DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, N.
1995-05-02
This document provides the Functional Design Criteria (FDC) for Project C-018H, the 242-A Evaporator and Plutonium-Uranium Extraction (PUREX) Plant Condensate Treatment Facility (Also referred to as the 200 Area Effluent Treatment Facility [ETF]). The project will provide the facilities to treat and dispose of the 242-A Evaporator process condensate (PC), the Plutonium-Uranium Extraction (PUREX) Plant process condensate (PDD), and the PUREX Plant ammonia scrubber distillate (ASD).
Code of Federal Regulations, 2010 CFR
2010-01-01
... transuranic elements. Different technical processes can accomplish this separation. However, over the years Purex has become the most commonly used and accepted process. Purex involves the dissolution of... facilities have process functions similar to each other, including: irradiated fuel element chopping, fuel...
Method of separating and recovering uranium and related cations from spent Purex-type systems
Mailen, J.C.; Tallent, O.K.
1987-02-25
A process for separating uranium and related cations from a spent Purex-type solvent extraction system which contains degradation complexes of tributylphosphate wherein the system is subjected to an ion-exchange process prior to a sodium carbonate scrubbing step. A further embodiment comprises recovery of the separated uranium and related cations. 5 figs.
Chemical interaction matrix between reagents in a Purex based process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brahman, R.K.; Hennessy, W.P.; Paviet-Hartmann, P.
2008-07-01
The United States Department of Energy (DOE) is the responsible entity for the disposal of the United States excess weapons grade plutonium. DOE selected a PUREX-based process to convert plutonium to low-enriched mixed oxide fuel for use in commercial nuclear power plants. To initiate this process in the United States, a Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) is under construction and will be operated by Shaw AREVA MOX Services at the Savannah River Site. This facility will be licensed and regulated by the U.S. Nuclear Regulatory Commission (NRC). A PUREX process, similar to the one used at La Hague,more » France, will purify plutonium feedstock through solvent extraction. MFFF employs two major process operations to manufacture MOX fuel assemblies: (1) the Aqueous Polishing (AP) process to remove gallium and other impurities from plutonium feedstock and (2) the MOX fuel fabrication process (MP), which processes the oxides into pellets and manufactures the MOX fuel assemblies. The AP process consists of three major steps, dissolution, purification, and conversion, and is the center of the primary chemical processing. A study of process hazards controls has been initiated that will provide knowledge and protection against the chemical risks associated from mixing of reagents over the life time of the process. This paper presents a comprehensive chemical interaction matrix evaluation for the reagents used in the PUREX-based process. Chemical interaction matrix supplements the process conditions by providing a checklist of any potential inadvertent chemical reactions that may take place. It also identifies the chemical compatibility/incompatibility of the reagents if mixed by failure of operations or equipment within the process itself or mixed inadvertently by a technician in the laboratories. (aut0010ho.« less
Separation of uranium from technetium in recovery of spent nuclear fuel
NASA Astrophysics Data System (ADS)
Friedman, H. A.
1984-06-01
A method for decontaminating uranium product from the Purex 5 process is described. Hydrazine is added to the product uranyl nitrate stream from the Purex process, which contains hexavalent (UO2(2+)) uranium and heptavalent technetius (TcO4-). Technetium in the product stream is reduced and then complexed by the addition of oxalic acid (H2O2O4), and the Tc-oxalate complex is readily separated from the 10 uranium by solvent extraction with 30 vol % tributyl phosphate in n-dodecane.
Separation of uranium from technetium in recovery of spent nuclear fuel
Friedman, H.A.
1984-06-13
A method for decontaminating uranium product from the Purex 5 process comprises addition of hydrazine to the product uranyl nitrate stream from the Purex process, which contains hexavalent (UO/sub 2//sup 2 +/) uranium and heptavalent technetium (TcO/sub 4/-). Technetium in the product stream is reduced and then complexed by the addition of oxalic acid (H/sub 2/C/sub 2/O/sub 4/), and the Tc-oxalate complex is readily separated from the 10 uranium by solvent extraction with 30 vol % tributyl phosphate in n-dodecane.
Separation of uranium from technetium in recovery of spent nuclear fuel
Friedman, Horace A.
1985-01-01
A method for decontaminating uranium product from the Purex process comprises addition of hydrazine to the product uranyl nitrate stream from the Purex process, which contains hexavalent (UO.sub.2.sup.2+) uranium and heptavalent technetium (TcO.sub.4 -). Technetium in the product stream is reduced and then complexed by the addition of oxalic acid (H.sub.2 C.sub.2 O.sub.4), and the Tc-oxalate complex is readily separated from the uranium by solvent extraction with 30 vol. % tributyl phosphate in n-dodecane.
Separation of uranium from technetium in recovery of spent nuclear fuel
Pruett, D.J.; McTaggart, D.R.
1983-08-31
Uranium and technetium in the product stream of the Purex process for recovery of uranium in spent nuclear fuel are separated by (1) contacting the aqueous Purex product stream with hydrazine to reduce Tc/sup +7/ therein to a reduced species, and (2) contacting said aqueous stream with an organic phase containing tributyl phosphate and an organic diluent to extract uranium from said aqueous stream into said organic phase.
Separation of uranium from technetium in recovery of spent nuclear fuel
Pruett, David J.; McTaggart, Donald R.
1984-01-01
Uranium and technetium in the product stream of the Purex process for recovery of uranium in spent nuclear fuel are separated by (1) contacting the aqueous Purex product stream with hydrazine to reduce Tc.sup.+7 therein to a reduced species, and (2) contacting said aqueous stream with an organic phase containing tributyl phosphate and an organic diluent to extract uranium from said aqueous stream into said organic phase.
The application of N,N-dimethyl-3-oxa-glutaramic acid (DOGA) in the PUREX process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jianchen, Wang; Jing, Chen
2007-07-01
The new salt-free complexant, DOGA for separating trace Pu(IV) and Np(IV) from U(VI) nitric acid solution was studied. DOGA has stronger complexing abilities to Pu(IV) and Np(IV), but complexing ability of DOGA to U(VI) was weaker. The DOGA can be used in the PUREX process to separate Pu(IV) and Np(IV) from U(VI) nitric solution. On one hand, U(IV) in the nitric acid solution containing trace Pu(IV) and Np(IV) was extracted by 30%TBP - kerosene(v/v) in the presence of DOGA, but Pu(IV) and Np(IV) were kept in the aqueous phase. On the other hand, Pu(IV) and Np(IV) loading in 30% TBPmore » - kerosene were effectively stripped by DOGA into the aqueous phase, but U(VI) loading in 30% TBP - kerosene was remained in 30% TBP - kerosene. DOGA is a promising complexant to separate Pu(IV) and Np(IV) from U(VI) solution in the U-cycle of the PUREX process. (authors)« less
Method for extracting lanthanides and actinides from acid solutions by modification of Purex solvent
Horwitz, E.P.; Kalina, D.G.
1984-05-21
A process has been developed for the extraction of multivalent lanthanide and actinide values from acidic waste solutions, and for the separation of these values from fission product and other values, which utilizes a new series of neutral bi-functional extractants, the alkyl(phenyl)-N, N-dialkylcarbamoylmethylphosphine oxides, in combination with a phase modifier to form an extraction solution. The addition of the extractant to the Purex process extractant, tri-n-butylphosphate in normal paraffin hydrocarbon diluent, will permit the extraction of multivalent lanthanide and actinide values from 0.1 to 12.0 molar acid solutions.
Fundamental Chemical Kinetic And Thermodynamic Data For Purex Process Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, R.J.; Fox, O.D.; Sarsfield, M.J.
2007-07-01
To support either the continued operations of current reprocessing plants or the development of future fuel processing using hydrometallurgical processes, such as Advanced Purex or UREX type flowsheets, the accurate simulation of Purex solvent extraction is required. In recent years we have developed advanced process modeling capabilities that utilize modern software platforms such as Aspen Custom Modeler and can be run in steady state and dynamic simulations. However, such advanced models of the Purex process require a wide range of fundamental data including all relevant basic chemical kinetic and thermodynamic data for the major species present in the process. Thismore » paper will summarize some of these recent process chemistry studies that underpin our simulation, design and testing of Purex solvent extraction flowsheets. Whilst much kinetic data for actinide redox reactions in nitric acid exists in the literature, the data on reactions in the diluted TBP solvent phase is much rarer. This inhibits the accurate modelization of the Purex process particularly when species show a significant extractability in to the solvent phase or when cycling between solvent and aqueous phases occurs, for example in the reductive stripping of Pu(IV) by ferrous sulfamate in the Magnox reprocessing plant. To support current oxide reprocessing, we have investigated a range of solvent phase reactions: - U(IV)+HNO{sub 3}; - U(IV)+HNO{sub 2}; - U(IV)+HNO{sub 3} (Pu catalysis); - U(IV)+HNO{sub 3} (Tc catalysis); - U(IV)+ Np(VI); - U(IV)+Np(V); - Np(IV)+HNO{sub 3}; - Np(V)+Np(V); Rate equations have been determined for all these reactions and kinetic rate constants and activation energies are now available. Specific features of these reactions in the TBP phase include the roles of water and hydrolyzed intermediates in the reaction mechanisms. In reactions involving Np(V), cation-cation complex formation, which is much more favourable in TBP than in HNO{sub 3}, also occurs and complicates the redox chemistry. Whilst some features of the redox chemistry in TBP appear similar to the corresponding reactions in aqueous HNO{sub 3}, there are notable differences in rates, the forms of the rate equations and mechanisms. Secondly, to underpin the development of advanced single cycle flowsheets using the complexant aceto-hydroxamic acid, we have also characterised in some detail its redox chemistry and solvent extraction behaviour with both Np and Pu ions. We find that simple hydroxamic acids are remarkably rapid reducing agents for Np(VI). They also reduce Pu(VI) and cause a much slower reduction of Pu(IV) through a complex mechanism involving acid hydrolysis of the ligand. AHA is a strong hydrophilic and selective complexant for the tetravalent actinide ions as evidenced by stability constant and solvent extraction data for An(IV), M(III) and U(VI) ions. This has allowed the successful design of U/Pu+Np separation flowsheets suitable for advanced fuel cycles. (authors)« less
Method for extracting lanthanides and actinides from acid solutions by modification of purex solvent
Horwitz, E. Philip; Kalina, Dale G.
1986-01-01
A process for the recovery of actinide and lanthanide values from aqueous solutions with an extraction solution containing an organic extractant having the formula: ##STR1## where .phi. is phenyl, R.sup.1 is a straight or branched alkyl or alkoxyalkyl containing from 6 to 12 carbon atoms and R.sup.2 is an alkyl containing from 3 to 6 carbon atoms and phase modifiers in a water-immiscible hydrocarbon diluent. The addition of the extractant to the Purex process extractant, tri-n-butylphosphate in normal paraffin hydrocarbon diluent, will permit the extraction of multivalent lanthanide and actinide values from 0.1 to 12.0 molar acid solutions.
Chemical Processing Department monthly report, October 1962
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1962-11-21
This report, from the Chemical Processing Department at HAPO, for October, 1962 discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; employee relations; and weapons manufacturing operation.
Method for extracting lanthanides and actinides from acid solutions by modification of Purex solvent
Horwitz, E.P.; Kalina, D.G.
1986-03-04
A process is described for the recovery of actinide and lanthanide values from aqueous solutions with an extraction solution containing an organic extractant having the formula as shown in a diagram where [phi] is phenyl, R[sup 1] is a straight or branched alkyl or alkoxyalkyl containing from 6 to 12 carbon atoms and R[sup 2] is an alkyl containing from 3 to 6 carbon atoms and phase modifiers in a water-immiscible hydrocarbon diluent. The addition of the extractant to the Purex process extractant, tri-n-butylphosphate in normal paraffin hydrocarbon diluent, will permit the extraction of multivalent lanthanide and actinide values from 0.1 to 12.0 molar acid solutions. 6 figs.
Fritz, Brad G; Patton, Gregory W
2006-01-01
While other research has reported on the concentrations of (129)I in the environment surrounding active nuclear fuel reprocessing facilities, there is a shortage of information regarding how the concentrations change once facilities close. At the Hanford Site, the Plutonium-Uranium Extraction (PUREX) chemical separation plant was operating between 1983 and 1990, during which time (129)I concentrations in air and milk were measured. After the cessation of chemical processing, plant emissions decreased 2.5 orders of magnitude over an 8-year period. An evaluation of (129)I and (127)I concentration data in air and milk spanning the PUREX operation and post-closure period was conducted to compare the changes in environmental levels. Measured concentrations over the monitoring period were below the levels that could result in a potential annual human dose greater than 1 mSv. There was a measurable difference in the measured air concentrations of (129)I at different distances from the source, indicating a distinct Hanford fingerprint. Correlations between stack emissions of (129)I and concentrations in air and milk indicate that atmospheric emissions were the major source of (129)I measured in environmental samples. The measured concentrations during PUREX operations were similar to observations made around a fuel reprocessing plant in Germany. After the PUREX Plant stopped operating, (129)I concentration measurements made upwind of Hanford were similar to the results from Seville, Spain.
Radiation Chemistry of Acetohydroxamic Acid in the UREX Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karraker, D.G.
2002-07-31
The UREX process is being developed to process irradiated power reactor elements by dissolution in nitric acid and solvent extraction by a variation of the PUREX process.1 Rather than recovering both U and Pu, as in Purex, only U will be recovered by solvent extraction, hence the name ''UREX.'' A complexing agent, acetohydroxamic acid (AHA), will be added to the scrub stream to prevent the extraction of Pu(IV) and Np(VI). AHA (CH3C=ONHOH) is decomposed to gaseous products in waste evaporation, so no solid waste is generated by its addition. AHA is hydrolyzed in acid solution to acetic acid and hydroxylaminemore » at a rate dependent on the acid concentration.2-4 The fuel to be processed is ca 40 years cooled, 30,000-50,000 MWD/MT material; although only a few fission products remain, the Pu isotopes and 241Am generate a radiation field estimated to be 2.6E+02R during processing. (see Appendix for calculation.) This study was conducted to determine the effect of this level of radiation on the stability of AHA during processing.« less
Chemical Processing Department monthly report, September 1956
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1956-10-18
The September, 1956 monthly report for the Chemical Processing Department of Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished products operation, power and general maintenance, financial operation, engineering and research operations, and employee operations. (MB)
Chemical Processing Department monthly report, November 1957
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1957-12-23
The November, 1957 monthly report for the Chemical Processing Department of the Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished product operation, power and general maintenance, financial operation, engineering and research operations, and employee operation. (MB)
PUREX/UO{sub 3} deactivation project management plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washenfelder, D.J.
1993-12-01
From 1955 through 1990, the Plutonium-Uranium Extraction Plant (PUREX) provided the United States Department of Energy Hanford Site with nuclear fuel reprocessing capability. It operated in sequence with the Uranium Trioxide (UO{sub 3}) Plant, which converted the PUREX liquid uranium nitrate product to solid UO{sub 3} powder. Final UO{sub 3} Plant operation ended in 1993. In December 1992, planning was initiated for the deactivation of PUREX and UO{sub 3} Plant. The objective of deactivation planning was to identify the activities needed to establish a passively safe, environmentally secure configuration at both plants, and ensure that the configuration could be retainedmore » during the post-deactivation period. The PUREX/UO{sub 3} Deactivation Project management plan represents completion of the planning efforts. It presents the deactivation approach to be used for the two plants, and the supporting technical, cost, and schedule baselines. Deactivation activities concentrate on removal, reduction, and stabilization of the radioactive and chemical materials remaining at the plants, and the shutdown of the utilities and effluents. When deactivation is completed, the two plants will be left unoccupied and locked, pending eventual decontamination and decommissioning. Deactivation is expected to cost $233.8 million, require 5 years to complete, and yield $36 million in annual surveillance and maintenance cost savings.« less
Overview of reductants utilized in nuclear fuel reprocessing/recycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paviet-Hartmann, P.; Riddle, C.; Campbell, K.
2013-07-01
The most widely used reductant to partition plutonium from uranium in the Purex process was ferrous sulfamate, other alternates were proposed such as hydrazine-stabilized ferrous nitrate or uranous nitrate, platinum catalyzed hydrogen, and hydrazine, hydroxylamine salts. New candidates to replace hydrazine or hydroxylamine nitrate (HAN) are pursued worldwide. They may improve the performance of the industrial Purex process towards different operations such as de-extraction of plutonium and reduction of the amount of hydrazine which will limit the formation of hydrazoic acid. When looking at future recycling technologies using hydroxamic ligands, neither acetohydroxamic acid (AHA) nor formohydroxamic acid (FHA) seem promisingmore » because they hydrolyze to give hydroxylamine and the parent carboxylic acid. Hydroxyethylhydrazine, HOC{sub 2}H{sub 4}N{sub 2}H{sub 3} (HEH) is a promising non-salt-forming reductant of Np and Pu ions because it is selective to neptunium and plutonium ions at room temperature and at relatively low acidity, it could serve as a replacement of HAN or AHA for the development of a novel used nuclear fuel recycling process.« less
Spectroscopic methods of process monitoring for safeguards of used nuclear fuel separations
NASA Astrophysics Data System (ADS)
Warburton, Jamie Lee
To support the demonstration of a more proliferation-resistant nuclear fuel processing plant, techniques and instrumentation to allow the real-time, online determination of special nuclear material concentrations in-process must be developed. An ideal materials accountability technique for proliferation resistance should provide nondestructive, realtime, on-line information of metal and ligand concentrations in separations streams without perturbing the process. UV-Visible spectroscopy can be adapted for this precise purpose in solvent extraction-based separations. The primary goal of this project is to understand fundamental URanium EXtraction (UREX) and Plutonium-URanium EXtraction (PUREX) reprocessing chemistry and corresponding UV-Visible spectroscopy for application in process monitoring for safeguards. By evaluating the impact of process conditions, such as acid concentration, metal concentration and flow rate, on the sensitivity of the UV-Visible detection system, the process-monitoring concept is developed from an advanced application of fundamental spectroscopy. Systematic benchtop-scale studies investigated the system relevant to UREX or PUREX type reprocessing systems, encompassing 0.01-1.26 M U and 0.01-8 M HNO3. A laboratory-scale TRansUranic Extraction (TRUEX) demonstration was performed and used both to analyze for potential online monitoring opportunities in the TRUEX process, and to provide the foundation for building and demonstrating a laboratory-scale UREX demonstration. The secondary goal of the project is to simulate a diversion scenario in UREX and successfully detect changes in metal concentration and solution chemistry in a counter current contactor system with a UV-Visible spectroscopic process monitor. UREX uses the same basic solvent extraction flowsheet as PUREX, but has a lower acid concentration throughout and adds acetohydroxamic acid (AHA) as a complexant/reductant to the feed solution to prevent the extraction of Pu. By examining UV-Visible spectra gathered in real time, the objective is to detect the conversion from the UREX process, which does not separate Pu, to the PUREX process, which yields a purified Pu product. The change in process chemistry can be detected in the feed solution, aqueous product or in the raffinate stream by identifying the acid concentration, metal distribution and the presence or absence of AHA. A fiber optic dip probe for UV-Visible spectroscopy was integrated into a bank of three counter-current centrifugal contactors to demonstrate the online process monitoring concept. Nd, Fe and Zr were added to the uranyl nitrate system to explore spectroscopic interferences and identify additional species as candidates for online monitoring. This milestone is a demonstration of the potential of this technique, which lies in the ability to simultaneously and directly monitor the chemical process conditions in a reprocessing plant, providing inspectors with another tool to detect nuclear material diversion attempts. Lastly, dry processing of used nuclear fuel is often used as a head-end step before solvent extraction-based separations such as UREX or TRUEX. A non-aqueous process, used fuel treatment by dry processing generally includes chopping of used fuel rods followed by repeated oxidation-reduction cycles and physical separation of the used fuel from the cladding. Thus, dry processing techniques are investigated and opportunities for online monitoring are proposed for continuation of this work in future studies.
U.S. program assessing nuclear waste disposal in space - A status report
NASA Technical Reports Server (NTRS)
Rice, E. E.; Priest, C. C.; Friedlander, A. L.
1980-01-01
Various concepts for the space disposal of nuclear waste are discussed, with attention given to the destinations now being considered (high earth orbit, lunar orbit, lunar surface, solar orbit, solar system escape, sun). Waste mixes are considered in the context of the 'Purex' (Plutonium and Uranium extraction) process and the potential forms for nuclear waste disposal (ORNL cermet, Boro-silicate glass, Metal matrix, Hot-pressed supercalcine) are described. Preliminary estimates of the energy required and the cost surcharge needed to support the space disposal of nuclear waste are presented (8 metric tons/year, requiring three Shuttle launches). When Purex is employed, the generated electrical energy needed to support the Shuttle launches is shown to be less than 1%, and the projected surcharge to electrical users is shown to be slightly more than two mills/kW-hour.
Special nuclear materials cutoff exercise: Issues and lessons learned. Volume 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Libby, R.A.; Segal, J.E.; Stanbro, W.D.
1995-08-01
This document is appendices D-J for the Special Nuclear Materials Cutoff Exercise: Issues and Lessons Learned. Included are discussions of the US IAEA Treaty, safeguard regulations for nuclear materials, issue sheets for the PUREX process, and the LANL follow up activity for reprocessing nuclear materials.
The behaviour of tributyl phosphate in an organic diluent
NASA Astrophysics Data System (ADS)
Leay, Laura; Tucker, Kate; Del Regno, Annalaura; Schroeder, Sven L. M.; Sharrad, Clint A.; Masters, Andrew J.
2014-09-01
Tributyl phosphate (TBP) is used as a complexing agent in the Plutonium Uranium Extraction (PUREX) liquid-liquid phase extraction process for recovering uranium and plutonium from spent nuclear reactor fuel. Here, we address the molecular and microstructure of the organic phases involved in the extraction process, using molecular dynamics to show that when TBP is mixed with a paraffinic diluent, the TBP self-assembles into a bi-continuous phase. The underlying self-association of TBP is driven by intermolecular interaction between its polar groups, resulting in butyl moieties radiating out into the organic solvent. Simulation predicts a TBP diffusion constant that is anomalously low compared to what might normally be expected for its size; experimental nuclear magnetic resonance (NMR) studies also indicate an extremely low diffusion constant, consistent with a molecular aggregation model. Simulation of TBP at an oil/water interface shows the formation of a bilayer system at low TBP concentrations. At higher concentrations, a bulk bi-continuous structure is observed linking to this surface bilayer. We suggest that this structure may be intimately connected with the surprisingly rapid kinetics of the interfacial mass transport of uranium and plutonium from the aqueous to the organic phase in the PUREX process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delegard, Calvin H.; Casella, Amanda J.
2016-09-30
This report summarizes the literature reviewed on crud formation at the liquid:liquid interface of solvent extraction processes. The review is focused both on classic PUREX extraction for industrial reprocessing, especially as practiced at the Hanford Site, and for those steps specific to plutonium purification that were used at the Plutonium Reclamation Facility (PRF) within the Plutonium Finishing Plant (PFP) at the Hanford Site.
Hanford facility dangerous waste permit application, PUREX storage tunnels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haas, C. R.
1997-09-08
The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, `operating` treatment, storage, and/or disposal units, such as the PUREX Storage Tunnels (this document, DOE/RL-90-24).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, J.S., Westinghouse Hanford
1996-05-10
This report shows the methods used to test the stack gas outlet concentration and emission rate of Volatile Organic Compounds as Total Non-Methane Hydrocarbons in parts per million by volume,grams per dry standard cubic meter, and grams per minute from the PUREX ETF stream number G6 on the Hanford Site. Test results are shown in Appendix B.1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hohimer, J.P.
The use of laser-based analytical methods in nuclear-fuel processing plants is considered. The species and locations for accountability, process control, and effluent control measurements in the Coprocessing, Thorex, and reference Purex fuel processing operations are identified and the conventional analytical methods used for these measurements are summarized. The laser analytical methods based upon Raman, absorption, fluorescence, and nonlinear spectroscopy are reviewed and evaluated for their use in fuel processing plants. After a comparison of the capabilities of the laser-based and conventional analytical methods, the promising areas of application of the laser-based methods in fuel processing plants are identified.
Nuclear and chemical safety analysis: Purex Plant 1970 thorium campaign
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boldt, A.L.; Oberg, G.C.
The purpose of this document is to discuss the flowsheet and the related processing equipment with respect to nuclear and chemical safety. The analyses presented are based on equipment utilization and revised piping as outlined in the design criteria. Processing of thorium and uranium-233 in the Purex Plant can be accomplished within currently accepted levels of risk with respect to chemical and nuclear safety if minor instrumentation changes are made. Uranium-233 processing is limited to a rate of about 670 grams per hour by equipment capacities and criticality safety considerations. The major criticality prevention problems result from the potential accumulationmore » of uranium-233 in a solvent phase in E-H4 (ICU concentrator), TK-J1 (IUC receiver), and TK-J21 (2AF pump tank). The same potential problems exist in TK-J5 (3AF pump tank) and TK-N1 (3BU receiver), but the probabilities of reaching a critical condition are not as great. In order to prevent the excessive accumulation of uranium-233 in any of these vessels by an extraction mechanism, it is necessary to maintain the uranium-233 and salting agent concentrations below the point at which a critical concentration of uranium-233 could be reached in a solvent phase.« less
NASA Astrophysics Data System (ADS)
Madic, Charles; Bourges, Jacques; Dozol, Jean-François
1995-09-01
To reduce the long-term potential hazards associated with the management of nuclear wastes generated by nuclear fuel reprocessing, one alternative is the transmutation of long-lived radionuclides into short-lived radionuclides by nuclear means (P & T strategy). In this context, according to the law passed by the French Parliament on 30 December 1991, the CEA launched the SPIN program for the design of long-lived radionuclide separation and nuclear incineration processes. The research in progress to define separation processes focused mainly on the minor actinides (neptunium, americium and curium) and some fission products, like cesium and technetium. To separate these long-lived radionuclides, two strategies were developed. The first involves research on new operating conditions for improving the PUREX fuel reprocessing technology. This approach concerns the elements neptunium and technetium (iodine and zirconium can also be considered). The second strategy involves the design of new processes; DIAMEX for the co-extraction of minor actinides from the high-level liquid waste leaving the PUREX process, An(III)/Ln(III) separation using tripyridyltriazine derivatives or picolinamide extracting agents; SESAME for the selective separation of americium after its oxidation to Am(IV) or Am(VI) in the presence of a heteropolytungstate ligand, and Cs extraction using a new class of extracting agents, calixarenes, which exhibit exceptional Cs separation properties, especially in the presence of sodium ion. This lecture focuses on the latest achievements in these research areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shank, E.M.
1959-06-23
Information obtained from HAPO during visit by M.K. Twichell, UCNC, and E.M. Shank, ORNL, is given. Included are the tentative procedures for obtaining and transmitting information to the Eurochemic company. Discussions are given on pulsed columns, corrosion, puse generators, centrifuges, valves, in-line instrumentation, evaporators, resin column design, off-gas processing, solvent recovery, liquid-waste handling, process control, equipment decontamination, criticality, radiation protection, diluent, and solvent stability, backmixing in a pulsed column, and use of 40% TBP in the purex flowsheet.
PUREX/UO3 Facilities deactivation lessons learned history
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerber, M.S.
1996-09-19
Disconnecting the criticality alarm permanently in June 1996 signified that the hazards in the PUREX (plutonium-uranium extraction) plant had been so removed and reduced that criticality was no longer a credible event. Turning off the PUREX criticality alarm also marked a salient point in a historic deactivation project, 1 year before its anticipated conclusion. The PUREX/UO3 Deactivation Project began in October 1993 as a 5-year, $222.5- million project. As a result of innovations implemented during 1994 and 1995, the project schedule was shortened by over a year, with concomitant savings. In 1994, the innovations included arranging to send contaminated nitricmore » acid from the PUREX Plant to British Nuclear Fuels, Limited (BNFL) for reuse and sending metal solutions containing plutonium and uranium from PUREX to the Hanford Site tank farms. These two steps saved the project $36.9- million. In 1995, reductions in overhead rate, work scope, and budget, along with curtailed capital equipment expenditures, reduced the cost another $25.6 million. These savings were achieved by using activity-based cost estimating and applying technical schedule enhancements. In 1996, a series of changes brought about under the general concept of ``reengineering`` reduced the cost approximately another $15 million, and moved the completion date to May 1997. With the total savings projected at about $75 million, or 33.7 percent of the originally projected cost, understanding how the changes came about, what decisions were made, and why they were made becomes important. At the same time sweeping changes in the cultural of the Hanford Site were taking place. These changes included shifting employee relations and work structures, introducing new philosophies and methods in maintaining safety and complying with regulations, using electronic technology to manage information, and, adopting new methods and bases for evaluating progress. Because these changes helped generate cost savings and were accompanied by and were an integral part of sweeping ``culture changes,`` the story of the lessons learned during the PUREX Deactivation Project are worth recounting. Foremost among the lessons is recognizing the benefits of ``right to left`` project planning. A deactivation project must start by identifying its end points, then make every task, budget, and organizational decision based on reaching those end points. Along with this key lesson is the knowledge that project planning and scheduling should be tied directly to costing, and the project status should be checked often (more often than needed to meet mandated reporting requirements) to reflect real-time work. People working on a successful project should never be guessing about its schedule or living with a paper schedule that does not represent the actual state of work. Other salient lessons were learned in the PUREX/UO3 Deactivation Project that support these guiding principles. They include recognizing the value of independent review, teamwork, and reengineering concepts; the need and value of cooperation between the DOE, its contractors, regulators, and stakeholders; and the essential nature of early and ongoing communication. Managing a successful project also requires being willing to take a fresh look at safety requirements and to apply them in a streamlined and sensible manner to deactivating facilities; draw on the enormous value of resident knowledge acquired by people over years and sometimes decades of working in old plants; and recognize the value of bringing in outside expertise for certain specialized tasks.This approach makes possible discovering the savings that can come when many creative options are pursued persistently and the wisdom of leaving some decisions to the future. The essential job of a deactivation project is to place a facility in a safe, stable, low-maintenance mode, for an interim period. Specific end points are identified to recognize and document this state. Keeping the limited objectives of the project in mind can guide decisions that reduce risks with minimal manipulation of physical materials, minimal waste generation, streamline regulations and safety requirements where possible, and separate the facility from ongoing entanglements with operating systems. Thus, the ``parked car`` state is achieved quickly and directly. The PUREX Deactivation Lessons Learned History was first issued in January 1995. Since then, several key changes have occurred in the project, making it advisable to revise and update the document. This document is organized with the significant lessons learned captured at the end of each section, and then recounted in Section 11.0, ``Lessons Consolidated.`` It is hoped and believed that the lessons learned on the PUREX Deactivation Project will have value to other facilities both inside and outside the DOE complex.« less
Studies in support of an SNM cutoff agreement: The PUREX exercise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanbro, W.D.; Libby, R.; Segal, J.
1995-07-01
On September 23, 1993, President Clinton, in a speech before the United Nations General Assembly, called for an international agreement banning the production of plutonium and highly enriched uranium for nuclear explosive purposes. A major element of any verification regime for such an agreement would probably involve inspections of reprocessing plants in Nuclear Nonproliferation Treaty weapons states. Many of these are large facilities built in the 1950s with no thought that they would be subject to international inspection. To learn about some of the problems that might be involved in the inspection of such large, old facilities, the Department ofmore » Energy, Office of Arms Control and Nonproliferation, sponsored a mock inspection exercise at the PUREX plant on the Hanford Site. This exercise examined a series of alternatives for inspections of the PUREX as a model for this type of facility at other locations. A series of conclusions were developed that can be used to guide the development of verification regimes for a cutoff agreement at reprocessing facilities.« less
De Poorter, Gerald L.; Rofer-De Poorter, Cheryl K.
1978-01-01
Uranyl ion in solution in tri-n-butyl phosphate is readily photochemically reduced to U(IV). The product U(IV) may effectively be used in the Purex process for treating spent nuclear fuels to reduce Pu(IV) to Pu(III). The Pu(III) is readily separated from uranium in solution in the tri-n-butyl phosphate by an aqueous strip.
TREATMENT TANK CORROSION STUDIES FOR THE ENHANCED CHEMICAL CLEANING PROCESS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiersma, B.
2011-08-24
Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate themore » degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than in the PUREX/oxalic acid environment. (3) The corrosion rates for PUREX/8 wt.% oxalic acid were greater than or equal to those observed for the PUREX/2.5 wt.% oxalic acid. No localized corrosion was observed in the tests with the 8 wt.% oxalic acid. Testing with HM/8 wt.% oxalic acid simulant was not performed. Thus, a comparison with the results with 2.5 wt.% oxalic acid, where the corrosion rate was 88 mpy and localized corrosion was observed at 75 C, cannot be made. (4) The corrosion rates in 1 and 2.5 wt.% oxalic acid solutions were temperature dependent: (a) At 50 C, the corrosion rates ranged between 90 to 140 mpy over the 30 day test period. The corrosion rates were higher under stagnant conditions. (b) At 75 C, the initial corrosion rates were as high as 300 mpy during the first day of exposure. The corrosion rates increased with agitation. However, once the passive ferrous oxalate film formed, the corrosion rate decreased dramatically to less than 20 mpy over the 30 day test period. This rate was independent of agitation. (5) Electrochemical testing indicated that for oxalic acid/sludge simulant mixtures the cathodic reaction has transport controlled reaction kinetics. The literature suggests that the dissolution of the sludge produces a di-oxalatoferrate ion that is reduced at the cathodic sites. The cathodic reaction does not appear to involve hydrogen evolution. On the other hand, electrochemical tests demonstrated that the cathodic reaction for corrosion of carbon steel in pure oxalic acid involves hydrogen evolution. (6) Agitation of the oxalic acid/sludge simulant mixtures typically resulted in a higher corrosion rates for both acid concentrations. The transport of the ferrous ion away from the metal surface results in a less protective ferrous oxalate film. (7) A mercury containing species along with aluminum, silicon and iron oxides was observed on the interior of the pits formed in the HM/2.5 wt.% oxalic acid simulant at 75 C. The pitting rates in the agitated and non-agitated solution were 2 mils/day and 1 mil/day, respectively. A mechanism by which the mercury interacts with the aluminum and silicon oxides in this simulant to accelerate corrosion was proposed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
DePoorter, G.L.; Rofer-DePoorter, C.K.
1976-01-01
Laser photochemistry is surveyed as a possible improvement upon the Purex process for reprocessing spent nuclear fuel. Most of the components of spent nuclear fuel are photochemically active, and lasers can be used to selectively excite individual chemical species. The great variety of chemical species present and the degree of separation that must be achieved present difficulties in reprocessing. Lasers may be able to improve the necessary separations by photochemical reaction or effects on rates and equilibria of reactions. (auth)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Nathalie; Nash, Ken; Martin, Leigh
In response to the NEUP Program Supporting Fuel Cycle R&D Separations and Waste Forms call DEFOA- 0000799, this report describes the results of an R&D project focusing on streamlining separation processes for advanced fuel cycles. An example of such a process relevant to the U.S. DOE FCR&D program would be one combining the functions of the TRUEX process for partitioning of lanthanides and minor actinides from PUREX(UREX) raffinates with that of the TALSPEAK process for separating transplutonium actinides from fission product lanthanides. A fully-developed PUREX(UREX)/TRUEX/TALSPEAK suite would generate actinides as product(s) for reuse (or transmutation) and fission products as waste.more » As standalone, consecutive unit-operations, TRUEX and TALSPEAK employ different extractant solutions (solvating (CMPO, octyl(phenyl)-N,Ndiisobutylcarbamoylmethylphosphine oxide) vs. cation exchanging (HDEHP, di-2(ethyl)hexylphosphoric acid) extractants), and distinct aqueous phases (2-4 M HNO 3 vs. concentrated pH 3.5 carboxylic acid buffers containing actinide selective chelating agents). The separate processes may also operate with different phase transfer kinetic constraints. Experience teaches (and it has been demonstrated at the lab scale) that, with proper control, multiple process separation systems can operate successfully. However, it is also recognized that considerable economies of scale could be achieved if multiple operations could be merged into a single process based on a combined extractant solvent. The task of accountability of nuclear materials through the process(es) also becomes more robust with fewer steps, providing that the processes can be accurately modeled. Work is underway in the U.S. and Europe on developing several new options for combined processes (TRUSPEAK, ALSEP, SANEX, GANEX, ExAm are examples). There are unique challenges associated with the operation of such processes, some relating to organic phase chemistry, others arising from the variable composition of the aqueous medium. This project targets in particular two problematic issues in designing combined process systems: managing the chemistry of challenging aqueous species (like Zr 4+) and optimizing the composition and properties of combined extractant organic phases.« less
Private Sector Initiative Between the U.S. and Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1998-09-30
OAK-A258 Private Sector Initiative Between the U.S. and Japan. This report for calendar years 1993 through September 1998 describes efforts performed under the Private Sector Initiatives contract. The report also describes those efforts that have continued with private funding after being initiated under this contract. The development of a pyrochemical process, called TRUMP-S, for partitioning actinides from PUREX waste, is described in this report. This effort is funded by the Central Research Institute of Electric Power Industry (CRIEPI), KHI, the United States Department of Energy, and Boeing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritz, Brad G.; Patton, Gregory W.
2006-01-01
While other research has reported on the concentrations of 129I in the environment surrounding active nuclear fuel reprocessing facilities, there is a shortage of information regarding how the concentrations change once facilities close. At the Hanford Site, the Plutonium-Uranium Extraction (PUREX) chemical separation plant was operational between 1983 and 1990, during which time 129I concentrations in air and milk were measured. After the cessation of operations in 1990, plant emissions decreased 2.5 orders of magnitude over an 8 year period, and monitoring of environmental levels continued. An evaluation of air and milk 129I concentration data spanning the PUREX operation andmore » post closure period was conducted to compare the changes in environmental levels of 129I measured. Measured concentrations over the monitoring period were below levels that could result in a potential human dose greater than 10 uSv. There was a significant and measurable difference in the measured air concentrations of 129I at different distances from the source, indicating a distinct Hanford fingerprint. Correlations between stack emissions of 129I and concentrations in air and milk indicate that atmospheric emissions were responsible for the 129I concentrations measured in environmental samples. The measured concentrations during PUREX operation were similar to observations made around a fuel reprocessing plant in Germany.« less
CHEMICAL DIFFERENCES BETWEEN SLUDGE SOLIDS AT THE F AND H AREA TANK FARMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reboul, S.
2012-08-29
The primary source of waste solids received into the F Area Tank Farm (FTF) was from PUREX processing performed to recover uranium and plutonium from irradiated depleted uranium targets. In contrast, two primary sources of waste solids were received into the H Area Tank Farm (HTF): a) waste from PUREX processing; and b) waste from H-modified (HM) processing performed to recover uranium and neptunium from burned enriched uranium fuel. Due to the differences between the irradiated depleted uranium targets and the burned enriched uranium fuel, the average compositions of the F and H Area wastes are markedly different from onemore » another. Both F and H Area wastes contain significant amounts of iron and aluminum compounds. However, because the iron content of PUREX waste is higher than that of HM waste, and the aluminum content of PUREX waste is lower than that of HM waste, the iron to aluminum ratios of typical FTF waste solids are appreciably higher than those of typical HTF waste solids. Other constituents present at significantly higher concentrations in the typical FTF waste solids include uranium, nickel, ruthenium, zinc, silver, cobalt and copper. In contrast, constituents present at significantly higher concentrations in the typical HTF waste solids include mercury, thorium, oxalate, and radionuclides U-233, U-234, U-235, U-236, Pu-238, Pu-242, Cm-244, and Cm-245. Because of the higher concentrations of Pu-238 in HTF, the long-term concentrations of Th-230 and Ra-226 (from Pu-238 decay) will also be higher in HTF. The uranium and plutonium distributions of the average FTF waste were found to be consistent with depleted uranium and weapons grade plutonium, respectively (U-235 comprised 0.3 wt% of the FTF uranium, and Pu-240 comprised 6 wt% of the FTF plutonium). In contrast, at HTF, U-235 comprised 5 wt% of the uranium, and Pu-240 comprised 17 wt% of the plutonium, consistent with enriched uranium and high burn-up plutonium. X-ray diffraction analyses of various FTF and HTF samples indicated that the primary crystalline compounds of iron in sludge solids are Fe{sub 2}O{sub 3}, Fe{sub 3}O{sub 4}, and FeO(OH), and the primary crystalline compounds of aluminum are Al(OH){sub 3} and AlO(OH). Also identified were carbonate compounds of calcium, magnesium, and sodium; a nitrated sodium aluminosilicate; and various uranium compounds. Consistent with expectations, oxalate compounds were identified in solids associated with oxalic acid cleaning operations. The most likely oxidation states and chemical forms of technetium are assessed in the context of solubility, since technetium-99 is a key risk driver from an environmental fate and transport perspective. The primary oxidation state of technetium in SRS sludge solids is expected to be Tc(IV). In salt waste, the primary oxidation state is expected to be Tc(VII). The primary form of technetium in sludge is expected to be a hydrated technetium dioxide, TcO{sub 2} {center_dot} xH{sub 2}O, which is relatively insoluble and likely co-precipitated with iron. In salt waste solutions, the primary form of technetium is expected to be the very soluble pertechnetate anion, TcO{sub 4}{sup -}. The relative differences between the F and H Tank Farm waste provide a basis for anticipating differences that will occur as constituents of FTF and HTF waste residue enter the environment over the long-term future. If a constituent is significantly more dominant in one of the Tank Farms, its long-term environmental contribution will likely be commensurately higher, assuming the environmental transport conditions of the two Tank Farms share some commonality. It is in this vein that the information cited in this document is provided - for use during the generation, assessment, and validation of Performance Assessment modeling results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, M.W. Jr.; Van Brunt, V.
1984-09-14
Purex process compatible organic systems which selectively and reversibly extract cesium, strontium, and palladium from synthetic mixed fission product solutions containing 3M HNO/sub 3/ have been developed. This advance makes the development of continuous solvent extraction processes for their recovery more likely. The most favorable cesium and strontium complexing solutions have been tested for radiation stability to 10/sup 7/ rad using a 0.4 x 10/sup 7/ rad/h /sup 60/Co source. The distribution coefficients dropped somewhat but remained above unity. For cesium the complexing organic solution is 5 vol % (0.1M) NNS, 27 vol % TBP and 68 vol % kerosenemore » containing 0.05m Bis 4,4',(5')(1-hydroxy 2-ethylhexyl)-benzo 18-crown-6 (Crown XVII). The NNS is a sulfonic acid cation exchanger. With an aqueous phase containing 0.006M Cs/sup +1/ in contact with an equal volume of extractant the D org/aq = 1.6 at a temperature of 25 to 35/sup 0/C. For strontium the complexing organic solution is 5 vol % (0.1M) NNS, 27 vol % TBP and 68 vol % Kerosene containing 0.02M Bis 4,4'(5') (1-hydroxyheptyl)cyclohexo 18-crown-6 (Crown XVI). With an aqueous phase containing 0.003M Sr/sup +2/ in contact with an equal volume of extractant the D org/aq = 1.98 at a temperature of 25 to 35/sup 0/C. For palladium the complexing organic solution consisted of a ratio of TBP/kerosene of 0.667 containing 0.3M Alamine 336 which is a tertiary amine anion exchanger. With an aqueous phase containing 0.0045M Pd/sup +/ in contact with an equal volume of extractant the D org/aq = 1.95 at a temperature of 25 to 35/sup 0/C.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
STALLINGS, MARY
This report presents findings from tests investigating the dissolution of simulated and radioactive Savannah River Site sludges with 4 per cent oxalic acid and mixtures of oxalic and citric acid previously recommended by a Russian team from the Khlopin Radium Institute and the Mining and Chemical Combine (MCC). Testing also included characterization of the simulated and radioactive waste sludges. Testing results showed the following: Dissolution of simulated HM and PUREX sludges with oxalic and citric acid mixtures at SRTC confirmed general trends reported previously by Russian testing. Unlike the previous Russian testing six sequential contacts of a mixture of oxalicmore » acid citric acids at a 2:1 ratio (v/w) of acid to sludge did not produce complete dissolution of simulated HM and PUREX sludges. We observed that increased sludge dissolution occurred at a higher acid to sludge ratio, 50:1 (v/w), compared to the recommended ratio of 2:1 (v/w). We observed much lower dissolution of aluminum in a simulated HM sludge by sodium hydroxide leaching. We attribute the low aluminum dissolution in caustic to the high fraction of boehmite present in the simulated sludge. Dissolution of HLW sludges with 4 per cent oxalic acid and oxalic/citric acid followed general trends observed with simulated sludges. The limited testing suggests that a mixture of oxalic and citric acids is more efficient for dissolving HM and PUREX sludges and provides a more homogeneous dissolution of HM sludge than oxalic acid alone. Dissolution of HLW sludges in oxalic and oxalic/citric acid mixtures produced residual sludge solids that measured at higher neutron poison to equivalent 235U weight ratios than that in the untreated sludge solids. This finding suggests that residual solids do not present an increased nuclear criticality safety risk. Generally the neutron poison to equivalent 235U weight ratios of the acid solutions containing dissolved sludge components are lower than those in the untreated sludge solids. We recommend that these results be evaluated further to determine if these solutions contain sufficient neutron poisons. We observed low general corrosion rates in tests in which carbon steel coupons were contacted with solutions of oxalic acid, citric acid and mixtures of oxalic and citric acids. Wall thinning can be minimized by maintaining short contact times with these acid solutions. We recommend additional testing with oxalic and oxalic/citric acid mixtures to measure dissolution performance of sludges that have not been previously dried. This testing should include tests to clearly ascertain the effects of total acid strength and metal complexation on dissolution performance. Further work should also evaluate the downstream impacts of citric acid on the SRS High-Level Waste System (e.g., radiochemical separations in the Salt Waste Processing Facility and addition of organic carbon in the Saltstone and Defense Waste Processing facilities).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-08-01
As part of the original Hanford Federal Facility Agreement and Concent Order negotiations, US DOE, US EPA and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground to the Hanford Site are subject to permitting in the State Waste Discharge Permit Program (SWDP). This document constitutes the SWDP Application for the 200 Area TEDF stream which includes the following streams discharged into the area: Plutonium Finishing Plant waste water; 222-S laboratory Complex waste water; T Plant waste water; 284-W Power Plant waste water; PUREX chemical Sewer; B Plant chemical sewer, process condensate, steam condensate; 242-A-81more » Water Services waste water.« less
Process control plan for 242-A Evaporator Campaign 95-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, E.Q.; Guthrie, M.D.
1995-05-18
The wastes from tanks 106-AP, 107-AP, and 106-AW have been selected to be candidate feed wastes for Evaporator Campaign 95-1. The wastes in tank 106-AP and 107-AP are primarily from B-Plant strontium processing and PUREX neutralized cladding removal, respectively. The waste in tank 106-AW originated primarily from the partially concentrated product from 242-A Evaporator Campaign 94-2. Approximately 8.67 million liters of waste from these tanks will be transferred to tank 102-AW during the campaign. Tank 102-AW is the dedicated waste feed tank for the evaporator and currently contains 647,000 liters of processable waste. The purpose of the 242-A Evaporator Campaignmore » 95-1 Process Control Plan (hereafter referred to as PCP) is to certify that the wastes in tanks 106-AP, 107-AP, 102-AW, and 106-AW are acceptable for processing through evaporator and provide a general description of process strategies and activities which will take place during Campaign 95-1. The PCP also summarizes and presents a comprehensive characterization of the wastes in these tanks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Shekhar; Koganti, S.B.
2008-07-01
Acetohydroxamic acid (AHA) is a novel complexant for recycle of nuclear-fuel materials. It can be used in ordinary centrifugal extractors, eliminating the need for electro-redox equipment or complex maintenance requirements in a remotely maintained hot cell. In this work, the effect of AHA on Pu(IV) distribution ratios in 30% TBP system was quantified, modeled, and integrated in SIMPSEX code. Two sets of batch experiments involving macro Pu concentrations (conducted at IGCAR) and one high-Pu flowsheet (literature) were simulated for AHA based U-Pu separation. Based on the simulation and validation results, AHA based next-generation reprocessing flowsheets are proposed for co-processing basedmore » FBR and thermal-fuel reprocessing as well as evaporator-less macro-level Pu concentration process required for MOX fuel fabrication. Utilization of AHA results in significant simplification in plant design and simpler technology implementations with significant cost savings. (authors)« less
Organic chemical aging mechanisms: An annotated bibliography. Waste Tank Safety Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samuels, W.D.; Camaioni, D.M.; Nelson, D.A.
1993-09-01
An annotated bibliography has been compiled of the potential chemical and radiological aging mechanisms of the organic constituents (non-ferrocyanide) that would likely be found in the UST at Hanford. The majority of the work that has been conducted on the aging of organic chemicals used for extraction and processing of nuclear materials has been in conjunction with the acid or PUREX type processes. At Hanford the waste being stored in the UST has been stabilized with caustic. The aging factors that were used in this work were radiolysis, hydrolysis and nitrite/nitrate oxidation. The purpose of this work was two-fold: tomore » determine whether or not research had been or is currently being conducted on the species associated with the Hanford UST waste, either as a mixture or as individual chemicals or chemical functionalities, and to determine what areas of chemical aging need to be addressed by further research.« less
Separations in the STATS report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choppin, G.R.
1996-12-31
The Separations Technology and Transmutation Systems (STATS) Committee formed a Subcommittee on Separations. This subcommittee was charged with evaluating the separations proposed for the several reactor and accelerator transmutation systems. It was also asked to review the processing options for the safe management of high-level waste generated by the defense programs, in particular, the special problems involved in dealing with the waste at the U.S. Department of Energy (DOE) facility in Hanford, Washington. Based on the evaluations from the Subcommittee on Separations, the STATS Committee concluded that for the reactor transmutation programs, aqueous separations involving a combination of PUREX andmore » TRUEX solvent extraction processes could be used. However, additional research and development (R&D) would be required before full plant-scale use of the TRUEX technology could be employed. Alternate separations technology for the reactor transmutation program involves pyroprocessing. This process would require a significant amount of R&D before its full-scale application can be evaluated.« less
TPE/REE separation with the use of zirconium salt of HDBP
NASA Astrophysics Data System (ADS)
Glekov, R. G.; Shmidt, O. V.; Palenik, Yu. V.; Goletsky, N. D.; Sukhareva, S. Yu.; Fedorov, Yu. S.; Zilberman, B. Ya.
2003-01-01
Partitioning of long-lived radionuclides (minor actinides, fission products) is considered as TBP-compatible ZEALEX-process for extraction separation of transplutonium elements (TPE) and rare-earth elements (REE), as well as Y, Mo, Fe and residual amounts of Np, Pu, U. Zirconium salt of dibutyl phosphoric acid (ZS-HDBP) dissolved in 30 % TBP is used as a solvent. The process was tested in multistage centrifugal contactors. Lanthanides, Y and TPE, as well as Mo, Fe were extracted from high-level Purex raffinate, Am and ceric subgroup of REE being separated from the polyvalent elements by stripping with HNO3. TPE/REE partitioning was achieved in the second cycle of the ZEALEX-process using DTPA in formic acid media. The integral decontamination factor of Am from La and Ce after both cycles is >200, from Pr and Nd 20-30 and from Sm and Eu 3.6; REE strips in both cycles contained <0,1% of the initial amount of TPE.
Complexation of lanthanides and actinides by acetohydroxamic acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, R.J.; Sinkov, S.I.; Choppin, G.R.
2008-07-01
Acetohydroxamic acid (AHA) has been proposed as a suitable reagent for the complexant-based, as opposed to reductive, stripping of plutonium and neptunium ions from the tributylphosphate solvent phase in advanced PUREX or UREX processes designed for future nuclear-fuel reprocessing. Stripping is achieved by the formation of strong hydrophilic complexes with the tetravalent actinides in nitric acid solutions. To underpin such applications, knowledge of the complexation constants of AHA with all relevant actinide (5f) and lanthanide (4f) ions is therefore important. This paper reports the determination of stability constants of AHA with the heavier lanthanide ions (Dy-Yb) and also U(IV) andmore » Th(IV) ions. Comparisons with our previously published AHA stability-constant data for 4f and 5f ions are made. (authors)« less
Recovery of fissile materials from nuclear wastes
Forsberg, Charles W.
1999-01-01
A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jostsons, A.; Ridal, A.; Mercer, D.J.
1996-05-01
The Synroc Demonstration Plant (SDP) was designed and constructed at Lucas Heights to demonstrate the feasibility of Synroc production on a commercial scale (10 kg/hr) with simulated Purex liquid HLW. Since commissioning of the SDP in 1987, over 6000 kg of Synroc has been fabricated with a range of feeds and waste loadings. The SDP utilises uniaxial hot-pressing to consolidate Synroc. Pressureless sintering and hot-isostatic pressing have also been studied at smaller scales. The results of this extensive process development have been incorporated in a conceptual design for a radioactive plant to condition HLW from a reprocessing plant with amore » capacity to treat 800 tpa of spent LWR fuel. Synroic containing TRU, including Pu, and fission products has been fabricated and characterised in a glove-box facility and hot cells, respectively. The extensive experience in processing of Synroc over the past 15 years is summarised and its relevance to immobilization of surplus plutonium is discussed.« less
Maya, L.
1981-11-05
A reactive ion exchange method for separation and recovery of values of uranium, neptunium, plutonium, or americium from substantially neutral aqueous systems of said metals comprises contacting said system with an effective amount of a basic anion exchange resin of copolymerized divinyl-benzene and styrene having quarternary ammonium groups and bicarbonate ligands to achieve nearly 100% sorption of said actinyl ion onto said resin and an aqueous system practically free of said actinyl ions. The method is operational over an extensive range of concentrations from about 10/sup -6/ M to 1.0 M actinyl ion and a pH range of about 4 to 7. The method has particulr application to treatment of waste streams from Purex-type nuclear fuel reprocessing facilities and hydrometallurgical processes involving U, Np, P, or Am.
NASA Astrophysics Data System (ADS)
Marc, Philippe; Magnaldo, Alastair; Godard, Jérémy; Schaer, Éric
2018-03-01
Dissolution is a milestone of the head-end of hydrometallurgical processes, as the stabilization rates of the chemical elements determine the process performance and hold-up. This study aims at better understanding the chemical and physico-chemical phenomena of uranium dioxide dissolution reactions in nitric acid media in the Purex process, which separates the reusable materials and the final wastes of the spent nuclear fuels. It has been documented that the attack of sintering-manufactured uranium dioxide solids occurs through preferential attack sites, which leads to the development of cracks in the solids. Optical microscopy observations show that in some cases, the development of these cracks leads to the solid cleavage. It is shown here that the dissolution of the detached fragments is much slower than the process of the complete cleavage of the solid, and occurs with no disturbing phenomena, like gas bubbling. This fact has motivated the measurement of dissolution kinetics using optical microscopy and image processing. By further discriminating between external resistance and chemical reaction, the "true" chemical kinetics of the reaction have been measured, and the highly autocatalytic nature of the reaction confirmed. Based on these results, the constants of the chemical reactions kinetic laws have also been evaluated.
Organic Separation Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.
2014-09-22
Separable organics have been defined as “those organic compounds of very limited solubility in the bulk waste and that can form a separate liquid phase or layer” (Smalley and Nguyen 2013), and result from three main solvent extraction processes: U Plant Uranium Recovery Process, B Plant Waste Fractionation Process, and Plutonium Uranium Extraction (PUREX) Process. The primary organic solvents associated with tank solids are TBP, D2EHPA, and NPH. There is concern that, while this organic material is bound to the sludge particles as it is stored in the tanks, waste feed delivery activities, specifically transfer pump and mixer pump operations,more » could cause the organics to form a separated layer in the tank farms feed tank. Therefore, Washington River Protection Solutions (WRPS) is experimentally evaluating the potential of organic solvents separating from the tank solids (sludge) during waste feed delivery activities, specifically the waste mixing and transfer processes. Given the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste acceptance criteria per the Waste Feed Acceptance Criteria document (24590-WTP-RPT-MGT-11-014) that there is to be “no visible layer” of separable organics in the waste feed, this would result in the batch being unacceptable to transfer to WTP. This study is of particular importance to WRPS because of these WTP requirements.« less
Flowsheet Analysis of U-Pu Co-Crystallization Process as a New Reprocessing System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shunji Homma; Jun-ichi Ishii; Jiro Koga
2006-07-01
A new fuel reprocessing system by U-Pu co-crystallization process is proposed and examined by flowsheet analysis. This reprocessing system is based on the fact that hexavalent plutonium in nitric acid solution is co-crystallized with uranyl nitrate, whereas it is not crystallized when uranyl nitrate does not exist in the solution. The system consists of five steps: dissolution of spent fuel, plutonium oxidation, U-Pu co-crystallization as a co-decontamination, re-dissolution of the crystals, and U re-crystallization as a U-Pu separation. The system requires a recycling of the mother liquor from the U-Pu co-crystallization step and the appropriate recycle ratio is determined bymore » flowsheet analysis such that the satisfactory decontamination is achieved. Further flowsheet study using four different compositions of LWR spent fuels demonstrates that the constant ratio of plutonium to uranium in mother liquor from the re-crystallization step is achieved for every composition by controlling the temperature. It is also demonstrated by comparing to the Purex process that the size of the plant based on the proposed system is significantly reduced. (authors)« less
Aspects of remote maintenance in an FRG reprocessing plant from the manufacturer's viewpoint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeitzchel, G.; Tennie, M.; Saal, G.
In April 1986 a consortium led by Kraftwerk Union AG was commissioned by the German society for nuclear fuel reprocessing (DWK) to build the first West German commercial reprocessing plant for spent fuel assemblies. The main result of the planning efforts regarding remote maintenance operations inside the main process building was the introduction of FEMO technology (FEMO is an acronym based on German for remote handling modular technique). According to this technology the two cells in which the actual reprocessing (which is based on the PUREX technique) takes place are provided with frames to accommodate the process components (tanks, pumps,more » agitators, etc.), each frame together with the components which it supports forming one module. The two cells are inaccessible and windowless. For handling operations each cell is equipped with an overhead crane and a crane-like manipulator carrier system (MTS) with power manipulator. Viewing of the operations from outside the cells is made possible by television (TV) cameras installed at the crane, the MTS, and the manipulator. This paper addresses some examples of problems that still need to be solved in connection with FEMO handling. In particular, the need for close cooperation between the equipment operator, the component designer, the process engineer, the planning engineer, and the licensing authorities will be demonstrated.« less
PROCESSING OF NEUTRON-IRRADIATED URANIUM
Hopkins, H.H. Jr.
