Science.gov

Sample records for purifying gases desulfurization

  1. Catalytic desulfurization of industrial waste gases

    SciTech Connect

    Dupin, Th.

    1985-07-30

    Industrial waste gases containing objectionable/polluting compounds of sulfur, e.g., H/sub 2/S, SO/sub 2/ and such organosulfur derivatives as COS, CS/sub 2/ and mercaptans, are catalytically desulfurized, e.g., by Claus process, employing an improved catalyst comprising titanium dioxide and calcium, barium, strontium or magnesium sulfate.

  2. Fitter apparatus for purifying exhaust gases

    SciTech Connect

    Oyobe, K.; Fukutani, M.; Ito, K.; Matsui, K.; Miwa, N.; Nomura, E.

    1985-05-28

    Filter apparatus having a honeycomb structure and a heater for purifying exhaust gases consists of cells or passages defined by porous partition walls. Alternate passages are provided respectively with upstream plugs and downstream plugs. Particulates in exhaust gases are trapped in the honeycomb structure and ignited by the heater. The upstream plugs define spaces upstream thereof in which particulates are trapped in addition to those trapped in the passages having downstream plugs. The heat of burning of the particulates trapped in the spaces facilitates the burning of the particulates trapped in the passages having downstream plugs. Therefore, the exhaust gas particualtes trapped and collected in the downstream portion of the structure can also be easily burned to regenerate the structure over its entire length.

  3. Methods, systems, and devices for deep desulfurization of fuel gases

    DOEpatents

    Li, Liyu; King, David L.; Liu, Jun; Huo, Qisheng

    2012-04-17

    A highly effective and regenerable method, system and device that enables the desulfurization of warm fuel gases by passing these warm gasses over metal-based sorbents arranged in a mesoporous substrate. This technology will protect Fischer-Tropsch synthesis catalysts and other sulfur sensitive catalysts, without drastic cooling of the fuel gases. This invention can be utilized in a process either alone or alongside other separation processes, and allows the total sulfur in such a gas to be reduced to less than 500 ppb and in some instances as low as 50 ppb.

  4. Catalyst for purifying diesel engine exhaust gases

    SciTech Connect

    Saito, K.; Ueda, K.; Ikeda, Y.; Ono, T.

    1986-10-14

    This patent describes a catalyst for purifying a diesel engine exhaust gas. The catalyst comprises a refractory three-dimensional structure having a gas filter function, a porous inorganic carrier supported on it, and (a) vanadium oxide and (b) at least one metal selected from the group consisting of platinum, rhodium and palladium supported on the carrier. The amount of component (a) is in the range of 0.2 to 40.0 g as V/sub 2/O/sub 5/ per liter of the structure and the amount of component (b) is in the range of 0.1 to 4.0 g as metal liter of the structure, wherein the mole ratio of component (a) to component (b) deposited as 1-90:1.

  5. Catalyst for Desulfurization of Industrial Waste Gases and Process for Preparing the Catalyst

    SciTech Connect

    Dupin, T.

    1983-12-27

    Industrial waste gases containing objectionable/polluting compounds of sulfur, e.g., H/sub 2/S, SO/sub 2/ and such organo-sulfur derivatives as COS, CS/sub 2/ and mercaptans, are catalytically desulfurized, e.g., by Claus process, employing an improved catalyst comprising titanium dioxide and calcium, barium, strontium or magnesium sulfate.

  6. Catalyst for the desulfurization of industrial waste gases and process for its preparation

    SciTech Connect

    Dupin, T.

    1984-11-27

    Industrial waste gases containing objectionable/polluting compounds of sulfur, e.g., H/sub 2/S, SO/sub 2/ and such organosulfur derivatives as COS, CS/sub 2/ and mercaptans, are catalytically desulfurized, e.g., by Claus process, employing an improved catalyst comprising titanium dioxide and calcium, barium, strontium or magnesium sulfate.

  7. Apparatus for hot-gas desulfurization of fuel gases

    DOEpatents

    Bissett, Larry A.

    1992-01-01

    An apparatus for removing sulfur values from a hot fuel gas stream in a fdized bed contactor containing particulate sorbent material by employing a riser tube regeneration arrangement. Sulfur-laden sorbent is continuously removed from the fluidized bed through a stand pipe to the riser tube and is rapidly regenerated in the riser tube during transport of the sorbent therethrough by employing an oxygen-containing sorbent regenerating gas stream. The riser tube extends from a location below the fluidized bed to an elevation above the fluidized bed where a gas-solid separating mechanism is utilized to separate the regenerated particulate sorbent from the regeneration gases and reaction gases so that the regenerated sorbent can be returned to the fluidized bed for reuse.

  8. Desulfurization of flue gases with complete sulfite oxidation

    SciTech Connect

    Lurie, D.

    1983-05-03

    Flue gas containing sulfur dioxide is purified (And the sulfur content thereof is recovered in elemental form) by scrubbing the gas with aqueous sodium aluminate-sodium hydroxide solution thereby forming an underflow suspension consisting essentially of sodium and aluminum sulfites and sulfates and fly ash; oxidizing the sulfites to sulfates; evaporating the free water present; reducing the resulting apparently dry mixture of sodium and aluminum sulfates by the action of reactive hydrogen and a carbonaceous reducing agent thereby forming a solid mixture of a sodium oxide and sodium aluminate and a gaseous mixture comprising sulfur dioxide, sulfur, and hydrogen sulfide; condensing said sulfur; and inter-reacting said sulfur dioxide and hydrogen sulfide to provide elemental sulfur. The solid mixture is dissolved in water to regenerate the scrubbing solution, which is then recycled. The solution is filtered at any convenient point to remove fly ash and any other solids present.

  9. Desulfurization of flue gases with complete sulfite oxidation

    SciTech Connect

    Lurie, D.

    1981-12-22

    Flue gas containing sulfur dioxide is purified (and the sulfur content thereof is recovered in elemental form) by scrubbing the gas with aqueous sodium aluminate-sodium hydroxide solution thereby forming an underflow suspension consisting essentially of sodium and aluminum sulfites and sulfates and fly ash; oxidizing the sulfites to sulfates; evaporating the free water present; reducing the resulting apparently dry mixture of sodium and aluminum sulfates by the action of reactive hydrogen and a carbonaceous reducing agent thereby forming a solid mixture of a sodium oxide and sodium aluminate and a gaseous mixture comprising sulfur dioxide, sulfur, and hydrogen sulfide; condensing said sulfur; and inter-reacting said sulfur dioxide and hydrogen sulfide to provide elemental sulfur. The solid mixture is dissolved in water to regenerate the scrubbing solution, which is then recycled. The solution is filtered at any convenient point to remove fly ash and any other solids present.

  10. A gridded ionization chamber with a movable cathode for precise measurements of W-values in highly purified rare gases

    NASA Astrophysics Data System (ADS)

    Sasaki, Shinichi; Miyajima, Mitsuhiro; Katoh, Kazuaki; Takebe, Masahiro; Seto, Kunio

    1987-04-01

    A single gridded ionization chamber with a movable cathode was constructed in order to measure W-values in highly purified rare gases without ambiguity. The chamber gases were continuously purified with a purifier filled with many pellets of titanium-barium getter. The purifier proved to be so powerful as to reduce impurities in rare gases to the level of 1 ppb or less. Performance tests of the chamber were made by measurements of W-values of argon-methane mixtures relative to that of argon. The measurements were made with a precision of ±0.14%.

  11. Method for the desulfurization of hot product gases from coal gasifier

    DOEpatents

    Grindley, Thomas

    1988-01-01

    The gasification of sulfur-bearing coal produces a synthesis gas which contains a considerable concentration of sulfur compounds especially hydrogen sulfide that renders the synthesis gas environmentally unacceptable unless the concentration of the sulfur compounds is significantly reduced. To provide for such a reduction in the sulfur compounds a calcium compound is added to the gasifier with the coal to provide some sulfur absorption. The synthesis gas from the gasifier contains sulfur compounds and is passed through an external bed of a regenerable solid absorbent, preferably zinc ferrite, for essentially completed desulfurizing the hot synthesis gas. This absorbent is, in turn, periodically or continuously regenerated by passing a mixture of steam and air or oxygen through the bed for converting absorbed hydrogen sulfide to sulfur dioxide. The resulting tail gas containing sulfur dioxide and steam is injected into the gasifier where the sulfur dioxide is converted by the calcium compound into a stable form of sulfur such as calcium sulfate.

  12. Process for purifying and cooling partial oxidation gases containing dust-like impurities

    SciTech Connect

    Geidies, U.; Wilmer, G.

    1982-05-04

    The hot partial oxidation gases which are formed in a gasifier for solid or liquid fuel are passed first into a dust separator under conditions where 70 to 95% of the impurities are eliminated , whereupon the gases then are washed in a wet washer with an amount of water not higher than necessary to remove the residual dust impurities. The process has the particular advantage of a very low amount of drainage water and has a high safety factor and adaptability for different conditions.

  13. Apparatus for purifying arsine, phosphine, ammonia, and inert gases to remove Lewis acid and oxidant impurities therefrom

    DOEpatents

    Tom, Glenn M.; Brown, Duncan W.

    1991-01-08

    An apparatus for purifying a gaseous mixture comprising arsine, phosphine, ammonia, and/or inert gases, to remove Lewis acid and/or oxidant impurities therefrom, comprising a vessel containing a bed of a scavenger, the scavenger including a support having associated therewith an anion which is effective to remove such impurities, such anion being selected from one or more members of the group consisting of: (i) carbanions whose corresponding protonated compounds have a pK.sub.a value of from about 22 to about 36; and (ii) anions formed by reaction of such carbanions with the primary component of the mixture.

  14. Regeneration of absorbents used for purifying effluent gases from acidic components

    SciTech Connect

    Gladkii, A.V.; Ivanina, I.N.

    1982-09-20

    The purpose of this report was to study the equilibrium conditions for the interaction between sodium sulfate and the calcium salts of various carboxylic acids. The experimental data presented can be recommended for engineering calculations for the regeneration of spent absorbent containing sodium sulfate or a mixture of sodium sulfate, sulfite, phosphate, and fluoride in various combinations, since, as previously shown, the equilibrium constants for the reaction between sodium sulfite, phosphate, or fluoride and calcium hydroxide or calcium carboxylate are large and thus an absorbent with these components is almost completely regenerated. The present data can be used for planning and putting into effect the purification of gases from acidic components in various branches of industry.

  15. Removal of hazardous gaseous pollutants from industrial flue gases by a novel multi-stage fluidized bed desulfurizer.

    PubMed

    Mohanty, C R; Adapala, Sivaji; Meikap, B C

    2009-06-15

    Sulfur dioxide and other sulfur compounds are generated as primary pollutants from the major industries such as sulfuric acid plants, cupper smelters, catalytic cracking units, etc. and cause acid rain. To remove the SO(2) from waste flue gas a three-stage counter-current multi-stage fluidized bed adsorber was developed as desulfurization equipment and operated in continuous bubbling fluidization regime for the two-phase system. This paper represents the desulfurization of gas mixtures by chemical sorption of sulfur dioxide on porous granular calcium oxide particles in the reactor at ambient temperature. The advantages of the multi-stage fluidized bed reactor are of high mass transfer and high gas-solid residence time that can enhance the removal of acid gas at low temperature by dry method. Experiments were carried out in the bubbling fluidization regime supported by visual observation. The effects of the operating parameters such as sorbent (lime) flow rate, superficial gas velocity, and the weir height on SO(2) removal efficiency in the multistage fluidized bed are reported. The results have indicated that the removal efficiency of the sulfur dioxide was found to be 65% at high solid flow rate (2.0 kg/h) corresponding to lower gas velocity (0.265 m/s), wier height of 70 mm and SO(2) concentration of 500 ppm at room temperature.

  16. Biocatalytic desulfurization

    SciTech Connect

    Monticello, D.J. )

    1994-02-01

    Biocatalytic desulfurization (BDS) has many advantages compared to traditional refinery desulfurization processes, including: lower capital and operating costs, low-temperature and low-pressure operation and no hydrogen requirement. Biotechnology has developed from an art into a science in recent years. The HPI is familiar with an artful' application of biotechnology in the biotreatment of refinery wastes, and has experimented with other technologies for over 50 years. This paper discusses the following: biorefining, sulfur management, conventional solutions, bioprocessing precedents, new biotechnology tools, microbial desulfurization, biocatalytic desulfurization, specificity, biodesulfurization conceptual design, development issues, and implementation.

  17. Enzymatic desulfurization of coal

    SciTech Connect

    Marquis, J.K. . School of Medicine); Kitchell, J.P. )

    1988-10-07

    Our current efforts to develop clean coal technology, emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes or commercially available enzymes. Our work is focused on the treatment of model'' organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix.

  18. Enzymatic desulfurization of coal

    SciTech Connect

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V. ); Marquis, J.K. . School of Medicine)

    1989-06-16

    Our current efforts to develop clean coal technology emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes as well as commercially available enzymes. Our work is focused on the treatment of model'' organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix.

  19. Enzymatic desulfurization of coal

    SciTech Connect

    Marquis, J.K. . School of Medicine); Kitchell, J.P. )

    1988-12-15

    Our current efforts to develop clean coal technology emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes or commercially available enzymes. Our work is focused on the treatment of model'' organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix.

  20. An extended equation for rate coefficients for adsorption of organic vapors and gases on activated carbons in air-purifying respirator cartridges.

    PubMed

    Wood, G O; Lodewyckx, P

    2003-01-01

    Organic vapor adsorption rates in air-purifying respirator cartridges (and other packed beds of activated carbon granules) need to be known for estimating service lives. The correlation of Lodewyckx and Vansant [AIHAJ 61:501-505 (2000)] for mass transfer coefficients for organic vapor adsorption onto activated carbon was tested with additional data from three sources. It was then extended to better describe all the data, including that for gases. The additional parameter that accomplished this was the square root of molar equilibrium capacity of the vapor or gas on the carbon. This change, along with skew corrections when appropriate, resulted in better correlations with all experimental rate coefficients. PMID:14521430

  1. Fluidized bed desulfurization

    NASA Technical Reports Server (NTRS)

    Ravindram, M.; Kallvinskas, J. J. (Inventor)

    1985-01-01

    High sulfur content carbonaceous material, such as coal is desulfurized by continuous fluidized suspension in a reactor with chlorine gas, inert dechlorinating gas and hydrogen gas. A source of chlorine gas, a source of inert gas and a source of hydrogen gas are connected to the bottom inlet through a manifold and a heater. A flow controler operates servos in a manner to continuously and sequentially suspend coal in the three gases. The sulfur content is reduced at least 50% by the treatment.

  2. Performance of a novel synthetic Ca-based solid sorbent suitable for desulfurizing flue gases in a fluidized bed

    SciTech Connect

    Pacciani, R.; Muller, C.R.; Davidson, J.F.; Dennis, J.S.; Hayhurst, A.N.

    2009-08-05

    The extent and mechanism of sulfation and carbonation of limestone, dolomite, and chalk, were compared with a novel, synthetic sorbent (85 wt % CaO and 15 wt % Ca{sub 12}A{sub l14}O{sub 33}), by means of experiments undertaken in a small, electrically heated fluidized bed. The sorbent particles were used either (I) untreated, sieved to two particle sizes and reacted with two different concentrations of SO{sub 2}, or (ii) after being cycled 20 times between carbonation, in 15 vol % CO{sub 2} in N2, and calcination, in pure N2, at 750 degrees C. The uptake of untreated limestone and dolomite was generally low (<0.2 g(SO{sub 2})/g(sorbent)), confirming previous results, However, the untreated chalk and the synthetic sorbent were found to be substantially more reactive with SO{sub 2}, and their final uptake was significantly higher (>0.5 g(SO{sub 2})/g(sorbent)) and essentially independent of the particle size. Here, comparisons are made on the basis of the sorbents in the calcined state. The capacities for the uptake of SO{sub 2}, on a basis of unit mass of calcined sorbent, were comparable for the chalk and the synthetic sorbent. However, previous work has demonstrated the ability of the synthetic sorbent to retain its capacity for CO{sub 2} over many cycles of carbonation and calcination: much more so than natural sorbents such as chalk and limestone. Accordingly, the advantage of the synthetic sorbent is that it could be used to remove CO{sub 2} from flue gases and, at the end of its life, to remove SO{sub 2} on a once-through basis.

  3. Determination of the amount of wash amines and ammonium ion in desulfurization products of process gases and results of related studies.

    PubMed

    Kamiński, Marian; Jastrzebski, Daniel; Przyjazny, Andrzej; Kartanowicz, Rafał

    2002-02-22

    This paper describes a method for the determination of the so-called wash amines and their degradation products, including ammonium ions, in process liquids and wastewater generated during the desulfurization of hydrogen sulfide gas in the process of crude oil refining and also reports the results of related studies. Ion-exchange liquid chromatography employing an inexpensive cation-exchange HPLC column and refractometric detection was used. The results obtained were compared with those obtained by potentiometric titration. Analytical characteristics and a description of the developed procedure are provided. Examples of the results of routine determinations of amines, their degradation products and ammonium ions in process liquids and wastewater are given.

  4. Purifying Nanomaterials

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor); Hurst, Janet (Inventor)

    2014-01-01

    A method of purifying a nanomaterial and the resultant purified nanomaterial in which a salt, such as ferric chloride, at or near its liquid phase temperature, is used to penetrate and wet the internal surfaces of a nanomaterial to dissolve impurities that may be present, for example, from processes used in the manufacture of the nanomaterial.

  5. Water Purifier

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Floatron water purifier combines two space technologies - ionization for water purification and solar electric power generation. The water purification process involves introducing ionized minerals that kill microorganisms like algae and bacteria. The 12 inch unit floats in a pool while its solar panel collects sunlight that is converted to electricity. The resulting current energizes a specially alloyed mineral electrode below the waterline, causing release of metallic ions into the water. The electrode is the only part that needs replacing, and water purified by the system falls within EPA drinking water standards.

  6. Water Purifiers

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Technology developed to purify the water aboard manned spacecraft has led to a number of spinoff applications. One of them is the Ambassador line of bacteriostatic water treatment systems, which employ high grade, high absorption media to inhibit bacteria growth and remove the medicinal taste and odor of chlorine. Company President, Ray Ward, originally became interested in the technology because of the "rusty" taste of his water supply.

  7. Process for the desulfurization of waste gases

    SciTech Connect

    D'souza, G.J.; Radford, H.D.

    1980-11-11

    A process for the removal of oxidizable sulfur compounds from a waste gas; is described which comprises: (A) mixing a waste gas containing compounds oxidizable to sulfur oxides with molecular oxygen and oxidizing said compounds to sulfur oxides; (B) contacting the oxidized gas with a metal oxide absorbent capable of absorbing sulfur oxides at a temperature of between about 100* C. And 800* C., and absorbing sulfur oxides with said metal oxide absorbent; (C) simultaneously, in the presence of a hydrocarbon cracking catalyst and at a temperature of between about 375* C. And about 1,200* C., cracking a hydrocarbon, regenerating the spent metal oxide absorbent and contacting the absorbent with steam to form hydrogen sulfide which can be separated from the cracked hydrocarbon and recovered as elemental sulfur.

  8. Crude oil desulfurization

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Hsu, G. C.; Ernest, J. B. (Inventor)

    1982-01-01

    High sulfur crude oil is desulfurized by a low temperature (25-80 C.) chlorinolysis at ambient pressure in the absence of organic solvent or diluent but in the presence of water (water/oil=0.3) followed by a water and caustic wash to remove sulfur and chlorine containing reaction products. The process described can be practiced at a well site for the recovery of desulfurized oil used to generate steam for injection into the well for enhanced oil recovery.

  9. Fluidized bed coal desulfurization

    NASA Technical Reports Server (NTRS)

    Ravindram, M.

    1983-01-01

    Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.

  10. Hydrogen purifier module with membrane support

    DOEpatents

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

    2012-07-24

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

  11. Method for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    DOEpatents

    Grindley, Thomas

    1989-01-01

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600.degree. to 1800.degree. F. and are partially quenched with water to 1000.degree. to 1200.degree. F. before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime/limestone.

  12. Process for purifying geothermal steam

    DOEpatents

    Li, Charles T.

    1980-01-01

    Steam containing hydrogen sulfide is purified and sulfur recovered by passing the steam through a reactor packed with activated carbon in the presence of a stoichiometric amount of oxygen which oxidizes the hydrogen sulfide to elemental sulfur which is adsorbed on the bed. The carbon can be recycled after the sulfur has been recovered by vacuum distillation, inert gas entrainment or solvent extraction. The process is suitable for the purification of steam from geothermal sources which may also contain other noncondensable gases.

  13. Process for purifying geothermal steam

    DOEpatents

    Li, C.T.

    Steam containing hydrogen sulfide is purified and sulfur recovered by passing the steam through a reactor packed with activated carbon in the presence of a stoichiometric amount of oxygen which oxidizes the hydrogen sulfide to elemental sulfur which is adsorbed on the bed. The carbon can be recycled after the sulfur has been recovered by vacuum distillation, inert gas entrainment or solvent extraction. The process is suitable for the purification of steam from geothermal sources which may also contain other noncondensable gases.

  14. Enzymatic desulfurization of coal

    SciTech Connect

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1991-05-16

    The overall objective of this program was to investigate the feasibility of an enzymatic desulfurization process specifically intended for organic sulfur removal from coal. Toward that end, a series of specific objectives were defined: (1) establish the feasibility of (bio)oxidative pretreatment followed by biochemical sulfate cleavage for representative sulfur-containing model compounds and coals using commercially-available enzymes; (2) investigate the potential for the isolation and selective use of enzyme preparations from coal-utilizing microbial systems for desulfurization of sulfur-containing model compounds and coals; and (3) develop a conceptual design and economic analysis of a process for enzymatic removal of organic sulfur from coal. Within the scope of this program, it was proposed to carry out a portion of each of these efforts concurrently. (VC)

  15. Coal Liquefaction desulfurization process

    DOEpatents

    Givens, Edwin N.

    1983-01-01

    In a solvent refined coal liquefaction process, more effective desulfurization of the high boiling point components is effected by first stripping the solvent-coal reacted slurry of lower boiling point components, particularly including hydrogen sulfide and low molecular weight sulfur compounds, and then reacting the slurry with a solid sulfur getter material, such as iron. The sulfur getter compound, with reacted sulfur included, is then removed with other solids in the slurry.

  16. Coal desulfurization with iron pentacarbonyl

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.

    1979-01-01

    Coal desulfurization with iron pentacarbonyl treatment under mild conditions removes up to eighty percent of organic sulfur. Preliminary tests on treatment process suggest it may be economical enough to encourage investigation of use for coal desulfurization. With mild operating conditions, process produces environmentally-acceptable clean coal at reasonable cost.

  17. Method and apparatus for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    DOEpatents

    Grindley, T.

    1988-04-05

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier is described. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600 to 1800 F and are partially quenched with water to 1000 to 1200 F before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime /limestone. 1 fig.

  18. Irradiation pretreatment for coal desulfurization

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.

    1979-01-01

    Process using highly-penetrating nuclear radiation (Beta and Gamma radiation) from nuclear power plant radioactive waste to irradiate coal prior to conventional desulfurization procedures increases total extraction of sulfur.

  19. New regents for coal desulfurization

    SciTech Connect

    Buchanan, D.H.; Kalembasa, S.; Olson, D.; Wang, S.; Warfel, L.

    1991-01-01

    The primary goal of this project was development and exploration of potential new desulfurization reagents for the removal of organic sulfur'' from Illinois coals by mild chemical methods. Potential new desulfurization reagents were investigated using organic sulfur compounds of the types thought to be present in coals. Reagents included low-valent metal complexes based on nickel and on iron as well as possible Single Electron Transfer reagents. Soluble coal extracts served as second generation model compounds during this reagent development project.

  20. Enzymatic desulfurization of coal

    SciTech Connect

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V. ); Marquis, J.K. . School of Medicine)

    1989-11-07

    Our experimental approach focuses on the use of enzymes which catalyze the addition of oxygen to organic compounds. In tailoring the application of these enzymes to coal processing, we are particularly interested in ensuring that oxidation occurs at sulfur and not at carbon-carbon bonds. Previous studies with DBT have shown that the reaction most frequently observed in microbial oxidative pathways is one in which DBT is oxidized at ring carbons. These reactions, as we have said, are accompanied by a considerable decrease in the energy content of the compound. In addition, microbial pathways have been identified in which the sulfur atom is sequentially oxidized to sulfoxide, to sulfone, to sulfonate, and finally to sulfuric acid. In this case, the fuel value of the desulfurized compounds is largely retained. We are evaluating the potential of commercially available enzymes to selectively catalyze oxidation at sulfur.

  1. Enzymatic desulfurization of coal

    SciTech Connect

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1990-03-23

    Our experimental approach focuses on the use of enzymes which catalyze the addition of oxygen to organic compounds. In tailoring the application of these enzymes to coal processing, we are particularly interested in ensuring that oxidation occurs at sulfur and not at carbon-carbon bonds. Previous studies with DBT have shown that the reaction most frequently observed in microbial oxidative pathways is one in which DBT is oxidized at ring carbons. These reactions, as we have said, are accompanied by a considerable decrease in the energy content of the compound. In addition, microbial pathways have been identified in which the sulfur atom is sequentially oxidized to sulfoxide, to sulfone, to sulfonate, and finally to sulfuric acid. In this case, the fuel value of the desulfurized compounds is largely retained. We are evaluating the potential of commercially available enzymes to perform this function.

  2. The Biocatalytic Desulfurization Project

    SciTech Connect

    David Nunn; James Boltz; Philip M. DiGrazia; Larry Nace

    2006-03-03

    The material in this report summarizes the Diversa technical effort in development of a biocatalyst for the biodesulfurization of Petro Star diesel as well as an economic report of standalone and combined desulfurization options, prepared by Pelorus and Anvil, to support and inform the development of a commercially viable process. We will discuss goals of the projected as originally stated and their modification as guided by parallel efforts to evaluate commercialization economics and process parameters. We describe efforts to identify novel genes and hosts for the generation of an optimal biocatalyst, analysis of diesel fuels (untreated, chemically oxidized and hydrotreated) for organosulfur compound composition and directed evolution of enzymes central to the biodesulfurization pathway to optimize properties important for their use in a biocatalyst. Finally we will summarize the challenges and issues that are central to successful development of a viable biodesulfurization process.

  3. Sulfidation of a Novel Iron Sorbent Supported on Lignite Chars during Hot Coal Gas Desulfurization

    NASA Astrophysics Data System (ADS)

    Yin, Fengkui; Yu, Jianglong; Gupta, Sushil; Wang, Shaoyan; Wang, Dongmei; Yang, Li; Tahmasebi, Arash

    The sulfidation behavior of novel iron oxide sorbents supported using activated-chars during desulfurization of hot coal gases has been studied. The sulfidation of the char-supported sorbents was investigated using a fixed-bed quartz reactor in the temperature range of 673K to 873K. The product gases were analyzed using a GC equipped with a TCD and a FPD detector. The sorbent samples before and after sulfidation were examined using SEM and XRD.

  4. Desulfurization apparatus and method

    DOEpatents

    Rong, Charles; Jiang, Rongzhong; Chu, Deryn

    2013-06-18

    A method and system for desulfurization comprising first and second metal oxides; a walled enclosure having an inlet and an exhaust for the passage of gas to be treated; the first and second metal oxide being combinable with hydrogen sulfide to produce a reaction comprising a sulfide and water; the first metal oxide forming a first layer and the second metal oxide forming a second layer within the walled surroundings; the first and second layers being positioned so the first layer removes the bulk amount of the hydrogen sulfide from the treated gas prior to passage through the second layer, and the second layer removes substantially all of the remaining hydrogen sulfide from the treated gas; the first metal oxide producing a stoichiometrical capacity in excess of 500 mg sulfur/gram; the second metal oxide reacts with the hydrogen sulfide more favorably but has a stoichometrical capacity which is less than the first reactant; whereby the optimal amount by weight of the first and second metal oxides is achieved by utilizing two to three units by weight of the first metal oxide for every unit of the second metal oxide.

  5. THE BIOCATALYTIC DESULFURIZATION PROJECT

    SciTech Connect

    Steven E. Bonde; David Nunn

    2003-01-01

    During the first quarter of the Biological Desulfurization project several activities were pursued. A project kickoff meeting was held at the Diversa facility in San Diego, CA. Activities that were in process before the meeting and begun afterwards by Diversa Corporation and Petro Star Inc. include: Technology transfer in the form of information generated by Enchira to Diversa, the purchase and installation of equipment by Diversa, development of synthetic methods and preparation of organo-sulfur substrates for use in determining enzyme activities, production of extract via Petro Star's CED process, detailed analysis of Petro Star Inc. diesel and CED extract, and several activities in molecular biology. Diversa Corporation, in the area of molecular biology, engaged in several activities in support of the task list of the contract. These included: construction of a genomic library; development and utilization of a sequence-based gene discovery effort; a parallel discovery approach based on functional expression of enzymes with the ability to oxidize organosulfur compounds. Biodesulfurization genes have already been identified and are being sequenced and subcloned for expression in heterologous biological hosts. Diversa has evaluated and adapted assays developed by Enchira used to assess the activities of DBT and DBTO{sub 2} monooxygenases. Finally, Diversa personnel have developed two novel selection/screen strategies for the improvement of biocatalyst strains by directed evolution.

  6. Gas stream purifier

    NASA Technical Reports Server (NTRS)

    Adam, Steven J.

    1994-01-01

    A gas stream purifier has been developed that is capable of removing corrosive acid, base, solvent, organic, inorganic, and water vapors as well as particulates from an inert mixed gas stream using only solid scrubbing agents. This small, lightweight purifier has demonstrated the ability to remove contaminants from an inert gas stream with a greater than 99 percent removal efficiency. The Gas Stream Purifier has outstanding market and sales potential in manufacturing, laboratory and science industries, medical, automotive, or any commercial industry where pollution, contamination, or gas stream purification is a concern. The purifier was developed under NASA contract NAS9-18200 Schedule A for use in the international Space Station. A patent application for the Gas Stream Purifier is currently on file with the United States Patent and Trademark Office.

  7. Fuel gas desulfurization

    DOEpatents

    Yang, Ralph T.; Shen, Ming-Shing

    1981-01-01

    A method for removing sulfurous gases such as H.sub.2 S and COS from a fuel gas is disclosed wherein limestone particulates containing iron sulfide provide catalytic absorption of the H.sub.2 S and COS by the limestone. The method is effective at temperatures of 400.degree. C. to 700.degree. C. in particular.

  8. METHOD FOR PURIFYING URANIUM

    DOEpatents

    Knighton, J.B.; Feder, H.M.

    1960-04-26

    A process is given for purifying a uranium-base nuclear material. The nuclear material is dissolved in zinc or a zinc-magnesium alloy and the concentration of magnesium is increased until uranium precipitates.

  9. THE BIOCATALYTIC DESULFURIZATION PROJECT

    SciTech Connect

    Scott Collins; David Nunn

    2003-10-01

    The analysis of Petro Star diesel sulfur species is complete and a report is attached. Further analytical efforts will concentrate on characterization of diesel fuel, hydrodesulfurized to varying degrees, in order to determine sulfur species that may be problematic to hydrogen treatment and represent potential target substrates for biodesulfurization in a combined HDS-BDS process. Quotes have been received and are being considered for the partial treatment of Petro Star Inc. marine diesel fuel. Direction of research is changing slightly; economic analysis of the hyphenated--BDSHDS, BDS-CED--has shown the highest probability of success to be with a BDS-HDS process where the biodesulfurization precedes hydrodesulfurization. Thus, the microorganisms will be tailored to focus on those compounds that tend to be recalcitrant to hydrodesulfurization and decrease the severity of the hydrodesulfurization step. A separate, detailed justification for this change is being prepared. Research activities have continued in the characterization of the desulfurization enzymes from multiple sources. Genes for all DszA, -B, -C and -D enzymes (and homologs) have been cloned and expressed. Activity determinations, on a variety of substituted benzothiophene and dibenzothiophene substrates, have been carried out and continue. In addition, chemical synthesis efforts have been carried out to generate additional substrates for analytical standards and activity determinations. The generation of a GSSM mutant library of the ''Rhodococcus IGTS8 dszA'' gene has been completed and development of protocols for a high throughput screen to expand substrate specificity are nearing completion. In an effort to obtain improved hosts as biocatalyst, one hundred-thirty ''Rhodococcus'' and related strains are being evaluated for growth characteristics and other criteria deemed important for an optimal biocatalyst strain. We have also begun an effort to generate derivatives of the entire IGTS8 BDS plasmid

  10. Recovery and recycling of limestone in LEC flue gas desulfurization

    SciTech Connect

    Gardner, N.C.; Adler, R.J.; Lin, Y.C.; Unger, M.E.; Lux, K.W. )

    1992-03-01

    Prudich et al. have proposed an attractive technology called Limestone Emission Control (LEC) for removing sulfur dioxide from flue gases. Beds of 1/8 inch wet limestone particles absorb the sulfur dioxide from the gases. Sulfates and sulfites deposit on the surfaces of the particles, limiting their utilization to about 20%. The unreacted portion of the limestone can be recovered by mechanical grinding and recycling, enabling high overall sorbent utilization. Favorable economic costs derive from small equipment, simplicity, and low sorbent cost. Our research concentrates on selecting and testing on a laboratory scale suitable candidate dry and wet grinding methods for recovering limestone in LEC flue from desulfurization. A wet grinding method based on the impeller fluidizer, a new type of slurry processor, receives special attention. The impeller fluidizer is a dosed cylindrical vessel with an impeller at one end. It combines the operations of wet grinding, washing, and transporting the spent and recovered limestone as an aqueous slurry.

  11. Purified silicon production system

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2004-03-30

    Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.

  12. Method of purifying isosaccharinate

    DOEpatents

    Rai, Dhanpat; Moore, Robert C.; Tucker, Mark D.

    2010-09-07

    A method of purifying isosaccharinate by mixing sodium carbonate, potassium carbonate, sodium hydroxide or potassium hydroxide with calcium isosaccharinate, removing the precipitated calcium carbonate and adjusting the pH to between approximately 4.5 to 5.0 thereby removing excess carbonate and hydroxide to provide an acidic solution containing isosaccharinate.

  13. Coal desulfurization by aqueous chlorination

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Vasilakos, N.; Corcoran, W. H.; Grohmann, K.; Rohatgi, N. K. (Inventor)

    1982-01-01

    A method of desulfurizing coal is described in which chlorine gas is bubbled through an aqueous slurry of coal at low temperature below 130 degrees C., and at ambient pressure. Chlorinolysis converts both inorganic and organic sulfur components of coal into water soluble compounds which enter the aqueous suspending media. The media is separated after chlorinolysis and the coal dechlorinated at a temperature of from 300 C to 500 C to form a non-caking, low-sulfur coal product.

  14. Enzymatic desulfurization of coal. Fourth quarterly report, March 16--June 15, 1989

    SciTech Connect

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.; Marquis, J.K.

    1989-06-16

    Our current efforts to develop clean coal technology emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes as well as commercially available enzymes. Our work is focused on the treatment of ``model`` organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix.

  15. Enzymatic desulfurization of coal. First quarterly report, May 5--September 30, 1988

    SciTech Connect

    Marquis, J.K.; Kitchell, J.P.

    1988-10-07

    Our current efforts to develop clean coal technology, emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes or commercially available enzymes. Our work is focused on the treatment of ``model`` organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix.

  16. Enzymatic desulfurization of coal. Second quarterly report, October 1--December 15, 1988

    SciTech Connect

    Marquis, J.K.; Kitchell, J.P.

    1988-12-15

    Our current efforts to develop clean coal technology emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes or commercially available enzymes. Our work is focused on the treatment of ``model`` organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix.

  17. Low temperature aqueous desulfurization of coal

    DOEpatents

    Slegeir, W.A.; Healy, F.E.; Sapienza, R.S.

    1985-04-18

    This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

  18. Low temperature aqueous desulfurization of coal

    DOEpatents

    Slegeir, William A.; Healy, Francis E.; Sapienza, Richard S.

    1985-01-01

    This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

  19. Purified water quality study

    SciTech Connect

    Spinka, H.; Jackowski, P.

    2000-04-03

    Argonne National Laboratory (HEP) is examining the use of purified water for the detection medium in cosmic ray sensors. These sensors are to be deployed in a remote location in Argentina. The purpose of this study is to provide information and preliminary analysis of available water treatment options and associated costs. This information, along with the technical requirements of the sensors, will allow the project team to determine the required water quality to meet the overall project goals.

  20. PROCESS OF PURIFYING URANIUM

    DOEpatents

    Seaborg, G.T.; Orlemann, E.F.; Jensen, L.H.

    1958-12-23

    A method of obtaining substantially pure uranium from a uranium composition contaminated with light element impurities such as sodium, magnesium, beryllium, and the like is described. An acidic aqueous solution containing tetravalent uranium is treated with a soluble molybdate to form insoluble uranous molybdate which is removed. This material after washing is dissolved in concentrated nitric acid to obtaln a uranyl nitrate solution from which highly purified uranium is obtained by extraction with ether.

  1. Exhaust gas purifying device

    SciTech Connect

    Sakurai, S.; Hamada, S.

    1985-04-23

    An exhaust gas purifying device for use with a diesel engine comprising a filter block disposed in an engine exhaust passage for collecting exhaust gas particulates, and a heater for incinerating the collected exhaust gas particulates. The filter block has parallel channels defined therein and separated from one another by porous partition walls, some of the channels being closed at their inlet ends with blind plugs while the other channels are closed at their outlet ends with blind plugs. The heater is supported by the blind plugs.

  2. Electronegative gases

    SciTech Connect

    Christophorou, L.G.

    1981-01-01

    Recent knowledge on electronegative gases essential for the effective control of the number densities of free electrons in electrically stressed gases is highlighted. This knowledge aided the discovery of new gas dielectrics and the tailoring of gas dielectric mixtures. The role of electron attachment in the choice of unitary gas dielectrics or electronegative components in dielectric gas mixtures, and the role of electron scattering at low energies in the choice of buffer gases for such mixtures is outlined.

  3. GENERAL VIEW OF PURIFIERS ON SECOND FLOOR. (THE PURIFIERS DATE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF PURIFIERS ON SECOND FLOOR. (THE PURIFIERS DATE FROM CA. 1910 AND WERE MANUFACTURED BY THE ALLIS CHALMERS COMPANY OF MILWAUKEE, WISCONSIN.) - Patterson Milling Company, Feed Mill, Water & Point Streets, Saltsburg, Indiana County, PA

  4. Natural Air Purifier

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA environmental research has led to a plant-based air filtering system. Dr. B.C. Wolverton, a former NASA engineer who developed a biological filtering system for space life support, served as a consultant to Terra Firma Environmental. The company is marketing the BioFilter, a natural air purifier that combines activated carbon and other filter media with living plants and microorganisms. The filter material traps and holds indoor pollutants; plant roots and microorganisms then convert the pollutants into food for the plant. Most non-flowering house plants will work. After pollutants have been removed, the cleansed air is returned to the room through slits in the planter. Terra Firma is currently developing a filter that will also disinfect the air.

  5. Microbial desulfurization of natural gas

    SciTech Connect

    Sublette, K.L.; Sylvester, N.D.

    1987-01-01

    It has been demonstrated that the H/sub 2/S content of a gas can be reduced to very low levels by contact with an aerobic or anaerobic culture of Thiobacillus denitrificans if the reactor is operated under sulfide-limiting conditions. Hydrogen sulfide was observed to be an inhibitory substrate; however, upset conditions produced by excess H/sub 2/S feed were readily detected and reversed. Biomass yield is lower under aerobic conditions than anaerobic conditions presumably because of inhibition of growth by oxygen. However, under aerobic conditions the maximum loading of the biomass is 2-3 times higher than that observed for anaerobic conditions. Heterotrophic contamination was shown to have a negligible effect on reactor performance. The use of mixed cultures (T. denitrification and heterotrophs) could simplify a microbial gas desulfurization process by removing the requirement for aseptic operation of the reactor.

  6. Greenhouse Gases

    MedlinePlus

    ... Greenhouse Gases Come From Outlook for Future Emissions Recycling and Energy Nonrenewable Sources Oil and Petroleum Products ... Power Wave Power Ocean Thermal Energy Conversion Biomass Wood and Wood Waste Waste-to-Energy (MSW) Landfill ...

  7. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT-GAS DESULFURIZATION TECHNOLOGY

    SciTech Connect

    A. LOPEZ ORTIZ; D.P. HARRISON; F.R. GROVES; J.D. WHITE; S. ZHANG; W.-N. HUANG; Y. ZENG

    1998-10-31

    This research project examined the feasibility of a second generation high-temperature coal gas desulfurization process in which elemental sulfur is produced directly during the sorbent regeneration phase. Two concepts were evaluated experimentally. In the first, FeS was regenerated in a H2O-O2 mixture. Large fractions of the sulfur were liberated in elemental form when the H2O-O2 ratio was large. However, the mole percent of elemental sulfur in the product was always quite small (<<1%) and a process based on this concept was judged to be impractical because of the low temperature and high energy requirements associated with condensing the sulfur. The second concept involved desulfurization using CeO2 and regeneration of the sulfided sorbent, Ce2O2S, using SO2 to produce elemental sulfur directly. No significant side reactions were observed and the reaction was found to be quite rapid over the temperature range of 500°C to 700°C. Elemental sulfur concentrations (as S2) as large as 20 mol% were produced. Limitations associated with the cerium sorbent process are concentrated in the desulfurization phase. High temperature and highly reducing coal gas such as produced in the Shell gasification process are required if high sulfur removal efficiencies are to be achieved. For example, the equilibrium H2S concentration at 800°C from a Shell gas in contact with CeO2 is about 300 ppmv, well above the allowable IGCC specification. In this case, a two-stage desulfurization process using CeO2 for bulk H2S removal following by a zinc sorbent polishing step would be required. Under appropriate conditions, however, CeO2 can be reduced to non-stoichiometric CeOn (n<2) which has significantly greater affinity for H2S. Pre-breakthrough H2S concentrations in the range of 1 ppmv to 5 ppmv were measured in sulfidation tests using CeOn at 700°C in highly reducing gases, as measured by equilibrium O2 concentration, comparable to the Shell gas. Good sorbent durability was indicated in

  8. Method for desulfurization of coal

    DOEpatents

    Kelland, David R.

    1987-01-01

    A process and apparatus for desulfurizing coal which removes sulfur in the inorganic and organic form by preferentially heating the inorganic iron sulfides in coal in a flowing gas to convert some of the inorganic iron sulfides from a pyrite form FeS.sub.2 to a troilite FeS form or a pyrrhotite form Fe.sub.1-x S and release some of the sulfur as a gaseous compound. The troilite and pyrrhotite forms are convenient catalyst for removing the organic sulfur in the next step, which is to react the coal with chemical agents such as alcohol, thus removing the organic sulfur as a liquid or a gas such as H.sub.2 S. The remaining inorganic sulfur is left in the predominantly higher magnetic form of pyrrhotite and is then removed by magnetic separation techniques. Optionally, an organic flocculant may be added after the organic sulfur has been removed and before magnetic separation. The flocculant attaches non-pyrite minerals with the pyrrhotite for removal by magnetic separation to reduce the ash-forming contents.

  9. Method for desulfurization of coal

    DOEpatents

    Kelland, D.R.

    1987-07-07

    A process and apparatus are disclosed for desulfurizing coal which removes sulfur in the inorganic and organic form by preferentially heating the inorganic iron sulfides in coal in a flowing gas to convert some of the inorganic iron sulfides from a pyrite form FeS[sub 2] to a troilite FeS form or a pyrrhotite form Fe[sub 1[minus]x]S and release some of the sulfur as a gaseous compound. The troilite and pyrrhotite forms are convenient catalyst for removing the organic sulfur in the next step, which is to react the coal with chemical agents such as alcohol, thus removing the organic sulfur as a liquid or a gas such as H[sub 2]S. The remaining inorganic sulfur is left in the predominantly higher magnetic form of pyrrhotite and is then removed by magnetic separation techniques. Optionally, an organic flocculant may be added after the organic sulfur has been removed and before magnetic separation. The flocculant attaches non-pyrite minerals with the pyrrhotite for removal by magnetic separation to reduce the ash-forming contents. 2 figs.

  10. Microbial desulfurization of different coals.

    PubMed

    Acharya, C; Kar, R N; Sukla, L B

    2004-01-01

    Coal is the most important nonrenewable energy source of fossil origin. It is also the most common fuel in thermal power plants. However, during coal incineration in power plants, high sulfur content of coal poses serious environmental problems owing to sulfur dioxide emission. We studied the application of microbial methods for removal of sulfur from three types of high sulfur coals-two samples collected from Assam and Rajasthan in India and one from Libiaz, Poland. These coal samples were desulfurized using indigenous Acidithiobacillus sp. After investigation of the effect of various parameters, the conditions optimized for the maximum removal of total sulfur (91.87% for lignite, 63.13% for Polish coal, and only 9.44% for Assam coal) were as follows: initial pH of 1.5 (2.5 in the case of Assam coal), particle size of 45 micro, pulp density of 2% (w/v), incubation period of 30 d at -35 degrees C in presence of 44.2 g/L of ferrous sulfate in the media with shaking at 140 rpm. Poor removal of sulfur in the case of Assam coal was owing to extensive precipitation of jarosites. In addition, the sulfur in Assam coal is mostly found in organic form, which is difficult to remove with Acidithiobacillus sp. The removal of sulfur from the three coal samples was demonstrated with photomicrographic studies. PMID:15304738

  11. Anion-exchange resin-based desulfurization process

    SciTech Connect

    Sheth, A.C.; Strevel, S.D.; Dharmapurikar, R.

    1992-01-01

    Under DOE Grant No. FG22-90PC90309, the University of Tennessee Space Institute (UTSI) is contracted to further develop its anion-exchange, resin-based desulfurization concept to desulfurize alkali metal sulfates. From environmental as well as economic viewpoints, it is necessary to remove soluble sulfates from the wastes created by flue gas desulfurization systems. In order to do this economically, a low-cost desulfurization process for spent sorbents is necessary. UTSI's anion-exchange resin-based desulfurization concept is believed to satisfy these requirements.

  12. Coal desulfurization by low-temperature chlorinolysis

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.; Kalvinskas, J. J.; Ganguli, P. S.; Gavalas, G. R.

    1977-01-01

    Among the three principal methods for precombustion desulfurization of coal, which include physical depyriting, chemical desulfurization, and coal conversion to low-sulfur liquid and gaseous fuels, the potential of chemical methods looks promising in terms of both total sulfur removal and processing cost. The principal chemical methods for coal desulfurization involve treatment with either oxidizing agents or basic media at elevated temperature and pressure. A description is given of some recent experimental results which show the feasibility of removing sulfur, particularly organic sulfur, from high-sulfur coals by a simple method of low-temperature chlorinolysis followed by hydrolysis and dechlorination. The chemical feasibility of sulfur removal by chlorinolysis rather than the detailed engineering process is emphasized.

  13. Coal desulfurization. [using iron pentacarbonyl

    NASA Technical Reports Server (NTRS)

    Hsu, G. C. (Inventor)

    1979-01-01

    Organic sulfur is removed from coal by treatment with an organic solution of iron pentacarbonyl. Organic sulfur compounds can be removed by reaction of the iron pentacarbonyl with coal to generate CO and COS off-gases. The CO gas separated from COS can be passed over hot iron fillings to generate iron pentacarbonyl.

  14. Toxic gases.

    PubMed Central

    Matthews, G.

    1989-01-01

    An overview of the widespread use of gases and some volatile solvents in modern society is given. The usual circumstances in which undue exposure may occur are described. The most prominent symptoms and general principles of diagnosis and treatment are given and are followed by more specific information on the commoner, more toxic materials. While acute poisonings constitute the greater part of the paper, some indication of chronic disorders arising from repeated or prolonged exposure is also given. PMID:2687827

  15. Biological production of products from waste gases

    DOEpatents

    Gaddy, James L.

    2002-01-22

    A method and apparatus are designed for converting waste gases from industrial processes such as oil refining, and carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various products, such as organic acids, alcohols, hydrogen, single cell protein, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  16. Noble Gases

    NASA Astrophysics Data System (ADS)

    Podosek, F. A.

    2003-12-01

    The noble gases are the group of elements - helium, neon, argon, krypton, xenon - in the rightmost column of the periodic table of the elements, those which have "filled" outermost shells of electrons (two for helium, eight for the others). This configuration of electrons results in a neutral atom that has relatively low electron affinity and relatively high ionization energy. In consequence, in most natural circumstances these elements do not form chemical compounds, whence they are called "noble." Similarly, much more so than other elements in most circumstances, they partition strongly into a gas phase (as monatomic gas), so that they are called the "noble gases" (also, "inert gases"). (It should be noted, of course, that there is a sixth noble gas, radon, but all isotopes of radon are radioactive, with maximum half-life a few days, so that radon occurs in nature only because of recent production in the U-Th decay chains. The factors that govern the distribution of radon isotopes are thus quite different from those for the five gases cited. There are interesting stories about radon, but they are very different from those about the first five noble gases, and are thus outside the scope of this chapter.)In the nuclear fires in which the elements are forged, the creation and destruction of a given nuclear species depends on its nuclear properties, not on whether it will have a filled outermost shell when things cool off and nuclei begin to gather electrons. The numerology of nuclear physics is different from that of chemistry, so that in the cosmos at large there is nothing systematically special about the abundances of the noble gases as compared to other elements. We live in a very nonrepresentative part of the cosmos, however. As is discussed elsewhere in this volume, the outstanding generalization about the geo-/cosmochemistry of the terrestrial planets is that at some point thermodynamic conditions dictated phase separation of solids from gases, and that the

  17. Low-Cost Aqueous Coal Desulfurization

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Vasilakos, N.; Corcoran, W. H.; Grohmann, K.; Rohatgi, N. K.

