded Ti/Ni joint can be obtained by using a copper sheet as filler metal. The addition of copper into the weld affected the welding metallurgical process of the electron beam-welded Ti/Ni joint significantly and was helpful for restraining the formation of Ti-Ni intermetallics in Ti/Ni joint. The microstructure of the weld was mainly characterized by a copper-based solid solution and Ti-Cu interfacial intermetallic compounds. Ti-Ni intermetallic compounds were almost entirely suppressed. The hardness of the weld zone was significantly lower than that of Ti/Ni joint, and the tensile strength of the joint can be up to 282 MPa.

  8. Microstructural Characteristics and Mechanical Properties of an Electron Beam-Welded Ti/Cu/Ni Joint

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Wang, Ting; Jiang, Siyuan; Zhang, Binggang; Feng, Jicai

    2018-05-01

    Electron beam welding experiments of TA15 titanium alloy to GH600 nickel superalloy with and without a copper sheet interlayer were carried out. Surface appearance, microstructure and phase constitution of the joint were examined by optical microscopy, scanning electron microscopy and x-ray diffraction analysis. Mechanical properties of Ti/Ni and Ti/Cu/Ni joint were evaluated based on tensile strength and microhardness tests. The results showed that cracking occurred in Ti/Ni electron beam weldment for the formation of brittle Ni-Ti intermetallics, while a crack-free electron beam-welded Ti/Ni joint can be obtained by using a copper sheet as filler metal. The addition of copper into the weld affected the welding metallurgical process of the electron beam-welded Ti/Ni joint significantly and was helpful for restraining the formation of Ti-Ni intermetallics in Ti/Ni joint. The microstructure of the weld was mainly characterized by a copper-based solid solution and Ti-Cu interfacial intermetallic compounds. Ti-Ni intermetallic compounds were almost entirely suppressed. The hardness of the weld zone was significantly lower than that of Ti/Ni joint, and the tensile strength of the joint can be up to 282 MPa.

  9. Effect of humidity on fretting wear of several pure metals

    NASA Technical Reports Server (NTRS)

    Goto, H.; Buckley, D. H.

    1984-01-01

    Fretting wear experiments with several pure metals were conducted in air at various relative humidity levels. The materials used were iron, aluminum, copper, silver, chromium, titanium, and nickel. Each pure metal had a maximum fretting wear volume at a specific humidity level RH sub max that was not dependent on mechanical factors such as contact load, fretting amplitude, and frequency in the ranges studied. The weight loss due to fretting wear at RH sub max for each pure metal decreased with increasing heat of oxygen adsorption on the metal, indicating that adhesive wear dominated at RH sub max.

  10. Formation of Titania Submicron-Scale Rod Arrays on Titanium Substrate and In Vitro Biocompatibility

    DTIC Science & Technology

    2005-01-01

    vitro bioactivity. INTRODUCTION Commercially available pure titanium (c.p. Ti) and its alloys are widely used for dental and orthopedic implants because...days. DISCUSSION The submicron-scale rod arrays of rutile can be obtained on titanium surfaces after the heat treatment when the alkali- borate glass ...modification of titanium implants have been already developed or proposed to provide them with the ability of direct bonding to bone tissues. Note

  11. Surface Modifications and Their Effects on Titanium Dental Implants

    PubMed Central

    Jemat, A.; Ghazali, M. J.; Razali, M.; Otsuka, Y.

    2015-01-01

    This review covers several basic methodologies of surface treatment and their effects on titanium (Ti) implants. The importance of each treatment and its effects will be discussed in detail in order to compare their effectiveness in promoting osseointegration. Published literature for the last 18 years was selected with the use of keywords like titanium dental implant, surface roughness, coating, and osseointegration. Significant surface roughness played an important role in providing effective surface for bone implant contact, cell proliferation, and removal torque, despite having good mechanical properties. Overall, published studies indicated that an acid etched surface-modified and a coating application on commercial pure titanium implant was most preferable in producing the good surface roughness. Thus, a combination of a good surface roughness and mechanical properties of titanium could lead to successful dental implants. PMID:26436097

  12. Titanium Ions Release from an Innovative Titanium-Magnesium Composite: an in Vitro Study.

    PubMed

    Stanec, Zlatko; Halambek, Jasna; Maldini, Krešimir; Balog, Martin; Križik, Peter; Schauperl, Zdravko; Ćatić, Amir

    2016-03-01

    The innovative titanium-magnesium composite (Ti-Mg) was produced by powder metallurgy (P/M) method and is characterized in terms of corrosion behavior. Two groups of experimental material, 1 mass% (Ti-1Mg) and 2 mass% (Ti-2Mg) of magnesium in titanium matrix, were tested and compared to commercially pure titanium (CP Ti). Immersion test and chemical analysis of four solutions: artificial saliva; artificial saliva pH 4; artificial saliva with fluoride and Hank balanced salt solution were performed after 42 days of immersion, using inductively coupled plasma mass spectrometry (ICP-MS) to detect the amount of released titanium ions (Ti). SEM and EDS analysis were used for surface characterization. The difference between the results from different test solutions was assessed by ANOVA and Newman-Keuls test at p<0.05. The influence of predictor variables was found by multiple regression analysis. The results of the present study revealed a low corrosion rate of titanium from the experimental Ti-Mg group. Up to 46 and 23 times lower dissolution of Ti from Ti-1Mg and Ti-2Mg, respectively was observed compared to the control group. Among the tested solutions, artificial saliva with fluorides exhibited the highest corrosion effect on all specimens tested. SEM micrographs showed preserved dual phase surface structure and EDS analysis suggested a favorable surface bioactivity. In conclusion, Ti-Mg produced by P/M as a material with better corrosion properties when compared to CP Ti is suggested.

  13. A Concurrent Product-Development Approach for Friction-Stir Welded Vehicle-Underbody Structures

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, G.; Hariharan, A.; Pandurangan, B.

    2012-04-01

    High-strength aluminum and titanium alloys with superior blast/ballistic resistance against armor piercing (AP) threats and with high vehicle light-weighing potential are being increasingly used as military-vehicle armor. Due to the complex structure of these vehicles, they are commonly constructed through joining (mainly welding) of the individual components. Unfortunately, these alloys are not very amenable to conventional fusion-based welding technologies [e.g., gas metal arc welding (GMAW)] and to obtain high-quality welds, solid-state joining technologies such as friction-stir welding (FSW) have to be employed. However, since FSW is a relatively new and fairly complex joining technology, its introduction into advanced military-vehicle-underbody structures is not straight forward and entails a comprehensive multi-prong approach which addresses concurrently and interactively all the aspects associated with the components/vehicle-underbody design, fabrication, and testing. One such approach is developed and applied in this study. The approach consists of a number of well-defined steps taking place concurrently and relies on two-way interactions between various steps. The approach is critically assessed using a strengths, weaknesses, opportunities, and threats (SWOT) analysis.

  14. Simulation model of Al-Ti dissimilar laser welding-brazing and its experimental verification

    NASA Astrophysics Data System (ADS)

    Behúlová, M.; Babalová, E.; Nagy, M.

    2017-02-01

    Formation of dissimilar weld joints of light metals and alloys including Al-Ti joints is interesting mainly due to demands on the weight reduction and corrosion resistance of components and structures in automotive, aircraft, aeronautic and other industries. Joining of Al-Ti alloys represents quite difficult problem. Generally, the fusion welding of these materials can lead to the development of different metastable phases and formation of brittle intermetallic compounds. The paper deals with numerical simulation of the laser welding-brazing process of titanium Grade 2 and EN AW 5083 aluminum alloy sheets using the 5087 aluminum filler wire. Simulation model for welding-brazing of testing samples with the dimensions of 50 × 100 × 2 mm was developed in order to perform numerical experiments applying variable welding parameters and to design proper combination of these parameters for formation of sound Al-Ti welded-brazed joints. Thermal properties of welded materials in the dependence on temperature were computed using JMatPro software. The conical model of the heat source was exploited for description of the heat input to the weld due to the moving laser beam source. The sample cooling by convection and radiation to the surrounding air and shielding argon gas was taken into account. Developed simulation model was verified by comparison of obtained results of numerical simulation with the temperatures measured during real experiments of laser welding-brazing by the TruDisk 4002 disk laser.

  15. Structure and mechanical properties of Cresco-Ti laser-welded joints and stress analyses using finite element models of fixed distal extension and fixed partial prosthetic designs.

    PubMed

    Uysal, Hakan; Kurtoglu, Cem; Gurbuz, Riza; Tutuncu, Naki

    2005-03-01

    The Cresco-Ti System uses a laser-welded process that provides an efficient technique to achieve passive fit frameworks. However, mechanical behavior of the laser-welded joint under biomechanical stress factors has not been demonstrated. This study describes the effect of Cresco-Ti laser-welding conditions on the material properties of the welded specimen and analyzes stresses on the weld joint through 3-dimensional finite element models (3-D FEM) of implant-supported fixed dentures with cantilever extensions and fixed partial denture designs. Twenty Grade III (ASTM B348) commercially pure titanium specimens were machine-milled to the dimensions described in the EN10002-1 tensile test standard and divided into test (n = 10) and control (n = 10) groups. The test specimens were sectioned and laser-welded. All specimens were subjected to tensile testing to determine yield strength (YS), ultimate tensile strength (UTS), and percent elongation (PE). The Knoop micro-indentation test was performed to determine the hardness of all specimens. On welded specimens, the hardness test was performed at the welded surface. Data were analyzed with the Mann-Whitney U test and Student's t test (alpha=.05). Fracture surfaces were examined by scanning electron microscopy to characterize the mode of fracture and identify defects due to welding. Three-dimensional FEMs were created that simulated a fixed denture with cantilever extensions supported by 5 implants (M1) and a fixed partial denture supported by 2 implants (M2), 1 of which was angled 30 degrees mesio-axially. An oblique load of 400 N with 15 degrees lingual-axial inclinations was applied to both models at various locations. Test specimens fractured between the weld and the parent material. No porosities were observed on the fractured surfaces. Mean values for YS, UTS, PE, and Knoop hardness were 428 +/- 88 MPa, 574 +/- 113 MPa, 11.2 +/- 0.4%, 270 +/- 17 KHN, respectively, for the control group and 642 +/- 2 MPa, 772 +/- 72

  16. Effect of oxygen on weld shape and crystallographic orientation of duplex stainless steel weld using advanced A-TIG (AA-TIG) welding method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Ying, E-mail: yingzou@jwri.osaka-u.ac.jp; Ueji, Rintaro; Fujii, Hidetoshi

    The double-shielded advanced A-TIG (AA-TIG) welding method was adopted in this study for the welding of the SUS329J4L duplex stainless steel with the shielding gases of different oxygen content levels. The oxygen content in the shielding gas was controlled by altering the oxygen content in the outer layer gas, while the inner layer remained pure argon to suppress oxidation on the tungsten electrode. As a result, a deep weld penetration was obtained due to the dissolution of oxygen into the weld metals. Additionally, the microstructure of the weld metal was changed by the dissolution of oxygen. The austenite phase atmore » the ferrite grain boundary followed a Kurdjumov–Sachs (K–S) orientation relationship with the ferrite matrix phase at any oxide content. On the other hand, the orientation relationship between the intragranular austenite phase and the ferrite matrix phase exhibited different patterns under different oxygen content levels. When there was little oxide in the fusion zone, only a limited part of the intragranular austenite phase and the ferrite matrix phase followed the K–S orientation relationship. With the increase of the oxide, the correspondence of the K–S relationship increased and fit very well in the 2.5% O{sub 2} shielded sample. The investigation of this phenomenon was carried out along with the nucleation mechanisms of the intragranular austenite phases. - Highlights: • Weld penetration increased with the increase of the oxygen content. • Average diameter and number density of oxide were changed by the oxygen content. • K-S relationship of Widmanstätten austenite/ferrite wasn’t varied by oxide. • Orientation relationship of intragranular austenite/ferrite was varied by oxide.« less

  17. Cytocompatibility of Direct Laser Interference-patterned Titanium Surfaces for Implants.

    PubMed

    Hartjen, Philip; Nada, Ola; Silva, Thiago Gundelwein; Precht, Clarissa; Henningsen, Anders; Holthaus, Marzellus GROßE; Gulow, Nikolai; Friedrich, Reinhard E; Hanken, Henning; Heiland, Max; Zwahr, Christoph; Smeets, Ralf; Jung, Ole

    2017-01-01

    In an effort to generate titanium surfaces for implants with improved osseointegration, we used direct laser interference patterning (DLIP) to modify the surface of pure titanium grade 4 of four different structures. We assessed in vitro cytoxicity and cell attachment, as well as the viability and proliferation of cells cultured directly on the surfaces. Attachment of the cells to the modified surfaces was comparably good compared to that of cells on grit-blasted and acid-etched reference titanium surfaces. In concordance with this, viability and proliferation of the cells directly cultured on the specimens were similar on all the titanium surfaces, regardless of the laser modification, indicating good cytocompatibility. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. Conversion treatment of thin titanium layer deposited on carbon steel

    NASA Astrophysics Data System (ADS)

    Benarioua, Younes; Wendler, Bogdan; Chicot, Didier

    2018-05-01

    The present study has been conducted in order to obtain titanium carbide layer using a conversion treatment consisting of two main steps. In the first step a thin pure titanium layer was deposited on 120C4 carbon steel by PVD. In the second step, the carbon atoms from the substrate diffuse to the titanium coating due to a vacuum annealing treatment and the Ti coating transforms into titanium carbide. Depending on the annealing temperature a partial or complete conversion into TiC is obtained. The hardness of the layer can be expected to differ depending on the processing temperatures. By a systematic study of the hardness as a function of the applied load, we confirm the process of growth of the layer.

  19. Calcium phosphate-titanium composites for articulating surfaces of load-bearing implants.

    PubMed

    Bandyopadhyay, Amit; Dittrick, Stanley; Gualtieri, Thomas; Wu, Jeffrey; Bose, Susmita

    2016-04-01

    Calcium phosphate (CaP)-titanium (Ti) composites were processed using a commercial laser engineered net shaping (LENS™) machine to increase wear resistance of articulating surfaces of load-bearing implants. Such composites could be used to cover the surface of titanium implants and potentially increase the lifetime of a joint replacement. It was hypothesized that adding calcium phosphate to commercially pure titanium (CP-Ti) and Ti6Al4V alloy via laser processing would decrease the material loss when subjected to wear. This added protection would be due to the in situ formation of a CaP tribofilm. Different amounts of CaP were mixed by weight with pure Ti and Ti6Al4V powders. The mixed powders were then made into cylindrical samples using a commercial LENS™-750 system. Microstructures were observed and it was found the CaP had integrated into the titanium metal matrix. Compression test revealed that CaP significantly increased the 0.2% offset yield strength as well as the ultimate compressive strength of CP-Ti. It was found that the addition of CaP to pure titanium reduced the material loss and increased wear resistance. This was due to the formation of CaP tribofilm on the articulating surface. The in situ formed tribofilm also lowered the coefficient of friction and acted as a solid lubricant between the two interacting metal surfaces. Overall, CaP addition to Ti and its alloy Ti6Al4V show an effective way to minimize wear induced damage due to the formation of in situ tribofilm at the articulating surface, a strategy that can be utilized in various biomedical devices. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Effect of Shielding Gas on the Properties of AW 5083 Aluminum Alloy Laser Weld Joints

    NASA Astrophysics Data System (ADS)

    Vyskoč, Maroš; Sahul, Miroslav; Sahul, Martin

    2018-04-01

    The paper deals with the evaluation of the shielding gas influence on the properties of AW 5083 aluminum alloy weld joints produced with disk laser. Butt weld joints were produced under different shielding gas types, namely Ar, He, Ar + 5 vol.% He, Ar + 30 vol.% He and without shielding weld pool. Light and electron microscopy, computed tomography, microhardness measurements and tensile testing were used for evaluation of weld joint properties. He-shielded weld joints were the narrowest ones. On the other hand, Ar-shielded weld joints exhibited largest weld width. The choice of shielding gas had significant influence on the porosity level of welds. The lowest porosity was observed in weld joint produced in Ar with the addition of 5 vol.% He shielding atmosphere (only 0.03%), while the highest level of porosity was detected in weld joint produced in pure He (0.24%). Except unshielded aluminum alloy weld joint, the lowest tensile strength was recorded in He-shielded weld joints. On the contrary, the highest average microhardness was measured in He-shielded weld joints.

  1. Improved adherence of sputtered titanium carbide coatings on nickel- and titanium-base alloys

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Brainard, W. A.

    1979-01-01

    Rene 41 and Ti-6Al-4V alloys were radio frequency sputter coated with titanium carbide by several techniques in order to determine the most effective. Coatings were evaluated in pin-on-disk tests. Surface analysis by X-ray photoelectron spectroscopy was used to relate adherence to interfacial chemistry. For Rene 41, good coating adherence was obtained when a small amount of acetylene was added to the sputtering plasma. The acetylene carburized the alloy surface and resulted in better bonding to the TiC coating. For Ti-6Al-4V, the best adherence and wear protection was obtained when a pure titanium interlayer was used between the coating and the alloy. The interlayer is thought to prevent the formation of a brittle, fracture-prone, aluminum oxide layer.

  2. Sodium Aluminate Concentration Effects on Microstructure and Corrosion Behavior of the Plasma Electrolytic Oxidation Coatings on Pure Titanium

    NASA Astrophysics Data System (ADS)

    Molaei, Maryam; Fattah-Alhosseini, Arash; Gashti, Seyed Omid

    2018-01-01

    Sodium aluminate (NaAlO2) concentration was varied in order to understand the influence of the chemical composition of electrolyte on the spark characteristics, microstructure, and corrosion behavior of plasma electrolytic oxidation (PEO) coatings. For this purpose, PEO coatings were formed on the pure titanium substrate surface using solutions of four diverse sodium aluminate concentrations (6, 8, 10, and 12 g/L). The PEO process was carried out at constant time and voltage (180 seconds and 420 V). Studying the microstructures of samples by scanning electron microscope (SEM) and their corrosion behavior in 3.5 wt pct NaCl solutions indicated that the increase in NaAlO2 concentration (up to 10 g/L) led to an increase in uniformity and compactness, thus decreasing the size of micro-pores and increment of corrosion resistance. However, at a certain level of NaAlO2 concentration (12 g/L), large and severe sparks were created on the surface of the sample during the process, worsening the corrosion resistance and microstructure of coating.

  3. Hot press and roll welding of titanium-6-percent-aluminum-4-percent-vanadium bar and sheet with auto-vacuum cleaning

    NASA Technical Reports Server (NTRS)

    Holko, K. H.

    1972-01-01

    Hot press butt welds were made in 0.5 in. diameter bar, and roll lap welds were made in 0.060 in. thick sheet of Ti-6A1-4V. For hot press welds made after auto-vacuum cleaning at 1800 F for 2 hours, weld strength and ductility equaled the parent metal properties. Only 5 minutes of pressing time were needed at 1800 F and 200 psi to make the hot press welds. Roll welds were made in sheet at 1750 F with only 10 percent deformation. The welds in the bar and sheet were metallurgically indistinguishable from the parent material.

  4. Titanium in dentistry: historical development, state of the art and future perspectives.

    PubMed

    Jorge, Juliana Ribeiro Pala; Barão, Valentim Adelino; Delben, Juliana Aparecida; Faverani, Leonardo Perez; Queiroz, Thallita Pereira; Assunção, Wirley Gonçalves

    2013-06-01

    Titanium is a metallic element known by several attractive characteristics, such as biocompatibility, excellent corrosion resistance and high mechanical resistance. It is widely used in Dentistry, with high success rates, providing a favorable biological response when in contact with live tissues. Therefore, the objective of this study was to describe the different uses of titanium in Dentistry, reviewing its historical development and discoursing about its state of art and future perspective of its utilization. A search in the MEDLINE/PubMed database was performed using the terms 'titanium', 'dentistry' and 'implants'. The title and abstract of articles were read, and after this first screening 20 articles were selected and their full-texts were downloaded. Additional text books and manual search of reference lists within selected articles were included. Correlated literature showed that titanium is the most used metal in Implantology for manufacturing osseointegrated implants and their systems, with a totally consolidated utilization. Moreover, titanium can be also employed in prosthodontics to obtain frameworks. However, problems related to its machining, casting, welding and ceramic application for dental prosthesis are still limiting its use. In Endodontics, titanium has been used in association to nickel for manufacturing rotatory instruments, providing a higher resistance to deformation. However, although the different possibilities of using titanium in modern Dentistry, its use for prostheses frameworks still needs technological improvements in order to surpass its limitations.

  5. Effects of shielding gas composition on arc profile and molten pool dynamics in gas metal arc welding of steels

    NASA Astrophysics Data System (ADS)

    Wang, L. L.; Lu, F. G.; Wang, H. P.; Murphy, A. B.; Tang, X. H.

    2014-11-01

    In gas metal arc welding, gases of different compositions are used to produce an arc plasma, which heats and melts the workpiece. They also protect the workpiece from the influence of the air during the welding process. This paper models gas metal arc welding (GMAW) processes using an in-house simulation code. It investigates the effects of the gas composition on the temperature distribution in the arc and on the molten pool dynamics in gas metal arc welding of steels. Pure argon, pure CO2 and different mixtures of argon and CO2 are considered in the study. The model is validated by comparing the calculated weld profiles with physical weld measurements. The numerical calculations reveal that gas composition greatly affects the arc temperature profile, heat transfer to the workpiece, and consequently the weld dimension. As the CO2 content in the shielding gas increases, a more constricted arc plasma with higher energy density is generated as a result of the increased current density in the arc centre and increased Lorentz force. The calculation also shows that the heat transferred from the arc to the workpiece increases with increasing CO2 content, resulting in a wider and deeper weld pool and decreased reinforcement height.

  6. Microstructural Evolution of the Interface Between Pure Titanium and Low Melting Point Zr-Ti-Ni(Cu) Filler Metals

    NASA Astrophysics Data System (ADS)

    Lee, Dongmyoung; Sun, Juhyun; Kang, Donghan; Shin, Seungyoung; Hong, Juhwa

    2014-12-01

    Low melting point Zr-based filler metals with melting point depressants (MPDs) such as Cu and Ni elements are used for titanium brazing. However, the phase transition of the filler metals in the titanium joint needs to be explained, since the main element of Zr in the filler metals differs from that of the parent titanium alloys. In addition, since the MPDs easily form brittle intermetallics, that deteriorate joint properties, the phase evolution they cause needs to be studied. Zr-based filler metals having Cu content from 0 to 12 at. pct and Ni content from 12 to 24 at. pct with a melting temperature range of 1062 K to 1082 K (789 °C to 809 °C) were wetting-tested on a titanium plate to investigate the phase transformation and evolution at the interface between the titanium plate and the filler metals. In the interface, the alloys system with Zr, Zr2Ni, and (Ti,Zr)2Ni phases was easily changed to a Ti-based alloy system with Ti, Ti2Ni, and (Ti,Zr)2Ni phases, by the local melting of parent titanium. The dissolution depths of the parent metal were increased with increasing Ni content in the filler metals because Ni has a faster diffusion rate than Cu. Instead, slow diffusion of Cu into titanium substrate leads to the accumulation of Cu at the molten zone of the interface, which could form undesirable Ti x Cu y intermetallics. This study confirmed that Zr-based filler metals are compatible with the parent titanium metal with the minimum content of MPDs.

  7. Effect of Heat Input on the Tensile Damage Evolution in Pulsed Laser Welded Ti6Al4V Titanium Sheets

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Gao, Xiaolong; Zhang, Jianxun

    2016-11-01

    The present paper is focused on studying the effect of heat input on the tensile damage evolution of pulsed Nd:YAG laser welding of Ti6Al4V alloy under monotonic loading. To analyze the reasons that the tensile fracture site of the pulsed-laser-welded Ti6Al4V sheet joints changes with the heat input under monotonic loading, the microstructure of the sample with different nominal strain values was investigated by in situ observation. Experiment results show that the tensile ductility and fatigue life of welded joints with low heat input are higher than that of welded joints with high heat input. Under tensile loads, the critical engineering strain for crack initiation is much lower in the welded joint with high heat input than in the welded joints with low and medium heat input. And the microstructural damage accumulation is much faster in the fusion zone than in the base metal for the welded joints with high input, whereas the microstructural damage accumulation is much faster in the base metal than in the fusion zone for the welded joints with low input. Consequently, the welded joints fractured in the fusion zone for the welds with high heat input, whereas the welded joints ruptured in the base metal for the welds with low heat input. It is proved that the fine grain microstructure produced by low heat input can improve the critical nominal strain for crack initiation and the resistance ability of microstructural damage.

  8. Treatment of fractures of the condylar head with resorbable pins or titanium screws: an experimental study.

    PubMed

    Schneider, Matthias; Loukota, Richard; Kuchta, Anne; Stadlinger, Bernd; Jung, Roland; Speckl, Katrin; Schmiedekampf, Robert; Eckelt, Uwe

    2013-07-01

    We aimed to compare in vivo the stability of fixation of condylar fractures in sheep using sonic bone welding and standard titanium screws. We assessed stability of the osteosynthesis and maintenance of the height of the mandibular ramus. Height decreased slightly in both groups compared with the opposite side. The volume of the condyle increased considerably in both groups mainly because callus had formed. The results showed no significant disadvantages for pin fixation compared with osteosynthesis using titanium screws. Copyright © 2012 The British Association of Oral and Maxillofacial Surgeons. All rights reserved.