1960-09-01
An improved "Purex" process for separating uranium, plutonium, and fission products from nitric acid solutions of neutron-irradiated uranium is offered. Uranium is first extracted into tributyl phosphate (TBP) away from plutonium and fission products after adjustment of the acidity from 0.3 to 0.5 M and heating from 60 to 70 deg C. Coextracted plutonium, ruthenium, and fission products are fractionally removed from the TBP by three scrubbing steps with a 0.5 M nitric acid solution of ferrous sulfamate (FSA), from 3.5 to 5 M nitric acid, and water, respectively, and the purified uranium is finally recovered from the TBP by precipitation with an aqueous solution of oxalic acid. The plutonium in the 0.3 to 0.5 M acid solution is oxidized to the tetravalent state with sodium nitrite and extracted into TBP containing a small amount of dibutyl phosphate (DBP). Plutonium is then back-extracted from the TBP-DBP mixture with a nitric acid solution of FSA, reoxidized with sodium nitrite in the aqueous strip solution obtained, and once more extracted with TBP alone. Finally the plutonium is stripped from the TBP with dilute acid, and a portion of the strip solution thus obtained is recycled into the TBPDBP for further purification.
Hexavalent Americium recovery using Copper(III) periodate
McCann, Kevin; Brigham, Derek M.; Morrison, Samuel; ...
2016-10-31
Separation of americium from the lanthanides is considered one of the most difficult separation steps in closing the nuclear fuel cycle. One approach to this separation could involve oxidizing americium to the hexavalent state to form a linear dioxo cation while the lanthanides remain as trivalent ions. This work considers aqueous soluble Cu 3+ periodate as an oxidant under molar nitric acid conditions to separate hexavalent Am with diamyl amylphosphonate (DAAP) in n-dodecane. Initial studies assessed the kinetics of Cu 3+ periodate autoreduction in acidic media to aid in development of the solvent extraction system. Following characterization of the Cumore » 3+ periodate oxidant, solvent extraction studies optimized the recovery of Am from varied nitric acid media and in the presence of other fission product, or fission product surrogate, species. Short aqueous/organic contact times encouraged successful recovery of Am (distribution values as high as 2) from nitric acid media in the absence of redox active fission products. In the presence of a post-plutonium uranium redox extraction (post-PUREX) simulant aqueous feed, precipitation of tetravalent species (Ce, Ru, Zr) occurred and the distribution values of 241Am were suppressed, suggesting some oxidizing capacity of the Cu 3+ periodate is significantly consumed by other redox active metals in the simulant. Furthermore, the manuscript demonstrates Cu 3+ periodate as a potentially viable oxidant for Am oxidation and recovery and notes the consumption of oxidizing capacity observed in the presence of the post-PUREX simulant feed will need to be addressed for any approach seeking to oxidize Am for separations relevant to the nuclear fuel cycle.« less
Hexavalent Americium Recovery Using Copper(III) Periodate
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCann, Kevin; Brigham, Derek M.; Morrison, Samuel
2016-11-21
Separation of americium from the lanthanides is considered one of the most difficult separation steps in closing the nuclear fuel cycle. One approach to this separation could involve oxidizing americium to the hexavalent state to form a linear dioxo cation while the lanthanides remain as trivalent ions. This work considers aqueous soluble Cu3+ periodate as an oxidant under molar nitric acid conditions to separate hexavalent Am with diamyl amylphosphonate (DAAP) in n-dodecane. Initial studies assessed the kinetics of Cu3+ periodate auto-reduction in acidic media to aid in development of the solvent extraction system. Following characterization of the Cu3+ periodate oxidant,more » solvent extraction studies optimized the recovery of Am from varied nitric acid media and in the presence of other fission product, or fission product surrogate, species. Short aqueous/organic contact times encouraged successful recovery of Am (distribution values as high as 2) from nitric acid media in the absence of redox active fission products. In the presence of a post-PUREX simulant aqueous feed, precipitation of tetravalent species (Ce, Ru, Zr) occurred and the distribution values of 241Am were suppressed, suggesting some oxidizing capacity of the Cu3+ periodate is significantly consumed by other redox active metals in the simulant. The manuscript demonstrates Cu3+ periodate as a potentially viable oxidant for Am oxidation and recovery and notes the consumption of oxidizing capacity observed in the presence of the post-PUREX simulant feed will need to be addressed for any approach seeking to oxidize Am for separations relevant to the nuclear fuel cycle.« less
Demand driven salt clean-up in a molten salt fast reactor - Defining a priority list.
Merk, B; Litskevich, D; Gregg, R; Mount, A R
2018-01-01
The PUREX technology based on aqueous processes is currently the leading reprocessing technology in nuclear energy systems. It seems to be the most developed and established process for light water reactor fuel and the use of solid fuel. However, demand driven development of the nuclear system opens the way to liquid fuelled reactors, and disruptive technology development through the application of an integrated fuel cycle with a direct link to reactor operation. The possibilities of this new concept for innovative reprocessing technology development are analysed, the boundary conditions are discussed, and the economic as well as the neutron physical optimization parameters of the process are elucidated. Reactor physical knowledge of the influence of different elements on the neutron economy of the reactor is required. Using an innovative study approach, an element priority list for the salt clean-up is developed, which indicates that separation of Neodymium and Caesium is desirable, as they contribute almost 50% to the loss of criticality. Separating Zirconium and Samarium in addition from the fuel salt would remove nearly 80% of the loss of criticality due to fission products. The theoretical study is followed by a qualitative discussion of the different, demand driven optimization strategies which could satisfy the conflicting interests of sustainable reactor operation, efficient chemical processing for the salt clean-up, and the related economic as well as chemical engineering consequences. A new, innovative approach of balancing the throughput through salt processing based on a low number of separation process steps is developed. Next steps for the development of an economically viable salt clean-up process are identified.
Das, Arya; Ali, Sk Musharaf
2018-02-21
Tri-isoamyl phosphate (TiAP) has been proposed to be an alternative for tri-butyl phosphate (TBP) in the Plutonium Uranium Extraction (PUREX) process. Recently, we have successfully calibrated and tested all-atom optimized potentials for liquid simulations using Mulliken partial charges for pure TiAP, TBP, and dodecane by performing molecular dynamics (MD) simulation. It is of immense importance to extend this potential for the various molecular properties of TiAP and TiAP/n-dodecane binary mixtures using MD simulation. Earlier, efforts were devoted to find out a suitable force field which can explain both structural and dynamical properties by empirical parameterization. Therefore, the present MD study reports the structural, dynamical, and thermodynamical properties with different mole fractions of TiAP-dodecane mixtures at the entire range of mole fraction of 0-1 employing our calibrated Mulliken embedded optimized potentials for liquid simulation (OPLS) force field. The calculated electric dipole moment of TiAP was seen to be almost unaffected by the TiAP concentration in the dodecane diluent. The calculated liquid densities of the TiAP-dodecane mixture are in good agreement with the experimental data. The mixture densities at different temperatures are also studied which was found to be reduced with temperature as expected. The plot of diffusivities for TiAP and dodecane against mole fraction in the binary mixture intersects at a composition in the range of 25%-30% of TiAP in dodecane, which is very much closer to the TBP/n-dodecane composition used in the PUREX process. The excess volume of mixing was found to be positive for the entire range of mole fraction and the excess enthalpy of mixing was shown to be endothermic for the TBP/n-dodecane mixture as well as TiAP/n-dodecane mixture as reported experimentally. The spatial pair correlation functions are evaluated between TiAP-TiAP and TiAP-dodecane molecules. Further, shear viscosity has been computed by performing the non-equilibrium molecular dynamics employing the periodic perturbation method. The calculated shear viscosity of the binary mixture is found to be in excellent agreement with the experimental values. The use of the newly calibrated OPLS force field embedding Mulliken charges is shown to be equally reliable in predicting the structural and dynamical properties for the mixture without incorporating any arbitrary scaling in the force field or Lennard-Jones parameters. Further, the present MD simulation results demonstrate that the Stokes-Einstein relation breaks down at the molecular level. The present methodology might be adopted to evaluate the liquid state properties of an aqueous-organic biphasic system, which is of great significance in the interfacial science and technology.
NASA Astrophysics Data System (ADS)
Das, Arya; Ali, Sk. Musharaf
2018-02-01
Tri-isoamyl phosphate (TiAP) has been proposed to be an alternative for tri-butyl phosphate (TBP) in the Plutonium Uranium Extraction (PUREX) process. Recently, we have successfully calibrated and tested all-atom optimized potentials for liquid simulations using Mulliken partial charges for pure TiAP, TBP, and dodecane by performing molecular dynamics (MD) simulation. It is of immense importance to extend this potential for the various molecular properties of TiAP and TiAP/n-dodecane binary mixtures using MD simulation. Earlier, efforts were devoted to find out a suitable force field which can explain both structural and dynamical properties by empirical parameterization. Therefore, the present MD study reports the structural, dynamical, and thermodynamical properties with different mole fractions of TiAP-dodecane mixtures at the entire range of mole fraction of 0-1 employing our calibrated Mulliken embedded optimized potentials for liquid simulation (OPLS) force field. The calculated electric dipole moment of TiAP was seen to be almost unaffected by the TiAP concentration in the dodecane diluent. The calculated liquid densities of the TiAP-dodecane mixture are in good agreement with the experimental data. The mixture densities at different temperatures are also studied which was found to be reduced with temperature as expected. The plot of diffusivities for TiAP and dodecane against mole fraction in the binary mixture intersects at a composition in the range of 25%-30% of TiAP in dodecane, which is very much closer to the TBP/n-dodecane composition used in the PUREX process. The excess volume of mixing was found to be positive for the entire range of mole fraction and the excess enthalpy of mixing was shown to be endothermic for the TBP/n-dodecane mixture as well as TiAP/n-dodecane mixture as reported experimentally. The spatial pair correlation functions are evaluated between TiAP-TiAP and TiAP-dodecane molecules. Further, shear viscosity has been computed by performing the non-equilibrium molecular dynamics employing the periodic perturbation method. The calculated shear viscosity of the binary mixture is found to be in excellent agreement with the experimental values. The use of the newly calibrated OPLS force field embedding Mulliken charges is shown to be equally reliable in predicting the structural and dynamical properties for the mixture without incorporating any arbitrary scaling in the force field or Lennard-Jones parameters. Further, the present MD simulation results demonstrate that the Stokes-Einstein relation breaks down at the molecular level. The present methodology might be adopted to evaluate the liquid state properties of an aqueous-organic biphasic system, which is of great significance in the interfacial science and technology.
Demand driven salt clean-up in a molten salt fast reactor – Defining a priority list
Litskevich, D.; Gregg, R.; Mount, A. R.
2018-01-01
The PUREX technology based on aqueous processes is currently the leading reprocessing technology in nuclear energy systems. It seems to be the most developed and established process for light water reactor fuel and the use of solid fuel. However, demand driven development of the nuclear system opens the way to liquid fuelled reactors, and disruptive technology development through the application of an integrated fuel cycle with a direct link to reactor operation. The possibilities of this new concept for innovative reprocessing technology development are analysed, the boundary conditions are discussed, and the economic as well as the neutron physical optimization parameters of the process are elucidated. Reactor physical knowledge of the influence of different elements on the neutron economy of the reactor is required. Using an innovative study approach, an element priority list for the salt clean-up is developed, which indicates that separation of Neodymium and Caesium is desirable, as they contribute almost 50% to the loss of criticality. Separating Zirconium and Samarium in addition from the fuel salt would remove nearly 80% of the loss of criticality due to fission products. The theoretical study is followed by a qualitative discussion of the different, demand driven optimization strategies which could satisfy the conflicting interests of sustainable reactor operation, efficient chemical processing for the salt clean-up, and the related economic as well as chemical engineering consequences. A new, innovative approach of balancing the throughput through salt processing based on a low number of separation process steps is developed. Next steps for the development of an economically viable salt clean-up process are identified. PMID:29494604
The used nuclear fuel problem - can reprocessing and consolidated storage be complementary?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, C.; Thomas, I.
2013-07-01
This paper describes our CISF (Consolidated Interim Storage Facilities) and Reprocessing Facility concepts and show how they can be combined with a geologic repository to provide a comprehensive system for dealing with spent fuels in the USA. The performance of the CISF was logistically analyzed under six operational scenarios. A 3-stage plan has been developed to establish the CISF. Stage 1: the construction at the CISF site of only a rail receipt interface and storage pad large enough for the number of casks that will be received. The construction of the CISF Canister Handling Facility, the Storage Cask Fabrication Facility,more » the Cask Maintenance Facility and supporting infrastructure are performed during stage 2. The construction and placement into operation of a water-filled pool repackaging facility is completed for Stage 3. By using this staged approach, the capital cost of the CISF is spread over a number of years. It also allows more time for a final decision on the geologic repository to be made. A recycling facility will be built, this facility will used the NUEX recycling process that is based on the aqueous-based PUREX solvent extraction process, using a solvent of tri-N-butyl phosphate in a kerosene diluent. It is capable of processing spent fuels at a rate of 5 MT per day, at burn-ups up to 50 GWD per ton of spent fuels and a minimum of 5 years out-of-reactor cooling.« less
Micro-Raman Technology to Interrogate Two-Phase Extraction on a Microfluidic Device.
Nelson, Gilbert L; Asmussen, Susan E; Lines, Amanda M; Casella, Amanda J; Bottenus, Danny R; Clark, Sue B; Bryan, Samuel A
2018-05-21
Microfluidic devices provide ideal environments to study solvent extraction. When droplets form and generate plug flow down the microfluidic channel, the device acts as a microreactor in which the kinetics of chemical reactions and interfacial transfer can be examined. Here, we present a methodology that combines chemometric analysis with online micro-Raman spectroscopy to monitor biphasic extractions within a microfluidic device. Among the many benefits of microreactors is the ability to maintain small sample volumes, which is especially important when studying solvent extraction in harsh environments, such as in separations related to the nuclear fuel cycle. In solvent extraction, the efficiency of the process depends on complex formation and rates of transfer in biphasic systems. Thus, it is important to understand the kinetic parameters in an extraction system to maintain a high efficiency and effectivity of the process. This monitoring provided concentration measurements in both organic and aqueous plugs as they were pumped through the microfluidic channel. The biphasic system studied was comprised of HNO 3 as the aqueous phase and 30% (v/v) tributyl phosphate in n-dodecane comprised the organic phase, which simulated the plutonium uranium reduction extraction (PUREX) process. Using pre-equilibrated solutions (post extraction), the validity of the technique and methodology is illustrated. Following this validation, solutions that were not equilibrated were examined and the kinetics of interfacial mass transfer within the biphasic system were established. Kinetic results of extraction were compared to kinetics already determined on a macro scale to prove the efficacy of the technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman-Pollard, J.R.
1994-03-02
This engineering study addresses 50 inactive underground radioactive waste tanks. The tanks were formerly used for the following functions associated with plutonium and uranium separations and waste management activities in the 200 East and 200 West Areas of the Hanford Site: settling solids prior to disposal of supernatant in cribs and a reverse well; neutralizing acidic process wastes prior to crib disposal; receipt and processing of single-shell tank (SST) waste for uranium recovery operations; catch tanks to collect water that intruded into diversion boxes and transfer pipeline encasements and any leakage that occurred during waste transfer operations; and waste handlingmore » and process experimentation. Most of these tanks have not been in use for many years. Several projects have, been planned and implemented since the 1970`s and through 1985 to remove waste and interim isolate or interim stabilize many of the tanks. Some tanks have been filled with grout within the past several years. Responsibility for final closure and/or remediation of these tanks is currently assigned to several programs including Tank Waste Remediation Systems (TWRS), Environmental Restoration and Remedial Action (ERRA), and Decommissioning and Resource Conservation and Recovery Act (RCRA) Closure (D&RCP). Some are under facility landlord responsibility for maintenance and surveillance (i.e. Plutonium Uranium Extraction [PUREX]). However, most of the tanks are not currently included in any active monitoring or surveillance program.« less
Tc-99 Decontamination From Heat Treated Gaseous Diffusion Membrane -Phase I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oji, L.; Wilmarth, B.; Restivo, M.
2017-03-13
Uranium gaseous diffusion cascades represent a significant environmental challenge to dismantle, containerize and dispose as low-level radioactive waste. Baseline technologies rely on manual manipulations involving direct access to technetium-contaminated piping and materials. There is a potential to utilize novel thermal decontamination technologies to remove the technetium and allow for on-site disposal of the very large uranium converters. Technetium entered these gaseous diffusion cascades as a hexafluoride complex in the same fashion as uranium. Technetium, as the isotope Tc-99, is an impurity that follows uranium in the first cycle of the Plutonium and Uranium Extraction (PUREX) process. The technetium speciation ormore » exact form in the gas diffusion cascades is not well defined. Several forms of Tc-99 compounds, mostly the fluorinated technetium compounds with varying degrees of volatility have been speculated by the scientific community to be present in these cascades. Therefore, there may be a possibility of using thermal desorption, which is independent of the technetium oxidation states, to perform an in situ removal of the technetium as a volatile species and trap the radionuclide on sorbent traps which could be disposed as low-level waste.« less
Back-end of the fuel cycle - Indian scenario
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wattal, P.K.
Nuclear power has a key role in meeting the energy demands of India. This can be sustained by ensuring robust technology for the back end of the fuel cycle. Considering the modest indigenous resources of U and a huge Th reserve, India has adopted a three stage Nuclear Power Programme (NPP) based on 'closed fuel cycle' approach. This option on 'Recovery and Recycle' serves twin objectives of ensuring adequate supply of nuclear fuel and also reducing the long term radio-toxicity of the wastes. Reprocessing of the spent fuel by Purex process is currently employed. High Level Liquid Waste (HLW) generatedmore » during reprocessing is vitrified and undergoes interim storage. Back-end technologies are constantly modified to address waste volume minimization and radio-toxicity reduction. Long-term management of HLW in Indian context would involve partitioning of long lived minor actinides and recovery of valuable fission products specifically cesium. Recovery of minor actinides from HLW and its recycle is highly desirable for the sustained growth of India's NPPs. In this context, programme for developing and deploying partitioning technologies on industrial scale is pursued. The partitioned elements could be either transmuted in Fast Reactors (FRs)/Accelerated Driven Systems (ADS) as an integral part of sustainable Indian NPP. (authors)« less
Industrial scale-plant for HLW partitioning in Russia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzekun, E.G.; Glagolenko, Y.V.; Drojko, E.G.
1996-12-31
Radiochemical plant of PA <> at Ozersk, which was come on line in December 1948 originally for weapon plutonium production and reoriented on the reprocessing of spent fuel, till now keeps on storage HLW of the military program. Application of the vitrification method since 1986 has not essentially reduced HLW volumes. So, as of September 1, 1995 vitrification installations had been processed 9590 m{sup 3} HLW and 235 MCi of radionuclides was included in glass. However only 1100 m{sup 3} and 20.5 MCi is part of waste of the military program. The reason is the fact, that the technology andmore » equipment of vitrification were developed for current waste of Purex-process, for which low contents of corrosion-dangerous impurity to materials of vitrification installation is characteristic of. With reference to HLW, which are growing at PA <> in the course of weapon plutonium production, the program of Science-Research Works includes the following main directions of work. Development of technology and equipment of installations for immobilising HLW with high contents of impurity into a solid form at induction melter. Application of High-temperature Adsorption Method for sorption of radionuclides from HLW on silica gel. Application of Partitioning Method of radionuclides from HLW, based on extraction cesium and strontium into cobalt dicarbollyde or crown-ethers, but also on recovery of cesium radionuclides by sorption on inorganic sorbents. In this paper the results of work on creation of first industrial scale-plant for partitioning HLW by the extraction and sorption methods are reported.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyrwas, R. B.
The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel exposed to two proposed chemical cleaning solutions: acidic permanganate (0.18 M nitric acid and 0.05M sodium permanganate) and caustic permanganate. (10 M sodium hydroxide and 0.05M sodium permanganate). These solutions have been proposed as a chemical cleaning solution for the retrieval ofmore » actinides in the sludge in the waste tanks, and were tested with both HM and PUREX sludge simulants at a 20:1 ratio.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strickland, Christopher E.; Lawter, Amanda R.; Qafoku, Nikolla
Isotopes of iodine were generated during plutonium production from nine production reactors at the U.S. Department of Energy Hanford Site. The long half-life 129I generated at the Hanford Site during reactor operations was 1) stored in single-shell and double-shell tanks, 2) discharged to liquid disposal sites (e.g., cribs and trenches), 3) released to the atmosphere during fuel reprocessing operations, or 4) captured by off-gas absorbent devices (silver reactors) at chemical separations plants (PUREX, B-Plant, T-Plant, and REDOX). Releases of 129I to the subsurface have resulted in several large, though dilute, plumes in the groundwater, including the plume in the 200-UP-1more » operable unit. There is also 129I remaining in the vadose zone beneath disposal or leak locations. Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited.« less
Safeguard monitoring of direct electrolytic reduction
NASA Astrophysics Data System (ADS)
Jurovitzki, Abraham L.
Nuclear power is regaining global prominence as a sustainable energy source as the world faces the consequences of depending on limited fossil based, CO2 emitting fuels. A key component to achieving this sustainability is to implement a closed nuclear fuel cycle. Without achieving this goal, a relatively small fraction of the energy value in nuclear fuel is actually utilized. This involves recycling of spent nuclear fuel (SNF)---separating fissile actinides from waste products and using them to fabricate fresh fuel. Pyroprocessing is a viable option being developed for this purpose with a host of benefits compared to other recycling options, such as PUREX. Notably, pyroprocessing is ill suited to separate pure plutonium from spent fuel and thus has non-proliferation benefits. Pyroprocessing involves high temperature electrochemical and chemical processing of SNF in a molten salt electrolyte. During this batch process, several intermediate and final streams are produced that contain radioactive material. While pyroprocessing is ineffective at separating pure plutonium, there are various process misuse scenarios that could result in diversion of impure plutonium into one or more of these streams. This is a proliferation risk that should be addressed with innovative safeguards technology. One approach to meeting this challenge is to develop real time monitoring techniques that can be implemented in the hot cells and coupled with the various unit operations involved with pyroprocessing. Current state of the art monitoring techniques involve external chemical assaying which requires sample removal from these unit operations. These methods do not meet International Atomic Energy Agency's (IAEA) timeliness requirements. In this work, a number of monitoring techniques were assessed for their viability as online monitoring tools. A hypothetical diversion scenario for the direct electrolytic reduction process was experimentally verified (using Nd2O3 as a surrogate for PuO2). Electrochemical analysis was demonstrated to be effective at detecting even very dilute concentrations of actinides as evidence for a diversion attempt.
UNIT OPERATIONS SECTION MONTHLY PROGRESS REPORT, OCTOBER 1961
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whatley, M.E.; Haas, P.A.; Horton, R.W.
1962-04-01
Additional runs were made in the 6-in.-dia. separation column. The kinetics of the methane --copper oxide reaction was investigated in deep bed tests. The work on the development of the shear included a satisfactory method of ng, preliminary test of an outer gag faced with rubber, and a metallic inner gsg contoured to the shape of a sheared assembly. The mechanical dejacketing of the SRE Core I fuel, NaK-bonded, stainless steel-clad uranium slugs, was successfully completed. The effective therrnal conductivity of a packed bed of 0.023-in. steel shot was approximately 0.33 Btu/hr- deg Fft at 200 deg F. Flow capacitymore » for the compound extraction scrub column equipped with sieve plates (0.125-in.-dia. was determined. Average waste calcination rates for Purex were higher by a factor of 1.5 to 2.0 than rates for TBP-25. (auth)« less
SPECTROSCOPIC ONLINE MONITORING FOR PROCESS CONTROL AND SAFEGUARDING OF RADIOCHEMICAL STREAMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan, Samuel A.; Levitskaia, Tatiana G.
2013-09-29
There is a renewed interest worldwide to promote the use of nuclear power and close the nuclear fuel cycle. The long term successful use of nuclear power is critically dependent upon adequate and safe processing and disposition of the used nuclear fuel. Liquid-liquid extraction is a separation technique commonly employed for the processing of the dissolved used nuclear fuel. The instrumentation used to monitor these processes must be robust, require little or no maintenance, and be able to withstand harsh environments such as high radiation fields and aggressive chemical matrices. This paper summarizes application of the absorption and vibrational spectroscopicmore » techniques supplemented by physicochemical measurements for radiochemical process monitoring. In this context, our team experimentally assessed the potential of Raman and spectrophotometric techniques for online real-time monitoring of the U(VI)/nitrate ion/nitric acid and Pu(IV)/Np(V)/Nd(III), respectively, in solutions relevant to spent fuel reprocessing. These techniques demonstrate robust performance in the repetitive batch measurements of each analyte in a wide concentration range using simulant and commercial dissolved spent fuel solutions. Spectroscopic measurements served as training sets for the multivariate data analysis to obtain partial least squares predictive models, which were validated using on-line centrifugal contactor extraction tests. Satisfactory prediction of the analytes concentrations in these preliminary experiments warrants further development of the spectroscopy-based methods for radiochemical process control and safeguarding. Additionally, the ability to identify material intentionally diverted from a liquid-liquid extraction contactor system was successfully tested using on-line process monitoring as a means to detect the amount of material diverted. A chemical diversion and detection from a liquid-liquid extraction scheme was demonstrated using a centrifugal contactor system operating with the simulant PUREX extraction system of Nd(NO3)3/nitric acid aqueous phase and TBP/n-dodecane organic phase. During a continuous extraction experiment, a portion of the feed from a counter-current extraction system was diverted while the spectroscopic on-line process monitoring system was simultaneously measuring the feed, raffinate and organic products streams. The amount observed to be diverted by on-line spectroscopic process monitoring was in excellent agreement with values based from the known mass of sample directly taken (diverted) from system feed solution.« less
Conceptual Model of Iodine Behavior in the Subsurface at the Hanford Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truex, Michael J.; Lee, Brady D.; Johnson, Christian D.
Isotopes of iodine were generated during plutonium production within the nine production reactors at the U.S. Department of Energy Hanford Site. The short half-life 131I that was released from the fuel into the atmosphere during the dissolution process (when the fuel was dissolved) in the Hanford Site 200 Area is no longer present at concentrations of concern in the environment. The long half-life 129I generated at the Hanford Site during reactor operations was (1) stored in single-shell and double-shell tanks, (2) discharged to liquid disposal sites (e.g., cribs and trenches), (3) released to the atmosphere during fuel reprocessing operations, ormore » (4) captured by off-gas absorbent devices (silver reactors) at chemical separations plants (PUREX, B-Plant, T-Plant, and REDOX). Releases of 129I to the subsurface have resulted in several large, though dilute, plumes in the groundwater. There is also 129I remaining in the vadose zone beneath disposal or leak locations. The fate and transport of 129I in the environment and potential remediation technologies are currently being studied as part of environmental remediation activities at the Hanford Site. A conceptual model describing the nature and extent of subsurface contamination, factors that control plume behavior, and factors relevant to potential remediation processes is needed to support environmental remedy decisions. Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited. In addition, its behavior in subsurface is different from that of other more common and important contaminants (e.g., U, Cr and Tc) in terms of sorption (adsorption and precipitation), and aqueous phase species transformation via redox reactions. Thus, the conceptual model also needs to both describe known contaminant and biogeochemical process information and identify aspects about which additional information is needed to effectively support remedy decisions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyrwas, R. B.
The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel when interacted with the chemical cleaning solution composed of 0.18 M nitric acid and 0.5 wt. % oxalic acid. This solution has been proposed as a dissolution solution that would be used to remove the remaining hard heel portion of the sludgemore » in the waste tanks. This solution was combined with the HM and PUREX simulated sludge with dilution ratios that represent the bulk oxalic cleaning process (20:1 ratio, acid solution to simulant) and the cumulative volume associated with multiple acid strikes (50:1 ratio). The testing was conducted over 28 days at 50°C and deployed two methods to invest the corrosion conditions; passive weight loss coupon and an active electrochemical probe were used to collect data on the corrosion rate and material performance. In addition to investigating the chemical cleaning solutions, electrochemical corrosion testing was performed on acidic and basic solutions containing sodium permanganate at room temperature to explore the corrosion impacts if these solutions were to be implemented to retrieve remaining actinides that are currently in the sludge of the tank.« less
Sun, Qi; Jiang, Lin; Gong, Liang; Sun, Jin-Hua
2016-08-15
During PUREX spent nuclear fuel reprocessing, mixture of tributyl phosphate (TBP) and hydrocarbon solvent are employed as organic solvent to extract uranium in consideration of radiation contaminated safety and resource recycling, meanwhile nitric acid is utilized to dissolve the spent fuel into small pieces. However, once TBP contacts with nitric acid or nitrates above 130°C, a heavy "red oil" layer would occur accompanied by thermal runaway reactions, even caused several nuclear safety accident. Considering nitric acid volatility and weak exothermic detection, C80micro calorimeter technique was used in this study to investigate thermal decomposition of TBP mixed with nitric acid. Results show that the concentration of nitric acid greatly influences thermal hazard of the system by direct reactions. Even with a low heating rate, if the concentration of nitric acid increases due to evaporation of water or improper operations, thermal runaway in the closed system could start at a low temperature. Copyright © 2016 Elsevier B.V. All rights reserved.
Americium-241 in surface soil associated with the Hanford site and vicinity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, K.R.; Gilbert, R.O.; Gano, K.A.
1981-05-01
Various kinds of surface soil samples were collected and analyzed for Americium-241 (/sup 241/Am) to examine the feasibility of improving soil sample data for the Hanford Surface Environmental Surveillance Program. Results do not indicate that a major improvement would occur if procedures were changed from the current practices. Conclusions from this study are somewhat tempered by the very low levels of /sup 241/Am (< 0.10 pCi/g dry weight) detected in surface soil samples and by the fact that statistical significance depended on the type of statistical tests used. In general, the average concentration of /sup 241/Am in soil crust (0more » to 1.0 cm deep) was greater than the corresponding subsurface layer (1.0 to 2.5 cm deep), and the average concentration of /sup 241/Am in some onsite samples collected near the PUREX facility was greater than comparable samples collected 60 km upwind at an offsite location.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harold F. McFarlane; Terry Todd
2013-11-01
Reprocessing is essential to closing nuclear fuel cycle. Natural uranium contains only 0.7 percent 235U, the fissile (see glossary for technical terms) isotope that produces most of the fission energy in a nuclear power plant. Prior to being used in commercial nuclear fuel, uranium is typically enriched to 3–5% in 235U. If the enrichment process discards depleted uranium at 0.2 percent 235U, it takes more than seven tonnes of uranium feed to produce one tonne of 4%-enriched uranium. Nuclear fuel discharged at the end of its economic lifetime contains less one percent 235U, but still more than the natural ore.more » Less than one percent of the uranium that enters the fuel cycle is actually used in a single pass through the reactor. The other naturally occurring isotope, 238U, directly contributes in a minor way to power generation. However, its main role is to transmute into plutoniumby neutron capture and subsequent radioactive decay of unstable uraniumand neptuniumisotopes. 239Pu and 241Pu are fissile isotopes that produce more than 40% of the fission energy in commercially deployed reactors. It is recovery of the plutonium (and to a lesser extent the uranium) for use in recycled nuclear fuel that has been the primary focus of commercial reprocessing. Uraniumtargets irradiated in special purpose reactors are also reprocessed to obtain the fission product 99Mo, the parent isotope of technetium, which is widely used inmedical procedures. Among the fission products, recovery of such expensive metals as platinum and rhodium is technically achievable, but not economically viable in current market and regulatory conditions. During the past 60 years, many different techniques for reprocessing used nuclear fuel have been proposed and tested in the laboratory. However, commercial reprocessing has been implemented along a single line of aqueous solvent extraction technology called plutonium uranium reduction extraction process (PUREX). Similarly, hundreds of types of reactor fuels have been irradiated for different purposes, but the vast majority of commercial fuel is uranium oxide clad in zirconium alloy tubing. As a result, commercial reprocessing plants have relatively narrow technical requirements for used nuclear that is accepted for processing.« less
Overview of reductants utilized in nuclear fuel reprocessing/recycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patricia Paviet-Hartmann; Catherine Riddle; Keri Campbell
2013-10-01
Most of the aqueous processes developed, or under consideration worldwide for the recycling of used nuclear fuel (UNF) utilize the oxido-reduction properties of actinides to separate them from other radionuclides. Generally, after acid dissolution of the UNF, (essentially in nitric acid solution), actinides are separated from the raffinate by liquid-liquid extraction using specific solvents, associated along the process, with a particular reductant that will allow the separation to occur. For example, the industrial PUREX process utilizes hydroxylamine as a plutonium reductant. Hydroxylamine has numerous advantages: not only does it have the proper attributes to reduce Pu(IV) to Pu(III), but itmore » is also a non-metallic chemical that is readily decomposed to innocuous products by heating. However, it has been observed that the presence of high nitric acid concentrations or impurities (such as metal ions) in hydroxylamine solutions increase the likelihood of the initiation of an autocatalytic reaction. Recently there has been some interest in the application of simple hydrophilic hydroxamic ligands such as acetohydroxamic acid (AHA) for the stripping of tetravalent actinides in the UREX process flowsheet. This approach is based on the high coordinating ability of hydroxamic acids with tetravalent actinides (Np and Pu) compared with hexavalent uranium. Thus, the use of AHA offers a route for controlling neptunium and plutonium in the UREX process by complexant based stripping of Np(IV) and Pu(IV) from the TBP solvent phase, while U(VI) ions are not affected by AHA and remain solvated in the TBP phase. In the European GANEX process, AHA is also used to form hydrophilic complexes with actinides and strip them from the organic phase into nitric acid. However, AHA does not decompose completely when treated with nitric acid and hampers nitric acid recycling. In lieu of using AHA in the UREX + process, formohydroxamic acid (FHA), although not commercially available, hold promises as a replacement for AHA. FHA undergoes hydrolysis to formic acid which is volatile, thus allowing the recycling of nitric acid. Unfortunately, FHA powder was not stable in the experiments we ran in our laboratory. In addition, AHA and FHA also decompose to hydroxylamine which may undergo an autocatalytic reaction. Other reductants are available and could be extremely useful for actinides separation. The review presents the current plutonium reductants used in used nuclear fuel reprocessing and will introduce innovative and novel reductants that could become reducers for future research on UNF separation.« less
ADVANCED OXIDATION: OXALATE DECOMPOSITION TESTING WITH OZONE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ketusky, E.; Subramanian, K.
At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include:more » (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration) after nearing dissolution equilibrium, and then decomposed to {le} 100 Parts per Million (ppm) oxalate. Since AOP technology largely originated on using ultraviolet (UV) light as a primary catalyst, decomposition of the spent oxalic acid, well exposed to a medium pressure mercury vapor light was considered the benchmark. However, with multi-valent metals already contained in the feed, and maintenance of the UV light a concern; testing was conducted to evaluate the impact from removing the UV light. Using current AOP terminology, the test without the UV light would likely be considered an ozone based, dark, ferrioxalate type, decomposition process. Specifically, as part of the testing, the impacts from the following were investigated: (1) Importance of the UV light on the decomposition rates when decomposing 1 wt% spent oxalic acid; (2) Impact of increasing the oxalic acid strength from 1 to 2.5 wt% on the decomposition rates; and (3) For F-area testing, the advantage of increasing the spent oxalic acid flowrate from 40 L/min (liters/minute) to 50 L/min during decomposition of the 2.5 wt% spent oxalic acid. The results showed that removal of the UV light (from 1 wt% testing) slowed the decomposition rates in both the F & H testing. Specifically, for F-Area Strike 1, the time increased from about 6 hours to 8 hours. In H-Area, the impact was not as significant, with the time required for Strike 1 to be decomposed to less than 100 ppm increasing slightly, from 5.4 to 6.4 hours. For the spent 2.5 wt% oxalic acid decomposition tests (all) without the UV light, the F-area decompositions required approx. 10 to 13 hours, while the corresponding required H-Area decompositions times ranged from 10 to 21 hours. For the 2.5 wt% F-Area sludge, the increased availability of iron likely caused the increased decomposition rates compared to the 1 wt% oxalic acid based tests. In addition, for the F-testing, increasing the recirculation flow rates from 40 liter/minute to 50 liter/minute resulted in an increased decomposition rate, suggesting a better use of ozone.« less
Alternative Chemical Cleaning Methods for High Level Waste Tanks: Simulant Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudisill, T.; King, W.; Hay, M.
Solubility testing with simulated High Level Waste tank heel solids has been conducted in order to evaluate two alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge washing efforts. Tests were conducted with non-radioactive pure phase metal reagents, binary mixtures of reagents, and a Savannah River Site PUREX heel simulant to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent and pure, dilute nitric acid toward dissolving the bulk non-radioactive waste components. A focus of this testing was on minimization of oxalic acid additions duringmore » tank cleaning. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid which is the current baseline chemical cleaning reagent. In a separate study, solubility tests were conducted with radioactive tank heel simulants using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species known to be drivers for Savannah River Site tank closure Performance Assessments. Permanganate-based cleaning methods were evaluated prior to and after oxalic acid contact.« less
Reducing Actinide Production Using Inert Matrix Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deinert, Mark
2017-08-23
The environmental and geopolitical problems that surround nuclear power stem largely from the longlived transuranic isotopes of Am, Cm, Np and Pu that are contained in spent nuclear fuel. New methods for transmuting these elements into more benign forms are needed. Current research efforts focus largely on the development of fast burner reactors, because it has been shown that they could dramatically reduce the accumulation of transuranics. However, despite five decades of effort, fast reactors have yet to achieve industrial viability. A critical limitation to this, and other such strategies, is that they require a type of spent fuel reprocessingmore » that can efficiently separate all of the transuranics from the fission products with which they are mixed. Unfortunately, the technology for doing this on an industrial scale is still in development. In this project, we explore a strategy for transmutation that can be deployed using existing, current generation reactors and reprocessing systems. We show that use of an inert matrix fuel to recycle transuranics in a conventional pressurized water reactor could reduce overall production of these materials by an amount that is similar to what is achievable using proposed fast reactor cycles. Furthermore, we show that these transuranic reductions can be achieved even if the fission products are carried into the inert matrix fuel along with the transuranics, bypassing the critical separations hurdle described above. The implications of these findings are significant, because they imply that inert matrix fuel could be made directly from the material streams produced by the commercially available PUREX process. Zirconium dioxide would be an ideal choice of inert matrix in this context because it is known to form a stable solid solution with both fission products and transuranics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruce J. Mincher; Guiseppe Modolo; Strephen P. Mezyk
2009-01-01
Solvent extraction is the most commonly used process scale separation technique for nuclear applications and it benefits from more than 60 years of research and development and proven experience at the industrial scale. Advanced solvent extraction processes for the separation of actinides and fission products from dissolved nuclear fuel are now being investigated worldwide by numerous groups (US, Europe, Russia, Japan etc.) in order to decrease the radiotoxic inventories of nuclear waste. While none of the advanced processes have yet been implemented at the industrial scale their development studies have sometimes reached demonstration tests at the laboratory scale. Most ofmore » the partitioning strategies rely on the following four separations: 1. Partitioning of uranium and/or plutonium from spent fuel dissolution liquors. 2. Separation of the heat generating fission products such as strontium and cesium. 3. Coextraction of the trivalent actinides and lanthanides. 4. Separation of the trivalent actinides from the trivalent lanthanides. Tributylphosphate (TBP) in the first separation is the basis of the PUREX, UREX and COEX processes, developed in Europe and the US, whereas monoamides as alternatives for TBP are being developed in Japan and India. For the second separation, many processes were developed worldwide, including the use of crown-ether extractants, like the FPEX process developed in the USA, and the CCD-PEG process jointly developed in the USA and Russia for the partitioning of cesium and strontium. In the third separation, phosphine oxides (CMPOs), malonamides, and diglycolamides are used in the TRUEX, DIAMEX and the ARTIST processes, respectively developed in US, Europe and Japan. Trialkylphosphine oxide(TRPO) developed in China, or UNEX (a mixture of several extractants) jointly developed in Russia and the USA allow all actinides to be co-extracted from acidic radioactive liquid waste. For the final separation, soft donor atom-containing ligands such as the bistriazinylbipyridines (BTBPs) or dithiophosphinic acids have been developed in Europe and China to selectively extract the trivalent actinides. However, in the TALSPEAK process developed in the USA, the separation is based on the relatively high affinity of aminopolycarboxylic acid complexants such as DTPA for trivalent actinides over lanthanides. In the DIDPA, SETFICS and the GANEX processes, developed in Japan and France, the group separation is accomplished in a reverse TALSPEAK process. A typical scenario is shown in Figure 1 for the UREX1a (Uranium Extraction version 1a) process. The initial step is the TBP extraction for the separation of recyclable uranium. The second step partitions the short-lived, highly radioactive cesium and strontium to minimize heat loading in the high-level waste repository. The third step is a group separation of the trivalent actinides and lanthanides with the last step being partitioning of the trivalent lanthanides from the actinides.« less
NASA Astrophysics Data System (ADS)
Saab, Mohamad; Réal, Florent; Šulka, Martin; Cantrel, Laurent; Virot, François; Vallet, Valérie
2017-06-01
Tributyl-phosphate (TBP), a ligand used in the PUREX liquid-liquid separation process of spent nuclear fuel, can form an explosive mixture in contact with nitric acid that might lead to a violent explosive thermal runaway. In the context of safety of a nuclear reprocessing plant facility, it is crucial to predict the stability of TBP at elevated temperatures. So far, only the enthalpies of formation of TBP are available in the literature with rather large uncertainties, while those of its degradation products, di-(HDBP) and mono-(H2MBP), are unknown. In this goal, we have used state-of-the art quantum chemical methods to compute the formation enthalpies and entropies of TBP and its degradation products di-(HDBP) and mono-(H2MBP) in gas and liquid phases. Comparisons of levels of quantum chemical theory revealed that there are significant effects of correlation on their electronic structures, pushing for the need of not only high level of electronic correlation treatment, namely, local coupled cluster with single and double excitation operators and perturbative treatment of triple excitations, but also extrapolations to the complete basis to produce reliable and accurate thermodynamics data. Solvation enthalpies were computed with the conductor-like screening model for real solvents [COSMO-RS], for which we observe errors not exceeding 22 kJ mol-1. We thus propose with final uncertainty of about 20 kJ mol-1 standard enthalpies of formation of TBP, HDBP, and H2MBP which amounts to -1281.7 ± 24.4, -1229.4 ± 19.6, and -1176.7 ± 14.8 kJ mol-1, respectively, in the gas phase. In the liquid phase, the predicted values are -1367.3 ± 24.4, -1348.7 ± 19.6, and -1323.8± 14.8 kJ mol-1, to which we may add about -22 kJ mol-1 error from the COSMO-RS solvent model. From these data, the complete hydrolysis of TBP is predicted as an exothermic phenomena but showing a slightly endergonic process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bathke, C. G.; Wallace, R. K.; Ireland, J. R.
2010-09-01
This paper is an extension to earlier studies1,2 that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) and alternate nuclear materials (ANM) associated with the PUREX, UREX, COEX, THOREX, and PYROX reprocessing schemes. This study extends the figure of merit (FOM) for evaluating attractiveness to cover a broad range of proliferant state and sub-national group capabilities. The primary conclusion of this study is that all fissile material needs to be rigorously safeguarded to detect diversion by a state and provided the highest levels of physical protection to prevent theft by sub-national groups; no “silver bullet” has beenmore » found that will permit the relaxation of current international safeguards or national physical security protection levels. This series of studies has been performed at the request of the United States Department of Energy (DOE) and is based on the calculation of "attractiveness levels" that are expressed in terms consistent with, but normally reserved for nuclear materials in DOE nuclear facilities.3 The expanded methodology and updated findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bathke, Charles G; Wallace, Richard K; Ireland, John R
2009-01-01
This paper is an extension to earlier studies that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) and alternate nuclear materials (ANM) associated with the PUREX, UREX, COEX, THOREX, and PYROX reprocessing schemes. This study extends the figure of merit (FOM) for evaluating attractiveness to cover a broad range of proliferant state and sub-national group capabilities. The primary conclusion of this study is that all fissile material needs to be rigorously safeguarded to detect diversion by a state and provided the highest levels of physical protection to prevent theft by sub-national groups; no 'silver bullet' has beenmore » found that will permit the relaxation of current international safeguards or national physical security protection levels. This series of studies has been performed at the request of the United States Department of Energy (DOE) and is based on the calculation of 'attractiveness levels' that are expressed in terms consistent with, but normally reserved for nuclear materials in DOE nuclear facilities. The expanded methodology and updated findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security are discussed.« less
TC-99 Decontaminant from heat treated gaseous diffusion membrane -Phase I, Part B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oji, L.; Restivo, M.; Duignan, M.
2017-11-01
Uranium gaseous diffusion cascades represent a significant environmental challenge to dismantle, containerize and dispose as low-level radioactive waste. Baseline technologies rely on manual manipulations involving direct access to technetium-contaminated piping and materials. There is a potential to utilize novel decontamination technologies to remove the technetium and allow for on-site disposal of the very large uranium converters. Technetium entered these gaseous diffusion cascades as a hexafluoride complex in the same fashion as uranium. Technetium, as the isotope Tc-99, is an impurity that follows uranium in the first cycle of the Plutonium and Uranium Extraction (PUREX) process. The technetium speciation or exactmore » form in the gaseous diffusion cascades is not well defined. Several forms of Tc-99 compounds, mostly the fluorinated technetium compounds with varying degrees of volatility have been speculated by the scientific community to be present in these cascades. Therefore, there may be a possibility of using thermal or leaching desorption, which is independent of the technetium oxidation states, to perform an insitu removal of the technetium as a volatile species and trap the radionuclide on sorbent traps which could be disposed as low-level waste. Based on the positive results of the first part of this work1 the use of steam as a thermal decontamination agent was further explored with a second piece of used barrier material from a different location. This new series of tests included exposing more of the material surface to the flow of high temperature steam through the change in the reactor design, subjecting it to alternating periods of stream and vacuum, as well as determining if a lower temperature steam, i.e., 121°C (250°F) would be effective, too. Along with these methods, one other simpler method involving the leaching of the Tc-99 contaminated barrier material with a 1.0 M aqueous solution of ammonium carbonate, with and without sonication, was evaluated.« less
Barney, Gary S.; Brownell, Lloyd E.
1977-01-01
A method for converting sodium nitrate-containing, caustic, radioactive wastes to a solid, relatively insoluble, thermally stable form is provided and comprises the steps of reacting powdered aluminum silicate clay, e.g., kaolin, bentonite, dickite, halloysite, pyrophyllite, etc., with the sodium nitrate-containing radioactive wastes which have a caustic concentration of about 3 to 7 M at a temperature of 30.degree. C to 100.degree. C to thereby entrap the dissolved radioactive salts in the aluminosilicate matrix. In one embodiment the sodium nitrate-containing, caustic, radioactive liquid waste, such as neutralized Purex-type waste, or salts or oxide produced by evaporation or calcination of these liquid wastes (e.g., anhydrous salt cake) is converted at a temperature within the range of 30.degree. C to 100.degree. C to the solid mineral form-cancrinite having an approximate chemical formula 2(NaAlSiO.sub.4) .sup.. xSalt.sup.. y H.sub.2 O with x = 0.52 and y = 0.68 when the entrapped salt is NaNO.sub.3. In another embodiment the sodium nitrate-containing, caustic, radioactive liquid is reacted with the powdered aluminum silicate clay at a temperature within the range of 30.degree. C to 100.degree. C, the resulting reaction product is air dried eitheras loose powder or molded shapes (e.g., bricks) and then fired at a temperature of at least 600.degree. C to form the solid mineral form-nepheline which has the approximate chemical formula of NaAlSiO.sub.4. The leach rate of the entrapped radioactive salts with distilled water is reduced essentially to that of the aluminosilicate lattice which is very low, e.g., in the range of 10.sup.-.sup.2 to 10.sup.-.sup.4 g/cm.sup.2 -- day for cancrinite and 10.sup.-.sup.3 to 10.sup.-.sup.5 g/cm.sup.2 -- day for nepheline.
Radiation Stability of Benzyl Tributyl Ammonium Chloride towards Technetium-99 Extraction - 13016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paviet-Hartmann, Patricia; Horkley, Jared; Campbell, Keri
2013-07-01
A closed nuclear fuel cycle combining new separation technologies along with generation III and generation IV reactors is a promising way to achieve a sustainable energy supply. But it is important to keep in mind that future recycling processes of used nuclear fuel (UNF) must minimize wastes, improve partitioning processes, and integrate waste considerations into processes. New separation processes are being developed worldwide to complement the actual industrialized PUREX process which selectively separates U(VI) and Pu(IV) from the raffinate. As an example, the UREX process has been developed in the United States to co-extract hexavalent uranium (U) and hepta-valent technetiummore » (Tc) by tri-n-butyl phosphate (TBP). Tc-99 is recognized to be one of the most abundant, long-lived radio-toxic isotopes in UNF (half-life, t{sub 1/2} = 2.13 x 10{sup 5} years), and as such, is targeted in UNF separation strategies for isolation and encapsulation in solid waste-forms for final disposal in a nuclear waste repository. Immobilization of Tc-99 by a durable solid waste-form is a challenge, and its fate in new advanced technology processes is of importance. It is essential to be able to quantify and locate 1) its occurrence in any new developed flowsheets, 2) its chemical form in the individual phases of a process, 3) its potential quantitative transfer in any waste streams, and consequently, 4) its quantitative separation for either potential transmutation to Ru-100 or isolation and encapsulation in solid waste-forms for ultimate disposal. In addition, as a result of an U(VI)-Tc(VII) co-extraction in a UREX-based process, Tc(VII) could be found in low level waste (LLW) streams. There is a need for the development of new extraction systems that would selectively extract Tc-99 from LLW streams and concentrate it for feed into high level waste (HLW) for either Tc-99 immobilization in metallic waste-forms (Tc-Zr alloys), and/or borosilicate-based waste glass. Studies have been launched to investigate the suitability of new macro-compounds such as crown-ethers, aza-crown ethers, quaternary ammonium salts, and resorcin-arenes for the selective extraction of Tc-99 from nitric acid solutions. The selectivity of the ligand is important in evaluating potential separation processes and also the radiation stability of the molecule is essential for minimization of waste and radiolysis products. In this paper, we are reporting the extraction of TcO{sub 4}{sup -} by benzyl tributyl ammonium chloride (BTBA). Experimental efforts were focused on determining the best extraction conditions by varying the ligand's matrix conditions and concentration, as well as varying the organic phase composition (i.e. diluent variation). Furthermore, the ligand has been investigated for radiation stability. The ?-irradiation was performed on the neat organic phases containing the ligand at different absorbed doses to a maximum of 200 kGy using an external Co-60 source. Post-irradiation solvent extraction measurements will be discussed. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bathke, C. G.; Jarvinen, G. D.; Wallace, R. K.
2008-10-01
This paper summarizes the results of an extension to an earlier study [ ] that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with the PUREX, UREX+, and COEX reprocessing schemes. This study focuses on the materials associated with the UREX, COEX, THOREX, and PYROX reprocessing schemes. This study also examines what is required to render plutonium as “unattractive.” Furthermore, combining the results of this study with those from the earlier study permits a comparison of the uranium and thorium based fuel cycles on the basis of the attractiveness of the SNM associated with each fuelmore » cycle. Both studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of “attractiveness levels” that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities [ ]. The methodology and key findings will be presented. Additionally, how these attractiveness levels relate to proliferation resistance (e.g. by increasing impediments to the diversion, theft, undeclared production of SNM for the purpose of acquiring a nuclear weapon), and how they could be used to help inform policy makers, will be discussed.« less
Improving the Estimates of Waste from the Recycling of Used Nuclear Fuel - 13410
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Chris; Willis, William; Carter, Robert
2013-07-01
Estimates are presented of wastes arising from the reprocessing of 50 GWD/tonne, 5 year and 50 year cooled used nuclear fuel (UNF) from Light Water Reactors (LWRs), using the 'NUEX' solvent extraction process. NUEX is a fourth generation aqueous based reprocessing system, comprising shearing and dissolution in nitric acid of the UNF, separation of uranium and mixed uranium-plutonium using solvent extraction in a development of the PUREX process using tri-n-butyl phosphate in a kerosene diluent, purification of the plutonium and uranium-plutonium products, and conversion of them to uranium trioxide and mixed uranium-plutonium dioxides respectively. These products are suitable for usemore » as new LWR uranium oxide and mixed oxide fuel, respectively. Each unit process is described and the wastes that it produces are identified and quantified. Quantification of the process wastes was achieved by use of a detailed process model developed using the Aspen Custom Modeler suite of software and based on both first principles equilibrium and rate data, plus practical experience and data from the industrial scale Thermal Oxide Reprocessing Plant (THORP) at the Sellafield nuclear site in the United Kingdom. By feeding this model with the known concentrations of all species in the incoming UNF, the species and their concentrations in all product and waste streams were produced as the output. By using these data, along with a defined set of assumptions, including regulatory requirements, it was possible to calculate the waste forms, their radioactivities, volumes and quantities. Quantification of secondary wastes, such as plant maintenance, housekeeping and clean-up wastes, was achieved by reviewing actual operating experience from THORP during its hot operation from 1994 to the present time. This work was carried out under a contract from the United States Department of Energy (DOE) and, so as to enable DOE to make valid comparisons with other similar work, a number of assumptions were agreed. These include an assumed reprocessing capacity of 800 tonnes per year, the requirement to remove as waste forms the volatile fission products carbon-14, iodine-129, krypton-85, tritium and ruthenium-106, the restriction of discharge of any water from the facility unless it meets US Environmental Protection Agency drinking water standards, no intentional blending of wastes to lower their classification, and the requirement for the recovered uranium to be sufficiently free from fission products and neutron-absorbing species to allow it to be re-enriched and recycled as nuclear fuel. The results from this work showed that over 99.9% of the radioactivity in the UNF can be concentrated via reprocessing into a fission-product-containing vitrified product, bottles of compressed krypton storage and a cement grout containing the tritium, that together have a volume of only about one eighth the volume of the original UNF. The other waste forms have larger volumes than the original UNF but contain only the remaining 0.1% of the radioactivity. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bathke, Charles G; Wallace, Richard K; Ireland, John R
2009-01-01
This paper is an extension to earlier studies that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) and alternate nuclear materials (ANM) associated with the PUREX, UREX, coextraction, THOREX, and PYROX reprocessing schemes. This study extends the figure of merit (FOM) for evaluating attractiveness to cover a broad range of proliferant State and sub-national group capabilities. This study also considers those materials that will be recycled and burned, possibly multiple times, in LWRs [e.g., plutonium in the form of mixed oxide (MOX) fuel]. The primary conclusion of this study is that all fissile material needs to bemore » rigorously safeguarded to detect diversion by a State and provided the highest levels of physical protection to prevent theft by sub-national groups; no 'silver bullet' has been found that will permit the relaxation of current international safeguards or national physical security protection levels. This series of studies has been performed at the request of the United States Department of Energy (DOE) and is based on the calculation of 'attractiveness levels' that are expressed in terms consistent with, but normally reserved for nuclear materials in DOE nuclear facilities. The expanded methodology and updated findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bathke, C. G.; Ebbinghaus, B. B.; Sleaford, Brad W.
2009-07-09
This paper is an extension to earlier studies [1,2] that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) and alternate nuclear materials (ANM) associated with the PUREX, UREX, coextraction, THOREX, and PYROX reprocessing schemes. This study extends the figure of merit (FOM) for evaluating attractiveness to cover a broad range of proliferant State and sub-national group capabilities. This study also considers those materials that will be recycled and burned, possibly multiple times, in LWRs [e.g., plutonium in the form of mixed oxide (MOX) fuel]. The primary conclusion of this study is that all fissile material needs tomore » be rigorously safeguarded to detect diversion by a State and provided the highest levels of physical protection to prevent theft by sub-national groups; no “silver bullet” has been found that will permit the relaxation of current international safeguards or national physical security protection levels. This series of studies has been performed at the request of the United States Department of Energy (DOE) and is based on the calculation of "attractiveness levels" that are expressed in terms consistent with, but normally reserved for nuclear materials in DOE nuclear facilities [3]. The expanded methodology and updated findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security are discussed.« less
Chemical Disposition of Plutonium in Hanford Site Tank Wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delegard, Calvin H.; Jones, Susan A.