    1982-01-01

    Water-based process for desulfurizing coal not only eliminates need for costly organic solvent but removes sulfur more effectively than an earlier solvent-based process. New process could provide low-cost commercial method for converting high-sulfur coal into environmentally acceptable fuel.

  18. Recombinant DNA encoding a desulfurization biocatalyst

    DOEpatents

    Rambosek, John; Piddington, Chris S.; Kovacevich, Brian R.; Young, Kevin D.; Denome, Sylvia A.

    1994-01-01

    This invention relates to a recombinant DNA molecule containing a gene or genes which encode a biocatalyst capable of desulfurizing a fossil fuel which contains organic sulfur molecules. For example, the present invention encompasses a recombinant DNA molecule containing a gene or genes of a strain of Rhodococcus rhodochrous.

  19. Recombinant DNA encoding a desulfurization biocatalyst

    DOEpatents

    Rambosek, J.; Piddington, C.S.; Kovacevich, B.R.; Young, K.D.; Denome, S.A.

    1994-10-18

    This invention relates to a recombinant DNA molecule containing a gene or genes which encode a biocatalyst capable of desulfurizing a fossil fuel which contains organic sulfur molecules. For example, the present invention encompasses a recombinant DNA molecule containing a gene or genes of a strain of Rhodococcus rhodochrous. 13 figs.

  20. Microbial desulfurization of organic sulfur compounds in petroleum.

    PubMed

    Ohshiro, T; Izumi, Y

    1999-01-01

    Sulfur removal from petroleum is important from the standpoint of the global environment because the combustion of sulfur compounds leads to the production of sulfur oxides, which are the source of acid rain. As the regulations for sulfur in fuels become more stringent, the existing chemical desulfurizations are coming inadequate for the "deeper desulfurization" to produce lower-sulfur fuels without new and innovative processes. Biodesulfurization is rising as one of the candidates. Several microorganisms were found to desulfurize dibenzothiophene (DBT), a representative of the organic sulfur compounds in petroleum, forming a sulfur-free compound, 2-hydroxybiphenyl. They are promising as biocatalysts in the microbial desulfurization of petroleum because without assimilation of the carbon content, they remove only sulfur from the heterocyclic compounds which is refractory to conventional chemical desulfurization. Both enzymological and molecular genetic studies are now in progress for the purpose of obtaining improved desulfurization activity of organisms. The genes involved in the sulfur-specific DBT desulfurization were identified and the corresponding enzymes have been investigated. From the practical point of view, it has been proved that the microbial desulfurization proceeds in the presence of high concentrations of hydrocarbons, and more complicated DBT analogs are also desulfurized by the microorganisms. This review outlines the progress in the studies of the microbial desulfurization from the basic and practical point of view.

  1. Methods for purifying carbon materials

    DOEpatents

    Dailly, Anne; Ahn, Channing; Yazami, Rachid; Fultz, Brent T.

    2009-05-26

    Methods of purifying samples are provided that are capable of removing carbonaceous and noncarbonaceous impurities from a sample containing a carbon material having a selected structure. Purification methods are provided for removing residual metal catalyst particles enclosed in multilayer carbonaceous impurities in samples generate by catalytic synthesis methods. Purification methods are provided wherein carbonaceous impurities in a sample are at least partially exfoliated, thereby facilitating subsequent removal of carbonaceous and noncarbonaceous impurities from the sample. Methods of purifying carbon nanotube-containing samples are provided wherein an intercalant is added to the sample and subsequently reacted with an exfoliation initiator to achieve exfoliation of carbonaceous impurities.

  2. Method using lime slurry for regenerating sodium sulfite in double alkali flue gas desulfurization process

    SciTech Connect

    Dabbs, J.C.; Dauerman, L.; Delaney, B.; Rao, K.K.

    1981-05-12

    In the process of desulfurizing flue gases in which an alkaline solution of sodium, such as sodium sulfite or sodium hydroxide, is contacted with gases in a scrubber to produce a sodium bisulfite solution, an improved method is provided for substantially reducing the time and equipment required to regenerate the sodium solution. In the method, a lime slurry stream and a sodium bisulfite stream are conflowed into a bifurcated mixing nozzle having a pair of converging inlets and a common outlet. The confluence of the streams in the nozzle creates turbulence which causes the lime slurry to react substantially instantaneously with the sodium bisulfite solution to regenerate the sodium solution which is recycled to the scrubber and a calcium sulfite precipitate which is filtered from the sodium solution and discarded.

  3. Hot coal gas desulfurization with manganese-based sorbents. Final report, September 1992--December 1994

    SciTech Connect

    Hepworth, M.T.; Slimane, R.B.

    1994-11-01

    The focus of much current work being performed by the Morgantown Energy Technology Center (METC) of the Department of Energy on hot coal-derived fuel gas desulfurization is in the use of zinc-based sorbents. METC has shown interest in formulating and testing manganese-based pellets as alternative effective sulfur sorbents in the 700 to 1200{degree}C temperature range. To substantiate the potential superiority of Mn-based pellets, a systematic approach toward the evaluation of the desulfurizing power of single-metal sorbents is developed based on thermodynamic considerations. This novel procedure considered several metal-based sorbents and singled out manganese oxide as a prime candidate sorbent capable of being utilized under a wide temperature range, irrespective of the reducing power (determined by CO{sub 2}/CO ratio) of the fuel gas. Then, the thermodynamic feasibility of using Mn-based pellets for the removal of H{sub 2}S from hot-coal derived fuel gases, and the subsequent oxidative regeneration of loaded (sulfided) pellets was established. It was concluded that MnO is the stable form of manganese for virtually all commercially available coal-derived fuel gases. In addition, the objective of reducing the H{sub 2}S concentration below 150 ppMv to satisfy the integrated gasification combined cycle system requirement was shown to be thermodynamically feasible. A novel process is developed for the manufacture of Mn-based spherical pellets which have the desired physical and chemical characteristics required.

  4. Purifying Aluminum by Vacuum Distillation

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1985-01-01

    Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.

  5. Desulfurizing Coal With an Alkali Treatment

    NASA Technical Reports Server (NTRS)

    Ravindram, M.; Kalvinskas, J. J.

    1987-01-01

    Experimental coal-desulfurization process uses alkalies and steam in fluidized-bed reactor. With highly volatile, high-sulfur bituminous coal, process removed 98 percent of pyritic sulfur and 47 percent of organic sulfur. Used in coal liquefaction and in production of clean solid fuels and synthetic liquid fuels. Nitrogen or steam flows through bed of coal in reactor. Alkalies react with sulfur, removing it from coal. Nitrogen flow fluidizes bed while heating or cooling; steam is fluidizing medium during reaction.

  6. Hot Gas Desulfurization Using Transport Reactors

    SciTech Connect

    Moorehead, E.L.

    1996-12-31

    Sierra Pacific Power Company is building a 100 MW, IGCC power plant based on KRW fluid bed gasifier technology that utilizes transport reactors for hot gas desulfurization and sorbent regeneration. Use of a transport absorber avoids the need for pre-filtration of dust-laden gasifier effluent, while a transport regenerator allows for the use of 100% air without the need for heat exchange equipment. Selection of transport reactors for hot gas desulfurization using a proprietary sorbent, based on testing performed in a transport reactor test unit (TRTU) at the M. W. Kellogg Technology Development Center and in a fixed bed reactor at Morgantown Energy Technology Center (METC), is outlined. The results obtained in these two test facilities and reasons for selecting transport reactors for the IGCC power plant in preference to either fixed bed or fluidized bed reactors are discussed. This paper reviews the evolution of the hot gas desulfurization system designs and includes selected results on H{sub 2}S absorption and regeneration of sulfided sorbent over several absorption/regeneration cycles conducted in the TRTU and the METC fixed bed reactor. The original design for the Sierra Pacific Project was based on fixed bed reactors with zinc ferrite as the sorbent. Owing to the high steam requirements of this sorbent, zinc titanate was selected and tested in a fixed bed reactor and was found unacceptable due to loss of strength on cyclic absorption/regeneration operation. Another sorbent evaluated was Z-Sorb{reg_sign}, a proprietary sorbent developed by Phillips Petroleum Company, was found to have excellent sulfur capacity, structural strength and regenerability. Steam was found unsuitable as fixed bed regenerator diluent, this results in a requirement for a large amount of inert gas, whereas a transport regenerator requires no diluent. The final Sierra design features transport reactors for both desulfurization and regeneration steps using neat air. 3 refs., 3 figs., 2 tabs.

  7. Kinetics of Mn-based sorbents for hot coal gas desulfurization. Quarterly progress report, July 15, 1995--September 15, 1995

    SciTech Connect

    Hepworth, M.T.

    1995-09-15

    The Morgantown Energy Technology Center (METC) of the U.S. Department of Energy (DOE) is actively pursuing the development of reliable and cost-effective processes to clean coal gasifier gases for application to integrated gasification combined cycle (IGCC) and molten carbonate fuel cell (MCFC) power plants. A large portion of gas cleanup research has been directed towards hot gas desulfurization using Zn-based sorbents. However, zinc titinate sorbents undergo reduction to the metal at temperatures approaching 700{degrees}C. In addition, sulfate formation during regeneration leads to spalling of reactive 293 surfaces. Due to zinc-based sorbent performance, METC has shown interest in formulating and testing manganese-based sorbents. Westmoreland and Harrison evaluated numerous candidate sulfur sorbents and identified Mn as a good candidate. Later, Turkdogan and Olsson tested manganese-based sorbents which demonstrated superior desulfurization capacity under high temperatures, and reducing conditions. Recently, Ben-Slimane and Hepworth conducted several studies on formulating Mn-sorbents and desulfurizing a simulated fuel gas. Although thermodynamics predicts higher over-pressures with Mn verses Zn, under certain operating conditions Mn-based sorbents may obtain < 20 ppmv. In addition, the manganese-sulfur-oxygen (Mn-S-O) system does not reduce to the metal under even highly reducing gases at high temperatures (550-900{degrees}C). Currently, many proposed IGCC processes include a water quench prior to desulfurization. This is for two reasons; limitations in the process hardware (1000{degrees}C), and excessive Zn-based sorbent loss (about 700{degrees}C). With manganese the water quench is obviated due to sorbent loss, as Mn-based sorbents have been shown to retain reactivity under cycling testing at 900{degrees}C. This reduces system hardware, and increases thermal efficiency while decreasing the equilibrium H{sub 2}S over-pressure obtainable with a manganese sorbent.

  8. Philippine refiner completes diesel desulfurization project

    SciTech Connect

    Candido, S.S.; Crisostomo, E.V.

    1997-01-27

    In anticipation of tightening sulfur specifications on diesel fuel, Petron Corp. built a new 18,000 b/sd gas oil desulfurization unit (GODU) at its refinery in Bataan, Philippines. The GODU gives Petron sufficient diesel oil desulfurization capacity to meet demand for lower-sulfur diesel in the country. The project places the refinery in a pacesetter position to comply with the Philippine government`s moves to reduce air pollution, especially in urban centers, by reducing the sulfur specification for diesel to 0.5 wt% in 1996 from 0.7 wt% at the start of the project. Performance tests and initial operations of the unit have revealed a desulfurization efficiency of 91% vs. a guaranteed efficiency of 90%. A feed sulfur content of 1.33 wt% is reduced to 0.12 wt% at normal operating conditions. Operating difficulties during start-up were minimized through use of a detailed prestartup check conducted during the early stages of construction work.

  9. Biological desulfurization (BDS) of middle distillates

    SciTech Connect

    Monticello, D.J. )

    1993-01-01

    As implementation of the Clean Air Act Amendment draws near, sulfur management will play a key role for the refining industry. Industry experts have estimated that the petroleum industry will spend billions of dollars to conform to the Clean Air Act and desulfurization capacity will account for a significant portion of those expenditures. The need to limit the sulfur content of finished products is not new, but this dramatic increase in expenditures is the result of the increasingly stringent environmental regulations in the US, Europe and the Far East. These regulations will be implemented over the next ten years and will have serious implications for the refining industry. The purpose of this paper is to describe an alternative approach to desulfurization based on the recent advances in biotechnology and to outline the progress which has been made in recent years in this area. Biocatalytic Desulfurization (BDS) is not a commercial technology, but conceptual engineering and sensitivity analyses have shown that the approach has great promise. Several Government, University and Industrial groups are working now to develop the technology. The recent advances which have resulted from the application of the new tools of biotechnology to the problem have accelerated the development effort, and the first commercial BDS units may be available in 1996.

  10. Solar purifier of drinking water

    SciTech Connect

    Fawzy, I.O.

    1987-01-01

    Around 1920, ultraviolet radiation was used in Switzerland and France for water purification. Now, it is in use in more than 2000 European water works. In the United States, between 1916 and 1928, four municipal water installations of ultraviolet apparatus were in operation. By 1939, they were all abandoned in favor of chlorination primarily because of economy and the inadequacy of technology available at that time. In recent years, ultraviolet purification has had a comeback, partly because of the realization of what chlorination is doing to the environment and partly due to the vast advances in UV technology. Although solar ultraviolet radiation has a marginal biocidal effect, a property designed solar purifier could be a viable option in certain application. Among possible uses are: (1) rural single-family dwellings; (2) underdeveloped countries; and (3) small usage rates where electric power is not available. A solar purifier model is presented in this study. The data it provided illustrates that it can be effective in treating partially contaminated water.

  11. Process for purifying zirconium sponge

    SciTech Connect

    Abodishish, H.A.M.; Kimball, L.S.

    1992-03-31

    This patent describes a Kroll reduction process wherein a zirconium sponge contaminated with unreacted magnesium and by-product magnesium chloride is produced as a regulus, a process for purifying the zirconium sponge. It comprises: distilling magnesium and magnesium chloride from: a regulus containing a zirconium sponge and magnesium and magnesium chloride at a temperature above about 800{degrees} C and at an absolute pressure less than about 10 mmHg in a distillation vessel to purify the zirconium sponge; condensing the magnesium and the magnesium chloride distilled from the zirconium sponge in a condenser; and then backfilling the vessel containing the zirconium sponge and the condenser containing the magnesium and the magnesium chloride with a gas; recirculating the gas between the vessel and the condenser to cool the zirconium sponge from above about 800{degrees} C to below about 300{degrees} C; and cooling the recirculating gas in the condenser containing the condensed magnesium and the condensed magnesium chloride as the gas cools the zirconium sponge to below about 300{degrees} C.

  12. Purified discord and multipartite entanglement

    SciTech Connect

    Brown, Eric G.; Webster, Eric J.; Martín-Martínez, Eduardo; Kempf, Achim

    2013-10-15

    We study bipartite quantum discord as a manifestation of a multipartite entanglement structure in the tripartite purified system. In particular, we find that bipartite quantum discord requires the presence of both bipartite and tripartite entanglement in the purification. This allows one to understand the asymmetry of quantum discord, D(A,B)≠D(B,A) in terms of entanglement monogamy. As instructive special cases, we study discord for qubits and Gaussian states in detail. As a result of this we shed new light on a counterintuitive property of Gaussian states: the presence of classical correlations necessarily requires the presence of quantum correlations. Finally, our results also shed new light on a protocol for remote activation of entanglement by a third party. -- Highlights: •Bipartite quantum discord as a manifestation of multipartite entanglement. •Relevance of quantum discord as a utilizable resource for quantum info. tasks. •Quantum discord manifests itself in entanglement in the purified state. •Relation between asymmetry of discord and entanglement monogamy. •Protocol for remote activation of entanglement by a third party.

  13. Sorbent for use in hot gas desulfurization

    DOEpatents

    Gasper-Galvin, Lee D.; Atimtay, Aysel T.

    1993-01-01

    A multiple metal oxide sorbent supported on a zeolite of substantially silicon oxide is used for the desulfurization of process gas streams, such as from a coal gasifier, at temperatures in the range of about 1200.degree. to about 1600.degree. F. The sorbent is provided by a mixture of copper oxide and manganese oxide and preferably such a mixture with molybdenum oxide. The manganese oxide and the molybdenum are believed to function as promoters for the reaction of hydrogen sulfide with copper oxide. Also, the manganese oxide inhibits the volatilization of the molybdenum oxide at the higher temperatures.

  14. Ultrafine pyrite desulfurization by selective flocculation

    SciTech Connect

    Cai, Z.; Liu, H.; Wu, J.; Wang, X.

    1997-12-31

    Selective flocculation is introduced for the separation of ultrafine pyrite from coal. Selective flocculation refers to the process in which high molecule weight polymer reagents bridge the fine particles of one component in a mixture. According to the differences in physico-chemical properties, the reagent can be adsorbed on one component which can be flocculated but not on others which cannot be flocculated. A number of selective flocculation separation tests under different conditions have been performed and the results are very encouraging. The results also show that desulfurization and deashing can be obtained simultaneously in the selective flocculation process.

  15. Flue gas desulfurization wastewater treatment primer

    SciTech Connect

    Higgins, T.E.; Sandy, A.T.; Givens, S.W.

    2009-03-15

    Purge water from a typical wet flue gas desulfurization system contains myriad chemical constituents and heavy metals whose mixture is determined by the fuel source and combustion products as well as the stack gas treatment process. A well-designed water treatment system can tolerate upstream fuel and sorbent arranged in just the right order to produce wastewater acceptable for discharge. This article presents state-of-the-art technologies for treating the waste water that is generated by wet FGD systems. 11 figs., 3 tabs.

  16. 2-(2'-Hydroxyphenyl)benzene sulfinate desulfinase from the thermophilic desulfurizing bacterium Paenibacillus sp. strain A11-2: purification and characterization.

    PubMed

    Konishi, J; Maruhashi, K

    2003-09-01

    2-(2'-Hydroxyphenyl)benzene sulfinate (HPBSi) desulfinase (TdsB), which catalyzes the final step of desulfurization of dibenzothiophene (DBT), was purified from a thermophilic DBT- and benzothiophene (BT)-desulfurizing bacterium: Paenibacillus sp. strain A11-2. The molecular mass of the purified enzyme was 31 kDa and 39 kDa by gel filtration and sodium dodecyl sulfate polyacrylamide gel electrophoresis, respectively, suggesting a monomeric structure. The optimal temperature and pH for the reaction involving TdsB was 55 degrees C and the enzyme was more resistant to heat treatment than DszB, a counterpart purified from Rhodococcus erythropolis. The optimum pH for TdsB activity was pH 8. TdsB converted HPBSi to 2-hydroxybiphenyl (2-HBP) and sulfite stoichiometrically. The Km and kcat values for HPBSi were 0.33 mM and 0.32 s(-1), respectively. TdsB was inactivated by SH reagents such as p-chloromercuribenzoic acid and 5,5'-dithio-bis-2-nitrobenzoic acid, but was not inhibited by chelating reagents such as EDTA and o-phenanthroline. TdsB was also inhibited by o-hydroxystyrene, the final desulfurized product of BT. However, 2-HBP and its derivatives showed only a weak inhibitory effect. TdsB desulfurized 2-(2'-hydroxyphenyl)ethen-1-sulfinate to yield o-hydroxystyrene, but DszB could not. A site-directed mutagenesis study revealed the cysteine residue at position 17 to be essential to the catalytic activity of TdsB.

  17. An investigation into Cu-Mn based sorbent for hot gas desulfurization

    SciTech Connect

    Wan Chen; Sha Xingzhong; Shen Wenqin; Xiong Lihong

    1998-12-31

    In the integrated gasification combined cycle for generation of electricity from coal, the efficient removal of sulfur is essential for improvement in thermal efficiency and process simplification. A family of copper manganese oxide sorbents has been studied. They show better strength and higher sulfur capacity than zinc based sorbents. The integrated gasification combined cycle (IGCC) is one of the most attractive technologies for advanced electricity generation. The coal gas cleanup process is necessary not only for the protection of gas turbine hardware, but also in compliance with the environmental requirements. In order to improve the efficiency of the overall cycle and simplify the process, the coal gas is purified at high temperature. For removal of hydrogen sulfide, the focus of much current work on hot coal gas desulfurization is primarily on the usage of zinc ferrite and zinc titanate sorbents. Zinc titanate is a promising sorbent and displays better strength than zinc ferrite, but its sulfur capacity is low. Therefore novel sorbents are still being searched for which can show improved properties. A family of copper manganese oxide sorbents has been studied and then their desulfurization properties are introduced here.

  18. Methods for Purifying Enzymes for Mycoremediation

    NASA Technical Reports Server (NTRS)

    Cullings, Kenneth W. (Inventor); DeSimone, Julia C. (Inventor); Paavola, Chad D. (Inventor)

    2014-01-01

    A process for purifying laccase from an ectomycorrhizal fruiting body is disclosed. The process includes steps of homogenization, sonication, centrifugation, filtration, affinity chromatography, ion exchange chromatography, and gel filtration. Purified laccase can also be separated into isomers.

  19. Ultrasound-promoted chemical desulfurization of Illinois coals

    SciTech Connect

    Chao, S.S.

    1991-01-01

    The overall objectives of the program were to investigate the use of ultrasound to promote coal desulfurization reactions and to evaluate chemical coal desulfurization schemes under mild conditions through a fundamental understanding of their reaction mechanisms and kinetics. The ultimate goal was to develop an economically feasible mild chemical process to reduce the total sulfur content of Illinois Basin Coals, while retaining their original physical characteristics, such as calorific value and volatile matter content. During the program, potential chemical reactions with coal were surveyed under various ultrasonic irradiation conditions for desulfurization, to formulate preliminary reaction pathways, and to select a few of the more promising chemical processes for more extensive study.

  20. A NOVEL APPROACH TO CATALYTIC DESULFURIZATION OF COAL

    SciTech Connect

    John G. Verkade

    1998-08-31

    The nonionic superbase P(MeNCH{sub 2}CH{sub 2}){sub 3}N (A) efficiently desulfurizes trisulfides to disulfides and monosulfides, disulfides to monosulfides, and propylene sulfide to propene. S=P(MeNCH{sub 2}CH{sub 2}){sub 3}N (B) was formed as the sulfur acceptor. P(NMe{sub 2}){sub 3} was a much poorer desulfurizing agent than A under the same reaction conditions. Thiocyanates and triphenylphosphine sulfide were also desulfurized with A, but N-(phenylthio)phthalimide formed [A-SP]{sup +} phthalimide in quantitative yield.

  1. Selenium speciation in flue desulfurization residues.

    PubMed

    Zhong, Liping; Cao, Yan; Li, Wenying; Xie, Kechang; Pan, Wei-Ping

    2011-01-01

    Flue gas from coal combustion contains significant amounts of volatile selenium (Se). The capture of Se in the flue gas desulfurization (FGD) scrubber unit has resulted in a generation of metal-laden residues. It is important to determine Se speciation to understand the environmental impact of its disposal. A simple method has been developed for selective inorganic Se(IV), Se(VI) and organic Se determination in the liquid-phase FGD residues by hydride generation atomic fluorescence spectrometry (AFS). It has been determined that Se(IV), Se(VI) and organic Se can be accurately determined with detection limits (DL) of 0.05, 0.06 and 0.06 microg/L, respectively. The accuracy of the proposed method was evaluated by analyzing the certified reference material, NIST CRM 1632c, and also by analyzing spiked tap-water samples. Analysis indicates that the concentration of Se is high in FGD liquid residues and primarily exists in a reduced state as selenite (Se(IV)). The toxicity of Se(IV) is the strongest of all Se species. Flue gas desulfurization residues pose a serious environmental risk.

  2. Biocatalytic desulfurization (BDS) of petrodiesel fuels.

    PubMed

    Mohebali, Ghasemali; Ball, Andrew S

    2008-08-01

    Oil refineries are facing many challenges, including heavier crude oils, increased fuel quality standards, and a need to reduce air pollution emissions. Global society is stepping on the road to zero-sulfur fuel, with only differences in the starting point of sulfur level and rate reduction of sulfur content between different countries. Hydrodesulfurization (HDS) is the most common technology used by refineries to remove sulfur from intermediate streams. However, HDS has several disadvantages, in that it is energy intensive, costly to install and to operate, and does not work well on refractory organosulfur compounds. Recent research has therefore focused on improving HDS catalysts and processes and also on the development of alternative technologies. Among the new technologies one possible approach is biocatalytic desulfurization (BDS). The advantage of BDS is that it can be operated in conditions that require less energy and hydrogen. BDS operates at ambient temperature and pressure with high selectivity, resulting in decreased energy costs, low emission, and no generation of undesirable side products. Over the last two decades several research groups have attempted to isolate bacteria capable of efficient desulfurization of oil fractions. This review examines the developments in our knowledge of the application of bacteria in BDS processes, assesses the technical viability of this technology and examines its future challenges.

  3. Enhanced durability of high-temperature desulfurization sorbents for moving-bed applications

    SciTech Connect

    Ayala, R.E.

    1991-08-01

    The objective of this contract was to identify and test fabrication methods and sorbent chemical compositions that enhance the long-term chemical reactivity and mechanical strength of zinc ferrite and other novel sorbents for moving-bed, high-temperature desulfurization of coal-derived gases. Desired properties to be enhanced for moving-bed sorbent materials are: (1) high chemical reactivity (sulfur absorption rate and total sulfur capacity), (2) high mechanical strength (pellet crush strength and attrition resistance), and (3) suitable pellet morphology (e.g., pellet size, shape, surface area, and average specific pore volume). In addition, it is desired to maintain the sorbent properties over extended cyclic use in moving- bed systems.

  4. Plane flame furnace combustion tests on JPL desulfurized coal

    NASA Technical Reports Server (NTRS)

    Reuther, J. J.; Kim, H. T.; Lima, J. G. H.

    1982-01-01

    The combustion characteristics of three raw bituminous (PSOC-282 and 276) and subbituminous (PSOC-230) coals, the raw coals partially desulfurized (ca -60%) by JPL chlorinolysis, and the chlorinated coals more completely desulfurized (ca -75%) by JPL hydrodesulfurization were determined. The extent to which the combustion characteristics of the untreated coals were altered upon JPL sulfur removal was examined. Combustion conditions typical of utility boilers were simulated in the plane flame furnace. Upon decreasing the parent coal voltaile matter generically by 80% and the sulfur by 75% via the JPL desulfurization process, ignition time was delayed 70 fold, burning velocity was retarded 1.5 fold, and burnout time was prolonged 1.4 fold. Total flame residence time increased 2.3 fold. The JPL desulfurization process appears to show significant promise for producing technologically combustible and clean burning (low SO3) fuels.

  5. Studies involving high temperature desulfurization/regeneration reactions of metal oxides for fuel cell development

    NASA Astrophysics Data System (ADS)

    Jalan, V.

    1983-10-01

    A high temperature regenerable desulfurization process capable of reducing the sulfur content in coal gases from 200 pp to 1 ppm was investigated to provide for the integration of a coal gasifier with a molten carbonate fuel cell, which requires that the sulfur content be below 1 ppm. Results obtained with packed-bed and fluidized-bed reactors have demonstrated that a CuO/ZnO mixed oxide sorbent is regenerble and capable of lowering the sulfur content (as H2s and COS) from 200 ppm in simulated hot coal-derived gases to below 1 ppm level at 600 to 650 C. A comprecipitated CuO/ZnO was elected for further study. A structural reorganization mechanism, unique to mixed oxides, was identified: the creation of relatively fine crystallites of the sulfide components (Cu2S and ZnS) to counteract the loss of surface area due to sintering during regeneration. Studies with 9 to 26% water vapor in simulated coal gases show that sulfur levels below 1 ppm can be achieved in the temperature range of 500 to 650 C. The ability of CuO/ZnO to remove COS, CS2 and CH3SH at these conditions was demonstrated. A previously proposed pore-plugging model was further developed with good success for data treatment of both packed-bed and fluidized-bed reactors.

  6. Alkylated benzothiophene desulfurization by Rhodococcus sp. strain T09.

    PubMed

    Matsui, T; Onaka, T; Tanaka, Y; Tezuka, T; Suzuki, M; Kurane, R

    2000-03-01

    A benzothiophene desulfurizing bacterium was isolated and identified as Rhodococcus sp. strain T09. Growth assays revealed that this strain assimilated, as the sole sulfur source, various organosulfur compounds that cannot be assimilated by the well-studied dibenzothiophene-desulfurizing Rhodococcus sp. IGTS8. The cellular growth rate of strain T09 for the alkylated benzothiophenes depended on the alkylated position and the length of the alkyl moiety.

  7. Demonstration of the carbon-sulfur bond targeted desulfurization of benzothiophene by thermophilic Paenibacillus sp. strain A11-2 capable of desulfurizing dibenzothiophene.

    PubMed

    Konishi, J; Onaka, T; Ishii, Y; Suzuki, M

    2000-06-15

    Paenibacillus sp. strain A11-2, which had been primarily isolated as a bacterial strain capable of desulfurizing dibenzothiophene to produce 2-hydroxybiphenyl at high temperatures, was found to desulfurize benzothiophene more efficiently than dibenzothiophene. The desulfurized product was identified as o-hydroxystyrene by GC-MS and 1H-NMR analysis. Benzothiophene was assumed to be degraded in a way analogous to the 4S pathway, which has been well-known as a mode of dibenzothiophene degradation. These results suggest that benzothiophene desulfurization may share at least partially the reaction mechanism with dibenzothiophene desulfurization.

  8. Dewatering of flue gas desulfurization sulfite solids

    SciTech Connect

    Garrison, F.C.; Wells, W.L.

    1984-06-12

    The dewatering capabilities of sulfite sludges from flue gas desulfurization facilities are substantially improved by the addition of relatively small amounts of sodium thiosulfate additive, or additives derived from or related to sodium thiosulfate, into the scrubber slurry liquor. As an added embellishment, these predetermined amounts of said additives are greater than those required for effecting substantial scale inhibition in the scrubber innards. Subsequently, conventional dewatering of the sulfite sludge to about 80 to 90 percent solids directly produces a waste product disposable in both an economically and an environmentally acceptable manner, in that the thixotropic characteristics of such sludges which are associated therewith upwards to about 70 percent solids therein are completely eliminated.

  9. Flue gas desulfurization method and apparatus

    DOEpatents

    Madden, D.A.; Farthing, G.A.

    1998-09-29

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

  10. Flue gas desulfurization method and apparatus

    DOEpatents

    Madden, D.A.; Farthing, G.A.

    1998-08-18

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

  11. Flue gas desulfurization method and apparatus

    DOEpatents

    Madden, Deborah A.; Farthing, George A.

    1998-09-29

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse.

  12. Flue gas desulfurization method and apparatus

    DOEpatents

    Madden, Deborah A.; Farthing, George A.

    1998-08-18

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse.

  13. Recent advances in flue gas desulfurization technologies

    SciTech Connect

    Pan, Y.S.

    1991-01-01

    Recent advances in flue gas desulfurization (FGD) technologies are reported. The technological advances include conventional wet FGD system improvements, advanced wet FGD system development, spray dryer system operations, technologies for furnace sorbent injections, post-combustion dry technologies, combined SO{sub 2}/NO{sub x} technologies, and several emerging FGD technologies. In addition, progress of by-product utilization that affects the operating cost of FGD systems is described. Economics of some commercially available and nearly maturing FGD technologies is also discussed. The materials included in this report are obtained from technical presentations made through September 1990, at several national and international conferences. This report is intended to document current advances and status of various FGD technologies. 101 refs., 16 figs.

  14. Recovery and recycling of limestone in LEC flue gas desulfurization. Final report, June 1, 1990--August 31, 1991

    SciTech Connect

    Gardner, N.C.; Adler, R.J.; Lin, Y.C.; Unger, M.E.; Lux, K.W.

    1992-03-01

    Prudich et al. have proposed an attractive technology called Limestone Emission Control (LEC) for removing sulfur dioxide from flue gases. Beds of 1/8 inch wet limestone particles absorb the sulfur dioxide from the gases. Sulfates and sulfites deposit on the surfaces of the particles, limiting their utilization to about 20%. The unreacted portion of the limestone can be recovered by mechanical grinding and recycling, enabling high overall sorbent utilization. Favorable economic costs derive from small equipment, simplicity, and low sorbent cost. Our research concentrates on selecting and testing on a laboratory scale suitable candidate dry and wet grinding methods for recovering limestone in LEC flue from desulfurization. A wet grinding method based on the impeller fluidizer, a new type of slurry processor, receives special attention. The impeller fluidizer is a dosed cylindrical vessel with an impeller at one end. It combines the operations of wet grinding, washing, and transporting the spent and recovered limestone as an aqueous slurry.

  15. Developing clean fuels: Novel techniques for desulfurization

    NASA Astrophysics Data System (ADS)

    Nehlsen, James P.

    The removal of sulfur compounds from petroleum is crucial to producing clean burning fuels. Sulfur compounds poison emission control catalysts and are the source of acid rain. New federal regulations require the removal of sulfur in both gasoline and diesel to very low levels, forcing existing technologies to be pushed into inefficient operating regimes. New technology is required to efficiently produce low sulfur fuels. Two processes for the removal of sulfur compounds from petroleum have been developed: the removal of alkanethiols by heterogeneous reaction with metal oxides; and oxidative desulfurization of sulfides and thiophene by reaction with sulfuric acid. Alkanethiols, common in hydrotreated gasoline, can be selectively removed and recovered from a hydrocarbon stream by heterogeneous reaction with oxides of Pb, Hg(II), and Ba. The choice of reactive metal oxides may be predicted from simple thermodynamic considerations. The reaction is found to be autocatalytic, first order in water, and zero order in thiol in the presence of excess oxide. The thiols are recovered by reactive extraction with dilute oxidizing acid. The potential for using polymer membrane hydrogenation reactors (PEMHRs) to perform hydrogenation reactions such as hydrodesulfurization is explored by hydrogenating ketones and olefins over Pt and Au group metals. The dependence of reaction rate on current density suggests that the first hydrogen addition to the olefin is the rate limiting step, rather than the adsorption of hydrogen, for all of the metals tested. PEMHRs proved unsuccessful in hydrogenating sulfur compounds to perform HDS. For the removal of sulfides, a two-phase reactor is used in which concentrated sulfuric acid oxidizes aromatic and aliphatic sulfides present in a hydrocarbon solvent, generating sulfoxides and other sulfonated species. The polar oxidized species are extracted into the acid phase, effectively desulfurizing the hydrocarbon. A reaction scheme is proposed for this

  16. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, Santi

    1986-01-01

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  17. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, S.

    1986-08-19

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  18. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, Santi; Kulkarni, Sudhir S.

    1986-01-01

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  19. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, S.; Kulkarni, S.S.

    1986-08-26

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  20. Biological production of ethanol from waste gases with Clostridium ljungdahlii

    DOEpatents

    Gaddy, James L.

    2000-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products is disclosed. The method includes introducing the waste gases into a bioreactor where they are fermented to various product, such as organic acids, alcohols H.sub.2, SCP, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  1. Improving Enzyme Activity and Broadening Selectivity for Biological Desulfurization and Upgrading of Petroleum Feedstocks

    SciTech Connect

    Abhijeet P. Borole; Choo Y. Hamilton; Karen Miller; Brian Davison; Matthew Grossman; Robert Shong

    2003-05-12

    The objective of this project was to develop improved biocatalysts for desulfurization and upgrading of petroleum feedstocks. The goal was to improve the activity and broaden the selectivity of desulfurization enzymes using directed evolution as a tool as well as to explore the impact of ring-opening on biological desulfurization

  2. A NOVEL APPROACH TO CATALYTIC DESULFURIZATION OF COAL

    SciTech Connect

    John G. Verkade

    2001-11-01

    Column chromatographic separation of the S=PBu{sub 3}/PBu{sub 3} product mixture followed by weighing the S=PBu{sub 3}, and by vacuum distillation of S=PBu{sub 3}/PBu{sub 3}mixture followed by gas chromatographic analysis are described. Effects of coal mesh size, pre-treatment with methanol Coal (S) + excess PR{sub 3} {yields} Coal + S=PR{sub 3}/PBu{sub 3} and sonication on sulfur removal by PBu{sub 3} revealed that particle size was not observed to affect desulfurization efficiency in a consistent manner. Coal pretreatment with methanol to induce swelling or the addition of a filter aid such as Celite reduced desulfurization efficiency of the PBu{sub 3} and sonication was no more effective than heating. A rationale is put forth for the lack of efficacy of methanol pretreatment of the coal in desulfurization runs with PBu{sub 3}. Coal desulfurization with PBu{sub 3} was not improved in the presence of miniscule beads of molten lithium or sodium as a desulfurizing reagent for SPBu{sub 3} in a strategy aimed at regenerating PBu{sub 3} inside coal pores. Although desulfurization of coals did occur in sodium solutions in liquid ammonia, substantial loss of coal mass was also observed. Of particular concern is the mass balance in the above reaction, a problem which is described in some detail. In an effort to solve this difficulty, a specially designed apparatus is described which we believe can solve this problem reasonably effectively. Elemental sodium was found to remove sulfur quantitatively from a variety of polycyclic organosulfur compounds including dibenzothiophene and benzothiophene under relatively mild conditions (150 C) in a hydrocarbon solvent without requiring the addition of a hydrogen donor. Lithium facilitates the same reaction at a higher temperature (254 C). Mechanistic pathways are proposed for these transformations. Curiously, dibenzothiophene and its corresponding sulfone was virtually quantitatively desulfurized in sodium solutions in liquid

  3. CONVERSION EXTRACTION DESULFURIZATION (CED) PHASE III

    SciTech Connect

    James Boltz

    2005-03-01

    This project was undertaken to refine the Conversion Extraction Desulfurization (CED) technology to efficiently and economically remove sulfur from diesel fuel to levels below 15-ppm. CED is considered a generic term covering all desulfurization processes that involve oxidation and extraction. The CED process first extracts a fraction of the sulfur from the diesel, then selectively oxidizes the remaining sulfur compounds, and finally extracts these oxidized materials. The Department of Energy (DOE) awarded Petro Star Inc. a contract to fund Phase III of the CED process development. Phase III consisted of testing a continuous-flow process, optimization of the process steps, design of a pilot plant, and completion of a market study for licensing the process. Petro Star and the Degussa Corporation in coordination with Koch Modular Process Systems (KMPS) tested six key process steps in a 7.6-centimeter (cm) (3.0-inch) inside diameter (ID) column at gas oil feed rates of 7.8 to 93.3 liters per hour (l/h) (2.1 to 24.6 gallons per hour). The team verified the technical feasibility with respect to hydraulics for each unit operation tested and successfully demonstrated pre-extraction and solvent recovery distillation. Test operations conducted at KMPS demonstrated that the oxidation reaction converted a maximum of 97% of the thiophenes. The CED Process Development Team demonstrated that CED technology is capable of reducing the sulfur content of light atmospheric gas oil from 5,000-ppm to less than 15-ppm within the laboratory scale. In continuous flow trials, the CED process consistently produced fuel with approximately 20-ppm of sulfur. The process economics study calculated an estimated process cost of $5.70 per product barrel. The Kline Company performed a marketing study to evaluate the possibility of licensing the CED technology. Kline concluded that only 13 refineries harbored opportunity for the CED process. The Kline study and the research team's discussions with

  4. Hot gas desulfurization with sorbents containing mixed metal oxides

    SciTech Connect

    Akyurtlu, J.F.; Akyurtlu, A.

    1992-12-31

    Advanced power generation systems such as the integrated gasification combined cycle power generators and the molten carbonate fuel cells have stringent fuel gas desulfurization requirements and process economics dictates that this desulfurization be performed near the temperature of the gasification off-gas. The most advanced hot gas desulfurization technology today is based on the zinc ferrite sorbent which has several shortcomings such as zinc loss by evaporation, and incomplete regeneration due to sulfate formation. The objective of this study is to develop an improved sorbent which can reduce H{sub 2}S levels to 1 ppmv or less, which can stabilize zinc, and produce economically recoverable amounts of elemental sulfur during regeneration. For this purpose, the desulfurization performance.of sorbents prepared by the addition of various amounts of V{sub 2}0{sub 5} to the zinc ferrite sorbent is investigated. Preliminary experiments show that the sorbent containing about 4.8 mass % vanadium shows a superior desulfurization performance compared to zinc ferrite. Addition of vanadium suppresses residual sulfate formation and possibly zinc evaporation. significant quantities of elemental sulfur were observed after the regeneration of vanadium containing sorbents.

  5. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, March 11, 1993--June 11, 1993

    SciTech Connect

    Sublette, K.L.

    1993-11-01

    There are two basic approaches to addressing the problem of SO{sub 2} and NO{sub x} emissions: (1) desulfurize (and denitrogenate) the feedstock prior to or during combustion; or (2) scrub the resultant SO{sub 2} and oxides of nitrogen from the boiler flue gases. The flue gas processing alternative has been addressed in this project via microbial reduction of SO{sub 2} and NO{sub x} by sulfate-reducing bacteria

  6. Trends in source gases

    NASA Technical Reports Server (NTRS)

    Ehhalt, D. H.; Fraser, P. J.; Albritton, D.; Cicerone, R. J.; Khalil, M. A. K.; Legrand, M.; Makide, Y.; Rowland, F. S.; Steele, L. P.; Zander, R.

    1989-01-01

    Source gases are defined as those gases that, by their breakdown, introduce into the stratosphere halogen, hydrogen, and nitrogen compounds that are important in stratospheric ozone destruction. Given here is an update of the existing concentration time series for chlorocarbons, nitrous oxide, and methane. Also reviewed is information on halogen containing species and the use of these data for establishing trends. Also reviewed is evidence on trends in trace gases that influence tropospheric chemistry and thus the tropospheric lifetimes of source gases, such as carbon dioxide, carbon monoxide, or nitrogen oxides. Much of the information is given in tabular form.

  7. Flue gas desulfurization: Physicochemical and biotechnological approaches

    SciTech Connect

    Pandey, R.A.; Biswas, R.; Chakrabarti, T.; Devotta, S.

    2005-07-01

    Various flue gas desulfurization processes - physicochemical, biological, and chemobiological - for the reduction of emission of SO{sub 2} with recovery of an economic by-product have been reviewed. The physicochemical processes have been categorized as 'once-through' and 'regenerable.' The prominent once-through technologies include wet and dry scrubbing. The wet scrubbing technologies include wet limestone, lime-inhibited oxidation, limestone forced oxidation, and magnesium-enhanced lime and sodium scrubbing. The dry scrubbing constitutes lime spray drying, furnace sorbent injection, economizer sorbent injection, duct sorbent injection, HYPAS sorbent injection, and circulating fluidized bed treatment process. The regenerable wet and dry processes include the Wellman Lord's process, citrate process, sodium carbonate eutectic process, magnesium oxide process, amine process, aqueous ammonia process, Berglau Forchung's process, and Shell's process. Besides these, the recently developed technologies such as the COBRA process, the OSCAR process, and the emerging biotechnological and chemobiological processes are also discussed. A detailed outline of the chemistry, the advantages and disadvantages, and the future research and development needs for each of these commercially viable processes is also discussed.

  8. Biogas desulfurization using autotrophic denitrification process.

    PubMed

    Bayrakdar, Alper; Tilahun, Ebrahim; Calli, Baris

    2016-01-01

    The aim of this study was to evaluate the performance of an autotrophic denitrification process for desulfurization of biogas produced from a chicken manure digester. A laboratory scale upflow fixed bed reactor (UFBR) was operated for 105 days and fed with sodium sulfide or H2S scrubbed from the biogas and nitrate as electron donor and acceptor, respectively. The S/N ratio (2.5 mol/mol) of the feed solution was kept constant throughout the study. When the UFBR was fed with sodium sulfide solution with an influent pH of 7.7, about 95 % sulfide and 90 % nitrate removal efficiencies were achieved. However, the inlet of the UFBR was clogged several times due to the accumulation of biologically produced elemental sulfur particles and the clogging resulted in operational problems. When the UFBR was fed with the H2S absorbed from the biogas and operated with an influent pH of 8-9, around 98 % sulfide and 97 % nitrate removal efficiencies were obtained. In this way, above 95 % of the H2S in the biogas was removed as elemental sulfur and the reactor effluent was reused as scrubbing liquid without any clogging problem.

  9. Enzymes desulfurizing diesel fuel in pilot plant tests

    SciTech Connect

    Rhodes, A.K.

    1995-05-15

    Energy BioSystems Corp., The Woodlands, Texas, is collecting data from a new 5 b/d, continuous-operation, biocatalytic desulfurization (BDS) pilot plant. Hurdles to commercialization are catalyst activity, stability, and fermentation yield. Since 1990, however, Energy BioSystems Corp. (EBC) has made great strides in improving all three of these factors. The BDS process uses enzymes to remove organically bound sulfur from petroleum streams at mild temperatures and atmospheric pressure. Objectives of the pilot plant studies include: validating and refining the computer simulations used to control the process and establishing the process design basis. So far, the results from pilot plant operations have met expectations. The projected 45% desulfurization rate has been achieved, within a few percent. This rate was simply the target for the initial evaluation experiments, and that the process is capable of desulfurizing almost to extinction.

  10. Coal desulfurization by low temperature chlorinolysis, phase 3

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Rohatgi, N. K.; Ernest, J.

    1981-01-01

    Laboratory scale, bench scale batch reactor, and minipilot plant tests were conducted on 22 bituminous, subbituminous, and lignite coals. Chemical pretreatment and post treatment of coals relative to the chlorination were tried as a means of enhancing desulfurization by the chlorinolysis process. Elevated temperature (500-700 C) hydrogen treatment of chlorinolysis-processed coal at atmospheric pressure was found to substantially increase coal desulfurization up to 90 percent. Sulfur forms, proximate and ultimate analyses of the processed coal are included. Minipilot plant operation indicates that the continuous flow reactor provides coal desulfurization results comparable to those obtained in the batch reactor. Seven runs were conducted at coal feed rates of 1.5 to 8.8 kg per hour using water and methylchloroform solvents, gaseous chlorine feed of 3 to 31.4 SCFH at 21 to 70 C, and atmospheric pressure for retention times of 20 to 120 minutes.

  11. Process for the removal of acid forming gases from exhaust gases

    DOEpatents

    Chang, Shih-Ger; Liu, David K.

    1992-01-01

    Exhaust gases are treated to remove NO or NO.sub.x and SO.sub.2 by contacting the gases with an aqueous emulsion or suspension of yellow phosphorus preferably in a wet scrubber. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50.degree. C. are attractive. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO.sub.x and SO.sub.2, alkalis that are used for flue gas desulfurization are preferred. With this process, 100% of the by-products created are usable, and close to 100% of the NO or NO and SO.sub.2 can be removed in an economic fashion.

  12. Process for the removal of acid forming gases from exhaust gases

    DOEpatents

    Chang, S.G.; Liu, D.K.

    1992-11-17

    Exhaust gases are treated to remove NO or NO[sub x] and SO[sub 2] by contacting the gases with an aqueous emulsion or suspension of yellow phosphorus preferably in a wet scrubber. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50 C is attractive. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO[sub x] and SO[sub 2], alkalis that are used for flue gas desulfurization are preferred. With this process, 100% of the by-products created are usable, and close to 100% of the NO or NO[sub x] and SO[sub 2] can be removed in an economic fashion. 9 figs.

  13. Desulfurization of fuel gases in fluidized bed gasification and hot fuel gas cleanup systems

    DOEpatents

    Steinberg, M.; Farber, G.; Pruzansky, J.; Yoo, H.J.; McGauley, P.

    1983-08-26

    A problem with the commercialization of fluidized bed gasification is that vast amounts of spent sorbent are generated if the sorbent is used on a once-through basis, especially if high sulfur coals are burned. The requirements of a sorbent for regenerative service in the FBG process are: (1) it must be capable of reducing the sulfur containing gas concentration of the FBG flue gas to within acceptable environmental standards; (2) it must not lose its reactivity on cyclic sulfidation and regeneration; (3) it must be capable of regeneration with elimination of substantially all of its sulfur content; (4) it must have good attrition resistance; and, (5) its cost must not be prohibitive. It has now been discovered that calcium silicate pellets, e.g., Portland cement type III pellets meet the criteria aforesaid. Calcium silicate removes COS and H/sub 2/S according to the reactions given to produce calcium sulfide silicate. The sulfur containing product can be regenerated using CO/sub 2/ as the regenerant. The sulfur dioxide can be conveniently reduced to sulfur with hydrogen or carbon for market or storage. The basic reactions in the process of this invention are the reactions with calcium silicate given in the patent. A convenient and inexpensive source of calcium silicate is Portland cement. Portland cement is a readily available, widely used construction meterial.

  14. Enhanced durability of high-temperature desulfurization sorbents for moving-bed applications. Option 2 Program: Development and testing of zinc titanate sorbents

    SciTech Connect

    Ayala, R.E.

    1993-04-01

    One of the most advantageous configurations of the integrated gasification combined cycle (IGCC) power system is coupling it with a hot gas cleanup for the more efficient production of electric power in an environmentally acceptable manner. In conventional gasification cleanup systems, closely heat exchangers are necessary to cool down the fuel gases for cleaning, sometimes as low as 200--300{degree}F, and to reheat the gases prior to injection into the turbine. The result is significant losses in efficiency for the overall power cycle. High-temperature coal gas cleanup in the IGCC system can be operated near 1000{degree}F or higher, i.e., at conditions compatible with the gasifier and turbine components, resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for IGCC power systems in which mixed-metal oxides are currently being used as desulfurization sorbents. The objective of this contract is to identify and test fabrication methods and sorbent chemical compositions that enhance the long-term chemical reactivity and mechanical durability of zinc ferrite and other novel sorbents for moving-bed, high-temperature desulfurization of coal-derived gases. Zinc ferrite was studied under the base program of this contract. In the next phase of this program novel sorbents, particularly zinc titanate-based sorbents, are being studied under the remaining optional programs. This topical report summarizes only the work performed under the Option 2 program. In the course of carrying out the program, more than 25 zinc titanate formulations have been prepared and characterized to identify formulations exhibiting enhanced properties over the baseline zinc titanate formulation selected by the US Department of Energy.