  9. Titanium Ions Release from an Innovative Titanium-Magnesium Composite: an in Vitro Study

    PubMed Central

    Halambek, Jasna; Maldini, Krešimir; Balog, Martin; Križik, Peter; Schauperl, Zdravko; Ćatić, Amir

    2016-01-01

    Background The innovative titanium-magnesium composite (Ti-Mg) was produced by powder metallurgy (P/M) method and is characterized in terms of corrosion behavior. Material and methods Two groups of experimental material, 1 mass% (Ti-1Mg) and 2 mass% (Ti-2Mg) of magnesium in titanium matrix, were tested and compared to commercially pure titanium (CP Ti). Immersion test and chemical analysis of four solutions: artificial saliva; artificial saliva pH 4; artificial saliva with fluoride and Hank balanced salt solution were performed after 42 days of immersion, using inductively coupled plasma mass spectrometry (ICP-MS) to detect the amount of released titanium ions (Ti). SEM and EDS analysis were used for surface characterization. Results The difference between the results from different test solutions was assessed by ANOVA and Newman-Keuls test at p<0.05. The influence of predictor variables was found by multiple regression analysis. The results of the present study revealed a low corrosion rate of titanium from the experimental Ti-Mg group. Up to 46 and 23 times lower dissolution of Ti from Ti-1Mg and Ti-2Mg, respectively was observed compared to the control group. Among the tested solutions, artificial saliva with fluorides exhibited the highest corrosion effect on all specimens tested. SEM micrographs showed preserved dual phase surface structure and EDS analysis suggested a favorable surface bioactivity. Conclusion In conclusion, Ti-Mg produced by P/M as a material with better corrosion properties when compared to CP Ti is suggested. PMID:27688425

  10. The role of welding techniques in the biomechanical behavior of implant-supported prostheses.

    PubMed

    Rodrigues, Sabrina Alessandra; Presotto, Anna Gabriella Camacho; Barão, Valentim Adelino Ricardo; Consani, Rafael Leonardo Xediek; Nóbilo, Mauro Antônio Arruda; Mesquita, Marcelo Ferraz

    2017-09-01

    This in vitro study investigated the role of welding techniques of implant-supported prostheses in the 2D and 3D marginal misfits of prosthetic frameworks, strain induced on the mini abutment, and detorque of prosthetic screws. The correlations between the analyzed variables were also investigated. Frameworks were cast in commercially pure titanium (cp-Ti). A marginal misfit of 200μm was simulated in the working models (control group) (n=20). The 2D marginal misfit was analyzed according to the single-screw test protocol using a precision optical microscope. The 3D marginal misfit was performed by X-ray microtomography. Strain gauge analysis was performed to investigate the strain induced on the mini abutment. A digital torque meter was used for analysis of the detorque and the mean value was calculated for each framework. Afterwards, the frameworks were divided into two experimental groups (n=10): Laser (L) and TIG (T). The welding techniques were performed according to the following parameters: L (390V/9ms); T (36A/60ms). The L and T groups were reevaluated according to the marginal misfit, strain, and detorque. The results were submitted to one-way ANOVA followed by Tukey's HSD test and Person correlation analysis (α=0.05). Welding techniques statistically reduced the 2D and 3D marginal misfits of prosthetic frameworks (p<0.001), the strain induced on the mini abutment replicas (p=0.006), and improved the screw torque maintenance (p<0.001). Similar behavior was noted between L and T groups for all dependent variables (p>0.05). Positive correlations were observed between 2D and 3D marginal misfit reading methods (r=0.943, p<0.0001) and between misfit and strain (2D r=0.844, p<0.0001 and 3D r=0.864, p<0.0001). Negative correlation was observed between misfit and detorque (2D r=-0.823, p=0.003 and 3D r=-0.811, p=0.005). In conclusion, the welding techniques improved the biomechanical behavior of the implant-supported system. TIG can be an acceptable and

  11. Manufacturing of composite titanium-titanium nitride coatings by reactive very low pressure plasma spraying (R-VLPPS)

    NASA Astrophysics Data System (ADS)

    Vautherin, B.; Planche, M.-P.; Quet, A.; Bianchi, L.; Montavon, G.

    2014-11-01

    Very Low Pressure Plasma Spraying (VLPPS) is an emerging spray process nowadays intensively studied by many research centers in the World. To date, studies are mostly focused on the manufacturing of ceramic or metallic coatings. None refers to composite coatings manufacturing by reactive plasma spraying under very low pressure (i.e., ~150 Pa). This paper aims at presenting the carried-out developments and some results concerning the manufacturing of composite coatings by reactive spraying. Titanium was selected as metallic material in order to deposit titanium-nitride titanium coatings (Ti-TiN). Nitrogen was used as plasma gas and was injected along an Ar-H2-N2 plasma jet via a secondary injector in order to reach the nitrogen content on the substrate surface. Thus, different kind of reactive mechanisms were highlighted. Resulting coatings were characterized by Scanning Electron Microscopy (SEM) observations. Porous microstructures are clearly identified and the deposits exhibit condensed vapours and molten particles. Glow Discharge Optical Emission Spectroscopy (GDOES) analysis evidenced nitrogen inside the deposits and X-Ray Diffraction (XRD) analysis confirmed the formation of titanium nitride phases, such as TiN and Ti2N, depending upon the location of the nitrogen injection. Microhardness values as high as 800 VHN were measured on manufactured samples (to be compared to 220 VHN for pure titanium VLPPS-manufactured coatings).

  12. Effect of sandblasting intensity on microstructures and properties of pure titanium micro-arc oxidation coatings in an optimized composite technique

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Yuan; Zhu, Rui-Fu; Lu, Yu-Peng; Xiao, Gui-Yong; He, Kun; Yuan, Y. F.; Ma, Xiao-Ni; Li, Ying

    2014-02-01

    Sandblasting is one of the most effective methods to modify a metal surface and improve its properties for application. Micro-arc oxidation (MAO) could produce a ceramic coating on a dental implant, facilitating cellular differentiation and osseocomposite on it. This study aims to deposit bioceramic Ca- and P-containing coatings on sandblasted commercially pure titanium by an optimum composite technique to improve the bioactive performance. The effect of sandblasting intensity on microstructures and properties of the implant coatings is examined, and the modified surfaces are characterized in terms of their topography, phase, chemical composition, mechanical properties and hydroxyapatite (HA)-inducing ability. The results show that a moderate sandblasting micromachines the substrate in favorable combination of rough and residual stresses; its MAO coating deposits nano-hydroxyapatite after immersion in simulated body fluid (SBF) for 5 days exhibiting better bioactivity. The further improvement of the implant surface performance is attributed to an optimized composite technique.

  13. Influencing the arc and the mechanical properties of the weld metal in GMA-welding processes by additive elements on the wire electrode surface

    NASA Astrophysics Data System (ADS)

    Wesling, V.; Schram, A.; Müller, T.; Treutler, K.

    2016-03-01

    Under the premise of an increasing scarcity of raw materials and increasing demands on construction materials, the mechanical properties of steels and its joints are gaining highly important. In particular high- and highest-strength steels are getting in the focus of the research and the manufacturing industry. To the same extent, the requirements for filler metals are increasing as well. At present, these low-alloy materials are protected by a copper coating (<1μm) against corrosion. In addition, the coating realizes a good ohmic contact and good sliding properties between the welding machine and the wire during the welding process. By exchanging the copper with other elements it should be possible to change the mechanical properties of the weld metal and the arc stability during gas metal arc welding processes and keep the basic functions of the coating nearly untouched. On a laboratory scale solid wire electrodes with coatings of various elements and compounds such as titanium oxide were made and processed with a Gas Metal Arc Welding process. During the processing a different process behavior between the wire electrodes, coated and original, could be observed. The influences ranges from greater/shorter arc-length over increasing/decreasing droplets to larger/smaller arc foot point. Furthermore, the weld metal of the coated electrodes has significantly different mechanical and technological characteristics as the weld metal from the copper coated ground wire. The yield strength and tensile strength can be increased by up to 50%. In addition, the chemical composition of the weld metal was influenced by the application of coatings with layer thicknesses to 15 microns in the lower percentage range (up to about 3%). Another effect of the coating is a modified penetration. The normally occurring “argon finger” can be suppressed or enhanced by the choice of the coating. With the help of the presented studies it will be shown that Gas Metal Arc Welding processes

  14. Effects of Peracetic Acid on the Corrosion Resistance of Commercially Pure Titanium (grade 4).

    PubMed

    Raimundo, Lariça B; Orsi, Iara A; Kuri, Sebastião E; Rovere, Carlos Alberto D; Busquim, Thaís P; Borie, Eduardo

    2015-01-01

    The aim of this study was to evaluate the corrosion resistance of pure titanium grade 4 (cp-Ti-4), subjected to disinfection with 0.2% and 2% peracetic acid during different immersion periods using anodic potentiodynamic polarization test in acid and neutral artificial saliva. Cylindrical samples of cp-Ti-4 (5 mm x 5 mm) were used to fabricate 24 working electrodes, which were mechanically polished and divided into eight groups (n=3) for disinfection in 2% and 0.2% peracetic acid for 30 and 120 min. After disinfection, anodic polarization was performed in artificial saliva with pH 4.8 and 6.8 to assess the electrochemical behavior of the electrodes. A conventional electrochemical cell, constituting a reference electrode, a platinum counter electrode, and the working electrode (cp-Ti specimens) were used with a scanning rate of 1 mV/s. Three curves were obtained for each working electrode, and corrosion was characterized by using scanning electron microscopy (SEM) and energy dispersive x-ray spectrometry (EDS). Data of corrosion potential (Ecorr) and passive current (Ipass) obtained by the polarization curves were analyzed statistically by Student's t-test (a=0.05). The statistical analysis showed no significant differences (p>0.05) between artificial saliva types at different concentrations and periods of disinfection, as well as between control and experimental groups. No surface changes were observed in all groups evaluated. In conclusion, disinfection with 0.2% and 2% peracetic acid concentrations did not cause corrosion in samples manufactured with cp-Ti-4.

  15. Synchrotron X-ray CT characterization of titanium parts fabricated by additive manufacturing. Part I. Morphology.

    PubMed

    Scarlett, Nicola Vivienne Yorke; Tyson, Peter; Fraser, Darren; Mayo, Sheridan; Maksimenko, Anton

    2016-07-01

    Synchrotron X-ray tomography has been applied to the study of titanium parts fabricated by additive manufacturing (AM). The AM method employed here was the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V), as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. Samples were chosen to examine the effect of build direction and complexity of design on the surface morphology and final dimensions of the piece.

  16. Characteristics of HY-180 and Ti-100 for Welded High Strength Structures

    DTIC Science & Technology

    1974-12-01

    materials in welded structures are reported. The 10Ni-8Co-2Cr-lMo steel arid the Ti- 6Al -2Cb-lTa-0. 8Mo titanium alloy were selected as candidate...only li- 6Al -iCb-na-0.»Mo (Ti-6-2-1-1) and’Ii- 6Al - 4V are competitive with 10Ni-8Co-2Cr-lMo steel on a strength-weight basis, while possessing ade...Ti- 6Al -2Cb-lTa-0. 8Mo has better toughness in plate form, based upon dynamic tear properties. There- fore the Ti- 6Al -2Cb-lTa-0.8Mo titanium alloy

  17. Short-term results using Kurz titanium ossicular implants.

    PubMed

    Vassbotn, Flemming S; Møller, Per; Silvola, Juha

    2007-01-01

    The efficiency of titanium middle ear prosthesis for ossicular reconstruction in chronic ear disease is investigated in a Scandinavian two-center retrospective study from a Norwegian tertiary otology referral center and a Finnish otology referral center. Retrospective chart reviews were performed for procedures involving 73 titanium prostheses between 1999 and 2004. All patients that underwent surgery including the Kurz Vario titanium prosthesis were included in the study, 38 procedures including the partial ossicular replacement prosthesis (PORP) and 35 procedures including the total ossicular replacement prosthesis (TORP). Mean follow-up was 14 months. The ossiculoplasty was performed alone (29 patients) or in combination with other chronic ear surgery procedures (34 patients). Comparisons of preoperative and postoperative pure tone averages (0.5, 1, 2, and 3 kHz) according to AAO-HNS guidelines are presented, as well as data for different PTA definitions. Otosurgery procedures, complications, revisions, and extrusion rates are reported. A postoperative air-bone gap (ABG) of pure tone averages improved 20.6 dB with ABG improvement of 19.3 dB. The overall extrusion rate was 5% (4 patients). Titanium prostheses have been easy and fast to handle and effective implants for reconstruction of the ossicular chain. We found no difference between reconstruction with or without cholesteatoma surgery during the same procedure. The combination of CWD and Torp gave significant inferior hearing thresholds as compared to Torp/CWU and Porp/CWD combinations.

  18. Effect of cathodic polarization on coating doxycycline on titanium surfaces.

    PubMed

    Geißler, Sebastian; Tiainen, Hanna; Haugen, Håvard J

    2016-06-01

    Cathodic polarization has been reported to enhance the ability of titanium based implant materials to interact with biomolecules by forming titanium hydride at the outermost surface layer. Although this hydride layer has recently been suggested to allow the immobilization of the broad spectrum antibiotic doxycycline on titanium surfaces, the involvement of hydride in binding the biomolecule onto titanium remains poorly understood. To gain better understanding of the influence this immobilization process has on titanium surfaces, mirror-polished commercially pure titanium surfaces were cathodically polarized in the presence of doxycycline and the modified surfaces were thoroughly characterized using atomic force microscopy, electron microscopy, secondary ion mass spectrometry, and angle-resolved X-ray spectroscopy. We demonstrated that no hydride was created during the polarization process. Doxycycline was found to be attached to an oxide layer that was modified during the electrochemical process. A bacterial assay using bioluminescent Staphylococcus epidermidis Xen43 showed the ability of the coating to reduce bacterial colonization and planktonic bacterial growth. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Soldadura (Welding). Spanish Translations for Welding.

    ERIC Educational Resources Information Center

    Hohhertz, Durwin

    Thirty transparency masters with Spanish subtitles for key words are provided for a welding/general mechanical repair course. The transparency masters are on such topics as oxyacetylene welding; oxyacetylene welding equipment; welding safety; different types of welds; braze welding; cutting torches; cutting with a torch; protective equipment; arc…

  20. Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation.

    EPA Science Inventory

    Titanium dioxide in the anatase crystalline form was used as a photocatalyst to generate hydroxyl radicals in a flowthrough water reactor. Experiments were performed on pure cultures of Escherichia coli in dechlorinated tap water and a surface water sample to evaluate the disinfe...

  1. Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride

    DOEpatents

    Koc, Rasit; Glatzmaier, Gregory C.

    1995-01-01

    A process for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.

  2. Fit of cast commercially pure titanium and Ti-6Al-4V alloy crowns before and after marginal refinement by electrical discharge machining.

    PubMed

    Contreras, Edwin Fernando Ruiz; Henriques, Guilherme Elias Pessanha; Giolo, Suely Ruiz; Nobilo, Mauro Antonio Arruda

    2002-11-01

    Titanium has been suggested as a replacement for alloys currently used in single-tooth restorations and fixed partial dentures. However, difficulties in casting have resulted in incomplete margins and discrepancies in marginal fit. This study evaluated and compared the marginal fit of crowns fabricated from a commercially pure titanium (CP Ti) and from Ti-6Al-4V alloy with crowns fabricated from a Pd-Ag alloy that served as a control. Evaluations were performed before and after marginal refinement by electrical discharge machining (EDM). Forty-five bovine teeth were prepared to receive complete cast crowns. Stone and copper-plated dies were obtained from impressions. Fifteen crowns were cast with each alloy (CP Ti, Ti-6Al-4V, and Pd-Ag). Marginal fit measurements (in micrometers) were recorded at 4 reference points on each casting with a traveling microscope. Marginal refinement with EDM was conducted on the titanium-based crowns, and measurements were repeated. Data were analyzed with the Kruskal-Wallis test, paired t test, and independent t test at a 1% probability level. The Kruskal-Wallis test showed significant differences among mean values of marginal fit for the as-cast CP Ti crowns (mean [SD], 83.9 [26.1] microm) and the other groups: Ti-6Al-4V (50.8 [17.2] microm) and Pd-Ag (45.2 [10.4] microm). After EDM marginal refinement, significant differences were detected among the Ti-6Al-4V crowns (24.5 [10.9] microm) and the other 2 groups: CP Ti (50.6 [20.0] microm) and Pd-Ag (not modified by EDM). Paired t test results indicated that marginal refinement with EDM effectively improved the fit of CP Ti crowns (from 83.9 to 50.6 microm) and Ti-6Al-4V crowns (from 50.8 to 24.5 microm). However, the difference in improvement between the two groups was not significant by t test. Within the limitations of this study, despite the superior results for Ti-6Al-4V, both groups of titanium-based crowns had clinically acceptable marginal fits. After EDM marginal refinement

  3. Elevated-temperature flow strength, creep resistance and diffusion welding characteristics of Ti-gAl-2Nb-1Ta-0.8Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Moore, T. J.

    1977-01-01

    A study of the flow strength, creep resistance and diffusion welding characteristics of the titanium alloy Ti-6Al-2Nb-1Ta-0.8Mo was conducted. Two mill-processed forms of this alloy were examined. The forged material was essentially processed above the beta transus while the rolled form was subjected to considerable work below the beta transus. Between 1150 and 1250 K, the forged material was stronger and more creep resistant than the rolled alloy. Both forms exhibit superplastic characteristics in this temperature range. Strain measurements during diffusion welding experiments at 1200 K reveal that weld interfaces have no measurable effect on the overall creep deformation. Significant deformation appears to be necessary to produce a quality diffusion weld between superplastic materials. A 'soft' interlayer inserted between faying surfaces would seemingly allow manufacture of quality diffusion welds with little overall deformation.

  4. The effects of pulsed electromagnetic field (PEMF) on osteoblast-like cells cultured on titanium and titanium-zirconium surfaces.

    PubMed

    Atalay, Belir; Aybar, Buket; Ergüven, Mine; Emes, Yusuf; Bultan, Özgür; Akça, Kivanç; Yalçin, Serhat; Baysal, Uğur; Işsever, Halim; Çehreli, Murat Cavit; Bilir, Ayhan

    2013-11-01

    Commercially pure Ti, together with Ti Ni, Ti-6Al-4V, and Ti-6Al-7Nb alloys, are among the materials currently being used for this purpose. Titanium-zirconium (TiZr) has been developed that allows SLActive surface modification and that has comparable or better mechanical strength and improved biocompatibility compared with existing Ti alloys. Furthermore, approaches have targeted making the implant surface more hydrophilic, as with the Straumann SLActive surface, a modification of the SLA surface. The aim of this study is to evaluate the effects of pulsed electromagnetic field (PEMF) to the behavior of neonatal rat calvarial osteoblast-like cells cultured on commercially pure titanium (cpTi) and titanium-zirconium alloy (TiZr) discs with hydrophilic surface properties. Osteoblast cells were cultured on titanium and TiZr discs, and PEMF was applied. Cell proliferation rates, cell numbers, cell viability rates, alkaline phosphatase, and midkine (MK) levels were measured at 24 and 72 hours. At 24 hours, the number of cells was significantly higher in the TiZr group. At 72 hours, TiZr had a significantly higher number of cells when compared to SLActive, SLActive + PEMF, and machine surface + PEMF groups. At 24 hours, cell proliferation was significantly higher in the TiZr group than SLActive and TiZr + PEMF group. At 72 hours, TiZr group had higher proliferation rate than machine surface and TiZr + PEMF. Cell proliferation in the machine surface group was lower than both SLActive + PEMF and machine surface + PEMF. MK levels of PEMF-treated groups were lower than untreated groups for 72 hours. Our findings conclude that TiZr surfaces are similar to cpTi surfaces in terms of biocompatibility. However, PEMF application has a higher stimulative effect on cells cultured on cpTi surfaces when compared to TiZr.

  5. In vitro investigation of marginal accuracy of implant-supported screw-retained partial dentures.

    PubMed

    Koke, U; Wolf, A; Lenz, P; Gilde, H

    2004-05-01

    Mismatch occurring during the fabrication of implant-supported dentures may induce stress to the peri-implant bone. The purpose of this study was to investigate the influence of two different alloys and the fabrication method on the marginal accuracy of cast partial dentures. Two laboratory implants were bonded into an aluminium block so that the distance between their longitudinal axes was 21 mm. Frameworks designed for screw-retained partial dentures were cast either with pure titanium (rematitan) or with a CoCr-alloy (remanium CD). Two groups of 10 frameworks were cast in a single piece. The first group was made of pure titanium, and the second group of a CoCr-alloy (remanium CD). A third group of 10 was cast in two pieces and then laser-welded onto a soldering model. This latter group was also made of the CoCr-alloy. All the frameworks were screwed to the original model with defined torque. Using light microscopy, marginal accuracy was determined by measuring vertical gaps at eight defined points around each implant. Titanium frameworks cast in a single piece demonstrated mean vertical gaps of 40 microm (s.d. = 11 microm) compared with 72 microm (s.d. = 40 microm) for CoCr-frameworks. These differences were not significant (U-test, P = 0.124) because of a considerable variation of the values for CoCr-frameworks (minimum: 8 microm and maximum: 216 microm). However, frameworks cast in two pieces and mated with a laser showed significantly better accuracy in comparison with the other experimental groups (mean: 17 microm +/- 6; P < 0.01). (i) The fit of implant-supported partial dentures cast with pure titanium in a single piece is preferable to that of those made with the CoCr-alloy and (ii) the highest accuracy can be achieved by using a two-piece casting technique combined with laser welding. Manufacturing the framework pieces separately and then welding them together provides the best marginal fit.

  6. Gas phase hydrogen permeation in alpha titanium and carbon steels

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; Shah, K. K.; Reeves, B. H.; Gadgeel, V. L.

    1980-01-01

    Commercially pure titanium and heats of Armco ingot iron and steels containing from 0.008-1.23 w/oC were annealed or normalized and machined into hollow cylinders. Coefficients of diffusion for alpha-Ti and alpha-Fe were determined by the lag-time technique. Steady state permeation experiments yield first power pressure dependence for alpha-Ti and Sievert's law square root dependence for Armco iron and carbon steels. As in the case of diffusion, permeation data confirm that alpha-titanium is subject to at least partial phase boundary reaction control while the steels are purely diffusion controlled. The permeation rate in steels also decreases as the carbon content increases. As a consequence of Sievert's law, the computed hydrogen solubility decreases as the carbon content increases. This decreases in explained in terms of hydrogen trapping at carbide interfaces. Oxidizing and nitriding the surfaces of alpha-titanium membranes result in a decrease in the permeation rate for such treatment on the gas inlet surfaces but resulted in a slight increase in the rate for such treatment on the gas outlet surfaces. This is explained in terms of a discontinuous TiH2 layer.

  7. Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride

    DOEpatents

    Koc, R.; Glatzmaier, G.C.

    1995-05-23

    A process is disclosed for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.

  8. In-Plane Anisotropy in Mechanical Behavior and Microstructural Evolution of Commercially Pure Titanium in Tensile and Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Sinha, Subhasis; Gurao, N. P.

    2017-12-01

    Tensile and cyclic deformation behavior of three samples oriented at 0, 45, and 90 deg to the rolling direction in the rolling direction-transverse direction (RD-TD) plane of cold-rolled and annealed plate of commercially pure titanium is studied in the present investigation. The sample along the RD (R0) shows the highest strength but lowest ductility in monotonic tension. Although ultimate tensile strength (UTS) and elongation of samples along 45 and 90 deg to the RD (R45 and R90, respectively) are similar, the former has significantly higher yield strength than the latter, indicating different strain-hardening behavior. It is found that the R90 sample exhibits the highest monotonic ductility as well as fatigue life. This is attributed to a higher propensity for twinning in this sample with the presence of multiple variants and twin intersections. Cyclic life is also influenced by the high tendency for detwinning of contraction twins in this orientation. Elastoplastic self-consistent (EPSC) simulations of one-cycle tension-compression load reversal indicate that the activity of pyramidal 〈 c + a〉 slip and extension twinning oscillates during cyclic loading that builds up damage in a cumulative manner, leading to failure in fatigue.

  9. Present status of titanium removable dentures--a review of the literature.

    PubMed

    Ohkubo, C; Hanatani, S; Hosoi, T

    2008-09-01

    Although porcelain and zirconium oxide might be used for fixed partial dental prostheses instead of conventional dental metals in the near future, removable partial denture (RPD) frameworks will probably continue to be cast with biocompatible metals. Commercially pure (CP) titanium has appropriate mechanical properties, it is lightweight (low density) compared with conventional dental alloys, and has outstanding biocompatibility that prevents metal allergic reactions. This literature review describes the laboratory conditions needed for fabricating titanium frameworks and the present status of titanium removable prostheses. The use of titanium for the production of cast RPD frameworks has gradually increased. There are no reports about metallic allergy apparently caused by CP titanium dentures. The laboratory drawbacks still remain, such as the lengthy burn-out, inferior castability and machinability, reaction layer formed on the cast surface, difficulty of polishing, and high initial costs. However, the clinical problems, such as discoloration of the titanium surfaces, unpleasant metal taste, decrease of clasp retention, tendency for plaque to adhere to the surface, detachment of the denture base resin, and severe wear of titanium teeth, have gradually been resolved. Titanium RPD frameworks have never been reported to fail catastrophically. Thus, titanium is recommended as protection against metal allergy, particularly for large-sized prostheses such as RPDs or complete dentures.

  10. Inflammatory cytokine response to titanium chemical composition and nanoscale calcium phosphate surface modification.

    PubMed

    Hamlet, Stephen; Ivanovski, Saso

    2011-05-01

    Nanoscale surface modification of titanium dental implants with calcium phosphate (CaP) has been shown to achieve superior bone wound healing and osseointegration compared with smooth or microrough titanium surfaces alone. As bone healing has been shown to be influenced by the action of cytokines, this study examined whether changes in cytokine gene expression from RAW 264.7 cells cultured on commercially pure and titanium alloy (Ti-6Al-4V) microrough or nanoscale crystalline CaP-modified surfaces, may influence downstream events in bone wound healing and osseointegration. Whilst no significant difference in the attachment or proliferation of RAW 264.7 cells was observed, the nanoscale CaP-modified surface elicited a gene expression profile with marked down-regulation of a number of pro-inflammatory cytokines and chemokines. Inflammatory cytokine gene expression was further influenced by chemical composition, with lower levels of pro-inflammatory markers noted following exposure of the macrophage-like cells to titanium alloy (Ti-6Al-4V) compared with the commercially pure titanium surface. Down-regulation of pro-inflammatory cytokine gene expression (confirmed at the protein level for TNFα and CCL5), may thus facilitate the enhanced bone wound healing and osseointegration observed clinically with nanoscale calcium phosphate-modified implant surfaces. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Numerical simulation of linear fiction welding (LFW) processes

    NASA Astrophysics Data System (ADS)

    Fratini, L.; La Spisa, D.

    2011-05-01

    Solid state welding processes are becoming increasingly important due to a large number of advantages related to joining "unweldable" materials and in particular light weight alloys. Linear friction welding (LFW) has been used successfully to bond non-axisymmetric components of a range of materials including titanium alloys, steels, aluminum alloys, nickel, copper, and also dissimilar material combinations. The technique is useful in the research of quality of the joints and in reducing costs of components and parts of the aeronautic and automotive industries. LFW involves parts to be welded through the relative reciprocating motion of two components under an axial force. In such process the heat source is given by the frictional forces work decaying into heat determining a local softening of the material and proper bonding conditions due to both the temperature increase and the local pressure of the two edges to be welded. This paper is a comparative test between the numerical model in two dimensions, i.e. in plane strain conditions, and in three dimensions of a LFW process of AISI1045 steel specimens. It must be observed that the 3D model assures a faithful simulation of the actual threedimensional material flow, even if the two-dimensional simulation computational times are very short, a few hours instead of several ones as the 3D model. The obtained results were compared with experimental values found out in the scientific literature.

  12. Comparing Strengthening Mechanisms of Vapor Grown Carbon Fiber vs. Titanium Carbide Reinforced Powder Metallurgy Titanium Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Franco, Staub; Kondoh, Katsuyoshi; Umeda, Junko; Imai, Hisashi

    In this experiment, TILOP-45 commercially pure titanium powder was mixed with vapor grown carbon fibers (VGCF) to form a 200 g 0.5 wt. % VGCF solution. After adding 0.15 grams of cle-safe oil, a rocking mill shook the sample at 60.0 Hz for 2 hours, resulting in satisfactory dispersion of VGCF on the titanium powder surface. The powder solution was compacted by spark plasma sintering (SPS) and hot extruded. The SPS temperature was set to either 800 °C or 1,000 °C and the pressure to 35 kN. Using an extrusion ratio of 13:1 and ram speed of 3 mm/s, the titanium billet, preheated to either 800 °C or 1,000 °C, was deformed to a 10 mm diameter rod. All four permutations of SPS and extrusion temperatures were tested. Microstructure, grain size, hardness, and oxygen/nitrogen/carbon content were observed. Also, a UTS experiment was done followed by SEM observations of the fractured surfaces.

