Science.gov

Sample records for pure titanium welds

  1. Tensile and flexural strength of commercially pure titanium submitted to laser and tungsten inert gas welds.

    PubMed

    Atoui, Juliana Abdallah; Felipucci, Daniela Nair Borges; Pagnano, Valéria Oliveira; Orsi, Iara Augusta; Nóbilo, Mauro Antônio de Arruda; Bezzon, Osvaldo Luiz

    2013-01-01

    This study evaluated the tensile and flexural strength of tungsten inert gas (TIG) welds in specimens made of commercially pure titanium (CP Ti) compared with laser welds. Sixty cylindrical specimens (2 mm diameter x 55 mm thick) were randomly assigned to 3 groups for each test (n=10): no welding (control), TIG welding (10 V, 36 A, 8 s) and Nd:YAG laser welding (380 V, 8 ms). The specimens were radiographed and subjected to tensile and flexural strength tests at a crosshead speed of 1.0 mm/min using a load cell of 500 kgf applied on the welded interface or at the middle point of the non-welded specimens. Tensile strength data were analyzed by ANOVA and Tukey's test, and flexural strength data by the Kruskal-Wallis test (α=0.05). Non-welded specimens presented significantly higher tensile strength (control=605.84 ± 19.83) (p=0.015) and flexural strength (control=1908.75) (p=0.000) than TIG- and laser-welded ones. There were no significant differences (p>0.05) between the welding types for neither the tensile strength test (TIG=514.90 ± 37.76; laser=515.85 ± 62.07) nor the flexural strength test (TIG=1559.66; laser=1621.64). As far as tensile and flexural strengths are concerned, TIG was similar to laser and could be suitable to replace laser welding in implant-supported rehabilitations.

  2. Tensile and flexural strength of commercially pure titanium submitted to laser and tungsten inert gas welds.

    PubMed

    Atoui, Juliana Abdallah; Felipucci, Daniela Nair Borges; Pagnano, Valéria Oliveira; Orsi, Iara Augusta; Nóbilo, Mauro Antônio de Arruda; Bezzon, Osvaldo Luiz

    2013-01-01

    This study evaluated the tensile and flexural strength of tungsten inert gas (TIG) welds in specimens made of commercially pure titanium (CP Ti) compared with laser welds. Sixty cylindrical specimens (2 mm diameter x 55 mm thick) were randomly assigned to 3 groups for each test (n=10): no welding (control), TIG welding (10 V, 36 A, 8 s) and Nd:YAG laser welding (380 V, 8 ms). The specimens were radiographed and subjected to tensile and flexural strength tests at a crosshead speed of 1.0 mm/min using a load cell of 500 kgf applied on the welded interface or at the middle point of the non-welded specimens. Tensile strength data were analyzed by ANOVA and Tukey's test, and flexural strength data by the Kruskal-Wallis test (α=0.05). Non-welded specimens presented significantly higher tensile strength (control=605.84 ± 19.83) (p=0.015) and flexural strength (control=1908.75) (p=0.000) than TIG- and laser-welded ones. There were no significant differences (p>0.05) between the welding types for neither the tensile strength test (TIG=514.90 ± 37.76; laser=515.85 ± 62.07) nor the flexural strength test (TIG=1559.66; laser=1621.64). As far as tensile and flexural strengths are concerned, TIG was similar to laser and could be suitable to replace laser welding in implant-supported rehabilitations. PMID:24474361

  3. The Fatigue Behavior of Built-Up Welded Beams of Commercially Pure Titanium

    NASA Astrophysics Data System (ADS)

    Patnaik, Anil; Poondla, Narendra; Bathini, Udaykar; Srivatsan, T. S.

    2011-10-01

    In this article, the results of a recent study aimed at evaluating, understanding, and rationalizing the extrinsic influence of fatigue loading on the response characteristics of built-up welded beams made from commercially pure titanium (Grade 2) are presented and discussed. The beams were made from welding plates and sheets of titanium using the pulsed gas metal arc welding technique to form a structural beam having an I-shaped cross section. The welds made for the test beams of the chosen metal were fillet welds using a matching titanium filler metal wire. The maximum and minimum load values at which the built-up beams were cyclically deformed were chosen to be within the range of 22-45% of the maximum predicted flexural static load. The beams were deformed in fatigue at a stress ratio of 0.1 and constant frequency of 5 Hz. The influence of the ratio of maximum load with respect to the ultimate failure load on fatigue performance, quantified in terms of fatigue life, was examined. The percentage of maximum load to ultimate load that resulted in run-out of one million cycles was established. The overall fracture behavior of the failed beam sample was characterized by scanning electron microscopy observations to establish the conjoint influence of load severity, intrinsic microstructural effects, and intrinsic fracture surface features in governing failure by fracture.

  4. Investigations on the Effects of the Tool Material, Geometry, and Tilt Angle on Friction Stir Welding of Pure Titanium

    NASA Astrophysics Data System (ADS)

    Reshad Seighalani, K.; Besharati Givi, M. K.; Nasiri, A. M.; Bahemmat, P.

    2010-10-01

    Friction stir welding (FSW) parameters, such as tool material, tool geometry, tilt angle, tool rotational speed, welding speed, and axial force play a major role in the weld quality of titanium alloys. Because of excessive erosion, tool material and geometry play the main roles in FSW of titanium alloys. Therefore, in the present work for the first time, tool material and geometry, tool tilt angle, cooling system and shielding gas effects on macrostructure, microstructure, and mechanical properties of pure titanium weld joint were investigated. Result of this research shows that Ti can be joined by the FSW, using a tool with a shoulder made of tungsten (W) and simple pin made of tungsten carbide (WC). The best conditions for welding were use of compressed air as a cooling system, tool tilt angle of 1°, and a stream of Argon as a shielding medium. Investigation on mechanical properties shows that the tensile strength and the yield strength of the welded joint in the best case could be similar to the corresponding strengths of the base metal.

  5. Effect of Heat Input on Microstructural Changes and Corrosion Behavior of Commercially Pure Titanium Welds in Nitric Acid Medium

    NASA Astrophysics Data System (ADS)

    Ravi Shankar, A.; Gopalakrishnan, G.; Balusamy, V.; Kamachi Mudali, U.

    2009-11-01

    Commercially pure titanium (Ti) has been selected for the fabrication of dissolver for the proposed fast reactor fuel reprocessing plant at Kalpakkam, India. In the present investigation, microstructural changes and corrosion behavior of tungsten inert gas (TIG) welds of Ti grade-1 and grade-2 with different heat inputs were carried out. A wider heat affected zone was observed with higher heat inputs and coarse grains were observed from base metal toward the weld zone with increasing heat input. Fine and more equiaxed prior β grains were observed at lower heat input and the grain size increased toward fusion zone. The results indicated that Ti grade-1 and grade-2 with different heat inputs and different microstructures were insensitive to corrosion in liquid, vapor, and condensate phases of 11.5 M nitric acid tested up to 240 h. The corrosion rate in boiling liquid phase (0.60-0.76 mm/year) was higher than that in vapor (0.012-0.039 mm/year) and condensate phases (0.04-0.12 mm/year) of nitric acid for Ti grade-1 and grade-2, as well as for base metal for all heat inputs. Potentiodynamic polarization experiment carried out at room temperature indicated higher current densities and better passivation in 11.5 M nitric acid. SEM examination of Ti grade-1 welds for all heat inputs exposed to liquid phase after 240 h showed corrosion attack on the surface, exposing Widmanstatten microstructure containing acicular alpha. The continuous dissolution of the liquid-exposed samples was attributed to the heterogeneous microstructure and non-protective passive film formation.

  6. Temporarily alloying titanium to facilitate friction stir welding

    SciTech Connect

    Hovanski, Yuri

    2009-05-01

    While historically hydrogen has been considered an impurity in titanium, when used as a temporary alloying agent it promotes beneficial changes to material properties that increase the hot-workability of the metal. This technique known as thermohydrogen processing was used to temporarily alloy hydrogen with commercially pure titanium sheet as a means of facilitating the friction stir welding process. Specific alloying parameters were developed to increase the overall hydrogen content of the titanium sheet ranging from commercially pure to 30 atomic percent. Each sheet was evaluated to determine the effect of the hydrogen content on process loads and tool deformation during the plunge phase of the friction stir welding process. Two materials, H-13 tool steel and pure tungsten, were used to fabricate friction stir welding tools that were plunged into each of the thermohydrogen processed titanium sheets. Tool wear was characterized and variations in machine loads were quantified for each tool material and weld metal combination. Thermohydrogen processing was shown to beneficially lower plunge forces and stabilize machine torques at specific hydrogen concentrations. The resulting effects of hydrogen addition to titanium metal undergoing the friction stir welding process are compared with modifications in titanium properties documented in modern literature. Such comparative analysis is used to explain the variance in resulting process loads as a function of the initial hydrogen concentration of the titanium.

  7. Improved diffusion welding and roll welding of titanium alloys

    NASA Technical Reports Server (NTRS)

    Holko, K. H.

    1973-01-01

    Auto-vacuum cleaning technique was applied to titanium parts prior to welding. This provides oxide-free welding surfaces. Diffusion welding can be accomplished in as little as five minutes of hot pressing. Roll welding can be accomplished with only ten percent deformation.

  8. Welding of titanium and nickel alloy by combination of explosive welding and spark plasma sintering technologies

    SciTech Connect

    Malyutina, Yu. N. Bataev, A. A. Shevtsova, L. I.; Mali, V. I. Anisimov, A. G.

    2015-10-27

    A possibility of titanium and nickel-based alloys composite materials formation using combination of explosive welding and spark plasma sintering technologies was demonstrated in the current research. An employment of interlayer consisting of copper and tantalum thin plates makes possible to eliminate a contact between metallurgical incompatible titanium and nickel that are susceptible to intermetallic compounds formation during their interaction. By the following spark plasma sintering process the bonding has been received between titanium and titanium alloy VT20 through the thin powder layer of pure titanium that is distinguished by low defectiveness and fine dispersive structure.

  9. Weld bonding of titanium with polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Sheppard, C. H.; Orell, M. K.

    1975-01-01

    A conductive adhesive primer and a capillary flow adhesive were developed for weld bonding titanium alloy joints. Both formulations contained ingredients considered to be non-carcinogenic. Lap-shear joint test specimens and stringer-stiffened panels were weld bonded using a capillary flow process to apply the adhesive. Static property information was generated for weld bonded joints over the temperature range of 219K (-65 F) to 561K (550 F). The capillary flow process was demonstrated to produce weld bonded joints of equal strength to the weld through weld bonding process developed previously.

  10. Welding of gamma titanium aluminide alloys

    NASA Technical Reports Server (NTRS)

    Smashey, Russell W. (Inventor); Kelly, Thomas J. (Inventor); Snyder, John H. (Inventor); Sheranko, Ronald L. (Inventor)

    1998-01-01

    An article made of a gamma titanium aluminide alloy is welded, as for example in the weld repair of surface cracks, by removing foreign matter from the area to be welded, first stress relieving the article, cooling the entire article to a welding temperature of from about 1000.degree. F. to about 1400.degree. F., welding a preselected region in an inert atmosphere at the welding temperature, and second stress relieving the article. Welding is preferably accomplished by striking an arc in the preselected region so as to locally melt the alloy in the preselected region, providing a filler metal having the same composition as the gamma titanium aluminide alloy of the article, and feeding the filler metal into the arc so that the filler metal is melted and fused with the article to form a weldment upon solidification.

  11. Method for producing titanium aluminide weld rod

    DOEpatents

    Hansen, Jeffrey S.; Turner, Paul C.; Argetsinger, Edward R.

    1995-01-01

    A process for producing titanium aluminide weld rod comprising: attaching one end of a metal tube to a vacuum line; placing a means between said vacuum line and a junction of the metal tube to prevent powder from entering the vacuum line; inducing a vacuum within the tube; placing a mixture of titanium and aluminum powder in the tube and employing means to impact the powder in the tube to a filled tube; heating the tube in the vacuum at a temperature sufficient to initiate a high-temperature synthesis (SHS) reaction between the titanium and aluminum; and lowering the temperature to ambient temperature to obtain a intermetallic titanium aluminide alloy weld rod.

  12. Polyimide weld bonding for titanium alloy joints

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Kurland, R. M.

    1974-01-01

    Two weld bonding processes were developed for joining titanium alloy; one process utilizes a weld-through technique and the other a capillary-flow technique. The adhesive used for the weld-through process is similar to the P4/A5F system. A new polyimide laminating resin, BFBI/BMPM, was used in the capillary-flow process. Static property information was generated for weld-bonded joints over the temperature range of 219 K (-65 F) to 561 K (+550 F) and fatigue strength information was generated at room temperature. Significant improvement in fatigue strength was demonstrated for weld-bonded joints over spot-welded joints. A demonstration was made of the applicability of the weld-through weld-bonding process for fabricating stringer stiffened skin panels.

  13. Metallurgy and deformation of electron beam welded similar titanium alloys

    NASA Astrophysics Data System (ADS)

    Pasang, T.; Sabol, J. C.; Misiolek, W. Z.; Mitchell, R.; Short, A. B.; Littlefair, G.

    2012-04-01

    Butt welded joins were produced between commercially pure titanium and various titanium alloys using an electron beam welding technique. The materials used represent commercially pure grade, α-β alloy and β alloy. They were CP Ti, Ti-6Al-4V (Ti64) and Ti-5Al-5V-5Mo-3Cr (Ti5553), respectively. Grains were largest in the FZs of the different weldments, decreasing in size towards the heat affected zones (HAZs) and base metals. Hardness measurements taken across the traverse cross-sections of the weldments were constant from base metal-to-weld-to-base metal for CP Ti/CP Ti and Ti64/Ti64 welds, while the FZ of Ti5553/Ti5553 had a lower hardness compared with the base metal. During tensile testing the CP Ti/CP Ti weldments fractured at the base metal, whereas both the Ti64/Ti64 and Ti5553/Ti5553 broke at the weld zones. Fracture surface analysis suggested microvoid coalescence as the failure mechanism. The compositional analysis showed a relatively uniform distribution of solute elements from base metal-to-weld-to-base metal. CP Ti has always been known for its excellent weldability, Ti64 has good weldability and, preliminary results indicated that Ti5553 alloy is also weldable.

  14. Mechanical properties of thin films of laser-welded titanium and their associated welding defects.

    PubMed

    Wu, Yulu; Xin, Haitao; Zhang, Chunbao; Tang, Zhongbin; Zhang, Zhiyuan; Wang, Weifeng

    2014-11-01

    The aim of this study was to evaluate the mechanical properties of thin films of laser-welded cast titanium using an interference strain/displacement gauge (ISDG) and to analyze factors that affect laser welding. Dog-bone-shaped small specimens of cast titanium were prepared by wire cutting after they were laser-welded. The specimens were divided into three groups according to the gap distance of the laser weld; the control was non-welded titanium. Small specimens without cast defects detected by X-ray screening were measured by a tensile test machine using ISDG, and stress-strain curves were drawn. Finally, the fracture texture was analyzed. The ultimate tensile strengths (UTSs) of specimens with a gap distance of 0.00, 0.25, and 0.50 mm were 492.16 ± 33.19, 488.09 ± 43.18, and 558.45 ± 10.80 MPa, respectively. There were no significant differences in UTS between the test groups and the control group (p > 0.05). However, the plastic deformation and the percent elongation increased as the gap distance increased. Incomplete penetration defects appeared in groups that had small gap distances, which may have affected the properties of the laser-welded titanium. However, the welding material was still pure titanium. These results suggest that an appropriate gap distance should be maintained to improve the application of dental laser welding.

  15. Laser-TIG Welding of Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Turichin, G.; Tsibulsky, I.; Somonov, V.; Kuznetsov, M.; Akhmetov, A.

    2016-08-01

    The article presents the results of investigation the technological opportunity of laser-TIG welding of titanium alloys. The experimental stand for implementation of process with the capability to feed a filler wire was made. The research of the nature of transfer the filler wire into the welding pool has been demonstrated. The influence of distance between the electrode and the surface of the welded plates on the stability of the arc was shown. The relationship between welding velocity, the position of focal plane of the laser beam and the stability of penetration of plates was determined.

  16. Dynamics of near-alpha titanium welding

    NASA Astrophysics Data System (ADS)

    Neuberger, Brett William

    Typically, when gas tungsten arc welding (GTAW) is employed to join near-alpha titanium alloys, the resulting weld fusion zone (FZ) is much harder than that of the base metal (BM), thereby leading to lost ductility. The aim of this investigation was to improve FZ ductility of Ti-5Al-1Sn-1V-1Zr-0.8Mo by modifying filler metal chemistry. In this regard, metallic yttrium was added to the filler metal and aluminum concentration reduced. It was believed that additions of yttrium would lead to formation of yttria in the weld melt, thereby promoting heterogeneous nucleation. Since oxygen and aluminum both act as alpha-stabilizers, expected pickup of oxygen during the welding process will be offset by the aluminum reduction. Tensile testing indicated that modified filler metal welds showed a dramatic increase in ductility of the FZ. Fracture toughness testing showed that while JIC values decreased in all welds, the tearing modulus, T, in modified filler metal welds was significantly higher than that of matching filler metal welds. Microhardness mapping of the weld zones illustrated that modified filler metal welds were significantly softer than matching filler metal welds. Microstructural examinations were completed through the use of optical, SEM and TEM studies, indicating that there was a presence of nano-particles in the weld FZ. XPS analysis identified these particles as yttrium oxysulfate. WDS analysis across the welds' heat affected zones demonstrated that there is an internal diffusion of oxygen from the BM into the FZ. Research results indicate yttrium oxysulfide particles form in the weld pool, act as a drag force on the solidification front and limit growth of prior-beta grain boundaries. The reduced prior-beta grain size and removal of interstitial oxygen from the matrix in modified filler metal welds, further enhanced by oxidation of yttrium oxysulfide to yttrium oxysulfate, leads to increased ductility in the weld's FZ. Addition of yttrium to the weld also

  17. Interfacial oxidations of pure titanium and titanium alloys with investments.

    PubMed

    Ban, S; Watanabe, T; Mizutani, N; Fukui, H; Hasegawa, J; Nakamura, H

    2000-12-01

    External oxides of a commercially pure titanium (cpTi), Ti6Al4V alloy, and an experimental beta-type titanium alloy (Ti 53.4 wt%, Nb 29 wt%, Ta 13 wt%, and Zr 4.6 wt%) were characterized after heating to 600, 900, 1150, and 1400 degrees C in contact with three types of investments (alumina cement, magnesia cement, and phosphate-bonded) in air. XRD studies demonstrated that MgO, Li2TiO3 and/or Li2Ti3O7 were formed through reactions with the metal and the constituents in the magnesia cement-investment after heating to 900, 1150, and 1400 degrees C. Except for these conditions, TiO2 (rutile) was only formed on cpTi. For titanium alloys, the other components apart from Ti also formed simple and complex oxides such as Al2O3 and Al2TiO5 on Ti6Al4V, and Zr0.25Ti0.75Nb2O7 on the beta-type titanium alloy. However, no oxides containing V or Ta were formed. These results suggest that the constituents of titanium alloys reacted with the investment oxides and atmospheric oxygen to form external oxides due to the free energy of oxide formation and the concentration of each element on the metal surface.

  18. Electron Beam Welding to Join Gamma Titanium Aluminide Articles

    NASA Technical Reports Server (NTRS)

    Kelly, Thomas Joseph (Inventor)

    2008-01-01

    A method is provided for welding two gamma titanium aluminide articles together. The method includes preheating the two articles to a welding temperature of from about 1700 F to about 2100 F, thereafter electron beam welding the two articles together at the welding temperature and in a welding vacuum to form a welded structure, and thereafter annealing the welded structure at an annealing temperature of from about 1800 F to about 2200 F, to form a joined structure.

  19. Optimal welding of beta titanium orthodontic wires.

    PubMed

    Nelson, K R; Burstone, C J; Goldberg, A J

    1987-09-01

    Today the orthodontist is confronted by an array of new orthodontic wire materials that, when applied to appliance design, can vastly increase the flexibility and versatility of therapy. Welded joints, especially for the newer titanium alloy wires, provide a means to extend the useful applications of these materials. The purpose of this study was to determine the optimum settings for electrical resistance welding of various configurations of titanium-molybdenum (TMA) wires. Specimens were of a t-joint configuration and were mechanically tested in torsion to simulate the failure mode most often observed in clinical practice. Variables included wire size, wire orientation, and welding voltage. Results indicated that excellent welds can be obtained with very little loss of strength and ductility in the area of the weld joint. Torsional loads at failure were at least 90% of the unwelded base material. Although a wide range of voltage settings resulted in high-strength welds, typically a narrow range of voltages yielded optimal ductility.

  20. Multilayered titanium-steel composite produced by explosive welding

    NASA Astrophysics Data System (ADS)

    Malyutina, Yu. N.; Skorohod, K. A.; Shevtsova, K. E.; Chesnokova, A. V.

    2015-10-01

    Multilayered titanium-steel composite consisting of alternating high-strength and ductile metallic materials were produced by explosive welding. Different types of weld joints formed in the composite were recognized by methods of microstructural analysis. Wave-shaped and flat geometry of welds are typical of steel and titanium layers, respectively. Structural features such as lack of penetration, shear bands, recrystallized metals and martensitic structure were detected in the vortex and weld-adjacent zones of impacted materials. The impact strength of the layered composite was 65% higher as compared to that of VT23 titanium alloy. A favorable role of interlayers in the multilayered composite has been confirmed by toughness tests.

  1. Causal Factors of Weld Porosity in Gas Tungsten Arc Welding of Powder Metallurgy Produced Titanium Alloys

    SciTech Connect

    Muth, Thomas R; Yamamoto, Yukinori; Frederick, David Alan; Contescu, Cristian I; Chen, Wei; Lim, Yong Chae; Peter, William H; Feng, Zhili

    2013-01-01

    ORNL undertook an investigation using gas tungsten arc (GTA) welding on consolidated powder metallurgy (PM) titanium (Ti) plate, to identify the causal factors behind observed porosity in fusion welding. Tramp element compounds of sodium and magnesium, residual from the metallothermic reduction of titanium chloride used to produce the titanium, were remnant in the starting powder and were identified as gas forming species. PM-titanium made from revert scrap where sodium and magnesium were absent, showed fusion weld porosity, although to a lesser degree. We show that porosity was attributable to hydrogen from adsorbed water on the surface of the powders prior to consolidation. The removal / minimization of both adsorbed water on the surface of titanium powder and the residues from the reduction process prior to consolidation of titanium powders, are critical to achieve equivalent fusion welding success similar to that seen in wrought titanium produced via the Kroll process.

  2. Microstructural characterization and hardness properties of electric resistance welding titanium joints for dental applications.

    PubMed

    Ceschini, Lorella; Boromei, Iuri; Morri, Alessandro; Nardi, Diego; Sighinolfi, Gianluca; Degidi, Marco

    2015-06-01

    The electric resistance welding procedure is used to join a titanium bar with specific implant abutments in order to produce a framework directly in the oral cavity of the patient. This investigation studied the effects of the welding process on microstructure and hardness properties of commercially pure (CP2 and CP4) Ti components. Different welding powers and cooling procedures were applied to bars and abutments, normally used to produce the framework, in order to simulate the clinical intraoral welding procedure. The analyses highlighted that the joining process did not induce appreciable changes in the geometry of the abutments. However, because of unavoidable microstructural modifications in the welded zones, the hardness decreased to values lower than those of the unwelded CP2 and CP4 Ti grades, irrespective of the welding environments and parameters. PMID:26045042

  3. Microstructural characterization and hardness properties of electric resistance welding titanium joints for dental applications.

    PubMed

    Ceschini, Lorella; Boromei, Iuri; Morri, Alessandro; Nardi, Diego; Sighinolfi, Gianluca; Degidi, Marco

    2015-06-01

    The electric resistance welding procedure is used to join a titanium bar with specific implant abutments in order to produce a framework directly in the oral cavity of the patient. This investigation studied the effects of the welding process on microstructure and hardness properties of commercially pure (CP2 and CP4) Ti components. Different welding powers and cooling procedures were applied to bars and abutments, normally used to produce the framework, in order to simulate the clinical intraoral welding procedure. The analyses highlighted that the joining process did not induce appreciable changes in the geometry of the abutments. However, because of unavoidable microstructural modifications in the welded zones, the hardness decreased to values lower than those of the unwelded CP2 and CP4 Ti grades, irrespective of the welding environments and parameters.

  4. CO2 laser welding of titanium aluminide intermetallic compound

    NASA Astrophysics Data System (ADS)

    Kuwahara, Gaku; Yamaguchi, Shigeru; Nanri, Kenzo; Ootani, Masanori; Seto, Sachio; Arai, Mikiya; Fujioka, Tomoo

    2000-02-01

    Titanium aluminide intermetallic compound is studied to find out good welding conditions using CO2 laser irradiation. In the experiment, we used the casting titanium aluminide containing iron, vanadium and boron with a thickness of 2 mm. We carried out bead-on-plate laser welding at various initial temperatures of specimens varied from room temperature to 873 [K] in inert gas environment filled with argon. We measured fused depth, bead width and Vickers hardness. As a result of experiments, welding speeds that allow full bead-on- plate welding to be possible were strongly by dependent on the initial temperature, 3000 [mm/min], initial temperature 873 [K], 2600 [mm/mm], initial temperature 673 [K], and 2000 [mm/min] with 300 [K]. Transverse crack-free welding was achieved, when initial temperature was at 873 [K].

  5. [Experimental research on porcelain fused to the surface of pure titanium and titanium alloys].

    PubMed

    Wang, D; Ai, S; Xu, J

    1995-07-01

    Titanium material has been widely used in prosthodontics since the end of 1980s. However, the research on porcelain fused to the surfaces of titanium material was quite few. This article introduced the technological process of low-fusing dental porcelain--Ceratin fused to pure titanium and titanium alloys. The values of the bond strength of Ceratin and titanium substrates were obtained by shearing test with INSTRON Model-1185. The average value of the shearing strength between TA2 and Ceratin was 31. 01MPa. The corresponding value between TC4 and Ceratin was 33.73MPa. The interface between Ceratin and titanium substrate was observed with scanning electron microscope (SEM). The results of this research proposed that it is hopeful that Ceratin is used as special procelain with titanium material.

  6. Chemical modification of pure titanium surfaces for oral implants.

    PubMed

    Pimenta, J; Castro, F

    1999-01-01

    A technique that achieves different pure titanium surfaces depending on acid concentration and exposure time is described. It is possible to obtain, with the same chemical treatment, both large pits and small rugosities. This technique may have interesting applications in oral implants.

  7. Fiber Lasers Application for Welding of Titanium Alloys With 16 mm Thickness

    NASA Astrophysics Data System (ADS)

    Evtihiev, N. N.; Grezev, N. V.; Markushov, Y. V.; Murzakov, M. A.

    2016-09-01

    This article illustrates the use of fiber laser welding of a titanium alloy with 16 mm thickness. The basic advantages of the laser welding process over the traditional methods of arc welding of titanium are demonstrated. Destructive testing of welds was performed to confirm the quality of the welding. The results of the static tensile tests, static bending and toughness at room temperature are presented. All tests confirmed the high quality of the welded joint.

  8. Analysis and Characterization of the Role of Ni Interlayer in the Friction Welding of Titanium and 304 Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Muralimohan, C. H.; Ashfaq, M.; Ashiri, Rouholah; Muthupandi, V.; Sivaprasad, K.

    2016-01-01

    Joining of commercially pure Ti to 304 stainless steel by fusion welding processes possesses problems due to the formation of brittle intermetallic compounds in the weld metal, which degrade the mechanical properties of the joints. Solid-state welding processes are contemplated to overcome these problems. However, intermetallic compounds are likely to form even in Ti-SS joints produced with solid-state welding processes such as friction welding process. Therefore, interlayers are employed to prevent the direct contact between two base metals and thereby mainly to suppress the formation of brittle Ti-Fe intermetallic compounds. In the present study, friction-welded joints between commercially pure titanium and 304 stainless steel were obtained using a thin nickel interlayer. Then, the joints were characterized by optical microscopy, scanning electron microscopy, energy dispersive spectrometry, and X-ray diffractometry. The mechanical properties of the joints were evaluated by microhardness survey and tensile tests. Although the results showed that the tensile strength of the joints is even lower than titanium base metal, it is higher than that of the joints which were produced without nickel interlayer. The highest hardness value was observed at the interface between titanium and nickel interlayers indicating the formation of Ni-Ti intermetallic compounds. Formation these compounds was validated by XRD patterns. Moreover, in tensile tests, fracture of the joints occurred along this interface which is related to its brittle nature.

  9. Effect of Surface Nanocrystallization on Fatigue Behavior of Pure Titanium

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Sun, Qiaoyan; Xiao, Lin; Sun, Jun

    2016-01-01

    The high-cycle fatigue behavior was investigated in pure titanium after surface nanocrystallization (SNC Ti). Compared with the coarse-grained titanium (CG Ti) samples, the SNC Ti samples exhibit an improved fatigue life. The SNC has a remarkable influence on the fatigue cracks initiation and growth of pure titanium. The results show that, because the free-surface cracking is suppressed by the surface nanogradient structure in the SNC Ti, the fatigue cracks initiation sites change from the free surface to the subsurface. Meanwhile, the fatigue crack growth rate decreases due to the microstructural feature and residual compressive stress. The deformation twins in the subsurface of SNC Ti have a marked effect on the fatigue crack initiation and the crack growth. The former effect is due to the twin boundaries being preferential sites for crack initiation, while the latter is associated with the barriers that the twin boundaries pose to the propagation of dislocations. Furthermore, microstructural analysis indicates that the dislocation distribution in SNC Ti gradually becomes homogenous as fatigue processes. This homogeneous microstructure is also beneficial to the improvement of fatigue life.

  10. Welding metallurgy of titanium alloy C

    SciTech Connect

    Damkroger, B.K.; Knorovsky, G.A.; Headley, T.J.

    1994-12-31

    Alloy C (Ti-35V-15Cr) is an alloy developed by Pratt & Whitney for gas turbine engine applications. In addition to attractive physical and mechanical properties, the exceptional burn resistance of Alloy C make it an attractive candidate material for various aerospace and chemical processing industry applications. However, the fabricability of Alloy C can be limited by intergranular fusion zone cracking. In this study, the response of this material to welding cycles has been characterized with respect to microstructural evolution, thermal stress development, and susceptibility to weld cracking. The starting material for this study, 7.9 mm thick hot-rolled plate, has a microstructure consisting of an equiaxed {beta} matrix and two types of Ti (C,N) particles: one blocky and approximately 1 {mu} x 5{mu}, and the other, clusters of semicoherent 0.01 {mu} x 0.05 {mu} platelets representing the three possible variants of the (110)/(100) bcc/fcc orientation. In the heat-affected zone for example, the large blocky Ti(C,N) particles increase in size and number at the expense of the small platelets. A goal of this study was to examine the relative contributions of microstructural evolution and thermal stress development on the weld cracking susceptibility. The results of these studies are presented and combined to provide an understanding of the overall welding behavior of this material. The work was performed at Sandia National Laboratories supported by the U.S. Department of energy under contract number DE-AC04-76DR00789.

  11. Measurement of Work Hardening Behavior of Pure Titanium Sheet Using A Servo-Controlled Tube Bulge Testing Apparatus

    SciTech Connect

    Sumita, Takeshi; Kuwabara, Toshihiko; Hayashida, Yasuhiro

    2011-05-04

    Biaxial stress tests of rolled pure titanium sheet (JIS 1, 0.5 mm thick) have been carried out in order to investigate the anisotropic plastic deformation under biaxial tension. Rolled pure titanium sheet was bent and welded to make tubular specimens. Combined tension-internal pressure was applied to the tubular specimens using the servo-controlled tube bulge testing apparatus developed by one of the authors [Kuwabara, T., Yoshida, K., Narihara, K., Takahashi S., Int. J. Plasticity 21 (1), 101-117 (2002)], so that the strain rate ratio, {epsilon}{sub {phi}}:{epsilon}{theta}, in the axial ({phi}) and circumferential ({theta}) directions of the specimen was controlled to be constant. Contours of plastic work at different levels of plastic strain and stress paths under constant strain rate ratios have been observed in the first quadrant of stress space. It is found that the test material exhibits significant differential work hardening behavior with the increase of plastic work.

  12. Weld-brazing - a new joining process. [combination resistance spot welding and brazing of titanium alloys

    NASA Technical Reports Server (NTRS)

    Bales, T. T.; Royster, D. M.; Arnold, W. E., Jr.

    1972-01-01

    A joining process designated weld brazing which combines resistance spot welding and brazing has been developed. Resistance spot welding is used to position and align the parts as well as to establish a suitable faying surface gap for brazing. Fabrication is then completed by capillary flow of the braze alloy into the joint. The process has been used successfully to fabricate Ti-6Al-4V titanium alloy joints using 3003 aluminum braze alloy. Test results obtained on single overlap and hat-stiffened structural specimens show that weld brazed joints are superior in tensile shear, stress rupture, fatigue, and buckling than joint fabricated by spotwelding or brazing. Another attractive feature of the process is that the brazed joints is hermetically sealed by the braze material.

  13. Joining titanium materials with tungsten inert gas welding, laser welding, and infrared brazing.

    PubMed

    Wang, R R; Welsch, G E

    1995-11-01

    Titanium has a number of desirable properties for dental applications that include low density, excellent biocompatibility, and corrosion resistance. However, joining titanium is one of the practical problems with the use of titanium prostheses. Dissolved oxygen and hydrogen may cause severe embrittlement in titanium materials. Therefore the conventional dental soldering methods that use oxygen flame or air torch are not indicated for joining titanium materials. This study compared laser, tungsten inert gas, and infrared radiation heating methods for joining both pure titanium and Ti-6Al-4V alloy. Original rods that were not subjected to joining procedures were used as a control method. Mechanical tests and microstructure analysis were used to evaluate joined samples. Mechanical tests included Vickers microhardness and uniaxial tensile testing of the strength of the joints and percentage elongation. Two-way analysis of variance and Duncan's multiple range test were used to compare mean values of tensile strength and elongation for significant differences (p < or = 0.05). Tensile rupture occurred in the joint region of all specimens by cohesive failure. Ti-6Al-4V samples exhibited significantly greater tensile strength than pure titanium samples. Samples prepared by the three joining methods had markedly lower tensile elongation than the control titanium and Ti-6Al-4V rods. The changes in microstructure and microhardness were studied in the heat-affected and unaffected zones. Microhardness values increased in the heat-affected zone for all the specimens tested. PMID:8809260

  14. Joining characteristics of titanium-based orthodontic wires connected by laser and electrical welding methods.

    PubMed

    Matsunaga, Junko; Watanabe, Ikuya; Nakao, Noriko; Watanabe, Etsuko; Elshahawy, Waleed; Yoshida, Noriaki

    2015-01-01

    This study investigated the possibility of electrical and laser welding to connect titanium-based alloy (beta-titanium and nickel-titanium) wires and stainless-steel or cobalt-chromium alloy wires for fabrication of combination arch-wires. Four kinds of straight orthodontic rectangular wires (0.017 × 0.025 inch) were used: stainless-steel (S-S), cobalt-chromium (Co-Cr), beta-titanium alloy (β-Ti), and nickel-titanium (Ni-Ti). Homogeneous and heterogeneous end-to-end joints (15 mm long each) were made by electrical welding and laser welding. Non-welded wires (30 mm long) were also used as a control. Maximum loads at fracture (N) and elongation (%) were measured by conducting tensile test. The data (n = 10) were statistically analyzed using analysis of variance/Tukey test (P < 0.05).The S-S/S-S and Co-Cr/Co-Cr specimens showed significantly higher values of the maximum load (ML) at fracture and elongation (EL) than those of the Ni-Ti/Ni-Ti and β-Ti/β-Ti specimens for electrical welding and those of the S-S/S-S and Co-Cr/Co-Cr specimens welded by laser. On the other hand, the laser-welded Ni-Ti/Ni-Ti and β-Ti/β-Ti specimens exhibited higher values of the ML and EL compared to those of the corresponding specimens welded by electrical method. In the heterogeneously welded combinations, the electrically welded Ni-Ti/S-S, β-Ti/S-S and β-Ti/Co-Cr specimens showed significantly (P < 0.05) higher ML and EL than those of the corresponding specimens welded by laser. Electrical welding exhibited the higher values of maximum load at fracture and elongation for heterogeneously welded combinations than laser-welding. PMID:25595723

  15. Joining characteristics of titanium-based orthodontic wires connected by laser and electrical welding methods.

    PubMed

    Matsunaga, Junko; Watanabe, Ikuya; Nakao, Noriko; Watanabe, Etsuko; Elshahawy, Waleed; Yoshida, Noriaki

    2015-01-01

    This study investigated the possibility of electrical and laser welding to connect titanium-based alloy (beta-titanium and nickel-titanium) wires and stainless-steel or cobalt-chromium alloy wires for fabrication of combination arch-wires. Four kinds of straight orthodontic rectangular wires (0.017 × 0.025 inch) were used: stainless-steel (S-S), cobalt-chromium (Co-Cr), beta-titanium alloy (β-Ti), and nickel-titanium (Ni-Ti). Homogeneous and heterogeneous end-to-end joints (15 mm long each) were made by electrical welding and laser welding. Non-welded wires (30 mm long) were also used as a control. Maximum loads at fracture (N) and elongation (%) were measured by conducting tensile test. The data (n = 10) were statistically analyzed using analysis of variance/Tukey test (P < 0.05).The S-S/S-S and Co-Cr/Co-Cr specimens showed significantly higher values of the maximum load (ML) at fracture and elongation (EL) than those of the Ni-Ti/Ni-Ti and β-Ti/β-Ti specimens for electrical welding and those of the S-S/S-S and Co-Cr/Co-Cr specimens welded by laser. On the other hand, the laser-welded Ni-Ti/Ni-Ti and β-Ti/β-Ti specimens exhibited higher values of the ML and EL compared to those of the corresponding specimens welded by electrical method. In the heterogeneously welded combinations, the electrically welded Ni-Ti/S-S, β-Ti/S-S and β-Ti/Co-Cr specimens showed significantly (P < 0.05) higher ML and EL than those of the corresponding specimens welded by laser. Electrical welding exhibited the higher values of maximum load at fracture and elongation for heterogeneously welded combinations than laser-welding.

  16. Electron beam welding of aircraft structures. [joining of titanium alloy wing structures on F-14 aircraft

    NASA Technical Reports Server (NTRS)

    Witt, R. H.

    1972-01-01

    Requirements for advanced aircraft have led to more extensive use of titanium alloys and the resultant search for joining processes which can produce lightweight, high strength airframe structures efficiently. As a result, electron beam welding has been investigated. The following F-14A components are now being EB welded in production and are mainly annealed Ti-6Al-4V except for the upper wing cover which is annealed Ti-6Al-6V-2Sn: F-14A wing center section box, and F-14A lower and upper wing covers joined to wing pivot fitting assemblies. Criteria for selection of welding processes, the EB welding facility, development work on EB welding titanium alloys, and F-14A production and sliding seal electron beam welding are reported.

  17. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing.

    PubMed

    Wauthle, Ruben; Ahmadi, Seyed Mohammad; Amin Yavari, Saber; Mulier, Michiel; Zadpoor, Amir Abbas; Weinans, Harrie; Van Humbeeck, Jan; Kruth, Jean-Pierre; Schrooten, Jan

    2015-09-01

    Additive manufacturing techniques are getting more and more established as reliable methods for producing porous metal implants thanks to the almost full geometrical and mechanical control of the designed porous biomaterial. Today, Ti6Al4V ELI is still the most widely used material for porous implants, and none or little interest goes to pure titanium for use in orthopedic or load-bearing implants. Given the special mechanical behavior of cellular structures and the material properties inherent to the additive manufacturing of metals, the aim of this study is to investigate the properties of selective laser melted pure unalloyed titanium porous structures. Therefore, the static and dynamic compressive properties of pure titanium structures are determined and compared to previously reported results for identical structures made from Ti6Al4V ELI and tantalum. The results show that porous Ti6Al4V ELI still remains the strongest material for statically loaded applications, whereas pure titanium has a mechanical behavior similar to tantalum and is the material of choice for cyclically loaded porous implants. These findings are considered to be important for future implant developments since it announces a potential revival of the use of pure titanium for additively manufactured porous implants.

  18. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing.

    PubMed

    Wauthle, Ruben; Ahmadi, Seyed Mohammad; Amin Yavari, Saber; Mulier, Michiel; Zadpoor, Amir Abbas; Weinans, Harrie; Van Humbeeck, Jan; Kruth, Jean-Pierre; Schrooten, Jan

    2015-09-01

    Additive manufacturing techniques are getting more and more established as reliable methods for producing porous metal implants thanks to the almost full geometrical and mechanical control of the designed porous biomaterial. Today, Ti6Al4V ELI is still the most widely used material for porous implants, and none or little interest goes to pure titanium for use in orthopedic or load-bearing implants. Given the special mechanical behavior of cellular structures and the material properties inherent to the additive manufacturing of metals, the aim of this study is to investigate the properties of selective laser melted pure unalloyed titanium porous structures. Therefore, the static and dynamic compressive properties of pure titanium structures are determined and compared to previously reported results for identical structures made from Ti6Al4V ELI and tantalum. The results show that porous Ti6Al4V ELI still remains the strongest material for statically loaded applications, whereas pure titanium has a mechanical behavior similar to tantalum and is the material of choice for cyclically loaded porous implants. These findings are considered to be important for future implant developments since it announces a potential revival of the use of pure titanium for additively manufactured porous implants. PMID:26046272

  19. Analysis of Square Cup Deep-Drawing Test of Pure Titanium

    NASA Astrophysics Data System (ADS)

    Ogawa, Takaki; Ma, Ninshu; Ueyama, Minoru; Harada, Yasunori

    2016-08-01

    The prediction of formability of titunium is more difficult than steels since its strong anisotropy. If computer simulation can estimate the formability of titanium, we can select the optimal forming conditions. The purpose of this study was to acquire knowledge for the formability prediction by the computer simulation of the square cup deep-drawing of pure titanium. In this paper, the results of FEM analsis of pure titanium were compared with the experimental results to examine the analysis validity. We analyzed the formability of deepdrawing square cup of titanium by the FEM using solid elements. Compared the analysis results with the experimental results such as the forming shape, the punch load, and the thickness, the validity was confirmed. Further, through analyzing the change of the thickness around the forming corner, it was confirmed that the thickness increased to its maximum value during forming process at the stroke of 35mm more than the maximum stroke.

  20. Titanium

    USGS Publications Warehouse

    Bedinger, G.M.

    2013-01-01

    Titanium is the ninth most abundant element in the earth’s crust and can be found in nearly all rocks and sediments. It is a lithophile element with a strong affinity for oxygen and is not found as a pure metal in nature. Titanium was first isolated as a pure metal in 1910, but it was not until 1948 that metal was produced commercially using the Kroll process (named after its developer, William Kroll) to reduce titanium tetrachloride with magnesium to produce titanium metal.

  1. Investigation on Antibacterial Property of Cu-COATING on Pure Titanium Fabricated via Plasma Surface Alloying

    NASA Astrophysics Data System (ADS)

    Zou, Jiaojuan; Hang, Ruiqiang; Lin, Naiming; Huang, Xiaobo; Zhang, Xiangyu; Qin, Lin; Tang, Bin

    2013-07-01

    This paper describes the fabrication of a Cu-coating on pure titanium via plasma surface alloying technology. The surface morphology, cross-sectional microstructure and elemental distributions of the coating were analyzed by scanning electron microscope (SEM) and glow discharge optical emission spectroscope (GDOES). The antibacterial property of the Cu-coating was assessed via in vitro bacterial adhesion test. The results showed that the Cu-coating was continuous and compact. The Cu-coating endowed pure titanium with a promising antibacterial property.

  2. Achieving High Strength Joint of Pure Copper Via Laser-Cold Metal Transfer Arc Hybrid Welding

    NASA Astrophysics Data System (ADS)

    Chen, Yulong; Chen, Cong; Gao, Ming; Zeng, Xiaoyan

    2016-06-01

    Fiber laser-cold metal transfer arc hybrid welding of pure copper was studied. Weld porosity was tested by X-ray nondestructive testing. Microstructure and fracture features were observed by scanning electron microscopy. Mechanical properties were evaluated by cross weld tensile test. Full penetrated and continuous welds were obtained by hybrid welding once the laser power reached 2 kW, while they could not be obtained by laser welding alone, even though the laser power reached 5 kW. The ultimate tensile strength (UTS), the yield strength (YS), and the elongation of the best hybrid weld material were up to 227, 201 MPa, and 21.5 pct, respectively. The joint efficiencies in UTS and YS of hybrid weld were up to 84 and 80 pct of the BM, respectively. The fracture location changes from the fusion zone to the heat-affected zone with the increase of laser power. Besides, the mechanisms of process stability and porosity suppression were clarified by laser-arc interaction and pool behavior. The strengthening mechanism was discussed by microstructure characteristics.

  3. Process for optimizing titanium and zirconium additions to aluminum welding consumables

    SciTech Connect

    Dvornak, M.J.; Frost, R.H.

    1992-04-14

    This patent describes a process for manufacturing an aluminum welding consumable. It comprises: creating an aluminum melt; adding to the aluminum melt solid pieces of a master alloy, comprising aluminum and a weld-enhancing additive to form a mixture, wherein the weld-enhancing additive being a material selected from the group consisting of titanium and zirconium, so that the weld-enhancing additive exists in the alloy prior to addition to the melt in the form of intermetallic particles relatively large in size and small in number, and after addition to the melt the weld-enhancing additive exists in the form of fractured intermetallic particles of refined size having dissolved fractured interfaces, casting the mixture into a chill mold to form an ingot; reducing the ingot to rods of rough wire dimension by cold rolling; annealing the reduced rods; and drawing the rods into wire.

  4. Strain localization during tensile Hopkinson bar testing of commercially pure titanium and Ti6Al4V titanium alloy

    NASA Astrophysics Data System (ADS)

    Moćko, Wojciech; Kruszka, Leopold; Brodecki, Adam

    2015-09-01

    The goal of the analysis was to determine the strain localization for various specimen shapes (type A and type B according to PN-EN ISO 26203-1 standard) and different loading conditions, i.e. quasi- static and dynamic. Commercially pure titanium (Grade 2) and titanium alloy Ti6Al4V (Grade 5) were selected for the tests. Tensile loadings were applied out using servo-hydraulic testing machine and tensile Hopkinson bar with pre-tension. The results were recorded using ARAMIS system cameras and fast camera Phantom V1210, respectively at quasi-static and dynamic loading conditions. Further, specimens outline was determined on the basis of video data using TEMA MOTION software. The strain distribution on the specimen surface was estimated using digital image correlation method. The larger radius present in the specimen of type B in comparison to specimen of type A, results in slight increase of the elongation for commercially pure titanium at both quasi-static and dynamic loading conditions. However this effect disappears for Ti6Al4V alloy. The increase of the elongation corresponds to the stronger necking effect. Material softening due to increase of temperature induced by plastic work was observed at dynamic loading conditions. Moreover lower elongation at fracture point was found at high strain rates for both materials.

  5. Biocompatibility of pure titanium modified by human endothelial cell-derived extracellular matrix

    NASA Astrophysics Data System (ADS)

    Xue, Xiaoqing; Wang, Jin; Zhu, Ying; Tu, Qiufen; Huang, Nan

    2010-04-01

    Extracellular matrix (ECM) used to modify biomaterial surface is a promising method for improving cardiovascular material hemocompatibility. In the present work, human umbilical vein endothelial cells (HUVECs) are cultured and native ECM is obtained on pure titanium surface. Fourier infrared spectrum (FTIR) test proves the existence of amide I and amide II band on the modified titanium surface. X-ray photoelectron spectroscopy (XPS) further confirms the chemical composition and binding types of the ECM proteins on the titanium substrate. The results of light microscopy and atomic force microscopy (AFM) exhibit the morphology of HUVEC derived ECM. There are higher water contact angles on the ECM modified samples. Furthermore, some ECM components, including fibronectin (FN), laminin (LN) and type IV collagen (IV-COL) are presented on ECM-covered titanium surface by immunofluorescence staining. The biological behavior of cultured HUVECs and adherent platelets on different samples are investigated by in vitro HUVECs culture and platelet adhesion. Cells exhibit better morphology and their proliferation ability greatly improve on the ECM-covered titanium. At the same time, the platelet adhesion and spreading are inhibited on ECM-covered titanium surface. These investigations demonstrate that ECM produced by HUVECs cannot only improve adhesion and proliferation ability of endothelial cell but also inhibit adhesion and activation of platelets. Thus, the approach described here may provide a basis for preparation of modified surface in cardiovascular implants application.

  6. Ultrasonic Spot and Torsion Welding of Aluminum to Titanium Alloys: Process, Properties and Interfacial Microstructure

    NASA Astrophysics Data System (ADS)

    Balle, Frank; Magin, Jens

    Hybrid lightweight structures shape the development of future vehicles in traffic engineering and the aerospace industry. For multi-material concepts made out of aluminum and titanium alloys, the ultrasonic welding technique is an alternative effective joining technology. The overlapped structures can be welded in the solid state, even without gas shielding. In this paper the conventional ultrasonic spot welding with longitudinal oscillation mode is compared to the recent ultrasonic torsion welding with a torsional mode at 20 kHz working frequency. For each technique the process parameters welding force, welding energy and oscillation amplitude were optimized for the hybrid joints using design of experiments. Relationships between the process parameters, mechanical properties and related welding zone should be understood. Central aspects of the research project are microscopic studies of the joining zone in cross section and extensive fracture surface analysis. Detailed electron microscopy and spectroscopy of the hybrid interface help to understand the interfacial formation during ultrasonic welding as well as to transfer the gained knowledge for further multi-metal joints.

  7. The deformation behavior of commercially pure titanium subjected to electron beam treatment

    SciTech Connect

    Kazachenok, Marina Kozelskaya, Anna; Panin, Alexey; Ivanov, Yurii

    2015-10-27

    The effect of low-energy high-current pulsed electron beam treatment on the microstructure and mechanical properties of commercially pure titanium specimens is studied. Plastic deformation mechanisms of the specimens subjected to the electron beam treatment followed by uniaxial tension are demonstrated. The role of the interface between the hardened surface layer and the relatively soft parent metal in the slip band formation in the loaded specimens is revealed.

  8. The deformation behavior of commercially pure titanium subjected to electron beam treatment

    NASA Astrophysics Data System (ADS)

    Kazachenok, Marina; Panin, Alexey; Kozelskaya, Anna; Ivanov, Yurii

    2015-10-01

    The effect of low-energy high-current pulsed electron beam treatment on the microstructure and mechanical properties of commercially pure titanium specimens is studied. Plastic deformation mechanisms of the specimens subjected to the electron beam treatment followed by uniaxial tension are demonstrated. The role of the interface between the hardened surface layer and the relatively soft parent metal in the slip band formation in the loaded specimens is revealed.

  9. Effect of plasma-sprayed hydroxyapatite coating on the osteoconductivity of commercially pure titanium implants.

    PubMed

    Strnad, Z; Strnad, J; Povýsil, C; Urban, K

    2000-01-01

    Formation of a calcium phosphate layer was studied on the surfaces of plasma-sprayed hydroxyapatite (PSHA) and sandblasted commercially pure (cp) titanium in simulated body fluid with ion concentrations similar to those of human blood plasma. The PSHA surface induced the formation of calcium phosphate surface layers, while the precipitation of calcium phosphate on sandblasted cp titanium was not detected. Histologic evaluation of in vivo tests demonstrated that implants with a PSHA coating enabled the growth of bone tissue into gaps with a depth of up to 1 mm without significant formation of intermediate fibrous tissue. In comparison to sandblasted cp titanium, implants with PSHA coating exhibited greater tolerance to unfavorable conditions during healing, such as gaps at the interface or primary instability of the implant. In the case of good primary stability of the implant, filling of the gap with fibrous tissue was observed for sandblasted cp titanium implants over the greater part of the surface of gaps with a depth of 0.3 mm. Direct contact of cp titanium implants with bone was achieved only when the press-fit implantation model was used. PMID:10960980

  10. Effect of initial orientation on the tensile properties of commercially pure titanium

    NASA Astrophysics Data System (ADS)

    Sinha, Subhasis; Ghosh, Atasi; Gurao, N. P.

    2016-05-01

    Effect of crystallographic texture on uniaxial tensile deformation of commercially pure titanium was studied using in situ as well as post-mortem electron backscatter diffraction and elastoplastic self-consistent simulations. Correlation of mechanical properties and strain hardening response with deformation micromechanisms like different modes of slip and twinning was established. Tensile specimens were machined along rolling direction in the plane perpendicular to normal and transverse direction (sample A and C, respectively) as well as along transverse direction in the plane normal to rolling direction (sample B) to obtain different initial texture from cold rolled and annealed plate of commercially pure titanium. Sample B showed higher strength but lower strain hardening rate and ductility than the orientations A and C. It showed extension twinning with lateral thickening while the other samples showed coexistence of extension and contraction twinning. Schmid factor accounted for most of the observed twinning although some contraction twinning in sample A is attributed to the effect of internal stresses. A combination of in situ tensile test in a field emission gun scanning electron microscope with electron backscatter diffraction facility and elastoplastic self-consistent simulations aid in obtaining high-fidelity Voce hardening parameters for different slip and twinning systems in commercially pure titanium. The variation in tensile properties can be explained on the basis of propensity of twinning which tends to provide strain hardening at lower strain but contributes to failure at higher strain.

  11. Preparation of Copper and Chromium Alloyed Layers on Pure Titanium by Plasma Surface Alloying Technology

    NASA Astrophysics Data System (ADS)

    He, Xiaojing; Li, Meng; Wang, Huizhen; Zhang, Xiangyu; Tang, Bin

    2015-05-01

    Cu-Cr alloyed layers with different Cu and Cr contents on pure titanium were obtained by means of plasma surface alloying technology. The microstructure, chemical composition and phase composition of Cu-Cr alloyed layers were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD), respectively. The experimental results demonstrate that the alloyed layers are bonded strongly to pure titanium substrate and consist of unbound Ti, CuTi, Cu3Ti, CuTi3 and Cr2Ti. The thickness of Cu5Cr5 and Cu7Cr3 alloyed layer are about 18 μm and 28 μm, respectively. The antibacterial properties against gram-negative Escherichia coli (E.coli, ATCC10536) and gram-positive Staphylococcus aureus (S. aureus, ATCC6538) of untreated pure titanium and Cu-Cr alloyed specimen were investigated by live/dead fluorescence staining method. The study shows that Cu-Cr alloyed layers exhibit excellent antibacterial activities against both E.coli and S.aureus within 24 h, which may be attributed to the formation of Cu-containing phases.

  12. Susceptibility of Welded and Non-Welded Titanium Alloys to Environmentally Assisted Cracking in Simulated Concentrated Ground Waters

    SciTech Connect

    Fix, D V; Estill, J C; Wong, L L; Rebak, R B

    2003-10-14

    The engineering barriers for the nuclear waste repository at Yucca Mountain include a double walled container and a detached drip shield. The material selected to construct the drip shield will be Titanium Grade 7 (Ti Gr 7 or R52400). Ti Gr 7 is highly resistant to corrosion and consequently it is widely used to handle aggressive industrial environments. The model for the degradation of the engineering barriers includes three modes of corrosion, namely general corrosion, localized corrosion and environmentally assisted cracking (EAC). The objective of the current research was to characterize the susceptibility of three titanium alloys to EAC in several environmental conditions with varying solution composition, pH and temperature. The susceptibility to EAC was evaluated using constant deformation (deflection) U-bend specimens in both the non-welded and welded conditions. Results show that after more than five years exposure in the vapor and liquid phases of alkaline (pH {approx} 10) and acidic (pH {approx} 3) multi-ionic environments at 60 C and 90 C, most of the specimens were free from EAC. The only specimens that suffered EAC were welded Ti Gr 12 (R53400) exposed to liquid simulated concentrated water (SCW) at 90 C.