  15. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Jha, M.C.; Baltich, L.K.

    1987-02-23

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  16. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Jha, M.C.; Berggren, M.H.

    1989-05-02

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  17. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Jha, M.C.; Baltich, L.K.; Berggren, M.H.

    1987-05-18

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  18. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Silaban, A.; Harrison, D.P. . Dept. of Chemical Engineering)

    1989-05-02

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such as size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  19. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Jha, M.C.; Berggren, M.H.

    1988-11-14

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  20. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Jha, M.C.; Baltich, L.K.; Berggren, M.H.

    1987-08-28

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  1. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Jha, M.C.; Berggren, M.H.

    1988-08-19

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  2. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Jha, M.C.; Berggren, M.H.

    1989-03-06

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  3. Method for purifying bidentate organophosphorus compounds

    DOEpatents

    Schulz, Wallace W.

    1977-01-01

    Bidentate organophosphorus compounds useful for extracting actinide elements from acidic nuclear waste solutions are purified of undesirable acidic impurities by contacting the compounds with ethylene glycol which preferentially extracts the impurities found in technical grade bidentate compounds.

  4. Transient transfection of purified Babesia bovis merozoites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transient transfection of intraerythrocytic Babesia bovis parasites has been previously reported. In this study, we describe the development and optimization of methods for transfection of purified B. bovis merozoites using either nucleofection (Amaxa) or conventional electroporation (Gene Pulser II...

  5. Studies involving high temperature desulfurization/regeneration reactions of metal oxides for fuel cell development. Final report

    SciTech Connect

    Jalan, V.

    1983-10-01

    Research conducted at Giner, Inc. during 1981 to 1983 under the present contract has been a continuation of the investigation of a high temperature regenerable desulfurization process capable of reducing the sulfur content in coal gases from 200 ppM to 1 ppM. The overall objective has been the integration of a coal gasifier with a molten carbonate fuel cell, which requires that the sulfur content be below 1 ppM. Commercially available low temperature processes incur an excessive energy penalty. Results obtained with packed-bed and fluidized bed reactors have demonstrated that a CuO/ZnO mixed oxide sorbent is regenerable and capable of lowering the sulfur content (as H/sub 2/S and COS) from 200 ppM in simulated hot coal-derived gases to below 1 ppM level at 600 to 650/sup 0/C. Four potential sorbents (copper, tungsten oxide, vanadium oxide and zinc oxide) were initially selected for experimental use in hot regenerable desulfurization in the temperature range 500 to 650/sup 0/C. Based on engineering considerations, such as desulfurization capacity in per weight or volume of sorbents, a coprecipitated CuO/ZnO was selected for further study. A structural reorganization mechanism, unique to mixed oxides, was identified: the creation of relatively fine crystallites of the sulfided components (Cu/sub 2/S and ZnS) to counteract the loss of surface area due to sintering during regeneration. Studies with 9 to 26% water vapor in simulated coal gases show that sulfur levels below 1 ppM can be achieved in the temperature range of 500/sup 0/ to 650/sup 0/C. The ability of CuO/ZnO to remove COS, CS/sub 2/ and CH/sub 3/SH at these conditions has been demonstrated in this study. Also a previously proposed pore-plugging model was further developed with good success for data treatment of both packed bed and fluidized-bed reactors. 96 references, 42 figures, 21 tables.

  6. Long-term testing of the zinc titanate for desulfurization of hot coal gas in a fluidized-bed reactor

    SciTech Connect

    Jain, S.C.; Gupta, R.; Gangwal, S.K.

    1993-12-31

    Research Triangle Institute (RTI) under contract to the US Department of Energy (DOE), Morgantown energy Technology Center has recently completed a long-term test consisting of 100 sulfidation-regeneration cycles on a zinc titanate material intended for use as a high-temperature, regenerable sorbent to desulfurize coal-derived gas. The primary motivation for this development is to generate a more economical, environmentally superior, and reliable process to purify the product gas of coal gasifiers for use in gas turbines and fuel cells. This zinc titanate formulation (designated as ZT-4 and containing Zn-to-Ti in a molar ratio of 1.5) exhibited the best overall performance in terms of chemical reactivity, sulfur capacity, regenerability, structural properties and, most importantly, the attrition resistance based on multicycle testing of a number of sorbent formulations in a bench scale fluidized-bed reactor. The conditions in the test were -- desulfurization temperature: 750C (1382F); pressure: 1.52 MPa (220 psia); coal gas: simulated Texaco entrained-bed oxygen-blown gasifier gas containing 12,000 ppmv of H{sub 2}S; superficial gas velocity: 15 cm/s (0.49 ft/s). The ZT-4 sorbent used in this test was prepared using a granulation technique and 500 g of the sorbent in the 100 to 300 microns particle diameter range were used in a 5.1-cm (2-inch) i.d. stainless steel reactor.

  7. Process for desulfurization of coal and ores

    SciTech Connect

    Starbuck, A.

    1980-07-22

    A process for desulfurizing ores containing sulfur comprises the steps of: (A) crushing ore containing sulfur to a particle consistency; (B) feeding the crushed ore to a heated continuous-flow processor; (C) introducing pre-heated sulfur dissolving solvent into said processor with the crushed ore; (D) concurrently mixing and force conveying the crushed ore and solvent by augering in the continuous flow processor at an elevated temperature in which sulfur is dissolvable and is dissolved in a heated sulfur-solvent solution with suspended particles and a remaining ore, the processor being oriented for about horizontal augering; (E) separating the sulfur-solvent solution with suspended particles from the remaining ore at an elevated temperature; (F) drying the separated, remaining ore by evaporating remaining solvent from the ore; (G) recovering solvent from the ore drying step by condensing the evaporated solvent; (H) concurrently crystallizing sulfur dissolved in the sulfur-solvent solution and force conveying the sulfur-solvent solution and crystallizing sulfur by augering a continuous flow chilled processor wherein the sulfur-solvent solution and crystallizing sulfur are conveyed together in a concurrent manner as a mixture in a continuous forward direction at controlled reduced temperatures as substantially the entire mixture progresses to a separate separating step, said crystallizing sulfur existing in part as a suspension and in part as a precipitate; (I) separating both crystallized suspension sulfur and crystallized precipitate sulfur from the solvent solution; (J) drying the separated crystallized sulfur by evaporating the solvent from the crystallized sulfur, wherein a fine crystal sulfur product is obtained; and (K) recovering solvent from the crystallized sulfur drying step by condensing the veaporated solvent.

  8. Bench-scale demonstration of hot-gas desulfurization technology. Quarterly report, January 1--March 31, 1998

    SciTech Connect

    1998-12-31

    At the start of the current project, the DSRP (Direct Sulfur Recovery Process) technology was at the bench-scale development stage with a skid-mounted system ready for field testing. The process had been extended to fluidized-bed operation in the Stage 1 reactor. A preliminary economic study for a 100 MW plant in which the two-stage DSRP was compared to conventional processes indicated the economic attractiveness of the DSRP. Through bench-scale development, both fluidized-bed zinc titanate and DSRP technologies have been shown to be technically and economically attractive. The demonstrations prior to the start of this project, however, had only been conducted using simulated (rather than real) coal gas and simulated regeneration off-gas. Thus, the effect of trace contaminants in real coal gases on the sorbent and DSRP catalyst was not known. Also, the zinc titanate desulfurization unit and DSRP had not been demonstrated in an integrated manner. The overall goal of this project is to continue further development of the zinc titanate desulfurization and DSRP technologies by scale-up and field testing (with actual coal gas) of the zinc titanate fluidized-bed reactor system, and the Direct Sulfur Recovery Process.

  9. High temperature desulfurization of synthesis gas

    DOEpatents

    Najjar, Mitri S.; Robin, Allen M.

    1989-01-01

    The hot process gas stream from the partial oxidation of sulfur-containing heavy liquid hydrocarbonaceous fuel and/or sulfur-containing solid carbonaceous fuel comprising gaseous mixtures of H.sub.2 +CO, sulfur-containing gases, entrained particulate carbon, and molten slag is passed through the unobstructed central passage of a radiant cooler where the temperature is reduced to a temperature in the range of about 1800.degree. F. to 1200.degree. F. From about 0 to 95 wt. % of the molten slag and/or entrained material may be removed from the hot process gas stream prior to the radiant cooler with substantially no reduction in temperature of the process gas stream. In the radiant cooler, after substantially all of the molten slag has solidified, the sulfur-containing gases are contacted with a calcium-containing material to produce calcium sulfide. A partially cooled stream of synthesis gas, reducing gas, or fuel gas containing entrained calcium sulfide particulate matter, particulate carbon, and solidified slag leaves the radiant cooler containing a greatly reduced amount of sulfur-containing gases.

  10. Workshop on sulfur chemistry in flue gas desulfurization

    SciTech Connect

    Wallace, W.E. Jr.

    1980-05-01

    The Flue Gas Desulfurization Workshop was held at Morgantown, West Virginia, June 7-8, 1979. The presentations dealt with the chemistry of sulfur and calcium compounds in scrubbers. DOE and EPRI programs in this area are described. Ten papers have been entered individually into EDB and ERA. (LTN)

  11. Core-in-shell sorbent for hot coal gas desulfurization

    DOEpatents

    Wheelock, Thomas D.; Akiti, Jr., Tetteh T.

    2004-02-10

    A core-in-shell sorbent is described herein. The core is reactive to the compounds of interest, and is preferably calcium-based, such as limestone for hot gas desulfurization. The shell is a porous protective layer, preferably inert, which allows the reactive core to remove the desired compounds while maintaining the desired physical characteristics to withstand the conditions of use.

  12. Selecting the right pumps and valves for flue gas desulfurization

    SciTech Connect

    Ellis, D.; Ahluwalia, H.

    2006-07-15

    Limestone slurry needs to move efficiently through a complex process, meaning that selecting the right pumps and valves is critical. The article discusses factors to consider in selecting pumps and values for flue gas desulfurization process in coal-fired power plants. 2 photos.

  13. CURRENT STATUS OF ADVACATE PROCESS FOR FLUE GAS DESULFURIZATION

    EPA Science Inventory

    The following report discusses current bench- and pilot-plant advances in preparation of ADVAnced siliCATE (ADVACATE) calcium silicate sorbentsfor flue gas desulfurization. It also discusses current bench- and pilot-plant advances in sorbent preparation. Fly ash was ground in a l...

  14. FLUE GAS DESULFURIZATION: THE STATE OF THE ART

    EPA Science Inventory

    The paper gives results of a review of commercially available flue gas desulfurization (FGD) technologies that have an established record of full-scale performance. (NOTE: Sulfur dioxide (SO2) scrubbers may be used by coal-fired electrcity generating units to meet the requiremen...

  15. Effect of operating parameters and reactor structure on moderate temperature dry desulfurization

    SciTech Connect

    Jie Zhang; Changfu You; Haiying Qi; Bo Hou; Changhe Chen; Xuchang Xu

    2006-07-01

    A moderate temperature dry desulfurization process at 600-800 C was studied in a pilot-scale circulating fluidized bed flue gas desulfurization (CFB-FGD) experimental facility. The desulfurization efficiency was investigated for various operating parameters. Structural improvements in key parts of the CFB-FGD system, i.e., the cyclone separator and the distributor, were made to improve the desulfurization efficiency and flow resistance. The experimental results show that the desulfurization efficiency increased rapidly with increasing temperature above 600 C due to enhanced gas diffusion and the shift of the equilibrium for the carbonate reaction. The sorbent sulfated gradually after quick carbonation of the sorbent with a long particle residence time necessary to realize a high desulfurization ratio. A reduced solids concentration in the bed reduced the particle residence time and the desulfurization efficiency. A single-stage cyclone separator produced no improvement in the desulfurization efficiency compared with a two-stage cyclone separator. Compared with a wind cap distributor, a large hole distributor reduced the flow resistance which reduced the desulfurization efficiency due to the reduced bed pressure drop and worsened bed fluidization. The desulfurization efficiency can be improved by increasing the collection efficiency of fine particles to prolong their residence time and by improving the solids concentration distribution to increase the gas-solid contact surface area. 16 refs., 9 figs.

  16. Effect of operating parameters and reactor structure on moderate temperature dry desulfurization.

    PubMed

    Zhang, Jie; You, Changfu; Qi, Haiying; Hou, Bo; Chen, Changhe; Xu, Xuchang

    2006-07-01

    A moderate temperature dry desulfurization process at 600-800 degrees C was studied in a pilot-scale circulating fluidized bed flue gas desulfurization (CFB-FGD) experimental facility. The desulfurization efficiency was investigated for various operating parameters, such as bed temperature, CO2 concentration, and solids concentration. In addition, structural improvements in key parts of the CFB-FGD system, i.e., the cyclone separator and the distributor, were made to improve the desulfurization efficiency and flow resistance. The experimental results show that the desulfurization efficiency increased rapidly with increasing temperature above 600 degrees C due to enhanced gas diffusion and the shift of the equilibrium for the carbonate reaction. The sorbent sulfated gradually after quick carbonation of the sorbent with a long particle residence time necessary to realize a high desulfurization ratio. A reduced solids concentration in the bed reduced the particle residence time and the desulfurization efficiency. A single-stage cyclone separator produced no improvement in the desulfurization efficiency compared with a two-stage cyclone separator. Compared with a wind cap distributor, a large hole distributor reduced the flow resistance which reduced the desulfurization efficiency due to the reduced bed pressure drop and worsened bed fluidization. The desulfurization efficiency can be improved by increasing the collection efficiency of fine particles to prolong their residence time and by improving the solids concentration distribution to increase the gas-solid contact surface area.

  17. Desulfurization ability of refining slag with medium basicity

    NASA Astrophysics Data System (ADS)

    Yu, Hui-xiang; Wang, Xin-hua; Wang, Mao; Wang, Wan-jun

    2014-12-01

    The desulfurization ability of refining slag with relative lower basicity ( B) and Al2O3 content ( B = 3.5-5.0; 20wt%-25wt% Al2O3) was studied. Firstly, the component activities and sulfide capacity ( C S) of the slag were calculated. Then slag-metal equilibrium experiments were carried out to measure the equilibrium sulfur distribution ( L S). Based on the laboratorial experiments, slag composition was optimized for a better desulfurization ability, which was verified by industrial trials in a steel plant. The obtained results indicated that an MgO-saturated CaO-Al2O3-SiO2-MgO system with the basicity of about 3.5-5.0 and the Al2O3 content in the range of 20wt%-25wt% has high activity of CaO ( a CaO), with no deterioration of C S compared with conventional desulfurization slag. The measured L S between high-strength low-alloyed (HSLA) steel and slag with a basicity of about 3.5 and an Al2O3 content of about 20wt% and between HSLA steel and slag with a basicity of about 5.0 and an Al2O3 content of about 25wt% is 350 and 275, respectively. The new slag with a basicity of about 3.5-5.0 and an Al2O3 content of about 20wt% has strong desulfurization ability. In particular, the key for high-efficiency desulfurization is to keep oxygen potential in the reaction system as low as possible, which was also verified by industrial trials.

  18. DEEP DESULFURIZATION OF DIESEL FUELS BY A NOVEL INTEGRATED APPROACH

    SciTech Connect

    Xiaoliang Ma; Michael Sprague; Lu Sun; Chunshan Song

    2002-10-01

    In order to reduce the sulfur level in liquid hydrocarbon fuels for environmental protection and fuel cell applications, deep desulfurization of a model diesel fuel and a real diesel fuel was conducted by our SARS (selective adsorption for removing sulfur) process using the adsorbent A-2. Effect of temperature on the desulfurization process was examined. Adsorption desulfurization at ambient temperature, 24 h{sup -1} of LHSV over A-2 is efficient to remove dibenzothiophene (DBT) in the model diesel fuel, but difficult to remove 4-methyldibenzothiophene (4-MDBT) and 4,6-dimethyl-dibenzothiophene (4,6-DMDBT). Adsorption desulfurization at 150 C over A-2 can efficiently remove DBT, 4-MDBT and 4,6-DMDBT in the model diesel fuel. The sulfur content in the model diesel fuel can be reduced to less than 1 ppmw at 150 C without using hydrogen gas. The adsorption capacity corresponding to the break-through point is 6.9 milligram of sulfur per gram of A-2 (mg-S/g-A-2), and the saturate capacity is 13.7 mg-S/g-A-2. Adsorption desulfurization of a commercial diesel fuel with a total sulfur level of 47 ppmw was also performed at ambient temperature and 24 h{sup -1} of LHSV over the adsorbent A-2. The results show that only part of the sulfur compounds existing in the low sulfur diesel can be removed by adsorption over A-2 at such operating conditions, because (1) the all sulfur compounds in the low sulfur diesel are the refractory sulfur compounds that have one or two alkyl groups at the 4- and/or 6-positions of DBT, which inhibit the approach of the sulfur atom to the adsorption site; (2) some compounds coexisting in the commercial low sulfur diesel probably inhibit the interaction between the sulfur compounds and the adsorbent. Further work in determining the optimum operating conditions and screening better adsorbent is desired.

  19. Performance assessment of O-18 water purifier.

    PubMed

    Kitano, H; Magata, Y; Tanaka, A; Mukai, T; Kuge, Y; Nagatsu, K; Konishi, J; Saji, H

    2001-02-01

    In the synthesis of 18F-FDG by the nucleophilic substitution method, 18O-H2O is usually used as target water. The target water should be recovered after synthesis and reused, because it is expensive, but recovered water contains impurities such as organic substances, and it must be purified before reuse. For this reason Sumitomo Heavy Industries, Ltd. developed an O-18 water purifier for elimination of organic substances in recovered water. This instrument consists of a UV irradiation unit and low-temperature distillation unit. Our institution had an opportunity to test use this instrument and evaluated its performance. The concentrations of organic substances after UV irradiation was greatly reduced, and recovery efficiency after distillation by the low-temperature distillation unit was very satisfactory at 99.3 +/- 0.5%. Furthermore, the yield of 18F-FDG from 18O-H20 purified with this instrument was sufficient for the clinical use. PMID:11355788

  20. Photochemistry of biogenic gases

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1989-01-01

    The relationship between the biosphere and the atmosphere is examined, emphasizing the composition and photochemistry and chemistry of the troposphere and stratosphere. The reactions of oxygen, ozone, and hydroxyl are reviewed and the fate of the biogenic gases ammonia, methane, reduced sulfur species, reduced halogen species, carbon monoxide, nitric oxide, nitrous oxide, nitrogen, and carbon dioxide are described. A list is given of the concentration and sources of the various gases.

  1. Method for purifying bidentate organophosphorous compounds

    DOEpatents

    McIsaac, Lyle D.; Krupa, Joseph F.; Schroeder, Norman C.

    1981-01-01

    Bidentate organophosphorous compounds are purified of undesirable impurities by contacting a solution of the compounds with a mercuric nitrate solution to form an insoluble mercuric bidentate compound which precipitates while the impurities remain in solution. The precipitate is washed and then contacted with a mixture of an aqueous solution of a strong mercuric ion complexing agent and an organic solvent to complex the mercuric ion away from the bidentate compound which then dissolves in the solvent. The purified bidentate compounds are useful for extracting the actinide elements from aqueous acidic nuclear waste solutions.

  2. Oxidative desulfurization of fuel oil by pyridinium-based ionic liquids.

    PubMed

    Zhao, Dishun; Wang, Yanan; Duan, Erhong

    2009-01-01

    In this work, an N-butyl-pyridinium-based ionic liquid [BPy]BF(4) was prepared. The effect of extraction desulfurization on model oil with thiophene and dibenzothiophene (DBT) was investigated. Ionic liquids and hydrogen peroxide (30%) were tested in extraction-oxidation desulfurization of model oil. The results show that the ionic liquid [BPy]BF(4) has a better desulfurization effect. The best technological conditions are: V(IL)/V(Oil) /V(H(2)O(2)) = 1:1:0.4, temperature 55 degrees C, the time 30 min. The ratio of desulfurization to thiophene and DBT reached 78.5% and 84.3% respectively, which is much higher than extraction desulfurization with simple ionic liquids. Under these conditions, the effect of desulfurization on gasoline was also investigated. The used ionic liquids can be recycled up to four times after regeneration. PMID:19924069

  3. DEEP DESULFURIZATION OF DIESEL FUELS BY A NOVEL INTEGRATED APPROACH

    SciTech Connect

    Xiaoliang Ma; Uday Turaga; Shingo Watanabe; Subramani Velu; Chunshan Song

    2004-05-01

    The overall objective of this project is to explore a new desulfurization system concept, which consists of efficient separation of the refractory sulfur compounds from diesel fuel by selective adsorption, and effective hydrodesulfurization of the concentrated fraction of the refractory sulfur compounds in diesel fuels. Our approaches focused on (1) selecting and developing new adsorbents for selective adsorption of sulfur or sulfur compounds in commercial diesel fuel; (2) conducting the adsorption desulfurization of model fuels and real diesel fuels by the selective-adsorption-for-removing-sulfur (PSUSARS) process over various developed adsorbents, and examining the adsorptive desulfurization performance of various adsorbents; (3) developing and evaluating the regeneration methods for various spent adsorbent; (4) developing new catalysts for hydrodesulfurization of the refractory sulfur existing in the commercial diesel fuel; (5) on the basis of the fundamental understanding of the adsorptive performance and regeneration natures of the adsorbents, further confirming and improving the conceptual design of the novel PSU-SARS process for deep desulfurization of diesel fuel Three types of adsorbents, the metal-chloride-based adsorbents, the activated nickel-based adsorbents and the metal-sulfide-based adsorbents, have been developed for selective adsorption desulfurization of liquid hydrocarbons. All of three types of the adsorbents exhibit the significant selectivity for sulfur compounds, including alkyl dibenzothiophenes (DBTs), in diesel fuel. Adsorption desulfurization of real diesel fuels (regular diesel fuel (DF), S: 325 ppmw; low sulfur diesel fuel (LSD-I), S: 47 ppmw) over the nickel-based adsorbents (A-2 and A-5) has been conducted at different conditions by using a flowing system. The adsorption capacity of DF over A-2 corresponding to an outlet sulfur level of 30 ppmw is 2.8 mg-S/g-A. The adsorption capacity of LSD-I over A-5 corresponding to the break

  4. Use of sulfide-containing liquors for removing mercury from flue gases

    DOEpatents

    Nolan, Paul S.; Downs, William; Bailey, Ralph T.; Vecci, Stanley J.

    2003-01-01

    A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

  5. Use of sulfide-containing liquors for removing mercury from flue gases

    DOEpatents

    Nolan, Paul S.; Downs, William; Bailey, Ralph T.; Vecci, Stanley J.

    2006-05-02

    A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

  6. Electrophoretic separator for purifying biologicals, part 1

    NASA Technical Reports Server (NTRS)

    Mccreight, L. R.

    1978-01-01

    A program to develop an engineering model of an electrophoretic separator for purifying biologicals is summarized. An extensive mathematical modeling study and numerous ground based tests were included. Focus was placed on developing an actual electrophoretic separator of the continuous flow type, configured and suitable for flight testing as a space processing applications rocket payload.

  7. Two systems developed for purifying inert atmospheres

    NASA Technical Reports Server (NTRS)

    Foster, M. S.; Johnson, C. E.; Kyle, M. L.

    1969-01-01

    Two systems, one for helium and one for argon, are used for purifying inert atmospheres. The helium system uses an activated charcoal bed at liquid nitrogen temperature to remove oxygen and nitrogen. The argon system uses heated titanium sponge to remove nitrogen and copper wool beds to remove oxygen. Both use molecular sieves to remove water vapor.

  8. Home Air Purifiers Eradicate Harmful Pathogens

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Marshall Space Flight Center funded the University of Madison-Wisconsin to develop ethylene scrubbers to keep produce fresh in space. Akida Holdings of Jacksonville, Florida, licensed the technology and developed Airocide, an air purifier that can kill airborne pathogens. Previously designed for industrial spaces, there is now a specially designed unit for home use.

  9. Improvement of Linde Kryotechnik's internal purifier

    NASA Astrophysics Data System (ADS)

    Decker, Lutz; Meier, Albert; Wilhelm, Hanspeter

    2014-01-01

    With the recent shortage in supply of helium, recovery solutions have experienced a new focus with a tendency to recover streams with higher impurity content. This development calls for purifier systems operating efficiently and with low impact on liquefaction capacity for helium streams with impurity levels in the percentage range. Linde Kryotechnik has answered this demand by improving the performance of its purifier technology. Since 1983, its standardized helium liquefiers of the L- and former TCF-series type contain an internal purifier which already allows efficient impurity removal with minimized space demand. Along with a line dryer to absorb humidity, it is designed to remove air impurities up to 5 mol%. However, with increasing impurity level, liquefaction capacity reduced significantly being furthermore restricted to an upper level of approx. 180 l/h and continuous purification became limited in time. With the current redesign of this purifier, the impact on liquefaction capacity is now minimized without any limitation within the capacity range of the L-series plants. Continuous purification is hence ensured beyond previous maximum impurity content. This paper provides the key design changes and the achievable performance, which has been verified in the recent L-series plants delivered to customers.

  10. Method of purifying neutral organophosphorus extractants

    DOEpatents

    Horwitz, E. Philip; Gatrone, Ralph C.; Chiarizia, Renato

    1988-01-01

    A method for removing acidic contaminants from neutral mono and bifunctional organophosphorous extractants by contacting the extractant with a macroporous cation exchange resin in the H.sup.+ state followed by contact with a macroporous anion exchange resin in the OH.sup.- state, whereupon the resins take up the acidic contaminants from the extractant, purifying the extractant and improving its extraction capability.

  11. Kinetics of Mn-based sorbents for hot coal gas desulfurization. Quarterly progress report, September 15--December 15, 1994. Task 1: Literature review

    SciTech Connect

    Hepworth, M.T.

    1995-01-06

    Manganese ore as well as manganese carbonate, precipitated from aqueous solutions, combined with alumina to form indurated pellets hold promise of being a high-effective, inexpensive, regenerable sorbent for hot fuel gases. Although the thermodynamics for sulfur removal by manganese predicts somewhat higher hydrogen sulfide over-pressures (i.e. poorer degree of desulfurization) than can be accomplished with zinc-based sorbents, zinc tends to be reduced to the metallic state under coal gasification conditions resulting in loss of capacity and reactivity by volatilization of reactive surfaces. This volatilization phenomenon limits the temperatures for which desulfurization can be effectively accomplished to less than 550 C for zinc ferrite and 700 C for zinc titanate; whereas, manganese-based sorbents can be utilized at temperatures well in temperatures exceeding 700 C. Also the regeneration of manganese-based pellets under oxidizing conditions may be superior to that of zinc titanate since they can be loaded from a simulated reducing coal-derived gas and then be regenerated at higher temperatures (up to 1,300 C). The topics that will be addressed by this study include: preparation of an effective manganese-based sorbent; thermodynamics and kinetics of sulfur removal from hot fuel gases by this sorbent; analysis of kinetics and mechanisms by which sulfur is absorbed by the sorbent (i.e., whether by gaseous diffusion, surface-controlled reaction, or pore diffusion); and cyclic sulfidation and regeneration of the sorbent and recovery of the sulfur. 38 refs.

  12. Fullerenes: A New Carrier Phase for Noble Gases in Meteorites

    NASA Technical Reports Server (NTRS)

    Becker, Luann

    2004-01-01

    The major focus of our research effort has been to measure the noble gases encapsulated within fullerenes, a new carbon carrier phase and compare it to the myriad of components found in the bulk meteorite acid residues. We have concentrated on the carbonaceous chondrites (Allende, Murchison and Tagish Lake) since they have abundant noble gases, typically with a planetary signature that dominates the stepped-release of the meteorite bulk acid residue. They also contain an extractable fullerene component that can be isolated and purified from the same bulk material.

  13. Fixed bed testing of a molybdenum-promoted zinc titanate for hot gas desulfurization

    SciTech Connect

    Gasper-Galvin, L.D.; Mei, J.S.; Everitt, C.E.; Katta, S.

    1993-09-01

    The following conclusions were made, based upon this study of T-2535 molybdenum-promoted zinc titanate: (1) Results of the half-cycle sulfidation experiments showed that sorbent efficiency and capacity of this formulation of zinc titanate were weak functions of operating-bed temperature. Evidence of diffusion limitations on the sulfidation reaction were observed, particularly at superficial velocities greater than 30 cm/s (1 ft/s). Sorbent performance appeared to be affected by the concentration of reducing gases and/or water content of the simulated coal gas mixtures. Sorbent capacity and efficiency deteriorated during the first three cycles, but stabilized thereafter. (2) Sorbent spalling was observed and appeared to increase with sulfur loading. Possible causes of spalling may be attributed to the induced crystal lattice stresses due to the formation of ZnS and especially ZnSO{sub 4}, which have relative molar volumes that are approximately 1-1/2 and 3 times larger, respectively, than that of the original ZnO. (3) Based on these results, it is apparent that the molybdenum-promoted zinc titanate with Zn/Ti molar ratio of 1.91 may not be a suitable sorbent for hot gas desulfurization in the fixed bed reactor for the Pinon Pine project, due to problems with spalling and loss of reactivity during sulfidation/regeneration cycling.

  14. Planetary noble gases

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin

    1993-01-01

    An overview of the history and current status of research on planetary noble gases is presented. The discovery that neon and argon are vastly more abundant on Venus than on earth points to the solar wind rather than condensation as the fundamental process for placing noble gases in the atmospheres of the terrestrial planets; however, solar wind implantation may not be able to fully reproduce the observed gradient, nor does it obviously account for similar planetary Ne/Ar ratios and dissimilar planetary Ar/Kr ratios. More recent studies have emphasized escape rather than accretion. Hydrodynamic escape, which is fractionating, readily accounts for the difference between atmospheric neon and isotopically light mantle neon. Atmospheric cratering, which is nearly nonfractionating, can account for the extreme scarcity of nonradiogenic noble gases (and other volatiles) on Mars.

  15. Development of advanced hot-gas desulfurization sorbents. Final report

    SciTech Connect

    Jothimurugesan, K.; Adeyiga, A.A.; Gangwal, S.K.

    1997-10-01

    The objective of this project was to develop hot-gas desulfurization sorbent formulations for relatively lower temperature application, with emphasis on the temperature range from 343--538 C. The candidate sorbents include highly dispersed mixed metal oxides of zinc, iron, copper, cobalt, nickel and molybdenum. The specific objective was to develop suitable sorbents, that would have high and stable surface area and are sufficiently reactive and regenerable at the relatively lower temperatures of interest in this work. Stability of surface area during regeneration was achieved by adding stabilizers. To prevent sulfation, catalyst additives that promote the light-off of the regeneration reaction at lower temperature was considered. Another objective of this study was to develop attrition-resistant advanced hot-gas desulfurization sorbents which show stable and high sulfidation reactivity at 343 to 538 C and regenerability at lower temperatures than leading first generation sorbents.

  16. Natural desulfurization in coal-fired units using Greek lignite.

    PubMed

    Konidaris, Dimitrios N

    2010-10-01

    This paper analyzes the natural desulfurization process taking place in coal-fired units using Greek lignite. The dry scrubbing capability of Greek lignite appears to be extremely high under special conditions, which can make it possible for the units to operate within the legislative limits of sulfur dioxide (SO2) emissions. According to this study on several lignite-fired power stations in northern Greece, it was found that sulfur oxide emissions depend on coal rank, sulfur content, and calorific value. On the other hand, SO2 emission is inversely proportional to the parameter gammaCO2(max), which is equal to the maximum carbon dioxide (CO2) content by volume of dry flue gas under stoichiometric combustion. The desulfurization efficiency is positively correlated to the molar ratio of decomposed calcium carbonate to sulfur and negatively correlated to the free calcium oxide content of fly ash. PMID:21090555

  17. Introduction to limestone flue gas desulfurization: Videotape workbook

    SciTech Connect

    Not Available

    1988-01-01

    The workbook is designed to accompany the Electric Power Research Institute's (EPRI's) videotape, ''Introduction to Limestone Flue Gas Desulfurization.'' To complement the videotape, the workbook provides additional information on limestone flue gas desulfurization (FGD) and a guide to sources of still more information. The videotape itself presents an introduction to the chemistry involved in a limestone FGD system. Following a description of a typical system, the basic chemical reactions that occur in this process are detailed. The most common operation problems in limestone FGD---low sulfur dioxide removal, low limestone utilization, and scaling---are reviewed with regard to how process chemistry can be controlled to alleviate these problems. This tape is an introduction only; future tapes will cover limestone FGD performance indicators and troubleshooting in more detail.

  18. Natural desulfurization in coal-fired units using Greek lignite.

    PubMed

    Konidaris, Dimitrios N

    2010-10-01

    This paper analyzes the natural desulfurization process taking place in coal-fired units using Greek lignite. The dry scrubbing capability of Greek lignite appears to be extremely high under special conditions, which can make it possible for the units to operate within the legislative limits of sulfur dioxide (SO2) emissions. According to this study on several lignite-fired power stations in northern Greece, it was found that sulfur oxide emissions depend on coal rank, sulfur content, and calorific value. On the other hand, SO2 emission is inversely proportional to the parameter gammaCO2(max), which is equal to the maximum carbon dioxide (CO2) content by volume of dry flue gas under stoichiometric combustion. The desulfurization efficiency is positively correlated to the molar ratio of decomposed calcium carbonate to sulfur and negatively correlated to the free calcium oxide content of fly ash.

  19. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Jha, M.C.; Berggren, M.H.

    1987-10-27

    AMAX Research Development Center (AMAX R D) has been investigating methods for improving the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hog coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. The reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point in a bench-scale fixed-bed reactor. The durability may be defined as the ability of the sorbent to maintain its reactivity and other important physical characteristics such as size, strength, and specific surface area during 10 cycles of sulfidation and regeneration. Two base case sorbents, spherical pellets and cylindrical extrudes used in related METC sponsored projects, are being used to provide a basis for the comparison of physical characteristics and chemical reactivity.

  20. Strongly correlated Bose gases

    NASA Astrophysics Data System (ADS)

    Chevy, F.; Salomon, C.

    2016-10-01

    The strongly interacting Bose gas is one of the most fundamental paradigms of quantum many-body physics and the subject of many experimental and theoretical investigations. We review recent progress on strongly correlated Bose gases, starting with a description of beyond mean-field corrections. We show that the Efimov effect leads to non universal phenomena and to a metastability of the low temperature Bose gas through three-body recombination to deeply bound molecular states. We outline differences and similarities with ultracold Fermi gases, discuss recent experiments on the unitary Bose gas, and finally present a few perspectives for future research.

  1. Estimating service lives of air-purifying respirator cartridges for reactive gas removal.

    PubMed

    Wood, Gerry O

    2005-08-01

    A mathematical model has been developed to estimate service lives of air-purifying respirator cartridges that remove gases reactively from flowing air. Most gases, because of their high volatility and low polarizability, are not effectively removed by physical adsorption on activated carbon. Models previously developed for toxic organic vapors cannot estimate service lives of cartridges for toxic gases. Often, an activated carbon is impregnated with a chemical to enhance gas removal by chemical reaction(s). The kinds of reactions, types and amounts of impregnants, and effects of the presence of water vary; therefore, the model requires user inputs of gas capacity and water effect parameters. Ideally, these should be available from manufacturers of the cartridges. If they are not, they can be extracted from measured breakthrough times using this model. The key to this model is the observation that adsorption rates of gases can be adequately quantified by the same correlations that have been reported for organic vapors. The resulting model has been used to correlate and predict breakthrough times for several common toxic gases. PMID:16012083

  2. Hot coal gas desulfurization with manganese-based sorbents

    SciTech Connect

    Hepworth, M.T.; Ben-Slimane, R.

    1995-11-01

    The primary major deposit of manganese in the US which can be readily mined by an in situ process is located in the Emily district of Minnesota. The US Bureau of Mines Research Centers at both the Twin Cities and Salt Lake City have developed a process for extracting and refining manganese in the form of a high-purity carbonate product. This product has been formulated into pellets by a multi-step process of drying, calcination, and induration to produce relatively high-strength formulations which are capable of being used for hot fuel gas desulfurization. These pellets, which have been developed at the University of Minnesota under joint sponsorship of the US Department of Energy and the US Bureau of Mines, appear superior to other, more expensive, formulations of zinc titanate and zinc ferrite which have previously been studied for multi-cycle loading (desulfurization) and regeneration (evolution of high-strength SO{sub 2} and restoration of pellet reactivity). Although these other formulations have been under development for the past twelve years, their prices still exceed $7 per pound. If manganese pellets perform as predicted in fixed bed testing, and if a significant number of utilities which burn high-sulfur coals incorporate combined-cycle gasification with hot coal gas desulfurization as a viable means of increasing conversion efficiencies, then the potential market for manganese pellets may be as high as 200,000 tons per year at a price not less than $3 per pound. This paper discusses the role of manganese pellets in the desulfurization process with respect to the integrated gasification combined-cycle (IGCC) for power generation.

  3. Exploring the Mechanism of Biocatalyst Inhibition in Microbial Desulfurization

    PubMed Central

    Abin-Fuentes, Andres; Mohamed, Magdy El-Said; Wang, Daniel I. C.

    2013-01-01

    Microbial desulfurization, or biodesulfurization (BDS), of fuels is a promising technology because it can desulfurize compounds that are recalcitrant to the current standard technology in the oil industry. One of the obstacles to the commercialization of BDS is the reduction in biocatalyst activity concomitant with the accumulation of the end product, 2-hydroxybiphenyl (HBP), during the process. BDS experiments were performed by incubating Rhodococcus erythropolis IGTS8 resting-cell suspensions with hexadecane at 0.50 (vol/vol) containing 10 mM dibenzothiophene. The resin Dowex Optipore SD-2 was added to the BDS experiments at resin concentrations of 0, 10, or 50 g resin/liter total volume. The HBP concentration within the cytoplasm was estimated to decrease from 1,100 to 260 μM with increasing resin concentration. Despite this finding, productivity did not increase with the resin concentration. This led us to focus on the susceptibility of the desulfurization enzymes toward HBP. Dose-response experiments were performed to identify major inhibitory interactions in the most common BDS pathway, the 4S pathway. HBP was responsible for three of the four major inhibitory interactions identified. The concentrations of HBP that led to a 50% reduction in the enzymes' activities (IC50s) for DszA, DszB, and DszC were measured to be 60 ± 5 μM, 110 ± 10 μM, and 50 ± 5 μM, respectively. The fact that the IC50s for HBP are all significantly lower than the cytoplasmic HBP concentration suggests that the inhibition of the desulfurization enzymes by HBP is responsible for the observed reduction in biocatalyst activity concomitant with HBP generation. PMID:24096431

  4. Coal desulfurization. (Latest citations from the Compendex database). Published Search

    SciTech Connect

    Not Available

    1993-06-01

    The bibliography contains citations concerning physical, chemical, and microbiological methods used in the removal of sulfur from coal. Oxydesulfurization, washing, electrochemical separation, oxidation, molten salts, microwave radiation, biodegradation, supercritical extraction, magnetic techniques, chlorinolysis, and flotation are among the processes considered. Sulfur pollution standards, environmental regulations and considerations, and process analyses and evaluations are discussed. Desulfurization of coal derived liquids and coal liquefaction are examined in separate bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  5. A NOVEL APPROACH TO CATALYTIC DESULFURIZATION OF COAL

    SciTech Connect

    John G. Verkade

    1998-02-28

    The reactions of dialkyl mono- and disulfides and functionalized alkylthio compounds with sodium in refluxing hydrocarbon solvent (tetradecane, mesitylene or toluene) resulted in sulfur-free products in very high yields. Greater than 95% sulfur removal was observed when dialkyl mono or polysulfides were treated with Na in liquid ammonia. Polycyclic aromatic sulfur heterocycles were only moderately desulfurized under these conditions while phenylthio derivatives gave thiophenol as the major product and dithiophenols as the minor products.

  6. Hot gas desulfurization with oxides of zinc, iron, and vanadium

    SciTech Connect

    Akyurtlu, J.F.; Akyurtlu, A.

    1992-08-01

    The objective of this study is to develop an improved sorbent which can reduce H{sub 2}S levels up to 1 ppmv or less, which can stabilize zinc, and produce economically recoverable amounts of elemental sulfur during regeneration. For this purpose, the desulfurization performance of sorbents prepared by the addition of various amounts of V{sub 2}O{sub 5} to the zinc ferrite sorbent is investigated.

  7. Process for the removal of acid forming gases from exhaust gases and production of phosphoric acid

    DOEpatents

    Chang, Shih-Ger; Liu, David K.

    1992-01-01

    Exhaust gases are treated to remove NO or NO.sub.x and SO.sub.2 by contacting the gases with an aqueous emulsion or suspension of yellow phosphorous preferably in a wet scrubber. The addition of yellow phosphorous in the system induces the production of O.sub.3 which subsequently oxidizes NO to NO.sub.2. The resulting NO.sub.2 dissolves readily and can be reduced to form ammonium ions by dissolved SO.sub.2 under appropriate conditions. In a 20 acfm system, yellow phosphorous is oxidized to yield P.sub.2 O.sub.5 which picks up water to form H.sub.3 PO.sub.4 mists and can be collected as a valuable product. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50.degree. C. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO.sub.x and SO.sub.2, alkalis that are used for flue gas desulfurization are preferred. With this process, better than 90% of SO.sub.2 and NO in simulated flue gas can be removed. Stoichiometric ratios (P/NO) ranging between 0.6 and 1.5 were obtained.

  8. Molecular biological enhancement of coal desulfurization. Final report

    SciTech Connect

    Krawiec, S.

    1994-12-31

    During the period from 1986 through 1993 the prospect of bacterial desulfurization of fossil fuel was transformed from a theoretically appealing concept to a demonstrable laboratory phenomenon. Results from several laboratories confirmed that there was not one but, rather, several metabolic bases of selectively removing sulfur from the carbon frame of sulfur-containing organic compounds characteristic of fossil fuels. Results in this report relate solely to the so-called ``4S`` pathway (named for the four sulfur-containing compounds in the sequence: (l) dibenzothiophene [DBT] {yields} (2) dibenzothiophene sulfoxide [DBTO] {yields} (3) dibenzosulfone [DBTO{sup 2}] {yields} (4) dibenzosulfonate {yields} monohydroxybiphenyl [OH-BP] + SO{sub 4}{sup =}. [An additional desulfurized product, biphenyl, has been hypothesized and another, o,o{prime}-biphenyl, observed.]) The following subjects are discussed: isolating bacteria with a DbtS{sup +} phenotype; confirming the production of a desulfurized product; determining the identity of the isolates; determining the growth characteristics of the isolates in batch and continuous cultures; determining the kinetics and yields of product in batch and continuous cultures.

  9. Two-stage coal gasification and desulfurization apparatus

    DOEpatents

    Bissett, Larry A.; Strickland, Larry D.

    1991-01-01

    The present invention is directed to a system which effectively integrates a two-stage, fixed-bed coal gasification arrangement with hot fuel gas desulfurization of a first stream of fuel gas from a lower stage of the two-stage gasifier and the removal of sulfur from the sulfur sorbent regeneration gas utilized in the fuel-gas desulfurization process by burning a second stream of fuel gas from the upper stage of the gasifier in a combustion device in the presence of calcium-containing material. The second stream of fuel gas is taken from above the fixed bed in the coal gasifier and is laden with ammonia, tar and sulfur values. This second stream of fuel gas is burned in the presence of excess air to provide heat energy sufficient to effect a calcium-sulfur compound forming reaction between the calcium-containing material and sulfur values carried by the regeneration gas and the second stream of fuel gas. Any ammonia values present in the fuel gas are decomposed during the combustion of the fuel gas in the combustion chamber. The substantially sulfur-free products of combustion may then be combined with the desulfurized fuel gas for providing a combustible fluid utilized for driving a prime mover.

  10. The mechanism of coal gas desulfurization by iron oxide sorbents.

    PubMed

    Lin, Yi-Hsing; Chen, Yen-Chiao; Chu, Hsin

    2015-02-01

    This study aims to understand the roles of hydrogen and carbon monoxide during the desulfurization process in a coal gasification system that H2S of the syngas was removed by Fe2O3/SiO2 sorbents. The Fe2O3/SiO2 sorbents were prepared by incipient wetness impregnation. Through the breakthrough experiments and Fourier transform infrared spectroscopy analyses, the overall desulfurization mechanism of the Fe2O3/SiO2 sorbents was proposed in this study. The results show that the major reaction route is that Fe2O3 reacts with H2S to form FeS, and the existence of CO and H2 in the simulated gas significantly affects equilibrium concentrations of H2S and COS. The formation of COS occurs when the feeding gas is blended with CO and H2S, or CO2 and H2S. The pathways in the formation of products from the desulfurization process by the reaction of Fe2O3 with H2S have been successfully established. PMID:25434261

  11. Microbiological testing of the Blairex Water Purifier.

    PubMed

    Meng, K E; Harris, M G

    1987-04-01

    The Blairex Water Purifier (previously called The Blairex Deionizer) is a filtration unit designed to purify tap water for uses that require distilled or deionized water. The unit is intended to offer soft contact lens wearers a more convenient and safe method of obtaining distilled water when using salt tablets or enzymatic cleaning tablets. In this study, the safety of these units was analyzed from a microbiological point of view. The microbial starting state of 18 factory sealed Blairex Water Purifiers was evaluated by filtering sterile water through each unit and enumerating the organisms in the effluent. Then a known number of specific microorganisms was filtered through each unit. For the next 30 days, subsequent sterile distilled water filtrations were done each day. The effluent was collected with each filtration and enumerated for microorganisms. The results indicated that the majority of Blairex units tested were not sterile from the onset. Several Blairex units evaluated did support bacterial growth, as the bacteria that were passed through the unit on day 1 of the study were found in the effluent in increasing numbers with use. The clinical implications of our findings are discussed. Each time Blairex units were obtained for evaluation, the units appeared different in either filter attachments, plastic composition, or shape. The results varied according to which type of Blairex unit was tested. PMID:3296767

  12. Steroidogenesis in amlodipine treated purified Leydig cells

    SciTech Connect

    Latif, Rabia; Lodhi, Ghulam Mustafa; Hameed, Waqas; Aslam, Muhammad

    2012-01-01

    Drugs have been shown to adversely affect male fertility and recently anti-hypertensive drugs were added to the list. The anti-fertility effects of amlodipine, a calcium channel blocker, are well-illustrated in in vivo experiments but lack an in vitro proof. The present study was designed to experimentally elucidate the effects of amlodipine on Leydig cell steroidogenesis and intracellular calcium in vitro. Leydig cells of Sprague–Dawley rats were isolated and purified by Percoll. Cells were incubated for 3 h with/without amlodipine in the presence/absence of LH, dbcAMP, Pregnenolone and 25-Hydroxycholesterol. Cytosolic calcium was measured in purified Leydig cells by fluorometric technique. The results showed significantly reduced (P < 0.05) steroidogenesis and intracellular calcium in amlodipine exposed rats. The site of amlodipine induced steroidogenic inhibition seems to be prior to the formation of Pregnenolone at the level of StAR protein. -- Highlights: ► Inhibition of steroidogenesis in isolated and purified Leydig cells by amlodipine. ► Site of inhibition was before Pregnenolone formation, at the level of StAR protein. ► Inhibition of LH stimulated rise in cytosolic calcium by amlodipine.

  13. Gases in Tektite Bubbles.

    PubMed

    O'keefe, J A; Lowman, P D; Dunning, K L

    1962-07-20

    Spectroscopic analysis of light produced by electrodeless discharge in a tektite bubble showed the main gases in the bubble to be neon, helium, and oxygen. The neon and helium have probably diffused in from the atmosphere, while the oxygen may be atmospheric gas incorporated in the tektite during its formation.

  14. Noxious gases in greenhouses.

    PubMed

    Likas, C; Exarchou, V; Gourgoulianis, K; Giaglaras, P; Gemptos, T; Kittas, K; Molyvdas, P A

    2001-01-01

    The concentration of NO(2) and SO(2) was measured in a commercial greenhouse from 23/9/1999 25/01/2000. The measurements showed that the level of the two gases is very high in the greenhouse atmosphere. Lung function tests in 42 workers showed that temporary work did not influence significantly the respiratory health status. PMID:11426932

  15. Gases in Tektite Bubbles.

    PubMed

    O'keefe, J A; Lowman, P D; Dunning, K L

    1962-07-20

    Spectroscopic analysis of light produced by electrodeless discharge in a tektite bubble showed the main gases in the bubble to be neon, helium, and oxygen. The neon and helium have probably diffused in from the atmosphere, while the oxygen may be atmospheric gas incorporated in the tektite during its formation. PMID:17801113

  16. Deep catalytic oxidative desulfurization (ODS) of dibenzothiophene (DBT) with oxalate-based deep eutectic solvents (DESs).

    PubMed

    Lü, Hongying; Li, Pengcheng; Deng, Changliang; Ren, Wanzhong; Wang, Shunan; Liu, Pan; Zhang, Han

    2015-07-01

    An oxalate-based DES with a tetrabutyl ammonium chloride and oxalate acid molar ratio of 1/2 (TBO1 : 2) exhibited high activity in oxidative desulfurization (ODS) of dibenzothiophene (DBT) under mild reaction conditions. It is potentially a promising and highly environmentally friendly approach for desulfurization of fuels. PMID:26051675

  17. Use of Flue Gas Desulfurization (FGD) Gypsum as a Heavy Metal Stabilizer in Contaminated Soils

    EPA Science Inventory

    Flue Gas Desulfurization (FGD) gypsum is a synthetic by-product generated from the flue gas desulfurization process in coal power plants. It has several beneficial applications such as an ingredient in cement production, wallboard production and in agricultural practice as a soil...