  13. Development of Low Cost Filler Materials for Welding High Strength Steels.

    DTIC Science & Technology

    1984-04-29

    solid wire form for use in GMAW and GTAW welding of HY-130, Linde 140S and Airco AXI40. As can be seen from Table 2, they achieve their properties with...as pure powder and ferroalloys, 16 2 ’ Transfer efficiencies of elements (e.g. Nickel, Chromium and Molybdenum) from the electrode to weld metal then...chemical compositions of the deposits (as shown in Table 5) was "lean" in carbon, nickel, manganese and molybdenum but "rich" in chromium , compared to

  14. Laser beam interactions with vapor plumes during Nd:YAG laser welding on aluminum

    NASA Astrophysics Data System (ADS)

    Peebles, H. C.; Russo, A. J.; Hadley, G. R.; Akau, R. L.

    Welds produced on pure aluminum targets using pulsed Nd:YAG lasers can be accurately described using a relatively simple conduction mode heat transfer model provided that the fraction of laser energy absorbed is known and the amount of metal vaporized is smalled however at laser fluences commonly used in many production welding schedules significant aluminum vaporization does occur. The possible mechanisms have been identified which could result in laser beam attenuation by the vapor plume.

  15. Corrosion of titanium: Part 1: aggressive environments and main forms of degradation.

    PubMed

    Prando, Davide; Brenna, Andrea; Diamanti, Maria Vittoria; Beretta, Silvia; Bolzoni, Fabio; Ormellese, Marco; Pedeferri, MariaPia

    2017-11-11

    Titanium has outstanding corrosion resistance due to the external natural oxide protective layer formed when it is exposed to an aerated environment. Despite this, titanium may suffer different forms of corrosion in severe environments: uniform corrosion, pitting and crevice corrosion, hydrogen embrittlement, stress-corrosion cracking, fretting corrosion and erosion. In this first review, forms of corrosion affecting titanium are analyzed based on a wide literature review. For each form of corrosion, the mechanism and most severe environment are reported according to the current understanding.In the second part, this review will address the possible surface treatments that can increase corrosion resistance on commercially pure titanium: Electrochemical anodizing, thermal oxidation, chemical oxidation and bulk treatments such as alloying will be considered, highlighting the advantages of each technique.

  16. Compression fatigue behavior and failure mechanism of porous titanium for biomedical applications.

    PubMed

    Li, Fuping; Li, Jinshan; Huang, Tingting; Kou, Hongchao; Zhou, Lian

    2017-01-01

    Porous titanium and its alloys are believed to be one of the most attractive biomaterials for orthopedic implant applications. In the present work, porous pure titanium with 50-70% porosity and different pore size was fabricated by diffusion bonding. Compression fatigue behavior was systematically studied along the out-of-plane direction. It resulted that porous pure titanium has anisotropic pore structure and the microstructure is fine-grained equiaxed α phase with a few twins in some α grains. Porosity and pore size have some effect on the S-N curve but this effect is negligible when the fatigue strength is normalized by the yield stress. The relationship between normalized fatigue strength and fatigue life conforms to a power law. The compression fatigue behavior is characteristic of strain accumulation. Porous titanium experiences uniform deformation throughout the entire sample when fatigue cycle is lower than a critical value (N T ). When fatigue cycles exceed N T , strain accumulates rapidly and a single collapse band forms with a certain angle to the loading direction, leading to the sudden failure of testing sample. Both cyclic ratcheting and fatigue crack growth contribute to the fatigue failure mechanism, while the cyclic ratcheting is the dominant one. Porous titanium possesses higher normalized fatigue strength which is in the range of 0.5-0.55 at 10 6 cycles. The reasons for the higher normalized fatigue strength were analyzed based on the microstructure and fatigue failure mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. [An experimental study of the coagulating properties of a laser beam applied to fix titanium prostheses of auditory ossicles with the use of platelet-rich plasma].

    PubMed

    Semenov, V F; Semenov, F V

    2013-01-01

    The displacement of prostheses of auditory ossicles at the concluding stage of surgery and in the early postoperative period is one of the factors influencing the functional outcome of stapedoplasty. The objective of the present experimental study was to estimate the effectiveness of the use of platelet-rich plasma as an alloy for the laser welding in order to improve fixation of titanium prostheses employed in ossiculoplastic surgery. The results of a series of experiments undertaken to assess the possibility of stabilization of titanium prostheses in the desired position with the help of laser welding indicate that this technique with the use of platelet-rich plasma as an alloy may be a reliable method for the fixation of the reconstructed chain of ossicles in the desired position.

  18. Effects of nitrogen in shielding gas on microstructure evolution and localized corrosion behavior of duplex stainless steel welding joint

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Zhao, Lei; Zhou, Chao

    2017-05-01

    The effects of nitrogen addition in shielding gas on microstructure evolution and localized corrosion behavior of duplex stainless steel (DSS) welds were studied. N2-supplemented shielding gas facilitated the primary austenite formation, suppressed the Cr2N precipitation in weld root, and increased the microhardnesses of weld metal. Furthermore, N2-supplemented shielding gas increased pitting resistance equivalent number (PREN) of austenite, but which decreased slightly PREN of ferrite. The modified double loop electrochemical potentiokinetic reactivation in 2 M H2SO4 + 1 M HCl was an effective method to study the localized corrosion of the different zones in the DSS welds. The adding 2% N2 to pure Ar shielding gas improved the localized corrosion resistance in the DSS welds, which was due to compensation for nitrogen loss and promoting nitrogen further solution in the austenite phases, suppression of the Cr2N precipitation in the weld root, and increase of primary austenite content with higher PREN than the ferrite and secondary austenite. Secondary austenite are prone to selective corrosion because of lower PREN compared with ferrite and primary austenite. Cr2N precipitation in the pure Ar shielding weld root and heat affected zone caused the pitting corrosion within the ferrite and the intergranular corrosion at the ferrite boundary. In addition, sigma and M23C6 precipitation resulted in the intergranular corrosion at the ferrite boundary.

  19. Inhibition of Titanium In Fuming Nitric Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RITTENHOUSE, J. B.; PAPP, C. A.

    1958-06-01

    Storage tests were conducted to determine the effectiveness of oxygen in inhibiting the corrosion reaction of titanium in fuming nitric acid (FNA). In these tests, which were of 28 days duration at a temperature of 30 C, the samples investigated were ½-inch squares (0.020 inch thick) of commercially pure titanium (75A) and a binary 8 percent-manganese alloy (C110M). The specimens were stored in Teflon-lined aluminum pressure vessels at 50 percent ullage. The pressure vessels were of the following types: vented to the atmosphere, sealed with air in the vapor space, sealed with oxygen atmosphere in the vapor space, and equippedmore » for a 1-ml/minute oxygen flow through the vapor space. Finally, results of the investigation indicated no inhibition of titanium corrosion by oxygen, but confirmed the inhibiting effect of a water content of 1 to 2 percent by weight in the FNA.« less

  20. Elevated temperature flow strength, creep resistance and diffusion welding characteristics of Ti-6Al-2Nb-1Ta-0.8Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Moore, T. J.

    1979-01-01

    A study of the flow strength, creep resistance and diffusion welding characteristics of the titanium alloy Ti-6Al-2Nb-1Ta-0.8Mo has been conducted. Two mill-processed forms of this alloy were examined. The forged material had been processed above the beta transus (approximately 1275 K) while the rolled form had been subjected to work below the beta transus. Between 1150 and 1250 K, the forged material was stronger and more creep resistant than the rolled alloy. Both forms exhibit superplastic characteristics in this temperature range. Strain measurements during diffusion welding experiments at 1200 K reveal that weld interfaces have no measurable effect on the overall creep deformation. Significant deformation appears to be necessary to produce a quality diffusion weld between superplastic materials. A 'soft' interlayer inserted between faying surfaces would seemingly allow manufacture of quality diffusion welds with little overall deformation.

  1. Friction Stir Weld System for Welding and Weld Repair

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor); Romine, Peter L. (Inventor); Oelgoetz, Peter A. (Inventor)

    2001-01-01

    A friction stir weld system for welding and weld repair has a base foundation unit connected to a hydraulically controlled elevation platform and a hydraulically adjustable pin tool. The base foundation unit may be fixably connected to a horizontal surface or may be connected to a mobile support in order to provide mobility to the friction stir welding system. The elevation platform may be utilized to raise and lower the adjustable pin tool about a particular axis. Additional components which may be necessary for the friction stir welding process include back plate tooling, fixturing and/or a roller mechanism.

  2. Mars Atmosphere Effects on Arc Welds: Phase 1

    NASA Technical Reports Server (NTRS)

    Courtright, Z. S.

    2016-01-01

    NASA has been unprecedented in achieving its goals related to space exploration and furthering the understanding of our solar system. In keeping with this trend, NASA's current mission is to land a team of astronauts on Mars and return them safely to Earth. In addition to comprising much of the structure and life support systems that will be brought to Mars for the habitat and vehicle, titanium and aluminum can be found and mined on Mars and may be used when building structures.Where metals are present, there will be a need for welding capabilities. For welds that need to be made quickly and are located far from heavy resistance or solid state welding machinery, there will be a need for basic arc welding. Arc welding has been a major cornerstone of manufacturing throughout the 20th century, and the portability and capability of gas tungsten arc welding (GTAW) will be necessary for repair, manufacturing, and survival on Mars. The two primary concerns for welding on Mars are that the Martian atmosphere contains high levels of carbon dioxide (CO2), and the atmospheric pressure is much lower than it is on Earth. The high levels of CO2 in the Martian atmosphere may dissociate and produce oxygen in the arc and therefore increase the risk of oxidation. For simplification, atmospheric pressure will not be taken into account for this experiment. For survival on Mars during this mission, the life support and water filtration systems must be kept operational at all times. In order to ensure that water filtration systems can be repaired in the event of an emergency, it is very important to have the capability to weld. The Orion capsule and Mars lander must also remain operational throughout the duration of the mission to ensure the safe return of the astronauts on the mission to Mars. A better understanding of welding in a Mars environment is important to ensure that repair welds are possible if the Orion capsule/Mars lander or water filtration system is damaged at any point

  3. Near-Net Shape Fabrication Using Low-Cost Titanium Alloy Powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. David M. Bowden; Dr. William H. Peter

    2012-03-31

    The use of titanium in commercial aircraft production has risen steadily over the last half century. The aerospace industry currently accounts for 58% of the domestic titanium market. The Kroll process, which has been used for over 50 years to produce titanium metal from its mineral form, consumes large quantities of energy. And, methods used to convert the titanium sponge output of the Kroll process into useful mill products also require significant energy resources. These traditional approaches result in product forms that are very expensive, have long lead times of up to a year or more, and require costly operationsmore » to fabricate finished parts. Given the increasing role of titanium in commercial aircraft, new titanium technologies are needed to create a more sustainable manufacturing strategy that consumes less energy, requires less material, and significantly reduces material and fabrication costs. A number of emerging processes are under development which could lead to a breakthrough in extraction technology. Several of these processes produce titanium alloy powder as a product. The availability of low-cost titanium powders may in turn enable a more efficient approach to the manufacture of titanium components using powder metallurgical processing. The objective of this project was to define energy-efficient strategies for manufacturing large-scale titanium structures using these low-cost powders as the starting material. Strategies include approaches to powder consolidation to achieve fully dense mill products, and joining technologies such as friction and laser welding to combine those mill products into near net shape (NNS) preforms for machining. The near net shape approach reduces material and machining requirements providing for improved affordability of titanium structures. Energy and cost modeling was used to define those approaches that offer the largest energy savings together with the economic benefits needed to drive implementation

  4. Weld pool oscillation during pulsed GTA welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aendenroomer, A.J.R.; Ouden, G. den

    1996-12-31

    This paper deals with weld pool oscillation during pulsed GTA welding and with the possibility to use this oscillation for in-process control of weld penetration. Welding experiments were carried out under different welding conditions. During welding the weld pool was triggered into oscillation by the normal welding pulses or by extra current pulses. The oscillation frequency was measured both during the pulse time and during the base time by analyzing the arc voltage variation using a Fast Fourier Transformation program. Optimal results are obtained when full penetration occurs during the pulse time and partial penetration during the base time. Undermore » these conditions elliptical overlapping spot welds are formed. In the case of full penetration the weld pool oscillates in a low frequency mode (membrane oscillation), whereas in the case of partial penetration the weld pool oscillates in a high frequency mode (surface oscillation). Deviation from the optimal welding conditions occurs when high frequency oscillation is observed during both pulse time and base time (underpenetration) or when low frequency oscillation is observed during both pulse time and base time (overpenetration). In line with these results a penetration sensing system with feedback control was designed, based on the criterion that optimal weld penetration is achieved when two peaks are observed in the frequency distribution. The feasibility of this sensing system for orbital tube welding was confirmed by the results of experiments carried out under various welding conditions.« less

  5. Welding.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This curriculum guide is designed for use by South Carolina vocational education teachers as a continuing set of lesson plans for a two-year course on welding. Covered in the individual sections of the guide are the following topics: an orientation to welding, oxyacetylene welding, advanced oxyacetylene welding, shielded metal arc welding, TIG…

  6. Discoloration of titanium alloy in acidic saline solutions with peroxide.

    PubMed

    Takemoto, Shinji; Hattori, Masayuki; Yoshinari, Masao; Kawada, Eiji; Oda, Yutaka

    2013-01-01

    The objective of this study was to compare corrosion behavior in several titanium alloys with immersion in acidulated saline solutions containing hydrogen peroxide. Seven types of titanium alloy were immersed in saline solutions with varying levels of pH and hydrogen peroxide content, and resulting differences in color and release of metallic elements determined in each alloy. Some alloys were characterized using Auger electron spectroscopy. Ti-55Ni alloy showed a high level of dissolution and difference in color. With immersion in solution containing hydrogen peroxide at pH 4, the other alloys showed a marked difference in color but a low level of dissolution. The formation of a thick oxide film was observed in commercially pure titanium showing discoloration. The results suggest that discoloration in titanium alloys immersed in hydrogen peroxide-containing acidulated solutions is caused by an increase in the thickness of this oxide film, whereas discoloration of Ti-55Ni is caused by corrosion.

  7. In vitro studying corrosion behavior of porous titanium coating in dynamic electrolyte.

    PubMed

    Chen, Xuedan; Fu, Qingshan; Jin, Yongzhong; Li, Mingtian; Yang, Ruisong; Cui, Xuejun; Gong, Min

    2017-01-01

    Porous titanium (PT) is considered as a promising biomaterials for orthopedic implants. Besides biocompatibility and mechanical properties, corrosion resistance in physiological environment is the other important factor affecting the long stability of an implant. In order to investigate the corrosion behavior of porous titanium implants in a dynamic physiological environment, a dynamic circle system was designed in this study. Then a titanium-based implant with PT coating was fabricated by plasma spraying. The corrosion resistance of PT samples in flowing 0.9% NaCl solution was evaluated by electrochemical measurements. Commercial pure solid titanium (ST) disc was used as a control. The studies of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) show that the pores in the PT play a negetive part in corrosion resistance and the flowing electrolyte can increase the corrosive rate of all titanium samples. The results suggest that pore design of titanium implants should pay attention to the effect of dynamic process of a physiological environment on the corrosion behavior of implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Comparing Laser Welding Technologies with Friction Stir Welding for Production of Aluminum Tailor-Welded Blanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hovanski, Yuri; Carsley, John; Carlson, Blair

    2014-01-15

    A comparison of welding techniques was performed to determine the most effective method for producing aluminum tailor-welded blanks for high volume automotive applications. Aluminum sheet was joined with an emphasis on post weld formability, surface quality and weld speed. Comparative results from several laser based welding techniques along with friction stir welding are presented. The results of this study demonstrate a quantitative comparison of weld methodologies in preparing tailor-welded aluminum stampings for high volume production in the automotive industry. Evaluation of nearly a dozen welding variations ultimately led to down selecting a single process based on post-weld quality and performance.

  9. Thermal, structural and electrochemical properties of new aliphatic-aromatic imine with piperazine moieties blended with titanium dioxide

    NASA Astrophysics Data System (ADS)

    Różycka, Anna; Fryń, Patryk; Iwan, Agnieszka; Bogdanowicz, Krzysztof Artur; Filapek, Michal; Górska, Natalia; Dąbczyński, Paweł; Rysz, Jakub; Pociecha, Damian; Hreniak, Agnieszka; Marzec, Monika

    2018-02-01

    A new piperazine imine, (7E)-N-((4-((E)-(4-hexadecylphenylimino)methyl)piperazin-1-yl)methylene)-4-dodecylbenzenamine, has been synthesized by the condensation of 1,4-piperazinedicarboxaldehyde with 4-hexadecylaniline. The imine was characterized by cyclic voltammetry, Fourier transform middle-infrared absorption spectroscopy and X-ray diffraction. Thermal properties of imine was analyzed by differential scanning calorimetry method during first and second heating scan at 10 and 20 °C/min. Texture of imine was investigated by polarized optical microscopy and atomic force microscopy. Furthermore, imine was blended with titanium dioxide in anatase form and fully characterized by the same methods. Piperazine imine and its mixture with titanium dioxide exhibited only a transition from crystal to isotropic state. Imine exhibits two-step reduction wave attributed to one-electron transfer in each step as was found by cyclic voltammetry. Both titanium dioxide and poly(3-hexylthiophene) change the electrochemical properties of piperazine imine, however, in different ways. Studied imine blended with titanium dioxide exhibited higher value of energy band gap than pure piperazine imine and lower Eg than pure poly(3-hexylthiophene).

  10. Plasma arc welding weld imaging

    NASA Technical Reports Server (NTRS)

    Rybicki, Daniel J. (Inventor); Mcgee, William F. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has a transparent shield cup disposed about the constricting nozzle, the cup including a small outwardly extending polished lip. A guide tube extends externally of the torch and has a free end adjacent to the lip. First and second optical fiber bundle assemblies are supported within the guide tube. Light from a strobe light is transmitted along one of the assemblies to the free end and through the lip onto the weld site. A lens is positioned in the guide tube adjacent to the second assembly and focuses images of the weld site onto the end of the fiber bundle of the second assembly and these images are transmitted along the second assembly to a video camera so that the weld site may be viewed continuously for monitoring the welding process.

  11. [Effect of silicon coating on bonding strength of ceramics and titanium].

    PubMed

    Zhou, Shu; Wang, Yu; Zhang, Fei-Min; Guang, Han-Bing

    2009-06-01

    This study investigated the effect of silicon coating (SiO2) by solution-gelatin (Sol-Gel) technology on bonding strength of titanium and ceramics. Sixteen pure titanium specimens with the size of 25 mm x 3 mm x 0.5 mm were divided into two groups (n=8), test group was silicon coated by Sol-Gel technology, the other one was control group. The middle area of the samples were veneered with Vita Titankeramik system, the phase composition of two specimens were characterized by X-ray diffraction (XRD). The bonding strength of titanium/porcelain was evaluated using three-point bending test. The interface of titanium and porcelain and fractured titanium surface were investigated by scanning electron microscope (SEM) with energy depressive spectrum (EDS). Contents of surface silicon increased after modification with silicon coated by Sol-Gel technology. The mean bonding strength of test group and control group were (37.768 +/- 0.777) MPa and (29.483 +/- 1.007) MPa. There was a statistically significant difference (P=0.000) between them. The bonded ceramic boundary of test group was wider than control group. Silicon coating by Sol-Gel technology was significant in improving bonding strength of titanium/Vita Titankeramik system.

  12. In vitro infrared thermography assessment of temperature peaks during the intra-oral welding of titanium abutments

    NASA Astrophysics Data System (ADS)

    Degidi, Marco; Nardi, Diego; Sighinolfi, Gianluca; Merla, Arcangelo; Piattelli, Adriano

    2012-07-01

    Control of heat dissipation and transmission to the peri-implant area during intra-oral welding is very important to limit potential damage to the surrounding tissue. The aim of this in vitro study was to assess, by means of thermal infrared imaging, the tissue temperature peaks associated with the thermal propagation pathway through the implants, the abutments and the walls of the slot of the scaffold, generated during the welding process, in three different implant systems. An in vitro polyurethane mandible model was prepared with a 7.0 mm v-shape slot. Effects on the maximum temperature by a single welding procedure were studied using different power supplies and abutments. A total of 36 welding procedures were tested on three different implant systems. The lowest peak temperature along the walls of the 7.0 mm v-shaped groove (31.6 ± 2 °C) was assessed in the specimens irrigated with sterile saline solution. The highest peak temperature (42.8 ± 2 °C) was assessed in the samples with a contemporaneous power overflow and premature pincers removal. The results of our study suggest that the procedures used until now appear to be effective to avoid thermal bone injuries. The peak tissue temperature of the in vitro model did not surpass the threshold limits above which tissue injury could occur.

  13. Absorbing TiOx thin film enabling laser welding of polyurethane membranes and polyamide fibers

    PubMed Central

    Amberg, Martin; Haag, Alexander; Storchenegger, Raphael; Rupper, Patrick; Lehmeier, Frederike; Rossi, René M; Hegemann, Dirk

    2015-01-01

    We report on the optical properties of thin titanium suboxide (TiOx) films for applications in laser transmission welding of polymers. Non-absorbing fibers were coated with TiOx coatings by reactive magnetron sputtering. Plasma process parameters influencing the chemical composition and morphology of the deposited thin films were investigated in order to optimize their absorption properties. Optical absorption spectroscopy showed that the oxygen content of the TiOx coatings is the main parameter influencing the optical absorbance. Overtreatment (high power plasma input) of the fiber surface leads to high surface roughness and loss of mechanical stability of the fiber. The study shows that thin substoichiometric TiOx films enable the welding of very thin polyurethane membranes and polyamide fibers with improved adhesion properties. PMID:27877837

  14. Absorbing TiOx thin film enabling laser welding of polyurethane membranes and polyamide fibers

    NASA Astrophysics Data System (ADS)

    Amberg, Martin; Haag, Alexander; Storchenegger, Raphael; Rupper, Patrick; Lehmeier, Frederike; Rossi, René M.; Hegemann, Dirk

    2015-10-01

    We report on the optical properties of thin titanium suboxide (TiOx) films for applications in laser transmission welding of polymers. Non-absorbing fibers were coated with TiOx coatings by reactive magnetron sputtering. Plasma process parameters influencing the chemical composition and morphology of the deposited thin films were investigated in order to optimize their absorption properties. Optical absorption spectroscopy showed that the oxygen content of the TiOx coatings is the main parameter influencing the optical absorbance. Overtreatment (high power plasma input) of the fiber surface leads to high surface roughness and loss of mechanical stability of the fiber. The study shows that thin substoichiometric TiOx films enable the welding of very thin polyurethane membranes and polyamide fibers with improved adhesion properties.

  15. Assessment of Corona/Arcing Hazard for Electron Beam Welding in Space Shuttle Bay at LEO for ISWE: Test Results

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.; Russell, C.; Vaughn, J.; Stocks, C.; ODell, D.; Bhat, B.

    1996-01-01

    Test welds were made in argon over a range of pressures from 10-5 to 10-3 torr (the latter pressure an order of magnitude above pressures anticipated in the space shuttle bay during welding) with and without plasma on 304 stainless steel, 6Al-4V titanium, and 5456 aluminum in search of any possible unwanted electrical discharges. Only a faint steady glow of beam-excited atoms around the electron beam and sometimes extending out into the vacuum chamber was observed. No signs of current spiking or of any potentially dangerous electrical discharge were found.

  16. Recommendations and Requirements for Welding and Inspection of Titanium Piping for U.S. Navy Surface Ship Applications

    DTIC Science & Technology

    1999-09-01

    The same general relationship is true for mixtures of argon and helium.) Argon is also more readily available and less costly than helium... true square-edge to assure proper inert gas shielding during welding. Perpendicularity of the edges should be maintained within 5 degrees. All clamps...toes. A horoscope is not required for internal inspection of inaccessible backside pipe welds. The acceptance criteria for color inspection and

  17. Modeling of the Weld Shape Development During the Autogenous Welding Process by Coupling Welding Arc with Weld Pool

    NASA Astrophysics Data System (ADS)

    Dong, Wenchao; Lu, Shanping; Li, Dianzhong; Li, Yiyi

    2010-10-01

    A numerical model of the welding arc is coupled to a model for the heat transfer and fluid flow in the weld pool of a SUS304 stainless steel during a moving GTA welding process. The described model avoids the use of the assumption of the empirical Gaussian boundary conditions, and at the same time, provides reliable boundary conditions to analyze the weld pool. Based on the two-dimensional axisymmetric numerical modeling of the argon arc, the heat flux to workpiece, the input current density, and the plasma drag stress are obtained. The arc temperature contours, the distributions of heat flux, and current density at the anode are in fair agreement with the reported experimental results. Numerical simulation and experimental studies to the weld pool development are carried out for a moving GTA welding on SUS304 stainless steel with different oxygen content from 30 to 220 ppm. The calculated result show that the oxygen can change the Marangoni convection from outward to inward direction on the liquid pool surface and make the wide shallow weld shape become narrow deep one. The calculated result for the weld shape and weld D/W ratio agrees well with the experimental one.

  18. Effect of Backing Plate Thermal Property on Friction Stir Welding of 25-mm-Thick AA6061

    NASA Astrophysics Data System (ADS)

    Upadhyay, Piyush; Reynolds, Anthony

    2014-04-01

    By using backing plates made out of materials with widely varying thermal diffusivity this work seeks to elucidate the effects of the root side thermal boundary condition on weld process variables and resulting joint properties. Welds were made in 25.4-mm-thick AA6061 using ceramic, titanium, steel, and aluminum as backing plate (BP) material. Welds were also made using a "composite backing plate" consisting of longitudinal narrow strip of low diffusivity material at the center and two side plates of high diffusivity aluminum. Stir zone temperature during the welding was measured using two thermocouples spot welded at the core of the probe: one at the midplane height and another near the tip of the probe corresponding to the root of the weld. Steady state midplane probe temperatures for all the BPs used were found to be very similar. Near root peak temperature, however, varied significantly among weld made with different BPs all other things being equal. Whereas the near root and midplane temperature were the same in the case of ceramic backing plate, the root peak temperature was 318 K (45 °C) less than the midplane temperature in the case of aluminum BP. The trends of nugget hardness and grain size in through thickness direction were in agreement with the measured probe temperatures. Hardness and tensile test results show that the use of composite BP results in stronger joint compared to monolithic steel BP.