  13. Corrosion Analysis of an Experimental Noble Alloy on Commercially Pure Titanium Dental Implants

    PubMed Central

    Bortagaray, Manuel Alberto; Ibañez, Claudio Arturo Antonio; Ibañez, Maria Constanza; Ibañez, Juan Carlos

    2016-01-01

    Objective: To determine whether the Noble Bond® Argen® alloy was electrochemically suitable for the manufacturing of prosthetic superstructures over commercially pure titanium (c.p. Ti) implants. Also, the electrolytic corrosion effects over three types of materials used on prosthetic suprastructures that were coupled with titanium implants were analysed: Noble Bond® (Argen®), Argelite 76sf +® (Argen®), and commercially pure titanium. Materials and Methods: 15 samples were studied, consisting in 1 abutment and one c.p. titanium implant each. They were divided into three groups, namely: Control group: five c.p Titanium abutments (B&W®), Test group 1: five Noble Bond® (Argen®) cast abutments and, Test group 2: five Argelite 76sf +® (Argen®) abutments. In order to observe the corrosion effects, the surface topography was imaged using a confocal microscope. Thus, three metric parameters (Sa: Arithmetical mean height of the surface. Sp: Maximum height of peaks. Sv: Maximum height of valleys.), were measured at three different areas: abutment neck, implant neck and implant body. The samples were immersed in artificial saliva for 3 months, after which the procedure was repeated. The metric parameters were compared by statistical analysis. Results: The analysis of the Sa at the level of the implant neck, abutment neck and implant body, showed no statistically significant differences on combining c.p. Ti implants with the three studied alloys. The Sp showed no statistically significant differences between the three alloys. The Sv showed no statistically significant differences between the three alloys. Conclusion: The effects of electrogalvanic corrosion on each of the materials used when they were in contact with c.p. Ti showed no statistically significant differences. PMID:27733875

  14. Investigation of the vapour-plasma plume in the welding of titanium by high-power ytterbium fibre laser radiation

    NASA Astrophysics Data System (ADS)

    Bykovskiy, D. P.; Petrovskii, V. N.; Uspenskiy, S. A.

    2015-03-01

    The vapour-plasma plume produced in the welding of 6-mm thick VT-23 titanium alloy plates by ytterbium fibre laser radiation of up to 10 kW power is studied in the protective Ar gas medium. High-speed video filming of the vapour-plasma plume is used to visualise the processes occurring during laser welding. The coefficient of inverse bremsstrahlung by the welding plasma plume is calculated from the data of the spectrometric study.

  15. Bonding of low-fusing dental porcelain to commercially pure titanium.

    PubMed

    Könönen, M; Kivilahti, J

    1994-09-01

    The objective of the investigation was to study the basic problems related to the firing of dental porcelain to commercially pure titanium. The firing of a low-fusing porcelain to sandblasted or electrolytically polished titanium was carried out in an ordinary dental furnace. The interfacial regions between the ceramic coatings and titanium were analyzed using scanning acoustic microscopy (C-SAM) and scanning electron microscopy (SEM) techniques. Thermal stresses in the joints were evaluated by means of a finite element model based on multilayer elastic strain analysis. The chemical reactions and their formation sequence at 750 degrees C was predicted thermodynamically and observed experimentally both at 750 and 800 degrees C. The C-SAM results gave evidence that the integrity of the porcelain-titanium joints are better in the sandblasted samples than in the electropolished ones, where defects were larger. SEM analyses of the same samples confirmed the C-SAM findings. Because the reaction layers are more continuous in the electropolished samples, cracks propagated more readily in these samples during the cooling procedure. Both thermodynamic calculations and experimental chemical analyses strongly indicate that the cause for the cracking of the reaction zone is thin layer of Ti (oxo)silicide and/or a relatively thick solid solution layer of Ti and oxygen. PMID:7814430

  16. MC3T3-E1 Cell Response to Pure Titanium, Zirconia and Nano-Hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Hwan; Han, Jung-Suk; Yang, Jae-Ho; Lee, Jai-Bong; Kim, Dae-Joon

    Titanium, zirconia and HAp were known as good biocompatible materials for tissue engineering. Osteblastic cell response is influence by the surface topography of material and its chemical composition as well. To evaluate the influence of different chemical compositions on osteoblast-like cells the specimens were polished until they have almost identical surface roughness. The commercially pure titanium, zirconia/alumina composite and nano-sized hydroxyapatite (HAp) specimens synthesized by hydrothermal method were used to evaluate the cell attachment, proliferation and differentiation. Confocal laser microscopy was used measurement of surface roughness, and flourescence microscopy and SEM were used to evaluate initial cell attachment and morphology after 3 hours. MTS assay was performed for cell proliferation after 1, 3, 7 days and ALP assay was used for cell differentiation after 7, 10, 14 days of cell culture period. Surface topography of nano-HAp specimen was almost identical compared with those of titanium and zirconia specimen. Under this condition, proliferation and differentiation of MC3T3-E1 cells was not significantly different with those on titanium and zirconia specimen. However, cells on Nano-HAp specimen showed quicker and more active cellular reaction for attachment when measured by the expression of adhesion proteins through confocal laser microscopy. The results suggested that the new nano-sized HAp can be applied as a suitable material for skeletal tissue engineering.

  17. Welded Titanium Case for Space-Probe Rocket Motor

    NASA Technical Reports Server (NTRS)

    Brothers, A. J.; Boundy, R. A.; Martens, H. E.; Jaffe, L. D.

    1959-01-01

    The high strength-to-weight ratio of titanium alloys suggests their use for solid-propellant rocket-motor cases for high-performance orbiting or space-probe vehicles. The paper describes the fabrication of a 6-in.-diam., 0.025-in.-wall rocket-motor from the 6A1-4V titanium alloy. The rocket-motor case, used in the fourth stage of a successful JPL-NASA lunar-probe flight, was constructed using a design previously proven satisfactory for Type 410 stainless steel. The nature and scope of the problems peculiar to the use of the titanium alloy, which effected an average weight saving of 34%, are described.

  18. Partially degradable friction-welded pure iron-stainless steel 316L bone pin.

    PubMed

    Nasution, A K; Murni, N S; Sing, N B; Idris, M H; Hermawan, H

    2015-01-01

    This article describes the development of a partially degradable metal bone pin, proposed to minimize the occurrence of bone refracture by avoiding the creation of holes in the bone after pin removal procedure. The pin was made by friction welding and composed of two parts: the degradable part that remains in the bone and the nondegradable part that will be removed as usual. Rods of stainless steel 316L (nondegradable) and pure iron (degradable) were friction welded at the optimum parameters: forging pressure = 33.2 kPa, friction time = 25 s, burn-off length = 15 mm, and heat input = 4.58 J/s. The optimum tensile strength and elongation was registered at 666 MPa and 13%, respectively. A spiral defect formation was identified as the cause for the ductile fracture of the weld joint. A 40-µm wide intermetallic zone was identified along the fusion line having a distinct composition of Cr, Ni, and Mo. The corrosion rate of the pin gradually decreased from the undeformed zone of pure iron to the undeformed zone of stainless steel 316L. All metallurgical zones of the pin showed no toxic effect toward normal human osteoblast cells, confirming the ppb level of released Cr and Ni detected in the cell media were tolerable.

  19. Fundamental study about CO2 laser welding of titanium aluminide intermetallic compound

    NASA Astrophysics Data System (ADS)

    Kuwahara, Gaku; Yamaguchi, Shigeru; Nanri, Kenzo; Ootani, Masanori; Tetsuka, Masato; Seto, Sachio; Arai, Mikiya; Fujioka, Tomoo

    2000-11-01

    Titanium aluminide intermetallic compound is attracting attentions as heat-resistant and high-specific strength material in the next generation, especially, it is promising material in the field of aerospace components. Conventional machining process including welding, however, can be hardly applied due to its very low ductility. The objective of this study, as a first stage, is to find out paying attention to crack and hardness the fundamental good conditions of the bead-on-plate welding of TiAl intermetallic compound using CO2 laser irradiation. In the experiment, we used the casting gamma titanium aluminide contained iron, vanadium and boron with a thickness of 2mm. We carried out bead-on-plate laser welding in the titanium aluminide material in inert gas environment filled with argon. We measured fused depth, Vickers hardness, transverse crack numbers and so on as major parameters of welding speed from 1000 to 4600 mm/min and initial temperature of specimen from R.T. to 873 K with a beam spot size of 0.5 mm and an output power of 1.5 kW. In addition, the specimens were analyzed by Electron Probe X-ray Micro Analyzer, Energy Dispersive X-ray Spectroscopy and X-ray Diffractometry. As a result of experiments, transverse crack-free welding was achieved, when initial temperature was at 873 K. In every condition, the value of Vickers hardness of fused zone increased compared with base. We think the reason of it is an increase of (alpha) 2(Ti3Al) phase, which is caused by rapid cooling, taking in Oxygen, fine structure and so on.

  20. Spherical nanoindentation stress-strain curves of commercially pure titanium and Ti-6Al-4V

    DOE Data Explorer

    Weaver, Jordan S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Priddy, Matthew W. [Georgia Inst. of Technology, Atlanta, GA (United States); McDowell, David L. [Georgia Inst. of Technology, Atlanta, GA (United States); Kalidindi, Surya R. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2016-07-27

    Spherical nanoindentation combined with electron back-scattered diffraction was employed to characterize the grain-scale elastic and plastic anisotropy of single crystal alpha-Ti for commercially pure (CP-Ti) and alloyed (Ti-64) titanium. In addition, alpha-beta Ti (single colony) grains were characterized. The data set includes the nanoindentation force, displacement, and contact stiffness, the nanoindentation stress-strain analysis, and the alpha-Ti crystal orientations. Details of the samples and experimental protocols can be found in Weaver et al. (2016) Acta Materialia doi:10.1016/j.actamat.2016.06.053.

  1. Spectral diagnostics of a vapor-plasma plume produced during welding titanium with a high-power ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Uspenskiy, S. A.; Petrovskiy, V. N.; Bykovskiy, D. P.; Mironov, V. D.; Prokopova, N. M.; Tret'yakov, E. V.

    2015-03-01

    This work is devoted to the research of welding plume during high power ytterbium fiber laser welding of a titanium alloy in the Ar shielding gas environment. High speed video observation of a vapor-plasma plume for visualization of processes occurring at laser welding was carried out. The coefficient of the inverse Bremsstrahlung absorption of laser radiation is calculated for a plasma welding plume by results of spectrometer researches. The conclusion deals with the impact of plasma on a high-power fiber laser radiation.

  2. Welded Titanium Case for Space-Probe Rocket Motor

    NASA Technical Reports Server (NTRS)

    Brothers, A. J.; Boundy, R. A.; Martens, H. E.; Jaffe, L. D.

    1959-01-01

    Early in 1958, the Jet Propulsion Laboratory of the California Institute of Technology was requested to participate in a lunar-probe mission code-named Juno II which would place a 15-lb Instrumented payload (Pioneer IV) in the vicinity of the moon. The vehicle was to use the same high-speed upper-stage assembly as flown on the successful Jupiter-C configuration; however, the first-stage booster was to be a Jupiter rather than a Redstone. An analysis of the intended flight and payload configuration Indicated that the feasibility of accomplishing the mission was questionable and that additional performance would have to be obtained if the mission was to be feasible. Since the most efficient way of Increasing the performance of a staged vehicle is to increase the performance of the last stage, a study of possible ways of doing this was made.. Because of the time schedule placed on this effort It was decided to reduce the weight of the fourth-stage rocket-motor case by substituting the annealed 6Al--4V titanium alloy for the Type 410 stainless steel. Although this introduced an unfamiliar material, It reduced the changes in design and fabrication techniques. This particular titanium alloy was chosen on the basis of previous tests which proved the suitability of the alloy as a pressure-vessel material when used at an annealed yield strength of about 120, 000 psi. The titanium-case fourth stage of Juno U is shown with the payload and on the missile in Fig. 1; the stainless-steel motor cases used in the Jupiter-C vehicle are shown in Fig. 2. The fourth-stage motor case has a diameter of 6 in., a length of approximately 38 in. center dot and a nominal cylindrical wall thickness of 0.025 in. As shown in Fig. 1, the case serves as the structural support of the payload and is aligned to the upper stage assembly through an alignment ring. The nozzle is threaded into the end of the motor case, and is of the ceramic-coated steel design. Figure 3 shows a comparison of the

  3. Explosive Welding of Aluminum, Titanium and Zirconium to Copper Sheet Metal

    NASA Technical Reports Server (NTRS)

    Hegazy, A. A.; Mote, J. D.

    1985-01-01

    The main material properties affecting the explosive weldability of a certain metal combination are the yield strength, the ductility, the density and the sonic velocity of the two metals. Successful welding of the metal combination depends mainly on the correct choice of the explosive welding parameters; i.e., the stand off distance, the weight of the explosive charge relative to the weight of the flyer plate and the detonation velocity of the explosive. Based on the measured and the handbook values of the properties of interest, the explosive welding parameters were calculated and the arrangements for the explosive welding of the Al alloy 6061-T6, titanium and zirconium to OFHC copper were determined. The relatively small sheet metal thickness (1/8") and the fact that the thickness of the explosive layer must exceed a certain minimum value were considered during the determination of the explosive welding conditions. The results of the metallographic investigations and the measurements of the shear strength at the interface demonstrate the usefulness of these calculations to minimize the number of experimental trials.

  4. Microstructure and properties of laser-borided composite layers formed on commercially pure titanium

    NASA Astrophysics Data System (ADS)

    Kulka, M.; Makuch, N.; Dziarski, P.; Piasecki, A.; Miklaszewski, A.

    2014-03-01

    Laser-boriding was proposed in order to produce composite boride layers on commercially pure titanium. Three zones were observed in the microstructure: laser-borided re-melted zone (TiB, TiB2 and Tiα'-phase), heat affected zone (Tiα'-phase) and the substrate without heat treatment (Tiα-phase). The stick-like titanium borides occurred in the re-melted zone. In some areas, the tubular nature of titanium borides was visible. Among the sticks of titanium borides the needles of Tiα'-phase appeared. The high overlapping of multiple laser tracks (86%) caused the formation of uniform laser-alloyed layer in respect of the thickness. The microcracks and pores were not detected in the laser-borided composite layer. The high hardness of the re-melted zone (1250-1650 HV) was obtained. The hardness gradually decreased up to 250-300 HV in heat affected zone and up to about 200 HV in the substrate. In case of higher laser beam power used (1.95 kW), the re-melted zone was thicker and more homogeneous in respect of the microstructure and hardness. The craters obtained at the surface after the Rockwell C indentation test evidently revealed ideal cohesion of the laser-borided layer (HF1 standard). The significant increase in wear resistance of laser-borided composite layers was observed in comparison with commercially pure titanium. The lower mass wear intensity factors were obtained for laser-alloyed layers. The measurements of relative mass loss were also used in order to evaluate wear behavior of the investigated materials. The tests of laser-borided layers showed the catastrophic wear of the counter-specimens. The separated particles of counter-sample caused the accelerated wear of the laser-alloyed specimen. The longer duration of the tests, carried out without the change in a counter-specimen, caused the adhesion of counter-sample particles on the laser-borided specimen. The increased contact surface was the reason for the higher temperature and created the favourable

  5. Effect of plasma nitriding treatment on structural, tribological and electrochemical properties of commercially pure titanium.

    PubMed

    Çelik, İlhan; Karakan, Mehmet

    2016-02-01

    In this study, plasma nitriding treatment was applied to commercially pure titanium (Grade 2). Structural properties, electrochemical and tribological behaviours of the nitrided pure titanium specimens were comparatively investigated. Microstructure and morphology of the plasma nitrided specimens were analysed by X-ray diffraction and scanning electron microscopy. Furthermore, corrosion tests were conducted in Ringer's solution, which represents a human body environment, to determine electrochemical properties. Then, tribological and frictional properties were investigated using pin-on-disc tribometer, and a micro-hardness tester was used to measure the hardness of the coatings. The results showed that plasma nitrided specimens exhibited higher surface hardness than the untreated specimens did. In addition, the plasma nitrided specimens at 700 °C presented significantly better performance than the other plasma nitrided specimens (at 500 °C and 600 °C) under dry wear conditions. Moreover, corrosion test results showed that corrosion behaviours of untreated and nitrided samples had similar characteristic. PMID:26666885

  6. Effect of impression material on surface reactive layer when casting pure titanium in phosphate investment.

    PubMed

    Komasa, Y; Moriguchi, A; Asai, M; Nezumi, M; Kakimoto, K; Gonda, Y

    1998-10-01

    We evaluated the effect of impression materials used in preparation of pure titanium castings on the surface reactive layer. Surface roughness of the refractory models before and after firing was smaller when silicone rather than agar impression material was used. The surface roughness of castings prepared with T-invest varied little with the impression material. However, the surface roughness of the castings prepared with CD Titaninvest was less when silicone impression material was used. Surface hardness of the castings was slightly greater when agar impression material was used, and metallic texture analysis of the surface of the castings showed a chill layer and a columnar crystal layer extending from the surface toward the interior. A relatively non-corroded white layer and a markedly corroded black layer were observed in the chill layer, and their thickness was smaller when silicone impression material was used. Use of the Electron Probe Micro Analyzer (EPMA) to determine distribution of various elements in the superficial layer of the casting plates showed that the reactive layer contained less P and Si when silicone impression material was used rather than agar. NH4H2 PO4, which is a component of the bonding material in the investment, was present at a high concentration in the superficial layer of the agar impression material. This shows the importance of preparing refractory models with a non-water-absorbing impression material to obtain pure titanium casting plates with a smaller reactive layer.

  7. Effect of plasma nitriding treatment on structural, tribological and electrochemical properties of commercially pure titanium.

    PubMed

    Çelik, İlhan; Karakan, Mehmet

    2016-02-01

    In this study, plasma nitriding treatment was applied to commercially pure titanium (Grade 2). Structural properties, electrochemical and tribological behaviours of the nitrided pure titanium specimens were comparatively investigated. Microstructure and morphology of the plasma nitrided specimens were analysed by X-ray diffraction and scanning electron microscopy. Furthermore, corrosion tests were conducted in Ringer's solution, which represents a human body environment, to determine electrochemical properties. Then, tribological and frictional properties were investigated using pin-on-disc tribometer, and a micro-hardness tester was used to measure the hardness of the coatings. The results showed that plasma nitrided specimens exhibited higher surface hardness than the untreated specimens did. In addition, the plasma nitrided specimens at 700 °C presented significantly better performance than the other plasma nitrided specimens (at 500 °C and 600 °C) under dry wear conditions. Moreover, corrosion test results showed that corrosion behaviours of untreated and nitrided samples had similar characteristic.

  8. Constitutive modeling of a commercially pure titanium: validation using bulge tests

    NASA Astrophysics Data System (ADS)

    Revil-Baudard, Benoit; Massoni, Elisabeth

    2016-08-01

    In this paper, mechanical tests aimed at characterizing the plastic anisotropy of a commercially pure α-titanium sheet are presented. Hemispheric and elliptic bulge tests conducted to investigate the forming properties of the material are also reported. To model the particularities of the plastic response of the material the classical Hill [1] yield criterion, and Cazacu et al. [2] yield criterion are used. Identification of the material parameters involved in both criteria is based only on uniaxial test data, while their predictive capabilities are assessed through comparison with the bulge tests data. Both models reproduce qualitatively the experimental plastic strain distribution and the final thickness of the sheet. However, only Cazacu et al. [2] yield criterion, which accounts for both the anisotropy and tension-compression asymmetry of the material captures correctly plastic strain localization, in particular its directionality. Furthermore, it is shown that accounting for the strong tension-compression asymmetry in the model formulation improves numerical predictions regarding the mechanical behavior close to fracture of a commercially pure titanium alloy under sheet metal forming processes.

  9. Fusion zone microstructure and porosity in electron beam welds of an α+β titanium alloy

    NASA Astrophysics Data System (ADS)

    Mohandas, T.; Banerjee, D.; Kutumba Rao, V. V.

    1999-03-01

    The effect of electron beam welding parameters on fusion zone (FZ) microstructure and porosity in a Ti -6.8 Al -3.42 Mo -1.9 Zr -0.21 Si alloy (Russian designation VT 9) has been investigated. It has been observed that the FZ grain width increased continuously with increase in heat input when the base metal was in the β heat-treated condition, while in the α+β heat-treated base metal welds, the FZ grain width increased only after a threshold energy input. The difference is attributed to both the weld thermal cycle and the pinning effect of equiaxed primary alpha on grain growth in the heat-affected zone (HAZ) of α+β heat-treated base metal. Postweld heat treatment (PWHT) in the subtransus and supertransus regions did not alter the columnar grain morphology in the FZ, possibly due to the lack of enough driving force for the formation of new grains by the breaking up of the columnar grains and grain boundary movement for grain growth. As the PWHTs were conducted in a furnace, the role of thermal gradients can be ruled out. Intragranular microstructure in the aswelded condition consisted of hexagonal martensite. The scale of the martensite laths depended on welding speed. The highest porosity was observed at intermediate welding speeds. At low speeds, a majority of pores formed at the fusion boundary, while at high speeds, occurrence of porosity was maximum at the weld center. The trends on porosity can be explained on the basis of solubility of hydrogen in titanium as a function of temperature and the influence of weld thermal cycle on nucleation, growth, and escape of hydrogen gas bubbles. The porosity at slow welding speeds is low because sufficient time exists for the nucleation, growth, and escape of hydrogen gas bubbles, while insufficient time exists for the nucleation of gas bubbles at high welding speeds. The effect of pickling of joint surface, vacuum annealing of the base metal, and successive remelting of the weld metal has also been investigated.

  10. Joining aluminum to titanium alloy by friction stir lap welding with cutting pin

    SciTech Connect

    Wei, Yanni; Li, Jinglong; Xiong, Jiangtao; Huang, Fu; Zhang, Fusheng; Raza, Syed Hamid

    2012-09-15

    Aluminum 1060 and titanium alloy Ti-6Al-4V plates were lap joined by friction stir welding. A cutting pin of rotary burr made of tungsten carbide was employed. The microstructures of the joining interface were observed by scanning electron microscopy. Joint strength was evaluated by a tensile shear test. During the welding process, the surface layer of the titanium plate was cut off by the pin, and intensively mixed with aluminum situated on the titanium plate. The microstructures analysis showed that a visible swirl-like mixed region existed at the interface. In this region, the Al metal, Ti metal and the mixed layer of them were all presented. The ultimate tensile shear strength of joint reached 100% of 1060Al that underwent thermal cycle provided by the shoulder. - Highlights: Black-Right-Pointing-Pointer FSW with cutting pin was successfully employed to form Al/Ti lap joint. Black-Right-Pointing-Pointer Swirl-like structures formed due to mechanical mixing were found at the interface. Black-Right-Pointing-Pointer High-strength joints fractured at Al suffered thermal cycle were produced.

  11. Evaluation of brittleness of porcelain fused to pure titanium by fracture toughness, hardness and fracture energy.

    PubMed

    Higashino, Yoshifumi; Yamauchi, Mutsuo; Goto, Takayasu; Nagasawa, Toru

    2003-12-01

    To elucidate the cause of brittleness of porcelain fused to pure titanium (PFPT) which leads to chipping and cracking similar to that of conventional porcelain in clinical use, fracture toughness KIc, hardness (Hv and Hk) and fracture energy gamma reflecting the bonding energy of atoms were evaluated. In KIc there were no differences between PFPT and conventional porcelain, nor for Hv and Hk, but for the gamma of PFPT calculated from the KIc and the Young modulus measured by the resonance method there was less than that of conventional porcelain. These results indicate that mechanical properties such as KIc and hardness cannot always substantiate the brittleness of PFPT experienced in practical use. However, a comparatively small gamma of PFPT may suggest a fatigue crack growth as a more likely phenomenon as it occurs more easily than the conventional one in oral.

  12. Influence of oxidation treatment on fatigue and fatigue-induced damage of commercially pure titanium.

    PubMed

    Leinenbach, C; Eifler, D

    2009-09-01

    In this investigation, the cyclic deformation behaviour of commercially pure titanium was characterized in axial stress controlled constant amplitude and load increase tests, as well as in rotating bending tests. The influence of different clinically relevant surface treatments (polishing, thermal and anodic oxidizing) on the fatigue behaviour was investigated. All tests were realized in oxygen-saturated Ringer's solution. The cyclic deformation behaviour was characterized by mechanical hysteresis measurements. In addition, the change of the free corrosion potential and the corrosion current during the fatigue tests in simulated physiological media indicated such types of surface damage as slip bands, microcracks and oxide film ablation. Microstructural changes on the specimen surfaces were examined by scanning electron microscopy. PMID:19394905

  13. Preparation and properties of plasma electrolytic oxidation coating on sandblasted pure titanium by a combination treatment.

    PubMed

    Wang, Hong-Yuan; Zhu, Rui-Fu; Lu, Yu-Peng; Xiao, Gui-Yong; Zhao, Xing-Chuan; He, Kun; Yuan, Y F; Li, Ying; Ma, Xiao-Ni

    2014-09-01

    Plasma electrolytic oxidation (PEO) is one of the most applicable methods to produce bioceramic coating on a dental implant and sandblasting is a primary technique to modify metal surface properties. This study aims to deposit bioceramic Ca- and P-containing coatings on sandblasted commercially pure titanium by PEO technique to improve its bioactive performance. The time-dependent modified surfaces are characterized in terms of their microstructure, phase, chemical composition, mechanical properties and bioactivities. The results show that the combination-treated coating exhibits better properties than the PEO-treated one, especially in bioactivities, as evidenced by the HA formation after immersion in simulated body fluid (SBF) for 5 days and the cell viability after seeding for 1 or 3 days. The enhancement of the modified surface is attributed to a combination of the mechanical sandblasting and the microplasma oxidation.

  14. Clinical and microbiological findings on newly inserted hydroxyapatite-coated and pure titanium human dental implants.

    PubMed

    Rams, T E; Roberts, T W; Feik, D; Molzan, A K; Slots, J

    1991-01-01

    The clinical and microbiologic features of 30 hydroxyapatite-coated root-form endosseous dental implants (Tri-Stage) were compared to 10 similar pure titanium implants without hydroxyapatite coatings. In 7 of 9 partially edentulous patients studied, pure titanium fixtures were placed adjacent to hydroxyapatite-coated implants. Implants in the maxilla were submerged beneath mucosal tissues after implant placement for a minimum of 6 months, and in the mandible for at least 4 months. All patients were prescribed short-term beta-lactam antibiotic therapy after fixture placement, and 8 of 9 used chlorhexidine mouthrinses after fixture exposure. Clinical and microbiological examination was carried out 7-10 months after fixed prosthetic loading of the implants. Clinical measurements included the gingival index, plaque index, bleeding on probing and peri-implant probing depths determined with the Florida Probe system. Subgingival microbial samples were collected with paper points and transported in VMGA III. Specimens were examined by direct phase-contrast microscopy and were plated onto nonselective and selective culture media for anaerobic and aerobic incubation. No significant mean clinical or microbiological differences were found between the implant types, although one hydroxyapatite-coated implant exhibited deep probing depths, bleeding on probing and marked radiographic crestal bone loss. Streptococcus sanguis and Streptococcus mitis were the most predominant organisms recovered from clinically stable implants, whereas high proportions of Fusobacterium species and Peptostreptococcus prevotii were isolated from the ailing hydroxyapatite-coated implant. One or more implants in 8 of the study subjects yielded enteric rods, pseudomonads, enterococci or staphylococci. The prognosis of implants with varying early microbiotas needs to be established in longitudinal studies. PMID:1843465

  15. Surface modification of pure titanium by hydroxyapatite-containing composite coatings

    NASA Astrophysics Data System (ADS)

    Zhao, Quan-Ming; Cheng, Li; Yang, Hui-Lin; Liu, Zhong-Tang; Feng, De-Hong

    2014-12-01

    Micro-arc oxidation (MAO) is commonly applied to modify the surface of titanium (Ti)-based medical implants with a bioactive and porous Ti oxide (TiO2) coating. The study reports a new method of incorporating hydroxyapatite (HA) within the TiO2 coating by MAO and alkali heat treatment (AHT) in the solution containing Ca ion and P ion. The morphology, composition and phase composition of the coatings were analyzed with scanning electron microscopy with energy-dispersive X-ray spectrometer and X-ray diffraction. Surface topography and roughness of the coatings were investigated by atomic force microscopy operated in the tapping mode. The results showed that TiO2-based coatings were obtained on pure Ti by MAO with an electrolyte containing Ca ion and P ion; the prepared MAO coatings were mainly composed of Ca, P, O and Ti. AHT transformed Ca and P to HA crystals. In conclusion, the TiO2/HA composite coatings can be obtained on the surface of pure Ti by MAO and AHT, and the addition of Ca ion and P ion to the AHT solution contributed to the formation of HA.

  16. Corrosion behavior of titanium boride composite coating fabricated on commercially pure titanium in Ringer's solution for bioimplant applications.

    PubMed

    Sivakumar, Bose; Singh, Raghuvir; Pathak, Lokesh Chandra

    2015-03-01

    The boriding of commercially pure titanium was performed at 850°C, 910°C, and 1050°C for varied soaking periods (1, 3 and 5h) to enhance the surface properties desirable for bioimplant applications. The coating developed was characterized for the evolution of phases, microstructure and morphology, microhardness, and consequent corrosion behavior in the Ringer's solution. Formation of the TiB2 layer at the outermost surface followed by the TiB whiskers across the borided CpTi is unveiled. Total thickness of the composite layer on the substrates borided at 850, 910, and 1050°C for 5h was found to be 19.1, 26.4, and 18.2μm respectively which includes <3μm thick TiB2 layer. The presence of TiB2 phase was attributed to the high hardness ~2968Hv15gf of the composite coating. The anodic polarization studies in the simulated body fluid unveiled a reduction in the pitting corrosion resistance after boriding the CpTi specimens. However, this value is >0.55VSCE (electrochemical potential in in-vivo physiological environment) and hence remains within the safe region. Both the untreated and borided CpTi specimens show two passive zones associated with different passivation current densities. Among the CpTi borided at various times and temperatures, a 3h treated shows better corrosion resistance. The corrosion of borided CpTi occurred through the dissolution of TiB2. PMID:25579920

  17. Corrosion behavior of titanium boride composite coating fabricated on commercially pure titanium in Ringer's solution for bioimplant applications.

    PubMed

    Sivakumar, Bose; Singh, Raghuvir; Pathak, Lokesh Chandra

    2015-03-01

    The boriding of commercially pure titanium was performed at 850°C, 910°C, and 1050°C for varied soaking periods (1, 3 and 5h) to enhance the surface properties desirable for bioimplant applications. The coating developed was characterized for the evolution of phases, microstructure and morphology, microhardness, and consequent corrosion behavior in the Ringer's solution. Formation of the TiB2 layer at the outermost surface followed by the TiB whiskers across the borided CpTi is unveiled. Total thickness of the composite layer on the substrates borided at 850, 910, and 1050°C for 5h was found to be 19.1, 26.4, and 18.2μm respectively which includes <3μm thick TiB2 layer. The presence of TiB2 phase was attributed to the high hardness ~2968Hv15gf of the composite coating. The anodic polarization studies in the simulated body fluid unveiled a reduction in the pitting corrosion resistance after boriding the CpTi specimens. However, this value is >0.55VSCE (electrochemical potential in in-vivo physiological environment) and hence remains within the safe region. Both the untreated and borided CpTi specimens show two passive zones associated with different passivation current densities. Among the CpTi borided at various times and temperatures, a 3h treated shows better corrosion resistance. The corrosion of borided CpTi occurred through the dissolution of TiB2.

  18. Tensile properties of a titanium modified austenitic stainless steel and the weld joints after neutron irradiation

    SciTech Connect

    Shiba, K.; Ioka, I.; Jitsukawa, S.; Hamada, A.; Hishinuma, A.

    1996-10-01

    Tensile specimens of a titanium modified austenitic stainless steel and its weldments fabricated with Tungsten Inert Gas (TIG) and Electron Beam (EB) welding techniques were irradiated to a peak dose of 19 dpa and a peak helium level of 250 appm in the temperature range between 200 and 400{degrees}C in spectrally tailored capsules in the Oak Ridge Research Reactor (ORR) and the High Flux Isotope Reactor (HFIR). The He/dpa ratio of about 13 appm/dpa is similar to the typical helium/dpa ratio of a fusion reactor environment. The tensile tests were carried out at the irradiation temperature in vacuum. The irradiation caused an increase in yield stress to levels between 670 and 800 MPa depending on the irradiation temperature. Total elongation was reduced to less than 10%, however the specimens failed in a ductile manner. The results were compared with those of the specimens irradiated using irradiation capsules producing larger amount of He. Although the He/dpa ratio affected the microstructural change, the impact on the post irradiation tensile behavior was rather small for not only base metal specimens but also for the weld joint and the weld metal specimens.

  19. A Quantitative Model of Keyhole Instability Induced Porosity in Laser Welding of Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Pang, Shengyong; Chen, Weidong; Wang, Wen

    2014-06-01

    Quantitative prediction of the porosity defects in deep penetration laser welding has generally been considered as a very challenging task. In this study, a quantitative model of porosity defects induced by keyhole instability in partial penetration CO2 laser welding of a titanium alloy is proposed. The three-dimensional keyhole instability, weld pool dynamics, and pore formation are determined by direct numerical simulation, and the results are compared to prior experimental results. It is shown that the simulated keyhole depth fluctuations could represent the variation trends in the number and average size of pores for the studied process conditions. Moreover, it is found that it is possible to use the predicted keyhole depth fluctuations as a quantitative measure of the average size of porosity. The results also suggest that due to the shadowing effect of keyhole wall humps, the rapid cooling of the surface of the keyhole tip before keyhole collapse could lead to a substantial decrease in vapor pressure inside the keyhole tip, which is suggested to be the mechanism by which shielding gas enters into the porosity.

  20. Effect of surface treatments on the bond strength of a resin cement to commercially pure titanium.

    PubMed

    de Almeida-Júnior, Antonio Alves; Fonseca, Renata Garcia; Haneda, Isabella Gagliardi; Abi-Rached, Filipe de Oliveira; Adabo, Gelson Luis

    2010-01-01

    Investigation of the effectiveness of surface treatments that promote a strong bond strength of resin cements to metals can contribute significantly to the longevity of metal-ceramic restorations. This study evaluated the effect of surface treatments on the shear bond strength (SBS) of a resin cement to commercially pure titanium (CP Ti). Ninety cast CP Ti discs were divided into 3 groups (n=30), which received one of the following airborne-particle abrasion conditions: (1) 50 microm Al(2)O(3) particles; (2) 30 microm silica-modified Al(2)O(3) particles (Cojet Sand); (3) 110 microm silica-modified Al(2)O(3) particles (Rocatec). For each airborne-particle abrasion condition, the following post-airborne-particle abrasion treatments were used (n=10): (1) none; (2) adhesive Adper Single Bond 2; (3) silane RelyX Ceramic Primer. RelyX ARC resin cement was bonded to CP Ti surfaces. All specimens were thermally cycled before being tested in shear mode. Failure mode was determined. The best association was Rocatec plus silane. All groups showed 100% adhesive failure. There were combinations that promote higher SBS than the protocol recommended by the manufacturer of RelyX ARC. PMID:20640356

  1. Full-Field Strain Measurement On Titanium Welds And Local Elasto-Plastic Identification With The Virtual Fields Method

    SciTech Connect

    Tattoli, F.; Casavola, C.; Pierron, F.; Rotinat, R.; Pappalettere, C.

    2011-01-17

    One of the main problems in welding is the microstructural transformation within the area affected by the thermal history. The resulting heterogeneous microstructure within the weld nugget and the heat affected zones is often associated with changes in local material properties. The present work deals with the identification of material parameters governing the elasto--plastic behaviour of the fused and heat affected zones as well as the base material for titanium hybrid welded joints (Ti6Al4V alloy). The material parameters are identified from heterogeneous strain fields with the Virtual Fields Method. This method is based on a relevant use of the principle of virtual work and it has been shown to be useful and much less time consuming than classical finite element model updating approaches applied to similar problems. The paper will present results and discuss the problem of selection of the weld zones for the identification.

  2. Combination of laser keyhole and conduction welding: Dissimilar laser welding of niobium and Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Torkamany, M. J.; Malek Ghaini, F.; Poursalehi, R.; Kaplan, A. F. H.

    2016-04-01

    Pulsed Nd:YAG laser welding of pure niobium plate to titanium alloy Ti-6Al-4V sheet in butt joint is studied regarding the laser/metal interaction modes. To obtain the optimized process parameters in dissimilar welding of Ti-6Al-4V/Nb, the melting ratio of laser beam energy for each weld counterpart is evaluated experimentally. Different laser welding modes of keyhole and conduction are predicted regarding the absorbed energy from the similar laser pulses on each weld counterpart. Laser keyhole and conduction welding were observed simultaneously through direct visualization of laser interaction with dissimilar metals using High Speed Imaging (HSI) system.

  3. Dissimilar-alloy laser welding of titanium: Ti6Al-4V to Beta-C{trademark}

    SciTech Connect

    Liu, P.S.; Baeslack, W.A. III; Hurley, J.

    1994-12-31

    Beta-C{sup TM} is a metastable-beta titanium alloy (nominal composition: Ti-3wt%Al-8wt%V-6wtTCr-4wt%Mo-4wt%Zr) which can be thermomechanically processed and heat treated to provide excellent combinations of strength, ductility, and fracture toughness. Recently, the increased application of metastable-beta titanium alloys in aerospace and commercial applications has resulted in the necessity to join these alloys to conventional alpha-beta titanium alloys. Based on this previous work, two approaches were considered for improving the ductility of dissimilar-alloy welds between Ti-6Al-4V and Beta-C{sup TM} in the present study: (1) application of a low heat input welding process to minimize the fusion zone and heat-affected zone (HAZ) beta grain size and (2) modification of the fusion zone chemical composition to allow greater microstructural optimization through postweld aging. CO{sub 2} laser welds were produced between Ti-6Al-4V and Beta-C{sup TM} sheet. Three different nominal fusion zone chemical compositions were obtained by varying the laser beam locations relative to the joint centerline and thereby melting different quantities of each base metal. For comparable postweld aging conditions, the laser welds exhibited ductilities superior to those of coarse-grained gas tungsten arc welds. Fracture analysis of the weld zone revealed a transition from a predominantly transgranular fracture in the low-temperature aged conditions to increasingly intergranular fracture following aging at higher temperature. This transition was promoted by an increase in the thickness and continuity of alpha phase at beta grain boundaries.

  4. Quantitatively Analyzing Strength Contribution vs Grain Boundary Scale Relation in Pure Titanium Subjected to Severe Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Luo, Peng; Hu, Qiaodan; Wu, Xiaolin

    2016-05-01

    Electron backscatter diffraction was used to reveal high- and low-angle grain boundaries (HAGBs, with misorientation ≥15 deg, and LAGBs, <15 deg) in pure titanium (ASTM grade 2) subjected to equal channel angular pressing. Comprehensive paradigms were developed to present relations of yield strength vs HAGB grain diameter, and LAGB contribution vs LAGB linear intercept. Incorporating grain orientations (against loading axis) into the Hall-Petch relation, we quantitatively investigated the strength contributions by HAGBs and LAGBs, respectively.

  5. Tribological characterization of surface-treated commercially pure titanium for femoral heads in total hip replacement: a feasibility study.

    PubMed

    Cotogno, G; Holzwarth, U; Franchi, M; Rivetti, S; Chiesa, R

    2006-12-01

    Most noncemented total hip replacements combine a titanium alloy stem, a CoCrMo femoral head and an ultra-high molecular weight polyethylene (UHMWPE) acetabular cup. In spite of its nickel content of up to 1% and the resulting biocompatibility issues in some clinical situations, the higher cost and some difficulties in machining, CoCrMo alloy is preferred to titanium alloys thanks to its outstanding tribological properties, higher hardness and elastic modulus. Nowadays most of the heads of hip prostheses use CoCrMo as bearing material. The present study investigates the effect of various surface treatments and combinations of treatments, such as electrochemical oxidation (anodization), laser surface melting and barrel polishing, on the tribological properties of commercially pure grade 2 titanium. The aim of the study was to characterize surface treatments capable of improving the tribological properties of titanium surface to the same extent as CoCrMo. The tribological properties were characterized by multidirectional pin-on-flat screening wear tests, using UHMWPE pins as bearing surface. The experiments showed the possibility of improving the wear resistance of titanium to the degree of CoCrMo. Although further efforts will be required to optimize the treatments studied, the results are encouraging enough to warrant pursuing this direction of investigation.

  6. Tribological characterization of surface-treated commercially pure titanium for femoral heads in total hip replacement: a feasibility study.

    PubMed

    Cotogno, G; Holzwarth, U; Franchi, M; Rivetti, S; Chiesa, R

    2006-12-01

    Most noncemented total hip replacements combine a titanium alloy stem, a CoCrMo femoral head and an ultra-high molecular weight polyethylene (UHMWPE) acetabular cup. In spite of its nickel content of up to 1% and the resulting biocompatibility issues in some clinical situations, the higher cost and some difficulties in machining, CoCrMo alloy is preferred to titanium alloys thanks to its outstanding tribological properties, higher hardness and elastic modulus. Nowadays most of the heads of hip prostheses use CoCrMo as bearing material. The present study investigates the effect of various surface treatments and combinations of treatments, such as electrochemical oxidation (anodization), laser surface melting and barrel polishing, on the tribological properties of commercially pure grade 2 titanium. The aim of the study was to characterize surface treatments capable of improving the tribological properties of titanium surface to the same extent as CoCrMo. The tribological properties were characterized by multidirectional pin-on-flat screening wear tests, using UHMWPE pins as bearing surface. The experiments showed the possibility of improving the wear resistance of titanium to the degree of CoCrMo. Although further efforts will be required to optimize the treatments studied, the results are encouraging enough to warrant pursuing this direction of investigation. PMID:17219358

  7. Effects of Peracetic Acid on the Corrosion Resistance of Commercially Pure Titanium (grade 4).

    PubMed

    Raimundo, Lariça B; Orsi, Iara A; Kuri, Sebastião E; Rovere, Carlos Alberto D; Busquim, Thaís P; Borie, Eduardo

    2015-01-01

    The aim of this study was to evaluate the corrosion resistance of pure titanium grade 4 (cp-Ti-4), subjected to disinfection with 0.2% and 2% peracetic acid during different immersion periods using anodic potentiodynamic polarization test in acid and neutral artificial saliva. Cylindrical samples of cp-Ti-4 (5 mm x 5 mm) were used to fabricate 24 working electrodes, which were mechanically polished and divided into eight groups (n=3) for disinfection in 2% and 0.2% peracetic acid for 30 and 120 min. After disinfection, anodic polarization was performed in artificial saliva with pH 4.8 and 6.8 to assess the electrochemical behavior of the electrodes. A conventional electrochemical cell, constituting a reference electrode, a platinum counter electrode, and the working electrode (cp-Ti specimens) were used with a scanning rate of 1 mV/s. Three curves were obtained for each working electrode, and corrosion was characterized by using scanning electron microscopy (SEM) and energy dispersive x-ray spectrometry (EDS). Data of corrosion potential (Ecorr) and passive current (Ipass) obtained by the polarization curves were analyzed statistically by Student's t-test (a=0.05). The statistical analysis showed no significant differences (p>0.05) between artificial saliva types at different concentrations and periods of disinfection, as well as between control and experimental groups. No surface changes were observed in all groups evaluated. In conclusion, disinfection with 0.2% and 2% peracetic acid concentrations did not cause corrosion in samples manufactured with cp-Ti-4. PMID:26963213

  8. In-line process control for laser welding of titanium by high dynamic range ratio pyrometry and plasma spectroscopy

    NASA Astrophysics Data System (ADS)

    Lempe, B.; Taudt, C.; Baselt, T.; Rudek, F.; Maschke, R.; Basan, F.; Hartmann, P.

    2014-02-01

    The production of complex titanium components for various industries using laser welding processes has received growing attention in recent years. It is important to know whether the result of the cohesive joint meets the quality requirements of standardization and ultimately the customer requirements. Erroneous weld seams can have fatal consequences especially in the field of car manufacturing and medicine technology. To meet these requirements, a real-time process control system has been developed which determines the welding quality through a locally resolved temperature profile. By analyzing the resulting weld plasma received data is used to verify the stability of the laser welding process. The determination of the temperature profile is done by the detection of the emitted electromagnetic radiation from the material in a range of 500 nm to 1100 nm. As detectors, special high dynamic range CMOS cameras are used. As the emissivity of titanium depends on the wavelength, the surface and the angle of radiation, measuring the temperature is a problem. To solve these a special pyrometer setting with two cameras is used. That enables the compensation of these effects by calculating the difference between the respective pixels on simultaneously recorded images. Two spectral regions with the same emissivity are detected. Therefore the degree of emission and surface effects are compensated and canceled out of the calculation. Using the spatially resolved temperature distribution the weld geometry can be determined and the laser process can be controlled. The active readjustment of parameters such as laser power, feed rate and inert gas injection increases the quality of the welding process and decreases the number of defective goods.

  9. Flexural strength of pure Ti, Ni-Cr and Co-Cr alloys submitted to Nd:YAG laser or TIG welding.

    PubMed

    Rocha, Rick; Pinheiro, Antônio Luiz Barbosa; Villaverde, Antonio Balbin

    2006-01-01

    Welding of metals and alloys is important to Dentistry for fabrication of dental prostheses. Several methods of soldering metals and alloys are currently used. The purpose of this study was to assess, using the flexural strength testing, the efficacy of two processes Nd:YAG laser and TIG (tungsten inert gas) for welding of pure Ti, Co-Cr and Ni-Cr alloys. Sixty cylindrical specimens were prepared (20 of each material), bisected and welded using different techniques. Four groups were formed (n=15). I: Nd:YAG laser welding; II- Nd:YAG laser welding using a filling material; III- TIG welding and IV (control): no welding (intact specimens). The specimens were tested in flexural strength and the results were analyzed statistically by one-way ANOVA. There was significant differences (p<0.001) among the non-welded materials, the Co-Cr alloy being the most resistant to deflection. Comparing the welding processes, significant differences (p<0.001) where found between TIG and laser welding and also between laser alone and laser plus filling material. In conclusion, TIG welding yielded higher flexural strength means than Nd:YAG laser welding for the tested Ti, Co-Cr and Ni-Cr alloys. PMID:16721459

  10. Welding.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This curriculum guide is designed for use by South Carolina vocational education teachers as a continuing set of lesson plans for a two-year course on welding. Covered in the individual sections of the guide are the following topics: an orientation to welding, oxyacetylene welding, advanced oxyacetylene welding, shielded metal arc welding, TIG…

  11. Ultrafine-grained commercially pure titanium and microstructure response to hydroxyapatite coating methods

    NASA Astrophysics Data System (ADS)

    Calvert, Kayla L.

    Commercially pure titanium (cp-Ti) is an ideal biomaterial as it does not evoke an inflammatory foreign body response in the body. However, the low strength of cp-Ti prevents the use in most orthopaedic load bearing applications. Therefore, many metal orthopaedic implants are commonly made of higher strength metal alloys that are less biocompatible. Nanostructured materials exhibit superior mechanical properties compared to their conventional grain sized counterparts. Severe plastic deformation (SPD) of metals has been shown to produce nanostructured materials. SPD by machining is a single-step deformation route that refines the grain microstructure, to develop an ultrafine grained (UFG) microstructure. UFG cp-Ti strips were developed with induced shear strains of up to 4.0 using a machining-based process. Both Vickers microhardness evaluation and microstructural analysis were used to characterize the as-received (annealed) and machined states. For induced shear strains between 1.9 and 4.0 in grade 2 cp-Ti the hardness was increased from 188 +/- 7 kg/mm2 in the as-received state to between 244 +/- 6 and 264 +/- 12 kg/mm 2 in the as-machined state, corresponding to an increase in hardness between 31 and 41%. The microstructural analysis revealed a grain size reduction from 34 +/- 11 mum in the as-received state to ˜ 100 nm for machined grade 2-Ti. A complete annealing study suggested that recovery/recrystallization occurs between 300 and 400°C, with a significant hardness drop between 400 and 600°C, while grain growth is continuous, starting at the lowest annealing temperature of 300°C. Hydroxyapatite (HA) is commonly applied to orthopaedic devices to promote bone growth. Machined Ti strips were coated with HA using conventional plasma spray as well as two alternative low-temperature application routes (sol-gel with calcination and anodization with hydrothermal treatment) to evaluate the thermal influence on the UFG-Ti substrate. Plasma spray produced a thick

  12. The influence of nickel layer thickness on microhardness and hydrogen sorption rate of commercially pure titanium alloy

    NASA Astrophysics Data System (ADS)

    Kudiiarov, V. N.; Kashkarov, E. B.; Syrtanov, M. S.; Yugova, I. S.

    2016-02-01

    The influence of nickel coating thickness on microhardness and hydrogen sorption rate by commercially pure titanium alloy was established in this work. Coating deposition was carried out by magnetron sputtering method with prior ion cleaning of surface. It was shown that increase of sputtering time from 10 to 50 minutes leads to increase coating thickness from 56 to 3.78 μm. It was established that increase of nickel coating thickness leads to increase of microhardness at loads less than 0.5 kg. Microhardness values for all samples are not significantly different at loads 1 kg. Hydrogen content in titanium alloy with nickel layer deposited at 10 and 20 minutes exceeds concentration in initial samples on one order of magnitude. Further increasing of deposition time of nickel coating leads to decreasing of hydrogen concentration in samples due to coating delamination in process of hydrogenation.

  13. Multifunctional commercially pure titanium for the improvement of bone integration: Multiscale topography, wettability, corrosion resistance and biological functionalization.

    PubMed

    Ferraris, Sara; Vitale, Alessandra; Bertone, Elisa; Guastella, Salvatore; Cassinelli, Clara; Pan, Jinshan; Spriano, Silvia

    2016-03-01

    The objects of this research are commercially pure titanium surfaces, with multifunctional behavior, obtained through a chemical treatment and biological functionalization. The explored surfaces are of interest for dental implants, in contact with bone, where several simultaneous and synergistic actions are needed, in order to get a fast and effective osseointegration. The here described modified surfaces present a layer of titanium oxide, thicker than the native one, with a multi-scale surface topography (a surface roughness on the nano scale, which can be overlapped to a micro or macro roughness of the substrate) and a high density of OH groups, that increase surface wettability, induce a bioactive behavior (hydroxyapatite precipitation in simulated body fluid) and make possible the grafting of biomolecules (alkaline phosphatase, ALP, in the present research). The surface oxide is an efficient barrier against corrosion, with passive behavior both with and without application of an external voltage.

  14. Understanding the effects of process parameters on the properties of cold gas dynamic sprayed pure titanium coatings

    NASA Astrophysics Data System (ADS)

    Wong, Wilson

    The cold gas dynamic spraying of commercially pure titanium coatings was investigated. Specifically, the relationship between several key cold spray parameters on the quality of the resulting coatings was studied in order to gain a more thorough understanding of the cold spray process. To achieve this goal, three distinct investigations were performed. The first part of the investigation focussed on the effect of propelling gas, particularly helium and nitrogen, during the cold spraying of titanium coatings. Coatings were characterised by SEM and were evaluated for their deposition efficiency (DE), microhardness, and porosity. In selected conditions, three particle velocities were investigated such that for each condition, the propelling gasses temperature and pressure were attuned to attain similar particle velocities for each gas. In addition, a thick and fully dense cold sprayed titanium coating was achieved with optimised spray parameters and nozzle using helium. The corresponding average particle velocity was 1173 m/s. The second part of the investigation studied the effect of particle morphology (spherical, sponge, and irregular) and size distributions (mean particle sizes of 20, 29, and 36 mum) of commercially pure titanium on the mechanical properties of the resulting cold sprayed coatings. Numerous powder and coating characterisations were performed. From these data, semi-empirical flow (stress-strain) curves were generated based on the Johnson-Cook plasticity model which could be used as a measure of cold sprayability. Cold sprayability can be defined as the ease with which a powder can be cold sprayed. It was found that the sponge and irregular commercially pure titanium powders had higher oxygen content, poorer powder flowability, higher compression ratio, lower powder packing factor, and higher average particle impact velocities compared to the spherical powders. XRD results showed no new phases present when comparing the various feedstock powders to

  15. Effects of Long Term Thermal Exposure on Chemically Pure (CP) Titanium Grade 2 Room Temperature Tensile Properties and Microstructure

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2007-01-01

    Room temperature tensile testing of Chemically Pure (CP) Titanium Grade 2 was conducted for as-received commercially produced sheet and following thermal exposure at 550 and 650 K for times up to 5,000 h. No significant changes in microstructure or failure mechanism were observed. A statistical analysis of the data was performed. Small statistical differences were found, but all properties were well above minimum values for CP Ti Grade 2 as defined by ASTM standards and likely would fall within normal variation of the material.

  16. Solid Particle Erosion Behaviors of Carbon-Fiber Epoxy Composite and Pure Titanium

    NASA Astrophysics Data System (ADS)

    Cai, Feng; Gao, Feng; Pant, Shashank; Huang, Xiao; Yang, Qi

    2016-01-01

    Rotor blades of Bell CH-146 Griffon helicopter experience excessive solid particle erosion at low altitudes in desert environment. The rotor blade is made of an advanced light-weight composite which, however, has a low resistance to solid particle erosion. Coatings have been developed and applied to protect the composite blade. However, due to the influence of coating process on composite material, the compatibility between coating and composite base, and the challenges of repairing damaged coatings as well as the inconsistency between the old and new coatings, replaceable thin metal shielding is an alternative approach; and titanium, due to its high-specific strength and better formability, is an ideal candidate. This work investigates solid particle erosion behaviors of carbon-fiber epoxy composite and titanium in order to assess the feasibility of titanium as a viable candidate for erosion shielding. Experiment results showed that carbon-fiber epoxy composite showed a brittle erosion behavior, whereas titanium showed a ductile erosion mode. The erosion rate on composite was 1.5 times of that on titanium at impingement angle 15° and increased to 5 times at impact angle 90°.

  17. Evaluation of the Pressing Characteristics of Commercially Pure Titanium Using an Instrumented Double Acting Die

    SciTech Connect

    Hovanski, Yuri; Lavender, Curt A.; Weil, K. Scott

    2008-06-19

    With recent advances in synthesizing titanium powder by low-cost routes, there has been growing interest in identifying process/material conditions that overcome the powder compaction problems typically found with this reactive metal. The use of instrumented dies in studying the cold pressing process for commercial iron and steel powders has provided greater insight into the complex phenomena that occur and may be used to evaluate constitutive relations that describe the compaction process. Nevertheless, little work has been conducted on the special, more problematic case of reactive metal powders such as titanium. An instrumented die was developed that allows die wall friction to be characterized and the radial stress distribution along the die wall and throughout the compact to be monitored. As will be presented, this tool has been used to investigate titanium compaction and to draw comparisons with results obtained on a baseline commercial iron powder. Both sets of data were systematically collected using various powder/die lubrication combinations.

  18. High Power Laser Welding. [of stainless steel and titanium alloy structures

    NASA Technical Reports Server (NTRS)

    Banas, C. M.

    1972-01-01

    A review of recent developments in high power, carbon dixoide laser welding is presented. Deep penetration welding in stainless steel to 0.5-in. thick, high speed welding in thin gage rimmed steel and gas shielded welding in Ti-6Al-4V alloy are described. The effects of laser power, power density, focusing optics, gas-shielding techniques, material properties and weld speed on weld quality and penetration are discussed. It is shown that laser welding performance in thin materials is comparable to that of electron beams. It is further shown that high quality welds, as evidenced by NDT, mechanical and metal-lographic tests, can be achieved. The potential of the laser for industrial welding applications is indicated.