  18. Air Purifiers Eliminate Pathogens, Preserve Food

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA-funded researchers produced an ethylene reduction device for a plant growth unit. KES Science & Technology Inc., a Kennesaw, Georgia-based company specializing in sustaining perishable foods, licensed the ethylene scrubbing technology. KES partnered with Akida Holdings, of Jacksonville, Florida, which now markets the NASA-developed technology as AiroCide. According to the company, it is the only air purifier that completely destroys airborne bacteria, mold, fungi, mycotoxins, viruses, volatile organic compounds (like ethylene), and odors. What?s more, the devices have no filters that need changing and produce no harmful byproducts, such as the ozone created by some filtration systems.

  19. Hot Coal Gas Desulfurization with manganese-based sorbents. Second [quarterly] technical report, December 1, 1992--March 1, 1993

    SciTech Connect

    Hepworth, M.T.

    1993-03-01

    At present, the focus of work being performed on Hot Coal Gas Desulfurization is primarily in the use of zinc ferrite and zinc titanate sorbents; however studies at the US Steel Fundamental Research Laboratories in Monroeville, PA, by E. T. Turkdogan indicate that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al{sub 2}O{sub 3}) may be a preferable alternative to zinc-based sorbents. A significant domestic source of manganese in Minnesota is being explored for an in situ leach process which has potential for producing large tonnages of solutions which may be ideal for precipitation and recovery of pure manganese as a carbonate in a reactive form. In the current program the following studies will be addressed: Preparation of manganese sorbent pellets and characterization tests on pellets for strength and surface area; analysis of the thermodynamics and kinetics of sulfur removal from hot fuel gases by individual sorbent pellets (loading tests) by thermogravimetric testing; regeneration tests via TGA on individual sorbent pellets by oxidation; and bench-scale testing on sorbent beds in a two-inch diameter reactor. The developed information will be of value to METC in its determination of whether or not a manganese-based regenerable sorbent holds real promise for sulfur cleanup of hot fuel gases. This information is necessary prior to pilot-scale testing leading to commercial development is undertaken.

  20. Anion-exchange resin-based desulfurization process. Quarterly technical progress report, Januray 1, 1992--March 31, 1992

    SciTech Connect

    Sheth, A.C.; Strevel, S.D.; Dharmapurikar, R.

    1992-07-01

    Under DOE Grant No. FG22-90PC90309, the University of Tennessee Space Institute (UTSI) is contracted to further develop its anion-exchange, resin-based desulfurization concept to desulfurize alkali metal sulfates. From environmental as well as economic viewpoints, it is necessary to remove soluble sulfates from the wastes created by flue gas desulfurization systems. In order to do this economically, a low-cost desulfurization process for spent sorbents is necessary. UTSI`s anion-exchange resin-based desulfurization concept is believed to satisfy these requirements.

  1. Kinetic Theory of Gases

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The theory, developed in the nineteenth century, notably by Rudolf Clausius (1822-88) and James Clerk Maxwell (1831-79), that the properties of a gas (temperature, pressure, etc) could be described in terms of the motions (and kinetic energy) of the molecules comprising the gases. The theory has wide implications in astrophysics. In particular, the perfect gas law, which relates the pressure, vol...

  2. Toxic gases from fires.

    PubMed

    Terrill, J B; Montgomery, R R; Reinhardt, C F

    1978-06-23

    The major lethal factors in uncontrolled fires are toxic gases, heat, and oxygen deficiency. The predominant toxic gas is carbon monoxide, which is readily generated from the combusion of wood and other cellulosic materials. Increasing use of a variety of synthetic polymers has stimulated interest in screening tests to evaluated the toxicity of polymeric materials when thermally decomposed. As yet, this country lacks a standardized fire toxicity test protocol. PMID:208143

  3. Method for removing acid gases from a gaseous stream

    DOEpatents

    Gorin, Everett; Zielke, Clyde W.

    1981-01-01

    In a process for hydrocracking a heavy aromatic polynuclear carbonaceous feedstock containing reactive alkaline constituents to produce liquid hydrocarbon fuels boiling below about 475.degree. C. at atmospheric pressure by contacting the feedstock with hydrogen in the presence of a molten metal halide catalyst, thereafter separating a gaseous stream containing hydrogen, at least a portion of the hydrocarbon fuels and acid gases from the molten metal halide and regenerating the molten metal halide, thereby producing a purified molten metal halide stream for recycle to the hydrocracking zone, an improvement comprising; contacting the gaseous acid gas, hydrogen and hydrocarbon fuels-containing stream with the feedstock containing reactive alkaline constituents to remove acid gases from the acid gas containing stream. Optionally at least a portion of the hydrocarbon fuels are separated from gaseous stream containing hydrogen, hydrocarbon fuels and acid gases prior to contacting the gaseous stream with the feedstock.

  4. Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases

    SciTech Connect

    Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

    2001-11-06

    The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

  5. Extraction and desulfurization of chemically degraded coal with supercritical fluids. Final report, July 1, 1983-December 1984

    SciTech Connect

    Chen, J.W.; Muchmore, C.B.; Kent, A.C.

    1985-03-01

    This report describes the progress made in the research entitled ''Extraction and Desulfurization of Chemically Degraded Coal with Supercritical Fluids.'' The desulfurization of coal, employing ethanol or methanol as solvent under supercritical conditions, has demonstrated its ability to selectively remove sulfur from the coal matrix. The objectives of the research are these: (1) to obtain rate data for supercritical extraction and desulfurization of coal, and to determine the desulfurization selectivity ratio for various coals; (2) to study the effect of chemical pretreatment of coal on desulfurization potential; and (3) to determine the characteristics of the desulfurized solid char and to measure and evaluate the liquid and gaseous streams. The experimental investigations have been carried out in two reactor systems, a semicontinuous reactor and a batch reactor. Experimental data obtained have indicated the following achievements: (1) the extraction and desulfurization of coal with supercritical ethanol is first order in nature, and the activation energies for coal extracted and sulfur removed are 30.3 and 21.0 Kcal, respectively; (2) the desulfurization selectivity ratio is found to be between 2.96 to 4.38 for four Illinois coal samples studied; (3) the effect of KOH pretreatment indicates an improvement of supercritical desulfurization potential; and (4) the evalution of product streams reveals that supercritical desulfurization generates a high Btu gas and coal-derived liquid in addition to the desulfurized solid product. 2 references, 5 tables, 9 figures.

  6. Kinetics of Mn-based sorbents for hot coal gas desulfurization. Quarterly progress report, September 15, 1995--December 15, 1995

    SciTech Connect

    Hepworth, M.T.; Berns, J.

    1995-12-15

    The Morgantown Energy Technology Center (METC) of the U.S. Department of Energy (DOE) is actively pursuing the development of reliable and cost-effective processes to clean coal gasifier gases for application to integrated gasification combined cycle (IGCC) and molten carbonate fuel cell (MCFC) power plants. A large portion of gas cleanup research has been directed towards hot gas desulfurization using Zn-based sorbents. However, zinc titanate sorbents undergo reduction to the metal at temperatures approaching 700{degrees}C and lose reactivity because of volatilization. In addition, sulfate formation during regeneration leads to spalling of reactive surfaces. Because of these problems with zinc-based sorbents, METC has shown interest in formulating and testing manganese-based sorbents. Currently, many proposed IGCC processes include a water quench prior to desulfurization. This quench is required for two reasons; limitations in the process hardware (1000{degrees}C), and excessive Zn-based sorbent loss (about 700{degrees}C). With manganese, the water quench is not necessary to avoid sorbent loss, since Mn-based sorbents have been shown to retain reactivity under cyclic testing at 900{degrees}C. This advantage of manganese over zinc has potential to increase thermal efficiency as the trade-off of increasing the equilibrium H{sub 2}S over-pressure obtainable with a manganese sorbent. In the work which is reported here, lower loading temperatures (as low as 400{degrees}C) are studied. Also formulations containing titania rather then alumina are studied to attempt to improve performance.

  7. Kinetics of Mn-based sorbents for hot coal gas desulfurization. Quarterly progress report, March 15, 1995--July 15, 1995

    SciTech Connect

    Hepworth, M.T.

    1995-07-15

    Hot gas desulfurization may be accomplished by using solid sorbents such as oxides of those metals that form stable sulfides. The effectiveness of a desulfurizing agent in treating such gases is related to the predicted equilibrium partial pressure of hydrogen sulfide which will be present in a phase combination of the reduced form of sulfide and oxide phases. The focus of much current work being performed by the Department of Energy on sorbent development is in the use of zinc ferrite, zinc titanate, and Z-Sorb. The latter sorbent is a commercial product consisting of ZnO, a promoter, and a proprietary supporting matrix designed to provide stability and prolong sorbent life. Although these Zn-based sorbents have been the subject of extensive pilot-scale and process development work, all sorbents produced to date still experience structural and reactive degradation over multi-cycle use at relatively moderate temperatures. An effective alternative to zinc-based sorbents could be manganese sorbents which withstand high temperature operation and also maintain structural and reactive integrity over many cycles, as investigations by Ben-Slimane and Hepworth have indicated. Thermodynamic limits may prevent MnO from achieving the low sulfur specifications of the product gas for use in a molten carbonate fuel cell, but under the correct conditions the guideline for IGCC systems can easily be achieved. Furthermore, manganese sorbents could possibly be used in conjunction with a polishing sorbent (such as zinc oxide) possessing more favorable thermodynamic properties to reach levels acceptable for fuel cell applications (< 10 ppmv). Such an arrangement may not require that the zinc sulfide be regenerated since the sulfur concentration of the cleaned gas is low enough that the zinc oxide may be discarded when exhausted.

  8. Molecular biological enhancement of coal desulfurization. Final report

    SciTech Connect

    Krawiec, S.

    1995-01-01

    Fresh isolates of bacteria presumptively identified as R. erythropolis unequivocally have a DbtS{sup +} phenotype. The production of OH-BP from either DBT or DBTO{sub 2} was confirmed by difference spectroscopy, HPLC, and mass spectrometry. The temperature, pH, and means of supplying the thiophenic or sulfonic sole source of sulfur were optimized. The maximal rate of growth of the organism, its affinity for sulfone, and the extent to which substrate was converted to product were determined by using batch, fed batch, and continuous cultures. For strain N1-36, the maximum specific growth rate was 0.235 hr{sup -1} which corresponds to a minimal generation time of 2.95 hr. The K{sub s} was estimated to be 0.39 {mu}M. With 100 {mu}M DBT as the sole sulfur source, approximately 40 {mu}M OH-BP are produced (after 40 hr of growth); with 100 {mu}M DBTO{sub 2} as the sole sulfur source, approximately 70 {mu}M OH-BP are produced (after 40 hr of growth). The desulfurization activity is repressed by SO{sub 4}{sup =} OH-BP does not serve as a carbon source. The DbtS{sup +} phenotype of the R. erythropolis isolates is stable and discrete. The isolates selectively remove sulfur from DBT, a compound which models a refractory form of organic sulfur in compounds characteristic of fossil fuels. The desulfurization occurs with no oxidation of carbon-carbon bonds. The stability and specificity (along with genetic regulation) indicate that microbial desulfurization in a real phenomenon in which a noxious element is removed without significantly affecting the calorific value of the substrate. Additional characterization (and optimization) would provide the basis of a very important form of fossil fuel beneficiation.

  9. Coal desulfurization by leaching involving acidophilic and thermophilic microorganisms

    SciTech Connect

    Murr, L.E.; Mehta, A.P.

    1982-03-01

    It was shown that thermophilic microorganisms can increase the rate and volume of pyrite leaching from pulverized, high-sulfur coal. This occurs not only because of the elevated temperature of operation possible, but also the apparent accelerated catalytic activity of thermophilic microorganisms as compared to autotropic microbes such as T. ferrooxidans. The ability of thermophilic microogranisms to successfully leach pyrite in coal as demonstrated in the study points toward an even greater potential for the develpment of a successful and economically viable large-scale desulfurization process involving biochemical leaching. (JMT)

  10. Sodium-limestone double alkali flue gas desulfurization method

    SciTech Connect

    Wang, K.H.; Biolchini, R.J.; Legatski, L.K.

    1983-10-18

    A flue gas desulfurization method is disclosed for efficiently removing sulfur oxides from a gas stream with an aqueous sodium sulfite- and sodium bisulfite-containing absorption solution, in which absorber effluent solution at a pH of 5.8 to 6.6 and having an active sodium concentration of from 0.5 M to 0.9 M is regenerated with sufficient ground limestone to yield a treated solution with a higher pH of from 6.3 to 7.0 and whose bisulfite concentration is reduced by from 35 to 70%

  11. Induction slag reduction process for purifying metals

    DOEpatents

    Traut, Davis E.; Fisher, II, George T.; Hansen, Dennis A.

    1991-01-01

    A continuous method is provided for purifying and recovering transition metals such as neodymium and zirconium that become reactive at temperatures above about 500.degree. C. that comprises the steps of contacting the metal ore with an appropriate fluorinating agent such as an alkaline earth metal fluosilicate to form a fluometallic compound, and reducing the fluometallic compound with a suitable alkaline earth or alkali metal compound under molten conditions, such as provided in an induction slag metal furnace. The method of the invention is advantageous in that it is simpler and less expensive than methods used previously to recover pure metals, and it may be employed with a wide range of transition metals that were reactive with enclosures used in the prior art methods and were hard to obtain in uncontaminated form.

  12. Subpopulations in purified platelets adhering on glass.

    PubMed

    Donati, Alessia; Gupta, Swati; Reviakine, Ilya

    2016-01-01

    Understanding how platelet activation is regulated is important in the context of cardiovascular disorders and their management with antiplatelet therapy. Recent evidence points to different platelet subpopulations performing different functions. In particular, procoagulant and aggregating subpopulations have been reported in the literature in platelets treated with the GPVI agonists. How the formation of platelet subpopulations upon activation is regulated remains unclear. Here, it is shown that procoagulant and aggregating platelet subpopulations arise spontaneously upon adhesion of purified platelets on clean glass surfaces. Calcium ionophore treatment of the adhering platelets resulted in one platelet population expressing both the procoagulant and the adherent population markers phosphatidylserine and the activated form of GPIIb/IIIa, while all of the platelets expressed CD62P independently of the ionophore treatment. Therefore, all platelets have the capacity to express all three activation markers. It is concluded that platelet subpopulations observed in various studies reflect the dynamics of the platelet activation process. PMID:27338300

  13. Apparatus and methods for purifying lead

    DOEpatents

    Tunison, Harmon M.

    2016-01-12

    Disclosed is an exemplary method of purifying lead which includes the steps of placing lead and a fluoride salt blend in a container; forming a first fluid of molten lead at a first temperature; forming a second fluid of the molten fluoride salt blend at a second temperature higher than the first temperature; mixing the first fluid and the second fluid together; separating the two fluids; solidifying the molten fluoride salt blend at a temperature above a melting point of the lead; and removing the molten lead from the container. In certain exemplary methods the molten lead is removed from the container by decanting. In still other exemplary methods the molten salt blend is a Lewis base fluoride eutectic salt blend, and in yet other exemplary methods the molten salt blend contains sodium fluoride, lithium fluoride, and potassium fluoride.

  14. Method of separating and purifying gadolinium-153

    DOEpatents

    Bray, Lane A [Richland, WA; Corneillie, Todd M [Davis, CA

    2001-01-01

    The present invention is an improvement to the method of separating and purifying gadolinium from a mixture of gadolinium and europium having the steps of (a) dissolving the mixture in an acid; (b) reducing europium+3 to europium+2; and (c) precipitating the europium+2 with a sulfate ion in a superstoichiometric amount; wherein the improvement is achieved by using one or more of the following: (i) the acid is an anoic acid; (ii) the reducing is with zinc metal in the absence of a second metal or with an amount of the second metal that is ineffective in the reducing; (iii) adding a group IIA element after step (c) for precipitating the excess sulfate prior to repeating step (c); (iv) the sulfate is a sulfate salt with a monovalent cation; (v) adding cold europium+3 prior to repeating step (c).

  15. Polycation-induced assembly of purified tubulin.

    PubMed Central

    Erickson, H P; Voter, W A

    1976-01-01

    Several different polycations have been found that can substitute for the microtubule-associated proteins, or tau factor, in facilitating assembly of tubulin that has been purified by ion exchange chromatography. In low concentrations of the polycation diethylaminoethyl-dextran, 7 mg of tubulin is pelleted per 1 mg of polycation added. Under conditions favorable to microtubule assembly the entire pellet is seen by electron microscopy to consist of "double wall microtubules", which are essentially identical to normal microtubules in subunit structure and arrangement. When assembly is inhibited approximately the same amount of tubulin is pelleted, but it is in the form of clusters of curved sheets or filaments apparently related to tubulin rings. When conditions are changed to favor assembly, the tubulin within these clusters appears to reassemble to form the double wall microtubules. Images PMID:1066692

  16. Isolating and Purifying Clostridium difficile Spores.

    PubMed

    Edwards, Adrianne N; McBride, Shonna M

    2016-01-01

    The ability for the obligate anaerobe, Clostridium difficile to form a metabolically dormant spore is critical for the survival of this organism outside of the host. This spore form is resistant to a myriad of environmental stresses, including heat, desiccation, and exposure to disinfectants and antimicrobials. These intrinsic properties of spores allow C. difficile to survive long-term in an oxygenated environment, to be easily transmitted from host-to-host, and to persist within the host following antibiotic treatment. Because of the importance of the spore form to the C. difficile life cycle and treatment and prevention of C. difficile infection (CDI), the isolation and purification of spores are necessary to study the mechanisms of sporulation and germination, investigate spore properties and resistances, and for use in animal models of CDI. Here we provide basic protocols, in vitro growth conditions, and additional considerations for purifying C. difficile spores for a variety of downstream applications. PMID:27507337

  17. Influence of addition of alkali metal compounds to calcium carbonate on desulfurization characteristics

    SciTech Connect

    Naruse, Ichiro; Saito, Katsuhiro; Murakami, Takahiro

    1999-07-01

    Limestone is currently supplied as a desulfurizer into bubbling and circulating fluidized bed coal combustors since both combustors are operated at the temperature ranged from 1,073 to 1,173 K, where limestone can be calcined and sulfurized optimally. In the practical boilers, however, the limestone particles are fed to the combustor excessively since the utilization efficiency of CaO produced by the calcination of limestone is low. On the other hand, many kinds of sea-shell are clarified as one of industrial wastes, and also consist of CaCO{sub 3} similar to limestone. Therefore it would be possible for wasted sea-shell to be applied to one of the desulfurizers. In this case the CO{sub 2} produced by calcination of the shell is fixed and recycled naturally in obedience to the ecological law. From this viewpoint, desulfurization characteristics of wasted sea shell have been already studied fundamentally by using a thermobalance as compared with the results obtained by limestone. The results obtained by this study are summarized as follows. (1) The desulfurization activity for wasted sea-shell is much higher than that for limestone. (2) Even if the alkali metal compounds are partially removed from the sea shell, the desulfurization efficiency does not change. (3) The desulfurization activity can be enhanced by adding alkali metal compounds to limestone. Sodium compounds are more effective on the desulfurization efficiency than potassium compounds. Sodium chloride is the best agent among them.

  18. Effect of solids concentration distribution on the flue gas desulfurization process

    SciTech Connect

    Jie Zhang; Changfu You; Haiying Qi; Changhe Chen; Xuchang Xu

    2006-06-15

    A dry flue gas desulfurization (FGD) process at 600-800{sup o}C was studied in a pilot-scale circulating fluidized bed (CFB) experimental facility. Various fresh sorbent distribution types and internal structures were modeled numerically to investigate their effect on the gas-solid flow and sulfate reaction characteristics. Experimental results show that, after the fresh sorbent supply was stopped, the desulfurization efficiency declined rapidly even though the sorbent recirculation was maintained. Therefore, the fresh sorbent is the main contributor to the desulfurization process and the primary effect of the recirculated sorbent was to evenly distribute the fresh sorbent and to prolong the sorbent particle residence time. The numerical results demonstrate that the desulfurization efficiency varied greatly for the various fresh sorbent bottom injection methods. The desulfurization efficiency of the bottom-even injection method was 1.5 times that of the bottom two-sided injection method. Internal structures effectively improved the fresh sorbent solids concentration distribution and the desulfurization efficiency. Optimized internal structures increased the desulfurization efficiency of the bottom two-sided injection method by 46%, so that it was very close to that of the bottom-even injection method with only a 4.6% difference. 16 refs., 6 figs., 2 tabs.

  19. Kinetic analysis of microbial desulfurization of model and light gas oils containing multiple alkyl dibenzothiophenes.

    PubMed

    Kobayashi, M; Horiuchi, K; Yoshikawa, O; Hirasawa, K; Ishii, Y; Fujino, K; Sugiyama, H; Maruhashi, K

    2001-02-01

    The reaction mechanism of biodesulfurization was investigated using whole cells of Rhodococcus erythropolis KA2-5-1, which have the ability to convert dibenzothiophene (DBT) into 2-hydroxybiphenyl. The desulfurization patterns of alkyl DBTs were represented by the Michaeis-Menten equation. The values of rate constants, the limiting maximal velocity (Vmax) and Michaelis constant (Km), for desulfurization of alkyl DBTs were calculated. The relative desulfurization activities of various alkyl DBTs were reduced in proportion to the total carbon numbers of alkyl substituent groups. Alkyl DBTs that had a total of six carbons of alkyl substituent groups were not desulfurized. The type or position of alkyl substituent groups had little effect on desulfurization activity. The desulfurization activity of each alkyl DBT, when mixed together, was reduced. This phenomenon was caused by apparent competitive inhibition of substrates. Using the apparent competitive inhibition model, the desulfurization pattern of a multiple components system containing alkyl DBTs was elucidated. This model was also applicable for biodesulfurization of light gas oil.

  20. 21 CFR 880.6710 - Medical ultraviolet water purifier.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical ultraviolet water purifier. 880.6710... Miscellaneous Devices § 880.6710 Medical ultraviolet water purifier. (a) Identification. A medical ultraviolet water purifier is a device intended for medical purposes that is used to destroy bacteria in water...

  1. 21 CFR 880.6710 - Medical ultraviolet water purifier.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical ultraviolet water purifier. 880.6710... Miscellaneous Devices § 880.6710 Medical ultraviolet water purifier. (a) Identification. A medical ultraviolet water purifier is a device intended for medical purposes that is used to destroy bacteria in water...

  2. 21 CFR 880.6710 - Medical ultraviolet water purifier.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical ultraviolet water purifier. 880.6710... Miscellaneous Devices § 880.6710 Medical ultraviolet water purifier. (a) Identification. A medical ultraviolet water purifier is a device intended for medical purposes that is used to destroy bacteria in water...

  3. Purified oxygen scavenging cell membrane fragments and use of same

    SciTech Connect

    Jacobson, K.B.; Adler, H.I.

    1988-10-18

    A process for purifying oxygen scavenging cell membrane fragments (OSCMF) and the use of same are disclosed. The novel purifying process involves salt precipitation and molecular exclusion chromatography. The unique feature of purified OSCMF is its ability to remove oxygen from organic reaction media and organic preparations without contaminating them to any substantial degree. 1 ref., 2 figs.

  4. 21 CFR 880.6500 - Medical ultraviolet air purifier.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical ultraviolet air purifier. 880.6500 Section... Miscellaneous Devices § 880.6500 Medical ultraviolet air purifier. (a) Identification. A medical ultraviolet air purifier is a device intended for medical purposes that is used to destroy bacteria in the air by...

  5. 21 CFR 880.6710 - Medical ultraviolet water purifier.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical ultraviolet water purifier. 880.6710... Miscellaneous Devices § 880.6710 Medical ultraviolet water purifier. (a) Identification. A medical ultraviolet water purifier is a device intended for medical purposes that is used to destroy bacteria in water...

  6. A novel enzyme, 2'-hydroxybiphenyl-2-sulfinate desulfinase (DszB), from a dibenzothiophene-desulfurizing bacterium Rhodococcus erythropolis KA2-5-1: gene overexpression and enzyme characterization.

    PubMed

    Nakayama, Norikazu; Matsubara, Toshiyuki; Ohshiro, Takashi; Moroto, Yuko; Kawata, Yasushi; Koizumi, Kenichi; Hirakawa, Yasuto; Suzuki, Masanori; Maruhashi, Kenji; Izumi, Yoshikazu; Kurane, Ryuichiro

    2002-07-29

    Dibenzothiophene (DBT), a model of organic sulfur compound in petroleum, is microbially desulfurized to 2-hydroxybiphenyl (2-HBP), and the gene operon dszABC was required for DBT desulfurization. The final step in the microbial DBT desulfurization is the conversion of 2'-hydroxybiphenyl-2-sulfinate (HBPSi) to 2-HBP catalyzed by DszB. In this study, DszB of a DBT-desulfurizing bacterium Rhodococcus erythropolis KA2-5-1 was overproduced in Escherichia coli by coexpression with chaperonin genes, groEL/groES, at 25 degrees C. The recombinant DszB was purified to homogeneity and characterized. The optimal temperature and pH for DszB activity were 35 degrees C and about 7.5, respectively. The K(m) and k(cat) values for HBPSi were 8.2 microM and 0.123.s(-1), respectively. DszB has only one cysteine residue, and the mutant enzyme completely lost the activity when the cysteine residue was changed to a serine residue. This result together with experiments using inhibitors showed that the cysteine residue contributes to the enzyme activity. DszB was also inhibited by a reaction product, 2-HBP (K(i)=0.25 mM), and its derivatives, but not by the other reaction product, sulfite. The enzyme showed a narrow substrate specificity: only 2-phenylbenzene sulfinate except HBPSi served as a substrate among the aromatic and aliphatic sulfinates or sulfonates tested. DszB was thought to be a novel enzyme (HBPSi desulfinase) in that it could specifically cleave the carbon-sulfur bond of HBPSi to give 2-HBP and sulfite ion without the aid of any other proteinic components and coenzymes.

  7. Equilibration of quantum gases

    NASA Astrophysics Data System (ADS)

    Farrelly, Terry

    2016-07-01

    Finding equilibration times is a major unsolved problem in physics with few analytical results. Here we look at equilibration times for quantum gases of bosons and fermions in the regime of negligibly weak interactions, a setting which not only includes paradigmatic systems such as gases confined to boxes, but also Luttinger liquids and the free superfluid Hubbard model. To do this, we focus on two classes of measurements: (i) coarse-grained observables, such as the number of particles in a region of space, and (ii) few-mode measurements, such as phase correlators. We show that, in this setting, equilibration occurs quite generally despite the fact that the particles are not interacting. Furthermore, for coarse-grained measurements the timescale is generally at most polynomial in the number of particles N, which is much faster than previous general upper bounds, which were exponential in N. For local measurements on lattice systems, the timescale is typically linear in the number of lattice sites. In fact, for one-dimensional lattices, the scaling is generally linear in the length of the lattice, which is optimal. Additionally, we look at a few specific examples, one of which consists of N fermions initially confined on one side of a partition in a box. The partition is removed and the fermions equilibrate extremely quickly in time O(1/N).

  8. An experimental study on desulfurization of high-sulfur coal slime with free jet flotation column

    SciTech Connect

    Xie Hua; Huang Bo; Xia Qing

    1998-12-31

    A free jet flotation column gives good selectivity and high separation efficiency in treating fine and ultra-fine coal. This paper reports test results of coal desulfurization with a free jet flotation column. Test results showed that when the coal sample from Zhong Liang Shan was processed its pyritic sulfur content was reduced from 3.08% to 0.84%, with 72.22% recovery of combustible matter in clean coal. The concept of Desulfurization Efficiency Index E(ds) for a comprehensive evaluation of desulfurization process is proposed, which is defined as the product of the ratio of sulfur content reduction and the recovery of combustible matters in clean coal.

  9. Benzo[b]thiophene desulfurization by Gordonia rubropertinctus strain T08.

    PubMed

    Matsui, T; Onaka, T; Maruhashi, K; Kurane, R

    2001-10-01

    A benzothiophene-desulfurizing bacterium which has a novel desulfurization pathway was isolated and identified as Gordonia rubropertinctus strain T08. Gas chromatography/mass spectroscopy analysis of the ethyl acetate extract of the culture broth detected benzothiophene sulfoxide, benzothiophene sulfone, benzo[e][1,2]oxathiin S-oxide (BT-sultine), benzo[e][1,2]oxathiin S,S-dioxide (BT-sultone), o-hydroxystyrene, and 2-coumaranone, but not 2-(2'-hydroxyphenyl)ethan-1-al, which has been reported to be a desulfurized product of mesophilic nocardioforms.

  10. Nature of the gases released from lunar rocks and soils upon crushing

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Andrawes, F. F.

    1978-01-01

    Qualitative and quantitative analyses of inorganic gases released from lunar basalts, breccias and soils by crushing have been performed in an apparatus which consists of a piston operating in a stream of purified He and a dual-column gas chromatograph equipped with He-ionization detectors. The apparatus eliminates the problem of adsorption of the released gases by fresh sample surfaces generated by crushing. Upper concentration levels for nitrogen, H2, CH4, O2 and other gases released from crushed basalts are reported. A direct correlation is established between the amount of nitrogen released from lunar soils by crushing and the lunar soil maturity indicator proposed by Morris (1976).

  11. Desulfurization Activated Phosphorothioate DNAzyme for the Detection of Thallium.

    PubMed

    Huang, Po-Jung Jimmy; Vazin, Mahsa; Liu, Juewen

    2015-10-20

    Thallium (Tl) is a highly toxic heavy metal situated between mercury and lead in the periodic table. While its neighbors have been thoroughly studied for DNA-based sensing, little is known about thallium detection. In this work, in vitro selection of RNA-cleaving DNAzymes is carried out using Tl(3+) as the target metal cofactor. Both normal DNA and phosphorothioate (PS)-modified DNA are tested for this purpose. While no Tl(3+)-dependent DNAzymes are obtained, a DNA oligonucleotide containing a single PS-modified RNA nucleotide is found to cleave by ∼7% by Tl(3+) at the RNA position. The remaining 93% are desulfurized. By hybridization of this PS-modified oligonucleotide with the Tm7 DNAzyme, the cleavage yield increases to ∼40% in the presence of Tl(3+) and Er(3+). Tm7 is an Er(3+)-dependent RNA-cleaving DNAzyme. It cleaves only the normal substrate but is completely inactive using the PS-modified substrate. Tl(3+) desulfurizes the PS substrate to the normal substrate to be cleaved by Tm7 and Er(3+). This system is engineered into a catalytic beacon for Tl(3+) with a detection limit of 1.5 nM, which is below its maximal contamination limit defined by the U.S. Environmental Protection Agency (10 nM). PMID:26393365

  12. For fuel desulfurization: Invite a bioengineered bug to dinner

    SciTech Connect

    Shelley, S.

    1995-05-01

    Last March, Energy BioSystems Corp. (EBC; The Woodlands, Tex.) brought online the world`s first biocatalytic desulfurization (BDS) facility. The $1.5-million pilot plant, located at the St. Louis, MO, research and development facility of Petrolite Corp., is designed to process up to 5 bbl/d to high-sulfur diesel fuel. EBC has partnered with Paris-based Total Raffinage S.A., France`s largest refiner, which is supplying the largest refiner, which is supplying the target diesel. The initial pilot plant was designed to desulfurize middle distillates, because of existing US and European regulations that target sulfur in this petroleum fraction. The firm hopes to have a 10,000-bbl/d commercial unit under construction by 1996. Meanwhile, EBC has partnered with Koch Refining (Wichita, KS) to adapt the process for gasoline, and with Texaco, Inc.`s Exploration and Production Division (Houston, TX) to sweeten sour crude before it reaches the refinery.

  13. Desulfurization Activated Phosphorothioate DNAzyme for the Detection of Thallium.

    PubMed

    Huang, Po-Jung Jimmy; Vazin, Mahsa; Liu, Juewen

    2015-10-20

    Thallium (Tl) is a highly toxic heavy metal situated between mercury and lead in the periodic table. While its neighbors have been thoroughly studied for DNA-based sensing, little is known about thallium detection. In this work, in vitro selection of RNA-cleaving DNAzymes is carried out using Tl(3+) as the target metal cofactor. Both normal DNA and phosphorothioate (PS)-modified DNA are tested for this purpose. While no Tl(3+)-dependent DNAzymes are obtained, a DNA oligonucleotide containing a single PS-modified RNA nucleotide is found to cleave by ∼7% by Tl(3+) at the RNA position. The remaining 93% are desulfurized. By hybridization of this PS-modified oligonucleotide with the Tm7 DNAzyme, the cleavage yield increases to ∼40% in the presence of Tl(3+) and Er(3+). Tm7 is an Er(3+)-dependent RNA-cleaving DNAzyme. It cleaves only the normal substrate but is completely inactive using the PS-modified substrate. Tl(3+) desulfurizes the PS substrate to the normal substrate to be cleaved by Tm7 and Er(3+). This system is engineered into a catalytic beacon for Tl(3+) with a detection limit of 1.5 nM, which is below its maximal contamination limit defined by the U.S. Environmental Protection Agency (10 nM).

  14. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    SciTech Connect

    Unknown

    2000-09-01

    The U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn{sub 2}TiO{sub 4} or ZnTiO{sub 3}), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO{sub 2}), is currently one of the leading sorbents. Overall chemical reactions with Zn{sub 2}TiO{sub 4} during the desulfurization (sulfidation)-regeneration cycle are shown. The sulfidation/regeneration cycle can be carried out in a fixed-bed, moving-bed, or fluidized-bed reactor configuration. The fluidized-bed reactor configuration is most attractive because of several potential advantages including faster kinetics and the ability to handle the highly exothermic regeneration to produce a regeneration offgas containing a constant concentration of SO{sub 2}.

  15. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    SciTech Connect

    Unknown

    1999-07-01

    The U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn{sub 2}TiO{sub 4} or ZnTiO{sub 3}), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO{sub 2}), is currently one of the leading sorbents. Overall chemical reactions with Zn{sub 2}TiO{sub 4} during the desulfurization (sulfidation)-regeneration cycle are shown. The sulfidation/regeneration cycle can be carried out in a fixed-bed, moving-bed, or fluidized-bed reactor configuration. The fluidized-bed reactor configuration is most attractive because of several potential advantages including faster kinetics and the ability to handle the highly exothermic regeneration to produce a regeneration offgas containing a constant concentration of SO{sub 2}.

  16. Anion-exchange resin-based desulfurization process

    SciTech Connect

    Sheth, A.C.; Strevel, S.D.; Dharmapurikar, R.

    1992-01-01

    Under the current grant, the University of Tennessee Space Institute (UTSI) will carry out the bench scale evaluation and further development of the anion-exchange resin-based desulfurization concept to desulfurize alkali metal sulfates. This concept has been developed and patented by UTSI under US Patent No. 4,917,874. The developmental program proposed under this DOE grant includes screening of commercially available resins to select three candidate resins for further study. These three resins will undergo a series of experiments designed to test the resins' performance under different process conditions (including the use of spent MHD seed material). The best of these resins will be used in optimizing the regeneration step and in testing the effects of performance enhancers. The process schematic developed from the results will be used to estimate the related economics. During this reporting period, October 1, 1991 to September 30, 1992, analysis of batch mode screening experiments was completed to select three candidate resins for process variables study in the fixed-bed set-up. This setup was modified and the experiments were carded out to evaluate effects of major process variables. The analysis of fixed-bed experiments is going on and we have also started simple batch mode experiments to identify desirable conditions for resin regeneration step. We have also started simple process engineering type calculations to determine the trade-off between the solution concentration and the resulting evaporation/concentration load.

  17. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer.

    PubMed

    Sun, Tonghua; Shen, Yafei; Jia, Jinping

    2014-02-18

    This paper proposes a novel self-developed JTS-01 desulfurizer and JZC-80 alkaline adsorbent for H2S removal and gas cleaning of the COREX coal gas in small-scale and commercial desulfurizing devices. JTS-01 desulfurizer was loaded with metal oxide (i.e., ferric oxides) catalysts on the surface of activated carbons (AC), and the catalyst capacity was improved dramatically by means of ultrasonically assisted impregnation. Consequently, the sulfur saturation capacity and sulfur capacity breakthrough increased by 30.3% and 27.9%, respectively. The whole desulfurizing process combined selective adsorption with catalytic oxidation. Moreover, JZC-80 adsorbent can effectively remove impurities such as HCl, HF, HCN, and ash in the COREX coal gas, stabilizing the system pressure drop. The JTS-01 desulfurizer and JZC-80 adsorbent have been successfully applied for the COREX coal gas cleaning in the commercial plant at Baosteel, Shanghai. The sulfur capacity of JTS-01 desulfurizer can reach more than 50% in industrial applications. Compared with the conventional dry desulfurization process, the modified AC desulfurizers have more merit, especially in terms of the JTS-01 desulfurizer with higher sulfur capacity and low pressure drop. Thus, this sorption enhanced catalytic desulfurization has promising prospects for H2S removal and other gas cleaning.

  18. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer.

    PubMed

    Sun, Tonghua; Shen, Yafei; Jia, Jinping

    2014-02-18

    This paper proposes a novel self-developed JTS-01 desulfurizer and JZC-80 alkaline adsorbent for H2S removal and gas cleaning of the COREX coal gas in small-scale and commercial desulfurizing devices. JTS-01 desulfurizer was loaded with metal oxide (i.e., ferric oxides) catalysts on the surface of activated carbons (AC), and the catalyst capacity was improved dramatically by means of ultrasonically assisted impregnation. Consequently, the sulfur saturation capacity and sulfur capacity breakthrough increased by 30.3% and 27.9%, respectively. The whole desulfurizing process combined selective adsorption with catalytic oxidation. Moreover, JZC-80 adsorbent can effectively remove impurities such as HCl, HF, HCN, and ash in the COREX coal gas, stabilizing the system pressure drop. The JTS-01 desulfurizer and JZC-80 adsorbent have been successfully applied for the COREX coal gas cleaning in the commercial plant at Baosteel, Shanghai. The sulfur capacity of JTS-01 desulfurizer can reach more than 50% in industrial applications. Compared with the conventional dry desulfurization process, the modified AC desulfurizers have more merit, especially in terms of the JTS-01 desulfurizer with higher sulfur capacity and low pressure drop. Thus, this sorption enhanced catalytic desulfurization has promising prospects for H2S removal and other gas cleaning. PMID:24456468

  19. Autoantibodies interacting with purified native thyrotropin receptor.

    PubMed

    Atger, M; Misrahi, M; Young, J; Jolivet, A; Orgiazzi, J; Schaison, G; Milgrom, E

    1999-11-01

    Native thyrotropin receptor (TSHR) was purified by immunoaffinity chromatography from membrane extracts of stably transfected L cells. An ELISA test was devised to study anti-TSHR autoantibodies directly. Comparison of native TSHR with bacterially expressed, denatured TSHR showed that the latter was not recognized by the autoantibodies, suggesting that they bind to conformational epitopes only present on the native receptor. The use of deglycosylated TSHR and of purified receptor ectodomain (alpha-subunit) showed that the autoantibodies recognized only the protein backbone moiety of the receptor and that their epitopes were localized entirely in its ectodomain. Autoantibodies were detected in 45 of 48 subjects with untreated Graves' disease and in 26 of 47 healthy volunteers. The affinity for the receptor was similar in the two groups (Kd = 0.25-1 x 10-10 M) and the autoantibodies belonged to the IgG class in all cases. Although the concentration of autoantibodies was higher in Graves' disease patients (3.50 +/- 0.36 mg.L-1) than in control subjects (1.76 +/- 0.21) (mean +/- SEM), there was an overlap between the groups. Receptor-stimulating autoantibodies (TSAb) were studied by measuring cAMP synthesis in stably transfected HEK 293 cells. Their characteristics (recognition of alpha-subunit, of deglycosylated TSHR, nonrecognition of bacterially expressed denatured receptor) were similar to those of the antibodies detected by the ELISA test. TSAb were only found in individuals with Graves' disease. The ELISA test measures total anti-TSHR antibodies, whereas the test using adenylate cyclase stimulation measures antibodies that recognize specific epitopes involved in receptor activation. Our observations thus disprove the hypothesis according to which Graves' disease is related to the appearance of anti-TSHR antibodies not present in normal subjects. Actually, anti-TSHR antibodies exist in many euthyroid subjects, in some cases even at concentrations higher than those

  20. Trapped noble gases in meteorites

    NASA Technical Reports Server (NTRS)

    Swindle, Timothy D.

    1988-01-01

    The trapped noble gases in meteorites come in two main varieties, usually referred to as solar and planetary. The solar noble gases are implanted solar-wind or solar-flare materials, and thus their relative elemental abundances provide a good estimate of those of the sun. The planetary noble gases have relative elemental abundances similar to those in the terrestrial atmosphere, but there are also important distinctions. At least one other elemental pattern (subsolar) and several isotopic patterns have also been identified.

  1. Mimicking respiratory phosphorylation using purified enzymes.

    PubMed

    von Ballmoos, Christoph; Biner, Olivier; Nilsson, Tobias; Brzezinski, Peter

    2016-04-01

    The enzymes of oxidative phosphorylation is a striking example of the functional association of multiple enzyme complexes, working together to form ATP from cellular reducing equivalents. These complexes, such as cytochrome c oxidase or the ATP synthase, are typically investigated individually and therefore, their functional interplay is not well understood. Here, we present methodology that allows the co-reconstitution of purified terminal oxidases and ATP synthases in synthetic liposomes. The enzymes are functionally coupled via proton translocation where upon addition of reducing equivalents the oxidase creates and maintains a transmembrane electrochemical proton gradient that energizes the synthesis of ATP by the F1F0 ATP synthase. The method has been tested with the ATP synthases from Escherichia coli and spinach chloroplasts, and with the quinol and cytochrome c oxidases from E. coli and Rhodobacter sphaeroides, respectively. Unlike in experiments with the ATP synthase reconstituted alone, the setup allows in vitro ATP synthesis under steady state conditions, with rates up to 90 ATP×s(-1)×enzyme(-1). We have also used the novel system to study the phenomenon of "mild uncoupling" as observed in mitochondria upon addition of low concentrations of ionophores (e.g. FCCP, SF6847) and the recoupling effect of 6-ketocholestanol. While we could reproduce the described effects, our data with the in vitro system does not support the idea of a direct interaction between a mitochondrial protein and the uncoupling agents as proposed earlier. PMID:26707617

  2. Characterization of the purified Chlamydomonas minus agglutinin

    PubMed Central

    1985-01-01

    Chlamydomonas flagellar sexual agglutinins are responsible for the adhesion of opposite mating-type (plus and minus) gametes during the first stages of mating. Purification and partial characterization of the plus agglutinin was previously reported (Adair, W. S., C. J. Hwang, and U. W. Goodenough, 1983, Cell, 33:183-193). Here we characterize the purified minus molecule. We show it to be a high molecular weight, hydroxyproline-rich glycoprotein that migrates in the 3% stacking region of an SDS-polyacrylamide gel and is absent from two nonagglutinating minus mutants. Plus and minus agglutinins are remarkably similar, although nonidentical, in amino acid composition, molecular morphology, and reactivity in vivo and in vitro with monoclonal antibodies raised against the plus agglutinin. Moreover, the adhesiveness of both plus and minus agglutinins, when coupled to agarose beads, is abolished by thermolysin, trypsin, periodate, alkaline borohydride, reducing agents, or heat, but unaffected by exo- or endoglycosidases. The minus agglutinin, however, migrates just ahead of the plus molecule on SDS PAGE, is excluded from an anion-exchange (Mono Q) column, elutes earlier during hydrophobic interaction (Bio-gel TSK Phenyl 5PW) chromatography, and is sensitive to chymotrypsin digestion (unlike the plus agglutinin); therefore, it differs from the plus agglutinin in apparent molecular weight, net charge, relative hydrophobicity and proteolytic susceptibility. Nevertheless, our results generally demonstrate a high degree of homology between these complementary cell-cell recognition/adhesion molecules, which suggests that they are specified by genes that have a common evolutionary origin. PMID:2411736

  3. Enhanced durability of high-temperature desulfurization sorbents for moving-bed applications. Base Program: Development and testing of zinc ferrite sorbents

    SciTech Connect

    Ayala, R.E.

    1991-08-01

    The objective of this contract was to identify and test fabrication methods and sorbent chemical compositions that enhance the long-term chemical reactivity and mechanical strength of zinc ferrite and other novel sorbents for moving-bed, high-temperature desulfurization of coal-derived gases. Desired properties to be enhanced for moving-bed sorbent materials are: (1) high chemical reactivity (sulfur absorption rate and total sulfur capacity), (2) high mechanical strength (pellet crush strength and attrition resistance), and (3) suitable pellet morphology (e.g., pellet size, shape, surface area, and average specific pore volume). In addition, it is desired to maintain the sorbent properties over extended cyclic use in moving- bed systems.

  4. Studying the removal of nitrogen oxides from boiler flue gases in firing natural gas

    NASA Astrophysics Data System (ADS)

    Kormilitsyn, V. I.; Ezhov, V. S.

    2013-02-01

    Basic statements relating to the mechanism through which nitrogen oxides are oxidized and absorbed in the course of purifying flue gases using a new comprehensive method are presented together with versions used for implementing the purification process. The results obtained from tests of a pilot commercial installation are given, and its performance indicators are estimated.

  5. Phase transitions in real gases and ideal Bose gases

    NASA Astrophysics Data System (ADS)

    Maslov, V. P.

    2011-05-01

    Based on number theory, we present a new concept of gas without the particle interaction taken into account in which there are first-order phase transitions for T < T cr on isotherms. We present formulas for new ideal gases, solving the Gibbs paradox, and also formulas for the transition to real gases based on the concept of the Zeno line.

  6. Isolation of carotenoid-deficient mutant from alkylated dibenzothiophene desulfurizing nocardioform bacteria, Gordonia sp. TM414.

    PubMed

    Matsui, Toru; Maruhashi, Kenji

    2004-02-01

    The dibenzothiophene-desulfurizing nocardioform bacteria, Gordonia sp. TM414, was isolated from oil-contaminated soil. To avoid coloration of the oil layer after the desulfurization reaction, which could decrease the quality of the oil, two colorless knock-out mutants, TPc and TPd, were isolated by using a broad-host-range transposon complex. Genomic sequence analysis revealed that the same gene was disrupted in these mutants and that the transposon-inserted gene was assigned as the gene for phytoene desaturase, crt I. The crt I mutants also showed desulfurization activity comparable to that of the parent strain in a model-oil/aqueous bi-phasic reaction, suggesting that the carotenoid production is not responsible for the bi-phasic desulfurization reaction that requires hydrophobic substrate incorporation from the organic phase.

  7. Desulfurization of 2,4,6,8-tetraethyl dibenzothiophene by recombinant Mycobacterium sp. strain MR65.

    PubMed

    Watanabe, Kimiko; Noda, Ken-ichi; Konishi, Jin; Maruhashi, Kenji

    2003-09-01

    Recombinant Mycobacterium sp. strain MR65 harboring dszABCD genes was used to desulfurize alkyl dibenzothiophenes (Cx-DBTs) in n-hexadecane. The specific desulfurization activity for 2,4,6,8-tetraethyl DBT (C8-DBT) by DszC enzyme was about twice that for 4,6-dipropyl DBT (C6-DBT). However, the degradation rate of 2,4,6,8-tetraethyl DBT in n-hexadecane by resting cells of strain MR65 was only about 40% of that of 4,6-dipropyl DBT. These results indicated that the desulfurization ability for Cx-DBTs by resting cells depends on carbon number substituted at positions 4 and 6 and that the rate-limiting step in the desulfurization reaction of highly alkylated Cx-DBTs is the transfer process from the oil phase into the cell.

  8. Enhanced desulfurization in a transposon-mutant strain of Rhodococcus erythropolis.

    PubMed

    Watanabe, Kimiko; Noda, Ken-ichi; Maruhashi, Kenji

    2003-08-01

    The dsz desulfurization gene cluster from Rhodococcus erythropolis strain KA2-5-1 was transferred into R. erythropolis strain MC1109, unable to desulfurize light gas oil (LGO), using a transposon-transposase complex. As a result, two recombinant strains, named MC0203 and MC0122, were isolated. Resting cells of strain MC0203 decreased the sulfur concentration of LGO from 120 mg l(-1) to 70 mg l(-1) in 2 h. The LGO-desulfurization activity of strain MC0203 was about twice that of strain MC0122 and KA2-5-1. The 10-methyl fatty acids of strain MC0203 were about 28%-41% that of strain MC1109. It is likely that strain MC0203 had a mutation involving alkylenation or methylation of delta9-unsaturated fatty acids caused by the transposon inserted in the chromosome, which increased the fluidity of cell membranes and enhanced the desulfurization activity.

  9. Characterization of co-purified acellular pertussis vaccines.

    PubMed

    Xu, Yinghua; Tan, Yajun; Asokanathan, Catpagavalli; Zhang, Shumin; Xing, Dorothy; Wang, Junzhi

    2015-01-01

    Whole-cell pertussis vaccines (WPVs) have been completely replaced by the co-purified acellular vaccines (APVs) in China. To date few laboratory studies were reported for co-purified APVs in terms of their antigenic composition and protective immune responses. To further understand the antigenic composition in co-purified APVs, in the present study 2-dimensional gel electrophoresis-based proteomic technology was used to analyze the composition of co-purified APVs. The results showed that besides the main antigens pertussis toxin (PT) and filamentous hemagglutinin (FHA), co-purified APVs also contained pertactin (PRN), fimbriae (FIM) 2and3 and other minor protein antigens. Of the 9 proteins identified, 3 were differentially presented in products from manufacturer 1 and manufacturer 2. Compared with WPVs and purified APVs, co-purified APVs induced a mixed Th1/Th2 immune response with more toward to a Th1 response than the purified APVs in this study. These results hint that different immune mechanisms might be involved in protection induced by co-purified and purified APVs.