  19. Investigation on mechanical properties of welded material under different types of welding filler (shielded metal arc welding)

    NASA Astrophysics Data System (ADS)

    Tahir, Abdullah Mohd; Lair, Noor Ajian Mohd; Wei, Foo Jun

    2018-05-01

    The Shielded Metal Arc Welding (SMAW) is (or the Stick welding) defined as a welding process, which melts and joins metals with an arc between a welding filler (electrode rod) and the workpieces. The main objective was to study the mechanical properties of welded metal under different types of welding fillers and current for SMAW. This project utilized the Design of Experiment (DOE) by adopting the Full Factorial Design. The independent variables were the types of welding filler and welding current, whereas the other welding parameters were fixed at the optimum value. The levels for types of welding filler were by the models of welding filler (E6013, E7016 and E7018) used and the levels for welding current were 80A and 90A. The responses were the mechanical properties of welded material, which include tensile strength and hardness. The experiment was analyzed using the two way ANOVA. The results prove that there are significant effects of welding filler types and current levels on the tensile strength and hardness of the welded metal. At the same time, the ANOVA results and interaction plot indicate that there are significant interactions between the welding filler types and the welding current on both the hardness and tensile strength of the welded metals, which has never been reported before. This project found that when the amount of heat input with increase, the mechanical properties such as tensile strength and hardness decrease. The optimum tensile strength for welded metal is produced by the welding filler E7016 and the optimum of hardness of welded metal is produced by the welding filler E7018 at welding current of 80A.

  20. Genesis of Microstructures in Friction Stir Welding of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Tchein, Gnofam Jacques; Jacquin, Dimitri; Coupard, Dominique; Lacoste, Eric; Girot Mata, Franck

    2018-06-01

    This paper is focused on the genesis of microstructures in friction stir welding (FSW) of the Ti-6Al-4V alloy. Several titanium joints, initially prepared with four different preheat treatments, were processed by FSW. Detailed microstructural analyses were performed in order to investigate change in the microstructure during the process. In this work, the FSW processing allows a controlled and stable microstructure to be produced in the stirring zone, regardless of the initial heat treatment or the welding conditions. The welded material undergoes a severe thermomechanical treatment which can be divided into two steps. First, the friction in the shoulder and the plastic strain give rise to the necessary conditions to allow a continuous dynamic recrystallization of the β phase. This operation produces a fine and equiaxed β grain structure. Second, once the pin has moved away, the temperature decreases, and the material undergoes a heat treatment equivalent to air quenching. The material thus exhibits a β → β + α transformation with germination of a fine intergranular Widmanstätten phase within the ex-fully-recrystallized- β grains.

  1. The dynamic effects of metal vapour in gas metal arc welding

    NASA Astrophysics Data System (ADS)

    Haidar, Jawad

    2010-04-01

    Numerical simulations for the dynamic effects of metal vapour in gas metal arc welding (GMAW) suggest that vapour from the welding droplet at the tip of the welding wire has a significant influence on the plasma properties. It is found that for the evaporation rates calculated for arcs in pure argon, the dynamic effects of metal vapour markedly cool down the plasma in the central region of the arc, leading to the formation of a low temperature zone centred on the arc axis, in agreement with experimental measurements in the literature. Radiation effects, omitted in this paper, may produce further cooling of the plasma gas. The results highlight major deficiencies in the common approach to modelling the GMAW process and suggest that accurate description of GMAW must include the influence of metal vapour on the plasma.

  2. Self-Reacting Friction Stir Welding for Aluminum Alloy Circumferential Weld Applications

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerry; Cantrell, Mark; Carter, Robert

    2003-01-01

    Friction stir welding is an innovative weld process that continues to grow in use, in the commercial, defense, and space sectors. It produces high quality and high strength welds in aluminum alloys. The process consists of a rotating weld pin tool that plasticizes material through friction. The plasticized material is welded by applying a high weld forge force through the weld pin tool against the material during pin tool rotation. The high weld forge force is reacted against an anvil and a stout tool structure. A variation of friction stir welding currently being evaluated is self-reacting friction stir welding. Self-reacting friction stir welding incorporates two opposing shoulders on the crown and root sides of the weld joint. In self-reacting friction stir welding, the weld forge force is reacted against the crown shoulder portion of the weld pin tool by the root shoulder. This eliminates the need for a stout tooling structure to react the high weld forge force required in the typical friction stir weld process. Therefore, the self-reacting feature reduces tooling requirements and, therefore, process implementation costs. This makes the process attractive for aluminum alloy circumferential weld applications. To evaluate the application of self-reacting friction stir welding for aluminum alloy circumferential welding, a feasibility study was performed. The study consisted of performing a fourteen-foot diameter aluminum alloy circumferential demonstration weld using typical fusion weld tooling. To accomplish the demonstration weld, weld and tack weld development were performed and fourteen-foot diameter rings were fabricated. Weld development consisted of weld pin tool selection and the generation of a process map and envelope. Tack weld development evaluated gas tungsten arc welding and friction stir welding for tack welding rings together for circumferential welding. As a result of the study, a successful circumferential demonstration weld was produced leading

  3. Weld pool oscillation during GTA welding of mild steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Y.H.; Ouden, G. den

    1993-08-01

    In this paper the results are reported of a study dealing with the oscillation behavior of weld pools in the case of GTA bead-on-plate welding of mild steel, Fe 360. During welding, the weld pool was brought into oscillation by applying short current pulses, and the oscillation frequency and amplitude were measured by monitoring the arc voltage. It was found that the oscillation of the partially penetrated weld pool is dominated by one of two different oscillation modes (Mode 1 and Mode 2) depending on the welding conditions, whereas the oscillation of the fully penetrated weld pool is characterized bymore » a third oscillation mode (Mode 3). It is possible to maintain partially penetrated weld pool oscillation in Mode 1 by choosing appropriate welding conditions. Under these conditions, an abrupt decrease in oscillation frequency occurs when the weld pool transfers from partial penetration to full penetration. Thus, weld penetration can be in-process controlled by monitoring the oscillation frequency during welding.« less

  4. Effect of zirconium nitride physical vapor deposition coating on preosteoblast cell adhesion and proliferation onto titanium screws.

    PubMed

    Rizzi, Manuela; Gatti, Giorgio; Migliario, Mario; Marchese, Leonardo; Rocchetti, Vincenzo; Renò, Filippo

    2014-11-01

    Titanium has long been used to produce dental implants. Problems related to its manufacturing, casting, welding, and ceramic application for dental prostheses still limit its use, which highlights the need for technologic improvements. The aim of this in vitro study was to evaluate the biologic performance of titanium dental implants coated with zirconium nitride in a murine preosteoblast cellular model. The purpose of this study was to evaluate the chemical and morphologic characteristics of titanium implants coated with zirconium nitride by means of physical vapor deposition. Chemical and morphologic characterizations were performed by scanning electron microscopy and energy dispersive x-ray spectroscopy, and the bioactivity of the implants was evaluated by cell-counting experiments. Scanning electron microscopy and energy dispersive x-ray spectroscopy analysis found that physical vapor deposition was effective in covering titanium surfaces with zirconium nitride. Murine MC-3T3 preosteoblasts were seeded onto titanium-coated and zirconium nitride-coated screws to evaluate their adhesion and proliferation. These experiments found a significantly higher number of cells adhering and spreading onto zirconium nitride-coated surfaces (P<.05) after 24 hours; after 7 days, both titanium and zirconium nitride surfaces were completely covered with MC-3T3 cells. Analysis of these data indicates that the proposed zirconium nitride coating of titanium implants could make the surface of the titanium more bioactive than uncoated titanium surfaces. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. Tensile and creep properties of titanium-vanadium, titanium-molybdenum, and titanium-niobium alloys

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1975-01-01

    Tensile and creep properties of experimental beta-titanium alloys were determined. Titanium-vanadium alloys had substantially greater tensile and creep strength than the titanium-niobium and titanium-molybdenum alloys tested. Specific tensile strengths of several titanium-vanadium-aluminum-silicon alloys were equivalent or superior to those of commercial titanium alloys to temperatures of 650 C. The Ti-50V-3Al-1Si alloy had the best balance of tensile strength, creep strength, and metallurgical stability. Its 500 C creep strength was far superior to that of a widely used commercial titanium alloy, Ti-6Al-4V, and almost equivalent to that of newly developed commercial titanium alloys.

  6. Surface characterization and cytotoxicity analysis of plasma sprayed coatings on titanium alloys.

    PubMed

    Rahman, Zia Ur; Shabib, Ishraq; Haider, Waseem

    2016-10-01

    In the realm of biomaterials, metallic materials are widely used for load bearing joints due to their superior mechanical properties. Despite the necessity for long term metallic implants, there are limitations to their prolonged use. Naturally, oxides of titanium have low solubilities and form passive oxide film spontaneously. However, some inclusion and discontinuity spots in oxide film make implant to adopt the decisive nature. These defects heighten the dissolution of metal ions from the implant surface, which results in diminishing bio-integration of titanium implant. To increase the long-term metallic implant stability, surface modifications of titanium alloys are being carried out. In the present study, biomimetic coatings of plasma sprayed hydroxyapatite and titanium were applied to the surface of commercially pure titanium and Ti6Al4V. Surface morphology and surface chemistry were studied using scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Cyclic potentiodynamic polarization and electrochemical impedance spectroscopy were carried out in order to study their electrochemical behavior. Moreover, cytotoxicity analysis was conducted for osteoblast cells by performing MTS assay. It is concluded that both hydroxyapatite and titanium coatings enhance corrosion resistance and improve cytocompatibility. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Adaptive weld control for high-integrity welding applications

    NASA Technical Reports Server (NTRS)

    Powell, Bradley W.

    1993-01-01

    An advanced adaptive control weld system for high-integrity welding applications is presented. The system consists of a state-of-the-art weld control subsystem, motion control subsystem, and sensor subsystem which closes the loop on the process. The adaptive control subsystem (ACS), which is required to totally close the loop on weld process control, consists of a multiprocessor system, data acquisition hardware, and three welding sensors which provide measurements from all areas around the torch in real time. The ACS acquires all 'measurables' and feeds offset trims back into the weld control and motion control subsystems to modify the 'controllables' in order to maintain a previously defined weld quality.

  8. Effect of surface reaction layer on grindability of cast titanium alloys.

    PubMed

    Ohkubo, Chikahiro; Hosoi, Toshio; Ford, J Phillip; Watanabe, Ikuya

    2006-03-01

    The purpose of this study was to investigate the effect of the cast surface reaction layer on the grindability of titanium alloys, including free-machining titanium alloy (DT2F), and to compare the results with the grindability of two dental casting alloys (gold and Co-Cr). All titanium specimens (pure Ti, Ti-6Al-4V and DT2F) were cast using a centrifugal casting machine in magnesia-based investment molds. Two specimen sizes were used to cast the titanium metals so that the larger castings would be the same size as the smaller gold and Co-Cr alloy specimens after removal of the surface reaction layer (alpha-case). Grindability was measured as volume loss ground from a specimen for 1 min using a handpiece engine with a SiC abrasive wheel at 0.1 kgf and four circumferential wheel speeds. For the titanium and gold alloys, grindability increased as the rotational speed increased. There was no statistical difference (p>0.05) in grindability for all titanium specimens either with or without the alpha-case. Of the titanium metals tested, Ti-6 Al-4V had the greatest grindability at higher speeds, followed by DT2F and CP Ti. The grindability of the gold alloy was similar to that of Ti-6 Al-4V, whereas the Co-Cr alloy had the lowest grindability. The results of this study indicated that the alpha-case did not significantly affect the grindability of the titanium alloys. The free-machining titanium alloy had improved grindability compared to CP Ti.

  9. Charpy V-notch properties and microstructures of narrow gap ferritic welds of a quenched and tempered steel plate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, G.L.F.; Herfurth, G.

    1998-11-01

    Multipass welds of quenched and tempered 50-mm-thick steel plate have been deposited by a single wire narrow gap process using both gas metal arc welding (GMAW) and submerged arc welding (SAW). Of the five welds, two reported much lower Charpy V-notch (CVN) values when tested at {minus} 20 C. The CVN toughness did not correlate with either the welding process or whether the power source was pulsed or nonpulsed. The only difference in the ferritic microstructure between the two welds of low Charpy values and the three of high values was the percentage of acicular ferrite. There was no effectmore » of the percentage of as-deposited reheated zones intersected by the Charpy notch or the microhardness of the intercellular-dendritic regions. In all welds, austenite was the microconstituent between the ferrite laths. The percentage of acicular ferrite correlated with the presence of MnO, TiO{sub 2}, {gamma} Al{sub 2}O{sub 3}, or MnO. Al{sub 2}O{sub 3} as the predominant crystalline compound in the oxide inclusions. In turn, the crystalline compound depended on the aluminum-to-titanium ratio in both the weld deposits and the oxide inclusions. In addition to the presence of less acicular ferrite, the two welds that showed lower Charpy values also reported more oxide inclusions greater than 1 {micro}m in diameter. The combination of more oxide inclusions greater than 1 {micro}m and less acicular ferrite is considered to be the explanation for the lower Charpy values.« less

  10. Structure and mechanical properties of a two-layered material produced by the E-beam surfacing of Ta and Nb on the titanium base after multiple rolling

    NASA Astrophysics Data System (ADS)

    Bataev, V. A.; Golkovski, M. G.; Samoylenko, V. V.; Ruktuev, A. A.; Polyakov, I. A.; Kuksanov, N. K.

    2018-04-01

    The study has been conducted in line with the current approach to investigation of materials obtained by considerably deep surface alloying of the titanium substrate with Ta, Nb, and Zr. The thickness of the resulting alloyed layer was equal to 2 mm. The coating was formed through weld deposition of a powder with the use of a high-voltage electron beam in the air. It has been lately demonstrated that manufactured such a way alloyed layers possess corrosion resistance which is significantly higher than the resistance of titanium substrates. It has already been shown that such two-layered materials are weldable. The study objective is to investigate the feasibility of rolling for necking the sheets with the Ti-Ta-Nb anticorrosion coating with further fourfold decrease in their thickness. The research is also aimed at investigation of the material properties after rolling. Anticorrosion layers were formed both on CP-titanium and on VT14 (Ti-4Al-3Mo-1 V) durable titanium alloy. The results of chemical composition determination, structure examination, X-ray phase analysis and mechanical properties observations (including bending properties of the alloyed layers) are presented in the paper. The combination of welding, rolling, and bending enables the manufacture of corrosion-resistant vessels and process pipes which are made from the developed material and find technological application.

  11. Weld Nugget Temperature Control in Thermal Stir Welding

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A control system for a thermal stir welding system is provided. The control system includes a sensor and a controller. The sensor is coupled to the welding system's containment plate assembly and generates signals indicative of temperature of a region adjacent and parallel to the welding system's stir rod. The controller is coupled to the sensor and generates at least one control signal using the sensor signals indicative of temperature. The controller is also coupled to the welding system such that at least one of rotational speed of the stir rod, heat supplied by the welding system's induction heater, and feed speed of the welding system's weld material feeder are controlled based on the control signal(s).

  12. Hot pressing titanium metal matrix composites reinforced with graphene nanoplatelets through an in-situ reactive method

    NASA Astrophysics Data System (ADS)

    Mu, X. N.; Zhang, H. M.; Cai, H. N.; Fan, Q. B.; Wu, Y.; Fu, Z. J.; Wang, Q. X.

    2017-05-01

    This study proposed an in-situ reactive method that uses graphene as a reinforcement to fabricate titanium metal matrix composites (TiMMCs) through powder metallurgy processing route. The volume fraction of graphene nanoplatelets was 1.8%vol, and the pure titanium was used as a matrix. The Archimedes density, hardness, microstructure and mechanical properties of specimens were compared under different ball milling times (20 min and 2.5 h) and hot pressing temperatures (900°C, 1150°C, and 1300°C,). The ultimate tensile strength of 630 MPa, which demonstrated a 27.3% increase compared with pure Ti, was achieved under a ball milling time of 20 min. Elongation increased with increasing temperature. When the ball milling time and hot pressing temperature were increased to 2.5 h and 1300 °C, respectively, the ultimate tensile strength of the composites reached 750 MPa, showing an increase of 51.5% compared with pure Ti.

  13. Defects in ion-implanted hcp-titanium: A first-principles study of electronic structures

    NASA Astrophysics Data System (ADS)

    Raji, Abdulrafiu T.; Mazzarello, Riccardo; Scandolo, Sandro; Nsengiyumva, Schadrack; Härting, Margit; Britton, David T.

    2011-12-01

    The electronic structures of hexagonal closed-packed (h.c.p) titanium containing a vacancy and krypton impurity atoms at various insertion sites are calculated by first-principles methods in the framework of the density-functional theory (DFT). The density of states (DOS) for titanium containing a vacancy defect shows resonance-like features. Also, the bulk electron density decreases from ˜0.15/Å 3 to ˜0.05/Å 3 at the vacancy centre. Electronic structure calculations have been performed to investigate what underlies the krypton site preference in titanium. The DOS of the nearest-neighbour (NN) titanium atoms to the octahedral krypton appears to be less distorted (relative to pure titanium) when compared to the NN titanium atoms to the tetrahedral krypton. The electronic density deformation maps show that polarization of the titanium atoms is stronger when the krypton atom is located at the tetrahedral site. Since krypton is a closed-shell atom, thus precluding any bonding with the titanium atoms, we may conclude that the polarization of the electrons in the vicinity of the inserted krypton atoms and the distortion of the DOS of the NN titanium atoms to the krypton serve to indicate which defect site is preferred when a krypton atom is inserted into titanium. Based on these considerations, we conclude that the substitutional site is the most favourable one, and the octahedral is the preferred interstitial site, in agreement with recent DFT calculations of the energetics of krypton impurity sites.

  14. Sustained load crack growth design data for Ti-6Al-4V titanium alloy tanks containing hydrazine

    NASA Technical Reports Server (NTRS)

    Lewis, J. C.; Kenny, J. T.

    1976-01-01

    Sustained load crack growth data for Ti-6Al-4V titanium alloy in hydrazine per MIL-P-26536 and refined hydrazine are presented. Fracture mechanics data on crack growth thresholds for heat-treated forgings, aged and unaged welds, and aged and unaged heat-affected zones are reported. Fracture mechanics design curves of crack growth threshold stress intensity versus temperature are generated from 40 to 71 C.

  15. Titanium dental copings prepared by a powder metallurgy method: a preliminary report.

    PubMed

    Eriksson, Mikael; Andersson, Matts; Carlström, Elis

    2004-01-01

    The purpose of this study was to determine if the Procera pressed-powder method can be used to fabricate titanium copings. Commercially pure titanium powder was used to prepare the copings. The powder was pressed onto an enlarged tooth preparation die of aluminum using cold isostatic pressing. The outer shape of the coping was formed using a Procera milling machine, and the copings were vacuum sintered. Titanium copings could be prepared using this method. The density of the sintered copings reached 97% to 99%+ of theoretic density, and the copings showed ductile behavior after sintering. Enlarging the tooth preparation die to compensate for the sintering shrinkage could optimize the final size of the copings. Ductile and dense titanium dental copings can be produced with powder-metal processing using cold isostatic pressing, followed by milling and sintering to final shape. The forming technique has, if properly optimized, a potential of becoming a more cost-efficient production method than spark erosion.

  16. The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes.

    PubMed

    Sul, Y T; Johansson, C B; Jeong, Y; Albrektsson, T

    2001-06-01

    Titanium implants have a thin oxide surface layer. The properties of this oxide layer may explain the good biocompatibility of titanium implants. Anodic oxidation results in a thickening of the oxide film, with possible improved biocompatability of anodized implants. The aim of the present study was twofold: (1) firstly, to characterize the growth behaviour of galvanostatically prepared anodic oxide films on commercially pure (c.p.) titanium and (2) secondly, to establish a better understanding of the electroche0mical growth behaviour of anodic oxide on commercially pure titanium (ASTM grade 1) after changes of the electrochemical parameters in acetic acid, phosphoric acid, calcium hydroxide, and sodium hydroxide under galvanostatic anodizing mode. The oxide thickness was measured by Ar sputter etching in Auger Electron spectroscopy (AES) and the colours were estimated by an L*a*b* system (lightness, hue and saturation) using a spectrophotometer. In the first part of our study, it was demonstrated that the interference colours were useful to identify the thickness of titanium oxide. It was also found that the anodic forming voltages with slope (dV/dt) in acid electrolytes were higher than in alkaline electrolytes. Each of the used electrolytes demonstrates an intrinsically specific growth constant (nm/V) in the range of 1.4--2.78 nm/V. In the second part of our study we found, as a general trend, that an increase of electrolyte concentration and electrolyte temperature respectively decreases the anodic forming voltage, the anodic forming rate (nm/s) and the current efficiency (nm.cm(2)/C), while an increase of the current density and the surface area ratio of the anode to cathode increase the anodic forming voltage, the anodic forming rate and the current efficiency. The effects of electrolyte concentration, electrolyte temperature, and agitation speed were explained on the basis of the model of the electrical double layer.

  17. Titanium orthodontic brackets: structure, composition, hardness and ionic release.

    PubMed

    Gioka, Christiana; Bourauel, Christoph; Zinelis, Spiros; Eliades, Theodore; Silikas, Nikolaos; Eliades, George

    2004-09-01

    The aim of the present study was to investigate the composition, morphology, bulk structure and ionic release of two brands of titanium orthodontic brackets: Orthos2 (Ormco, USA) and Rematitan (Dentaurum, Germany). Five specimens of each group were examined with computerized X-ray microtomography, to reveal the morphology and structure of brackets, whilst resin-embedded and metallographically polished specimens were subjected to SEM/EDS analysis and Vickers microhardness measurements. Brackets were also maintained in 0.9% saline for 2 months and the ionic release in the immersion medium was determined with Inductively Coupled Plasma Atomic Emission Spectroscopy. The results of the hardness and ionic release measurements were statistically analyzed with two-way ANOVA and Tukey's test (alpha = 0.05). Orthos2 brackets consisted of two parts, the base (commercially pure Ti grade II) and the wing (Ti-6Al-4V alloy), joined together by laser welding, producing large gaps along the base-wing interface. The base was of lower hardness (Hv = 145), than the wing (Hv = 392) and incorporated a standard foil base-mesh pad. Rematitan brackets consisted of commercially pure Ti grade IV, with a single-piece manufacturing pattern of virtually identical hardness (p > 0.05) at the base and wings, featuring a laser-etched base-mesh pad. The hardness of the Rematitan brackets was significantly lower than the hardness of the Orthos2 wings, but double the hardness of the Orthos2 base. Released Ti levels were below the threshold level (1 ng/ml) of analysis for both materials, whilst traces of Al (3 ppm) and V (2 ppm) were found in the immersion media for Ti-6Al-4V alloy. The structural and hardness differences found may influence the torque transfer characteristics from activated archwires to the brackets and the crevice corrosion potential at the base-wing interface (Orthos2). The detection of Al and V in the immersion medium (Orthos2) may imply a different biological response from the two

  18. Computerized adaptive control weld skate with CCTV weld guidance project

    NASA Technical Reports Server (NTRS)

    Wall, W. A.

    1976-01-01

    This report summarizes progress of the automatic computerized weld skate development portion of the Computerized Weld Skate with Closed Circuit Television (CCTV) Arc Guidance Project. The main goal of the project is to develop an automatic welding skate demonstration model equipped with CCTV weld guidance. The three main goals of the overall project are to: (1) develop a demonstration model computerized weld skate system, (2) develop a demonstration model automatic CCTV guidance system, and (3) integrate the two systems into a demonstration model of computerized weld skate with CCTV weld guidance for welding contoured parts.

  19. Friction welding.

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1972-01-01

    Results of an exploratory study of the structure and properties of friction welds in Udimet 700 (U-700) and TD-nickel (TD-Ni) bar materials, as well as dissimilar U-700/TD-Ni friction welds. Butt welds were prepared by friction welding 12.7-mm-diam U-700 bars and TD-Ni bars. Specimens for elevated temperature tensile and stress rupture testing were machined after a postweld heat treatment. Friction welding of U-700 shows great potential because the welds were found to be as strong as the parent metal in stress rupture and tensile tests at 760 and 980 C. In addition, the weld line was not detectable by metallographic examination after postheating. Friction welds in TD-Ni or between U-700 and TD-Ni were extremely weak at elevated temperatures. The TD-Ni friction welds could support only 9% as much stress as the base metal for 10-hour stress rupture life at 1090 C. The U-700/TD-Ni weld could sustain only 15% as much stress as the TD-Ni parent metal for a 10-hour stress rupture life at 930 C. Thus friction welding is not a suitable joining method for obtaining high-strength TD-Ni or U-700/TD-Ni weldments.

  20. CHARACTERIZATION OF DEFECTS IN ALLOY 152, 52 AND 52M WELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruemmer, Stephen M.; Toloczko, Mychailo B.; Olszta, Matthew J.

    2009-08-27

    Defect distributions have been documented by optical metallography, scanning electron microscopy and electron backscatter diffraction in alloy 152 and 52 mockups welds, alloy 52 and 52M overlay mockups and an alloy 52M inlay. Primary defects were small cracks at grain boundaries except for more extensive cracking in the dilution zone of an alloy 52 overlay on 304SS. Detailed characterizations of the dilution zone cracks were performed by analytical transmission electron microscopy identifying grain boundary titanium-nitride precipitation associated with the intergranular separations. I. INTRODUCTION Weldments continue to be a primary location of stress-corrosion cracking (SCC) in light-water reactor systems. While problemsmore » related to heat-affected-zone (HAZ) sensitization and intergranular (IG) SCC of austenitic stainless alloys in boiling-water reactors (BWRs) have been significantly reduced, SCC has now been observed in HAZs of non-sensitized materials and in dissimilar metal welds where Ni-base alloy weld metals are used. IGSCC in weld metals has been observed in both BWRs and pressurized water reactors (PWRs) with recent examples for PWR pressure vessel penetrations producing the most concern. This has led to the replacement of alloy 600/182/82 welds with higher Cr, more corrosion-resistant replacement materials (alloy 690/152/52/52M). Complicating this issue has been a known susceptibility to cracking during welding [1-7] of these weld metals. There is a critical need for an improved understanding of the weld metal metallurgy and defect formation in Ni-base alloy welds to effectively assess long-term performance. A series of macroscopic to microscopic examinations were performed on available mockup welds made with alloy 52 or alloy 152 plus selected overlay and inlay mockups. The intent was to expand our understanding of weld metal structures in simulated LWR service components with a focus on as-welded defects. Microstructural features, defect

  1. Advanced Welding Concepts

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  2. Cytotoxicity of titanium and titanium alloying elements.

    PubMed

    Li, Y; Wong, C; Xiong, J; Hodgson, P; Wen, C

    2010-05-01

    It is commonly accepted that titanium and the titanium alloying elements of tantalum, niobium, zirconium, molybdenum, tin, and silicon are biocompatible. However, our research in the development of new titanium alloys for biomedical applications indicated that some titanium alloys containing molybdenum, niobium, and silicon produced by powder metallurgy show a certain degree of cytotoxicity. We hypothesized that the cytotoxicity is linked to the ion release from the metals. To prove this hypothesis, we assessed the cytotoxicity of titanium and titanium alloying elements in both forms of powder and bulk, using osteoblast-like SaOS(2) cells. Results indicated that the metal powders of titanium, niobium, molybdenum, and silicon are cytotoxic, and the bulk metals of silicon and molybdenum also showed cytotoxicity. Meanwhile, we established that the safe ion concentrations (below which the ion concentration is non-toxic) are 8.5, 15.5, 172.0, and 37,000.0 microg/L for molybdenum, titanium, niobium, and silicon, respectively.