  19. The influence of surface roughness and high pressure torsion on the growth of anodic titania nanotubes on pure titanium

    NASA Astrophysics Data System (ADS)

    Hu, Nan; Gao, Nong; Starink, Marco J.

    2016-11-01

    Anodic titanium dioxide nanotube (TNT) arrays have wide applications in photocatalytic, catalysis, electronics, solar cells and biomedical implants. When TNT coatings are combined with severe plastic deformation (SPD), metal processing techniques which efficiently improve the strength of metals, a new generation of biomedical implant is made possible with both improved bulk and surface properties. This work investigated the effect of processing by high pressure torsion (HPT) and different mechanical preparations on the substrate and subsequently on the morphology of TNT layers. HPT processing was applied to refine the grain size of commercially pure titanium samples and substantially improved their strength and hardness. Subsequent anodization at 30 V in 0.25 wt.% NH4F for 2 h to form TNT layers on sample surfaces prepared with different mechanical preparation methods was carried out. It appeared that the local roughness of the titanium surface on a microscopic level affected the TNT morphology more than the macroscopic surface roughness. For HPT-processed sample, the substrate has to be pre-treated by a mechanical preparation finer than 4000 grit for HPT to have a significant influence on TNTs. During the formation of TNT layers the oxide dissolution rate was increased for the ultrafine-grained microstructure formed due to HPT processing.

  20. Effect of Prior and Post-Weld Heat Treatment on Electron Beam Weldments of (α + β) Titanium alloy Ti-5Al-3Mo-1.5V

    NASA Astrophysics Data System (ADS)

    Anil Kumar, V.; Gupta, R. K.; Manwatkar, Sushant K.; Ramkumar, P.; Venkitakrishnan, P. V.

    2016-06-01

    Titanium alloy Ti5Al3Mo1.5V is used in the fabrication of critical engine components for space applications. Double vacuum arc re-melted and (α + β) forged blocks were sliced into 10-mm-thick plates and subjected to electron beam welding (EBW) with five different variants of prior and post-weld heat treatment conditions. Effects of various heat treatment conditions on the mechanical properties of the weldments have been studied. The welded coupons were characterized for microstructure, mechanical properties, and fracture analysis. An optimized heat treatment and welding sequence has been suggested. Weld efficiency of 90% could be achieved. Weldment has shown optimum properties in solution treated and aged condition. Heat-affected zone adjacent to weld fusion line is found to have lowest hardness in all conditions.

  1. Influence of oxidative nanopatterning and anodization on the fatigue resistance of commercially pure titanium and Ti-6Al-4V.

    PubMed

    Ketabchi, Amirhossein; Weck, Arnaud; Variola, Fabio

    2015-04-01

    With an increasingly aging population, a significant challenge in implantology is the creation of biomaterials that actively promote tissue integration and offer excellent mechanical properties. Engineered surfaces with micro- and nanoscale topographies have shown great potential to control and direct biomaterial-host tissue interactions. Two simple yet efficient chemical treatments, oxidative nanopatterning and anodization, have demonstrated the ability to confer exciting new bioactive capacities to commercially pure titanium and Ti-6Al-4V alloy. However, the resulting nanoporous and nanotubular surfaces require careful assessment in regard to potential adverse effects on the fatigue resistance, a factor which may ultimately cause premature failure of biomedical implants. In this work, we have investigated the impact of oxidative nanopatterning and anodization on the fatigue resistance of commercially pure titanium and Ti-6Al-4V. Quantitative (e.g., S-N curves) and qualitative analyses were carried out to precisely characterize the fatigue response of treated metals and compare it to that of polished controls. Scanning electron microscopy (SEM) imaging revealed the effects of cyclic loading on the fracture surface and on the structural integrity of chemically grown nanostructured oxides. Results from this study reinforce the importance of mechanical considerations in the development and optimization of micro- and nanoscale surface treatments for metallic biomedical implants.

  2. A comparative evaluation of laser and GTA welds in a high-strength titanium alloy -- Ti-6-22-22S

    SciTech Connect

    Baeslack, W.A. III; Hurley, J.; Paskell, T.

    1994-12-31

    Titanium alloy Ti-6Al-2Sn-2Zr-2Mo-2Cr-025Si (hereafter designated Ti-6-22-22S)is an alpha-beta titanium alloy developed for deep hardenability, high strength, intermediate temperature creep resistance, and moderate toughness. As a potential structural material for next-generation aircraft and aerospace systems, the weldability of Ti-6-22-22S has recently become a subject of increasing importance and concern. In the welding of titanium sheet, achieving satisfactory ductility is the principal limitation to alloy weldability, with poor ductility promoted by a coarse beta grain structure in the weld fusion and near-heat-affected zones. Square-butt welds were produced in 1.6 mm thick Ti-6-22-22S sheet using automatic GTA and CO{sub 2} laser welding systems. Microstructure analysis and DPH hardness traverses were performed on mounted. polished and etched specimens. Three-point bend and tensile tests were performed on transverse-weld and longitudinal-weld oriented specimens. Microstructure analysis of the laser welds revealed a fine, columnar fusion zone beta grain macrostructure and a fully-martensitic transformed-beta microstructure. Consistent with the microstructural similarities, fusion zone hardnesses of the laser welds were comparable (385 and 390 DPG, respectively) and greater than that of the base metal (330 DPH). In general, laser welds did not exhibit markedly superior ductilities relative to the GTAW, which was attributed to differences in the nature of the intragranular transformed-beta microstructures, being coarser and softer for the GTAW, the response of these as-welded microstructures to heat treatment, and interactions between the transformed-beta microstructure and the beta grain macrostructure.

  3. Commercially pure titanium (cp-Ti) versus titanium alloy (Ti6Al4V) materials as bone anchored implants - Is one truly better than the other?

    PubMed

    Shah, Furqan A; Trobos, Margarita; Thomsen, Peter; Palmquist, Anders

    2016-05-01

    Commercially pure titanium (cp-Ti) and titanium alloys (typically Ti6Al4V) display excellent corrosion resistance and biocompatibility. Although the chemical composition and topography are considered important, the mechanical properties of the material and the loading conditions in the host have, conventionally, influenced material selection for different clinical applications: predominantly Ti6Al4V in orthopaedics while cp-Ti in dentistry. This paper attempts to address three important questions: (i) To what extent do the surface properties differ when cp-Ti and Ti6Al4V materials are manufactured with the same processing technique?, (ii) Does bone tissue respond differently to the two materials, and (iii) Do bacteria responsible for causing biomaterial-associated infections respond differently to the two materials? It is concluded that: (i) Machined cp-Ti and Ti6Al4V exhibit similar surface morphology, topography, phase composition and chemistry, (ii) Under experimental conditions, cp-Ti and Ti6Al4V demonstrate similar osseointegration and biomechanical anchorage, and (iii) Experiments in vitro fail to disclose differences between cp-Ti and Ti6Al4V to harbour Staphylococcus epidermidis growth. No clinical comparative studies exist which could determine if long-term, clinical differences exist between the two types of bulk materials. It is debatable whether cp-Ti or Ti6Al4V exhibit superiority over the other, and further comparative studies, particularly in a clinical setting, are required. PMID:26952502

  4. Commercially pure titanium (cp-Ti) versus titanium alloy (Ti6Al4V) materials as bone anchored implants - Is one truly better than the other?

    PubMed

    Shah, Furqan A; Trobos, Margarita; Thomsen, Peter; Palmquist, Anders

    2016-05-01

    Commercially pure titanium (cp-Ti) and titanium alloys (typically Ti6Al4V) display excellent corrosion resistance and biocompatibility. Although the chemical composition and topography are considered important, the mechanical properties of the material and the loading conditions in the host have, conventionally, influenced material selection for different clinical applications: predominantly Ti6Al4V in orthopaedics while cp-Ti in dentistry. This paper attempts to address three important questions: (i) To what extent do the surface properties differ when cp-Ti and Ti6Al4V materials are manufactured with the same processing technique?, (ii) Does bone tissue respond differently to the two materials, and (iii) Do bacteria responsible for causing biomaterial-associated infections respond differently to the two materials? It is concluded that: (i) Machined cp-Ti and Ti6Al4V exhibit similar surface morphology, topography, phase composition and chemistry, (ii) Under experimental conditions, cp-Ti and Ti6Al4V demonstrate similar osseointegration and biomechanical anchorage, and (iii) Experiments in vitro fail to disclose differences between cp-Ti and Ti6Al4V to harbour Staphylococcus epidermidis growth. No clinical comparative studies exist which could determine if long-term, clinical differences exist between the two types of bulk materials. It is debatable whether cp-Ti or Ti6Al4V exhibit superiority over the other, and further comparative studies, particularly in a clinical setting, are required.

  5. Hardening of the surface layers of commercial pure titanium VT1-0 under combined treatment

    SciTech Connect

    Bashchenko, Lyudmila P. Gromov, Viktor E. Budovskikh, Evgenii A. Soskova, Nina A.; Ivanov, Yurii F.

    2015-10-27

    The treatment of VT1-0 titanium samples was carried out by concentrated energy fluxes. The combined treatment included surface carburizing with the joint use of powder samples of compounds with high physical and mechanical properties (namely, titanium diboride TiB{sub 2}, silicon carbide SiC and zirconium oxide ZrO{sub 2}) and subsequent electron beam treatment of surface layers formed in electroexplosive treatment. The combined treatment of surface layers resulted in the multifold increase in microhardness, which reduces depending on the depth of hardening zone. After electron-beam treatment, the depth of hardening zone is increased. During electron-beam treatment, the two-layer hardening zone forms.

  6. Hardening of the surface layers of commercial pure titanium VT1-0 under combined treatment

    NASA Astrophysics Data System (ADS)

    Bashchenko, Lyudmila P.; Gromov, Viktor E.; Budovskikh, Evgenii A.; Ivanov, Yurii F.; Soskova, Nina A.

    2015-10-01

    The treatment of VT1-0 titanium samples was carried out by concentrated energy fluxes. The combined treatment included surface carburizing with the joint use of powder samples of compounds with high physical and mechanical properties (namely, titanium diboride TiB2, silicon carbide SiC and zirconium oxide ZrO2) and subsequent electron beam treatment of surface layers formed in electroexplosive treatment. The combined treatment of surface layers resulted in the multifold increase in microhardness, which reduces depending on the depth of hardening zone. After electron-beam treatment, the depth of hardening zone is increased. During electron-beam treatment, the two-layer hardening zone forms.

  7. Simulation of the elastic deformation of laser-welded joints of an austenitic corrosion-resistant steel and a titanium alloy with an intermediate copper insert

    NASA Astrophysics Data System (ADS)

    Pugacheva, N. B.; Myasnikova, M. V.; Michurov, N. S.

    2016-02-01

    The macro- and microstructures and the distribution of elements and of the values of the microhardness and contact modulus of elasticity along the height and width of the weld metal and heat-affected zone of austenitic corrosion-resistant 12Kh18N10T steel (Russian analog of AISI 321) and titanium alloy VT1-0 (Grade 2) with an intermediate copper insert have been studied after laser welding under different conditions. The structural inhomogeneity of the joint obtained according to one of the regimes selected has been shown: the material of the welded joint represents a supersaturated solid solution of Fe, Ni, Cr, and Ti in the crystal lattice of copper with a uniformly distributed particles of intermetallic compounds Ti(Fe,Cr) and TiCu3. At the boundaries with steel and with the titanium alloy, diffusion zones with thicknesses of 0.1-0.2 mm are formed that represent supersaturated solid solutions based on iron and titanium. The strength of such a joint was 474 MPa, which corresponds to the level of strength of the titanium alloy. A numerical simulation of the mechanical behavior of welded joints upon the elastic tension-compression has been performed taking into account their structural state, which makes it possible to determine the amplitude values of the deformations of the material of the weld.

  8. Titanium

    SciTech Connect

    Fox, G.J.

    1997-01-01

    The article contains a summary of factors pertinent to titanium use. Geology and exploitation, production processes, global production, titanium dioxide and alloy applications, and the titanium market are reviewed. Potential applications outlined are for oil and gas equipment and for the automotive industry. Titanium alloys were selected for drilling risers for North Sea oil and gas drilling platforms due to a high strength-to-weight ratio and corrosion resistance. These properties also make titanium alloys attractive for auto parts, although the cost is currently prohibitive.

  9. Enhanced mechanical properties and in vitro cell response of surface mechanical attrition treated pure titanium.

    PubMed

    Zhao, Changli; Han, Pei; Ji, Weiping; Zhang, Xiaonong

    2012-08-01

    Surface mechanical attrition treatment (SMAT) was used to fabricate nanocrystalline surface layers on the commercial purity titanium. X-ray diffraction and transmission electron microscopy results indicate that the top layer contained nanograins. Enhanced strength and microhardness were achieved due to the surface nanostructure. Cell culture tests have shown a greater adhered cell density and more extensively spreading morphologies of Saos-2 cells on the SMAT substrates compared to those on the as-received Ti counterparts. Enhanced cell viability and cell cycle were also achieved on the SMAT Ti substrates. These could be attributed to the nanostructure grains with the increased surface hydrophilicity and roughness on the SMAT Ti.

  10. Effect of heat treatment and diffusion welding conditions on the structure and properties of porous material workpieces made of titanium fibers

    NASA Astrophysics Data System (ADS)

    Kollerov, M. Yu.; Shlyapin, S. D.; Gusev, D. E.; Senkevich, K. S.; Runova, Yu. E.

    2015-11-01

    The effect of the diffusion welding conditions on the structure and properties of a porous material (PM) made of titanium fibers is studied. It is shown that the use of fibers produced by melt quenching and then joined to form workpieces or articles by diffusion welding can be a promising trend in the production of PMs for medicine applications. A change in the solidification rate of fibers and their contact substantially affects the mechanical properties of PM workpieces. As the diffusion welding temperature of both sheet and cylindrical workpieces increases, the strength of PM increases and the plasticity of PM decreases.

  11. Welding.

    ERIC Educational Resources Information Center

    Lehigh County Area Vocational-Technical School, Schnecksville, PA.

    This curriculum guide provides materials for a 12-unit secondary course in welding. Purpose stated for the flexible entry and exit course is to help students master manipulative skills to develop successful welding techniques and to gain an understanding of the specialized tools and equipment used in the welding field. Units cover oxyacetylene…

  12. Effects of Long-Term Thermal Exposure on Commercially Pure Titanium Grade 2 Elevated-Temperature Tensile Properties

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2012-01-01

    Elevated-temperature tensile testing of commercially pure titanium (CP Ti) Grade 2 was conducted for as-received commercially produced sheet and following thermal exposure at 550 and 650 K (531 and 711 F) for times up to 5000 h. The tensile testing revealed some statistical differences between the 11 thermal treatments, but most thermal treatments were statistically equivalent. Previous data from room temperature tensile testing was combined with the new data to allow regression and development of mathematical models relating tensile properties to temperature and thermal exposure. The results indicate that thermal exposure temperature has a very small effect, whereas the thermal exposure duration has no statistically significant effects on the tensile properties. These results indicate that CP Ti Grade 2 will be thermally stable and suitable for long-duration space missions.

  13. Imaging of Compressed Pure-CH Shells and CH Shells with Titanium-Doped Layers on OMEGA

    NASA Astrophysics Data System (ADS)

    Smalyuk, V. A.; Yaakobi, B.; Goncharov, V. N.; Delettrez, J. A.; Marshall, F. J.; Meyerhofer, D. D.

    1999-11-01

    The compressed shell integrity of spherical targets has been studied using the 60-beam, 30-kJ UV, OMEGA laser system. The emission from the hot core has been imaged through the cold shell at two narrow, x-ray energy bands, absorbing and nonabsorbing by the shell, allowing nonuniformities in the core emission and the cold shell areal density to be measured. Images of the target have been obtained using a pinhole-array with K-edge filters. The x-ray energies used are around 2.8 and 4.5 keV for pure-CH shells, and around 4.5 and 6 keV for titanium-doped layers. Additional images of the shell are obtained with a framed monochromatic x-ray microscope and a time-integrated crystal-spectrometer/pinhole-array combination. We will present measurements of the compressed shell integrity at the stagnation stage of spherical implosions by varying the position of the titanium-doped layer within the shell, by varying the thickness of the CH shell, and by using two different laser pulse shapes. The experimental results will be compared with 2-D (ORCHID) hydrodynamic simulations. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460, the University of Rochester, and the New York State Energy Research and Development Authority.

  14. Friction Stir-Welded Titanium Alloy Ti-6Al-4V: Microstructure, Mechanical and Fracture Properties

    NASA Astrophysics Data System (ADS)

    Sanders, D. G.; Edwards, P.; Cantrell, A. M.; Gangwar, K.; Ramulu, M.

    2015-05-01

    Friction stir welding (FSW) has been refined to create butt welds from two sheets of Ti-6Al-4V alloy to have an ultra-fine grain size. Weld specimen testing was completed for three different FSW process conditions: As welded, stress relieved, stress relieved and machined, and for the un-welded base material. The investigation includes macrostructure, microstructure, microhardness, tensile property testing, notched bar impact testing, and fracture toughness evaluations. All experiments were conducted in accordance with industry standard testing specifications. The microstructure in the weld nugget was found to consist of refined and distorted grains of alpha in a matrix of transformed beta containing acicular alpha. The enhanced fracture toughness of the welds is a result of increased hardness, which is attributed to an increase in alpha phase, increase in transformed beta in acicular alpha, and grain refinement during the weld process. The noted general trend in mechanical properties from as welded, to stress relieved, to stress relieved and machined conditions exhibited a decrease in ultimate tensile strength, and yield strength with a small increase in ductility and a significant increase in fracture toughness.

  15. Microstructures and properties of ultrafine-grained pure titanium processed by equal-channel angular pressing and cold deformation.

    PubMed

    Stolyarov, V V; Zhu, Y T; Lowe, T C; Valiev, R Z

    2001-06-01

    Equal-channel angular pressing (ECAP) has been used to refine the grain size of commercially pure (CP) titanium as well as other metals and alloys. CP-Ti is usually processed at about 400 degrees C because it lacks sufficient ductility at lower temperature. The warm processing temperature limits the ability of the ECAP technique to improve the strength of CP-Ti. We have employed cold deformation following warm ECAP to further improve the strength of CP-Ti. Ti billets were first processed for eight passes via ECAP route Bc, with a clockwise rotation of 90 degrees between adjacent passes. The grain size obtained by ECAP alone is about 260 nm. The billets were further processed by cold deformation (cold rolling) to increase the crystalline defects such as dislocations. The strength of pure Ti was improved from 380 to around 1000 MPa by the two-step process. This article reports the microstructures, microhardness, tensile properties, and thermal stability of these Ti billets processed by a combination of ECAP and cold deformation. PMID:12914057

  16. Effect of a copper filler metal on the microstructure and mechanical properties of electron beam welded titanium-stainless steel joint

    SciTech Connect

    Wang, Ting; Zhang, Binggang; Feng, Jicai; Tang, Qi

    2012-11-15

    Cracking in an electron beam weld of titanium to stainless steel occurred during the cooling process because of internal thermal stress. Using a copper filler metal, a crack free joint was obtained, which had a tensile strength of 310 MPa. To determine the reasons for cracking in the Ti/Fe joint and the function of the copper filler metal on the improvement of the cracking resistance of the Ti/Cu/Fe joint, the microstructures of the joints were studied by optical microscopy, scanning electron microscopy and X-ray diffraction. The cracking susceptibilities of the joints were evaluated with microhardness tests on the cross-sections. In addition, microindentation tests were used to compare the brittleness of the intermetallics in the welds. The results showed that the Ti/Fe joint was characterized by continuously distributed brittle intermetallics such as TiFe and TiFe(Cr){sub 2} with high hardness ({approx} 1200 HV). For the Ti/Cu/Fe joint, most of the weld consisted of a soft solid solution of copper with dispersed TiFe intermetallics. The transition region between the weld and the titanium alloy was made up of a relatively soft Ti-Cu intermetallic layer with a lower hardness ({approx} 500 HV). The formation of soft phases reduced the cracking susceptibility of the joint. - Highlights: Black-Right-Pointing-Pointer Electron beam welded Ti/Fe joint cracked for the brittleness and residual stress. Black-Right-Pointing-Pointer Electron beam welded Ti/Cu/Fe joint with tensile strength of 310 MPa was obtained. Black-Right-Pointing-Pointer Cu diluted Ti and Fe contents in weld and separated the TiFe{sub 2} into individual blocks. Black-Right-Pointing-Pointer Interfacial hard Ti-Fe compounds were replaced by soft Ti-Cu compounds in the weld. Black-Right-Pointing-Pointer A large amount of solid solution of copper formed in the weld.

  17. Enhanced osteoblast proliferation and corrosion resistance of commercially pure titanium through surface nanostructuring by ultrasonic shot peening and stress relieving.

    PubMed

    Jindal, Shitu; Bansal, Rajesh; Singh, Bijay P; Pandey, Rajiv; Narayanan, Shankar; Wani, Mohan R; Singh, Vakil

    2014-07-01

    This investigation was carried out to study the effect of a novel process of surface modification, surface nanostructuring by ultrasonic shot peening, on osteoblast proliferation and corrosion behavior of commercially pure titanium (c p-Ti) in simulated body fluid. A mechanically polished disc of c p-Ti was subjected to ultrasonic shot peening with stainless steel balls to create nanostructure at the surface. A nanostructure (<20 nm) with inhomogeneous distribution was revealed by atomic force and scanning electron microscopy. There was an increase of approximately 10% in cell proliferation, but there was drastic fall in corrosion resistance. Corrosion rate was increased by 327% in the shot peened condition. In order to examine the role of residual stresses associated with the shot peened surface on these aspects, a part of the shot peened specimen was annealed at 400°C for 1 hour. A marked influence of annealing treatment was observed on surface structure, cell proliferation, and corrosion resistance. Surface nanostructure was much more prominent, with increased number density and sharper grain boundaries; cell proliferation was enhanced to approximately 50% and corrosion rate was reduced by 86.2% and 41% as compared with that of the shot peened and the as received conditions, respectively. The highly significant improvement in cell proliferation, resulting from annealing of the shot peened specimen, was attributed to increased volume fraction of stabilized nanostructure, stress recovery, and crystallization of the oxide film. Increase in corrosion resistance from annealing of shot peened material was related to more effective passivation. Thus, the surface of c p-Ti, modified by this novel process, possessed a unique quality of enhancing cell proliferation as well as the corrosion resistance and could be highly effective in reducing treatment time of patients adopting dental and orthopedic implants of titanium and its alloys.

  18. Strain measurement of pure titanium covered with soft tissue using X-ray diffraction.

    PubMed

    Fujisaki, Kazuhiro; Tadano, Shigeru

    2010-03-01

    Measurement of the stress and strain applied to implants and bone tissue in the human body are important for fracture prediction and evaluations of implant adaptation. The strain of titanium (Ti) materials can be measuring by X-ray diffraction techniques. This study applied X-ray diffraction to the skin tissue-covered Ti. Characteristic X-rays of Mo Kalpha were used and the X-rays diffracted from the Ti were detected through the covering skin tissue. The X-ray absorption by skin tissue is large under the diffracted X-rays detected in low angles because the length of penetration depends on the angle of inclination, equal to the Bragg angle. The effects of skin tissue to detect the diffracted X-rays were investigated in the experiments. And the strain measurements were conducted under bending loads applied to the Ti specimen. The effect of skin tissue was absorption of X-rays as well as the X-rays scattered from the physiological saline contained in the tissue. The X-rays scattered by the physiological saline creates a specific background pattern near the peaks from the (002) and (011) lattice planes of Ti in the X-ray diffraction profile. Diffracted X-rays from the Ti were detected after being transmitted through 1 mm thick skin tissue by Mo Kalpha. Individual peaks such as (010), (002), (011), and (110) were clearly established by using a parallel beam arrangement. The strains of (110) lattice planes were measured with or without the tissue cover were very similar. The strain of the (110) lattice planes of Ti could be measured by Mo Kalpha when the Ti specimen was located under the skin tissue. PMID:20459192

  19. Friction behavior of network-structured CNT coating on pure titanium plate

    NASA Astrophysics Data System (ADS)

    Umeda, Junko; Fugetsu, Bunshi; Nishida, Erika; Miyaji, Hirofumi; Kondoh, Katsuyoshi

    2015-12-01

    Friction behavior of the network-structured CNTs coated pure Ti plate was evaluated by ball-on-disk wear test using SUS304 ball specimen under dry condition. The friction coefficient was significantly low and stable compared to the as-received Ti plate with no coating film. CNTs coating film had two important roles; self-lubrication and bearing effects to reduce the friction coefficient and carbon solid-solution hardening to improve the abrasive wear property of Ti plate. The annealing treatment at higher temperature (1123 K) was more effective to reduce the friction coefficient than that at lower temperature (973 K) because the Ti plate surface was uniformly covered with CNTs film even after sliding wear test. This is due to TiC interlayer formation via a reaction between Ti plate and carbon elements originated from CNTs during annealing. As a result, a strong interface bonding between CNTs film and Ti plate surface was obtained by higher temperature annealing treatment, and obstructed the detachment of CNTs film during wear test.

  20. Microstructure and Mechanical Properties of Laser-Welded Joints of Ti-22Al-25Nb/TA15 Dissimilar Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Li, Dalong; Hu, Shengsun; Shen, Junqi; Zhang, Hao; Bu, Xianzheng

    2016-05-01

    Laser beam welding (LBW) was applied to join 1-mm-thick dissimilar titanium alloys, Ti-22Al-25Nb (at.%) and TA15, and the microstructure and mechanical properties of the welded joints were systematically analyzed. Defect-free joints were obtained, and the fusion zone mainly consisted of B2 and martensitic α' phases because of the uneven distribution of the β phase stabilizer and rapid cooling rate of LBW. The phase compositions of the heat-affected zone varied with the different thermal cycles during the welding process. The different microstructures of the dissimilar titanium alloys led to an unsymmetrical hardness profile, with the welded seam exhibiting the lowest value of 271 HV. In room-temperature tensile tests, the fractures all occurred preferentially in the fusion zone. The strengths of the joints were close to those of the base metal but with prominently decreasing ductility. In tensile tests performed at 550 °C, all the joints fractured in the TA15 base metal, and the strength and plasticity of the welds were equivalent to those of the TA15 base metal.

  1. Numerical Investigation of Residual Stress in Thick Titanium Alloy Plate Joined with Electron Beam Welding

    NASA Astrophysics Data System (ADS)

    Liu, Chuan; Wu, Bing; Zhang, Jian Xun

    2010-10-01

    A finite-element (FE) simulation process integrating three dimensional (3D) with two-dimensional (2D) models is introduced to investigate the residual stress of a thick plate with 50-mm thickness welded by an electron beam. A combined heat source is developed by superimposing a conical volume heat source and a uniform surface heat source to simulate the temperature field of the 2D model with a fine mesh, and then the optimal heat source parameters are employed by the elongated heat source for the 3D simulation without trial simulations. The welding residual stress also is investigated with emphasis on the through-thickness stress for the thick plate. Results show that the agreement between simulation and experiment is good with a reasonable degree of accuracy in respect to the residual stress on the top surface and the weld profile. The through-thickness residual stress of the thick plate induced by electron beam welding is distinctly different from that of the arc welding presented in the references.

  2. Structure and properties of commercially pure titanium nitrided in the plasma of a low-pressure gas discharge produced by a PINK plasma generator

    NASA Astrophysics Data System (ADS)

    Ivanov, Yu F.; Akhmadeev, Yu H.; Lopatin, I. V.; Petrikova, E. A.; Krysina, V.; Koval, N. N.

    2015-11-01

    The paper analyzes the surface structure and properties of commercially pure VT1-0 titanium nitrided in the plasma of a low-pressure gas discharge produced by a PINK plasma generator. The analysis demonstrates that the friction coefficient of the nitrided material decreases more than four times and its wear resistance and microhardness increases more than eight and three times, respectively. The physical mechanisms responsible for the enhancement of strength and tribological properties of the material are discussed.

  3. Investigation of the structure and properties of titanium-stainless steel permanent joints obtained by laser welding with the use of intermediate inserts and nanopowders

    NASA Astrophysics Data System (ADS)

    Cherepanov, A. N.; Orishich, A. M.; Pugacheva, N. B.; Shapeev, V. P.

    2015-03-01

    Results of an experimental study of the structure, the phase composition, and the mechanical properties of laser-welded joints of 3-mm thick titanium and 12Kh18N10T steel sheets obtained with the use of intermediate inserts and nanopowdered modifying additives are reported. It is shown that that such parameters as the speed of welding, the radiation power, and the laser-beam focal spot position all exert a substantial influence on the welding-bath process and on the seam structure formed. In terms of chemical composition, most uniform seams with the best mechanical strength are formed at a 1-m/min traverse speed of laser and 2.35-kW laser power, with the focus having been positioned at the lower surface of the sheets. Under all other conditions being identical, uplift of the focus to workpiece surface or to a higher position results in unsteady steel melting, in a decreased depth and reduced degree of the diffusion-induced mixing of elements, and in an interpolate connection formed according to the soldering mechanism in the root portion of the seam. The seam material is an over-saturated copper-based solid solution of alloying elements with homogeneously distributed intermetallic disperse particles (Ti(Fe, Cr)2 and TiCu3) contained in this alloy. Brittle fracture areas exhibiting cleavage and quasi-cleavage facets correspond to coarse Ti(Fe, Cr)2 intermetallic particles or to diffusion zones primarily occurring at the interface with the titanium alloy. The reported data and the conclusions drawn from the numerical calculations of the thermophysical processes of welding of 3-mm thick titanium and steel sheets through an intermediate copper insert are in qualitative agreement with the experimental data. The latter agreement points to adequacy of the numerical description of the melting processes of contacting materials versus welding conditions and focal-spot position in the system.

  4. Comparative study of the shear bond strength of various veneering materials on grade II commercially pure titanium

    PubMed Central

    Lee, Eun-Young; Jun, Sul-Gi; Wright, Robert F.

    2015-01-01

    PURPOSE To compare the shear bond strength of various veneering materials to grade II commercially pure titanium (CP-Ti). MATERIALS AND METHODS Thirty specimens of CP-Ti disc with 9 mm diameter and 10 mm height were divided into three experimental groups. Each group was bonded to heat-polymerized acrylic resin (Lucitone 199), porcelain (Triceram), and indirect composite (Sinfony) with 7 mm diameter and 2 mm height. For the control group (n=10), Lucitone 199 were applied on type IV gold alloy castings. All samples were thermocycled for 5000 cycles in 5-55℃ water. The maximum shear bond strength (MPa) was measured with a Universal Testing Machine. After the shear bond strength test, the failure mode was assessed with an optic microscope and a scanning electron microscope. Statistical analysis was carried out with a Kruskal-Wallis Test and Mann-Whitney Test. RESULTS The mean shear bond strength and standard deviations for experimental groups were as follows: Ti-Lucitone 199 (12.11 ± 4.44 MPa); Ti-Triceram (11.09 ± 1.66 MPa); Ti-Sinfony (4.32 ± 0.64 MPa). All of these experimental groups showed lower shear bond strength than the control group (16.14 ± 1.89 MPa). However, there was no statistically significant difference between the Ti-Lucitone 199 group and the control group, and the Ti-Lucitone 199 group and the Ti-Triceram group. Most of the failure patterns in all experimental groups were adhesive failures. CONCLUSION The shear bond strength of veneering materials such as heat-polymerized acrylic resin, porcelain, and indirect composite to CP-Ti was compatible to that of heatpolymerized acrylic resin to cast gold alloy. PMID:25722841

  5. Laser-Modified Surface Enhances Osseointegration and Biomechanical Anchorage of Commercially Pure Titanium Implants for Bone-Anchored Hearing Systems

    PubMed Central

    Omar, Omar; Simonsson, Hanna; Palmquist, Anders; Thomsen, Peter

    2016-01-01

    Osseointegrated implants inserted in the temporal bone are a vital component of bone-anchored hearing systems (BAHS). Despite low implant failure levels, early loading protocols and simplified procedures necessitate the application of implants which promote bone formation, bone bonding and biomechanical stability. Here, screw-shaped, commercially pure titanium implants were selectively laser ablated within the thread valley using an Nd:YAG laser to produce a microtopography with a superimposed nanotexture and a thickened surface oxide layer. State-of-the-art machined implants served as controls. After eight weeks’ implantation in rabbit tibiae, resonance frequency analysis (RFA) values increased from insertion to retrieval for both implant types, while removal torque (RTQ) measurements showed 153% higher biomechanical anchorage of the laser-modified implants. Comparably high bone area (BA) and bone-implant contact (BIC) were recorded for both implant types but with distinctly different failure patterns following biomechanical testing. Fracture lines appeared within the bone ~30–50 μm from the laser-modified surface, while separation occurred at the bone-implant interface for the machined surface. Strong correlations were found between RTQ and BIC and between RFA at retrieval and BA. In the endosteal threads, where all the bone had formed de novo, the extracellular matrix composition, the mineralised bone area and osteocyte densities were comparable for the two types of implant. Using resin cast etching, osteocyte canaliculi were observed directly approaching the laser-modified implant surface. Transmission electron microscopy showed canaliculi in close proximity to the laser-modified surface, in addition to a highly ordered arrangement of collagen fibrils aligned parallel to the implant surface contour. It is concluded that the physico-chemical surface properties of laser-modified surfaces (thicker oxide, micro- and nanoscale texture) promote bone bonding

  6. Effects of silica-coating on surface topography and bond strength of porcelain fused to CAD/CAM pure titanium.

    PubMed

    Fukuyama, Takushi; Hamano, Naho; Ino, Satoshi

    2016-01-01

    The aim of this study was to evaluate the shear bond strength of porcelain fusing to titanium and the effects of surface treatment on surface structure of titanium. In the shear bond strength test, titanium surface treatments were: conventional, silica-coating without bonding agent, and silica-coating with bonding agent. Titanium surface treatments for analysis by the atomic force microscope (AFM) were: polishing, alumina sandblasting and silica-coating. The shear bond strength value of silica-coating with bonding agent group showed significantly higher than that of other groups. In AFM observation results, regular foamy structure which is effective for wetting was only observed in silica-coating. Therefore, this structure might indicate silicon. Silica-coating renders forms a nanoscopic regular foamy structure, involved in superhydrophilicity, to titanium surface, which is markedly different from the irregular surface generated by alumina sandblasting. PMID:27041024

  7. Welding.

    ERIC Educational Resources Information Center

    Cowan, Earl; And Others

    The curriculum guide for welding instruction contains 16 units presented in six sections. Each unit is divided into the following areas, each of which is color coded: terminal objectives, specific objectives, suggested activities, and instructional materials; information sheet; transparency masters; assignment sheet; test; and test answers. The…

  8. Welding.

    ERIC Educational Resources Information Center

    Baldwin, Harold; Whitney, Gregory

    This curriculum guide is intended to assist vocational instructors in preparing students for entry-level employment as welders and preparing them for advanced training in the workplace. The package contains an overview of new and emerging welding technologies, a competency/skill and task list, an instructor's guide, and an annotated bibliography.…

  9. Combined Laser Beam Welding and Brazing Process for Aluminium Titanium Hybrid Structures

    NASA Astrophysics Data System (ADS)

    Möller, F.; Grden, M.; Thomy, C.; Vollertsen, F.

    The current state of the art in light-weight construction is - for the case of aircraft structures - the use of either aluminium or titanium. Whereas aluminium is light-weight and less expensive, titanium offers superior corrosion properties at higher cost. In order to combine the advantages of both materials, a hybrid Ti-Al structure is proposed for e.g. seat-track application. In this paper, an overview of the results from this research work and the accompanying thermo-mechanical simulations will be reported and discussed. On the basis of the development of an appropriate system technology, the process development will be described, focusing on the main influencing parameters of the process on joint properties.

  10. Physicochemical state of the nanotopographic surface of commercially pure titanium following anodization-hydrothermal treatment reveals significantly improved hydrophilicity and surface energy profiles.

    PubMed

    Takebe, Jun; Ito, Shigeki; Miura, Shingo; Miyata, Kyohei; Ishibashi, Kanji

    2012-01-01

    A method of coating commercially pure titanium (cpTi) implants with a highly crystalline, thin hydroxyapatite (HA) layer using discharge anodic oxidation followed by hydrothermal treatment (Spark discharged Anodic oxidation treatment ; SA-treated cpTi) has been reported for use in clinical dentistry. We hypothesized that a thin HA layer with high crystallinity and nanostructured anodic titanium oxide film on such SA-treated cpTi implant surfaces might be a crucial function of their surface-specific potential energy. To test this, we analyzed anodic oxide (AO) cpTi and SA-treated cpTi disks by SEM and AFM. Contact angles and surface free energy of each disk surface was measured using FAMAS software. High-magnification SEM and AFM revealed the nanotopographic structure of the anodic titanium oxide film on SA-treated cpTi; however, this was not observed on the AO cpTi surface. The contact angle and surface free energy measurements were also significantly different between AO cpTi and SA-treated cpTi surfaces (Tukey's, P<0.05). These data indicated that the change of physicochemical properties of an anodic titanium oxide film with HA crystals on an SA-treated cpTi surface may play a key role in the phenomenon of osteoconduction during the process of osseointegration.

  11. Fabrication of nanotube arrays on commercially pure titanium and their apatite-forming ability in a simulated body fluid

    SciTech Connect

    Hsu, Hsueh-Chuan; Wu, Shih-Ching; Hsu, Shih-Kuang; Chang, Yu-Chen; Ho, Wen-Fu

    2015-02-15

    In this study, we investigated self-organized TiO{sub 2} nanotubes that were grown using anodization of commercially pure titanium at 5 V or 10 V in NH{sub 4}F/NaCl electrolyte. The nanotube arrays were annealed at 450 °C for 3 h to convert the amorphous nanotubes to anatase and then they were immersed in simulated body fluid at 37 °C for 0.5, 1, and 14 days. The purpose of this experiment was to evaluate the apatite-formation abilities of anodized Ti nanotubes with different tube diameters and lengths. The nanotubes that formed on the surfaces of Ti were examined using a field emission scanning electron microscope, X-ray diffraction, and X-ray photoelectron spectroscope. When the anodizing potential was increased from 5 V to 10 V, the pore diameter of the nanotube increased from approximately 24–30 nm to 35–53 nm, and the tube length increased from approximately 590 nm to 730 nm. In vitro testing of the heat-treated nanotube arrays indicated that Ca-P formation occurred after only 1 day of immersion in simulated body fluid. This result was particularly apparent in the samples that were anodized at 10 V. It was also found that the thickness of the Ca-P layer increases as the applied potential for anodized c.p. Ti increases. The average thickness of the Ca-P layer on Ti that was anodized at 5 V and 10 V was approximately 170 nm and 190 nm, respectively, after immersion in simulated body fluid for 14 days. - Highlights: • TiO{sub 2} nanotube on Ti surface was formed by anodic oxidation in a NaCl/NH{sub 4}F solution. • TiO{sub 2} layers show a tube length of 590 nm and 730 nm at 5 V and 10 V, respectively. • After soaking in SBF, Ca-P layer completely covered the entire nanotubular surfaces. • The Ca-P layer was thicker on the Ti surface anodized at 10 V.

  12. Microstructural Evolution of the Interface Between Pure Titanium and Low Melting Point Zr-Ti-Ni(Cu) Filler Metals

    NASA Astrophysics Data System (ADS)

    Lee, Dongmyoung; Sun, Juhyun; Kang, Donghan; Shin, Seungyoung; Hong, Juhwa

    2014-12-01

    Low melting point Zr-based filler metals with melting point depressants (MPDs) such as Cu and Ni elements are used for titanium brazing. However, the phase transition of the filler metals in the titanium joint needs to be explained, since the main element of Zr in the filler metals differs from that of the parent titanium alloys. In addition, since the MPDs easily form brittle intermetallics, that deteriorate joint properties, the phase evolution they cause needs to be studied. Zr-based filler metals having Cu content from 0 to 12 at. pct and Ni content from 12 to 24 at. pct with a melting temperature range of 1062 K to 1082 K (789 °C to 809 °C) were wetting-tested on a titanium plate to investigate the phase transformation and evolution at the interface between the titanium plate and the filler metals. In the interface, the alloys system with Zr, Zr2Ni, and (Ti,Zr)2Ni phases was easily changed to a Ti-based alloy system with Ti, Ti2Ni, and (Ti,Zr)2Ni phases, by the local melting of parent titanium. The dissolution depths of the parent metal were increased with increasing Ni content in the filler metals because Ni has a faster diffusion rate than Cu. Instead, slow diffusion of Cu into titanium substrate leads to the accumulation of Cu at the molten zone of the interface, which could form undesirable Ti x Cu y intermetallics. This study confirmed that Zr-based filler metals are compatible with the parent titanium metal with the minimum content of MPDs.

  13. Titanium 2013

    USGS Publications Warehouse

    2014-01-01

    Titanium is the ninth most abundant element in the earth's crust and can be found in nearly all rocks and sediments. It is a lithophile element with a strong affinity for oxygen and is not found as a pure metal in nature. Titanium was first isolated as a pure metal in 1910, but it was not until 1948 that the metal was produced commercially using the Kroll process (named after its developer, William Kroll) to reduce titanium tetrachloride with magnesium to produce titanium metal.

  14. Effect of the combination of different welding parameters on melting characteristics of grade 1 titanium with a pulsed Nd-Yag laser.

    PubMed

    Bertrand, C; Laplanche, O; Rocca, J P; Le Petitcorps, Y; Nammour, S

    2007-11-01

    The laser is a very attractive tool for joining dental metallic alloys. However, the choice of the setting parameters can hardly influence the welding performances. The aim of this research was to evaluate the impact of several parameters (pulse shaping, pulse frequency, focal spot size...) on the quality of the microstructure. Grade 1 titanium plates have been welded with a pulsed Nd-Yag laser. Suitable power, pulse duration, focal spot size, and flow of argon gas were fixed by the operator. Five different pulse shapes and three pulse frequencies were investigated. Two pulse shapes available on this laser unit were eliminated because they considerably hardened the metal. As the pulse frequency rose, the metal was more and more ejected, and a plasma on the surface of the metal increased the oxygen contamination in the welded area. Frequencies of 1 or 2 Hz are optimum for a dental use. Three pulse shapes can be used for titanium but the rectangular shape gives better results.

  15. SCC INITIATION AND GROWTH RATE STUDIES ON TITANIUM GRADE 7 AND BASE METAL, WELDED, AND AGED ALLOY 22 IN CONCENTRATED GROUNDWATER

    SciTech Connect

    J.H. Payer

    2005-08-01

    The stress corrosion crack initiation and growth rate response was evaluated on as-received, as-welded, cold worked and aged Alloy 22 (UNS N06022) and titanium Grades 7 (UNS R52400), 28 (UNS R55323) and 29 (UNS R56404) at 105-165 C in various aerated, concentrated groundwater environments. Time-to-failure experiments on actively-loaded tensile specimens at 105 C evaluated the effects of applied stress, welding, surface finish, shot peening, cold work, crevicing, and aging treatments in Alloy 22 (UNS N06022), and found these materials to be highly resistant to SCC (none observed). Long-term U-bend data at 165 C corroborated these findings. Titanium Grade 7 and stainless steels were also included in the 105 C test matrix. Long term crack growth rate data showed stable crack growth in titanium Grade 7. Recent creep tests in air confirm literature data that these alloys are quite susceptible to creep failure, even below the yield stress, and it is unclear whether cracking in SCC tests is only accelerated by the creep response, or whether creep is responsible for cracking. Alloy 22 exhibited stable growth rates under ''gentle'' cyclic loading, but was prone to crack arrest at fully static loading. No effect of Pb additions was observed.

  16. Filler wire for aluminum alloys and method of welding

    NASA Technical Reports Server (NTRS)

    Bjorkman, Jr., Gerald W. O. (Inventor); Cho, Alex (Inventor); Russell, Carolyn K. (Inventor)

    2003-01-01

    A weld filler wire chemistry has been developed for fusion welding 2195 aluminum-lithium. The weld filler wire chemistry is an aluminum-copper based alloy containing high additions of titanium and zirconium. The additions of titanium and zirconium reduce the crack susceptibility of aluminum alloy welds while producing good weld mechanical properties. The addition of silver further improves the weld properties of the weld filler wire. The reduced weld crack susceptibility enhances the repair weldability, including when planishing is required.

  17. Nanopore formation on the surface oxide of commercially pure titanium grade 4 using a pulsed anodization method in sulfuric acid.

    PubMed

    Williamson, R S; Disegi, J; Griggs, J A; Roach, M D

    2013-10-01

    Titanium and its alloys form a thin amorphous protective surface oxide when exposed to an oxygen environment. The properties of this oxide layer are thought to be responsible for titanium and its alloys biocompatibility, chemical inertness, and corrosion resistance. Surface oxide crystallinity and pore size are regarded to be two of the more important properties in establishing successful osseointegration. Anodization is an electrochemical method of surface modification used for colorization marking and improved bioactivity on orthopedic and dental titanium implants. Research on titanium anodization using sulphuric acid has been reported in the literature as being primarily conducted in molarity levels 3 M and less using either galvanostatic or potentiostatic methods. A wide range of pore diameters ranging from a few nanometers up to 10 μm have been shown to form in sulfuric acid electrolytes using the potentiostatic and galvanostatic methods. Nano sized pores have been shown to be beneficial for bone cell attachment and proliferation. The purpose of the present research was to investigate oxide crystallinity and pore formation during titanium anodization using a pulsed DC waveform in a series of sulfuric acid electrolytes ranging from 0.5 to 12 M. Anodizing titanium in increasing sulfuric acid molarities showed a trend of increasing transformations of the amorphous natural forming oxide to the crystalline phases of anatase and rutile. The pulsed DC waveform was shown to produce pores with a size range from ≤0.01 to 1 μm(2). The pore size distributions produced may be beneficial for bone cell attachment and proliferation. PMID:23807314

  18. Effect of Heat Input on the Tensile Damage Evolution in Pulsed Laser Welded Ti6Al4V Titanium Sheets

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Gao, Xiaolong; Zhang, Jianxun

    2016-10-01

    The present paper is focused on studying the effect of heat input on the tensile damage evolution of pulsed Nd:YAG laser welding of Ti6Al4V alloy under monotonic loading. To analyze the reasons that the tensile fracture site of the pulsed-laser-welded Ti6Al4V sheet joints changes with the heat input under monotonic loading, the microstructure of the sample with different nominal strain values was investigated by in situ observation. Experiment results show that the tensile ductility and fatigue life of welded joints with low heat input are higher than that of welded joints with high heat input. Under tensile loads, the critical engineering strain for crack initiation is much lower in the welded joint with high heat input than in the welded joints with low and medium heat input. And the microstructural damage accumulation is much faster in the fusion zone than in the base metal for the welded joints with high input, whereas the microstructural damage accumulation is much faster in the base metal than in the fusion zone for the welded joints with low input. Consequently, the welded joints fractured in the fusion zone for the welds with high heat input, whereas the welded joints ruptured in the base metal for the welds with low heat input. It is proved that the fine grain microstructure produced by low heat input can improve the critical nominal strain for crack initiation and the resistance ability of microstructural damage.

  19. Submerged-arc welding slags: characterization and leaching strategies for the removal of aluminum and titanium.

    PubMed

    Annoni, Raquel; Souza, Poliana Santos; Petrániková, Martina; Miskufova, Andrea; Havlík, Tomáš; Mansur, Marcelo Borges

    2013-01-15

    In the present study, submerged-arc welding slags were characterized by applying a variety of methods, including X-ray fluorescence, X-ray diffraction, particle size, Raman spectroscopy, and scanning electron microscope with energy dispersive X-ray analysis. The content of Al proved to be quite similar within neutral and acid slags (10-14%), while that of Ti proved to be much higher in acid slags (approximately 10%) than in neutral slags (<1%). The presence of spinel structures associated with Al species could also be identified in the analyzed samples. This characterization study was accompanied by leaching tests performed under changing operating conditions in an attempt to evaluate to what extent the Al and Ti bearing components could be removed from the slags. The leaching work involved three distinct strategies: (i) NaOH leaching followed by H(2)SO(4) leaching, (ii) acid leaching (HCl and H(2)SO(4)) using oxidizing/reducing agents, and (iii) slag calcination followed by H(2)SO(4) leaching. In the best result, 80% of Al was extracted in one single leaching stage after calcination of the acid slag with NaCl+C at 900 °C. By contrast, the removal of Ti proved to be unsatisfactory. PMID:23274794

  20. Cracks growth behaviors of commercial pure titanium under nanosecond laser irradiation for formation of nanostructure-covered microstructures (with sub-5-μm)

    NASA Astrophysics Data System (ADS)

    Pan, A. F.; Wang, W. J.; Mei, X. S.; Zheng, B. X.; Yan, Z. X.

    2016-11-01

    This study reported on the formation of sub-5-μm microstructures covered on titanium by cracks growth under 10-ns laser radiation at the wavelength of 532 nm and its induced light modification for production of nanostructures. The electric field intensity and laser power density absorbed by commercial pure titanium were computed to investigate the self-trapping introduced by cracks and the effect of surface morphology on laser propagation characteristics. It is found that nanostructures can form at the surface with the curvature radius below 20 μm. Meanwhile, variable laser fluences were applied to explore the evolution of cracks on commercial pure titanium with or without melt as spot overlap number increased. Experimental study was first performed at the peak laser fluence of 1.063 J/cm2 to investigate the microstructures induced only by cracks growth. The results demonstrated that angular microstructures with size between 1.68 μm and 4.74 μm was obtained and no nanostructure covered. Then, at the peak laser fluence of 2.126 J/cm2, there were some nanostructures covered on the melt-induced curved microstructured surface. However, surface molten material submerged in the most of cracks at the spot overlap number of 744, where the old cracks disappeared. The results indicated that there was too much molten material and melting time at the peak laser fluence of 2.126 J/cm2, which was not suitable for obtainment of perfect micro-nano structures. On this basis, peak laser fluence was reduced down to 1.595 J/cm2 and the sharp sub-5 μm microstructures with nanostructures covered was obtained at spot overlap number of 3720.

  1. Characterization of solid-phase welds between Ti-6Al-2Sn-4Zr-2Mo-0. 01Si and Ti-13. 5A1-21. 5Nb titanium aluminide

    SciTech Connect

    Baeslack, W.A. III; Juhas, M.; Fraser, H.L. ); Broderick, T.F. . Materials Directorate)

    1994-12-01

    Dissimilar-alloy welds have been produced between Ti-6Al-2Sn-4Zr-2Mo-0.1Si (wt.%) and Ti-13.5Al-21.5Nb (wt.%) titanium aluminide using three different solid-phase welding processes that create significantly different thermo-mechanical conditions at the weld interface. Exposure to supertransus temperatures, appreciable deformation and rapid cooling of the weld interface region during linear-friction welding promote dynamic recrystallization of beta grains and beta decomposition to fine martensitic products. In contrast, diffusion welding at temperatures below the base metal beta transus temperatures and at relatively low pressures minimizes deformation and microstructural variations in the weld interface region relative to the unaffected base metal. During capacitor-discharge resistance spot welding, extremely rapid heating of the weld interface region to near-solidus temperatures, and subsequent rapid cooling, result in the formation of a metastable, ordered-beta microstructure in the Ti-13.5ASl-21.5Nb and fine alpha-prime martensite in the Ti-6Al-2Sn-4Zr-2Mo-0.1Si.

  2. Proliferation of mouse fibroblast-like and osteoblast-like cells on pure titanium films manufactured by electron beam melting.

    PubMed

    Kawase, Mayu; Hayashi, Tatsuhide; Asakura, Masaki; Tomino, Masafumi; Mieki, Akimichi; Kawai, Tatsushi

    2016-10-01

    The physical characteristics and biological compatibility of surfaces produced by electron beam melting (EBM) are not well known. In particular, there are not many reports on biocompatibility qualities. In this study, pure Ti films were manufactured using EBM. While it is reported that moderately hydrophilic biomaterial surfaces display improved cell growth and biocompatibility, contact angle measurements on the EBM-produced pure Ti films showed slight hydrophobicity. Nonetheless, we found the cell count of both fibroblast-like cells (L929) and osteoblast-like cells (MC3T3-E1) increased on pure Ti films, especially the MC3T3-E1, which increased more than that of the control. In addition, the morphology of L929 and MC3T3-E1 was polygonal and spindle-shaped and the cytoskeleton was well developed in the pure Ti surface groups. Upon staining with Alizarin red S, a slight calcium deposition was observed and this level gradually rose to a remarkable level. These results indicate that pure Ti films manufactured by EBM have good biocompatibility and could be widely applied as biomedical materials in the near future. PMID:27425003

  3. Proliferation of mouse fibroblast-like and osteoblast-like cells on pure titanium films manufactured by electron beam melting.

    PubMed

    Kawase, Mayu; Hayashi, Tatsuhide; Asakura, Masaki; Tomino, Masafumi; Mieki, Akimichi; Kawai, Tatsushi

    2016-10-01

    The physical characteristics and biological compatibility of surfaces produced by electron beam melting (EBM) are not well known. In particular, there are not many reports on biocompatibility qualities. In this study, pure Ti films were manufactured using EBM. While it is reported that moderately hydrophilic biomaterial surfaces display improved cell growth and biocompatibility, contact angle measurements on the EBM-produced pure Ti films showed slight hydrophobicity. Nonetheless, we found the cell count of both fibroblast-like cells (L929) and osteoblast-like cells (MC3T3-E1) increased on pure Ti films, especially the MC3T3-E1, which increased more than that of the control. In addition, the morphology of L929 and MC3T3-E1 was polygonal and spindle-shaped and the cytoskeleton was well developed in the pure Ti surface groups. Upon staining with Alizarin red S, a slight calcium deposition was observed and this level gradually rose to a remarkable level. These results indicate that pure Ti films manufactured by EBM have good biocompatibility and could be widely applied as biomedical materials in the near future.

  4. Synthesis by anodic-spark deposition of Ca- and P-containing films on pure titanium and their biological response

    NASA Astrophysics Data System (ADS)

    Banakh, Oksana; Journot, Tony; Gay, Pierre-Antoine; Matthey, Joël; Csefalvay, Catherine; Kalinichenko, Oleg; Sereda, Olha; Moussa, Mira; Durual, Stéphane; Snizhko, Lyubov

    2016-08-01

    The purpose of this work is to characterize the anodized layers formed on titanium by anodic-spark deposition in an electrolyte containing Ca and P ions, Ca3(PO4)2, studied for the first time. The oxidation experiments were performed at different periods of time and using different concentrations of electrolyte. The influence of the process parameters (time of electrolysis and electrolyte concentration) on the surface morphology and chemical composition of the anodized layers was studied. It has been found that it is possible to incorporate Ca and P into the growing layer. A response of the anodized layers in a biological medium was evaluated by their immersion in a simulated body fluid. An enrichment of titanium and a simultaneous loss of calcium and phosphorus in the layer after immersion tests indicate that these coatings should be bioresorbable in a biological medium. Preliminary biological assays were performed on some anodized layers in order to assess their biocompatibility with osteoblast cells. The cell proliferation on one selected anodized sample was assessed up to 21 days after seeding. The preliminary results suggest excellent biocompatibility properties of anodized coatings.