2015-05-07
This report examines the chemical disposition of plutonium (Pu) in Hanford Site tank wastes, by itself and in its observed and potential interactions with the neutron absorbers aluminum (Al), cadmium (Cd), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and sodium (Na). Consideration also is given to the interactions of plutonium with uranium (U). No consideration of the disposition of uranium itself as an element with fissile isotopes is considered except tangentially with respect to its interaction as an absorber for plutonium. The report begins with a brief review of Hanford Site plutonium processes, examining the various means used tomore » recover plutonium from irradiated fuel and from scrap, and also examines the intermediate processing of plutonium to prepare useful chemical forms. The paper provides an overview of Hanford tank defined-waste–type compositions and some calculations of the ratios of plutonium to absorber elements in these waste types and in individual waste analyses. These assessments are based on Hanford tank waste inventory data derived from separately published, expert assessments of tank disposal records, process flowsheets, and chemical/radiochemical analyses. This work also investigates the distribution and expected speciation of plutonium in tank waste solution and solid phases. For the solid phases, both pure plutonium compounds and plutonium interactions with absorber elements are considered. These assessments of plutonium chemistry are based largely on analyses of idealized or simulated tank waste or strongly alkaline systems. The very limited information available on plutonium behavior, disposition, and speciation in genuine tank waste also is discussed. The assessments show that plutonium coprecipitates strongly with chromium, iron, manganese and uranium absorbers. Plutonium’s chemical interactions with aluminum, nickel, and sodium are minimal to non-existent. Credit for neutronic interaction of plutonium with these absorbers occurs only if they are physically proximal in solution or the plutonium present in the solid phase is intimately mixed with compounds or solutions of these absorbers. No information on the potential chemical interaction of plutonium with cadmium was found in the technical literature. Definitive evidence of sorption or adsorption of plutonium onto various solid phases from strongly alkaline media is less clear-cut, perhaps owing to fewer studies and to some well-attributed tests run under conditions exceeding the very low solubility of plutonium. The several studies that are well-founded show that only about half of the plutonium is adsorbed from waste solutions onto sludge solid phases. The organic complexants found in many Hanford tank waste solutions seem to decrease plutonium uptake onto solids. A number of studies show plutonium sorbs effectively onto sodium titanate. Finally, this report presents findings describing the behavior of plutonium vis-à-vis other elements during sludge dissolution in nitric acid based on Hanford tank waste experience gained by lab-scale tests, chemical and radiochemical sample characterization, and full-scale processing in preparation for strontium-90 recovery from PUREX sludges.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adu-Wusu, K; Paul Burket, P
2009-03-31
Wet Air Oxidation (WAO) is one of the two technologies being considered for the destruction of Tetraphenylborate (TPB) in Tank 48H. Batch bench-scale autoclave testing with radioactive (actual) Tank 48H waste is among the tests required in the WAO Technology Maturation Plan. The goal of the autoclave testing is to validate that the simulant being used for extensive WAO vendor testing adequately represents the Tank 48H waste. The test objective was to demonstrate comparable test results when running simulated waste and real waste under similar test conditions. Specifically: (1) Confirm the TPB destruction efficiency and rate (same reaction times) obtainedmore » from comparable simulant tests, (2) Determine the destruction efficiency of other organics including biphenyl, (3) Identify and quantify the reaction byproducts, and (4) Determine off-gas composition. Batch bench-scale stirred autoclave tests were conducted with simulated and actual Tank 48H wastes at SRNL. Experimental conditions were chosen based on continuous-flow pilot-scale simulant testing performed at Siemens Water Technologies Corporation (SWT) in Rothschild, Wisconsin. The following items were demonstrated as a result of this testing. (1) Tetraphenylborate was destroyed to below detection limits during the 1-hour reaction time at 280 C. Destruction efficiency of TPB was > 99.997%. (2) Other organics (TPB associated compounds), except biphenyl, were destroyed to below their respective detection limits. Biphenyl was partially destroyed in the process, mainly due to its propensity to reside in the vapor phase during the WAO reaction. Biphenyl is expected to be removed in the gas phase during the actual process, which is a continuous-flow system. (3) Reaction byproducts, remnants of MST, and the PUREX sludge, were characterized in this work. Radioactive species, such as Pu, Sr-90 and Cs-137 were quantified in the filtrate and slurry samples. Notably, Cs-137, boron and potassium were shown as soluble as a result of the WAO reaction. (4) Off-gas composition was measured in the resulting gas phase from the reaction. Benzene and hydrogen were formed during the reaction, but they were reasonably low in the off-gas at 0.096 and 0.0063 vol% respectively. Considering the consistency in replicating similar test results with simulated waste and Tank 48H waste under similar test conditions, the results confirm the validity of the simulant for other WAO test conditions.« less
POTENTIAL IMPACT OF BLENDING RESIDUAL SOLIDS FROM TANKS 18/19 MOUNDS WITH TANK 7 OPERATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eibling, R; Erich Hansen, E; Bradley Pickenheim, B
2007-03-29
High level waste tanks 18F and 19F have residual mounds of waste which may require removal before the tanks can be closed. Conventional slurry pump technology, previously used for waste removal and tank cleaning, has been incapable of removing theses mounds from tanks 18F and 19F. A mechanical cleaning method has been identified that is potentially capable of removing and transferring the mound material to tank 7F for incorporation in a sludge batch for eventual disposal in high level waste glass by the Defense Waste Processing Facility. The Savannah River National Laboratory has been requested to evaluate whether the materialmore » transferred from tanks 18F/19F by the mechanical cleaning technology can later be suspended in Tank 7F by conventional slurry pumps after mixing with high level waste sludge. The proposed mechanical cleaning process for removing the waste mounds from tanks 18 and 19 may utilize a high pressure water jet-eductor that creates a vacuum to mobilize solids. The high pressure jet is also used to transport the suspended solids. The jet-eductor system will be mounted on a mechanical crawler for movement around the bottom of tanks 18 and 19. Based on physical chemical property testing of the jet-eductor system processed IE-95 zeolite and size-reduced IE-95 zeolite, the following conclusions were made: (1) The jet-eductor system processed zeolite has a mean and median particle size (volume basis) of 115.4 and 43.3 microns in water. Preferential settling of these large particles is likely. (2) The jet-eductor system processed zeolite rapidly generates settled solid yield stresses in excess of 11,000 Pascals in caustic supernates and will not be easily retrieved from Tank 7 with the existing slurry pump technology. (3) Settled size-reduced IE-95 zeolite (less than 38 microns) in caustic supernate does not generate yield stresses in excess of 600 Pascals in less than 30 days. (4) Preferential settling of size-reduced zeolite is a function of the amount of sludge and the level of dilution for the mixture. (5) Blending the size-reduced zeolite into larger quantities of sludge can reduce the amount of preferential settling. (6) Periodic dilution or resuspension due to sludge washing or other mixing requirements will increase the chances of preferential settling of the zeolite solids. (7) Mixtures of Purex sludge and size-reduced zeolite did not produce yield stresses greater than 200 Pascals for settling times less than thirty days. Most of the sludge-zeolite blends did not exceed 50 Pascals. These mixtures should be removable by current pump technology if sufficient velocities can be obtained. (8) The settling rate of the sludge-zeolite mixtures is a function of the ionic strength (or supernate density) and the zeolite- sludge mixing ratio. (9) Simulant tests indicate that leaching of Si may be an issue for the processed Tank 19 mound material. (10) Floating zeolite fines observed in water for the jet-eductor system and size-reduced zeolite were not observed when the size-reduced zeolite was blended with caustic solutions, indicating that the caustic solutions cause the fines to agglomerate. Based on the test programs described in this report, the potential for successfully removing Tank 18/19 mound material from Tank 7 with the current slurry pump technology requires the reduction of the particle size of the Tank 18/19 mound material.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinichi Aose; Takafumi Kitajima; Kouji Ogasawara
CPF (Chemical Processing Facility) was constructed at Nuclear Fuel Cycle Engineering Laboratories of JAEA (Japan Atomic Energy Agency) in 1980 as a basic research field where spent fuel pins from fast reactor (FR) and high level liquid waste can be dealt with. The renovation consists of remodeling of the CA-3 cell and the laboratory A, installation of globe boxes, hoods and analytical equipments to the laboratory C and the analytical laboratory. Also maintenance equipments in the CA-5 cell which had been out of order were repaired. The CA-3 cell is the main cell in which important equipments such as amore » dissolver, a clarifier and extractors are installed for carrying out the hot test using the irradiated FR fuel. Since the CPF had specialized originally in the research function for the Purex process, it was desired to execute the research and development of such new, various reprocessing processes. Formerly, equipments were arranged in wide space and connected with not only each other but also with utility supply system mainly by fixed stainless steel pipes. It caused shortage of operation space in flexibility for basic experimental study. Old equipments in the CA-3 cell including vessels and pipes were removed after successful decontamination, and new equipments were installed conformably to the new design. For the purpose of easy installation and rearranging the experimental equipments, equipments are basically connected by flexible pipes. Since dissolver is able to be easily replaced, various dissolution experiments is conducted. Insoluble residue generated by dissolution of spent fuel is clarified by centrifugal. This small apparatus is effective to space-saving. Mini mixer settlers or centrifugal contactors are put on to the prescribed limited space in front of the backside wall. Fresh reagents such as solvent, scrubbing and stripping solution are continuously fed from the laboratory A to the extractor by the reagent supply system with semi-automatic observation system. The in-cell crane in CA-5 was renovated to increase driving efficiency. At the renovation for the in-cell crane, full scale mockup test and 3D simulation test had been executed in advance. After the renovation, hot tests in the CPF had been resumed from JFY 2002. New equipments such as dissolver, extractor, electrolytic device, etc. were installed in CA-3 conformably to the new design laid out in order to ensure the function and space. Glove boxes in the analysis laboratory were renewed in order to let it have flexibility from the viewpoint of conducting basic experiments (ex. U crystallization). Glove boxes and hoods were newly installed in the laboratory A for basic research and analysis, especially on MA chemistries. One laboratory (the laboratory C) was established to research about dry reprocessing. The renovation of the CPF has been executed in order to contribute to the development on the advanced fast reactor fuel cycle system, which will give us many sort of technical subject and experimental theme to be solved in the 2. Generation of the CPF.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bathke, C. G.; Ebbinghaus, Bartley B.; Collins, Brian A.
2012-08-29
We must anticipate that the day is approaching when details of nuclear weapons design and fabrication will become common knowledge. On that day we must be particularly certain that all special nuclear materials (SNM) are adequately accounted for and protected and that we have a clear understanding of the utility of nuclear materials to potential adversaries. To this end, this paper examines the attractiveness of materials mixtures containing SNM and alternate nuclear materials associated with the plutonium-uranium reduction extraction (Purex), uranium extraction (UREX), coextraction (COEX), thorium extraction (THOREX), and PYROX (an electrochemical refining method) reprocessing schemes. This paper provides amore » set of figures of merit for evaluating material attractiveness that covers a broad range of proliferant state and subnational group capabilities. The primary conclusion of this paper is that all fissile material must be rigorously safeguarded to detect diversion by a state and must be provided the highest levels of physical protection to prevent theft by subnational groups; no 'silver bullet' fuel cycle has been found that will permit the relaxation of current international safeguards or national physical security protection levels. The work reported herein has been performed at the request of the U.S. Department of Energy (DOE) and is based on the calculation of 'attractiveness levels' that are expressed in terms consistent with, but normally reserved for, the nuclear materials in DOE nuclear facilities. The methodology and findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security is discussed.« less
Apostoaei, A Iulian
2005-05-01
A model describing transport of 131I in the environment was developed by SENES Oak Ridge, Inc., for assessment of radiation doses and excess lifetime risk from 131I atmospheric releases from Oak Ridge Reservation in Oak Ridge, Tennessee, and from Idaho National Engineering and Environmental Laboratory in southeast Idaho. This paper describes the results of an exercise designed to test the reliability of this model and to identify the main sources of uncertainty in doses and risks estimated by this model. The testing of the model was based on materials published by the International Atomic Energy Agency BIOMASS program, specifically environmental data collected after the release into atmosphere of 63 curies of 131I during 2-5 September 1963, after an accident at the Hanford PUREX Chemical Separations Plant, in Hanford, Washington. Measurements of activity in air, vegetation, and milk were collected in nine counties around Hanford during the first couple of months after the accident. The activity of 131I in the thyroid glands of two children was measured 47 d after the accident. The model developed by SENES Oak Ridge, Inc., was used to estimate concentrations of 131I in environmental media, thyroid doses for the general population, and the activity of 131I in thyroid glands of the two children. Predicted concentrations of 131I in pasture grass and milk and thyroid doses were compared with similar estimates produced by other modelers. The SENES model was also used to estimate excess lifetime risk of thyroid cancer due to the September 1963 releases of 131I from Hanford. The SENES model was first calibrated and then applied to all locations of interest around Hanford without fitting the model parameters to a given location. Predictions showed that the SENES model reproduces satisfactorily the time-dependent and the time-integrated measured concentrations in vegetation and milk, and provides reliable estimates of 131I activity in thyroids of children. SENES model generated concentrations of 131I closer to observed concentrations, as compared to the predictions produced with other models. The inter-model comparison showed that variation of thyroid doses among all participating models (SENES model included) was a factor of 3 for the general population, but a factor of 10 for the two studied children. As opposed to other models, SENES model allows a complete analysis of uncertainties in every predicted quantity, including estimated thyroid doses and risk of thyroid cancer. The uncertainties in the risk-per-unit-dose and the dose-per-unit-intake coefficients are major contributors to the uncertainty in the estimated lifetime risk and thyroid dose, respectively. The largest contributors to the uncertainty in the estimated concentration in milk are the feed-to-milk transfer factor (F(m)), the dry deposition velocity (V(d)), and the mass interception factor (r/Y)dry for the elemental form of iodine (I2). Exposure to the 1963 PUREX/Hanford accident produced low doses and risks for people living at the studied locations. The upper 97.5th percentile of the excess lifetime risk of thyroid cancer for the most extreme situations is about 10(-4). Measurements in pasture grass and milk at all locations around Hanford indicate a very low transfer of 131I from pasture to cow's milk (e.g., a feed-to-milk transfer coefficient, F(m), for commercial cows of about 0.0022 d L(-1)). These values are towards the low end of F(m) values measured elsewhere and they are low compared to the F(m) values used in other dose reconstruction studies, including the Hanford Environmental Dose Reconstruction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lohrasbi, J.
Dose calculations for atmospheric radionuclide releases from the Hanford Site for calendar year (CY) 1992 were performed by Pacific Northwest Laboratory (PNL) using the approved US Environmental Protection Agency (EPA) CAP-88 computer model. Emissions from discharge points in the Hanford Site 100, 200, 300, 400, and 600 areas were calculated based on results of analyses of continuous and periodic sampling conducted at the discharge points. These calculated emissions were provided for inclusion in the CAP-88 model by area and by individual facility for those facilities having the potential to contribute more than 10 percent of the Hanford Site total ormore » to result in an impact of greater than 0.1 mrem per year to the maximally exposed individual (MEI). Also included in the assessment of offsite dose modeling are the measured radioactive emissions from all Hanford Site stacks that have routine monitoring performed. Record sampling systems have been installed on all stacks and vents that use exhaust fans to discharge air that potentially may carry airborne radioactivity. Estimation of activity from ingrowth of long-lived radioactive progeny is not included in the CAP-88 model; therefore, the Hanford Site GENII code (Napier et al. 1988) was used to supplement the CAP-88 dose calculations. When the dose to the MEI located in the Ringold area was calculated, the effective dose equivalent (EDE) from combined Hanford Site radioactive airborne emissions was shown to be 3.7E-03 mrem. This value was reported in the annual air emission report prepared for the Hanford Site (RL 1993).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDeavitt, Sean M.
The content of this report summarizes a multi-year effort to develop prototype detection equipment using the Tensioned Metastable Fluid Detector (TMFD) technology developed by Taleyarkhan [1]. The context of this development effort was to create new methods for evaluating and developing advanced methods for safeguarding nuclear materials along with instrumentation in various stages of the fuel cycle, especially in material balance areas (MBAs) and during reprocessing of used nuclear fuel. One of the challenges related to the implementation of any type of MBA and/or reprocessing technology (e.g., PUREX or UREX) is the real-time quantification and control of the transuranic (TRU)more » isotopes as they move through the process. Monitoring of higher actinides from their neutron emission (including multiplicity) and alpha signatures during transit in MBAs and in aqueous separations is a critical research area. By providing on-line real-time materials accountability, diversion of the materials becomes much more difficult. The Tensioned Metastable Fluid Detector (TMFD) is a transformational technology that is uniquely capable of both alpha and neutron spectroscopy while being “blind” to the intense gamma field that typically accompanies used fuel – simultaneously with the ability to provide multiplicity information as well [1-3]. The TMFD technology was proven (lab-scale) as part of a 2008 NERI-C program [1-7]. The bulk of this report describes the advancements and demonstrations made in TMFD technology. One final point to present before turning to the TMFD demonstrations is the context for discussing real-time monitoring of SNM. It is useful to review the spectrum of isotopes generated within nuclear fuel during reactor operations. Used nuclear fuel (UNF) from a light water reactor (LWR) contains fission products as well as TRU elements formed through neutron absorption/decay chains. The majority of the fission products are gamma and beta emitters and they represent the more significant hazards from a radiation protection standpoint. However, alpha and neutron emitting uranium and TRU elements represent the more significant safeguards and security concerns. Table 1.1 presents a representative PWR inventory of the uranium and actinide isotopes present in a used fuel assembly. The uranium and actinide isotopes (chiefly the Pu, Am and Cm elements) are all emitters of alpha particles and some of them release significant quantities of neutrons through spontaneous fissions« less
Study of Compton suppression for use in spent nuclear fuel assay
NASA Astrophysics Data System (ADS)
Bender, Sarah
The focus of this study has been to assess Compton suppressed gamma-ray detection systems for the multivariate analysis of spent nuclear fuel. This objective has been achieved using direct measurement of samples of irradiated fuel elements in two geometrical configurations with Compton suppression systems. In order to address the objective to quantify the number of additionally resolvable photopeaks, direct Compton suppressed spectroscopic measurements of spent nuclear fuel in two configurations were performed: as intact fuel elements and as dissolved feed solutions. These measurements directly assessed and quantified the differences in measured gamma-ray spectrum from the application of Compton suppression. Several irradiated fuel elements of varying cooling time from the Penn State Breazeale Reactor spent fuel inventory were measured using three Compton suppression systems that utilized different primary detectors: HPGe, LaBr3, and NaI(Tl). The application of Compton suppression using a LaBr3 primary detector to the measurement of the current core fuel element, which presented the highest count rate, allowed four additional spectral features to be resolved. In comparison, the HPGe-CSS was able to resolve eight additional photopeaks as compared to the standalone HPGe measurement. Measurements with the NaI(Tl) primary detector were unable to resolve any additional peaks, due to its relatively low resolution. Samples of Approved Test Material (ATM) commercial fuel elements were obtained from Pacific Northwest National Laboratory. The samples had been processed using the beginning stages of the PUREX method and represented the unseparated feed solution from a reprocessing facility. Compton suppressed measurements of the ATM fuel samples were recorded inside the guard detector annulus, to simulate the siphoning of small quantities from the main process stream for long dwell measurement periods. Photopeak losses were observed in the measurements of the dissolved ATM fuel samples because the spectra was recorded from the source in very close proximity to the detector and surrounded by the guard annulus, so the detection probability is very high. Though this configuration is optimal for a Compton suppression system for the measurement of low count rate samples, measurement of high count rate samples in the enclosed arrangement leads to sum peaks in both the suppressed and unsuppressed spectra and losses to photopeak counts in the suppressed spectra. No additional photopeaks were detected using Compton suppression with this geometry. A detector model was constructed that can accurately simulate a Compton suppressed spectral measurement of radiation from spent nuclear fuel using HPGe or LaBr3 detectors. This is the first detector model capable of such an accomplishment. The model uses the Geant4 toolkit coupled with the RadSrc application and it accepts spent fuel composition data in list form. The model has been validated using dissolved ATM fuel samples in the standard, enclosed geometry of the PSU HPGe-CSS. The model showed generally good agreement with both the unsuppressed and suppressed measured fuel sample spectra, however the simulation is more appropriate for the generation of gamma-ray spectra in the beam source configuration. Photopeak losses due to cascade decay emissions in the Compton suppressed spectra were not appropriately managed by the simulation. Compton suppression would be a beneficial addition to NDA process monitoring systems if oriented such that the gamma-ray photons are collimated to impinge the primary detector face as a beam. The analysis has shown that peak losses through accidental coincidences are minimal and the reduction in the Compton continuum allows additional peaks to be resolved. (Abstract shortened by UMI.).
ARRAYS OF BOTTLES OF PLUTONIUM NITRATE SOLUTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margaret A. Marshall
2012-09-01
In October and November of 1981 thirteen approaches-to-critical were performed on a remote split table machine (RSTM) in the Critical Mass Laboratory of Pacific Northwest Laboratory (PNL) in Richland, Washington using planar arrays of polyethylene bottles filled with plutonium (Pu) nitrate solution. Arrays of up to sixteen bottles were used to measure the critical number of bottles and critical array spacing with a tight fitting Plexiglas® reflector on all sides of the arrays except the top. Some experiments used Plexiglas shells fitted around each bottles to determine the effect of moderation on criticality. Each bottle contained approximately 2.4 L ofmore » Pu(NO3)4 solution with a Pu content of 105 g Pu/L and a free acid molarity H+ of 5.1. The plutonium was of low 240Pu (2.9 wt.%) content. These experiments were sponsored by Rockwell Hanford Operations because of the lack of experimental data on the criticality of arrays of bottles of Pu solution such as might be found in storage and handling at the Purex Facility at Hanford. The results of these experiments were used “to provide benchmark data to validate calculational codes used in criticality safety assessments of [the] plant configurations” (Ref. 1). Data for this evaluation were collected from the published report (Ref. 1), the approach to critical logbook, the experimenter’s logbook, and communication with the primary experimenter, B. Michael Durst. Of the 13 experiments preformed 10 were evaluated. One of the experiments was not evaluated because it had been thrown out by the experimenter, one was not evaluated because it was a repeat of another experiment and the third was not evaluated because it reported the critical number of bottles as being greater than 25. Seven of the thirteen evaluated experiments were determined to be acceptable benchmark experiments. A similar experiment using uranyl nitrate was benchmarked as U233-SOL-THERM-014.« less
Air pathway effects of nuclear materials production at the Hanford Site, 1983 to 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patton, G.W.; Cooper, A.T.
1993-10-01
This report describes the air pathway effects of Hanford Site operations from 1983 to 1992 on the local environment by summarizing the air concentrations of selected radionuclides at both onsite and offsite locations, comparing trends in environment concentrations to changing facility emissions, and briefly describing trends in the radiological dose to the hypothetical maximally exposed member of the public. The years 1983 to 1992 represent the last Hanford Site plutonium production campaign, and this report deals mainly with the air pathway effects from the 200 Areas, in which the major contributors to radiological emissions were located. An additional purpose formore » report was to review the environmental data for a long period of time to provide insight not available in an annual report format. The sampling and analytical systems used by the Surface Environmental Surveillance Project (SESP) to collect air samples during the period of this report were sufficiently sensitive to observe locally elevated concentrations of selected radionuclides near onsite source of emission as well as observing elevated levels, compared to distant locations, of some radionuclides at the down wind perimeter. The US DOE Derived Concentration Guides (DCGs) for airborne radionuclides were not exceeded for any air sample collected during 1983 to 1992, with annual average concentrations of all radionuclides at the downwind perimeter being considerably below the DCG values. Air emissions at the Hanford Site during the period of this report were dominated by releases from the PUREX Plant, with {sup 85}Kr being the major release on a curie basis and {sup 129}I being the major release on a radiological dose basis. The estimated potential radiological dose from Hanford Site point source emissions to the hypothetical maximally exposed individual (MEI) ranged from 0. 02 to 0.22 mrem/yr (effective dose equivalent), which is well below the DOE radiation limit to the public of 100 mrem/yr.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, A.G.; Serkowski, J.A.; Schatz, A.L.
The Separations Area ground-water monitoring network consisted of 137 wells. Samples from wells in the monitoring network were collected on a monthly, quarterly, or semiannual schedule, depending on the history of the liquid waste disposal site. Samples were analyzed selectively for total alpha, total beta, tritium, /sup 90/Sr, /sup 137/Cs, /sup 60/Co, /sup 106/Ru, total uranium and nitrate. Average concentrations of contaminants in most wells were essentially the same in 1986 as in 1985. The DCG for tritium was exceeded at two PUREX cribs. The ACL specified for /sup 90/Sr was exceeded in three wells near the 216-A-25 Pond. Disposalmore » of effluents to the pond decreased as the main pond was reduced in width to a ditch leading the overflow pond. The ACL guidelines for uranium were exceeded although concentrations were below the DCG; the source of this uranium is probably the inactive 216-B-12 crib. Uranium concentrations above the ACL but below the DCG were also observed at the 216-U-14 ditch and the source is under evaluation. The inactive 216-B-5 reverse well exceeded the DCG for /sup 90/Sr and the ACL for /sup 137/Cs and uranium. Inactive facilities exceeding Rockwell guidelines were the 216-S-1/2 cribs, 216-U-1/2 cribs, the 216-U-10 pond, and the 216-U-6 crib. The 216-S-1/2 cribs have historically had high /sup 137/Cs concentrations because of localized contamination but are below the DCG. Uranium concentrations, which are above the DCG, have stabilized at the 216-U-1/2 cribs after the remedial pumping and uranium removal conducted in 1985. Possible additional action is currently being evaluated. Disposal of the effluent from the ion exchange column to the 216-S-25 crib resulted in ground-water concentrations that exceeded Rockwell guidelines but below the DCG. Ground water near the 216-U-10 pond remains elevated but below the DCG due to past disposal to the pond, which was deactivated in 1984. 23 refs., 25 figs., 26 tabs.« less
Status of the French Research on Partitioning and Transmutation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warin, Dominique
2007-07-01
The global energy context pleads in favor of a sustainable development of nuclear energy since the demand for energy will likely increase, whereas resources will tend to get scarcer and the prospect of global warming will drive down the consumption of fossil fuel sources. How we deal with radioactive waste is crucial in this context. The production of nuclear energy in France has been associated, since its inception, with the optimization of radioactive waste management, including the partitioning and the recycling of recoverable energetic materials. The public's concern regarding the long-term waste management made the French Government prepare and passmore » the December 1991 Law, requesting in particular, the study for fifteen years of solutions for still minimizing the quantity and the hazardousness of final waste, via partitioning and transmutation. At the end of these fifteen years of research, it is considered that partitioning techniques, which have been validated on real solutions, are at disposal. Indeed, aqueous process for separation of minor actinides from the PUREX raffinate has been brought to a point where there is reasonable assurance that industrial deployment can be successful. A key experiment has been the successful kilogram scale trials in the CEA-Marcoule Atalante facility in 2005 and this result, together with the results obtained in the frame of the successive European projects, constitutes a considerable step forward. For transmutation, CEA has conducted programs proving the feasibility of the elimination of minor actinides and fission products: fabrication of specific targets and fuels for transmutation tests in the HFR and Phenix reactors, neutronics and technology studies for critical reactors and ADS developments. Scenario studies have also allowed assessing the feasibility, at the level of cycle and fuel facilities, and the efficiency of transmutation in terms of the quantitative reduction of the final waste inventory depending of the reactor fleet (PWR-FR-ADS). Important results are now available concerning the possibility of significantly reducing the quantity and the radiotoxicity of long-lived waste in association with a sustainable development of nuclear energy. As France has confirmed its long-term approach to nuclear energy, the most effective implementation of P and T of minor actinides relies on the fast neutron GEN IV systems, which are designed to recycle and manage their own actinides. The perspective to deploy a first series of such systems around 2040 supports the idea that progress is being made: the long-term waste would only be made up of fission products, with very low amounts of minor actinides. In this sense, the new waste management law passed by the French Parliament on June 28, 2006, demands that P and T research continues in strong connection to GEN IV systems and ADS development and allowing the assessment of the industrial perspectives of such systems in 2012 and to put into operation a transmutation demo facility in 2020. (author)« less
Vadose Zone Transport Field Study: Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Andy L.; Conrad, Mark E.; Daily, William D.
2006-07-31
From FY 2000 through FY 2003, a series of vadose zone transport field experiments were conducted as part of the U.S. Department of Energy’s Groundwater/Vadose Zone Integration Project Science and Technology Project, now known as the Remediation and Closure Science Project, and managed by the Pacific Northwest National Laboratory (PNNL). The series of experiments included two major field campaigns, one at a 299-E24-11 injection test site near PUREX and a second at a clastic dike site off Army Loop Road. The goals of these experiments were to improve our understanding of vadose zone transport processes; to develop data sets tomore » validate and calibrate vadose zone flow and transport models; and to identify advanced monitoring techniques useful for evaluating flow-and-transport mechanisms and delineating contaminant plumes in the vadose zone at the Hanford Site. This report summarizes the key findings from the field studies and demonstrates how data collected from these studies are being used to improve conceptual models and develop numerical models of flow and transport in Hanford’s vadose zone. Results of these tests have led to a better understanding of the vadose zone. Fine-scale geologic heterogeneities, including grain fabric and lamination, were observed to have a strong effect on the large-scale behavior of contaminant plumes, primarily through increased lateral spreading resulting from anisotropy. Conceptual models have been updated to include lateral spreading and numerical models of unsaturated flow and transport have revised accordingly. A new robust model based on the concept of a connectivity tensor was developed to describe saturation-dependent anisotropy in strongly heterogeneous soils and has been incorporated into PNNL’s Subsurface Transport Over Multiple Phases (STOMP) simulator. Application to field-scale transport problems have led to a better understanding plume behavior at a number of sites where lateral spreading may have dominated waste migration (e.g. BC Cribs and Trenches). The improved models have been also coupled with inverse models and newly-developed parameter scaling techniques to allow estimation of field-scale and effective transport parameters for the vadose zone. The development and utility of pedotransfer functions for describing fine-scale hydrogeochemical heterogeneity and for incorporating this heterogeneity into reactive transport models was explored. An approach based on grain-size statistics appears feasible and has been used to describe heterogeneity in hydraulic properties and sorption properties, such as the cation exchange capacity and the specific surface area of Hanford sediments. This work has also led to the development of inverse modeling capabilities for time-dependent, subsurface, reactive transport with transient flow fields using an automated optimization algorithm. In addition, a number of geophysical techniques investigated for their potential to provide detailed information on the subtle changes in lithology and bedding surfaces; plume delineation, leak detection. High-resolution resistivity is now being used for detecting saline plumes at several waste sites at Hanford, including tank farms. Results from the field studies and associated analysis have appeared in more than 46 publications generated over the past 4 years. These publications include test plans and status reports, in addition to numerous technical notes and peer reviewed papers.« less
Transuranic Contamination in Sediment and Groundwater at the U.S. DOE Hanford Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantrell, Kirk J.
2009-08-20
A review of transuranic radionuclide contamination in sediments and groundwater at the DOE’s Hanford Site was conducted. The review focused primarily on plutonium-239/240 and americium-241; however, other transuranic nuclides were discussed as well, including neptunium-237, plutonium-238, and plutonium-241. The scope of the review included liquid process wastes intentionally disposed to constructed waste disposal facilities such as trenches and cribs, burial grounds, and unplanned releases to the ground surface. The review did not include liquid wastes disposed to tanks or solid wastes disposed to burial grounds. It is estimated that over 11,800 Ci of plutonium-239, 28,700 Ci of americium-241, and 55more » Ci of neptunium-237 have been disposed as liquid waste to the near surface environment at the Hanford Site. Despite the very large quantities of transuranic contaminants disposed to the vadose zone at Hanford, only minuscule amounts have entered the groundwater. Currently, no wells onsite exceed the DOE derived concentration guide for plutonium-239/240 (30 pCi/L) or any other transuranic contaminant in filtered samples. The DOE derived concentration guide was exceeded by a small fraction in unfiltered samples from one well (299-E28-23) in recent years (35.4 and 40.4 pCi/L in FY 2006). The primary reason that disposal of these large quantities of transuranic radionuclides directly to the vadose zone at the Hanford Site has not resulted in widespread groundwater contamination is that under the typical oxidizing and neutral to slightly alkaline pH conditions of the Hanford vadose zone, transuranic radionuclides (plutonium and americium in particular) have a very low solubility and high affinity for surface adsorption to mineral surfaces common within the Hanford vadose zone. Other important factors are the fact that the vadose zone is typically very thick (hundreds of feet) and the net infiltration rate is very low due to the desert climate. In some cases where transuranic radionuclides have been co-disposed with acidic liquid waste, transport through the vadose zone for considerable distances has occurred. For example, at the 216-Z-9 Crib, plutonium-239 and americium-241 have moved to depths in excess of 36 m (118 ft) bgs. Acidic conditions increase the solubility of these contaminants and reduce adsorption to mineral surfaces. Subsequent neutralization of the acidity by naturally occurring calcite in the vadose zone (particularly in the Cold Creek unit) appears to have effectively stopped further migration. The vast majority of transuranic contaminants disposed to the vadose zone on the Hanford Site (10,200 Ci [86%] of plutonium-239; 27,900 Ci [97%] of americium-241; and 41.8 Ci [78%] of neptunium-237) were disposed in sites within the PFP Closure Zone. This closure zone is located within the 200 West Area (see Figures 1.1 and 3.1). Other closure zones with notably high quantities of transuranic contaminant disposal include the T Farm Zone with 408 Ci (3.5%) plutonium-239, the PUREX Zone with 330 Ci (2.8%) plutonium-239, 200-W Ponds Zone with 324 Ci (2.8%) plutonium-239, B Farm Zone with 183 Ci (1.6%) plutonium-239, and the REDOX Zone with 164 Ci (1.4%) plutonium 239. Characterization studies for most of the sites reviewed in the document are generally limited. The most prevalent characterization methods used were geophysical logging methods. Characterization of a number of sites included laboratory analysis of borehole sediment samples specifically for radionuclides and other contaminants, and geologic and hydrologic properties. In some instances, more detailed research level studies were conducted. Results of these studies were summarized in the document.« less
Transforming Collaborative Process Models into Interface Process Models by Applying an MDA Approach
NASA Astrophysics Data System (ADS)
Lazarte, Ivanna M.; Chiotti, Omar; Villarreal, Pablo D.
Collaborative business models among enterprises require defining collaborative business processes. Enterprises implement B2B collaborations to execute these processes. In B2B collaborations the integration and interoperability of processes and systems of the enterprises are required to support the execution of collaborative processes. From a collaborative process model, which describes the global view of the enterprise interactions, each enterprise must define the interface process that represents the role it performs in the collaborative process in order to implement the process in a Business Process Management System. Hence, in this work we propose a method for the automatic generation of the interface process model of each enterprise from a collaborative process model. This method is based on a Model-Driven Architecture to transform collaborative process models into interface process models. By applying this method, interface processes are guaranteed to be interoperable and defined according to a collaborative process.
Extensible packet processing architecture
Robertson, Perry J.; Hamlet, Jason R.; Pierson, Lyndon G.; Olsberg, Ronald R.; Chun, Guy D.
2013-08-20
A technique for distributed packet processing includes sequentially passing packets associated with packet flows between a plurality of processing engines along a flow through data bus linking the plurality of processing engines in series. At least one packet within a given packet flow is marked by a given processing engine to signify by the given processing engine to the other processing engines that the given processing engine has claimed the given packet flow for processing. A processing function is applied to each of the packet flows within the processing engines and the processed packets are output on a time-shared, arbitered data bus coupled to the plurality of processing engines.
Cornwell, Brittany; Villamor, Eduardo; Mora-Plazas, Mercedes; Marin, Constanza; Monteiro, Carlos A; Baylin, Ana
2018-01-01
To determine if processed and ultra-processed foods consumed by children in Colombia are associated with lower-quality nutrition profiles than less processed foods. We obtained information on sociodemographic and anthropometric variables and dietary information through dietary records and 24 h recalls from a convenience sample of the Bogotá School Children Cohort. Foods were classified into three categories: (i) unprocessed and minimally processed foods, (ii) processed culinary ingredients and (iii) processed and ultra-processed foods. We also examined the combination of unprocessed foods and processed culinary ingredients. Representative sample of children from low- to middle-income families in Bogotá, Colombia. Children aged 5-12 years in 2011 Bogotá School Children Cohort. We found that processed and ultra-processed foods are of lower dietary quality in general. Nutrients that were lower in processed and ultra-processed foods following adjustment for total energy intake included: n-3 PUFA, vitamins A, B12, C and E, Ca and Zn. Nutrients that were higher in energy-adjusted processed and ultra-processed foods compared with unprocessed foods included: Na, sugar and trans-fatty acids, although we also found that some healthy nutrients, including folate and Fe, were higher in processed and ultra-processed foods compared with unprocessed and minimally processed foods. Processed and ultra-processed foods generally have unhealthy nutrition profiles. Our findings suggest the categorization of foods based on processing characteristics is promising for understanding the influence of food processing on children's dietary quality. More studies accounting for the type and degree of food processing are needed.
Dynamic control of remelting processes
Bertram, Lee A.; Williamson, Rodney L.; Melgaard, David K.; Beaman, Joseph J.; Evans, David G.
2000-01-01
An apparatus and method of controlling a remelting process by providing measured process variable values to a process controller; estimating process variable values using a process model of a remelting process; and outputting estimated process variable values from the process controller. Feedback and feedforward control devices receive the estimated process variable values and adjust inputs to the remelting process. Electrode weight, electrode mass, electrode gap, process current, process voltage, electrode position, electrode temperature, electrode thermal boundary layer thickness, electrode velocity, electrode acceleration, slag temperature, melting efficiency, cooling water temperature, cooling water flow rate, crucible temperature profile, slag skin temperature, and/or drip short events are employed, as are parameters representing physical constraints of electroslag remelting or vacuum arc remelting, as applicable.
On Intelligent Design and Planning Method of Process Route Based on Gun Breech Machining Process
NASA Astrophysics Data System (ADS)
Hongzhi, Zhao; Jian, Zhang
2018-03-01
The paper states an approach of intelligent design and planning of process route based on gun breech machining process, against several problems, such as complex machining process of gun breech, tedious route design and long period of its traditional unmanageable process route. Based on gun breech machining process, intelligent design and planning system of process route are developed by virtue of DEST and VC++. The system includes two functional modules--process route intelligent design and its planning. The process route intelligent design module, through the analysis of gun breech machining process, summarizes breech process knowledge so as to complete the design of knowledge base and inference engine. And then gun breech process route intelligently output. On the basis of intelligent route design module, the final process route is made, edited and managed in the process route planning module.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-01-01
Volume 1 describes the proposed plant: KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process, and also with ancillary processes, such as oxygen plant, shift process, RECTISOL purification process, sulfur recovery equipment and pollution control equipment. Numerous engineering diagrams are included. (LTN)
Performing a local reduction operation on a parallel computer
Blocksome, Michael A; Faraj, Daniel A
2013-06-04
A parallel computer including compute nodes, each including two reduction processing cores, a network write processing core, and a network read processing core, each processing core assigned an input buffer. Copying, in interleaved chunks by the reduction processing cores, contents of the reduction processing cores' input buffers to an interleaved buffer in shared memory; copying, by one of the reduction processing cores, contents of the network write processing core's input buffer to shared memory; copying, by another of the reduction processing cores, contents of the network read processing core's input buffer to shared memory; and locally reducing in parallel by the reduction processing cores: the contents of the reduction processing core's input buffer; every other interleaved chunk of the interleaved buffer; the copied contents of the network write processing core's input buffer; and the copied contents of the network read processing core's input buffer.
Performing a local reduction operation on a parallel computer
Blocksome, Michael A.; Faraj, Daniel A.
2012-12-11
A parallel computer including compute nodes, each including two reduction processing cores, a network write processing core, and a network read processing core, each processing core assigned an input buffer. Copying, in interleaved chunks by the reduction processing cores, contents of the reduction processing cores' input buffers to an interleaved buffer in shared memory; copying, by one of the reduction processing cores, contents of the network write processing core's input buffer to shared memory; copying, by another of the reduction processing cores, contents of the network read processing core's input buffer to shared memory; and locally reducing in parallel by the reduction processing cores: the contents of the reduction processing core's input buffer; every other interleaved chunk of the interleaved buffer; the copied contents of the network write processing core's input buffer; and the copied contents of the network read processing core's input buffer.
Lau, Nathan; Jamieson, Greg A; Skraaning, Gyrd
2016-07-01
We introduce Process Overview, a situation awareness characterisation of the knowledge derived from monitoring process plants. Process Overview is based on observational studies of process control work in the literature. The characterisation is applied to develop a query-based measure called the Process Overview Measure. The goal of the measure is to improve coupling between situation and awareness according to process plant properties and operator cognitive work. A companion article presents the empirical evaluation of the Process Overview Measure in a realistic process control setting. The Process Overview Measure demonstrated sensitivity and validity by revealing significant effects of experimental manipulations that corroborated with other empirical results. The measure also demonstrated adequate inter-rater reliability and practicality for measuring SA based on data collected by process experts. Practitioner Summary: The Process Overview Measure is a query-based measure for assessing operator situation awareness from monitoring process plants in representative settings.
43 CFR 2804.19 - How will BLM process my Processing Category 6 application?
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false How will BLM process my Processing... process my Processing Category 6 application? (a) For Processing Category 6 applications, you and BLM must enter into a written agreement that describes how BLM will process your application. The final agreement...
43 CFR 2804.19 - How will BLM process my Processing Category 6 application?
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false How will BLM process my Processing... process my Processing Category 6 application? (a) For Processing Category 6 applications, you and BLM must enter into a written agreement that describes how BLM will process your application. The final agreement...
Process Correlation Analysis Model for Process Improvement Identification
Park, Sooyong
2014-01-01
Software process improvement aims at improving the development process of software systems. It is initiated by process assessment identifying strengths and weaknesses and based on the findings, improvement plans are developed. In general, a process reference model (e.g., CMMI) is used throughout the process of software process improvement as the base. CMMI defines a set of process areas involved in software development and what to be carried out in process areas in terms of goals and practices. Process areas and their elements (goals and practices) are often correlated due to the iterative nature of software development process. However, in the current practice, correlations of process elements are often overlooked in the development of an improvement plan, which diminishes the efficiency of the plan. This is mainly attributed to significant efforts and the lack of required expertise. In this paper, we present a process correlation analysis model that helps identify correlations of process elements from the results of process assessment. This model is defined based on CMMI and empirical data of improvement practices. We evaluate the model using industrial data. PMID:24977170
Process correlation analysis model for process improvement identification.
Choi, Su-jin; Kim, Dae-Kyoo; Park, Sooyong
2014-01-01
Software process improvement aims at improving the development process of software systems. It is initiated by process assessment identifying strengths and weaknesses and based on the findings, improvement plans are developed. In general, a process reference model (e.g., CMMI) is used throughout the process of software process improvement as the base. CMMI defines a set of process areas involved in software development and what to be carried out in process areas in terms of goals and practices. Process areas and their elements (goals and practices) are often correlated due to the iterative nature of software development process. However, in the current practice, correlations of process elements are often overlooked in the development of an improvement plan, which diminishes the efficiency of the plan. This is mainly attributed to significant efforts and the lack of required expertise. In this paper, we present a process correlation analysis model that helps identify correlations of process elements from the results of process assessment. This model is defined based on CMMI and empirical data of improvement practices. We evaluate the model using industrial data.
Cleanliness of Ti-bearing Al-killed ultra-low-carbon steel during different heating processes
NASA Astrophysics Data System (ADS)
Guo, Jian-long; Bao, Yan-ping; Wang, Min
2017-12-01
During the production of Ti-bearing Al-killed ultra-low-carbon (ULC) steel, two different heating processes were used when the converter tapping temperature or the molten steel temperature in the Ruhrstahl-Heraeus (RH) process was low: heating by Al addition during the RH decarburization process and final deoxidation at the end of the RH decarburization process (process-I), and increasing the oxygen content at the end of RH decarburization, heating and final deoxidation by one-time Al addition (process-II). Temperature increases of 10°C by different processes were studied; the results showed that the two heating processes could achieve the same heating effect. The T.[O] content in the slab and the refining process was better controlled by process-I than by process-II. Statistical analysis of inclusions showed that the numbers of inclusions in the slab obtained by process-I were substantially less than those in the slab obtained by process-II. For process-I, the Al2O3 inclusions produced by Al added to induce heating were substantially removed at the end of decarburization. The amounts of inclusions were substantially greater for process-II than for process-I at different refining stages because of the higher dissolved oxygen concentration in process-II. Industrial test results showed that process-I was more beneficial for improving the cleanliness of molten steel.
Application of agent-based system for bioprocess description and process improvement.
Gao, Ying; Kipling, Katie; Glassey, Jarka; Willis, Mark; Montague, Gary; Zhou, Yuhong; Titchener-Hooker, Nigel J
2010-01-01
Modeling plays an important role in bioprocess development for design and scale-up. Predictive models can also be used in biopharmaceutical manufacturing to assist decision-making either to maintain process consistency or to identify optimal operating conditions. To predict the whole bioprocess performance, the strong interactions present in a processing sequence must be adequately modeled. Traditionally, bioprocess modeling considers process units separately, which makes it difficult to capture the interactions between units. In this work, a systematic framework is developed to analyze the bioprocesses based on a whole process understanding and considering the interactions between process operations. An agent-based approach is adopted to provide a flexible infrastructure for the necessary integration of process models. This enables the prediction of overall process behavior, which can then be applied during process development or once manufacturing has commenced, in both cases leading to the capacity for fast evaluation of process improvement options. The multi-agent system comprises a process knowledge base, process models, and a group of functional agents. In this system, agent components co-operate with each other in performing their tasks. These include the description of the whole process behavior, evaluating process operating conditions, monitoring of the operating processes, predicting critical process performance, and providing guidance to decision-making when coping with process deviations. During process development, the system can be used to evaluate the design space for process operation. During manufacture, the system can be applied to identify abnormal process operation events and then to provide suggestions as to how best to cope with the deviations. In all cases, the function of the system is to ensure an efficient manufacturing process. The implementation of the agent-based approach is illustrated via selected application scenarios, which demonstrate how such a framework may enable the better integration of process operations by providing a plant-wide process description to facilitate process improvement. Copyright 2009 American Institute of Chemical Engineers
Electricity from sunlight. [low cost silicon for solar cells
NASA Technical Reports Server (NTRS)
Yaws, C. L.; Miller, J. W.; Lutwack, R.; Hsu, G.
1978-01-01
The paper discusses a number of new unconventional processes proposed for the low-cost production of silicon for solar cells. Consideration is given to: (1) the Battelle process (Zn/SiCl4), (2) the Battelle process (SiI4), (3) the Silane process, (4) the Motorola process (SiF4/SiF2), (5) the Westinghouse process (Na/SiCl4), (6) the Dow Corning process (C/SiO2), (7) the AeroChem process (SiCl4/H atom), and the Stanford process (Na/SiF4). Preliminary results indicate that the conventional process and the SiI4 processes cannot meet the project goal of $10/kg by 1986. Preliminary cost evaluation results for the Zn/SiCl4 process are favorable.
Composing Models of Geographic Physical Processes
NASA Astrophysics Data System (ADS)
Hofer, Barbara; Frank, Andrew U.
Processes are central for geographic information science; yet geographic information systems (GIS) lack capabilities to represent process related information. A prerequisite to including processes in GIS software is a general method to describe geographic processes independently of application disciplines. This paper presents such a method, namely a process description language. The vocabulary of the process description language is derived formally from mathematical models. Physical processes in geography can be described in two equivalent languages: partial differential equations or partial difference equations, where the latter can be shown graphically and used as a method for application specialists to enter their process models. The vocabulary of the process description language comprises components for describing the general behavior of prototypical geographic physical processes. These process components can be composed by basic models of geographic physical processes, which is shown by means of an example.
Process-based tolerance assessment of connecting rod machining process
NASA Astrophysics Data System (ADS)
Sharma, G. V. S. S.; Rao, P. Srinivasa; Surendra Babu, B.
2016-06-01
Process tolerancing based on the process capability studies is the optimistic and pragmatic approach of determining the manufacturing process tolerances. On adopting the define-measure-analyze-improve-control approach, the process potential capability index ( C p) and the process performance capability index ( C pk) values of identified process characteristics of connecting rod machining process are achieved to be greater than the industry benchmark of 1.33, i.e., four sigma level. The tolerance chain diagram methodology is applied to the connecting rod in order to verify the manufacturing process tolerances at various operations of the connecting rod manufacturing process. This paper bridges the gap between the existing dimensional tolerances obtained via tolerance charting and process capability studies of the connecting rod component. Finally, the process tolerancing comparison has been done by adopting a tolerance capability expert software.
Intranode data communications in a parallel computer
Archer, Charles J; Blocksome, Michael A; Miller, Douglas R; Ratterman, Joseph D; Smith, Brian E
2014-01-07
Intranode data communications in a parallel computer that includes compute nodes configured to execute processes, where the data communications include: allocating, upon initialization of a first process of a computer node, a region of shared memory; establishing, by the first process, a predefined number of message buffers, each message buffer associated with a process to be initialized on the compute node; sending, to a second process on the same compute node, a data communications message without determining whether the second process has been initialized, including storing the data communications message in the message buffer of the second process; and upon initialization of the second process: retrieving, by the second process, a pointer to the second process's message buffer; and retrieving, by the second process from the second process's message buffer in dependence upon the pointer, the data communications message sent by the first process.
Intranode data communications in a parallel computer
Archer, Charles J; Blocksome, Michael A; Miller, Douglas R; Ratterman, Joseph D; Smith, Brian E
2013-07-23
Intranode data communications in a parallel computer that includes compute nodes configured to execute processes, where the data communications include: allocating, upon initialization of a first process of a compute node, a region of shared memory; establishing, by the first process, a predefined number of message buffers, each message buffer associated with a process to be initialized on the compute node; sending, to a second process on the same compute node, a data communications message without determining whether the second process has been initialized, including storing the data communications message in the message buffer of the second process; and upon initialization of the second process: retrieving, by the second process, a pointer to the second process's message buffer; and retrieving, by the second process from the second process's message buffer in dependence upon the pointer, the data communications message sent by the first process.
Canadian Libraries and Mass Deacidification.
ERIC Educational Resources Information Center
Pacey, Antony
1992-01-01
Considers the advantages and disadvantages of six mass deacidification processes that libraries can use to salvage printed materials: the Wei T'o process, the Diethyl Zinc (DEZ) process, the FMC (Lithco) process, the Book Preservation Associates (BPA) process, the "Bookkeeper" process, and the "Lyophilization" process. The…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Heng; Ye, Ming; Walker, Anthony P.
Hydrological models are always composed of multiple components that represent processes key to intended model applications. When a process can be simulated by multiple conceptual-mathematical models (process models), model uncertainty in representing the process arises. While global sensitivity analysis methods have been widely used for identifying important processes in hydrologic modeling, the existing methods consider only parametric uncertainty but ignore the model uncertainty for process representation. To address this problem, this study develops a new method to probe multimodel process sensitivity by integrating the model averaging methods into the framework of variance-based global sensitivity analysis, given that the model averagingmore » methods quantify both parametric and model uncertainty. A new process sensitivity index is derived as a metric of relative process importance, and the index includes variance in model outputs caused by uncertainty in both process models and model parameters. For demonstration, the new index is used to evaluate the processes of recharge and geology in a synthetic study of groundwater reactive transport modeling. The recharge process is simulated by two models that converting precipitation to recharge, and the geology process is also simulated by two models of different parameterizations of hydraulic conductivity; each process model has its own random parameters. The new process sensitivity index is mathematically general, and can be applied to a wide range of problems in hydrology and beyond.« less
Richardson-Klavehn, A; Gardiner, J M
1998-05-01
Depth-of-processing effects on incidental perceptual memory tests could reflect (a) contamination by voluntary retrieval, (b) sensitivity of involuntary retrieval to prior conceptual processing, or (c) a deficit in lexical processing during graphemic study tasks that affects involuntary retrieval. The authors devised an extension of incidental test methodology--making conjunctive predictions about response times as well as response proportions--to discriminate among these alternatives. They used graphemic, phonemic, and semantic study tasks, and a word-stem completion test with incidental, intentional, and inclusion instructions. Semantic study processing was superior to phonemic study processing in the intentional and inclusion tests, but semantic and phonemic study processing produced equal priming in the incidental test, showing that priming was uncontaminated by voluntary retrieval--a conclusion reinforced by the response-time data--and that priming was insensitive to prior conceptual processing. The incidental test nevertheless showed a priming deficit following graphemic study processing, supporting the lexical-processing hypothesis. Adding a lexical decision to the 3 study tasks eliminated the priming deficit following graphemic study processing, but did not influence priming following phonemic and semantic processing. The results provide the first clear evidence that depth-of-processing effects on perceptual priming can reflect lexical processes, rather than voluntary contamination or conceptual processes.
Improving operational anodising process performance using simulation approach
NASA Astrophysics Data System (ADS)
Liong, Choong-Yeun; Ghazali, Syarah Syahidah
2015-10-01
The use of aluminium is very widespread, especially in transportation, electrical and electronics, architectural, automotive and engineering applications sectors. Therefore, the anodizing process is an important process for aluminium in order to make the aluminium durable, attractive and weather resistant. This research is focused on the anodizing process operations in manufacturing and supplying of aluminium extrusion. The data required for the development of the model is collected from the observations and interviews conducted in the study. To study the current system, the processes involved in the anodizing process are modeled by using Arena 14.5 simulation software. Those processes consist of five main processes, namely the degreasing process, the etching process, the desmut process, the anodizing process, the sealing process and 16 other processes. The results obtained were analyzed to identify the problems or bottlenecks that occurred and to propose improvement methods that can be implemented on the original model. Based on the comparisons that have been done between the improvement methods, the productivity could be increased by reallocating the workers and reducing loading time.
Value-driven process management: using value to improve processes.
Melnyk, S A; Christensen, R T
2000-08-01
Every firm can be viewed as consisting of various processes. These processes affect everything that the firm does from accepting orders and designing products to scheduling production. In many firms, the management of processes often reflects considerations of efficiency (cost) rather than effectiveness (value). In this article, we introduce a well-structured process for managing processes that begins not with the process, but rather with the customer and the product and the concept of value. This process progresses through a number of steps which include issues such as defining value, generating the appropriate metrics, identifying the critical processes, mapping and assessing the performance of these processes, and identifying long- and short-term areas for action. What makes the approach presented in this article so powerful is that it explicitly links the customer to the process and that the process is evaluated in term of its ability to effectively serve the customers.
Method for routing events from key strokes in a multi-processing computer systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rhodes, D.A.; Rustici, E.; Carter, K.H.
1990-01-23
The patent describes a method of routing user input in a computer system which concurrently runs a plurality of processes. It comprises: generating keycodes representative of keys typed by a user; distinguishing generated keycodes by looking up each keycode in a routing table which assigns each possible keycode to an individual assigned process of the plurality of processes, one of which processes being a supervisory process; then, sending each keycode to its assigned process until a keycode assigned to the supervisory process is received; sending keycodes received subsequent to the keycode assigned to the supervisory process to a buffer; next,more » providing additional keycodes to the supervisory process from the buffer until the supervisory process has completed operation; and sending keycodes stored in the buffer to processes assigned therewith after the supervisory process has completedoperation.« less
Issues Management Process Course # 38401
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binion, Ula Marie
The purpose of this training it to advise Issues Management Coordinators (IMCs) on the revised Contractor Assurance System (CAS) Issues Management (IM) process. Terminal Objectives: Understand the Laboratory’s IM process; Understand your role in the Laboratory’s IM process. Learning Objectives: Describe the IM process within the context of the CAS; Describe the importance of implementing an institutional IM process at LANL; Describe the process flow for the Laboratory’s IM process; Apply the definition of an issue; Use available resources to determine initial screening risk levels for issues; Describe the required major process steps for each risk level; Describe the personnelmore » responsibilities for IM process implementation; Access available resources to support IM process implementation.« less
Social network supported process recommender system.
Ye, Yanming; Yin, Jianwei; Xu, Yueshen
2014-01-01
Process recommendation technologies have gained more and more attention in the field of intelligent business process modeling to assist the process modeling. However, most of the existing technologies only use the process structure analysis and do not take the social features of processes into account, while the process modeling is complex and comprehensive in most situations. This paper studies the feasibility of social network research technologies on process recommendation and builds a social network system of processes based on the features similarities. Then, three process matching degree measurements are presented and the system implementation is discussed subsequently. Finally, experimental evaluations and future works are introduced.
Pascual, Carlos; Luján, Marcos; Mora, José Ramón; Chiva, Vicente; Gamarra, Manuela
2015-01-01
The implantation of total quality management models in clinical departments can better adapt to the 2009 ISO 9004 model. An essential part of implantation of these models is the establishment of processes and their stabilization. There are four types of processes: key, management, support and operative (clinical). Management processes have four parts: process stabilization form, process procedures form, medical activities cost estimation form and, process flow chart. In this paper we will detail the creation of an essential process in a surgical department, such as the process of management of the surgery waiting list.
T-Check in Technologies for Interoperability: Business Process Management in a Web Services Context
2008-09-01
UML Sequence Diagram) 6 Figure 3: BPMN Diagram of the Order Processing Business Process 9 Figure 4: T-Check Process for Technology Evaluation 10...Figure 5: Notional System Architecture 12 Figure 6: Flow Chart of the Order Processing Business Process 14 Figure 7: Order Processing Activities...features. Figure 3 (created with Intalio BPMS Designer [Intalio 2008]) shows a BPMN view of the Order Processing business process that is used in the
Chopra, Vikram; Bairagi, Mukesh; Trivedi, P; Nagar, Mona
2012-01-01
Statistical process control is the application of statistical methods to the measurement and analysis of variation process. Various regulatory authorities such as Validation Guidance for Industry (2011), International Conference on Harmonisation ICH Q10 (2009), the Health Canada guidelines (2009), Health Science Authority, Singapore: Guidance for Product Quality Review (2008), and International Organization for Standardization ISO-9000:2005 provide regulatory support for the application of statistical process control for better process control and understanding. In this study risk assessments, normal probability distributions, control charts, and capability charts are employed for selection of critical quality attributes, determination of normal probability distribution, statistical stability, and capability of production processes, respectively. The objective of this study is to determine tablet production process quality in the form of sigma process capability. By interpreting data and graph trends, forecasting of critical quality attributes, sigma process capability, and stability of process were studied. The overall study contributes to an assessment of process at the sigma level with respect to out-of-specification attributes produced. Finally, the study will point to an area where the application of quality improvement and quality risk assessment principles for achievement of six sigma-capable processes is possible. Statistical process control is the most advantageous tool for determination of the quality of any production process. This tool is new for the pharmaceutical tablet production process. In the case of pharmaceutical tablet production processes, the quality control parameters act as quality assessment parameters. Application of risk assessment provides selection of critical quality attributes among quality control parameters. Sequential application of normality distributions, control charts, and capability analyses provides a valid statistical process control study on process. Interpretation of such a study provides information about stability, process variability, changing of trends, and quantification of process ability against defective production. Comparative evaluation of critical quality attributes by Pareto charts provides the least capable and most variable process that is liable for improvement. Statistical process control thus proves to be an important tool for six sigma-capable process development and continuous quality improvement.
Streefland, M; Van Herpen, P F G; Van de Waterbeemd, B; Van der Pol, L A; Beuvery, E C; Tramper, J; Martens, D E; Toft, M
2009-10-15
A licensed pharmaceutical process is required to be executed within the validated ranges throughout the lifetime of product manufacturing. Changes to the process, especially for processes involving biological products, usually require the manufacturer to demonstrate that the safety and efficacy of the product remains unchanged by new or additional clinical testing. Recent changes in the regulations for pharmaceutical processing allow broader ranges of process settings to be submitted for regulatory approval, the so-called process design space, which means that a manufacturer can optimize his process within the submitted ranges after the product has entered the market, which allows flexible processes. In this article, the applicability of this concept of the process design space is investigated for the cultivation process step for a vaccine against whooping cough disease. An experimental design (DoE) is applied to investigate the ranges of critical process parameters that still result in a product that meets specifications. The on-line process data, including near infrared spectroscopy, are used to build a descriptive model of the processes used in the experimental design. Finally, the data of all processes are integrated in a multivariate batch monitoring model that represents the investigated process design space. This article demonstrates how the general principles of PAT and process design space can be applied for an undefined biological product such as a whole cell vaccine. The approach chosen for model development described here, allows on line monitoring and control of cultivation batches in order to assure in real time that a process is running within the process design space.
Processing approaches to cognition: the impetus from the levels-of-processing framework.
Roediger, Henry L; Gallo, David A; Geraci, Lisa
2002-01-01
Processing approaches to cognition have a long history, from act psychology to the present, but perhaps their greatest boost was given by the success and dominance of the levels-of-processing framework. We review the history of processing approaches, and explore the influence of the levels-of-processing approach, the procedural approach advocated by Paul Kolers, and the transfer-appropriate processing framework. Processing approaches emphasise the procedures of mind and the idea that memory storage can be usefully conceptualised as residing in the same neural units that originally processed information at the time of encoding. Processing approaches emphasise the unity and interrelatedness of cognitive processes and maintain that they can be dissected into separate faculties only by neglecting the richness of mental life. We end by pointing to future directions for processing approaches.
Global Sensitivity Analysis for Process Identification under Model Uncertainty
NASA Astrophysics Data System (ADS)
Ye, M.; Dai, H.; Walker, A. P.; Shi, L.; Yang, J.