  3. Friction plug welding

    NASA Technical Reports Server (NTRS)

    Takeshita, Riki (Inventor); Hibbard, Terry L. (Inventor)

    2001-01-01

    Friction plug welding (FPW) usage is advantageous for friction stir welding (FSW) hole close-outs and weld repairs in 2195 Al--Cu--Li fusion or friction stir welds. Current fusion welding methods of Al--Cu--Li have produced welds containing varied defects. These areas are found by non-destructive examination both after welding and after proof testing. Current techniques for repairing typically small (<0.25) defects weaken the weldment, rely heavily on welders' skill, and are costly. Friction plug welding repairs increase strength, ductility and resistance to cracking over initial weld quality, without requiring much time or operator skill. Friction plug welding while pulling the plug is advantageous because all hardware for performing the weld can be placed on one side of the workpiece.

  4. Experimental characterization and macro-modeling of mechanical strength of multi-sheets and multi-materials spot welds under pure and mixed modes I and II

    NASA Astrophysics Data System (ADS)

    Chtourou, Rim; Haugou, Gregory; Leconte, Nicolas; Zouari, Bassem; Chaari, Fahmi; Markiewicz, Eric

    2015-09-01

    Resistance Spot Welding (RSW) of multiple sheets with multiple materials are increasingly realized in the automotive industry. The mechanical strength of such new generation of spot welded assemblies is not that much dealt with. This is true in particular for experiments dedicated to investigate the mechanical strength of spot weld made by multi sheets of different grades, and their macro modeling in structural computations. Indeed, the most published studies are limited to two sheet assemblies. Therefore, in the first part of this work an advanced experimental set-up with a reduced mass is proposed to characterize the quasi-static and dynamic mechanical behavior and rupture of spot weld made by several sheets of different grades. The proposed device is based on Arcan test, the plates contribution in the global response is, thus, reduced. Loading modes I/II are, therefore, combined and well controlled. In the second part a simplified spot weld connector element (macroscopic modeling) is proposed to describe the nonlinear response and rupture of this new generation of spot welded assemblies. The weld connector model involves several parameters to be set. The remaining parameters are finally identified through a reverse engineering approach using mechanical responses of experimental tests presented in the first part of this work.

  5. Absorbing TiO x thin film enabling laser welding of polyurethane membranes and polyamide fibers.

    PubMed

    Amberg, Martin; Haag, Alexander; Storchenegger, Raphael; Rupper, Patrick; Lehmeier, Frederike; Rossi, René M; Hegemann, Dirk

    2015-10-01

    We report on the optical properties of thin titanium suboxide (TiO x ) films for applications in laser transmission welding of polymers. Non-absorbing fibers were coated with TiO x coatings by reactive magnetron sputtering. Plasma process parameters influencing the chemical composition and morphology of the deposited thin films were investigated in order to optimize their absorption properties. Optical absorption spectroscopy showed that the oxygen content of the TiO x coatings is the main parameter influencing the optical absorbance. Overtreatment (high power plasma input) of the fiber surface leads to high surface roughness and loss of mechanical stability of the fiber. The study shows that thin substoichiometric TiO x films enable the welding of very thin polyurethane membranes and polyamide fibers with improved adhesion properties.

  6. The integrity of welded interfaces in ultra-high molecular weight polyethylene: Part 2--interface toughness.

    PubMed

    Haughie, David W; Buckley, C Paul; Wu, Junjie

    2006-07-01

    In Part 2 of a study of welding of ultra-high molecular weight polyethylene (UHMWPE), experiments were conducted to measure the interfacial fracture energy of butt welds, for various welding times and temperatures above the melting point. Their toughness was investigated at 37 degrees C in terms of their fracture energy, obtained by adapting the essential work of fracture (EWF) method. However, a proportion of the welded samples (generally decreasing with increasing welding time or temperature) failed in dual ductile/brittle mode, hence invalidating the EWF test. Even those failing in purely ductile mode showed a measurable interface work of fracture only for the highest weld temperature and time: 188 degrees C and 90 min. Results from the model presented in Part 1 show that this corresponds to the maximum reptated molecular weight reaching close to the peak in the molar mass distribution. Hence this work provides the first experimental evidence that the slow rate of self-diffusion in UHMWPE leads to welded interfaces acting as low-toughness crack paths. Since such interfaces exist around every powder particle in processed UHMWPE this problem cannot be avoided, and it must be accommodated in design of hip and knee bearing surfaces made from this polymer.

  7. Welding technology transfer task/laser based weld joint tracking system for compressor girth welds

    NASA Technical Reports Server (NTRS)

    Looney, Alan

    1991-01-01

    Sensors to control and monitor welding operations are currently being developed at Marshall Space Flight Center. The laser based weld bead profiler/torch rotation sensor was modified to provide a weld joint tracking system for compressor girth welds. The tracking system features a precision laser based vision sensor, automated two-axis machine motion, and an industrial PC controller. The system benefits are elimination of weld repairs caused by joint tracking errors which reduces manufacturing costs and increases production output, simplification of tooling, and free costly manufacturing floor space.

  8. Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  9. Alternate Welding Processes for In-Service Welding

    DOT National Transportation Integrated Search

    2009-04-24

    Conducting weld repairs and attaching hot tap tees onto pressurized pipes has the advantage of avoiding loss of service and revenue. However, the risks involved with in-service welding need to be managed by ensuring that welding is performed in a rep...

  10. Thermal Stir Welding: A New Solid State Welding Process

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffery; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    Thermal Stir Shielding is a revolutionary new welding process developed at NASA's Marshall Space Flight Center in Huntsville, AL. Thermal stir welding is similar to friction stir welding in that it joins similar or dissimilar materials without melting the parent material. However, unlike friction stir welding, the heating and stirring functions are independent allowing more degrees of freedom for greater process control. This paper introduces the mechanics of the thermal stir welding process. In addition, weld mechanical property data is presented for selected alloys as well as metallurgical analysis.

  11. Automated Welding System

    NASA Technical Reports Server (NTRS)

    Bayless, E. O.; Lawless, K. G.; Kurgan, C.; Nunes, A. C.; Graham, B. F.; Hoffman, D.; Jones, C. S.; Shepard, R.

    1993-01-01

    Fully automated variable-polarity plasma arc VPPA welding system developed at Marshall Space Flight Center. System eliminates defects caused by human error. Integrates many sensors with mathematical model of the weld and computer-controlled welding equipment. Sensors provide real-time information on geometry of weld bead, location of weld joint, and wire-feed entry. Mathematical model relates geometry of weld to critical parameters of welding process.

  12. Cell Attachment Following Instrumentation with Titanium and Plastic Instruments, Diode Laser, and Titanium Brush on Titanium, Titanium-Zirconium, and Zirconia Surfaces.

    PubMed

    Lang, Melissa S; Cerutis, D Roselyn; Miyamoto, Takanari; Nunn, Martha E

    2016-01-01

    The aim of this study was to evaluate the surface characteristics and gingival fibroblast adhesion of disks composed of implant and abutment materials following brief and repeated instrumentation with instruments commonly used in procedures for implant maintenance, stage-two implant surgery, and periimplantitis treatment. One hundred twenty disks (40 titanium, 40 titaniumzirconium, 40 zirconia) were grouped into treatment categories of instrumentation by plastic curette, titanium curette, diode microlaser, rotary titanium brush, and no treatment. Twenty strokes were applied to half of the disks in the plastic and titanium curette treatment categories, while half of the disks received 100 strokes each to simulate implant maintenance occurring on a repetitive basis. Following analysis of the disks by optical laser profilometry, disks were cultured with human gingival fibroblasts. Cell counts were conducted from scanning electron microscopy (SEM) images. Differences in surface roughness across all instruments tested for zirconia disks were negligible, while both titanium disks and titaniumzirconium disks showed large differences in surface roughness across the spectrum of instruments tested. The rotary titanium brush and the titanium curette yielded the greatest overall mean surface roughness, while the plastic curette yielded the lowest mean surface roughness. The greatest mean cell counts for each disk type were as follows: titanium disks with plastic curettes, titanium-zirconium disks with titanium curettes, and zirconia disks with the diode microlaser. Repeated instrumentation did not result in cumulative changes in surface roughness of implant materials made of titanium, titanium-zirconium, or zirconia. Instrumentation with plastic implant curettes on titanium and zirconia surfaces appeared to be more favorable than titanium implant curettes in terms of gingival fibroblast attachment on these surfaces.

  13. Conductive films of silver nanoparticles as novel susceptors for induction welding of thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Dermanaki Farahani, Rouhollah; Janier, Mathieu; Dubé, Martine

    2018-03-01

    In the present work, a conductive film of silver nanoparticles (nAg) as a novel heating element type, called susceptor, was developed and tested for induction welding of carbon fiber/polyphenylene sulfide (CF/PPS) thermoplastic composites, i.e., unidirectional pre-impregnated 16 plies of CF/PPS compression-molded in a quasi-isotropic stacking sequence. The nAg were synthesized, dispersed in deionized (DI) water and casted onto a pure PPS film, resulting in a conductive film upon the evaporation of DI water and thermal post-annealing. The thermal annealing at 250 °C significantly (by 7 orders) decreased the film’s electrical resistivity from 9.4 × 103 down to 3.1 × 10-4 Ω cm. The new susceptors led to fast heating rates in induction welding when compared to the standard stainless steel mesh susceptors under similar welding conditions. Lap shear mechanical testing revealed that the apparent lap shear strength (LSS) is sensitive to the susceptors’ resistivity and the input current. A relatively high LSS value was achieved for the specimens welded using the new susceptors which exceeded the value of those welded using stainless steel mesh susceptors (28.3 MPa compared to 20 MPa). The weld interface and specimens’ cross-section observation revealed that the nAg were dispersed and embedded into the resin upon welding. This study contains preliminary results that show high potential of nanoparticles as effective susceptors to further improve the mechanical performance of the joints in welding of thermoplastic composites.

  14. Factors affecting weld root morphology in laser keyhole welding

    NASA Astrophysics Data System (ADS)

    Frostevarg, Jan

    2018-02-01

    Welding production efficiency is usually optimised if full penetration can be achieved in a single pass. Techniques such as electron and laser beam welding offer deep high speed keyhole welding, especially since multi-kilowatt lasers became available. However, there are limitations for these techniques when considering weld imperfections such as weld cap undercuts, interior porosity or humps at the root. The thickness of sheets during full penetration welding is practically limited by these root humps. The mechanisms behind root morphology formation are not yet satisfactory understood. In this paper root humping is studied by reviewing previous studies and findings and also by sample examination and process observation by high speed imaging. Different process regimes governing root quality are presented, categorized and explained. Even though this study mainly covers laser beam and laser arc hybrid welding, the presented findings can generally be applied full penetration welding in medium to thick sheets, especially the discussion of surface tension effects. As a final result of this analysis, a map of methods to optimise weld root topology is presented.

  15. The effect of welding parameters on penetration in GTA welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirali, A.A.; Mills, K.C.

    1993-07-01

    The effect of various welding parameters on the penetration of GTA welds has been investigated. Increases in welding speed were found to reduce penetration; however, increases in welding current were observed to increase the penetration in high sulfur (HS) casts and decrease penetration in low sulfur (LS) steels. Plots of penetration as a function of increasing linear energy (the heat supplied per unit length of weld) revealed a similar trend with increased penetration in HS casts, but the penetration in LS casts was unaffected by increases in linear energy. These results support the Burgardt-Heiple proposition that changes in welding parametersmore » on penetration can be explained in terms of their effect, sequentially, on the temperature gradient and the Marangoni forces operating in the weld pool. Increases in arc length were found to decrease weld penetration regardless of the sulfur concentration of the steel, and the effects of electrode geometry and welding position on weld penetration were also investigated.« less

  16. Fabrication of Powder Metallurgy Pure Ti Material by Using Thermal Decomposition of TiH2

    NASA Astrophysics Data System (ADS)

    Mimoto, Takanori; Nakanishi, Nozomi; Umeda, Junko; Kondoh, Katsuyoshi

    Titanium (Ti) and titanium alloys have been interested as an engineering material because they are widely used across various industrial applications, for example, motorcycle, automotive and aerospace industries, due to their light weight, high specific strength and superior corrosion resistance. Ti materials are particularly significant for the aircraft using carbon/carbon (C/C) composites, for example, carbon fiber reinforced plastics (CFRP), because Ti materials are free from the problem of contact corrosion between C/C composites. However, the applications of Ti materials are limited because of their high cost. From a viewpoint of cost reduction, cost effective process to fabricate Ti materials is strongly required. In the present study, the direct consolidation of titanium hydride (TiH2) raw powders in solid-state was employed to fabricate pure Ti bulk materials by using thermal decomposition of TiH2. In general, the production cost of Ti components is expensive due to using commercially pure (CP) Ti powders after dehydrogenation. On the other hand, the novel process using TiH2 powders as starting materials is a promising low cost approach for powder metallurgy (P/M) Ti products. Furthermore, this new process is also attractive from a viewpoint of energy saving because the dehydrogenation is integrated into the sintering process. In this study, TiH2 raw powders were directly consolidated by conventional press technique at 600 MPa to prepare TiH2 powder compacted billets. To thermally decompose TiH2 and obtain sintered pure Ti billets, the TiH2 powder billets were heated in the integrated sintering process including dehydrogenation. The hot-extruded pure Ti material, which was heat treated at 1273 K for 180 min in argon gas atmosphere, showed tensile strength of 701.8 MPa and elongation of 27.1%. These tensile properties satisfied the requirements for JIS Ti Grade 4. The relationship between microstructures, mechanical properties response and heat treatment

  17. 49 CFR 195.228 - Welds and welding inspection: Standards of acceptability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welds and welding inspection: Standards of... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.228 Welds and welding inspection: Standards of acceptability. (a) Each weld and welding must be inspected to insure compliance with...

  18. 49 CFR 195.228 - Welds and welding inspection: Standards of acceptability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welds and welding inspection: Standards of... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.228 Welds and welding inspection: Standards of acceptability. (a) Each weld and welding must be inspected to insure compliance with...

  19. 49 CFR 195.228 - Welds and welding inspection: Standards of acceptability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welds and welding inspection: Standards of... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.228 Welds and welding inspection: Standards of acceptability. (a) Each weld and welding must be inspected to insure compliance with...

  20. 49 CFR 195.228 - Welds and welding inspection: Standards of acceptability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welds and welding inspection: Standards of... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.228 Welds and welding inspection: Standards of acceptability. (a) Each weld and welding must be inspected to insure compliance with...

  1. 49 CFR 195.228 - Welds and welding inspection: Standards of acceptability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welds and welding inspection: Standards of... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.228 Welds and welding inspection: Standards of acceptability. (a) Each weld and welding must be inspected to insure compliance with...

  2. Forming Completely Penetrated Welded T-joints when Pulsed Arc Welding

    NASA Astrophysics Data System (ADS)

    Krampit, N. Yu; Krampit, M. A.; Sapozhkov, A. S.

    2016-04-01

    The paper is focused on revealing the influence of welding parameters on weld formation when pulsed arc welding. As an experimental sample a T-joint over 10 mm was selected. Welding was carried out in flat position, which required no edge preparation but provided mono-directional guaranteed root penetration. The following parameters of welding were subjected to investigation: gap in the joint, wire feed rate and incline angles of the torch along and across the weld axis. Technological recommendations have been made with respect to pulsed arc welding; the cost price of product manufacturing can be reduced on their basis due to reduction of labor input required by machining, lowering consumption of welding materials and electric power.

  3. Comparison of titanium soaked in 5 M NaOH or 5 M KOH solutions

    PubMed Central

    Kim, Christina; Kendall, Matthew R.; Miller, Matthew A.; Long, Courtney L.; Larson, Preston R.; Humphrey, Mary Beth; Madden, Andrew S.; Tas, A. Cuneyt

    2012-01-01

    Commercially pure titanium plates/coupons and pure titanium powders were soaked for 24 h in 5 M NaOH and 5 M KOH solutions, under identical conditions, over the temperature range of 37° to 90°C. Wettability of the surfaces of alkali-treated cpTi coupons were studied by using contact angle goniometry. cpTi coupons soaked in 5 M NaOH or 5 M KOH solutions were found to have hydrophilic surfaces. Hydrous alkali titanate nanofibers and nanotubes were identified with SEM/EDXS and grazing incidence XRD. Surface areas of Ti powders increased >50–220 times, depending on the treatment, when soaked in the above solutions. A solution was developed to coat amorphous calcium phosphate, instead of hydroxyapatite, on Ti coupon surfaces. In vitro cell culture tests were performed with osteoblast-like cells on the alkali-treated samples. PMID:23565038

  4. Deconvoluting the Friction Stir Weld Process for Optimizing Welds

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Nunes, Arthur C.

    2008-01-01

    In the friction stir welding process, the rotating surfaces of the pin and shoulder contact the weld metal and force a rotational flow within the weld metal. Heat, generated by the metal deformation as well as frictional slippage with the contact surface, softens the metal and makes it easier to deform. As in any thermo-mechanical processing of metal, the flow conditions are critical to the quality of the weld. For example, extrusion of metal from under the shoulder of an excessively hot weld may relax local pressure and result in wormhole defects. The trace of the weld joint in the wake of the weld may vary geometrically depending upon the flow streamlines around the tool with some geometry more vulnerable to loss of strength from joint contamination than others. The material flow path around the tool cannot be seen in real time during the weld. By using analytical "tools" based upon the principles of mathematics and physics, a weld model can be created to compute features that can be observed. By comparing the computed observations with actual data, the weld model can be validated or adjusted to get better agreement. Inputs to the model to predict weld structures and properties include: hot working properties ofthe metal, pin tool geometry, travel rate, rotation and plunge force. Since metals record their prior hot working history, the hot working conditions imparted during FSW can be quantified by interpreting the final microstructure. Variations in texture and grain size result from variations in the strain accommodated at a given strain rate and temperature. Microstructural data from a variety of FSWs has been correlated with prior marker studies to contribute to our understanding of the FSW process. Once this stage is reached, the weld modeling process can save significant development costs by reducing costly trial-and-error approaches to obtaining quality welds.

  5. Welding IV.

    ERIC Educational Resources Information Center

    Allegheny County Community Coll., Pittsburgh, PA.

    Instructional objectives and performance requirements are outlined in this course guide for Welding IV, a competency-based course in advanced arc welding offered at the Community College of Allegheny County to provide students with proficiency in: (1) single vee groove welding using code specifications established by the American Welding Society…

  6. Welding.

    ERIC Educational Resources Information Center

    Lehigh County Area Vocational-Technical School, Schnecksville, PA.

    This curriculum guide provides materials for a 12-unit secondary course in welding. Purpose stated for the flexible entry and exit course is to help students master manipulative skills to develop successful welding techniques and to gain an understanding of the specialized tools and equipment used in the welding field. Units cover oxyacetylene…

  7. Applying NASA's explosive seam welding

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.

    1991-01-01

    The status of an explosive seam welding process, which was developed and evaluated for a wide range of metal joining opportunities, is summarized. The process employs very small quantities of explosive in a ribbon configuration to accelerate a long-length, narrow area of sheet stock into a high-velocity, angular impact against a second sheet. At impact, the oxide films of both surface are broken up and ejected by the closing angle to allow atoms to bond through the sharing of valence electrons. This cold-working process produces joints having parent metal properties, allowing a variety of joints to be fabricated that achieve full strength of the metals employed. Successful joining was accomplished in all aluminum alloys, a wide variety of iron and steel alloys, copper, brass, titanium, tantalum, zirconium, niobium, telerium, and columbium. Safety issues were addressed and are as manageable as many currently accepted joining processes.

  8. Effects of Fusion Tack Welds on Self-Reacting Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.; Pendleton, M. L.; Brooke, S. A.; Russell, C. K.

    2012-01-01

    In order to know whether fusion tack welds would affect the strength of self-reacting friction stir seam welds in 2195-T87 aluminum alloy, the fracture stresses of 144 tensile test coupons cut from 24 welded panels containing segments of friction stir welds were measured. Each of the panels was welded under unique processing conditions. A measure of the effect of the tack welds for each panel was devised. An analysis of the measures of the tack weld effect supported the hypothesis that fusion tack welds do not affect the strength of self-reacting friction stir welds to a 5% level of confidence.

  9. Fabrication and evaluation of cold/formed/weldbrazed beta-titanium skin-stiffened compression panels

    NASA Technical Reports Server (NTRS)

    Royster, D. M.; Bales, T. T.; Davis, R. C.; Wiant, H. R.

    1983-01-01

    The room temperature and elevated temperature buckling behavior of cold formed beta titanium hat shaped stiffeners joined by weld brazing to alpha-beta titanium skins was determined. A preliminary set of single stiffener compression panels were used to develop a data base for material and panel properties. These panels were tested at room temperature and 316 C (600 F). A final set of multistiffener compression panels were fabricated for room temperature tests by the process developed in making the single stiffener panels. The overall geometrical dimensions for the multistiffener panels were determined by the structural sizing computer code PASCO. The data presented from the panel tests include load shortening curves, local buckling strengths, and failure loads. Experimental buckling loads are compared with the buckling loads predicted by the PASCO code. Material property data obtained from tests of ASTM standard dogbone specimens are also presented.

  10. Implant-supported titanium prostheses following augmentation procedures: a clinical report.

    PubMed

    Knabe, C; Hoffmeister, B

    2003-03-01

    This report describes a novel technique for fabricating retrievable implant-supported titanium (Ti) prostheses in patients requiring a comprehensive treatment plan involving the combined efforts of maxillofacial surgery and implant prosthodontics. Following bone graft reconstructive surgery and implant placement prosthetic treatment was initiated by inserting ITI-Octa abutments. An impression was made, and a framework was fabricated by fusing Ti-cast frameworks to prefabricated titanium copings by laser-welding. This was followed by veneering or fabrication of a removable denture with Ti metal re-enforcement. Favourable clinical results have been achieved using these screw-retained Ti implant-supported restorations for patients treated with reconstructive bone graft-surgery, with clinical observation periods ranging from three to four years. The present observations suggest that these screw-retained implant-supported Ti prostheses may be a meaningful contribution to implant prosthodontics, facilitating retrievable restorations of optimum biocompatibility, good marginal precision and with a good esthetic result. However, controlled clinical studies are needed to establish the long-term serviceability of these Ti restorations.

  11. Welding Curriculum.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum guide is a handbook for the development of welding trade programs. Based on a survey of Alaskan welding employers, it includes all competencies a student should acquire in such a welding program. The handbook stresses the importance of understanding the principles associated with the various elements of welding.…

  12. Ultrafine-grained commercially pure titanium and microstructure response to hydroxyapatite coating methods

    NASA Astrophysics Data System (ADS)

    Calvert, Kayla L.

    Commercially pure titanium (cp-Ti) is an ideal biomaterial as it does not evoke an inflammatory foreign body response in the body. However, the low strength of cp-Ti prevents the use in most orthopaedic load bearing applications. Therefore, many metal orthopaedic implants are commonly made of higher strength metal alloys that are less biocompatible. Nanostructured materials exhibit superior mechanical properties compared to their conventional grain sized counterparts. Severe plastic deformation (SPD) of metals has been shown to produce nanostructured materials. SPD by machining is a single-step deformation route that refines the grain microstructure, to develop an ultrafine grained (UFG) microstructure. UFG cp-Ti strips were developed with induced shear strains of up to 4.0 using a machining-based process. Both Vickers microhardness evaluation and microstructural analysis were used to characterize the as-received (annealed) and machined states. For induced shear strains between 1.9 and 4.0 in grade 2 cp-Ti the hardness was increased from 188 +/- 7 kg/mm2 in the as-received state to between 244 +/- 6 and 264 +/- 12 kg/mm 2 in the as-machined state, corresponding to an increase in hardness between 31 and 41%. The microstructural analysis revealed a grain size reduction from 34 +/- 11 mum in the as-received state to ˜ 100 nm for machined grade 2-Ti. A complete annealing study suggested that recovery/recrystallization occurs between 300 and 400°C, with a significant hardness drop between 400 and 600°C, while grain growth is continuous, starting at the lowest annealing temperature of 300°C. Hydroxyapatite (HA) is commonly applied to orthopaedic devices to promote bone growth. Machined Ti strips were coated with HA using conventional plasma spray as well as two alternative low-temperature application routes (sol-gel with calcination and anodization with hydrothermal treatment) to evaluate the thermal influence on the UFG-Ti substrate. Plasma spray produced a thick

  13. Active weld control

    NASA Technical Reports Server (NTRS)

    Powell, Bradley W.; Burroughs, Ivan A.

    1994-01-01

    Through the two phases of this contract, sensors for welding applications and parameter extraction algorithms have been developed. These sensors form the foundation of a weld control system which can provide action weld control through the monitoring of the weld pool and keyhole in a VPPA welding process. Systems of this type offer the potential of quality enhancement and cost reduction (minimization of rework on faulty welds) for high-integrity welding applications. Sensors for preweld and postweld inspection, weld pool monitoring, keyhole/weld wire entry monitoring, and seam tracking were developed. Algorithms for signal extraction were also developed and analyzed to determine their application to an adaptive weld control system. The following sections discuss findings for each of the three sensors developed under this contract: (1) weld profiling sensor; (2) weld pool sensor; and (3) stereo seam tracker/keyhole imaging sensor. Hardened versions of these sensors were designed and built under this contract. A control system, described later, was developed on a multiprocessing/multitasking operating system for maximum power and flexibility. Documentation for sensor mechanical and electrical design is also included as appendices in this report.

  14. Electrochemical Impedance Analysis of β-TITANIUM Alloys as Implants in Ringers Lactate Solution

    NASA Astrophysics Data System (ADS)

    Bhola, Rahul; Bhola, Shaily M.; Mishra, Brajendra; Olson, David L.

    2010-02-01

    Commercially pure titanium and two β-titanium alloys, TNZT and TMZF, have been characterized using various electrochemical techniques for their corrosion behavior in Ringers lactate solution. The variation of corrosion potential and solution pH with time has been discussed. Electrochemical Impedance Spectroscopy has been used to fit the results into a circuit model. The stability of the oxides formed on the surface of these alloys has been correlated with impedance phase angles. Cyclic Potentiodynamic Polarization has been used to compute the corrosion parameters for the alloys. TMZF is found to be a better β-alloy as compared to TNZT.

  15. Weld bead profile of laser welding dissimilar joints stainless steel

    NASA Astrophysics Data System (ADS)

    Mohammed, Ghusoon R.; Ishak, M.; Aqida, S. N.; Abdulhadi, Hassan A.

    2017-10-01

    During the process of laser welding, the material consecutively melts and solidifies by a laser beam with a peak high power. Several parameters such as the laser energy, pulse frequency, pulse duration, welding power and welding speed govern the mode of the welding process. The aim of this paper is to investigate the effect of peak power, incident angle, and welding speed on the weld bead geometry. The first investigation in this context was conducted using 2205-316L stainless steel plates through the varying of the welding speed from 1.3 mm/s to 2.1 mm/s. The second investigation was conducted by varying the peak power from 1100 W to 1500 W. From the results of the experiments, the welding speed and laser power had a significant effect on the geometry of the weld bead, and the variation in the diameter of the bead pulse-size. Due to the decrease in the heat input, welding speed affected penetration depth more than bead width, and a narrow width of heat affected zone was achieved ranging from 0.2 to 0.5 mm. Conclusively, weld bead geometry dimensions increase as a function of peak power; at over 1350 W peak power, the dimensions lie within 30 μm.