  5. Effect of sandblasting intensity on microstructures and properties of pure titanium micro-arc oxidation coatings in an optimized composite technique

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Yuan; Zhu, Rui-Fu; Lu, Yu-Peng; Xiao, Gui-Yong; He, Kun; Yuan, Y. F.; Ma, Xiao-Ni; Li, Ying

    2014-02-01

    Sandblasting is one of the most effective methods to modify a metal surface and improve its properties for application. Micro-arc oxidation (MAO) could produce a ceramic coating on a dental implant, facilitating cellular differentiation and osseocomposite on it. This study aims to deposit bioceramic Ca- and P-containing coatings on sandblasted commercially pure titanium by an optimum composite technique to improve the bioactive performance. The effect of sandblasting intensity on microstructures and properties of the implant coatings is examined, and the modified surfaces are characterized in terms of their topography, phase, chemical composition, mechanical properties and hydroxyapatite (HA)-inducing ability. The results show that a moderate sandblasting micromachines the substrate in favorable combination of rough and residual stresses; its MAO coating deposits nano-hydroxyapatite after immersion in simulated body fluid (SBF) for 5 days exhibiting better bioactivity. The further improvement of the implant surface performance is attributed to an optimized composite technique.

  6. Thermal Stir Welding Development at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2008-01-01

    Solid state welding processes have become the focus of welding process development at NASA's Marshall Space Flight Center. Unlike fusion weld processes such as tungsten inert gas (TIG), variable polarity plasma arc (VPPA), electron beam (EB), etc., solid state welding processes do not melt the material during welding. The resultant microstructure can be characterized as a dynamically recrystallized morphology much different than the casted, dentritic structure typical of fusion weld processes. The primary benefits of solid state processes over fusion weld processes include superior mechanic properties and the elimination of thermal distortion and residual stresses. These solid state processes attributes have profoundly influenced the direction of advanced welding research and development within the NASA agency. Thermal Stir Welding (TSW) is a new solid state welding process being developed at the Marshall Space Flight Center. Unlike friction stir welding, the heating, stirring and forging elements of the weld process can be decoupled for independent control. An induction coil induces energy into a workpiece to attain a desired plastic temperature. An independently controlled stir rod, captured within non-rotating containment plates, then stirs the plasticized material followed by forging plates/rollers that work the stirred weld joint. The independent control (decoupling) of heating, stirring and forging allows, theoretically, for the precision control of microstructure morphology. The TSW process is being used to evaluate the solid state joining of Haynes 230 for ARES J-2X applications. It is also being developed for 500-in (12.5 mm) thick commercially pure grade 2 titanium for navy applications. Other interests include Inconel 718 and stainless steel. This presentation will provide metallurgical and mechanical property data for these high melting temperature alloys.

  7. Comparative evaluation of the three different surface treatments – conventional, laser and Nano technology methods in enhancing the surface characteristics of commercially pure titanium discs and their effects on cell adhesion: An in vitro study

    PubMed Central

    Vignesh; Nayar, Sanjna; Bhuminathan; Mahadevan; Santhosh, S.

    2015-01-01

    The surface area of the titanium dental implant materials can be increased by surface treatments without altering their shape and form, thereby increasing the biologic properties of the biomaterial. A good biomaterial helps in early cell adhesion and cell signaling. In this study, the commercially pure titanium surfaces were prepared to enable machined surfaces to form a control material and to be compared with sandblasted and acid-etched surfaces, laser treated surfaces and titanium dioxide (20 nm) Nano-particle coated surfaces. The surface elements were characterized. The biocompatibility was evaluated by cell culture in vitro using L929 fibroblasts. The results suggested that the titanium dioxide Nano-particle coated surfaces had good osteoconductivity and can be used as a potential method for coating the biomaterial. PMID:26015762

  8. Comparative evaluation of the three different surface treatments - conventional, laser and Nano technology methods in enhancing the surface characteristics of commercially pure titanium discs and their effects on cell adhesion: An in vitro study.

    PubMed

    Vignesh; Nayar, Sanjna; Bhuminathan; Mahadevan; Santhosh, S

    2015-04-01

    The surface area of the titanium dental implant materials can be increased by surface treatments without altering their shape and form, thereby increasing the biologic properties of the biomaterial. A good biomaterial helps in early cell adhesion and cell signaling. In this study, the commercially pure titanium surfaces were prepared to enable machined surfaces to form a control material and to be compared with sandblasted and acid-etched surfaces, laser treated surfaces and titanium dioxide (20 nm) Nano-particle coated surfaces. The surface elements were characterized. The biocompatibility was evaluated by cell culture in vitro using L929 fibroblasts. The results suggested that the titanium dioxide Nano-particle coated surfaces had good osteoconductivity and can be used as a potential method for coating the biomaterial.

  9. Comparative evaluation of the three different surface treatments - conventional, laser and Nano technology methods in enhancing the surface characteristics of commercially pure titanium discs and their effects on cell adhesion: An in vitro study.

    PubMed

    Vignesh; Nayar, Sanjna; Bhuminathan; Mahadevan; Santhosh, S

    2015-04-01

    The surface area of the titanium dental implant materials can be increased by surface treatments without altering their shape and form, thereby increasing the biologic properties of the biomaterial. A good biomaterial helps in early cell adhesion and cell signaling. In this study, the commercially pure titanium surfaces were prepared to enable machined surfaces to form a control material and to be compared with sandblasted and acid-etched surfaces, laser treated surfaces and titanium dioxide (20 nm) Nano-particle coated surfaces. The surface elements were characterized. The biocompatibility was evaluated by cell culture in vitro using L929 fibroblasts. The results suggested that the titanium dioxide Nano-particle coated surfaces had good osteoconductivity and can be used as a potential method for coating the biomaterial. PMID:26015762

  10. Weld solidification and HAZ liquation in a metastable-beta titanium alloy-Beta-21S. [Ti-15wt%Mo-2. 7wt%Nb-3wt%Al-0. 2wt%Si

    SciTech Connect

    Baeslack, W.A. III; Liu, P.S. ); Paskell, T. )

    1993-03-01

    Beta-21S is a new, metastable-beta titanium alloy which exhibits excellent oxidation resistance and mechanical properties at elevated temperatures. From a weld solidification standpoint, this alloy chemistry is of particular interest because its major beta-stabilizing elements (Mo and Nb) both exhibit equilibrium partitioning ratios (k[sub o]) greater than unity, indicating their simultaneous partitioning during weld solidification to the initial solid to form (i.e., dendrite cores), and correspondingly their depletion in the final regions of solidification (i.e., dendrite interstices). Such elemental partitioning, if retained down to room temperature, may be expected to promote local variations in the postweld aging response. The objectives of the present investigation were to characterize Gas Tungsten-Arc weld solidification and HAZ liquation phenomena in Beta-21S and to examine the influence of residual microsegregation in the weld zone on alpha precipitation during postweld heat treatment.

  11. Pure titanium particle loaded nanocomposites: study on the polymer/filler interface and hMSC biocompatibility.

    PubMed

    Avolio, Roberto; D'Albore, Marietta; Guarino, Vincenzo; Gentile, Gennaro; Cocca, Maria Cristina; Zeppetelli, Stefania; Errico, Maria Emanuela; Avella, Maurizio; Ambrosio, Luigi

    2016-10-01

    The integration of inorganic nanoparticles into polymer matrices allows for the modification of physical properties as well as the implementation of new features for unexplored application fields. Here, we propose the study of a new metal/polymer nanocomposite fabricated by dispersing pure Ti nanoparticles into a poly(methylmetacrilate) matrix via solvent casting process, to investigate its potential use as new biomaterial for biomedical applications. We demonstrated that Ti nanoparticles embedded in the poly(methylmetacrilate) matrix can act as reinforcing agent, not negatively influencing the biological response of human mesenchymal stem cell in terms of cytotoxicity and cell viability. As a function of relative amount and surface treatment, Ti nanoparticles may enhance mechanical strength of the composite-ranging from 31.1 ± 2.5 to 43.7 ± 0.7 MPa-also contributing to biological response in terms of adhesion and proliferation mechanisms. In particular, for 1 wt% Ti, treated Ti nanoparticles improve cell materials recognition, as confirmed by higher cell spreading-quantified in terms of cell area via image analysis-locally promoting stronger interactions at cell matrix interface. At this stage, these preliminary results suggest a promising use of pure Ti nanoparticles as filler in polymer composites for biomedical applications. PMID:27585912

  12. Pure titanium particle loaded nanocomposites: study on the polymer/filler interface and hMSC biocompatibility.

    PubMed

    Avolio, Roberto; D'Albore, Marietta; Guarino, Vincenzo; Gentile, Gennaro; Cocca, Maria Cristina; Zeppetelli, Stefania; Errico, Maria Emanuela; Avella, Maurizio; Ambrosio, Luigi

    2016-10-01

    The integration of inorganic nanoparticles into polymer matrices allows for the modification of physical properties as well as the implementation of new features for unexplored application fields. Here, we propose the study of a new metal/polymer nanocomposite fabricated by dispersing pure Ti nanoparticles into a poly(methylmetacrilate) matrix via solvent casting process, to investigate its potential use as new biomaterial for biomedical applications. We demonstrated that Ti nanoparticles embedded in the poly(methylmetacrilate) matrix can act as reinforcing agent, not negatively influencing the biological response of human mesenchymal stem cell in terms of cytotoxicity and cell viability. As a function of relative amount and surface treatment, Ti nanoparticles may enhance mechanical strength of the composite-ranging from 31.1 ± 2.5 to 43.7 ± 0.7 MPa-also contributing to biological response in terms of adhesion and proliferation mechanisms. In particular, for 1 wt% Ti, treated Ti nanoparticles improve cell materials recognition, as confirmed by higher cell spreading-quantified in terms of cell area via image analysis-locally promoting stronger interactions at cell matrix interface. At this stage, these preliminary results suggest a promising use of pure Ti nanoparticles as filler in polymer composites for biomedical applications.

  13. Pure Titanium Membrane (Ultra – Ti®) in the Treatment of Periodontal Osseous Defects: A Split-Mouth Comparative Study

    PubMed Central

    Khanna, Rajeev; Pardhe, Nilesh Dinesh; Srivastava, Nancy; Bajpai, Manas; Gupta, Shailendra

    2016-01-01

    Introduction Although many different types of Guided Tissue Regeneration (GTR) membranes (resorbable/non-resorbable, including titanium mesh) have been used in the field of Periodontics till now, but this is the first and only clinical study testing the effectiveness of an ultra thin pure Titanium Membrane (Ultra Ti) as a GTR membrane in infra-bony periodontal defects. Aim To compare the efficacy of GTR in intra-bony defects with newly introduced non-resorbable barrier membrane, made of titanium called “Ultra-Ti ® GTR Membrane” versus open flap debridement. Materials and Methods A prospective, randomized, controlled, clinical split mouth study was designed wherein each patient received both the control and test treatment. Two similar defects were selected in each of the 12 patients and were randomly assigned to one of the two treatments. Both the surgeries consisted of identical procedures except for the omission of the barrier membrane in the control sites. Full mouth Plaque Index (PI), Gingival Index (GI), Pocket Probing Depth (PPD) and Relative Attachment Level (RAL) were recorded before surgery and after 6 months and 9 months along with hard tissue measurements at the time of surgery and then at re-entry after 9 months. Radiographs were also taken before surgery and 9 months post operatively. Student’s paired t-test and unpaired t-test (SPSS software version 9) were used to analyze the results. Results Nine months after treatment, the test defects gained 4.375 ± 1.189mm of RAL, while the control defects yielded a significantly lower RAL gain of 3.417 ± 0.996mm. Pocket reduction was also significantly higher in the test group (4.917 ± 0.996mm) when compared with the controls (3.83 ± 0.718mm). There was a significant bone fill (54.69% of defect fill) obtained in the test site, unlike the control site (8.91%). Conclusion The present study demonstrated that GTR with “Ultra-Ti® GTR Membrane” resulted in a significant added benefit in comparison with

  14. Effect of laser beam offset on microstructure and mechanical properties of pulsed laser welded BTi-6431S/TA15 dissimilar titanium alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Hu, Shengsun; Shen, Junqi; Li, Dalong; Bu, Xianzheng

    2015-11-01

    Laser beam welding was used to weld dissimilar joints in BTi-6431S/TA15 titanium alloys. The effect of laser beam offset on microstructural characterizations and mechanical properties of the joints were investigated. Microstructural evolution of the joints was characterized by optical microscopy (OM) and X-ray diffraction (XRD). Tensile testing was conducted at room temperature and at 550 °C. The results demonstrated that with the exception of some porosity, a good quality joint could be achieved. Martensite α' and acicular α structures were present in the fusion zone (FZ). The amount of martensite α' present with the -0.2 mm beam offset was less than that with the 0.2 mm beam offset. Acicular α and martensite α' transformations occurred in the high temperature heat-affected zone (HT-HAZ) of both the BTi-6431S and TA15 alloys. In the low-temperature heat-affected zone (LT-HAZ), the BTi-6431S and TA15 alloy microstructures exhibited a mixture of secondary α, primary α, and prior β phases. The microhardness values in the FZ followed the order: -0.2 mm> 0 mm> 0.2 mm. Tensile testing at room temperature and at 550 °C resulted in fracture of the TA15 alloy base metal. The fracture morphology exhibited a ductile dimple feature.

  15. High-Powered, Ultrasonically Assisted Thermal Stir Welding

    NASA Technical Reports Server (NTRS)

    Ding, Robert

    2013-01-01

    distance equal to the thickness of the material being welded. The TSW process can be significantly improved by reducing the draw forces. This can be achieved by reducing the friction forces between the weld workpieces and the containment plates. High-power ultrasonic (HPU) vibrations of the containment plates achieve friction reduction in the TSW process. Furthermore, integration of the HPU energy into the TSW stir rod can increase tool life of the stir rod, and can reduce shear forces to which the stir rod is subjected during the welding process. TSW has been used to successfully join 0.500-in (˜13-mm) thick commercially pure (CP) titanium, titanium 6AL- 4V, and titanium 6AL-4V ELI in weld joint lengths up to 9 ft (˜2.75-m) long. In addition, the TSW process was used to fabricate a sub-scale hexagonally shaped gun turret component for the U.S. Navy. The turret is comprised of six 0.5000-in (˜13-mm) thick angled welds. Each angled weld joint was prepared by machining the mating surfaces to 120deg. The angled weld joint was then fixtured using an upper and lower containment plate of the same geometry of the angled weld joint. The weld joint was then stirred by the stir rod as it and the upper and lower containment plates traverse through the angled joint prep.

  16. Effects of the nanotopographic surface structure of commercially pure titanium following anodization-hydrothermal treatment on gene expression and adhesion in gingival epithelial cells.

    PubMed

    Takebe, J; Miyata, K; Miura, S; Ito, S

    2014-09-01

    The long-term stability and maintenance of endosseous implants with anodized-hydrothermally treated commercially pure titanium surfaces and a nanotopographic structure (SA-treated c.p.Ti) depend on the barrier function provided by the interface between the transmucosal portion of the implant surface and the peri-implant epithelium. This study investigated the effects of extracellular and intracellular gene expression in adherent gingival epithelial cells cultured for 1-7 days on SA-treated c.p.Ti implant surfaces compared to anodic oxide (AO) c.p.Ti and c.p.Ti disks. Scanning electron microscopy (SEM) showed filopodium-like extensions bound closely to the nanotopographic structure of SA-treated c.p.Ti at day 7 of culture. Gene expressions of focal adhesion kinase, integrin-α6β4, and laminin-5 (α3, β3, γ2) were significantly higher on SA-treated c.p.Ti than on c.p.Ti or AO c.p.Ti after 7 days (P<0.05). Our results confirmed that gingival epithelial cells adhere to SA-treated c.p.Ti as the transmucosal portion of an implant, and that this interaction markedly improves expression of focal adhesion molecules and enhances the epithelial cell phenotype. The cellular gene expression responses driving extracellular and intracellular molecular interactions thus play an important role in maintenance at the interface between SA-treated c.p.Ti implant surfaces and the gingival epithelial cells.

  17. Effect of nonthermal plasma treatment on surface chemistry of commercially-pure titanium and shear bond strength to autopolymerizing acrylic resin.

    PubMed

    Vechiato-Filho, Aljomar José; da Silva Vieira Marques, Isabella; dos Santos, Daniela Micheline; Matos, Adaias Oliveira; Rangel, Elidiane Cipriano; da Cruz, Nilson Cristino; Barão, Valentim Adelino Ricardo

    2016-03-01

    The effect of nonthermal plasma on the surface characteristics of commercially pure titanium (cp-Ti), and on the shear bond strength between an autopolymerizing acrylic resin and cp-Ti was investigated. A total of 96 discs of cp-Ti were distributed into four groups (n=24): Po (no surface treatment), SB (sandblasting), Po+NTP and SB+NTP (methane plasma). Surface characterization was performed through surface energy, surface roughness, scanning microscopy, energy dispersive spectroscopy, and X-ray diffraction tests. Shear bond strength test was conducted immediately and after thermocycling. Surface treatment affected the surface energy and roughness of cp-Ti discs (P<.001). SEM-EDS showed the presence of the carbide thin film. XRD spectra revealed no crystalline phase changes. The SB+NTP group showed the highest bond strength values (6.76±0.70 MPa). Thermocycling reduced the bond strength of the acrylic resin/cp-Ti interface (P<.05), except for Po group. NTP is an effective treatment option for improving the shear bond strength between both materials. PMID:26706504

  18. A time-based potential step analysis of electrochemical impedance incorporating a constant phase element: a study of commercially pure titanium in phosphate buffered saline.

    PubMed

    Ehrensberger, Mark T; Gilbert, Jeremy L

    2010-05-01

    The measurement of electrochemical impedance is a valuable tool to assess the electrochemical environment that exists at the surface of metallic biomaterials. This article describes the development and validation of a new technique, potential step impedance analysis (PSIA), to assess the electrochemical impedance of materials whose interface with solution can be modeled as a simplified Randles circuit that is modified with a constant phase element. PSIA is based upon applying a step change in voltage to a working electrode and analyzing the subsequent current transient response in a combined time and frequency domain technique. The solution resistance, polarization resistance, and interfacial capacitance are found directly in the time domain. The experimental current transient is numerically transformed to the frequency domain to determine the constant phase exponent, alpha. This combined time and frequency approach was tested using current transients generated from computer simulations, from resistor-capacitor breadboard circuits, and from commercially pure titanium samples immersed in phosphate buffered saline and polarized at -800 mV or +1000 mV versus Ag/AgCl. It was shown that PSIA calculates equivalent admittance and impedance behavior over this range of potentials when compared to standard electrochemical impedance spectroscopy. This current transient approach characterizes the frequency response of the system without the need for expensive frequency response analyzers or software.

  19. Effect of nonthermal plasma treatment on surface chemistry of commercially-pure titanium and shear bond strength to autopolymerizing acrylic resin.

    PubMed

    Vechiato-Filho, Aljomar José; da Silva Vieira Marques, Isabella; dos Santos, Daniela Micheline; Matos, Adaias Oliveira; Rangel, Elidiane Cipriano; da Cruz, Nilson Cristino; Barão, Valentim Adelino Ricardo

    2016-03-01

    The effect of nonthermal plasma on the surface characteristics of commercially pure titanium (cp-Ti), and on the shear bond strength between an autopolymerizing acrylic resin and cp-Ti was investigated. A total of 96 discs of cp-Ti were distributed into four groups (n=24): Po (no surface treatment), SB (sandblasting), Po+NTP and SB+NTP (methane plasma). Surface characterization was performed through surface energy, surface roughness, scanning microscopy, energy dispersive spectroscopy, and X-ray diffraction tests. Shear bond strength test was conducted immediately and after thermocycling. Surface treatment affected the surface energy and roughness of cp-Ti discs (P<.001). SEM-EDS showed the presence of the carbide thin film. XRD spectra revealed no crystalline phase changes. The SB+NTP group showed the highest bond strength values (6.76±0.70 MPa). Thermocycling reduced the bond strength of the acrylic resin/cp-Ti interface (P<.05), except for Po group. NTP is an effective treatment option for improving the shear bond strength between both materials.

  20. Hot press and roll welding of titanium-6-percent-aluminum-4-percent-vanadium bar and sheet with auto-vacuum cleaning

    NASA Technical Reports Server (NTRS)

    Holko, K. H.

    1972-01-01

    Hot press butt welds were made in 0.5 in. diameter bar, and roll lap welds were made in 0.060 in. thick sheet of Ti-6A1-4V. For hot press welds made after auto-vacuum cleaning at 1800 F for 2 hours, weld strength and ductility equaled the parent metal properties. Only 5 minutes of pressing time were needed at 1800 F and 200 psi to make the hot press welds. Roll welds were made in sheet at 1750 F with only 10 percent deformation. The welds in the bar and sheet were metallurgically indistinguishable from the parent material.

  1. Bonding titanium to Rene 41 alloy

    NASA Technical Reports Server (NTRS)

    Scott, R. W.

    1972-01-01

    Pair of intermediate materials joined by electron beam welding method welds titanium to Rene 41 alloy. Bond is necessary for combining into one structure high strength-to-density ratio titanium fan blades and temperature resistant nickel-base alloy turbine-buckets in VTOL aircraft lift-fan rotor.

  2. Experimental characterization and macro-modeling of mechanical strength of multi-sheets and multi-materials spot welds under pure and mixed modes I and II

    NASA Astrophysics Data System (ADS)

    Chtourou, Rim; Haugou, Gregory; Leconte, Nicolas; Zouari, Bassem; Chaari, Fahmi; Markiewicz, Eric

    2015-09-01

    Resistance Spot Welding (RSW) of multiple sheets with multiple materials are increasingly realized in the automotive industry. The mechanical strength of such new generation of spot welded assemblies is not that much dealt with. This is true in particular for experiments dedicated to investigate the mechanical strength of spot weld made by multi sheets of different grades, and their macro modeling in structural computations. Indeed, the most published studies are limited to two sheet assemblies. Therefore, in the first part of this work an advanced experimental set-up with a reduced mass is proposed to characterize the quasi-static and dynamic mechanical behavior and rupture of spot weld made by several sheets of different grades. The proposed device is based on Arcan test, the plates contribution in the global response is, thus, reduced. Loading modes I/II are, therefore, combined and well controlled. In the second part a simplified spot weld connector element (macroscopic modeling) is proposed to describe the nonlinear response and rupture of this new generation of spot welded assemblies. The weld connector model involves several parameters to be set. The remaining parameters are finally identified through a reverse engineering approach using mechanical responses of experimental tests presented in the first part of this work.

  3. Failure behavior of plasma-sprayed HAp coating on commercially pure titanium substrate in simulated body fluid (SBF) under bending load.

    PubMed

    Laonapakul, Teerawat; Rakngarm Nimkerdphol, Achariya; Otsuka, Yuichi; Mutoh, Yoshiharu

    2012-11-01

    Four point bending tests with acoustic emission (AE) monitoring were conducted for evaluating failure behavior of the plasma-sprayed hydroxyapatite (HAp) top coat on commercially pure titanium (cp-Ti) plate with and without mixed HAp/Ti bond coat. Effect of immersion in simulated body fluid (SBF) on failure behavior of the coated specimen was also investigated by immersing the specimen in SBF. The AE patterns obtained from the bending test of the HAp coating specimens after a week immersion in SBF clearly showed the earlier stage of delamination and spallation of the coating layer compared to those without immersion in SBF. It was also found that the bond coating improved failure resistance of the HAp coating specimen compared to that without the bond coat. Four point bend fatigue tests under ambient and SBF environments were also conducted with AE monitoring during the entire fatigue test for investigating the influence of SBF environment on fatigue failure behavior of the HAp coating specimen with the mixed HAp/Ti bond coat. The specimens tested at a stress amplitude of 120 MPa under both ambient and SBF environments could survive up to 10⁷ cycles without spallation of HAp coating layer. The specimens tested under SBF environment and those tested under ambient environment after immersion in SBF showed shorter fatigue life compared to those tested under ambient environment without SBF immersion. Micro-cracks nucleated in the coating layer in the early stage of fatigue life and then propagated into the cp-Ti substrate in the intermediate stage, which unstably propagated to failure in the final stage. It was found from the XRD analysis that the dissolution of the co-existing phases and the precipitation of the HAp phase were taken place during immersion in SBF. During this process, the co-existing phases disappeared from the coating layer and the HAp phase fully occupied the coating layer. The degradation of bending strength and fatigue life of the HAp coating

  4. Technique development for field inspection of cracking in seam welded ducts

    SciTech Connect

    Shell, Eric B.; Benson, Craig; Liljestrom, Greg C.; Shanahan, Stephen

    2014-02-18

    The resistance seam weld interfaces between alloyed and pure titanium are an in service concern due to precipitation of titanium hydride and resulting embrittlement and cracking. Several inspection techniques were developed and evaluated for field use to characterize the damage in the fleet. Electromagnetic, ultrasonic, florescent penetrant, thermographic, and radiographic techniques were considered. The ultrasonic and electromagnetic approaches were both found suitable. However, the electromagnetic approach is more desirable for field inspections, due to consistency and ease of use. The electromagnetic inspection procedure is able to discriminate between precursor damage and through cracking with sufficient sensitivity to small cracks.

  5. Ultrasonic Stir Welding

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  6. New explosive seam welding concepts

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1973-01-01

    Recently developed techniques provide totally-confined linear explosive seam welding and produce scarf joint with linear explosive seam welding. Linear ribbon explosives are utilized in making narrow, continuous, airtight joints in variety of aluminum alloys, titanium, copper, brass, and stainless steel.

  7. Remote welding equipment for TPX

    SciTech Connect

    Silke, G.W.; Junge, R.

    1995-12-31

    Remote welding equipment and techniques are necessary for maintenance of the Tokamak Physics Experiment (TPX) Plasma Facing Components (PFCs). The processes identified for this application includes inside diameter (i.d.) and outside diameter (o.d.) Gas Tungsten Arc (GTA) welding of titanium and stainless steel alloys. Welding equipment developed for this application includes some unique features due to the specialized environment of the TPX vessel. Remote features of this equipment must include the ability to acquire and align the parts being welded, perform all welding operations and visually inspect the weld area. Designs for weld heads require the integration of industry proven hardware with the special features include compact size, remote manipulation, remote clamping and alignment, remote vision, full inert gas coverage, arc voltage control, wire feed, programmable weld schedules and failure recovery.

  8. Morphology of the surface of technically pure titanium VT1-0 after electroexplosive carbonization with a weighed zirconium oxide powder sample and electron beam treatment

    SciTech Connect

    Sosnin, Kirill V.; Raykov, Sergey V.; Vaschuk, Ekaterina S.; Budovskikh, Evgenie A. Gromov, Victor E.; Ivanov, Yuri F.

    2014-11-14

    Titanium is carbonized by the electroexplosive method. Formation of a surface alloyed layer and a coating on the treated surface is established by the methods of transmission electron microscopy. The morphology and elemental composition of the alloyed layer are analyzed. A dependence of the structure of the modified layer subjected to electron gun treatment on the absorbed power density is revealed.

  9. A comparison of the stress corrosion cracking susceptibility of commercially pure titanium grade 4 in Ringer's solution and in distilled water: a fracture mechanics approach.

    PubMed

    Roach, Michael D; Williamson, R Scott; Thomas, Joseph A; Griggs, Jason A; Zardiackas, Lyle D

    2014-01-01

    From the results of laboratory investigations reported in the literature, it has been suggested that stress corrosion cracking (SCC) mechanisms may contribute to early failures in titanium alloys that have elevated oxygen concentrations. However, the susceptibility of titanium alloys to SCC in physiological environments remains unclear. In this study, a fracture mechanics approach was used to examine the SCC susceptibility of CP titanium grade 4 in Ringer's solution and distilled de-ionized (DI) water, at 37°C. The study duration was 26 weeks, simulating the non-union declaration of a plated fracture. Four wedge loads were used corresponding to 86-95% of the alloy's ligament yield load. The longest cracks were measured to be 0.18 mm and 0.10 mm in Ringer's solution and DI water, respectively. SEM analysis revealed no evidence of extensive fluting and quasi-cleavage fracture features which, in literature reports, were attributed to SCC. We thus postulate that the Ringer's solution accelerated the wedge-loaded crack growth without producing the critical stresses needed to change the fracture mechanism. Regression analysis of the crack length results led to a significant best-fit relationship between crack growth velocity (independent variable) and test electrolyte, initial wedge load, and time of immersion of specimen in electrolyte (dependent variables).

  10. Behavior of Ti-5Al-2.5Sn ELI titanium alloy sheet parent and weld metal in the presence of cracks at 20 K

    NASA Technical Reports Server (NTRS)

    Sullivan, T. L.

    1971-01-01

    Through- and surface-cracked specimens of two thicknesses were tested in uniaxial tension. Surface-cracked specimens were generally found to be stronger than through-cracked specimens with the same crack length. Apparent surface-crack fracture toughness calculated using the Anderson modified Irwin equation remained relatively constant for cracks as deep as 90 percent of the sheet thickness. Subcritical growth of surface cracks was investigated. Comparison of chamber and open air welds showed chamber welds to be slightly tougher. Both methods produced welds with toughness that compared favorably with that of the parent metal. Weld efficiencies were above 94 percent.

  11. Preventing Contamination In Electron-Beam Welds

    NASA Technical Reports Server (NTRS)

    Goodin, Wesley D.; Gulbrandsen, Kevin A.; Oleksiak, Carl

    1990-01-01

    Simple expedient eliminates time-consuming, expensive manual hand grinding. Use of groove and backup tube greatly reduces postweld cleanup in some electron-beam welding operations. Tube-backup method developed for titanium parts, configurations of which prevents use of solid-block backup. In new welding configuration, tube inserted in groove to prevent contact between alumina beads and molten weld root. When welding complete and beads and tube removed, only minor spatter remains and is ground away easily.

  12. Performance of a scanning mobility particle sizer in measuring diverse types of airborne nanoparticles: Multi-walled carbon nanotubes, welding fumes, and titanium dioxide spray.

    PubMed

    Chen, Bean T; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared; Friend, Sherri; Stone, Samuel; Keane, Michael

    2016-07-01

    Direct-reading instruments have been widely used for characterizing airborne nanoparticles in inhalation toxicology and industrial hygiene studies for exposure/risk assessments. Instruments using electrical mobility sizing followed by optical counting, e.g., scanning or sequential mobility particle spectrometers (SMPS), have been considered as the "gold standard" for characterizing nanoparticles. An SMPS has the advantage of rapid response and has been widely used, but there is little information on its performance in assessing the full spectrum of nanoparticles encountered in the workplace. In this study, an SMPS was evaluated for its effectiveness in producing "monodisperse" aerosol and its adequacy in characterizing overall particle size distribution using three test aerosols, each mimicking a unique class of real-life nanoparticles: singlets of nearly spherical titanium dioxide (TiO2), agglomerates of fiber-like multi-walled carbon nanotube (MWCNT), and aggregates that constitutes welding fume (WF). These aerosols were analyzed by SMPS, cascade impactor, and by counting and sizing of discrete particles by scanning and transmission electron microscopy. The effectiveness of the SMPS to produce classified particles (fixed voltage mode) was assessed by examination of the resulting geometric standard deviation (GSD) from the impactor measurement. Results indicated that SMPS performed reasonably well for TiO2 (GSD = 1.3), but not for MWCNT and WF as evidenced by the large GSD values of 1.8 and 1.5, respectively. For overall characterization, results from SMPS (scanning voltage mode) exhibited particle-dependent discrepancies in the size distribution and total number concentration compared to those from microscopic analysis. Further investigation showed that use of a single-stage impactor at the SMPS inlet could distort the size distribution and underestimate the concentration as shown by the SMPS, whereas the presence of vapor molecules or atom clusters in some test

  13. Performance of a Scanning Mobility Particle Sizer in Measuring Diverse Types of Airborne Nanoparticles: Multi-Walled Carbon Nanotubes, Welding Fumes, and Titanium Dioxide Spray

    PubMed Central

    Chen, Bean T.; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared; Friend, Sherri; Stone, Samuel; Keane, Michael

    2016-01-01

    Direct-reading instruments have been widely used for characterizing airborne nanoparticles in inhalation toxicology and industrial hygiene studies for exposure/risk assessments. Instruments using electrical mobility sizing followed by optical counting, e.g., scanning or sequential mobility particle spectrometers (SMPS), have been considered as the “gold standard” for characterizing nanoparticles. An SMPS has the advantage of rapid response and has been widely used, but there is little information on its performance in assessing the full spectrum of nanoparticles encountered in the workplace. In this study, an SMPS was evaluated for its effectiveness in producing “monodisperse” aerosol and its adequacy in characterizing overall particle size distribution using three test aerosols, each mimicking a unique class of real-life nanoparticles: singlets of nearly spherical titanium dioxide (TiO2), agglomerates of fiber-like multi-walled carbon nanotube (MWCNT), and aggregates that constitutes welding fume (WF). These aerosols were analyzed by SMPS, cascade impactor, and by counting and sizing of discrete particles by scanning and transmission electron microscopy. The effectiveness of the SMPS to produce classified particles (fixed voltage mode) was assessed by examination of the resulting geometric standard deviation (GSD) from the impactor measurement. Results indicated that SMPS performed reasonably well for TiO2 (GSD = 1.3), but not for MWCNT and WF as evidenced by the large GSD values of 1.8 and 1.5, respectively. For overall characterization, results from SMPS (scanning voltage mode) exhibited particle-dependent discrepancies in the size distribution and total number concentration compared to those from microscopic analysis. Further investigation showed that use of a single-stage impactor at the SMPS inlet could distort the size distribution and underestimate the concentration as shown by the SMPS, whereas the presence of vapor molecules or atom clusters in

  14. Cytotoxic effects of four types of welding fumes on macrophages in vitro: a comparative study

    SciTech Connect

    Pasanen, J.T.; Gustafsson, T.E.; Kalliomaeki, P.L.T.; Tossavainen, A.; Jaervisalo, J.O.

    1986-01-01

    The effects of fume particles given off by the manual metal arc (MMA) and metal inert gas (MIG) welding of stainless steel (SS) and mild steel (MS) were studied on rat alveolar macrophage cultures in vitro. The fumes were generated by welding, and particulate material obtained was collected on membrane filters. The macrophage cultures were exposed to the total dust and to its water-insoluble fractions. Cell variability and the release of both lactate dehydrogenase and one lysosomal enzyme from the cells to the medium were measured after an exposure period of 24 h. The cytotoxic control dust was DQ 12 quartz, and the inert control dust was pure titanium dioxide. According to the parameters studied, SS/MMA and MS/MMA welding fumes were cytotoxic to rat alveolar macrophages. The cytotoxic effect of SS/MMA welding fumes decreased after the samples had been washed with phosphate-buffered salt solution. The MIG welding fumes of SS and MS had markedly smaller effects on the cells. Diluted solutions of potassium chromate were also tested in order to investigate its role in the cytotoxicity of SS/MMA welding fumes. The results suggest that hexavalent chromium may be responsible for the cytotoxicity of SS/MMA.

  15. Cytotoxic effects of four types of welding fumes on macrophages in vitro: a comparative study.

    PubMed

    Pasanen, J T; Gustafsson, T E; Kalliomäki, P L; Tossavainen, A; Järvisalo, J O

    1986-01-01

    The effects of fume particles given off by the manual metal arc (MMA) and metal inert gas (MIG) welding of stainless steel (SS) and mild steel (MS) were studied on rat alveolar macrophage cultures in vitro. The fumes were generated by welding, and particulate material obtained was collected on membrane filters. The macrophage cultures were exposed to the total dust and to its water-insoluble fractions. Cell variability and the release of both lactate dehydrogenase and one lysosomal enzyme from the cells to the medium were measured after an exposure period of 24 h. The cytotoxic control dust was DQ 12 quartz, and the inert control dust was pure titanium dioxide. According to the parameters studied, SS/MMA and MS/MMA welding fumes were cytotoxic to rat alveolar macrophages. The cytotoxic effect of SS/MMA welding fumes decreased after the samples had been washed with phosphate-buffered salt solution. The MIG welding fumes of SS and MS had markedly smaller effects on the cells. Diluted solutions of potassium chromate were also tested in order to investigate its role in the cytotoxicity of SS/MMA welding fumes. The results suggest that hexavalent chromium may be responsible for the cytotoxicity of SS/MMA.

  16. New Method For Joining Stainless Steel to Titanium

    NASA Technical Reports Server (NTRS)

    Emanuel, W. H.

    1982-01-01

    In new process, edge of stainless-steel sheet is perforated, and joined to titanium by resistance seam welding. Titanium flows into perforations, forming a strong interlocking joint. Process creates a quasi-metallurgical bond between the thin sheets of stainless steel and titanium.

  17. Comparison of the deformation behaviour of commercially pure titanium and Ti-5Al-2.5Sn(wt.%) at 296 and 728 K

    NASA Astrophysics Data System (ADS)

    Li, H.; Mason, D. E.; Yang, Y.; Bieler, T. R.; Crimp, M. A.; Boehlert, C. J.

    2013-07-01

    The tension and tensile-creep deformation behaviours of a fully-α phase commercially pure (CP) Ti and a near-α Ti-5Al-2.5Sn(wt.%) alloy deformed in situ inside a scanning electron microscope were compared. Tensile tests were performed at 296 and 728 K, while tensile-creep tests were performed at 728 K. The yield stress of CP Ti decreased dramatically with increasing temperature. In contrast, temperature had much smaller effect on the yield stress of Ti-5Al-2.5Sn(wt.%). Electron backscattered diffraction was performed both before and after the deformation, and slip trace analysis was used to determine the active slip and twinning systems, as well as the associated global stress state Schmid factors. In tension tests of CP Ti, prismatic slip was the most likely slip system to be activated when the Schmid factor exceeded 0.4. Prismatic slip was observed over the largest Schmid factor range, indicating that the local stress tensor varies significantly from the global stress state of uniaxial tension. The basal slip activity in Ti-5Al-2.5Sn(wt.%) was observed in a larger faction of grains than in CP Ti. Pyramidal ⟨c + a⟩ slip was more prevalent in CP Ti. Although twinning was an active deformation mode in tension tests of the CP Ti, it was rare in Ti-5Al-2.5Sn(wt.%). During creep, dislocation slip was the primary apparent deformation mechanism in CP Ti, while evidence for dislocation slip was much less apparent in Ti-5Al-2.5Sn(wt.%), where grain boundary sliding was dominant. A robust statistical analysis was carried out to assess the significance of the comparative activity of the different slip systems under the variety of experimental conditions examined.

  18. Tissue stimulator enclosure welding fixture

    NASA Technical Reports Server (NTRS)

    Mcclure, S. R.

    1977-01-01

    It was demonstrated that the thickness of the stimulator titanium enclosure is directly related to the battery recharge time cycle. Reduction of the titanium enclosure thickness from approximately 0.37 mm (0.015 inch) to 0.05 mm (0.002 inch) significantly reduced the recharge time cycle and thereby patient inconvenience. However, fabrication of titanium enclosures from the thinner material introduced problems in forming, holding, and welding that required improvement in state of the art shop practices. The procedures that were utilized to resolve these fabrication problems are described.

  19. Nonchamber, Root-Side, Inert-Gas Purging During Welding

    NASA Technical Reports Server (NTRS)

    Mcgee, William F.; Rybicki, Daniel J.

    1995-01-01

    Improved apparatus distributes inert gas to protect against oxidation on root side of weld during welding and after welding while joint remains hot. Simple and lightweight; readily moved along weld path in synchronism with torch. Because it concentrates inert gas where needed, consumes gas at relatively low rate, and not necessary to monitor oxygen content of protective atmosphere. Apparatus does not obscure view of root side of weld. Used for full-penetration plasma-arc welding of such reactive metals as aluminum/lithium alloys and titanium.

  20. A superior process for forming titanium hydrogen isotopic films

    NASA Technical Reports Server (NTRS)

    Steinberg, R.; Alger, D. L.; Cooper, D. W.

    1975-01-01

    Process forms stoichiometric, continuous, strongly bonded titanium hydrogen isotopic films. Films have thermal and electrical conductivities approximately the same as bulk pure titanium, ten times greater than those of usual thin films.

  1. Welding IV.

    ERIC Educational Resources Information Center

    Allegheny County Community Coll., Pittsburgh, PA.

    Instructional objectives and performance requirements are outlined in this course guide for Welding IV, a competency-based course in advanced arc welding offered at the Community College of Allegheny County to provide students with proficiency in: (1) single vee groove welding using code specifications established by the American Welding Society…

  2. Welding Curriculum.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum guide is a handbook for the development of welding trade programs. Based on a survey of Alaskan welding employers, it includes all competencies a student should acquire in such a welding program. The handbook stresses the importance of understanding the principles associated with the various elements of welding.…

  3. Dissimilar alloy laser beam welding of titanium: Ti-6Al-4V to Beta-C[trademark]. [Ti-3Al-8V-6Cr-4Mo-4Zr

    SciTech Connect

    Liu, P.S.; Baeslack, W.A. III . Dept. of Welding Engineering); Hurley, J. )

    1994-07-01

    CO[sub 2] laser beam welds were produced between Ti-6Al-4V and Beta-C[trademark] sheet. Three different nominal fusion zone chemical compositions were obtained by varying the laser beam location relative to the joint centerline and thereby melting different quantities of each base metal. Fusion zone microstructures exhibited fine, columnar-shaped beta grains comprised of retained-beta phase and martensite, with the proportion of martensite increasing with an increase in the quantity of Ti-6Al-4V nominally in the fusion zone. The location of these phases within the fusion zone was influenced by macrosegregation, which originated from incomplete mixing of the melted base metals and the occurrence of transverse-solute banding during solidification. Postweld aging heat treatment at 482 C/20 h and 538 C/8 h resulted in extremely fine alpha precipitation within the retained-beta phase regions and tempering of the martensite. These fusion zone microstructures exhibited high hardnesses and strengths superior to those of the Ti-6Al-4V and Beta-C base metals, but low ductility (<2.5%). An increase in the aging temperature to 593 C promoted fusion zone transformation to a coarser intragranular and grain-boundary alpha + beta microstructure, which exhibited a strength superior to those of the base metals and acceptable ductility. Variations in the proportions of Ti-6Al-4V and Beta C within the weld fusion zone generally had a minimal effect on the average hardness and ductility.

  4. Automatic orbital GTAW welding: Highest quality welds for tomorrow's high-performance systems

    NASA Technical Reports Server (NTRS)

    Henon, B. K.

    1985-01-01

    Automatic orbital gas tungsten arc welding (GTAW) or TIG welding is certain to play an increasingly prominent role in tomorrow's technology. The welds are of the highest quality and the repeatability of automatic weldings is vastly superior to that of manual welding. Since less heat is applied to the weld during automatic welding than manual welding, there is less change in the metallurgical properties of the parent material. The possibility of accurate control and the cleanliness of the automatic GTAW welding process make it highly suitable to the welding of the more exotic and expensive materials which are now widely used in the aerospace and hydrospace industries. Titanium, stainless steel, Inconel, and Incoloy, as well as, aluminum can all be welded to the highest quality specifications automatically. Automatic orbital GTAW equipment is available for the fusion butt welding of tube-to-tube, as well as, tube to autobuttweld fittings. The same equipment can also be used for the fusion butt welding of up to 6 inch pipe with a wall thickness of up to 0.154 inches.

  5. Effect of tool geometry on ultrasonic welding process

    NASA Astrophysics Data System (ADS)

    Sasaki, Tomohiro; Sakata, Yutaro; Watanabe, Takehiko

    2014-08-01

    Ultrasonic welding of pure aluminum sheets is performed using two weld tools, one with a knurled surface and one with a cylindrical surface. Relative motion behaviors of each weld tool, with respect to the working materials, during ultrasonic welding tests are analyzed using the digital correlation method. Weld microstructure development is investigated on the basis of transitional weld stages in the context of relative motion behaviors. The dominant relative motion is between the two work materials at the beginning of the weld but changes to be the motion between the weld tool and the work material it is in contact with as weld time increases. Thermo-mechanical effects of the relative motion of the weld tool and the work materials, on the development of weld microstructure, are discussed.

  6. Welding mechanics for advanced component safety assessment

    NASA Astrophysics Data System (ADS)

    Siegele, Dieter

    2011-06-01

    Numerical methods are nowadays a useful tool for the calculation of distortion and residual stresses as a result from the welding process. Modern finite element codes not only allow for calculation of deformations and stresses due to the welding process but also take into account the change of microstructure due to different heating and cooling rates. As an extension to the pure welding simulation, the field of welding mechanics combines the mechanics and the material behaviour from the welding process with the assessment of service behaviour of welded components. In the paper, new results of experimental and numerical work in the field of welding mechanics are described. Through examples from automotive, nuclear and pipe-line applications it is demonstrated that an equilibrated treatment and a close interaction of "process", "properties" and "defects" are necessary to come up with an advanced fitness-forservice assessment of welded components.

  7. In-process monitoring and adaptive control for gap in micro butt welding with pulsed YAG laser

    NASA Astrophysics Data System (ADS)

    Kawahito, Yousuke; Kito, Masayuki; Katayama, Seiji

    2007-05-01

    A gap is one of the most important issues to be solved in laser welding of a micro butt joint, because the gap results in welding defects such as underfilling or a non-bonded joint. In-process monitoring and adaptive control has been expected as one of the useful procedures for the stable production of sound laser welds without defects. The objective of this research is to evaluate the availability of in-process monitoring and adaptive control in micro butt welding of pure titanium rods with a pulsed neodymium : yttrium aluminium garnet (Nd : YAG) laser beam of a 150 µm spot diameter. It was revealed that a 45 µm narrow gap was detected by the remarkable jump in a reflected light intensity due to the formation of the molten pool which could bridge the gap. Heat radiation signal levels increased in proportion to the sizes of molten pools or penetration depths for the respective laser powers. As for adaptive control, the laser peak power was controlled on the basis of the reflected light or the heat radiation signals to stably produce a sound deeply penetrated weld reduced underfilling. In the case of a 100 µm gap, the underfilling was greatly reduced by half smaller than those made with a conventional rectangular pulse shape in seam welding as well as spot welding with a pulsed Nd : YAG laser beam. Consequently, the adaptive control of the laser peak power on the basis of in-process monitoring could reduce the harmful effects due to a gap in micro butt laser welding with a pulsed laser beam.

  8. Advanced Welding Concepts

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  9. Porcelain veneering of titanium--clinical and technical aspects.

    PubMed

    Haag, Per

    2011-01-01

    Gold and other alloys have long been used for the production of crowns and bridges as replacements for damaged or lost teeth. However, doubts have arisen on the suitability of using these materials for dental restorations, as gold has also shown a capacity to cause side-effects such as allergic reactions. This is especially valid for alloys, which during the last decades have been used as porcelain-fused-to metal restorations. This fact has led to an interest in using titanium instead of these alloys. Trials to use titanium for this purpose were initiated in Japan in the early 1980s. Titanium as an unalloyed metal differs in two aspects from the above named alloys: it has a phase transformation at 882 degrees C, which changes its outer and inner properties, and it has an expansion that lies between that of the porcelain types available on the market at the time. In Japan a technique for casting titanium was developed, where the after-treatment of the casting was elaborate, to re-establish the original properties of titanium. The porcelain developed for veneering had shortcomings as the rendering produced a rough surface and non satisfactory esthetics. In Sweden a new concept was introduced in 1989. Here the processing of titanium was performed by industrial methods such as milling, spark erosion and laser welding. The idea behind this was to avoid phase transformation. During the 1990s a number of porcelain products were launched and a vast number of both laboratory and clinical studies were performed and published, with varying results. In the first study of this thesis a prospective clinical trial was performed at a public dental health clinic in Sweden. Twenty-five patients were provided with 40 copings of pure titanium, which were veneered with porcelain. After 2 years 36 of these crowns were evaluated and the patients were also interviewed regarding problems such as shooting pains or difficulties in cleaning around the teeth that were crowned. This evaluation

  10. Welding Technician

    ERIC Educational Resources Information Center

    Smith, Ken

    2009-01-01

    About 95% of all manufactured goods in this country are welded or joined in some way. These welded products range in nature from bicycle handlebars and skyscrapers to bridges and race cars. The author discusses what students need to know about careers for welding technicians--wages, responsibilities, skills needed, career advancement…

  11. Effects of titanium and zirconium on iron aluminide weldments

    SciTech Connect

    Burt, R.P.; Edwards, G.R.; David, S.A.

    1996-08-01

    Iron aluminides form a coarse fusion zone microstructure when gas-tungsten arc welded. This microstructure is susceptible to hydrogen cracking when water vapor is present in the welding environment. Because fusion zone microstructural refinement can reduce the hydrogen cracking susceptibility, titanium was used to inoculate the weld pool in iron aluminide alloy FA-129. Although the fusion zone microstructure was significantly refined by this method, the fracture stress was found to decrease with titanium additions. This decrease is attributed to an increase in inclusions at the grain boundaries.

  12. [Comparison of the biological tolerance of titanium and titanium alloys in human gingiva cell cultures].

    PubMed

    Hehner, B; Heidemann, D

    1989-01-01

    Mirror-finished solid specimens of pure titanium and the titanium alloys Ti-6Al-4V as well as Ti-5Al-2.5Fe showed no effects on the growth behavior and cell morphology of human gingival epithelial cell and fibroblast cultures. The growth of the cells contacting all three materials was uninhibited. SEM revealed growth of fibroblasts on the surfaces of the specimens, too. No differences could be found between the biocompatibility of titanium alloys and that of pure titanium. The formation of a stable surface oxide layer providing resistance to corrosion may be decisive.

  13. Fracture Mechanical Measurements with Commercial Stainless Steels at 4 K and with Cp-Titanium at 173 K

    NASA Astrophysics Data System (ADS)

    Nyilas, A.; Mitterbacher, H.

    2010-04-01

    Using the JETT (J-Evaluation on Tensile Test) technique, measurements have been performed with commercial stainless steels in forged and cast condition for the reason of an assessment for low temperature service down to 4 K. These steels frequently used for industrial applications are designated by German Werkstoff (WNr) 1.4308 and 1.4408 cast stainless steels and a forged material with the number 1.4307. The fracture toughness tests at 4 K with forged material 1.4307 comprised apart from the base metal also the weld zone and additionally the 5% and 8% pre-strained conditions of the base metal. Fracture toughness reduced slightly for cold worked condition gradually as well as for the weld joint. The Reliability of the JETT measurements has been also checked using the ASTM E 1820—99a standard. In addition, to these measurements, commercial pure ASTM grade 2 titanium (WNr 3.7035) has been also examined using the same JETT method for the reason of industrial application and the requirement of minimum fracture toughness of 100 MPa√m was fulfilled at 173 K. Furthermore, test results performed at 7 K of pure titanium plate material (ASTM grade 1) with respect to fracture mechanical JETT method are presented.

  14. Investigation of real-time microstructure evolution in steep thermal gradients using in-situ spatially resolved X-ray diffraction: A case study for Ti fusion welds

    SciTech Connect

    Ressler, T.; Wong, J.; Elmer, J.W. |

    1998-12-24

    A recently developed spatially resolved X-ray diffraction (SRXRD) technique utilizing intense synchrotron radiation has been refined to yield phase and microstructural information down to 200 {micro}m in spatial extent in materials subjected to steep thermal gradients during processing. This SRXRD technique has been applied to map completely the phases and their solid-state transformation in the so-called heat-affected zone (HAZ) in titanium fusion welds in situ during the welding process. Detailed profile analysis of the SRXRD patterns revealed four principal microstructural regions at temperature in the vicinity of the HAZ surrounding the liquid weld pool: (i) a completely transformed {beta}-Ti zone 2--3 mm adjacent to the liquid weld pool; (ii) a mixed {alpha} + {beta}-it region surrounding the pure {beta}-Ti zone, (iii) a back-transformed {alpha}-Ti zone on the backside of the HAZ where pure {beta}-Ti once existed at temperature well above the {alpha} {r_arrow} {beta} transformation isotherm, and (iv) a more diffused region outside the HAZ where annealing and recrystallization of the {alpha}-it base metal occur. The high-temperature microstructures so derived corroborate well the expected transformation kinetics in pure titanium, and the observed phase transformation boundaries are in good agreement with those predicted from the transformation isotherms calculated from a simplified heat-flow model. Based on a detailed assessment of the SRXRD setup employed, improved experimentations such as a smaller beam spot emitted from third generation synchrotron sources, better mechanical stability (tighter scattering geometry), and use of an area detector would enable more quantitative structural information for future phase dynamics studies exemplified by this work.

  15. Composite thin-foil bandpass filter for EUV astronomy Titanium-antimony-titanium

    NASA Technical Reports Server (NTRS)

    Jelinsky, P.; Martin, C.; Kimble, R.; Bowyer, S.; Steele, G.

    1983-01-01

    Thin metallic foils of antimony and titanium have been investigated in an attempt to develop an EUV filter with a bandpass from 350 to 550 A. A composite filter has been developed composed of antimony sandwiched between two titanium foils. The transmissions of sample composite foils and of pure titanium foils from 130 to 1216 A are presented. The absorption coefficients of anatimony and titanium and the effect of titanium oxide on the transmission are derived. The composite filter has been found to be quite stable and mechanically rugged. Among other uses, the filter shows substantial promise for EUV astronomy.

  16. Elements of arc welding

    SciTech Connect

    Not Available

    1993-07-01

    This paper looks at the following arc welding techniques: (1) shielded metal-arc welding; (2) submerged-arc welding; (3) gas metal-arc welding; (4) flux-cored arc welding; (5) electrogas welding; (6) gas tungsten-arc welding; and (7) plasma-arc welding.

  17. A study on the influence of ultrasonic processing on microstructure during laser welding phases

    NASA Astrophysics Data System (ADS)

    Liu, H. D.; Hu, F. Y.; Cui, A. Y.; Li, H. B.

    2015-12-01

    This paper proposes new welding technology that combines ultrasonic processing across different phases based on laser welding (UPPLW) and laser processing technology. The welding experiment used a 1.5 mm thick titanium alloy. The specimen was made metallographically prepared and the microstructural grain size of the welded joint was rated by metallurgical processing software, verifying that this new process can refine grains and improve joint properties.

  18. Effect of Pre- and Post-weld Heat Treatments on Linear Friction Welded Ti-5553

    NASA Astrophysics Data System (ADS)

    Wanjara, Priti; Dalgaard, Elvi; Gholipour, Javad; Cao, Xinjin; Cuddy, Jonathan; Jonas, John J.

    2014-10-01

    Linear friction welding allows solid-state joining of near-beta ( β) titanium alloy Ti-5553 (Ti-5Al-5V-5Mo-3Cr). In the as-welded condition, the weld zone (WZ) exhibits β grain refinement and marked softening as compared with Ti-5553 in the solution heat treated and aged condition. The softening of the weldment is attributed to the depletion of the strengthening alpha ( α) phase in the WZ and the adjacent thermo-mechanically affected zone (TMAZ). Specifically, in near- β titanium alloys, the strength of the material mainly depends on the shape, size, distribution, and fraction of the primary α and other decomposition products of the β phase. Hence, a combination of pre- and post-weld heat treatments were applied to determine the conditions that allow mitigating the α phase depletion in the WZ and TMAZ of the welds. The mechanical response of the welded samples to the heat treatments was determined by performing microhardness measurements and tensile testing at room temperature with an automated 3D deformation measurement system. It was found that though the joint efficiency in the as-welded condition was high (96 pct), strain localization and failure occurred in the TMAZ. The application of post-weld solution heat treatment with aging was effective in restoring α, increasing the joint efficiency (97 to 99 pct) and inducing strain localization and failure in the parent material region.

  19. Soldadura (Welding). Spanish Translations for Welding.

    ERIC Educational Resources Information Center

    Hohhertz, Durwin

    Thirty transparency masters with Spanish subtitles for key words are provided for a welding/general mechanical repair course. The transparency masters are on such topics as oxyacetylene welding; oxyacetylene welding equipment; welding safety; different types of welds; braze welding; cutting torches; cutting with a torch; protective equipment; arc…

  20. Intermetallic alloy welding wires and method for fabricating the same

    DOEpatents

    Santella, Michael L.; Sikka, Vinod K.

    1996-01-01

    Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined.

  1. Intermetallic alloy welding wires and method for fabricating the same

    DOEpatents

    Santella, M.L.; Sikka, V.K.