2015-12-01
The environmental system consists of various physical, chemical, and biological processes, and environmental models are always built to simulate these processes and their interactions. For model building, improvement, and validation, it is necessary to identify important processes so that limited resources can be used to better characterize the processes. While global sensitivity analysis has been widely used to identify important processes, the process identification is always based on deterministic process conceptualization that uses a single model for representing a process. However, environmental systems are complex, and it happens often that a single process may be simulated by multiple alternative models. Ignoring the model uncertainty in process identification may lead to biased identification in that identified important processes may not be so in the real world. This study addresses this problem by developing a new method of global sensitivity analysis for process identification. The new method is based on the concept of Sobol sensitivity analysis and model averaging. Similar to the Sobol sensitivity analysis to identify important parameters, our new method evaluates variance change when a process is fixed at its different conceptualizations. The variance considers both parametric and model uncertainty using the method of model averaging. The method is demonstrated using a synthetic study of groundwater modeling that considers recharge process and parameterization process. Each process has two alternative models. Important processes of groundwater flow and transport are evaluated using our new method. The method is mathematically general, and can be applied to a wide range of environmental problems.
Dai, Heng; Ye, Ming; Walker, Anthony P.; ...
2017-03-28
A hydrological model consists of multiple process level submodels, and each submodel represents a process key to the operation of the simulated system. Global sensitivity analysis methods have been widely used to identify important processes for system model development and improvement. The existing methods of global sensitivity analysis only consider parametric uncertainty, and are not capable of handling model uncertainty caused by multiple process models that arise from competing hypotheses about one or more processes. To address this problem, this study develops a new method to probe model output sensitivity to competing process models by integrating model averaging methods withmore » variance-based global sensitivity analysis. A process sensitivity index is derived as a single summary measure of relative process importance, and the index includes variance in model outputs caused by uncertainty in both process models and their parameters. Here, for demonstration, the new index is used to assign importance to the processes of recharge and geology in a synthetic study of groundwater reactive transport modeling. The recharge process is simulated by two models that convert precipitation to recharge, and the geology process is simulated by two models of hydraulic conductivity. Each process model has its own random parameters. Finally, the new process sensitivity index is mathematically general, and can be applied to a wide range of problems in hydrology and beyond.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Heng; Ye, Ming; Walker, Anthony P.
A hydrological model consists of multiple process level submodels, and each submodel represents a process key to the operation of the simulated system. Global sensitivity analysis methods have been widely used to identify important processes for system model development and improvement. The existing methods of global sensitivity analysis only consider parametric uncertainty, and are not capable of handling model uncertainty caused by multiple process models that arise from competing hypotheses about one or more processes. To address this problem, this study develops a new method to probe model output sensitivity to competing process models by integrating model averaging methods withmore » variance-based global sensitivity analysis. A process sensitivity index is derived as a single summary measure of relative process importance, and the index includes variance in model outputs caused by uncertainty in both process models and their parameters. Here, for demonstration, the new index is used to assign importance to the processes of recharge and geology in a synthetic study of groundwater reactive transport modeling. The recharge process is simulated by two models that convert precipitation to recharge, and the geology process is simulated by two models of hydraulic conductivity. Each process model has its own random parameters. Finally, the new process sensitivity index is mathematically general, and can be applied to a wide range of problems in hydrology and beyond.« less
Social Network Supported Process Recommender System
Ye, Yanming; Yin, Jianwei; Xu, Yueshen
2014-01-01
Process recommendation technologies have gained more and more attention in the field of intelligent business process modeling to assist the process modeling. However, most of the existing technologies only use the process structure analysis and do not take the social features of processes into account, while the process modeling is complex and comprehensive in most situations. This paper studies the feasibility of social network research technologies on process recommendation and builds a social network system of processes based on the features similarities. Then, three process matching degree measurements are presented and the system implementation is discussed subsequently. Finally, experimental evaluations and future works are introduced. PMID:24672309
A model for process representation and synthesis. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Thomas, R. H.
1971-01-01
The problem of representing groups of loosely connected processes is investigated, and a model for process representation useful for synthesizing complex patterns of process behavior is developed. There are three parts, the first part isolates the concepts which form the basis for the process representation model by focusing on questions such as: What is a process; What is an event; Should one process be able to restrict the capabilities of another? The second part develops a model for process representation which captures the concepts and intuitions developed in the first part. The model presented is able to describe both the internal structure of individual processes and the interface structure between interacting processes. Much of the model's descriptive power derives from its use of the notion of process state as a vehicle for relating the internal and external aspects of process behavior. The third part demonstrates by example that the model for process representation is a useful one for synthesizing process behavior patterns. In it the model is used to define a variety of interesting process behavior patterns. The dissertation closes by suggesting how the model could be used as a semantic base for a very potent language extension facility.
Process and Post-Process: A Discursive History.
ERIC Educational Resources Information Center
Matsuda, Paul Kei
2003-01-01
Examines the history of process and post-process in composition studies, focusing on ways in which terms, such as "current-traditional rhetoric,""process," and "post-process" have contributed to the discursive construction of reality. Argues that use of the term post-process in the context of second language writing needs to be guided by a…
Improving operational anodising process performance using simulation approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liong, Choong-Yeun, E-mail: lg@ukm.edu.my; Ghazali, Syarah Syahidah, E-mail: syarah@gapps.kptm.edu.my
The use of aluminium is very widespread, especially in transportation, electrical and electronics, architectural, automotive and engineering applications sectors. Therefore, the anodizing process is an important process for aluminium in order to make the aluminium durable, attractive and weather resistant. This research is focused on the anodizing process operations in manufacturing and supplying of aluminium extrusion. The data required for the development of the model is collected from the observations and interviews conducted in the study. To study the current system, the processes involved in the anodizing process are modeled by using Arena 14.5 simulation software. Those processes consist ofmore » five main processes, namely the degreasing process, the etching process, the desmut process, the anodizing process, the sealing process and 16 other processes. The results obtained were analyzed to identify the problems or bottlenecks that occurred and to propose improvement methods that can be implemented on the original model. Based on the comparisons that have been done between the improvement methods, the productivity could be increased by reallocating the workers and reducing loading time.« less
Feller processes: the next generation in modeling. Brownian motion, Lévy processes and beyond.
Böttcher, Björn
2010-12-03
We present a simple construction method for Feller processes and a framework for the generation of sample paths of Feller processes. The construction is based on state space dependent mixing of Lévy processes. Brownian Motion is one of the most frequently used continuous time Markov processes in applications. In recent years also Lévy processes, of which Brownian Motion is a special case, have become increasingly popular. Lévy processes are spatially homogeneous, but empirical data often suggest the use of spatially inhomogeneous processes. Thus it seems necessary to go to the next level of generalization: Feller processes. These include Lévy processes and in particular brownian motion as special cases but allow spatial inhomogeneities. Many properties of Feller processes are known, but proving the very existence is, in general, very technical. Moreover, an applicable framework for the generation of sample paths of a Feller process was missing. We explain, with practitioners in mind, how to overcome both of these obstacles. In particular our simulation technique allows to apply Monte Carlo methods to Feller processes.
Feller Processes: The Next Generation in Modeling. Brownian Motion, Lévy Processes and Beyond
Böttcher, Björn
2010-01-01
We present a simple construction method for Feller processes and a framework for the generation of sample paths of Feller processes. The construction is based on state space dependent mixing of Lévy processes. Brownian Motion is one of the most frequently used continuous time Markov processes in applications. In recent years also Lévy processes, of which Brownian Motion is a special case, have become increasingly popular. Lévy processes are spatially homogeneous, but empirical data often suggest the use of spatially inhomogeneous processes. Thus it seems necessary to go to the next level of generalization: Feller processes. These include Lévy processes and in particular Brownian motion as special cases but allow spatial inhomogeneities. Many properties of Feller processes are known, but proving the very existence is, in general, very technical. Moreover, an applicable framework for the generation of sample paths of a Feller process was missing. We explain, with practitioners in mind, how to overcome both of these obstacles. In particular our simulation technique allows to apply Monte Carlo methods to Feller processes. PMID:21151931
AIRSAR Automated Web-based Data Processing and Distribution System
NASA Technical Reports Server (NTRS)
Chu, Anhua; vanZyl, Jakob; Kim, Yunjin; Lou, Yunling; Imel, David; Tung, Wayne; Chapman, Bruce; Durden, Stephen
2005-01-01
In this paper, we present an integrated, end-to-end synthetic aperture radar (SAR) processing system that accepts data processing requests, submits processing jobs, performs quality analysis, delivers and archives processed data. This fully automated SAR processing system utilizes database and internet/intranet web technologies to allow external users to browse and submit data processing requests and receive processed data. It is a cost-effective way to manage a robust SAR processing and archival system. The integration of these functions has reduced operator errors and increased processor throughput dramatically.
Simplified process model discovery based on role-oriented genetic mining.
Zhao, Weidong; Liu, Xi; Dai, Weihui
2014-01-01
Process mining is automated acquisition of process models from event logs. Although many process mining techniques have been developed, most of them are based on control flow. Meanwhile, the existing role-oriented process mining methods focus on correctness and integrity of roles while ignoring role complexity of the process model, which directly impacts understandability and quality of the model. To address these problems, we propose a genetic programming approach to mine the simplified process model. Using a new metric of process complexity in terms of roles as the fitness function, we can find simpler process models. The new role complexity metric of process models is designed from role cohesion and coupling, and applied to discover roles in process models. Moreover, the higher fitness derived from role complexity metric also provides a guideline for redesigning process models. Finally, we conduct case study and experiments to show that the proposed method is more effective for streamlining the process by comparing with related studies.
Electrotechnologies to process foods
USDA-ARS?s Scientific Manuscript database
Electrical energy is being used to process foods. In conventional food processing plants, electricity drives mechanical devices and controls the degree of process. In recent years, several processing technologies are being developed to process foods directly with electricity. Electrotechnologies use...
Challenges associated with the implementation of the nursing process: A systematic review.
Zamanzadeh, Vahid; Valizadeh, Leila; Tabrizi, Faranak Jabbarzadeh; Behshid, Mojghan; Lotfi, Mojghan
2015-01-01
Nursing process is a scientific approach in the provision of qualified nursing cares. However, in practice, the implementation of this process is faced with numerous challenges. With the knowledge of the challenges associated with the implementation of the nursing process, the nursing processes can be developed appropriately. Due to the lack of comprehensive information on this subject, the current study was carried out to assess the key challenges associated with the implementation of the nursing process. To achieve and review related studies on this field, databases of Iran medix, SID, Magiran, PUBMED, Google scholar, and Proquest were assessed using the main keywords of nursing process and nursing process systematic review. The articles were retrieved in three steps including searching by keywords, review of the proceedings based on inclusion criteria, and final retrieval and assessment of available full texts. Systematic assessment of the articles showed different challenges in implementation of the nursing process. Intangible understanding of the concept of nursing process, different views of the process, lack of knowledge and awareness among nurses related to the execution of process, supports of managing systems, and problems related to recording the nursing process were the main challenges that were extracted from review of literature. On systematically reviewing the literature, intangible understanding of the concept of nursing process has been identified as the main challenge in nursing process. To achieve the best strategy to minimize the challenge, in addition to preparing facilitators for implementation of nursing process, intangible understanding of the concept of nursing process, different views of the process, and forming teams of experts in nursing education are recommended for internalizing the nursing process among nurses.
Challenges associated with the implementation of the nursing process: A systematic review
Zamanzadeh, Vahid; Valizadeh, Leila; Tabrizi, Faranak Jabbarzadeh; Behshid, Mojghan; Lotfi, Mojghan
2015-01-01
Background: Nursing process is a scientific approach in the provision of qualified nursing cares. However, in practice, the implementation of this process is faced with numerous challenges. With the knowledge of the challenges associated with the implementation of the nursing process, the nursing processes can be developed appropriately. Due to the lack of comprehensive information on this subject, the current study was carried out to assess the key challenges associated with the implementation of the nursing process. Materials and Methods: To achieve and review related studies on this field, databases of Iran medix, SID, Magiran, PUBMED, Google scholar, and Proquest were assessed using the main keywords of nursing process and nursing process systematic review. The articles were retrieved in three steps including searching by keywords, review of the proceedings based on inclusion criteria, and final retrieval and assessment of available full texts. Results: Systematic assessment of the articles showed different challenges in implementation of the nursing process. Intangible understanding of the concept of nursing process, different views of the process, lack of knowledge and awareness among nurses related to the execution of process, supports of managing systems, and problems related to recording the nursing process were the main challenges that were extracted from review of literature. Conclusions: On systematically reviewing the literature, intangible understanding of the concept of nursing process has been identified as the main challenge in nursing process. To achieve the best strategy to minimize the challenge, in addition to preparing facilitators for implementation of nursing process, intangible understanding of the concept of nursing process, different views of the process, and forming teams of experts in nursing education are recommended for internalizing the nursing process among nurses. PMID:26257793
Automated synthesis of image processing procedures using AI planning techniques
NASA Technical Reports Server (NTRS)
Chien, Steve; Mortensen, Helen
1994-01-01
This paper describes the Multimission VICAR (Video Image Communication and Retrieval) Planner (MVP) (Chien 1994) system, which uses artificial intelligence planning techniques (Iwasaki & Friedland, 1985, Pemberthy & Weld, 1992, Stefik, 1981) to automatically construct executable complex image processing procedures (using models of the smaller constituent image processing subprograms) in response to image processing requests made to the JPL Multimission Image Processing Laboratory (MIPL). The MVP system allows the user to specify the image processing requirements in terms of the various types of correction required. Given this information, MVP derives unspecified required processing steps and determines appropriate image processing programs and parameters to achieve the specified image processing goals. This information is output as an executable image processing program which can then be executed to fill the processing request.
NASA Astrophysics Data System (ADS)
Mariajayaprakash, Arokiasamy; Senthilvelan, Thiyagarajan; Vivekananthan, Krishnapillai Ponnambal
2013-07-01
The various process parameters affecting the quality characteristics of the shock absorber during the process were identified using the Ishikawa diagram and by failure mode and effect analysis. The identified process parameters are welding process parameters (squeeze, heat control, wheel speed, and air pressure), damper sealing process parameters (load, hydraulic pressure, air pressure, and fixture height), washing process parameters (total alkalinity, temperature, pH value of rinsing water, and timing), and painting process parameters (flowability, coating thickness, pointage, and temperature). In this paper, the process parameters, namely, painting and washing process parameters, are optimized by Taguchi method. Though the defects are reasonably minimized by Taguchi method, in order to achieve zero defects during the processes, genetic algorithm technique is applied on the optimized parameters obtained by Taguchi method.
Laadan, Oren; Nieh, Jason; Phung, Dan
2012-10-02
Methods, media and systems for managing a distributed application running in a plurality of digital processing devices are provided. In some embodiments, a method includes running one or more processes associated with the distributed application in virtualized operating system environments on a plurality of digital processing devices, suspending the one or more processes, and saving network state information relating to network connections among the one or more processes. The method further include storing process information relating to the one or more processes, recreating the network connections using the saved network state information, and restarting the one or more processes using the stored process information.
NASA Astrophysics Data System (ADS)
Chi, Xu; Dongming, Guo; Zhuji, Jin; Renke, Kang
2010-12-01
A signal processing method for the friction-based endpoint detection system of a chemical mechanical polishing (CMP) process is presented. The signal process method uses the wavelet threshold denoising method to reduce the noise contained in the measured original signal, extracts the Kalman filter innovation from the denoised signal as the feature signal, and judges the CMP endpoint based on the feature of the Kalman filter innovation sequence during the CMP process. Applying the signal processing method, the endpoint detection experiments of the Cu CMP process were carried out. The results show that the signal processing method can judge the endpoint of the Cu CMP process.
Cheng, Xue Jun; McCarthy, Callum J; Wang, Tony S L; Palmeri, Thomas J; Little, Daniel R
2018-06-01
Upright faces are thought to be processed more holistically than inverted faces. In the widely used composite face paradigm, holistic processing is inferred from interference in recognition performance from a to-be-ignored face half for upright and aligned faces compared with inverted or misaligned faces. We sought to characterize the nature of holistic processing in composite faces in computational terms. We use logical-rule models (Fifić, Little, & Nosofsky, 2010) and Systems Factorial Technology (Townsend & Nozawa, 1995) to examine whether composite faces are processed through pooling top and bottom face halves into a single processing channel-coactive processing-which is one common mechanistic definition of holistic processing. By specifically operationalizing holistic processing as the pooling of features into a single decision process in our task, we are able to distinguish it from other processing models that may underlie composite face processing. For instance, a failure of selective attention might result even when top and bottom components of composite faces are processed in serial or in parallel without processing the entire face coactively. Our results show that performance is best explained by a mixture of serial and parallel processing architectures across all 4 upright and inverted, aligned and misaligned face conditions. The results indicate multichannel, featural processing of composite faces in a manner inconsistent with the notion of coactivity. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Fuzzy image processing in sun sensor
NASA Technical Reports Server (NTRS)
Mobasser, S.; Liebe, C. C.; Howard, A.
2003-01-01
This paper will describe how the fuzzy image processing is implemented in the instrument. Comparison of the Fuzzy image processing and a more conventional image processing algorithm is provided and shows that the Fuzzy image processing yields better accuracy then conventional image processing.
DESIGNING ENVIRONMENTAL, ECONOMIC AND ENERGY EFFICIENT CHEMICAL PROCESSES
The design and improvement of chemical processes can be very challenging. The earlier energy conservation, process economics and environmental aspects are incorporated into the process development, the easier and less expensive it is to alter the process design. Process emissio...
Reversing the conventional leather processing sequence for cleaner leather production.
Saravanabhavan, Subramani; Thanikaivelan, Palanisamy; Rao, Jonnalagadda Raghava; Nair, Balachandran Unni; Ramasami, Thirumalachari
2006-02-01
Conventional leather processing generally involves a combination of single and multistep processes that employs as well as expels various biological, inorganic, and organic materials. It involves nearly 14-15 steps and discharges a huge amount of pollutants. This is primarily due to the fact that conventional leather processing employs a "do-undo" process logic. In this study, the conventional leather processing steps have been reversed to overcome the problems associated with the conventional method. The charges of the skin matrix and of the chemicals and pH profiles of the process have been judiciously used for reversing the process steps. This reversed process eventually avoids several acidification and basification/neutralization steps used in conventional leather processing. The developed process has been validated through various analyses such as chromium content, shrinkage temperature, softness measurements, scanning electron microscopy, and physical testing of the leathers. Further, the performance of the leathers is shown to be on par with conventionally processed leathers through bulk property evaluation. The process enjoys a significant reduction in COD and TS by 53 and 79%, respectively. Water consumption and discharge is reduced by 65 and 64%, respectively. Also, the process benefits from significant reduction in chemicals, time, power, and cost compared to the conventional process.
NASA Astrophysics Data System (ADS)
Schellenberger, Lauren Brownback
Group processing is a key principle of cooperative learning in which small groups discuss their strengths and weaknesses and set group goals or norms. However, group processing has not been well-studied at the post-secondary level or from a qualitative or mixed methods perspective. This mixed methods study uses a phenomenological framework to examine the experience of group processing for students in an undergraduate biology course for preservice teachers. The effect of group processing on students' attitudes toward future group work and group processing is also examined. Additionally, this research investigated preservice teachers' plans for incorporating group processing into future lessons. Students primarily experienced group processing as a time to reflect on past performance. Also, students experienced group processing as a time to increase communication among group members and become motivated for future group assignments. Three factors directly influenced students' experiences with group processing: (1) previous experience with group work, (2) instructor interaction, and (3) gender. Survey data indicated that group processing had a slight positive effect on students' attitudes toward future group work and group processing. Participants who were interviewed felt that group processing was an important part of group work and that it had increased their group's effectiveness as well as their ability to work effectively with other people. Participants held positive views on group work prior to engaging in group processing, and group processing did not alter their atittude toward group work. Preservice teachers who were interviewed planned to use group work and a modified group processing protocol in their future classrooms. They also felt that group processing had prepared them for their future professions by modeling effective collaboration and group skills. Based on this research, a new model for group processing has been created which includes extensive instructor interaction and additional group processing sessions. This study offers a new perspective on the phenomenon of group processing and informs science educators and teacher educators on the effective implementation of this important component of small-group learning.
Properties of the Bivariate Delayed Poisson Process
1974-07-01
and Lewis (1972) in their Berkeley Symposium paper and here their analysis of the bivariate Poisson processes (without Poisson noise) is carried... Poisson processes . They cannot, however, be independent Poisson processes because their events are associated in pairs by the displace- ment centres...process because its marginal processes for events of each type are themselves (univariate) Poisson processes . Cox and Lewis (1972) assumed a
The Application of Six Sigma Methodologies to University Processes: The Use of Student Teams
ERIC Educational Resources Information Center
Pryor, Mildred Golden; Alexander, Christine; Taneja, Sonia; Tirumalasetty, Sowmya; Chadalavada, Deepthi
2012-01-01
The first student Six Sigma team (activated under a QEP Process Sub-team) evaluated the course and curriculum approval process. The goal was to streamline the process and thereby shorten process cycle time and reduce confusion about how the process works. Members of this team developed flowcharts on how the process is supposed to work (by…
Impact of Radio Frequency Identification (RFID) on the Marine Corps’ Supply Process
2006-09-01
Hypothetical Improvement Using a Real-Time Order Processing System Vice a Batch Order Processing System ................56 3. As-Is: The Current... Processing System Vice a Batch Order Processing System ................58 V. RESULTS ................................................69 A. SIMULATION...Time: Hypothetical Improvement Using a Real-Time Order Processing System Vice a Batch Order Processing System ................71 3. As-Is: The
Pletzer, Belinda; Scheuringer, Andrea; Scherndl, Thomas
2017-09-05
Sex differences have been reported for a variety of cognitive tasks and related to the use of different cognitive processing styles in men and women. It was recently argued that these processing styles share some characteristics across tasks, i.e. male approaches are oriented towards holistic stimulus aspects and female approaches are oriented towards stimulus details. In that respect, sex-dependent cognitive processing styles share similarities with attentional global-local processing. A direct relationship between cognitive processing and global-local processing has however not been previously established. In the present study, 49 men and 44 women completed a Navon paradigm and a Kimchi Palmer task as well as a navigation task and a verbal fluency task with the goal to relate the global advantage (GA) effect as a measure of global processing to holistic processing styles in both tasks. Indeed participants with larger GA effects displayed more holistic processing during spatial navigation and phonemic fluency. However, the relationship to cognitive processing styles was modulated by the specific condition of the Navon paradigm, as well as the sex of participants. Thus, different types of global-local processing play different roles for cognitive processing in men and women.
21 CFR 113.83 - Establishing scheduled processes.
Code of Federal Regulations, 2012 CFR
2012-04-01
... competent processing authorities. If incubation tests are necessary for process confirmation, they shall... instituting the process. The incubation tests for confirmation of the scheduled processes should include the.... Complete records covering all aspects of the establishment of the process and associated incubation tests...
21 CFR 113.83 - Establishing scheduled processes.
Code of Federal Regulations, 2014 CFR
2014-04-01
... competent processing authorities. If incubation tests are necessary for process confirmation, they shall... instituting the process. The incubation tests for confirmation of the scheduled processes should include the.... Complete records covering all aspects of the establishment of the process and associated incubation tests...
21 CFR 113.83 - Establishing scheduled processes.
Code of Federal Regulations, 2013 CFR
2013-04-01
... competent processing authorities. If incubation tests are necessary for process confirmation, they shall... instituting the process. The incubation tests for confirmation of the scheduled processes should include the.... Complete records covering all aspects of the establishment of the process and associated incubation tests...
A mathematical study of a random process proposed as an atmospheric turbulence model
NASA Technical Reports Server (NTRS)
Sidwell, K.
1977-01-01
A random process is formed by the product of a local Gaussian process and a random amplitude process, and the sum of that product with an independent mean value process. The mathematical properties of the resulting process are developed, including the first and second order properties and the characteristic function of general order. An approximate method for the analysis of the response of linear dynamic systems to the process is developed. The transition properties of the process are also examined.
Standard services for the capture, processing, and distribution of packetized telemetry data
NASA Technical Reports Server (NTRS)
Stallings, William H.
1989-01-01
Standard functional services for the capture, processing, and distribution of packetized data are discussed with particular reference to the future implementation of packet processing systems, such as those for the Space Station Freedom. The major functions are listed under the following major categories: input processing, packet processing, and output processing. A functional block diagram of a packet data processing facility is presented, showing the distribution of the various processing functions as well as the primary data flow through the facility.
Yoo, Sooyoung; Cho, Minsu; Kim, Eunhye; Kim, Seok; Sim, Yerim; Yoo, Donghyun; Hwang, Hee; Song, Minseok
2016-04-01
Many hospitals are increasing their efforts to improve processes because processes play an important role in enhancing work efficiency and reducing costs. However, to date, a quantitative tool has not been available to examine the before and after effects of processes and environmental changes, other than the use of indirect indicators, such as mortality rate and readmission rate. This study used process mining technology to analyze process changes based on changes in the hospital environment, such as the construction of a new building, and to measure the effects of environmental changes in terms of consultation wait time, time spent per task, and outpatient care processes. Using process mining technology, electronic health record (EHR) log data of outpatient care before and after constructing a new building were analyzed, and the effectiveness of the technology in terms of the process was evaluated. Using the process mining technique, we found that the total time spent in outpatient care did not increase significantly compared to that before the construction of a new building, considering that the number of outpatients increased, and the consultation wait time decreased. These results suggest that the operation of the outpatient clinic was effective after changes were implemented in the hospital environment. We further identified improvements in processes using the process mining technique, thereby demonstrating the usefulness of this technique for analyzing complex hospital processes at a low cost. This study confirmed the effectiveness of process mining technology at an actual hospital site. In future studies, the use of process mining technology will be expanded by applying this approach to a larger variety of process change situations. Copyright © 2016. Published by Elsevier Ireland Ltd.
Study of process variables associated with manufacturing hermetically-sealed nickel-cadmium cells
NASA Technical Reports Server (NTRS)
Miller, L.
1974-01-01
A two year study of the major process variables associated with the manufacturing process for sealed, nickel-cadmium, areospace cells is summarized. Effort was directed toward identifying the major process variables associated with a manufacturing process, experimentally assessing each variable's effect, and imposing the necessary changes (optimization) and controls for the critical process variables to improve results and uniformity. A critical process variable associated with the sintered nickel plaque manufacturing process was identified as the manual forming operation. Critical process variables identified with the positive electrode impregnation/polarization process were impregnation solution temperature, free acid content, vacuum impregnation, and sintered plaque strength. Positive and negative electrodes were identified as a major source of carbonate contamination in sealed cells.
Monitoring autocorrelated process: A geometric Brownian motion process approach
NASA Astrophysics Data System (ADS)
Li, Lee Siaw; Djauhari, Maman A.
2013-09-01
Autocorrelated process control is common in today's modern industrial process control practice. The current practice of autocorrelated process control is to eliminate the autocorrelation by using an appropriate model such as Box-Jenkins models or other models and then to conduct process control operation based on the residuals. In this paper we show that many time series are governed by a geometric Brownian motion (GBM) process. Therefore, in this case, by using the properties of a GBM process, we only need an appropriate transformation and model the transformed data to come up with the condition needs in traditional process control. An industrial example of cocoa powder production process in a Malaysian company will be presented and discussed to illustrate the advantages of the GBM approach.
Meta-control of combustion performance with a data mining approach
NASA Astrophysics Data System (ADS)
Song, Zhe
Large scale combustion process is complex and proposes challenges of optimizing its performance. Traditional approaches based on thermal dynamics have limitations on finding optimal operational regions due to time-shift nature of the process. Recent advances in information technology enable people collect large volumes of process data easily and continuously. The collected process data contains rich information about the process and, to some extent, represents a digital copy of the process over time. Although large volumes of data exist in industrial combustion processes, they are not fully utilized to the level where the process can be optimized. Data mining is an emerging science which finds patterns or models from large data sets. It has found many successful applications in business marketing, medical and manufacturing domains The focus of this dissertation is on applying data mining to industrial combustion processes, and ultimately optimizing the combustion performance. However the philosophy, methods and frameworks discussed in this research can also be applied to other industrial processes. Optimizing an industrial combustion process has two major challenges. One is the underlying process model changes over time and obtaining an accurate process model is nontrivial. The other is that a process model with high fidelity is usually highly nonlinear, solving the optimization problem needs efficient heuristics. This dissertation is set to solve these two major challenges. The major contribution of this 4-year research is the data-driven solution to optimize the combustion process, where process model or knowledge is identified based on the process data, then optimization is executed by evolutionary algorithms to search for optimal operating regions.
5 CFR 1653.13 - Processing legal processes.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 5 Administrative Personnel 3 2014-01-01 2014-01-01 false Processing legal processes. 1653.13 Section 1653.13 Administrative Personnel FEDERAL RETIREMENT THRIFT INVESTMENT BOARD COURT ORDERS AND LEGAL PROCESSES AFFECTING THRIFT SAVINGS PLAN ACCOUNTS Legal Process for the Enforcement of a Participant's Legal...
5 CFR 1653.13 - Processing legal processes.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Processing legal processes. 1653.13 Section 1653.13 Administrative Personnel FEDERAL RETIREMENT THRIFT INVESTMENT BOARD COURT ORDERS AND LEGAL PROCESSES AFFECTING THRIFT SAVINGS PLAN ACCOUNTS Legal Process for the Enforcement of a Participant's Legal...
A Search Algorithm for Generating Alternative Process Plans in Flexible Manufacturing System
NASA Astrophysics Data System (ADS)
Tehrani, Hossein; Sugimura, Nobuhiro; Tanimizu, Yoshitaka; Iwamura, Koji
Capabilities and complexity of manufacturing systems are increasing and striving for an integrated manufacturing environment. Availability of alternative process plans is a key factor for integration of design, process planning and scheduling. This paper describes an algorithm for generation of alternative process plans by extending the existing framework of the process plan networks. A class diagram is introduced for generating process plans and process plan networks from the viewpoint of the integrated process planning and scheduling systems. An incomplete search algorithm is developed for generating and searching the process plan networks. The benefit of this algorithm is that the whole process plan network does not have to be generated before the search algorithm starts. This algorithm is applicable to large and enormous process plan networks and also to search wide areas of the network based on the user requirement. The algorithm can generate alternative process plans and to select a suitable one based on the objective functions.
O'Callaghan, Sean; De Souza, David P; Isaac, Andrew; Wang, Qiao; Hodkinson, Luke; Olshansky, Moshe; Erwin, Tim; Appelbe, Bill; Tull, Dedreia L; Roessner, Ute; Bacic, Antony; McConville, Malcolm J; Likić, Vladimir A
2012-05-30
Gas chromatography-mass spectrometry (GC-MS) is a technique frequently used in targeted and non-targeted measurements of metabolites. Most existing software tools for processing of raw instrument GC-MS data tightly integrate data processing methods with graphical user interface facilitating interactive data processing. While interactive processing remains critically important in GC-MS applications, high-throughput studies increasingly dictate the need for command line tools, suitable for scripting of high-throughput, customized processing pipelines. PyMS comprises a library of functions for processing of instrument GC-MS data developed in Python. PyMS currently provides a complete set of GC-MS processing functions, including reading of standard data formats (ANDI- MS/NetCDF and JCAMP-DX), noise smoothing, baseline correction, peak detection, peak deconvolution, peak integration, and peak alignment by dynamic programming. A novel common ion single quantitation algorithm allows automated, accurate quantitation of GC-MS electron impact (EI) fragmentation spectra when a large number of experiments are being analyzed. PyMS implements parallel processing for by-row and by-column data processing tasks based on Message Passing Interface (MPI), allowing processing to scale on multiple CPUs in distributed computing environments. A set of specifically designed experiments was performed in-house and used to comparatively evaluate the performance of PyMS and three widely used software packages for GC-MS data processing (AMDIS, AnalyzerPro, and XCMS). PyMS is a novel software package for the processing of raw GC-MS data, particularly suitable for scripting of customized processing pipelines and for data processing in batch mode. PyMS provides limited graphical capabilities and can be used both for routine data processing and interactive/exploratory data analysis. In real-life GC-MS data processing scenarios PyMS performs as well or better than leading software packages. We demonstrate data processing scenarios simple to implement in PyMS, yet difficult to achieve with many conventional GC-MS data processing software. Automated sample processing and quantitation with PyMS can provide substantial time savings compared to more traditional interactive software systems that tightly integrate data processing with the graphical user interface.
Wong, Quincy J J; Moulds, Michelle L
2012-12-01
Evidence from the depression literature suggests that an analytical processing mode adopted during repetitive thinking leads to maladaptive outcomes relative to an experiential processing mode. To date, in socially anxious individuals, the impact of processing mode during repetitive thinking related to an actual social-evaluative situation has not been investigated. We thus tested whether an analytical processing mode would be maladaptive relative to an experiential processing mode during anticipatory processing and post-event rumination. High and low socially anxious participants were induced to engage in either an analytical or experiential processing mode during: (a) anticipatory processing before performing a speech (Experiment 1; N = 94), or (b) post-event rumination after performing a speech (Experiment 2; N = 74). Mood, cognition, and behavioural measures were employed to examine the effects of processing mode. For high socially anxious participants, the modes had a similar effect on self-reported anxiety during both anticipatory processing and post-event rumination. Unexpectedly, relative to the analytical mode, the experiential mode led to stronger high standard and conditional beliefs during anticipatory processing, and stronger unconditional beliefs during post-event rumination. These experiments are the first to investigate processing mode during anticipatory processing and post-event rumination. Hence, these results are novel and will need to be replicated. These findings suggest that an experiential processing mode is maladaptive relative to an analytical processing mode during repetitive thinking characteristic of socially anxious individuals. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mertens, Wilson C; Christov, Stefan C; Avrunin, George S; Clarke, Lori A; Osterweil, Leon J; Cassells, Lucinda J; Marquard, Jenna L
2012-11-01
Chemotherapy ordering and administration, in which errors have potentially severe consequences, was quantitatively and qualitatively evaluated by employing process formalism (or formal process definition), a technique derived from software engineering, to elicit and rigorously describe the process, after which validation techniques were applied to confirm the accuracy of the described process. The chemotherapy ordering and administration process, including exceptional situations and individuals' recognition of and responses to those situations, was elicited through informal, unstructured interviews with members of an interdisciplinary team. The process description (or process definition), written in a notation developed for software quality assessment purposes, guided process validation (which consisted of direct observations and semistructured interviews to confirm the elicited details for the treatment plan portion of the process). The overall process definition yielded 467 steps; 207 steps (44%) were dedicated to handling 59 exceptional situations. Validation yielded 82 unique process events (35 new expected but not yet described steps, 16 new exceptional situations, and 31 new steps in response to exceptional situations). Process participants actively altered the process as ambiguities and conflicts were discovered by the elicitation and validation components of the study. Chemotherapy error rates declined significantly during and after the project, which was conducted from October 2007 through August 2008. Each elicitation method and the subsequent validation discussions contributed uniquely to understanding the chemotherapy treatment plan review process, supporting rapid adoption of changes, improved communication regarding the process, and ensuing error reduction.
Modeling interdependencies between business and communication processes in hospitals.
Brigl, Birgit; Wendt, Thomas; Winter, Alfred
2003-01-01
The optimization and redesign of business processes in hospitals is an important challenge for the hospital information management who has to design and implement a suitable HIS architecture. Nevertheless, there are no tools available specializing in modeling information-driven business processes and the consequences on the communication between information processing, tools. Therefore, we will present an approach which facilitates the representation and analysis of business processes and resulting communication processes between application components and their interdependencies. This approach aims not only to visualize those processes, but to also to evaluate if there are weaknesses concerning the information processing infrastructure which hinder the smooth implementation of the business processes.
Ott, Denise; Kralisch, Dana; Denčić, Ivana; Hessel, Volker; Laribi, Yosra; Perrichon, Philippe D; Berguerand, Charline; Kiwi-Minsker, Lioubov; Loeb, Patrick
2014-12-01
As the demand for new drugs is rising, the pharmaceutical industry faces the quest of shortening development time, and thus, reducing the time to market. Environmental aspects typically still play a minor role within the early phase of process development. Nevertheless, it is highly promising to rethink, redesign, and optimize process strategies as early as possible in active pharmaceutical ingredient (API) process development, rather than later at the stage of already established processes. The study presented herein deals with a holistic life-cycle-based process optimization and intensification of a pharmaceutical production process targeting a low-volume, high-value API. Striving for process intensification by transfer from batch to continuous processing, as well as an alternative catalytic system, different process options are evaluated with regard to their environmental impact to identify bottlenecks and improvement potentials for further process development activities. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
SOI-CMOS Process for Monolithic, Radiation-Tolerant, Science-Grade Imagers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, George; Lee, Adam
In Phase I, Voxtel worked with Jazz and Sandia to document and simulate the processes necessary to implement a DH-BSI SOI CMOS imaging process. The development is based upon mature SOI CMOS process at both fabs, with the addition of only a few custom processing steps for integration and electrical interconnection of the fully-depleted photodetectors. In Phase I, Voxtel also characterized the Sandia process, including the CMOS7 design rules, and we developed the outline of a process option that included a “BOX etch”, that will permit a “detector in handle” SOI CMOS process to be developed The process flows weremore » developed in cooperation with both Jazz and Sandia process engineers, along with detailed TCAD modeling and testing of the photodiode array architectures. In addition, Voxtel tested the radiation performance of the Jazz’s CA18HJ process, using standard and circular-enclosed transistors.« less
Face to face with emotion: holistic face processing is modulated by emotional state.
Curby, Kim M; Johnson, Kareem J; Tyson, Alyssa
2012-01-01
Negative emotions are linked with a local, rather than global, visual processing style, which may preferentially facilitate feature-based, relative to holistic, processing mechanisms. Because faces are typically processed holistically, and because social contexts are prime elicitors of emotions, we examined whether negative emotions decrease holistic processing of faces. We induced positive, negative, or neutral emotions via film clips and measured holistic processing before and after the induction: participants made judgements about cued parts of chimeric faces, and holistic processing was indexed by the interference caused by task-irrelevant face parts. Emotional state significantly modulated face-processing style, with the negative emotion induction leading to decreased holistic processing. Furthermore, self-reported change in emotional state correlated with changes in holistic processing. These results contrast with general assumptions that holistic processing of faces is automatic and immune to outside influences, and they illustrate emotion's power to modulate socially relevant aspects of visual perception.
5 CFR 581.203 - Information minimally required to accompany legal process.
Code of Federal Regulations, 2014 CFR
2014-01-01
... accompany legal process. 581.203 Section 581.203 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT... Process § 581.203 Information minimally required to accompany legal process. (a) Sufficient identifying information must accompany the legal process in order to enable processing by the governmental entity named...
5 CFR 581.203 - Information minimally required to accompany legal process.
Code of Federal Regulations, 2011 CFR
2011-01-01
... accompany legal process. 581.203 Section 581.203 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT... Process § 581.203 Information minimally required to accompany legal process. (a) Sufficient identifying information must accompany the legal process in order to enable processing by the governmental entity named...
5 CFR 581.203 - Information minimally required to accompany legal process.
Code of Federal Regulations, 2013 CFR
2013-01-01
... accompany legal process. 581.203 Section 581.203 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT... Process § 581.203 Information minimally required to accompany legal process. (a) Sufficient identifying information must accompany the legal process in order to enable processing by the governmental entity named...
5 CFR 581.203 - Information minimally required to accompany legal process.
Code of Federal Regulations, 2012 CFR
2012-01-01
... accompany legal process. 581.203 Section 581.203 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT... Process § 581.203 Information minimally required to accompany legal process. (a) Sufficient identifying information must accompany the legal process in order to enable processing by the governmental entity named...
5 CFR 581.203 - Information minimally required to accompany legal process.
Code of Federal Regulations, 2010 CFR
2010-01-01
... accompany legal process. 581.203 Section 581.203 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT... Process § 581.203 Information minimally required to accompany legal process. (a) Sufficient identifying information must accompany the legal process in order to enable processing by the governmental entity named...
20 CFR 405.725 - Effect of expedited appeals process agreement.
Code of Federal Regulations, 2010 CFR
2010-04-01
... PROCESS FOR ADJUDICATING INITIAL DISABILITY CLAIMS Expedited Appeals Process for Constitutional Issues § 405.725 Effect of expedited appeals process agreement. After an expedited appeals process agreement is... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Effect of expedited appeals process agreement...
Common and distinct networks for self-referential and social stimulus processing in the human brain.
Herold, Dorrit; Spengler, Stephanie; Sajonz, Bastian; Usnich, Tatiana; Bermpohl, Felix
2016-09-01
Self-referential processing is a complex cognitive function, involving a set of implicit and explicit processes, complicating investigation of its distinct neural signature. The present study explores the functional overlap and dissociability of self-referential and social stimulus processing. We combined an established paradigm for explicit self-referential processing with an implicit social stimulus processing paradigm in one fMRI experiment to determine the neural effects of self-relatedness and social processing within one study. Overlapping activations were found in the orbitofrontal cortex and in the intermediate part of the precuneus. Stimuli judged as self-referential specifically activated the posterior cingulate cortex, the ventral medial prefrontal cortex, extending into anterior cingulate cortex and orbitofrontal cortex, the dorsal medial prefrontal cortex, the ventral and dorsal lateral prefrontal cortex, the left inferior temporal gyrus, and occipital cortex. Social processing specifically involved the posterior precuneus and bilateral temporo-parietal junction. Taken together, our data show, not only, first, common networks for both processes in the medial prefrontal and the medial parietal cortex, but also, second, functional differentiations for self-referential processing versus social processing: an anterior-posterior gradient for social processing and self-referential processing within the medial parietal cortex and specific activations for self-referential processing in the medial and lateral prefrontal cortex and for social processing in the temporo-parietal junction.
Kumarapeli, P; De Lusignan, S; Ellis, T; Jones, B
2007-03-01
The Primary Care Data Quality programme (PCDQ) is a quality-improvement programme which processes routinely collected general practice computer data. Patient data collected from a wide range of different brands of clinical computer systems are aggregated, processed, and fed back to practices in an educational context to improve the quality of care. Process modelling is a well-established approach used to gain understanding and systematic appraisal, and identify areas of improvement of a business process. Unified modelling language (UML) is a general purpose modelling technique used for this purpose. We used UML to appraise the PCDQ process to see if the efficiency and predictability of the process could be improved. Activity analysis and thinking-aloud sessions were used to collect data to generate UML diagrams. The UML model highlighted the sequential nature of the current process as a barrier for efficiency gains. It also identified the uneven distribution of process controls, lack of symmetric communication channels, critical dependencies among processing stages, and failure to implement all the lessons learned in the piloting phase. It also suggested that improved structured reporting at each stage - especially from the pilot phase, parallel processing of data and correctly positioned process controls - should improve the efficiency and predictability of research projects. Process modelling provided a rational basis for the critical appraisal of a clinical data processing system; its potential maybe underutilized within health care.
Use of Analogies in the Study of Diffusion
ERIC Educational Resources Information Center
Letic, Milorad
2014-01-01
Emergent processes, such as diffusion, are considered more difficult to understand than direct processes. In physiology, most processes are presented as direct processes, so emergent processes, when encountered, are even more difficult to understand. It has been suggested that, when studying diffusion, misconceptions about random processes are the…
Is Analytic Information Processing a Feature of Expertise in Medicine?
ERIC Educational Resources Information Center
McLaughlin, Kevin; Rikers, Remy M.; Schmidt, Henk G.
2008-01-01
Diagnosing begins by generating an initial diagnostic hypothesis by automatic information processing. Information processing may stop here if the hypothesis is accepted, or analytical processing may be used to refine the hypothesis. This description portrays analytic processing as an optional extra in information processing, leading us to…
5 CFR 582.305 - Honoring legal process.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Honoring legal process. 582.305 Section... GARNISHMENT OF FEDERAL EMPLOYEES' PAY Compliance With Legal Process § 582.305 Honoring legal process. (a) The agency shall comply with legal process, except where the process cannot be complied with because: (1) It...
5 CFR 582.305 - Honoring legal process.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Honoring legal process. 582.305 Section... GARNISHMENT OF FEDERAL EMPLOYEES' PAY Compliance With Legal Process § 582.305 Honoring legal process. (a) The agency shall comply with legal process, except where the process cannot be complied with because: (1) It...
5 CFR 581.305 - Honoring legal process.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Honoring legal process. 581.305 Section... GARNISHMENT ORDERS FOR CHILD SUPPORT AND/OR ALIMONY Compliance With Process § 581.305 Honoring legal process. (a) The governmental entity shall comply with legal process, except where the process cannot be...
5 CFR 581.305 - Honoring legal process.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Honoring legal process. 581.305 Section... GARNISHMENT ORDERS FOR CHILD SUPPORT AND/OR ALIMONY Compliance With Process § 581.305 Honoring legal process. (a) The governmental entity shall comply with legal process, except where the process cannot be...
5 CFR 582.305 - Honoring legal process.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Honoring legal process. 582.305 Section... GARNISHMENT OF FEDERAL EMPLOYEES' PAY Compliance With Legal Process § 582.305 Honoring legal process. (a) The agency shall comply with legal process, except where the process cannot be complied with because: (1) It...
5 CFR 581.305 - Honoring legal process.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Honoring legal process. 581.305 Section... GARNISHMENT ORDERS FOR CHILD SUPPORT AND/OR ALIMONY Compliance With Process § 581.305 Honoring legal process. (a) The governmental entity shall comply with legal process, except where the process cannot be...
Articulating the Resources for Business Process Analysis and Design
ERIC Educational Resources Information Center
Jin, Yulong
2012-01-01
Effective process analysis and modeling are important phases of the business process management lifecycle. When many activities and multiple resources are involved, it is very difficult to build a correct business process specification. This dissertation provides a resource perspective of business processes. It aims at a better process analysis…
An Integrated Model of Emotion Processes and Cognition in Social Information Processing.
ERIC Educational Resources Information Center
Lemerise, Elizabeth A.; Arsenio, William F.
2000-01-01
Interprets literature on contributions of social cognitive and emotion processes to children's social competence in the context of an integrated model of emotion processes and cognition in social information processing. Provides neurophysiological and functional evidence for the centrality of emotion processes in personal-social decision making.…
2010-04-01
NRL Stennis Space Center (NRL-SSC) for further processing using the NRL SSC Automated Processing System (APS). APS was developed for processing...have not previously developed automated processing for 73 hyperspectral ocean color data. The hyperspectral processing branch includes several
DISCRETE COMPOUND POISSON PROCESSES AND TABLES OF THE GEOMETRIC POISSON DISTRIBUTION.
A concise summary of the salient properties of discrete Poisson processes , with emphasis on comparing the geometric and logarithmic Poisson processes . The...the geometric Poisson process are given for 176 sets of parameter values. New discrete compound Poisson processes are also introduced. These...processes have properties that are particularly relevant when the summation of several different Poisson processes is to be analyzed. This study provides the
Management of processes of electrochemical dimensional processing
NASA Astrophysics Data System (ADS)
Akhmetov, I. D.; Zakirova, A. R.; Sadykov, Z. B.
2017-09-01
In different industries a lot high-precision parts are produced from hard-processed scarce materials. Forming such details can only be acting during non-contact processing, or a minimum of effort, and doable by the use, for example, of electro-chemical processing. At the present stage of development of metal working processes are important management issues electrochemical machining and its automation. This article provides some indicators and factors of electrochemical machining process.
The Hyperspectral Imager for the Coastal Ocean (HICO): Sensor and Data Processing Overview
2010-01-20
backscattering coefficients, and others. Several of these software modules will be developed within the Automated Processing System (APS), a data... Automated Processing System (APS) NRL developed APS, which processes satellite data into ocean color data products. APS is a collection of methods...used for ocean color processing which provide the tools for the automated processing of satellite imagery [1]. These tools are in the process of
[Study on culture and philosophy of processing of traditional Chinese medicines].
Yang, Ming; Zhang, Ding-Kun; Zhong, Ling-Yun; Wang, Fang
2013-07-01
According to cultural views and philosophical thoughts, this paper studies the cultural origin, thinking modes, core principles, general regulation and methods of processing, backtracks processing's culture and history which contains generation and deduction process, experienced and promoting process, and core value, summarizes processing's basic principles which are directed by holistic, objective, dynamic, balanced and appropriate thoughts; so as to propagate cultural characteristic and philosophical wisdom of traditional Chinese medicine processing, to promote inheritance and development of processing and to ensure the maximum therapeutic value of Chinese medical clinical.
Containerless automated processing of intermetallic compounds and composites
NASA Technical Reports Server (NTRS)
Johnson, D. R.; Joslin, S. M.; Reviere, R. D.; Oliver, B. F.; Noebe, R. D.
1993-01-01
An automated containerless processing system has been developed to directionally solidify high temperature materials, intermetallic compounds, and intermetallic/metallic composites. The system incorporates a wide range of ultra-high purity chemical processing conditions. The utilization of image processing for automated control negates the need for temperature measurements for process control. The list of recent systems that have been processed includes Cr, Mo, Mn, Nb, Ni, Ti, V, and Zr containing aluminides. Possible uses of the system, process control approaches, and properties and structures of recently processed intermetallics are reviewed.
A continuous process for the development of Kodak Aerochrome Infrared Film 2443 as a negative
NASA Astrophysics Data System (ADS)
Klimes, D.; Ross, D. I.
1993-02-01
A process for the continuous dry-to-dry development of Kodak Aerochrome Infrared Film 2443 as a negative (CIR-neg) is described. The process is well suited for production processing of long film lengths. Chemicals from three commercial film processes are used with modifications. Sensitometric procedures are recommended for the monitoring of processing quality control. Sensitometric data and operational aerial exposures indicate that films developed in this process have approximately the same effective aerial film speed as films processed in the reversal process recommended by the manufacturer (Kodak EA-5). The CIR-neg process is useful when aerial photography is acquired for resources management applications which require print reproductions. Originals can be readily reproduced using conventional production equipment (electronic dodging) in black and white or color (color compensation).
Antibiotics with anaerobic ammonium oxidation in urban wastewater treatment
NASA Astrophysics Data System (ADS)
Zhou, Ruipeng; Yang, Yuanming
2017-05-01
Biofilter process is based on biological oxidation process on the introduction of fast water filter design ideas generated by an integrated filtration, adsorption and biological role of aerobic wastewater treatment process various purification processes. By engineering example, we show that the process is an ideal sewage and industrial wastewater treatment process of low concentration. Anaerobic ammonia oxidation process because of its advantage of the high efficiency and low consumption, wastewater biological denitrification field has broad application prospects. The process in practical wastewater treatment at home and abroad has become a hot spot. In this paper, anammox bacteria habitats and species diversity, and anaerobic ammonium oxidation process in the form of diversity, and one and split the process operating conditions are compared, focusing on a review of the anammox process technology various types of wastewater laboratory research and engineering applications, including general water quality and pressure filtrate sludge digestion, landfill leachate, aquaculture wastewater, monosodium glutamate wastewater, wastewater, sewage, fecal sewage, waste water salinity wastewater characteristics, research progress and application of the obstacles. Finally, we summarize the anaerobic ammonium oxidation process potential problems during the processing of the actual waste water, and proposed future research focus on in-depth study of water quality anammox obstacle factor and its regulatory policy, and vigorously develop on this basis, and combined process optimization.
Understanding scaling through history-dependent processes with collapsing sample space.
Corominas-Murtra, Bernat; Hanel, Rudolf; Thurner, Stefan
2015-04-28
History-dependent processes are ubiquitous in natural and social systems. Many such stochastic processes, especially those that are associated with complex systems, become more constrained as they unfold, meaning that their sample space, or their set of possible outcomes, reduces as they age. We demonstrate that these sample-space-reducing (SSR) processes necessarily lead to Zipf's law in the rank distributions of their outcomes. We show that by adding noise to SSR processes the corresponding rank distributions remain exact power laws, p(x) ~ x(-λ), where the exponent directly corresponds to the mixing ratio of the SSR process and noise. This allows us to give a precise meaning to the scaling exponent in terms of the degree to which a given process reduces its sample space as it unfolds. Noisy SSR processes further allow us to explain a wide range of scaling exponents in frequency distributions ranging from α = 2 to ∞. We discuss several applications showing how SSR processes can be used to understand Zipf's law in word frequencies, and how they are related to diffusion processes in directed networks, or aging processes such as in fragmentation processes. SSR processes provide a new alternative to understand the origin of scaling in complex systems without the recourse to multiplicative, preferential, or self-organized critical processes.
NASA Astrophysics Data System (ADS)
Bian, X. X.; Gu, Y. Z.; Sun, J.; Li, M.; Liu, W. P.; Zhang, Z. G.
2013-10-01
In this study, the effects of processing temperature and vacuum applying rate on the forming quality of C-shaped carbon fiber reinforced epoxy resin matrix composite laminates during hot diaphragm forming process were investigated. C-shaped prepreg preforms were produced using a home-made hot diaphragm forming equipment. The thickness variations of the preforms and the manufacturing defects after diaphragm forming process, including fiber wrinkling and voids, were evaluated to understand the forming mechanism. Furthermore, both interlaminar slipping friction and compaction behavior of the prepreg stacks were experimentally analyzed for showing the importance of the processing parameters. In addition, autoclave processing was used to cure the C-shaped preforms to investigate the changes of the defects before and after cure process. The results show that the C-shaped prepreg preforms with good forming quality can be achieved through increasing processing temperature and reducing vacuum applying rate, which obviously promote prepreg interlaminar slipping process. The process temperature and forming rate in hot diaphragm forming process strongly influence prepreg interply frictional force, and the maximum interlaminar frictional force can be taken as a key parameter for processing parameter optimization. Autoclave process is effective in eliminating voids in the preforms and can alleviate fiber wrinkles to a certain extent.
Assessment of Advanced Coal Gasification Processes
NASA Technical Reports Server (NTRS)
McCarthy, John; Ferrall, Joseph; Charng, Thomas; Houseman, John
1981-01-01
This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process; Bell Single-Stage High Mass Flux (HMF) Process; Cities Service/Rockwell (CS/R) Hydrogasification Process; Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier. The report makes the following assessments: 1) while each process has significant potential as coal gasifiers, the CS/R and Exxon processes are better suited for SNG production; 2) the Exxon process is the closest to a commercial level for near-term SNG production; and 3) the SRT processes require significant development including scale-up and turndown demonstration, char processing and/or utilization demonstration, and reactor control and safety features development.
Integrated Process Modeling-A Process Validation Life Cycle Companion.
Zahel, Thomas; Hauer, Stefan; Mueller, Eric M; Murphy, Patrick; Abad, Sandra; Vasilieva, Elena; Maurer, Daniel; Brocard, Cécile; Reinisch, Daniela; Sagmeister, Patrick; Herwig, Christoph
2017-10-17
During the regulatory requested process validation of pharmaceutical manufacturing processes, companies aim to identify, control, and continuously monitor process variation and its impact on critical quality attributes (CQAs) of the final product. It is difficult to directly connect the impact of single process parameters (PPs) to final product CQAs, especially in biopharmaceutical process development and production, where multiple unit operations are stacked together and interact with each other. Therefore, we want to present the application of Monte Carlo (MC) simulation using an integrated process model (IPM) that enables estimation of process capability even in early stages of process validation. Once the IPM is established, its capability in risk and criticality assessment is furthermore demonstrated. IPMs can be used to enable holistic production control strategies that take interactions of process parameters of multiple unit operations into account. Moreover, IPMs can be trained with development data, refined with qualification runs, and maintained with routine manufacturing data which underlines the lifecycle concept. These applications will be shown by means of a process characterization study recently conducted at a world-leading contract manufacturing organization (CMO). The new IPM methodology therefore allows anticipation of out of specification (OOS) events, identify critical process parameters, and take risk-based decisions on counteractions that increase process robustness and decrease the likelihood of OOS events.
Hughes, Brianna H; Greenberg, Neil J; Yang, Tom C; Skonberg, Denise I
2015-01-01
High-pressure processing (HPP) is used to increase meat safety and shelf-life, with conflicting quality effects depending on rigor status during HPP. In the seafood industry, HPP is used to shuck and pasteurize oysters, but its use on abalones has only been minimally evaluated and the effect of rigor status during HPP on abalone quality has not been reported. Farm-raised abalones (Haliotis rufescens) were divided into 12 HPP treatments and 1 unprocessed control treatment. Treatments were processed pre-rigor or post-rigor at 2 pressures (100 and 300 MPa) and 3 processing times (1, 3, and 5 min). The control was analyzed post-rigor. Uniform plugs were cut from adductor and foot meat for texture profile analysis, shear force, and color analysis. Subsamples were used for scanning electron microscopy of muscle ultrastructure. Texture profile analysis revealed that post-rigor processed abalone was significantly (P < 0.05) less firm and chewy than pre-rigor processed irrespective of muscle type, processing time, or pressure. L values increased with pressure to 68.9 at 300 MPa for pre-rigor processed foot, 73.8 for post-rigor processed foot, 90.9 for pre-rigor processed adductor, and 89.0 for post-rigor processed adductor. Scanning electron microscopy images showed fraying of collagen fibers in processed adductor, but did not show pressure-induced compaction of the foot myofibrils. Post-rigor processed abalone meat was more tender than pre-rigor processed meat, and post-rigor processed foot meat was lighter in color than pre-rigor processed foot meat, suggesting that waiting for rigor to resolve prior to processing abalones may improve consumer perceptions of quality and market value. © 2014 Institute of Food Technologists®
PROCESSING ALTERNATIVES FOR DESTRUCTION OF TETRAPHENYLBORATE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, D; Thomas Peters, T; Samuel Fink, S
Two processes were chosen in the 1980's at the Savannah River Site (SRS) to decontaminate the soluble High Level Waste (HLW). The In Tank Precipitation (ITP) process (1,2) was developed at SRS for the removal of radioactive cesium and actinides from the soluble HLW. Sodium tetraphenylborate was added to the waste to precipitate cesium and monosodium titanate (MST) was added to adsorb actinides, primarily uranium and plutonium. Two products of this process were a low activity waste stream and a concentrated organic stream containing cesium tetraphenylborate and actinides adsorbed on monosodium titanate (MST). A copper catalyzed acid hydrolysis process wasmore » built to process (3, 4) the Tank 48H cesium tetraphenylborate waste in the SRS's Defense Waste Processing Facility (DWPF). Operation of the DWPF would have resulted in the production of benzene for incineration in SRS's Consolidated Incineration Facility. This process was abandoned together with the ITP process in 1998 due to high benzene in ITP caused by decomposition of excess sodium tetraphenylborate. Processing in ITP resulted in the production of approximately 1.0 million liters of HLW. SRS has chosen a solvent extraction process combined with adsorption of the actinides to decontaminate the soluble HLW stream (5). However, the waste in Tank 48H is incompatible with existing waste processing facilities. As a result, a processing facility is needed to disposition the HLW in Tank 48H. This paper will describe the process for searching for processing options by SRS task teams for the disposition of the waste in Tank 48H. In addition, attempts to develop a caustic hydrolysis process for in tank destruction of tetraphenylborate will be presented. Lastly, the development of both a caustic and acidic copper catalyzed peroxide oxidation process will be discussed.« less
NASA Astrophysics Data System (ADS)
Luqman, M.; Rosli, M. U.; Khor, C. Y.; Zambree, Shayfull; Jahidi, H.