  16. Thermal Stir Welding: A New Solid State Welding Process

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey

    2003-01-01

    Thermal stir welding is a new welding process developed at NASA's Marshall Space Flight Center in Huntsville, AL. Thermal stir welding is similar to friction stir welding in that it joins similar or dissimilar materials without melting the parent material. However, unlike friction stir welding, the heating, stirring and forging elements of the process are all independent of each other and are separately controlled. Furthermore, the heating element of the process can be either a solid-state process (such as a thermal blanket, induction type process, etc), or, a fusion process (YG laser, plasma torch, etc.) The separation of the heating, stirring, forging elements of the process allows more degrees of freedom for greater process control. This paper introduces the mechanics of the thermal stir welding process. In addition, weld mechanical property data is presented for selected alloys as well as metallurgical analysis.

  17. Thermal Stir Welding: A New Solid State Welding Process

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    Thermal stir welding is a new welding process developed at NASA's Marshall Space Flight Center in Huntsville, AL. Thermal stir welding is similar to friction stir welding in that it joins similar or dissimilar materials without melting the parent material. However, unlike friction stir welding, the heating, stirring and forging elements of the process are all independent of each other and are separately controlled. Furthermore, the heating element of the process can be either a solid-state process (such as a thermal blanket, induction type process, etc), or, a fusion process (YG laser, plasma torch, etc.) The separation of the heating, stirring, forging elements of the process allows more degrees of freedom for greater process control. This paper introduces the mechanics of the thermal stir welding process. In addition, weld mechanical property data is presented for selected alloys as well as metallurgical analysis.

  18. Effect of welding position on porosity formation in aluminum alloy welds

    NASA Technical Reports Server (NTRS)

    Haryung, J.; Wroth, R. S.

    1967-01-01

    Program investigates the effects of varied welding positions on weld qualities. Progressive changes in bead geometry occur as the weld plane angle is varied from upslope to downslope. The gravitational effect on the weld puddle varies greatly with welding position.

  19. Titanium based flat heat pipes for computer chip cooling

    NASA Astrophysics Data System (ADS)

    Soni, Gaurav; Ding, Changsong; Sigurdson, Marin; Bozorgi, Payam; Piorek, Brian; MacDonald, Noel; Meinhart, Carl

    2008-11-01

    We are developing a highly conductive flat heat pipe (called Thermal Ground Plane or TGP) for cooling computer chips. Conventional heat pipes have circular cross sections and thus can't make good contact with chip surface. The flatness of our TGP will enable conformal contact with the chip surface and thus enhance cooling efficiency. Another limiting factor in conventional heat pipes is the capillary flow of the working fluid through a wick structure. In order to overcome this limitation we have created a highly porous wick structure on a flat titanium substrate by using micro fabrication technology. We first etch titanium to create very tall micro pillars with a diameter of 5 μm, a height of 40 μm and a pitch of 10 μm. We then grow a very fine nano structured titania (NST) hairs on all surfaces of the pillars by oxidation in H202. In this way we achieve a wick structure which utilizes multiple length scales to yield high performance wicking of water. It's capable of wicking water at an average velocity of 1 cm/s over a distance of several cm. A titanium cavity is laser-welded onto the wicking substrate and a small quantity of water is hermetically sealed inside the cavity to achieve a TGP. The thermal conductivity of our preliminary TGP was measured to be 350 W/m-K, but has the potential to be several orders of magnitude higher.

  20. Sustainability of Welding Process through Bobbin Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Sued, M. K.; Samsuri, S. S. M.; Kassim, M. K. A. M.; Nasir, S. N. N. M.

    2018-03-01

    Welding process is in high demand, which required a competitive technology to be adopted. This is important for sustaining the needs of the joining industries without ignoring the impact of the process to the environment. Friction stir welding (FSW) is stated to be benefitting the environment through low energy consumption, which cannot be achieved through traditional arc welding. However, this is not well documented, especially for bobbin friction stir welding (BFSW). Therefore, an investigation is conducted by measuring current consumption of the machine during the BFSW process. From the measurement, different phases of BFSW welding process and its electrical demand are presented. It is found that in general total energy in BFSW is about 130kW inclusive of all identified process phases. The phase that utilise for joint formation is in weld phase that used the highest total energy of 120kWs. The recorded total energy is still far below the traditional welding technology and the conventional friction stir welding (CFSW) energy demand. This indicates that BFSW technology with its vast benefit able to sustain the joining technology in near future.

  1. Enabling high speed friction stir welding of aluminum tailor welded blanks

    NASA Astrophysics Data System (ADS)

    Hovanski, Yuri

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high-volumes. While friction stir welding (FSW) has traditionally been applied at linear velocities less than one meter per minute, high volume production applications demand the process be extended to higher velocities more amenable to cost sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low to moderate welding velocities do not directly translate to high speed linear friction stir welding. Therefore, in order to facilitate production of high volume aluminum FSW components, parameters were developed with a minimum welding velocity of three meters per minute. With an emphasis on weld quality, welded blanks were evaluated for post-weld formability using a combination of numerical and experimental methods. Evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum tailor-welded blanks, which provided validation of the numerical and experimental analysis of laboratory scale tests.

  2. The Influence of Friction Stir Weld Tool Form and Welding Parameters on Weld Structure and Properties: Nugget Bulge in Self-Reacting Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Nunes, Arthur C., Jr.; Brendel, Michael S.

    2010-01-01

    Although friction stir welding (FSW) was patented in 1991, process development has been based upon trial and error and the literature still exhibits little understanding of the mechanisms determining weld structure and properties. New concepts emerging from a better understanding of these mechanisms enhance the ability of FSW engineers to think about the FSW process in new ways, inevitably leading to advances in the technology. A kinematic approach in which the FSW flow process is decomposed into several simple flow components has been found to explain the basic structural features of FSW welds and to relate them to tool geometry and process parameters. Using this modelling approach, this study reports on a correlation between the features of the weld nugget, process parameters, weld tool geometry, and weld strength. This correlation presents a way to select process parameters for a given tool geometry so as to optimize weld strength. It also provides clues that may ultimately explain why the weld strength varies within the sample population.

  3. Investigation on the effect of collagen and vitamins on biomimetic hydroxyapatite coating formation on titanium surfaces.

    PubMed

    Ciobanu, Gabriela; Ciobanu, Octavian

    2013-04-01

    This study uses an in vitro experimental approach to investigate the roles of collagen and vitamins in regulating the deposition of hydroxyapatite layer on the pure titanium surface. Titanium implants were coated with a hydroxyapatite layer under biomimetic conditions by using a supersaturated calcification solution (SCS), modified by adding vitamins A and D3, and collagen. The hydroxyapatite deposits on titanium were investigated by means of scanning electron microscopy (SEM) coupled with X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy. The results obtained have shown that hydroxyapatite coatings were produced in vitro under vitamins and collagen influence. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Research on the Effect of Welding Speed on the Quality of Welding Seam Based on the Local Dry Underwater Welding

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Chen, Wu; Wang, Huagang; Ba, Jinyu; Li, Bing

    2017-12-01

    The repair of nuclear spent fuel pool has a high requirement for the quality of welding, the welding speed directly affects the quality of the weld when local dry automatic underwater welding is used to repair the damaged surface. Under the condition of the same condition, the local dry automatic underwater welding test was carried out under the condition of the same welding condition. Taking the 20cm as the experimental condition, after massive experiments show that when the welding speed is approximately 48cm/min the weld quality is high, meeting the design requirements, based on the double layer shrinkage nozzle chamber of local dry underwater automatic welding.

  5. Conductive films of silver nanoparticles as novel susceptors for induction welding of thermoplastic composites.

    PubMed

    Farahani, Rouhollah Dermanaki; Janier, Mathieu; Dubé, Martine

    2018-03-23

    In the present work, a conductive film of silver nanoparticles (nAg) as a novel heating element type, called susceptor, was developed and tested for induction welding of carbon fiber/polyphenylene sulfide (CF/PPS) thermoplastic composites, i.e., unidirectional pre-impregnated 16 plies of CF/PPS compression-molded in a quasi-isotropic stacking sequence. The nAg were synthesized, dispersed in deionized (DI) water and casted onto a pure PPS film, resulting in a conductive film upon the evaporation of DI water and thermal post-annealing. The thermal annealing at 250 °C significantly (by 7 orders) decreased the film's electrical resistivity from 9.4 × 10 3 down to 3.1 × 10 -4 Ω cm. The new susceptors led to fast heating rates in induction welding when compared to the standard stainless steel mesh susceptors under similar welding conditions. Lap shear mechanical testing revealed that the apparent lap shear strength (LSS) is sensitive to the susceptors' resistivity and the input current. A relatively high LSS value was achieved for the specimens welded using the new susceptors which exceeded the value of those welded using stainless steel mesh susceptors (28.3 MPa compared to 20 MPa). The weld interface and specimens' cross-section observation revealed that the nAg were dispersed and embedded into the resin upon welding. This study contains preliminary results that show high potential of nanoparticles as effective susceptors to further improve the mechanical performance of the joints in welding of thermoplastic composites.

  6. Comparative study of the shear bond strength of various veneering materials on grade II commercially pure titanium

    PubMed Central

    Lee, Eun-Young; Jun, Sul-Gi; Wright, Robert F.

    2015-01-01

    PURPOSE To compare the shear bond strength of various veneering materials to grade II commercially pure titanium (CP-Ti). MATERIALS AND METHODS Thirty specimens of CP-Ti disc with 9 mm diameter and 10 mm height were divided into three experimental groups. Each group was bonded to heat-polymerized acrylic resin (Lucitone 199), porcelain (Triceram), and indirect composite (Sinfony) with 7 mm diameter and 2 mm height. For the control group (n=10), Lucitone 199 were applied on type IV gold alloy castings. All samples were thermocycled for 5000 cycles in 5-55℃ water. The maximum shear bond strength (MPa) was measured with a Universal Testing Machine. After the shear bond strength test, the failure mode was assessed with an optic microscope and a scanning electron microscope. Statistical analysis was carried out with a Kruskal-Wallis Test and Mann-Whitney Test. RESULTS The mean shear bond strength and standard deviations for experimental groups were as follows: Ti-Lucitone 199 (12.11 ± 4.44 MPa); Ti-Triceram (11.09 ± 1.66 MPa); Ti-Sinfony (4.32 ± 0.64 MPa). All of these experimental groups showed lower shear bond strength than the control group (16.14 ± 1.89 MPa). However, there was no statistically significant difference between the Ti-Lucitone 199 group and the control group, and the Ti-Lucitone 199 group and the Ti-Triceram group. Most of the failure patterns in all experimental groups were adhesive failures. CONCLUSION The shear bond strength of veneering materials such as heat-polymerized acrylic resin, porcelain, and indirect composite to CP-Ti was compatible to that of heatpolymerized acrylic resin to cast gold alloy. PMID:25722841

  7. Influence of Welding Process and Post Weld Heat Treatment on Microstructure and Pitting Corrosion Behavior of Dissimilar Aluminium Alloy Welds

    NASA Astrophysics Data System (ADS)

    Venkata Ramana, V. S. N.; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    Welding of dissimilar Aluminum alloy welds is becoming important in aerospace, shipbuilding and defence applications. In the present work, an attempt has been made to weld dissimilar aluminium alloys using conventional gas tungsten arc welding (GTAW) and friction stir welding (FSW) processes. An attempt was also made to study the effect of post weld heat treatment (T4 condition) on microstructure and pitting corrosion behaviour of these welds. Results of the present investigation established the differences in microstructures of the base metals in T4 condition and in annealed conditions. It is evident that the thickness of the PMZ is relatively more on AA2014 side than that of AA6061 side. In FS welds, lamellar like shear bands are well noticed on the top of the stir zone. The concentration profile of dissimilar friction stir weld in T4 condition revealed that no diffusion has taken place at the interface. Poor Hardness is observed in all regions of FS welds compared to that of GTA welds. Pitting corrosion resistance of the dissimilar FS welds in all regions was improved by post weld heat treatment.

  8. Effect of Steel Galvanization on the Microstructure and Mechanical Performances of Planar Magnetic Pulse Welds of Aluminum and Steel

    NASA Astrophysics Data System (ADS)

    Avettand-Fènoël, M.-N.; Khalil, C.; Taillard, R.; Racineux, G.

    2018-07-01

    For the first time, planar joints between pure aluminum and galvanized or uncoated DP450 steel joints have been developed via magnetic pulse welding. Both present a wavy interface. The microstructure of the interfacial zone differs according to the joint. With uncoated steel, the interface is composed of discrete 2.5- µm-thick FeAl3 intermetallic compounds and Fe penetration lamellae, whereas the interface of the pure Al-galvanized steel joint is bilayered and composed of a 10-nm-thick (Al)Zn solid solution and a few micrometers thick aggregate of Al- and Zn-based grains, arranged from the Al side to the Zn coating. Even if the nature of the interfacial zone differs with or without the steel coating, both welds present rather similar maximum tensile forces and ductility in shear lap testing.

  9. Effect of Steel Galvanization on the Microstructure and Mechanical Performances of Planar Magnetic Pulse Welds of Aluminum and Steel

    NASA Astrophysics Data System (ADS)

    Avettand-Fènoël, M.-N.; Khalil, C.; Taillard, R.; Racineux, G.

    2018-05-01

    For the first time, planar joints between pure aluminum and galvanized or uncoated DP450 steel joints have been developed via magnetic pulse welding. Both present a wavy interface. The microstructure of the interfacial zone differs according to the joint. With uncoated steel, the interface is composed of discrete 2.5-µm-thick FeAl3 intermetallic compounds and Fe penetration lamellae, whereas the interface of the pure Al-galvanized steel joint is bilayered and composed of a 10-nm-thick (Al)Zn solid solution and a few micrometers thick aggregate of Al- and Zn-based grains, arranged from the Al side to the Zn coating. Even if the nature of the interfacial zone differs with or without the steel coating, both welds present rather similar maximum tensile forces and ductility in shear lap testing.

  10. Critical evaluation of sequential leaching procedures for the determination of Ni and Mn species in welding fumes.

    PubMed

    Berlinger, B; Náray, M; Sajó, I; Záray, G

    2009-06-01

    In this work, welding fume samples were collected in a welding plant, where corrosion-resistant steel and unalloyed structural steel were welded by gas metal arc welding (GMAW) and manual metal arc welding (MMAW) techniques. The welding fumes were sampled with a fixed-point sampling strategy applying Higgins-Dewell cyclones. The following solutions were used to dissolve the different species of Ni and Mn: ammonium citrate solution [1.7% (m/v) diammonium hydrogen citrate and 0.5% (m/v) citric acid monohydrate] for 'soluble' Ni, 50:1 methanol-bromine solution for metallic Ni, 0.01 M ammonium acetate for soluble Mn, 25% acetic acid for Mn(0) and Mn(2+) and 0.5% hydroxylammonium chloride in 25% acetic acid for Mn(3+) and Mn(4+). 'Insoluble' Ni and Mn contents of the samples were determined after microwave-assisted digestion with the mixture of concentrated (cc). HNO(3), cc. HCl and cc. HF. The sample solutions were analysed by inductively coupled plasma quadrupole mass spectrometry and inductively coupled plasma atomic emission spectrometry. The levels of total Ni and Mn measured in the workplace air were different because of significant differences of the fume generation rates and the distributions of the components in the welding fumes between the welding processes. For quality control of the leaching process, dissolution of the pure stoichiometric Mn and Ni compounds and their mixtures weighing was investigated using the optimized leaching conditions. The results showed the adequacy of the procedure for the pure metal compounds. Based on the extraction procedures, the predominant oxidation states of Ni and Mn proved to be very different depending on the welding techniques and type of the welded steels. The largest amount of Mn in GMAW fumes were found as insoluble Mn (46 and 35% in case of corrosion-resistant steel and unalloyed structural steel, respectively), while MMAW fumes contain mainly soluble Mn, Mn(0) and Mn(2+) (78%) and Mn(3+) and Mn(4+) (54%) in case of

  11. Welding methods for joining thermoplastic polymers for the hermetic enclosure of medical devices.

    PubMed

    Amanat, Negin; James, Natalie L; McKenzie, David R

    2010-09-01

    New high performance polymers have been developed that challenge traditional encapsulation materials for permanent active medical implants. The gold standard for hermetic encapsulation for implants is a titanium enclosure which is sealed using laser welding. Polymers may be an alternative encapsulation material. Although many polymers are biocompatible, and permeability of polymers may be reduced to acceptable levels, the ability to create a hermetic join with an extended life remains the barrier to widespread acceptance of polymers for this application. This article provides an overview of the current techniques used for direct bonding of polymers, with a focus on thermoplastics. Thermal bonding methods are feasible, but some take too long and/or require two stage processing. Some methods are not suitable because of excessive heat load which may be delivered to sensitive components within the capsule. Laser welding is presented as the method of choice; however the establishment of suitable laser process parameters will require significant research. 2010. Published by Elsevier Ltd.

  12. High-Speed Friction-Stir Welding To Enable Aluminum Tailor-Welded Blanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hovanski, Yuri; Upadhyay, Piyush; Carsley, John

    Current joining technologies for automotive aluminum alloys are utilized in low-volume and niche applications, and have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high-volumes. While friction stir welding has been traditionally applied at linear velocities less than one meter per minute, high volume production applications demand the process be extended to higher velocities more amenable to cost sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low to moderate welding velocities do not directly translatemore » to high speed linear friction stir welding. Therefore, in order to facilitate production of high volume aluminum welded components, parameters were developed with a minimum welding velocity of three meters per minute. With an emphasis on weld quality, welded blanks were evaluated for post-weld formability utilizing a combination of numerical and experimental methods. Evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum tailor-welded blanks, which provided validation of the numerical and experimental analysis of laboratory scale tests.« less

  13. A biocompatible titanium headpost for stabilizing behaving monkeys.

    PubMed

    Adams, Daniel L; Economides, John R; Jocson, Cristina M; Horton, Jonathan C

    2007-08-01

    Many neurophysiological experiments involving monkeys require that the head be stabilized while the animal performs a task. Often a post is attached to the skull to accomplish this goal, using a headcap formed from dental acrylic. We describe a new headpost, developed by refinement of several prototypes, and supply an AutoCAD file to aid in machine shop production. This headpost is fabricated from a single piece of commercially pure titanium. It has a footplate consisting of four limbs arranged in the configuration of a "K." These are bent during surgery to match the curvature of the skull and attached with specialized titanium bone screws. Headposts were implanted in seven rhesus monkeys ranging in age from 2 yr to adult. None has been rejected after up to 17 mo of regular use. They require little or no daily toilette and create only a 0.80-cm(2) defect in the scalp. Computed tomography after implantation showed that the skull undergoes remodeling to embed the footplate in bone. This finding was confirmed by necropsy in two subjects. The outer table of the skull had grown over the titanium footplate, whereas the inner table had thickened to bury the tips of the titanium screws. The remarkable strength of the skull/implant bond was demonstrated by applying increasing amounts of torque to the headpost. At 26.3 Nm, the headpost tore from its metal footplate, but no screws came loose. The excellent performance of this implant is explained by integration of biocompatible titanium into remodeled bone tissue. The headpost is simpler to implant, more securely anchored, easier to maintain, and less obtrusive than devices attached with acrylic.

  14. Laser weld jig

    DOEpatents

    Van Blarigan, Peter; Haupt, David L.

    1982-01-01

    A system is provided for welding a workpiece (10, FIG. 1) along a predetermined weld line (12) that may be of irregular shape, which includes the step of forming a lip (32) on the workpiece to extend parallel to the weld line, and moving the workpiece by engaging the lip between a pair of rotatable members (34, 36). Rotation of one of the members at a constant speed, causes the workpiece to move so that all points on the weld line sequentially pass a fixed point in space (17) at a constant speed, so that a laser welding beam can be directed at that fixed point to form a weld along the weld line. The workpiece can include a reuseable jig (24) forming the lip, and with the jig constructed to detachably hold parts (22, 20) to be welded at a position wherein the weld line of the parts extends parallel to the lip on the jig.

  15. Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.

  16. Versatile Friction Stir Welding/Friction Plug Welding System

    NASA Technical Reports Server (NTRS)

    Carter, Robert

    2006-01-01

    A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following: Basic FSW; FSW with automated manipulation of the length of the pin tool in real time [the so-called auto-adjustable pin-tool (APT) capability]; Self-reacting FSW (SRFSW); SR-FSW with APT capability and/or real-time adjustment of the distance between the front and back shoulders; and Friction plug welding (FPW) [more specifically, friction push plug welding] or friction pull plug welding (FPPW) to close out the keyhole of, or to repair, an FSW or SR-FSW weld. Prior FSW and FPW systems have been capable of performing one or two of these operations, but none has thus far been capable of performing all of them. The proposed system would include a common tool that would have APT capability for both basic FSW and SR-FSW. Such a tool was described in Tool for Two Types of Friction Stir Welding (MFS- 31647-1), NASA Tech Briefs, Vol. 30, No. 10 (October 2006), page 70. Going beyond what was reported in the cited previous article, the common tool could be used in conjunction with a plug welding head to perform FPW or FPPW. Alternatively, the plug welding head could be integrated, along with the common tool, into a FSW head that would be capable of all of the aforementioned FSW and FPW operations. Any FSW or FPW operation could be performed under any combination of position and/or force control.

  17. Novel β-TCP Coated Titanium Nanofiber Surface for Enhanced Bone Growth.

    PubMed

    Lim, Hyun-Pil; Park, Sang-Won; Yun, Kwi-Dug; Park, Chan; Ji, Min-Kyung; Oh, Gye-Jeong; Lee, Jong-Tak; Lee, Kwangmin

    2018-02-01

    In this study, we examined the effect of β-tricalcium phosphate (β-TCP) coating on alkali-treated CP Grade II titanium surface via RF magnetron sputtering on osteoblast like cell (MC3T3-E1) viability and bone formation in rat tibia. The specimens were divided into three groups; commercially pure titanium (control group), alkali-treated titanium with nanofiber structure (NF group) and β-TCP coating on alkali-treated titanium with nanofiber structure (TNF group). The surface characteristics of specimens were observed under a field emission scanning electron microscope (FE-SEM), and contact angle was measured. The cell viability was assessed in vitro after 1 day, 3 days and 7 days. Implants of 2.0 mm diameter and 5.0 mm length were inserted into the tibia of rats. After 4 wks, the histomorphometric analysis was performed. Group NF and group TNF showed improved hydrophilicity of Ti. Group TNF showed significantly higher cell viability (P < 0.05) after 7 days. The bone to implant contact (BIC) ratio of the control group, NF group, and TNF group were 32.3%, 35.5%, and 63.9%, respectively. The study results suggested that β-TCP coated alkali-treated titanium surface via RF magnetron sputtering might be effective in implant dentistry due to enhanced hydrophilicity, improved cell response, and better osseointegration.

  18. Monitoring the quality of welding based on welding current and ste analysis

    NASA Astrophysics Data System (ADS)

    Mazlan, Afidatusshimah; Daniyal, Hamdan; Izzani Mohamed, Amir; Ishak, Mahadzir; Hadi, Amran Abdul

    2017-10-01

    Qualities of welding play an important part in industry especially in manufacturing field. Post-welding non-destructive test is one of the importance process to ensure the quality of welding but it is time consuming and costly. To reduce the chance of defects, online monitoring had been utilized by continuously sense some of welding parameters and predict welding quality. One of the parameters is welding current, which is rich of information but lack of study focus on extract them at signal analysis level. This paper presents the analysis of welding current using Short Time Energy (STE) signal processing to quantify the pattern of the current. GMAW set with carbon steel specimens are used in this experimental study with high-bandwidth and high sampling rate oscilloscope capturing the welding current. The results indicate welding current as signatures have high correlation with the welding process. Continue with STE analysis, the value below 5000 is declare as good welding, meanwhile the STE value more than 6000 is contained defect.

  19. Characteristics of Extra Narrow Gap Weld of HSLA Steel Welded by Single-Seam per Layer Pulse Current GMA Weld Deposition

    NASA Astrophysics Data System (ADS)

    Agrawal, B. P.; Ghosh, P. K.

    2017-03-01

    Butt weld joints are produced using pulse current gas metal arc welding process by employing the technique of centrally laid multi-pass single-seam per layer weld deposition in extra narrow groove of thick HSLA steel plates. The weld joints are prepared by using different combination of pulse parameters. The selection of parameter of pulse current gas metal arc welding is done considering a summarized influence of simultaneously interacting pulse parameters defined by a dimensionless hypothetical factor ϕ. The effect of diverse pulse parameters on the characteristics of weld has been studied. Weld joint is also prepared by using commonly used multi-pass multi-seam per layer weld deposition in conventional groove. The extra narrow gap weld joints have been found much superior to the weld joint prepared by multi-pass multi-seam per layer deposition in conventional groove with respect to its metallurgical characteristics and mechanical properties.

  20. Fusion welding process

    DOEpatents

    Thomas, Kenneth C.; Jones, Eric D.; McBride, Marvin A.

    1983-01-01

    A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

  1. Intelligent Weld Manufacturing: Role of Integrated Computational Welding Engineering

    DOE PAGES

    David, Stan A.; Chen, Jian; Feng, Zhili; ...

    2017-12-02

    A master welder uses his sensory perceptions to evaluate the process and connect them with his/her knowledge base to take the necessary corrective measures with his/her acquired skills to make a good weld. All these actions must take place in real time. Success depends on intuition and skills, and the procedure is labor-intensive and frequently unreliable. The solution is intelligent weld manufacturing. The ultimate goal of intelligent weld manufacturing would involve sensing and control of heat source position, weld temperature, weld penetration, defect formation and ultimately control of microstructure and properties. This involves a solution to a problem (welding) withmore » many highly coupled and nonlinear variables. The trend is to use an emerging tool known as intelligent control. This approach enables the user to choose a desirable end factor such as properties, defect control, or productivity to derive the selection of process parameters such as current, voltage, or speed to provide for appropriate control of the process. Important elements of intelligent manufacturing are sensing and control theory and design, process modeling, and artificial intelligence. Significant progress has been made in all these areas. Integrated computational welding engineering (ICWE) is an emerging field that will aid in the realization of intelligent weld manufacturing. The paper will discuss the progress in process modeling, microstructure, properties, and process control and automation and the importance of ICWE. Also, control and automation strategies for friction stir welding will be discussed.« less

  2. Intelligent Weld Manufacturing: Role of Integrated Computational Welding Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, Stan A.; Chen, Jian; Feng, Zhili

    A master welder uses his sensory perceptions to evaluate the process and connect them with his/her knowledge base to take the necessary corrective measures with his/her acquired skills to make a good weld. All these actions must take place in real time. Success depends on intuition and skills, and the procedure is labor-intensive and frequently unreliable. The solution is intelligent weld manufacturing. The ultimate goal of intelligent weld manufacturing would involve sensing and control of heat source position, weld temperature, weld penetration, defect formation and ultimately control of microstructure and properties. This involves a solution to a problem (welding) withmore » many highly coupled and nonlinear variables. The trend is to use an emerging tool known as intelligent control. This approach enables the user to choose a desirable end factor such as properties, defect control, or productivity to derive the selection of process parameters such as current, voltage, or speed to provide for appropriate control of the process. Important elements of intelligent manufacturing are sensing and control theory and design, process modeling, and artificial intelligence. Significant progress has been made in all these areas. Integrated computational welding engineering (ICWE) is an emerging field that will aid in the realization of intelligent weld manufacturing. The paper will discuss the progress in process modeling, microstructure, properties, and process control and automation and the importance of ICWE. Also, control and automation strategies for friction stir welding will be discussed.« less

  3. An Assessment of Molten Metal Detachment Hazards During Electron Beam Welding in the Space Shuttle Bay at LEO for the International Space Welding Experiment

    NASA Technical Reports Server (NTRS)

    Fragomeni, James M.