    1996-06-11

    Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined. 4 figs.

  2. WELDING TORCH

    DOEpatents

    Correy, T.B.

    1961-10-01

    A welding torch into which water and inert gas are piped separately for cooling and for providing a suitable gaseous atmosphere is described. A welding electrode is clamped in the torch by a removable collet sleeve and a removable collet head. Replacement of the sleeve and head with larger or smaller sleeve and head permits a larger or smaller welding electrode to be substituted on the torch. (AEC)

  3. Inert gas welding. 1964-August 1980 (citations from the NTIS Data Base). Report for 1964-August 1980

    SciTech Connect

    Reed, W.E.

    1980-08-01

    The Federally-sponsored research reports cited deal with the development of techniques and procedures for inert gas welding and with the characteristics of the resulting welds. Process control, automation, nondestructive testing, and health hazards are also investigated. Metals welded include steel, titanium, aluminum, uranium, and refractory metals. (This updated bibliography contains 229 citations, 26 of which are new entries to the previous edition.)

  4. Latest MIG, TIG arc-YAG laser hybrid welding systems for various welding products

    NASA Astrophysics Data System (ADS)

    Ishide, Takashi; Tsubota, Shuho; Watanabe, Masao

    2003-03-01

    Laser welding is capable of high-efficiency low-strain welding, and so its applications are started to various products. We have also put the high-power YAG laser of up to 10 kW to practical welding use for various products. On the other hand the weakest point of this laser welding is considered to be strict in the welding gap aiming allowance. In order to solve this problem, we have developed hybrid welding of TIG, MIG arc and YAG laser, taking the most advantages of both the laser and arc welding. Since the electrode is coaxial to the optical axis of the YAG laser in this process, it can be applied to welding of various objects. In the coaxial MIG, TIG-YAG welding, in order to make irradiation positions of the YAG laser beams having been guided in a wire or an electrode focused to the same position, the beam transmitted in fibers is separated to form a space between the separated beams, in which the laser is guided. With this method the beam-irradiating area can be brought near or to the arc-generating point. This enables welding of all directions even for the member of a three-dimensional shape. This time we carried out welding for various materials and have made their welding of up to 1 mm or more in welding groove gap possible. We have realized high-speed 1-pass butt welding of 4m/min in welding speed with the laser power of 3 kW for an aluminum alloy plate of approximately 4 mm thick. For a mild steel plate also we have realized butt welding of 1m/min with 5 kW for 6 mm thick. Further, in welding of stainless steel we have shown its welding possibility, by stabilizing the arc with the YAG laser in the welding atmosphere of pure argon, and shown that this welding is effective in high-efficiency welding of various materials. Here we will report the fundamental welding performances and applications to various objects for the coaxial MIG, TIG-YAG welding we have developed.

  5. Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride

    DOEpatents

    Koc, R.; Glatzmaier, G.C.

    1995-05-23

    A process is disclosed for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.

  6. Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride

    DOEpatents

    Koc, Rasit; Glatzmaier, Gregory C.

    1995-01-01

    A process for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.

  7. Plasma arc welding weld imaging

    NASA Technical Reports Server (NTRS)

    Rybicki, Daniel J. (Inventor); Mcgee, William F. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has a transparent shield cup disposed about the constricting nozzle, the cup including a small outwardly extending polished lip. A guide tube extends externally of the torch and has a free end adjacent to the lip. First and second optical fiber bundle assemblies are supported within the guide tube. Light from a strobe light is transmitted along one of the assemblies to the free end and through the lip onto the weld site. A lens is positioned in the guide tube adjacent to the second assembly and focuses images of the weld site onto the end of the fiber bundle of the second assembly and these images are transmitted along the second assembly to a video camera so that the weld site may be viewed continuously for monitoring the welding process.

  8. Solid State Joining of Dissimilar Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Morton, Todd W.

    Solid state joining of titanium via friction stir welding and diffusion bonding have emerged as enablers of efficient monolithic structural designs by the eliminations fasteners for the aerospace industry. As design complexity and service demands increase, the need for joints of dissimilar alloys has emerged. Complex thermomechanical conditions in friction stir weld joints and high temperature deformation behavior differences between alloys used in dissimilar joints gives rise to a highly variable flow pattern within a stir zone. Experiments performed welding Ti-6Al-4V to beta21S show that mechanical intermixing of the two alloys is the primary mechanism for the generation of the localized chemistry and microstructure, the magnitude of which can be directly related to pin rotation and travel speed weld parameters. Mechanical mixing of the two alloys is heavily influenced by strain rate softening phenomena, and can be used to manipulate weld nugget structure by switching which alloy is subjected to the advancing side of the pin. Turbulent mixing of a weld nugget and a significant reduction in defects and weld forces are observed when the beta21S is put on the advancing side of the weld where higher strain rates are present. Chemical diffusion driven by the heat of weld parameters is characterized using energy dispersive x-ray spectroscopy (EDS) and is shown to be a secondary process responsible for generating short-range chemical gradients that lead to a gradient of alpha particle structures. Diffusion calculations are inconsistent with an assumption of steady-state diffusion and show that material interfaces in the weld nugget evolve through the break-down of turbulent interface features generated by material flows. A high degree of recrystallization is seen throughout the welds, with unique, hybrid chemistry grains that are generated at material interfaces in the weld nugget that help to unify the crystal structure of dissimilar alloys. The degree of

  9. Welding III.

    ERIC Educational Resources Information Center

    Allegheny County Community Coll., Pittsburgh, PA.

    Instructional objectives and performance requirements are outlined in this course guide for Welding III, an advanced course in arc welding offered at the Community College of Allegheny County to provide students with the proficiency necessary for industrial certification. The course objectives, which are outlined first, specify that students will…

  10. Welding Curriculum.

    ERIC Educational Resources Information Center

    EASTCONN Regional Educational Services Center, North Windham, CT.

    The purpose of this welding program is to provide students with skills and techniques to become employed as advanced apprentice welders. The welding program manual includes the following sections: (1) course description; (2) general objectives; (3) competencies; (4) curriculum outline for 13 areas; (5) 13 references; and (6) student progress…

  11. WELDING METHOD

    DOEpatents

    Cornell, A.A.; Dunbar, J.V.; Ruffner, J.H.

    1959-09-29

    A semi-automatic method is described for the weld joining of pipes and fittings which utilizes the inert gasshielded consumable electrode electric arc welding technique, comprising laying down the root pass at a first peripheral velocity and thereafter laying down the filler passes over the root pass necessary to complete the weld by revolving the pipes and fittings at a second peripheral velocity different from the first peripheral velocity, maintaining the welding head in a fixed position as to the specific direction of revolution, while the longitudinal axis of the welding head is disposed angularly in the direction of revolution at amounts between twenty minutas and about four degrees from the first position.

  12. The Effect of Yttrium on Ti-5111 Gas Tungsten Arc Welds

    NASA Astrophysics Data System (ADS)

    Neuberger, B. W.; Oberson, P. G.; Ankem, S.

    2011-05-01

    Much interest has developed in the near- α titanium alloy Ti-5Al-1Sn-1V-1Zr-0.8Mo (Ti-5111) for naval applications. When gas tungsten arc welded with filler metal that has the same chemical composition as the base metal, however, the weld FZ tends to be harder and less ductile than the base metal, which may make the weld susceptible to failure. This behavior may be attributed to the presence of oxygen impurities and the large prior- β grain size in the weld. In this investigation, the addition of a small amount of yttrium to the weld filler metal can decrease hardening and increase the ductility of Ti-5111 welds, which is beneficial for weld performance. Microstructural and chemical analyses of unmodified and yttrium-modified Ti-5111 welds are presented along with results from mechanical testing of the welds.

  13. Cobalt-chromium-titanium alloy for removable partial dentures.

    PubMed

    Iwama, C Y; Preston, J D

    1997-01-01

    Pure elemental titanium was alloyed with cobalt and chromium in dilutions of 4%, 5%, and 6% to evaluate the suitability of the resulting alloy for removable partial denture frameworks. The physical properties of the Co-Cr-Ti alloy were compared to the properties of a commercial pure titanium and Vitallium. Clasp replicas were cast in Co-Cr-Ti and Vitallium and subjected to cyclic deflection. Representative specimens from the fatigue failure tests were then evaluated using scanning electron microscopy and analyzed for elemental content. The 5% titanium dilution of cobalt-chromium proved to have the best physical properties and was used for comparison with the pure titanium and Vitallium. The Co-Cr-5% Ti had significantly better physical properties than pure titanium and a greater flexure fatigue limit than the Vitallium alloy.

  14. Syllabus in Trade Welding.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    The syllabus outlines material for a course two academic years in length (minimum two and one-half hours daily experience) leading to entry-level occupational ability in several welding trade areas. Fourteen units covering are welding, gas welding, oxyacetylene welding, cutting, nonfusion processes, inert gas shielded-arc welding, welding cast…

  15. Solar cell welded interconnection development program. [parallel gap and ultrasonic metal-metal bonding

    NASA Technical Reports Server (NTRS)

    Katzeff, J. S.

    1974-01-01

    Parallel gap welding and ultrasonic bonding techniques were developed for joining selected interconnect materials (silver, aluminum, copper, silver plated molybdenum and Kovar) to silver-titanium and aluminum contact cells. All process variables have been evaluated leading to establishment of optimum solar cell, interconnect, electrodes and equipment criteria for obtainment of consistent high quality welds. Applicability of nondestructive testing of solar cell welds has been studied. A pre-weld monitoring system is being built and will be utilized in the numerically controlled parallel gap weld station.

  16. Welding method combining laser welding and MIG welding

    SciTech Connect

    Hamasaki, M.

    1985-03-26

    Welding of deep penetration is obtained in a sustrate by a method which comprises first melting the joint portion of the substrates by MIG welding and then focusing a laser beam in the bottom surface of a crater formed in consequence of the MIG welding thereby effecting laser welding of the crater.

  17. Hypervelocity-impact studies on titanium, titanium alloys, and beryllium

    SciTech Connect

    Lundberg, L.B.; Bless, S.J.; Girrens, S.P.; Green, J.E.

    1982-08-01

    The hypervelocity-impact behavior of commercial-pure, Grade 2 Ti, Ti-5Al-2.5Sn, Ti-6Al-2Sn-4Zr-2Mo-0.25Si, and pure beryllium was studied by impacting targets of these materials with millimeter-sized spheres of glass, copper, aluminum, and cadmium propelled from a light-gas gun at velocities ranging from 4.5 to 7.6 km/s. Target temperatures ranged from 295 to 775/sup 0/K when impacted. Semi-infinite targets were impacted to determine cratering behavior, and some correlations were made to thin-target perforation. Thin titanium targets with a variety of surface coatings and finishes were also impacted. Titanium and the titanium alloys were found to behave in a ductile manner when impacted, but beryllium was found to be brittle even at 775/sup 0/K. An extrapolation equation was used to optimize a titanium heat pipe radiator mass for a space nuclear power application.

  18. Truss Assembly and Welding by Intelligent Precision Jigging Robots

    NASA Technical Reports Server (NTRS)

    Komendera, Erik; Dorsey, John T.; Doggett, William R.; Correll, Nikolaus

    2014-01-01

    This paper describes an Intelligent Precision Jigging Robot (IPJR) prototype that enables the precise alignment and welding of titanium space telescope optical benches. The IPJR, equipped with micron accuracy sensors and actuators, worked in tandem with a lower precision remote controlled manipulator. The combined system assembled and welded a 2 m truss from stock titanium components. The calibration of the IPJR, and the difference between the predicted and the truss dimensions as-built, identified additional sources of error that should be addressed in the next generation of IPJRs in 2D and 3D.

  19. Stress corrosion cracking of titanium alloys

    NASA Technical Reports Server (NTRS)

    Statler, G. R.; Spretnak, J. W.; Beck, F. H.; Fontana, M. G.

    1974-01-01

    The effect of hydrogen on the properties of metals, including titanium and its alloys, was investigated. The basic theories of stress corrosion of titanium alloys are reviewed along with the literature concerned with the effect of absorbed hydrogen on the mechanical properties of metals. Finally, the basic modes of metal fracture and their importance to this study is considered. The experimental work was designed to determine the effects of hydrogen concentration on the critical strain at which plastic instability along pure shear directions occurs. The materials used were titanium alloys Ti-8Al-lMo-lV and Ti-5Al-2.5Sn.

  20. Titanium-Oxygen Reactivity Study

    NASA Technical Reports Server (NTRS)

    Chafey, J. E.; Scheck, W. G.; Witzell, W. E.

    1962-01-01

    A program has been conducted at Astronautics to investigate the likelihood of occurrence of the catastrophic oxidation of titanium alloy sheet under conditions which simulate certain cases of accidental failure of the metal while it is in contact with liquid or gaseous oxygen. Three methods of fracturing the metal were used; they consisted of mechanical puncture, tensile fracture of welded joints, and perforation by very high velocity particles. The results of the tests which have been conducted provide further evidence of the reactivity of titanium with liquid and gaseous oxygen. The evidence indicates that the rapid fracturing of titanium sheet while it is in contact with oxygen initiates the catastrophic oxidation reaction. Initiation occurred when the speed of the fracture was some few feet per second, as in both the drop-weight puncture tests and the static tensile fracture tests of welded joints, as well as when the speed was several thousand feet per second, as in the simulated micrometeoroid penetration tests. The slow propagation of a crack, however, did not initiate the reaction. It may logically be concluded that the localized frictional heat of rapid fracture and/or spontaneous oxidation (exothermic) of minute particles emanating from the fracture cause initiation of the reaction. Under conditions of slow fracture, however, the small heat generated may be adequately dissipated and the reaction is not initiated. A portion of the study conducted consisted of investigating various means by which the reaction might be retarded or prevented. Providing a "barrier" at the titanium-oxygen interface consisting of either aluminum metal or a coating of a petroleum base corrosion inhibitor appeared to be only partially effective in retarding the reaction. The accidental puncturing or similar rupturing of thin-walled pressurized oxygen tanks on missiles and space vehicle will usually constitute loss of function, and may sometimes cause their catastrophic destruction

  1. Weld geometry strength effect in 2219-T87 aluminum

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.; Novak, H. L.; Mcilwain, M. C.

    1981-01-01

    A theory of the effect of geometry on the mechanical properties of a butt weld joint is worked out based upon the soft interlayer weld model. Tensile tests of 45 TIG butt welds and 6 EB beads-on-plate in 1/4-in. 2219-T87 aluminum plate made under a wide range of heat sink and power input conditions are analyzed using this theory. The analysis indicates that purely geometrical effects dominate in determining variations in weld joint strength with heat sink and power input. Variations in weld dimensions with cooling rate are significant as well as with power input. Weld size is suggested as a better indicator of the condition of a weld joint than energy input.

  2. Particulate and gaseous emissions when welding aluminum alloys.

    PubMed

    Cole, Homer; Epstein, Seymour; Peace, Jon

    2007-09-01

    Fabrication and repair of aluminum components and structures commonly involves the use of electric arc welding. The interaction of the arc and the metal being welded generates ultraviolet radiation, metallic oxides, fumes, and gases. Aluminum is seldom used as the pure metal but is often alloyed with other metals to improve strength and other physical properties. Therefore, the exact composition of any emissions will depend on the welding process and the particular aluminum alloy being welded. To quantify such emissions, The Aluminum Association sponsored several studies to characterize arc welding emissions by the gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW) processes for various combinations of base and filler alloys. In all cases, the tests were conducted under conditions that could be found in a production weld shop without forced ventilation. The concentrations of each analyte that a welder could be exposed to were greatly affected by the welding process, the composition of the base and filler alloys, the position of the welder, and the welding helmet. The results obtained can be used by employers to identify and control potential hazards associated with the welding of aluminum alloys and can provide the basis for hazard communication to employees involved in the welding of these alloys.

  3. Dependence of fracture toughness of molybdenum laser welds on processing parameters and in-situ oxygen gettering

    SciTech Connect

    Pope, L.E.; Jellison, J.L.

    1980-01-01

    Fracture toughness properties have been determined for laser welds in different grades of molybdenum. The fracture toughness of welds in sintered molybdenum was consistently less than the fracture toughness of welds in vacuum arc remelted molybdenum. These differences cannot be attributed to oxygen content, since the oxygen level was nominally the same for all grades of molybdenum examined in this program. Alloy additions of titanium by means of physically deposited coatings significantly improved the fracture toughness of welds in sintered molybdenum, whereas titanium additions to welds in vacuum arc remelted molybdenum decreased the fracture toughness slightly. Pulsed laser welds exhibited fine columnar structures and, in the case of sintered molybdenum, superior fracture toughness when compared with continuous wave laser welds. 6 figures, 3 tables.

  4. Porcelain veneering of titanium--clinical and technical aspects.

    PubMed

    Haag, Per

    2011-01-01

    Gold and other alloys have long been used for the production of crowns and bridges as replacements for damaged or lost teeth. However, doubts have arisen on the suitability of using these materials for dental restorations, as gold has also shown a capacity to cause side-effects such as allergic reactions. This is especially valid for alloys, which during the last decades have been used as porcelain-fused-to metal restorations. This fact has led to an interest in using titanium instead of these alloys. Trials to use titanium for this purpose were initiated in Japan in the early 1980s. Titanium as an unalloyed metal differs in two aspects from the above named alloys: it has a phase transformation at 882 degrees C, which changes its outer and inner properties, and it has an expansion that lies between that of the porcelain types available on the market at the time. In Japan a technique for casting titanium was developed, where the after-treatment of the casting was elaborate, to re-establish the original properties of titanium. The porcelain developed for veneering had shortcomings as the rendering produced a rough surface and non satisfactory esthetics. In Sweden a new concept was introduced in 1989. Here the processing of titanium was performed by industrial methods such as milling, spark erosion and laser welding. The idea behind this was to avoid phase transformation. During the 1990s a number of porcelain products were launched and a vast number of both laboratory and clinical studies were performed and published, with varying results. In the first study of this thesis a prospective clinical trial was performed at a public dental health clinic in Sweden. Twenty-five patients were provided with 40 copings of pure titanium, which were veneered with porcelain. After 2 years 36 of these crowns were evaluated and the patients were also interviewed regarding problems such as shooting pains or difficulties in cleaning around the teeth that were crowned. This evaluation

  5. Welding Curtains

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Concept of transparent welding curtains made of heavy duty vinyl originated with David F. Wilson, President of Wilson Sales Company. In 1968, Wilson's curtains reduced glare of welding arc and blocked ultraviolet radiation. When later research uncovered blue light hazards, Wilson sought improvement of his products. He contracted Dr. Charles G. Miller and James B. Stephens, both of Jet Propulsion Laboratory (JPL), and they agreed to undertake development of a curtain capable of filtering out harmful irradiance, including ultraviolet and blue light and provide protection over a broad range of welding operation. Working on their own time, the JPL pair spent 3 years developing a patented formula that includes light filtering dyes and small particles of zinc oxide. The result was the Wilson Spectra Curtain.

  6. Narrow gap laser welding

    DOEpatents

    Milewski, J.O.; Sklar, E.

    1998-06-02

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables. 34 figs.

  7. Narrow gap laser welding

    DOEpatents

    Milewski, John O.; Sklar, Edward

    1998-01-01

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables.

  8. Modification of Structure and Strength Properties of Permanent Joints Under Laser Beam Welding with Application of Nanopowder Modifiers

    NASA Astrophysics Data System (ADS)

    Cherepanov, A. N.; Orishich, A. M.; Malikov, A. G.; Ovcharenko, V. E.

    2016-08-01

    In the paper we present the results of experimental study of specially prepared nanosize metal-ceramic compositions impact upon structure, microhardness and mechanical properties of permanent joints produced by laser-beam welding of steel and titanium alloy plates.

  9. Preparation of titanium diboride powder

    DOEpatents

    Brynestad, Jorulf; Bamberger, Carlos E.

    1985-01-01

    Finely-divided titanium diboride or zirconium diboride powders are formed by reacting gaseous boron trichloride with a material selected from the group consisting of titanium powder, zirconium powder, titanium dichloride powder, titanium trichloride powder, and gaseous titanium trichloride.

  10. Electroslag and electrogas welding

    NASA Technical Reports Server (NTRS)

    Campbell, H. C.

    1972-01-01

    These two new joining methods perform welding in the vertical position, and therein lies the secret of their impressive advantages in material handling, in weld preparation, in welding speed, in freedom from distortion, and in weld soundness. Once the work has been set in the proper vertical position for welding, no further plate handling is required. The molten filler metal is held in place by copper shoes or dams, and the weld is completed in one pass.

  11. Initial cytotoxicity of novel titanium alloys.

    PubMed

    Koike, M; Lockwood, P E; Wataha, J C; Okabe, T

    2007-11-01

    We assessed the biological response to several novel titanium alloys that have promising physical properties for biomedical applications. Four commercial titanium alloys [Super-TIX(R) 800, Super-TIX(R) 51AF, TIMETAL(R) 21SRx, and Ti-6Al-4V (ASTM grade 5)] and three experimental titanium alloys [Ti-13Cr-3Cu, Ti-1.5Si and Ti-1.5Si-5Cu] were tested. Specimens (n = 6; 5.0 x 5.0 x 3.0 mm(3)) were cast in a centrifugal casting machine using a MgO-based investment and polished to 600 grit, removing 250 mum from each surface. Commercially pure titanium (CP Ti: ASTM grade 2) and Teflon (polytetrafluoroethylene) were used as positive controls. The specimens were cleaned and disinfected, and then each cleaned specimen was placed in direct contact with Balb/c 3T3 fibroblasts for 72 h. The cytotoxicity [succinic dehydrogenase (SDH) activity] of the extracts was assessed using the MTT method. Cytotoxicity of the metals tested was not statistically different compared to the CP Ti and Teflon controls (p > 0.05). These novel titanium alloys pose cytotoxic risks no greater than many other commonly used alloys, including commercially pure titanium. The promising short-term biocompatibility of these Ti alloys is probably due to their excellent corrosion resistance under static conditions, even in biological environments.

  12. Cadmium Telluride-Titanium Dioxide Nanocomposite for Photodegradation of Organic Substance.

    PubMed

    Ontam, Areeporn; Khaorapapong, Nithima; Ogawa, Makoto

    2015-12-01

    Cadmium telluride-titanium dioxide nanocomposite was prepared by hydrothermal reaction of sol-gel derived titanium dioxide and organically modified cadmium telluride. The crystallinity of titanium dioxide in the nanocomposite was higher than that of pure titanium dioxide obtained by the reaction under the same temperature and pressure conditions, showing that cadmium telluride induced the crystallization of titanium dioxide. Diffuse reflectance spectrum of the nanocomposite showed the higher absorption efficiency in the UV-visible region due to band-gap excitation of titanium dioxide. The nanocomposite significantly showed the improvement of photocatalytic activity for 4-chlorophenol with UV light.

  13. Compaction of Titanium Powders

    SciTech Connect

    Stephen J. Gerdemann; Paul D. Jablonski

    2010-11-01

    Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines <150 μm, <75 μm, and < 45 μm; two different sizes of a hydride-dehydride [HDH] <75 μm and < 45 μm; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.

  14. Compaction of Titanium Powders

    NASA Astrophysics Data System (ADS)

    Gerdemann, Stephen J.; Jablonski, Paul D.

    2011-05-01

    Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines <150 μm, <75 μm, and < 45 μm; two different sizes of a hydride-dehydride [HDH] <75 μm and < 45 μm; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.

  15. Small-scale explosive seam welding. [using ribbon explosive encased in lead sheath

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1972-01-01

    A unique small scale explosive seam welding technique is reported that has successfully joined a variety of aluminum alloys and alloy combinations in thicknesses to 0.125 inch, as well as titanium in thicknesses to 0.056 inch. The explosively welded joints are less than one-half inch in width and apparently have no long length limitation. The ribbon explosive developed in this study contains very small quantities of explosive encased in a flexible thin lead sheath. The evaluation and demonstration of this welding technique was accomplished in three phases: evaluation and optimization of ten major explosive welding variables, the development of four weld joints, and an applicational analysis which included photomicrographs, pressure integrity tests, vacuum effects, and fabrication of some potentially useful structures in aluminum and titanium.

  16. WELDING APPARATUS

    DOEpatents

    Correy, T.B.; DeWitt, D.E.; Nelson, I.V.

    1963-04-23

    This patent covers an arrangement for replacing air in a welding chamber with an inert gas. This operation usually is time-consuming because of the tendency of the inert gas to mix with the air being removed from the welding chamber. The chamber is open at the bottom and has at its top a cover and a porous plate a little below the cover. The inert gas is admitted to the chamber through two screened openings in the cover. On passing through the porous plate, the gas acts as a piston extending across the chamber and moving downwardly to expel the air through the lower open end of the chamber, with a minimum of mixing with the air being expelled. (AEC)

  17. WELDING PROCESS

    DOEpatents

    Zambrow, J.; Hausner, H.

    1957-09-24

    A method of joining metal parts for the preparation of relatively long, thin fuel element cores of uranium or alloys thereof for nuclear reactors is described. The process includes the steps of cleaning the surfaces to be jointed, placing the sunfaces together, and providing between and in contact with them, a layer of a compound in finely divided form that is decomposable to metal by heat. The fuel element members are then heated at the contact zone and maintained under pressure during the heating to decompose the compound to metal and sinter the members and reduced metal together producing a weld. The preferred class of decomposable compounds are the metal hydrides such as uranium hydride, which release hydrogen thus providing a reducing atmosphere in the vicinity of the welding operation.

  18. Weld pool phenomena

    SciTech Connect

    David, S.A.; Vitek, J.M.; Zacharia, T.; DebRoy, T.

    1994-09-01

    During welding, the composition, structure and properties of the welded structure are affected by the interaction of the heat source with the metal. The interaction affects the fluid flow, heat transfer and mass transfer in the weld pool, and the solidification behavior of the weld metal. In recent years, there has been a growing recognition of the importance of the weld pool transport processes and the solid state transformation reactions in determining the composition, structure and properties of the welded structure. The relation between the weld pool transport processes and the composition and structure is reviewed. Recent applications of various solidification theories to welding are examined to understand the special problems of weld metal solidification. The discussion is focussed on the important problems and issues related to weld pool transport phenomena and solidification. Resolution of these problems would be an important step towards a science based control of composition, structure and properties of the weld metal.

  19. Individual prefabricated titanium implants and titanium mesh in skull base reconstructive surgery. A report of cases.

    PubMed

    Schipper, J; Ridder, G J; Spetzger, U; Teszler, C B; Fradis, M; Maier, W

    2004-05-01

    Titanium implants can be shaped by traditional hand forming, press shaping, modular construction by welding, construction on full-size models shaped from CT coordinates and, most recently, by computer-assisted design and computer-assisted manufacturing (CAD/CAM) that consist in the direct prefabrication of individual implants by milling them out of a solid block of titanium. The aim of our study was to present a set of preliminary cases of an ongoing program of reconstructive procedures of the skull base using titanium implants. The subjects underwent ablative procedures of the skull base with reconstruction either by titanium mesh or individual prefabricated CAD/CAM implants. Six patients have been operated on successfully since 2000: two received prefabricated CAD/CAM titanium plates and four others underwent reconstruction with titanium mesh. The stability of CAD/CAM plates is superior to that of mesh, thus it is more useful in reconstructing large lesions of the frontal skull base and the temporal and occipital bones. Titanium mesh was successfully used for defects smaller than 100 cm(2) or where selected viscerocranial defects are complicated in design and less reproducible by CAD/CAM. The intraoperative design, shaping and adjustment characteristic of titanium mesh can be dispensed with when CAD/CAM implants are used. The 3-D data set used in the CAD/CAM process also operates in the navigated simulation and planning of the ablation contours, the latter being of great assistance in establishing the optimal future defect. As a disadvantage, CAD/CAM technology is more expensive than titanium mesh, and the process is time-consuming as it is carried out in advance of surgery.

  20. Surface Residual Stresses in Ti-6Al-4V Friction Stir Welds: Pre- and Post-Thermal Stress Relief

    NASA Astrophysics Data System (ADS)

    Edwards, P.; Ramulu, M.

    2015-09-01

    The purpose of this study was to determine the residual stresses present in titanium friction stir welds and if a post-weld thermal stress relief cycle would be effective in minimizing those weld-induced residual stresses. Surface residual stresses in titanium 6Al-4V alloy friction stir welds were measured in butt joint thicknesses ranging from 3 to 12 mm. The residual stress states were also evaluated after the welds were subjected to a post-weld thermal stress relief cycle of 760 °C for 45 min. High (300-400 MPa) tensile residual stresses were observed in the longitudinal direction prior to stress relief and compressive residual stresses were measured in the transverse direction. After stress relief, the residual stresses were decreased by an order of magnitude to negligible levels.

  1. Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  2. Assessment of weld quality of aerospace grade metals by using ultrasonic matrix phased array technology

    NASA Astrophysics Data System (ADS)

    Na, Jeong K.; Gleeson, Sean T.

    2014-03-01

    Advantages of two dimensional electronic ultrasonic beam focusing, steering and scanning with the matrix phased array (MPA) technology has been used to visualize the conditions of resistance spot welds in auto vehicle grade advanced high strength steel carbon steels nondestructively. Two of the commonly used joining techniques, resistance spot welding and resistance seam welding, for thin aerospace grade plates made of aluminum, titanium, and stainless steels have also been inspected with the same MPA NDE system. In this study, a detailed discussions of the current MPA based ultrasonic real time imaging methodology has been made followed by some of the NDT results obtained with various welded test coupons.

  3. Twisted partially pure spinors

    NASA Astrophysics Data System (ADS)

    Herrera, Rafael; Tellez, Ivan

    2016-08-01

    Motivated by the relationship between orthogonal complex structures and pure spinors, we define twisted partially pure spinors in order to characterize spinorially subspaces of Euclidean space endowed with a complex structure.

  4. Decreasing biotoxicity of fume particles produced in welding process.

    PubMed

    Yu, Kuei-Min; Topham, Nathan; Wang, Jun; Kalivoda, Mark; Tseng, Yiider; Wu, Chang-Yu; Lee, Wen-Jhy; Cho, Kuk

    2011-01-30

    Welding fumes contain heavy metals, such as chromium, manganese, and nickel, which cause respiratory diseases and cancer. In this study, a SiO(2) precursor was evaluated as an additive to the shielding gas in an arc welding process to reduce the biotoxicity caused by welding fume particles. Transmission electron micrographic images show that SiO(2) coats on the surface of welding fume particles and promotes particle agglomeration. Energy dispersive X-ray spectroscopy further shows that the relative amount of silicon in these SiO(2)-coated agglomerates is higher than in baseline agglomerates. In addition, Escherichia coli (E. coli) exposed to different concentrations of pure SiO(2) particles generated from the arc welding process exhibits similar responses, suggesting that SiO(2) does not contribute to welding fume particle toxicity. The trend of E. coli growth in different concentrations of baseline welding fume particle shows the most significant inhibition occurs in higher exposure concentrations. The 50% lethal logarithmic concentrations for E. coli in arc welding particles of baseline, 2%, and 4.2% SiO(2) precursor additives were 823, 1605, and 1800 mg/L, respectively. Taken together, these results suggest that using SiO(2) precursors as an additive to arc welding shielding gas can effectively reduce the biotoxicity of welding fume.

  5. Introduction to Welding.

    ERIC Educational Resources Information Center

    Fortney, Clarence; Gregory, Mike

    This curriculum guide provides six units of instruction on basic welding. Addressed in the individual units of instruction are the following topics: employment opportunities for welders, welding safety and first aid, welding tools and equipment, basic metals and metallurgy, basic math and measuring, and procedures for applying for a welding job.…

  6. Characterisation of fume from hyperbaric welding operations

    NASA Astrophysics Data System (ADS)

    Ross, John A. S.; Semple, Sean; Duffin, Rodger; Kelly, Frank; Seldmann, Joerg; Raab, Andrea

    2009-02-01

    We report preliminary work characterising dust from hyperbaric welding trials carried out at increased pressure in a helium and oxygen atmosphere. Particle size and concentration were measured during welding. Samples for quartz and metal analysis and toxicity assessment were taken from a filter in the local fume extraction system. The residue of dust after metal extraction by nitric acid in hydrogen peroxide predominantly a non-metallic white powder assumed to be dust from welding rod coatings and thermal insulation material. Metallic analysis showed predominantly calcium, from the welding rod coating, and period 4 transition metals such as iron, manganese, magnesium and titanium (inductively coupled mass spectrometry, Agilent 7500c). The presence of zirconium indicated a contribution from grinding. The fume was nanoparticulate in nature with a mean particle diameter of 20-30 nm (MSI Inc WPS 1000XP). It showed an intermediate level of oxidative potential regarding the low-molecular weight respiratory tract lining fluid antioxidants ascorbate and glutathione and caused release of the inflammatory marker IL-8 in a human lung A 549 epithelial cell culture with no indication of cytotoxicity. The study findings have strong implications for the measurement techniques needed to assess fume exposure in hyperbaric welding and the provision of respiratory protection.

  7. The Kinetics of Phase Transformation in Welds

    SciTech Connect

    Elmer, J W; Wong, J; Palmer, T

    2002-02-06

    The fundamentals of welding-induced phase transformations in metals and alloys are being investigated using a combination of advanced synchrotron based experimental methods and modem computational science tools. In-situ experimental methods have been developed using a spatially resolved x-ray probe to enable direct observations of phase transformations under the real non- isothermal conditions experienced during welding. These experimental techniques represent a major step forward in the understanding of phase transformations that occur during welding, and are now being used to aid in the development of models to predict microstructural evolution under the severe temperature gradients, high peak temperatures and rapid thermal fluctuations characteristic of welds. Titanium alloys, stainless steels and plain carbon steels are currently under investigation, and the phase transformation data being obtained here cannot be predicted or measured using conventional metallurgical approaches. Two principal synchrotron-based techniques have been developed and refined for in-situ investigations of phase transformation dynamics in the heat-affected zone (HAZ) and fusion zone (FZ) of welds: Spatially Resolved X-Ray Diffraction (SRXRD) and Time Resolved X-Ray Diffraction (TRXRD). Both techniques provide real-time observations of phases that exist during welding, and both have been developed at the Stanford Synchrotron Radiation Laboratory (SSRL) using a high flux wiggler beam line. The SRXRD technique enables direct observations of the phases existing in the HAZ of quasi-stationary moving arc welds, and is used to map the HAZ phases by sequentially jogging the weld with respect to the x-ray beam while taking x-ray diffraction (XRD) patterns at each new location. These spatially resolved XRD patterns are collected in linear traverses perpendicular to the direction of weld travel. The XRD data contained in multiple traverses is later compiled to produce an areal map of the phases

  8. Optical Welding Torch

    NASA Technical Reports Server (NTRS)

    Richardson, R. W.

    1987-01-01

    Gas/tungsten-arc welding torch supports electrode at center while enabling viewing of weld area along torch axis. Gas torch accommodates lens and optical fibers, all part of vision system for welding robot. Welding torch includes spoked structure in central bore of optical body. Structure supports welding electrode, carries electric current to it, and takes heat away from it. Spokes formed by drilling six holes 60 degrees apart around center line of torch.

  9. Advanced Welding Applications

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  10. Laser induced single spot oxidation of titanium

    NASA Astrophysics Data System (ADS)

    Jwad, Tahseen; Deng, Sunan; Butt, Haider; Dimov, S.

    2016-11-01

    Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels' colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.

  11. Opportunities in the electrowinning of molten titanium from titanium dioxide

    NASA Astrophysics Data System (ADS)

    van Vuuren, D. S.; Engelbrecht, A. D.; Hadley, T. D.

    2005-10-01

    The value chain of titanium products shows that the difference between the cost of titanium ingot and titanium dioxide is about 9/kg titanium. In contrast, the price of aluminum, which is produced in a similar way, is only about 1.7/kg. Electrowinning of molten titanium from titanium dioxide is therefore believed to have significant potential to reduce the cost of titanium products. The process is hampered by the high operating temperatures and sophisticated materials of construction required; the high affinity of titanium for carbon, oxygen, and nitrogen; and physical and chemical properties of the different titanium oxide species when reducing titanium from Ti4+ to metallic titanium.

  12. Effect of plasma welding parameters on the flexural strength of Ti-6Al-4V alloy.

    PubMed

    Lyra e Silva, João Paulo; Fernandes Neto, Alfredo Júlio; Raposo, Luís Henrique Araújo; Novais, Veridiana Resende; de Araujo, Cleudmar Amaral; Cavalcante, Luisa de Andrade Lima; Simamoto Júnior, Paulo Cezar

    2012-01-01

    The aim of this study was to assess the effect of different plasma arc welding parameters on the flexural strength of titanium alloy beams (Ti-6Al-4V). Forty Ti-6Al-4V and 10 NiCr alloy beam specimens (40 mm long and 3.18 mm diameter) were prepared and divided into 5 groups (n=10). The titanium alloy beams for the control group were not sectioned or subjected to welding. Groups PL10, PL12, and PL14 contained titanium beams sectioned and welded at current 3 A for 10, 12 or 14 ms, respectively. Group NCB consisted of NiCr alloy beams welded using conventional torch brazing. After, the beams were subjected to a three-point bending test and the values obtained were analyzed to assess the flexural strength (MPa). Statistical analysis was carried out by one-way ANOVA and Tukey's HSD test at 0.05 confidence level. Significant difference was verified among the evaluated groups (p<0.001), with higher flexural strength for the control group (p<0.05). No significant differences was observed among the plasma welded groups (p>0.05). The NCB group showed the lowest flexural strength, although it was statistically similar to the PL 14 group (p>0.05). The weld depth penetration was not significantly different among the plasma welded groups (p=0.05). Three representative specimens were randomly selected to be evaluated under scanning electron microcopy. The composition of the welded regions was analyzed by energy dispersive X-ray spectroscopy. This study provides an initial set of parameters supporting the use of plasma welding during fabrication of titanium alloy dental frameworks. PMID:23338261

  13. Television Monitoring System for Welding

    NASA Technical Reports Server (NTRS)

    Vallow, K.; Gordon, S.

    1986-01-01

    Welding process in visually inaccessible spots viewed and recorded. Television system enables monitoring of welding in visually inaccessible locations. System assists welding operations and provide video record, used for weld analysis and welder training.

  14. The wear of titanium, titanium alloy, and UHMW polyethylene caused by LTI carbon and Stellite 21.

    PubMed

    Shim, H S

    1977-08-01

    The comparative wear resistance of a commercially pure titanium (A-70), a titanium alloy (Beta III), and a UHMW polyethylene (Lennite) has been evaluated by employing a test procedure described previously. Either an LTI carbon or a Stellite 21 was the disk material. All material combinations exhibited a low volume wear rate ranging from about 1.2 x 10(-6) to 1.6 x 10(-6) mm3/km. The wear behavior of pure titanium seems to be related not only to its mechanical properties but also to its chemical reactivity with the test environment. A comparison of the current results with earlier data for LTI carbons suggests that LTI carbons may be used as a component material for many artificial joints. PMID:615881

  15. Weldability of a titanium aluminide

    SciTech Connect

    Baeslack, W.A., III ); Mascorella, T.J. ); Kelly, T.J. )

    1989-12-01

    The authors report the weldability of an alpha-two titanium auuminide, Ti-13.5 wt-%Al-21.5 wt-%Nb (Ti-24 at.-%Al-11 at.-%Nb), investigated from a perspective of developing relationships between the weld cooling rate, microstructure, mechanical properties and fracture behavior. Dilatometry studies performed over a range of cooling rates from 1{degree} to 150{degrees}C/s(1.8{degrees} to 270{degrees}F/s) show a continuous decrease in the body-centered cubic (BCC) to hexagonal close-packed (HCP) transformation start temperature. Water quenching from above the beta transus temperature provided a rapid cooling rate of 750{degrees}C/s(1350 {degrees}F/s), which promoted complete retention of BCC beta phase. Implications of the continuous-cooling phase transformation study on the joining of Ti-13.5 wt-%Al-21.5 wt-%Nb using alternate welding processes are discussed.

  16. Laser weld jig

    SciTech Connect

    Haupt, D.L.; Van Blarigan, P.

    1982-11-09

    A system is provided for welding a workpiece along a predetermined weld line that may be of irregular shape, which includes the step of forming a lip on the workpiece to extend parallel to the weld line, and moving the workpiece by engaging the lip between a pair of rotatable members. Rotation of one of the members at a constant speed, causes the workpiece to move so that all points on the weld line sequentially pass a fixed point in space at a constant speed, so that a laser welding beam can be directed at that fixed point to form a weld along the weld line. The workpiece can include a reuseable jig forming the lip, and with the jig constructed to detachably hold parts to be welded at a position wherein the weld line of the parts extends parallel to the lip on the jig.

  17. Laser weld jig

    SciTech Connect

    Van Blarigan, Peter; Haupt, David L.

    1982-01-01

    A system is provided for welding a workpiece (10, FIG. 1) along a predetermined weld line (12) that may be of irregular shape, which includes the step of forming a lip (32) on the workpiece to extend parallel to the weld line, and moving the workpiece by engaging the lip between a pair of rotatable members (34, 36). Rotation of one of the members at a constant speed, causes the workpiece to move so that all points on the weld line sequentially pass a fixed point in space (17) at a constant speed, so that a laser welding beam can be directed at that fixed point to form a weld along the weld line. The workpiece can include a reuseable jig (24) forming the lip, and with the jig constructed to detachably hold parts (22, 20) to be welded at a position wherein the weld line of the parts extends parallel to the lip on the jig.

  18. Welded solar cell interconnection

    NASA Technical Reports Server (NTRS)

    Stofel, E. J.; Browne, E. R.; Meese, R. A.; Vendura, G. J.

    1982-01-01

    The efficiency of the welding of solar-cell interconnects is compared with the efficiency of soldering such interconnects, and the cases in which welding may be superior are examined. Emphasis is placed on ultrasonic welding; attention is given to the solar-cell welding machine, the application of the welding process to different solar-cell configurations, producibility, and long-life performance of welded interconnects. Much of the present work has been directed toward providing increased confidence in the reliability of welding using conditions approximating those that would occur with large-scale array production. It is concluded that there is as yet insufficient data to determine which of three methods (soldering, parallel gap welding, and ultrasonic welding) provides the longest-duration solar panel life.

  19. Effect of humidity on fretting wear of several pure metals

    NASA Technical Reports Server (NTRS)

    Goto, H.; Buckley, D. H.

    1984-01-01

    Fretting wear experiments with several pure metals were conducted in air at various relative humidity levels. The materials used were iron, aluminum, copper, silver, chromium, titanium, and nickel. Each pure metal had a maximum fretting wear volume at a specific humidity level RH sub max that was not dependent on mechanical factors such as contact load, fretting amplitude, and frequency in the ranges studied. The weight loss due to fretting wear at RH sub max for each pure metal decreased with increasing heat of oxygen adsorption on the metal, indicating that adhesive wear dominated at RH sub max.

  20. Forge Welding of Magnesium Alloy to Aluminum Alloy Using a Cu, Ni, or Ti Interlayer

    NASA Astrophysics Data System (ADS)

    Yamagishi, Hideki; Sumioka, Junji; Kakiuchi, Shigeki; Tomida, Shogo; Takeda, Kouichi; Shimazaki, Kouichi

    2015-08-01

    The forge-welding process was examined to develop a high-strength bonding application of magnesium (Mg) alloy to aluminum (Al) alloy under high-productivity conditions. The effect of the insert material on the tensile strength of the joints, under various preheat temperatures and pressures, was investigated by analyzing the reaction layers of the bonded interface. The tensile strengths resulting from direct bonding, using pure copper (Cu), pure nickel (Ni), and pure titanium (Ti) inserts were 56, 100, 119, and 151 MPa, respectively. The maximum joint strength reached 93 pct with respect to the Mg cast billet. During high-pressure bonding, a microscopic plastic flow occurred that contributed to an anchor effect and the generation of a newly formed surface at the interface, particularly prominent with the Ti insert in the form of an oxide layer. The bonded interfaces of the maximum-strength inserts were investigated using scanning electron microscopy-energy-dispersive spectroscopy and electron probe microanalysis. The diffusion reaction layer at the bonded interface consisted of brittle Al-Mg intermetallics having a thickness of approximately 30 μm. In contrast, for the three inserts, the thicknesses of the diffusion reaction layer were infinitely thin. For the pure Ti insert, exhibiting the maximum tensile strength value among the inserts tested, focused ion beam-transmission electron microscopy-EDS analysis revealed a 60-nm-thick Al-Ti reaction layer, which had formed at the bonded interface on the Mg alloy side. Thus, a high-strength Al-Mg bonding method in air was demonstrated, suitable for mass production.

  1. Applying NASA's explosive seam welding

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.

    1991-01-01

    The status of an explosive seam welding process, which was developed and evaluated for a wide range of metal joining opportunities, is summarized. The process employs very small quantities of explosive in a ribbon configuration to accelerate a long-length, narrow area of sheet stock into a high-velocity, angular impact against a second sheet. At impact, the oxide films of both surface are broken up and ejected by the closing angle to allow atoms to bond through the sharing of valence electrons. This cold-working process produces joints having parent metal properties, allowing a variety of joints to be fabricated that achieve full strength of the metals employed. Successful joining was accomplished in all aluminum alloys, a wide variety of iron and steel alloys, copper, brass, titanium, tantalum, zirconium, niobium, telerium, and columbium. Safety issues were addressed and are as manageable as many currently accepted joining processes.

  2. Fusion welding process

    DOEpatents

    Thomas, Kenneth C.; Jones, Eric D.; McBride, Marvin A.

    1983-01-01

    A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

  3. Weld controller for automated nuclear service welding

    SciTech Connect

    Barfield, K.L.; Strubhar, P.M.; Green, D.I.

    1995-12-31

    B and W Nuclear Technologies (BWNT) uses many different types of weld heads for automated welding in the commercial nuclear service industry. Some weld heads are purchased as standard items, while others are custom designed and fabricated by BWNT requiring synchronized multiaxis motion control. BWNT recently completed a development program to build a common weld controller that interfaces to all types of weld heads used by BWNT. Their goal was to construct a system that had the flexibility to add different modules to increase the capability of the controller as different application needs become necessary. The benefits from having a common controller are listed. This presentation explains the weld controller system and the types of applications to which it has been applied.

  4. Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy

    DOE PAGESBeta

    Mazumder, Baishakhi; Yu, Xinghua; Edmondson, Philip D.; Parish, Chad M.; Miller, Michael K; Meyer, H. M.; Feng, Zhili

    2015-12-08

    Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygenenriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the sizemore » of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.« less

  5. Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy

    SciTech Connect

    Mazumder, Baishakhi; Yu, Xinghua; Edmondson, Philip D.; Parish, Chad M.; Miller, Michael K; Meyer, H. M.; Feng, Zhili

    2015-12-08

    Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygenenriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the size of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.

  6. Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy

    NASA Astrophysics Data System (ADS)

    Mazumder, B.; Yu, X.; Edmondson, P. D.; Parish, C. M.; Miller, M. K.; Meyer, H. M.; Feng, Z.

    2016-02-01

    Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygen-enriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the size of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.

  7. Titanium hermetic seals

    DOEpatents

    Brow, Richard K.; Watkins, Randall D.

    1995-07-04

    Titanium is prenitrided by being heated in a nitrogen environment under conditions which give rise to the formation of a titanium-nitride surface layer on the titanium. Titanium thus prenitrided may be used in electrical components which are hermetically sealed using silicate glasses and standard glass sealing techniques. According to the method of the invention, alkali volatilization and formation of deleterious interfacial silicide are inhibited.

  8. Titanium hermetic seals

    DOEpatents

    Brow, Richard K.; Watkins, Randall D.

    1995-01-01

    Titanium is prenitrided by being heated in a nitrogen environment under conditions which give rise to the formation of a titanium-nitride surface layer on the titanium. Titanium thus prenitrided may be used in electrical components which are hermetically sealed using silicate glasses and standard glass sealing techniques. According to the method of the invention, alkali volatilization and formation of deleterious interfacial silicide are inhibited.

  9. Treatment of fractures of the condylar head with resorbable pins or titanium screws: an experimental study.

    PubMed

    Schneider, Matthias; Loukota, Richard; Kuchta, Anne; Stadlinger, Bernd; Jung, Roland; Speckl, Katrin; Schmiedekampf, Robert; Eckelt, Uwe

    2013-07-01

    We aimed to compare in vivo the stability of fixation of condylar fractures in sheep using sonic bone welding and standard titanium screws. We assessed stability of the osteosynthesis and maintenance of the height of the mandibular ramus. Height decreased slightly in both groups compared with the opposite side. The volume of the condyle increased considerably in both groups mainly because callus had formed. The results showed no significant disadvantages for pin fixation compared with osteosynthesis using titanium screws. PMID:22901526

  10. Treatment of fractures of the condylar head with resorbable pins or titanium screws: an experimental study.

    PubMed

    Schneider, Matthias; Loukota, Richard; Kuchta, Anne; Stadlinger, Bernd; Jung, Roland; Speckl, Katrin; Schmiedekampf, Robert; Eckelt, Uwe

    2013-07-01

    We aimed to compare in vivo the stability of fixation of condylar fractures in sheep using sonic bone welding and standard titanium screws. We assessed stability of the osteosynthesis and maintenance of the height of the mandibular ramus. Height decreased slightly in both groups compared with the opposite side. The volume of the condyle increased considerably in both groups mainly because callus had formed. The results showed no significant disadvantages for pin fixation compared with osteosynthesis using titanium screws.

  11. Cytotoxicity of titanium and titanium alloying elements.

    PubMed

    Li, Y; Wong, C; Xiong, J; Hodgson, P; Wen, C

    2010-05-01

    It is commonly accepted that titanium and the titanium alloying elements of tantalum, niobium, zirconium, molybdenum, tin, and silicon are biocompatible. However, our research in the development of new titanium alloys for biomedical applications indicated that some titanium alloys containing molybdenum, niobium, and silicon produced by powder metallurgy show a certain degree of cytotoxicity. We hypothesized that the cytotoxicity is linked to the ion release from the metals. To prove this hypothesis, we assessed the cytotoxicity of titanium and titanium alloying elements in both forms of powder and bulk, using osteoblast-like SaOS(2) cells. Results indicated that the metal powders of titanium, niobium, molybdenum, and silicon are cytotoxic, and the bulk metals of silicon and molybdenum also showed cytotoxicity. Meanwhile, we established that the safe ion concentrations (below which the ion concentration is non-toxic) are 8.5, 15.5, 172.0, and 37,000.0 microg/L for molybdenum, titanium, niobium, and silicon, respectively.

  12. Sealing glasses for titanium and titanium alloys

    DOEpatents

    Brow, R.K.; Watkins, R.D.

    1988-01-21

    Glass compositions containing CaO, Al/sub 2/O/sub 3/, B/sub 2/O/sub 3/, SrO and BaO of various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with titanium and titanium alloys, for use in components such as seals for battery headers.

  13. Sealing glasses for titanium and titanium alloys

    DOEpatents

    Brow, Richard K.; Watkins, Randall D.

    1992-01-01

    Glass compositions containing CaO, Al.sub.2 O.sub.3, B.sub.2 O.sub.3, SrO and BaO of various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with titanium and titanium alloys, for use in components such as seals for battery headers.

  14. Welding in airplane construction

    NASA Technical Reports Server (NTRS)

    Rechtlich, A; Schrenk, M

    1928-01-01

    The present article attempts to explain the principles for the production of a perfect weld and to throw light on the unexplained problems. Moreover, it is intended to elucidate the possibilities of testing the strength and reliability of welded parts.

  15. Metallographic Preparation of Space Shuttle Reaction Control System Thruster Electron Beam Welds for Electron Backscatter Diffraction

    NASA Technical Reports Server (NTRS)

    Martinez, James

    2011-01-01

    A Space Shuttle Reaction Control System (RCS) thruster failed during a firing test at the NASA White Sands Test Facility (WSTF), Las Cruces, New Mexico. The firing test was being conducted to investigate a previous electrical malfunction. A number of cracks were found associated with the fuel closure plate/injector assembly (Fig 1). The firing test failure generated a flight constraint to the launch of STS-133. A team comprised of several NASA centers and other research institutes was assembled to investigate and determine the root cause of the failure. The JSC Materials Evaluation Laboratory was asked to compare and characterize the outboard circumferential electron beam (EB) weld between the fuel closure plate (Titanium 6Al-4V) and the injector (Niobium C-103 alloy) of four different RCS thrusters, including the failed RCS thruster. Several metallographic challenges in grinding/polishing, and particularly in etching were encountered because of the differences in hardness, ductility, and chemical resistance between the two alloys and the bimetallic weld. Segments from each thruster were sectioned from the outboard weld. The segments were hot-compression mounted using a conductive, carbon-filled epoxy. A grinding/polishing procedure for titanium alloys was used [1]. This procedure worked well on the titanium; but a thin, disturbed layer was visible on the niobium surface by means of polarized light. Once polished, each sample was micrographed using bright field, differential interference contrast optical microscopy, and scanning electron microscopy (SEM) using a backscatter electron (BSE) detector. No typical weld anomalies were observed in any of the cross sections. However, areas of large atomic contrast were clearly visible in the weld nugget, particularly along fusion line interfaces between the titanium and the niobium. This prompted the need to better understand the chemistry and microstructure of the weld (Fig 2). Energy Dispersive X-Ray Spectroscopy (EDS

  16. Infrared Thermography For Welding

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Lucky, Brian D.; Spiegel, Lyle B.; Hudyma, Russell M.

    1992-01-01

    Infrared imaging and image-data-processing system shows temperatures of joint during welding and provides data from which rates of heating and cooling determined. Information used to control welding parameters to ensure reliable joints, in materials which microstructures and associated metallurgical and mechanical properties depend strongly on rates of heating and cooling. Applicable to variety of processes, including tungsten/inert-gas welding; plasma, laser, and resistance welding; cutting; and brazing.

  17. T-joints of Ti alloys with hybrid laser-MIG welding: macro-graphic and micro-hardness analyses

    NASA Astrophysics Data System (ADS)

    Spina, R.; Sorgente, D.; Palumbo, G.; Scintilla, L. D.; Brandizzi, M.; Satriano, A. A.; Tricarico, L.

    2012-03-01

    Titanium alloys are characterized by high mechanical properties and elevated corrosion resistance. The combination of laser welding with MIG/GMAW has proven to improve beneficial effects of both processes (keyhole, gap-bridging ability) while limiting their drawbacks (high thermal gradient, low mechanical resistance) In this paper, the hybrid Laser-GMAW welding of Ti-6Al-4V 3-mm thick sheets is investigated using a specific designed trailing shield. The joint geometry was the double fillet welded T-joint. Bead morphologies, microstructures and mechanical properties (micro-hardness) of welds were evaluated and compared to those achieved for the base metals.

  18. Advanced Techniques for In-Situ Monitoring of Phase Transformations During Welding Using Synchrotron-Based X-Ray Diffraction

    SciTech Connect

    Elmer, J W; Palmer, T A; Zhang, W; DebRoy, T

    2005-06-05

    Understanding the evolution of microstructure in welds is an important goal of welding research because of the strong correlation between weld microstructure and weld properties. To achieve this goal it is important to develop a quantitative measure of phase transformations encountered during welding in order to ultimately develop methods for predicting weld microstructures from the characteristics of the welding process. To aid in this effort, synchrotron radiation methods have been developed at Lawrence Livermore National Laboratory (LLNL) for direct observation of microstructure evolution during welding. Using intense, highly collimated synchrotron radiation, the atomic structure of the weld heat affected and fusion zones can be probed in real time. Two synchrotron-based techniques, known as spatially resolved (SRXRD) and time resolved (TRXRD) x-ray diffraction, have been developed for these investigations. These techniques have now been used to investigate welding induced phase transformations in titanium alloys, low alloy steels, and stainless steel alloys. This paper will provide a brief overview of these methods and will discuss microstructural evolution during the welding of low carbon (AISI 1005) and medium carbon (AISI 1045) steels where the different levels of carbon influence the evolution of microstructures during welding.