2018-03-01
Crank arm is one of the important parts in a bicycle that is an expensive product due to the high cost of material and production process. This research is aimed to investigate the potential type of manufacturing process to fabricate composite bicycle crank arm and to describe an approach based on analytical hierarchy process (AHP) that assists decision makers or manufacturing engineers in determining the most suitable process to be employed in manufacturing of composite bicycle crank arm at the early stage of the product development process to reduce the production cost. There are four types of processes were considered, namely resin transfer molding (RTM), compression molding (CM), vacuum bag molding and filament winding (FW). The analysis ranks these four types of process for its suitability in the manufacturing of bicycle crank arm based on five main selection factors and 10 sub factors. Determining the right manufacturing process was performed based on AHP process steps. Consistency test was performed to make sure the judgements are consistent during the comparison. The results indicated that the compression molding was the most appropriate manufacturing process because it has the highest value (33.6%) among the other manufacturing processes.
A System-Oriented Approach for the Optimal Control of Process Chains under Stochastic Influences
NASA Astrophysics Data System (ADS)
Senn, Melanie; Schäfer, Julian; Pollak, Jürgen; Link, Norbert
2011-09-01
Process chains in manufacturing consist of multiple connected processes in terms of dynamic systems. The properties of a product passing through such a process chain are influenced by the transformation of each single process. There exist various methods for the control of individual processes, such as classical state controllers from cybernetics or function mapping approaches realized by statistical learning. These controllers ensure that a desired state is obtained at process end despite of variations in the input and disturbances. The interactions between the single processes are thereby neglected, but play an important role in the optimization of the entire process chain. We divide the overall optimization into two phases: (1) the solution of the optimization problem by Dynamic Programming to find the optimal control variable values for each process for any encountered end state of its predecessor and (2) the application of the optimal control variables at runtime for the detected initial process state. The optimization problem is solved by selecting adequate control variables for each process in the chain backwards based on predefined quality requirements for the final product. For the demonstration of the proposed concept, we have chosen a process chain from sheet metal manufacturing with simplified transformation functions.
Quantitative analysis of geomorphic processes using satellite image data at different scales
NASA Technical Reports Server (NTRS)
Williams, R. S., Jr.
1985-01-01
When aerial and satellite photographs and images are used in the quantitative analysis of geomorphic processes, either through direct observation of active processes or by analysis of landforms resulting from inferred active or dormant processes, a number of limitations in the use of such data must be considered. Active geomorphic processes work at different scales and rates. Therefore, the capability of imaging an active or dormant process depends primarily on the scale of the process and the spatial-resolution characteristic of the imaging system. Scale is an important factor in recording continuous and discontinuous active geomorphic processes, because what is not recorded will not be considered or even suspected in the analysis of orbital images. If the geomorphic process of landform change caused by the process is less than 200 m in x to y dimension, then it will not be recorded. Although the scale factor is critical, in the recording of discontinuous active geomorphic processes, the repeat interval of orbital-image acquisition of a planetary surface also is a consideration in order to capture a recurring short-lived geomorphic process or to record changes caused by either a continuous or a discontinuous geomorphic process.
Remote Sensing Image Quality Assessment Experiment with Post-Processing
NASA Astrophysics Data System (ADS)
Jiang, W.; Chen, S.; Wang, X.; Huang, Q.; Shi, H.; Man, Y.
2018-04-01
This paper briefly describes the post-processing influence assessment experiment, the experiment includes three steps: the physical simulation, image processing, and image quality assessment. The physical simulation models sampled imaging system in laboratory, the imaging system parameters are tested, the digital image serving as image processing input are produced by this imaging system with the same imaging system parameters. The gathered optical sampled images with the tested imaging parameters are processed by 3 digital image processes, including calibration pre-processing, lossy compression with different compression ratio and image post-processing with different core. Image quality assessment method used is just noticeable difference (JND) subject assessment based on ISO20462, through subject assessment of the gathered and processing images, the influence of different imaging parameters and post-processing to image quality can be found. The six JND subject assessment experimental data can be validated each other. Main conclusions include: image post-processing can improve image quality; image post-processing can improve image quality even with lossy compression, image quality with higher compression ratio improves less than lower ratio; with our image post-processing method, image quality is better, when camera MTF being within a small range.
NASA Astrophysics Data System (ADS)
Gatti, J. R.; Bhattacharjee, P. P.
2014-12-01
Evolution of microstructure and texture during severe deformation and annealing was studied in Al-2.5%Mg alloy processed by two different routes, namely, monotonic Accumulative Roll Bonding (ARB) and a hybrid route combining ARB and conventional rolling (CR). For this purpose Al-2.5%Mg sheets were subjected to 5 cycles of monotonic ARB (equivalent strain (ɛeq) = 4.0) processing while in the hybrid route (ARB + CR) 3 cycle ARB-processed sheets were further deformed by conventional rolling to 75% reduction in thickness (ɛeq = 4.0). Although formation of ultrafine structure was observed in the two processing routes, the monotonic ARB—processed material showed finer microstructure but weak texture as compared to the ARB + CR—processed material. After complete recrystallization, the ARB + CR-processed material showed weak cube texture ({001}<100>) but the cube component was almost negligible in the monotonic ARB-processed material-processed material. However, the ND-rotated cube components were stronger in the monotonic ARB-processed material-processed material. The observed differences in the microstructure and texture evolution during deformation and annealing could be explained by the characteristic differences of the two processing routes.
Process Materialization Using Templates and Rules to Design Flexible Process Models
NASA Astrophysics Data System (ADS)
Kumar, Akhil; Yao, Wen
The main idea in this paper is to show how flexible processes can be designed by combining generic process templates and business rules. We instantiate a process by applying rules to specific case data, and running a materialization algorithm. The customized process instance is then executed in an existing workflow engine. We present an architecture and also give an algorithm for process materialization. The rules are written in a logic-based language like Prolog. Our focus is on capturing deeper process knowledge and achieving a holistic approach to robust process design that encompasses control flow, resources and data, as well as makes it easier to accommodate changes to business policy.
HMI conventions for process control graphics.
Pikaar, Ruud N
2012-01-01
Process operators supervise and control complex processes. To enable the operator to do an adequate job, instrumentation and process control engineers need to address several related topics, such as console design, information design, navigation, and alarm management. In process control upgrade projects, usually a 1:1 conversion of existing graphics is proposed. This paper suggests another approach, efficiently leading to a reduced number of new powerful process graphics, supported by a permanent process overview displays. In addition a road map for structuring content (process information) and conventions for the presentation of objects, symbols, and so on, has been developed. The impact of the human factors engineering approach on process control upgrade projects is illustrated by several cases.
A novel processed food classification system applied to Australian food composition databases.
O'Halloran, S A; Lacy, K E; Grimes, C A; Woods, J; Campbell, K J; Nowson, C A
2017-08-01
The extent of food processing can affect the nutritional quality of foodstuffs. Categorising foods by the level of processing emphasises the differences in nutritional quality between foods within the same food group and is likely useful for determining dietary processed food consumption. The present study aimed to categorise foods within Australian food composition databases according to the level of food processing using a processed food classification system, as well as assess the variation in the levels of processing within food groups. A processed foods classification system was applied to food and beverage items contained within Australian Food and Nutrient (AUSNUT) 2007 (n = 3874) and AUSNUT 2011-13 (n = 5740). The proportion of Minimally Processed (MP), Processed Culinary Ingredients (PCI) Processed (P) and Ultra Processed (ULP) by AUSNUT food group and the overall proportion of the four processed food categories across AUSNUT 2007 and AUSNUT 2011-13 were calculated. Across the food composition databases, the overall proportions of foods classified as MP, PCI, P and ULP were 27%, 3%, 26% and 44% for AUSNUT 2007 and 38%, 2%, 24% and 36% for AUSNUT 2011-13. Although there was wide variation in the classifications of food processing within the food groups, approximately one-third of foodstuffs were classified as ULP food items across both the 2007 and 2011-13 AUSNUT databases. This Australian processed food classification system will allow researchers to easily quantify the contribution of processed foods within the Australian food supply to assist in assessing the nutritional quality of the dietary intake of population groups. © 2017 The British Dietetic Association Ltd.
Collins, Heather R; Zhu, Xun; Bhatt, Ramesh S; Clark, Jonathan D; Joseph, Jane E
2012-12-01
The degree to which face-specific brain regions are specialized for different kinds of perceptual processing is debated. This study parametrically varied demands on featural, first-order configural, or second-order configural processing of faces and houses in a perceptual matching task to determine the extent to which the process of perceptual differentiation was selective for faces regardless of processing type (domain-specific account), specialized for specific types of perceptual processing regardless of category (process-specific account), engaged in category-optimized processing (i.e., configural face processing or featural house processing), or reflected generalized perceptual differentiation (i.e., differentiation that crosses category and processing type boundaries). ROIs were identified in a separate localizer run or with a similarity regressor in the face-matching runs. The predominant principle accounting for fMRI signal modulation in most regions was generalized perceptual differentiation. Nearly all regions showed perceptual differentiation for both faces and houses for more than one processing type, even if the region was identified as face-preferential in the localizer run. Consistent with process specificity, some regions showed perceptual differentiation for first-order processing of faces and houses (right fusiform face area and occipito-temporal cortex and right lateral occipital complex), but not for featural or second-order processing. Somewhat consistent with domain specificity, the right inferior frontal gyrus showed perceptual differentiation only for faces in the featural matching task. The present findings demonstrate that the majority of regions involved in perceptual differentiation of faces are also involved in differentiation of other visually homogenous categories.
Collins, Heather R.; Zhu, Xun; Bhatt, Ramesh S.; Clark, Jonathan D.; Joseph, Jane E.
2015-01-01
The degree to which face-specific brain regions are specialized for different kinds of perceptual processing is debated. The present study parametrically varied demands on featural, first-order configural or second-order configural processing of faces and houses in a perceptual matching task to determine the extent to which the process of perceptual differentiation was selective for faces regardless of processing type (domain-specific account), specialized for specific types of perceptual processing regardless of category (process-specific account), engaged in category-optimized processing (i.e., configural face processing or featural house processing) or reflected generalized perceptual differentiation (i.e. differentiation that crosses category and processing type boundaries). Regions of interest were identified in a separate localizer run or with a similarity regressor in the face-matching runs. The predominant principle accounting for fMRI signal modulation in most regions was generalized perceptual differentiation. Nearly all regions showed perceptual differentiation for both faces and houses for more than one processing type, even if the region was identified as face-preferential in the localizer run. Consistent with process-specificity, some regions showed perceptual differentiation for first-order processing of faces and houses (right fusiform face area and occipito-temporal cortex, and right lateral occipital complex), but not for featural or second-order processing. Somewhat consistent with domain-specificity, the right inferior frontal gyrus showed perceptual differentiation only for faces in the featural matching task. The present findings demonstrate that the majority of regions involved in perceptual differentiation of faces are also involved in differentiation of other visually homogenous categories. PMID:22849402
Byrn, Stephen; Futran, Maricio; Thomas, Hayden; Jayjock, Eric; Maron, Nicola; Meyer, Robert F; Myerson, Allan S; Thien, Michael P; Trout, Bernhardt L
2015-03-01
We describe the key issues and possibilities for continuous final dosage formation, otherwise known as downstream processing or drug product manufacturing. A distinction is made between heterogeneous processing and homogeneous processing, the latter of which is expected to add more value to continuous manufacturing. We also give the key motivations for moving to continuous manufacturing, some of the exciting new technologies, and the barriers to implementation of continuous manufacturing. Continuous processing of heterogeneous blends is the natural first step in converting existing batch processes to continuous. In heterogeneous processing, there are discrete particles that can segregate, versus in homogeneous processing, components are blended and homogenized such that they do not segregate. Heterogeneous processing can incorporate technologies that are closer to existing technologies, where homogeneous processing necessitates the development and incorporation of new technologies. Homogeneous processing has the greatest potential for reaping the full rewards of continuous manufacturing, but it takes long-term vision and a more significant change in process development than heterogeneous processing. Heterogeneous processing has the detriment that, as the technologies are adopted rather than developed, there is a strong tendency to incorporate correction steps, what we call below "The Rube Goldberg Problem." Thus, although heterogeneous processing will likely play a major role in the near-term transformation of heterogeneous to continuous processing, it is expected that homogeneous processing is the next step that will follow. Specific action items for industry leaders are. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
1990-09-01
6 Logistics Systems ............ 7 GOCESS Operation . . . . . . . ..... 9 Work Order Processing . . . . ... 12 Job Order Processing . . . . . . . . . . 14...orders and job orders to the Material Control Section will be discussed separately. Work Order Processing . Figure 2 illustrates typical WO processing...logistics function. The JO processing is similar. Job Order Processing . Figure 3 illustrates typical JO processing in a GOCESS operation. As with WOs, this
Adaptive-optics optical coherence tomography processing using a graphics processing unit.
Shafer, Brandon A; Kriske, Jeffery E; Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Lee, John Jaehwan; Miller, Donald T
2014-01-01
Graphics processing units are increasingly being used for scientific computing for their powerful parallel processing abilities, and moderate price compared to super computers and computing grids. In this paper we have used a general purpose graphics processing unit to process adaptive-optics optical coherence tomography (AOOCT) images in real time. Increasing the processing speed of AOOCT is an essential step in moving the super high resolution technology closer to clinical viability.
Data processing system for the Sneg-2MP experiment
NASA Technical Reports Server (NTRS)
Gavrilova, Y. A.
1980-01-01
The data processing system for scientific experiments on stations of the "Prognoz" type provides for the processing sequence to be broken down into a number of consecutive stages: preliminary processing, primary processing, secondary processing. The tasks of each data processing stage are examined for an experiment designed to study gamma flashes of galactic origin and solar flares lasting from several minutes to seconds in the 20 kev to 1000 kev energy range.
General RMP Guidance - Appendix D: OSHA Guidance on PSM
OSHA's Process Safety Management (PSM) Guidance on providing complete and accurate written information concerning process chemicals, process technology, and process equipment; including process hazard analysis and material safety data sheets.
Elaboration Likelihood and the Counseling Process: The Role of Affect.
ERIC Educational Resources Information Center
Stoltenberg, Cal D.; And Others
The role of affect in counseling has been examined from several orientations. The depth of processing model views the efficiency of information processing as a function of the extent to which the information is processed. The notion of cognitive processing capacity states that processing information at deeper levels engages more of one's limited…
5 CFR 582.202 - Service of legal process.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Service of legal process. 582.202 Section... GARNISHMENT OF FEDERAL EMPLOYEES' PAY Service of Legal Process § 582.202 Service of legal process. (a) A person using this part shall serve interrogatories and legal process on the agent to receive process as...
5 CFR 582.202 - Service of legal process.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Service of legal process. 582.202 Section... GARNISHMENT OF FEDERAL EMPLOYEES' PAY Service of Legal Process § 582.202 Service of legal process. (a) A person using this part shall serve interrogatories and legal process on the agent to receive process as...
ERIC Educational Resources Information Center
Popyk, Marilyn K.
1986-01-01
Discusses the new automated office and its six major technologies (data processing, word processing, graphics, image, voice, and networking), the information processing cycle (input, processing, output, distribution/communication, and storage and retrieval), ergonomics, and ways to expand office education classes (versus class instruction). (CT)
ERIC Educational Resources Information Center
Schaadt, Gesa; Männel, Claudia; van der Meer, Elke; Pannekamp, Ann; Friederici, Angela D.
2016-01-01
Successful communication in everyday life crucially involves the processing of auditory and visual components of speech. Viewing our interlocutor and processing visual components of speech facilitates speech processing by triggering auditory processing. Auditory phoneme processing, analyzed by event-related brain potentials (ERP), has been shown…
40 CFR 65.62 - Process vent group determination.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., or Group 2B) for each process vent. Group 1 process vents require control, and Group 2A and 2B... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Process vent group determination. 65... (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Process Vents § 65.62 Process vent group determination. (a) Group...
Code of Federal Regulations, 2010 CFR
2010-07-01
.../or Table 9 compounds are similar and often identical. (3) Biological treatment processes. Biological treatment processes in compliance with this section may be either open or closed biological treatment processes as defined in § 63.111. An open biological treatment process in compliance with this section need...
5 CFR 581.202 - Service of process.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Service of process. 581.202 Section 581... GARNISHMENT ORDERS FOR CHILD SUPPORT AND/OR ALIMONY Service of Process § 581.202 Service of process. (a) A... facilitate proper service of process on its designated agent(s). If legal process is not directed to any...
30 CFR 828.11 - In situ processing: Performance standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false In situ processing: Performance standards. 828... STANDARDS-IN SITU PROCESSING § 828.11 In situ processing: Performance standards. (a) The person who conducts in situ processing activities shall comply with 30 CFR 817 and this section. (b) In situ processing...
30 CFR 828.11 - In situ processing: Performance standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false In situ processing: Performance standards. 828... STANDARDS-IN SITU PROCESSING § 828.11 In situ processing: Performance standards. (a) The person who conducts in situ processing activities shall comply with 30 CFR 817 and this section. (b) In situ processing...
30 CFR 828.11 - In situ processing: Performance standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false In situ processing: Performance standards. 828... STANDARDS-IN SITU PROCESSING § 828.11 In situ processing: Performance standards. (a) The person who conducts in situ processing activities shall comply with 30 CFR 817 and this section. (b) In situ processing...
30 CFR 828.11 - In situ processing: Performance standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false In situ processing: Performance standards. 828... STANDARDS-IN SITU PROCESSING § 828.11 In situ processing: Performance standards. (a) The person who conducts in situ processing activities shall comply with 30 CFR 817 and this section. (b) In situ processing...
30 CFR 828.11 - In situ processing: Performance standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false In situ processing: Performance standards. 828... STANDARDS-IN SITU PROCESSING § 828.11 In situ processing: Performance standards. (a) The person who conducts in situ processing activities shall comply with 30 CFR 817 and this section. (b) In situ processing...
Processing Depth, Elaboration of Encoding, Memory Stores, and Expended Processing Capacity.
ERIC Educational Resources Information Center
Eysenck, Michael W.; Eysenck, M. Christine
1979-01-01
The effects of several factors on expended processing capacity were measured. Expended processing capacity was greater when information was retrieved from secondary memory than from primary memory, when processing was of a deep, semantic nature than when it was shallow and physical, and when processing was more elaborate. (Author/GDC)
Cepeda, Nicholas J.; Blackwell, Katharine A.; Munakata, Yuko
2012-01-01
The rate at which people process information appears to influence many aspects of cognition across the lifespan. However, many commonly accepted measures of “processing speed” may require goal maintenance, manipulation of information in working memory, and decision-making, blurring the distinction between processing speed and executive control and resulting in overestimation of processing-speed contributions to cognition. This concern may apply particularly to studies of developmental change, as even seemingly simple processing speed measures may require executive processes to keep children and older adults on task. We report two new studies and a re-analysis of a published study, testing predictions about how different processing speed measures influence conclusions about executive control across the life span. We find that the choice of processing speed measure affects the relationship observed between processing speed and executive control, in a manner that changes with age, and that choice of processing speed measure affects conclusions about development and the relationship among executive control measures. Implications for understanding processing speed, executive control, and their development are discussed. PMID:23432836
NASA Astrophysics Data System (ADS)
Martini, Markus; Pinggera, Jakob; Neurauter, Manuel; Sachse, Pierre; Furtner, Marco R.; Weber, Barbara
2016-05-01
A process model (PM) represents the graphical depiction of a business process, for instance, the entire process from online ordering a book until the parcel is delivered to the customer. Knowledge about relevant factors for creating PMs of high quality is lacking. The present study investigated the role of cognitive processes as well as modelling processes in creating a PM in experienced and inexperienced modellers. Specifically, two working memory (WM) functions (holding and processing of information and relational integration) and three process of process modelling phases (comprehension, modelling, and reconciliation) were related to PM quality. Our results show that the WM function of relational integration was positively related to PM quality in both modelling groups. The ratio of comprehension phases was negatively related to PM quality in inexperienced modellers and the ratio of reconciliation phases was positively related to PM quality in experienced modellers. Our research reveals central cognitive mechanisms in process modelling and has potential practical implications for the development of modelling software and teaching the craft of process modelling.
A new class of random processes with application to helicopter noise
NASA Technical Reports Server (NTRS)
Hardin, Jay C.; Miamee, A. G.
1989-01-01
The concept of dividing random processes into classes (e.g., stationary, locally stationary, periodically correlated, and harmonizable) has long been employed. A new class of random processes is introduced which includes many of these processes as well as other interesting processes which fall into none of the above classes. Such random processes are denoted as linearly correlated. This class is shown to include the familiar stationary and periodically correlated processes as well as many other, both harmonizable and non-harmonizable, nonstationary processes. When a process is linearly correlated for all t and harmonizable, its two-dimensional power spectral density S(x) (omega 1, omega 2) is shown to take a particularly simple form, being non-zero only on lines such that omega 1 to omega 2 = + or - r(k) where the r(k's) are (not necessarily equally spaced) roots of a characteristic function. The relationship of such processes to the class of stationary processes is examined. In addition, the application of such processes in the analysis of typical helicopter noise signals is described.
Martini, Markus; Pinggera, Jakob; Neurauter, Manuel; Sachse, Pierre; Furtner, Marco R.; Weber, Barbara
2016-01-01
A process model (PM) represents the graphical depiction of a business process, for instance, the entire process from online ordering a book until the parcel is delivered to the customer. Knowledge about relevant factors for creating PMs of high quality is lacking. The present study investigated the role of cognitive processes as well as modelling processes in creating a PM in experienced and inexperienced modellers. Specifically, two working memory (WM) functions (holding and processing of information and relational integration) and three process of process modelling phases (comprehension, modelling, and reconciliation) were related to PM quality. Our results show that the WM function of relational integration was positively related to PM quality in both modelling groups. The ratio of comprehension phases was negatively related to PM quality in inexperienced modellers and the ratio of reconciliation phases was positively related to PM quality in experienced modellers. Our research reveals central cognitive mechanisms in process modelling and has potential practical implications for the development of modelling software and teaching the craft of process modelling. PMID:27157858
A new class of random processes with application to helicopter noise
NASA Technical Reports Server (NTRS)
Hardin, Jay C.; Miamee, A. G.
1989-01-01
The concept of dividing random processes into classes (e.g., stationary, locally stationary, periodically correlated, and harmonizable) has long been employed. A new class of random processes is introduced which includes many of these processes as well as other interesting processes which fall into none of the above classes. Such random processes are denoted as linearly correlated. This class is shown to include the familiar stationary and periodically correlated processes as well as many other, both harmonizable and non-harmonizable, nonstationary processes. When a process is linearly correlated for all t and harmonizable, its two-dimensional power spectral density S(x)(omega 1, omega 2) is shown to take a particularly simple form, being non-zero only on lines such that omega 1 to omega 2 = + or - r(k) where the r(k's) are (not necessarily equally spaced) roots of a characteristic function. The relationship of such processes to the class of stationary processes is examined. In addition, the application of such processes in the analysis of typical helicopter noise signals is described.
Martini, Markus; Pinggera, Jakob; Neurauter, Manuel; Sachse, Pierre; Furtner, Marco R; Weber, Barbara
2016-05-09
A process model (PM) represents the graphical depiction of a business process, for instance, the entire process from online ordering a book until the parcel is delivered to the customer. Knowledge about relevant factors for creating PMs of high quality is lacking. The present study investigated the role of cognitive processes as well as modelling processes in creating a PM in experienced and inexperienced modellers. Specifically, two working memory (WM) functions (holding and processing of information and relational integration) and three process of process modelling phases (comprehension, modelling, and reconciliation) were related to PM quality. Our results show that the WM function of relational integration was positively related to PM quality in both modelling groups. The ratio of comprehension phases was negatively related to PM quality in inexperienced modellers and the ratio of reconciliation phases was positively related to PM quality in experienced modellers. Our research reveals central cognitive mechanisms in process modelling and has potential practical implications for the development of modelling software and teaching the craft of process modelling.
Rapid Automatized Naming in Children with Dyslexia: Is Inhibitory Control Involved?
Bexkens, Anika; van den Wildenberg, Wery P M; Tijms, Jurgen
2015-08-01
Rapid automatized naming (RAN) is widely seen as an important indicator of dyslexia. The nature of the cognitive processes involved in rapid naming is however still a topic of controversy. We hypothesized that in addition to the involvement of phonological processes and processing speed, RAN is a function of inhibition processes, in particular of interference control. A total 86 children with dyslexia and 31 normal readers were recruited. Our results revealed that in addition to phonological processing and processing speed, interference control predicts rapid naming in dyslexia, but in contrast to these other two cognitive processes, inhibition is not significantly associated with their reading and spelling skills. After variance in reading and spelling associated with processing speed, interference control and phonological processing was partialled out, naming speed was no longer consistently associated with the reading and spelling skills of children with dyslexia. Finally, dyslexic children differed from normal readers on naming speed, literacy skills, phonological processing and processing speed, but not on inhibition processes. Both theoretical and clinical interpretations of these results are discussed. Copyright © 2014 John Wiley & Sons, Ltd.
Ötes, Ozan; Flato, Hendrik; Winderl, Johannes; Hubbuch, Jürgen; Capito, Florian
2017-10-10
The protein A capture step is the main cost-driver in downstream processing, with high attrition costs especially when using protein A resin not until end of resin lifetime. Here we describe a feasibility study, transferring a batch downstream process to a hybrid process, aimed at replacing batch protein A capture chromatography with a continuous capture step, while leaving the polishing steps unchanged to minimize required process adaptations compared to a batch process. 35g of antibody were purified using the hybrid approach, resulting in comparable product quality and step yield compared to the batch process. Productivity for the protein A step could be increased up to 420%, reducing buffer amounts by 30-40% and showing robustness for at least 48h continuous run time. Additionally, to enable its potential application in a clinical trial manufacturing environment cost of goods were compared for the protein A step between hybrid process and batch process, showing a 300% cost reduction, depending on processed volumes and batch cycles. Copyright © 2017 Elsevier B.V. All rights reserved.
Lee, Seung A; Kim, Chai-Youn; Lee, Seung-Hwan
2016-03-01
Psychophysiological and functional neuroimaging studies have frequently and consistently shown that emotional information can be processed outside of the conscious awareness. Non-conscious processing comprises automatic, uncontrolled, and fast processing that occurs without subjective awareness. However, how such non-conscious emotional processing occurs in patients with various psychiatric disorders requires further examination. In this article, we reviewed and discussed previous studies on the non-conscious emotional processing in patients diagnosed with anxiety disorder, schizophrenia, bipolar disorder, and depression, to further understand how non-conscious emotional processing varies across these psychiatric disorders. Although the symptom profile of each disorder does not often overlap with one another, these patients commonly show abnormal emotional processing based on the pathology of their mood and cognitive function. This indicates that the observed abnormalities of emotional processing in certain social interactions may derive from a biased mood or cognition process that precedes consciously controlled and voluntary processes. Since preconscious forms of emotional processing appear to have a major effect on behaviour and cognition in patients with these disorders, further investigation is required to understand these processes and their impact on patient pathology.
Lau, Nathan; Jamieson, Greg A; Skraaning, Gyrd
2016-03-01
The Process Overview Measure is a query-based measure developed to assess operator situation awareness (SA) from monitoring process plants. A companion paper describes how the measure has been developed according to process plant properties and operator cognitive work. The Process Overview Measure demonstrated practicality, sensitivity, validity and reliability in two full-scope simulator experiments investigating dramatically different operational concepts. Practicality was assessed based on qualitative feedback of participants and researchers. The Process Overview Measure demonstrated sensitivity and validity by revealing significant effects of experimental manipulations that corroborated with other empirical results. The measure also demonstrated adequate inter-rater reliability and practicality for measuring SA in full-scope simulator settings based on data collected on process experts. Thus, full-scope simulator studies can employ the Process Overview Measure to reveal the impact of new control room technology and operational concepts on monitoring process plants. Practitioner Summary: The Process Overview Measure is a query-based measure that demonstrated practicality, sensitivity, validity and reliability for assessing operator situation awareness (SA) from monitoring process plants in representative settings.
A Framework for Business Process Change Requirements Analysis
NASA Astrophysics Data System (ADS)
Grover, Varun; Otim, Samuel
The ability to quickly and continually adapt business processes to accommodate evolving requirements and opportunities is critical for success in competitive environments. Without appropriate linkage between redesign decisions and strategic inputs, identifying processes that need to be modified will be difficult. In this paper, we draw attention to the analysis of business process change requirements in support of process change initiatives. Business process redesign is a multifaceted phenomenon involving processes, organizational structure, management systems, human resource architecture, and many other aspects of organizational life. To be successful, the business process initiative should focus not only on identifying the processes to be redesigned, but also pay attention to various enablers of change. Above all, a framework is just a blueprint; management must lead change. We hope our modest contribution will draw attention to the broader framing of requirements for business process change.
Gnoth, S; Jenzsch, M; Simutis, R; Lübbert, A
2007-10-31
The Process Analytical Technology (PAT) initiative of the FDA is a reaction on the increasing discrepancy between current possibilities in process supervision and control of pharmaceutical production processes and its current application in industrial manufacturing processes. With rigid approval practices based on standard operational procedures, adaptations of production reactors towards the state of the art were more or less inhibited for long years. Now PAT paves the way for continuous process and product improvements through improved process supervision based on knowledge-based data analysis, "Quality-by-Design"-concepts, and, finally, through feedback control. Examples of up-to-date implementations of this concept are presented. They are taken from one key group of processes in recombinant pharmaceutical protein manufacturing, the cultivations of genetically modified Escherichia coli bacteria.
When teams shift among processes: insights from simulation and optimization.
Kennedy, Deanna M; McComb, Sara A
2014-09-01
This article introduces process shifts to study the temporal interplay among transition and action processes espoused in the recurring phase model proposed by Marks, Mathieu, and Zacarro (2001). Process shifts are those points in time when teams complete a focal process and change to another process. By using team communication patterns to measure process shifts, this research explores (a) when teams shift among different transition processes and initiate action processes and (b) the potential of different interventions, such as communication directives, to manipulate process shift timing and order and, ultimately, team performance. Virtual experiments are employed to compare data from observed laboratory teams not receiving interventions, simulated teams receiving interventions, and optimal simulated teams generated using genetic algorithm procedures. Our results offer insights about the potential for different interventions to affect team performance. Moreover, certain interventions may promote discussions about key issues (e.g., tactical strategies) and facilitate shifting among transition processes in a manner that emulates optimal simulated teams' communication patterns. Thus, we contribute to theory regarding team processes in 2 important ways. First, we present process shifts as a way to explore the timing of when teams shift from transition to action processes. Second, we use virtual experimentation to identify those interventions with the greatest potential to affect performance by changing when teams shift among processes. Additionally, we employ computational methods including neural networks, simulation, and optimization, thereby demonstrating their applicability in conducting team research. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Rena, Y G; Wang, J H; Li, H F; Zhang, J; Qi, P Y; Hu, Z
2013-01-01
Nitrous oxide (N2O) and methane (CH4) are two important greenhouse gases (GHG) emitted from biological nutrient removal (BNR) processes in municipal wastewater treatment plants (WWTP). In this study, three typical biological wastewater treatment processes were studied in WWTP of Northern China: pre-anaerobic carrousel oxidation ditch (A+OD) process, pre-anoxic anaerobic-anoxic-oxic (A-A/ A/O) process and reverse anaerobic-anoxic-oxic (r-A/ A/O) process. The N2O and CH4 emissions from these three different processes were measured in every processing unit of each WWTP. Results showed that N2O and CH4 were mainly discharged during the nitrification/denitrification process and the anaerobic/anoxic treatment process, respectively and the amounts of their formation and release were significantly influenced by different BNR processes implemented in these WWTP. The N2O conversion ratio of r-A/ A/O process was the lowest among the three WWTP, which were 10.9% and 18.6% lower than that of A-A/A/O process and A+OD process, respectively. Similarly, the CH4 conversion ratio of r-A/ A/O process was the lowest among the three WWTP, which were 89. I% and 80.8% lower than that of A-A/ A/O process and A+OD process, respectively. The factors influencing N2O and CH4 formation and emission in the three WWTP were investigated to explain the difference between these processes. The nitrite concentration and oxidation-reduction potential (ORP) value were found to be the dominant influencing factors affecting N2O and CH4 production, respectively. The flow-based emission factors of N2O and CH4 of the WWTP were figured out for better quantification of GHG emissions and further technical assessments of mitigation options.
Poll, Gerard H; Miller, Carol A; Mainela-Arnold, Elina; Adams, Katharine Donnelly; Misra, Maya; Park, Ji Sook
2013-01-01
More limited working memory capacity and slower processing for language and cognitive tasks are characteristics of many children with language difficulties. Individual differences in processing speed have not consistently been found to predict language ability or severity of language impairment. There are conflicting views on whether working memory and processing speed are integrated or separable abilities. To evaluate four models for the relations of individual differences in children's processing speed and working memory capacity in sentence imitation. The models considered whether working memory and processing speed are integrated or separable, as well as the effect of the number of operations required per sentence. The role of working memory as a mediator of the effect of processing speed on sentence imitation was also evaluated. Forty-six children with varied language and reading abilities imitated sentences. Working memory was measured with the Competing Language Processing Task (CLPT), and processing speed was measured with a composite of truth-value judgment and rapid automatized naming tasks. Mixed-effects ordinal regression models evaluated the CLPT and processing speed as predictors of sentence imitation item scores. A single mediator model evaluated working memory as a mediator of the effect of processing speed on sentence imitation total scores. Working memory was a reliable predictor of sentence imitation accuracy, but processing speed predicted sentence imitation only as a component of a processing speed by number of operations interaction. Processing speed predicted working memory capacity, and there was evidence that working memory acted as a mediator of the effect of processing speed on sentence imitation accuracy. The findings support a refined view of working memory and processing speed as separable factors in children's sentence imitation performance. Processing speed does not independently explain sentence imitation accuracy for all sentence types, but contributes when the task requires more mental operations. Processing speed also has an indirect effect on sentence imitation by contributing to working memory capacity. © 2013 Royal College of Speech and Language Therapists.
Zhong, Yi; Zhu, Jieqiang; Yang, Zhenzhong; Shao, Qing; Fan, Xiaohui; Cheng, Yiyu
2018-01-31
To ensure pharmaceutical quality, chemistry, manufacturing and control (CMC) research is essential. However, due to the inherent complexity of Chinese medicine (CM), CMC study of CM remains a great challenge for academia, industry, and regulatory agencies. Recently, quality-marker (Q-marker) was proposed to establish quality standards or quality analysis approaches of Chinese medicine, which sheds a light on Chinese medicine's CMC study. Here manufacture processes of Panax Notoginseng Saponins (PNS) is taken as a case study and the present work is to establish a Q-marker based research strategy for CMC of Chinese medicine. The Q-markers of Panax Notoginseng Saponins (PNS) is selected and established by integrating chemical profile with pharmacological activities. Then, the key processes of PNS manufacturing are identified by material flow analysis. Furthermore, modeling algorithms are employed to explore the relationship between Q-markers and critical process parameters (CPPs) of the key processes. At last, CPPs of the key processes are optimized in order to improving the process efficiency. Among the 97 identified compounds, Notoginsenoside R 1 , ginsenoside Rg 1 , Re, Rb 1 and Rd are selected as the Q-markers of PNS. Our analysis on PNS manufacturing show the extraction process and column chromatography process are the key processes. With the CPPs of each process as the inputs and Q-markers' contents as the outputs, two process prediction models are built separately for the extraction process and column chromatography process of Panax notoginseng, which both possess good prediction ability. Based on the efficiency models of extraction process and column chromatography process we constructed, the optimal CPPs of both processes are calculated. Our results show that the Q-markers derived from CMC research strategy can be applied to analyze the manufacturing processes of Chinese medicine to assure product's quality and promote key processes' efficiency simultaneously. Copyright © 2018 Elsevier GmbH. All rights reserved.
2012-01-01
Background Gas chromatography–mass spectrometry (GC-MS) is a technique frequently used in targeted and non-targeted measurements of metabolites. Most existing software tools for processing of raw instrument GC-MS data tightly integrate data processing methods with graphical user interface facilitating interactive data processing. While interactive processing remains critically important in GC-MS applications, high-throughput studies increasingly dictate the need for command line tools, suitable for scripting of high-throughput, customized processing pipelines. Results PyMS comprises a library of functions for processing of instrument GC-MS data developed in Python. PyMS currently provides a complete set of GC-MS processing functions, including reading of standard data formats (ANDI- MS/NetCDF and JCAMP-DX), noise smoothing, baseline correction, peak detection, peak deconvolution, peak integration, and peak alignment by dynamic programming. A novel common ion single quantitation algorithm allows automated, accurate quantitation of GC-MS electron impact (EI) fragmentation spectra when a large number of experiments are being analyzed. PyMS implements parallel processing for by-row and by-column data processing tasks based on Message Passing Interface (MPI), allowing processing to scale on multiple CPUs in distributed computing environments. A set of specifically designed experiments was performed in-house and used to comparatively evaluate the performance of PyMS and three widely used software packages for GC-MS data processing (AMDIS, AnalyzerPro, and XCMS). Conclusions PyMS is a novel software package for the processing of raw GC-MS data, particularly suitable for scripting of customized processing pipelines and for data processing in batch mode. PyMS provides limited graphical capabilities and can be used both for routine data processing and interactive/exploratory data analysis. In real-life GC-MS data processing scenarios PyMS performs as well or better than leading software packages. We demonstrate data processing scenarios simple to implement in PyMS, yet difficult to achieve with many conventional GC-MS data processing software. Automated sample processing and quantitation with PyMS can provide substantial time savings compared to more traditional interactive software systems that tightly integrate data processing with the graphical user interface. PMID:22647087
The Research Process on Converter Steelmaking Process by Using Limestone
NASA Astrophysics Data System (ADS)
Tang, Biao; Li, Xing-yi; Cheng, Han-chi; Wang, Jing; Zhang, Yun-long
2017-08-01
Compared with traditional converter steelmaking process, steelmaking process with limestone uses limestone to replace lime partly. A lot of researchers have studied about the new steelmaking process. There are much related research about material balance calculation, the behaviour of limestone in the slag, limestone powder injection in converter and application of limestone in iron and steel enterprises. The results show that the surplus heat of converter can meet the need of the limestone calcination, and the new process can reduce the steelmaking process energy loss in the whole steelmaking process, reduce carbon dioxide emissions, and improve the quality of the gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-04-01
Brief details are given of processes including: BGC-Lurgi slagging gasification, COGAS, Exxon catalytic coal gasification, FW-Stoic 2-stage, GI two stage, HYGAS, Koppers-Totzek, Lurgi pressure gasification, Saarberg-Otto, Shell, Texaco, U-Gas, W-D.IGI, Wellman-Galusha, Westinghouse, and Winkler coal gasification processes; the Rectisol process; the Catacarb and the Benfield processes for removing CO/SUB/2, H/SUB/2s and COS from gases produced by the partial oxidation of coal; the selectamine DD, Selexol solvent, and Sulfinol gas cleaning processes; the sulphur-tolerant shift (SSK) process; and the Super-meth process for the production of high-Btu gas from synthesis gas.
Working on the Boundaries: Philosophies and Practices of the Design Process
NASA Technical Reports Server (NTRS)
Ryan, R.; Blair, J.; Townsend, J.; Verderaime, V.
1996-01-01
While systems engineering process is a program formal management technique and contractually binding, the design process is the informal practice of achieving the design project requirements throughout all design phases of the systems engineering process. The design process and organization are systems and component dependent. Informal reviews include technical information meetings and concurrent engineering sessions, and formal technical discipline reviews are conducted through the systems engineering process. This paper discusses and references major philosophical principles in the design process, identifies its role in interacting systems and disciplines analyses and integrations, and illustrates the process application in experienced aerostructural designs.
Chemical processing of lunar materials
NASA Technical Reports Server (NTRS)
Criswell, D. R.; Waldron, R. D.
1979-01-01
The paper highlights recent work on the general problem of processing lunar materials. The discussion covers lunar source materials, refined products, motivations for using lunar materials, and general considerations for a lunar or space processing plant. Attention is given to chemical processing through various techniques, including electrolysis of molten silicates, carbothermic/silicothermic reduction, carbo-chlorination process, NaOH basic-leach process, and HF acid-leach process. Several options for chemical processing of lunar materials are well within the state of the art of applied chemistry and chemical engineering to begin development based on the extensive knowledge of lunar materials.
NASA Astrophysics Data System (ADS)
Wang, Qiang
2017-09-01
As an important part of software engineering, the software process decides the success or failure of software product. The design and development feature of security software process is discussed, so is the necessity and the present significance of using such process. Coordinating the function software, the process for security software and its testing are deeply discussed. The process includes requirement analysis, design, coding, debug and testing, submission and maintenance. In each process, the paper proposed the subprocesses to support software security. As an example, the paper introduces the above process into the power information platform.
Sensor-based atomic layer deposition for rapid process learning and enhanced manufacturability
NASA Astrophysics Data System (ADS)
Lei, Wei
In the search for sensor based atomic layer deposition (ALD) process to accelerate process learning and enhance manufacturability, we have explored new reactor designs and applied in-situ process sensing to W and HfO 2 ALD processes. A novel wafer scale ALD reactor, which features fast gas switching, good process sensing compatibility and significant similarity to the real manufacturing environment, is constructed. The reactor has a unique movable reactor cap design that allows two possible operation modes: (1) steady-state flow with alternating gas species; or (2) fill-and-pump-out cycling of each gas, accelerating the pump-out by lifting the cap to employ the large chamber volume as ballast. Downstream quadrupole mass spectrometry (QMS) sampling is applied for in-situ process sensing of tungsten ALD process. The QMS reveals essential surface reaction dynamics through real-time signals associated with byproduct generation as well as precursor introduction and depletion for each ALD half cycle, which are then used for process learning and optimization. More subtle interactions such as imperfect surface saturation and reactant dose interaction are also directly observed by QMS, indicating that ALD process is more complicated than the suggested layer-by-layer growth. By integrating in real-time the byproduct QMS signals over each exposure and plotting it against process cycle number, the deposition kinetics on the wafer is directly measured. For continuous ALD runs, the total integrated byproduct QMS signal in each ALD run is also linear to ALD film thickness, and therefore can be used for ALD film thickness metrology. The in-situ process sensing is also applied to HfO2 ALD process that is carried out in a furnace type ALD reactor. Precursor dose end-point control is applied to precisely control the precursor dose in each half cycle. Multiple process sensors, including quartz crystal microbalance (QCM) and QMS are used to provide real time process information. The sensing results confirm the proposed surface reaction path and once again reveal the complexity of ALD processes. The impact of this work includes: (1) It explores new ALD reactor designs which enable the implementation of in-situ process sensors for rapid process learning and enhanced manufacturability; (2) It demonstrates in the first time that in-situ QMS can reveal detailed process dynamics and film growth kinetics in wafer-scale ALD process, and thus can be used for ALD film thickness metrology. (3) Based on results from two different processes carried out in two different reactors, it is clear that ALD is a more complicated process than normally believed or advertised, but real-time observation of the operational chemistries in ALD by in-situ sensors provides critical insight to the process and the basis for more effective process control for ALD applications.
Implicit Processes, Self-Regulation, and Interventions for Behavior Change.
St Quinton, Tom; Brunton, Julie A
2017-01-01
The ability to regulate and subsequently change behavior is influenced by both reflective and implicit processes. Traditional theories have focused on conscious processes by highlighting the beliefs and intentions that influence decision making. However, their success in changing behavior has been modest with a gap between intention and behavior apparent. Dual-process models have been recently applied to health psychology; with numerous models incorporating implicit processes that influence behavior as well as the more common conscious processes. Such implicit processes are theorized to govern behavior non-consciously. The article provides a commentary on motivational and volitional processes and how interventions have combined to attempt an increase in positive health behaviors. Following this, non-conscious processes are discussed in terms of their theoretical underpinning. The article will then highlight how these processes have been measured and will then discuss the different ways that the non-conscious and conscious may interact. The development of interventions manipulating both processes may well prove crucial in successfully altering behavior.
Huff, Mark J.; Bodner, Glen E.
2014-01-01
Whether encoding variability facilitates memory is shown to depend on whether item-specific and relational processing are both performed across study blocks, and whether study items are weakly versus strongly related. Variable-processing groups studied a word list once using an item-specific task and once using a relational task. Variable-task groups’ two different study tasks recruited the same type of processing each block. Repeated-task groups performed the same study task each block. Recall and recognition were greatest in the variable-processing group, but only with weakly related lists. A variable-processing benefit was also found when task-based processing and list-type processing were complementary (e.g., item-specific processing of a related list) rather than redundant (e.g., relational processing of a related list). That performing both item-specific and relational processing across trials, or within a trial, yields encoding-variability benefits may help reconcile decades of contradictory findings in this area. PMID:25018583
Continuous welding of unidirectional fiber reinforced thermoplastic tape material
NASA Astrophysics Data System (ADS)
Schledjewski, Ralf
2017-10-01
Continuous welding techniques like thermoplastic tape placement with in situ consolidation offer several advantages over traditional manufacturing processes like autoclave consolidation, thermoforming, etc. However, still there is a need to solve several important processing issues before it becomes a viable economic process. Intensive process analysis and optimization has been carried out in the past through experimental investigation, model definition and simulation development. Today process simulation is capable to predict resulting consolidation quality. Effects of material imperfections or process parameter variations are well known. But using this knowledge to control the process based on online process monitoring and according adaption of the process parameters is still challenging. Solving inverse problems and using methods for automated code generation allowing fast implementation of algorithms on targets are required. The paper explains the placement technique in general. Process-material-property-relationships and typical material imperfections are described. Furthermore, online monitoring techniques and how to use them for a model based process control system are presented.
Economics of polysilicon process: A view from Japan
NASA Technical Reports Server (NTRS)
Shimizu, Y.
1986-01-01
The production process of solar grade silicon (SOG-Si) through trichlorosilane (TCS) was researched in a program sponsored by New Energy Development Organization (NEDO). The NEDO process consists of the following two steps: TCS production from by-product silicon tetrachloride (STC) and SOG-Si formation from TCS using a fluidized bed reactor. Based on the data obtained during the research program, the manufacturing cost of the NEDO process and other polysilicon manufacturing processes were compared. The manufacturing cost was calculated on the basis of 1000 tons/year production. The cost estimate showed that the cost of producing silicon by all of the new processes is less than the cost by the conventional Siemens process. Using a new process, the cost of producing semiconductor grade silicon was found to be virtually the same with any to the TCS, diclorosilane, and monosilane processes when by-products were recycled. The SOG-Si manufacturing processes using the fluidized bed reactor, which needs further development, shows a greater probablility of cost reduction than the filament processes.
Autonomous Agents for Dynamic Process Planning in the Flexible Manufacturing System
NASA Astrophysics Data System (ADS)
Nik Nejad, Hossein Tehrani; Sugimura, Nobuhiro; Iwamura, Koji; Tanimizu, Yoshitaka
Rapid changes of market demands and pressures of competition require manufacturers to maintain highly flexible manufacturing systems to cope with a complex manufacturing environment. This paper deals with development of an agent-based architecture of dynamic systems for incremental process planning in the manufacturing systems. In consideration of alternative manufacturing processes and machine tools, the process plans and the schedules of the manufacturing resources are generated incrementally and dynamically. A negotiation protocol is discussed, in this paper, to generate suitable process plans for the target products real-timely and dynamically, based on the alternative manufacturing processes. The alternative manufacturing processes are presented by the process plan networks discussed in the previous paper, and the suitable process plans are searched and generated to cope with both the dynamic changes of the product specifications and the disturbances of the manufacturing resources. We initiatively combine the heuristic search algorithms of the process plan networks with the negotiation protocols, in order to generate suitable process plans in the dynamic manufacturing environment.
Implicit Processes, Self-Regulation, and Interventions for Behavior Change
St Quinton, Tom; Brunton, Julie A.
2017-01-01
The ability to regulate and subsequently change behavior is influenced by both reflective and implicit processes. Traditional theories have focused on conscious processes by highlighting the beliefs and intentions that influence decision making. However, their success in changing behavior has been modest with a gap between intention and behavior apparent. Dual-process models have been recently applied to health psychology; with numerous models incorporating implicit processes that influence behavior as well as the more common conscious processes. Such implicit processes are theorized to govern behavior non-consciously. The article provides a commentary on motivational and volitional processes and how interventions have combined to attempt an increase in positive health behaviors. Following this, non-conscious processes are discussed in terms of their theoretical underpinning. The article will then highlight how these processes have been measured and will then discuss the different ways that the non-conscious and conscious may interact. The development of interventions manipulating both processes may well prove crucial in successfully altering behavior. PMID:28337164
Models of recognition: a review of arguments in favor of a dual-process account.
Diana, Rachel A; Reder, Lynne M; Arndt, Jason; Park, Heekyeong
2006-02-01
The majority of computationally specified models of recognition memory have been based on a single-process interpretation, claiming that familiarity is the only influence on recognition. There is increasing evidence that recognition is, in fact, based on two processes: recollection and familiarity. This article reviews the current state of the evidence for dual-process models, including the usefulness of the remember/know paradigm, and interprets the relevant results in terms of the source of activation confusion (SAC) model of memory. We argue that the evidence from each of the areas we discuss, when combined, presents a strong case that inclusion of a recollection process is necessary. Given this conclusion, we also argue that the dual-process claim that the recollection process is always available is, in fact, more parsimonious than the single-process claim that the recollection process is used only in certain paradigms. The value of a well-specified process model such as the SAC model is discussed with regard to other types of dual-process models.
Integrating Thermal Tools Into the Mechanical Design Process
NASA Technical Reports Server (NTRS)
Tsuyuki, Glenn T.; Siebes, Georg; Novak, Keith S.; Kinsella, Gary M.
1999-01-01
The intent of mechanical design is to deliver a hardware product that meets or exceeds customer expectations, while reducing cycle time and cost. To this end, an integrated mechanical design process enables the idea of parallel development (concurrent engineering). This represents a shift from the traditional mechanical design process. With such a concurrent process, there are significant issues that have to be identified and addressed before re-engineering the mechanical design process to facilitate concurrent engineering. These issues also assist in the integration and re-engineering of the thermal design sub-process since it resides within the entire mechanical design process. With these issues in mind, a thermal design sub-process can be re-defined in a manner that has a higher probability of acceptance, thus enabling an integrated mechanical design process. However, the actual implementation is not always problem-free. Experience in applying the thermal design sub-process to actual situations provides the evidence for improvement, but more importantly, for judging the viability and feasibility of the sub-process.
Xu, Min; Zhang, Lei; Yue, Hong-Shui; Pang, Hong-Wei; Ye, Zheng-Liang; Ding, Li
2017-10-01
To establish an on-line monitoring method for extraction process of Schisandrae Chinensis Fructus, the formula medicinal material of Yiqi Fumai lyophilized injection by combining near infrared spectroscopy with multi-variable data analysis technology. The multivariate statistical process control (MSPC) model was established based on 5 normal batches in production and 2 test batches were monitored by PC scores, DModX and Hotelling T2 control charts. The results showed that MSPC model had a good monitoring ability for the extraction process. The application of the MSPC model to actual production process could effectively achieve on-line monitoring for extraction process of Schisandrae Chinensis Fructus, and can reflect the change of material properties in the production process in real time. This established process monitoring method could provide reference for the application of process analysis technology in the process quality control of traditional Chinese medicine injections. Copyright© by the Chinese Pharmaceutical Association.
Ivezic, Nenad; Potok, Thomas E.
2003-09-30
A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.
Process yield improvements with process control terminal for varian serial ion implanters
NASA Astrophysics Data System (ADS)
Higashi, Harry; Soni, Ameeta; Martinez, Larry; Week, Ken
Implant processes in a modern wafer production fab are extremely complex. There can be several types of misprocessing, i.e. wrong dose or species, double implants and missed implants. Process Control Terminals (PCT) for Varian 350Ds installed at Intel fabs were found to substantially reduce the number of misprocessing steps. This paper describes those misprocessing steps and their subsequent reduction with use of PCTs. Reliable and simple process control with serial process ion implanters has been in increasing demand. A well designed process control terminal greatly increases device yield by monitoring all pertinent implanter functions and enabling process engineering personnel to set up process recipes for simple and accurate system operation. By programming user-selectable interlocks, implant errors are reduced and those that occur are logged for further analysis and prevention. A process control terminal should also be compatible with office personal computers for greater flexibility in system use and data analysis. The impact from the capability of a process control terminal is increased productivity, ergo higher device yield.
An Aspect-Oriented Framework for Business Process Improvement
NASA Astrophysics Data System (ADS)
Pourshahid, Alireza; Mussbacher, Gunter; Amyot, Daniel; Weiss, Michael
Recently, many organizations invested in Business Process Management Systems (BPMSs) in order to automate and monitor their processes. Business Activity Monitoring is one of the essential modules of a BPMS as it provides the core monitoring capabilities. Although the natural step after process monitoring is process improvement, most of the existing systems do not provide the means to help users with the improvement step. In this paper, we address this issue by proposing an aspect-oriented framework that allows the impact of changes to business processes to be explored with what-if scenarios based on the most appropriate process redesign patterns among several possibilities. As the four cornerstones of a BPMS are process, goal, performance and validation views, these views need to be aligned automatically by any approach that intends to support automated improvement of business processes. Our framework therefore provides means to reflect process changes also in the other views of the business process. A health care case study presented as a proof of concept suggests that this novel approach is feasible.
Structure and Randomness of Continuous-Time, Discrete-Event Processes
NASA Astrophysics Data System (ADS)
Marzen, Sarah E.; Crutchfield, James P.
2017-10-01
Loosely speaking, the Shannon entropy rate is used to gauge a stochastic process' intrinsic randomness; the statistical complexity gives the cost of predicting the process. We calculate, for the first time, the entropy rate and statistical complexity of stochastic processes generated by finite unifilar hidden semi-Markov models—memoryful, state-dependent versions of renewal processes. Calculating these quantities requires introducing novel mathematical objects (ɛ -machines of hidden semi-Markov processes) and new information-theoretic methods to stochastic processes.
Jang, H M; Park, S K; Ha, J H; Park, J M
2014-01-01
In this study, a process that combines the mesophilic anaerobic digestion (MAD) process with thermophilic aerobic digestion (TAD) for high-strength food wastewater (FWW) treatment was developed to examine the removal of organic matter and methane production. All effluent discharged from the MAD process was separated into solid and liquid portions. The liquid part was discarded and the sludge part was passed to the TAD process for further degradation. Then, the digested sludge from the TAD process was recycled back to the MAD unit to achieve low sludge discharge from the combined process. The reactor combination was operated in two phases: during Phase I, 40 d of total hydraulic retention time (HRT) was applied; during Phase II, 20 d was applied. HRT of the TAD process was fixed at 5 d. For a comparison, a control process (single-stage MAD) was operated with the same HRTs of the combined process. Our results indicated that the combined process showed over 90% total solids, volatile solids and chemical oxygen demand removal efficiencies. In addition, the combined process showed a significantly higher methane production rate than that of the control process. Consequently, the experimental data demonstrated that the combined MAD-TAD process was successfully employed for high-strength FWW treatment with highly efficient organic matter reduction and methane production.
Nilsson, Kerstin; Sandoff, Mette
2015-01-01
The purpose of this study is to gain better understanding of the roles and functions of process managers by describing Swedish process managers' experiences of leading processes involving patient care and treatment when working in a hierarchical health-care organization. This study is based on an explorative design. The data were gathered from interviews with 12 process managers at three Swedish hospitals. These data underwent qualitative and interpretative analysis with a modified editing style. The process managers' experiences of leading processes in a hierarchical health-care organization are described under three themes: having or not having a mandate, exposure to conflict situations and leading process development. The results indicate a need for clarity regarding process manager's responsibility and work content, which need to be communicated to all managers and staff involved in the patient care and treatment process, irrespective of department. There also needs to be an emphasis on realistic expectations and orientation of the goals that are an intrinsic part of the task of being a process manager. Generalizations from the results of the qualitative interview studies are limited, but a deeper understanding of the phenomenon was reached, which, in turn, can be transferred to similar settings. This study contributes qualitative descriptions of leading care and treatment processes in a functional, hierarchical health-care organization from process managers' experiences, a subject that has not been investigated earlier.
ERIC Educational Resources Information Center
Lamp, Sandra A.
2012-01-01
There is information available in the literature that discusses information technology (IT) governance and investment decision making from an executive-level perception, yet there is little information available that offers the perspective of process owners and process managers pertaining to their role in IT process improvement and investment…
43 CFR 2884.17 - How will BLM process my Processing Category 6 application?
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false How will BLM process my Processing...-WAY UNDER THE MINERAL LEASING ACT Applying for MLA Grants or TUPs § 2884.17 How will BLM process my... written agreement that describes how BLM will process your application. The final agreement consists of a...
43 CFR 2884.17 - How will BLM process my Processing Category 6 application?
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false How will BLM process my Processing...-WAY UNDER THE MINERAL LEASING ACT Applying for MLA Grants or TUPs § 2884.17 How will BLM process my... written agreement that describes how BLM will process your application. The final agreement consists of a...
15 CFR 15.3 - Acceptance of service of process.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Acceptance of service of process. 15.3... Process § 15.3 Acceptance of service of process. (a) Except as otherwise provided in this subpart, any... employee by law is to be served personally with process. Service of process in this case is inadequate when...
Weaknesses in Applying a Process Approach in Industry Enterprises
NASA Astrophysics Data System (ADS)
Kučerová, Marta; Mĺkva, Miroslava; Fidlerová, Helena
2012-12-01
The paper deals with a process approach as one of the main principles of the quality management. Quality management systems based on process approach currently represents one of a proofed ways how to manage an organization. The volume of sales, costs and profit levels are influenced by quality of processes and efficient process flow. As results of the research project showed, there are some weaknesses in applying of the process approach in the industrial routine and it has been often only a formal change of the functional management to process management in many organizations in Slovakia. For efficient process management it is essential that companies take attention to the way how to organize their processes and seek for their continuous improvement.
Is Primary-Process Cognition a Feature of Hypnosis?
Finn, Michael T; Goldman, Jared I; Lyon, Gyrid B; Nash, Michael R
2017-01-01
The division of cognition into primary and secondary processes is an important part of contemporary psychoanalytic metapsychology. Whereas primary processes are most characteristic of unconscious thought and loose associations, secondary processes generally govern conscious thought and logical reasoning. It has been theorized that an induction into hypnosis is accompanied by a predomination of primary-process cognition over secondary-process cognition. The authors hypothesized that highly hypnotizable individuals would demonstrate more primary-process cognition as measured by a recently developed cognitive-perceptual task. This hypothesis was not supported. In fact, low hypnotizable participants demonstrated higher levels of primary-process cognition. Exploratory analyses suggested a more specific effect: felt connectedness to the hypnotist seemed to promote secondary-process cognition among low hypnotizable participants.