  10. Characterization of co-purified acellular pertussis vaccines

    PubMed Central

    Xu, Yinghua; Tan, Yajun; Asokanathan, Catpagavalli; Zhang, Shumin; Xing, Dorothy; Wang, Junzhi

    2015-01-01

    Whole-cell pertussis vaccines (WPVs) have been completely replaced by the co-purified acellular vaccines (APVs) in China. To date few laboratory studies were reported for co-purified APVs in terms of their antigenic composition and protective immune responses. To further understand the antigenic composition in co-purified APVs, in the present study 2-dimensional gel electrophoresis-based proteomic technology was used to analyze the composition of co-purified APVs. The results showed that besides the main antigens pertussis toxin (PT) and filamentous hemagglutinin (FHA), co-purified APVs also contained pertactin (PRN), fimbriae (FIM) 2and3 and other minor protein antigens. Of the 9 proteins identified, 3 were differentially presented in products from manufacturer 1 and manufacturer 2. Compared with WPVs and purified APVs, co-purified APVs induced a mixed Th1/Th2 immune response with more toward to a Th1 response than the purified APVs in this study. These results hint that different immune mechanisms might be involved in protection induced by co-purified and purified APVs. PMID:25610957

  11. Shore-to-ship steam purification Inverse Flash Steam Purifier (IFSTEP) field unit tests. Technical report

    SciTech Connect

    Murphy, G.; Maga, S.; Silbernagel, M.

    1995-10-01

    The Inverse Flash Steam Purifier (IFSTEP), a device to remove noncondensable gases from steam, was developed, tested, and evaluated. IFSTEP provides an alternative to methods that generate pure steam. Steam can now be purified at selected points in the steam distribution line, thus improving steam for facilities where required. This differs from reverse osmosis, de-mineralization, and de-alkalization that necessarily purify all the steam, as they are feed water treatment methods. With IFSTEP, simple water softening is adequate. The expense of the comprehensive feed water treatment, hazardous material handling, and labor intensive operation is diminished. Test data illustrate the behavior of IFSTEP during early bench tests and current field tests. Under a wide variety of upstream pressure and downstream steam demands, including boiler shutoff and startup conditions, IFSTEP consistently provided clean steam. The best results were achieved with a pressure difference control valve, which maintained a constant pressure or temperature difference between the shell and tube side of the heat exchanger. A prototype design is presented that reflects the improvements suggested by all previous testing. The prototype is modular to allow capacity growth and to meet most activity requirements.

  12. Petrographical characteristics of calcium based absorbent and its effect on grinding and calcination/desulfurization property

    SciTech Connect

    Xiong, Y.; Sun, X.

    1998-07-01

    This paper discussed the relationship between the petrographical characteristics and grinding, calcination/desulfurization properties of calcium based absorbent. Optical microscopy, XRD analysis, TGS-DTGA-DTA and thermal microscopy analyses were carried out on carbonate rocks. It was found that petrographical characteristics, such as grain size and cleavages developing degree have great effect on grinding, calcination/desulfurization properties. The choice of calcium based adsorbent should be based on the petrographical characteristics.

  13. New reagents for coal desulfurization. Final technical report, September 1, 1990--August 31, 1991

    SciTech Connect

    Buchanan, D.H.; Kalembasa, S.; Olson, D.; Wang, S.; Warfel, L.

    1991-12-31

    The primary goal of this project was development and exploration of potential new desulfurization reagents for the removal of ``organic sulfur`` from Illinois coals by mild chemical methods. Potential new desulfurization reagents were investigated using organic sulfur compounds of the types thought to be present in coals. Reagents included low-valent metal complexes based on nickel and on iron as well as possible Single Electron Transfer reagents. Soluble coal extracts served as second generation model compounds during this reagent development project.

  14. Synthesis and application of different phthalocyanine molecular sieve catalyst for oxidative desulfurization

    SciTech Connect

    Zhao, Na; Li, Siwen; Wang, Jinyi; Zhang, Ronglan; Gao, Ruimin; Zhao, Jianshe; Wang, Junlong

    2015-05-15

    M{sub 2}(PcAN){sub 2} (M=Fe, Co, Ni, Cu, Zn and Mn) anchored onto W-HZSM-5 (M{sub 2}(PcAN){sub 2}–W-HZSM-5) or the M{sub 2}(PcTN){sub 2} doping W-HZSM-5 (M{sub 2}(PcTN){sub 2}/W-HZSM-5) were prepared and their catalytic performances were tested for oxidative desulfurization in the presence of oxygen. Thiophene (T), benzothiophene (BT), and dibenzothiophene (DBT) were considered as sulfur compounds. Among zeolite-based catalysts, the Cu{sub 2}(PcAN){sub 2}–W-HZSM-5 and Cu{sub 2}(PcTN){sub 2}/W-HZSM-5 showed superior desulfurization performance and the activity of selectivity followed the order: T>BT>DBT. The effects of phthalocyanine concentration were studied by UV–Vis and calcination temperature was obtained by TG-DSC for Cu{sub 2}(PcTN){sub 2}/W-HZSM-5. Catalysts were characterized by EA, IR, XRD, SEM, TEM, ICP, and N{sub 2} adsorption. Reaction time, temperature and the amount of catalyst were investigated as the important parameters for optimization of the reaction. Furthermore, a possible process of oxidative desulfurization and the reaction products were proposed. - Graphical abstract: The ODS reaction schematic shows the reaction mechanism of ultra-deep desulfurization. The sulfur compounds are oxidized to their corresponding sulfoxides or sulfones through the use of oxygen and catalysts. The reaction process of ultra-deep desulfurization. - Highlights: • A kind of novel catalyst for deep desulfurization was synthesized. • Cu{sub 2}(PcAN){sub 2}–W-HZSM-5 exhibits excellent catalytic performance for desulfurization. • The reaction conditions that affect desulfurization efficiency are investigated. • The reaction process of model sulfur compounds is proposed.

  15. Key factor in rice husk Ash/CaO sorbent for high flue gas desulfurization activity.

    PubMed

    Dahlan, Irvan; Lee, Keat Teong; Kamaruddin, Azlina Harun; Mohamed, Abdul Rahman

    2006-10-01

    Siliceous materials such as rice husk ash (RHA) have potential to be utilized as high performance sorbents for the flue gas desulfurization process in small-scale industrial boilers. This study presents findings on identifying the key factorfor high desulfurization activity in sorbents prepared from RHA. Initially, a systematic approach using central composite rotatable design was used to develop a mathematical model that correlates the sorbent preparation variables to the desulfurization activity of the sorbent. The sorbent preparation variables studied are hydration period, x1 (6-16 h), amount of RHA, x2 (5-15 g), amount of CaO, x3 (2-6 g), amount of water, x4 (90-110 mL), and hydration temperature, x5 (150-250 degrees C). The mathematical model developed was subjected to statistical tests and the model is adequate for predicting the SO2 desulfurization activity of the sorbent within the range of the sorbent preparation variables studied. Based on the model, the amount of RHA, amount of CaO, and hydration period used in the preparation step significantly influenced the desulfurization activity of the sorbent. The ratio of RHA and CaO used in the preparation mixture was also a significant factor that influenced the desulfurization activity of the sorbent. A RHA to CaO ratio of 2.5 leads to the formation of specific reactive species in the sorbent that are believed to be the key factor responsible for high desulfurization activity in the sorbent. Other physical properties of the sorbent such as pore size distribution and surface morphology were found to have insignificant influence on the desulfurization activity of the sorbent.

  16. Analyses of microbial desulfurization reaction of alkylated dibenzothiophenes dissolved in oil phase.

    PubMed

    Okada, Hideki; Nomura, Nobuhiko; Nakahara, Tadaatsu; Saitoh, Koichi; Uchiyama, Hiroo; Maruhashi, Kenji

    2003-08-20

    The kinetics of the oil/water two-phase reaction system was analyzed, and the reaction was carried out with the desulfurization of alkylated dibenzothiophenes (Cx-DBTs) using the desulfurizing microorganism Mycobacterium sp. G3. In the water-phase reaction system, the desulfurization activities were constant with respect to species of Cx-DBTs as substrates. However, the desulfurization activities in the oil/water two-phase reaction system against DBT, 4,6-dimethyl DBT, 4,6-diethyl DBT, 4,6-dipropyl DBT, and 4,6-dibutyl DBT were 49.0, 45.9, 11.5, 1.35, and 0.00 micromol g DCW(-1) h(-1), respectively. The kinetic parameters for the degradation of DBT, 4,6-dimethyl DBT, and 4,6-diethyl DBT were also obtained (V(max) values 90.0, 68.7, and 22.7 micromol g DCW(-1) h(-1) and K(m) values 0.21, 0.70, and 3.03 mM, respectively). The reason for the decrease in activity against Cx-DBTs of high molecular weight was a decrease in the V(max) value and an increase in the K(m) value, the latter being a particularly serious problem. Furthermore, the hydrophobicity of the substrate was evaluated as the capacity factor measured by high-performance liquid chromatography (HPLC). The correlation between substrate hydrophobicity and desulfurization activity indicated that the desulfurization reaction in the oil/water two-phase reaction system is greatly influenced by the hydrophobicity of the substrates. In addition, the influence of the solvent on desulfurization activity was examined, and it was found that not only the hydrophobicity of substrates, but also that of solvents, affected the desulfurization reaction.

  17. Gases in Seawater

    NASA Astrophysics Data System (ADS)

    Nightingale, P. D.; Liss, P. S.

    2003-12-01

    The annual gross and net primary productivity of the surface oceans is similar in size to that on land (IPCC, 2001). Marine productivity drives the cycling of gases such as oxygen (O2), dimethyl sulfide (DMS), carbon monoxide (CO), carbon dioxide (CO2), and methyl iodide (CH3I) which are of fundamental importance in studies of marine productivity, biogeochemical cycles, atmospheric chemistry, climate, and human health, respectively. For example, ˜30% of the world's population (1,570 million) is thought to be at risk of iodine-deficiency disorders that impair mental development (WHO, 1996). The main source of iodine to land is the supply of volatile iodine compounds produced in the ocean and then transferred to the atmosphere via the air-surface interface. The flux of these marine iodine species to the atmosphere is also thought to be important in the oxidation capacity of the troposphere by the production of the iodine oxide radical ( Alicke et al., 1999). A further example is that the net flux of CO2 from the atmosphere to the ocean, ˜1.7±0.5 Gt C yr-1, represents ˜30% of the annual release of anthropogenic CO2 to the atmosphere (IPCC, 2001). This net flux is superimposed on a huge annual flux (90 Gt C yr-1) of CO2 that is cycled "naturally" between the ocean and the atmosphere. The long-term sink for anthropogenic CO2 is recognized as transfer to the ocean from the atmosphere. A final example is the emission of volatile sulfur, in the form of DMS, from the oceans. Not only is an oceanic flux from the oceans needed to balance the loss of sulfur (a bioessential element) from the land via weathering, it has also been proposed as having a major control on climate due to the formation of cloud condensation nuclei (Charlson et al., 1987). Indeed, the existence of DMS and CH3I has been used as evidence in support of the Gaia hypothesis (Lovelock, 1979).There are at least four main processes that affect the concentration of gases in the water column: biological

  18. Hydrogen purifier module and method for forming the same

    DOEpatents

    DeVries, Peter David

    2012-02-07

    A hydrogen purifier utilizing a hydrogen permeable membrane, and a gas-tight seal, where the seal is uses a low temperature melting point metal, which upon heating above the melting point subsequently forms a seal alloy with adjacent metals, where the alloy has a melting point above the operational temperature of the purifier. The purifier further is constructed such that a degree of isolation exists between the metal that melts to form the seal and the active area of the purifier membrane, so that the active area of the purifier membrane is not corrupted. A method of forming a hydrogen purifier utilizing a hydrogen permeable membrane with a seal of the same type is also disclosed.

  19. Performance of titanium in flue gas desulfurization scrubber systems

    SciTech Connect

    Schutz, R.W.; Young, C.S.

    1985-09-01

    Findings of a continuing in situ flue gas desulfurization (FGD) scrubber exposure test program used to assess the performance of specific titanium alloys in corrosive inlet quench and outlet duct areas of FGD systems are reported and discussed. Spool rack exposures of four to nine months in power plant FGD and particulate scrubbers provided corrosion data for titanium alloys relative to the corrosion resistant alloys commonly considered for this service. Overall, Titanium Grade 2 and Grade 12 equalled or exceeded the corrosion resistance of the stainless steel and nickel base alloys tested. Titanium Grade 7 exhibited the best corrosion resistance in the wet/dry zone of the inlet quench of a closed-loop FGD scrubber. This performance is correlated with laboratory studies in the literature, and a mechanism is proposed to explain titanium's corrosion resistance.

  20. Oxidative desulfurization of Tufanbeyli coal by hydrogen peroxide solution

    SciTech Connect

    Guru, M.; Sarioz, B.V.; Cakanyildirim, C.

    2008-07-01

    It is becoming popular to use fossil fuels efficiently since the necessary energy is mostly supplied from fossil fuels. Altough there are high lignite reserves, high sulfur content limits the efficient use of them. In this article, we aimed to convert combustible sulfur in coal to non-combustible sulfate form in the ash by oxidizing it with a hydrogen peroxide solution. The parameters affecting the sulfur conversion were determined to be: hydrogen peroxide concentration, reaction time, mean particle size at constant room temperature and shaking rate. The maximum desulfurization efficiency reached was 74% of the original combustible sulfur with 15% (w/w) hydrogen peroxide solution, 12 hours of reaction time, and 0.25 mm mean particle size.

  1. Separation of Mercury from Flue Gas Desulfurization Scrubber Produced Gypsum

    SciTech Connect

    Hensman, Carl, E., P.h.D; Baker, Trevor

    2008-06-16

    Frontier Geosciences (Frontier; FGS) proposed for DOE Grant No. DE-FG02-07ER84669 that mercury control could be achieved in a wet scrubber by the addition of an amendment to the wet-FGD scrubber. To demonstrate this, a bench-scale scrubber and synthetic flue-gas supply was designed to simulate the limestone fed, wet-desulfurization units utilized by coal-fired power plants. Frontier maintains that the mercury released from these utilities can be controlled and reduced by modifying the existing equipment at installations where wet flue-gas desulfurization (FGD) systems are employed. A key element of the proposal was FGS-PWN, a liquid-based mercury chelating agent, which can be employed as the amendment for removal of all mercury species which enter the wet-FGD scrubber. However, the equipment design presented in the proposal was inadequate to demonstrate these functions and no significant progress was made to substantiate these claims. As a result, funding for a Phase II continuation of this work will not be pursued. The key to implementing the technology as described in the proposal and report appears to be a high liquid-to-gas ratio (L/G) between the flue-gas and the scrubber liquor, a requirement not currently implemented in existing wet-FGD designs. It may be that this constraint can be reduced through parametric studies, but that was not apparent in this work. Unfortunately, the bench-scale system constructed for this project did not function as intended and the funds and time requested were exhausted before the separation studies could occur.

  2. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Berggren, M.H.; Jha, M.C.

    1989-10-01

    AMAX Research Development Center (AMAX R D) investigated methods for enhancing the reactivity and durability of zinc ferrite desulfurization sorbents. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For this program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such as size, strength, and specific surface area during 10 cycles of sulfidation and oxidation. Two base case sorbents, a spherical pellet and a cylindrical extrude used in related METC-sponsored projects, were used to provide a basis for the aimed enhancement in durability and reactivity. Sorbent performance was judged on the basis of physical properties, single particle kinetic studies based on thermogravimetric (TGA) techniques, and multicycle bench-scale testing of sorbents. A sorbent grading system was utilized to quantify the characteristics of the new sorbents prepared during the program. Significant enhancements in both reactivity and durability were achieved for the spherical pellet shape over the base case formulation. Overall improvements to reactivity and durability were also made to the cylindrical extrude shape. The primary variables which were investigated during the program included iron oxide type, zinc oxide:iron oxide ratio, inorganic binder concentration, organic binder concentration, and induration conditions. The effects of some variables were small or inconclusive. Based on TGA studies and bench-scale tests, induration conditions were found to be very significant.

  3. A NOVEL APPROACH TO CATALYTIC DESULFURIZATION OF COAL

    SciTech Connect

    John G. Verkade

    1997-08-31

    Remarkably mild conditions have been discovered for quantitative sulfur removal from dibenzothiophene and other organosulfur systems using relatively cheap elemental sodium. The project objectives are: (1) Optimize the coal desulfurization reaction with respect to time, temperature, coal type and the R groups (including R = H), and also on extraction, impregnation and sonication conditions; (2) Optimize the conditions for the HDS reaction (which allows the PR{sub 3} to function as an HDS catalyst for coal) with respect to R group, temperature, pressure, H{sub 2} gas flow rate and inert solvent presence; (3) Determine the product(s) and the pathway of the novel redox reaction that appears to quantitatively remove sulfur from dibenzothiophene (DBT) when R = Bu when FeCl{sub 3} is used as a catalyst; (4) Impregnate sulfur-laden coals with Fe{sup 3+} to ascertain if the PR{sub 3} desulfurization rate increases; (5) Determine the nature of the presently unextractable phosphorus compounds formed in solid coals by PR{sub 3}; (6) Explore the efficacy of PR{sub 3}/Fe{sup 3+} in removing sulfur from petroleum feedstocks, heavy ends (whether solid or liquid), coal tar and discarded tire rubber; (7) Explore the possibility of using water-soluble PR{sub 3} compounds and Fe{sup 3+} to remove sulfur from petroleum feedstocks and heavy ends in order to remove the SPR{sub 3} (and Fe{sup 3+} catalyst) by water extraction (for subsequent HDS of the SPR{sub 3}); and (8) Explore the possibility of using solid-supported PR{sub 3} compounds (plus Fe{sup 3+} catalyst) to remove sulfur from petroleum feedstocks and heavy ends in order to keep the oil and the SPR{sub 3} (formed in the reaction) in easily separable phases.

  4. 40 CFR 89.312 - Analytical gases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Analytical gases. 89.312 Section 89.312....312 Analytical gases. (a) The shelf life of all calibration gases must not be exceeded. The expiration date of the calibration gases stated by the gas manufacturer shall be recorded. (b) Pure gases....

  5. Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Wang, S. X.; Wu, Q. R.; Wang, F. Y.; Lin, C.-J.; Zhang, L. M.; Hui, M. L.; Hao, J. M.

    2015-11-01

    Mercury transformation mechanisms and speciation profiles are reviewed for mercury formed in and released from flue gases of coal-fired boilers, non-ferrous metal smelters, cement plants, iron and steel plants, municipal solid waste incinerators, and biomass burning. Mercury in coal, ores and other raw materials is released to flue gases in the form of Hg0 during combustion or smelting in boilers, kilns or furnaces. Decreasing temperature from over 800 °C to below 300 °C in flue gases leaving boilers, kilns or furnaces promotes homogeneous and heterogeneous oxidation of gaseous elemental mercury (Hg0) to gaseous divalent mercury (Hg2+), with a portion of Hg2+ adsorbed onto fly ash to form particulate-bound mercury (Hgp). Halogen is the primary oxidizer for Hg0 in flue gases, and active components (e.g.,TiO2, Fe2O3, etc.) on fly ash promote heterogeneous oxidation and adsorption processes. In addition to mercury removal, mercury transformation also occurs when passing through air pollution control devices (APCDs), affecting the mercury speciation in flue gases. In coal-fired power plants, selective catalytic reduction (SCR) system promotes mercury oxidation by 34-85 %, electrostatic precipitator (ESP) and fabric filter (FF) remove over 99 % of Hgp, and wet flue gas desulfurization system (WFGD) captures 60-95 % of Hg2+. In non-ferrous metal smelters, most Hg0 is converted to Hg2+ and removed in acid plants (APs). For cement clinker production, mercury cycling and operational conditions promote heterogeneous mercury oxidation and adsorption. The mercury speciation profiles in flue gases emitted to the atmosphere are determined by transformation mechanisms and mercury removal efficiencies by various APCDs. For all the sectors reviewed in this study, Hgp accounts for less than 5 % in flue gases. In China, mercury emission has a higher fraction (66-82 % of total mercury) in flue gases from coal combustion, in contrast to a greater Hg2+ fraction (29-90 %) from non

  6. Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wang, Shuxiao; Wu, Qingru; Wang, Fengyang; Lin, Che-Jen; Zhang, Leiming; Hui, Mulin; Yang, Mei; Su, Haitao; Hao, Jiming

    2016-02-01

    Mercury transformation mechanisms and speciation profiles are reviewed for mercury formed in and released from flue gases of coal-fired boilers, non-ferrous metal smelters, cement plants, iron and steel plants, waste incinerators, biomass burning and so on. Mercury in coal, ores, and other raw materials is released to flue gases in the form of Hg0 during combustion or smelting in boilers, kilns or furnaces. Decreasing temperature from over 800 °C to below 300 °C in flue gases leaving boilers, kilns or furnaces promotes homogeneous and heterogeneous oxidation of Hg0 to gaseous divalent mercury (Hg2+), with a portion of Hg2+ adsorbed onto fly ash to form particulate-bound mercury (Hgp). Halogen is the primary oxidizer for Hg0 in flue gases, and active components (e.g., TiO2, Fe2O3, etc.) on fly ash promote heterogeneous oxidation and adsorption processes. In addition to mercury removal, mercury transformation also occurs when passing through air pollution control devices (APCDs), affecting the mercury speciation in flue gases. In coal-fired power plants, selective catalytic reduction (SCR) system promotes mercury oxidation by 34-85 %, electrostatic precipitator (ESP) and fabric filter (FF) remove over 99 % of Hgp, and wet flue gas desulfurization system (WFGD) captures 60-95 % of Hg2+. In non-ferrous metal smelters, most Hg0 is converted to Hg2+ and removed in acid plants (APs). For cement clinker production, mercury cycling and operational conditions promote heterogeneous mercury oxidation and adsorption. The mercury speciation profiles in flue gases emitted to the atmosphere are determined by transformation mechanisms and mercury removal efficiencies by various APCDs. For all the sectors reviewed in this study, Hgp accounts for less than 5 % in flue gases. In China, mercury emission has a higher Hg0 fraction (66-82 % of total mercury) in flue gases from coal combustion, in contrast to a greater Hg2+ fraction (29-90 %) from non-ferrous metal smelting, cement and

  7. Clostridium strain which produces acetic acid from waste gases

    DOEpatents

    Gaddy, J.L.

    1997-01-14

    A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 4 figs.

  8. Clostridium stain which produces acetic acid from waste gases

    DOEpatents

    Gaddy, James L.

    1997-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.

  9. Mercury vapor pressure of flue gas desulfurization scrubber suspensions: effects of pH level, gypsum, and iron.

    PubMed

    Schuetze, Jan; Kunth, Daniel; Weissbach, Sven; Koeser, Heinz

    2012-03-01

    Calcium-based scrubbers designed to absorb HCl and SO(2) from flue gases can also remove oxidized mercury. Dissolved mercury halides may have an appreciable partial vapor pressure. Chemical reduction of the dissolved mercury may increase the Hg emission, thereby limiting the coremoval of mercury in the wet scrubbing process. In this paper we evaluate the effects of the pH level, different gypsum qualities, and iron in flue gas desulfurization (FGD) scrubber suspensions. The impact of these parameters on mercury vapor pressure was studied under controlled laboratory conditions in model scrubber suspensions. A major influence is exerted by pH values above 7, considerably amplifying the mercury concentration in the vapor phase above the FGD scrubber suspension. Gypsum also increases the mercury re-emission. Fe(III) decreases and Fe(II) increases the vapor pressure significantly. The consequences of the findings for a reliable coremoval of mercury in FGD scrubbers are discussed. It is shown that there is an increased risk of poor mercury capture in lime-based FGD scrubbers in comparison to limestone FGD scrubbers.

  10. Noble gases in the moon

    NASA Technical Reports Server (NTRS)

    Manuel, O. K.; Srinivasan, B.; Hennecke, E. W.; Sinclair, D. E.

    1972-01-01

    The abundance and isotopic composition of helium, neon, argon, krypton, and xenon which were released by stepwise heating of lunar fines (15601.64) and (15271.65) were measured spectrometrically. The results of a composition of noble gases released from the lunar fines with noble gases in meteorites and in the earth are presented along with the isotopic composition of noble gases in lunar fines, in meteorites, and in the atmosphere. A study of two isotopically distinct components of trapped xenon in carbonaceous chondrites is also included.

  11. Environmental implications of anesthetic gases.

    PubMed

    Yasny, Jeffrey S; White, Jennifer

    2012-01-01

    For several decades, anesthetic gases have greatly enhanced the comfort and outcome for patients during surgery. The benefits of these agents have heavily outweighed the risks. In recent years, the attention towards their overall contribution to global climate change and the environment has increased. Anesthesia providers have a responsibility to minimize unnecessary atmospheric pollution by utilizing techniques that can lessen any adverse effects of these gases on the environment. Moreover, health care facilities that use anesthetic gases are accountable for ensuring that all anesthesia equipment, including the scavenging system, is effective and routinely maintained. Implementing preventive practices and simple strategies can promote the safest and most healthy environment.

  12. 21 CFR 880.6500 - Medical ultraviolet air purifier.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... to ultraviolet radiation. (b) Classification. Class II (performance standards). ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical ultraviolet air purifier. 880.6500 Section... Miscellaneous Devices § 880.6500 Medical ultraviolet air purifier. (a) Identification. A medical ultraviolet...

  13. 21 CFR 880.6500 - Medical ultraviolet air purifier.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... to ultraviolet radiation. (b) Classification. Class II (performance standards). ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical ultraviolet air purifier. 880.6500 Section... Miscellaneous Devices § 880.6500 Medical ultraviolet air purifier. (a) Identification. A medical ultraviolet...

  14. 21 CFR 880.6500 - Medical ultraviolet air purifier.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... to ultraviolet radiation. (b) Classification. Class II (performance standards). ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical ultraviolet air purifier. 880.6500 Section... Miscellaneous Devices § 880.6500 Medical ultraviolet air purifier. (a) Identification. A medical ultraviolet...

  15. 21 CFR 880.6500 - Medical ultraviolet air purifier.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... to ultraviolet radiation. (b) Classification. Class II (performance standards). ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical ultraviolet air purifier. 880.6500 Section... Miscellaneous Devices § 880.6500 Medical ultraviolet air purifier. (a) Identification. A medical ultraviolet...

  16. 21 CFR 880.6710 - Medical ultraviolet water purifier.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... exposure to ultraviolet radiation. (b) Classification. Class II (performance standards). ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical ultraviolet water purifier. 880.6710... Miscellaneous Devices § 880.6710 Medical ultraviolet water purifier. (a) Identification. A medical...

  17. Portable self-contained solar powered water purifier

    SciTech Connect

    Sherman, M.

    1991-10-22

    This patent describes a portable self-contained solar powered water purifier. It comprises housing means for buoyantly supporting the purifier; solar cell means supported by the housing means above water to be treated; purification means depending from the housing means so as to be positioned in water to be treated and including sacrificial anode means providing ionized metallic ions for purifying the water and cathode means providing abstraction of electrons to facilitate the release of oxygen into the water; means for electrically connecting the solar cell means to the electrolytic purification means to enable the electrolytic purification means to purify water when the purifier is placed therein; and diode means for preventing reverse current flow between the anode means and cathode means.

  18. Molecular biological enhancement of coal desulfurization: Cloning and expression of the sulfoxide/sulfone/sulfonate/sulfate genes in Pseudomonads and Thiobacillae. [Rhodococcus erythropolis, Thiobacillus acidophilus, Thiobacillus novellus

    SciTech Connect

    Krawiec, S.

    1992-01-01

    Research continues on desulfurization of coal using microorganisms. Topics reported on this quarter include: desulfurization with N1-36 (presumptively identified as Rhodochrous erythropolis), pulsed-field gel electrophoresis of chromosomal DNA's of Thiobacillus spp., and fresh isolates with the presumptive capacity to desulfurize dibenzothiophenes.

  19. Molecular biological enhancement of coal desulfurization: Cloning and expression of the sulfoxide/sulfone/sulfonate/sulfate genes in Pseudomonads and Thiobacillae. Eleventh quarterly report

    SciTech Connect

    Krawiec, S.

    1992-08-01

    Research continues on desulfurization of coal using microorganisms. Topics reported on this quarter include: desulfurization with N1-36 (presumptively identified as Rhodochrous erythropolis), pulsed-field gel electrophoresis of chromosomal DNA`s of Thiobacillus spp., and fresh isolates with the presumptive capacity to desulfurize dibenzothiophenes.

  20. Hydrogen sulfide and reduced-sulfur gases adversely affect neurophysiological functions.

    PubMed

    Kilburn, K H; Warshaw, R H

    1995-01-01

    Hydrogen sulfide (H2S) above 50 parts per million (ppm) causes unconsciousness and death. Lower doses of H2S and related gases have been regarded as innocuous, but the effects of prolonged exposure have not been studied. This study was designed to determine whether people exposed to sulfide gases as a result of working at or living downwind from the processing of "sour" crude oil demonstrate persistent neurobehavioral dysfunction. Thirteen former workers and 22 neighbors of a refinery complained of headaches, nausea, vomiting, depression, personality changes, nosebleeds, and breathing difficulties. Their neurobehavioral functions and a profile of mood states (POMS) were compared to 32 controls, matched for age and educational level. The exposed subjects' mean values were statistically significantly abnormal compared to controls for two-choice reaction time, balance (as speed of sway), color discrimination, digit symbol, trail-making A and B, and immediate recall of a story. Their POMS scores were much higher than those of controls. Visual recall was significantly impaired in neighbors, but not in exworkers. It was concluded that neurophysiological abnormalities were associated with exposure to reduced sulfur gases, including H2S from crude oil desulfurization.

  1. Characteristics and reactivity of rapidly hydrated sorbent for semidry flue gas desulfurization.

    PubMed

    Zhang, Jie; You, Changfu; Zhao, Suwei; Chen, Changhe; Qi, Haiying

    2008-03-01

    Semidry flue gas desulfurization with a rapidly hydrated sorbent was studied in a pilot-scale circulating fluidized bed (CFB) experimental facility. The desulfurization efficiency was measured for various operating parameters, including the sorbent recirculation rate and the water spray method. The experimental results show that the desulfurization efficiencies of the rapidly hydrated sorbent were 1.5-3.0 times higher than a commonly used industrial sorbent for calcium to sulfur molar ratios from 1.2 to 3.0, mainly due to the higher specific surface area and pore volume. The Ca(OH)2 content in the cyclone separator ash was about 2.9% for the rapidly hydrated sorbent and was about 0.1% for the commonly used industrial sorbent, due to the different adhesion between the fine Ca(OH)2 particles and the fly ash particles, and the low cyclone separation efficiency for the fine Ca(OH)2 particles that fell off the sorbent particles. Therefore the actual recirculation rates of the active sorbent with Ca(OH)2 particles were higher for the rapidly hydrated sorbent, which also contributed to the higher desulfurization efficiency. The high fly ash content in the rapidly hydrated sorbent resulted in good operating stability. The desulfurization efficiency with upstream water spray was 10-15% higher than that with downstream water spray.

  2. Adhesive carrier particles for rapidly hydrated sorbent for moderate-temperature dry flue gas desulfurization.

    PubMed

    Li, Yuan; You, Changfu; Song, Chenxing

    2010-06-15

    A rapidly hydrated sorbent for moderate-temperature dry flue gas desulfurization was prepared by rapidly hydrating adhesive carrier particles and lime. The circulation ash from a circulating fluidized bed boiler and chain boiler ash, both of which have rough surfaces with large specific surface areas and specific pore volumes, can improve the adhesion, abrasion resistance, and desulfurization characteristics of rapidly hydrated sorbent when used as the adhesive carrier particles. The adhesion ability of sorbent made from circulation ash is 67.4% higher than that of the existing rapidly hydrated sorbent made from fly ash, the abrasion ratio is 76.2% lower, and desulfurization ability is 14.1% higher. For sorbent made from chain boiler ash, the adhesion ability is increased by 74.7%, the desulfurization ability is increased by 30.3%, and abrasion ratio is decreased by 52.4%. The abrasion ratios of the sorbent made from circulation ash having various average diameters were all about 9%, and their desulfurization abilities were similar (approximately 150 mg/g). PMID:20481549

  3. Analyses of substrate specificity of the desulfurizing bacterium Mycobacterium sp. G3.

    PubMed

    Okada, Hideki; Nomura, Nobuhiko; Nakahara, Tadaatsu; Maruhashi, Kenji

    2002-01-01

    The substrate specificity of Mycobacterium sp. G3 with desulfurization activity against dibenzothiophene (DBT) was investigated. Desulfurization reactions were carried out using a concentrated cell suspension of G3. The conversion from 4,6-dipropyl DBT, one of the sulfur-containing compounds that is difficult to desulfurize in diesel oil, to 2-hydroxy-3,3'-dipropylbiphenyl as an end -product of the desulfurization reaction was found in the water reaction system and in the oil/water two-phase reaction system. 4,6-Dibutyl DBT and 4,6-dipentyl DBT were metabolized to the hydroxybiphenyl form via the sulfone form in the water reaction system. These results indicate that G3 has high membrane permeability and superior substrate specificity for high molecular weight alkyl DBTs, which are represented by 4,6-dipentyl DBT as C10-DBT. Furthermore, G3 could desulfurize diesel oil, and the sulfur concentration was decreased from 116 mg l(-1) to 48 mg l(-1) within 24 h.

  4. 40 CFR 89.312 - Analytical gases.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Analytical gases. 89.312 Section 89... Provisions § 89.312 Analytical gases. (a) The shelf life of all calibration gases must not be exceeded. The expiration date of the calibration gases stated by the gas manufacturer shall be recorded. (b) Pure...

  5. 40 CFR 91.312 - Analytical gases.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Analytical gases. 91.312 Section 91... Analytical gases. (a) The shelf life of a calibration gas may not be exceeded. Record the expiration date stated by the gas supplier for each calibration gas. (b) Pure gases. The required purity of the gases...

  6. 40 CFR 91.312 - Analytical gases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Analytical gases. 91.312 Section 91... Analytical gases. (a) The shelf life of a calibration gas may not be exceeded. Record the expiration date stated by the gas supplier for each calibration gas. (b) Pure gases. The required purity of the gases...

  7. 40 CFR 1065.750 - Analytical gases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Analytical gases. 1065.750 Section... ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.750 Analytical gases. Analytical gases must meet the accuracy and purity specifications of...

  8. 40 CFR 1065.750 - Analytical gases.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Analytical gases. 1065.750 Section... ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.750 Analytical gases. Analytical gases must meet the accuracy and purity specifications of...

  9. 40 CFR 1065.750 - Analytical gases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Analytical gases. 1065.750 Section... ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.750 Analytical gases. Analytical gases must meet the accuracy and purity specifications of...

  10. 40 CFR 89.312 - Analytical gases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Analytical gases. 89.312 Section 89... Provisions § 89.312 Analytical gases. (a) The shelf life of all calibration gases must not be exceeded. The expiration date of the calibration gases stated by the gas manufacturer shall be recorded. (b) Pure...

  11. 40 CFR 91.312 - Analytical gases.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Analytical gases. 91.312 Section 91... Analytical gases. (a) The shelf life of a calibration gas may not be exceeded. Record the expiration date stated by the gas supplier for each calibration gas. (b) Pure gases. The required purity of the gases...

  12. 40 CFR 89.312 - Analytical gases.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Analytical gases. 89.312 Section 89... Provisions § 89.312 Analytical gases. (a) The shelf life of all calibration gases must not be exceeded. The expiration date of the calibration gases stated by the gas manufacturer shall be recorded. (b) Pure...

  13. 40 CFR 91.312 - Analytical gases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Analytical gases. 91.312 Section 91... Analytical gases. (a) The shelf life of a calibration gas may not be exceeded. Record the expiration date stated by the gas supplier for each calibration gas. (b) Pure gases. The required purity of the gases...

  14. 40 CFR 92.112 - Analytical gases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Analytical gases. 92.112 Section 92.112... POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.112 Analytical gases. (a) Gases for... as the diluent. (b) Gases for the hydrocarbon analyzer shall be single blends of propane using...

  15. 40 CFR 89.312 - Analytical gases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Analytical gases. 89.312 Section 89... Provisions § 89.312 Analytical gases. (a) The shelf life of all calibration gases must not be exceeded. The expiration date of the calibration gases stated by the gas manufacturer shall be recorded. (b) Pure...

  16. 40 CFR 1065.750 - Analytical gases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Analytical gases. 1065.750 Section... ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.750 Analytical gases. Analytical gases must meet the accuracy and purity specifications of...

  17. 40 CFR 90.312 - Analytical gases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Analytical gases. 90.312 Section 90.312... § 90.312 Analytical gases. (a) The shelf life of a calibration gas may not be exceeded. The expiration date stated by the gas supplier must be recorded. (b) Pure gases. The required purity of the gases...

  18. Hot coal-gas desulfurization with manganese-based sorbents

    SciTech Connect

    Berns, J.; Hepworth, M.T.; Slimane, R.B.; Gasper-Galvin, L.D.; Fisher, E.P.; Venkataraman, V.K.

    1996-08-01

    Manganese based hot-gas-desulfurization sorbents are under investigation for use in Integrated Gasification Combined Cycle advanced electric-power-generation systems. The objective of this project is to develop a regenerable Mn-based pellet formulation that can achieve low sulfur partial pressures, has a high capacity for sulfur and sufficient strength for potential use in fluidized beds, and can be regenerated for many cycles. Fifteen different formulations of manganese sesquioxide, each with either titania or alumina, were prepared and characterized at the University of Minnesota. Each formulation was indurated under conditions sufficient to achieve 1 lb/pellet/mm of diameter crush strength. Sulfidation screening was performed in a thermogravimetric analyzer at 500 to 900 C. A sorbent containing MnCO{sub 3} and TiO{sub 2}, which showed superior crush strength and reactivity, was selected for multi-cycle fixed-bed testing at the Morgantown Energy Technology Center. Four cycles of sulfidation showed that the sorbent had excellent efficiency and capacity for sulfur removal. Good regenerability was achieved with air-steam at 871 C.

  19. SCALE-UP OF ADVANCED HOT-GAS DESULFURIZATION SORBENTS

    SciTech Connect

    K. JOTHIMURUGESAN; S.K. GANGWAL

    1998-03-01

    The objective of this study was to develop advanced regenerable sorbents for hot gas desulfurization in IGCC systems. The specific objective was to develop durable advanced sorbents that demonstrate a strong resistance to attrition and chemical deactivation, and high sulfidation activity at temperatures as low as 343 C (650 F). Twenty sorbents were synthesized in this work. Details of the preparation technique and the formulations are proprietary, pending a patent application, thus no details regarding the technique are divulged in this report. Sulfidations were conducted with a simulated gas containing (vol %) 10 H{sub 2}, 15 CO, 5 CO{sub 2}, 0.4-1 H{sub 2}S, 15 H{sub 2}O, and balance N{sub 2} in the temperature range of 343-538 C. Regenerations were conducted at temperatures in the range of 400-600 C with air-N{sub 2} mixtures. To prevent sulfation, catalyst additives were investigated that promote regeneration at lower temperatures. Characterization were performed for fresh, sulfided and regenerated sorbents.

  20. Producing ammonium sulfate from flue gas desulfurization by-products

    USGS Publications Warehouse

    Chou, I.-Ming; Bruinius, J.A.; Benig, V.; Chou, S.-F.J.; Carty, R.H.

    2005-01-01

    Emission control technologies using flue gas desulfurization (FGD) have been widely adopted by utilities burning high-sulfur fuels. However, these technologies require additional equipment, greater operating expenses, and increased costs for landfill disposal of the solid by-products produced. The financial burdens would be reduced if successful high-volume commercial applications of the FGD solid by-products were developed. In this study, the technical feasibility of producing ammonium sulfate from FGD residues by allowing it to react with ammonium carbonate in an aqueous solution was preliminarily assessed. Reaction temperatures of 60, 70, and 80??C and residence times of 4 and 6 hours were tested to determine the optimal conversion condition and final product evaluations. High yields (up to 83%) of ammonium sulfate with up to 99% purity were achieved under relatively mild conditions. The optimal conversion condition was observed at 60??C and a 4-hour residence time. The results of this study indicate the technical feasibility of producing ammonium sulfate fertilizer from an FGD by-product. Copyright ?? Taylor & Francis Inc.

  1. Kinetics of hot-gas desulfurization sorbents for transport reactors

    SciTech Connect

    K.C. Kwon

    2000-01-01

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at elevated temperatures. Various metal oxide sorbents are formulated with metal oxides such as Fe, Co, Zn, and Ti. Initial reaction kinetics of formulated sorbents with hydrogen sulfide is studied in the presence of various amounts of moisture and hydrogen at various reaction temperatures. The objectives of this research are to study initial reaction kinetics for a sorbent-hydrogen sulfide heterogeneous reaction system, to investigate effects of concentrations of hydrogen sulfide, hydrogen, and moisture on dynamic absorption of H{sub 2}S into sorbents, to understand effects of space time of reaction gas mixtures on initial reaction kinetics of the sorbent-hydrogen sulfide system, and to evaluate effects of temperature and sorbent amounts on dynamic absorption of H{sub 2}S into sorbents. Experimental data on initial reaction kinetics of hydrogen sulfide with metal oxide sorbents were obtained with a 0.83-cm{sup 3} differential reactor. The reactivity of MCRH-67 sorbent and AHI-1 was examined. These sorbents were obtained from the Research Triangle Institute (RTI). The sorbents in the form of 70 {micro}m particles are reacted with 1,000--4,000 ppm hydrogen sulfide at 450--600 C. The range of space time of reaction gas mixtures is 0.03--0.09 s. The range of reaction duration is 4--14,400 s.

  2. Flue gas desulfurization (FGD) chemistry and analytical methods handbook

    SciTech Connect

    Noblett, J.G.; Burke, J.M.

    1990-08-01

    The purpose of this handbook is to provide a comprehensive guide to sampling, analytical, and physical test methods essential to the operation, maintenance, and understanding of flue gas desulfurization (FGD) system chemistry. EPRI sponsored the first edition of this three-volume report in response to the needs of electric utility personnel responsible for establishing and operating commercial FGD analytical laboratories. The second, revised editions of Volumes 1 and 2 were prompted by the results of research into various non-standard aspects of FGD system chemistry. Volume 1 of the handbook explains FGD system chemistry in the detail necessary to understand how the processes operate and how process performance indicators can be used to optimize system operation. Volume 2 includes 63 physical-testing and chemical-analysis methods for reagents, slurries, and solids, and information on the applicability of individual methods to specific FGD systems. Volume 3 contains instructions for FGD solution chemistry computer program designated by EPRI as FGDLIQEQ. Executable on IBM-compatible personal computers, this program calculates the concentrations (activities) of chemical species (ions) in scrubber liquor and can calculate driving forces for important chemical reactions such as S0{sub 2} absorption and calcium sulfite and sulfate precipitation. This program and selected chemical analyses will help an FGD system operator optimize system performance, prevent many potential process problems, and define solutions to existing problems. 22 refs., 17 figs., 28 tabs.

  3. Apparatus and method for the desulfurization of petroleum by bacteria

    DOEpatents

    Lizama, H.M.; Scott, T.C.; Scott, C.D.

    1995-10-17

    A method is described for treating petroleum with anaerobic microorganisms acting as biocatalysts that can remove sulfur atoms from hydrocarbon molecules, under anaerobic conditions, and then convert the sulfur atoms to hydrogen sulfide. The microorganisms utilized are from the family known as the ``Sulfate Reducing Bacteria``. These bacteria generate metabolic energy from the oxidation of organic compounds, but use oxidized forms of sulfur as an electron acceptor. Because the biocatalyst is present in the form of bacteria in an aqueous suspension, whereas the reacting substrate consists of hydrocarbon molecules in an organic phase, the actual desulfurization reaction takes place at the aqueous-organic interphase. To ensure adequate interfacial contacting and mass transfer, a biphasic electrostatic bioreactor system is utilized. The bioreactor is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the sulfur. High-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the sulfur to produce hydrogen sulfide which is then removed from the bioreactor. The organic liquid, now free of the sulfur, is ready for immediate use or further processing. 5 figs.

  4. Enhanced durability of desulfurization sorbents for fluidized-bed applications

    SciTech Connect

    Gupta, R.P.; Gangwal, S.K.

    1991-06-01

    Advanced integrated gasification combined cycle (IGCC) power systems require the development of high-temperature desulfurization sorbents capable of removing hydrogen sulfide from coal gasifier down to very low levels. The objective of this investigation was to identify and demonstrate methods for enhancing the long-term chemical reactivity and mechanical strength of zinc ferrite, a leading regenerable sorbent, for fluidized-bed applications. Fluidized sorbent beds offer significant potential in IGCC systems because of their ability to control the highly exothermic regeneration involved. However, fluidized beds require a durable, attrition-resistant sorbent in the 100--300 {mu}m size range. A bench-scale high-temperature, high- pressure (HTHP) fluidized-bed reactor (7.6-cm I.D.) system capable of operating up to 24 atm and 800{degree}C was designed, built and tested. A total of 175 sulfidation-regeneration cycles were carried out using KRW-type coal gas with various zinc ferrite formulations. A number of sorbent manufacturing techniques including spray drying, impregnation, crushing and screening, and granulation were investigated. While fluidizable sorbents prepared by crushing durable pellets and screening had acceptable sulfur capacity, they underwent excessive attrition during multicycle testing. The sorbent formulations prepared by a proprietary technique were found to have excellent attrition resistance and acceptable chemical reactivity during multicycle testing. However, zinc ferrite was found to be limited to 550{degree}C, beyond which excessive sorbent weakening due to chemical transformations, e.g., iron oxide reduction, was observed.

  5. Economic assessment of advanced flue gas desulfurization processes. Final report

    SciTech Connect

    Bierman, G. R.; May, E. H.; Mirabelli, R. E.; Pow, C. N.; Scardino, C.; Wan, E. I.

    1981-09-01

    This report presents the results of a project sponsored by the Morgantown Energy Technology Center (METC). The purpose of the study was to perform an economic and market assessment of advanced flue gas desulfurization (FGD) processes for application to coal-fired electric utility plants. The time period considered in the study is 1981 through 1990, and costs are reported in 1980 dollars. The task was divided into the following four subtasks: (1) determine the factors affecting FGD cost evaluations; (2) select FGD processes to be cost-analyzed; (3) define the future electric utility FGD system market; and (4) perform cost analyses for the selected FGD processes. The study was initiated in September 1979, and separate reports were prepared for the first two subtasks. The results of the latter two subtasks appear only in this final reprot, since the end-date of those subtasks coincided with the end-date of the overall task. The Subtask 1 report, Criteria and Methods for Performing FGD Cost Evaluations, was completed in October 1980. A slightly modified and condensed version of that report appears as appendix B to this report. The Subtask 2 report, FGD Candidate Process Selection, was completed in January 1981, and the principal outputs of that subtask appear in Appendices C and D to this report.

  6. Microbial communities associated with wet flue gas desulfurization systems.

    PubMed

    Brown, Bryan P; Brown, Shannon R; Senko, John M

    2012-01-01

    Flue gas desulfurization (FGD) systems are employed to remove SO(x) gasses that are produced by the combustion of coal for electric power generation, and consequently limit acid rain associated with these activities. Wet FGDs represent a physicochemically extreme environment due to the high operating temperatures and total dissolved solids (TDS) of fluids in the interior of the FGD units. Despite the potential importance of microbial activities in the performance and operation of FGD systems, the microbial communities associated with them have not been evaluated. Microbial communities associated with distinct process points of FGD systems at several coal-fired electricity generation facilities were evaluated using culture-dependent and -independent approaches. Due to the high solute concentrations and temperatures in the FGD absorber units, culturable halothermophilic/tolerant bacteria were more abundant in samples collected from within the absorber units than in samples collected from the makeup waters that are used to replenish fluids inside the absorber units. Evaluation of bacterial 16S rRNA genes recovered from scale deposits on the walls of absorber units revealed that the microbial communities associated with these deposits are primarily composed of thermophilic bacterial lineages. These findings suggest that unique microbial communities develop in FGD systems in response to physicochemical characteristics of the different process points within the systems. The activities of the thermophilic microbial communities that develop within scale deposits could play a role in the corrosion of steel structures in FGD systems.

  7. Apparatus and method for the desulfurization of petroleum by bacteria

    DOEpatents

    Lizama, Hector M.; Scott, Timothy C.; Scott, Charles D.

    1995-01-01

    A method for treating petroleum with anaerobic microorganisms acting as biocatalysts that can remove sulfur atoms from hydrocarbon molecules, under anaerobic conditions, and then convert the sulfur atoms to hydrogen sulfide. The microorganisms utilized are from the family known as the "Sulfate Reducing Bacteria." These bacteria generate metabolic energy from the oxidation of organic compounds, but use oxidized forms of sulfur as an electron acceptor. Because the biocatalyst is present in the form of bacteria in an aqueous suspension, whereas the reacting substrate consists of hydrocarbon molecules in an organic phase, the actual desulfurization reaction takes place at the aqueous-organic interphase. To ensure adequate interfacial contacting and mass transfer, a biphasic electrostatic bioreactor system is utilized. The bioreactor is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the sulfur. High-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the sulfur to produce hydrogen sulfide which is then removed from the bioreactor. The organic liquid, now free of the sulfur, is ready for immediate use or further processing.