  19. Comparing Laser Welding Technologies with Friction Stir Welding for Production of Aluminum Tailor-Welded Blanks

    SciTech Connect

    Hovanski, Yuri; Carsley, John; Carlson, Blair; Hartfield-Wunsch, Susan; Pilli, Siva Prasad

    2014-01-15

    A comparison of welding techniques was performed to determine the most effective method for producing aluminum tailor-welded blanks for high volume automotive applications. Aluminum sheet was joined with an emphasis on post weld formability, surface quality and weld speed. Comparative results from several laser based welding techniques along with friction stir welding are presented. The results of this study demonstrate a quantitative comparison of weld methodologies in preparing tailor-welded aluminum stampings for high volume production in the automotive industry. Evaluation of nearly a dozen welding variations ultimately led to down selecting a single process based on post-weld quality and performance.

  20. Microstructure characterization of laser welded Ti-6Al-4V fusion zones

    SciTech Connect

    Xu, Pei-quan; Li, Leijun Zhang, Chunbo

    2014-01-15

    The as-welded microstructure of laser-welded Ti-6Al-4V is characterized as a function of CO2 key-hole mode laser welding speed. Martensitic α′ is the predominant phase, with some α and retained β. Phase transformation is affected by the cooling rate through laser welding speed. A higher welding speed of 1.6 to 2.0 m/min produced more martensite α′ and less retained β in the welds. 1.4 m/min welding speed produced small amounts of α, besides the martensite α′. A trace of δ titanium hydride phase seems to have formed in the weld fusion zone. Moiré fringes are a common feature in the TEM microstructure, due to abundance of multi-phase interfaces. Tensile twins and clusters of dislocations indicate that plastic deformation has happened in the as-welded microstructure, indicating the local stress levels to be approaching the yield stress on-cooling during laser welding.

  1. Purely lytic osteosarcoma

    SciTech Connect

    De Santos, L.A.; Eideken, B.

    1982-11-01

    The radiographic features of 42 purely lytic osteosarcomas are presented. Purely lytic osteosarcoma is identified as a lytic lesion of bone with no demonstrable osteoid matrix by conventional radiographic modalities. Purely lytic osteosarcoma represented 13.7% of a group of 305 osteosarcomas. The most common presentation was that of a lytic illdefined lesion with a moderate to large extraosseous mass component. Nine lesions presented with benign radiographic features. The differential diagnosis is outlined. The need for awareness of this type of presentation of osteosarcoma is stressed.

  2. Portable Weld Tester.

    ERIC Educational Resources Information Center

    Eckert, Douglas

    This training manual, which was developed for employees of an automotive plant, is designed to teach trainees to operate a portable weld tester (Miyachi MM-315). In chapter 1, the weld tester's components are illustrated and described, and the procedure for charging its batteries is explained. Chapter 2 illustrates the weld tester's parts,…

  3. Variable polarity arc welding

    NASA Technical Reports Server (NTRS)

    Bayless, E. O., Jr.

    1991-01-01

    Technological advances generate within themselves dissatisfactions that lead to further advances in a process. A series of advances in welding technology which culminated in the Variable Polarity Plasma Arc (VPPA) Welding Process and an advance instituted to overcome the latest dissatisfactions with the process: automated VPPA welding are described briefly.

  4. Coil Welding Aid

    NASA Technical Reports Server (NTRS)

    Wiesenbach, W. T.; Clark, M. C.

    1983-01-01

    Positioner holds coil inside cylinder during tack welding. Welding aid spaces turns of coil inside cylinder and applies contact pressure while coil is tack-welded to cylinder. Device facilitates fabrication of heat exchangers and other structures by eliminating hand-positioning and clamping of individual coil turns.

  5. Active weld control

    NASA Technical Reports Server (NTRS)

    Powell, Bradley W.; Burroughs, Ivan A.

    1994-01-01

    Through the two phases of this contract, sensors for welding applications and parameter extraction algorithms have been developed. These sensors form the foundation of a weld control system which can provide action weld control through the monitoring of the weld pool and keyhole in a VPPA welding process. Systems of this type offer the potential of quality enhancement and cost reduction (minimization of rework on faulty welds) for high-integrity welding applications. Sensors for preweld and postweld inspection, weld pool monitoring, keyhole/weld wire entry monitoring, and seam tracking were developed. Algorithms for signal extraction were also developed and analyzed to determine their application to an adaptive weld control system. The following sections discuss findings for each of the three sensors developed under this contract: (1) weld profiling sensor; (2) weld pool sensor; and (3) stereo seam tracker/keyhole imaging sensor. Hardened versions of these sensors were designed and built under this contract. A control system, described later, was developed on a multiprocessing/multitasking operating system for maximum power and flexibility. Documentation for sensor mechanical and electrical design is also included as appendices in this report.

  6. Welding Course Curriculum.

    ERIC Educational Resources Information Center

    Genits, Joseph C.

    This guide is intended for use in helping students gain a fundamental background on the major aspects of the welding trade. The course emphasis is on mastery of the manipulative skills necessary to develop successful welding techniques and on acquisition of an understanding of the specialized tools and equipment used in welding. The first part…

  7. Instructional Guidelines. Welding.

    ERIC Educational Resources Information Center

    Fordyce, H. L.; Doshier, Dale

    Using the standards of the American Welding Society and the American Society of Mechanical Engineers, this welding instructional guidelines manual presents a course of study in accordance with the current practices in industry. Intended for use in welding programs now practiced within the Federal Prison System, the phases of the program are…

  8. A Comparison Between Mechanical And Electrochemical Tests on Ti6Al4V Welded By LBW

    NASA Astrophysics Data System (ADS)

    Serroni, G.; Bitondo, C.; Astarita, A.; Scala, A.; Gloria, A.; Prisco, U.; Squillace, A.; Bellucci, F.

    2011-05-01

    Titanium and its alloys are nowadays widely used in many sectors: in the medical field (orthopedic and dental ones), in the architectural field, in the chemical plants field and in aeronautic. In this last field it is more and more used both for its contribution to make lightweight and time durable structures and for its compatibility with new materials, first of all Carbon Fiber Reinforced Plastics (CFRP). To this aim, lots of researches are now focusing on new and emerging technologies capable to make titanium objects and, at the same time, reducing the scrap, since titanium alloys for aeronautic application are very expensive. This paper examines Grade 5 Titanium Alloy (Ti6Al4V) welded by Laser Beam (LBW) in butt-joint configuration. The source was Nd:YAG laser, moreover two inert gases were used, in order to provide a shield both on the top and on the bottom of the weld bead. The joints were studied by varying two process parameters: welding speed and power of the laser beam. It was not possible to realize a full experimental plan, due to technological limits in making titanium laser beam welds. The joints were tested to measure their mechanical properties and the corrosion resistance. The process parameters do not significantly affect the maximum static strength of the joints. Microscopic analysis showed that welds made with high power and low welding speed have a uniform weld bead, and no macroscopic defect occurs. Fatigue test results, instead, show a marked influence of the morphology of the weld bead: the occurrence of some defects, such as the undercut, both on the top and on the bottom of the weld bead, dramatically reduced fatigue resistance of the joints. Corrosion resistance was studied using the electrochemical micro cell technique, which allows to distinguish electrochemical properties of each zone of the weld bead, even when, as in this case, they are very narrow. By a general point of view, it has been demonstrated that the joints showing the best

  9. Titanium Process Technologies

    SciTech Connect

    Steven J. Gerdemann

    2001-07-01

    Titanium has a unique set of properties: low density, high specific strength, high temperature strength, and exceptional resistance to corrosion. Titanium is the fourth most common structural metal in the earth's crust. Only iron, aluminum, and magnesium are more abundant. More titanium is available than nickel, copper, chromium, lead, tin, and zinc put together. However, the current titanium production system is extremely labor and capital intensive. Titanium is expensive only because the current process for refining the ore to metal is a multi-step, high temperature batch process. This article will first describe current titanium technology, and will then discuss four of the most promising approaches to reduce the cost of titanium. These include the Kroll, Hunter, Cambridge, and Armstrong processes.

  10. Pure-quartic solitons

    PubMed Central

    Blanco-Redondo, Andrea; Martijn, de Sterke C.; Sipe, J.E.; Krauss, Thomas F.; Eggleton, Benjamin J.; Husko, Chad

    2016-01-01

    Temporal optical solitons have been the subject of intense research due to their intriguing physics and applications in ultrafast optics and supercontinuum generation. Conventional bright optical solitons result from the interaction of anomalous group-velocity dispersion and self-phase modulation. Here we experimentally demonstrate a class of bright soliton arising purely from the interaction of negative fourth-order dispersion and self-phase modulation, which can occur even for normal group-velocity dispersion. We provide experimental and numerical evidence of shape-preserving propagation and flat temporal phase for the fundamental pure-quartic soliton and periodically modulated propagation for the higher-order pure-quartic solitons. We derive the approximate shape of the fundamental pure-quartic soliton and discover that is surprisingly Gaussian, exhibiting excellent agreement with our experimental observations. Our discovery, enabled by precise dispersion engineering, could find applications in communications, frequency combs and ultrafast lasers. PMID:26822758

  11. Pure-quartic solitons.

    PubMed

    Blanco-Redondo, Andrea; de Sterke, C Martijn; Martijn, de Sterke C; Sipe, J E; Krauss, Thomas F; Eggleton, Benjamin J; Husko, Chad

    2016-01-01

    Temporal optical solitons have been the subject of intense research due to their intriguing physics and applications in ultrafast optics and supercontinuum generation. Conventional bright optical solitons result from the interaction of anomalous group-velocity dispersion and self-phase modulation. Here we experimentally demonstrate a class of bright soliton arising purely from the interaction of negative fourth-order dispersion and self-phase modulation, which can occur even for normal group-velocity dispersion. We provide experimental and numerical evidence of shape-preserving propagation and flat temporal phase for the fundamental pure-quartic soliton and periodically modulated propagation for the higher-order pure-quartic solitons. We derive the approximate shape of the fundamental pure-quartic soliton and discover that is surprisingly Gaussian, exhibiting excellent agreement with our experimental observations. Our discovery, enabled by precise dispersion engineering, could find applications in communications, frequency combs and ultrafast lasers. PMID:26822758

  12. Geomorphology: Pure and applied

    SciTech Connect

    Hart, M.G.

    1986-01-01

    The book summarizes the history of intellectual debate in geomorphology and describes modern developments both ''pure'' and ''applied.'' The history begins well before W.M. Davis and follows through to such debates as those concerned with the Pleistocene. Modern developments in pure geomorphology are cast in terms of chapters on form, process, materials, and methods analysis. The applied chapters concentrate on environmental hazards and resources, and their management.

  13. The morphological evolution of the axial structure and the curved columnar grain in the weld

    NASA Astrophysics Data System (ADS)

    Han, Rihong; Lu, Shanping; Dong, Wenchao; Li, Dianzhong; Li, Yiyi

    2015-12-01

    The competitive growth of microstructures in the entire weld pool for both the Al-Cu alloy and the pure aluminum was simulated by the cellular automata method to comparatively investigate the micro-mechanisms for the morphological evolution of the axial structure and the curved columnar grain in the weld. The competitive mechanism of grains during the epitaxial growth and the morphological evolution of the grain structure in the weld with various welding speeds were studied. The results indicate that both the thermal conditions and the solidification characteristic of the weld metal exert an important influence on the grain competition and the resulting structure in the weld. For the Al-Cu alloy, the dendritic structure with a large S/L interface curvature appears during the epitaxial growth. The preferential orientation affects the competition result obviously. Owing to the anisotropic growth kinetics, the straight axial structure forms at low welding speeds. With the increase of the welding speed, the width of the axial region decreases and eventually disappears. For the pure aluminum, the S/L interface during the epitaxial growth is planar, and the grain competition is controlled by the thermal conditions completely. The columnar grains curve gradually to follow the highest temperature gradient direction at low welding speeds and become straight at high welding speeds.

  14. An investigation of the dynamic separation of spot welds under plane tensile pulses

    SciTech Connect

    Ma, Bohan; Fan, Chunlei; Chen, Danian Wang, Huanran; Zhou, Fenghua

    2014-08-07

    We performed ultra-high-speed tests for purely opening spot welds using plane tensile pulses. A gun system generated a parallel impact of a projectile plate onto a welded plate. Induced by the interactions of the release waves, the welded plate opened purely under the plane tensile pulses. We used the laser velocity interferometer system for any reflector to measure the velocity histories of the free surfaces of the free part and the spot weld of the welded plate. We then used a scanning electron microscope to investigate the recovered welded plates. We found that the interfacial failure mode was mainly a brittle fracture and the cracks propagated through the spot nugget, while the partial interfacial failure mode was a mixed fracture comprised ductile fracture and brittle fracture. We used the measured velocity histories to evaluate the tension stresses in the free part and the spot weld of the welded plate by applying the characteristic theory. We also discussed the different constitutive behaviors of the metals under plane shock loading and under uniaxial split Hopkinson pressure bar tests. We then compared the numerically simulated velocity histories of the free surfaces of the free part and the spot weld of the welded plate with the measured results. The numerical simulations made use of the fracture stress criteria, and then the computed fracture modes of the tests were compared with the recovered results.

  15. Method for welding beryllium

    DOEpatents

    Dixon, Raymond D.; Smith, Frank M.; O'Leary, Richard F.

    1997-01-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon.

  16. [Evaluation of exposure to fumes arising during welding of non-alloyed and low-alloyed steel by various methods].

    PubMed

    Matczak, W; Chmielnicka, J

    1988-01-01

    Evaluated in the paper is welders' exposure to fumes resulting from welding of nonalloyed and low-alloyed steel, whether pure or coated with protective layers, using two most popular welding techniques for those types of steel, i.e. metal active gas welding (MAG) and manual welding with covered electrode (MMA). Due to different chemical composition of fumes at particular workstations, the proper hygienic evaluation was based on measurements of individual concentrations of fumes in workers' breathing zone. A considerable contribution of the combined exposure was yielded by such fume constituents as manganese, ferrum and zinc (welding of steel coated with zinc protective layers), also chromium (welding of low- and -highalloyed steel), as well as copper (metal gas welding). The highest combined exposure (10-fold allowable value) was that of welders of steel coated with the zinc layer, using the metal active gas welding.

  17. [Evaluation of exposure to fumes arising during welding of non-alloyed and low-alloyed steel by various methods].

    PubMed

    Matczak, W; Chmielnicka, J

    1988-01-01

    Evaluated in the paper is welders' exposure to fumes resulting from welding of nonalloyed and low-alloyed steel, whether pure or coated with protective layers, using two most popular welding techniques for those types of steel, i.e. metal active gas welding (MAG) and manual welding with covered electrode (MMA). Due to different chemical composition of fumes at particular workstations, the proper hygienic evaluation was based on measurements of individual concentrations of fumes in workers' breathing zone. A considerable contribution of the combined exposure was yielded by such fume constituents as manganese, ferrum and zinc (welding of steel coated with zinc protective layers), also chromium (welding of low- and -highalloyed steel), as well as copper (metal gas welding). The highest combined exposure (10-fold allowable value) was that of welders of steel coated with the zinc layer, using the metal active gas welding. PMID:3237059

  18. Optically controlled welding system

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1988-01-01

    An optically controlled welding system wherein a welding torch having through-the-torch viewing capabilities is provided with an optical beam splitter to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder to make the welding torch responsive thereto. Other features include an actively cooled electrode holder which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm, and a weld pool contour detector comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom, being characteristic of a penetrated or unpenetrated condition of the weld pool.

  19. Optically controlled welding system

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1989-01-01

    An optically controlled welding system (10) wherein a welding torch (12) having through-the-torch viewing capabilities is provided with an optical beam splitter (56) to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder (15) to make the welding torch responsive thereto. Other features includes an actively cooled electrode holder (26) which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm (28) and a weld pool contour detector (14) comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom being characteristic of a penetrated or unpenetrated condition of the weld pool.

  20. Robotic Welding Of Injector Manifold

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Shelley, D. Mark

    1992-01-01

    Brief report presents history, up through October 1990, of continuing efforts to convert from manual to robotic gas/tungsten arc welding in fabrication of main injector inlet manifold of main engine of Space Shuttle. Includes photographs of welding machinery, welds, and weld preparations. Of interest to engineers considering establishment of robotic-welding facilities.

  1. Chemical composition and morphology of welding fume particles and grinding dusts

    SciTech Connect

    Karlsen, J.T.; Farrants, G.; Torgrimsen, T.; Reith, A. )

    1992-05-01

    Elemental composition and morphology of pure manual metal arc (MMA) welding fumes, pure grinding dust, and combined fume/dust air samples were collected and determined separately under semilaboratory conditions. The base material was stainless steel. The purpose of the present study was to create a synthetic' work situation under semilaboratory conditions by combining one grinding period and two MMA welding periods and comparing these results with results during welding in a workshop. The duty cycles of pure welding and of pure grinding were also observed. A comparison was also made between metal inert gas (MIG) and MMA welding on stainless steel as well as a nickel-rich alloy under regular conditions. The amount of collected material was determined by weighing the membrane filters before and after exposure, and the element contents were determined by atomic spectroscopy. Other transmission electron microscopy (TEM) filters were used for TEM and computer-image analysis, in which the amount of collected material and its morphological characteristics were observed. The arcing time and the consumption of filler material were estimated for different kinds of electrodes. Chemical analysis showed that the contents of manganese and total chromium were lower in grinding dust than in welding fumes. The contents of hexavalent chromium, Cr(VI), in grinding dust were undetectable. Samples collected in welding shops where concomitant grinding was performed contained about 30% less Cr(VI) than those collected under laboratory conditions during welding only. The sizes and shapes of the particles depend on the welding process and distance of collection from the plume of the fume. To compare laboratory experiments with regular welding situations, the experiment must resemble industrial welding.

  2. Chemical composition and morphology of welding fume particles and grinding dusts.

    PubMed

    Karlsen, J T; Farrants, G; Torgrimsen, T; Reith, A

    1992-05-01

    Elemental composition and morphology of pure manual metal arc (MMA) welding fumes, pure grinding dust, and combined fume/dust air samples were collected and determined separately under semilaboratory conditions. The base material was stainless steel. The purpose of the present study was to create a "synthetic" work situation under semilaboratory conditions by combining one grinding period and two MMA welding periods and comparing these results with results during welding in a workshop. The duty cycles of pure welding and of pure grinding were also observed. A comparison was also made between metal inert gas (MIG) and MMA welding on stainless steel as well as a nickel-rich alloy under regular conditions. The amount of collected material was determined by weighing the membrane filters before and after exposure, and the element contents were determined by atomic spectroscopy. Other transmission electron microscopy (TEM) filters were used for TEM and computer-image analysis, in which the amount of collected material and its morphological characteristics were observed. The arcing time and the consumption of filler material were estimated for different kinds of electrodes. Chemical analysis showed that the contents of manganese and total chromium were lower in grinding dust than in welding fumes. The contents of hexavalent chromium, Cr(VI), in grinding dust were undetectable. Samples collected in welding shops where concomitant grinding was performed contained about 30% less Cr(VI) than those collected under laboratory conditions during welding only. The sizes and shapes of the particles depend on the welding process and distance of collection from the plume of the fume. To compare laboratory experiments with regular welding situations, the experiment must resemble industrial welding.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Titanium-niobium, a new finishing wire alloy.

    PubMed

    Dalstra, M; Denes, G; Melsen, B

    2000-02-01

    The mechanical properties of the newly introduced titanium-niobium finishing wires were investigated. Both in bending and torsional loading mode, the stiffness, yield point, post-yield behavior, and springback of titanium-niobium wires were experimentally determined and compared to those of equally sized stainless steel wires. The experimentally obtained values were also validated with theoretical values from engineering formulas of cantilever deformations. The ratios for these parameters for the two materials proved to be different in bending and torsion. The stiffness of titanium-niobium in bending is roughly half of that of stainless steel, whereas in torsion it is roughly one-third. These characteristics enable the clinician to use titanium-niobium for creative bends without the excessive force levels of steel wires. The springback of titanium-niobium in bending is 14% lower than that of steel, whereas in torsion it is about the same or even slightly higher than that of steel, thus making it possible to utilize the wire for even major third-order corrections. Finally, the weldability of titanium-niobium wires was found to be good, so it is possible to weld wires of different dimensions together for the generation of differentiated force systems. PMID:11168279

  4. Microbiologically induced corrosive properties of the titanium surface.

    PubMed

    Fukushima, A; Mayanagi, G; Nakajo, K; Sasaki, K; Takahashi, N

    2014-05-01

    Corrosion of titanium is the major concern when it is used for dental treatment. This study aimed to investigate the mechanism of the microbiologically induced corrosive properties of titanium. An experimental well was made of polymethyl methacrylate with pure titanium at the bottom. Viable or killed cells of Streptococcus mutans were packed into the well, and pH at the bacteria-titanium interface was monitored with and without glucose. Before and after 90-minute incubation, the electrochemical behavior on the titanium surface was measured by means of a potentiostat. The oxygen concentration under bacterial cells was monitored with oxygen-sensitive fluorescent film. The amount of titanium eluted was measured by inductively coupled plasma-mass spectrometry. The corrosion current and passive current under killed cells were low and stable during 90 min, while those under viable cells increased, regardless of the glucose-induced pH fall. The polarization resistance and oxygen concentration under killed cells were high and stable, while those under viable cells decreased. No elution of titanium was detected. Viable bacterial cells may form 'oxygen concentration cells' through metabolism-coupled oxygen consumption and subsequently induce corrosive properties of the titanium surface.

  5. Use of the Plasma Spectrum RMS Signal for Arc-Welding Diagnostics

    PubMed Central

    Mirapeix, Jesus; Cobo, Adolfo; Fuentes, Jose; Davila, Marta; Etayo, Juan Maria; Lopez-Higuera, Jose-Miguel

    2009-01-01

    A new spectroscopic parameter is used in this paper for on-line arc-welding quality monitoring. Plasma spectroscopy applied to welding diagnostics has typically relied on the estimation of the plasma electronic temperature, as there is a known correlation between this parameter and the quality of the seams. However, the practical use of this parameter gives rise to some uncertainties that could provoke ambiguous results. For an efficient on-line welding monitoring system, it is essential to prevent the appearance of false alarms, as well as to detect all the possible defects. In this regard, we propose the use of the root mean square signal of the welding plasma spectra, as this parameter will be proven to exhibit a good correlation with the quality of the resulting seams. Results corresponding to several arc-welding field tests performed on Inconel and titanium specimens will be discussed and compared to non-destructive evaluation techniques. PMID:22346696

  6. Pure shift NMR.

    PubMed

    Zangger, Klaus

    2015-04-01

    Although scalar-coupling provides important structural information, the resulting signal splittings significantly reduce the resolution of NMR spectra. Limited resolution is a particular problem in proton NMR experiments, resulting in part from the limited proton chemical shift range (∼10 ppm) but even more from the splittings due to scalar coupling to nearby protons. "Pure shift" NMR spectroscopy (also known as broadband homonuclear decoupling) has been developed for disentangling overlapped proton NMR spectra. The resulting spectra are considerably simplified as they consist of single lines, reminiscent of proton-decoupled C-13 spectra at natural abundance, with no multiplet structure. The different approaches to obtaining pure shift spectra are reviewed here and several applications presented. Pure shift spectra are especially useful for highly overlapped proton spectra, as found for example in reaction mixtures, natural products and biomacromolecules.

  7. VPPA weld model evaluation

    NASA Astrophysics Data System (ADS)

    McCutcheon, Kimble D.; Gordon, Stephen S.; Thompson, Paul A.

    1992-07-01

    NASA uses the Variable Polarity Plasma Arc Welding (VPPAW) process extensively for fabrication of Space Shuttle External Tanks. This welding process has been in use at NASA since the late 1970's but the physics of the process have never been satisfactorily modeled and understood. In an attempt to advance the level of understanding of VPPAW, Dr. Arthur C. Nunes, Jr., (NASA) has developed a mathematical model of the process. The work described in this report evaluated and used two versions (level-0 and level-1) of Dr. Nunes' model, and a model derived by the University of Alabama at Huntsville (UAH) from Dr. Nunes' level-1 model. Two series of VPPAW experiments were done, using over 400 different combinations of welding parameters. Observations were made of VPPAW process behavior as a function of specific welding parameter changes. Data from these weld experiments was used to evaluate and suggest improvements to Dr. Nunes' model. Experimental data and correlations with the model were used to develop a multi-variable control algorithm for use with a future VPPAW controller. This algorithm is designed to control weld widths (both on the crown and root of the weld) based upon the weld parameters, base metal properties, and real-time observation of the crown width. The algorithm exhibited accuracy comparable to that of the weld width measurements for both aluminum and mild steel welds.

  8. VPPA weld model evaluation

    NASA Technical Reports Server (NTRS)

    Mccutcheon, Kimble D.; Gordon, Stephen S.; Thompson, Paul A.

    1992-01-01

    NASA uses the Variable Polarity Plasma Arc Welding (VPPAW) process extensively for fabrication of Space Shuttle External Tanks. This welding process has been in use at NASA since the late 1970's but the physics of the process have never been satisfactorily modeled and understood. In an attempt to advance the level of understanding of VPPAW, Dr. Arthur C. Nunes, Jr., (NASA) has developed a mathematical model of the process. The work described in this report evaluated and used two versions (level-0 and level-1) of Dr. Nunes' model, and a model derived by the University of Alabama at Huntsville (UAH) from Dr. Nunes' level-1 model. Two series of VPPAW experiments were done, using over 400 different combinations of welding parameters. Observations were made of VPPAW process behavior as a function of specific welding parameter changes. Data from these weld experiments was used to evaluate and suggest improvements to Dr. Nunes' model. Experimental data and correlations with the model were used to develop a multi-variable control algorithm for use with a future VPPAW controller. This algorithm is designed to control weld widths (both on the crown and root of the weld) based upon the weld parameters, base metal properties, and real-time observation of the crown width. The algorithm exhibited accuracy comparable to that of the weld width measurements for both aluminum and mild steel welds.

  9. Welding arc plasma physics

    NASA Technical Reports Server (NTRS)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  10. Weld electrode cooling study

    NASA Astrophysics Data System (ADS)

    Masters, Robert C.; Simon, Daniel L.

    1999-03-01

    The U.S. auto/truck industry has been mandated by the Federal government to continuously improve their fleet average gas mileage, measured in miles per gallon. Several techniques are typically used to meet these mandates, one of which is to reduce the overall mass of cars and trucks. To help accomplish this goal, lighter weight sheet metal parts, with smaller weld flanges, have been designed and fabricated. This paper will examine the cooling characteristics of various water cooled weld electrodes and shanks used in resistance spot welding applications. The smaller weld flanges utilized in modern vehicle sheet metal fabrications have increased industry's interest in using one size of weld electrode (1/2 inch diameter) for certain spot welding operations. The welding community wants more data about the cooling characteristics of these 1/2 inch weld electrodes. To hep define the cooling characteristics, an infrared radiometer thermal vision system (TVS) was used to capture images (thermograms) of the heating and cooling cycles of several size combinations of weld electrodes under typical production conditions. Tests results will show why the open ended shanks are more suitable for cooling the weld electrode assembly then closed ended shanks.

  11. Dichloromethane photodegradation using titanium catalysts

    SciTech Connect

    Tanguay, J.F.; Suib, S.L.; Coughlin, R.W. )

    1989-06-01

    The use of titanium dioxide and titanium aluminosilicates in the photocatalytic destruction of chlorinated hydrocarbons is investigated. Titanium-exchanged clays, titanium-pillared clays, and titanium dioxide in the amorphous, anatase, and rutile forms are used to photocatalytically degrade dichloromethane to hydrochloric acid and carbon dioxide. Bentonite clays pillared by titanium dioxide are observed to be more catalytically active than titanium-exchanged clays. Clays pillared by titanium aluminum polymeric cations display about the same catalytic activity as that of titanium-exchanged clays. The rutile form of titanium dioxide is the most active catalyst studied for the dichloromethane degradation reaction. The anatase form of titanium dioxide supported on carbon felt was also used as a catalyst. This material is about five times more active than titanium dioxide-pillared clays. Degradation of dichloromethane using any of these catalysts can be enhanced by oxygen enrichment of the reaction solution or by preirradiating the catalyst with light.

  12. Welding and joining: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A compilation is presented of NASA-developed technology in welding and joining. Topics discussed include welding equipment, techniques in welding, general bonding, joining techniques, and clamps and holding fixtures.

  13. Formation of Intermetallic Compounds During Explosive Welding

    NASA Astrophysics Data System (ADS)

    Greenberg, Bella A.; Ivanov, Mikhail A.; Pushkin, Mark S.; Inozemtsev, Alexei V.; Patselov, Alexander M.; Tankeyev, Anatoliy P.; Kuzmin, Sergey V.; Lysak, Vladimir I.

    2016-11-01

    Transition states between traditional, i.e., plain and wavy, shapes of the interface during explosive welding were studied. A sequence of the transition states was found for the studied copper-titanium and copper-tantalum joints. Some transition states are common for the joints under study, while others are only typical of the copper-titanium joints, due to sufficiently high solubility of original elements. A transition state has been found, during which cusps, even though they are solid phase, look like splashes on the water. The key role of these splashes is that they evidence the lower boundary of the `weldability window.' The study found certain self-organization processes of the cusps that cause them to turn into a quasi-wavy shape of the interface, and then, as the welding mode is intensified, into a wavy shape. The role of intermetallic compounds was analyzed, due to which a wave only consists of cusps in case mutual solubility of original metals is sufficiently high.

  14. Formation of Intermetallic Compounds During Explosive Welding

    NASA Astrophysics Data System (ADS)

    Greenberg, Bella A.; Ivanov, Mikhail A.; Pushkin, Mark S.; Inozemtsev, Alexei V.; Patselov, Alexander M.; Tankeyev, Anatoliy P.; Kuzmin, Sergey V.; Lysak, Vladimir I.

    2016-08-01

    Transition states between traditional, i.e., plain and wavy, shapes of the interface during explosive welding were studied. A sequence of the transition states was found for the studied copper-titanium and copper-tantalum joints. Some transition states are common for the joints under study, while others are only typical of the copper-titanium joints, due to sufficiently high solubility of original elements. A transition state has been found, during which cusps, even though they are solid phase, look like splashes on the water. The key role of these splashes is that they evidence the lower boundary of the `weldability window.' The study found certain self-organization processes of the cusps that cause them to turn into a quasi-wavy shape of the interface, and then, as the welding mode is intensified, into a wavy shape. The role of intermetallic compounds was analyzed, due to which a wave only consists of cusps in case mutual solubility of original metals is sufficiently high.

  15. Computerized adaptive control weld skate with CCTV weld guidance project

    NASA Technical Reports Server (NTRS)

    Wall, W. A.

    1976-01-01

    This report summarizes progress of the automatic computerized weld skate development portion of the Computerized Weld Skate with Closed Circuit Television (CCTV) Arc Guidance Project. The main goal of the project is to develop an automatic welding skate demonstration model equipped with CCTV weld guidance. The three main goals of the overall project are to: (1) develop a demonstration model computerized weld skate system, (2) develop a demonstration model automatic CCTV guidance system, and (3) integrate the two systems into a demonstration model of computerized weld skate with CCTV weld guidance for welding contoured parts.

  16. Study on microstructure and mechanical properties of 304 stainless steel joints by TIG, laser and laser -TIG hybrid welding

    NASA Astrophysics Data System (ADS)

    Yan, Jun; Gao, Ming; Zeng, Xiaoyan

    2010-04-01

    This paper investigated the microstructure and mechanical properties of 304 stainless steel joints by tungsten inert gas (TIG) welding, laser welding and laser-TIG hybrid welding. The X-ray diffraction was used to analyze the phase composition, while the microscopy was conducted to study the microstructure characters of joints. Finally, tensile tests were performed and the fracture surfaces were analyzed. The results showed that the joint by laser welding had highest tensile strength and smallest dendrite size in all joints, while the joint by TIG welding had lowest tensile strength, biggest dendrite size. Furthermore, transition zone and heat affected zone can be observed in the joint of TIG welding. The fractograph observation showed that the TIG welding joint existed as cup-cone shaped fracture, while the laser welding and hybrid welding joints existed as pure-shear fracture. The laser welding and hybrid welding are suitable for welding 304 stainless steel owing to their high welding speed and excellent mechanical properties.

  17. Production of pure metals

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Marsik, S. J.; May, C. E. (Inventor)

    1974-01-01

    A process for depositing elements by irradiating liquids is reported. Ultra pure elements are precipitated from aqueous solutions or suspensions of compounds. A solution of a salt of a metal to be prepared is irradiated, and the insoluble reaction product settles out. Some chemical compounds may also be prepared in this manner.

  18. Dahlbeck and Pure Ontology

    ERIC Educational Resources Information Center

    Mackenzie, Jim

    2016-01-01

    This article responds to Johan Dahlbeck's "Towards a pure ontology: Children's bodies and morality" ["Educational Philosophy and Theory," vol. 46 (1), 2014, pp. 8-23 (EJ1026561)]. His arguments from Nietzsche and Spinoza do not carry the weight he supposes, and the conclusions he draws from them about pedagogy would be…

  19. Dual wire welding torch and method

    SciTech Connect

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  20. Welding in Space Workshop

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1990-01-01

    The potential was discussed for welding in space, its advantages and disadvantages, and what type of programs can benefit from the capability. Review of the various presentations and comments made in the course of the workshop suggests several routes to obtaining a better understanding of how welding processes can be used in NASA's initiatives in space. They are as follows: (1) development of a document identifying well processes and equipment requirements applicable to space and lunar environments; (2) more demonstrations of welding particular hardware which are to be used in the above environments, especially for space repair operations; (3) increased awareness among contractors responsible for building space equipment as to the potential for welding operations in space and on other planetary bodies; and (4) continuation of space welding research projects is important to maintain awareness within NASA that welding in space is viable and beneficial.

  1. CHARACTERIZATION OF DEFECTS IN ALLOY 152, 52 AND 52M WELDS

    SciTech Connect

    Bruemmer, Stephen M.; Toloczko, Mychailo B.; Olszta, Matthew J.; Seffens, Rob J.; Efsing, Pal G.

    2009-08-27

    Defect distributions have been documented by optical metallography, scanning electron microscopy and electron backscatter diffraction in alloy 152 and 52 mockups welds, alloy 52 and 52M overlay mockups and an alloy 52M inlay. Primary defects were small cracks at grain boundaries except for more extensive cracking in the dilution zone of an alloy 52 overlay on 304SS. Detailed characterizations of the dilution zone cracks were performed by analytical transmission electron microscopy identifying grain boundary titanium-nitride precipitation associated with the intergranular separations. I. INTRODUCTION Weldments continue to be a primary location of stress-corrosion cracking (SCC) in light-water reactor systems. While problems related to heat-affected-zone (HAZ) sensitization and intergranular (IG) SCC of austenitic stainless alloys in boiling-water reactors (BWRs) have been significantly reduced, SCC has now been observed in HAZs of non-sensitized materials and in dissimilar metal welds where Ni-base alloy weld metals are used. IGSCC in weld metals has been observed in both BWRs and pressurized water reactors (PWRs) with recent examples for PWR pressure vessel penetrations producing the most concern. This has led to the replacement of alloy 600/182/82 welds with higher Cr, more corrosion-resistant replacement materials (alloy 690/152/52/52M). Complicating this issue has been a known susceptibility to cracking during welding [1-7] of these weld metals. There is a critical need for an improved understanding of the weld metal metallurgy and defect formation in Ni-base alloy welds to effectively assess long-term performance. A series of macroscopic to microscopic examinations were performed on available mockup welds made with alloy 52 or alloy 152 plus selected overlay and inlay mockups. The intent was to expand our understanding of weld metal structures in simulated LWR service components with a focus on as-welded defects. Microstructural features, defect distributions

  2. Manganese Content Control in Weld Metal During MAG Welding

    NASA Astrophysics Data System (ADS)

    Chinakhov, D. A.; Chinakhova, E. D.; Sapozhkov, A. S.

    2016-08-01

    The influence of the welding current and method of gas shielding in MAG welding on the content of manganese is considered in the paper. Results of study of the welded specimens of steels 45 when applying welding wire of different formulas and different types of gas shielding (traditional shielding and double-jet shielding) are given. It is found that in MAG welding the value of the welding current and the speed of the gas flow from the welding nozzle have a considerable impact on the chemical composition of the weld metal. The consumable electrode welding under double-jet gas shielding provides the directed gas-dynamics in the welding area and enables controlling the electrode metal transfer and the chemical composition of a weld.

  3. WELDED JACKETED URANIUM BODY

    DOEpatents

    Gurinsky, D.H.

    1958-08-26

    A fuel element is presented for a neutronic reactor and is comprised of a uranium body, a non-fissionable jacket surrounding sald body, thu jacket including a portion sealed by a weld, and an inclusion in said sealed jacket at said weld of a fiux having a low neutron capture cross-section. The flux is provided by combining chlorine gas and hydrogen in the intense heat of-the arc, in a "Heliarc" welding muthod, to form dry hydrochloric acid gas.

  4. Rolling-induced Face Centered Cubic Titanium in Hexagonal Close Packed Titanium at Room Temperature.

    PubMed

    Wu, H C; Kumar, A; Wang, J; Bi, X F; Tomé, C N; Zhang, Z; Mao, S X

    2016-01-01

    Combining transmission electron microscopes and density functional theory calculations, we report the nucleation and growth mechanisms of room temperature rolling induced face-centered cubic titanium (fcc-Ti) in polycrystalline hexagonal close packed titanium (hcp-Ti). Fcc-Ti and hcp-Ti take the orientation relation: 〈0001〉hcp||〈001〉fcc and , different from the conventional one. The nucleation of fcc-Ti is accomplished via pure-shuffle mechanism with a minimum stable thickness of three atomic layers, and the growth via shear-shuffle mechanisms through gliding two-layer disconnections or pure-shuffle mechanisms through gliding four-layer disconnections. Such phase transformation offers an additional plastic deformation mode comparable to twinning. PMID:27067515

  5. Rolling-induced Face Centered Cubic Titanium in Hexagonal Close Packed Titanium at Room Temperature

    NASA Astrophysics Data System (ADS)

    Wu, H. C.; Kumar, A.; Wang, J.; Bi, X. F.; Tomé, C. N.; Zhang, Z.; Mao, S. X.

    2016-04-01

    Combining transmission electron microscopes and density functional theory calculations, we report the nucleation and growth mechanisms of room temperature rolling induced face-centered cubic titanium (fcc-Ti) in polycrystalline hexagonal close packed titanium (hcp-Ti). Fcc-Ti and hcp-Ti take the orientation relation: <0001>hcp||<001>fcc and , different from the conventional one. The nucleation of fcc-Ti is accomplished via pure-shuffle mechanism with a minimum stable thickness of three atomic layers, and the growth via shear-shuffle mechanisms through gliding two-layer disconnections or pure-shuffle mechanisms through gliding four-layer disconnections. Such phase transformation offers an additional plastic deformation mode comparable to twinning.

  6. Rolling-induced Face Centered Cubic Titanium in Hexagonal Close Packed Titanium at Room Temperature

    PubMed Central

    Wu, H. C.; Kumar, A.; Wang, J.; Bi, X. F.; Tomé, C. N.; Zhang, Z.; Mao, S. X.

    2016-01-01

    Combining transmission electron microscopes and density functional theory calculations, we report the nucleation and growth mechanisms of room temperature rolling induced face-centered cubic titanium (fcc-Ti) in polycrystalline hexagonal close packed titanium (hcp-Ti). Fcc-Ti and hcp-Ti take the orientation relation: 〈0001〉hcp||〈001〉fcc and , different from the conventional one. The nucleation of fcc-Ti is accomplished via pure-shuffle mechanism with a minimum stable thickness of three atomic layers, and the growth via shear-shuffle mechanisms through gliding two-layer disconnections or pure-shuffle mechanisms through gliding four-layer disconnections. Such phase transformation offers an additional plastic deformation mode comparable to twinning. PMID:27067515

  7. IR Spot Weld Inspect

    2014-01-01

    In automotive industry, destructive inspection of spot welds is still the mandatory quality assurance method due to the lack of efficient non-destructive evaluation (NDE) tools. However, it is costly and time-consuming. Recently at ORNL, a new NDE prototype system for spot weld inspection using infrared (IR) thermography has been developed to address this problem. This software contains all the key functions that ensure the NDE system to work properly: system input/output control, image acquisition, datamore » analysis, weld quality database generation and weld quality prediction, etc.« less

  8. IR Spot Weld Inspect

    SciTech Connect

    Chen, Jian; Feng, Zhili

    2014-01-01

    In automotive industry, destructive inspection of spot welds is still the mandatory quality assurance method due to the lack of efficient non-destructive evaluation (NDE) tools. However, it is costly and time-consuming. Recently at ORNL, a new NDE prototype system for spot weld inspection using infrared (IR) thermography has been developed to address this problem. This software contains all the key functions that ensure the NDE system to work properly: system input/output control, image acquisition, data analysis, weld quality database generation and weld quality prediction, etc.

  9. Physics of Fusion Welding

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.

    1986-01-01

    Applicabilities and limitations of three techniques analyzed. NASA technical memorandum discusses physics of electron-beam, gas/ tungsten-arc, and laser-beam welding. From comparison of capabilities and limitations of each technique with regard to various welding conditions and materials, possible to develop criteria for selecting best welding technique in specific application. All three techniques classified as fusion welding; small volume of workpiece melted by intense heat source. Heat source moved along seam, leaving in wake solid metal that joins seam edges together.

  10. Electric arc welding gun

    DOEpatents

    Luttrell, Edward; Turner, Paul W.

    1978-01-01

    This invention relates to improved apparatus for arc welding an interior joint formed by intersecting tubular members. As an example, the invention is well suited for applications where many similar small-diameter vertical lines are to be welded to a long horizontal header. The improved apparatus includes an arc welding gun having a specially designed welding head which is not only very compact but also produces welds that are essentially free from rolled-over solidified metal. The welding head consists of the upper end of the barrel and a reversely extending electrode holder, or tip, which defines an acute angle with the barrel. As used in the above-mentioned example, the gun is positioned to extend upwardly through the vertical member and the joint to be welded, with its welding head disposed within the horizontal header. Depending on the design of the welding head, the barrel then is either rotated or revolved about the axis of the vertical member to cause the electrode to track the joint.

  11. Sealing glasses for titanium and titanium alloys

    DOEpatents

    Brow, Richard K.; McCollister, Howard L.; Phifer, Carol C.; Day, Delbert E.

    1997-01-01

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B.sub.2 O.sub.3), barium oxide (BaO), lanthanum oxide (La.sub.2 O.sub.3), and at least one other oxide selected from the group consisting of aluminum oxide (Al.sub.2 O.sub.3), calcium oxide (CaO), lithium oxide (Li.sub.2 O), sodium oxide (Na.sub.2 O), silicon dioxide (SiO.sub.2), or titanium dioxide (TiO.sub.2). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900.degree. C., and generally about 700.degree.-800.degree. C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps).

  12. Sealing glasses for titanium and titanium alloys

    DOEpatents

    Brow, R.K.; McCollister, H.L.; Phifer, C.C.; Day, D.E.

    1997-07-15

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B{sub 2}O{sub 3}), barium oxide (BaO), lanthanum oxide (La{sub 2}O{sub 3}), and at least one other oxide selected from the group consisting of aluminum oxide (Al{sub 2}O{sub 3}), calcium oxide (CaO), lithium oxide (Li{sub 2}O), sodium oxide (Na{sub 2}O), silicon dioxide (SiO{sub 2}), or titanium dioxide (TiO{sub 2}). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900 C, and generally about 700--800 C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps). 1 fig.

  13. Sprayable titanium composition

    DOEpatents

    Tracy, Chester E.; Kern, Werner; Vibronek, Robert D.

    1980-01-01

    The addition of 2-ethyl-1-hexanol to an organometallic titanium compound dissolved in a diluent and optionally containing a lower aliphatic alcohol spreading modifier, produces a solution that can be sprayed onto a substrate and cured to form an antireflection titanium oxide coating having a refractive index of from about 2.0 to 2.2.

  14. Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation.

    EPA Science Inventory

    Titanium dioxide in the anatase crystalline form was used as a photocatalyst to generate hydroxyl radicals in a flowthrough water reactor. Experiments were performed on pure cultures of Escherichia coli in dechlorinated tap water and a surface water sample to evaluate the disinfe...

  15. Surface Modifications and Their Effects on Titanium Dental Implants

    PubMed Central

    Jemat, A.; Ghazali, M. J.; Razali, M.; Otsuka, Y.

    2015-01-01

    This review covers several basic methodologies of surface treatment and their effects on titanium (Ti) implants. The importance of each treatment and its effects will be discussed in detail in order to compare their effectiveness in promoting osseointegration. Published literature for the last 18 years was selected with the use of keywords like titanium dental implant, surface roughness, coating, and osseointegration. Significant surface roughness played an important role in providing effective surface for bone implant contact, cell proliferation, and removal torque, despite having good mechanical properties. Overall, published studies indicated that an acid etched surface-modified and a coating application on commercial pure titanium implant was most preferable in producing the good surface roughness. Thus, a combination of a good surface roughness and mechanical properties of titanium could lead to successful dental implants. PMID:26436097

  16. Surface Modifications and Their Effects on Titanium Dental Implants.

    PubMed

    Jemat, A; Ghazali, M J; Razali, M; Otsuka, Y

    2015-01-01

    This review covers several basic methodologies of surface treatment and their effects on titanium (Ti) implants. The importance of each treatment and its effects will be discussed in detail in order to compare their effectiveness in promoting osseointegration. Published literature for the last 18 years was selected with the use of keywords like titanium dental implant, surface roughness, coating, and osseointegration. Significant surface roughness played an important role in providing effective surface for bone implant contact, cell proliferation, and removal torque, despite having good mechanical properties. Overall, published studies indicated that an acid etched surface-modified and a coating application on commercial pure titanium implant was most preferable in producing the good surface roughness. Thus, a combination of a good surface roughness and mechanical properties of titanium could lead to successful dental implants.

  17. Discoloration of titanium alloy in acidic saline solutions with peroxide.

    PubMed

    Takemoto, Shinji; Hattori, Masayuki; Yoshinari, Masao; Kawada, Eiji; Oda, Yutaka

    2013-01-01

    The objective of this study was to compare corrosion behavior in several titanium alloys with immersion in acidulated saline solutions containing hydrogen peroxide. Seven types of titanium alloy were immersed in saline solutions with varying levels of pH and hydrogen peroxide content, and resulting differences in color and release of metallic elements determined in each alloy. Some alloys were characterized using Auger electron spectroscopy. Ti-55Ni alloy showed a high level of dissolution and difference in color. With immersion in solution containing hydrogen peroxide at pH 4, the other alloys showed a marked difference in color but a low level of dissolution. The formation of a thick oxide film was observed in commercially pure titanium showing discoloration. The results suggest that discoloration in titanium alloys immersed in hydrogen peroxide-containing acidulated solutions is caused by an increase in the thickness of this oxide film, whereas discoloration of Ti-55Ni is caused by corrosion. PMID:23370866

  18. Microstructure and corrosion behavior of binary titanium alloys with beta-stabilizing elements.

    PubMed

    Takada, Y; Nakajima, H; Okuno, O; Okabe, T

    2001-03-01

    Binary titanium alloys with the beta-stabilizing elements of Co, Cr, Cu, Fe, Mn and Pd (up to 30%) and Ag (up to 45%) were examined through metallographic observation and X-ray diffractometry to determine whether beta phases that are advantageous for dental use could be retained. Corrosion behavior was also investigated electrochemically and discussed thermodynamically. Some cast alloys with Co, Cr, Fe, Mn, and Pd retained the beta phase, whereas those with Ag and Cu had no beta phase. In some alloys, an intermetallic compound formed, based on information from the phase diagram. The corrosion resistance deteriorated in the TiAg alloys because Ti2Ag and/or TiAg intermetallic compounds preferentially dissolved in 0.9% NaCl solution. On the other hand, the remaining titanium alloys became easily passive and revealed good corrosion resistance similar to pure titanium since their matrices seemed to thermodynamically form titanium oxides as did pure titanium.

  19. Electrochemical Deoxidation of Titanium and Its Alloy Using Molten Magnesium Chloride

    NASA Astrophysics Data System (ADS)

    Taninouchi, Yu-ki; Hamanaka, Yuki; Okabe, Toru H.

    2016-08-01

    Oxygen was directly removed from pure titanium and a Ti-6Al-4V alloy by electrolysis in molten MgCl2 at 1173 K (900 °C), where the metal being refined was the cathode and a graphite rod was used as the anode. By applying a voltage of approximately 3 V between the electrodes, commercially pure titanium, containing 1200 mass ppm oxygen, and the Ti-6Al-4V alloy, containing 1400 mass ppm oxygen, were deoxidized to 500 mass ppm or less. Under certain conditions, extra-low-oxygen titanium (as low as 80 mass ppm oxygen) was obtained using this electrochemical technique. The results obtained in this study indicate that the electrochemical deoxidation of titanium in molten MgCl2 is feasible and applicable not only to the refinement of primary metals, but also for upgrading machined titanium products and recycling metal scraps.

  20. Purely Cortical Anaplastic Ependymoma

    PubMed Central

    Romero, Flávio Ramalho; Zanini, Marco Antônio; Ducati, Luis Gustavo; Vital, Roberto Bezerra; de Lima Neto, Newton Moreira; Gabarra, Roberto Colichio

    2012-01-01

    Ependymomas are glial tumors derived from ependymal cells lining the ventricles and the central canal of the spinal cord. It may occur outside the ventricular structures, representing the extraventicular form, or without any relationship of ventricular system, called ectopic ependymona. Less than fifteen cases of ectopic ependymomas were reported and less than five were anaplastic. We report a rare case of pure cortical ectopic anaplastic ependymoma. PMID:23119204

  1. Purely cortical anaplastic ependymoma.

    PubMed

    Romero, Flávio Ramalho; Zanini, Marco Antônio; Ducati, Luis Gustavo; Vital, Roberto Bezerra; de Lima Neto, Newton Moreira; Gabarra, Roberto Colichio

    2012-01-01

    Ependymomas are glial tumors derived from ependymal cells lining the ventricles and the central canal of the spinal cord. It may occur outside the ventricular structures, representing the extraventicular form, or without any relationship of ventricular system, called ectopic ependymona. Less than fifteen cases of ectopic ependymomas were reported and less than five were anaplastic. We report a rare case of pure cortical ectopic anaplastic ependymoma.

  2. The Growth Behavior of Titanium Boride Layers in α and β Phase Fields of Titanium

    NASA Astrophysics Data System (ADS)

    Lv, Xiaojun; Hu, Lingyun; Shuang, Yajing; Liu, Jianhua; Lai, Yanqing; Jiang, Liangxing; Li, Jie

    2016-07-01

    In this study, the commercially pure titanium was successfully electrochemical borided in a borax-based electrolyte. The process was carried out at a constant cathodic current density of 300 mA cm-2 and at temperatures of 1123 K and 1223 K (850 °C and 950 °C) for 0.5, 1, 2, 3, and 5 hours. The growth behavior of titanium boride layers in the α phase field of titanium was compared with that in the β phase field. After boriding, the presence of both the TiB2 top layer and TiB whisker sub-layer was confirmed by the X-ray diffraction (XRD) and scanning electron microscope. The relationship between the thickness of boride layers and boriding time was found to have a parabolic character in both α and β phase fields of titanium. The TiB whiskers showed ultra-fast growth rate in the β phase field. Its growth rate constant was found to be as high as 3.2002 × 10-13 m2 s-1. Besides, the chemical resistance of the TiB2 layer on the surface of titanium substrate was characterized by immersion tests in molten aluminum.

  3. Pure Lovelock Kasner metrics

    NASA Astrophysics Data System (ADS)

    Camanho, Xián O.; Dadhich, Naresh; Molina, Alfred

    2015-09-01

    We study pure Lovelock vacuum and perfect fluid equations for Kasner-type metrics. These equations correspond to a single Nth order Lovelock term in the action in d=2N+1,2N+2 dimensions, and they capture the relevant gravitational dynamics when aproaching the big-bang singularity within the Lovelock family of theories. Pure Lovelock gravity also bears out the general feature that vacuum in the critical odd dimension, d=2N+1, is kinematic, i.e. we may define an analogue Lovelock-Riemann tensor that vanishes in vacuum for d=2N+1, yet the Riemann curvature is non-zero. We completely classify isotropic and vacuum Kasner metrics for this class of theories in several isotropy types. The different families can be characterized by means of certain higher order 4th rank tensors. We also analyze in detail the space of vacuum solutions for five- and six dimensional pure Gauss-Bonnet theory. It possesses an interesting and illuminating geometric structure and symmetries that carry over to the general case. We also comment on a closely related family of exponential solutions and on the possibility of solutions with complex Kasner exponents. We show that the latter imply the existence of closed timelike curves in the geometry.

  4. Biocorrosion study of titanium-cobalt alloys.

    PubMed

    Chern Lin, J H; Lo, S J; Ju, C P

    1995-05-01

    The present work provides experimental results of corrosion behaviour in Hank's physiological solution and some other properties of in-house fabricated titanium-cobalt alloys with cobalt ranging from 25-30% in weight. X-ray diffraction (XRD) shows that, in water-quenched (WQ) alloys, beta-titanium is largely retained, whereas in furnace-cooled (FC) alloys, little beta-titanium is found. Hardness of the alloys increases with increasing cobalt content, ranging from 455 VHN for WQ Ti-25 wt% Co to 525 VHN for WQ Ti-30 wt% Co. Differential thermal analysis (DTA) indicates that melting temperatures of the alloys are lower than that of pure titanium by about 600 degrees C. Potentiodynamic polarization results show that all measured break-down potentials in Hank's solution at 37 degrees C are higher than 800 mV. The breakdown potential for the FC Ti-25 Wt% Co alloy is even as high as nearly 1200 mV.

  5. Immediate rehabilitation of the edentulous mandible using Ankylos SynCone telescopic copings and intraoral welding: a pilot study.

    PubMed

    Degidi, Marco; Nardi, Diego; Sighinolfi, Gianluca; Piattelli, Adriano

    2012-12-01

    The aim of this prospective study was to assess the suitability of immediate rehabilitation of the edentulous mandible using SynCone copings and the intraoral welding technique. Patients with an edentulous mandible were fitted with a removable restoration supported by an intraorally welded titanium bar. Copings were connected to their respective SynCone 5-degree abutments and then welded to a titanium bar using an intraoral welding unit. This framework was used to support the definitive restoration, which was delivered on the day of implant placement. Restoration success and survival, implant success, and biologic or technical complications were assessed immediately after surgery and at 6 and 12 months. Twenty-two patients were consecutively treated with 88 immediately loaded implants. No acrylic resin fractures or radiographically detectable alterations of the welded frameworks were present in the 22 restorations delivered. One implant (1.1%) failed 1 month after surgery; all remaining implants (98.9%) were clinically stable at the 12-month follow-up. Within its limitations, this pilot study demonstrated that it is possible to successfully rehabilitate the edentulous mandible on the day of surgery with a definitive restoration supported by an intraorally welded titanium framework and SynCone 5-degree abutments.

  6. Fine welding with lasers.

    PubMed

    MacLellan, D

    2008-01-01

    The need for micro joining metallic alloys for surgical instruments, implants and advanced medical devices is driving a rapid increase in the implementation of laser welding technology in research, development and volume production. This article discusses the advantages of this welding method and the types of lasers used in the process.

  7. Welding blades to rotors

    NASA Technical Reports Server (NTRS)

    Hoklo, K. H.; Moore, T. J. (Inventor)

    1973-01-01

    A process is described to form T-joints between dissimilar thickness parts by magnetic force upset welding. This type of resistance welding is used to join compressor and turbine parts which thereby reduces the weight and cost of jet engines.