[Dual process in large number estimation under uncertainty].
Matsumuro, Miki; Miwa, Kazuhisa; Terai, Hitoshi; Yamada, Kento
2016-08-01
According to dual process theory, there are two systems in the mind: an intuitive and automatic System 1 and a logical and effortful System 2. While many previous studies about number estimation have focused on simple heuristics and automatic processes, the deliberative System 2 process has not been sufficiently studied. This study focused on the System 2 process for large number estimation. First, we described an estimation process based on participants’ verbal reports. The task, corresponding to the problem-solving process, consisted of creating subgoals, retrieving values, and applying operations. Second, we investigated the influence of such deliberative process by System 2 on intuitive estimation by System 1, using anchoring effects. The results of the experiment showed that the System 2 process could mitigate anchoring effects.
Object-processing neural efficiency differentiates object from spatial visualizers.
Motes, Michael A; Malach, Rafael; Kozhevnikov, Maria
2008-11-19
The visual system processes object properties and spatial properties in distinct subsystems, and we hypothesized that this distinction might extend to individual differences in visual processing. We conducted a functional MRI study investigating the neural underpinnings of individual differences in object versus spatial visual processing. Nine participants of high object-processing ability ('object' visualizers) and eight participants of high spatial-processing ability ('spatial' visualizers) were scanned, while they performed an object-processing task. Object visualizers showed lower bilateral neural activity in lateral occipital complex and lower right-lateralized neural activity in dorsolateral prefrontal cortex. The data indicate that high object-processing ability is associated with more efficient use of visual-object resources, resulting in less neural activity in the object-processing pathway.
Process simulation for advanced composites production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allendorf, M.D.; Ferko, S.M.; Griffiths, S.
1997-04-01
The objective of this project is to improve the efficiency and lower the cost of chemical vapor deposition (CVD) processes used to manufacture advanced ceramics by providing the physical and chemical understanding necessary to optimize and control these processes. Project deliverables include: numerical process models; databases of thermodynamic and kinetic information related to the deposition process; and process sensors and software algorithms that can be used for process control. Target manufacturing techniques include CVD fiber coating technologies (used to deposit interfacial coatings on continuous fiber ceramic preforms), chemical vapor infiltration, thin-film deposition processes used in the glass industry, and coatingmore » techniques used to deposit wear-, abrasion-, and corrosion-resistant coatings for use in the pulp and paper, metals processing, and aluminum industries.« less
NASA Astrophysics Data System (ADS)
Nesladek, Pavel; Wiswesser, Andreas; Sass, Björn; Mauermann, Sebastian
2008-04-01
The Critical dimension off-target (CDO) is a key parameter for mask house customer, affecting directly the performance of the mask. The CDO is the difference between the feature size target and the measured feature size. The change of CD during the process is either compensated within the process or by data correction. These compensation methods are commonly called process bias and data bias, respectively. The difference between data bias and process bias in manufacturing results in systematic CDO error, however, this systematic error does not take into account the instability of the process bias. This instability is a result of minor variations - instabilities of manufacturing processes and changes in materials and/or logistics. Using several masks the CDO of the manufacturing line can be estimated. For systematic investigation of the unit process contribution to CDO and analysis of the factors influencing the CDO contributors, a solid understanding of each unit process and huge number of masks is necessary. Rough identification of contributing processes and splitting of the final CDO variation between processes can be done with approx. 50 masks with identical design, material and process. Such amount of data allows us to identify the main contributors and estimate the effect of them by means of Analysis of variance (ANOVA) combined with multivariate analysis. The analysis does not provide information about the root cause of the variation within the particular unit process, however, it provides a good estimate of the impact of the process on the stability of the manufacturing line. Additionally this analysis can be used to identify possible interaction between processes, which cannot be investigated if only single processes are considered. Goal of this work is to evaluate limits for CDO budgeting models given by the precision and the number of measurements as well as partitioning the variation within the manufacturing process. The CDO variation splits according to the suggested model into contributions from particular processes or process groups. Last but not least the power of this method to determine the absolute strength of each parameter will be demonstrated. Identification of the root cause of this variation within the unit process itself is not scope of this work.
Janakiraman, Vijay; Kwiatkowski, Chris; Kshirsagar, Rashmi; Ryll, Thomas; Huang, Yao-Ming
2015-01-01
High-throughput systems and processes have typically been targeted for process development and optimization in the bioprocessing industry. For process characterization, bench scale bioreactors have been the system of choice. Due to the need for performing different process conditions for multiple process parameters, the process characterization studies typically span several months and are considered time and resource intensive. In this study, we have shown the application of a high-throughput mini-bioreactor system viz. the Advanced Microscale Bioreactor (ambr15(TM) ), to perform process characterization in less than a month and develop an input control strategy. As a pre-requisite to process characterization, a scale-down model was first developed in the ambr system (15 mL) using statistical multivariate analysis techniques that showed comparability with both manufacturing scale (15,000 L) and bench scale (5 L). Volumetric sparge rates were matched between ambr and manufacturing scale, and the ambr process matched the pCO2 profiles as well as several other process and product quality parameters. The scale-down model was used to perform the process characterization DoE study and product quality results were generated. Upon comparison with DoE data from the bench scale bioreactors, similar effects of process parameters on process yield and product quality were identified between the two systems. We used the ambr data for setting action limits for the critical controlled parameters (CCPs), which were comparable to those from bench scale bioreactor data. In other words, the current work shows that the ambr15(TM) system is capable of replacing the bench scale bioreactor system for routine process development and process characterization. © 2015 American Institute of Chemical Engineers.
Consumers' conceptualization of ultra-processed foods.
Ares, Gastón; Vidal, Leticia; Allegue, Gimena; Giménez, Ana; Bandeira, Elisa; Moratorio, Ximena; Molina, Verónika; Curutchet, María Rosa
2016-10-01
Consumption of ultra-processed foods has been associated with low diet quality, obesity and other non-communicable diseases. This situation makes it necessary to develop educational campaigns to discourage consumers from substituting meals based on unprocessed or minimally processed foods by ultra-processed foods. In this context, the aim of the present work was to investigate how consumers conceptualize the term ultra-processed foods and to evaluate if the foods they perceive as ultra-processed are in concordance with the products included in the NOVA classification system. An online study was carried out with 2381 participants. They were asked to explain what they understood by ultra-processed foods and to list foods that can be considered ultra-processed. Responses were analysed using inductive coding. The great majority of the participants was able to provide an explanation of what ultra-processed foods are, which was similar to the definition described in the literature. Most of the participants described ultra-processed foods as highly processed products that usually contain additives and other artificial ingredients, stressing that they have low nutritional quality and are unhealthful. The most relevant products for consumers' conceptualization of the term were in agreement with the NOVA classification system and included processed meats, soft drinks, snacks, burgers, powdered and packaged soups and noodles. However, some of the participants perceived processed foods, culinary ingredients and even some minimally processed foods as ultra-processed. This suggests that in order to accurately convey their message, educational campaigns aimed at discouraging consumers from consuming ultra-processed foods should include a clear definition of the term and describe some of their specific characteristics, such as the type of ingredients included in their formulation and their nutritional composition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rapid communication: Global-local processing affects recognition of distractor emotional faces.
Srinivasan, Narayanan; Gupta, Rashmi
2011-03-01
Recent studies have shown links between happy faces and global, distributed attention as well as sad faces to local, focused attention. Emotions have been shown to affect global-local processing. Given that studies on emotion-cognition interactions have not explored the effect of perceptual processing at different spatial scales on processing stimuli with emotional content, the present study investigated the link between perceptual focus and emotional processing. The study investigated the effects of global-local processing on the recognition of distractor faces with emotional expressions. Participants performed a digit discrimination task with digits at either the global level or the local level presented against a distractor face (happy or sad) as background. The results showed that global processing associated with broad scope of attention facilitates recognition of happy faces, and local processing associated with narrow scope of attention facilitates recognition of sad faces. The novel results of the study provide conclusive evidence for emotion-cognition interactions by demonstrating the effect of perceptual processing on emotional faces. The results along with earlier complementary results on the effect of emotion on global-local processing support a reciprocal relationship between emotional processing and global-local processing. Distractor processing with emotional information also has implications for theories of selective attention.
Tomographical process monitoring of laser transmission welding with OCT
NASA Astrophysics Data System (ADS)
Ackermann, Philippe; Schmitt, Robert
2017-06-01
Process control of laser processes still encounters many obstacles. Although these processes are stable, a narrow process parameter window during the process or process deviations have led to an increase on the requirements for the process itself and on monitoring devices. Laser transmission welding as a contactless and locally limited joining technique is well-established in a variety of demanding production areas. For example, sensitive parts demand a particle-free joining technique which does not affect the inner components. Inline integrated non-destructive optical measurement systems capable of providing non-invasive tomographical images of the transparent material, the weld seam and its surrounding areas with micron resolution would improve the overall process. Obtained measurement data enable qualitative feedback into the system to adapt parameters for a more robust process. Within this paper we present the inline monitoring device based on Fourier-domain optical coherence tomography developed within the European-funded research project "Manunet Weldable". This device, after adaptation to the laser transmission welding process is optically and mechanically integrated into the existing laser system. The main target lies within the inline process control destined to extract tomographical geometrical measurement data from the weld seam forming process. Usage of this technology makes offline destructive testing of produced parts obsolete. 1,2,3,4
A quality-refinement process for medical imaging applications.
Neuhaus, J; Maleike, D; Nolden, M; Kenngott, H-G; Meinzer, H-P; Wolf, I
2009-01-01
To introduce and evaluate a process for refinement of software quality that is suitable to research groups. In order to avoid constraining researchers too much, the quality improvement process has to be designed carefully. The scope of this paper is to present and evaluate a process to advance quality aspects of existing research prototypes in order to make them ready for initial clinical studies. The proposed process is tailored for research environments and therefore more lightweight than traditional quality management processes. Focus on quality criteria that are important at the given stage of the software life cycle. Usage of tools that automate aspects of the process is emphasized. To evaluate the additional effort that comes along with the process, it was exemplarily applied for eight prototypical software modules for medical image processing. The introduced process has been applied to improve the quality of all prototypes so that they could be successfully used in clinical studies. The quality refinement yielded an average of 13 person days of additional effort per project. Overall, 107 bugs were found and resolved by applying the process. Careful selection of quality criteria and the usage of automated process tools lead to a lightweight quality refinement process suitable for scientific research groups that can be applied to ensure a successful transfer of technical software prototypes into clinical research workflows.
Negative Binomial Process Count and Mixture Modeling.
Zhou, Mingyuan; Carin, Lawrence
2015-02-01
The seemingly disjoint problems of count and mixture modeling are united under the negative binomial (NB) process. A gamma process is employed to model the rate measure of a Poisson process, whose normalization provides a random probability measure for mixture modeling and whose marginalization leads to an NB process for count modeling. A draw from the NB process consists of a Poisson distributed finite number of distinct atoms, each of which is associated with a logarithmic distributed number of data samples. We reveal relationships between various count- and mixture-modeling distributions and construct a Poisson-logarithmic bivariate distribution that connects the NB and Chinese restaurant table distributions. Fundamental properties of the models are developed, and we derive efficient Bayesian inference. It is shown that with augmentation and normalization, the NB process and gamma-NB process can be reduced to the Dirichlet process and hierarchical Dirichlet process, respectively. These relationships highlight theoretical, structural, and computational advantages of the NB process. A variety of NB processes, including the beta-geometric, beta-NB, marked-beta-NB, marked-gamma-NB and zero-inflated-NB processes, with distinct sharing mechanisms, are also constructed. These models are applied to topic modeling, with connections made to existing algorithms under Poisson factor analysis. Example results show the importance of inferring both the NB dispersion and probability parameters.
[Process management in the hospital pharmacy for the improvement of the patient safety].
Govindarajan, R; Perelló-Juncá, A; Parès-Marimòn, R M; Serrais-Benavente, J; Ferrandez-Martí, D; Sala-Robinat, R; Camacho-Calvente, A; Campabanal-Prats, C; Solà-Anderiu, I; Sanchez-Caparrós, S; Gonzalez-Estrada, J; Martinez-Olalla, P; Colomer-Palomo, J; Perez-Mañosas, R; Rodríguez-Gallego, D
2013-01-01
To define a process management model for a hospital pharmacy in order to measure, analyse and make continuous improvements in patient safety and healthcare quality. In order to implement process management, Igualada Hospital was divided into different processes, one of which was the Hospital Pharmacy. A multidisciplinary management team was given responsibility for each process. For each sub-process one person was identified to be responsible, and a working group was formed under his/her leadership. With the help of each working group, a risk analysis using failure modes and effects analysis (FMEA) was performed, and the corresponding improvement actions were implemented. Sub-process indicators were also identified, and different process management mechanisms were introduced. The first risk analysis with FMEA produced more than thirty preventive actions to improve patient safety. Later, the weekly analysis of errors, as well as the monthly analysis of key process indicators, permitted us to monitor process results and, as each sub-process manager participated in these meetings, also to assume accountability and responsibility, thus consolidating the culture of excellence. The introduction of different process management mechanisms, with the participation of people responsible for each sub-process, introduces a participative management tool for the continuous improvement of patient safety and healthcare quality. Copyright © 2012 SECA. Published by Elsevier Espana. All rights reserved.
Distributed processing method for arbitrary view generation in camera sensor network
NASA Astrophysics Data System (ADS)
Tehrani, Mehrdad P.; Fujii, Toshiaki; Tanimoto, Masayuki
2003-05-01
Camera sensor network as a new advent of technology is a network that each sensor node can capture video signals, process and communicate them with other nodes. The processing task in this network is to generate arbitrary view, which can be requested from central node or user. To avoid unnecessary communication between nodes in camera sensor network and speed up the processing time, we have distributed the processing tasks between nodes. In this method, each sensor node processes part of interpolation algorithm to generate the interpolated image with local communication between nodes. The processing task in camera sensor network is ray-space interpolation, which is an object independent method and based on MSE minimization by using adaptive filtering. Two methods were proposed for distributing processing tasks, which are Fully Image Shared Decentralized Processing (FIS-DP), and Partially Image Shared Decentralized Processing (PIS-DP), to share image data locally. Comparison of the proposed methods with Centralized Processing (CP) method shows that PIS-DP has the highest processing speed after FIS-DP, and CP has the lowest processing speed. Communication rate of CP and PIS-DP is almost same and better than FIS-DP. So, PIS-DP is recommended because of its better performance than CP and FIS-DP.
EEG alpha synchronization is related to top-down processing in convergent and divergent thinking
Benedek, Mathias; Bergner, Sabine; Könen, Tanja; Fink, Andreas; Neubauer, Aljoscha C.
2011-01-01
Synchronization of EEG alpha activity has been referred to as being indicative of cortical idling, but according to more recent evidence it has also been associated with active internal processing and creative thinking. The main objective of this study was to investigate to what extent EEG alpha synchronization is related to internal processing demands and to specific cognitive process involved in creative thinking. To this end, EEG was measured during a convergent and a divergent thinking task (i.e., creativity-related task) which once were processed involving low and once involving high internal processing demands. High internal processing demands were established by masking the stimulus (after encoding) and thus preventing further bottom-up processing. Frontal alpha synchronization was observed during convergent and divergent thinking only under exclusive top-down control (high internal processing demands), but not when bottom-up processing was allowed (low internal processing demands). We conclude that frontal alpha synchronization is related to top-down control rather than to specific creativity-related cognitive processes. Frontal alpha synchronization, which has been observed in a variety of different creativity tasks, thus may not reflect a brain state that is specific for creative cognition but can probably be attributed to high internal processing demands which are typically involved in creative thinking. PMID:21925520
Kennedy Space Center Payload Processing
NASA Technical Reports Server (NTRS)
Lawson, Ronnie; Engler, Tom; Colloredo, Scott; Zide, Alan
2011-01-01
This slide presentation reviews the payload processing functions at Kennedy Space Center. It details some of the payloads processed at KSC, the typical processing tasks, the facilities available for processing payloads, and the capabilities and customer services that are available.
ERIC Educational Resources Information Center
Miller, John
1994-01-01
Presents an approach to document numbering, document titling, and process measurement which, when used with fundamental techniques of statistical process control, reveals meaningful process-element variation as well as nominal productivity models. (SR)
USE OF INDICATOR ORGANISMS FOR DETERMINING PROCESS EFFECTIVENESS
Wastewaters, process effluents and treatment process residuals contain a variety of microorganisms. Many factors influence their densities as they move through collection systems and process equipment. Biological treatment systems rely on the catabolic processes of such microor...
Food processing by high hydrostatic pressure.
Yamamoto, Kazutaka
2017-04-01
High hydrostatic pressure (HHP) process, as a nonthermal process, can be used to inactivate microbes while minimizing chemical reactions in food. In this regard, a HHP level of 100 MPa (986.9 atm/1019.7 kgf/cm 2 ) and more is applied to food. Conventional thermal process damages food components relating color, flavor, and nutrition via enhanced chemical reactions. However, HHP process minimizes the damages and inactivates microbes toward processing high quality safe foods. The first commercial HHP-processed foods were launched in 1990 as fruit products such as jams, and then some other products have been commercialized: retort rice products (enhanced water impregnation), cooked hams and sausages (shelf life extension), soy sauce with minimized salt (short-time fermentation owing to enhanced enzymatic reactions), and beverages (shelf life extension). The characteristics of HHP food processing are reviewed from viewpoints of nonthermal process, history, research and development, physical and biochemical changes, and processing equipment.
Li, Wen-Long; Qu, Hai-Bin
2016-10-01
In this paper, the principle of NIRS (near infrared spectroscopy)-based process trajectory technology was introduced.The main steps of the technique include:① in-line collection of the processes spectra of different technics; ② unfolding of the 3-D process spectra;③ determination of the process trajectories and their normal limits;④ monitoring of the new batches with the established MSPC (multivariate statistical process control) models.Applications of the technology in the chemical and biological medicines were reviewed briefly. By a comprehensive introduction of our feasibility research on the monitoring of traditional Chinese medicine technical process using NIRS-based multivariate process trajectories, several important problems of the practical applications which need urgent solutions are proposed, and also the application prospect of the NIRS-based process trajectory technology is fully discussed and put forward in the end. Copyright© by the Chinese Pharmaceutical Association.
Recollection is a continuous process: implications for dual-process theories of recognition memory.
Mickes, Laura; Wais, Peter E; Wixted, John T
2009-04-01
Dual-process theory, which holds that recognition decisions can be based on recollection or familiarity, has long seemed incompatible with signal detection theory, which holds that recognition decisions are based on a singular, continuous memory-strength variable. Formal dual-process models typically regard familiarity as a continuous process (i.e., familiarity comes in degrees), but they construe recollection as a categorical process (i.e., recollection either occurs or does not occur). A continuous process is characterized by a graded relationship between confidence and accuracy, whereas a categorical process is characterized by a binary relationship such that high confidence is associated with high accuracy but all lower degrees of confidence are associated with chance accuracy. Using a source-memory procedure, we found that the relationship between confidence and source-recollection accuracy was graded. Because recollection, like familiarity, is a continuous process, dual-process theory is more compatible with signal detection theory than previously thought.
A qualitative assessment of a random process proposed as an atmospheric turbulence model
NASA Technical Reports Server (NTRS)
Sidwell, K.
1977-01-01
A random process is formed by the product of two Gaussian processes and the sum of that product with a third Gaussian process. The resulting total random process is interpreted as the sum of an amplitude modulated process and a slowly varying, random mean value. The properties of the process are examined, including an interpretation of the process in terms of the physical structure of atmospheric motions. The inclusion of the mean value variation gives an improved representation of the properties of atmospheric motions, since the resulting process can account for the differences in the statistical properties of atmospheric velocity components and their gradients. The application of the process to atmospheric turbulence problems, including the response of aircraft dynamic systems, is examined. The effects of the mean value variation upon aircraft loads are small in most cases, but can be important in the measurement and interpretation of atmospheric turbulence data.
Szałatkiewicz, Jakub
2016-01-01
This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB) waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than 700 kg/day scale. The designed plasma process is presented and discussed. The process in tests consumed 2 kWh/kg of processed waste. Investigation of the process products is presented with their elemental analyses of metals and slag. The average recovery of metals in presented experiments is 76%. Metals recovered include: Ag, Au, Pd, Cu, Sn, Pb, and others. The chosen process parameters are presented: energy consumption, throughput, process temperatures, and air consumption. Presented technology allows processing of variable and hard-to-process printed circuit board waste that can reach up to 100% of the input mass. PMID:28773804
Characterisation and Processing of Some Iron Ores of India
NASA Astrophysics Data System (ADS)
Krishna, S. J. G.; Patil, M. R.; Rudrappa, C.; Kumar, S. P.; Ravi, B. P.
2013-10-01
Lack of process characterization data of the ores based on the granulometry, texture, mineralogy, physical, chemical, properties, merits and limitations of process, market and local conditions may mislead the mineral processing entrepreneur. The proper implementation of process characterization and geotechnical map data will result in optimized sustainable utilization of resource by processing. A few case studies of process characterization of some Indian iron ores are dealt with. The tentative ascending order of process refractoriness of iron ores is massive hematite/magnetite < marine black iron oxide sands < laminated soft friable siliceous ore fines < massive banded magnetite quartzite < laminated soft friable clayey aluminous ore fines < massive banded hematite quartzite/jasper < massive clayey hydrated iron oxide ore < manganese bearing iron ores massive < Ti-V bearing magnetite magmatic ore < ferruginous cherty quartzite. Based on diagnostic process characterization, the ores have been classified and generic process have been adopted for some Indian iron ores.
Measuring health care process quality with software quality measures.
Yildiz, Ozkan; Demirörs, Onur
2012-01-01
Existing quality models focus on some specific diseases, clinics or clinical areas. Although they contain structure, process, or output type measures, there is no model which measures quality of health care processes comprehensively. In addition, due to the not measured overall process quality, hospitals cannot compare quality of processes internally and externally. To bring a solution to above problems, a new model is developed from software quality measures. We have adopted the ISO/IEC 9126 software quality standard for health care processes. Then, JCIAS (Joint Commission International Accreditation Standards for Hospitals) measurable elements were added to model scope for unifying functional requirements. Assessment (diagnosing) process measurement results are provided in this paper. After the application, it was concluded that the model determines weak and strong aspects of the processes, gives a more detailed picture for the process quality, and provides quantifiable information to hospitals to compare their processes with multiple organizations.
Thermal Stir Welding: A New Solid State Welding Process
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey
2003-01-01
Thermal stir welding is a new welding process developed at NASA's Marshall Space Flight Center in Huntsville, AL. Thermal stir welding is similar to friction stir welding in that it joins similar or dissimilar materials without melting the parent material. However, unlike friction stir welding, the heating, stirring and forging elements of the process are all independent of each other and are separately controlled. Furthermore, the heating element of the process can be either a solid-state process (such as a thermal blanket, induction type process, etc), or, a fusion process (YG laser, plasma torch, etc.) The separation of the heating, stirring, forging elements of the process allows more degrees of freedom for greater process control. This paper introduces the mechanics of the thermal stir welding process. In addition, weld mechanical property data is presented for selected alloys as well as metallurgical analysis.
Thermal Stir Welding: A New Solid State Welding Process
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey; Munafo, Paul M. (Technical Monitor)
2002-01-01
Thermal stir welding is a new welding process developed at NASA's Marshall Space Flight Center in Huntsville, AL. Thermal stir welding is similar to friction stir welding in that it joins similar or dissimilar materials without melting the parent material. However, unlike friction stir welding, the heating, stirring and forging elements of the process are all independent of each other and are separately controlled. Furthermore, the heating element of the process can be either a solid-state process (such as a thermal blanket, induction type process, etc), or, a fusion process (YG laser, plasma torch, etc.) The separation of the heating, stirring, forging elements of the process allows more degrees of freedom for greater process control. This paper introduces the mechanics of the thermal stir welding process. In addition, weld mechanical property data is presented for selected alloys as well as metallurgical analysis.
Szałatkiewicz, Jakub
2016-08-10
This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB) waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than 700 kg/day scale. The designed plasma process is presented and discussed. The process in tests consumed 2 kWh/kg of processed waste. Investigation of the process products is presented with their elemental analyses of metals and slag. The average recovery of metals in presented experiments is 76%. Metals recovered include: Ag, Au, Pd, Cu, Sn, Pb, and others. The chosen process parameters are presented: energy consumption, throughput, process temperatures, and air consumption. Presented technology allows processing of variable and hard-to-process printed circuit board waste that can reach up to 100% of the input mass.
Bergerbest, Dafna; Goshen-Gottstein, Yonatan
2002-12-01
In three experiments, we explored automatic influences of memory in a conceptual memory task, as affected by a levels-of-processing (LoP) manipulation. We also explored the origins of the LoP effect by examining whether the effect emerged only when participants in the shallow condition truncated the perceptual processing (the lexical-processing hypothesis) or even when the entire word was encoded in this condition (the conceptual-processing hypothesis). Using the process-dissociation procedure and an implicit association-generation task, we found that the deep encoding condition yielded higher estimates of automatic influences than the shallow condition. In support of the conceptual processing hypothesis, the LoP effect was found even when the shallow task did not lead to truncated processing of the lexical units. We suggest that encoding for meaning is a prerequisite for automatic processing on conceptual tests of memory.
Exploring business process modelling paradigms and design-time to run-time transitions
NASA Astrophysics Data System (ADS)
Caron, Filip; Vanthienen, Jan
2016-09-01
The business process management literature describes a multitude of approaches (e.g. imperative, declarative or event-driven) that each result in a different mix of process flexibility, compliance, effectiveness and efficiency. Although the use of a single approach over the process lifecycle is often assumed, transitions between approaches at different phases in the process lifecycle may also be considered. This article explores several business process strategies by analysing the approaches at different phases in the process lifecycle as well as the various transitions.
System Engineering Concept Demonstration, Process Model. Volume 3
1992-12-01
Process or Process Model The System Engineering process must be the enactment of the aforementioned definitions. Therefore, a process is an enactment of a...Prototype Tradeoff Scenario demonstrates six levels of abstraction in the Process Model. The Process Model symbology is explained within the "Help" icon ...dnofing no- ubeq t"vidi e /hn -am-a. lmi IzyuO ..pu Row _e._n au"c.ue-w’ ’- anuiildyidwile b ie htplup ?~imsav D symbo ,,ue,.dvu ,,dienl Flw s--..,fu..I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eun, H.C.; Cho, Y.Z.; Choi, J.H.
A regeneration process of LiCl-KCl eutectic waste salt generated from the pyrochemical process of spent nuclear fuel has been studied. This regeneration process is composed of a chemical conversion process and a vacuum distillation process. Through the regeneration process, a high efficiency of renewable salt recovery can be obtained from the waste salt and rare earth nuclides in the waste salt can be separated as oxide or phosphate forms. Thus, the regeneration process can contribute greatly to a reduction of the waste volume and a creation of durable final waste forms. (authors)
An open system approach to process reengineering in a healthcare operational environment.
Czuchry, A J; Yasin, M M; Norris, J
2000-01-01
The objective of this study is to examine the applicability of process reengineering in a healthcare operational environment. The intake process of a mental healthcare service delivery system is analyzed systematically to identify process-related problems. A methodology which utilizes an open system orientation coupled with process reengineering is utilized to overcome operational and patient related problems associated with the pre-reengineered intake process. The systematic redesign of the intake process resulted in performance improvements in terms of cost, quality, service and timing.
Developing the JPL Engineering Processes
NASA Technical Reports Server (NTRS)
Linick, Dave; Briggs, Clark
2004-01-01
This paper briefly recounts the recent history of process reengineering at the NASA Jet Propulsion Laboratory, with a focus on the engineering processes. The JPL process structure is described and the process development activities of the past several years outlined. The main focus of the paper is on the current process structure, the emphasis on the flight project life cycle, the governance approach that lead to Flight Project Practices, and the remaining effort to capture process knowledge at the detail level of the work group.
Water-saving liquid-gas conditioning system
Martin, Christopher; Zhuang, Ye
2014-01-14
A method for treating a process gas with a liquid comprises contacting a process gas with a hygroscopic working fluid in order to remove a constituent from the process gas. A system for treating a process gas with a liquid comprises a hygroscopic working fluid comprising a component adapted to absorb or react with a constituent of a process gas, and a liquid-gas contactor for contacting the working fluid and the process gas, wherein the constituent is removed from the process gas within the liquid-gas contactor.
Model for Simulating a Spiral Software-Development Process
NASA Technical Reports Server (NTRS)
Mizell, Carolyn; Curley, Charles; Nayak, Umanath
2010-01-01
A discrete-event simulation model, and a computer program that implements the model, have been developed as means of analyzing a spiral software-development process. This model can be tailored to specific development environments for use by software project managers in making quantitative cases for deciding among different software-development processes, courses of action, and cost estimates. A spiral process can be contrasted with a waterfall process, which is a traditional process that consists of a sequence of activities that include analysis of requirements, design, coding, testing, and support. A spiral process is an iterative process that can be regarded as a repeating modified waterfall process. Each iteration includes assessment of risk, analysis of requirements, design, coding, testing, delivery, and evaluation. A key difference between a spiral and a waterfall process is that a spiral process can accommodate changes in requirements at each iteration, whereas in a waterfall process, requirements are considered to be fixed from the beginning and, therefore, a waterfall process is not flexible enough for some projects, especially those in which requirements are not known at the beginning or may change during development. For a given project, a spiral process may cost more and take more time than does a waterfall process, but may better satisfy a customer's expectations and needs. Models for simulating various waterfall processes have been developed previously, but until now, there have been no models for simulating spiral processes. The present spiral-process-simulating model and the software that implements it were developed by extending a discrete-event simulation process model of the IEEE 12207 Software Development Process, which was built using commercially available software known as the Process Analysis Tradeoff Tool (PATT). Typical inputs to PATT models include industry-average values of product size (expressed as number of lines of code), productivity (number of lines of code per hour), and number of defects per source line of code. The user provides the number of resources, the overall percent of effort that should be allocated to each process step, and the number of desired staff members for each step. The output of PATT includes the size of the product, a measure of effort, a measure of rework effort, the duration of the entire process, and the numbers of injected, detected, and corrected defects as well as a number of other interesting features. In the development of the present model, steps were added to the IEEE 12207 waterfall process, and this model and its implementing software were made to run repeatedly through the sequence of steps, each repetition representing an iteration in a spiral process. Because the IEEE 12207 model is founded on a waterfall paradigm, it enables direct comparison of spiral and waterfall processes. The model can be used throughout a software-development project to analyze the project as more information becomes available. For instance, data from early iterations can be used as inputs to the model, and the model can be used to estimate the time and cost of carrying the project to completion.
Magnitude processing of symbolic and non-symbolic proportions: an fMRI study.
Mock, Julia; Huber, Stefan; Bloechle, Johannes; Dietrich, Julia F; Bahnmueller, Julia; Rennig, Johannes; Klein, Elise; Moeller, Korbinian
2018-05-10
Recent research indicates that processing proportion magnitude is associated with activation in the intraparietal sulcus. Thus, brain areas associated with the processing of numbers (i.e., absolute magnitude) were activated during processing symbolic fractions as well as non-symbolic proportions. Here, we investigated systematically the cognitive processing of symbolic (e.g., fractions and decimals) and non-symbolic proportions (e.g., dot patterns and pie charts) in a two-stage procedure. First, we investigated relative magnitude-related activations of proportion processing. Second, we evaluated whether symbolic and non-symbolic proportions share common neural substrates. We conducted an fMRI study using magnitude comparison tasks with symbolic and non-symbolic proportions, respectively. As an indicator for magnitude-related processing of proportions, the distance effect was evaluated. A conjunction analysis indicated joint activation of specific occipito-parietal areas including right intraparietal sulcus (IPS) during proportion magnitude processing. More specifically, results indicate that the IPS, which is commonly associated with absolute magnitude processing, is involved in processing relative magnitude information as well, irrespective of symbolic or non-symbolic presentation format. However, we also found distinct activation patterns for the magnitude processing of the different presentation formats. Our findings suggest that processing for the separate presentation formats is not only associated with magnitude manipulations in the IPS, but also increasing demands on executive functions and strategy use associated with frontal brain regions as well as visual attention and encoding in occipital regions. Thus, the magnitude processing of proportions may not exclusively reflect processing of number magnitude information but also rather domain-general processes.
Liu, Xiaoqian; Tong, Yan; Wang, Jinyu; Wang, Ruizhen; Zhang, Yanxia; Wang, Zhimin
2011-11-01
Fufang Kushen injection was selected as the model drug, to optimize its alcohol-purification process and understand the characteristics of particle sedimentation process, and to investigate the feasibility of using process analytical technology (PAT) on traditional Chinese medicine (TCM) manufacturing. Total alkaloids (calculated by matrine, oxymatrine, sophoridine and oxysophoridine) and macrozamin were selected as quality evaluation markers to optimize the process of Fufang Kushen injection purification with alcohol. Process parameters of particulate formed in the alcohol-purification, such as the number, density and sedimentation velocity, were also determined to define the sedimentation time and well understand the process. The purification process was optimized as that alcohol is added to the concentrated extract solution (drug material) to certain concentration for 2 times and deposited the alcohol-solution containing drug-material to sediment for some time, i.e. 60% alcohol deposited for 36 hours, filter and then 80% -90% alcohol deposited for 6 hours in turn. The content of total alkaloids was decreased a little during the depositing process. The average settling time of particles with the diameters of 10, 25 microm were 157.7, 25.2 h in the first alcohol-purified process, and 84.2, 13.5 h in the second alcohol-purified process, respectively. The optimized alcohol-purification process remains the marker compositions better and compared with the initial process, it's time saving and much economy. The manufacturing quality of TCM-injection can be controlled by process. PAT pattern must be designed under the well understanding of process of TCM production.
Im, Sung-Ju; Choi, Jungwon; Lee, Jung-Gil; Jeong, Sanghyun; Jang, Am
2018-03-01
A new concept of volume-retarded osmosis and low-pressure membrane (VRO-LPM) hybrid process was developed and evaluated for the first time in this study. Commercially available forward osmosis (FO) and ultrafiltration (UF) membranes were employed in a VRO-LPM hybrid process to overcome energy limitations of draw solution (DS) regeneration and production of permeate in the FO process. To evaluate its feasibility as a water reclamation process, and to optimize the operational conditions, cross-flow FO and dead-end mode UF processes were individually evaluated. For the FO process, a DS concentration of 0.15 g mL -1 of polysulfonate styrene (PSS) was determined to be optimal, having a high flux with a low reverse salt flux. The UF membrane with a molecular weight cut-off of 1 kDa was chosen for its high PSS rejection in the LPM process. As a single process, UF (LPM) exhibited a higher flux than FO, but this could be controlled by adjusting the effective membrane area of the FO and UF membranes in the VRO-LPM system. The VRO-LPM hybrid process only required a circulation pump for the FO process. This led to a decrease in the specific energy consumption of the VRO-LPM process for potable water production, that was similar to the single FO process. Therefore, the newly developed VRO-LPM hybrid process, with an appropriate DS selection, can be used as an energy efficient water production method, and can outperform conventional water reclamation processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Quality control process improvement of flexible printed circuit board by FMEA
NASA Astrophysics Data System (ADS)
Krasaephol, Siwaporn; Chutima, Parames
2018-02-01
This research focuses on the quality control process improvement of Flexible Printed Circuit Board (FPCB), centred around model 7-Flex, by using Failure Mode and Effect Analysis (FMEA) method to decrease proportion of defective finished goods that are found at the final inspection process. Due to a number of defective units that were found at the final inspection process, high scraps may be escaped to customers. The problem comes from poor quality control process which is not efficient enough to filter defective products from in-process because there is no In-Process Quality Control (IPQC) or sampling inspection in the process. Therefore, the quality control process has to be improved by setting inspection gates and IPCQs at critical processes in order to filter the defective products. The critical processes are analysed by the FMEA method. IPQC is used for detecting defective products and reducing chances of defective finished goods escaped to the customers. Reducing proportion of defective finished goods also decreases scrap cost because finished goods incur higher scrap cost than work in-process. Moreover, defective products that are found during process can reflect the abnormal processes; therefore, engineers and operators should timely solve the problems. Improved quality control was implemented for 7-Flex production lines from July 2017 to September 2017. The result shows decreasing of the average proportion of defective finished goods and the average of Customer Manufacturers Lot Reject Rate (%LRR of CMs) equal to 4.5% and 4.1% respectively. Furthermore, cost saving of this quality control process equals to 100K Baht.
Formulating poultry processing sanitizers from alkaline salts of fatty acids
USDA-ARS?s Scientific Manuscript database
Though some poultry processing operations remove microorganisms from carcasses; other processing operations cause cross-contamination that spreads microorganisms between carcasses, processing water, and processing equipment. One method used by commercial poultry processors to reduce microbial contam...
Fabrication Process for Cantilever Beam Micromechanical Switches
1993-08-01
Beam Design ................................................................... 13 B. Chemistry and Materials Used in Cantilever Beam Process...7 3. Photomask levels and composite...pp 410-413. 5 2. Cantilever Beam Fabrication Process The beam fabrication process incorporates four different photomasking levels with 62 processing
Reports of planetary geology program, 1983
NASA Technical Reports Server (NTRS)
Holt, H. E. (Compiler)
1984-01-01
Several areas of the Planetary Geology Program were addressed including outer solar system satellites, asteroids, comets, Venus, cratering processes and landform development, volcanic processes, aeolian processes, fluvial processes, periglacial and permafrost processes, geomorphology, remote sensing, tectonics and stratigraphy, and mapping.
ERIC Educational Resources Information Center
van den Broek, Paul; Helder, Anne
2017-01-01
As readers move through a text, they engage in various types of processes that, if all goes well, result in a mental representation that captures their interpretation of the text. With each new text segment the reader engages in passive and, at times, reader-initiated processes. These processes are strongly influenced by the readers'…
2001-09-01
measurable benefit in terms of process efficiency and effectiveness, business process reengineering (BPR) is becoming increasingly important. BPR suggests...technology by businesses in hopes of achieving a measurable benefit in terms of process efficiency and effectiveness, business process...KOPER-LITE ........................................13 E. HOW MIGHT THE MILITARY BENEFIT FROM PROCESS REENGINEERING EFFORTS
Code of Federal Regulations, 2010 CFR
2010-07-01
... accounting purposes when I do not process the gas? 206.181 Section 206.181 Mineral Resources MINERALS... Processing Allowances § 206.181 How do I establish processing costs for dual accounting purposes when I do not process the gas? Where accounting for comparison (dual accounting) is required for gas production...
Conceptual models of information processing
NASA Technical Reports Server (NTRS)
Stewart, L. J.
1983-01-01
The conceptual information processing issues are examined. Human information processing is defined as an active cognitive process that is analogous to a system. It is the flow and transformation of information within a human. The human is viewed as an active information seeker who is constantly receiving, processing, and acting upon the surrounding environmental stimuli. Human information processing models are conceptual representations of cognitive behaviors. Models of information processing are useful in representing the different theoretical positions and in attempting to define the limits and capabilities of human memory. It is concluded that an understanding of conceptual human information processing models and their applications to systems design leads to a better human factors approach.
Industrial application of semantic process mining
NASA Astrophysics Data System (ADS)
Espen Ingvaldsen, Jon; Atle Gulla, Jon
2012-05-01
Process mining relates to the extraction of non-trivial and useful information from information system event logs. It is a new research discipline that has evolved significantly since the early work on idealistic process logs. Over the last years, process mining prototypes have incorporated elements from semantics and data mining and targeted visualisation techniques that are more user-friendly to business experts and process owners. In this article, we present a framework for evaluating different aspects of enterprise process flows and address practical challenges of state-of-the-art industrial process mining. We also explore the inherent strengths of the technology for more efficient process optimisation.
Cher, Chen-Yong; Coteus, Paul W; Gara, Alan; Kursun, Eren; Paulsen, David P; Schuelke, Brian A; Sheets, II, John E; Tian, Shurong
2013-10-01
A processor-implemented method for determining aging of a processing unit in a processor the method comprising: calculating an effective aging profile for the processing unit wherein the effective aging profile quantifies the effects of aging on the processing unit; combining the effective aging profile with process variation data, actual workload data and operating conditions data for the processing unit; and determining aging through an aging sensor of the processing unit using the effective aging profile, the process variation data, the actual workload data, architectural characteristics and redundancy data, and the operating conditions data for the processing unit.
Fuzzy control of burnout of multilayer ceramic actuators
NASA Astrophysics Data System (ADS)
Ling, Alice V.; Voss, David; Christodoulou, Leo
1996-08-01
To improve the yield and repeatability of the burnout process of multilayer ceramic actuators (MCAs), an intelligent processing of materials (IPM-based) control system has been developed for the manufacture of MCAs. IPM involves the active (ultimately adaptive) control of a material process using empirical or analytical models and in situ sensing of critical process states (part features and process parameters) to modify the processing conditions in real time to achieve predefined product goals. Thus, the three enabling technologies for the IPM burnout control system are process modeling, in situ sensing and intelligent control. This paper presents the design of an IPM-based control strategy for the burnout process of MCAs.
Direct access inter-process shared memory
Brightwell, Ronald B; Pedretti, Kevin; Hudson, Trammell B
2013-10-22
A technique for directly sharing physical memory between processes executing on processor cores is described. The technique includes loading a plurality of processes into the physical memory for execution on a corresponding plurality of processor cores sharing the physical memory. An address space is mapped to each of the processes by populating a first entry in a top level virtual address table for each of the processes. The address space of each of the processes is cross-mapped into each of the processes by populating one or more subsequent entries of the top level virtual address table with the first entry in the top level virtual address table from other processes.
Biotechnology in Food Production and Processing
NASA Astrophysics Data System (ADS)
Knorr, Dietrich; Sinskey, Anthony J.
1985-09-01
The food processing industry is the oldest and largest industry using biotechnological processes. Further development of food products and processes based on biotechnology depends upon the improvement of existing processes, such as fermentation, immobilized biocatalyst technology, and production of additives and processing aids, as well as the development of new opportunities for food biotechnology. Improvements are needed in the characterization, safety, and quality control of food materials, in processing methods, in waste conversion and utilization processes, and in currently used food microorganism and tissue culture systems. Also needed are fundamental studies of the structure-function relationship of food materials and of the cell physiology and biochemistry of raw materials.
What is a good public participation process? Five perspectives from the public.
Webler, T; Tuler, S; Krueger, R
2001-03-01
It is now widely accepted that members of the public should be involved in environmental decision-making. This has inspired many to search for principles that characterize good public participation processes. In this paper we report on a study that identifies discourses about what defines a good process. Our case study was a forest planning process in northern New England and New York. We employed Q methodology to learn how participants characterize a good process differently, by selecting, defining, and privileging different principles. Five discourses, or perspectives, about good process emerged from our study. One perspective emphasizes that a good process acquires and maintains popular legitimacy. A second sees a good process as one that facilitates an ideological discussion. A third focuses on the fairness of the process. A fourth perspective conceptualizes participatory processes as a power struggle--in this instance a power play between local land-owning interests and outsiders. A fifth perspective highlights the need for leadership and compromise. Dramatic differences among these views suggest an important challenge for those responsible for designing and carrying out public participation processes. Conflicts may emerge about process designs because people disagree about what is good in specific contexts.
Alternating event processes during lifetimes: population dynamics and statistical inference.
Shinohara, Russell T; Sun, Yifei; Wang, Mei-Cheng
2018-01-01
In the literature studying recurrent event data, a large amount of work has been focused on univariate recurrent event processes where the occurrence of each event is treated as a single point in time. There are many applications, however, in which univariate recurrent events are insufficient to characterize the feature of the process because patients experience nontrivial durations associated with each event. This results in an alternating event process where the disease status of a patient alternates between exacerbations and remissions. In this paper, we consider the dynamics of a chronic disease and its associated exacerbation-remission process over two time scales: calendar time and time-since-onset. In particular, over calendar time, we explore population dynamics and the relationship between incidence, prevalence and duration for such alternating event processes. We provide nonparametric estimation techniques for characteristic quantities of the process. In some settings, exacerbation processes are observed from an onset time until death; to account for the relationship between the survival and alternating event processes, nonparametric approaches are developed for estimating exacerbation process over lifetime. By understanding the population dynamics and within-process structure, the paper provide a new and general way to study alternating event processes.
Process mining in oncology using the MIMIC-III dataset
NASA Astrophysics Data System (ADS)
Prima Kurniati, Angelina; Hall, Geoff; Hogg, David; Johnson, Owen
2018-03-01
Process mining is a data analytics approach to discover and analyse process models based on the real activities captured in information systems. There is a growing body of literature on process mining in healthcare, including oncology, the study of cancer. In earlier work we found 37 peer-reviewed papers describing process mining research in oncology with a regular complaint being the limited availability and accessibility of datasets with suitable information for process mining. Publicly available datasets are one option and this paper describes the potential to use MIMIC-III, for process mining in oncology. MIMIC-III is a large open access dataset of de-identified patient records. There are 134 publications listed as using the MIMIC dataset, but none of them have used process mining. The MIMIC-III dataset has 16 event tables which are potentially useful for process mining and this paper demonstrates the opportunities to use MIMIC-III for process mining in oncology. Our research applied the L* lifecycle method to provide a worked example showing how process mining can be used to analyse cancer pathways. The results and data quality limitations are discussed along with opportunities for further work and reflection on the value of MIMIC-III for reproducible process mining research.
Zhang, Xin; Luo, Xiao; Hu, Haixiang; Zhang, Xuejun
2015-09-01
In order to process large-aperture aspherical mirrors, we designed and constructed a tri-station machine processing center with a three station device, which bears vectored feed motion of up to 10 axes. Based on this processing center, an aspherical mirror-processing model is proposed, in which each station implements traversal processing of large-aperture aspherical mirrors using only two axes, while the stations are switchable, thus lowering cost and enhancing processing efficiency. The applicability of the tri-station machine is also analyzed. At the same time, a simple and efficient zero-calibration method for processing is proposed. To validate the processing model, using our processing center, we processed an off-axis parabolic SiC mirror with an aperture diameter of 1450 mm. The experimental results indicate that, with a one-step iterative process, the peak to valley (PV) and root mean square (RMS) of the mirror converged from 3.441 and 0.5203 μm to 2.637 and 0.2962 μm, respectively, where the RMS reduced by 43%. The validity and high accuracy of the model are thereby demonstrated.
Patterning of Indium Tin Oxide Films
NASA Technical Reports Server (NTRS)
Immer, Christopher
2008-01-01
A relatively rapid, economical process has been devised for patterning a thin film of indium tin oxide (ITO) that has been deposited on a polyester film. ITO is a transparent, electrically conductive substance made from a mixture of indium oxide and tin oxide that is commonly used in touch panels, liquid-crystal and plasma display devices, gas sensors, and solar photovoltaic panels. In a typical application, the ITO film must be patterned to form electrodes, current collectors, and the like. Heretofore it has been common practice to pattern an ITO film by means of either a laser ablation process or a photolithography/etching process. The laser ablation process includes the use of expensive equipment to precisely position and focus a laser. The photolithography/etching process is time-consuming. The present process is a variant of the direct toner process an inexpensive but often highly effective process for patterning conductors for printed circuits. Relative to a conventional photolithography/ etching process, this process is simpler, takes less time, and is less expensive. This process involves equipment that costs less than $500 (at 2005 prices) and enables patterning of an ITO film in a process time of less than about a half hour.
Assessment of Process Capability: the case of Soft Drinks Processing Unit
NASA Astrophysics Data System (ADS)
Sri Yogi, Kottala
2018-03-01
The process capability studies have significant impact in investigating process variation which is important in achieving product quality characteristics. Its indices are to measure the inherent variability of a process and thus to improve the process performance radically. The main objective of this paper is to understand capability of the process being produced within specification of the soft drinks processing unit, a premier brands being marketed in India. A few selected critical parameters in soft drinks processing: concentration of gas volume, concentration of brix, torque of crock has been considered for this study. Assessed some relevant statistical parameters: short term capability, long term capability as a process capability indices perspective. For assessment we have used real time data of soft drinks bottling company which is located in state of Chhattisgarh, India. As our research output suggested reasons for variations in the process which is validated using ANOVA and also predicted Taguchi cost function, assessed also predicted waste monetarily this shall be used by organization for improving process parameters. This research work has substantially benefitted the organization in understanding the various variations of selected critical parameters for achieving zero rejection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dafler, J.R.; Sinnott, J.; Novil, M.
The first phase of a study to identify candidate processes and products suitable for future exploitation using high-temperature solar energy is presented. This phase has been principally analytical, consisting of techno-economic studies, thermodynamic assessments of chemical reactions and processes, and the determination of market potentials for major chemical commodities that use significant amounts of fossil resources today. The objective was to identify energy-intensive processes that would be suitable for the production of chemicals and fuels using solar energy process heat. Of particular importance was the comparison of relative costs and energy requirements for the selected solar product versus costs formore » the product derived from conventional processing. The assessment methodology used a systems analytical approach to identify processes and products having the greatest potential for solar energy-thermal processing. This approach was used to establish the basis for work to be carried out in subsequent phases of development. It has been the intent of the program to divide the analysis and process identification into the following three distinct areas: (1) process selection, (2) process evaluation, and (3) ranking of processes. Four conventional processes were selected for assessment namely, methanol synthesis, styrene monomer production, vinyl chloride monomer production, and terephthalic acid production.« less
Nakano, Yoshio; Katakuse, Yoshimitsu; Azechi, Yasutaka
2018-06-01
An attempt to apply X-Ray Fluorescence (XRF) analysis to evaluate small particle coating process as a Process Analytical Technologies (PAT) was made. The XRF analysis was used to monitor coating level in small particle coating process with at-line manner. The small particle coating process usually consists of multiple coating processes. This study was conducted by a simple coating particles prepared by first coating of a model compound (DL-methionine) and second coating by talc on spherical microcrystalline cellulose cores. The particles with two layered coating are enough to demonstrate the small particle coating process. From the result by the small particle coating process, it was found that the XRF signal played different roles, resulting that XRF signals by first coating (layering) and second coating (mask coating) could demonstrate the extent with different mechanisms for the coating process. Furthermore, the particle coating of the different particle size has also been investigated to evaluate size effect of these coating processes. From these results, it was concluded that the XRF could be used as a PAT in monitoring particle coating processes and become powerful tool in pharmaceutical manufacturing.
NASA Astrophysics Data System (ADS)
Yang, Yao-Joe; Kuo, Wen-Cheng; Fan, Kuang-Chao
2006-01-01
In this work, we present a single-run single-mask (SRM) process for fabricating suspended high-aspect-ratio structures on standard silicon wafers using an inductively coupled plasma-reactive ion etching (ICP-RIE) etcher. This process eliminates extra fabrication steps which are required for structure release after trench etching. Released microstructures with 120 μm thickness are obtained by this process. The corresponding maximum aspect ratio of the trench is 28. The SRM process is an extended version of the standard process proposed by BOSCH GmbH (BOSCH process). The first step of the SRM process is a standard BOSCH process for trench etching, then a polymer layer is deposited on trench sidewalls as a protective layer for the subsequent structure-releasing step. The structure is released by dry isotropic etching after the polymer layer on the trench floor is removed. All the steps can be integrated into a single-run ICP process. Also, only one mask is required. Therefore, the process complexity and fabrication cost can be effectively reduced. Discussions on each SRM step and considerations for avoiding undesired etching of the silicon structures during the release process are also presented.
Ouimet, Tia; Foster, Nicholas E V; Tryfon, Ana; Hyde, Krista L
2012-04-01
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by atypical social and communication skills, repetitive behaviors, and atypical visual and auditory perception. Studies in vision have reported enhanced detailed ("local") processing but diminished holistic ("global") processing of visual features in ASD. Individuals with ASD also show enhanced processing of simple visual stimuli but diminished processing of complex visual stimuli. Relative to the visual domain, auditory global-local distinctions, and the effects of stimulus complexity on auditory processing in ASD, are less clear. However, one remarkable finding is that many individuals with ASD have enhanced musical abilities, such as superior pitch processing. This review provides a critical evaluation of behavioral and brain imaging studies of auditory processing with respect to current theories in ASD. We have focused on auditory-musical processing in terms of global versus local processing and simple versus complex sound processing. This review contributes to a better understanding of auditory processing differences in ASD. A deeper comprehension of sensory perception in ASD is key to better defining ASD phenotypes and, in turn, may lead to better interventions. © 2012 New York Academy of Sciences.
Discrete State Change Model of Manufacturing Quality to Aid Assembly Process Design
NASA Astrophysics Data System (ADS)
Koga, Tsuyoshi; Aoyama, Kazuhiro
This paper proposes a representation model of the quality state change in an assembly process that can be used in a computer-aided process design system. In order to formalize the state change of the manufacturing quality in the assembly process, the functions, operations, and quality changes in the assembly process are represented as a network model that can simulate discrete events. This paper also develops a design method for the assembly process. The design method calculates the space of quality state change and outputs a better assembly process (better operations and better sequences) that can be used to obtain the intended quality state of the final product. A computational redesigning algorithm of the assembly process that considers the manufacturing quality is developed. The proposed method can be used to design an improved manufacturing process by simulating the quality state change. A prototype system for planning an assembly process is implemented and applied to the design of an auto-breaker assembly process. The result of the design example indicates that the proposed assembly process planning method outputs a better manufacturing scenario based on the simulation of the quality state change.
Beltrán, F R; Lorenzo, V; Acosta, J; de la Orden, M U; Martínez Urreaga, J
2018-06-15
The aim of this work is to study the effects of different simulated mechanical recycling processes on the structure and properties of PLA. A commercial grade of PLA was melt compounded and compression molded, then subjected to two different recycling processes. The first recycling process consisted of an accelerated ageing and a second melt processing step, while the other recycling process included an accelerated ageing, a demanding washing process and a second melt processing step. The intrinsic viscosity measurements indicate that both recycling processes produce a degradation in PLA, which is more pronounced in the sample subjected to the washing process. DSC results suggest an increase in the mobility of the polymer chains in the recycled materials; however the degree of crystallinity of PLA seems unchanged. The optical, mechanical and gas barrier properties of PLA do not seem to be largely affected by the degradation suffered during the different recycling processes. These results suggest that, despite the degradation of PLA, the impact of the different simulated mechanical recycling processes on the final properties is limited. Thus, the potential use of recycled PLA in packaging applications is not jeopardized. Copyright © 2017 Elsevier Ltd. All rights reserved.
Consumption of ultra-processed foods predicts diet quality in Canada.
Moubarac, Jean-Claude; Batal, M; Louzada, M L; Martinez Steele, E; Monteiro, C A
2017-01-01
This study describes food consumption patterns in Canada according to the types of food processing using the Nova classification and investigates the association between consumption of ultra-processed foods and the nutrient profile of the diet. Dietary intakes of 33,694 individuals from the 2004 Canadian Community Health Survey aged 2 years and above were analyzed. Food and drinks were classified using Nova into unprocessed or minimally processed foods, processed culinary ingredients, processed foods and ultra-processed foods. Average consumption (total daily energy intake) and relative consumption (% of total energy intake) provided by each of the food groups were calculated. Consumption of ultra-processed foods according to sex, age, education, residential location and relative family revenue was assessed. Mean nutrient content of ultra-processed foods and non-ultra-processed foods were compared, and the average nutrient content of the overall diet across quintiles of dietary share of ultra-processed foods was measured. In 2004, 48% of calories consumed by Canadians came from ultra-processed foods. Consumption of such foods was high amongst all socioeconomic groups, and particularly in children and adolescents. As a group, ultra-processed foods were grossly nutritionally inferior to non-ultra-processed foods. After adjusting for covariates, a significant and positive relationship was found between the dietary share of ultra-processed foods and the content in carbohydrates, free sugars, total and saturated fats and energy density, while an inverse relationship was observed with the dietary content in protein, fiber, vitamins A, C, D, B6 and B12, niacin, thiamine, riboflavin, as well as zinc, iron, magnesium, calcium, phosphorus and potassium. Lowering the dietary share of ultra-processed foods and raising consumption of hand-made meals from unprocessed or minimally processed foods would substantially improve the diet quality of Canadian. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Hutchens, Dale E.; Doan, Patrick A.; Boothe, Richard E.
1997-01-01
Bonding labs at both MSFC and the northern Utah production plant prepare bond test specimens which simulate or witness the production of NASA's Reusable Solid Rocket Motor (RSRM). The current process for preparing the bonding surfaces employs 1,1,1-trichloroethane vapor degreasing, which simulates the current RSRM process. Government regulations (e.g., the 1990 Amendments to the Clean Air Act) have mandated a production phase-out of a number of ozone depleting compounds (ODC) including 1,1,1-trichloroethane. In order to comply with these regulations, the RSRM Program is qualifying a spray-in-air (SIA) precision cleaning process using Brulin 1990, an aqueous blend of surfactants. Accordingly, surface preparation prior to bonding process simulation test specimens must reflect the new production cleaning process. The Bonding Lab Statistical Process Control (SPC) program monitors the progress of the lab and its capabilities, as well as certifies the bonding technicians, by periodically preparing D6AC steel tensile adhesion panels with EA-91 3NA epoxy adhesive using a standardized process. SPC methods are then used to ensure the process is statistically in control, thus producing reliable data for bonding studies, and identify any problems which might develop. Since the specimen cleaning process is being changed, new SPC limits must be established. This report summarizes side-by-side testing of D6AC steel tensile adhesion witness panels and tapered double cantilevered beams (TDCBs) using both the current baseline vapor degreasing process and a lab-scale spray-in-air process. A Proceco 26 inches Typhoon dishwasher cleaned both tensile adhesion witness panels and TDCBs in a process which simulates the new production process. The tests were performed six times during 1995, subsequent statistical analysis of the data established new upper control limits (UCL) and lower control limits (LCL). The data also demonstrated that the new process was equivalent to the vapor degreasing process.
Evaluation of stabilization techniques for ion implant processing
NASA Astrophysics Data System (ADS)
Ross, Matthew F.; Wong, Selmer S.; Minter, Jason P.; Marlowe, Trey; Narcy, Mark E.; Livesay, William R.