  8. Microbial communities associated with wet flue gas desulfurization systems

    PubMed Central

    Brown, Bryan P.; Brown, Shannon R.; Senko, John M.

    2012-01-01

    Flue gas desulfurization (FGD) systems are employed to remove SOx gasses that are produced by the combustion of coal for electric power generation, and consequently limit acid rain associated with these activities. Wet FGDs represent a physicochemically extreme environment due to the high operating temperatures and total dissolved solids (TDS) of fluids in the interior of the FGD units. Despite the potential importance of microbial activities in the performance and operation of FGD systems, the microbial communities associated with them have not been evaluated. Microbial communities associated with distinct process points of FGD systems at several coal-fired electricity generation facilities were evaluated using culture-dependent and -independent approaches. Due to the high solute concentrations and temperatures in the FGD absorber units, culturable halothermophilic/tolerant bacteria were more abundant in samples collected from within the absorber units than in samples collected from the makeup waters that are used to replenish fluids inside the absorber units. Evaluation of bacterial 16S rRNA genes recovered from scale deposits on the walls of absorber units revealed that the microbial communities associated with these deposits are primarily composed of thermophilic bacterial lineages. These findings suggest that unique microbial communities develop in FGD systems in response to physicochemical characteristics of the different process points within the systems. The activities of the thermophilic microbial communities that develop within scale deposits could play a role in the corrosion of steel structures in FGD systems. PMID:23226147

  9. Revegetation of flue gas desulfurization sludge pond disposal sites

    SciTech Connect

    Artiola, J.F.

    1994-12-01

    A comprehensive search of published literature was conducted to summarize research undertaken to date on revegetation of flue gas desulfurization (FGD) waste disposal ponds. A review of the physical and chemical properties of FGD sludges and wastes with similar characteristics is also included in order to determine the advantages and limitations of FGD sludge for plant growth. No specific guidelines have been developed for the revegetation of FGD sludge disposal sites. Survey studies showed that the wide-ranging composition of FGD wastes was determined primarily by the sulfur dioxide and other flue gas scrubbing processes used at powerplants. Sulfate rich (>90%CaSO{sub 4}) FGD sludges are physically and chemically more stable, and thus more amenable to revegetation. Because of lack of macronutrients and extremely limited microbial activity, FBD sludge ponds presented a poor plant growth environment without amendment. Studies showed the natural process of inoculation of the FGD sludge with soil microbes that promote plant growth be can after disposal but proceeded slowly. Revegetation studies reviewed showed that FGD sludges amended with soils supported a wider variety of plant species better and longer than abandoned FGD ponds. Two major types of plants have been successful in revegetation of FGD waste ponds and similar wastes: salt-tolerant plants and aquatic plants. A comprehensive list of plant species with potential for regetation of FGD sludge disposal pond sites is presented along with successful revegetation techniques.

  10. Hot coal gas desulfurization with manganese-based sorbents

    SciTech Connect

    Hepworth, M.T.; Ben-Slimane, R.

    1994-12-01

    The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al{sub 2}O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This annual topical report documents progress in pelletizing and testing via thermo-gravimetric analysis of individual pellet formulations of manganese ore/alumina combinations and also manganese carbonate/alumina with two binders, dextrin and bentonite.

  11. Hot coal gas desulfurization with manganese-based sorbents

    SciTech Connect

    Lynch, D.; Hepworth, M.T.

    1993-09-01

    The focus of work being performed on Hot Coal Gas Desulfurization is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies at the US Steel Fundamental Research Laboratories in Monroeville, PA, by E.T. Turkdogan indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al{sub 2}/O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese higher temperatures than zinc ferrite or zinc titanate. This presentation gives the thermodynamic background for consideration of manganese-based sorbents as an alternative to zinc ferrite. To date the work which has been in progress for nine months is limited at this stage to thermogravimetric testing of four formulations of manganese-alumina sorbents to determine the optimum conditions of pelletization and induration to produce reactive pellets.

  12. Hot coal gas desulfurization with manganese-based sorbents

    SciTech Connect

    Hepworth, M.T.

    1993-06-01

    The focus of work being performed on Hot Coal Gas Desulfurization is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies at the U.S. Steel Fundamental Research Laboratories in Monroeville, PA, by E.T. Turkdogan indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt% ore + 25 wt% Al{sub 2}O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion for the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese higher temperatures than zinc ferrite or zinc titanate. This presentation give the thermodynamic background for consideration of manganese-based sorbents as an alternative to zinc ferrite. To date the work which has been in progress for nine months is limited at this stage to thermogravimetric testing of four formulations of manganese-alumina sorbents to determine the optimum conditions of pelletization and induration to produce reactive pellets.

  13. Microbial communities associated with wet flue gas desulfurization systems.

    PubMed

    Brown, Bryan P; Brown, Shannon R; Senko, John M

    2012-01-01

    Flue gas desulfurization (FGD) systems are employed to remove SO(x) gasses that are produced by the combustion of coal for electric power generation, and consequently limit acid rain associated with these activities. Wet FGDs represent a physicochemically extreme environment due to the high operating temperatures and total dissolved solids (TDS) of fluids in the interior of the FGD units. Despite the potential importance of microbial activities in the performance and operation of FGD systems, the microbial communities associated with them have not been evaluated. Microbial communities associated with distinct process points of FGD systems at several coal-fired electricity generation facilities were evaluated using culture-dependent and -independent approaches. Due to the high solute concentrations and temperatures in the FGD absorber units, culturable halothermophilic/tolerant bacteria were more abundant in samples collected from within the absorber units than in samples collected from the makeup waters that are used to replenish fluids inside the absorber units. Evaluation of bacterial 16S rRNA genes recovered from scale deposits on the walls of absorber units revealed that the microbial communities associated with these deposits are primarily composed of thermophilic bacterial lineages. These findings suggest that unique microbial communities develop in FGD systems in response to physicochemical characteristics of the different process points within the systems. The activities of the thermophilic microbial communities that develop within scale deposits could play a role in the corrosion of steel structures in FGD systems. PMID:23226147

  14. Molecular biology of coal bio-desulfurization. Quarterly technical progress report, January 1--March 31, 1992

    SciTech Connect

    Young, K.D.; Gallagher, J.R.

    1992-04-30

    Genes cloned from Rhodococcus rhodochrous IGTS8 can transfer the DBT desulfurization phenotype to a different species (R. Fascians). The product was identified as 2-phenylphenol by gas chromatography. This result parallels the results we have previously reported for the activity of these genes in a DBT-negative mutant of IGTS8. Thus, the evidence is strong that we have identified and cloned the entire set of genes that are responsible for this very specific desulfurization reaction. Sequencing of these genes has commenced. A genomic library was constructed from the bacterium, Besulfovibrio desulfuricans. Screening has not yet identified a clone that carries the desulfurization genes from that organism. Two open reading frames, doxH and doxJ, in the C18 DBT degradation pathway were mutated and are now believed to be dispensable to that pathway. Finally, progress was made toward beginning to sequence the DBT dixoygenase genes from strain A15.

  15. Evaluation of sulfur-reducing microorganisms for organic desulfurization. [Pyrococcus furiosus

    SciTech Connect

    Miller, K.W.

    1991-01-01

    Because of substantial portion of the sulfur in Illinois coal is organic, microbial desulfurization of sulfidic and thiophenic functionalities could hold great potential for completing pyritic sulfur removal. We are testing the hypothesis that organic sulfur can be reductively removed as H{sub 2}S through the activities of anaerobic microorganisms. Our objectives for this year include the following: (1) To obtain cultures that will reductively desulfurize thiophenic model compounds. In addition to crude oil enrichments begun last year, we sampled municipal sewage sludge. (2) To continue to work toward optimizing the activity of the DBDS-reducing cultures obtained during the previous year. (3) To expand coal desulfurization work to include other coals including Illinois Basin Coal 101 and a North Dakota lignite, which might be more susceptible to the dibenzyldisulfide reducing cultures due to its lower rank. (4) To address the problem of sulfide sorption, by investigating the sorption capacity of coals in addition to Illinois Basin Coal 108.

  16. Ultrasound-assisted oxidative desulfurization of bunker-C oil using tert-butyl hydroperoxide.

    PubMed

    Tang, Qiong; Lin, Song; Cheng, Ying; Liu, Sujun; Xiong, Jun-Ru

    2013-09-01

    This work investigated the ultrasonic assisted oxidative desulfurization of bunker-C oil with TBHP/MoO3 system. The operational parameters for the desulfurization procedure such as ultrasonic irradiation time, ultrasonic wave amplitude, catalyst initial concentration and oxidation agent initial concentration were studied. The experimental results show that the present oxidation system was very efficient for the desulfurization of bunker-C oil and ~35% sulfur was removed which was dependent on operational parameters. The application of ultrasonic irradiation allowed sulfur removal in a shorter time. The stronger the solvent polarity is, the higher the sulfur removal rate, but the recovery rate of oil is lower. The sulfur compounds in bunker-C oil reacted with TBHP to produce corresponding sulfoxide, and further oxidation produced the corresponding sulfone. PMID:23538118

  17. Kinetics of Mn-based sorbents for hot coal gas desulfurization: Quarterly progress report, December 15, 1994--March 15, 1995. Task 2 -- Exploratory experimental studies: Single pellet tests; Rate mechanism analysis

    SciTech Connect

    Hepworth, M.T.

    1995-03-15

    In earlier studies, zinc ferrite and zinc titanate were developed as regenerable sorbents capable of removing hydrogen sulfide from hot fuel gases originating from coal gasification. Manganese ore as well as manganese carbonate, precipitated from aqueous solutions, combined with alumina to form indurated pellets hold promise of being a highly-effective, inexpensive, regenerable sorbent for hot fuel gases. Although the thermodynamics for sulfur removal by manganese predicts somewhat higher hydrogen sulfide over-pressures (i.e. poorer degree of desulfurization) than can be accomplished with zinc-based sorbents, zinc tends to be reduced to the metallic state under coal gasification conditions resulting in loss of capacity and reactivity by volatilization of reactive surfaces. This volatilization phenomenon limits the temperatures for which desulfurization can be effectively accomplished to less than 500 C for zinc ferrite and 700 C for zinc titanate; whereas, manganese-based sorbents can be utilized at temperatures well in temperatures exceeding 700 C. Also the regeneration of manganese-based pellets under oxidizing conditions may be superior to that of zinc titanate since they can be loaded from a simulated reducing coal-derived gas and then be regenerated at higher temperatures (up to 1,300 C). The topics that will be addressed by this study include: preparation of an effective manganese-based sorbent, thermodynamics and kinetics of sulfur removal from hot fuel gases by this sorbent, analysis of kinetics and mechanisms by which sulfur is absorbed by the sorbent (i.e., whether by gaseous diffusion, surface-controlled reaction, ore pore diffusion), and cyclic sulfidation and regeneration of the sorbent and recovery of the sulfur.

  18. Polymorphism in purified guanylate cyclase from vertebrate rod photoreceptors.

    PubMed Central

    Hayashi, F; Yamazaki, A

    1991-01-01

    Guanylate cyclase from rod photoreceptors of amphibian (toad, Bufo marinus, and frog, Rana catesbeiana) and bovine retinas was solubilized and purified by a single chromatography step on a GTP-agarose column. Silver staining of purified amphibian enzymes in SDS/polyacrylamide gels disclosed a doublet band (110 and 115 kDa), while the bovine enzyme appeared as a singlet band (110 kDa). The identification of these guanylate cyclases was confirmed using three chromatography systems with the purified enzymes. Specific binding to Con A-Sepharose suggested that rod guanylate cyclase is a glycoprotein. Two-dimensional gel electrophoresis of purified toad, frog, and bovine enzymes resolved two, three, and five variants, respectively, that differed in isoelectric point. Two variants of toad guanylate cyclase showed differences in various characterizations. These data suggest multiple mechanisms for regulation of guanylate cyclase activity in vertebrate rod photoreceptors. Images PMID:1675787

  19. Pore structure and reactivity changes in hot coal gas desulfurization sorbents

    SciTech Connect

    Sotirchos, S.V.

    1989-01-01

    A research program is proposed for the investigation of the dependence of the sorptive capacity of metal/metal oxide desulfurization sorbents on their pore size distribution and their intraparticle diffusivity. Integrated reaction/adsorption systems, chromatographic and gravimetric, will be used for successive reactivity, adsorption, and well as diffusivity, measurements. Single particle models that have been developed by our research group for gas-solid reactions with solid product will be used as basis for experimental data analysis and development of a general mathematical model for fixed-bed desulfurization and sorbent regeneration.

  20. Desulfurization with a modified limestone formulation in an industrial CFBC boiler

    SciTech Connect

    Young Goo Park; Seung Ho Kim

    2006-02-01

    This work presents a practical result of experimental investigation of the limestone particle size effect on de-SOx from a circulating fluidized bed combustion (CFBC) boiler that burns domestic anthracite and is the first industrial scale in Korea. Because of combustion problems such as clinker formation, fine limestone has not been used as a desulfurization agent. The present test, however, showed that higher content (up to 50%) of the particles under 0.1 mm did not entail any malfunction in a modern CFBC system. In addition, the desulfurization efficiency was found to be comparable to the old mode of limestone sorbents. 17 refs., 4 figs., 3 tabs.

  1. Desulfurization of benzothiophene by the Gram-negative bacterium, Sinorhizobium sp. KT55.

    PubMed

    Tanaka, Y; Onaka, T; Matsui, T; Maruhashi, K; Kurane, R

    2001-09-01

    Sinorhizobium sp. KT55 was the first Gram-negative isolate to be capable of utilizing benzothiophene as the sole source of sulfur. By GC-MS analysis of metabolites of benzothiophene by this strain, benzothiophene sulfone, benzo[e][1,2]oxathiin S-oxide and o-hydroxystyrene were detected, suggesting that the benzothiophene desulfurization pathway of this strain is benzothiophene-->benzothiophene sulfoxide-->benzothiophene sulfone-->benzo[e][1,2]oxathiin S-oxide-->o-hydroxystyrene. Desulfurization activity of this strain was significantly repressed by methionine, cysteine, sulfate, dimethyl sulfoxide, and Casamino acids.

  2. Desulfurization of dibenzothiophene (DBT) by a novel strain Lysinibacillus sphaericus DMT-7 isolated from diesel contaminated soil.

    PubMed

    Bahuguna, Ashutosh; Lily, Madhuri K; Munjal, Ashok; Singh, Ravindra N; Dangwal, Koushalya

    2011-01-01

    A new bacterial strain DMT-7 capable of selectively desulfurizing dibenzothiophene (DBT) was isolated from diesel contaminated soil. The DMT-7 was characterized and identified as Lysinibacillus sphaericus DMT-7 (NCBI GenBank Accession No. GQ496620) using 16S rDNA gene sequence analysis. The desulfurized product of DBT, 2-hydroxybiphenyl (2HBP), was identified and confirmed by high performance liquid chromatography analysis and gas chromatography-mass spectroscopy analysis respectively. The desulfurization kinetics revealed that DMT-7 started desulfurization of DBT into 2HBP after the lag phase of 24 hr, exponentially increasing the accumulation of 2HBP up to 15 days leading to approximately 60% desulfurization of the DBT. However, further growth resulted into DBT degradation. The induced culture of DMT-7 showed shorter lag phase of 6 hr and early onset of stationary phase within 10 days for desulfurization as compared to that of non-induced culture clearly indicating the inducibility of the desulfurization pathway of DMT-7. In addition, Lysinibacillus sphaericus DMT-7 also possess the ability to utilize broad range of substrates as sole source of sulfur such as benzothiophene, 3,4-benzo DBT, 4,6-dimethyl DBT, and 4,6-dibutyl DBT. Therefore, Lysinibacillus sphaericus DMT-7 could serve as model system for efficient biodesulfurization of diesel and petrol.

  3. Enhancement and stabilization of desulfurization activity of Rhodococcus erythropolis KA2-5-1 by feeding ethanol and sulfur components.

    PubMed

    Yoshikawa, Osamu; Ishii, Yoshitaka; Koizumi, Ken-Ichi; Ohshiro, Takashi; Izumi, Yoshikazu; Maruhashi, Kenji

    2002-01-01

    We developed a fed-batch culture system fed with ethanol and restricted amounts of sulfur compounds to enhance and stabilize the desulfurizing activity in bacterial cells. In this system using dibenzothiophene (DBT) as the sole sulfur source, a desulfurizing bacterium Rhodococcus erythropolis KA2-5-1 cultivated with small amounts of sulfur showed stable desulfurizing activity and a low rate of growth. However, the cells cultured with excess amounts of sulfur showed unstable activity and a high growth rate. DBT had disadvantages as a sulfur source for cultivation because it is immiscible with water and toxic to cells. We then investigated water-soluble sulfur compounds for use as the sole sulfur source for the cultivation of R. erythropolis KA2-5-1 with desulfurizing activity, and found 2-aminoethanesulfonic acid to be the most effective. When 2-aminoethanesulfonic acid was used instead of DBT as the sole sulfur source in the fed-batch fermentation system, R. erythropolis KA2-5-1 showed the highest desulfurizing activity, 111 mmol of 2-HBP/kg-cells/h, a high growth rate (mu = 0.37/h) and a final cell concentration of 20.0 g-dry cells/l during 89 h of cultivation. The production levels of the desulfurizing enzymes in the bacterial cells cultivated with DBT or 2-aminoethanesulfonic acid were evaluated by immunoblot analysis with specific antisera, indicating that the same quantity of desulfurizing enzymes was expressed in both cases.

  4. Dibenzothiophene desulfurization capability and evolutionary divergence of newly isolated bacteria.

    PubMed

    Akhtar, Nasrin; Ghauri, Muhammad A; Akhtar, Kalsoom

    2016-08-01

    Metabolically microorganisms are diverse, and they are capable of transforming almost every known group of chemical compounds present in coal and oil in various forms. In this milieu, one of the important microbial metabolic processes is the biodesulfurization [cleavage of carbon-sulfur (C-S) bond] of thiophenic compounds, such as dibenzothiophene (DBT), which is the most abundant form of organic sulfur present in fossil fuels. In the current study, ten newly isolated bacterial isolates, designated as species of genera Gordonia, Amycolatopsis, Microbacterium and Mycobacterium, were enriched from different samples in the presence of DBT as a sole source of organic sulfur. The HPLC analysis of the DBT grown cultures indicated the consumption of DBT and accumulation of 2-hydroxybiphenyl (2-HBP). Detection of 2-HBP, a marker metabolite of 4S (sulfoxide-sulfone-sulfinate-sulfate) pathway, suggested that the newly isolated strains harbored metabolic activity for DBT desulfurization through the cleavage of C-S bond. The maximum 2-HBP formation rate was 3.5 µmol/g dry cell weight (DCW)/h. The phylogenetic analysis of the new isolates showed that they had diverse distribution within the phylogenetic tree and formed distinct clusters, suggesting that they might represent strains of already reported species or they were altogether new species. Estimates of evolutionary divergence showed high level of nucleotide divergence between the isolates within the same genus. The new isolates were able to use a range of heterocyclic sulfur compounds, thus making them suitable candidates for a robust biodesulfurization system for fossil fuels. PMID:26973057

  5. Chemical and physical properties of dry flue gas desulfurization products.

    PubMed

    Kost, David A; Bigham, Jerry M; Stehouwer, Richard C; Beeghly, Joel H; Fowler, Randy; Traina, Samuel J; Wolfe, William E; Dick, Warren A

    2005-01-01

    Beneficial and environmentally safe recycling of flue gas desulfurization (FGD) products requires detailed knowledge of their chemical and physical properties. We analyzed 59 dry FGD samples collected from 13 locations representing four major FGD scrubbing technologies. The chemistry of all samples was dominated by Ca, S, Al, Fe, and Si and strong preferential partitioning into the acid insoluble residue (i.e., coal ash residue) was observed for Al, Ba, Be, Cr, Fe, Li, K, Pb, Si, and V. Sulfur, Ca, and Mg occurred primarily in water- or acid-soluble forms associated with the sorbents or scrubber reaction products. Deionized water leachates (American Society for Testing and Materials [ASTM] method) and dilute acetic acid leachates (toxicity characteristic leaching procedure [TCLP] method) had mean pH values of >11.2 and high mean concentrations of S primarily as SO(2-)4 and Ca. Concentrations of Ag, As, Ba, Cd, Cr, Hg, Pb, and Se (except for ASTM Se in two samples) were below drinking water standards in both ASTM and TCLP leachates. Total toxicity equivalents (TEQ) of dioxins, for two FGD products used for mine reclamation, were 0.48 and 0.53 ng kg(-1). This was similar to the background level of the mine spoil (0.57 ng kg(-1)). The FGD materials were mostly uniform in particle size. Specific surface area (m2 g(-1)) was related to particle size and varied from 1.3 for bed ash to 9.5 for spray dryer material. Many of the chemical and physical properties of these FGD samples were associated with the quality of the coal rather than the combustion and SO2 scrubbing processes used.

  6. ENHANCED CONTROL OF MERCURY BY WET FLUE GAS DESULFURIZATION SYSTEMS

    SciTech Connect

    Unknown

    2001-06-01

    The U.S. Department of Energy and EPRI co-funded this project to improve the control of mercury emissions from coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems. The project has investigated catalytic oxidation of vapor-phase elemental mercury to a form that is more effectively captured in wet FGD systems. If successfully developed, the process could be applicable to over 90,000 MW of utility generating capacity with existing FGD systems, and to future FGD installations. Field tests were conducted to determine whether candidate catalyst materials remain active towards mercury oxidation after extended flue gas exposure. Catalyst life will have a large impact on the cost effectiveness of this potential process. A mobile catalyst test unit was used to test the activity of four different catalyst materials for a period of up to six months each at three utility sites. Catalyst testing was completed at the first site, which fires Texas lignite, in December 1998; at the second test site, which fires a Powder River Basin subbituminous coal, in November 1999; and at the third site, which fires a medium- to high-sulfur bituminous coal, in January 2001. Results of testing at each of the three sites were reported in previous technical notes. At Site 1, catalysts were tested only as powders dispersed in sand bed reactors. At Sites 2 and 3, catalysts were tested in two forms, including powders dispersed in sand and in commercially available forms such as extruded pellets and coated honeycomb structures. This final report summarizes and presents results from all three sites, for the various catalyst forms tested. Field testing was supported by laboratory tests to screen catalysts for activity at specific flue gas compositions, to investigate catalyst deactivation mechanisms and methods for regenerating spent catalysts. Laboratory results are also summarized and discussed in this report.

  7. Adsorptive desulfurization and denitrogenation using metal-organic frameworks.

    PubMed

    Ahmed, Imteaz; Jhung, Sung Hwa

    2016-01-15

    With the increasing worldwide demand for energy, utilization of fossil fuels is increasing proportionally. Additionally, new and unconventional energy sources are also being utilized at an increasing rate day-by-day. These sources, along with some industrial processes, result in the exposal of several sulfur- and nitrogen-containing compounds (SCCs and NCCs, respectively) to the environment, and the exposure is one of the greatest environmental threats in the recent years. Although, several methods were established for the removal of these pollutants during the last few decades, recent advancements in adsorptive desulfurization and denitrogenation (ADS and ADN, respectively) with metal-organic frameworks (MOFs) make this the most promising and remarkable method. Therefore, many research groups are currently involved with ADS and ADN with MOFs, and the results are improving gradually by modifying the MOF adsorbents according to several specific adsorption mechanisms. In this review, ADS and ADN studies are thoroughly discussed for both liquid-phase and gas-phase adsorption. The MOF modification procedures, which are important for improved adsorption, are also described. To improve the knowledge among the scientific community, it is very important to understand the detailed chemistry and mechanism involved in a chemical process, which also creates the possibility and pathway for further developments in research and applications. Therefore, the mechanisms related to the adsorption procedures are also discussed in detail. From this review, it can be expected that the scientific community will obtain an understanding of the current state of ADS and ADN, their importance, and some encouragement and insight to take the research knowledge base to a higher level. PMID:26368800

  8. ENHANCED CONTROL OF MERCURY BY WET FLUE GAS DESULFURIZATION SYSTEMS

    SciTech Connect

    G. Blythe; B. Marsh; S. Miller; C. Richardson; M. Richardson

    2001-06-01

    The U.S. Department of Energy and EPRI have co-funded this project to improve the control of mercury emissions from coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems. The project investigated catalytic oxidation of vapor-phase elemental mercury to a form that is more effectively captured in wet FGD systems. If successfully developed, the process could be applicable to over 90,000 MW of utility generating capacity with existing FGD systems and to future FGD installations. Field tests have been conducted to determine whether candidate catalyst materials remain active towards mercury oxidation after extended flue gas exposure. Catalyst life will have a large impact on the cost effectiveness of this potential process. A mobile catalyst test unit has been used to test the activity of four different catalyst materials for a period of up to six months at each of three utility sites. Catalyst testing was completed at the first site, which fires Texas lignite, in December 1998 and at the second test site, which fires a Powder River Basin subbituminous coal in the fall of 1999. Testing at the third site, which fires a medium- to high-sulfur bituminous coal, began in June 2000 and was completed at the end of January 2001. This Topical Reports includes results from Site 3; results from Sites 1 and 2 were reported previously. At Site 3, catalysts were tested in two forms, including powders dispersed in sand bed reactors and in a commercially available form as a coated honeycomb structure. Field testing has been supported by laboratory tests to screen catalysts for activity at specific flue gas compositions, to investigate catalyst deactivation mechanisms and methods for regenerating spent catalysts. Laboratory results related to the Site 3 field effort are also included and discussed in this Topical Report.

  9. Shawnee flue gas desulfurization computer model users manual

    SciTech Connect

    Sudhoff, F.A.; Torstrick, R.L.

    1985-03-01

    In conjunction with the US Enviromental Protection Agency sponsored Shawnee test program, Bechtel National, Inc., and the Tennessee Valley Authority jointly developed a computer model capable of projecting preliminary design and economics for lime- and limestone-scrubbing flue gas desulfurization systems. The model is capable of projecting relative economics for spray tower, turbulent contact absorber, and venturi-spray tower scrubbing options. It may be used to project the effect on system design and economics of variations in required SO/sub 2/ removal, scrubber operating parameters (gas velocity, liquid-to-gas (L/G) ration, alkali stoichiometry, liquor hold time in slurry recirculation tanks), reheat temperature, and scrubber bypass. It may also be used to evaluate alternative waste disposal methods or additives (MgO or adipic acid) on costs for the selected process. Although the model is not intended to project the economics of an individual system to a high degree of accuracy, it allows prospective users to quickly project comparative design and costs for limestone and lime case variations on a common design and cost basis. The users manual provides a general descripton of the Shawnee FGD computer model and detailed instructions for its use. It describes and explains the user-supplied input data which are required such as boiler size, coal characteristics, and SO/sub 2/ removal requirments. Output includes a material balance, equipment list, and detailed capital investment and annual revenue requirements. The users manual provides information concerning the use of the overall model as well as sample runs to serve as a guide to prospective users in identifying applications. The FORTRAN-based model is maintained by TVA, from whom copies or individual runs are available. 25 refs., 3 figs., 36 tabs.

  10. Regeneration of sodium wastes from flue gas desulfurization processes

    SciTech Connect

    Haynes, H.W. Jr.; Ukidwe, A.A.

    1995-12-31

    The damaging effects that sulfur dioxide emissions are having on the environment are well documented and acknowledged by most scientists, policy makers, and the public at large. These emissions stem primarily from electric utilities and industrial plants with relatively little contribution from the transportation sector. In order to prevent additional environmental damage, clean air legislation has been passed by Congress culminating in the Clean Air Act Amendments of 1990. Ultimately, this legislation will cut sulfur dioxide emissions in half from 1980 levels, and substantially reduce nitrogen oxides emissions from electric utility plants. This legislation should therefore result in a cleaner environment than we have today. Title IV of the Clean Air Act sets as its primary goal the reduction of annual SO{sub 2} emissions by 10 million tons below 1980 levels. Phase I of the program, which begins this year, will affect 110 utility plants in mostly Midwestern and eastern states. Phase II, which begins in the year 2000, tightens the annual emissions allowances on these large, higher emitting plants and also sets controls on smaller units with capacities of greater than 25 megawatts and on all new utility plants. It is estimated that 2,200 plants nationwide will be affected by Phase II. In many cases, Phase I compliance can be met by coupling allowance trading with the blending of low sulfur western coals and regional coals. But there will be other cases in which stack gas cleanup will be the economically most attractive option. Phase II compliance will require virtually all utilities to install some form of flue gas desulfurization equipment. Retrofitting will therefore become of increasing importance as Phase II is implemented.

  11. PRODUCTION OF CONSTRUCTION AGGREGATES FROM FLUE GAS DESULFURIZATION SLUDGE

    SciTech Connect

    1998-12-01

    Through a cooperative agreement with DOE, the Research and Development Department of CONSOL Inc. (CONSOL R and D) is teaming with SynAggs, Inc. and Duquesne Light to design, construct, and operate a 500 lb/h continuous pilot plant to produce road construction aggregate from a mixture of wet flue gas desulfurization (FGD) sludge, fly ash, and other components. The proposed project is divided into six tasks: (1) Project Management; (2) Mix Design Evaluation; (3) Process Design; (4) Construction; (5) Start-Up and Operation; and (6) Reporting. In this quarter, Tasks 1 and 2 were completed. A project management plan (Task 1) was issued to DOE on October 22, 1998 . The mix design evaluation (Task 2) with Duquesne Light Elrama Station FGD sludge and Allegheny Power Hatfields Ferry Station fly ash was completed. Eight semi-continuous bench-scale tests were conducted to examine the effects of mix formulation on aggregate properties. A suitable mix formulation was identified to produce aggregates that meet specifications of the American Association of State High Transport Officials (AASHTO) as Class A aggregate for use in highway construction. The mix formulation was used in designing the flow sheet of the pilot plant. The process design (Task 3) is approximately 80% completed. Equipment was evaluated to comply with design requirements. The design for the curing vessel was completed by an outside engineering firm. All major equipment items for the pilot plant, except the curing vessel, were ordered. Pilot plant construction (Task 4) was begun in October. The Hazardous Substance Plan was issued to DOE. The Allegheny County (PA) Heat Department determined that an air emission permit is not required for operation of the pilot plant.

  12. Adsorptive desulfurization and denitrogenation using metal-organic frameworks.

    PubMed

    Ahmed, Imteaz; Jhung, Sung Hwa

    2016-01-15

    With the increasing worldwide demand for energy, utilization of fossil fuels is increasing proportionally. Additionally, new and unconventional energy sources are also being utilized at an increasing rate day-by-day. These sources, along with some industrial processes, result in the exposal of several sulfur- and nitrogen-containing compounds (SCCs and NCCs, respectively) to the environment, and the exposure is one of the greatest environmental threats in the recent years. Although, several methods were established for the removal of these pollutants during the last few decades, recent advancements in adsorptive desulfurization and denitrogenation (ADS and ADN, respectively) with metal-organic frameworks (MOFs) make this the most promising and remarkable method. Therefore, many research groups are currently involved with ADS and ADN with MOFs, and the results are improving gradually by modifying the MOF adsorbents according to several specific adsorption mechanisms. In this review, ADS and ADN studies are thoroughly discussed for both liquid-phase and gas-phase adsorption. The MOF modification procedures, which are important for improved adsorption, are also described. To improve the knowledge among the scientific community, it is very important to understand the detailed chemistry and mechanism involved in a chemical process, which also creates the possibility and pathway for further developments in research and applications. Therefore, the mechanisms related to the adsorption procedures are also discussed in detail. From this review, it can be expected that the scientific community will obtain an understanding of the current state of ADS and ADN, their importance, and some encouragement and insight to take the research knowledge base to a higher level.

  13. ENGINEERING EVALUATION OF HOT-GAS DESULFURIZATION WITH SULFUR RECOVERY

    SciTech Connect

    G.W. ROBERTS; J.W. PORTZER; S.C. KOZUP; S.K. GANGWAL

    1998-05-31

    Engineering evaluations and economic comparisons of two hot-gas desulfurization (HGD) processes with elemental sulfur recovery, being developed by Research Triangle Institute, are presented. In the first process, known as the Direct Sulfur Recovery Process (DSRP), the SO{sub 2} tail gas from air regeneration of zinc-based HGD sorbent is catalytically reduced to elemental sulfur with high selectivity using a small slipstream of coal gas. DSRP is a highly efficient first-generation process, promising sulfur recoveries as high as 99% in a single reaction stage. In the second process, known as the Advanced Hot Gas Process (AHGP), the zinc-based HGD sorbent is modified with iron so that the iron portion of the sorbent can be regenerated using SO{sub 2} . This is followed by air regeneration to fully regenerate the sorbent and provide the required SO{sub 2} for iron regeneration. This second-generation process uses less coal gas than DSRP. Commercial embodiments of both processes were developed. Process simulations with mass and energy balances were conducted using ASPEN Plus. Results show that AHGP is a more complex process to operate and may require more labor cost than the DSRP. Also capital costs for the AHGP are higher than those for the DSRP. However, annual operating costs for the AHGP appear to be considerably less than those for the DSRP with a potential break-even point between the two processes after just 2 years of operation for an integrated gasification combined cycle (IGCC) power plant using 3 to 5 wt% sulfur coal. Thus, despite its complexity, the potential savings with the AHGP encourage further development and scaleup of this advanced process.

  14. Interaction quenches of Fermi gases

    SciTech Connect

    Uhrig, Goetz S.

    2009-12-15

    It is shown that the jump in the momentum distribution of Fermi gases evolves smoothly for small and intermediate times once an interaction between the fermions is suddenly switched on. The jump does not vanish abruptly. The loci in momentum space where the jumps occur are those of the noninteracting Fermi sea. No relaxation of the Fermi surface geometry takes place.

  15. New frontiers with ultracold gases

    SciTech Connect

    Ketterle, Wolfgang

    2005-05-05

    This article summarizes recent work at MIT, which was presented at ICAP 2004. These examples demonstrate the broad range of topics, which are covered by research on quantum-degenerate gases: boson and fermion mixtures, cold molecules, vortices, and interactions with surfaces.

  16. Flexible hose for liquefied gases

    SciTech Connect

    Mead, H.B.

    1984-05-01

    Flexible hose for liquefied gases, comprising a tubular body of biaxially oriented polypropylene film (2) arranged between an inner helically wound wire (3) and an outer helically wound wire (4), said wires being wound at the same pitch but having the windings displaced by half a pitch width from each other.

  17. Flue gas desulfurization/denitrification using metal-chelate additives

    DOEpatents

    Harkness, John B. L.; Doctor, Richard D.; Wingender, Ronald J.

    1986-01-01

    A method of simultaneously removing SO.sub.2 and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO.sub.2 and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled.

  18. Flue gas desulfurization/denitrification using metal-chelate additives

    DOEpatents

    Harkness, J.B.L.; Doctor, R.D.; Wingender, R.J.

    1985-08-05

    A method of simultaneously removing SO/sub 2/ and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO/sub 2/ and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled. 3 figs.

  19. Ultrasound-promoted chemical desulfurization of Illinois coals. Final technical report, September 1, 1990--August 31, 1991

    SciTech Connect

    Chao, S.S.

    1991-12-31

    The overall objectives of the program were to investigate the use of ultrasound to promote coal desulfurization reactions and to evaluate chemical coal desulfurization schemes under mild conditions through a fundamental understanding of their reaction mechanisms and kinetics. The ultimate goal was to develop an economically feasible mild chemical process to reduce the total sulfur content of Illinois Basin Coals, while retaining their original physical characteristics, such as calorific value and volatile matter content. During the program, potential chemical reactions with coal were surveyed under various ultrasonic irradiation conditions for desulfurization, to formulate preliminary reaction pathways, and to select a few of the more promising chemical processes for more extensive study.

  20. Recombinant Pseudomonas putida carrying both the dsz and hcu genes can desulfurize dibenzothiophene in n-tetradecane.

    PubMed

    Noda, Ken-ichi; Watanabe, Kimiko; Maruhashi, Kenji

    2003-07-01

    Pseudomonas putida IFO13696, a recombinant strain with dsz desulfurization genes, desulfurized dibenzothiophene (DBT) in water but not in n-tetradecane. By introducing into this recombinant strain the hcuABC genes that take part in the uptake of DBT in the oil phase into the cell, 82% of 1 mM DBT in n-tetradecane was degraded in 24 h by resting cells. The products of hcuABC genes thus acted in the uptake of DBT in n-tetradecane into the cells and were effective in desulfurization of DBT in the hydrocarbon phase.

  1. Continuous desulfurization and bacterial community structure of an integrated bioreactor developed to treat SO2 from a gas stream.

    PubMed

    Lin, Jian; Li, Lin; Ding, Wenjie; Zhang, Jingying; Liu, Junxin

    2015-11-01

    Sulfide dioxide (SO2) is often released during the combustion processes of fossil fuels. An integrated bioreactor with two sections, namely, a suspended zone (SZ) and immobilized zone (IZ), was applied to treat SO2 for 6months. Sampling ports were set in both sections to investigate the performance and microbial characteristics of the integrated bioreactor. SO2 was effectively removed by the synergistic effect of the SZ and IZ, and more than 85% removal efficiency was achieved at steady state. The average elimination capacity of SO2 in the bioreactor was 2.80g/(m(3)·hr) for the SZ and 1.50g/(m(3)·hr) for the IZ. Most SO2 was eliminated in the SZ. The liquid level of the SZ and the water content ratio of the packing material in the IZ affected SO2 removal efficiency. The SZ served a key function not only in SO2 elimination, but also in moisture maintenance for the IZ. The desired water content in IZ could be feasibly maintained without any additional pre-humidification facilities. Clone libraries of 16S rDNA directly amplified from the DNA of each sample were constructed and sequenced to analyze the community composition and diversity in the individual zones. The desulfurization bacteria dominated both zones. Paenibacillus sp. was present in both zones, whereas Ralstonia sp. existed only in the SZ. The transfer of SO2 to the SZ involved dissolution in the nutrient solution and biodegradation by the sulfur-oxidizing bacteria. This work presents a potential biological treatment method for waste gases containing hydrophilic compounds.

  2. Integration and testing of hot desulfurization and entrained-flow gasification for power generation systems

    SciTech Connect

    Robin, A.M.; Kassman, J.S.; Leininger, T.F.; Wolfenbarger, J.K.; Wu, C.M.; Yang, P.P.

    1991-09-01

    This second Topical Report describes the work that was completed between January 1, 1989 and December 31, 1990 in a Cooperative Agreement between Texaco and the US Department of Energy that began on September 30, 1987. During the period that is covered in this report, the development and optimization of in-situ and external desulfurization processes were pursued. The research effort included bench scale testing, PDU scoping tests, process economic studies and advanced instrument testing. Two bench scale studies were performed at the Research Triangle Institute with zinc titanate sorbent to obtain data on its cycle life, sulfur capacity, durability and the effect of chlorides. These studies quantify sulfur capture during simulated air and oxygen-blown gasification for two zinc titanate formulations. Eight PDU runs for a total of 20 days of operation were conducted to evaluate the performance of candidate sorbents for both in-situ and external desulfurization. A total of 47 tests were completed with oxygen and air-blown gasification. Candidate sorbents included iron oxide for in-situ desulfurization and calcium based and mixed metal oxides for external desulfurization. Gasifier performance and sorbent sulfur capture are compared for both air-blown and oxygen-blown operation.

  3. Deep Desulfurization of Extensively Hydrodesulfurized Middle Distillate Oil by Rhodococcus sp. Strain ECRD-1

    PubMed Central

    Grossman, M. J.; Lee, M. K.; Prince, R. C.; Minak-Bernero, V.; George, G. N.; Pickering, I. J.

    2001-01-01

    Dibenzothiophene (DBT), and in particular substituted DBTs, are resistant to hydrodesulfurization (HDS) and can persist in fuels even after aggressive HDS treatment. Treatment by Rhodococcus sp. strain ECRD-1 of a middle distillate oil whose sulfur content was virtually all substituted DBTs produced extensive desulfurization and a sulfur level of 56 ppm. PMID:11282654

  4. Effects of fluidized gas desulfurization (FGD) gypsum on non-target freshwater and sediment dwelling organims

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fluidized gas desulfurization gypsum is a popular agricultural soil amendment used to increase calcium and sulfur contents, and reduce aluminum toxicity. Due to its surface application in conservation tillage systems and high solubility, the soluble components of gypsum may be transferred with agri...

  5. Comparison of soil applied flue gas desulfurization (FGD) and agricultural gypsum on soil physical properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gypsum can come from different sources. Agricultural gypsum is typically mined and used to supply calcium to crops. Flue gas desulfurization (FGD) gypsum is a by-product of coal power plants. Although their chemical formulas are the same, different trace elements and materials are present in them....

  6. Investigation Of A Mercury Speciation Technique For Flue Gas Desulfurization Materials

    EPA Science Inventory

    Most of the synthetic gypsum generated from wet flue gas desulfurization (FGD) scrubbers is currently being used for wallboard production. Because oxidized mercury is readily captured by the wet FGD scrubber, and coal-fired power plants equipped with wet scrubbers desire to bene...

  7. o-Iodoxybenzoic acid mediated oxidative desulfurization initiated domino reactions for synthesis of azoles.

    PubMed

    Chaudhari, Pramod S; Pathare, Sagar P; Akamanchi, Krishnacharaya G

    2012-04-20

    A systematic exploration of thiophilic ability of o-iodoxybenzoic acid (IBX) for oxidative desulfurization to trigger domino reactions leading to new methodologies for synthesis of different azoles is described. A variety of highly substituted oxadiazoles, thiadiazoles, triazoles, and tetrazoles have been successfully synthesized in good to excellent yields, starting from readily accessible thiosemicarbazides, bis-diarylthiourea, 1,3-disubtituted thiourea, and thioamides.

  8. DEVELOPMENT OF INFRARED METHODS FOR CHARACTERIZATION OF INORGANIC SULFUR SPECIES RELATED TO INJECTION DESULFURIZATION PROCESSES

    EPA Science Inventory

    Current methods designed to control and reduce the amount of sulfur dioxide emitted into the atmosphere from coal-fired power plants and factories rely upon the reaction between SO2 and alkaline earth compounds and are called flue gas desulfurization (FGD) processes. Of these met...

  9. Coal desulfurization by chlorinolysis production and combustion test evaluation of product coals

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Daly, D.

    1982-01-01

    Laboratory-scale screening tests were carried out on coal from Harrison County, Ohio to establish chlorination and hydrodesulfurization conditions for the batch reactor production of chlorinolysis and chlorinolysis-hydrodesulfurized coals. In addition, three bituminous coals, were treated on the lab scale by the chlorinolysis process to provide 39 to 62% desulfurization. Two bituminous coals and one subbituminous coal were then produced in 11 to 15 pound lots as chlorinolysis and hydrodesulfurized coals. The chlorinolysis coals had a desulfurization of 29-69%, reductions in voltatiles and hydrogen. Hydrodesulfurization provided a much greater desulfurization (56-86%), reductions in volatiles and hydrogen. The three coals were combustion tested in the Penn State ""plane flame furnace'' to determine ignition and burning characteristics. All three coals burned well to completion as: raw coals, chlorinolysis processed coals, and hydrodesulfurized coals. The hydrodesulfurized coals experienced greater ignition delays and reduced burning rates than the other coals because of the reduced volatile content. It is thought that the increased open pore volume in the desulfurized-devolatilized coals compensates in part for the decreased volatiles effect on ignition and burning.

  10. Localized corrosion of stainless steels and nickel alloys in flue gas desulfurization environments

    SciTech Connect

    Phull, B.S.; Lee, T.S.

    1986-08-01

    The results of a planned interval test of 90 days duration in a model flue gas desulfurization system are discussed. Tests were conducted in a high chloride, limestone slurry-based environment containing fluoride and flyash. Corrosion in absorber and outlet duct zones is outlined in terms of relative tendencies of localized corrosion propagation for six alloys.

  11. Decreasing phosphorus loss in tile-drained landscapes using flue gas desulfurization gypsum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevated phosphorus (P) loading from agricultural non-point source pollution continues to impair inland waterbodies throughout the world. The application of flue gas desulfurization (FGD) gypsum to agricultural fields has been suggested to decrease P loading because of its high calcium content and P...

  12. Flue gas desulfurization gypsum: Its effectiveness as an alternative bedding material for broiler production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flue gas desulfurization gypsum (FGDG) may be a viable low-cost alternative bedding material for broiler production. In order to evaluate FGD gypsum’s viability, three consecutive trials were conducted to determine its influence on live performance (body weight, feed consumption, feed efficiency, an...

  13. Isolation of a recombinant desulfurizing 4,6-diproply dibenzothiophene in n-tetradecane.

    PubMed

    Noda, Ken-Ichi; Watanabe, Kimiko; Maruhashi, Kenji

    2003-01-01

    Rhodococcus erythropolis strain KA2-5-1 is unable to desulfurize 4,6-dipropyl dibenzothiophene (DBT) in the oil phase. The dsz desulfurization gene cluster from R. erythropolis strain KA2-5-1 was transferred into 22 rhodococcal and mycobacterial strains using a transposon-transposase complex. The recombinant strain MR65, from Mycobacterium sp. NCIMB10403, was able to grow on a minimal medium supplemented with 1.0 mM 4,6-dipropyl DBT in n-tetradecane (50%, v v ) as the sole sulfur source. Resting cells of recombinant strain MR65 could desulfurize 68 mg l- of sulfur in light gas oil (LGO) containing 126 mg sulfur l-. Strain MR65 had about 1.5-times the LGO desulfurization activity of R. erythropolis strain KA2-5-1. The application of a recombinant, which is able to utilize 4,6-dipropyl DBT in the oil phase, was effective in enhancing LGO biodesulfurization.

  14. Improvement of desulfurization activity in Rhodococcus erythropolis KA2-5-1 by genetic engineering.

    PubMed

    Hirasawa, K; Ishii, Y; Kobayashi, M; Koizumi, K; Maruhashi, K

    2001-02-01

    Rhodococcus erythropolis KA2-5-1 can desulfurize dibenzothiophene (DBT) into 2-hydroxybiphenyl. A cryptic plasmid, pRC4, which was derived from R. rhodochrous IFO3338, was combined with an Escherichia coli vector to construct an E. coli-Rhodococcus shuttle vector. The complete nucleotide sequence of 2582-bp pRC4 was analyzed. Based on the characteristics of its putative replication genes, pRC4 was assigned to the family of pAL5000-related replicons. The desulfurization gene cluster, dszABC, and the related reductase gene, dszD, cloned from KA2-5-1, were reintroduced into KA2-5-1 and efficiently expressed. The DBT desulfurization ability of the transformant carrying two dszABC clusters and one dszD on the vector was about 4-fold higher than that of the parent strain, and the transformant also showed improved desulfurization activity for light gas oil (LGO). Sulfur components in LGO before and after the reaction were analyzed with gas chromatography-atomic emission detection.

  15. A cyclic (alkyl)(amido)carbene: synthesis, study and utility as a desulfurization reagent.

    PubMed

    McCarty, Zachary R; Lastovickova, Dominika N; Bielawski, Christopher W

    2016-04-01

    The synthesis and study of a cyclic (alkyl)(amido)carbene is described. The carbene was found to undergo C-H insertion at low temperatures, formed cyclopropenes upon exposure to alkynes, and facilitated desulfurization reactions. Spectroscopic studies revealed that the carbene is strongly π-accepting but retains a complimentary degree of σ-donating properties. PMID:27010415

  16. COMPARISON OF WEST GERMAN AND U.S. FLUE GAS DESULFURIZATION AND SELECTIVE CATALYTIC REDUCTION COSTS

    EPA Science Inventory

    The report documents a comparison of the actual cost retrofitting flue gas desulfurization (FGD) and selective catalytic reduction (SCR) on Federal Republic of German (FRG) boilers to cost estimating procedures used in the U.S. to estimate the retrofit of these controls on U.S. b...

  17. Composition of partially purified NADPH oxidase from pig neutrophils.

    PubMed Central

    Bellavite, P; Jones, O T; Cross, A R; Papini, E; Rossi, F

    1984-01-01

    The superoxide (O2.-)-forming enzyme NADPH oxidase from pig neutrophils was solubilized and partially purified by gel-filtration chromatography. The purification procedure allowed the separation of NADPH oxidase activity from NADH-dependent cytochrome c reductase and 2,6-dichlorophenol-indophenol reductase activities. O2.-forming activity was co-purified with cytochrome b-245 and was associated with phospholipids. However, active fractions endowed with cytochrome b were devoid of ubiquinone and contained only little FAD. The cytochrome b/FAD ratio was 1.13:1 in the crude solubilized extract and increased to 18.95:1 in the partially purified preparations. Most of FAD was associated with fractions containing NADH-dependent oxidoreductases. These results are consistent with the postulated role of cytochrome b in O2.-formation by neutrophil NADPH oxidase, but raise doubts about the participation of flavoproteins in this enzyme activity. PMID:6439185

  18. Purify First: rapid expression and purification of proteins from XMRV.

    PubMed

    Gillette, William K; Esposito, Dominic; Taylor, Troy E; Hopkins, Ralph F; Bagni, Rachel K; Hartley, James L

    2011-04-01

    Purifying proteins from recombinant sources is often difficult, time-consuming, and costly. We have recently instituted a series of improvements in our protein purification pipeline that allows much more accurate choice of expression host and conditions and purification protocols. The key elements are parallel cloning, small scale parallel expression and lysate preparation, and small scale parallel protein purification. Compared to analyzing expression data only, results from multiple small scale protein purifications predict success at scale-up with greatly improved reliability. Using these new procedures we purified eight of nine proteins from xenotropic murine leukemia virus-related virus (XMRV) on the first attempt at large scale. PMID:21146612

  19. In-mask aerosol sampling for powered air purifying respirators

    SciTech Connect

    Liu, B.Y.U.; Sega, K.; Rubow, K.L.; Lenhart, S.W.; Myers, W.R.