    1996-01-01

    . However, some of the energy will be absorbed by the plate before it reaches the metal drop. Based on the theoretical calculations, it was determined that during a weld cutting exercise, the titanium alloy would be the most difficult to detach molten metal droplets followed by stainless steel and then by aluminum. The results of the experimental effort have shown that molten metal will detach if large enough of a hammer blow is applied to the weld sample plate during the full penetration welding and cutting exercises. However, no molten metal detachments occurred as a result of the filler wire snap-out tests from the weld puddle since it was too difficult to cause the metal to flick-out from the pool. Molten metal detachments, though not large in size, did result from the direct application of the electron beam on the end of the filler weld wire.

  4. Investigation of welding and brazing of molybdenum and TZM alloy tubes

    NASA Technical Reports Server (NTRS)

    Lundblad, Wayne E.

    1991-01-01

    This effort involved investigating the welding and brazing techniques of molybdenum tubes to be used as cartridges in the crystal growth cartridge. Information is given in the form of charts and photomicrographs. It was found that the recrystallization temperature of molybdenum can be increased by alloying it with 0.5 percent titanium and 0.1 percent zirconium. Recrystallization temperatures for this alloy, known as TZM, become significant around 2500 F. A series of microhardness tests were run on samples of virgin and heat soaked TZM. The test results are given in tabular form. It was concluded that powder metallurgy TZM may be an acceptable cartridge material.

  5. Welding polarity effects on weld spatters and bead geometry of hyperbaric dry GMAW

    NASA Astrophysics Data System (ADS)

    Xue, Long; Wu, Jinming; Huang, Junfen; Huang, Jiqiang; Zou, Yong; Liu, Jian

    2016-03-01

    Welding polarity has influence on welding stability to some extent, but the specific relationship between welding polarity and weld quality has not been found, especially under the hyperbaric environment. Based on a hyperbaric dry welding experiment system, gas metal arc welding(GMAW) experiments with direct current electrode positive(DCEP) and direct current electrode negative(DCEN) operations are carried out under the ambient pressures of 0.1 MPa, 0.4 MPa, 0.7 MPa and 1.0 MPa to find the influence rule of different welding polarities on welding spatters and weld bead geometry. The effects of welding polarities on the weld bead geometry such as the reinforcement, the weld width and the penetration are discussed. The experimental results show that the welding spatters gradually grow in quantity and size for GMAW with DCEP, while GMAW with DCEN can produce fewer spatters comparatively with the increase of the ambient pressure. Compared with DCEP, the welding current and arc voltage waveforms for DCEN is more stable and the distribution of welding current probability density for DCEN is more concentrated under the hyperbaric environment. When the ambient pressure is increased from 0.1 MPa to 1.0 MPa, the effects of welding polarities on the reinforcement, the weld width and the penetration are as follows: an increase of 0.8 mm for the weld reinforcement is produced by GMAW with DCEN and 1.3 mm by GMAW with DCEP, a decrease of 7.2 mm for the weld width is produced by DCEN and 6.1 mm by DCEP; and an increase of 3.9 mm for the penetration is produced by DCEN and 1.9 mm by DCEP. The proposed research indicates that the desirable stability in the welding procedure can be achieved by GMAW with DCEN operation under the hyperbaric environment.

  6. Weld procedure produces quality welds for thick sections of Hastelloy-X

    NASA Technical Reports Server (NTRS)

    Flens, F. J.; Fletcher, C. W.; Glasier, L. F., Jr.

    1967-01-01

    Welding program produces premium quality, multipass welds in heavy tube sections of Hastelloy-X. It develops semiautomatic tungsten/inert gas procedures, weld wire procurement specifications material weld properties, welder-operator training, and nondestructive testing inspection techniques and procedures.

  7. Basic Welding Skills. Welding Module 1. Instructor's Guide.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide is intended to assist vocational educators in teaching a six-unit module in basic welding skills. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The following topics are covered in the module: the welding profession, personal safety,…

  8. Advanced Welding Applications

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  9. Reduction of Biomechanical and Welding Fume Exposures in Stud Welding

    PubMed Central

    Fethke, Nathan B.; Peters, Thomas M.; Leonard, Stephanie; Metwali, Mahmoud; Mudunkotuwa, Imali A.

    2016-01-01

    The welding of shear stud connectors to structural steel in construction requires a prolonged stooped posture that exposes ironworkers to biomechanical and welding fume hazards. In this study, biomechanical and welding fume exposures during stud welding using conventional methods were compared to exposures associated with use of a prototype system that allowed participants to weld from an upright position. The effect of base material (i.e. bare structural beam versus galvanized decking) on welding fume concentration (particle number and mass), particle size distribution, and particle composition was also explored. Thirty participants completed a series of stud welding simulations in a local apprenticeship training facility. Use of the upright system was associated with substantial reductions in trunk inclination and the activity levels of several muscle groups. Inhalable mass concentrations of welding fume (averaged over ~18min) when using conventional methods were high (18.2mg m−3 for bare beam; 65.7mg m−3 for through deck), with estimated mass concentrations of iron (7.8mg m−3 for bare beam; 15.8mg m−3 for through deck), zinc (0.2mg m−3 for bare beam; 15.8mg m−3 for through deck), and manganese (0.9mg m−3 for bare beam; 1.5mg m−3 for through deck) often exceeding the American Conference of Governmental Industrial Hygienists Threshold Limit Values (TLVs). Number and mass concentrations were substantially reduced when using the upright system, although the total inhalable mass concentration remained above the TLV when welding through decking. The average diameters of the welding fume particles for both bare beam (31±17nm) through deck conditions (34±34nm) and the chemical composition of the particles indicated the presence of metallic nanoparticles. Stud welding exposes ironworkers to potentially high levels of biomechanical loading (primarily to the low back) and welding fume. The upright system used in this study improved exposure levels during

  10. WELDING METHOD

    DOEpatents

    Cornell, A.A.; Dunbar, J.V.; Ruffner, J.H.

    1959-09-29

    A semi-automatic method is described for the weld joining of pipes and fittings which utilizes the inert gasshielded consumable electrode electric arc welding technique, comprising laying down the root pass at a first peripheral velocity and thereafter laying down the filler passes over the root pass necessary to complete the weld by revolving the pipes and fittings at a second peripheral velocity different from the first peripheral velocity, maintaining the welding head in a fixed position as to the specific direction of revolution, while the longitudinal axis of the welding head is disposed angularly in the direction of revolution at amounts between twenty minutas and about four degrees from the first position.

  11. Friction stir welding tool and process for welding dissimilar materials

    DOEpatents

    Hovanski, Yuri; Grant, Glenn J; Jana, Saumyadeep; Mattlin, Karl F

    2013-05-07

    A friction stir welding tool and process for lap welding dissimilar materials are detailed. The invention includes a cutter scribe that penetrates and extrudes a first material of a lap weld stack to a preselected depth and further cuts a second material to provide a beneficial geometry defined by a plurality of mechanically interlocking features. The tool backfills the interlocking features generating a lap weld across the length of the interface between the dissimilar materials that enhances the shear strength of the lap weld.

  12. Syllabus in Trade Welding.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    The syllabus outlines material for a course two academic years in length (minimum two and one-half hours daily experience) leading to entry-level occupational ability in several welding trade areas. Fourteen units covering are welding, gas welding, oxyacetylene welding, cutting, nonfusion processes, inert gas shielded-arc welding, welding cast…

  13. How to Choose between the Implant Materials Steel and Titanium in Orthopedic Trauma Surgery: Part 2 - Biological Aspects.

    PubMed

    Perren, S M; Regazzoni, P; Fernandez, A A

    2017-01-01

    BIOLOGICAL ASPECTS OF STEEL AND TITANIUM AS IMPLANT MATERIAL IN ORTHOPEDIC TRAUMA SURGERY The following case from the ICUC database, where a titanium plate was implanted into a flourishing infection, represents the clinical experience leading to preferring titanium over steel. (Fig. 1) (6). Current opinions regarding biological aspects of implant function. The "street" opinions regarding the biological aspects of the use of steel versus titanium as a surgical trauma implant material differ widely. Statements of opinion leaders range from "I do not see any difference in the biological behavior between steel and titanium in clinical application" to "I successfully use titanium implants in infected areas in a situation where steel would act as foreign body "sustaining" infection." Furthermore, some comments imply that clinical proof for the superiority of titanium in human application is lacking. The following tries to clarify the issues addressing the different aspects more through a practical clinical approach than a purely scientific one, this includes simplifications. Today's overall biocompatibility of implant materials is acceptable but: As the vast majority of secondary surgeries are elective procedures this allows the selection of implant materials with optimal infection resistance. The different biological reactions of stainless steel and titanium are important for this segment of clinical pathologies. Biological tole - rance (18) depends on the toxicity and on the amount of soluble implant material released. Release, diffusion and washout through blood circulation determine the local concentration of the corrosion products. Alloying components of steel, especially nickel and chromium, are less than optimal in respect to tissue tolerance and allergenicity. Titanium as a pure metal provides excellent biological tolerance (3, 4, 16). Better strength was obtained by titanium alloys like TiAl6V4. The latter found limited application as surgical implants. It

  14. Influence of corrosion on lipopolysaccharide affinity for two different titanium materials.

    PubMed

    Barão, Valentim Adelino Ricardo; Mathew, Mathew T; Yuan, Judy Chia-Chun; Knoernschild, Kent L; Assunção, Wirley Gonçalves; Wimmer, Markus A; Sukotjo, Cortino

    2013-12-01

    Titanium is subject to corrosion in the oral cavity, which could contribute to periimplantitis. However, the effect of corrosion on the lipopolysaccharide affinity for titanium remains unknown. This study evaluated the role of corrosion (in artificial saliva at pHs 3, 6.5, and 9) on the lipopolysaccharide (LPS) affinity for commercially pure titanium (cp-Ti) and Ti-6Al-4V alloy. Seventy-two titanium disks were anodically polarized in a controlled environment (n=9). Control specimens were not corroded. Deionized water with different concentrations of LPS (1.5, 15, and 150 μg/mL) were used to treat the disks for 24 hours to investigate LPS adherence (n=3). Then specimens were immersed in LPS-free water to evaluate LPS elution at 24, 48, and 72 hours. Data were analyzed by the 2-way, 3-way, and 3-way repeated measures ANOVA, t tests, and the Tukey honestly significant difference (HSD) tests (α=.05). A greater corrosion rate of cp-Ti and Ti-6Al-4V alloy and a higher LPS adherence to titanium surfaces (P<.05) were noted at acidic pH. The LPS affinity was higher for the Ti-6Al-4V alloy than for cp-Ti (P<.05). More LPS was eluted from titanium surfaces after a 24-hour interval. Lipopolysaccharide affinity for cp-Ti and Ti-6Al-4V alloy is influenced by the corrosion process. Copyright © 2013 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  15. Friction Stir Welding of Tapered Thickness Welds Using an Adjustable Pin Tool

    NASA Technical Reports Server (NTRS)

    Adams, Glynn; Venable, Richard; Lawless, Kirby

    2003-01-01

    Friction stir welding (FSW) can be used for joining weld lands that vary in thickness along the length of the weld. An adjustable pin tool mechanism can be used to accomplish this in a single-pass, full-penetration weld by providing for precise changes in the pin length relative to the shoulder face during the weld process. The difficulty with this approach is in accurately adjusting the pin length to provide a consistent penetration ligament throughout the weld. The weld technique, control system, and instrumentation must account for mechanical and thermal compliances of the tooling system to conduct tapered welds successfully. In this study, a combination of static and in-situ measurements, as well as active control, is used to locate the pin accurately and maintain the desired penetration ligament. Frictional forces at the pin/shoulder interface were a source of error that affected accurate pin position. A traditional FSW pin tool design that requires a lead angle was used to join butt weld configurations that included both constant thickness and tapered sections. The pitch axis of the tooling was fixed throughout the weld; therefore, the effective lead angle in the tapered sections was restricted to within the tolerances allowed by the pin tool design. The sensitivity of the FSW process to factors such as thickness offset, joint gap, centerline offset, and taper transition offset were also studied. The joint gap and the thickness offset demonstrated the most adverse affects on the weld quality. Two separate tooling configurations were used to conduct tapered thickness welds successfully. The weld configurations included sections in which the thickness decreased along the weld, as well as sections in which the thickness increased along the weld. The data presented here include weld metallography, strength data, and process load data.

  16. The technology and welding joint properties of hybrid laser-tig welding on thick plate

    NASA Astrophysics Data System (ADS)

    Shenghai, Zhang; Yifu, Shen; Huijuan, Qiu

    2013-06-01

    The technologies of autogenous laser welding and hybrid laser-TIG welding are used on thick plate of high strength lower alloy structural steel 10CrNiMnMoV in this article. The unique advantages of hybrid laser-TIG welding is summarized by comparing and analyzing the process parameters and welding joints of autogenous laser welding laser welding and hybrid laser-TIG welding. With the optimal process parameters of hybrid welding, the good welding joint without visible flaws can be obtained and its mechanical properties are tested according to industry standards. The results show that the hybrid welding technology has certain advantages and possibility in welding thick plates. It can reduce the demands of laser power, and it is significant for lowering the aspect ratio of weld during hybrid welding, so the gas in the molten pool can rise and escape easily while welding thick plates. Therefore, the pores forming tendency decreases. At the same time, hybrid welding enhances welding speed, and optimizes the energy input. The transition and grain size of the microstructure of hybrid welding joint is better and its hardness is higher than base material. Furthermore, its tensile strength and impact toughness is as good as base material. Consequently, the hybrid welding joint can meet the industry needs completely.

  17. Natural dye extract of lawsonia inermis seed as photo sensitizer for titanium dioxide based dye sensitized solar cells.

    PubMed

    Ananth, S; Vivek, P; Arumanayagam, T; Murugakoothan, P

    2014-07-15

    Natural dye extract of lawsonia inermis seed were used as photo sensitizer to fabricate titanium dioxide nanoparticles based dye sensitized solar cells. Pure titanium dioxide (TiO2) nanoparticles in anatase phase were synthesized by sol-gel technique and pre dye treated TiO2 nanoparticles were synthesized using modified sol-gel technique by mixing lawsone pigment rich natural dye during the synthesis itself. This pre dye treatment with natural dye has yielded colored TiO2 nanoparticles with uniform adsorption of natural dye, reduced agglomeration, less dye aggregation and improved morphology. The pure and pre dye treated TiO2 nanoparticles were subjected to structural, optical, spectral and morphological studies. Dye sensitized solar cells (DSSC) fabricated using the pre dye treated and pure TiO2 nanoparticles sensitized by natural dye extract of lawsonia inermis seed showed a promising solar light to electron conversion efficiency of 1.47% and 1% respectively. The pre dye treated TiO2 based DSSC showed an improved efficiency of 47% when compared to that of conventional DSSC. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Effect of alloy chemistry and exposure conditions on the oxidation of titanium

    NASA Technical Reports Server (NTRS)

    Unnam, J.; Shenoy, R. N.; Clark, R. K.

    1984-01-01

    Multiwall is a new thermal protection system concept for advanced space transportation vehicles. The system consists of discrete panels made up of multiple layers of foil gage metal. Titanium is the proposed candidate metal for multiwall panels in the reentry temperature range up to 675 C. Oxidation and embrittlement are the principal concerns related to the use of Ti in heat shield applications. The results of a broad study on the oxidation kinetics of several titanium alloys subjected to different exposure conditions are described. The alloys include commercially pure titanium, Ti-6Al-4V, and Ti-6Al-2Sn-4Zr-2Mo. Oxidation studies were performed on these alloys exposed at 704 C in 5-760 torr air pressure and 0 to 50% relative humidity. The resulting weight gains were correlated with oxide thickness and substrate contamination. The contamination depth and weight gains due to solid solutioning were obtained from microhardness depth profiles and hardness versus weight percent oxygen calibration data.

  19. Behavior of Ti-5Al-2.5Sn ELI titanium alloy sheet parent and weld metal in the presence of cracks at 20 K

    NASA Technical Reports Server (NTRS)

    Sullivan, T. L.

    1971-01-01

    Through- and surface-cracked specimens of two thicknesses were tested in uniaxial tension. Surface-cracked specimens were generally found to be stronger than through-cracked specimens with the same crack length. Apparent surface-crack fracture toughness calculated using the Anderson modified Irwin equation remained relatively constant for cracks as deep as 90 percent of the sheet thickness. Subcritical growth of surface cracks was investigated. Comparison of chamber and open air welds showed chamber welds to be slightly tougher. Both methods produced welds with toughness that compared favorably with that of the parent metal. Weld efficiencies were above 94 percent.

  20. Characterization of Friction Welded Titanium Alloy and Stainless Steel with a Novel Interlayer Geometry

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Balasubramanian, M.

    The main purpose of the current research work is to identify and investigate a novel method of holding an intermediate metal and to evaluate its metallurgical and mechanical properties. Copper was used as an interlayer material for the welding of this dissimilar Ti-6Al-4V (Ti alloy) and 304L stainless steel (SS). The study shows that the input parameters and surface geometry played a very significant role in producing a good quality joints with minimum heat affected zone and metal loss. A sound weld was achieved between Ti-6Al-4V and SS304L, on the basis of the earlier experiments conducted by the authors in their laboratory, by using copper rod as intermediate metal. Box-Behnken method was used for performing a minimum number of experiments for the study. In the present study, Ti-6Al-4V alloy and SS304L were joined by a novel method of holding the interlayer and new surface geometry for the interlayer. Initially, the drop test was used for determining the quality of the fabricated joint and, subsequently, non-destructive techniques like radiography and C-scan were used. Further optical micrograph, SEM-EDS, hardness and tensile test were done for understanding the performance of the joint.

  1. Survey of welding processes.

    DOT National Transportation Integrated Search

    2003-07-01

    The current KYTC SPECIAL PROVISION NO. 4 WELDING STEEL BRIDGES prohibits the use of welding processes other than shielded metal arc welding (SMAW) and submerged arc welding (SAW). Nationally, bridge welding is codified under ANSI/AASHTO/AWS D1....

  2. Simplified welding distortion analysis for fillet welding using composite shell elements

    NASA Astrophysics Data System (ADS)

    Kim, Mingyu; Kang, Minseok; Chung, Hyun

    2015-09-01

    This paper presents the simplified welding distortion analysis method to predict the welding deformation of both plate and stiffener in fillet welds. Currently, the methods based on equivalent thermal strain like Strain as Direct Boundary (SDB) has been widely used due to effective prediction of welding deformation. Regarding the fillet welding, however, those methods cannot represent deformation of both members at once since the temperature degree of freedom is shared at the intersection nodes in both members. In this paper, we propose new approach to simulate deformation of both members. The method can simulate fillet weld deformations by employing composite shell element and using different thermal expansion coefficients according to thickness direction with fixed temperature at intersection nodes. For verification purpose, we compare of result from experiments, 3D thermo elastic plastic analysis, SDB method and proposed method. Compared of experiments results, the proposed method can effectively predict welding deformation for fillet welds.

  3. Welding Technician

    ERIC Educational Resources Information Center

    Smith, Ken

    2009-01-01

    About 95% of all manufactured goods in this country are welded or joined in some way. These welded products range in nature from bicycle handlebars and skyscrapers to bridges and race cars. The author discusses what students need to know about careers for welding technicians--wages, responsibilities, skills needed, career advancement…

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muth, Thomas R; Yamamoto, Yukinori; Frederick, David Alan

    ORNL undertook an investigation using gas tungsten arc (GTA) welding on consolidated powder metallurgy (PM) titanium (Ti) plate, to identify the causal factors behind observed porosity in fusion welding. Tramp element compounds of sodium and magnesium, residual from the metallothermic reduction of titanium chloride used to produce the titanium, were remnant in the starting powder and were identified as gas forming species. PM-titanium made from revert scrap where sodium and magnesium were absent, showed fusion weld porosity, although to a lesser degree. We show that porosity was attributable to hydrogen from adsorbed water on the surface of the powders priormore » to consolidation. The removal / minimization of both adsorbed water on the surface of titanium powder and the residues from the reduction process prior to consolidation of titanium powders, are critical to achieve equivalent fusion welding success similar to that seen in wrought titanium produced via the Kroll process.« less

  5. METHOD OF OBTAINING AN IMPROVED WELD IN INERT ARC WELDING

    DOEpatents

    Correy, T.B.

    1962-12-11

    A method is reported for inert arc welding. An a-c welding current is applied to the workpiece and welding electrode such that the positive portion of each cycle thereof, with the electrode positive, has only sufficient energy to clean the surface of the workpiece and the negative portion of each cycle thereof, with the electrode negative, contains the energy required to weld. (AEC)

  6. Introduction to Welding.

    ERIC Educational Resources Information Center

    Fortney, Clarence; Gregory, Mike

    This curriculum guide provides six units of instruction on basic welding. Addressed in the individual units of instruction are the following topics: employment opportunities for welders, welding safety and first aid, welding tools and equipment, basic metals and metallurgy, basic math and measuring, and procedures for applying for a welding job.…

  7. The effect of doping titanium dioxide nanoparticles on phase transformation, photocatalytic activity and anti-bacterial properties

    NASA Astrophysics Data System (ADS)

    Buzby, Scott Edward

    . Dopant ions with larger radii than titanium stress the crystal lattice promoting anatase formation, since it has a larger c/a ratio than rutile does. The cation dopants were also found to decrease the average particle size of the titanium dioxide nanoparticles. The defect sites caused by the doping prevent the nucleation and retard particle growth of titanium dioxide particles. Cation doping of titanium dioxide nanoparticles affect other properties of the nanoparticles besides the phase transitions. For example titanium dioxide doped with magnetic materials such as Fe, Ni, Co or Cr has been shown to display room temperature ferromagnetism which are currently being studied for use in spintronic devices. The antibacterial studies of silver doped titanium dioxide nanoparticles were carried out against Escherichia coli, both in nutrient solution and on agar-plates. Both studies show that while pure titanium dioxide has no antibacterial effect, when doped with as little as 0.72 atomic % silver becomes more effective than pure silver nanoparticles of similar size. It has been observed that with concentrations as low as 25mug/cm 2 of silver doped titanium dioxide, completely antibacterial surfaces may be synthesized.

  8. Reduction of Biomechanical and Welding Fume Exposures in Stud Welding.

    PubMed

    Fethke, Nathan B; Peters, Thomas M; Leonard, Stephanie; Metwali, Mahmoud; Mudunkotuwa, Imali A

    2016-04-01

    The welding of shear stud connectors to structural steel in construction requires a prolonged stooped posture that exposes ironworkers to biomechanical and welding fume hazards. In this study, biomechanical and welding fume exposures during stud welding using conventional methods were compared to exposures associated with use of a prototype system that allowed participants to weld from an upright position. The effect of base material (i.e. bare structural beam versus galvanized decking) on welding fume concentration (particle number and mass), particle size distribution, and particle composition was also explored. Thirty participants completed a series of stud welding simulations in a local apprenticeship training facility. Use of the upright system was associated with substantial reductions in trunk inclination and the activity levels of several muscle groups. Inhalable mass concentrations of welding fume (averaged over ~18 min) when using conventional methods were high (18.2 mg m(-3) for bare beam; 65.7 mg m(-3) for through deck), with estimated mass concentrations of iron (7.8 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), zinc (0.2 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), and manganese (0.9 mg m(-3) for bare beam; 1.5 mg m(-3) for through deck) often exceeding the American Conference of Governmental Industrial Hygienists Threshold Limit Values (TLVs). Number and mass concentrations were substantially reduced when using the upright system, although the total inhalable mass concentration remained above the TLV when welding through decking. The average diameters of the welding fume particles for both bare beam (31±17 nm) through deck conditions (34±34 nm) and the chemical composition of the particles indicated the presence of metallic nanoparticles. Stud welding exposes ironworkers to potentially high levels of biomechanical loading (primarily to the low back) and welding fume. The upright system used in this study improved exposure

  9. Pre-weld heat treatment improves welds in Rene 41

    NASA Technical Reports Server (NTRS)

    Prager, M.

    1968-01-01

    Cooling of Rene 41 prior to welding reduces the incidence of cracking during post-weld heat treatment. The microstructure formed during the slow cooling rate favors elevated temperature ductility. Some vestiges of this microstructure are apparently retained during welding and thus enhance strain-age crack resistance in air.

  10. High-Speed Friction-Stir Welding to Enable Aluminum Tailor-Welded Blanks

    NASA Astrophysics Data System (ADS)

    Hovanski, Yuri; Upadhyay, Piyush; Carsley, John; Luzanski, Tom; Carlson, Blair; Eisenmenger, Mark; Soulami, Ayoub; Marshall, Dustin; Landino, Brandon; Hartfield-Wunsch, Susan

    2015-05-01

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and they have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high volumes. While friction-stir welding (FSW) has been traditionally applied at linear velocities less than 1 m/min, high-volume production applications demand the process be extended to higher velocities more amenable to cost-sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low-to-moderate welding velocities do not directly translate to high-speed linear FSW. Therefore, to facilitate production of high-volume aluminum FSW components, parameters were developed with a minimum welding velocity of 3 m/min. With an emphasis on weld quality, welded blanks were evaluated for postweld formability using a combination of numerical and experimental methods. An evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum TWBs, which provided validation of the numerical and experimental analysis of laboratory-scale tests.

  11. Numerical and experimental determination of weld pool shape during high-power diode laser welding

    NASA Astrophysics Data System (ADS)

    Klimpel, Andrzej; Lisiecki, Aleksander; Szymanski, Andrzej; Hoult, Anthony P.

    2003-10-01

    In this paper, results of investigations on the shape of weld pool during High Power Diode Laser (HPDL) welding are presented. The results of tests showed that the shape of weld pool and mechanism of laser welding with a rectangular pattern of 808 nm laser radiation differs distinctly from previous laser welding mechanisms. For all power densities the conduction mode welds were observed and weld pool geometry depends significantly on the welding parameters.