1999-06-01
With the integration of high current ion implant processing into volume CMOS manufacturing, the need for photoresist stabilization to achieve a stable ion implant process is critical. This study compares electron beam stabilization, a non-thermal process, with more traditional thermal stabilization techniques such as hot plate baking and vacuum oven processing. The electron beam processing is carried out in a flood exposure system with no active heating of the wafer. These stabilization techniques are applied to typical ion implant processes that might be found in a CMOS production process flow. The stabilization processes are applied to a 1.1 micrometers thick PFI-38A i-line photoresist film prior to ion implant processing. Post stabilization CD variation is detailed with respect to wall slope and feature integrity. SEM photographs detail the effects of the stabilization technique on photoresist features. The thermal stability of the photoresist is shown for different levels of stabilization and post stabilization thermal cycling. Thermal flow stability of the photoresist is detailed via SEM photographs. A significant improvement in thermal stability is achieved with the electron beam process, such that photoresist features are stable to temperatures in excess of 200 degrees C. Ion implant processing parameters are evaluated and compared for the different stabilization methods. Ion implant system end-station chamber pressure is detailed as a function of ion implant process and stabilization condition. The ion implant process conditions are detailed for varying factors such as ion current, energy, and total dose. A reduction in the ion implant systems end-station chamber pressure is achieved with the electron beam stabilization process over the other techniques considered. This reduction in end-station chamber pressure is shown to provide a reduction in total process time for a given ion implant dose. Improvements in the ion implant process are detailed across several combinations of current and energy.
Mostafa, Ayman; Nolte, Ingo; Wefstaedt, Patrick
2018-06-05
Medial coronoid process disease is a common leading cause of thoracic limb lameness in dogs. Computed tomography and arthroscopy are superior to radiography to diagnose medial coronoid process disease, however, radiography remains the most available diagnostic imaging modality in veterinary practice. Objectives of this retrospective observational study were to describe the prevalence of medial coronoid process disease in lame large breed dogs and apply a novel method for quantifying the radiographic changes associated with medial coronoid process and subtrochlear-ulnar region in Labrador and Golden Retrievers with confirmed medial coronoid process disease. Purebred Labrador and Golden Retrievers (n = 143, 206 elbows) without and with confirmed medial coronoid process disease were included. The prevalence of medial coronoid process disease in lame large breed dogs was calculated. Mediolateral and craniocaudal radiographs of elbows were analyzed to assess the medial coronoid process length and morphology, and subtrochlear-ulnar width. Mean grayscale value was calculated for radial and subtrochlear-ulnar zones. The prevalence of medial coronoid process disease was 20.8%. Labrador and Golden Retrievers were the most affected purebred dogs (29.6%). Elbows with confirmed medial coronoid process disease had short (P < 0.0001) and deformed (∼95%) medial coronoid process, with associated medial coronoid process osteophytosis (7.5%). Subtrochlear-ulnar sclerosis was evidenced in ∼96% of diseased elbows, with a significant increase (P < 0.0001) in subtrochlear-ulnar width and standardized grayscale value. Radial grayscale value did not differ between groups. Periarticular osteophytosis was identified in 51.4% of elbows with medial coronoid process disease. Medial coronoid process length and morphology, and subtrochlear-ulnar width and standardized grayscale value varied significantly in dogs with confirmed medial coronoid process disease compared to controls. Findings indicated that medial coronoid process disease has a high prevalence in lame large breed dogs and that quantitative radiographic assessments can contribute to the diagnosis. © 2018 American College of Veterinary Radiology.
The role of rational and experiential processing in influencing the framing effect.
Stark, Emily; Baldwin, Austin S; Hertel, Andrew W; Rothman, Alexander J
2017-01-01
Research on individual differences and the framing effect has focused primarily on how variability in rational processing influences choice. However, we propose that measuring only rational processing presents an incomplete picture of how participants are responding to framed options, as orthogonal individual differences in experiential processing might be relevant. In two studies, we utilize the Rational Experiential Inventory, which captures individual differences in rational and experiential processing, to investigate how both processing types influence decisions. Our results show that differences in experiential processing, but not rational processing, moderated the effect of frame on choice. We suggest that future research should more closely examine the influence of experiential processing on making decisions, to gain a broader understanding of the conditions that contribute to the framing effect.
Study and Analysis of The Robot-Operated Material Processing Systems (ROMPS)
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.
1996-01-01
This is a report presenting the progress of a research grant funded by NASA for work performed during 1 Oct. 1994 - 31 Sep. 1995. The report deals with the development and investigation of potential use of software for data processing for the Robot Operated Material Processing System (ROMPS). It reports on the progress of data processing of calibration samples processed by ROMPS in space and on earth. First data were retrieved using the I/O software and manually processed using MicroSoft Excel. Then the data retrieval and processing process was automated using a program written in C which is able to read the telemetry data and produce plots of time responses of sample temperatures and other desired variables. LabView was also employed to automatically retrieve and process the telemetry data.
NASA Technical Reports Server (NTRS)
Safford, Robert R.; Jackson, Andrew E.; Swart, William W.; Barth, Timothy S.
1994-01-01
Successful ground processing at KSC requires that flight hardware and ground support equipment conform to specifications at tens of thousands of checkpoints. Knowledge of conformance is an essential requirement for launch. That knowledge of conformance at every requisite point does not, however, enable identification of past problems with equipment, or potential problem areas. This paper describes how the introduction of Statistical Process Control and Process Capability Analysis identification procedures into existing shuttle processing procedures can enable identification of potential problem areas and candidates for improvements to increase processing performance measures. Results of a case study describing application of the analysis procedures to Thermal Protection System processing are used to illustrate the benefits of the approaches described in the paper.
Schmithorst, Vincent J
2005-04-01
Music perception is a quite complex cognitive task, involving the perception and integration of various elements including melody, harmony, pitch, rhythm, and timbre. A preliminary functional MRI investigation of music perception was performed, using a simplified passive listening task. Group independent component analysis (ICA) was used to separate out various components involved in music processing, as the hemodynamic responses are not known a priori. Various components consistent with auditory processing, expressive language, syntactic processing, and visual association were found. The results are discussed in light of various hypotheses regarding modularity of music processing and its overlap with language processing. The results suggest that, while some networks overlap with ones used for language processing, music processing may involve its own domain-specific processing subsystems.
Industrial implementation of spatial variability control by real-time SPC
NASA Astrophysics Data System (ADS)
Roule, O.; Pasqualini, F.; Borde, M.
2016-10-01
Advanced technology nodes require more and more information to get the wafer process well setup. The critical dimension of components decreases following Moore's law. At the same time, the intra-wafer dispersion linked to the spatial non-uniformity of tool's processes is not capable to decrease in the same proportions. APC systems (Advanced Process Control) are being developed in waferfab to automatically adjust and tune wafer processing, based on a lot of process context information. It can generate and monitor complex intrawafer process profile corrections between different process steps. It leads us to put under control the spatial variability, in real time by our SPC system (Statistical Process Control). This paper will outline the architecture of an integrated process control system for shape monitoring in 3D, implemented in waferfab.
NASA Technical Reports Server (NTRS)
Biess, J. J.; Yu, Y.; Middlebrook, R. D.; Schoenfeld, A. D.
1974-01-01
A review is given of future power processing systems planned for the next 20 years, and the state-of-the-art of power processing design modeling and analysis techniques used to optimize power processing systems. A methodology of modeling and analysis of power processing equipment and systems has been formulated to fulfill future tradeoff studies and optimization requirements. Computer techniques were applied to simulate power processor performance and to optimize the design of power processing equipment. A program plan to systematically develop and apply the tools for power processing systems modeling and analysis is presented so that meaningful results can be obtained each year to aid the power processing system engineer and power processing equipment circuit designers in their conceptual and detail design and analysis tasks.
Laser displacement sensor to monitor the layup process of composite laminate production
NASA Astrophysics Data System (ADS)
Miesen, Nick; Groves, Roger M.; Sinke, Jos; Benedictus, Rinze
2013-04-01
Several types of flaw can occur during the layup process of prepreg composite laminates. Quality control after the production process checks the end product by testing the specimens for flaws which are included during the layup process or curing process, however by then these flaws are already irreversibly embedded in the laminate. This paper demonstrates the use of a laser displacement sensor technique applied during the layup process of prepreg laminates for in-situ flaw detection, for typical flaws that can occur during the composite production process. An incorrect number of layers and fibre wrinkling are dominant flaws during the process of layup. These and other dominant flaws have been modeled to determine the requirements for an in-situ monitoring during the layup process of prepreg laminates.
Levels of integration in cognitive control and sequence processing in the prefrontal cortex.
Bahlmann, Jörg; Korb, Franziska M; Gratton, Caterina; Friederici, Angela D
2012-01-01
Cognitive control is necessary to flexibly act in changing environments. Sequence processing is needed in language comprehension to build the syntactic structure in sentences. Functional imaging studies suggest that sequence processing engages the left ventrolateral prefrontal cortex (PFC). In contrast, cognitive control processes additionally recruit bilateral rostral lateral PFC regions. The present study aimed to investigate these two types of processes in one experimental paradigm. Sequence processing was manipulated using two different sequencing rules varying in complexity. Cognitive control was varied with different cue-sets that determined the choice of a sequencing rule. Univariate analyses revealed distinct PFC regions for the two types of processing (i.e. sequence processing: left ventrolateral PFC and cognitive control processing: bilateral dorsolateral and rostral PFC). Moreover, in a common brain network (including left lateral PFC and intraparietal sulcus) no interaction between sequence and cognitive control processing was observed. In contrast, a multivariate pattern analysis revealed an interaction of sequence and cognitive control processing, such that voxels in left lateral PFC and parietal cortex showed different tuning functions for tasks involving different sequencing and cognitive control demands. These results suggest that the difference between the process of rule selection (i.e. cognitive control) and the process of rule-based sequencing (i.e. sequence processing) find their neuronal underpinnings in distinct activation patterns in lateral PFC. Moreover, the combination of rule selection and rule sequencing can shape the response of neurons in lateral PFC and parietal cortex.
Levels of Integration in Cognitive Control and Sequence Processing in the Prefrontal Cortex
Bahlmann, Jörg; Korb, Franziska M.; Gratton, Caterina; Friederici, Angela D.
2012-01-01
Cognitive control is necessary to flexibly act in changing environments. Sequence processing is needed in language comprehension to build the syntactic structure in sentences. Functional imaging studies suggest that sequence processing engages the left ventrolateral prefrontal cortex (PFC). In contrast, cognitive control processes additionally recruit bilateral rostral lateral PFC regions. The present study aimed to investigate these two types of processes in one experimental paradigm. Sequence processing was manipulated using two different sequencing rules varying in complexity. Cognitive control was varied with different cue-sets that determined the choice of a sequencing rule. Univariate analyses revealed distinct PFC regions for the two types of processing (i.e. sequence processing: left ventrolateral PFC and cognitive control processing: bilateral dorsolateral and rostral PFC). Moreover, in a common brain network (including left lateral PFC and intraparietal sulcus) no interaction between sequence and cognitive control processing was observed. In contrast, a multivariate pattern analysis revealed an interaction of sequence and cognitive control processing, such that voxels in left lateral PFC and parietal cortex showed different tuning functions for tasks involving different sequencing and cognitive control demands. These results suggest that the difference between the process of rule selection (i.e. cognitive control) and the process of rule-based sequencing (i.e. sequence processing) find their neuronal underpinnings in distinct activation patterns in lateral PFC. Moreover, the combination of rule selection and rule sequencing can shape the response of neurons in lateral PFC and parietal cortex. PMID:22952762
Flow chemistry using milli- and microstructured reactors-from conventional to novel process windows.
Illg, Tobias; Löb, Patrick; Hessel, Volker
2010-06-01
The terminology Novel Process Window unites different methods to improve existing processes by applying unconventional and harsh process conditions like: process routes at much elevated pressure, much elevated temperature, or processing in a thermal runaway regime to achieve a significant impact on process performance. This paper is a review of parts of IMM's works in particular the applicability of above mentioned Novel Process Windows on selected chemical reactions. First, general characteristics of microreactors are discussed like excellent mass and heat transfer and improved mixing quality. Different types of reactions are presented in which the use of microstructured devices led to an increased process performance by applying Novel Process Windows. These examples were chosen to demonstrate how chemical reactions can benefit from the use of milli- and microstructured devices and how existing protocols can be changed toward process conditions hitherto not applicable in standard laboratory equipment. The used milli- and microstructured reactors can also offer advantages in other areas, for example, high-throughput screening of catalysts and better control of size distribution in a particle synthesis process by improved mixing, etc. The chemical industry is under continuous improvement. So, a lot of research is being done to synthesize high value chemicals, to optimize existing processes in view of process safety and energy consumption and to search for new routes to produce such chemicals. Leitmotifs of such undertakings are often sustainable development(1) and Green Chemistry(2).
Fast but fleeting: adaptive motor learning processes associated with aging and cognitive decline.
Trewartha, Kevin M; Garcia, Angeles; Wolpert, Daniel M; Flanagan, J Randall
2014-10-01
Motor learning has been shown to depend on multiple interacting learning processes. For example, learning to adapt when moving grasped objects with novel dynamics involves a fast process that adapts and decays quickly-and that has been linked to explicit memory-and a slower process that adapts and decays more gradually. Each process is characterized by a learning rate that controls how strongly motor memory is updated based on experienced errors and a retention factor determining the movement-to-movement decay in motor memory. Here we examined whether fast and slow motor learning processes involved in learning novel dynamics differ between younger and older adults. In addition, we investigated how age-related decline in explicit memory performance influences learning and retention parameters. Although the groups adapted equally well, they did so with markedly different underlying processes. Whereas the groups had similar fast processes, they had different slow processes. Specifically, the older adults exhibited decreased retention in their slow process compared with younger adults. Within the older group, who exhibited considerable variation in explicit memory performance, we found that poor explicit memory was associated with reduced retention in the fast process, as well as the slow process. These findings suggest that explicit memory resources are a determining factor in impairments in the both the fast and slow processes for motor learning but that aging effects on the slow process are independent of explicit memory declines. Copyright © 2014 the authors 0270-6474/14/3413411-11$15.00/0.
Parallel Activation in Bilingual Phonological Processing
ERIC Educational Resources Information Center
Lee, Su-Yeon
2011-01-01
In bilingual language processing, the parallel activation hypothesis suggests that bilinguals activate their two languages simultaneously during language processing. Support for the parallel activation mainly comes from studies of lexical (word-form) processing, with relatively less attention to phonological (sound) processing. According to…
OCLC-MARC Tape Processing: A Functional Analysis.
ERIC Educational Resources Information Center
Miller, Bruce Cummings
1984-01-01
Analyzes structure of, and data in, the OCLC-MARC record in the form delivered via OCLC's Tape Subscription Service, and outlines important processing functions involved: "unreadable tapes," duplicate records and deduping, match processing, choice processing, locations processing, "automatic" and "input" stamps,…
7 Processes that Enable NASA Software Engineering Technologies: Value-Added Process Engineering
NASA Technical Reports Server (NTRS)
Housch, Helen; Godfrey, Sally
2011-01-01
The presentation reviews Agency process requirements and the purpose, benefits, and experiences or seven software engineering processes. The processes include: product integration, configuration management, verification, software assurance, measurement and analysis, requirements management, and planning and monitoring.
Qiu, Jinshu; Li, Kim; Miller, Karen; Raghani, Anil
2015-01-01
The purpose of this article is to recommend a risk-based strategy for determining clearance testing requirements of the process reagents used in manufacturing biopharmaceutical products. The strategy takes account of four risk factors. Firstly, the process reagents are classified into two categories according to their safety profile and history of use: generally recognized as safe (GRAS) and potential safety concern (PSC) reagents. The clearance testing of GRAS reagents can be eliminated because of their safe use historically and process capability to remove these reagents. An estimated safety margin (Se) value, a ratio of the exposure limit to the estimated maximum reagent amount, is then used to evaluate the necessity for testing the PSC reagents at an early development stage. The Se value is calculated from two risk factors, the starting PSC reagent amount per maximum product dose (Me), and the exposure limit (Le). A worst-case scenario is assumed to estimate the Me value, that is common. The PSC reagent of interest is co-purified with the product and no clearance occurs throughout the entire purification process. No clearance testing is required for this PSC reagent if its Se value is ≥1; otherwise clearance testing is needed. Finally, the point of the process reagent introduction to the process is also considered in determining the necessity of the clearance testing for process reagents. How to use the measured safety margin as a criterion for determining PSC reagent testing at process characterization, process validation, and commercial production stages are also described. A large number of process reagents are used in the biopharmaceutical manufacturing to control the process performance. Clearance testing for all of the process reagents will be an enormous analytical task. In this article, a risk-based strategy is described to eliminate unnecessary clearance testing for majority of the process reagents using four risk factors. The risk factors included in the strategy are (i) safety profile of the reagents, (ii) the starting amount of the process reagents used in the manufacturing process, (iii) the maximum dose of the product, and (iv) the point of introduction of the process reagents in the process. The implementation of the risk-based strategy can eliminate clearance testing for approximately 90% of the process reagents used in the manufacturing processes. This science-based strategy allows us to ensure patient safety and meet regulatory agency expectations throughout the product development life cycle. © PDA, Inc. 2015.
Titania nanotube powders obtained by rapid breakdown anodization in perchloric acid electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, Saima, E-mail: saima.ali@aalto.fi; Hannula, Simo-Pekka
Titania nanotube (TNT) powders are prepared by rapid break down anodization (RBA) in a 0.1 M perchloric acid (HClO{sub 4}) solution (Process 1), and ethylene glycol (EG) mixture with HClO{sub 4} and water (Process 2). A study of the as-prepared and calcined TNT powders obtained by both processes is implemented to evaluate and compare the morphology, crystal structure, specific surface area, and the composition of the nanotubes. Longer TNTs are formed in Process 1, while comparatively larger pore diameter and wall thickness are obtained for the nanotubes prepared by Process 2. The TNTs obtained by Process 1 are converted tomore » nanorods at 350 °C, while nanotubes obtained by Process 2 preserve tubular morphology till 350 °C. In addition, the TNTs prepared by an aqueous electrolyte have a crystalline structure, whereas the TNTs obtained by Process 2 are amorphous. Samples calcined till 450 °C have XRD peaks from the anatase phase, while the rutile phase appears at 550 °C for the TNTs prepared by both processes. The Raman spectra also show clear anatase peaks for all samples except the as-prepared sample obtained by Process 2, thus supporting the XRD findings. FTIR spectra reveal the presence of O-H groups in the structure for the TNTs obtained by both processes. However, the presence is less prominent for annealed samples. Additionally, TNTs obtained by Process 2 have a carbonaceous impurity present in the structure attributed to the electrolyte used in that process. While a negligible weight loss is typical for TNTs prepared from aqueous electrolytes, a weight loss of 38.6% in the temperature range of 25–600 °C is found for TNTs prepared in EG electrolyte (Process 2). A large specific surface area of 179.2 m{sup 2} g{sup −1} is obtained for TNTs prepared by Process 1, whereas Process 2 produces nanotubes with a lower specific surface area. The difference appears to correspond to the dimensions of the nanotubes obtained by the two processes. - Graphical abstract: Titania nanotube powders prepared by Process 1 and Process 2 have different crystal structure and specific surface area. - Highlights: • Titania nanotube (TNT) powder is prepared in low water organic electrolyte. • Characterization of TNT powders prepared from aqueous and organic electrolyte. • TNTs prepared by Process 1 are crystalline with higher specific surface area. • TNTs obtained by Process 2 have carbonaceous impurities in the structure.« less
Rose, Nathan S; Craik, Fergus I M
2012-07-01
Recent theories suggest that performance on working memory (WM) tasks involves retrieval from long-term memory (LTM). To examine whether WM and LTM tests have common principles, Craik and Tulving's (1975) levels-of-processing paradigm, which is known to affect LTM, was administered as a WM task: Participants made uppercase, rhyme, or category-membership judgments about words, and immediate recall of the words was required after every 3 or 8 processing judgments. In Experiment 1, immediate recall did not demonstrate a levels-of-processing effect, but a subsequent LTM test (delayed recognition) of the same words did show a benefit of deeper processing. Experiment 2 showed that surprise immediate recall of 8-item lists did demonstrate a levels-of-processing effect, however. A processing account of the conditions in which levels-of-processing effects are and are not found in WM tasks was advanced, suggesting that the extent to which levels-of-processing effects are similar between WM and LTM tests largely depends on the amount of disruption to active maintenance processes. 2012 APA, all rights reserved
Emotional words can be embodied or disembodied: the role of superficial vs. deep types of processing
Abbassi, Ensie; Blanchette, Isabelle; Ansaldo, Ana I.; Ghassemzadeh, Habib; Joanette, Yves
2015-01-01
Emotional words are processed rapidly and automatically in the left hemisphere (LH) and slowly, with the involvement of attention, in the right hemisphere (RH). This review aims to find the reason for this difference and suggests that emotional words can be processed superficially or deeply due to the involvement of the linguistic and imagery systems, respectively. During superficial processing, emotional words likely make connections only with semantically associated words in the LH. This part of the process is automatic and may be sufficient for the purpose of language processing. Deep processing, in contrast, seems to involve conceptual information and imagery of a word’s perceptual and emotional properties using autobiographical memory contents. Imagery and the involvement of autobiographical memory likely differentiate between emotional and neutral word processing and explain the salient role of the RH in emotional word processing. It is concluded that the level of emotional word processing in the RH should be deeper than in the LH and, thus, it is conceivable that the slow mode of processing adds certain qualities to the output. PMID:26217288
Process Monitoring Evaluation and Implementation for the Wood Abrasive Machining Process
Saloni, Daniel E.; Lemaster, Richard L.; Jackson, Steven D.
2010-01-01
Wood processing industries have continuously developed and improved technologies and processes to transform wood to obtain better final product quality and thus increase profits. Abrasive machining is one of the most important of these processes and therefore merits special attention and study. The objective of this work was to evaluate and demonstrate a process monitoring system for use in the abrasive machining of wood and wood based products. The system developed increases the life of the belt by detecting (using process monitoring sensors) and removing (by cleaning) the abrasive loading during the machining process. This study focused on abrasive belt machining processes and included substantial background work, which provided a solid base for understanding the behavior of the abrasive, and the different ways that the abrasive machining process can be monitored. In addition, the background research showed that abrasive belts can effectively be cleaned by the appropriate cleaning technique. The process monitoring system developed included acoustic emission sensors which tended to be sensitive to belt wear, as well as platen vibration, but not loading, and optical sensors which were sensitive to abrasive loading. PMID:22163477
Burns, Daniel J; Burns, Sarah A; Hwang, Ana J
2011-01-01
J. S. Nairne, S. R. Thompson, and J. N. S. Pandeirada (2007) suggested that our memory systems may have evolved to help us remember fitness-relevant information and showed that retention of words rated for their relevance to survival is superior to that of words encoded under other deep processing conditions. The authors present 4 experiments that uncover the proximate mechanisms likely responsible. The authors obtained a recall advantage for survival processing compared with conditions that promoted only item-specific processing or only relational processing. This effect was eliminated when control conditions encouraged both item-specific and relational processing. Data from separate measures of item-specific and relational processing generally were consistent with the view that the memorial advantage for survival processing results from the encoding of both types of processing. Although the present study suggests the proximate mechanisms for the effect, the authors argue that survival processing may be fundamentally different from other memory phenomena for which item-specific and relational processing differences have been implicated. (PsycINFO Database Record (c) 2010 APA, all rights reserved).
Implementation of quality by design toward processing of food products.
Rathore, Anurag S; Kapoor, Gautam
2017-05-28
Quality by design (QbD) is a systematic approach that begins with predefined objectives and emphasizes product and process understanding and process control. It is an approach based on principles of sound science and quality risk management. As the food processing industry continues to embrace the idea of in-line, online, and/or at-line sensors and real-time characterization for process monitoring and control, the existing gaps with regard to our ability to monitor multiple parameters/variables associated with the manufacturing process will be alleviated over time. Investments made for development of tools and approaches that facilitate high-throughput analytical and process development, process analytical technology, design of experiments, risk analysis, knowledge management, and enhancement of process/product understanding would pave way for operational and economic benefits later in the commercialization process and across other product pipelines. This article aims to achieve two major objectives. First, to review the progress that has been made in the recent years on the topic of QbD implementation in processing of food products and second, present a case study that illustrates benefits of such QbD implementation.
Johansen, N H; Suksawad, N; Balslev, P
2004-01-01
Nitrogen removal from organic wastewater is becoming a demand in developed communities. The use of nitrite as intermediate in the treatment of wastewater has been largely ignored, but is actually a relevant energy saving process compared to conventional nitrification/denitrification using nitrate as intermediate. Full-scale results and pilot-scale results using this process are presented. The process needs some additional process considerations and process control to be utilized. Especially under tropical conditions the nitritation process will round easily, and it must be expected that many AS treatment plants in the food industry already produce NO2-N. This uncontrolled nitrogen conversion can be the main cause for sludge bulking problems. It is expected that sludge bulking problems in many cases can be solved just by changing the process control in order to run a more consequent nitritation. Theoretically this process will decrease the oxygen consumption for oxidation by 25% and the use of carbon source for the reduction will be decreased by 40% compared to the conventional process.
Application of Ozone MBBR Process in Refinery Wastewater Treatment
NASA Astrophysics Data System (ADS)
Lin, Wang
2018-01-01
Moving Bed Biofilm Reactor (MBBR) is a kind of sewage treatment technology based on fluidized bed. At the same time, it can also be regarded as an efficient new reactor between active sludge method and the biological membrane method. The application of ozone MBBR process in refinery wastewater treatment is mainly studied. The key point is to design the ozone +MBBR combined process based on MBBR process. The ozone +MBBR process is used to analyze the treatment of concentrated water COD discharged from the refinery wastewater treatment plant. The experimental results show that the average removal rate of COD is 46.0%~67.3% in the treatment of reverse osmosis concentrated water by ozone MBBR process, and the effluent can meet the relevant standard requirements. Compared with the traditional process, the ozone MBBR process is more flexible. The investment of this process is mainly ozone generator, blower and so on. The prices of these items are relatively inexpensive, and these costs can be offset by the excess investment in traditional activated sludge processes. At the same time, ozone MBBR process has obvious advantages in water quality, stability and other aspects.
Models of recognition: A review of arguments in favor of a dual-process account
DIANA, RACHEL A.; REDER, LYNNE M.; ARNDT, JASON; PARK, HEEKYEONG
2008-01-01
The majority of computationally specified models of recognition memory have been based on a single-process interpretation, claiming that familiarity is the only influence on recognition. There is increasing evidence that recognition is, in fact, based on two processes: recollection and familiarity. This article reviews the current state of the evidence for dual-process models, including the usefulness of the remember/know paradigm, and interprets the relevant results in terms of the source of activation confusion (SAC) model of memory. We argue that the evidence from each of the areas we discuss, when combined, presents a strong case that inclusion of a recollection process is necessary. Given this conclusion, we also argue that the dual-process claim that the recollection process is always available is, in fact, more parsimonious than the single-process claim that the recollection process is used only in certain paradigms. The value of a well-specified process model such as the SAC model is discussed with regard to other types of dual-process models. PMID:16724763
Abbassi, Ensie; Blanchette, Isabelle; Ansaldo, Ana I; Ghassemzadeh, Habib; Joanette, Yves
2015-01-01
Emotional words are processed rapidly and automatically in the left hemisphere (LH) and slowly, with the involvement of attention, in the right hemisphere (RH). This review aims to find the reason for this difference and suggests that emotional words can be processed superficially or deeply due to the involvement of the linguistic and imagery systems, respectively. During superficial processing, emotional words likely make connections only with semantically associated words in the LH. This part of the process is automatic and may be sufficient for the purpose of language processing. Deep processing, in contrast, seems to involve conceptual information and imagery of a word's perceptual and emotional properties using autobiographical memory contents. Imagery and the involvement of autobiographical memory likely differentiate between emotional and neutral word processing and explain the salient role of the RH in emotional word processing. It is concluded that the level of emotional word processing in the RH should be deeper than in the LH and, thus, it is conceivable that the slow mode of processing adds certain qualities to the output.
Techno-economic analysis of biocatalytic processes for production of alkene expoxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borole, Abhijeet P
2007-01-01
A techno-economic analysis of two different bioprocesses was conducted, one for the conversion of propylene to propylene oxide (PO) and other for conversion of styrene to styrene expoxide (SO). The first process was a lipase-mediated chemo-enzymatic reaction, whereas the second one was a one-step enzymatic process using chloroperoxidase. The PO produced through the chemo-enzymatic process is a racemic product, whereas the latter process (based on chloroperoxidase) produces an enantio-pure product. The former process thus falls under the category of high-volume commodity chemical (PO); whereas the latter is a low-volume, high-value product (SO).A simulation of the process was conducted using themore » bioprocess engineering software SuperPro Designer v6.0 (Intelligen, Inc., Scotch Plains, NJ) to determine the economic feasibility of the process. The purpose of the exercise was to compare biocatalytic processes with existing chemical processes for production of alkene expoxides. The results show that further improvements are needed in improving biocatalyst stability to make these bioprocesses competitive with chemical processes.« less
Palmiero, Massimiliano; Di Matteo, Rosalia; Belardinelli, Marta Olivetti
2014-05-01
Two experiments comparing imaginative processing in different modalities and semantic processing were carried out to investigate the issue of whether conceptual knowledge can be represented in different format. Participants were asked to judge the similarity between visual images, auditory images, and olfactory images in the imaginative block, if two items belonged to the same category in the semantic block. Items were verbally cued in both experiments. The degree of similarity between the imaginative and semantic items was changed across experiments. Experiment 1 showed that the semantic processing was faster than the visual and the auditory imaginative processing, whereas no differentiation was possible between the semantic processing and the olfactory imaginative processing. Experiment 2 revealed that only the visual imaginative processing could be differentiated from the semantic processing in terms of accuracy. These results showed that the visual and auditory imaginative processing can be differentiated from the semantic processing, although both visual and auditory images strongly rely on semantic representations. On the contrary, no differentiation is possible within the olfactory domain. Results are discussed in the frame of the imagery debate.
Working memory load eliminates the survival processing effect.
Kroneisen, Meike; Rummel, Jan; Erdfelder, Edgar
2014-01-01
In a series of experiments, Nairne, Thompson, and Pandeirada (2007) demonstrated that words judged for their relevance to a survival scenario are remembered better than words judged for a scenario not relevant on a survival dimension. They explained this survival-processing effect by arguing that nature "tuned" our memory systems to process and remember fitness-relevant information. Kroneisen and Erdfelder (2011) proposed that it may not be survival processing per se that facilitates recall but the richness and distinctiveness with which information is encoded. To further test this account, we investigated how the survival processing effect is affected by cognitive load. If the survival processing effect is due to automatic processes or, alternatively, if survival processing is routinely prioritized in dual-task contexts, we would expect this effect to persist under cognitive load conditions. If the effect relies on cognitively demanding processes like richness and distinctiveness of encoding, however, the survival processing benefit should be hampered by increased cognitive load during encoding. Results were in line with the latter prediction, that is, the survival processing effect vanished under dual-task conditions.
E-learning process maturity level: a conceptual framework
NASA Astrophysics Data System (ADS)
Rahmah, A.; Santoso, H. B.; Hasibuan, Z. A.
2018-03-01
ICT advancement is a sure thing with the impact influencing many domains, including learning in both formal and informal situations. It leads to a new mindset that we should not only utilize the given ICT to support the learning process, but also improve it gradually involving a lot of factors. These phenomenon is called e-learning process evolution. Accordingly, this study attempts to explore maturity level concept to provide the improvement direction gradually and progression monitoring for the individual e-learning process. Extensive literature review, observation, and forming constructs are conducted to develop a conceptual framework for e-learning process maturity level. The conceptual framework consists of learner, e-learning process, continuous improvement, evolution of e-learning process, technology, and learning objectives. Whilst, evolution of e-learning process depicted as current versus expected conditions of e-learning process maturity level. The study concludes that from the e-learning process maturity level conceptual framework, it may guide the evolution roadmap for e-learning process, accelerate the evolution, and decrease the negative impact of ICT. The conceptual framework will be verified and tested in the future study.
Heat input and accumulation for ultrashort pulse processing with high average power
NASA Astrophysics Data System (ADS)
Finger, Johannes; Bornschlegel, Benedikt; Reininghaus, Martin; Dohrn, Andreas; Nießen, Markus; Gillner, Arnold; Poprawe, Reinhart
2018-05-01
Materials processing using ultrashort pulsed laser radiation with pulse durations <10 ps is known to enable very precise processing with negligible thermal load. However, even for the application of picosecond and femtosecond laser radiation, not the full amount of the absorbed energy is converted into ablation products and a distinct fraction of the absorbed energy remains as residual heat in the processed workpiece. For low average power and power densities, this heat is usually not relevant for the processing results and dissipates into the workpiece. In contrast, when higher average powers and repetition rates are applied to increase the throughput and upscale ultrashort pulse processing, this heat input becomes relevant and significantly affects the achieved processing results. In this paper, we outline the relevance of heat input for ultrashort pulse processing, starting with the heat input of a single ultrashort laser pulse. Heat accumulation during ultrashort pulse processing with high repetition rate is discussed as well as heat accumulation for materials processing using pulse bursts. In addition, the relevance of heat accumulation with multiple scanning passes and processing with multiple laser spots is shown.
Defining and reconstructing clinical processes based on IHE and BPMN 2.0.
Strasser, Melanie; Pfeifer, Franz; Helm, Emmanuel; Schuler, Andreas; Altmann, Josef
2011-01-01
This paper describes the current status and the results of our process management system for defining and reconstructing clinical care processes, which contributes to compare, analyze and evaluate clinical processes and further to identify high cost tasks or stays. The system is founded on IHE, which guarantees standardized interfaces and interoperability between clinical information systems. At the heart of the system there is BPMN, a modeling notation and specification language, which allows the definition and execution of clinical processes. The system provides functionality to define healthcare information system independent clinical core processes and to execute the processes in a workflow engine. Furthermore, the reconstruction of clinical processes is done by evaluating an IHE audit log database, which records patient movements within a health care facility. The main goal of the system is to assist hospital operators and clinical process managers to detect discrepancies between defined and actual clinical processes and as well to identify main causes of high medical costs. Beyond that, the system can potentially contribute to reconstruct and improve clinical processes and enhance cost control and patient care quality.
Process qualification and testing of LENS deposited AY1E0125 D-bottle brackets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atwood, Clinton J.; Smugeresky, John E.; Jew, Michael
2006-11-01
The LENS Qualification team had the goal of performing a process qualification for the Laser Engineered Net Shaping{trademark}(LENS{reg_sign}) process. Process Qualification requires that a part be selected for process demonstration. The AY1E0125 D-Bottle Bracket from the W80-3 was selected for this work. The repeatability of the LENS process was baselined to determine process parameters. Six D-Bottle brackets were deposited using LENS, machined to final dimensions, and tested in comparison to conventionally processed brackets. The tests, taken from ES1E0003, included a mass analysis and structural dynamic testing including free-free and assembly-level modal tests, and Haversine shock tests. The LENS brackets performedmore » with very similar characteristics to the conventionally processed brackets. Based on the results of the testing, it was concluded that the performance of the brackets made them eligible for parallel path testing in subsystem level tests. The testing results and process rigor qualified the LENS process as detailed in EER200638525A.« less
Sustainability assessment of shielded metal arc welding (SMAW) process
NASA Astrophysics Data System (ADS)
Alkahla, Ibrahim; Pervaiz, Salman
2017-09-01
Shielded metal arc welding (SMAW) process is one of the most commonly employed material joining processes utilized in the various industrial sectors such as marine, ship-building, automotive, aerospace, construction and petrochemicals etc. The increasing pressure on manufacturing sector wants the welding process to be sustainable in nature. The SMAW process incorporates several types of inputs and output streams. The sustainability concerns associated with SMAW process are linked with the various input and output streams such as electrical energy requirement, input material consumptions, slag formation, fumes emission and hazardous working conditions associated with the human health and occupational safety. To enhance the environmental performance of the SMAW welding process, there is a need to characterize the sustainability for the SMAW process under the broad framework of sustainability. Most of the available literature focuses on the technical and economic aspects of the welding process, however the environmental and social aspects are rarely addressed. The study reviews SMAW process with respect to the triple bottom line (economic, environmental and social) sustainability approach. Finally, the study concluded recommendations towards achieving economical and sustainable SMAW welding process.
Decontamination and disposal of PCB wastes.
Johnston, L E
1985-01-01
Decontamination and disposal processes for PCB wastes are reviewed. Processes are classed as incineration, chemical reaction or decontamination. Incineration technologies are not limited to the rigorous high temperature but include those where innovations in use of oxident, heat transfer and residue recycle are made. Chemical processes include the sodium processes, radiant energy processes and low temperature oxidations. Typical processing rates and associated costs are provided where possible. PMID:3928363
1994-09-01
IIssue Computers, information systems, and communication systems are being increasingly used in transportation, warehousing, order processing , materials...inventory levels, reduced order processing times, reduced order processing costs, and increased customer satisfaction. While purchasing and transportation...process, the speed in which crders are processed would increase significantly. Lowering the order processing time in turn lowers the lead time, which in
Definition and documentation of engineering processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, G.W.
1997-11-01
This tutorial is an extract of a two-day workshop developed under the auspices of the Quality Engineering Department at Sandia National Laboratories. The presentation starts with basic definitions and addresses why processes should be defined and documented. It covers three primary topics: (1) process considerations and rationale, (2) approach to defining and documenting engineering processes, and (3) an IDEFO model of the process for defining engineering processes.
Method for enhanced atomization of liquids
Thompson, Richard E.; White, Jerome R.
1993-01-01
In a process for atomizing a slurry or liquid process stream in which a slurry or liquid is passed through a nozzle to provide a primary atomized process stream, an improvement which comprises subjecting the liquid or slurry process stream to microwave energy as the liquid or slurry process stream exits the nozzle, wherein sufficient microwave heating is provided to flash vaporize the primary atomized process stream.
Slofstra, Christien; Eisma, Maarten C; Holmes, Emily A; Bockting, Claudi L H; Nauta, Maaike H
2017-01-01
Ruminative (abstract verbal) processing during recall of aversive autobiographical memories may serve to dampen their short-term affective impact. Experimental studies indeed demonstrate that verbal processing of non-autobiographical material and positive autobiographical memories evokes weaker affective responses than imagery-based processing. In the current study, we hypothesized that abstract verbal or concrete verbal processing of an aversive autobiographical memory would result in weaker affective responses than imagery-based processing. The affective impact of abstract verbal versus concrete verbal versus imagery-based processing during recall of an aversive autobiographical memory was investigated in a non-clinical sample ( n = 99) using both an observational and an experimental design. Observationally, it was examined whether spontaneous use of processing modes (both state and trait measures) was associated with impact of aversive autobiographical memory recall on negative and positive affect. Experimentally, the causal relation between processing modes and affective impact was investigated by manipulating the processing mode during retrieval of the same aversive autobiographical memory. Main findings were that higher levels of trait (but not state) measures of both ruminative and imagery-based processing and depressive symptomatology were positively correlated with higher levels of negative affective impact in the observational part of the study. In the experimental part, no main effect of processing modes on affective impact of autobiographical memories was found. However, a significant moderating effect of depressive symptomatology was found. Only for individuals with low levels of depressive symptomatology, concrete verbal (but not abstract verbal) processing of the aversive autobiographical memory did result in weaker affective responses, compared to imagery-based processing. These results cast doubt on the hypothesis that ruminative processing of aversive autobiographical memories serves to avoid the negative emotions evoked by such memories. Furthermore, findings suggest that depressive symptomatology is associated with the spontaneous use and the affective impact of processing modes during recall of aversive autobiographical memories. Clinical studies are needed that examine the role of processing modes during aversive autobiographical memory recall in depression, including the potential effectiveness of targeting processing modes in therapy.
Cervera-Padrell, Albert E; Skovby, Tommy; Kiil, Søren; Gani, Rafiqul; Gernaey, Krist V
2012-10-01
A systematic framework is proposed for the design of continuous pharmaceutical manufacturing processes. Specifically, the design framework focuses on organic chemistry based, active pharmaceutical ingredient (API) synthetic processes, but could potentially be extended to biocatalytic and fermentation-based products. The method exploits the synergic combination of continuous flow technologies (e.g., microfluidic techniques) and process systems engineering (PSE) methods and tools for faster process design and increased process understanding throughout the whole drug product and process development cycle. The design framework structures the many different and challenging design problems (e.g., solvent selection, reactor design, and design of separation and purification operations), driving the user from the initial drug discovery steps--where process knowledge is very limited--toward the detailed design and analysis. Examples from the literature of PSE methods and tools applied to pharmaceutical process design and novel pharmaceutical production technologies are provided along the text, assisting in the accumulation and interpretation of process knowledge. Different criteria are suggested for the selection of batch and continuous processes so that the whole design results in low capital and operational costs as well as low environmental footprint. The design framework has been applied to the retrofit of an existing batch-wise process used by H. Lundbeck A/S to produce an API: zuclopenthixol. Some of its batch operations were successfully converted into continuous mode, obtaining higher yields that allowed a significant simplification of the whole process. The material and environmental footprint of the process--evaluated through the process mass intensity index, that is, kg of material used per kg of product--was reduced to half of its initial value, with potential for further reduction. The case-study includes reaction steps typically used by the pharmaceutical industry featuring different characteristic reaction times, as well as L-L separation and distillation-based solvent exchange steps, and thus constitutes a good example of how the design framework can be useful to efficiently design novel or already existing API manufacturing processes taking advantage of continuous processes. Copyright © 2012 Elsevier B.V. All rights reserved.
On the facilitative effects of face motion on face recognition and its development
Xiao, Naiqi G.; Perrotta, Steve; Quinn, Paul C.; Wang, Zhe; Sun, Yu-Hao P.; Lee, Kang
2014-01-01
For the past century, researchers have extensively studied human face processing and its development. These studies have advanced our understanding of not only face processing, but also visual processing in general. However, most of what we know about face processing was investigated using static face images as stimuli. Therefore, an important question arises: to what extent does our understanding of static face processing generalize to face processing in real-life contexts in which faces are mostly moving? The present article addresses this question by examining recent studies on moving face processing to uncover the influence of facial movements on face processing and its development. First, we describe evidence on the facilitative effects of facial movements on face recognition and two related theoretical hypotheses: the supplementary information hypothesis and the representation enhancement hypothesis. We then highlight several recent studies suggesting that facial movements optimize face processing by activating specific face processing strategies that accommodate to task requirements. Lastly, we review the influence of facial movements on the development of face processing in the first year of life. We focus on infants' sensitivity to facial movements and explore the facilitative effects of facial movements on infants' face recognition performance. We conclude by outlining several future directions to investigate moving face processing and emphasize the importance of including dynamic aspects of facial information to further understand face processing in real-life contexts. PMID:25009517
Comparison of property between two Viking Seismic tapes
NASA Astrophysics Data System (ADS)
Yamamoto, Y.; Yamada, R.
2016-12-01
Tthe restoration work of the seismometer data onboard Viking Lander 2 is still continuing. Originally, the data were processed and archived both in MIT and UTIG separately, and each data is accessible via the Internet today. Their file formats to store the data are different, but both of them are currently readable due to the continuous investigation. However, there is some inconsistency between their data although most of their data are highly consistent. To understand the differences, the knowledge of archiving and off-line processing of spacecraft is required because these differences are caused by the off-line processing.The data processing of spacecraft often requires merge and sort processing of raw data. The merge processing is normally performed to eliminate duplicated data, and the sort processing is performed to fix data order. UTIG did not seem to perform these merge and sort processing. Therefore, the UTIG processed data remain duplication. The MIT processed data did these merge and sort processing, but the raw data sometimes include wrong time tags, and it cannot be fixed strictly after sort processing. Also, the MIT processed data has enough documents to understand metadata, while UTIG data has a brief instruction. Therefore, both of MIT and UTIG data are treated complementary. A better data set can be established using both of them. In this presentation, we would show the method to build a better data set of Viking Lander 2 seismic data.
Holistic processing, contact, and the other-race effect in face recognition.
Zhao, Mintao; Hayward, William G; Bülthoff, Isabelle
2014-12-01
Face recognition, holistic processing, and processing of configural and featural facial information are known to be influenced by face race, with better performance for own- than other-race faces. However, whether these various other-race effects (OREs) arise from the same underlying mechanisms or from different processes remains unclear. The present study addressed this question by measuring the OREs in a set of face recognition tasks, and testing whether these OREs are correlated with each other. Participants performed different tasks probing (1) face recognition, (2) holistic processing, (3) processing of configural information, and (4) processing of featural information for both own- and other-race faces. Their contact with other-race people was also assessed with a questionnaire. The results show significant OREs in tasks testing face memory and processing of configural information, but not in tasks testing either holistic processing or processing of featural information. Importantly, there was no cross-task correlation between any of the measured OREs. Moreover, the level of other-race contact predicted only the OREs obtained in tasks testing face memory and processing of configural information. These results indicate that these various cross-race differences originate from different aspects of face processing, in contrary to the view that the ORE in face recognition is due to cross-race differences in terms of holistic processing. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Process monitoring and visualization solutions for hot-melt extrusion: a review.
Saerens, Lien; Vervaet, Chris; Remon, Jean Paul; De Beer, Thomas
2014-02-01
Hot-melt extrusion (HME) is applied as a continuous pharmaceutical manufacturing process for the production of a variety of dosage forms and formulations. To ensure the continuity of this process, the quality of the extrudates must be assessed continuously during manufacturing. The objective of this review is to provide an overview and evaluation of the available process analytical techniques which can be applied in hot-melt extrusion. Pharmaceutical extruders are equipped with traditional (univariate) process monitoring tools, observing barrel and die temperatures, throughput, screw speed, torque, drive amperage, melt pressure and melt temperature. The relevance of several spectroscopic process analytical techniques for monitoring and control of pharmaceutical HME has been explored recently. Nevertheless, many other sensors visualizing HME and measuring diverse critical product and process parameters with potential use in pharmaceutical extrusion are available, and were thoroughly studied in polymer extrusion. The implementation of process analytical tools in HME serves two purposes: (1) improving process understanding by monitoring and visualizing the material behaviour and (2) monitoring and analysing critical product and process parameters for process control, allowing to maintain a desired process state and guaranteeing the quality of the end product. This review is the first to provide an evaluation of the process analytical tools applied for pharmaceutical HME monitoring and control, and discusses techniques that have been used in polymer extrusion having potential for monitoring and control of pharmaceutical HME. © 2013 Royal Pharmaceutical Society.
Process for improving metal production in steelmaking processes
Pal, Uday B.; Gazula, Gopala K. M.; Hasham, Ali
1996-01-01
A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements.
Materials processing in space: Early experiments
NASA Technical Reports Server (NTRS)
Naumann, R. J.; Herring, H. W.
1980-01-01
The characteristics of the space environment were reviewed. Potential applications of space processing are discussed and include metallurgical processing, and processing of semiconductor materials. The behavior of fluid in low gravity is described. The evolution of apparatus for materials processing in space was reviewed.
Techno-economic analysis Process model development for existing and conceptual processes Detailed heat integration Economic analysis of integrated processes Integration of process simulation learnings into control ;Conceptual Process Design and Techno-Economic Assessment of Ex Situ Catalytic Fast Pyrolysis of Biomass: A
Code of Federal Regulations, 2012 CFR
2012-01-01
... PROCESSED FRUITS AND VEGETABLES, PROCESSED PRODUCTS THEREOF, AND CERTAIN OTHER PROCESSED FOOD PRODUCTS 1... cherries that vary markedly from this color due to oxidation, improper processing, or other causes, or that... to oxidation, improper processing, or other causes, or that are undercolored, does not exceed the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... PROCESSED FRUITS AND VEGETABLES, PROCESSED PRODUCTS THEREOF, AND CERTAIN OTHER PROCESSED FOOD PRODUCTS 1... cherries that vary markedly from this color due to oxidation, improper processing, or other causes, or that... to oxidation, improper processing, or other causes, or that are undercolored, does not exceed the...
ERIC Educational Resources Information Center
Legacy, Jim; And Others
This publication provides an introduction to meat processing for adult students in vocational and technical education programs. Organized in four chapters, the booklet provides a brief overview of the meat processing industry and the techniques of meat processing and butchering. The first chapter introduces the meat processing industry and…
40 CFR 60.2025 - What if my chemical recovery unit is not listed in § 60.2020(n)?
Code of Federal Regulations, 2011 CFR
2011-07-01
... materials that are recovered. (3) A description (including a process flow diagram) of the process in which... process. (4) A description (including a process flow diagram) of the chemical constituent recovery process...
40 CFR 60.2025 - What if my chemical recovery unit is not listed in § 60.2020(n)?
Code of Federal Regulations, 2012 CFR
2012-07-01
... materials that are recovered. (3) A description (including a process flow diagram) of the process in which... process. (4) A description (including a process flow diagram) of the chemical constituent recovery process...
40 CFR 60.2025 - What if my chemical recovery unit is not listed in § 60.2020(n)?
Code of Federal Regulations, 2010 CFR
2010-07-01
... materials that are recovered. (3) A description (including a process flow diagram) of the process in which... process. (4) A description (including a process flow diagram) of the chemical constituent recovery process...
40 CFR 60.2558 - What if a chemical recovery unit is not listed in § 60.2555(n)?
Code of Federal Regulations, 2012 CFR
2012-07-01
... materials that are recovered. (3) A description (including a process flow diagram) of the process in which... process. (4) A description (including a process flow diagram) of the chemical constituent recovery process...
Integrated decontamination process for metals
Snyder, Thomas S.; Whitlow, Graham A.
1991-01-01
An integrated process for decontamination of metals, particularly metals that are used in the nuclear energy industry contaminated with radioactive material. The process combines the processes of electrorefining and melt refining to purify metals that can be decontaminated using either electrorefining or melt refining processes.
Case Studies in Continuous Process Improvement
NASA Technical Reports Server (NTRS)
Mehta, A.
1997-01-01
This study focuses on improving the SMT assembly process in a low-volume, high-reliability environment with emphasis on fine pitch and BGA packages. Before a process improvement is carried out, it is important to evaluate where the process stands in terms of process capability.
NASA Astrophysics Data System (ADS)
Orlov, A. A.; Ushakov, A. A.; Sovach, V. P.
2017-03-01
We have developed and realized on software a mathematical model of the nonstationary separation processes proceeding in the cascades of gas centrifuges in the process of separation of multicomponent isotope mixtures. With the use of this model the parameters of the separation process of germanium isotopes have been calculated. It has been shown that the model adequately describes the nonstationary processes in the cascade and is suitable for calculating their parameters in the process of separation of multicomponent isotope mixtures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasanbeigi, Ali; Lu, Hongyou; Williams, Christopher
The purpose of this report is to describe international best practices for pre-processing and coprocessing of MSW and sewage sludge in cement plants, for the benefit of countries that wish to develop co-processing capacity. The report is divided into three main sections. Section 2 describes the fundamentals of co-processing, Section 3 describes exemplary international regulatory and institutional frameworks for co-processing, and Section 4 describes international best practices related to the technological aspects of co-processing.
Thermochemical water decomposition processes
NASA Technical Reports Server (NTRS)
Chao, R. E.
1974-01-01
Thermochemical processes which lead to the production of hydrogen and oxygen from water without the consumption of any other material have a number of advantages when compared to other processes such as water electrolysis. It is possible to operate a sequence of chemical steps with net work requirements equal to zero at temperatures well below the temperature required for water dissociation in a single step. Various types of procedures are discussed, giving attention to halide processes, reverse Deacon processes, iron oxide and carbon oxide processes, and metal and alkali metal processes. Economical questions are also considered.
Voyager image processing at the Image Processing Laboratory
NASA Astrophysics Data System (ADS)
Jepsen, P. L.; Mosher, J. A.; Yagi, G. M.; Avis, C. C.; Lorre, J. J.; Garneau, G. W.
1980-09-01
This paper discusses new digital processing techniques as applied to the Voyager Imaging Subsystem and devised to explore atmospheric dynamics, spectral variations, and the morphology of Jupiter, Saturn and their satellites. Radiometric and geometric decalibration processes, the modulation transfer function, and processes to determine and remove photometric properties of the atmosphere and surface of Jupiter and its satellites are examined. It is exhibited that selected images can be processed into 'approach at constant longitude' time lapse movies which are useful in observing atmospheric changes of Jupiter. Photographs are included to illustrate various image processing techniques.
Voyager image processing at the Image Processing Laboratory
NASA Technical Reports Server (NTRS)
Jepsen, P. L.; Mosher, J. A.; Yagi, G. M.; Avis, C. C.; Lorre, J. J.; Garneau, G. W.
1980-01-01
This paper discusses new digital processing techniques as applied to the Voyager Imaging Subsystem and devised to explore atmospheric dynamics, spectral variations, and the morphology of Jupiter, Saturn and their satellites. Radiometric and geometric decalibration processes, the modulation transfer function, and processes to determine and remove photometric properties of the atmosphere and surface of Jupiter and its satellites are examined. It is exhibited that selected images can be processed into 'approach at constant longitude' time lapse movies which are useful in observing atmospheric changes of Jupiter. Photographs are included to illustrate various image processing techniques.
A novel process control method for a TT-300 E-Beam/X-Ray system
NASA Astrophysics Data System (ADS)
Mittendorfer, Josef; Gallnböck-Wagner, Bernhard
2018-02-01
This paper presents some aspects of the process control method for a TT-300 E-Beam/X-Ray system at Mediscan, Austria. The novelty of the approach is the seamless integration of routine monitoring dosimetry with process data. This allows to calculate a parametric dose for each production unit and consequently a fine grain and holistic process performance monitoring. Process performance is documented in process control charts for the analysis of individual runs as well as historic trending of runs of specific process categories over a specified time range.
Nasreddine, Lara; Tamim, Hani; Itani, Leila; Nasrallah, Mona P; Isma'eel, Hussain; Nakhoul, Nancy F; Abou-Rizk, Joana; Naja, Farah
2018-01-01
To (i) estimate the consumption of minimally processed, processed and ultra-processed foods in a sample of Lebanese adults; (ii) explore patterns of intakes of these food groups; and (iii) investigate the association of the derived patterns with cardiometabolic risk. Cross-sectional survey. Data collection included dietary assessment using an FFQ and biochemical, anthropometric and blood pressure measurements. Food items were categorized into twenty-five groups based on the NOVA food classification. The contribution of each food group to total energy intake (TEI) was estimated. Patterns of intakes of these food groups were examined using exploratory factor analysis. Multivariate logistic regression analysis was used to evaluate the associations of derived patterns with cardiometabolic risk factors. Greater Beirut area, Lebanon. Adults ≥18 years (n 302) with no prior history of chronic diseases. Of TEI, 36·53 and 27·10 % were contributed by ultra-processed and minimally processed foods, respectively. Two dietary patterns were identified: the 'ultra-processed' and the 'minimally processed/processed'. The 'ultra-processed' consisted mainly of fast foods, snacks, meat, nuts, sweets and liquor, while the 'minimally processed/processed' consisted mostly of fruits, vegetables, legumes, breads, cheeses, sugar and fats. Participants in the highest quartile of the 'minimally processed/processed' pattern had significantly lower odds for metabolic syndrome (OR=0·18, 95 % CI 0·04, 0·77), hyperglycaemia (OR=0·25, 95 % CI 0·07, 0·98) and low HDL cholesterol (OR=0·17, 95 % CI 0·05, 0·60). The study findings may be used for the development of evidence-based interventions aimed at encouraging the consumption of minimally processed foods.
Increasing patient safety and efficiency in transfusion therapy using formal process definitions.
Henneman, Elizabeth A; Avrunin, George S; Clarke, Lori A; Osterweil, Leon J; Andrzejewski, Chester; Merrigan, Karen; Cobleigh, Rachel; Frederick, Kimberly; Katz-Bassett, Ethan; Henneman, Philip L
2007-01-01
The administration of blood products is a common, resource-intensive, and potentially problem-prone area that may place patients at elevated risk in the clinical setting. Much of the emphasis in transfusion safety has been targeted toward quality control measures in laboratory settings where blood products are prepared for administration as well as in automation of certain laboratory processes. In contrast, the process of transfusing blood in the clinical setting (ie, at the point of care) has essentially remained unchanged over the past several decades. Many of the currently available methods for improving the quality and safety of blood transfusions in the clinical setting rely on informal process descriptions, such as flow charts and medical algorithms, to describe medical processes. These informal descriptions, although useful in presenting an overview of standard processes, can be ambiguous or incomplete. For example, they often describe only the standard process and leave out how to handle possible failures or exceptions. One alternative to these informal descriptions is to use formal process definitions, which can serve as the basis for a variety of analyses because these formal definitions offer precision in the representation of all possible ways that a process can be carried out in both standard and exceptional situations. Formal process definitions have not previously been used to describe and improve medical processes. The use of such formal definitions to prospectively identify potential error and improve the transfusion process has not previously been reported. The purpose of this article is to introduce the concept of formally defining processes and to describe how formal definitions of blood transfusion processes can be used to detect and correct transfusion process errors in ways not currently possible using existing quality improvement methods.
Luiten, Claire M; Steenhuis, Ingrid Hm; Eyles, Helen; Ni Mhurchu, Cliona; Waterlander, Wilma E
2016-02-01
To examine the availability of packaged food products in New Zealand supermarkets by level of industrial processing, nutrient profiling score (NPSC), price (energy, unit and serving costs) and brand variety. Secondary analysis of cross-sectional survey data on packaged supermarket food and non-alcoholic beverages. Products were classified according to level of industrial processing (minimally, culinary and ultra-processed) and their NPSC. Packaged foods available in four major supermarkets in Auckland, New Zealand. Packaged supermarket food products for the years 2011 and 2013. The majority (84% in 2011 and 83% in 2013) of packaged foods were classified as ultra-processed. A significant positive association was found between the level of industrial processing and NPSC, i.e., ultra-processed foods had a worse nutrient profile (NPSC=11.63) than culinary processed foods (NPSC=7.95), which in turn had a worse nutrient profile than minimally processed foods (NPSC=3.27), P<0.001. No clear associations were observed between the three price measures and level of processing. The study observed many variations of virtually the same product. The ten largest food manufacturers produced 35% of all packaged foods available. In New Zealand supermarkets, ultra-processed foods comprise the largest proportion of packaged foods and are less healthy than less processed foods. The lack of significant price difference between ultra- and less processed foods suggests ultra-processed foods might provide time-poor consumers with more value for money. These findings highlight the need to improve the supermarket food supply by reducing numbers of ultra-processed foods and by reformulating products to improve their nutritional profile.
Trends in consumption of ultra-processed foods and obesity in Sweden between 1960 and 2010.
Juul, Filippa; Hemmingsson, Erik
2015-12-01
To investigate how consumption of ultra-processed foods has changed in Sweden in relation to obesity. Nationwide ecological analysis of changes in processed foods along with corresponding changes in obesity. Trends in per capita food consumption during 1960-2010 were investigated using data from the Swedish Board of Agriculture. Food items were classified as group 1 (unprocessed/minimally processed), group 2 (processed culinary ingredients) or group 3 (3·1, processed food products; and 3·2, ultra-processed products). Obesity prevalence data were pooled from the peer-reviewed literature, Statistics Sweden and the WHO Global Health Observatory. Nationwide analysis in Sweden, 1960-2010. Swedish nationals aged 18 years and older. During the study period consumption of group 1 foods (minimal processing) decreased by 2 %, while consumption of group 2 foods (processed ingredients) decreased by 34 %. Consumption of group 3·1 foods (processed food products) increased by 116 % and group 3·2 foods (ultra-processed products) increased by 142 %. Among ultra-processed products, there were particularly large increases in soda (315 %; 22 v. 92 litres/capita per annum) and snack foods such as crisps and candies (367 %; 7 v. 34 kg/capita per annum). In parallel to these changes in ultra-processed products, rates of adult obesity increased from 5 % in 1980 to over 11 % in 2010. The consumption of ultra-processed products (i.e. foods with low nutritional value but high energy density) has increased dramatically in Sweden since 1960, which mirrors the increased prevalence of obesity. Future research should clarify the potential causal role of ultra-processed products in weight gain and obesity.