    1984-04-01

    A system for sampling aerosols in the facepiece of a powered air purifying respirator has been described. The system consists of a sampling inlet mounted on the respiratory facepiece, a filter cassette and a personal sampling pump. The theoretical and practical considerations leading to the design of the sampling inlet have been discussed and experimental data presented showing the efficiency of the inlet as a function of particle size and sampling flow rate. The in-mask sampling system has been designed for powered air purifying respirators.

  20. Desulfurization of coal: Enhanced selectivity using phase transfer catalysts. Technical report, September 1--November 30, 1995

    SciTech Connect

    Palmer, S.R.; Hippo, E.J.

    1995-12-31

    Due to environmental problems related to the combustion of high sulfur Illinois coal, there continues to be interest in the development of viable pre-combustion desulfurization processes. Recent studies by the authors have obtained very good sulfur removals but the reagents that are used are too expensive. Use of cheaper reagents leads to a loss of desired coal properties. This study investigates the application of phase transfer catalysts to the selective oxidation of sulfur in coal using air and oxygen as oxidants. The phase transfer catalyst is expected to function as a selectivity moderator by permitting the use of milder reaction conditions than otherwise necessary. This would enhance the sulfur selectivity and help retain the heating value of the coal. The use of certain coal combustion wastes for desulfurization, and the application of cerium (IV) catalyzed air oxidations for selective sulfur oxidation are also being studied. If successful this project could lead to the rapid development of a commercially viable desulfurization process. This would significantly improve the marketability of Illinois coal. During this quarter aliquots of the IBC-101 coal have been ground to various particle sizes in an attempt to find the optimum physical pretreatment for mineral, especially pyrite, removal. Analysis of these various aliquots shows them to be representative of the original coal. In addition, preliminary desulfurization reactions using fly ash and scrubber sludges have been performed on an unoxidized IBC-101 sample. Results will be available next quarter. Also, SEM-EDAX analysis of the fly ash indicates that it contains oxides that have shown activity in base desulfurization reactions.

  1. Characteristics and reactivity of rapidly hydrated sorbent for semidry flue gas desulfurization

    SciTech Connect

    Jie Zhang; Changfu You; Suwei Zhao; Changhe Chen; Haiying Qi

    2008-03-01

    The semidry flue gas desulfurization (FGD) process has many advantages over the wet FGD process for moving sulfur dioxide emissions from pulverized coal-fired power plants. Semidry FGD with a rapidly hydrated sorbent was studied in a pilot-scale circulating fluidized bed (CFB) experimental facility. The sorbent was made from lumps of lime and coal fly ash. The desulfurization efficiency was measured for various operating parameters, including the sorbent recirculation rate and the water spray method. The experimental results show that the desulfurization efficiencies of the rapidly hydrated sorbent were 1.5-3.0 times higher than a commonly used industrial sorbent for calcium to sulfur molar ratios from 1.2 to 3.0, mainly due to the higher specific surface area and pore volume. The Ca(OH){sub 2} content in the cyclone separator ash was about 2.9% for the rapidly hydrated sorbent and was about 0.1% for the commonly used industrial sorbent, due to the different adhesion between the fine Ca(OH){sub 2} particles and the fly ash particles, and the low cyclone separation efficiency for the fine Ca(OH){sub 2} particles that fell off the sorbent particles. Therefore the actual recirculation rates of the active sorbent with Ca(OH){sub 2} particles were higher for the rapidly hydrated sorbent, which also contributed to the higher desulfurization efficiency. The high fly ash content in the rapidly hydrated sorbent resulted in good operating stability. The desulfurization efficiency with upstream water spray was 10-15% higher than that with downstream water spray. 20 refs., 7 figs., 1 tab.

  2. Isotopic Analysis and Evolved Gases

    NASA Technical Reports Server (NTRS)

    Swindle, Timothy D.; Boynton, William V.; Chutjian, Ara; Hoffman, John H.; Jordan, Jim L.; Kargel, Jeffrey S.; McEntire, Richard W.; Nyquist, Larry

    1996-01-01

    Precise measurements of the chemical, elemental, and isotopic composition of planetary surface material and gases, and observed variations in these compositions, can contribute significantly to our knowledge of the source(s), ages, and evolution of solar system materials. The analyses discussed in this paper are mostly made by mass spectrometers or some other type of mass analyzer, and address three broad areas of interest: (1) atmospheric composition - isotopic, elemental, and molecular, (2) gases evolved from solids, and (3) solids. Current isotopic data on nine elements, mostly from in situ analysis, but also from meteorites and telescopic observations are summarized. Potential instruments for isotopic analysis of lunar, Martian, Venusian, Mercury, and Pluto surfaces, along with asteroid, cometary and icy satellites, surfaces are discussed.

  3. Gases in ice cores

    PubMed Central

    Bender, Michael; Sowers, Todd; Brook, Edward

    1997-01-01

    Air trapped in glacial ice offers a means of reconstructing variations in the concentrations of atmospheric gases over time scales ranging from anthropogenic (last 200 yr) to glacial/interglacial (hundreds of thousands of years). In this paper, we review the glaciological processes by which air is trapped in the ice and discuss processes that fractionate gases in ice cores relative to the contemporaneous atmosphere. We then summarize concentration–time records for CO2 and CH4 over the last 200 yr. Finally, we summarize concentration–time records for CO2 and CH4 during the last two glacial–interglacial cycles, and their relation to records of global climate change. PMID:11607743

  4. Annihilation in Gases and Galaxies

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J. (Editor)

    1990-01-01

    This publication contains most of the papers, both invited and contributed, that were presented at the Workshop of Annihilation in Gases and Galaxies. This was the fifth in a biennial series associated with the International Conference on the Physics of Electronic and Atomic Collisions. Subjects covered included the scattering and annihilation of positrons and positronium atoms in various media, including those of astrophysical interest. In addition, the topics of antimatter and dark matter were covered.

  5. Flue gas desulfurization: the state of the art.

    PubMed

    Srivastava, R K; Jozewicz, W

    2001-12-01

    Coal-fired electricity-generating plants may use SO2 scrubbers to meet the requirements of Phase II of the Acid Rain SO2 Reduction Program. Additionally, the use of scrubbers can result in reduction of Hg and other emissions from combustion sources. It is timely, therefore, to examine the current status of SO2 scrubbing technologies. This paper presents a comprehensive review of the state of the art in flue gas desulfurization (FGD) technologies for coal-fired boilers. Data on worldwide FGD applications reveal that wet FGD technologies, and specifically wet limestone FGD, have been predominantly selected over other FGD technologies. However, lime spray drying (LSD) is being used at the majority of the plants employing dry FGD technologies. Additional review of the U.S. FGD technology applications that began operation in 1991 through 1995 reveals that FGD processes of choice recently in the United States have been wet limestone FGD, magnesium-enhanced lime (MEL), and LSD. Further, of the wet limestone processes, limestone forced oxidation (LSFO) has been used most often in recent applications. The SO2 removal performance of scrubbers has been reviewed. Data reflect that most wet limestone and LSD installations appear to be capable of approximately 90% SO2 removal. Advanced, state-of-the-art wet scrubbers can provide SO2 removal in excess of 95%. Costs associated with state-of-the-art applications of LSFO, MEL, and LSD technologies have been analyzed with appropriate cost models. Analyses indicate that the capital cost of an LSD system is lower than those of same capacity LSFO and MEL systems, reflective of the relatively less complex hardware used in LSD. Analyses also reflect that, based on total annualized cost and SO2 removal requirements: (1) plants up to approximately 250 MWe in size and firing low- to medium-sulfur coals (i.e., coals with a sulfur content of 2% or lower) may use LSD; and (2) plants larger than 250 MWe and firing medium- to high-sulfur coals (i

  6. Flue gas desulfurization: the state of the art.

    PubMed

    Srivastava, R K; Jozewicz, W

    2001-12-01

    Coal-fired electricity-generating plants may use SO2 scrubbers to meet the requirements of Phase II of the Acid Rain SO2 Reduction Program. Additionally, the use of scrubbers can result in reduction of Hg and other emissions from combustion sources. It is timely, therefore, to examine the current status of SO2 scrubbing technologies. This paper presents a comprehensive review of the state of the art in flue gas desulfurization (FGD) technologies for coal-fired boilers. Data on worldwide FGD applications reveal that wet FGD technologies, and specifically wet limestone FGD, have been predominantly selected over other FGD technologies. However, lime spray drying (LSD) is being used at the majority of the plants employing dry FGD technologies. Additional review of the U.S. FGD technology applications that began operation in 1991 through 1995 reveals that FGD processes of choice recently in the United States have been wet limestone FGD, magnesium-enhanced lime (MEL), and LSD. Further, of the wet limestone processes, limestone forced oxidation (LSFO) has been used most often in recent applications. The SO2 removal performance of scrubbers has been reviewed. Data reflect that most wet limestone and LSD installations appear to be capable of approximately 90% SO2 removal. Advanced, state-of-the-art wet scrubbers can provide SO2 removal in excess of 95%. Costs associated with state-of-the-art applications of LSFO, MEL, and LSD technologies have been analyzed with appropriate cost models. Analyses indicate that the capital cost of an LSD system is lower than those of same capacity LSFO and MEL systems, reflective of the relatively less complex hardware used in LSD. Analyses also reflect that, based on total annualized cost and SO2 removal requirements: (1) plants up to approximately 250 MWe in size and firing low- to medium-sulfur coals (i.e., coals with a sulfur content of 2% or lower) may use LSD; and (2) plants larger than 250 MWe and firing medium- to high-sulfur coals (i

  7. 40 CFR 92.112 - Analytical gases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Analytical gases. 92.112 Section 92...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.112 Analytical gases. (a) Gases for the CO and CO2 analyzers shall be single blends of CO and CO2, respectively, using...

  8. 40 CFR 90.312 - Analytical gases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Analytical gases. 90.312 Section 90... Provisions § 90.312 Analytical gases. (a) The shelf life of a calibration gas may not be exceeded. The expiration date stated by the gas supplier must be recorded. (b) Pure gases. The required purity of the...

  9. 40 CFR 90.312 - Analytical gases.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Analytical gases. 90.312 Section 90... Provisions § 90.312 Analytical gases. (a) The shelf life of a calibration gas may not be exceeded. The expiration date stated by the gas supplier must be recorded. (b) Pure gases. The required purity of the...

  10. 40 CFR 92.112 - Analytical gases.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Analytical gases. 92.112 Section 92...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.112 Analytical gases. (a) Gases for the CO and CO2 analyzers shall be single blends of CO and CO2, respectively, using...

  11. 40 CFR 90.312 - Analytical gases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Analytical gases. 90.312 Section 90... Provisions § 90.312 Analytical gases. (a) The shelf life of a calibration gas may not be exceeded. The expiration date stated by the gas supplier must be recorded. (b) Pure gases. The required purity of the...

  12. 40 CFR 90.312 - Analytical gases.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Analytical gases. 90.312 Section 90... Provisions § 90.312 Analytical gases. (a) The shelf life of a calibration gas may not be exceeded. The expiration date stated by the gas supplier must be recorded. (b) Pure gases. The required purity of the...

  13. 40 CFR 92.112 - Analytical gases.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Analytical gases. 92.112 Section 92...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.112 Analytical gases. (a) Gases for the CO and CO2 analyzers shall be single blends of CO and CO2, respectively, using...

  14. 40 CFR 92.112 - Analytical gases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Analytical gases. 92.112 Section 92...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.112 Analytical gases. (a) Gases for the CO and CO2 analyzers shall be single blends of CO and CO2, respectively, using...

  15. Toxicity of pyrolysis gases from polypropylene

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Schneider, J. E.; Brauer, D. F.

    1979-01-01

    A sample of polypropylene was evaluated for toxicity of pyrolysis gases, using the toxicity screening test method developed at the University of San Francisco. The gases from this sample appeared to be equivalent or less toxic than the gases from a sample of polyethylene under these particular test conditions. Carbon monoxide appeared to be the principal toxicant.

  16. Small-Scale Evaluation of the Expeditionary Unit Water Purifier

    EPA Science Inventory

    The U.S. EPA’s Technology Testing and Evaluation Program has been charged by EPA to evaluate the performance of commercially available water security-related technologies. Throughout 2007, an evaluation the Expeditionary Unit Water Purifier (EUWP), a mobile water treatment techno...

  17. Generation of leukotrienes by purified human lung mast cells.

    PubMed Central

    MacGlashan, D W; Schleimer, R P; Peters, S P; Schulman, E S; Adams, G K; Newball, H H; Lichtenstein, L M

    1982-01-01

    Although mediator release from mast cells and basophils plays a central role in the pathogenesis of human allergic disease, biochemical studies have been restricted to rat peritoneal mast cells and basophilic leukemia cells because they could be easily purified. We have used two new techniques of cell separation to purify human lung mast cells to 98% homogeneity. Lung cell suspensions were obtained by dispersion of chopped lung tissue with proteolytic enzymes. Mast cells were then purified from the suspensions by countercurrent centrifugal elutriation and affinity chromatography. The purified mast cells released both histamine and slow-reacting substance of anaphylaxis (SRS-A) (leukotriene C and D) during stimulation with goat anti-human IgE antibody. Moreover, these preparations were able to generate significant quantities of SRS-A (32 +/- 7 x 10(-17) LTD mole-equivalents/mast cell) at all stages of purification, indicating that a secondary cell is not necessary for the antigen-induced release of SRS. Images PMID:7119113

  18. Purified guar galactomannan as an improved pharmaceutical excipient.

    PubMed

    Gebert, M S; Friend, D R

    1998-08-01

    The purpose of this study was to assess certain pharmaceutical attributes of guar galactomannan, a hydrocolloid polysaccharide obtained from the endosperm of the leguminous plant Cyamopsis tetragonolobus (L.), following purification using both literature procedures and new processes. Experiments were performed to measure viscosity, hydration rate, tablet hardness, and dissolution profiles of guar galactomannan both before and after purification. The viscosity of an aqueous 1% purified galactomannan solution is typically 40-50% higher than its unpurified guar galactomannan precursor. The hydration rate of an aqueous 1% purified galactomannan solution increases by 100% after purification. These physicochemical changes resulted in improvements in pharmaceutical properties such as better stir speed independence in both tablet and capsule dissolution profiles and improved tablet hardness. For instance, time to 50% dissolution of ranitidine HCl from capsules containing unpurified guar gum was 0.4 and 1.8 hr at 20 and 40 rpm, respectively, using USP Apparatus II. Using the same amount of purified guar gum and the same conditions (20 and 40 rpm), these values were increased to 2.9 and 3.8 hr, respectively. These data demonstrate a reduced effect of changing agitation conditions and the need for less guar gum to sustain the release of a water-soluble drug. Tablet hardness of purified guar gum (particle size < 75 microns) was about 7 kP and the same unpurified guar gum of equal particle size and hydration gave a hardness of less than 1 kP. PMID:9742552

  19. Superoxide radical and UV irradiation in ultrasound assisted oxidative desulfurization (UAOD): A potential alternative for greener fuels

    NASA Astrophysics Data System (ADS)

    Chan, Ngo Yeung

    This study is aimed at improving the current ultrasound assisted oxidative desulfurization (UAOD) process by utilizing superoxide radical as oxidant. Research was also conducted to investigate the feasibility of ultraviolet (UV) irradiation-assisted desulfurization. These modifications can enhance the process with the following achievements: (1) Meet the upcoming sulfur standards on various fuels including diesel fuel oils and residual oils; (2) More efficient oxidant with significantly lower consumption in accordance with stoichiometry; (3) Energy saving by 90%; (4) Greater selectivity in petroleum composition. Currently, the UAOD process and subsequent modifications developed in University of Southern California by Professor Yen's research group have demonstrated high desulfurization efficiencies towards various fuels with the application of 30% wt. hydrogen peroxide as oxidant. The UAOD process has demonstrated more than 50% desulfurization of refractory organic sulfur compounds with the use of Venturella type catalysts. Application of quaternary ammonium fluoride as phase transfer catalyst has significantly improved the desulfurization efficiency to 95%. Recent modifications incorporating ionic liquids have shown that the modified UAOD process can produce ultra-low sulfur, or near-zero sulfur diesels under mild conditions with 70°C and atmospheric pressure. Nevertheless, the UAOD process is considered not to be particularly efficient with respect to oxidant and energy consumption. Batch studies have demonstrated that the UAOD process requires 100 fold more oxidant than the stoichiometic requirement to achieve high desulfurization yield. The expected high costs of purchasing, shipping and storage of the oxidant would reduce the practicability of the process. The excess use of oxidant is not economically desirable, and it also causes environmental and safety issues. Post treatments would be necessary to stabilize the unspent oxidant residual to prevent the waste

  20. Effect of refrigeration on microbial growth in the Blairex Water Purifier.

    PubMed

    Harris, M G; Meng, K E; Frank, L J; Mamalis, G

    1987-05-01

    The Blairex Water Purifier is designed to make tap water into purified water that can be used to make saline solution for soft contact lens disinfection and rinsing. The micropore filters of eight Purifiers were perforated to allow a controlled contamination by either Pseudomonas aeruginosa or Serratia marcescens. The bacterial growth was evaluated in these altered Blairex Water Purifiers under refrigerated and unrefrigerated conditions. Those Purifiers that were refrigerated showed significantly less bacterial growth than those Purifiers that were kept at room temperature between samplings. Our findings imply that soft contact lens wearers may reduce the level of microbial growth in undamaged Purifiers by refrigerating the Purifiers between uses. PMID:3111265

  1. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control. Topical report for Subtask 3.1, In-bed sulfur capture tests; Subtask 3.2, Electrostatic desulfurization; Subtask 3.3, Microbial desulfurization and denitrification

    SciTech Connect

    Roberts, M.J.; Abbasian, J.; Akin, C.; Lau, F.S.; Maka, A.; Mensinger, M.C.; Punwani, D.V.; Rue, D.M.; Gidaspow, D.; Gupta, R.; Wasan, D.T.; Pfister, R.M.: Krieger, E.J.

    1992-05-01

    This topical report on ``Sulfur Control`` presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite) for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT`s electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.

  2. 46 CFR 194.15-17 - Compressed gases other than inert gases.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... shall be capped or otherwise protected in accordance with 49 CFR 173.301(g). (b) Cylinders temporarily... 46 Shipping 7 2012-10-01 2012-10-01 false Compressed gases other than inert gases. 194.15-17... Scientific Laboratory § 194.15-17 Compressed gases other than inert gases. (a) When, in consideration for...

  3. 46 CFR 194.15-17 - Compressed gases other than inert gases.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... shall be capped or otherwise protected in accordance with 49 CFR 173.301(g). (b) Cylinders temporarily... 46 Shipping 7 2011-10-01 2011-10-01 false Compressed gases other than inert gases. 194.15-17... Scientific Laboratory § 194.15-17 Compressed gases other than inert gases. (a) When, in consideration for...

  4. 46 CFR 194.15-17 - Compressed gases other than inert gases.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... shall be capped or otherwise protected in accordance with 49 CFR 173.301(g). (b) Cylinders temporarily... 46 Shipping 7 2014-10-01 2014-10-01 false Compressed gases other than inert gases. 194.15-17... Scientific Laboratory § 194.15-17 Compressed gases other than inert gases. (a) When, in consideration for...

  5. An integrated biodesulfurization process, including inoculum preparation, desulfurization and sulfate removal in a single step, for removing sulfur from oils.

    SciTech Connect

    Tangaromsuk, Jantana; Borole, Abhijeet P; Kruatrachue, Maleeya; Pokethitiyook, Prayad

    2008-01-01

    BACKGROUND: A single-stage reactor, in which the growth of bacterial culture, induction of desulfurizing enzymes, and desulfurization reaction are carried out in a single step, was adopted to investigate desulfurization of DBT at high cell densities. IGTS8 was used as the biocatalyst. Optimal condition for the bacterial growth and DBT desulfurization were also investigated. RESULTS: Optimization of fermentation conditions was necessary to obtain high cell densities including controlling accumulation of acetate. Under optimal operating conditions, the maximum OD600 was measured to be 26.6 at 118 h of cultivation. When biodesulfurization of DBT in model oil with a high cell density culture of IGTS8 was investigated, accumulation of sulfate was found to limit the extent of desulfurization. A sulfate removal step was added to obtain a single-stage integrated biodesulfurization process. Sulfate removal was achieved via an aqueous bleed stream and use of a separation unit to recycle the organic phase. CONCLUSION : A proof of principle of a complete system capable of biocatalyst growth, induction, desulfurization and by-product separation was demonstrated. This system enables simplification of the biodesulfurization process and has potential to lower the operating cost of the bioprocess.

  6. Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8.

    PubMed

    Piddington, C S; Kovacevich, B R; Rambosek, J

    1995-02-01

    Dibenzothiophene (DBT), a model compound for sulfur-containing organic molecules found in fossil fuels, can be desulfurized to 2-hydroxybiphenyl (2-HBP) by Rhodococcus sp. strain IGTS8. Complementation of a desulfurization (dsz) mutant provided the genes from Rhodococcus sp. strain IGTS8 responsible for desulfurization. A 6.7-kb TaqI fragment cloned in Escherichia coli-Rhodococcus shuttle vector pRR-6 was found to both complement this mutation and confer desulfurization to Rhodococcus fascians, which normally is not able to desulfurize DBT. Expression of this fragment in E. coli also conferred the ability to desulfurize DBT. A molecular analysis of the cloned fragment revealed a single operon containing three open reading frames involved in the conversion of DBT to 2-HBP. The three genes were designated dszA, dszB, and dszC. Neither the nucleotide sequences nor the deduced amino acid sequences of the enzymes exhibited significant similarity to sequences obtained from the GenBank, EMBL, and Swiss-Prot databases, indicating that these enzymes are novel enzymes. Subclone analyses revealed that the gene product of dszC converts DBT directly to DBT-sulfone and that the gene products of dszA and dszB act in concert to convert DBT-sulfone to 2-HBP.

  7. Recovery and recycling of limestone in LEC flue gas desulfurization

    SciTech Connect

    Gardner, N.C.; Boo, J.Y.; Culver, L. )

    1992-09-01

    Prudich et. al. have proposed an attractive technology called Limestone Emission Control (LEC) for removing sulfur dioxide from flue gases. Beds of 1/8 inch wet limestone particles absorb the sulfur dioxide from the gases on contact. Sulfite and sulfate salts deposit on the surface of the particles; however, the gas never reaches the interior, limiting the limestone utilization to approximately 20% or less. The unreacted portion of the limestone can be recovered by mechanical grinding and recycling, enabling high overall sorbent utilization. Favorable economics are derived from small equipment, simplicity, and low sorbent costs. This project is a wet method for grinding and recovering the spent limestone from the LEC process, utilizing an impeller fluidizer, a new type of slurry processor. It consists of a cylindrical vessel with an impeller at one end. The impeller, driven at high rpm, concentrates the gravel size limestone in a rotating torus at the top of the cylinder, where the coating is abraded off by particle-particle impaction. The impeller generates sufficient pressure head to serve as a slurry pump. It combines the operation of wet grinding, washing, and transporting the spent and recovered limestone as an aqueous slurry. The fluidizer may be advantageous over dry grinding in the aspects of sharpness of separation, transport convenience, equipment erosion, and sorption bed cementation.

  8. Thermodynamics of Trapping Gases for Underwater Superhydrophobicity.

    PubMed

    Patankar, Neelesh A

    2016-07-12

    Rough surfaces submerged in a liquid can remain almost dry if the liquid does not fully wet the roughness, and gases are sustained in roughness grooves. Such partially dry surfaces can help reduce drag, enhance boiling, and reduce biofouling. Gases sustained in roughness grooves would be composed of air and the vapor phase of the liquid itself. In this work, the thermodynamics of sustaining gases (e.g., air) is considered. Governing equations are presented along with a solution methodology to determine a critical condition to sustain gases. The critical roughness scale to sustain gases is estimated for different degrees of saturation of gases dissolved in the liquid. It is shown that roughness spacings of less than a micron are essential to sustain gases on surfaces submerged in water at atmospheric pressure. This is consistent with prior empirical data. PMID:27276525

  9. Adiabatic processes in monatomic gases

    NASA Astrophysics Data System (ADS)

    Carrera-Patiño, Martin E.

    1988-08-01

    A kinetic model is used to predict the temperature evolution of a monatomic ideal gas undergoing an adiabatic expansion or compression at a constant finite rate, and it is then generalized to treat real gases. The effects of interatomic forces are considered, using as examples the gas with the square-well potential and the van der Waals gas. The model is integrated into a Carnot cycle operating at a finite rate to compare the efficiency's rate-dependent behavior with the reversible result. Limitations of the model, rate penalties, and their importance are discussed.

  10. Method for transporting impellent gases

    NASA Technical Reports Server (NTRS)

    Papst, H.

    1975-01-01

    The described system DAL comprises a method and a device for transportation of buoyant impellent gases, without the need for expensive pipes and liquid tankers. The gas is self air-lifted from its source to a consignment point by means of voluminous, light, hollow bodies. Upon release of the gas at the consignment point, the bodies are filled with another cheap buoyant gas (steam or heated air) for the return trip to the source. In both directions substantial quantities of supplementary freight goods can be transported. Requirements and advantages are presented.

  11. Climate Change and Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Ledley, Tamara S.; Sundquist, Eric; Schwartz, Stephen; Hall, Dorothy K.; Fellows, Jack; Killeen, Timothy

    1999-01-01

    The American Geophysical Union (AGU), as a scientific organization devoted to research on the Earth and space sciences, provides current scientific information to the public on issues pertinent to geophysics. The Council of the AGU approved a position statement on Climate Change and Greenhouse Gases in December 1998. The statement, together with a short summary of the procedures that were followed in its preparation, review, and adoption were published in the February 2, 1999 issue of Eos ([AGU, 1999]. The present article reviews scientific understanding of this issue as presented in peer-reviewed publications that serves as the underlying basis of the position statement.

  12. Synthesis and characterization of highly purified nanosilica from pyrophyllite ores

    NASA Astrophysics Data System (ADS)

    Fuad, Abdulloh; Mufti, Nandang; Diantoro, Markus; Subakti, S., Septa Kurniawati

    2016-03-01

    A simple method based on alkaline extraction followed by acid precipitation and acid dissolution has been developed to produce highly purified nanosilica from pyrophyllite materials. The reaction parameters such as molar ratio NaOH/SiO2, reaction time and reaction temperature are varied for obtaining maximum nanosilica convertion. About 99,45% highly purified precipitated nanosilica measure with ICP, 259 m2/gr measure with BET surface area, 97% whiteness and 3 ml/gr oil absorbtion from pyrophyllite materials has been achieved in closed system at 150°C within 180 min. The physicals and chemical properties (such as X-Ray Diffraction from PANalytical, X-Ray Fluorescence Minipal4 from PANanalytical, BET surface area, Forier Transform Infra Red Spectroscopy from Hitachi, and SEM-EDS Inspect-S50 from FEI Company) of the highly purity nanosilica were studied.

  13. Method of preparing highly purified kiln dried solar salt

    SciTech Connect

    Williams, J.L.; Hass, L.M.; Rose, D.L.

    1984-12-18

    Partially purified salt containing less than about 00.4 weight percent insolubles is further purified to reduce the insolubles until the milk pad rating is 3 or better for certain industrial uses and 1 for human consumption. The entry salt is washed in clarified brine to dislodge insoluble impurities adhered to the salt surfaces. The washed salt is then scrubbed with fresh water sprays to displace the wash brine from salt surfaces. The washed salt is drained and then dried in a kiln where flowing air blows away some impurities. The dried salt is passed through a magnetic separator, doubly sifted to remove both large and small impurities, and, where food grade salt is required, passed through a color sorter that removes relatively dark impurities.

  14. Methods to Purify and Assay Secretory Pathway Kinases.

    PubMed

    Tagliabracci, Vincent S; Wen, Jianzhong; Xiao, Junyu

    2016-01-01

    Members of the four-jointed and VLK families of secretory pathway kinases appear to be responsible for the phosphorylation of secreted proteins and proteoglycans. These enzymes have been implicated in many biological processes and mutations in several of these kinases cause human diseases. Here, we describe methods to purify and assay two members of the four-jointed family of secretory kinases: the Fam20C protein kinase and the Fam20B proteoglycan kinase. PMID:27632012

  15. Thermostable purified endoglucanase II from Acidothermus cellulolyticus ATCC

    DOEpatents

    Adney, W.S.; Thomas, S.R.; Nieves, R.A.; Himmel, M.E.

    1994-11-22

    A purified low molecular weight endoglucanase II from Acidothermus cellulolyticus (ATCC 43068) is disclosed. The endoglucanase is water soluble, possesses both C[sub 1], and C[sub x] types of enzyme activity, a high degree of stability toward heat, and exhibits optimum temperature activity at about 81 C at pH's from about 2 to about 9, and at a inactivation temperature of about 100 C at pH's from about 2 to about 9. 9 figs.

  16. Thermostable purified endoglucanase from thermophilic bacterium acidothermus cellulolyticus

    DOEpatents

    Tucker, Melvin P.; Grohmann, Karel; Himmel, Michael E.; Mohagheghi, Ali

    1992-01-01

    A substantially purified high molecular weight cellulase enzyme having a molecular weight of between about 156,000 to about 203,400 daltons isolated from the bacterium Acidothermus cellulolyticus (ATCC 43068) and a method of producing it are disclosed. The enzyme is water soluble, possesses both C.sub.1 and C.sub.x types of enzymatic activity, has a high degree of stability toward heat and exhibits both a high optimum temperature activity and high inactivation characteristics.

  17. 42 CFR 84.170 - Non-powered air-purifying particulate respirators; description.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... inhalation pressure to draw the ambient air through the air-purifying filter elements (filters) to remove... 42 Public Health 1 2010-10-01 2010-10-01 false Non-powered air-purifying particulate respirators... DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.170 Non-powered air-purifying...

  18. 42 CFR 84.170 - Non-powered air-purifying particulate respirators; description.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... inhalation pressure to draw the ambient air through the air-purifying filter elements (filters) to remove... 42 Public Health 1 2011-10-01 2011-10-01 false Non-powered air-purifying particulate respirators... DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.170 Non-powered air-purifying...

  19. 42 CFR 84.170 - Non-powered air-purifying particulate respirators; description.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Non-powered air-purifying particulate respirators... DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.170 Non-powered air-purifying particulate respirators; description. (a) Non-powered air-purifying particulate respirators utilize the wearer's...

  20. 42 CFR 84.170 - Non-powered air-purifying particulate respirators; description.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Non-powered air-purifying particulate respirators... DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.170 Non-powered air-purifying particulate respirators; description. (a) Non-powered air-purifying particulate respirators utilize the wearer's...

  1. 42 CFR 84.170 - Non-powered air-purifying particulate respirators; description.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Non-powered air-purifying particulate respirators... DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.170 Non-powered air-purifying particulate respirators; description. (a) Non-powered air-purifying particulate respirators utilize the wearer's...

  2. 42 CFR 84.171 - Non-powered air-purifying particulate respirators; required components.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Non-powered air-purifying particulate respirators... PROTECTIVE DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.171 Non-powered air-purifying particulate respirators; required components. (a) Each non-powered air-purifying particulate...

  3. 42 CFR 84.171 - Non-powered air-purifying particulate respirators; required components.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Non-powered air-purifying particulate respirators... PROTECTIVE DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.171 Non-powered air-purifying particulate respirators; required components. (a) Each non-powered air-purifying particulate...

  4. In vitro activities of purified visna virus integrase.

    PubMed Central

    Katzman, M; Sudol, M

    1994-01-01

    Although integration generally is considered a critical step in the retrovirus life cycle, it has been reported that visna virus, which causes degenerative neurologic disease in sheep, can productively infect sheep choroid plexus cells without detectable integration. To ascertain whether the integrase (IN) of visna virus is an inherently defective enzyme and to create tools for further study of integration of the phylogenetically related human immunodeficiency virus type 1 (HIV-1), we purified visna virus IN by using a bacterial expression system and applied various in vitro oligonucleotide-based assays to studying this protein. We found that visna virus IN demonstrates the full repertoire of in vitro functions characteristic of retroviral integrases. In particular, visna virus IN exhibits site-specific endonuclease activity following the invariant CA found two nucleotides from the 3' ends of viral DNA (processing activity), joins processed oligonucleotides to various sites on other oligonucleotides (strand transfer or integration activity), and reverses the integration reaction by resolving a complex that mimics one end of viral DNA integrated into host DNA (disintegration activity). In addition, although it has been reported that purified HIV-1 IN cannot specifically nick visna virus DNA ends, purified visna virus IN does specifically process and integrate HIV-1 DNA ends. Images PMID:8189495

  5. [Proteomic Analyses of Purified Particles of the Rabies Virus].

    PubMed

    Tu, Zhongzhong; Gong, Wenjie; Zhang, Yan; Feng, Ye; Li, Nan; Tu, Changchun

    2015-05-01

    The rabies virus (RABV) is an enveloped RNA virus. It mainly damages the central nervous system and causes anencephaly in mammals and humans. There is now compelling evidence that enveloped virions released from infected cells can carry many host proteins, some of which may play an important part in viral replication. Several host proteins have been reported to be incorporated into RABV particles. However, a systematic study to reveal the proteomics of RABV particles has not been conducted. In the present study, after virus culture and purification by sucrose density gradient ultracentrifugation, a proteomics approach was used to analyze the protein composition of purified RABV particles to understand the molecular mechanisms of virus-cell interactions. Fifty host proteins, along with five virus-encoded structural proteins, were identified in purified RABV particles. These proteins could be classified into ten categories according to function: intracellular trafficking (14%), molecular chaperone (12%), cytoskeletal (24%), signal transduction (8%), transcription regulation (12%), calcium ion-binding (6%), enzyme binding (6%), metabolic process (2%), ubiquitin (2%) and other (14%). Of these, four proteins (beta-actin, p-tubulin, Cofilin, Hsc70) were validated by western blotting to be present in purified RABV particles. This novel study of the composition of host proteins in RABV particles may aid investigation of the mechanism of RABV replication. PMID:26470524

  6. Coupled ER to Golgi Transport Reconstituted with Purified Cytosolic Proteins

    PubMed Central

    Barlowe, Charles

    1997-01-01

    A cell-free vesicle fusion assay that reproduces a subreaction in transport of pro-α-factor from the ER to the Golgi complex has been used to fractionate yeast cytosol. Purified Sec18p, Uso1p, and LMA1 in the presence of ATP and GTP satisfies the requirement for cytosol in fusion of ER-derived vesicles with Golgi membranes. Although these purified factors are sufficient for vesicle docking and fusion, overall ER to Golgi transport in yeast semi-intact cells depends on COPII proteins (components of a membrane coat that drive vesicle budding from the ER). Thus, membrane fusion is coupled to vesicle formation in ER to Golgi transport even in the presence of saturating levels of purified fusion factors. Manipulation of the semi-intact cell assay is used to distinguish freely diffusible ER- derived vesicles containing pro-α-factor from docked vesicles and from fused vesicles. Uso1p mediates vesicle docking and produces a dilution resistant intermediate. Sec18p and LMA1 are not required for the docking phase, but are required for efficient fusion of ER- derived vesicles with the Golgi complex. Surprisingly, elevated levels of Sec23p complex (a subunit of the COPII coat) prevent vesicle fusion in a reversible manner, but do not interfere with vesicle docking. Ordering experiments using the dilution resistant intermediate and reversible Sec23p complex inhibition indicate Sec18p action is required before LMA1 function. PMID:9382859

  7. [Proteomic Analyses of Purified Particles of the Rabies Virus].

    PubMed

    Tu, Zhongzhong; Gong, Wenjie; Zhang, Yan; Feng, Ye; Li, Nan; Tu, Changchun

    2015-05-01

    The rabies virus (RABV) is an enveloped RNA virus. It mainly damages the central nervous system and causes anencephaly in mammals and humans. There is now compelling evidence that enveloped virions released from infected cells can carry many host proteins, some of which may play an important part in viral replication. Several host proteins have been reported to be incorporated into RABV particles. However, a systematic study to reveal the proteomics of RABV particles has not been conducted. In the present study, after virus culture and purification by sucrose density gradient ultracentrifugation, a proteomics approach was used to analyze the protein composition of purified RABV particles to understand the molecular mechanisms of virus-cell interactions. Fifty host proteins, along with five virus-encoded structural proteins, were identified in purified RABV particles. These proteins could be classified into ten categories according to function: intracellular trafficking (14%), molecular chaperone (12%), cytoskeletal (24%), signal transduction (8%), transcription regulation (12%), calcium ion-binding (6%), enzyme binding (6%), metabolic process (2%), ubiquitin (2%) and other (14%). Of these, four proteins (beta-actin, p-tubulin, Cofilin, Hsc70) were validated by western blotting to be present in purified RABV particles. This novel study of the composition of host proteins in RABV particles may aid investigation of the mechanism of RABV replication.

  8. Filter for cleaning hot gases

    SciTech Connect

    Gresch, H.; Holter, H.; Hubner, K.; Igelbuscher, H.; Weber, E.

    1981-10-20

    In an apparatus for cleaning hot gases a filter housing has an inlet for unfiltered gas and an outlet for filtered gas. A plurality of filtered inserts are placed within the housing in a manner capable of filtering undesirable components from the gas feed stream. Each filter insert is made of a fibrous filter material. Silicic-acid glass fibers have a silicic acid content of at least 90%. Coated upon the fibers and absorbed into their pores is a metal oxide of aluminum, titanium, zirconium, cromium, nickle or cobalt. A honeycombed cage filled with high temperature resistant perlite is located within the housing between the gas inlet and the fiber inserts. The cage has an inlet and outlet external to the housing for replacing the perlite. A combustion chamber mounted in the housing has a discharge nozzle located so that the nozzle is directed at the filter inserts. Combusting materials in the chamber causes an explosive backflow of gases through the filter inserts.

  9. Hydrogen sulfide removal from livestock biogas by a farm-scale bio-filter desulfurization system.

    PubMed

    Su, J-J; Chang, Y-C; Chen, Y-J; Chang, K-C; Lee, S-Y

    2013-01-01

    A farm-scale biogas desulfurization system was designed and tested for H2S removal efficiency from livestock biogas. This work assesses the H2S removal efficiency of a novel farm-scale biogas bio-desulfurization system (BBS) operated for 350 days on a 1,000-head pig farm. Experimental data demonstrated that suitable humidity and temperature can help sulfur-oxidizing bacteria to form active bio-films on the bio-carriers. The daily average removal rate increased to 879.16 from 337.75 g-H2S/d with an average inlet H2S concentration of 4,691 ± 1,532 mg/m(3) in biogas. Thus, the overall (0-350 days) average H2S removal efficiency exceeded 93%. The proposed BBS overcomes limitations of H2S in biogas when utilizing pig farm biogas for power generation and other applications.

  10. Radiation-induced desulfurization of Arabian crude oil and straight-run diesel

    NASA Astrophysics Data System (ADS)

    Basfar, A. A.; Mohamed, K. A.

    2011-11-01

    Radiation-induced desulfurization of four types of Arabian crude oils (heavy, medium, light and extra light) and straight-run diesel (SRD) was investigated over the range of 10-200 kGy. Results show that gamma radiation processing at absorbed doses up to 200 kGy without further treatment is not sufficient for desulfurization. However, the combination of gamma-irradiation with other physical/chemical processes (i.e. L/L extraction, adsorption and oxidation) may be capable of removing considerable levels of sulfur compounds in the investigated products. Currently, this approach of combined radiation/physical/chemical processes is under investigation. The findings of these attempts will be reported in the future.

  11. Reclamation of abandoned surface coal mined land using flue gas desulfurization products

    SciTech Connect

    Chen, L.; Kost, D.; Dick, W.A.

    2009-07-01

    Details are given of a field-scale research project where the Fleming site, in Ohio, of highly degraded and acid-forming abandoned surface coal-mined land, was reclaimed using a dry flue gas desulfurization product from an atmospheric fluidized bed combustion burner at a General Motors plant Pontiac, MI, which burned eastern Ohio coal and used dolomitic limestone for desulfurization. Plots were seeded with a mixture of grasses, wheat and clover, in 1994 and soil and water samples were analysed in 1995 and in 2009. It was found that FGD-treated plots promoted good regenerative growth, similar to that in plots using more concentrated re-soil material. The FGD treatment also greatly improved overall water quality. 3 figs., 4 tabs.

  12. Process for drying calcium chloride generated in high chloride flue gas desulfurization systems

    SciTech Connect

    Gleason, R.J.; Sui, C.T.

    1982-03-30

    Some flue gas desulfurization processes applied to fuels containing high chloride concentrations are utilizing, or plan to utilize, by-product gypsum from the process stream. The utilization of such a process results in a calcium chloride buildup in the flue gas desulfurization system from fuels or water resource containing significant chlorides which interferes with the absorption and utilization of the lime or limestone reagent. In this invention, a method is used to convert the calcium chloride to a dry material by utilizing flue gas at elevated temperatures, normally found before an air preheater on steam generators used to produce power or any other conventional large size steam boilers. The monohydrate is produced at temperatures above 3500 F. By applying this drying process with a power plant system, energy consumed for this drying operation is very efficient.

  13. A New Dry Flue Gas Desulfurization Process-Underfeed Circulating Spouted Bed

    NASA Astrophysics Data System (ADS)

    Tao, M.; Jin, B. S.; Yang, Y. P.

    Applying an underfeed system, the underfeed circulating spouted bed was designed as a desulfurization reactor. The main objective of the technology is to improve the mixing effect and distribution uniformity of solid particles, and therefore to advance the desulfurization efficiency and calcium utility. In this article, a series of experimental studies were conducted to investigate the fluidization behavior of the solid-gas two-phase flow in the riser. The results show that the technology can distinctly improve the distribution of gas velocity and particle flux on sections compared with the facefeed style. Analysis of pressure fluctuation signals indicates that the operation parameters have significant influence on the flow field in the reaction bed. The existence of injecting flow near the underfeed nozzle has an evident effect on strengthening the particle mixing.

  14. Desulfurization process for dibenzothiophenes from light oil by photochemical reaction and liquid-liquid extraction

    SciTech Connect

    Hirai, Takayuki; Ogawa, Ken; Komasawa, Isao

    1996-02-01

    A desulfurization process for dibenzothiophene (DBT) and its derivatives such as 4-methyldibenzothiophene (4-MDBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) by combination of photochemical reaction and liquid-liquid extraction has been investigated. In this, the DBTs dissolved in tetradecane were quantitatively photodecomposed by the use of a high-pressure mercury lamp and were removed to the water phase as SO{sub 4}{sup 2{minus}} at conditions of room temperature and atmospheric pressure. The order of reactivity for the DBTs was DBT < 4-MDBT < 4,6-DMDBT, thus indicating a different tendency from that reported for the hydrodesulfurization method. The desulfurization yield of commercial light oil, however, by the proposed method was only 22% following 30 h irradiation and was caused mainly by the depression of the photoreaction of DBT by the presence of aromatic compounds in the light oil.

  15. Oxidative desulfurization of model diesel via dual activation by a protic ionic liquid.

    PubMed

    Lü, Hongying; Wang, Shunan; Deng, Changliang; Ren, Wanzhong; Guo, Baocun

    2014-08-30

    A novel and green carboxylate-anion-based protic ionic liquid (PIL), [Hnmp]HCOO, was prepared through a simple and atom economic neutralization reaction between N-methyl-2-pyrrolidonium (NMP) and formic acids. Both FT-IR spectra and (1)H NMR confirmed its simple salt structure. [Hnmp]HCOO exhibited so high catalytic activity that the dibenzothiophene (DBT) removal reached 99% at 50°C in 3h under conditions of VPIL/Vmodel oil=1:10 and H2O2/DBT (O/S, molar ratio)=5. The catalytic oxidation reactivity of S-compounds was found to be in the order of DBT>4,6-dimethyldibenzothiophene (4,6-DMDBT)>benzothiophene (BT). The investigation on mechanism showed that oxidative desulfurization was realized through dual activation of PIL. Moreover, [Hnmp]HCOO can be recycled for five times with an unnoticeable decrease in desulfurization activity. PMID:25064259

  16. Desulfurization behavior in rapid pyrolysis of coal treated by KOH solution

    SciTech Connect

    Sugawara, Katsuyasu; Abe, Keiko; Tozuka, Yasuhito; Sugawara, Takuo; Sholes, M.A.

    1994-12-31

    Three kinds of subbituminous and bituminous coals containing potassium hydroxide were heated at 523 K in a nitrogen atmosphere in an attempt to transform thermally stable forms of organic sulfur to reactive ones. Desulfurization extents were 27--52% by alkali leaching while weight loss was observed to be 8-10%. The desulfurization extents were proportional linearly to internal surface area of the parent coals. The parent coals and alkali leached samples were pyrolyzed rapidly by using a free fall reactor in a nitrogen stream up to 1,233K. The alkali-leached samples provided higher extents of reduction for organic sulfur than the parent coals. The combined process of rapid pyrolysis with alkali leaching was effective for reduction of organic sulfur except for a high range coal having small internal surface area.

  17. Pore structure and reactivity changes in hot coal gas desulfurization sorbents

    SciTech Connect

    Sotirchos, S.V.

    1991-05-01

    The primary objective of the project was the investigation of the pore structure and reactivity changes occurring in metal/metal oxide sorbents used for desulfurization of hot coal gas during sulfidation and regeneration, with particular emphasis placed on the effects of these changes on the sorptive capacity and efficiency of the sorbents. Commercially available zinc oxide sorbents were used as model solids in our experimental investigation of the sulfidation and regeneration processes.

  18. Physicochemical characterizations and desulfurization properties in coal combustion of three calcium and sodium industrial wastes

    SciTech Connect

    Jun Cheng; Junhu Zhou; Jianzhong Liu; Xinyu Cao; Kefa Cen

    2009-05-15

    To recycle industrial wastes and reduce SO{sub 2} pollutant emission in coal combustion, the mineralogical compositions, porosity structures, surface morphologies, and desulfurization properties of three calcium and sodium industrial wastes were investigated via X-ray diffraction (XRD), porosimeter, scanning electron microscopy (SEM), and a fixed-bed reactor. (1) White lime mud (WLM) mainly composed of CaCO{sub 3} with Na{sub 2}O and K{sub 2}O impurities has smaller CaCO{sub 3} particles and a higher surface area than limestone. But calcined WLM has larger CaO particles and a lower surface area than limestone calcined at 1200{sup o}C for 300 s. (2) Calcium carbide residue (CCR) mainly composed of Ca(OH)2, has the highest surface area and smaller Ca(OH){sub 2} particles than the CaCO{sub 3} particles in WLM. Its surface area monotonously and dramatically decreases at 1200{sup o}C for 300 s, but the sintered CaO particles are still smaller than those in the limestone. (3) When brine sludge (BS), mainly composed of NaCl and CaCO{sub 3}, is heated at 1200{sup o}C for 300 s, the NaCl/CaO eutectic solvent facilitates the aggregation of some complex composites to form many larger particles. (4) WLM gives the highest desulfurization efficiency of 80.4% at 1000{sup o}C and 65.0% at 1100{sup o}C in coal combustion. Combined CCR and limestone give a synergistic desulfurization efficiency of 45.8% at 1200{sup o}C. BS with a molar ratio of Na/Ca at 1:15 effectively promotes the synergistic desulfurization efficiency of combined CCR and limestone to a peak of 54.9% at 1200{sup o}C. 23 refs., 10 figs., 3 tabs.

  19. Preparation of sodium humate/{alpha}-aluminum oxide adsorbents for flue gas desulfurization

    SciTech Connect

    Sun, Z.G.; Gao, H.Y.; Hu, G.X.; Li, Y.H.

    2009-06-15

    A new composite adsorbent of sodium humate (HNa)=alpha-aluminium oxide ({alpha}-Al{sub 2}O{sub 3}) for flue gas desulfurization (FGD) was prepared using the impregnation method. Both the adsorbent of {alpha}-Al{sub 2}O{sub 3} and HNa={alpha}-Al{sub 2}O{sub 3} were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray spectrometer (EDS), and scanning electron microscope (SEM). Desulfurization activity of the adsorbent impregnated with ammonia (NH{sub 4}OH) was investigated in a fixed-bed quartz reactor. Experimental results indicate that HNa, which coats the {alpha}-Al{sub 2}O{sub 3} fibers impregnated with HNa solution, improved the property of {alpha}-Al{sub 2}O{sub 3} support for FGD. On the other hand, the HNa-coating on the adsorbent of HNa/{alpha}-Al{sub 2}O{sub 3} impregnated with NH{sub 4}OH played an important role in enhancing the desulfurization property of the {alpha}-Al{sub 2}O{sub 3}. Due to the strong adsorption capability of HNa, more NH{sub 4}OH was adsorbed in the adsorbent of HNa/{alpha}-Al{sub 2}O{sub 3} the longer a high sulfur dioxide (SO{sub 2}) conversation rate was maintained. In addition, because the desulfurization product was a compound fertilizer consisting of ammonium sulfate ((NH{sub 4}){sub 2}SO{sub 4}), ammonium humate (HNH{sub 4}), and HNa, the recycling use of {alpha}-Al{sub 2}O{sub 3} was also easily achieved. Thus, this study can provide a new cost-effective way to remove SO{sub 2} from flue gas.