  12. Welded joints integrity analysis and optimization for fiber laser welding of dissimilar materials

    NASA Astrophysics Data System (ADS)

    Ai, Yuewei; Shao, Xinyu; Jiang, Ping; Li, Peigen; Liu, Yang; Liu, Wei

    2016-11-01

    Dissimilar materials welded joints provide many advantages in power, automotive, chemical, and spacecraft industries. The weld bead integrity which is determined by process parameters plays a significant role in the welding quality during the fiber laser welding (FLW) of dissimilar materials. In this paper, an optimization method by taking the integrity of the weld bead and weld area into consideration is proposed for FLW of dissimilar materials, the low carbon steel and stainless steel. The relationships between the weld bead integrity and process parameters are developed by the genetic algorithm optimized back propagation neural network (GA-BPNN). The particle swarm optimization (PSO) algorithm is taken for optimizing the predicted outputs from GA-BPNN for the objective. Through the optimization process, the desired weld bead with good integrity and minimum weld area are obtained and the corresponding microstructure and microhardness are excellent. The mechanical properties of the optimized joints are greatly improved compared with that of the un-optimized welded joints. Moreover, the effects of significant factors are analyzed based on the statistical approach and the laser power (LP) is identified as the most significant factor on the weld bead integrity and weld area. The results indicate that the proposed method is effective for improving the reliability and stability of welded joints in the practical production.

  13. Weld-Bead Shaver

    NASA Technical Reports Server (NTRS)

    Guirguis, Kamal; Price, Daniel S.

    1990-01-01

    Hand-held power tool shaves excess metal from inside circumference of welded duct. Removes excess metal deposited by penetration of tungsten/inert-gas weld or by spatter from electron-beam weld. Produces smooth transition across joint. Easier to use and not prone to overshaving. Also cuts faster, removing 35 in. (89 cm) of weld bead per hour.

  14. Multi-phase functionalization of titanium for enhanced photon absorption in the vis-NIR region.

    PubMed

    Thakur, Pooja; Tan, Bo; Venkatakrishnan, Krishnan

    2015-10-19

    Inadequate absorption of Near Infrared (NIR) photons by conventional silicon solar cells has been a major stumbling block towards the attainment of a high efficiency "full spectrum" solar cell. An effective enhancement in the absorption of such photons is desired as they account for a considerable portion of the tappable solar energy. In this work, we report a remarkable gain observed in the absorption of photons in the near infrared and visible region (400 nm-1000 nm) by a novel multi-phased oxide of titanium. Synthesised via a single step ultra-fast laser pulse interaction with pure titanium, characterisation studies have identified this oxide of titanium to be multi-phased and composed of Ti3O, (TiO.716)3.76 and TiO2 (rutile). Computed to have an average band gap value of 2.39 eV, this ultrafast laser induced multi-phased titanium oxide has especially exhibited steady absorption capability in the NIR range of 750-1000 nm, which to the best of our knowledge, was never reported before. The unique NIR absorption properties of the laser functionalised titanium coupled with the simplicity and versatility of the ultrafast laser interaction process involved thereby provides tremendous potential towards the photon sensitization of titanium and thereafter for the inception of a "full spectrum" solar device.

  15. Impurities block the alpha to omega martensitic transformation in titanium.

    PubMed

    Hennig, Richard G; Trinkle, Dallas R; Bouchet, Johann; Srinivasan, Srivilliputhur G; Albers, Robert C; Wilkins, John W

    2005-02-01

    Impurities control phase stability and phase transformations in natural and man-made materials, from shape-memory alloys to steel to planetary cores. Experiments and empirical databases are still central to tuning the impurity effects. What is missing is a broad theoretical underpinning. Consider, for example, the titanium martensitic transformations: diffusionless structural transformations proceeding near the speed of sound. Pure titanium transforms from ductile alpha to brittle omega at 9 GPa, creating serious technological problems for beta-stabilized titanium alloys. Impurities in the titanium alloys A-70 and Ti-6Al-4V (wt%) suppress the transformation up to at least 35 GPa, increasing their technological utility as lightweight materials in aerospace applications. These and other empirical discoveries in technological materials call for broad theoretical understanding. Impurities pose two theoretical challenges: the effect on the relative phase stability, and the energy barrier of the transformation. Ab initio methods calculate both changes due to impurities. We show that interstitial oxygen, nitrogen and carbon retard the transformation whereas substitutional aluminium and vanadium influence the transformation by changing the d-electron concentration. The resulting microscopic picture explains the suppression of the transformation in commercial A-70 and Ti-6Al-4V alloys. In general, the effect of impurities on relative energies and energy barriers is central to understanding structural phase transformations.

  16. Arc Welding of Mg Alloys: Oxide Films, Irregular Weld Shape and Liquation Cracking

    NASA Astrophysics Data System (ADS)

    Chai, Xiao

    The use of Mg alloys for vehicle weight reduction has been increasing rapidly worldwide. Gas-metal arc welding (GMAW) has the potential for mass-production welding of Mg alloys. Recently, the University of Wisconsin demonstrated in bead-on-plate GMAW of Mg alloys that severe spatter can be eliminated by using controlled short circuiting (CSC), and severe hydrogen porosity can be eliminated by removing Mg(OH)2. The present study aimed at actual butt and lap welding of Mg alloys by CSC-GMAW and susceptibility of Mg alloys to weld-edge cracking using the circular-patch welding test. Sound welds were made without spatter and hydrogen porosity butt and lap welding of AZ 31 Mg using CSC-GMAW , with butt welds approaching 100% of the base-metal strength. However, three new significant issues were found to occur easily and degrade the weld quality significantly: 1. formation of oxide films inside butt welds, 2. formation of high crowns on butt welds, and 3. formation of fingers from lap welds. The mechanisms of their formation were established, and the methods for their elimination or reduction were demonstrated. Circular-patch welds were made on most widely used Mg casting alloy AZ91, the most widely used Mg wrought alloy AZ31 with three different Mg filler wires AZ31, AZ61 and AZ92. The susceptibility to cracking along the weld edge was predicted and compared against the experimental results. Such a prediction has not been made for welds of Mg alloys before.

  17. Oxy-Fuel Cutting/Welding. Welding Module 3. Instructor's Guide.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide is intended to assist vocational educators in teaching a four-unit module in oxy-fuel cutting and welding. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The following topics are covered in the module: oxyacetylene welding, oxyacetylene…

  18. Welding of Thin Steel Plates by Hybrid Welding Process Combined TIG Arc with YAG Laser

    NASA Astrophysics Data System (ADS)

    Kim, Taewon; Suga, Yasuo; Koike, Takashi

    TIG arc welding and laser welding are used widely in the world. However, these welding processes have some advantages and problems respectively. In order to improve problems and make use of advantages of the arc welding and the laser welding processes, hybrid welding process combined the TIG arc with the YAG laser was studied. Especially, the suitable welding conditions for thin steel plate welding were investigated to obtain sound weld with beautiful surface and back beads but without weld defects. As a result, it was confirmed that the shot position of the laser beam is very important to obtain sound welds in hybrid welding. Therefore, a new intelligent system to monitor the welding area using vision sensor is constructed. Furthermore, control system to shot the laser beam to a selected position in molten pool, which is formed by TIG arc, is constructed. As a result of welding experiments using these systems, it is confirmed that the hybrid welding process and the control system are effective on the stable welding of thin stainless steel plates.

  19. [New welding processes and health effects of welding].

    PubMed

    La Vecchia, G Marina; Maestrelli, Piero

    2011-01-01

    This paper describes some of the recent developments in the control technology to enhance capability of Pulse Gas Metal Arc Welding. Friction Stir Welding (FSW) processing has been also considered. FSW is a new solid-state joining technique. Heat generated by friction at the rotating tool softens the material being welded. FSW can be considered a green and energy-efficient technique without deleterious fumes, gas, radiation, and noise. Application of new welding processes is limited and studies on health effects in exposed workers are lacking. Acute and chronic health effects of conventional welding have been described. Metal fume fever and cross-shift decline of lung function are the main acute respiratory effects. Skin and eyes may be affected by heat, electricity and UV radiations. Chronic effects on respiratory system include chronic bronchitis, a benign pneumoconiosis (siderosis), asthma, and a possible increase in the incidence of lung cancer. Pulmonary infections are increased in terms of severity, duration, and frequency among welders.

  20. Weld analysis and control system

    NASA Technical Reports Server (NTRS)

    Kennedy, Larry Z. (Inventor); Rodgers, Michael H. (Inventor); Powell, Bradley W. (Inventor); Burroughs, Ivan A. (Inventor); Goode, K. Wayne (Inventor)

    1994-01-01

    The invention is a Weld Analysis and Control System developed for active weld system control through real time weld data acquisition. Closed-loop control is based on analysis of weld system parameters and weld geometry. The system is adapted for use with automated welding apparatus having a weld controller which is capable of active electronic control of all aspects of a welding operation. Enhanced graphics and data displays are provided for post-weld analysis. The system provides parameter acquisition, including seam location which is acquired for active torch cross-seam positioning. Torch stand-off is also monitored for control. Weld bead and parent surface geometrical parameters are acquired as an indication of weld quality. These parameters include mismatch, peaking, undercut, underfill, crown height, weld width, puddle diameter, and other measurable information about the weld puddle regions, such as puddle symmetry, etc. These parameters provide a basis for active control as well as post-weld quality analysis and verification. Weld system parameters, such as voltage, current and wire feed rate, are also monitored and archived for correlation with quality parameters.

  1. Plasma surface tantalum alloying on titanium and its corrosion behavior in sulfuric acid and hydrochloric acid

    NASA Astrophysics Data System (ADS)

    Wei, D. B.; Chen, X. H.; Zhang, P. Z.; Ding, F.; Li, F. K.; Yao, Z. J.

    2018-05-01

    An anti-corrosion Ti-Ta alloy coating was prepared on pure titanium surface by double glow plasma surface alloying technology. Electrochemical corrosion test was applied to test the anti-corrosion property of Ti-Ta alloy layer. The microstructure and the phase composition of Ti-Ta alloy coating were detected before and after corrosion process by means of scanning electron microscope (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The results showed that the Ta-Ti alloy layer has a thickness of about 13-15 μm, which is very dense without obvious defects such as pores or cracks. The alloy layer is composed mainly of β-Ta and α-Ti. The Ta alloy layer improves the anti-corrosion property of pure titanium. A denser and more durable TiO2 formed on the surface Ta-Ti alloy layer after immersing in strong corrosive media may account for the excellent corrosion resistant.

  2. Laser welding in space

    NASA Technical Reports Server (NTRS)

    Kaukler, W. F.; Workman, G. L.

    1991-01-01

    Autogenous welds in 304 stainless steel were performed by Nd-YAG laser heating in a simulated space environment. Simulation consists of welding on the NASA KC-135 aircraft to produce the microgravity and by containing the specimen in a vacuum chamber. Experimental results show that the microgravity welds are stronger, harder in the fusion zone, have deeper penetration and have a rougher surface rippling of the weld pool than one-g welds. To perform laser welding in space, a solar-pumped laser concept that significantly increases the laser conversion efficiency and makes welding viable despite the limited power availability of spacecraft is proposed.

  3. Dual wire welding torch and method

    DOEpatents

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  4. Improving the Quality of Welding Seam of Automatic Welding of Buckets Based on TCP

    NASA Astrophysics Data System (ADS)

    Hu, Min

    2018-02-01

    Since February 2014, the welding defects of the automatic welding line of buckets have been frequently appeared. The average repair time of each bucket is 26min, which seriously affects the production efficiency and welding quality. We conducted troubleshooting, and found the main reasons for the welding defects of the buckets were the deviations of the center points of the robot tools and the poor quality of the locating welding. We corrected the gripper, welding torch, and accuracy of repeat positioning of robots to control the quality of positioning welding. The welding defect rate of buckets was reduced greatly, ensuring the production efficiency and welding quality.

  5. Electroslag and electrogas welding

    NASA Technical Reports Server (NTRS)

    Campbell, H. C.

    1972-01-01

    These two new joining methods perform welding in the vertical position, and therein lies the secret of their impressive advantages in material handling, in weld preparation, in welding speed, in freedom from distortion, and in weld soundness. Once the work has been set in the proper vertical position for welding, no further plate handling is required. The molten filler metal is held in place by copper shoes or dams, and the weld is completed in one pass.

  6. [Effect of surface modification using laser on wear resistance of titanium].

    PubMed

    Sato, Yohei

    2005-02-01

    Severe wear of cast commercial pure (CP) titanium teeth was observed in a clinical survey. This study evaluated the wear resistance of cast CP titanium and titanium alloy teeth after the surface was modified using laser technology. Teeth patterns were duplicated from artificial first molars (Livdent FB30, GC, Japan). All teeth specimens were cast with CP Ti grade 3 (T-Alloy H, GC) and Ti-6Al-7Nb (T-Alloy Tough, GC). After the occlusal surface was blasted with Al(2)O(3), the occlusal contact points were modified using a laser (Neo laser L, Girrbach, Germany) at the following irradiation conditions (voltage: 260 V; pulse: 7 ms; focus: 1.5 mm). These parameters were determined by preliminary study. As a control, Type IV gold alloy (PGA-3, Ishifuku, Japan) was also cast conventionally. Both maxillary and mandibular teeth were worn using an in vitro two-body wear testing apparatus that simulated chewing function (60 strokes/min; grinding distance: 2 mm under flowing water). Wear resistance was assessed as volume loss (mm(3)) at 5 kgf (grinding force) after 50,000 strokes. The results (n=5) were analyzed by ANOVA/Scheffé's test (alpha=0.05). The gold alloy showed the best wear resistance of all the metals tested. Of all the titanium specimens tested, the modified surface indicated significantly greater wear resistance than did conventional titanium teeth without surface modification (p<0.05). Wear resistance was increased by modification of the surface using a laser. If severe wear of titanium teeth was observed clinically, little wear occurred when the occlusal facets were irradiated using a laser.

  7. Comparative study of circumferential clasp retention force for titanium and cobalt-chromium removable partial dentures.

    PubMed

    Rodrigues, Renata Cristina Silveira; Ribeiro, Ricardo Faria; de Mattos, Maria da Gloria Chiarello; Bezzon, Osvaldo Luiz

    2002-09-01

    The interest in using titanium to fabricate removable partial denture (RPD) frameworks has increased, but there are few studies to support its use. The objective of this study was to compare circumferential RPD clasps made of commercially pure titanium and identical clasps made of 2 different cobalt (Co)-chromium (Cr) alloys by testing insertion/removal and radiographically inspecting the casts for defects. On refractory casts that represent a partially edentulous mandibular right hemi-arch segment, 36 frameworks were cast from commercially pure titanium (n = 12) and 2 Co-Cr alloys (n = 12 each) with identical prefabricated patterns and the manufacturer-designated investment and casting technique. Each group was divided into 2 subgroups, corresponding to .25-mm and .50-mm undercuts, respectively. No polishing procedures were performed to ensure uniformity. Only nodules and burs were carefully removed with tungsten burs under magnification when necessary. The specimens were radiographed and subjected to an insertion/removal test simulating 5 years of framework use. The data were subjected to analysis of variance and the Tukey complementary test (P<.01) to compare the retentive forces of RPDs made with the different materials. The Student t test (P<.01) was used to compare the retentive forces of RPDs fabricated with the same alloy with different undercuts. A total of 20% of the titanium specimens demonstrated porosity, showing casting difficulties, and any defect detected on the clasps determined the sample replacement. For Co-Cr alloys, casting difficulties were not found. The data were subjected to analysis of variance and the Tukey complementary test to compare materials for the same undercut. For the .25-mm undercut, no significant difference was found between Magnum and Rematitan alloys; they were both different from the Remanium alloy (P<.01). For the.50-mm undercut, no significant difference was found between Co-Cr alloys; they were both different from

  8. Comparison between hybrid laser-MIG welding and MIG welding for the invar36 alloy

    NASA Astrophysics Data System (ADS)

    Zhan, Xiaohong; Li, Yubo; Ou, Wenmin; Yu, Fengyi; Chen, Jie; Wei, Yanhong

    2016-11-01

    The invar36 alloy is suitable to produce mold of composite materials structure because it has similar thermal expansion coefficient with composite materials. In the present paper, the MIG welding and laser-MIG hybrid welding methods are compared to get the more appropriate method to overcome the poor weldability of invar36 alloy. According to the analysis of the experimental and simulated results, it has been proved that the Gauss and cone combined heat source model can characterize the laser-MIG hybrid welding heat source well. The total welding time of MIG welding is 8 times that of hybrid laser-MIG welding. The welding material consumption of MIG welding is about 4 times that of hybrid laser-MIG welding. The stress and deformation simulation indicate that the peak value of deformation during MIG welding is 3 times larger than that of hybrid laser-MIG welding.

  9. Experimental investigation on the weld pool formation process in plasma keyhole arc welding

    NASA Astrophysics Data System (ADS)

    Van Anh, Nguyen; Tashiro, Shinichi; Van Hanh, Bui; Tanaka, Manabu

    2018-01-01

    This paper seeks to clarify the weld pool formation process in plasma keyhole arc welding (PKAW). We adopted, for the first time, the measurement of the 3D convection inside the weld pool in PKAW by stereo synchronous imaging of tungsten tracer particles using two sets of x-ray transmission systems. The 2D convection on the weld pool surface was also measured using zirconia tracer particles. Through these measurements, the convection in a wide range of weld pools from the vicinity of the keyhole to the rear region was successfully visualized. In order to discuss the heat transport process in a weld pool, the 2D temperature distribution on the weld pool surface was also measured by two-color pyrometry. The results of the comprehensive experimental measurement indicate that the shear force due to plasma flow is found to be the dominant driving force in the weld pool formation process in PKAW. Thus, heat transport in a weld pool is considered to be governed by two large convective patterns near the keyhole: (1) eddy pairs on the surface (perpendicular to the torch axis), and (2) eddy pairs on the bulk of the weld pool (on the plane of the torch). They are formed with an equal velocity of approximately 0.35 m s-1 and are mainly driven by shear force. Furthermore, the flow velocity of the weld pool convection becomes considerably higher than that of other welding processes, such as TIG welding and GMA welding, due to larger plasma flow velocity.

  10. Preparation of platinum modified titanium dioxide nanoparticles with the use of laser ablation in water.

    PubMed

    Siuzdak, K; Sawczak, M; Klein, M; Nowaczyk, G; Jurga, S; Cenian, A

    2014-08-07

    We report on the preparation method of nanocrystalline titanium dioxide modified with platinum by using nanosecond laser ablation in liquid (LAL). Titania in the form of anatase crystals has been prepared in a two-stage process. Initially, irradiation by laser beam of a titanium metal plate fixed in a glass container filled with deionized water was conducted. After that, the ablation process was continued, with the use of a platinum target placed in a freshly obtained titania colloid. In this work, characterization of the obtained nanoparticles, based on spectroscopic techniques--Raman, X-ray photoelectron and UV-vis reflectance spectroscopy--is given. High resolution transmission electron microscopy was used to describe particle morphology. On the basis of photocatalytic studies we observed the rate of degradation process of methylene blue (MB) (a model organic pollution) in the presence of Pt modified titania in comparison to pure TiO2--as a reference case. Physical and chemical mechanisms of the formation of platinum modified titania are also discussed here. Stable colloidal suspensions containing Pt modified titanium dioxide crystalline anatase particles show an almost perfect spherical shape with diameters ranging from 5 to 30 nm. The TiO2 nanoparticles decorated with platinum exhibit much higher (up to 30%) photocatalytic activity towards the degradation of MB under UV illumination than pure titania.

  11. Narrow gap laser welding

    DOEpatents

    Milewski, John O.; Sklar, Edward

    1998-01-01

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables.

  12. Narrow gap laser welding

    DOEpatents

    Milewski, J.O.; Sklar, E.

    1998-06-02

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables. 34 figs.

  13. Effects of welding technology on welding stress based on the finite element method

    NASA Astrophysics Data System (ADS)

    Fu, Jianke; Jin, Jun

    2017-01-01

    Finite element method is used to simulate the welding process under four different conditions of welding flat butt joints. Welding seams are simulated with birth and death elements. The size and distribution of welding residual stress is obtained in the four kinds of welding conditions by Q345 manganese steel plate butt joint of the work piece. The results shown that when using two-layers welding,the longitudinal and transverse residual stress were reduced;When welding from Middle to both sides,the residual stress distribution will change,and the residual stress in the middle of the work piece was reduced.

  14. Osteogenic activity and antibacterial effect of porous titanium modified with metal-organic framework films.

    PubMed

    Chen, Junyu; Zhang, Xin; Huang, Chao; Cai, He; Hu, Shanshan; Wan, Qianbing; Pei, Xibo; Wang, Jian

    2017-03-01

    As a new class of crystalline nanoporous materials, metal-organic frameworks (MOFs) have recently been used for biomedical applications due to their large surface area, high porosity, and theoretically infinite structures. To improve the biological performance of titanium, MOF films were applied to surface modification of titanium. Zn-based MOF films composed of zeolitic imidazolate framework-8 (ZIF-8) crystals with nanoscale and microscale sizes (nanoZIF-8 and microZIF-8) were prepared on porous titanium surfaces by hydrothermal and solvothermal methods, respectively. The ZIF-8 films were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The nanoZIF-8 film exhibited good biocompatibility, whereas the microZIF-8 film showed obvious cytotoxicity to MG63 cells. Compared to pure titanium and alkali- and heat-treated porous titanium, the nanoZIF-8 film not only enhanced alkaline phosphatase (ALP) activity, extracellular matrix mineralization, and expression of osteogenic genes (ALP, Runx2) in MG63 cells but also inhibited the growth of Streptococcus mutans. These results indicate that MOF films or coatings may be promising candidates for bone tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 834-846, 2017. © 2016 Wiley Periodicals, Inc.

  15. Analysis and Comparison of Aluminum Alloy Welded Joints Between Metal Inert Gas Welding and Tungsten Inert Gas Welding

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Guan, Yingchun; Wang, Qiang; Cong, Baoqiang; Qi, Bojin

    2015-09-01

    Surface contamination usually occurs during welding processing and it affects the welds quality largely. However, the formation of such contaminants has seldom been studied. Effort was made to study the contaminants caused by metal inert gas (MIG) welding and tungsten inert gas (TIG) welding processes of aluminum alloy, respectively. SEM, FTIR and XPS analysis was carried out to investigate the microstructure as well as surface chemistry. These contaminants were found to be mainly consisting of Al2O3, MgO, carbide and chromium complexes. The difference of contaminants between MIG and TIG welds was further examined. In addition, method to minimize these contaminants was proposed.

  16. Electric arc welding gun

    DOEpatents

    Luttrell, Edward; Turner, Paul W.

    1978-01-01

    This invention relates to improved apparatus for arc welding an interior joint formed by intersecting tubular members. As an example, the invention is well suited for applications where many similar small-diameter vertical lines are to be welded to a long horizontal header. The improved apparatus includes an arc welding gun having a specially designed welding head which is not only very compact but also produces welds that are essentially free from rolled-over solidified metal. The welding head consists of the upper end of the barrel and a reversely extending electrode holder, or tip, which defines an acute angle with the barrel. As used in the above-mentioned example, the gun is positioned to extend upwardly through the vertical member and the joint to be welded, with its welding head disposed within the horizontal header. Depending on the design of the welding head, the barrel then is either rotated or revolved about the axis of the vertical member to cause the electrode to track the joint.

  17. Synchrotron X-ray CT characterization of titanium parts fabricated by additive manufacturing. Part II. Defects.

    PubMed

    Scarlett, Nicola Vivienne Yorke; Tyson, Peter; Fraser, Darren; Mayo, Sheridan; Maksimenko, Anton

    2016-07-01

    Synchrotron X-ray tomography (SXRT) has been applied to the study of defects within three-dimensional printed titanium parts. These parts were made using the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V) as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. The samples represent a selection of complex shapes with a variety of internal morphologies. Inspection via SXRT has revealed a number of defects which may not otherwise have been seen. The location and nature of such defects combined with detailed knowledge of the process conditions can contribute to understanding the interplay between design and manufacturing strategy. This fundamental understanding may subsequently be incorporated into process modelling, prediction of properties and the development of robust methodologies for the production of defect-free parts.

  18. Performance of repair welds on aged Cr-Mo piping girth welds

    NASA Astrophysics Data System (ADS)

    Viswanathan, R.; Gandy, D. W.

    1999-10-01

    This article documents the results of an industry survey of weld repair practices and describes the results of experimental evaluations performed on service-aged 21/4 Cr-1Mo steel piping using SMAW with both conventional postweld heat treatments and temper bead repair techniques. The overall results of this program provide substantial evidence that service-aged piping systems can be successfully weld repaired with and without postweld heat treatments and that life extension by several decades is achievable under the right design and repair conditions. Weld repairs performed on degraded exservice welds resulted in restoration or improvement of tensile and creep properties. Microhardness test results within the heat-affected zone of each weldment indicated that the temper bead weld repairs produced only slightly higher peak hardness values than those measured for the fully postweld heat treated repairs. Finally, in terms of toughness, temper bead weld repairs consistently produced higher impact properties than those measured for the postweld heat treated weldments. Gas tungsten arc weld repairs with postweld heat treatment resulted in the best combination of tensile strength, uniform microhardness distribution across the weld, Charpy toughness, and creep rupture life.

  19. A novel weld seam detection method for space weld seam of narrow butt joint in laser welding

    NASA Astrophysics Data System (ADS)

    Shao, Wen Jun; Huang, Yu; Zhang, Yong

    2018-02-01

    Structured light measurement is widely used for weld seam detection owing to its high measurement precision and robust. However, there is nearly no geometrical deformation of the stripe projected onto weld face, whose seam width is less than 0.1 mm and without misalignment. So, it's very difficult to ensure an exact retrieval of the seam feature. This issue is raised as laser welding for butt joint of thin metal plate is widely applied. Moreover, measurement for the seam width, seam center and the normal vector of the weld face at the same time during welding process is of great importance to the welding quality but rarely reported. Consequently, a seam measurement method based on vision sensor for space weld seam of narrow butt joint is proposed in this article. Three laser stripes with different wave length are project on the weldment, in which two red laser stripes are designed and used to measure the three dimensional profile of the weld face by the principle of optical triangulation, and the third green laser stripe is used as light source to measure the edge and the centerline of the seam by the principle of passive vision sensor. The corresponding image process algorithm is proposed to extract the centerline of the red laser stripes as well as the seam feature. All these three laser stripes are captured and processed in a single image so that the three dimensional position of the space weld seam can be obtained simultaneously. Finally, the result of experiment reveals that the proposed method can meet the precision demand of space narrow butt joint.

  20. Passive Films, Surface Structure and Stress Corrosion and Crevice Corrosion Susceptibility. Part I. A Qualitative Ellipsometric-Electrochemical Approach for the Study of Film Growth under Organic Coatings. Part II. Hydrogen Interactions with Stressed Titanium-Palladium Alloys and Stressed Vanadium Explored with Field Ion Microscopy.

    DTIC Science & Technology

    1980-08-01

    vs. time for Fe with collodion in 0.05 N NaCl. 8. A, 6 p, pH and 0Fe vs. time for Fe with collodion and CrO 4 " 2 islands in 0.05 N NaCl. REFERENCES...hydrogen embrittlement with the field ion microscope, and to compare the results with those previously obtained with pure titanium [ 4 ]. 2.2. Specimen...percent pure, and was used in the previous field ion microscopy study of titanium [ 4 ], where it was found that strain annealing titanium wire markedly