Drakesmith, Mark; El-Deredy, Wael; Welbourne, Stephen
2015-01-01
Reading words for meaning relies on orthographic, phonological and semantic processing. The triangle model implicates a direct orthography-to-semantics pathway and a phonologically mediated orthography-to-semantics pathway, which interact with each other. The temporal evolution of processing in these routes is not well understood, although theoretical evidence predicts early phonological processing followed by interactive phonological and semantic processing. This study used electroencephalography-event-related potential (ERP) analysis and magnetoencephalography (MEG) source localisation to identify temporal markers and the corresponding neural generators of these processes in early (∼200 ms) and late (∼400 ms) neurophysiological responses to visual words, pseudowords and consonant strings. ERP showed an effect of phonology but not semantics in both time windows, although at ∼400 ms there was an effect of stimulus familiarity. Phonological processing at ~200 ms was localised to the left occipitotemporal cortex and the inferior frontal gyrus. At 400 ms, there was continued phonological processing in the inferior frontal gyrus and additional semantic processing in the anterior temporal cortex. There was also an area in the left temporoparietal junction which was implicated in both phonological and semantic processing. In ERP, the semantic response at ∼400 ms appeared to be masked by concurrent processes relating to familiarity, while MEG successfully differentiated these processes. The results support the prediction of early phonological processing followed by an interaction of phonological and semantic processing during word recognition. Neuroanatomical loci of these processes are consistent with previous neuropsychological and functional magnetic resonance imaging studies. The results also have implications for the classical interpretation of N400-like responses as markers for semantic processing.
Vlamings, Petra Hendrika Johanna Maria; Jonkman, Lisa Marthe; van Daalen, Emma; van der Gaag, Rutger Jan; Kemner, Chantal
2010-12-15
A detailed visual processing style has been noted in autism spectrum disorder (ASD); this contributes to problems in face processing and has been directly related to abnormal processing of spatial frequencies (SFs). Little is known about the early development of face processing in ASD and the relation with abnormal SF processing. We investigated whether young ASD children show abnormalities in low spatial frequency (LSF, global) and high spatial frequency (HSF, detailed) processing and explored whether these are crucially involved in the early development of face processing. Three- to 4-year-old children with ASD (n = 22) were compared with developmentally delayed children without ASD (n = 17). Spatial frequency processing was studied by recording visual evoked potentials from visual brain areas while children passively viewed gratings (HSF/LSF). In addition, children watched face stimuli with different expressions, filtered to include only HSF or LSF. Enhanced activity in visual brain areas was found in response to HSF versus LSF information in children with ASD, in contrast to control subjects. Furthermore, facial-expression processing was also primarily driven by detail in ASD. Enhanced visual processing of detailed (HSF) information is present early in ASD and occurs for neutral (gratings), as well as for socially relevant stimuli (facial expressions). These data indicate that there is a general abnormality in visual SF processing in early ASD and are in agreement with suggestions that a fast LSF subcortical face processing route might be affected in ASD. This could suggest that abnormal visual processing is causative in the development of social problems in ASD. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Chen, Bin; Jia, Tianzhu
2015-03-01
On the basis of the golden stage of development of processing techniques of medicinals in the Song dynasty, the theory and techniques of processing in the Ming-Qing dynasties developed and accomplished further. The knowledge of some physicians on the processing of common medicinal, such as Radix rehmannia and Radixophiopogonis, was questioned, with new idea of processing methods put forward and argued against those insisting traditional ones, marking the progress of the art of processing. By reviewing the contention of technical theory of medicinal processing in the Ming-Qing period, useful references can be provided for the inheritance and development of the traditional art of processing medicinals.
Process Feasibility Study in Support of Silicon Material, Task 1
NASA Technical Reports Server (NTRS)
Li, K. Y.; Hansen, K. C.; Yaws, C. L.
1979-01-01
During this reporting period, major activies were devoted to process system properties, chemical engineering and economic analyses. Analyses of process system properties was continued for materials involved in the alternate processes under consideration for solar cell grade silicon. The following property data are reported for silicon tetrafluoride: critical constants, vapor pressure, heat of varporization, heat capacity, density, surface tension, viscosity, thermal conductivity, heat of formation and Gibb's free energy of formation. Chemical engineering analysis of the BCL process was continued with primary efforts being devoted to the preliminary process design. Status and progress are reported for base case conditions; process flow diagram; reaction chemistry; material and energy balances; and major process equipment design.
Technology and development requirements for advanced coal conversion systems
NASA Technical Reports Server (NTRS)
1981-01-01
A compendium of coal conversion process descriptions is presented. The SRS and MC data bases were utilized to provide information paticularly in the areas of existing process designs and process evaluations. Additional information requirements were established and arrangements were made to visit process developers, pilot plants, and process development units to obtain information that was not otherwise available. Plant designs, process descriptions and operating conditions, and performance characteristics were analyzed and requirements for further development identified and evaluated to determine the impact of these requirements on the process commercialization potential from the standpoint of economics and technical feasibility. A preliminary methodology was established for the comparative technical and economic assessment of advanced processes.
The s-process in massive stars: the Shell C-burning contribution
NASA Astrophysics Data System (ADS)
Pignatari, Marco; Gallino, R.; Baldovin, C.; Wiescher, M.; Herwig, F.; Heger, A.; Heil, M.; Käppeler, F.
In massive stars the s¡ process (slow neutron capture process) is activated at different tempera- tures, during He¡ burning and during convective shell C¡ burning. At solar metallicity, the neu- tron capture process in the convective C¡ shell adds a substantial contribution to the s¡ process yields made by the previous core He¡ burning, and the final results carry the signature of both processes. With decreasing metallicity, the contribution of the C¡ burning shell to the weak s¡ process rapidly decreases, because of the effect of the primary neutron poisons. On the other hand, also the s¡ process efficiency in the He core decreases with metallicity.
Clean-up and disposal process of polluted sediments from urban rivers.
He, P J; Shao, L M; Gu, G W; Bian, C L; Xu, C
2001-10-01
In this paper, the discussion is concentrated on the properties of the polluted sediments and the combination of clean-up and disposal process for the upper layer heavily polluted sediments with good flowability. Based on the systematic analyses of various clean-up processes, a suitable engineering process has been evaluated and recommended. The process has been applied to the river reclamation in Yangpu District of Shanghai City, China. An improved centrifuge is used for dewatering the dredged sludge, which plays an important role in the combination of clean-up and disposal process. The assessment of the engineering process shows its environmental and technical economy feasibility, which is much better than that of traditional dredging-disposal processes.
Adopting software quality measures for healthcare processes.
Yildiz, Ozkan; Demirörs, Onur
2009-01-01
In this study, we investigated the adoptability of software quality measures for healthcare process measurement. Quality measures of ISO/IEC 9126 are redefined from a process perspective to build a generic healthcare process quality measurement model. Case study research method is used, and the model is applied to a public hospital's Entry to Care process. After the application, weak and strong aspects of the process can be easily observed. Access audibility, fault removal, completeness of documentation, and machine utilization are weak aspects and these aspects are the candidates for process improvement. On the other hand, functional completeness, fault ratio, input validity checking, response time, and throughput time are the strong aspects of the process.
Business process modeling in healthcare.
Ruiz, Francisco; Garcia, Felix; Calahorra, Luis; Llorente, César; Gonçalves, Luis; Daniel, Christel; Blobel, Bernd
2012-01-01
The importance of the process point of view is not restricted to a specific enterprise sector. In the field of health, as a result of the nature of the service offered, health institutions' processes are also the basis for decision making which is focused on achieving their objective of providing quality medical assistance. In this chapter the application of business process modelling - using the Business Process Modelling Notation (BPMN) standard is described. Main challenges of business process modelling in healthcare are the definition of healthcare processes, the multi-disciplinary nature of healthcare, the flexibility and variability of the activities involved in health care processes, the need of interoperability between multiple information systems, and the continuous updating of scientific knowledge in healthcare.
Survey of the US materials processing and manufacturing in space program
NASA Technical Reports Server (NTRS)
Mckannan, E. C.
1981-01-01
To promote potential commercial applications of low-g technology, the materials processing and manufacturing in space program is structured to: (1) analyze the scientific principles of gravitational effects on processes used in producing materials; (2) apply the research toward the technology used to control production process (on Earth or in space, as appropriate); and (3) establish the legal and managerial framework for commercial ventures. Presently federally funded NASA research is described as well as agreements for privately funded commercial activity, and a proposed academic participation process. The future scope of the program and related capabilities using ground based facilities, aircraft, sounding rockets, and space shuttles are discussed. Areas of interest described include crystal growth; solidification of metals and alloys; containerless processing; fluids and chemical processes (including biological separation processes); and processing extraterrestrial materials.
On the fractal characterization of Paretian Poisson processes
NASA Astrophysics Data System (ADS)
Eliazar, Iddo I.; Sokolov, Igor M.
2012-06-01
Paretian Poisson processes are Poisson processes which are defined on the positive half-line, have maximal points, and are quantified by power-law intensities. Paretian Poisson processes are elemental in statistical physics, and are the bedrock of a host of power-law statistics ranging from Pareto's law to anomalous diffusion. In this paper we establish evenness-based fractal characterizations of Paretian Poisson processes. Considering an array of socioeconomic evenness-based measures of statistical heterogeneity, we show that: amongst the realm of Poisson processes which are defined on the positive half-line, and have maximal points, Paretian Poisson processes are the unique class of 'fractal processes' exhibiting scale-invariance. The results established in this paper are diametric to previous results asserting that the scale-invariance of Poisson processes-with respect to physical randomness-based measures of statistical heterogeneity-is characterized by exponential Poissonian intensities.
Mobil process converts methanol to high-quality synthetic gasoline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, A.
1978-12-11
If production of gasoline from coal becomes commercially attractive in the United States, a process under development at the Mobil Research and Development Corp. may compete with better known coal liquefaction processes. Mobil process converts methanol to high-octane, unleaded gasoline; methanol can be produced commercially from coal. If gasoline is the desired product, the Mobil process offers strong technical and cost advantages over H-coal, Exxon donor solvent, solvent-refined coal, and Fischer--Tropsch processes. The cost analysis, contained in a report to the Dept. of Energy, concludes that the Mobil process produces more-expensive liquid products than any other liquefaction process except Fischer--Tropsch.more » But Mobil's process produces ready-to-use gasoline, while the others produce oils which require further expensive refining to yield gasoline. Disadvantages and advantages are discussed.« less
Using Waste Heat for External Processes (English/Chinese) (Fact Sheet) (in Chin3se; English)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Chinese translation of the Using Waste Heat for External Processes fact sheet. Provides suggestions on how to use waste heat in industrial applications. The temperature of exhaust gases from fuel-fired industrial processes depends mainly on the process temperature and the waste heat recovery method. Figure 1 shows the heat lost in exhaust gases at various exhaust gas temperatures and percentages of excess air. Energy from gases exhausted from higher temperature processes (primary processes) can be recovered and used for lower temperature processes (secondary processes). One example is to generate steam using waste heat boilers for the fluid heaters used inmore » petroleum crude processing. In addition, many companies install heat exchangers on the exhaust stacks of furnaces and ovens to produce hot water or to generate hot air for space heating.« less
In-situ acoustic signature monitoring in additive manufacturing processes
NASA Astrophysics Data System (ADS)
Koester, Lucas W.; Taheri, Hossein; Bigelow, Timothy A.; Bond, Leonard J.; Faierson, Eric J.
2018-04-01
Additive manufacturing is a rapidly maturing process for the production of complex metallic, ceramic, polymeric, and composite components. The processes used are numerous, and with the complex geometries involved this can make quality control and standardization of the process and inspection difficult. Acoustic emission measurements have been used previously to monitor a number of processes including machining and welding. The authors have identified acoustic signature measurement as a potential means of monitoring metal additive manufacturing processes using process noise characteristics and those discrete acoustic emission events characteristic of defect growth, including cracks and delamination. Results of acoustic monitoring for a metal additive manufacturing process (directed energy deposition) are reported. The work investigated correlations between acoustic emissions and process noise with variations in machine state and deposition parameters, and provided proof of concept data that such correlations do exist.
NPTool: Towards Scalability and Reliability of Business Process Management
NASA Astrophysics Data System (ADS)
Braghetto, Kelly Rosa; Ferreira, João Eduardo; Pu, Calton
Currently one important challenge in business process management is provide at the same time scalability and reliability of business process executions. This difficulty becomes more accentuated when the execution control assumes complex countless business processes. This work presents NavigationPlanTool (NPTool), a tool to control the execution of business processes. NPTool is supported by Navigation Plan Definition Language (NPDL), a language for business processes specification that uses process algebra as formal foundation. NPTool implements the NPDL language as a SQL extension. The main contribution of this paper is a description of the NPTool showing how the process algebra features combined with a relational database model can be used to provide a scalable and reliable control in the execution of business processes. The next steps of NPTool include reuse of control-flow patterns and support to data flow management.
Butt, Muhammad Arif; Akram, Muhammad
2016-01-01
We present a new intuitionistic fuzzy rule-based decision-making system based on intuitionistic fuzzy sets for a process scheduler of a batch operating system. Our proposed intuitionistic fuzzy scheduling algorithm, inputs the nice value and burst time of all available processes in the ready queue, intuitionistically fuzzify the input values, triggers appropriate rules of our intuitionistic fuzzy inference engine and finally calculates the dynamic priority (dp) of all the processes in the ready queue. Once the dp of every process is calculated the ready queue is sorted in decreasing order of dp of every process. The process with maximum dp value is sent to the central processing unit for execution. Finally, we show complete working of our algorithm on two different data sets and give comparisons with some standard non-preemptive process schedulers.
Byrn, Stephen; Futran, Maricio; Thomas, Hayden; Jayjock, Eric; Maron, Nicola; Meyer, Robert F; Myerson, Allan S; Thien, Michael P; Trout, Bernhardt L
2015-03-01
We describe the key issues and possibilities for continuous final dosage formation, otherwise known as downstream processing or drug product manufacturing. A distinction is made between heterogeneous processing and homogeneous processing, the latter of which is expected to add more value to continuous manufacturing. We also give the key motivations for moving to continuous manufacturing, some of the exciting new technologies, and the barriers to implementation of continuous manufacturing. Continuous processing of heterogeneous blends is the natural first step in converting existing batch processes to continuous. In heterogeneous processing, there are discrete particles that can segregate, versus in homogeneous processing, components are blended and homogenized such that they do not segregate. Heterogeneous processing can incorporate technologies that are closer to existing technologies, where homogeneous processing necessitates the development and incorporation of new technologies. Homogeneous processing has the greatest potential for reaping the full rewards of continuous manufacturing, but it takes long-term vision and a more significant change in process development than heterogeneous processing. Heterogeneous processing has the detriment that, as the technologies are adopted rather than developed, there is a strong tendency to incorporate correction steps, what we call below "The Rube Goldberg Problem." Thus, although heterogeneous processing will likely play a major role in the near-term transformation of heterogeneous to continuous processing, it is expected that homogeneous processing is the next step that will follow. Specific action items for industry leaders are: Form precompetitive partnerships, including industry (pharmaceutical companies and equipment manufacturers), government, and universities. These precompetitive partnerships would develop case studies of continuous manufacturing and ideally perform joint-technology development, including development of small-scale equipment and processes. Develop ways to invest internally in continuous manufacturing. How best to do this will depend on the specifics of a given organization, in particular the current development projects. Upper managers will need to energize their process developers to incorporate continuous manufacturing in at least part of their processes to gain experience and demonstrate directly the benefits. Training of continuous manufacturing technologies, organizational approaches, and regulatory approaches is a key area that industrial leaders should pursue together. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
25 CFR 42.4 - What are alternative dispute resolution processes?
Code of Federal Regulations, 2010 CFR
2010-04-01
... What are alternative dispute resolution processes? Alternative dispute resolution (ADR) processes are... action. (a) ADR processes may: (1) Include peer adjudication, mediation, and conciliation; and (2... that these practices are readily identifiable. (b) For further information on ADR processes and how to...
25 CFR 42.4 - What are alternative dispute resolution processes?
Code of Federal Regulations, 2011 CFR
2011-04-01
... What are alternative dispute resolution processes? Alternative dispute resolution (ADR) processes are... action. (a) ADR processes may: (1) Include peer adjudication, mediation, and conciliation; and (2... that these practices are readily identifiable. (b) For further information on ADR processes and how to...
Characterization of Nonhomogeneous Poisson Processes Via Moment Conditions.
1986-08-01
Poisson processes play an important role in many fields. The Poisson process is one of the simplest counting processes and is a building block for...place of independent increments. This provides a somewhat different viewpoint for examining Poisson processes . In addition, new characterizations for
West Valley demonstration project: Alternative processes for solidifying the high-level wastes
NASA Astrophysics Data System (ADS)
Holton, L. K.; Larson, D. E.; Partain, W. L.; Treat, R. L.
1981-10-01
Two pretreatment approaches and several waste form processes for radioactive wastes were selected for evaluation. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied.
Process for improving metal production in steelmaking processes
Pal, U.B.; Gazula, G.K.M.; Hasham, A.
1996-06-18
A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements. 6 figs.
40 CFR 409.10 - Applicability; description of the beet sugar processing subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... sugar processing subcategory. 409.10 Section 409.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing Subcategory § 409.10 Applicability; description of the beet sugar processing subcategory. The...
40 CFR 409.10 - Applicability; description of the beet sugar processing subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... sugar processing subcategory. 409.10 Section 409.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing Subcategory § 409.10 Applicability; description of the beet sugar processing subcategory. The...
Enhancing Manufacturing Process Education via Computer Simulation and Visualization
ERIC Educational Resources Information Center
Manohar, Priyadarshan A.; Acharya, Sushil; Wu, Peter
2014-01-01
Industrially significant metal manufacturing processes such as melting, casting, rolling, forging, machining, and forming are multi-stage, complex processes that are labor, time, and capital intensive. Academic research develops mathematical modeling of these processes that provide a theoretical framework for understanding the process variables…
9 CFR 318.304 - Operations in the thermal processing area.
Code of Federal Regulations, 2013 CFR
2013-01-01
... factor over the specified thermal processing operation times. Temperature/time recording devices shall... minimum initial temperatures and operating procedures for thermal processing equipment, shall be posted in... available to the thermal processing system operator and the inspector. (b) Process indicators and retort...
9 CFR 318.304 - Operations in the thermal processing area.
Code of Federal Regulations, 2012 CFR
2012-01-01
... factor over the specified thermal processing operation times. Temperature/time recording devices shall... minimum initial temperatures and operating procedures for thermal processing equipment, shall be posted in... available to the thermal processing system operator and the inspector. (b) Process indicators and retort...
9 CFR 318.304 - Operations in the thermal processing area.
Code of Federal Regulations, 2014 CFR
2014-01-01
... factor over the specified thermal processing operation times. Temperature/time recording devices shall... minimum initial temperatures and operating procedures for thermal processing equipment, shall be posted in... available to the thermal processing system operator and the inspector. (b) Process indicators and retort...
9 CFR 318.304 - Operations in the thermal processing area.
Code of Federal Regulations, 2011 CFR
2011-01-01
... factor over the specified thermal processing operation times. Temperature/time recording devices shall... minimum initial temperatures and operating procedures for thermal processing equipment, shall be posted in... available to the thermal processing system operator and the inspector. (b) Process indicators and retort...
20 CFR 404.926 - Agreement in expedited appeals process.
Code of Federal Regulations, 2010 CFR
2010-04-01
... DISABILITY INSURANCE (1950- ) Determinations, Administrative Review Process, and Reopening of Determinations and Decisions Expedited Appeals Process § 404.926 Agreement in expedited appeals process. If you meet... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Agreement in expedited appeals process. 404...
40 CFR 409.10 - Applicability; description of the beet sugar processing subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... sugar processing subcategory. 409.10 Section 409.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing Subcategory § 409.10 Applicability; description of the beet sugar processing subcategory. The...
40 CFR 409.10 - Applicability; description of the beet sugar processing subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... sugar processing subcategory. 409.10 Section 409.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing Subcategory § 409.10 Applicability; description of the beet sugar processing subcategory. The...
40 CFR 409.10 - Applicability; description of the beet sugar processing subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... sugar processing subcategory. 409.10 Section 409.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing Subcategory § 409.10 Applicability; description of the beet sugar processing subcategory. The...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-01
... ``chemical process plants'' that produce ethanol through a natural fermentation process (hereafter referred... for excluding ``chemical process plants'' that produce ethanol through a natural fermentation process... facilities that produce ethanol by natural fermentation processes. Kentucky's February 5, 2010, SIP...
Process for selecting engineering tools : applied to selecting a SysML tool.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Spain, Mark J.; Post, Debra S.; Taylor, Jeffrey L.
2011-02-01
Process for Selecting Engineering Tools outlines the process and tools used to select a SysML (Systems Modeling Language) tool. The process is general in nature and users could use the process to select most engineering tools and software applications.
Process of discharging charge-build up in slag steelmaking processes
Pal, Uday B.; Gazula, Gopala K. M.; Hasham, Ali
1994-01-01
A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag-containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements.
40 CFR 408.170 - Applicability; description of the Alaskan mechanized salmon processing subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Alaskan mechanized salmon processing subcategory. 408.170 Section 408.170 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Alaskan Mechanized Salmon Processing Subcategory § 408.170 Applicability; description of the Alaskan mechanized salmon processing subcategory. The provisions of this subpart are...
40 CFR 408.170 - Applicability; description of the Alaskan mechanized salmon processing subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Alaskan mechanized salmon processing subcategory. 408.170 Section 408.170 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Alaskan Mechanized Salmon Processing Subcategory § 408.170 Applicability; description of the Alaskan mechanized salmon processing subcategory. The provisions of this subpart are...
Business Process Modeling: Perceived Benefits
NASA Astrophysics Data System (ADS)
Indulska, Marta; Green, Peter; Recker, Jan; Rosemann, Michael
The process-centered design of organizations and information systems is globally seen as an appropriate response to the increased economic pressure on organizations. At the methodological core of process-centered management is process modeling. However, business process modeling in large initiatives can be a time-consuming and costly exercise, making it potentially difficult to convince executive management of its benefits. To date, and despite substantial interest and research in the area of process modeling, the understanding of the actual benefits of process modeling in academia and practice is limited. To address this gap, this paper explores the perception of benefits derived from process modeling initiatives, as reported through a global Delphi study. The study incorporates the views of three groups of stakeholders - academics, practitioners and vendors. Our findings lead to the first identification and ranking of 19 unique benefits associated with process modeling. The study in particular found that process modeling benefits vary significantly between practitioners and academics. We argue that the variations may point to a disconnect between research projects and practical demands.
NASA Astrophysics Data System (ADS)
Lu, Mark; Liang, Curtis; King, Dion; Melvin, Lawrence S., III
2005-11-01
Model-based Optical Proximity correction has become an indispensable tool for achieving wafer pattern to design fidelity at current manufacturing process nodes. Most model-based OPC is performed considering the nominal process condition, with limited consideration of through process manufacturing robustness. This study examines the use of off-target process models - models that represent non-nominal process states such as would occur with a dose or focus variation - to understands and manipulate the final pattern correction to a more process robust configuration. The study will first examine and validate the process of generating an off-target model, then examine the quality of the off-target model. Once the off-target model is proven, it will be used to demonstrate methods of generating process robust corrections. The concepts are demonstrated using a 0.13 μm logic gate process. Preliminary indications show success in both off-target model production and process robust corrections. With these off-target models as tools, mask production cycle times can be reduced.
NASA Astrophysics Data System (ADS)
Liu, Qiang; Van Mieghem, Piet
2018-02-01
Since a real epidemic process is not necessarily Markovian, the epidemic threshold obtained under the Markovian assumption may be not realistic. To understand general non-Markovian epidemic processes on networks, we study the Weibullian susceptible-infected-susceptible (SIS) process in which the infection process is a renewal process with a Weibull time distribution. We find that, if the infection rate exceeds 1 /ln(λ1+1 ) , where λ1 is the largest eigenvalue of the network's adjacency matrix, then the infection will persist on the network under the mean-field approximation. Thus, 1 /ln(λ1+1 ) is possibly the largest epidemic threshold for a general non-Markovian SIS process with a Poisson curing process under the mean-field approximation. Furthermore, non-Markovian SIS processes may result in a multimodal prevalence. As a byproduct, we show that a limiting Weibullian SIS process has the potential to model bursts of a synchronized infection.
Jarrold, Christopher; Tam, Helen; Baddeley, Alan D; Harvey, Caroline E
2011-05-01
Two studies that examine whether the forgetting caused by the processing demands of working memory tasks is domain-general or domain-specific are presented. In each, separate groups of adult participants were asked to carry out either verbal or nonverbal operations on exactly the same processing materials while maintaining verbal storage items. The imposition of verbal processing tended to produce greater forgetting even though verbal processing operations took no longer to complete than did nonverbal processing operations. However, nonverbal processing did cause forgetting relative to baseline control conditions, and evidence from the timing of individuals' processing responses suggests that individuals in both processing groups slowed their responses in order to "refresh" the memoranda. Taken together the data suggest that processing has a domain-general effect on working memory performance by impeding refreshment of memoranda but can also cause effects that appear domain-specific and that result from either blocking of rehearsal or interference.
Semantic and self-referential processing of positive and negative trait adjectives in older adults
Glisky, Elizabeth L.; Marquine, Maria J.
2008-01-01
The beneficial effects of self-referential processing on memory have been demonstrated in numerous experiments with younger adults but have rarely been studied in older individuals. In the present study we tested young people, younger-older adults, and older-older adults in a self-reference paradigm, and compared self-referential processing to general semantic processing. Findings indicated that older adults over the age of 75 and those with below average episodic memory function showed a decreased benefit from both semantic and self-referential processing relative to a structural baseline condition. However, these effects appeared to be confined to the shared semantic processes for the two conditions, leaving the added advantage for self-referential processing unaffected These results suggest that reference to the self engages qualitatively different processes compared to general semantic processing. These processes seem relatively impervious to age and to declining memory and executive function, suggesting that they might provide a particularly useful way for older adults to improve their memories. PMID:18608973
The time course of attentional modulation on emotional conflict processing.
Zhou, Pingyan; Yang, Guochun; Nan, Weizhi; Liu, Xun
2016-01-01
Cognitive conflict resolution is critical to human survival in a rapidly changing environment. However, emotional conflict processing seems to be particularly important for human interactions. This study examined whether the time course of attentional modulation on emotional conflict processing was different from cognitive conflict processing during a flanker task. Results showed that emotional N200 and P300 effects, similar to colour conflict processing, appeared only during the relevant task. However, the emotional N200 effect preceded the colour N200 effect, indicating that emotional conflict can be identified earlier than cognitive conflict. Additionally, a significant emotional N100 effect revealed that emotional valence differences could be perceived during early processing based on rough aspects of input. The present data suggest that emotional conflict processing is modulated by top-down attention, similar to cognitive conflict processing (reflected by N200 and P300 effects). However, emotional conflict processing seems to have more time advantages during two different processing stages.
Seeing the forest for the trees: Networked workstations as a parallel processing computer
NASA Technical Reports Server (NTRS)
Breen, J. O.; Meleedy, D. M.
1992-01-01
Unlike traditional 'serial' processing computers in which one central processing unit performs one instruction at a time, parallel processing computers contain several processing units, thereby, performing several instructions at once. Many of today's fastest supercomputers achieve their speed by employing thousands of processing elements working in parallel. Few institutions can afford these state-of-the-art parallel processors, but many already have the makings of a modest parallel processing system. Workstations on existing high-speed networks can be harnessed as nodes in a parallel processing environment, bringing the benefits of parallel processing to many. While such a system can not rival the industry's latest machines, many common tasks can be accelerated greatly by spreading the processing burden and exploiting idle network resources. We study several aspects of this approach, from algorithms to select nodes to speed gains in specific tasks. With ever-increasing volumes of astronomical data, it becomes all the more necessary to utilize our computing resources fully.
Design and application of process control charting methodologies to gamma irradiation practices
NASA Astrophysics Data System (ADS)
Saylor, M. C.; Connaghan, J. P.; Yeadon, S. C.; Herring, C. M.; Jordan, T. M.
2002-12-01
The relationship between the contract irradiation facility and the customer has historically been based upon a "PASS/FAIL" approach with little or no quality metrics used to gage the control of the irradiation process. Application of process control charts, designed in coordination with mathematical simulation of routine radiation processing, can provide a basis for understanding irradiation events. By using tools that simulate the physical rules associated with the irradiation process, end-users can explore process-related boundaries and the effects of process changes. Consequently, the relationship between contractor and customer can evolve based on the derived knowledge. The resulting level of mutual understanding of the irradiation process and its resultant control benefits both the customer and contract operation, and provides necessary assurances to regulators. In this article we examine the complementary nature of theoretical (point kernel) and experimental (dosimetric) process evaluation, and the resulting by-product of improved understanding, communication and control generated through the implementation of effective process control charting strategies.
Launch Site Computer Simulation and its Application to Processes
NASA Technical Reports Server (NTRS)
Sham, Michael D.
1995-01-01
This paper provides an overview of computer simulation, the Lockheed developed STS Processing Model, and the application of computer simulation to a wide range of processes. The STS Processing Model is an icon driven model that uses commercial off the shelf software and a Macintosh personal computer. While it usually takes one year to process and launch 8 space shuttles, with the STS Processing Model this process is computer simulated in about 5 minutes. Facilities, orbiters, or ground support equipment can be added or deleted and the impact on launch rate, facility utilization, or other factors measured as desired. This same computer simulation technology can be used to simulate manufacturing, engineering, commercial, or business processes. The technology does not require an 'army' of software engineers to develop and operate, but instead can be used by the layman with only a minimal amount of training. Instead of making changes to a process and realizing the results after the fact, with computer simulation, changes can be made and processes perfected before they are implemented.
Is the processing of affective prosody influenced by spatial attention? an ERP study
2013-01-01
Background The present study asked whether the processing of affective prosody is modulated by spatial attention. Pseudo-words with a neutral, happy, threatening, and fearful prosody were presented at two spatial positions. Participants attended to one position in order to detect infrequent targets. Emotional prosody was task irrelevant. The electro-encephalogram (EEG) was recorded to assess processing differences as a function of spatial attention and emotional valence. Results Event-related potentials (ERPs) differed as a function of emotional prosody both when attended and when unattended. While emotional prosody effects interacted with effects of spatial attention at early processing levels (< 200 ms), these effects were additive at later processing stages (> 200 ms). Conclusions Emotional prosody, therefore, seems to be partially processed outside the focus of spatial attention. Whereas at early sensory processing stages spatial attention modulates the degree of emotional voice processing as a function of emotional valence, emotional prosody is processed outside of the focus of spatial attention at later processing stages. PMID:23360491
Becoming a Lunari or Taiyo expert: learned attention to parts drives holistic processing of faces.
Chua, Kao-Wei; Richler, Jennifer J; Gauthier, Isabel
2014-06-01
Faces are processed holistically, but the locus of holistic processing remains unclear. We created two novel races of faces (Lunaris and Taiyos) to study how experience with face parts influences holistic processing. In Experiment 1, subjects individuated Lunaris wherein the top, bottom, or both face halves contained diagnostic information. Subjects who learned to attend to face parts exhibited no holistic processing. This suggests that individuation only leads to holistic processing when the whole face is attended. In Experiment 2, subjects individuated both Lunaris and Taiyos, with diagnostic information in complementary face halves of the two races. Holistic processing was measured with composites made of either diagnostic or nondiagnostic face parts. Holistic processing was only observed for composites made from diagnostic face parts, demonstrating that holistic processing can occur for diagnostic face parts that were never seen together. These results suggest that holistic processing is an expression of learned attention to diagnostic face parts. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Applications of colored petri net and genetic algorithms to cluster tool scheduling
NASA Astrophysics Data System (ADS)
Liu, Tung-Kuan; Kuo, Chih-Jen; Hsiao, Yung-Chin; Tsai, Jinn-Tsong; Chou, Jyh-Horng
2005-12-01
In this paper, we propose a method, which uses Coloured Petri Net (CPN) and genetic algorithm (GA) to obtain an optimal deadlock-free schedule and to solve re-entrant problem for the flexible process of the cluster tool. The process of the cluster tool for producing a wafer usually can be classified into three types: 1) sequential process, 2) parallel process, and 3) sequential parallel process. But these processes are not economical enough to produce a variety of wafers in small volume. Therefore, this paper will propose the flexible process where the operations of fabricating wafers are randomly arranged to achieve the best utilization of the cluster tool. However, the flexible process may have deadlock and re-entrant problems which can be detected by CPN. On the other hand, GAs have been applied to find the optimal schedule for many types of manufacturing processes. Therefore, we successfully integrate CPN and GAs to obtain an optimal schedule with the deadlock and re-entrant problems for the flexible process of the cluster tool.
Extending BPM Environments of Your Choice with Performance Related Decision Support
NASA Astrophysics Data System (ADS)
Fritzsche, Mathias; Picht, Michael; Gilani, Wasif; Spence, Ivor; Brown, John; Kilpatrick, Peter
What-if Simulations have been identified as one solution for business performance related decision support. Such support is especially useful in cases where it can be automatically generated out of Business Process Management (BPM) Environments from the existing business process models and performance parameters monitored from the executed business process instances. Currently, some of the available BPM Environments offer basic-level performance prediction capabilities. However, these functionalities are normally too limited to be generally useful for performance related decision support at business process level. In this paper, an approach is presented which allows the non-intrusive integration of sophisticated tooling for what-if simulations, analytic performance prediction tools, process optimizations or a combination of such solutions into already existing BPM environments. The approach abstracts from process modelling techniques which enable automatic decision support spanning processes across numerous BPM Environments. For instance, this enables end-to-end decision support for composite processes modelled with the Business Process Modelling Notation (BPMN) on top of existing Enterprise Resource Planning (ERP) processes modelled with proprietary languages.
Improving the process of process modelling by the use of domain process patterns
NASA Astrophysics Data System (ADS)
Koschmider, Agnes; Reijers, Hajo A.
2015-01-01
The use of business process models has become prevalent in a wide area of enterprise applications. But while their popularity is expanding, concerns are growing with respect to their proper creation and maintenance. An obvious way to boost the efficiency of creating high-quality business process models would be to reuse relevant parts of existing models. At this point, however, limited support exists to guide process modellers towards the usage of appropriate model content. In this paper, a set of content-oriented patterns is presented, which is extracted from a large set of process models from the order management and manufacturing production domains. The patterns are derived using a newly proposed set of algorithms, which are being discussed in this paper. The authors demonstrate how such Domain Process Patterns, in combination with information on their historic usage, can support process modellers in generating new models. To support the wider dissemination and development of Domain Process Patterns within and beyond the studied domains, an accompanying website has been set up.
Visual Motion Perception and Visual Attentive Processes.
1988-04-01
88-0551 Visual Motion Perception and Visual Attentive Processes George Spering , New YorkUnivesity A -cesson For DTIC TAB rant AFOSR 85-0364... Spering . HIPSt: A Unix-based image processing syslem. Computer Vision, Graphics, and Image Processing, 1984,25. 331-347. ’HIPS is the Human Information...Processing Laboratory’s Image Processing System. 1985 van Santen, Jan P. It, and George Spering . Elaborated Reichardt detectors. Journal of the Optical
Some functional limit theorems for compound Cox processes
NASA Astrophysics Data System (ADS)
Korolev, Victor Yu.; Chertok, A. V.; Korchagin, A. Yu.; Kossova, E. V.; Zeifman, Alexander I.
2016-06-01
An improved version of the functional limit theorem is proved establishing weak convergence of random walks generated by compound doubly stochastic Poisson processes (compound Cox processes) to Lévy processes in the Skorokhod space under more realistic moment conditions. As corollaries, theorems are proved on convergence of random walks with jumps having finite variances to Lévy processes with variance-mean mixed normal distributions, in particular, to stable Lévy processes.
Some functional limit theorems for compound Cox processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korolev, Victor Yu.; Institute of Informatics Problems FRC CSC RAS; Chertok, A. V.
2016-06-08
An improved version of the functional limit theorem is proved establishing weak convergence of random walks generated by compound doubly stochastic Poisson processes (compound Cox processes) to Lévy processes in the Skorokhod space under more realistic moment conditions. As corollaries, theorems are proved on convergence of random walks with jumps having finite variances to Lévy processes with variance-mean mixed normal distributions, in particular, to stable Lévy processes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROCESSES Service of Process § 205.12 Process served on the Register of Copyrights or an employee in his or... and mode of service. (d) The Office will accept service of process for an employee only when the legal... procedure. Service of process in this case is inadequate when made only on the General Counsel. An employee...
GOCI Level-2 Processing Improvements and Cloud Motion Analysis
NASA Technical Reports Server (NTRS)
Robinson, Wayne D.
2015-01-01
The Ocean Biology Processing Group has been working with the Korean Institute of Ocean Science and Technology (KIOST) to process geosynchronous ocean color data from the GOCI (Geostationary Ocean Color Instrument) aboard the COMS (Communications, Ocean and Meteorological Satellite). The level-2 processing program, l2gen has GOCI processing as an option. Improvements made to that processing are discussed here as well as a discussion about cloud motion effects.
CrossTalk. The Journal of Defense Software Engineering. Volume 25, Number 3
2012-06-01
OMG) standard Business Process Modeling and Nota- tion ( BPMN ) [6] graphical notation. I will address each of these: identify and document steps...to a value stream map using BPMN and textual process narratives. The resulting process narratives or process metadata includes key information...objectives. Once the processes are identified we can graphically document them capturing the process using BPMN (see Figure 1). The BPMN models
Evidence for the contribution of a threshold retrieval process to semantic memory.
Kempnich, Maria; Urquhart, Josephine A; O'Connor, Akira R; Moulin, Chris J A
2017-10-01
It is widely held that episodic retrieval can recruit two processes: a threshold context retrieval process (recollection) and a continuous signal strength process (familiarity). Conversely the processes recruited during semantic retrieval are less well specified. We developed a semantic task analogous to single-item episodic recognition to interrogate semantic recognition receiver-operating characteristics (ROCs) for a marker of a threshold retrieval process. We fitted observed ROC points to three signal detection models: two models typically used in episodic recognition (unequal variance and dual-process signal detection models) and a novel dual-process recollect-to-reject (DP-RR) signal detection model that allows a threshold recollection process to aid both target identification and lure rejection. Given the nature of most semantic questions, we anticipated the DP-RR model would best fit the semantic task data. Experiment 1 (506 participants) provided evidence for a threshold retrieval process in semantic memory, with overall best fits to the DP-RR model. Experiment 2 (316 participants) found within-subjects estimates of episodic and semantic threshold retrieval to be uncorrelated. Our findings add weight to the proposal that semantic and episodic memory are served by similar dual-process retrieval systems, though the relationship between the two threshold processes needs to be more fully elucidated.
Klingner, Carsten M; Brodoehl, Stefan; Huonker, Ralph; Witte, Otto W
2016-01-01
The question regarding whether somatosensory inputs are processed in parallel or in series has not been clearly answered. Several studies that have applied dynamic causal modeling (DCM) to fMRI data have arrived at seemingly divergent conclusions. However, these divergent results could be explained by the hypothesis that the processing route of somatosensory information changes with time. Specifically, we suggest that somatosensory stimuli are processed in parallel only during the early stage, whereas the processing is later dominated by serial processing. This hypothesis was revisited in the present study based on fMRI analyses of tactile stimuli and the application of DCM to magnetoencephalographic (MEG) data collected during sustained (260 ms) tactile stimulation. Bayesian model comparisons were used to infer the processing stream. We demonstrated that the favored processing stream changes over time. We found that the neural activity elicited in the first 100 ms following somatosensory stimuli is best explained by models that support a parallel processing route, whereas a serial processing route is subsequently favored. These results suggest that the secondary somatosensory area (SII) receives information regarding a new stimulus in parallel with the primary somatosensory area (SI), whereas later processing in the SII is dominated by the preprocessed input from the SI.
Selection of Sustainable Processes using Sustainability ...
Chemical products can be obtained by process pathways involving varying amounts and types of resources, utilities, and byproduct formation. When such competing process options such as six processes for making methanol as are considered in this study, it is necessary to identify the most sustainable option. Sustainability of a chemical process is generally evaluated with indicators that require process and chemical property data. These indicators individually reflect the impacts of the process on areas of sustainability, such as the environment or society. In order to choose among several alternative processes an overall comparative analysis is essential. Generally net profit will show the most economic process. A mixed integer optimization problem can also be solved to identify the most economic among competing processes. This method uses economic optimization and leaves aside the environmental and societal impacts. To make a decision on the most sustainable process, the method presented here rationally aggregates the sustainability indicators into a single index called sustainability footprint (De). Process flow and economic data were used to compute the indicator values. Results from sustainability footprint (De) are compared with those from solving a mixed integer optimization problem. In order to identify the rank order of importance of the indicators, a multivariate analysis is performed using partial least square variable importance in projection (PLS-VIP)
Yarmohammadian, Mohammad H; Ebrahimipour, Hossein; Doosty, Farzaneh
2014-01-01
In a world of continuously changing business environments, organizations have no option; however, to deal with such a big level of transformation in order to adjust the consequential demands. Therefore, many companies need to continually improve and review their processes to maintain their competitive advantages in an uncertain environment. Meeting these challenges requires implementing the most efficient possible business processes, geared to the needs of the industry and market segments that the organization serves globally. In the last 10 years, total quality management, business process reengineering, and business process management (BPM) have been some of the management tools applied by organizations to increase business competiveness. This paper is an original article that presents implementation of "BPM" approach in the healthcare domain that allows an organization to improve and review its critical business processes. This project was performed in "Qaem Teaching Hospital" in Mashhad city, Iran and consists of four distinct steps; (1) identify business processes, (2) document the process, (3) analyze and measure the process, and (4) improve the process. Implementing BPM in Qaem Teaching Hospital changed the nature of management by allowing the organization to avoid the complexity of disparate, soloed systems. BPM instead enabled the organization to focus on business processes at a higher level.
Klingner, Carsten M.; Brodoehl, Stefan; Huonker, Ralph; Witte, Otto W.
2016-01-01
The question regarding whether somatosensory inputs are processed in parallel or in series has not been clearly answered. Several studies that have applied dynamic causal modeling (DCM) to fMRI data have arrived at seemingly divergent conclusions. However, these divergent results could be explained by the hypothesis that the processing route of somatosensory information changes with time. Specifically, we suggest that somatosensory stimuli are processed in parallel only during the early stage, whereas the processing is later dominated by serial processing. This hypothesis was revisited in the present study based on fMRI analyses of tactile stimuli and the application of DCM to magnetoencephalographic (MEG) data collected during sustained (260 ms) tactile stimulation. Bayesian model comparisons were used to infer the processing stream. We demonstrated that the favored processing stream changes over time. We found that the neural activity elicited in the first 100 ms following somatosensory stimuli is best explained by models that support a parallel processing route, whereas a serial processing route is subsequently favored. These results suggest that the secondary somatosensory area (SII) receives information regarding a new stimulus in parallel with the primary somatosensory area (SI), whereas later processing in the SII is dominated by the preprocessed input from the SI. PMID:28066197
A quality by design study applied to an industrial pharmaceutical fluid bed granulation.
Lourenço, Vera; Lochmann, Dirk; Reich, Gabriele; Menezes, José C; Herdling, Thorsten; Schewitz, Jens
2012-06-01
The pharmaceutical industry is encouraged within Quality by Design (QbD) to apply science-based manufacturing principles to assure quality not only of new but also of existing processes. This paper presents how QbD principles can be applied to an existing industrial pharmaceutical fluid bed granulation (FBG) process. A three-step approach is presented as follows: (1) implementation of Process Analytical Technology (PAT) monitoring tools at the industrial scale process, combined with multivariate data analysis (MVDA) of process and PAT data to increase the process knowledge; (2) execution of scaled-down designed experiments at a pilot scale, with adequate PAT monitoring tools, to investigate the process response to intended changes in Critical Process Parameters (CPPs); and finally (3) the definition of a process Design Space (DS) linking CPPs to Critical to Quality Attributes (CQAs), within which product quality is ensured by design, and after scale-up enabling its use at the industrial process scale. The proposed approach was developed for an existing industrial process. Through enhanced process knowledge established a significant reduction in product CQAs, variability already within quality specifications ranges was achieved by a better choice of CPPs values. The results of such step-wise development and implementation are described. Copyright © 2012 Elsevier B.V. All rights reserved.
Marwaha, R S; Pandey, S K; Kumar, Dinesh; Singh, S V; Kumar, Parveen
2010-03-01
Indian potato (Solanum tuberosum L.) processing industry has emerged fast due to economic liberalization coupled with growing urbanization, expanding market options and development of indegenous processing varieties. India's first potato processing varieties 'Kufri Chipsona-1' and 'Kufri Chipsona-2' were developed in 1998, followed by an improved processing variety 'Kufri Chipsona-3' in 2005 for the Indian plains and first chipping variety 'Kufri Himsona' for the hills. These varieties have >21% tuber dry matter content, contain low reducing sugars (<0.1% on fresh wt) and are most suitable for producing chips, French fries and dehydrated products. The availability of these varieties and standardization of storage techniques for processing potatoes at 10-12°C with sprout suppressant isopropyl N-(3-chlorophenyl) carbamate have revolutionized the processing scenario within a short span of 10 years. Currently about 4% of total potato produce is being processed in organized and unorganized sector. Potato processing industry mainly comprises 4 segments: potato chips, French fries, potato flakes/powder and other processed products. However, potato chips still continue to be the most popular processed product. The major challenge facing the industries lies in arranging round the year supply of processing varieties at reasonable price for their uninterrupted operation, besides several others which have been discussed at length and addressed with concrete solutions.
Six sigma: process of understanding the control and capability of ranitidine hydrochloride tablet.
Chabukswar, Ar; Jagdale, Sc; Kuchekar, Bs; Joshi, Vd; Deshmukh, Gr; Kothawade, Hs; Kuckekar, Ab; Lokhande, Pd
2011-01-01
The process of understanding the control and capability (PUCC) is an iterative closed loop process for continuous improvement. It covers the DMAIC toolkit in its three phases. PUCC is an iterative approach that rotates between the three pillars of the process of understanding, process control, and process capability, with each iteration resulting in a more capable and robust process. It is rightly said that being at the top is a marathon and not a sprint. The objective of the six sigma study of Ranitidine hydrochloride tablets is to achieve perfection in tablet manufacturing by reviewing the present robust manufacturing process, to find out ways to improve and modify the process, which will yield tablets that are defect-free and will give more customer satisfaction. The application of six sigma led to an improved process capability, due to the improved sigma level of the process from 1.5 to 4, a higher yield, due to reduced variation and reduction of thick tablets, reduction in packing line stoppages, reduction in re-work by 50%, a more standardized process, with smooth flow and change in coating suspension reconstitution level (8%w/w), a huge cost reduction of approximately Rs.90 to 95 lakhs per annum, an improved overall efficiency by 30% approximately, and improved overall quality of the product.
Friction spinning - Twist phenomena and the capability of influencing them
NASA Astrophysics Data System (ADS)
Lossen, Benjamin; Homberg, Werner
2016-10-01
The friction spinning process can be allocated to the incremental forming techniques. The process consists of process elements from both metal spinning and friction welding. The selective combination of process elements from these two processes results in the integration of friction sub-processes in a spinning process. This implies self-induced heat generation with the possibility of manufacturing functionally graded parts from tube and sheets. Compared with conventional spinning processes, this in-process heat treatment permits the extension of existing forming limits and also the production of more complex geometries. Furthermore, the defined adjustment of part properties like strength, grain size/orientation and surface conditions can be achieved through the appropriate process parameter settings and consequently by setting a specific temperature profile in combination with the degree of deformation. The results presented from tube forming start with an investigation into the resulting twist phenomena in flange processing. In this way, the influence of the main parameters, such as rotation speed, feed rate, forming paths and tool friction surface, and their effects on temperature, forces and finally the twist behavior are analyzed. Following this, the significant correlations with the parameters and a new process strategy are set out in order to visualize the possibility of achieving a defined grain texture orientation.
Markovic, Gabriela; Schult, Marie-Louise; Bartfai, Aniko; Elg, Mattias
2017-01-31
Progress in early cognitive recovery after acquired brain injury is uneven and unpredictable, and thus the evaluation of rehabilitation is complex. The use of time-series measurements is susceptible to statistical change due to process variation. To evaluate the feasibility of using a time-series method, statistical process control, in early cognitive rehabilitation. Participants were 27 patients with acquired brain injury undergoing interdisciplinary rehabilitation of attention within 4 months post-injury. The outcome measure, the Paced Auditory Serial Addition Test, was analysed using statistical process control. Statistical process control identifies if and when change occurs in the process according to 3 patterns: rapid, steady or stationary performers. The statistical process control method was adjusted, in terms of constructing the baseline and the total number of measurement points, in order to measure a process in change. Statistical process control methodology is feasible for use in early cognitive rehabilitation, since it provides information about change in a process, thus enabling adjustment of the individual treatment response. Together with the results indicating discernible subgroups that respond differently to rehabilitation, statistical process control could be a valid tool in clinical decision-making. This study is a starting-point in understanding the rehabilitation process using a real-time-measurements approach.
Surasani, Vijay Kumar Reddy
2018-05-22
Several technologies and methods have been developed over the years to address the environmental pollution and nutritional losses associated with the dumping of fish processing waste and low-cost fish and by-products. Despite the continuous efforts put in this field, none of the developed technologies was successful in addressing the issues due to various technical problems. To solve the problems associated with the fish processing waste and low-value fish and by-products, a process called pH shift/acid and alkaline solubilization process was developed. In this process, proteins are first solubilized using acid and alkali followed by precipitating them at their isoelectric pH to recover functional and stable protein isolates from underutilized fish species and by-products. Many studies were conducted using pH shift process to recover proteins from fish and fish by-products and found to be most successful in recovering proteins with increased yields than conventional surimi (three cycle washing) process and with good functional properties. In this paper, problems associated with conventional processing, advantages and principle of pH shift processing, effect of pH shift process on the quality and storage stability of recovered isolates, applications protein isolates, etc. are discussed in detail for better understanding.
Six Sigma: Process of Understanding the Control and Capability of Ranitidine Hydrochloride Tablet
Chabukswar, AR; Jagdale, SC; Kuchekar, BS; Joshi, VD; Deshmukh, GR; Kothawade, HS; Kuckekar, AB; Lokhande, PD
2011-01-01
The process of understanding the control and capability (PUCC) is an iterative closed loop process for continuous improvement. It covers the DMAIC toolkit in its three phases. PUCC is an iterative approach that rotates between the three pillars of the process of understanding, process control, and process capability, with each iteration resulting in a more capable and robust process. It is rightly said that being at the top is a marathon and not a sprint. The objective of the six sigma study of Ranitidine hydrochloride tablets is to achieve perfection in tablet manufacturing by reviewing the present robust manufacturing process, to find out ways to improve and modify the process, which will yield tablets that are defect-free and will give more customer satisfaction. The application of six sigma led to an improved process capability, due to the improved sigma level of the process from 1.5 to 4, a higher yield, due to reduced variation and reduction of thick tablets, reduction in packing line stoppages, reduction in re-work by 50%, a more standardized process, with smooth flow and change in coating suspension reconstitution level (8%w/w), a huge cost reduction of approximately Rs.90 to 95 lakhs per annum, an improved overall efficiency by 30% approximately, and improved overall quality of the product. PMID:21607050
The consequence of spatial visual processing dysfunction caused by traumatic brain injury (TBI).
Padula, William V; Capo-Aponte, Jose E; Padula, William V; Singman, Eric L; Jenness, Jonathan
2017-01-01
A bi-modal visual processing model is supported by research to affect dysfunction following a traumatic brain injury (TBI). TBI causes dysfunction of visual processing affecting binocularity, spatial orientation, posture and balance. Research demonstrates that prescription of prisms influence the plasticity between spatial visual processing and motor-sensory systems improving visual processing and reducing symptoms following a TBI. The rationale demonstrates that visual processing underlies the functional aspects of binocularity, balance and posture. The bi-modal visual process maintains plasticity for efficiency. Compromise causes Post Trauma Vision Syndrome (PTVS) and Visual Midline Shift Syndrome (VMSS). Rehabilitation through use of lenses, prisms and sectoral occlusion has inter-professional implications in rehabilitation affecting the plasticity of the bi-modal visual process, thereby improving binocularity, spatial orientation, posture and balance Main outcomes: This review provides an opportunity to create a new perspective of the consequences of TBI on visual processing and the symptoms that are often caused by trauma. It also serves to provide a perspective of visual processing dysfunction that has potential for developing new approaches of rehabilitation. Understanding vision as a bi-modal process facilitates a new perspective of visual processing and the potentials for rehabilitation following a concussion, brain injury or other neurological events.
Improved compliance by BPM-driven workflow automation.
Holzmüller-Laue, Silke; Göde, Bernd; Fleischer, Heidi; Thurow, Kerstin
2014-12-01
Using methods and technologies of business process management (BPM) for the laboratory automation has important benefits (i.e., the agility of high-level automation processes, rapid interdisciplinary prototyping and implementation of laboratory tasks and procedures, and efficient real-time process documentation). A principal goal of the model-driven development is the improved transparency of processes and the alignment of process diagrams and technical code. First experiences of using the business process model and notation (BPMN) show that easy-to-read graphical process models can achieve and provide standardization of laboratory workflows. The model-based development allows one to change processes quickly and an easy adaption to changing requirements. The process models are able to host work procedures and their scheduling in compliance with predefined guidelines and policies. Finally, the process-controlled documentation of complex workflow results addresses modern laboratory needs of quality assurance. BPMN 2.0 as an automation language to control every kind of activity or subprocess is directed to complete workflows in end-to-end relationships. BPMN is applicable as a system-independent and cross-disciplinary graphical language to document all methods in laboratories (i.e., screening procedures or analytical processes). That means, with the BPM standard, a communication method of sharing process knowledge of laboratories is also available. © 2014 Society for Laboratory Automation and Screening.
Fardet, Anthony
2016-05-18
Beyond nutritional composition, food structure is increasingly recognized to play a role in food health potential, notably in satiety and glycemic responses. Food structure is also highly dependent on processing conditions. The hypothesis for this study is, based on a data set of 98 ready-to-eat foods, that the degree of food processing would correlate with the satiety index (SI) and glycemic response. Glycemic response was evaluated according to two indices: the glycemic index (GI) and a newly designed index, the glycemic glucose equivalent (GGE). The GGE indicates how a quantity of a certain food affects blood glucose levels by identifying the amount of food glucose that would have an effect equivalent to that of the food. Then, foods were clustered within three processing groups based on the international NOVA classification: (1) raw and minimally processed foods; (2) processed foods; and (3) ultra-processed foods. Ultra-processed foods are industrial formulations of substances extracted or derived from food and additives, typically with five or more and usually many (cheap) ingredients. The data were correlated by nonparametric Spearman's rank correlation coefficient on quantitative data. The main results show strong correlations between GGE, SI and the degree of food processing, while GI is not correlated with the degree of processing. Thus, the more food is processed, the higher the glycemic response and the lower its satiety potential. The study suggests that complex, natural, minimally and/or processed foods should be encouraged for consumption rather than highly unstructured and ultra-processed foods when choosing weakly hyperglycemic and satiating foods.
Simões, Bárbara Dos Santos; Cardoso, Letícia de Oliveira; Benseñor, Isabela Judith Martins; Schmidt, Maria Inês; Duncan, Bruce Bartholow; Luft, Vivian Cristine; Molina, Maria Del Carmen Bisi; Barreto, Sandhi Maria; Levy, Renata Bertazzi; Giatti, Luana
2018-03-05
The objective of the study was to estimate the contribution of ultra-processed foods to total caloric intake and investigate whether it differs according to socioeconomic position. We analyzed baseline data from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil 2008-2010; N = 14.378) and data on dietary intake using a food frequency questionnaire, assigning it into three categories: unprocessed or minimally processed foods and processed culinary ingredients, processed foods, and ultra-processed foods. We measured the associations between socioeconomic position (education, per capita household income, and occupational social class) and the percentage of caloric contribution of ultra-processed foods, using generalized linear regression models adjusted for age and sex. Unprocessed or minimally processed foods and processed culinary ingredients contributed to 65.7% of the total caloric intake, followed by ultra-processed foods (22.7%). After adjustments, the percentage of caloric contribution of ultra-processed foods was 20% lower among participants with incomplete elementary school when compared to postgraduates. Compared to individuals from upper income classes, the caloric contribution of ultra-processed foods was 10%, 15% and 20% lower among the ones from the three lowest income, respectively. The caloric contribution of ultra-processed foods was also 7%, 12%, 12%, and 17% lower among participants in the lowest occupational social class compared to those from high social classes. Results suggest that the caloric contribution of ultra-processed foods is higher among individuals from high socioeconomic positions with a dose-response relationship for the associations.
Kiefer, Markus
2012-01-01
Unconscious priming is a prototypical example of an automatic process, which is initiated without deliberate intention. Classical theories of automaticity assume that such unconscious automatic processes occur in a purely bottom-up driven fashion independent of executive control mechanisms. In contrast to these classical theories, our attentional sensitization model of unconscious information processing proposes that unconscious processing is susceptible to executive control and is only elicited if the cognitive system is configured accordingly. It is assumed that unconscious processing depends on attentional amplification of task-congruent processing pathways as a function of task sets. This article provides an overview of the latest research on executive control influences on unconscious information processing. I introduce refined theories of automaticity with a particular focus on the attentional sensitization model of unconscious cognition which is specifically developed to account for various attentional influences on different types of unconscious information processing. In support of the attentional sensitization model, empirical evidence is reviewed demonstrating executive control influences on unconscious cognition in the domains of visuo-motor and semantic processing: subliminal priming depends on attentional resources, is susceptible to stimulus expectations and is influenced by action intentions and task sets. This suggests that even unconscious processing is flexible and context-dependent as a function of higher-level executive control settings. I discuss that the assumption of attentional sensitization of unconscious information processing can accommodate conflicting findings regarding the automaticity of processes in many areas of cognition and emotion. This theoretical view has the potential to stimulate future research on executive control of unconscious processing in healthy and clinical populations. PMID:22470329