  8. Advanced Welding Torch

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In order to more easily join the huge sections of the Space Shuttle external tank, Marshall Space Flight Center initiated development of the existing concept of Variable Polarity Plasma Arc (VPPA) welding. VPPA welding employs a variable current waveform that allows the system to operate for preset time increments in either of two polarity modes for effective joining of light alloys.

  9. Removing Welding Fumes

    NASA Technical Reports Server (NTRS)

    Moore, Lloyd J.; Hall, Vandel L.

    1987-01-01

    Portable exhaust duct for machining and welding shops removes oil mist, dust, smoke, and fumes. Duct used with shop exhaust system, inlets of which placed at various convenient locations in shop floor. Flanged connector on underside of wheeled base links flexible tube to exhaust system under floor. Made especially for welding in room with low ceiling.

  10. Laser Welding in Space

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Kaukler, William F.

    1989-01-01

    Solidification type welding process experiments in conditions of microgravity were performed. The role of convection in such phenomena was examined and convective effects in the small volumes obtained in the laser weld zone were observed. Heat transfer within the weld was affected by acceleration level as indicated by the resulting microstructure changes in low gravity. All experiments were performed such that both high and low gravity welds occurred along the same weld beam, allowing the effects of gravity alone to be examined. Results indicate that laser welding in a space environment is feasible and can be safely performed IVA or EVA. Development of the hardware to perform the experiment in a Hitchhiker-g platform is recomended as the next step. This experiment provides NASA with a capable technology for welding needs in space. The resources required to perform this experiment aboard a Shuttle Hitchhiker-pallet are assessed. Over the four year period 1991 to 1994, it is recommended that the task will require 13.6 manyears and $914,900. In addition to demonstrating the technology and ferreting out the problems encountered, it is suggested that NASA will also have a useful laser materials processing facility for working with both the scientific and the engineering aspects of materials processing in space. Several concepts are also included for long-term optimization of available solar power through solar pumping solid state lasers directly for welding power.

  11. NASA welding assessment program

    NASA Technical Reports Server (NTRS)

    Patterson, R. E.

    1985-01-01

    A program was conducted to demonstrate the cycle life capability of welded solar cell modules relative to a soldered solar cell module in a simulated low earth orbit thermal environment. A total of five 18-cell welded (parallel gap resistance welding) modules, three 18-cell soldered modules, and eighteen single cell samples were fabricated using 2 x 4 cm silicon solar cells from ASEC, fused silica cover glass from OCLI, silver plated Invar interconnectors, DC 93-500 adhesive, and Kapton-Kevlar-Kapton flexible substrate material. Zero degree pull strength ranged from 2.4 to 5.7 lbs for front welded contacts (40 samples), and 3.5 to 6.2 lbs for back welded contacts (40 samples). Solar cell cross sections show solid state welding on both front and rear contacts. The 18-cell welded modules have a specific power of 124 W/kg and an area power density of 142 W/sq m (both at 28 C). Three welded and one soldered module were thermal cycle tested in a thermal vacuum chamber simulating a low earth orbit thermal environment.

  12. Vocational Preparation Curriculum: Welding.

    ERIC Educational Resources Information Center

    Usoro, Hogan

    Designed to be a workable guide for instructors serving the occupational needs of various categories of disadvantaged and handicapped students, this welding curriculum contains fourteen units of self-paced and self-contained instructional materials. The instructional units cover the following topics: job opportunities in welding, safety rules in…

  13. DC arc weld starter

    DOEpatents

    Campiotti, Richard H.; Hopwood, James E.

    1990-01-01

    A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

  14. Welding: Scope and Sequence.

    ERIC Educational Resources Information Center

    Nashville - Davidson County Metropolitan Public Schools, TN.

    Intended for use by all welding instructors in the Metropolitan Nashville Public Schools, this guide provides a sequential listing of course content and scope. A course description provides a brief overview of the content of the courses offered in the welding program. General course objectives are then listed. Outlines of the course content are…

  15. Alternating-Polarity Arc Welding

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.

    1987-01-01

    Brief reversing polarity of welding current greatly improves quality of welds. NASA technical memorandum recounts progress in art of variable-polarity plasma-arc (VPPA) welding, with emphasis on welding of aluminum-alloy tanks. VPPA welders offer important advantages over conventional single-polarity gas/tungsten arc welders.

  16. Argon Welding Inside A Workpiece

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E.

    1988-01-01

    Canopies convert large hollow workpiece into inert-gas welding chamber. Large manifold serves welding chamber for attachment of liner parts in argon atmosphere. Every crevice, opening and passageway provided with argon-rich environment. Weld defects and oxidation dramatically reduced; also welding time reduced.

  17. Arc Reflector For Welding Ducts

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.

    1990-01-01

    Arc-light reflector for through-the-torch welding vision system designed expressly for use in welding ducts of small diameter. Cylindrical reflector positioned to reflect light diffusely from welding arc onto nearby surface of workpiece for most advantageous viewing along axis of welding torch.

  18. Multihole Arc-Welding Orifice

    NASA Technical Reports Server (NTRS)

    Swaim, Benji D.

    1989-01-01

    Modified orifice for variable-polarity plasma-arc welding directs welding plume so it creates clean, even welds on both Inconel(R) and aluminum alloys. Includes eight holes to relieve back pressure in plasma. Quality of welds on ferrous and nonferrous alloys improved as result.

  19. Vacuum Gas Tungsten Arc Welding

    NASA Technical Reports Server (NTRS)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.

    1997-01-01

    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  20. Ultrasonic seam welding. Final report

    SciTech Connect

    Darner, G.S.

    1980-06-01

    Ultrasonic seam welding has been evaluated for making continuous seam welds on aluminum and copper-foil conductors. A seam welding system has been designed and fabricated, weldable material combinations have been identified, and the process parameters for welding materials applicable to flat cable production have been established.

  1. Effect of welding position on porosity formation in aluminum alloy welds

    NASA Technical Reports Server (NTRS)

    Haryung, J.; Wroth, R. S.

    1967-01-01

    Program investigates the effects of varied welding positions on weld qualities. Progressive changes in bead geometry occur as the weld plane angle is varied from upslope to downslope. The gravitational effect on the weld puddle varies greatly with welding position.

  2. Method for welding beryllium

    DOEpatents

    Dixon, R.D.; Smith, F.M.; O`Leary, R.F.

    1997-04-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. 9 figs.

  3. Welding Sensor System

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A system originally designed for welding components of the huge Space Shuttle external tank led to a laser-based automated welder for industrial use. A laser sensor tracks the seam where two pieces of metal are to be joined, measures gaps, misfits and automatically corrects welding of torch distance and height. A small industrial computer translates the sensor's information to the weld head and records and displays weld data for control purposes and analysis. The system was modified for commercial use by Marshall Space Flight Center (MSFC), Martin Marietta and Applied Research, Inc., which produces the commercial system. Applications are in industrial welding processes that require repetitive operations and a high degree of reliability.

  4. Method for welding beryllium

    SciTech Connect

    Dixon, R.D.; Smith, F.M.; O`Leary, R.F.

    1995-12-31

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. Beryllium parts made using this method can be used as structural components in aircraft, satellites and space applications.

  5. Laser-Modified Black Titanium Oxide Nanospheres and Their Photocatalytic Activities under Visible Light.

    PubMed

    Chen, Xing; Zhao, Dongxu; Liu, Kewei; Wang, Chunrui; Liu, Lei; Li, Binghui; Zhang, Zhenzhong; Shen, Dezhen

    2015-07-29

    A facile pulse laser ablation approach for preparing black titanium oxide nanospheres, which could be used as photocatalysts under visible light, is proposed. The black titanium oxide nanospheres are prepared by pulsed-laser irradiation of pure titanium oxide in suspended aqueous solution. The crystalline phases, morphology, and optical properties of the obtained nanospheres are characterized by means of X-ray diffraction (XRD), field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS), and UV-vis-NIR diffuse reflectance spectroscopy. It is shown that high-energy laser ablation of titanium oxide suspended solution benefited the formation of Ti(3+) species and surface disorder on the surface of the titanium oxide nanospheres. The laser-modified black titanium oxide nanospheres could absorb the full spectrum of visible light, thus exhibiting good photocatalytic performance under visible light.

  6. Grinding Parts For Automatic Welding

    NASA Technical Reports Server (NTRS)

    Burley, Richard K.; Hoult, William S.

    1989-01-01

    Rollers guide grinding tool along prospective welding path. Skatelike fixture holds rotary grinder or file for machining large-diameter rings or ring segments in preparation for welding. Operator grasps handles to push rolling fixture along part. Rollers maintain precise dimensional relationship so grinding wheel cuts precise depth. Fixture-mounted grinder machines surface to quality sufficient for automatic welding; manual welding with attendant variations and distortion not necessary. Developed to enable automatic welding of parts, manual welding of which resulted in weld bead permeated with microscopic fissures.

  7. Biocorrosion study of titanium-nickel alloys.

    PubMed

    Chern Lin, J H; Lo, S J; Ju, C P

    1996-02-01

    The present study provides results of the corrosion behaviour in Hank's physiological solution and some other properties of three Ti-Ni alloys with 18, 25 and 28.4 wt% Ni, respectively. Results indicate that alpha-titanium and Ti2Ni were the two major phases in all three Ti-Ni alloys. The relative amount of the Ti2Ni phase increased with additional Ni content. Hardness of the Ti-Ni alloys also increased with added nickel content, ranging from 310 to 390 VHN, similar to the hardness of enamel. Melting temperatures of the Ti-Ni alloys were all lower than that of pure titanium by least 600 degrees C. The three Ti-Ni alloys behaved almost identically when potentiodynamically polarized in Hank's solution at 37 degrees C. The critical anodic current densities of the alloys were nearly 30 microA/cm2 and the breakdown potentials were all above 1100 mV (SCE).

  8. 7 CFR 917.8 - Pure grower or pure producer.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE FRESH PEARS AND PEACHES GROWN IN CALIFORNIA Order Regulating Handling Definitions § 917.8 Pure grower or pure producer. (a) For peaches,...

  9. 7 CFR 917.8 - Pure grower or pure producer.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE FRESH PEARS AND PEACHES GROWN IN CALIFORNIA Order Regulating Handling Definitions § 917.8 Pure grower or pure producer. (a) For peaches,...

  10. Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds

    NASA Astrophysics Data System (ADS)

    Bhatt, R. B.; Kamat, H. S.; Ghosal, S. K.; de, P. K.

    1999-10-01

    The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 °C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improved pitting corrosion resistance of the weldments of this steel. However, the resistance to pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constitutent phases, which are responsible for improved resistance to pitting corrosion.

  11. Microwave Heating, Isothermal Sintering, and Mechanical Properties of Powder Metallurgy Titanium and Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Luo, S. D.; Guan, C. L.; Yang, Y. F.; Schaffer, G. B.; Qian, M.

    2013-04-01

    This article presents a detailed assessment of microwave (MW) heating, isothermal sintering, and the resulting tensile properties of commercially pure Ti (CP-Ti), Ti-6Al-4V, and Ti-10V-2Fe-3Al (wt pct), by comparison with those fabricated by conventional vacuum sintering. The potential of MW sintering for titanium fabrication is evaluated accordingly. Pure MW radiation is capable of heating titanium powder to ≥1573 K (1300 °C), but the heating response is erratic and difficult to reproduce. In contrast, the use of SiC MW susceptors ensures rapid, consistent, and controllable MW heating of titanium powder. MW sintering can consolidate CP-Ti and Ti alloys compacted from -100 mesh hydride-dehydride (HDH) Ti powder to ~95.0 pct theoretical density (TD) at 1573 K (1300 °C), but no accelerated isothermal sintering has been observed over conventional practice. Significant interstitial contamination occurred from the Al2O3-SiC insulation-susceptor package, despite the high vacuum used (≤4.0 × 10-3 Pa). This leads to erratic mechanical properties including poor tensile ductility. The use of Ti sponge as impurity (O, N, C, and Si) absorbers can effectively eliminate this problem and ensure good-to-excellent tensile properties for MW-sintered CP-Ti, Ti-10V-2Fe-3Al, and Ti-6Al-4V. The mechanisms behind various observations are discussed. The prime benefit of MW sintering of Ti powder is rapid heating. MW sintering of Ti powder is suitable for the fabrication of small titanium parts or titanium preforms for subsequent thermomechanical processing.

  12. Weld analysis and control system

    NASA Technical Reports Server (NTRS)

    Kennedy, Larry Z. (Inventor); Rodgers, Michael H. (Inventor); Powell, Bradley W. (Inventor); Burroughs, Ivan A. (Inventor); Goode, K. Wayne (Inventor)

    1994-01-01

    The invention is a Weld Analysis and Control System developed for active weld system control through real time weld data acquisition. Closed-loop control is based on analysis of weld system parameters and weld geometry. The system is adapted for use with automated welding apparatus having a weld controller which is capable of active electronic control of all aspects of a welding operation. Enhanced graphics and data displays are provided for post-weld analysis. The system provides parameter acquisition, including seam location which is acquired for active torch cross-seam positioning. Torch stand-off is also monitored for control. Weld bead and parent surface geometrical parameters are acquired as an indication of weld quality. These parameters include mismatch, peaking, undercut, underfill, crown height, weld width, puddle diameter, and other measurable information about the weld puddle regions, such as puddle symmetry, etc. These parameters provide a basis for active control as well as post-weld quality analysis and verification. Weld system parameters, such as voltage, current and wire feed rate, are also monitored and archived for correlation with quality parameters.

  13. [Study on biocompatibility of titanium alloys].

    PubMed

    Kodama, T

    1989-06-01

    The biocompatibility of two different titanium alloys, Ti-6Al-4V ELI and Ti-5Al-2, 5Fe, and pure titanium were evaluated. The results were as follows: 1) Titanium alloys were implanted into the dorsal subcutaneous tissues of the Hartley guinea-pig for 12 weeks, immersed in calf serum or in Ringer's solution for 8 weeks. The surface changes of the titanium alloys were observed by SEM and the chemical composition was analyzed by XMA. No evident surface changes were found. 2) Three hundred mg, 200 mg and 100 mg of the powders of the tested materials were immersed in 2ml of Eagle's MEM, incubated for 1-7 days, 8-21 days and 22-70 days at 37 C degrees. The amount of metallic elements dissolved in the solutions was measured by ICP and AAS. The detected corrosion rates of V and Al contained in the solution, in which Ti-6Al-4V ELI 100 mg was immersed for 1-7 days, were 194.3 +/- 17.6 and 73.0 +/- 28, 1 pg/mg alloy/day, respectively. V was released more than Al. The amount of Ti was below the detectable limit. The solution Ti-5Al-2.5 Fe 100 mg immersed for 1-7 days contained 31.9 +/- 34.4 pg/mg alloy/day Fe and 25.7 +/- 6.3 pg/mg alloy/day Al. Only in the solution 300 mg immersed for 1-7 days was Ti detected at 1.4 pg/mg alloy/day. 3) By the bacterial mutation assay of Salmonella typhimurium TA 98, Salmonella typhimurium TA 100 and Escherichia coli WP2 uvrA, the solutions, in which the tested materials were immersed, were not found to be mutagenic. 4) By the UDS assay, the grain counts on autoradiography with the solutions, in which the tested materials were immersed, were not greater than the negative control. The results suggest an excellent corrosion resistance of the titanium alloys. Mutagenicity was negative by these mutation assays, indicating that the tested alloys and pure titanium are safe for humans and animals.

  14. Defects in ion-implanted hcp-titanium: A first-principles study of electronic structures

    NASA Astrophysics Data System (ADS)

    Raji, Abdulrafiu T.; Mazzarello, Riccardo; Scandolo, Sandro; Nsengiyumva, Schadrack; Härting, Margit; Britton, David T.

    2011-12-01

    The electronic structures of hexagonal closed-packed (h.c.p) titanium containing a vacancy and krypton impurity atoms at various insertion sites are calculated by first-principles methods in the framework of the density-functional theory (DFT). The density of states (DOS) for titanium containing a vacancy defect shows resonance-like features. Also, the bulk electron density decreases from ˜0.15/Å 3 to ˜0.05/Å 3 at the vacancy centre. Electronic structure calculations have been performed to investigate what underlies the krypton site preference in titanium. The DOS of the nearest-neighbour (NN) titanium atoms to the octahedral krypton appears to be less distorted (relative to pure titanium) when compared to the NN titanium atoms to the tetrahedral krypton. The electronic density deformation maps show that polarization of the titanium atoms is stronger when the krypton atom is located at the tetrahedral site. Since krypton is a closed-shell atom, thus precluding any bonding with the titanium atoms, we may conclude that the polarization of the electrons in the vicinity of the inserted krypton atoms and the distortion of the DOS of the NN titanium atoms to the krypton serve to indicate which defect site is preferred when a krypton atom is inserted into titanium. Based on these considerations, we conclude that the substitutional site is the most favourable one, and the octahedral is the preferred interstitial site, in agreement with recent DFT calculations of the energetics of krypton impurity sites.

  15. Interfacial microstructure and properties of copper clad steel produced using friction stir welding versus gas metal arc welding

    SciTech Connect

    Shen, Z.; Chen, Y.; Haghshenas, M.; Nguyen, T.; Galloway, J.; Gerlich, A.P.

    2015-06-15

    A preliminary study compares the feasibility and microstructures of pure copper claddings produced on a pressure vessel A516 Gr. 70 steel plate, using friction stir welding versus gas metal arc welding. A combination of optical and scanning electron microscopy is used to characterize the grain structures in both the copper cladding and heat affected zone in the steel near the fusion line. The friction stir welding technique produces copper cladding with a grain size of around 25 μm, and no evidence of liquid copper penetration into the steel. The gas metal arc welding of copper cladding exhibits grain sizes over 1 mm, and with surface microcracks as well as penetration of liquid copper up to 50 μm into the steel substrate. Transmission electron microscopy reveals that metallurgical bonding is produced in both processes. Increased diffusion of Mn and Si into the copper cladding occurs when using gas metal arc welding, although some nano-pores were detected in the FSW joint interface. - Highlights: • Cladding of steel with pure copper is possible using either FSW or GMAW. • The FSW yielded a finer grain structure in the copper, with no evidence of cracking. • The FSW joint contains some evidence of nano-pores at the interface of the steel/copper. • Copper cladding by GMAW contained surface cracks attributed to high thermal stresses. • The steel adjacent to the fusion line maintained a hardness value below 248 HV.

  16. Resistance seam welding

    SciTech Connect

    Hollar, D.L. Jr.

    1992-03-01

    Considerable insight and understanding were achieved in regard to the influence of all of the weld parameters on the seam weld processes at Allied-Signal Inc., Kansas City Division (KCD). Several mechanical improvements were made in the seam weld equipment. The electrode design was modified to include glass bead blasting of the periphery. This greatly improved the electrode performance consistency. Also, the new electrode design defined a refurbishing process that allowed the electrodes to be used up to three times. Originally, the electrodes were discarded after one use. A substantial cost savings resulted form this improvement. A O to 1500 ampere current transformer was inserted in the weld circuit to monitor weld current during the weld as an additional process control element. The transformer is also used to calibrate the weld power supply. A monocular microscope with a cross hair reticle was added to allow more precise electrode alignment. Other improvements included increased brush spring force and the addition of a 5 to 1 gear reduction on the electrode drive motor. 5 refs.

  17. Model of Layered Weld Formation Under Narrow Gap Pulse Welding

    NASA Astrophysics Data System (ADS)

    Krampit, A. G.

    2016-04-01

    The model parameters of narrow gap pulse welding can be divided into input, internal and output ones. The breadth of gap, that is, clearance breadth between upright edges is one of key parameters securing high quality of a weld joint. The paper presents theoretical outcomes for the model of layered weld formation under narrow gap pulse welding. Based on these studies is developed model of processes, which occur in the weld pool under pulse grove welding. It comprises the scheme of liquid metal motion in the weld pool, scheme of fusion with the side edge and in the bottom part, and the scheme of welding current impulse effect on the structure of a weld joint.

  18. Electroplating on titanium alloy

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1971-01-01

    Activation process forms adherent electrodeposits of copper, nickel, and chromium on titanium alloy. Good adhesion of electroplated deposits is obtained by using acetic-hydrofluoric acid anodic activation process.

  19. Imaging The Leading Edge Of A Weld

    NASA Technical Reports Server (NTRS)

    Mcgee, William F.; Rybicki, Daniel J.

    1994-01-01

    Proposed optical system integrated into plasma arc welding torch provides image of leading edge of weld pool and welding-arc-initiation point. Welding torch aligned better with joint. System includes coherent bundle of optical fibers and transparent cup.

  20. Viscosity of pure hydrocarbons

    SciTech Connect

    Knapstad, B.; Skjolsvik, P.A.; Oye, H.A.

    1989-01-01

    Accurate viscosity measurements have been performed on eight pure hydrocarbons at atmospheric pressure in the temperature range 20-150/sup 0/C, or up to approximately 20/sup 0/C below the boiling point of the hydrocarbon, by use of an absolute oscillating viscometer. The hydrocarbons are cyclohexane and benzene and the n-alkanes of hexane, heptane, octane, decane, dodecane, and tetradecane. The viscosities are described with a modified Arrhenius equation, and the deviation in fit is 0.12% or less. The accuracy is estimated to be 0.33-0.56%. The lowest viscosities are assumed to have the highest deviation. Literature data reported by Dymond and Young normally fit our viscosities within our estimated accuracy. Other literature viscosities tend to be higher than our results, especially for the n-alkanes.

  1. Titanium Allergy: A Literature Review

    PubMed Central

    Goutam, Manish; Giriyapura, Chandu; Mishra, Sunil Kumar; Gupta, Siddharth

    2014-01-01

    Titanium has gained immense popularity and has successfully established itself as the material of choice for dental implants. In both medical and dental fields, titanium and its alloys have demonstrated success as biomedical devices. Owing to its high resistance to corrosion in a physiological environment and the excellent biocompatibility that gives it a passive, stable oxide film, titanium is considered the material of choice for intraosseous use. There are certain studies which show titanium as an allergen but the resources to diagnose titanium sensivity are very limited. Attention is needed towards the development of new and precise method for early diagnosis of titanium allergy and also to find out the alternative biomaterial which can be used in place of titanium. A review of available articles from the Medline and PubMed database was done to find literature available regarding titanium allergy, its diagnosis and new alternative material for titanium. PMID:25484409

  2. Robotics for welding research

    SciTech Connect

    Braun, G.; Jones, J.

    1984-09-01

    The welding metallurgy research and education program at Colorado School of Mines (CSM) is helping industries make the transition toward automation by training students in robotics. Industry's interest is primarily in pick and place operations, although robotics can increase efficiency in areas other than production. Training students to develop fully automated robotic welding systems will usher in new curriculum requirements in the area of computers and microprocessors. The Puma 560 robot is CSM's newest acquisition for welding research 5 references, 2 figures, 1 table.

  3. APPARATUS FOR ARC WELDING

    DOEpatents

    Lingafelter, J.W.

    1960-04-01

    An apparatus is described in which a welding arc created between an annular electrode and a workpiece moves under the influence of an electromagnetic field about the electrode in a closed or annular path. This mode of welding is specially suited to the enclosing of nuclear-fuel slugs in a protective casing. For example, a uranium slug is placed in an aluminum can, and an aluminum closure is welded to the open end of the can along a closed or annular path conforming to the periphery of the end closure.

  4. Thermal stir welding apparatus

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2011-01-01

    A welding method and apparatus are provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.

  5. Thermal stir welding process

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2012-01-01

    A welding method is provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.

  6. Measurement of workpiece temperature during welding for welding robot control

    NASA Astrophysics Data System (ADS)

    Illegrams, P. F. A.

    MIG/MAG welding robot seam tracking system based on a symetrically noncontact temperature measurement is presented. Using literature in formation on temperature distribution during welding, a model for the prediction of the behavior of a pyrometer twin is constructed. The temperature difference between the measuring points constitutes the signal for a position control of the twin holding welding torch. As temperature measurement is made impossible by radiation originating from the welding arc, this is done during intermittent welding in time intervals in which the welding arc is switched off.

  7. Laser weld jig. [Patent application

    DOEpatents

    Van Blarigan, P.; Haupt, D.L.

    1980-12-05

    A system is provided for welding a workpiece along a predetermined weld line that may be of irregular shape, which includes the step of forming a lip on the workpiece to extend parallel to the weld line, and moving the workpiece by engaging the lip between a pair of rotatable members. Rotation of one of the members at a constant speed, causes the workpiece to move so that all points on the weld line sequentially pass a fixed point in space at a constant speed, so that a laser welding beam can be directed at that fixed point to form a weld along the weld line. The workpiece can include a reusable jig forming the lip, and with the jig constructed to detachably hold parts to be welded at a position wherein the weld line of the parts extends parallel to the lip on the jig.

  8. Flow Dynamics in Arc Welding

    SciTech Connect

    Lowke, John J.; Tanaka, Manabu

    2008-02-21

    The state of the art for numerical computations has now advanced so that the capability is within sight of calculating weld shapes for any arc current, welding gas, welding material or configuration. Inherent in these calculations is 'flow dynamics' applied to plasma flow in the arc and liquid metal flow in the weld pool. Examples of predictions which are consistent with experiment, are discussed for (1) conventional tungsten inert gas welding, (2) the effect of a fraction of a percent of sulfur in steel, which can increase weld depth by more than a factor of two through changes in the surface tension, (3) the effect of a flux, which can produce increased weld depth due to arc constriction, (4) use of aluminium instead of steel, when the much larger thermal conductivity of aluminium greatly reduces the weld depth and (5) addition of a few percent of hydrogen to argon, which markedly increases weld depth.

  9. Flow Dynamics in Arc Welding

    NASA Astrophysics Data System (ADS)

    Lowke, John J.; Tanaka, Manabu

    2008-02-01

    The state of the art for numerical computations has now advanced so that the capability is within sight of calculating weld shapes for any arc current, welding gas, welding material or configuration. Inherent in these calculations is "flow dynamics" applied to plasma flow in the arc and liquid metal flow in the weld pool. Examples of predictions which are consistent with experiment, are discussed for (1) conventional tungsten inert gas welding (2) the effect of a fraction of a percent of sulfur in steel, which can increase weld depth by more than a factor of two through changes in the surface tension (3) the effect of a flux, which can produce increased weld depth due to arc constriction (4) use of aluminium instead of steel, when the much larger thermal conductivity of aluminium greatly reduces the weld depth and (5) addition of a few percent of hydrogen to argon, which markedly increases weld depth.

  10. Direct observations of welding-induced solid-state phase transformations

    SciTech Connect

    Elmer, J.W.; Wong, J.; Waide, P.A.

    1994-12-31

    A new diagnostic tool that uses time-resolved x-ray diffraction (TRXRD) for in-situ, spatially resolved, phase identification around a weld is presented for the purpose of mapping the location of phase fields during welding. In this investigation, TRXRD experiments were conducted at the Stanford Sychrotron Radiation Laboratory where a high-intensity tunable synchrotron x-ray `probe` was available. The high spatial resolution of the x-ray probe (1mm) allowed precise mapping of specific phase fields around the weld, while the high intensity of the beam (10{sup 11} photons/s) yielded high signal-to-noise ratio of the diffracted x-rays. These characteristics enabled the crystal structure to be characterized during a 1-s x-ray integration time, thus providing real-time data to be gathered about welding-induced phase transformations. Experiments were performed on unalloyed Grade 4 titanium (Ti, 0.28%Fe, 0.38%O), which has an allotropic phase transition that occurs at 922{degrees}C, where the low temperature hcp phase transforms to the high temperature bcc phase. Welds were made using a semi-automatic tungsten inert gas procedure to establish a quasisteady-state thermal profile on 4.5 in. diameter titanium bar, which was rotated at a speed of 0.5 rpm beneath a 3.5 kW arc. Characteristic hcp, bcc, and liquid diffraction peaks were measured along x-ray probe scans traveling from the base metal through the heat-affected zone and into the weld pool, respectively. The results of this study clearly demonstrate the feasibility of using TRXRD for in-situ investigations of welding-induced phase transformations, thus allowing verification of welding models, the creation of transformation diagrams during rapid thermal cycling of materials, and the ability for real-time investigations of the nucleation and growth behavior of solid-state phase transformations.

  11. Surface modification by alkali and heat treatments in titanium alloys.

    PubMed

    Lee, Baek-Hee; Do Kim, Young; Shin, Ji Hoon; Hwan Lee, Kyu

    2002-09-01

    Pure titanium and titanium alloys are normally used for orthopedic and dental prostheses. Nevertheless, their chemical, biological, and mechanical properties still can be improved by the development of new preparation technologies. This has been the limiting factor for these metals to show low affinity to living bone. The purpose of this study is to improve the bone-bonding ability between titanium alloys and living bone through a chemically activated process and a thermally activated one. Two kinds of titanium alloys, a newly designed Ti-In-Nb-Ta alloy and a commercially available Ti-6Al-4V ELI alloy, were used in this study. In this study, surface modification of the titanium alloys by alkali and heat treatments (AHT), alkali treated in 5.0M NaOH solution, and heat treated in vacuum furnace at 600 degrees C, is reported. After AHT, the effects of the AHT on the bone integration property were evaluated in vitro. Surface morphologies of AHT were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Chemical compositional surface changes were investigated by X-ray diffractometry (XRD), energy dispersive spectroscopy (EDS), and auger electron spectroscopy (AES). Titanium alloys with surface modification by AHT showed improved bioactive behavior, and the Ti-In-Nb-Ta alloy had better bioactivity than the Ti-6Al-4V ELI alloy in vitro.

  12. Properties of titanium-alloyed DLC layers for medical applications.

    PubMed

    Joska, Ludek; Fojt, Jaroslav; Cvrcek, Ladislav; Brezina, Vitezslav

    2014-01-01

    DLC-type layers offer a good potential for application in medicine, due to their excellent tribological properties, chemical resistance, and bio-inert character. The presented study has verified the possibility of alloying DLC layers with titanium, with coatings containing three levels of titanium concentration prepared. Titanium was present on the surface mainly in the form of oxides. Its increasing concentration led to increased presence of titanium carbide as well. The behavior of the studied systems was stable during exposure in a physiological saline solution. Electrochemical impedance spectra practically did not change with time. Alloying, however, changed the electrochemical behavior of coated systems in a significant way: from inert surface mediating only exchange reactions of the environment in the case of unalloyed DLC layers to a response corresponding rather to a passive surface in the case of alloyed specimens. The effect of DLC layers alloying with titanium was tested by the interaction with a simulated body fluid, during which precipitation of a compound containing calcium and phosphorus--basic components of the bone apatite--occurred on all doped specimens, in contrast to pure DLC. The results of the specimens' surface colonization with cells test proved the positive effect of titanium in the case of specimens with a medium and highest content of this element.

  13. Properties of titanium-alloyed DLC layers for medical applications

    PubMed Central

    Joska, Ludek; Fojt, Jaroslav; Cvrcek, Ladislav; Brezina, Vitezslav

    2014-01-01

    DLC-type layers offer a good potential for application in medicine, due to their excellent tribological properties, chemical resistance, and bio-inert character. The presented study has verified the possibility of alloying DLC layers with titanium, with coatings containing three levels of titanium concentration prepared. Titanium was present on the surface mainly in the form of oxides. Its increasing concentration led to increased presence of titanium carbide as well. The behavior of the studied systems was stable during exposure in a physiological saline solution. Electrochemical impedance spectra practically did not change with time. Alloying, however, changed the electrochemical behavior of coated systems in a significant way: from inert surface mediating only exchange reactions of the environment in the case of unalloyed DLC layers to a response corresponding rather to a passive surface in the case of alloyed specimens. The effect of DLC layers alloying with titanium was tested by the interaction with a simulated body fluid, during which precipitation of a compound containing calcium and phosphorus - basic components of the bone apatite - occurred on all doped specimens, in contrast to pure DLC. The results of the specimens' surface colonization with cells test proved the positive effect of titanium in the case of specimens with a medium and highest content of this element. PMID:25093457

  14. Fabrication and evaluation of superplastically formed/weld-brazed corrugated compression panels with beaded webs

    NASA Technical Reports Server (NTRS)

    Royster, D. M.; Davis, R. C.; Shinn, J. M., Jr.; Bales, T. T.; Wiant, H. R.

    1985-01-01

    A study was made to investigate the feasibility of superplastically forming corrugated panels with beaded webs and to demonstrate the structural integrity of these panels by testing. The test panels in the study consist of superplastically formed titanium alloy Ti-6Al-4V half-hat elements that are joined by weld-brazing to titanium alloy Ti-6Al-4V caps to form either single-corrugation compression panels or multiple-corrugation compression panels. Stretching and subsequent thinning of the titanium sheet during superplastic forming is reduced by approximately 35 percent with a shallow half-hat die concept instead of a deep die concept and results in a more uniform thickness across the beaded webs. The complete panels are tested in end compression at room temperature and the results compared with analysis. The heavily loaded panels failed at loads approaching the yield strength of the titanium material. At maximum load, the caps wrinkled locally accompanied with separation of the weld-braze joint in the wrinkle. None of the panels tested, however, failed catastrophically in the weld-braze joint. Experimental test results are in good agreement with structural analysis of the panels.

  15. Weld failure detection

    DOEpatents

    Pennell, William E.; Sutton, Jr., Harry G.

    1981-01-01

    Method and apparatus for detecting failure in a welded connection, particrly applicable to not readily accessible welds such as those joining components within the reactor vessel of a nuclear reactor system. A preselected tag gas is sealed within a chamber which extends through selected portions of the base metal and weld deposit. In the event of a failure, such as development of a crack extending from the chamber to an outer surface, the tag gas is released. The environment about the welded area is directed to an analyzer which, in the event of presence of the tag gas, evidences the failure. A trigger gas can be included with the tag gas to actuate the analyzer.

  16. Friction stir welding tool

    DOEpatents

    Tolle; Charles R. , Clark; Denis E. , Barnes; Timothy A.

    2008-04-15

    A friction stir welding tool is described and which includes a shank portion; a shoulder portion which is releasably engageable with the shank portion; and a pin which is releasably engageable with the shoulder portion.

  17. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, Donald W.; Johnson, John A.; Smartt, Herschel B.

    1987-01-01

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

  18. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, D.W.; Johnson, J.A.; Smartt, H.B.

    1985-09-04

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

  19. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, D.W.; Johnson, J.A.; Smartt, H.B.

    1987-12-15

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder is disclosed. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws. 5 figs.

  20. Friction Stir Weld Tools

    NASA Technical Reports Server (NTRS)

    Carter, Robert W. (Inventor); Payton, Lewis N. (Inventor)

    2007-01-01

    A friction stir weld tool sleeve is supported by an underlying support pin. The pin material is preferably selected for toughness and fracture characteristics. The pin sleeve preferably has a geometry which employs the use of an interrupted thread, a plurality of flutes and/or eccentric path to provide greater flow through. Paddles have been found to assist in imparting friction and directing plastic metal during the welding process.

  1. Friction stir weld tools

    NASA Technical Reports Server (NTRS)

    Carter, Robert W. (Inventor); Payton, Lewis N. (Inventor)

    2007-01-01

    A friction stir weld tool sleeve is supported by an underlying support pin. The pin material is preferably selected for toughness and fracture characteristics. The pin sleeve preferably has a geometry which employs the use of an interrupted thread, a plurality of flutes and/or eccentric path to provide greater flow through. Paddles have been found to assist in imparting friction and directing plastic metal during the welding process.

  2. Study on titanium foil coated with partial reduction titanium dioxide as bipolar lead-acid battery's substrate

    NASA Astrophysics Data System (ADS)

    Lang, Xiaoshi; Wang, Dianlong; Tang, Shenzhi; Zhu, Junsheng; Guo, Chenfeng

    2014-12-01

    Pure titanium foil cannot be directly as the substrate for the bipolar lead-acid battery due to its surface oxidized into titanium dioxide in the cell cycle. The poor electronic conductivity of titanium dioxide will increase substrate's ohmic resistance and can affect the cell's electrochemical performances. In this paper, titanium foil's surface is coated with a lay of partial reduction titanium dioxide (TiO2-x) which has excellent chemical stability and high electronic conductivity by means of sol-gel method. Through XRD, SEM and four-probe test, it shows that the modified titanium's surface has the most superior crystal structure and morphology and the highest electronic conductivity in the sintering temperature of 800 °C. We subsequently assemble bipolar lead-acid batteries with Ti coated by TiO2-x as the substrate material. The batteries are discovered that when charged and discharged in 3.5 V-4.84 V at 0.5C the voltage between the charge and discharge voltage platform is 0.3 V, and the initial discharge specific capacity can reach 80 mAh g-1. When the current rate is up to 1C and 2C, the initial discharge specific capacity is 70 mAh g-1and 60 mAh g-1. After 100 cycles, the initial specific capacity only decreases 12.5%.

  3. Low-Temperature Forming of Beta Titanium Alloys

    NASA Technical Reports Server (NTRS)

    Kaneko, R. S.; Woods, C. A.

    1983-01-01

    Low cost methods for titanium structural fabrication using advanced cold-formable beta alloys were investigated for application in a Mach 2.7 supersonic cruise vehicle. This work focuses on improving processing and structural efficiencies as compared with standard hot formed and riveted construction of alpha-beta alloy sheet structure. Mechanical property data and manufacturing parameters were developed for cold forming, brazing, welding, and processing Ti-15V-3Cr-3Sn-3Al sheet, and Ti-3Al-8V-6Cr-4Zr on a more limited basis. Cost and structural benefits were assessed through the fabrication and evaluation of large structural panels. The feasibility of increasing structural efficiency of beta titanium structure by selective reinforcement with metal matrix composite was also explored.

  4. High temperature ductility loss in titanium alloys -- A review

    SciTech Connect

    Rath, B.B.; Imam, M.A.; Damkroger, B.K.; Edwards, G.R.

    1994-02-01

    It is well known that two phase titanium alloy systems suffer from an abrupt drop in ductility at elevated temperatures in the range of 1,000 to 1,150 K. This loss of ductility is manifested by easy decohesion of polycrystalline aggregates along the grain boundaries of the high temperature beta phase. If the alloy is in a state of tensile stress at the aforementioned temperatures, cracks initiate at the grain boundaries and propagate readily through the alloy, leading to premature failure. This phenomenon is a cause of major concern in titanium alloy fabrication and welding. Several mechanisms have been proposed to explain high temperature crack nucleation and growth along the boundaries. A critical review of the phenomenon and possible mechanisms responsible for the observed behavior will be discussed.

  5. Automatic Welding System

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Robotic welding has been of interest to industrial firms because it offers higher productivity at lower cost than manual welding. There are some systems with automated arc guidance available, but they have disadvantages, such as limitations on types of materials or types of seams that can be welded; susceptibility to stray electrical signals; restricted field of view; or tendency to contaminate the weld seam. Wanting to overcome these disadvantages, Marshall Space Flight Center, aided by Hayes International Corporation, developed system that uses closed-circuit TV signals for automatic guidance of the welding torch. NASA granted license to Combined Technologies, Inc. for commercial application of the technology. They developed a refined and improved arc guidance system. CTI in turn, licensed the Merrick Corporation, also of Nashville, for marketing and manufacturing of the new system, called the CT2 Optical Trucker. CT2 is a non-contracting system that offers adaptability to broader range of welding jobs and provides greater reliability in high speed operation. It is extremely accurate and can travel at high speed of up to 150 inches per minute.

  6. Weld radiograph enigmas

    NASA Technical Reports Server (NTRS)

    Jemian, Wartan A.

    1986-01-01

    Weld radiograph enigmas are features observed on X-ray radiographs of welds. Some of these features resemble indications of weld defects, although their origin is different. Since they are not understood, they are a source of concern. There is a need to identify their causes and especially to measure their effect on weld mechanical properties. A method is proposed whereby the enigmas can be evaluated and rated, in relation to the full spectrum of weld radiograph indications. Thie method involves a signature and a magnitude that can be used as a quantitive parameter. The signature is generated as the diference between the microdensitometer trace across the radiograph and the computed film intensity derived from a thickness scan along the corresponding region of the sample. The magnitude is the measured difference in intensity between the peak and base line values of the signature. The procedure is demonstated by comparing traces across radiographs of a weld sample before and after the introduction of a hole and by a system based on a MacIntosh mouse used for surface profiling.

  7. Argon-Hydrogen Shielding Gas Mixtures for Activating Flux-Assisted Gas Tungsten Arc Welding

    NASA Astrophysics Data System (ADS)

    Huang, Her-Yueh

    2010-11-01

    Using activating flux for gas tungsten arc welding (GTAW) to improve penetration capability is a well-established technique. Argon is an inert gas and the one most widely used as a shielding gas for GTAW. For the most austenitic stainless steels, pure argon does not provide adequate weld penetration. Argon-hydrogen mixtures give a more even heat input to the workpiece, increasing the arc voltage, which tends to increase the volume of molten material in the weld pool as well as the weld depth-to-width ratio. Great interest has been shown in the interaction between activating flux and the hydrogen concentration in an argon-based shielding gas. In this study, the weld morphology, the arc profile, the retained delta ferrite content, the angular distortion, and the microstructures were examined. The application of an activating flux combining argon and hydrogen for GTAW is important in the industry. The results of this study are presented here.

  8. Effects of shielding gas hydrogen content on the arc behavior in gas tungsten arc welding

    SciTech Connect

    Onsoien, M.I.; Olson, D.L.; Liu, S.

    1994-12-31

    The primary role of the shielding gas in gas tungsten arc welding (GTAW) is to protect the weld pool and tungsten electrode from the oxygen and nitrogen in the surrounding atmosphere. Traditionally inert gases such as argon and helium have been used, either as pure gases or mixed with each other. However, additions of small amounts of hydrogen have been reported to improve weld bead penetration and enable higher welding speeds to be used. The present work was performed to investigate the effect of small hydrogen additions on the arc behavior in GTAW, and to further the fundamental understanding of the effect of shielding gas on arc characteristics. GTAW bead-on-plate welds were made on 12.5 mm x 150 mm x 75 mm Type 304 stainless steel test coupons. The welding current, voltage, and their variations were continuously monitored during welding. After welding, each test coupon was sectioned and prepared using standard metallographic techniques and etched in Vilella`s etch for macroexamination of the weld bead cross section. Bead width, depth, and cross-sectional area were measured using a LECO image analysator system. The influence of hydrogen content in an argon has tungsten arc was characterized. The electrical behavior of the arc, including the arc resistance, was measured as a function of current and hydrogen content. A better fundamental understanding of arc behavior and energy transfer was achieved using these experimental gas mixes. The results allow the following conclusions to be drawn: (1) Small additions of hydrogen in the argon based shielding gas in gas tungsten arc welding significantly change the weld bead geometry due to changes in the arc column. (2) Selection of the right argon, hydrogen shielding gas mixture to give the optimum arc column characteristics for a given condition can improve weld quality and increase productivity. (3) The resistance of the arc column was found to be an adequate parameter to describe the arc column behavior.

  9. Fluid Flow Phenomena during Welding

    SciTech Connect

    Zhang, Wei

    2011-01-01

    MOLTEN WELD POOLS are dynamic. Liquid in the weld pool in acted on by several strong forces, which can result in high-velocity fluid motion. Fluid flow velocities exceeding 1 m/s (3.3 ft/s) have been observed in gas tungsten arc (GTA) welds under ordinary welding conditions, and higher velocities have been measured in submerged arc welds. Fluid flow is important because it affects weld shape and is related to the formation of a variety of weld defects. Moving liquid transports heat and often dominates heat transport in the weld pool. Because heat transport by mass flow depends on the direction and speed of fluid motion, weld pool shape can differ dramatically from that predicted by conductive heat flow. Temperature gradients are also altered by fluid flow, which can affect weld microstructure. A number of defects in GTA welds have been attributed to fluid flow or changes in fluid flow, including lack of penetration, top bead roughness, humped beads, finger penetration, and undercutting. Instabilities in the liquid film around the keyhole in electron beam and laser welds are responsible for the uneven penetration (spiking) characteristic of these types of welds.

  10. Synchrotron X-ray CT characterization of titanium parts fabricated by additive manufacturing. Part I. Morphology.

    PubMed

    Scarlett, Nicola Vivienne Yorke; Tyson, Peter; Fraser, Darren; Mayo, Sheridan; Maksimenko, Anton

    2016-07-01

    Synchrotron X-ray tomography has been applied to the study of titanium parts fabricated by additive manufacturing (AM). The AM method employed here was the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V), as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. Samples were chosen to examine the effect of build direction and complexity of design on the surface morphology and final dimensions of the piece.

  11. Synchrotron X-ray CT characterization of titanium parts fabricated by additive manufacturing. Part I. Morphology.

    PubMed

    Scarlett, Nicola Vivienne Yorke; Tyson, Peter; Fraser, Darren; Mayo, Sheridan; Maksimenko, Anton

    2016-07-01

    Synchrotron X-ray tomography has been applied to the study of titanium parts fabricated by additive manufacturing (AM). The AM method employed here was the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V), as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. Samples were chosen to examine the effect of build direction and complexity of design on the surface morphology and final dimensions of the piece. PMID:27359150

  12. METHOD OF OBTAINING AN IMPROVED WELD IN INERT ARC WELDING

    DOEpatents

    Correy, T.B.

    1962-12-11

    A method is reported for inert arc welding. An a-c welding current is applied to the workpiece and welding electrode such that the positive portion of each cycle thereof, with the electrode positive, has only sufficient energy to clean the surface of the workpiece and the negative portion of each cycle thereof, with the electrode negative, contains the energy required to weld. (AEC)

  13. Titanium oxidation by rf inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Valencia-Alvarado, R.; de la Piedad-Beneitez, A.; López-Callejas, R.; Barocio, S. R.; Mercado-Cabrera, A.; Peña-Eguiluz, R.; Muñoz-Castro, A. E.; Rodríguez-Méndez, B. G.; de la Rosa-Vázquez, J. M.

    2014-05-01

    The development of titanium dioxide (TiO2) films in the rutile and anatase phases is reported. The films have been obtained from an implantation/diffusion and sputtering process of commercially pure titanium targets, carried out in up to 500 W plasmas. The experimental outcome is of particular interest, in the case of anatase, for atmospheric pollution degradation by photocatalysis and, as to the rutile phase, for the production of biomaterials required by prosthesis and implants. The reactor employed consists in a cylindrical pyrex-like glass vessel inductively coupled to a 13.56 MHz RF source. The process takes place at a 5×10-2 mbar pressure with the target samples being biased from 0 to -3000 V DC. The anatase phase films were obtained from sputtering the titanium targets over glass and silicon electrically floated substrates placed 2 cm away from the target. The rutile phase was obtained by implantation/diffusion on targets at about 700 °C. The plasma was developed from a 4:1 argon/oxygen mixture for ~5 hour processing periods. The target temperature was controlled by means of the bias voltage and the plasma source power. The obtained anatase phases did not require annealing after the plasma oxidation process. The characterization of the film samples was conducted by means of x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy and Raman spectroscopy.

  14. Analysis of multicomponent evaporation in electron beam melting and refining of titanium alloys

    SciTech Connect

    Powell, A.; Szekely, J.; Pal, U.; Avyle, J. van den; Damkroger, B.

    1997-12-01

    Experimental evidence and a mathematical model are presented to evaluate the effect of beam-scan frequency on composition change in electron-beam melting of titanium alloys. Experiments characterized the evaporation rate of commercially pure (CP) titanium and vapor composition over titanium alloy with up to 6 wt pct aluminum and 4.5 wt pct vanadium, as a function of beam power, scan frequency, and background pressure. These data and thermal mapping of the hearth melt surface are used to estimate activity coefficients of aluminum and vanadium in the hearth. The model describes transient heat transfer in the surface of the melt and provides a means of estimating enhancement of pure titanium evaporation and change in final aluminum composition due to local heating at moderate beam-scan frequencies.

  15. Effect of hydrogen on the mechanical properties of titanium and its alloys

    NASA Technical Reports Server (NTRS)

    Beck, F. H.

    1975-01-01

    Occluded hydrogen resulting from cathodic charging of commercially pure titanium and titanium alloys, Ti-8Al-1Mo-1V and Ti-6Al-4V, was shown to cause embrittlement of the alloys. Embrittlement was a function of the interstitial hydrogen content rather than the amount of precipitated titanium hydride. The effects of hydrogen concentration on the critical strain for plastic instability along pure shear directions was determined for alloys Ti-8Al-1Mo-1V and Ti-5Al-2.5Sn. Hydrogen, in concentrations below that necessary for spontaneous hydride precipitation, increased the strain necessary for instability formation or instability failure. The strain rate sensitivity also increased with increasing hydrogen concentration. The effect of hydrogen on slip and twinning was determined for titanium single crystals. The critical resolved shear stress for prism slip was increased and the critical resolved shear stress for twinning was decreased with increasing hydrogen concentration.

  16. Pre-weld heat treatment improves welds in Rene 41

    NASA Technical Reports Server (NTRS)

    Prager, M.

    1968-01-01

    Cooling of Rene 41 prior to welding reduces the incidence of cracking during post-weld heat treatment. The microstructure formed during the slow cooling rate favors elevated temperature ductility. Some vestiges of this microstructure are apparently retained during welding and thus enhance strain-age crack resistance in air.

  17. Certification of a weld produced by friction stir welding

    SciTech Connect

    Obaditch, Chris; Grant, Glenn J

    2013-10-01

    Methods, devices, and systems for providing certification of friction stir welds are disclosed. A sensor is used to collect information related to a friction stir weld. Data from the sensor is compared to threshold values provided by an extrinsic standard setting organizations using a certification engine. The certification engine subsequently produces a report on the certification status of the weld.

  18. Improved adherence of sputtered titanium carbide coatings on nickel- and titanium-base alloys

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Brainard, W. A.

    1979-01-01

    Rene 41 and Ti-6Al-4V alloys were radio frequency sputter coated with titanium carbide by several techniques in order to determine the most effective. Coatings were evaluated in pin-on-disk tests. Surface analysis by X-ray photoelectron spectroscopy was used to relate adherence to interfacial chemistry. For Rene 41, good coating adherence was obtained when a small amount of acetylene was added to the sputtering plasma. The acetylene carburized the alloy surface and resulted in better bonding to the TiC coating. For Ti-6Al-4V, the best adherence and wear protection was obtained when a pure titanium interlayer was used between the coating and the alloy. The interlayer is thought to prevent the formation of a brittle, fracture-prone, aluminum oxide layer.

  19. Welding arc length control system

    NASA Technical Reports Server (NTRS)

    Iceland, William F. (Inventor)

    1993-01-01

    The present invention is a welding arc length control system. The system includes, in its broadest aspects, a power source for providing welding current, a power amplification system, a motorized welding torch assembly connected to the power amplification system, a computer, and current pick up means. The computer is connected to the power amplification system for storing and processing arc weld current parameters and non-linear voltage-ampere characteristics. The current pick up means is connected to the power source and to the welding torch assembly for providing weld current data to the computer. Thus, the desired arc length is maintained as the welding current is varied during operation, maintaining consistent weld penetration.

  20. Numerical simulation of linear fiction welding (LFW) processes

    SciTech Connect

    Fratini, L.; La Spisa, D.

    2011-05-04

    Solid state welding processes are becoming increasingly important due to a large number of advantages related to joining ''unweldable'' materials and in particular light weight alloys. Linear friction welding (LFW) has been used successfully to bond non-axisymmetric components of a range of materials including titanium alloys, steels, aluminum alloys, nickel, copper, and also dissimilar material combinations. The technique is useful in the research of quality of the joints and in reducing costs of components and parts of the aeronautic and automotive industries.LFW involves parts to be welded through the relative reciprocating motion of two components under an axial force. In such process the heat source is given by the frictional forces work decaying into heat determining a local softening of the material and proper bonding conditions due to both the temperature increase and the local pressure of the two edges to be welded. This paper is a comparative test between the numerical model in two dimensions, i.e. in plane strain conditions, and in three dimensions of a LFW process of AISI1045 steel specimens. It must be observed that the 3D model assures a faithful simulation of the actual threedimensional material flow, even if the two-dimensional simulation computational times are very short, a few hours instead of several ones as the 3D model. The obtained results were compared with experimental values found out in the scientific literature.

  1. Numerical simulation of linear fiction welding (LFW) processes

    NASA Astrophysics Data System (ADS)

    Fratini, L.; La Spisa, D.

    2011-05-01

    Solid state welding processes are becoming increasingly important due to a large number of advantages related to joining "unweldable" materials and in particular light weight alloys. Linear friction welding (LFW) has been used successfully to bond non-axisymmetric components of a range of materials including titanium alloys, steels, aluminum alloys, nickel, copper, and also dissimilar material combinations. The technique is useful in the research of quality of the joints and in reducing costs of components and parts of the aeronautic and automotive industries. LFW involves parts to be welded through the relative reciprocating motion of two components under an axial force. In such process the heat source is given by the frictional forces work decaying into heat determining a local softening of the material and proper bonding conditions due to both the temperature increase and the local pressure of the two edges to be welded. This paper is a comparative test between the numerical model in two dimensions, i.e. in plane strain conditions, and in three dimensions of a LFW process of AISI1045 steel specimens. It must be observed that the 3D model assures a faithful simulation of the actual threedimensional material flow, even if the two-dimensional simulation computational times are very short, a few hours instead of several ones as the 3D model. The obtained results were compared with experimental values found out in the scientific literature.

  2. Titanium metal: extraction to application

    SciTech Connect

    Gambogi, Joseph; Gerdemann, Stephen J.

    2002-09-01

    In 1998, approximately 57,000 tons of titanium metal was consumed in the form of mill products (1). Only about 5% of the 4 million tons of titanium minerals consumed each year is used to produce titanium metal, with the remainder primarily used to produce titanium dioxide pigment. Titanium metal production is primarily based on the direct chlorination of rutile to produce titanium tetrachloride, which is then reduced to metal using the Kroll magnesium reduction process. The use of titanium is tied to its high strength-to-weight ratio and corrosion resistance. Aerospace is the largest application for titanium. In this paper, we discuss all aspects of the titanium industry from ore deposits through extraction to present and future applications. The methods of both primary (mining of ore, extraction, and purification) and secondary (forming and machining) operations will be analyzed. The chemical and physical properties of titanium metal will be briefly examined. Present and future applications for titanium will be discussed. Finally, the economics of titanium metal production also are analyzed as well as the advantages and disadvantages of various alternative extraction methods.

  3. Mineral of the month: titanium

    USGS Publications Warehouse

    Gambogi, Joseph

    2004-01-01

    From paint to airplanes, titanium is important in a number of applications. Commercial production comes from titanium-bearing ilmenite, rutile and leucoxene (altered ilmenite). These minerals are used to produce titanium dioxide pigment, as well as an assortment of metal and chemical products.

  4. Surface modification of titanium and titanium alloys by ion implantation.

    PubMed

    Rautray, Tapash R; Narayanan, R; Kwon, Tae-Yub; Kim, Kyo-Han

    2010-05-01

    Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, to improve the biological, chemical, and mechanical properties, surface modification is often performed. In view of this, the current review casts new light on surface modification of titanium and titanium alloys by ion beam implantation.

  5. Tensile and creep properties of titanium-vanadium, titanium-molybdenum, and titanium-niobium alloys

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1975-01-01

    Tensile and creep properties of experimental beta-titanium alloys were determined. Titanium-vanadium alloys had substantially greater tensile and creep strength than the titanium-niobium and titanium-molybdenum alloys tested. Specific tensile strengths of several titanium-vanadium-aluminum-silicon alloys were equivalent or superior to those of commercial titanium alloys to temperatures of 650 C. The Ti-50V-3Al-1Si alloy had the best balance of tensile strength, creep strength, and metallurgical stability. Its 500 C creep strength was far superior to that of a widely used commercial titanium alloy, Ti-6Al-4V, and almost equivalent to that of newly developed commercial titanium alloys.

  6. Production of nano-ceramic coatings on titanium implants

    NASA Astrophysics Data System (ADS)

    Fomin, A. A.; Rodionov, I. V.; Fomina, M. A.; Petrova, N. V.

    2015-03-01

    Composite titania coatings modified with hydroxyapatite nanoparticles were obtained on intraosseous implants fabricated from commercially pure titanium and titanium alloy Ti-2.5Al-5Mo-5V. The present study aims to identify consistency changes of morphological characteristics and physico-mechanical properties of titanium items coatings obtained by oxidation during induction heat treatment and modification with colloidal hydroxyapatite nanoparticles. The influence of temperature between 600 and 1200 °C and duration of thermal modification from 1 to 300 s was studied. It was established that high hardness about 6.7±1.9 GPa for nanocrystalline TiO2 coatings and 19.2±0.6 GPa for nanoceramic "TiO2+HAp" coatings is reached at 1000 °C and 120 s.

  7. Titanium alkoxide compound

    SciTech Connect

    Boyle, Timothy J.

    2007-08-14

    A titanium alkoxide composition is provided, as represented by the chemical formula (OC.sub.6H.sub.5N).sub.2Ti(OC.sub.6H.sub.5NH.sub.2).sub.2. As prepared, the compound is a crystalline substance with a hexavalent titanium atom bonded to two OC.sub.6H.sub.5NH.sub.2 groups and two OC.sub.6H.sub.5N groups with a theoretical molecular weight of 480.38, comprising 60.01% C, 5.04% H and 11.66% N.

  8. Robotic Welding and Inspection System

    SciTech Connect

    H. B. Smartt; D. P. Pace; E. D. Larsen; T. R. McJunkin; C. I. Nichol; D. E. Clark; K. L. Skinner; M. L. Clark; T. G. Kaser; C. R. Tolle

    2008-06-01

    This paper presents a robotic system for GTA welding of lids on cylindrical vessels. The system consists of an articulated robot arm, a rotating positioner, end effectors for welding, grinding, ultrasonic and eddy current inspection. Features include weld viewing cameras, modular software, and text-based procedural files for process and motion trajectories.

  9. Welding. Performance Objectives. Basic Course.

    ERIC Educational Resources Information Center

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of eight terminal objectives for a basic welding course. The materials were developed for a 36-week (2 hours daily) course developed to teach the fundamentals of welding shop work, to become familiar with the operation of the welding shop…

  10. Improved welding of Rene-41

    NASA Technical Reports Server (NTRS)

    Nunez, S.

    1970-01-01

    Gas-tungsten arc welding with a filler of Rene-41 produces strong welded joints. When Rene-41 is used, resistance to strain-age cracking is greatly increased by post-weld solution annealing in an inert atmosphere. Mechanical properties of Rene-41 and Hastelloy-W are compared.

  11. Welding. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of nine terminal objectives for an intermediate welding course. The materials were developed for a 36-week (3 hours daily) course designed to prepare the student for employment in the field of welding. Electric welding and specialized (TIG & MIG)…

  12. Friction stir welding tool and process for welding dissimilar materials

    DOEpatents

    Hovanski, Yuri; Grant, Glenn J; Jana, Saumyadeep; Mattlin, Karl F

    2013-05-07

    A friction stir welding tool and process for lap welding dissimilar materials are detailed. The invention includes a cutter scribe that penetrates and extrudes a first material of a lap weld stack to a preselected depth and further cuts a second material to provide a beneficial geometry defined by a plurality of mechanically interlocking features. The tool backfills the interlocking features generating a lap weld across the length of the interface between the dissimilar materials that enhances the shear strength of the lap weld.

  13. Microstructure evolution of Al/Mg butt joints welded by gas tungsten arc with Zn filler metal

    SciTech Connect

    Liu Fei; Zhang Zhaodong; Liu Liming

    2012-07-15

    Based on the idea of alloying welding seam, Gas tungsten arc welding method with pure Zn filler metal was chosen to join Mg alloy and Al alloy. The microstructures, phases, element distribution and fracture morphology of welding seams were examined. The results indicate that there was a transitional zone in the width of 80-100 {mu}m between the Mg alloy substrate and fusion zone. The fusion zone was mainly composed of MgZn{sub 2}, Zn-based solid solution and Al-based solid solution. The welding seam presented distinct morphology in different location owning to the quite high cooling rate of the molten pool. The addition of Zn metal could prevent the formation of Mg-Al intermetallics and form the alloyed welding seam during welding. Therefore, the tensile strengths of joints have been significantly improved compared with those of gas tungsten arc welded joints without Zn metal added. Highlights: Black-Right-Pointing-Pointer Mg alloy AZ31B and Al alloy 6061 are welded successfully. Black-Right-Pointing-Pointer Zinc wire is employed as a filler metal to form the alloyed welding seam. Black-Right-Pointing-Pointer An alloyed welding seam is benefit for improving of the joint tensile strength.

  14. Effect of preoxidation on the bond strength of titanium and porcelain.

    PubMed

    Mahale, K M; Nagda, S J

    2014-06-01

    The purpose of this study was to investigate the effect of preoxidation on porcelain titanium- bond strength and the effect of paste bonder (adhesive) on the titanium porcelain bond strength. 11 specimens of commercially pure titanium (26 x 7 x 3 mm) were prepared by different heat treatments in programmable dental furnace. Identification of the oxides formed on the metal surface was conducted with an X-Ray diffractometer with CuKalpha radiation. Vickers hardness numbers were determine. Additional 50 specimens of commercially pure titanium were used to bond with low fusing porcelain. The bond strength was measured in a universal testing machine. X-ray diffraction analysis of the surface of pure titanium revealed that the relative peak intensity of alpha -Ti decreased and that of TiO2 increased with increasing firing temperature. The Vickers hardness number decreased initially as the temperature increased but it increased remarkably above 900 degrees C & was harder in air than vacuum. The tensile shear bond strength was highest in the green stage i.e. without preoxidation of metal, and decreased above 900 degrees C, and was the lowest in the group without paste bonder application. The difference in bond strengths was statistically highly significant for all groups. Preoxidation under vacuum before porcelain firing can effectively improve bonding. The adhesive provided with the low fusing porcelain helps in the bond between titanium & porcelain.

  15. Effect of preoxidation on the bond strength of titanium and porcelain.

    PubMed

    Mahale, K M; Nagda, S J

    2014-06-01

    The purpose of this study was to investigate the effect of preoxidation on porcelain titanium- bond strength and the effect of paste bonder (adhesive) on the titanium porcelain bond strength. 11 specimens of commercially pure titanium (26 x 7 x 3 mm) were prepared by different heat treatments in programmable dental furnace. Identification of the oxides formed on the metal surface was conducted with an X-Ray diffractometer with CuKalpha radiation. Vickers hardness numbers were determine. Additional 50 specimens of commercially pure titanium were used to bond with low fusing porcelain. The bond strength was measured in a universal testing machine. X-ray diffraction analysis of the surface of pure titanium revealed that the relative peak intensity of alpha -Ti decreased and that of TiO2 increased with increasing firing temperature. The Vickers hardness number decreased initially as the temperature increased but it increased remarkably above 900 degrees C & was harder in air than vacuum. The tensile shear bond strength was highest in the green stage i.e. without preoxidation of metal, and decreased above 900 degrees C, and was the lowest in the group without paste bonder application. The difference in bond strengths was statistically highly significant for all groups. Preoxidation under vacuum before porcelain firing can effectively improve bonding. The adhesive provided with the low fusing porcelain helps in the bond between titanium & porcelain. PMID:25134366

  16. Titanium Ions Release from an Innovative Titanium-Magnesium Composite: an in Vitro Study

    PubMed Central

    Halambek, Jasna; Maldini, Krešimir; Balog, Martin; Križik, Peter; Schauperl, Zdravko; Ćatić, Amir

    2016-01-01

    Background The innovative titanium-magnesium composite (Ti-Mg) was produced by powder metallurgy (P/M) method and is characterized in terms of corrosion behavior. Material and methods Two groups of experimental material, 1 mass% (Ti-1Mg) and 2 mass% (Ti-2Mg) of magnesium in titanium matrix, were tested and compared to commercially pure titanium (CP Ti). Immersion test and chemical analysis of four solutions: artificial saliva; artificial saliva pH 4; artificial saliva with fluoride and Hank balanced salt solution were performed after 42 days of immersion, using inductively coupled plasma mass spectrometry (ICP-MS) to detect the amount of released titanium ions (Ti). SEM and EDS analysis were used for surface characterization. Results The difference between the results from different test solutions was assessed by ANOVA and Newman-Keuls test at p<0.05. The influence of predictor variables was found by multiple regression analysis. The results of the present study revealed a low corrosion rate of titanium from the experimental Ti-Mg group. Up to 46 and 23 times lower dissolution of Ti from Ti-1Mg and Ti-2Mg, respectively was observed compared to the control group. Among the tested solutions, artificial saliva with fluorides exhibited the highest corrosion effect on all specimens tested. SEM micrographs showed preserved dual phase surface structure and EDS analysis suggested a favorable surface bioactivity. Conclusion In conclusion, Ti-Mg produced by P/M as a material with better corrosion properties when compared to CP Ti is suggested.

  17. Titanium Ions Release from an Innovative Titanium-Magnesium Composite: an in Vitro Study

    PubMed Central

    Halambek, Jasna; Maldini, Krešimir; Balog, Martin; Križik, Peter; Schauperl, Zdravko; Ćatić, Amir

    2016-01-01

    Background The innovative titanium-magnesium composite (Ti-Mg) was produced by powder metallurgy (P/M) method and is characterized in terms of corrosion behavior. Material and methods Two groups of experimental material, 1 mass% (Ti-1Mg) and 2 mass% (Ti-2Mg) of magnesium in titanium matrix, were tested and compared to commercially pure titanium (CP Ti). Immersion test and chemical analysis of four solutions: artificial saliva; artificial saliva pH 4; artificial saliva with fluoride and Hank balanced salt solution were performed after 42 days of immersion, using inductively coupled plasma mass spectrometry (ICP-MS) to detect the amount of released titanium ions (Ti). SEM and EDS analysis were used for surface characterization. Results The difference between the results from different test solutions was assessed by ANOVA and Newman-Keuls test at p<0.05. The influence of predictor variables was found by multiple regression analysis. The results of the present study revealed a low corrosion rate of titanium from the experimental Ti-Mg group. Up to 46 and 23 times lower dissolution of Ti from Ti-1Mg and Ti-2Mg, respectively was observed compared to the control group. Among the tested solutions, artificial saliva with fluorides exhibited the highest corrosion effect on all specimens tested. SEM micrographs showed preserved dual phase surface structure and EDS analysis suggested a favorable surface bioactivity. Conclusion In conclusion, Ti-Mg produced by P/M as a material with better corrosion properties when compared to CP Ti is suggested. PMID:27688425

  18. Study of inertia welding: the sensitivity of weld configuration and strength to variations in welding parameters

    SciTech Connect

    Mote, M.W.

    1981-12-01

    An experiment is described which is designed to demonstrate the forgiveness of inertia welding, that is, the relative insensitivity of weld strength to variations in energy (rotational speed of parts) and axial force. Although easily observed variations in the welding parameters produced easily observed changes in weldment configuration and changes in dimension (upset), only extremes in parameters produced changes in weld strength. Consequently, process monitoring and product inspection would be sufficient for quality assurance in a production environment.

  19. Investigation on the effect of collagen and vitamins on biomimetic hydroxyapatite coating formation on titanium surfaces.

    PubMed

    Ciobanu, Gabriela; Ciobanu, Octavian

    2013-04-01

    This study uses an in vitro experimental approach to investigate the roles of collagen and vitamins in regulating the deposition of hydroxyapatite layer on the pure titanium surface. Titanium implants were coated with a hydroxyapatite layer under biomimetic conditions by using a supersaturated calcification solution (SCS), modified by adding vitamins A and D3, and collagen. The hydroxyapatite deposits on titanium were investigated by means of scanning electron microscopy (SEM) coupled with X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy. The results obtained have shown that hydroxyapatite coatings were produced in vitro under vitamins and collagen influence.

  20. Complex vibration ultrasonic welding systems with large area welding tips.

    PubMed

    Tsujino, Jiromaru; Sano, Tsutomu; Ogata, Hayato; Tanaka, Soichi; Harada, Yoshiki

    2002-05-01

    Vibration and welding characteristics of complex vibration ultrasonic welding systems of 27 and 40 kHz were studied. Complex vibration systems, which have elliptical to circular or rectangular to square locus, are effective for ultrasonic welding of various specimens including the same and different metal specimens, and for direct welding of semiconductor tips and packaging of various electronic devices without solder. The complex vibration systems consist of a one-dimensional longitudinal-torsional vibration converter with slitted part, a stepped horn and a longitudinal vibration transducer as a driving source. The complex vibration welding tips of 27 and 40 kHz have enough area of 6-8 mm square for various welding specimens. Aluminum plate specimens of 0.3-1.0 mm thickness were successfully joined with weld strengths almost equal to aluminum specimen strength, and independent to the specimen direction. Required vibration amplitude of 40 kHz is smaller than that of 27 kHz.

  1. Weld Nugget Temperature Control in Thermal Stir Welding

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A control system for a thermal stir welding system is provided. The control system includes a sensor and a controller. The sensor is coupled to the welding system's containment plate assembly and generates signals indicative of temperature of a region adjacent and parallel to the welding system's stir rod. The controller is coupled to the sensor and generates at least one control signal using the sensor signals indicative of temperature. The controller is also coupled to the welding system such that at least one of rotational speed of the stir rod, heat supplied by the welding system's induction heater, and feed speed of the welding system's weld material feeder are controlled based on the control signal(s).

  2. Hydrogen-induced cracking along the fusion boundary of dissimilar metal welds

    SciTech Connect

    Rowe, M.D.; Nelson, T.W.; Lippold, J.C.

    1999-02-01

    Presented here are the results from a series of experiments in which dissimilar metals welds were made using the gas tungsten arc welding process with pure argon or argon-6% hydrogen shielding gas. The objective was to determine if cracking near the fusion boundary of dissimilar metal welds could be caused by hydrogen absorbed during welding and to characterize the microstructures in which cracking occurred. Welds consisted of ER308 and ER309LSi austenitic stainless steel and ERNiCr-3-nickel-based filler metals deposited on A36 steel base metal. Cracking was observed in welds made with all three filler metals. A ferrofluid color metallography technique revealed that cracking was confined to regions in the weld metal containing martensite. Microhardness indentations indicated that martensitic regions in which cracking occurred had hardness values from 400 to 550 HV. Cracks did not extend into bulk weld metal with hardness less than 350 HV. Martensite formed near the fusion boundary in all three filler metals due to regions of locally increased base metal dilution.

  3. Advanced Welding Torch

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In order to more easily join the huge sections of the Space Shuttle external tank, Marshall Space Flight Center initiated development of the existing concept of Variable Polarity Plasma Arc (VPPA) welding. VPPA welding employs a variable current waveform that allows the system to operate for preset time increments in either of two polarity modes for effective joining of light alloys. Marshall awarded the torch contract to B & B Precision Machine, which produced a torch for the Shuttle, then automated the system, and eventually delivered a small torch used by companies such as Whirlpool for sheet metal welding of appliance parts and other applications. The dependability of the torch offers cost and time advantages.

  4. Extravehicular activity welding experiment

    NASA Technical Reports Server (NTRS)

    Watson, J. Kevin

    1989-01-01

    The In-Space Technology Experiments Program (INSTEP) provides an opportunity to explore the many critical questions which can only be answered by experimentation in space. The objective of the Extravehicular Activity Welding Experiment definition project was to define the requirements for a spaceflight experiment to evaluate the feasibility of performing manual welding tasks during EVA. Consideration was given to experiment design, work station design, welding hardware design, payload integration requirements, and human factors (including safety). The results of this effort are presented. Included are the specific objectives of the flight test, details of the tasks which will generate the required data, and a description of the equipment which will be needed to support the tasks. Work station requirements are addressed as are human factors, STS integration procedures and, most importantly, safety considerations. A preliminary estimate of the cost and the schedule for completion of the experiment through flight and postflight analysis are given.

  5. Pulsed welding plasma source

    NASA Astrophysics Data System (ADS)

    Knyaz'kov, A.; Pustovykh, O.; Verevkin, A.; Terekhin, V.; Shachek, A.; Tyasto, A.

    2016-04-01

    It is shown that in order to form the current pulse of a near rectangular shape, which provides conversion of the welding arc into a dynamic mode, it is rational to connect a forming element made on the basis of an artificial forming line in series to the welding DC circuit. The paper presents a diagram of a pulsed device for welding with a non-consumable electrode in argon which was developed using the forming element. The conversion of the arc into the dynamic mode is illustrated by the current and voltage oscillograms of the arc gap and the dynamic characteristic of the arc within the interval of one pulse generation time in the arc gap. The background current travels in the interpulse interval.

  6. Welding Molecular Crystals.

    PubMed

    Adolf, Cyril R R; Ferlay, Sylvie; Kyritsakas, Nathalie; Hosseini, Mir Wais

    2015-12-16

    Both for fundamental and applied sciences, the design of complex molecular systems in the crystalline phase with strict control of order and periodicity at both microscopic and macroscopic levels is of prime importance for development of new solid-state materials and devices. The design and fabrication of complex crystalline systems as networks of crystals displaying task-specific properties is a step toward smart materials. Here we report on isostructural and almost isometric molecular crystals of different colors, their use for fabrication of core-shell crystals, and their welding by 3D epitaxial growth into networks of crystals as single-crystalline entities. Welding of crystals by self-assembly processes into macroscopic networks of crystals is a powerful strategy for the design of hierarchically organized periodic complex architectures composed of different subdomains displaying targeted characteristics. Crystal welding may be regarded as a first step toward the design of new hierarchically organized complex crystalline systems.

  7. Better welds for launch vehicles

    NASA Technical Reports Server (NTRS)

    Schwinghamer, Robert J.

    1987-01-01

    The use and benefits of automated variable polarity plasma arc (VPPA) welding of Al joints are described. The entire welding system, including welding head manipulator, weld-wire feed, torch, and power supply are computer controlled. The importance of proper torch dynamics and the control of argon gas flow through the plasma orifice are discussed. The use of arc-voltage control, the improvements in system monitoring, and the reduction or elimination of electromagnetic interferences are examined. VPPA welding is applicable to joining Space Shuttle components, and an example of its use on an External Tank of the Shuttle is presented.

  8. Ternary gas plasma welding torch

    NASA Technical Reports Server (NTRS)

    Rybicki, Daniel J. (Inventor); Mcgee, William F. (Inventor); Waldron, Douglas J. (Inventor)

    1995-01-01

    A plasma arc welding torch is discussed. A first plasma gas is directed through the body of the welding torch and out of the body across the tip of a welding electrode disposed at the forward end of the body. A second plasma gas is disposed for flow through a longitudinal bore in the electrode. The second plasma gas enters one end of the electrode and exits the electrode at the tip thereof for co-acting with the electric welding arc to produce the desired weld. A shield gas is directed through the torch body and circulates around the head of the torch adjacent to the electrode tip.

  9. Multiphysical Modeling of Transport Phenomena During Laser Welding of Dissimilar Steels

    NASA Astrophysics Data System (ADS)

    Métais, A.; Matteï, S.; Tomashchuk, I.; Gaied, S.

    The success of new high-strength steels allows attaining equivalent performances with lower thicknesses and significant weight reduction. The welding of new couples of steel grades requires development and control of joining processes. Thanks to high precision and good flexibility, laser welding became one of the most used processes for joining of dissimilar welded blanks. The prediction of the local chemical composition in the weld formed between dissimilar steels in function of the welding parameters is essential because the dilution rate and the distribution of alloying elements in the melted zone determines the final tensile strength of the weld. The goal of the present study is to create and to validate a multiphysical numerical model studying the mixing of dissimilar steels in laser weld pool. A 3D modelling of heat transfer, turbulent flow and transport of species provides a better understanding of diffusion and convective mixing in laser weld pool. The present model allows predicting the weld geometry and element distribution. The model has been developed based on steady keyhole approximation and solved in quasi-stationary form in order to reduce the computation time. Turbulent flow formulation was applied to calculate velocity field. Fick law for diluted species was used to simulate the transport of alloying elements in the weld pool. To validate the model, a number of experiments have been performed: tests using pure 100 μm thick Ni foils like tracer and weld between a rich and poor manganese steels. SEM-EDX analysis of chemical composition has been carried out to obtain quantitative mapping of Ni and Mn distributions in the melted zone. The results of simulations have been found in good agreement with experimental data.

  10. Sintering titanium powders

    SciTech Connect

    Gerdemann, Stephen J.; Alman, David E.

    2005-09-01

    Recently, there has been renewed interest in low-cost titanium. Near-net-shape powder metallurgy offers the potential of manufacturing titanium articles without costly and difficult forming and machining operations; hence, processing methods such as conventional press-and-sinter, powder forging and powder injection molding are of interest. The sintering behavior of a variety of commercial and experimental titanium powders was studied. Commercial powders were acquired that were produced different routes: (i) sponge fines from the primary titanium processing; (ii) via the hydride-dehydride process; and (iii) gas atomization. The influence of vacuum sintering time (0.5 to 32 hrs) and temperature (1200, 1275 or 1350°C) on the microstructure (porosity present) of cold pressed powders was studied. The results are discussed in terms of the difference in powder characteristics, with the aim of identify the characteristics required for full density via press-and-sinter processing. Near-net-shape tensile bars were consolidated via cold pressed and sintered. After sintering, a sub-set of the tensile bars was hot-isostatic pressed (HIPed). The microstructure and properties of the bars were compared in the sintered and HIPed conditions.

  11. Method and apparatus for assessing weld quality

    DOEpatents

    Smartt, Herschel B.; Kenney, Kevin L.; Johnson, John A.; Carlson, Nancy M.; Clark, Denis E.; Taylor, Paul L.; Reutzel, Edward W.

    2001-01-01

    Apparatus for determining a quality of a weld produced by a welding device according to the present invention includes a sensor operatively associated with the welding device. The sensor is responsive to at least one welding process parameter during a welding process and produces a welding process parameter signal that relates to the at least one welding process parameter. A computer connected to the sensor is responsive to the welding process parameter signal produced by the sensor. A user interface operatively associated with the computer allows a user to select a desired welding process. The computer processes the welding process parameter signal produced by the sensor in accordance with one of a constant voltage algorithm, a short duration weld algorithm or a pulsed current analysis module depending on the desired welding process selected by the user. The computer produces output data indicative of the quality of the weld.

  12. Unique Cryogenic Welded Structures

    NASA Astrophysics Data System (ADS)

    Yushchenko, K. A.; Monko, G. G.

    2004-06-01

    For the last few decades, the E. O. Paton Electric Welding Institute has been active in the field of cryogenic materials science. Integrated research on development of new grades of steels and alloys for cryogenic engineering was carried out in collaboration with the leading institutions of Russia, Ukraine, and Georgia. Commercially applied welding technologies and consumables were developed. They include large, spherical tanks for storage of liquefied gases (from oxygen to helium) under high pressures; space simulators with a capacity of 10 000 m3 and more; and load-carrying elements of superconducting fusion magnetic systems for the TOKAMAK, MGD, and ITER series.

  13. Unique Cryogenic Welded Structures

    SciTech Connect

    Yushchenko, K.A.; Monko, G.G.

    2004-06-28

    For the last few decades, the E. O. Paton Electric Welding Institute has been active in the field of cryogenic materials science. Integrated research on development of new grades of steels and alloys for cryogenic engineering was carried out in collaboration with the leading institutions of Russia, Ukraine, and Georgia. Commercially applied welding technologies and consumables were developed. They include large, spherical tanks for storage of liquefied gases (from oxygen to helium) under high pressures; space simulators with a capacity of 10 000 m3 and more; and load-carrying elements of superconducting fusion magnetic systems for the TOKAMAK, MGD, and ITER series.

  14. Pulsed Long Arc Welding

    NASA Astrophysics Data System (ADS)

    Krampit, N. Yu

    2016-04-01

    The paper presents a method and an appliance for pulsed arc welding. The method supports dosage of energy required for melting each bead of electrode metal starting from the detachment of a bead. The appliance including a sensor to register bead detachment shows this moment due to the voltage burst in the arc space. Transferred beads of electrode metal are of similar size because of the dosage of energy used for melting each bead, as the consequence, the process is more stable and starting conditions to transfer electrode metal are similar, as the result, a produced weld is improved.

  15. Weld penetration and defect control

    SciTech Connect

    Chin, B.A.

    1992-05-15

    Highly engineered designs increasingly require the use of improved materials and sophisticated manufacturing techniques. To obtain optimal performance from these engineered products, improved weld properties and joint reliability are a necessarily. This requirement for improved weld performance and reliability has led to the development of high-performance welding systems in which pre-programmed parameters are specified before any welding takes place. These automated systems however lack the ability to compensate for perturbations which arise during the welding process. Hence the need for systems which monitor and control the in-process status of the welding process. This report discusses work carried out on weld penetration indicators and the feasibility of using these indicators for on-line penetration control.

  16. Ultrasonic Welding of Hybrid Joints

    NASA Astrophysics Data System (ADS)

    Wagner, Guntram; Balle, Frank; Eifler, Dietmar

    2012-03-01

    A central research field of the Institute of Materials Science and Engineering at the University of Kaiserslautern (WKK), Germany, is the realization of innovative hybrid joints by ultrasonic metal welding. This article gives an overview of suitable ultrasonic welding systems as well as of essential machine and material parameters, which influence the quality of the welds. Besides the ultrasonic welding of dissimilar metals such as Al to Cu or Al to steels, the welds between newly developed materials like aluminum foam sandwiches or flat flexible cables also can be realized. Moreover, the joining of glass and ceramic to sheet metals is a point of interest at the WKK. By using the ultrasonic metal welding process, it is possible to realize metal/glass welds with tensile shear strengths of 50 MPa. For metal/ceramic joints, the shear strengths values up to 150 MPa were measured. Finally, selected results about the occurring bonding mechanisms will be discussed.

  17. 49 CFR 195.228 - Welds and welding inspection: Standards of acceptability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welds and welding inspection: Standards of... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.228 Welds and welding inspection: Standards of acceptability. (a) Each weld and welding must be inspected to insure compliance...

  18. 49 CFR 195.228 - Welds and welding inspection: Standards of acceptability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welds and welding inspection: Standards of... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.228 Welds and welding inspection: Standards of acceptability. (a) Each weld and welding must be inspected to insure compliance...

  19. 49 CFR 195.228 - Welds and welding inspection: Standards of acceptability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welds and welding inspection: Standards of... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.228 Welds and welding inspection: Standards of acceptability. (a) Each weld and welding must be inspected to insure compliance...

  20. 49 CFR 195.228 - Welds and welding inspection: Standards of acceptability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welds and welding inspection: Standards of... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.228 Welds and welding inspection: Standards of acceptability. (a) Each weld and welding must be inspected to insure compliance...

  1. 49 CFR 195.228 - Welds and welding inspection: Standards of acceptability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welds and welding inspection: Standards of... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.228 Welds and welding inspection: Standards of acceptability. (a) Each weld and welding must be inspected to insure compliance...

  2. Effects of shielding gas composition on arc profile and molten pool dynamics in gas metal arc welding of steels

    NASA Astrophysics Data System (ADS)

    Wang, L. L.; Lu, F. G.; Wang, H. P.; Murphy, A. B.; Tang, X. H.

    2014-11-01

    In gas metal arc welding, gases of different compositions are used to produce an arc plasma, which heats and melts the workpiece. They also protect the workpiece from the influence of the air during the welding process. This paper models gas metal arc welding (GMAW) processes using an in-house simulation code. It investigates the effects of the gas composition on the temperature distribution in the arc and on the molten pool dynamics in gas metal arc welding of steels. Pure argon, pure CO2 and different mixtures of argon and CO2 are considered in the study. The model is validated by comparing the calculated weld profiles with physical weld measurements. The numerical calculations reveal that gas composition greatly affects the arc temperature profile, heat transfer to the workpiece, and consequently the weld dimension. As the CO2 content in the shielding gas increases, a more constricted arc plasma with higher energy density is generated as a result of the increased current density in the arc centre and increased Lorentz force. The calculation also shows that the heat transferred from the arc to the workpiece increases with increasing CO2 content, resulting in a wider and deeper weld pool and decreased reinforcement height.

  3. Infrared-Controlled Welding of Solar Cells

    NASA Technical Reports Server (NTRS)

    Paulson, R.; Finnell, S. E.; Decker, H. J.; Hodor, J. R.

    1982-01-01

    Proposed apparatus for welding large arrays of solar cells to flexible circuit substrates would sense infrared emission from welding spot. Emission would provide feedback for control of welding heat. Welding platform containing optical fibers moves upward through slots in movable holding fixture to contact solar cells. Fibers pick up infrared radiation from weld area.

  4. Monitoring Weld Penetration Optically From Within Torch

    NASA Technical Reports Server (NTRS)

    Smith, Matthew A.; Gilbert, Jeffrey L.; Linsacum, Deron L.; Gutlow, David A.

    1993-01-01

    Photodetector or optical fiber leading to photodetector mounted inside gas/tungsten arc welding torch to monitor arc light reflected from oscillating surface of weld pool. Proposed optical monitoring components preserve compact profile of welding torch, maintained in fixed aim at weld-pool position at end of welding torch, and protected against bumping external objects.

  5. Welding Development: Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ding, Jeff

    2007-01-01

    This paper presents the basic understanding of the friction stir welding process. It covers process description, pin tool operation and materials, metal flow theory, mechanical properties, and materials welded using the process. It also discusses the thermal stir welding process and the differences between thermal stir and friction stir welding. MSFC weld tools used for development are also presented.

  6. 49 CFR 192.225 - Welding procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding procedures. 192.225 Section 192.225... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.225 Welding procedures. (a) Welding must be performed by a qualified welder in accordance with welding...

  7. 49 CFR 192.225 - Welding procedures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welding procedures. 192.225 Section 192.225... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.225 Welding procedures. (a) Welding must be performed by a qualified welder in accordance with welding...

  8. Method for welding chromium molybdenum steels

    DOEpatents

    Sikka, Vinod K.

    1986-01-01

    Chromium-molybdenum steels exhibit a weakening after welding in an area adjacent to the weld. This invention is an improved method for welding to eliminate the weakness by subjecting normalized steel to a partial temper prior to welding and subsequently fully tempering the welded article for optimum strength and ductility.

  9. 49 CFR 192.225 - Welding procedures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welding procedures. 192.225 Section 192.225... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.225 Welding procedures. (a) Welding must be performed by a qualified welder in accordance with welding...

  10. 49 CFR 192.225 - Welding procedures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welding procedures. 192.225 Section 192.225... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.225 Welding procedures. (a) Welding must be performed by a qualified welder in accordance with welding...

  11. 49 CFR 192.225 - Welding procedures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welding procedures. 192.225 Section 192.225... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.225 Welding procedures. (a) Welding must be performed by a qualified welder in accordance with welding...

  12. Welding technology transfer task/laser based weld joint tracking system for compressor girth welds

    NASA Technical Reports Server (NTRS)

    Looney, Alan

    1991-01-01

    Sensors to control and monitor welding operations are currently being developed at Marshall Space Flight Center. The laser based weld bead profiler/torch rotation sensor was modified to provide a weld joint tracking system for compressor girth welds. The tracking system features a precision laser based vision sensor, automated two-axis machine motion, and an industrial PC controller. The system benefits are elimination of weld repairs caused by joint tracking errors which reduces manufacturing costs and increases production output, simplification of tooling, and free costly manufacturing floor space.

  13. Effect of oxygen on weld shape and crystallographic orientation of duplex stainless steel weld using advanced A-TIG (AA-TIG) welding method

    SciTech Connect

    Zou, Ying Ueji, Rintaro; Fujii, Hidetoshi

    2014-05-01

    The double-shielded advanced A-TIG (AA-TIG) welding method was adopted in this study for the welding of the SUS329J4L duplex stainless steel with the shielding gases of different oxygen content levels. The oxygen content in the shielding gas was controlled by altering the oxygen content in the outer layer gas, while the inner layer remained pure argon to suppress oxidation on the tungsten electrode. As a result, a deep weld penetration was obtained due to the dissolution of oxygen into the weld metals. Additionally, the microstructure of the weld metal was changed by the dissolution of oxygen. The austenite phase at the ferrite grain boundary followed a Kurdjumov–Sachs (K–S) orientation relationship with the ferrite matrix phase at any oxide content. On the other hand, the orientation relationship between the intragranular austenite phase and the ferrite matrix phase exhibited different patterns under different oxygen content levels. When there was little oxide in the fusion zone, only a limited part of the intragranular austenite phase and the ferrite matrix phase followed the K–S orientation relationship. With the increase of the oxide, the correspondence of the K–S relationship increased and fit very well in the 2.5% O{sub 2} shielded sample. The investigation of this phenomenon was carried out along with the nucleation mechanisms of the intragranular austenite phases. - Highlights: • Weld penetration increased with the increase of the oxygen content. • Average diameter and number density of oxide were changed by the oxygen content. • K-S relationship of Widmanstätten austenite/ferrite wasn’t varied by oxide. • Orientation relationship of intragranular austenite/ferrite was varied by oxide.

  14. Carbon-coated rutile titanium dioxide derived from titanium-metal organic framework with enhanced sodium storage behavior

    NASA Astrophysics Data System (ADS)

    Zou, Guoqiang; Chen, Jun; Zhang, Yan; Wang, Chao; Huang, Zhaodong; Li, Simin; Liao, Hanxiao; Wang, Jufeng; Ji, Xiaobo

    2016-09-01

    Carbon-coated rutile titanium dioxide (CRT) was fabricated through an in-situ pyrolysis of titanium-based metal organic framework (Ti8O8(OH)4[O2CC6H4CO2]6) crystals. Benefiting from the Tisbnd Osbnd C skeleton structure of titanium-based metal organic framework, the CRT possesses abundant channels and micro/mesopores with the diameters ranging from 1.06 to 4.14 nm, shows larger specific surface area (245 m2 g-1) and better electronic conductivity compared with pure titanium dioxide (12.8 m2 g-1). When applied as anode material for sodium-ion batteries, the CRT electrode exhibits a high cycling performance with a reversible capacity of ∼175 mAh g-1 at 0.5 C-rate after 200 cycles, and obtains an excellent rate capability of ∼70 mAh g-1 after 2000 cycles even at a specific current of 3360 mA g-1(20 C-rate). The outstanding rate capability can be attributed to the carbon-coated structure, which may effectively prevent aggregation of the titanium dioxide nanoparticles, accelerate the mass transfer of Na+ and speed up the charge transfer rate. Considering these advantages of this particular framework structure, the CRT can serve as an alternative anode material for the industrial application of SIBs.

  15. Discoloration and dissolution of titanium and titanium alloys with immersion in peroxide- or fluoride-containing solutions.

    PubMed

    Noguchi, Tatsumi; Takemoto, Shinji; Hattori, Masayuki; Yoshinari, Masao; Kawada, Eiji; Oda, Yutaka

    2008-01-01

    This study compared differences in discoloration and dissolution in several titanium alloys with immersion in peroxide- or fluoride-containing solution. Commercially pure titanium (CP-Ti) and six titanium-based alloys were used: Ti-0.15Pd, Ti-6Al-4V, Ti-7Nb-6Al, Ti-55Ni, Ti-10Cu, and Ti-20Cr. Two test solutions were prepared for immersion of polished titanium and titanium alloys: one consisting of 0.2% NaF + 0.9% NaCl (pH 3.8 with lactic acid) and the other of 0.1 mol/l H2O2 + 0.9% NaCl (pH 5.5). Following immersion, color changes were determined with a color meter and released elements were measured using ICP-OES. Discoloration and dissolution rates differed between the two solutions. In the hydrogen peroxide-containing solution, color difference was higher in Ti-55Ni and Ti-6Al-4V than in any of the other alloys, and that Ti-55Ni showed the highest degree of dissolution. In the acidulated fluoride-containing solution, CP-Ti, Ti-0.15Pd, Ti-6Al-4V, Ti-7Nb-6Al, and Ti-10Cu alloys showed remarkable discoloration and dissolution with immersion. On the contrary, Ti-20Cr alloy showed very little discoloration and dissolution in either solution.

  16. Coaxial hybrid CO2-MIG welding system and its application in welding of aluminum alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Xudong; Chen, Wuzhu; Shuang, Yuanqing; Wang, Kangjian

    2005-01-01

    Hybrid laser-arc welding is becoming one of the most significant laser welding technologies in industry due to its higher welding efficiency, higher tolerance to gaps between plates, and adjustment of composition and microstructure of the weld metal. Comparing with common off axis hybrid laser-arc welding, coaxially combined laser beam and arc can provide a symmetrical circular thermal source on the workpiece surface, which is convenient for 3-D welding. This paper introduces a coaxial hybrid CO2 laser-pulsed MIG welding system and conducts experiments of welding Al-Mg alloy plates under different welding conditions. The basic physical phenomena during welding are observed and the weld bead shape (penetration depth, weld width) are measured. The results show that hybrid laser-MIG can stabilize the arc, remarkably increase the total welding efficiency and improve the quality of weld bead formation. In addition, process and control techniques for hybrid laser-MIG welding are also proposed.

  17. Deconvoluting the Friction Stir Weld Process for Optimizing Welds

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Nunes, Arthur C.

    2008-01-01

    In the friction stir welding process, the rotating surfaces of the pin and shoulder contact the weld metal and force a rotational flow within the weld metal. Heat, generated by the metal deformation as well as frictional slippage with the contact surface, softens the metal and makes it easier to deform. As in any thermo-mechanical processing of metal, the flow conditions are critical to the quality of the weld. For example, extrusion of metal from under the shoulder of an excessively hot weld may relax local pressure and result in wormhole defects. The trace of the weld joint in the wake of the weld may vary geometrically depending upon the flow streamlines around the tool with some geometry more vulnerable to loss of strength from joint contamination than others. The material flow path around the tool cannot be seen in real time during the weld. By using analytical "tools" based upon the principles of mathematics and physics, a weld model can be created to compute features that can be observed. By comparing the computed observations with actual data, the weld model can be validated or adjusted to get better agreement. Inputs to the model to predict weld structures and properties include: hot working properties ofthe metal, pin tool geometry, travel rate, rotation and plunge force. Since metals record their prior hot working history, the hot working conditions imparted during FSW can be quantified by interpreting the final microstructure. Variations in texture and grain size result from variations in the strain accommodated at a given strain rate and temperature. Microstructural data from a variety of FSWs has been correlated with prior marker studies to contribute to our understanding of the FSW process. Once this stage is reached, the weld modeling process can save significant development costs by reducing costly trial-and-error approaches to obtaining quality welds.

  18. Notched Tensile and Impact Fracture of Ti-15-3 Laser Welds

    NASA Astrophysics Data System (ADS)

    Tsay, Leu-Wen; Wu, Yan-Jie; Chen, Chun

    2011-12-01

    The notched tensile strength (NTS) and impact toughness of Ti-15V-3Cr-3Sn-3Al ( β-type titanium alloy Ti-15-3) laser welds aged at temperatures ranging from 590 K to 866 K (317 °C to 593 °C) were determined, and the results were compared to those of unwelded Ti-15-3 plates aged at the same temperature. At a given aging temperature, α precipitates in welded specimens were finer and exhibited higher hardness than those in unwelded specimens. Among the tested specimens, the weld aged at 644 K (371 °C) was most susceptible to notch sensitivity. In those welds aged at or above 755 K (482 °C), the coarse columnar structure was prone to interdendritic fracture during notched tensile tests, which reduced the NTS of the weld relative to that of the unwelded plate aged at an equivalent temperature. Of the tested specimens, the weld that was not subjected to the postweld aging treatment possessed the highest impact toughness among the specimens.

  19. Improvement of Weld Characteristics by Laser-Arc Double-Sided Welding Compared to Single Arc Welding

    NASA Astrophysics Data System (ADS)

    Lei, Zhenglong; Zhang, Kezhao; Hu, Xue; Yang, Yuhe; Chen, Yanbin; Wu, Yichao

    2015-11-01

    The single arc welding and laser-arc double-sided welding (LADSW) processes are investigated by virtue of test welds. The impacts of the laser beam during the LADSW process on the weld characteristics are studied from weld geometry, crystal morphology, and the mechanical properties of the joints. Compared with the single arc welding, the LADSW process improves the energy density and reduces the range of arc action, which together leads to a doubling of weld penetration depth. When penetrated by the laser beam, the liquid metal of the arc welding pool experiences severe fluctuations, leading to a finer grain size in the range of 17-26 μm in the LADSW weld, a reduction of nearly 63% compared to the grains in the single arc weld. The tensile strength and elongation-to-failure of the LADSW weld were increased by nearly 10 and 100% over the single arc welding, respectively.

  20. Formation mechanism of linear friction welded Ti-6Al-4V alloy joint based on microstructure observation

    SciTech Connect

    Ma Tiejun; Chen Tao Li Wenya; Wang Shiwei; Yang Siqian

    2011-01-15

    The microstructure of the linear friction welded Ti-6Al-4V titanium alloy joint was investigated by optical microscope, scanning electronic microscope and transmission electron microscope. Results show that the dynamic recovery and recrystallization resulting from the intensive plastic deformation and fast heating and cooling processes during linear friction welding account for the superfine {alpha} + {beta} grains in the weld center. Fine {alpha} grains distribute in the {beta} matrix or at the boundaries of {beta} grains. A mass of dislocations networks and metastructures present within the {alpha} and {beta} grains. - Research Highlights: {yields} TEM is employed in the analysis. {yields} The dynamic recovery is the main mechanism in thermal deformation of TC4. {yields} Superfine grains in the weld result from dynamic recovery and dynamic recrystallizaion, but the recrystallization is inadequate.

  1. Switchbox for welding torches

    NASA Technical Reports Server (NTRS)

    Burley, R. K.

    1980-01-01

    Switchbox can be used to change from one welding torch setup to another without stopping production line. Simple flip of switch connects gas, water, and power to selected torch. In conventional systems, production must be stopped so that maintenance people can disconnect and reconnect another torch.

  2. Welding Supplementary Units.

    ERIC Educational Resources Information Center

    Johnson, Don; And Others

    This document contains supplemental materials for special needs high school students intended to facilitate their mainstreaming in regular welding classes. Teacher's materials precede the materials for students and include general notes for the instructor, suggestions, eight references, a class progress chart, a questionnaire on the usefulness of…

  3. Welding nozzle position manipulator

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L. (Inventor); Gutow, David A. (Inventor)

    1994-01-01

    The present invention is directed to a welding nozzle position manipulator. The manipulator consists of an angle support to which the remaining components of the device are attached either directly or indirectly. A pair of pivotal connections attach a weld nozzle holding link to the angle support and provide a two axis freedom of movement of the holding link with respect to the support angle. The manipulator is actuated by a pair of adjusting screws angularly mounted to the angle support. These screws contact a pair of tapered friction surfaces formed on the upper portion of the welding nozzle holding link. A spring positioned between the upper portions of the support angle and the holding link provides a constant bias engagement between the friction surfaces of the holding link and the adjustment screws, so as to firmly hold the link in position and to eliminate any free play in the adjustment mechanism. The angular relationships between the adjustment screws, the angle support and the tapered friction surfaces of the weld nozzle holding link provide a geometric arrangement which permits precision adjustment of the holding link with respect to the angle support and also provides a solid holding link mount which is resistant to movement from outside forces.

  4. Welding. Student Learning Guide.

    ERIC Educational Resources Information Center

    Palm Beach County Board of Public Instruction, West Palm Beach, FL.

    This student learning guide contains 30 modules for completing a course in welding. It is designed especially for use in secondary schools in Palm Beach County, Florida. Each module covers one task, and consists of a purpose, performance objective, enabling objectives, learning activities keyed to resources, information sheets, student self-check…

  5. State Skill Standards: Welding

    ERIC Educational Resources Information Center

    Pointer, Mike; Naylor, Randy; Warden, John; Senek, Gene; Shirley, Charles; Lefcourt, Lew; Munson, Justin; Johnson, Art

    2005-01-01

    The Department of Education has undertaken an ambitious effort to develop statewide occupational skill standards. The standards in this document are for welding programs and are designed to clearly state what the student should know and be able to do upon completion of an advanced high-school program. The writing team determined that any statewide…

  6. Welding. Competencies for Articulation.

    ERIC Educational Resources Information Center

    Southeast Community Coll., Lincoln, NE.

    Materials contained in this guide present competencies describing welding skills necessary for success in initial employment or applicable to advanced educational placement, and may be used by administrators, students, and secondary and postsecondary vocational teachers. The student outcomes section provides guidelines for planning of and…

  7. Elementary TIG Welding Skills.

    ERIC Educational Resources Information Center

    Pierson, John E., III

    The text was prepared to help deaf students develop the skills needed by an employed welder. It uses simplified language and illustrations to present concepts which should be reinforced by practical experience with welding skills. Each of the 12 lessons contains: (1) an information section with many illustrations which presents a concept or…

  8. Welding of Stainless Materials

    NASA Technical Reports Server (NTRS)

    Bull, H; Johnson, Lawrence

    1929-01-01

    It would appear that welds in some stainless steels, heat-treated in some practicable way, will probably be found to have all the resistance to corrosion that is required for aircraft. Certainly these structures are not subjected to the severe conditions that are found in chemical plants.

  9. Welding. Student Learning Guides.

    ERIC Educational Resources Information Center

    Ridge Vocational-Technical Center, Winter Haven, FL.

    These 23 learning guides are self-instructional packets for 23 tasks identified as essential for performance on an entry-level job in welding. Each guide is based on a terminal performance objective (task) and 1-4 enabling objectives. For each enabling objective, some or all of these materials may be presented: learning steps (outline of student…

  10. Galvanic corrosion of beryllium welds

    SciTech Connect

    Hill, M.A.; Butt, D.P.; Lillard, R.S.

    1997-12-01

    Beryllium is difficult to weld because it is highly susceptible to cracking. The most commonly used filler metal in beryllium welds is Al-12 wt.% Si. Beryllium has been successfully welded using Al-Si filler metal with more than 30 wt.% Al. This filler creates an aluminum-rich fusion zone with a low melting point that tends to backfill cracks. Drawbacks to adding a filler metal include a reduction in service temperature, a lowering of the tensile strength of the weld, and the possibility for galvanic corrosion to occur at the weld. To evaluate the degree of interaction between Be and Al-Si in an actual weld, sections from a mock beryllium weldment were exposed to 0.1 M Cl{sup {minus}} solution. Results indicate that the galvanic couple between Be and the Al-Si weld material results in the cathodic protection of the weld and of the anodic dissolution of the bulk Be material. While the cathodic protection of Al is generally inefficient, the high anodic dissolution rate of the bulk Be during pitting corrosion combined with the insulating properties of the Be oxide afford some protection of the Al-Si weld material. Although dissolution of the Be precipitate in the weld material does occur, no corrosion of the Al-Si matrix was observed.

  11. SHADOW: a new welding technique

    NASA Astrophysics Data System (ADS)

    Kramer, Thorsten; Olowinsky, Alexander M.; Durand, Friedrich

    2002-06-01

    The new welding technique 'SHADOW ' is introduced. SHADOW means the use of a single pulse to generate a quasi continuous weld of several millimeters in length. HET processing time is defined by the pulse duration of the pulsed laser. At present, a state-of-the-art laser is capable of a maximum pulse duration of 20 ms. The variation of the laser power depend on time is a vital capability of the pulsed laser to adapt the energy deposition into the workpiece. Laser beam welds of several watch components were successfully performed. Similar metals like crowns and axes made out of stainless steel have been welded using pulsed laser radiation. Applying a series of about 130 single pulses for the crown-axis combination the total energy accumulates to 19.5 J. The use of the SHADOW welding technique reduces the energy to 2.5 J. While welding dissimilar metals like stainless steel and bras, the SHADOW welding reduces drastically the contamination as well as the distortion. Laser beam welding of copper has a low process reliability due to the high reflection and the high thermal conductivity. SHADOW welds of 3.6 mm length were performed on 250 micrometers thick copper plates with very high reproducibility. As a result, a pilot plant for laser beam welding of copper plates has been set up. The work to be presented has partly been funded by the European Commission in a project under the contract BRPR-CT-0634.

  12. Welding, Bonding and Fastening, 1984

    NASA Technical Reports Server (NTRS)

    Buckley, J. D. (Editor); Stein, B. A. (Editor)

    1985-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Soceity, and Society of Manufacturing Engineers conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  13. Small-scale explosive welding of aluminum

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1972-01-01

    Welding technique uses very small quantities of explosive ribbon to accomplish small-scale lap-welding of aluminum plates. Technique can perform small controlled welding with no length limitations and requires minimal protective shielding.

  14. Lightweight, High-Current Welding Gun

    NASA Technical Reports Server (NTRS)

    Starck, Thomas F.; Brennan, Andrew D.

    1989-01-01

    Lighweight resistance-welding, hand-held gun supplies alternating or direct current over range of 600 to 4,000 A and applies forces from 40 to 60 lb during welding. Used to weld metal sheets in multilayered stacks.

  15. Torch kit for welding in difficult areas

    NASA Technical Reports Server (NTRS)

    Stein, J. A.

    1971-01-01

    Miniature tungsten inert gas welding torch, used with variously formed interchangeable soft copper tubing extensions, provides inexpensive, accurate welding capability for inaccessible joints. Kit effectively welds stainless steel tubing 0.089 cm thick. Other applications are cited.

  16. Corrosion of stainless steel, nickel-titanium, coated nickel-titanium, and titanium orthodontic wires.

    PubMed

    Kim, H; Johnson, J W

    1999-02-01

    Orthodontic wires containing nickel have been implicated in allergic reactions. The potential for orthodontic wires to cause allergic reactions is related to the pattern and mode of corrosion with subsequent release of metal ions, such as nickel, into the oral cavity. The purpose of this study was to determine if there is a significant difference in the corrosive potential of stainless steel, nickel titanium, nitride-coated nickel titanium, epoxy-coated nickel titanium, and titanium orthodontic wires. At least two specimens of each wire were subjected to potentiostatic anodic dissolution in 0.9% NaCl solution with neutral pH at room temperature. Using a Wenking MP 95 potentiostat and an electrochemical corrosion cell, the breakdown potential of each wire was determined. Photographs were taken of the wire speci mens using a scanning electron microscope, and surface changes were qualitatively evaluated. The breakdown potentials of stainless steel, two nickel titanium wires, nitride-coated nickel titanium, epoxy-coated nickel titanium, and titanium were 400 mV, 300 mV, 750 mV, 300 mV, 1800 mV, and >2000 mV, respectively. SEM photographs revealed that some nickel titanium and stainless steel wires were susceptible to pitting and localized corrosion. The results indicate that corrosion occurred readily in stainless steel. Variability in breakdown potential of nickel titanium alloy wires differed across vendors' wires. The nitride coating did not affect the corrosion of the alloy, but epoxy coating decreased corrosion. Titanium wires and epoxy-coated nickel titanium wires exhibited the least corrosive potential. For patients allergic to nickel, the use of titanium or epoxy-coated wires during orthodontic treatment is recommended.

  17. Influencing the arc and the mechanical properties of the weld metal in GMA-welding processes by additive elements on the wire electrode surface

    NASA Astrophysics Data System (ADS)

    Wesling, V.; Schram, A.; Müller, T.; Treutler, K.

    2016-03-01

    Under the premise of an increasing scarcity of raw materials and increasing demands on construction materials, the mechanical properties of steels and its joints are gaining highly important. In particular high- and highest-strength steels are getting in the focus of the research and the manufacturing industry. To the same extent, the requirements for filler metals are increasing as well. At present, these low-alloy materials are protected by a copper coating (<1μm) against corrosion. In addition, the coating realizes a good ohmic contact and good sliding properties between the welding machine and the wire during the welding process. By exchanging the copper with other elements it should be possible to change the mechanical properties of the weld metal and the arc stability during gas metal arc welding processes and keep the basic functions of the coating nearly untouched. On a laboratory scale solid wire electrodes with coatings of various elements and compounds such as titanium oxide were made and processed with a Gas Metal Arc Welding process. During the processing a different process behavior between the wire electrodes, coated and original, could be observed. The influences ranges from greater/shorter arc-length over increasing/decreasing droplets to larger/smaller arc foot point. Furthermore, the weld metal of the coated electrodes has significantly different mechanical and technological characteristics as the weld metal from the copper coated ground wire. The yield strength and tensile strength can be increased by up to 50%. In addition, the chemical composition of the weld metal was influenced by the application of coatings with layer thicknesses to 15 microns in the lower percentage range (up to about 3%). Another effect of the coating is a modified penetration. The normally occurring “argon finger” can be suppressed or enhanced by the choice of the coating. With the help of the presented studies it will be shown that Gas Metal Arc Welding processes

  18. Chemical and physical characterisation of welding fume particles for distinguishing from gunshot residue.

    PubMed

    Brożek-Mucha, Zuzanna

    2015-09-01

    Spherical particles produced by firearms loaded with a traditional ammunition reveal characteristic elemental contents and so their identification may provide a significant evidence in criminal investigations. With the advent of modern technologies in manufacturing ammunition, which replace toxic compounds of lead, antimony and barium in the primer mixture by elements and compounds such as powdered aluminium, titanium, amorphous boron or calcium silicide, differentiation between gunshot residue and morphologically similar particles originating from other anthropogenic or natural sources becomes more difficult. This work provides a chemical and morphological characterisation of welding fume particles originating from both the core and the covering of electrodes used in popular manners of welding steel and aluminium alloy constructions. With the use of scanning electron microscopy and energy dispersive X-ray spectrometry it has been established that single spherules containing aluminium, titanium or a set of such elements as aluminium, silicon, potassium and calcium may occur in result of welding processes, however, they are accompanied by great numbers of iron and iron oxide spherules. Thus, with this analytical method a population of welding particles can be distinguished from a population of gunshot residue originating from a modern type of ammunition, but a special care has to be taken when assessing the evidential value of single or few spherules consisting from light elements being detected in result of the search for gunshot residue for forensic purposes. PMID:26188699

  19. The α/Β interface phase in titanium alloys: Artifact or real phase contribution to problem resolution

    NASA Astrophysics Data System (ADS)

    Cortial, F.

    1994-02-01

    During X-ray inspections of a grade 4 titanium weld, a defect in the weld metal, materialized in the form of a white spot, appeared on the control film. In order to determine the metallurgical origins of this defect, scanning electron microscopy (SEM) and transmission electron micros-copy (TEM) examinations were carried out on the base metal, on the weld metal outside the white spot area, and on the weld metal corresponding to the white spot area. These examinations have demonstrated that the spot results from the presence of the W heavy element in the Β, L, and α phases. Under identical preparation conditions of thin foils, the L α/Β interface phase has been observed within the spot area exclusively; it is absent from the parent metal and weld metal beyond the spot area. Therefore, the L phase observed during that study is in this case a real phase of the titanium, which occurs under nonequilibrium state, and not a preparation ar-tifact of the thin foils. The L phase has a face-centered cubic (fcc) crystalline structure with a lattice parameter a = 0.447 ± 0.003 nm; it features a Kurdjumov-Sachs relationship with the Β phase. It is slightly enriched with tungsten and silicon bÊta-stabilizer elements as compared to α.

  20. Tracking Motions Of Manually Controlled Welding Torches

    NASA Technical Reports Server (NTRS)

    Russell, Carolyn; Gangl, Ken

    1996-01-01

    Techniques for measuring motions of manually controlled welding torches undergoing development. Positions, orientations, and velocities determined in real time during manual arc welding. Makes possible to treat manual welding processes more systematically so manual welds made more predictable, especially in cases in which mechanical strengths and other properties of welded parts highly sensitive to heat inputs and thus to velocities and orientations of welding torches.