  20. Low temperature oxidative desulfurization with hierarchically mesoporous titaniumsilicate Ti-SBA-2 single crystals.

    PubMed

    Shi, Chengxiang; Wang, Wenxuan; Liu, Ni; Xu, Xueyan; Wang, Danhong; Zhang, Minghui; Sun, Pingchuan; Chen, Tiehong

    2015-07-21

    Hierarchically porous Ti-SBA-2 with high framework Ti content (up to 5 wt%) was firstly synthesized by employing organic mesomorphous complexes of a cationic surfactant (CTAB) and an anionic polyelectrolyte (PAA) as templates. The material exhibited excellent performance in oxidative desulfurization of diesel fuel at low temperature (40 °C or 25 °C) due to the unique hierarchically porous structure and high framework Ti content. PMID:26096231

  1. o-Iodoxybenzoic acid mediated oxidative desulfurization initiated domino reactions for synthesis of azoles.

    PubMed

    Chaudhari, Pramod S; Pathare, Sagar P; Akamanchi, Krishnacharaya G

    2012-04-20

    A systematic exploration of thiophilic ability of o-iodoxybenzoic acid (IBX) for oxidative desulfurization to trigger domino reactions leading to new methodologies for synthesis of different azoles is described. A variety of highly substituted oxadiazoles, thiadiazoles, triazoles, and tetrazoles have been successfully synthesized in good to excellent yields, starting from readily accessible thiosemicarbazides, bis-diarylthiourea, 1,3-disubtituted thiourea, and thioamides. PMID:22423599

  2. Oxidative desulfurization of fuels catalyzed by Fenton-like ionic liquids at room temperature.

    PubMed

    Jiang, Yunqing; Zhu, Wenshuai; Li, Huaming; Yin, Sheng; Liu, Hua; Xie, Qingjie

    2011-03-21

    Oxidation of the sulfur-containing compounds benzothiophene (BT), dibenzothiophene (DBT), and 4,6-dimethyldibenzothiophene (4,6-DMDBT) has been studied in a desulfurization system composed of model oil, hydrogen peroxide, and different types of ionic liquids [(C(8)H(17))(3)CH(3)N]Cl/FeCl(3), [(C(8)H(17))(3)CH(3)N]Cl/CuCl(2), [(C(8)H(17))(3)CH(3)N]Cl/ZnCl(2), [(C(8)H(17))(3)CH(3)N]Cl/SnCl(2), [(C(4)H(9))(3)CH(3)N]Cl/FeCl(3), [C(10)H(21)(CH(3))(3)N]Cl/FeCl(3), [(C(10)H(21))(2)(CH(3))(2)N]Cl/FeCl(3). Deep desulfurization is achieved in the Fenton-like ionic liquid [(C(8)H(17))(3)CH(3)N]Cl/FeCl(3) at 25 °C for 1 h. The desulfurization of DBT reaches 97.9%, in consuming very low amount of [(C(8)H(17))(3)CH(3)N]Cl/FeCl(3) (only 0.702 mmol). The reaction conditions, for example, the amount of [(C(8)H(17))(3)CH(3)N]Cl/FeCl(3) or H(2)O(2), the temperature, and the molar ratio of FeCl(3) to [(C(8)H(17))(3)CH(3)N]Cl, are investigated for this system. The oxidation reactivity of the different sulfur-containing compounds is found to decrease in the order of DBT>BT>4,6-DMDBT. The desulfurization system can be recycled six times without significant decrease in activity. The sulfur level of FCC gasoline could be reduced from 360 ppm to 110 ppm. PMID:21394927

  3. Microbial Desulfurization of Coals in a Slurry Pipeline Reactor Using. Thiobacillus ferrooxidans.

    PubMed

    Rai, C

    1985-09-01

    Microbial desulfurization of Illinois #6 and Indiana #3 bituminous coal having a total sulfur content of 2 to 8% has been investigated using acidophilic microorganism, Thiobacillus ferrooxidans, in laboratory shake flash experiments and in a two-inch pipeline loop. The results indicate that about 80 to 85% pyritic sulfur removal was achieved with 10 to 25% coal/water slurry recirculated at 6-7 ft/sec at room temperature in 7 to 14 days. The experimental conditions have been optimized for maximum desulfurization. Results from this study show that the rates of bacterial desulfurization from coal samples are higher in the pipeline loop under turbulent flow conditions as compared to the shake-flask experiments for particle sizes ranging from 43 to 200 mum. It is visualized that the proposed coal slurry pipelines could be used as biological plug flow reactors under aerobic conditions. The laboratory corrosion studies under dynamic test conditions show that use of a corrosion inhibitor will limit the pipeline corrosion rate to acceptable levels.

  4. Bioprocessing of crude oils and desulfurization using electro-spray reactors

    SciTech Connect

    Kaufman, E.N.; Borole, A.P.

    1998-07-01

    Biological removal of organic sulfur from petroleum feedstocks offers an attractive alternative to conventional thermochemical treatment due to the mild operating conditions afforded by the biocatalyst. Electro-spray bioreactors were investigated for use in desulfurization due to their reported operational cost savings relative to mechanically agitated reactors and their capability of forming emulsions < 5 {micro}m. Here, the rates dibenzothiophene (DBT) oxidation to 2-hydroxybiphenyl (2-HBP) in hexadecane, by Rhodococcus sp. IGTS8 are compared in the two reactor systems. Desulfurization rates ranged from 1.0 and 5.0 mg 2-HBP/(dry g cells-h), independent of the reactor employed. The batch stirred reactor was capable of forming a very fine emulsion in the presence of the biocatalyst IGTS8, similar to that formed in the electro-spray reactors, presumably due to the fact that the biocatalyst produces its own surfactant. While electro-spray reactors did not prove to be advantageous for the IGTS8 desulfurization system, it may prove advantageous for systems which do not produce surface-active bioagents in addition to being mass transport limited.

  5. Surface acidity effects of Al-SBA-15 mesoporous materials on adsorptive desulfurization.

    PubMed

    Meng, Xiuhong; Wang, Yuan; Duan, Linhai; Qin, Yucai; Yu, Wenguang; Wang, Qiang; Dong, Shiwei; Ruan, Yanjun; Wang, Haiyan; Song, Lijuan

    2014-09-01

    SBA-15 and Aluminum-substituted SBA-15 with Si/Al molar ratio 10 (Al-SBA-15(10)) mesoporous materials were directly synthesized by a hydrolysis approach and characterized by a powder X-ray diffraction (XRD), N2 physisorption analysis and Fourier transform infrared (FTIR) etc. The relative number of hydroxyl groups was investigated by in situ FTIR systematically. The acid type and acid strength of the adsorbents were monitord by FTIR at 423 K and 673 K, respectively, utilizing pyridine as a probe. Desulfurization performances of the adsorbents were investigated via static adsorption experiment. Gas chromatography-sulfur chemiluminescence detector (GC-SCD) was employed to detect the sulfur compounds in model fuels before and after treated by the adsorbents. The calcined Al-SBA-15(10) material shows well-ordered hexagonal mesostructure and strong Lewis acid sites (L acid) and weak Brönsted acid sites (B acid). The number of hydroxy on the surface of the Al-SBA-15(10) is more than that of SBA-15, which is beneficial to further modifications such as spontaneous monolayer dispersion. Desulfurization performance of the adsorbents is affected by surface acidity of adsorbents and the constituent of model fuels (olefins, arene, etc.). The thiophene and olefins adsorbed on the B acid site of the adsorbent may occur subsequently alkylation reactions, which may block the pores of the adsorbents and thus cause the reduction of desulfurization capacity. PMID:25924387

  6. Controlling Peptide Self-Assembly through a Native Chemical Ligation/Desulfurization Strategy.

    PubMed

    Rasale, Dnyaneshwar B; Konda, Maruthi; Biswas, Sagar; Das, Apurba K

    2016-03-18

    Self-assembled peptides were synthesized by using a native chemical ligation (NCL)/desulfurization strategy that maintained the chemical diversity of the self-assembled peptides. Herein, we employed oxo-ester-mediated NCL reactions to incorporate cysteine, a cysteine-based dipeptide, and a sterically hindered unnatural amino acid (penicillamine) into peptides. Self-assembly of the peptides resulted in the formation of self-supporting gels. Microscopy analysis indicated the formation of helical nanofibers, which were responsible for the formation of gel matrices. The self-assembly of the ligated peptides was governed by covalent and non-covalent interactions, as confirmed by FTIR, CD, fluorescence spectroscopy, and MS (ESI) analyses. Peptide disassembly was induced by desulfurization reactions with tris(2-carboxyethyl)phosphine (TCEP) and glutathione at 80 °C. Desulfurization reactions of the ligated peptides converted the Cys and penicillamine functionalities into Ala and Val moieties, respectively. The self-supporting gels showed significant shear-thinning and thixotropic properties.

  7. [Domestication study about desulfuration microorganism from oxidation ditch by low concentration SO2].

    PubMed

    Huang, Bing; Shi, Zhe; Wang, Yan-Yan; Zhang, Shi-Ling

    2010-06-01

    An excellent desulfuration microorganism with a quick growth and propagation, high activation, high efficiency of removing SO2 is obtained from oxidation ditch of a city sewage treatment plant by inductive acclimatization over 6 d with low concentration SO2 gas (100-2 000 mg/m3). The desulfurition microorganism get their energy sources for growth from transforming SO2 (SO3(2-)) to SO4(2-). The predominant bacterium of the desulfuration microorganism has the same characteristic with Thiobacillus ferrooxidans (T. ferrooxidans), which showed that it was Gram negative, short rod bacteria with a single polar flagellum under a microscopic examination, and obtained its nourishment through the oxidation of inorganic compounds. The technology process condition of domestication and desulfuration of microorganism are particular studied, and the results showed that aerating time, SO2 flux and time to provide nutriment contained N, P, K to microorganism were very important. They have an ability with degradation rate of 160g/ (m3 x h) and degradation efficiency over 50% to transform sulfite to sulfate in liquid phase. The bacteria have a 98% of removing efficiency and over 80% of biodegradation efficiency for the 5 500 mg/m3 SO2 gas and the outlet concentration of SO2 is lower than 100 mg/m3, and also have a 95% of removing efficiency for 15 000 mg/m3 SO2 gas in the packed tower reactor with Raschig ring at 3s contact time.

  8. Integrating desulfurization with CO{sub 2}-capture in chemical-looping combustion

    SciTech Connect

    Solunke, Rahul; Veser, Goetz

    2011-02-01

    Chemical looping combustion (CLC) is an emerging technology for clean combustion. We have previously demonstrated that the embedding of metal nanoparticles into a nanostructured ceramic matrix can result in unusually active and sinter-resistant nanocomposite oxygen carrier materials for CLC which maintain high reactivity and high-temperature stability even when sulfur contaminated fuels are used in CLC. Here, we propose a novel process scheme for in situ desulfurization of syngas with simultaneous CO{sub 2}-capture in chemical looping combustion by using these robust nanocomposite oxygen carriers simultaneously as sulfur-capture materials. We found that a nanocomposite Cu-BHA carrier can indeed strongly reduce the H{sub 2}S concentration in the fuel reactor effluent. However, during the process the support matrix is also sulfidized and takes part in the redox process of CLC. This results in SO{sub 2} production during the reduction of the oxygen carrier and thus limits the degree of desulfurization attainable with this kind of carrier. Nevertheless, the results suggest that simultaneous desulfurization and CO{sub 2} capture in CLC is feasible with Cu as oxygen carrier as long as appropriate carrier support materials are chosen, and could result in a novel, strongly intensified process for low-emission, high efficiency combustion of sulfur contaminated fuel streams.

  9. Competitive adsorption desulfurization performance over K - Doped NiY zeolite.

    PubMed

    Li, Haizheng; Han, Xiaona; Huang, Haokai; Wang, Yuxian; Zhao, Liang; Cao, Liyuan; Shen, Baojian; Gao, Jinsen; Xu, Chunming

    2016-12-01

    NiY and KNiY were successfully prepared by impregnation method and characterized by X-ray diffraction (XRD), N2 sorption (BET), scanning electron microscope (SEM), infrared spectrum (IR) and X-ray Photoelectron Spectroscopy (XPS). The competitive adsorption mechanisms of adsorbents were studied by in situ FTIR to explain different desulfurization performance which was evaluated in a miniature fixed-bed flow by gasoline model compounds with 1-hexene or toluene. NiY and KNiY adsorbents showed better desulfurization performance than HY zeolite due to the high selectivity of loaded active metals. Especially, KNiY adsorbent showed its advantages in desulfurization performance with 5vol% olefins or 5vol% aromatics involvement. It could be assigned that introduced K cation enhanced dispersion and content of active Ni species on the surface which made Ni species reduce easily. On the other hand, adsorption mechanisms showed that the protonation reactions of thiophene and 1-hexene occurred on the Brönsted acid sites of NiY, which resulted in pore blockage and the coverage of adsorption active centers. By doping K cation on NiY, the amount of the Brönsted acid sites of NiY was decreased and protonation reactions were weaken. Therefore, the negative effects of Brönsted acid sites were reduced.

  10. Removal of polychlorinated naphthalenes by desulfurization and emissions of polychlorinated naphthalenes from sintering plant.

    PubMed

    Wang, Mengjing; Liu, Wenbin; Hou, Meifang; Li, Qianqian; Han, Ying; Liu, Guorui; Li, Haifeng; Liao, Xiao; Chen, Xuebin; Zheng, Minghui

    2016-01-01

    The sintering flue gas samples were collected at the inlets and outlets of the desulfurization systems to evaluate the influence of the systems on PCNs emission concentrations, profiles, and emission factors. The PCNs concentrations at the inlets and outlets were 27888-153672 pg m(-3) and 11988-42245 pg m(-3),respectively. Desulfurization systems showed excellent removal for PCNs, and the removal efficiencies of PCNs increase with increasing chlorination level. Lower chlorinated homologs are more sensitive to the desulfurization process than higher ones. High levels of PCNs were also detected in the gypsum (11600-29720 pg g(-1)) and fly ash samples (4946-64172 pg g(-1)). The annual total emissions of PCNs released to flue gas and gypsum from the sintering plants were about 394 kg, 48.5% of which was in gypsum. The surface area of the fly ash samples increased significantly from the first to the fourth stage of the series-connected electrostatic precipitator, accompanying obvious rising of concentration of PCNs in the fly ash samples. PMID:27197591

  11. Desulfurization of coal: enhanced selectivity using phase transfer catalysts. Quarterly report, March 1 - May 31, 1996

    SciTech Connect

    Palmer, S.R.; Hippo, E.J.

    1996-12-31

    Due to environmental problems related to the combustion of high sulfur Illinois coal, there continues to be interest in the development in viable pre-combustion desulfurization processes. Recent studies by the authors have obtained very good sulfur removals but the reagents that are used are too expensive. Use of cheaper reagents leads to a loss of desired coal properties. This study investigated the application phase transfer catalysts to the selective oxidation of sulfur in coal using air and oxygen as oxidants. The phase transfer catalyst is expected to function as a selectivity moderator by permitting the use of milder reaction conditions that otherwise necessary. This would enhance the sulfur selectivity and help retain the heating value of the coal. The use of certain coal combustion wastes for desulfurization, and the application of cerium (IV) catalyzed air oxidation for selective sulfur oxidation are also being studied. If successful, this project could lead to the rapid development of a commercially viable desulfurization process. This would significantly improve the marketability of Illinois coal.

  12. Numerical simulation and field test study of desulfurization wastewater evaporation treatment through flue gas.

    PubMed

    Deng, Jia-Jia; Pan, Liang-Ming; Chen, De-Qi; Dong, Yu-Quan; Wang, Cheng-Mu; Liu, Hang; Kang, Mei-Qiang

    2014-01-01

    Aimed at cost saving and pollution reduction, a novel desulfurization wastewater evaporation treatment system (DWETS) for handling wet flue gas desulfurization (WFGD) wastewater of a coal-fired power plant was studied. The system's advantages include simple process, and less investment and space. The feasibility of this system has been proven and the appropriate position and number of nozzles, the spray droplet size and flue gas temperature limitation have been obtained by computational fluid dynamics (CFD) simulation. The simulation results show that a longer duct, smaller diameter and higher flue gas temperature could help to increase the evaporation rate. The optimal DWETS design of Shangdu plant is 100 μm droplet sprayed by two nozzles located at the long duct when the flue gas temperature is 130 °C. Field tests were carried out based on the simulation results. The effects of running DWETS on the downstream devices have been studied. The results show that DWETS has a positive impact on ash removal efficiency and does not have any negative impact on the electrostatic precipitator (ESP), flue gas heat exchanger and WFGD. The pH values of the slurry of WFGD slightly increase when the DWETS is running. The simulation and field test of the DWETS show that it is a feasible future technology for desulfurization wastewater treatment.

  13. Effects of magnetic fields on improving mass transfer in flue gas desulfurization using a fluidized bed

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Gui, Keting; Wang, Xiaobo

    2016-02-01

    The effects of magnetic fields on improving the mass transfer in flue gas desulfurization using a fluidized bed are investigated in the paper. In this research, the magnetically fluidized bed (MFB) is used as the reactor in which ferromagnetic particles are fluidized with simulated flue gas under the influence of an external magnetic field. Lime slurry is continuously sprayed into the reactor. As a consequence, the desulfurization reaction and the slurry drying process take place simultaneously in the MFB. In this paper, the effects of ferromagnetic particles and external magnetic fields on the desulphurization efficiency are studied and compared with that of quartz particles as the fluidized particles. Experimental results show that the ferromagnetic particles not only act as a platform for lime slurry to precipitate on like quartz particles, but also take part in the desulfurization reaction. The results also show that the specific surface area of ferromagnetic particles after reaction is enlarged as the magnetic intensity increases, and the external magnetic field promotes the oxidation of S(IV), improving the mass transfer between sulphur and its sorbent. Hence, the efficiency of desulphurization under the effects of external magnetic fields is higher than that in general fluidized beds.

  14. Highly stable and regenerable Mn-based/SBA-15 sorbents for desulfurization of hot coal gas.

    PubMed

    Zhang, F M; Liu, B S; Zhang, Y; Guo, Y H; Wan, Z Y; Subhan, Fazle

    2012-09-30

    A series of mesoporous xCuyMn/SBA-15 sorbents with different Cu/Mn atomic ratios were prepared by wet impregnation method and their desulfurization performance in hot coal gas was investigated in a fixed-bed quartz reactor in the range of 700-850°C. The successive nine desulfurization-regeneration cycles at 800°C revealed that 1Cu9Mn/SBA-15 presented high performance with durable regeneration ability due to the high dispersion of Mn(2)O(3) particles incorporated with a certain amount of copper oxides. The breakthrough sulfur capacity of 1Cu9Mn/SBA-15 observed 800°C is 13.8 g S/100g sorbents, which is remarkably higher than these of 40 wt%LaFeO(3)/SBA-15 (4.8 g S/100g sorbents) and 50 wt%LaFe(2)O(x)/MCM-41 (5.58 g S/100g sorbents) used only at 500-550°C. This suggested that the loading of Mn(2)O(3) active species with high thermal stability to SBA-15 support significantly increased sulfur capacity at relatively higher sulfidation temperature. The fresh and used xCuyMn/SBA-15 sorbents were characterized by means of BET, XRD, XPS, XAES, TG/DSC and HRTEM techniques, confirmed that the structure of the sorbents remained intact before and after hot coal gas desulfurization.

  15. Competitive adsorption desulfurization performance over K - Doped NiY zeolite.

    PubMed

    Li, Haizheng; Han, Xiaona; Huang, Haokai; Wang, Yuxian; Zhao, Liang; Cao, Liyuan; Shen, Baojian; Gao, Jinsen; Xu, Chunming

    2016-12-01

    NiY and KNiY were successfully prepared by impregnation method and characterized by X-ray diffraction (XRD), N2 sorption (BET), scanning electron microscope (SEM), infrared spectrum (IR) and X-ray Photoelectron Spectroscopy (XPS). The competitive adsorption mechanisms of adsorbents were studied by in situ FTIR to explain different desulfurization performance which was evaluated in a miniature fixed-bed flow by gasoline model compounds with 1-hexene or toluene. NiY and KNiY adsorbents showed better desulfurization performance than HY zeolite due to the high selectivity of loaded active metals. Especially, KNiY adsorbent showed its advantages in desulfurization performance with 5vol% olefins or 5vol% aromatics involvement. It could be assigned that introduced K cation enhanced dispersion and content of active Ni species on the surface which made Ni species reduce easily. On the other hand, adsorption mechanisms showed that the protonation reactions of thiophene and 1-hexene occurred on the Brönsted acid sites of NiY, which resulted in pore blockage and the coverage of adsorption active centers. By doping K cation on NiY, the amount of the Brönsted acid sites of NiY was decreased and protonation reactions were weaken. Therefore, the negative effects of Brönsted acid sites were reduced. PMID:27552418

  16. Synthesis and application of different phthalocyanine molecular sieve catalyst for oxidative desulfurization

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Li, Siwen; Wang, Jinyi; Zhang, Ronglan; Gao, Ruimin; Zhao, Jianshe; Wang, Junlong

    2015-05-01

    M2(PcAN)2 (M=Fe, Co, Ni, Cu, Zn and Mn) anchored onto W-HZSM-5 (M2(PcAN)2-W-HZSM-5) or the M2(PcTN)2 doping W-HZSM-5 (M2(PcTN)2/W-HZSM-5) were prepared and their catalytic performances were tested for oxidative desulfurization in the presence of oxygen. Thiophene (T), benzothiophene (BT), and dibenzothiophene (DBT) were considered as sulfur compounds. Among zeolite-based catalysts, the Cu2(PcAN)2-W-HZSM-5 and Cu2(PcTN)2/W-HZSM-5 showed superior desulfurization performance and the activity of selectivity followed the order: T>BT>DBT. The effects of phthalocyanine concentration were studied by UV-Vis and calcination temperature was obtained by TG-DSC for Cu2(PcTN)2/W-HZSM-5. Catalysts were characterized by EA, IR, XRD, SEM, TEM, ICP, and N2 adsorption. Reaction time, temperature and the amount of catalyst were investigated as the important parameters for optimization of the reaction. Furthermore, a possible process of oxidative desulfurization and the reaction products were proposed.

  17. Desulfurization of dibenzothiophene by a newly isolated Corynebacterium sp. ZD-1 in aqueous phase.

    PubMed

    Wang, Miao-Dong; Li, Wei; Wang, Da-Hui; Shi, Yao

    2004-01-01

    Sulfur emission through fuel combustion is a global problem because it is a major cause of acid rain. Crud oil contains many heterocyclic organic sulfur compounds, among which dibenzothiophene (DBT) and DBTs bearing alkyl substitutions usually are representative compounds. A strain was isolated from refinery sludge and identified as Corynebacterium ZD-1. The behavior of DBT degradation by ZD-1 in aqueous phase was investigated. Corynebacterium ZD-1 could metabolize DBT to 2-hydroxybiphenyl(2-HBP) as the dead-end metabolite through a sulfur-specific pathway. In shake flask culture, ZD-1 had its maximal desulfurization activity in the late exponential growth phase and the specific production rate of 2-HBP was about 0.14 (mmol x kg dry cell(-1) x min(-1), mmol x KDC(-1) x min(-1)). Active resting cells for desulfurization should be prepared only in this period. 2-HBP inhibited the growth of strain ZD-1, the production of DBT degradation enzymes, and the activity of enzymes. Sulfate inhibited the production of dibenzothiophene (DBT) degradation enzymes but had no effect on the enzymes' activity. The production rates of 2-HBP at lower cell densities were higher and the maximum amount conversion of DBT to 2-HBP (0.067 mmol/L) after 8 h was gained at 9.2 g dry cell/L rather higher cell density. The results indicated that this newly isolated strain could be a promising biocatalyst for DBT desulfurization.

  18. Removal of polychlorinated naphthalenes by desulfurization and emissions of polychlorinated naphthalenes from sintering plant.

    PubMed

    Wang, Mengjing; Liu, Wenbin; Hou, Meifang; Li, Qianqian; Han, Ying; Liu, Guorui; Li, Haifeng; Liao, Xiao; Chen, Xuebin; Zheng, Minghui

    2016-05-20

    The sintering flue gas samples were collected at the inlets and outlets of the desulfurization systems to evaluate the influence of the systems on PCNs emission concentrations, profiles, and emission factors. The PCNs concentrations at the inlets and outlets were 27888-153672 pg m(-3) and 11988-42245 pg m(-3),respectively. Desulfurization systems showed excellent removal for PCNs, and the removal efficiencies of PCNs increase with increasing chlorination level. Lower chlorinated homologs are more sensitive to the desulfurization process than higher ones. High levels of PCNs were also detected in the gypsum (11600-29720 pg g(-1)) and fly ash samples (4946-64172 pg g(-1)). The annual total emissions of PCNs released to flue gas and gypsum from the sintering plants were about 394 kg, 48.5% of which was in gypsum. The surface area of the fly ash samples increased significantly from the first to the fourth stage of the series-connected electrostatic precipitator, accompanying obvious rising of concentration of PCNs in the fly ash samples.

  19. Preliminary evaluation of a process using plasma reactions to desulfurize heavy oils. Final report

    SciTech Connect

    Grimes, P.W.; Miknis, F.P.

    1997-09-01

    Western Research Institute (WRI) has conducted exploratory experiments on the use of microwave-induced plasmas to desulfurize heavy oils. Batch mode experiments were conducted in a quartz reactor system using various reactive and nonreactive plasmas. In these experiments a high-sulfur asphalt was exposed to various plasmas, and the degree of conversion to distillate, gas, and solids was recorded. Products from selected experiments were analyzed to determine if the plasma exposure had resulted in a significant reduction in sulfur content. Exploratory experiments were conducted using reactive plasmas generated from hydrogen and methane and nonreactive plasmas generated from nitrogen. The effects of varying exposure duration, sample temperature, and location of the sample with respect to the plasma discharge were investigated. For comparative purposes two experiments were conducted in which the sample was heated under nitrogen with no plasma exposure. Distillates containing approximately 28% less sulfur than the feedstock represented the maximum desulfurization attained in the plasma experiments. It does not appear that plasma reactions using the simple configurations employed in this study represent a viable method for the desulfurization of heavy oils.

  20. Removal of polychlorinated naphthalenes by desulfurization and emissions of polychlorinated naphthalenes from sintering plant

    NASA Astrophysics Data System (ADS)

    Wang, Mengjing; Liu, Wenbin; Hou, Meifang; Li, Qianqian; Han, Ying; Liu, Guorui; Li, Haifeng; Liao, Xiao; Chen, Xuebin; Zheng, Minghui

    2016-05-01

    The sintering flue gas samples were collected at the inlets and outlets of the desulfurization systems to evaluate the influence of the systems on PCNs emission concentrations, profiles, and emission factors. The PCNs concentrations at the inlets and outlets were 27888-153672 pg m-3 and 11988-42245 pg m-3,respectively. Desulfurization systems showed excellent removal for PCNs, and the removal efficiencies of PCNs increase with increasing chlorination level. Lower chlorinated homologs are more sensitive to the desulfurization process than higher ones. High levels of PCNs were also detected in the gypsum (11600-29720 pg g-1) and fly ash samples (4946-64172 pg g-1). The annual total emissions of PCNs released to flue gas and gypsum from the sintering plants were about 394 kg, 48.5% of which was in gypsum. The surface area of the fly ash samples increased significantly from the first to the fourth stage of the series-connected electrostatic precipitator, accompanying obvious rising of concentration of PCNs in the fly ash samples.

  1. Removal of polychlorinated naphthalenes by desulfurization and emissions of polychlorinated naphthalenes from sintering plant

    PubMed Central

    Wang, Mengjing; Liu, Wenbin; Hou, Meifang; Li, Qianqian; Han, Ying; Liu, Guorui; Li, Haifeng; Liao, Xiao; Chen, Xuebin; Zheng, Minghui

    2016-01-01

    The sintering flue gas samples were collected at the inlets and outlets of the desulfurization systems to evaluate the influence of the systems on PCNs emission concentrations, profiles, and emission factors. The PCNs concentrations at the inlets and outlets were 27888–153672 pg m−3 and 11988–42245 pg m−3,respectively. Desulfurization systems showed excellent removal for PCNs, and the removal efficiencies of PCNs increase with increasing chlorination level. Lower chlorinated homologs are more sensitive to the desulfurization process than higher ones. High levels of PCNs were also detected in the gypsum (11600–29720 pg g−1) and fly ash samples (4946–64172 pg g−1). The annual total emissions of PCNs released to flue gas and gypsum from the sintering plants were about 394 kg, 48.5% of which was in gypsum. The surface area of the fly ash samples increased significantly from the first to the fourth stage of the series-connected electrostatic precipitator, accompanying obvious rising of concentration of PCNs in the fly ash samples. PMID:27197591

  2. Numerical simulation and field test study of desulfurization wastewater evaporation treatment through flue gas.

    PubMed

    Deng, Jia-Jia; Pan, Liang-Ming; Chen, De-Qi; Dong, Yu-Quan; Wang, Cheng-Mu; Liu, Hang; Kang, Mei-Qiang

    2014-01-01

    Aimed at cost saving and pollution reduction, a novel desulfurization wastewater evaporation treatment system (DWETS) for handling wet flue gas desulfurization (WFGD) wastewater of a coal-fired power plant was studied. The system's advantages include simple process, and less investment and space. The feasibility of this system has been proven and the appropriate position and number of nozzles, the spray droplet size and flue gas temperature limitation have been obtained by computational fluid dynamics (CFD) simulation. The simulation results show that a longer duct, smaller diameter and higher flue gas temperature could help to increase the evaporation rate. The optimal DWETS design of Shangdu plant is 100 μm droplet sprayed by two nozzles located at the long duct when the flue gas temperature is 130 °C. Field tests were carried out based on the simulation results. The effects of running DWETS on the downstream devices have been studied. The results show that DWETS has a positive impact on ash removal efficiency and does not have any negative impact on the electrostatic precipitator (ESP), flue gas heat exchanger and WFGD. The pH values of the slurry of WFGD slightly increase when the DWETS is running. The simulation and field test of the DWETS show that it is a feasible future technology for desulfurization wastewater treatment. PMID:25325555

  3. Highly stable and regenerable Mn-based/SBA-15 sorbents for desulfurization of hot coal gas.

    PubMed

    Zhang, F M; Liu, B S; Zhang, Y; Guo, Y H; Wan, Z Y; Subhan, Fazle

    2012-09-30

    A series of mesoporous xCuyMn/SBA-15 sorbents with different Cu/Mn atomic ratios were prepared by wet impregnation method and their desulfurization performance in hot coal gas was investigated in a fixed-bed quartz reactor in the range of 700-850°C. The successive nine desulfurization-regeneration cycles at 800°C revealed that 1Cu9Mn/SBA-15 presented high performance with durable regeneration ability due to the high dispersion of Mn(2)O(3) particles incorporated with a certain amount of copper oxides. The breakthrough sulfur capacity of 1Cu9Mn/SBA-15 observed 800°C is 13.8 g S/100g sorbents, which is remarkably higher than these of 40 wt%LaFeO(3)/SBA-15 (4.8 g S/100g sorbents) and 50 wt%LaFe(2)O(x)/MCM-41 (5.58 g S/100g sorbents) used only at 500-550°C. This suggested that the loading of Mn(2)O(3) active species with high thermal stability to SBA-15 support significantly increased sulfur capacity at relatively higher sulfidation temperature. The fresh and used xCuyMn/SBA-15 sorbents were characterized by means of BET, XRD, XPS, XAES, TG/DSC and HRTEM techniques, confirmed that the structure of the sorbents remained intact before and after hot coal gas desulfurization. PMID:22835768

  4. New perspectives for noble gases in oceanography

    NASA Astrophysics Data System (ADS)

    Aeschbach, Werner

    2016-08-01

    Conditions prevailing in regions of deep water formation imprint their signature in the concentrations of dissolved noble gases, which are conserved in the deep ocean. Such "recharge conditions" including temperature, salinity, and interactions with sea ice are important in view of ocean-atmosphere CO2 partitioning. Noble gases, especially the temperature sensitive Kr and Xe, are well-established tracers to reconstruct groundwater recharge conditions. In contrast, tracer oceanography has traditionally focused on He isotopes and the light noble gases Ne and Ar, which could be analyzed at the required high precision. Recent developments of analytical and data interpretation methods now provide fresh perspectives for noble gases in oceanography.

  5. Angular correlation studies in noble gases

    NASA Technical Reports Server (NTRS)

    Coleman, P. G.

    1990-01-01

    There has been a recent revival of interest in the measurement of angular correlation of annihilation photons from the decay of positrons and positronium in gases. This revival has been stimulated by the possibility offered by the technique to shed new light on the apparently low positronium formation fraction in the heavier noble gases and to provide information on positronium quenching processes in gases such as oxygen. There is also the potential for learning about positronium slowing down in gases. This review focuses on experimental noble gas work and considers what new information has been, and may be, gained from these studies.

  6. Large N model of bose gases

    NASA Astrophysics Data System (ADS)

    Ke, Ke; Radzihovsky, Leo

    2009-10-01

    We construct the large N model of bose gases. Using an artificial parameter 1/N to do the perturbative analysis to study two models: U(N) bose gases and U(1) xO(N) bose gases. We find that for the U(N) model we get the same Bogoliubov spectrum and LHY thermal dynamical relations with ordinary bose gases. For the U(1) xO(N) model, however, we calculate dispersion relation, chemical potential and free energy when N goes to infinity and find that every quantities depends on the ration of two scattering length and √(na^3).

  7. Cooling Atomic Gases With Disorder.

    PubMed

    Paiva, Thereza; Khatami, Ehsan; Yang, Shuxiang; Rousseau, Valéry; Jarrell, Mark; Moreno, Juana; Hulet, Randall G; Scalettar, Richard T

    2015-12-11

    Cold atomic gases have proven capable of emulating a number of fundamental condensed matter phenomena including Bose-Einstein condensation, the Mott transition, Fulde-Ferrell-Larkin-Ovchinnikov pairing, and the quantum Hall effect. Cooling to a low enough temperature to explore magnetism and exotic superconductivity in lattices of fermionic atoms remains a challenge. We propose a method to produce a low temperature gas by preparing it in a disordered potential and following a constant entropy trajectory to deliver the gas into a nondisordered state which exhibits these incompletely understood phases. We show, using quantum Monte Carlo simulations, that we can approach the Néel temperature of the three-dimensional Hubbard model for experimentally achievable parameters. Recent experimental estimates suggest the randomness required lies in a regime where atom transport and equilibration are still robust.

  8. APPARATUS FOR CATALYTICALLY COMBINING GASES

    DOEpatents

    Busey, H.M.

    1958-08-12

    A convection type recombiner is described for catalytically recombining hydrogen and oxygen which have been radiolytically decomposed in an aqueous homogeneous nuclear reactor. The device is so designed that the energy of recombination is used to circulate the gas mixture over the catalyst. The device consists of a vertical cylinder having baffles at its lower enda above these coarse screens having platinum and alumina pellets cemented thereon, and an annular passage for the return of recombined, condensed water to the reactor moderator system. This devicea having no moving parts, provides a simple and efficient means of removing the danger of accumulated hot radioactive, explosive gases, and restoring them to the moderator system for reuse.

  9. Granular gases under extreme driving

    NASA Astrophysics Data System (ADS)

    Kang, W.; Machta, J.; Ben-Naim, E.

    2010-08-01

    We study inelastic gases in two dimensions using event-driven molecular-dynamics simulations. Our focus is the nature of the stationary state attained by rare injection of large amounts of energy to balance the dissipation due to collisions. We find that under such extreme driving, with the injection rate much smaller than the collision rate, the velocity distribution has a power-law high-energy tail. The numerically measured exponent characterizing this tail is in excellent agreement with predictions of kinetic theory over a wide range of system parameters. We conclude that driving by rare but powerful energy injection leads to a well-mixed gas and constitutes an alternative mechanism for agitating granular matter. In this distinct nonequilibrium steady state, energy cascades from large to small scales. Our simulations also show that when the injection rate is comparable with the collision rate, the velocity distribution has a stretched exponential tail.

  10. Proteomics and Metabolomics Analyses to Elucidate the Desulfurization Pathway of Chelatococcus sp.

    PubMed

    Bordoloi, Naba K; Bhagowati, Pabitra; Chaudhuri, Mihir K; Mukherjee, Ashis K

    2016-01-01

    Desulfurization of dibenzothiophene (DBT) and alkylated DBT derivatives present in transport fuel through specific cleavage of carbon-sulfur (C-S) bonds by a newly isolated bacterium Chelatococcus sp. is reported for the first time. Gas chromatography-mass spectrometry (GC-MS) analysis of the products of DBT degradation by Chelatococcus sp. showed the transient formation of 2-hydroxybiphenyl (2-HBP) which was subsequently converted to 2-methoxybiphenyl (2-MBP) by methylation at the hydroxyl group of 2-HBP. The relative ratio of 2-HBP and 2-MBP formed after 96 h of bacterial growth was determined at 4:1 suggesting partial conversion of 2-HBP or rapid degradation of 2-MBP. Nevertheless, the enzyme involved in this conversion process remains to be identified. This production of 2-MBP rather than 2-HBP from DBT desulfurization has a significant metabolic advantage for enhancing the growth and sulfur utilization from DBT by Chelatococcus sp. and it also reduces the environmental pollution by 2-HBP. Furthermore, desulfurization of DBT derivatives such as 4-M-DBT and 4, 6-DM-DBT by Chelatococcus sp. resulted in formation of 2-hydroxy-3-methyl-biphenyl and 2-hydroxy -3, 3/- dimethyl-biphenyl, respectively as end product. The GC and X-ray fluorescence studies revealed that Chelatococcus sp. after 24 h of treatment at 37°C reduced the total sulfur content of diesel fuel by 12% by per gram resting cells, without compromising the quality of fuel. The LC-MS/MS analysis of tryptic digested intracellular proteins of Chelatococcus sp. when grown in DBT demonstrated the biosynthesis of 4S pathway desulfurizing enzymes viz. monoxygenases (DszC, DszA), desulfinase (DszB), and an NADH-dependent flavin reductase (DszD). Besides, several other intracellular proteins of Chelatococcus sp. having diverse biological functions were also identified by LC-MS/MS analysis. Many of these enzymes are directly involved with desulfurization process whereas the other enzymes/proteins support growth

  11. Proteomics and Metabolomics Analyses to Elucidate the Desulfurization Pathway of Chelatococcus sp.

    PubMed Central

    Chaudhuri, Mihir K.

    2016-01-01

    Desulfurization of dibenzothiophene (DBT) and alkylated DBT derivatives present in transport fuel through specific cleavage of carbon-sulfur (C-S) bonds by a newly isolated bacterium Chelatococcus sp. is reported for the first time. Gas chromatography-mass spectrometry (GC-MS) analysis of the products of DBT degradation by Chelatococcus sp. showed the transient formation of 2-hydroxybiphenyl (2-HBP) which was subsequently converted to 2-methoxybiphenyl (2-MBP) by methylation at the hydroxyl group of 2-HBP. The relative ratio of 2-HBP and 2-MBP formed after 96 h of bacterial growth was determined at 4:1 suggesting partial conversion of 2-HBP or rapid degradation of 2-MBP. Nevertheless, the enzyme involved in this conversion process remains to be identified. This production of 2-MBP rather than 2-HBP from DBT desulfurization has a significant metabolic advantage for enhancing the growth and sulfur utilization from DBT by Chelatococcus sp. and it also reduces the environmental pollution by 2-HBP. Furthermore, desulfurization of DBT derivatives such as 4-M-DBT and 4, 6-DM-DBT by Chelatococcus sp. resulted in formation of 2-hydroxy-3-methyl-biphenyl and 2-hydroxy –3, 3/- dimethyl-biphenyl, respectively as end product. The GC and X-ray fluorescence studies revealed that Chelatococcus sp. after 24 h of treatment at 37°C reduced the total sulfur content of diesel fuel by 12% by per gram resting cells, without compromising the quality of fuel. The LC-MS/MS analysis of tryptic digested intracellular proteins of Chelatococcus sp. when grown in DBT demonstrated the biosynthesis of 4S pathway desulfurizing enzymes viz. monoxygenases (DszC, DszA), desulfinase (DszB), and an NADH-dependent flavin reductase (DszD). Besides, several other intracellular proteins of Chelatococcus sp. having diverse biological functions were also identified by LC-MS/MS analysis. Many of these enzymes are directly involved with desulfurization process whereas the other enzymes/proteins support

  12. Proteomics and Metabolomics Analyses to Elucidate the Desulfurization Pathway of Chelatococcus sp.

    PubMed

    Bordoloi, Naba K; Bhagowati, Pabitra; Chaudhuri, Mihir K; Mukherjee, Ashis K

    2016-01-01

    Desulfurization of dibenzothiophene (DBT) and alkylated DBT derivatives present in transport fuel through specific cleavage of carbon-sulfur (C-S) bonds by a newly isolated bacterium Chelatococcus sp. is reported for the first time. Gas chromatography-mass spectrometry (GC-MS) analysis of the products of DBT degradation by Chelatococcus sp. showed the transient formation of 2-hydroxybiphenyl (2-HBP) which was subsequently converted to 2-methoxybiphenyl (2-MBP) by methylation at the hydroxyl group of 2-HBP. The relative ratio of 2-HBP and 2-MBP formed after 96 h of bacterial growth was determined at 4:1 suggesting partial conversion of 2-HBP or rapid degradation of 2-MBP. Nevertheless, the enzyme involved in this conversion process remains to be identified. This production of 2-MBP rather than 2-HBP from DBT desulfurization has a significant metabolic advantage for enhancing the growth and sulfur utilization from DBT by Chelatococcus sp. and it also reduces the environmental pollution by 2-HBP. Furthermore, desulfurization of DBT derivatives such as 4-M-DBT and 4, 6-DM-DBT by Chelatococcus sp. resulted in formation of 2-hydroxy-3-methyl-biphenyl and 2-hydroxy -3, 3/- dimethyl-biphenyl, respectively as end product. The GC and X-ray fluorescence studies revealed that Chelatococcus sp. after 24 h of treatment at 37°C reduced the total sulfur content of diesel fuel by 12% by per gram resting cells, without compromising the quality of fuel. The LC-MS/MS analysis of tryptic digested intracellular proteins of Chelatococcus sp. when grown in DBT demonstrated the biosynthesis of 4S pathway desulfurizing enzymes viz. monoxygenases (DszC, DszA), desulfinase (DszB), and an NADH-dependent flavin reductase (DszD). Besides, several other intracellular proteins of Chelatococcus sp. having diverse biological functions were also identified by LC-MS/MS analysis. Many of these enzymes are directly involved with desulfurization process whereas the other enzymes/proteins support growth

  13. Purified recombinant EBV desoxyribonuclease in serological diagnosis of nasopharyngeal carcinoma.

    PubMed

    Stolzenberg, M C; Debouze, S; Ng, M; Sham, J; Choy, D; Bouguermouh, A; Chan, K H; Ooka, T

    1996-05-01

    To evaluate applications of highly purified recombinant EBV DNAase in the diagnosis and prognosis of NPC, we tested sera from patients with NPC, other EBV-associated diseases and EBV-seropositive and -seronegative healthy subjects by immunoblotting and DNAase inhibitory assay. The results were compared with those obtained by the conventional immunofluorescence assays against the EBV-specified early antigens and capsid antigens. The antigenic specificity of the immunoblotting assay for IgG antibody against the viral enzyme, but not that for the IgA antibody, was correlated with DNAase-inhibitory activity of the sera and their titers of IgG antibodies against the viral early antigens. Purified IgA as well as IgG from NPC sera inhibited enzyme activity with similar efficiency. The use of highly purified viral DNase has increased the sensitivity of detection of the corresponding antibodies by immunoblotting, with the IgG antibody being detected in all but one, and IgA antibody in all but 2, of the 174 NPC sera tested. The IgG antibody was also commonly detected in the other groups of control sera, while the IgA antibody was detected in about 10% of African Burkitt's lymphoma and Algerian Hodgkin's lymphoma patients and less than 3% of the other control subjects. These results suggest that IgA antibody against recombinant EBV DNAase may be useful in the diagnosis of NPC, but the level of this antibody did not appear to be related to clinical stages of this cancer. PMID:8621254

  14. Mitogenic effects of purified outer membrane proteins from Pseudomonas aeruginosa.

    PubMed Central

    Chen, Y H; Hancock, R E; Mishell, R I

    1980-01-01

    Three major outer membrane proteins from Pseudomonas aeruginosa PAO1 were purified and tested for their ability to stimulate resting murine lymphocytes to proliferate. It was demonstrated that picomole amounts of all three proteins were mitogenic for both intact and T-lymphocyte-depleted populations of spleen cells from C3H/HeJ mice. In contrast, they had no activity against either mature or immature thymocytes. Since the strain of mice used is unable to respond to lipopolysaccharide, we condlude that the three proteins are B-cell mitogens. Images Fig. 2 PMID:6769818

  15. Growth of purified astrocytes in a chemically defined medium

    SciTech Connect

    Morrison, R.S.; De Vellis, J.

    1981-11-01

    Astrocytes purified from primary cultures of neonatal rat cerebrum can not be grown in a synthetic medium supplemented with putrescine, prostaglandin F/sub 2//sub ..cap alpha../, insulin, fibroblast growth factor, and hydrocortisone. These five supplements have a marked synergistic effect on growth when used in combination but have little effect when used individually. Astrocytes grown in the defined medium exhibit dramatic changes in morphological characteristics in comparison to cells grown in serum-free or serum-supplemented medium. In addition, these cells express the astrocyte-specific marker glial fibrillary acidic protein and are estimated by several criteria to be greater than 95% astrocytes.

  16. Thermostable purified endoglucanas from acidothermus cellulolyticus ATCC 43068

    DOEpatents

    Himmel, Michael E.; Adney, William S.; Tucker, Melvin P.; Grohmann, Karel

    1994-01-01

    A purified low molecular weight cellulase endoglucanase I having a molecular weight of between about 57,420 to about 74,580 daltons from Acidothermus cellulolyticus (ATCC 43068). The cellulase is water soluble, possesses both C.sub.1 and C.sub.x types of enzyme activity, a high degree of stability toward heat, and exhibits optimum temperature activity at about 83.degree. C. at pH's from about 2 to about 9, and in inactivation temperature of about 110.degree. C. at pH's from about 2 to about 9.

  17. Thermostable purified endoglucanase from Acidothermus cellulolyticus ATCC 43068

    DOEpatents

    Himmel, M.E.; Adney, W.S.; Tucker, M.P.; Grohmann, K.

    1994-01-04

    A purified low molecular weight cellulase endoglucanase I having a molecular weight of between about 57,420 to about 74,580 daltons from Acidothermus cellulolyticus (ATCC 43068) is presented. The cellulase is water soluble, possesses both C[sub 1] and C[sub x] types of enzyme activity, a high degree of stability toward heat, and exhibits optimum temperature activity at about 83 C at pH's from about 2 to about 9, and in inactivation temperature of about 110 C at pH's from about 2 to about 9. 7 figures.

  18. BUILDING MATERIALS MADE FROM FLUE GAS DESULFURIZATION BY-PRODUCTS

    SciTech Connect

    Michael W. Grutzeck; Maria DiCola; Paul Brenner

    2006-03-30

    Flue gas desulphurization (FGD) materials are produced in abundant quantities by coal burning utilities. Due to environmental restrains, flue gases must be ''cleaned'' prior to release to the atmosphere. They are two general methods to ''scrub'' flue gas: wet and dry. The choice of scrubbing material is often defined by the type of coal being burned, i.e. its composition. Scrubbing is traditionally carried out using a slurry of calcium containing material (slaked lime or calcium carbonate) that is made to contact exiting flue gas as either a spay injected into the gas or in a bubble tower. The calcium combined with the SO{sub 2} in the gas to form insoluble precipitates. Some plants have been using dry injection of these same materials or their own Class C fly ash to scrub. In either case the end product contains primarily hannebachite (CaSO{sub 3} {center_dot} 1/2H{sub 2}O) with smaller amounts of gypsum (CaSO{sub 4} {center_dot} 2H{sub 2}O). These materials have little commercial use. Experiments were carried out that were meant to explore the feasibility of using blends of hannebachite and fly ash mixed with concentrated sodium hydroxide to make masonry products. The results suggest that some of these mixtures could be used in place of conventional Portland cement based products such as retaining wall bricks and pavers.

  19. Fructophilic behaviour of Gordonia alkanivorans strain 1B during dibenzothiophene desulfurization process.

    PubMed

    Alves, Luís; Paixão, Susana M

    2014-01-25

    Biodesulfurization (BDS) aims at the removal of recalcitrant sulfur from fossil fuels at mild operating conditions with the aid of microorganisms. These microorganisms can remove sulfur from dibenzothiphene (DBT), a model compound, or other polycyclic aromatic used as sulfur source, making BDS an easy and environmental friendly process. Gordonia alkanivorans strain 1B has been described as a desulfurizing bacterium, able to desulfurize DBT to 2-hydroxybiphenyl (2-HBP), the final product of the 4S pathway, using d-glucose as carbon source. However, both cell growth and desulfurization can be largely affected by the nutrient composition of the growth medium, due to cofactor requirements of many enzymes involved in the BDS biochemical pathway. In this study, the main goal was to investigate the influence of several sugars, as carbon source, on the growth and DBT desulfurization ability of G. alkanivorans strain 1B. The results of desulfurization tests showed that the lowest values for the growth rate (0.025 hour(-1)) and for the overall 2-HBP production rate (1.80 μm/hour) by the strain 1B were obtained in glucose grown cultures. When using sucrose, the growth rate increase exhibited by strain 1B led to a higher biomass productivity, which induced a slightly increase in the 2-HBP production rate (1.91 μm/hour), conversely in terms of 2-HBP specific production rate (q2-HBP) the value obtained was markedly lower (0.718 μmol/g/hour in sucrose versus 1.22 μmol/g/hour in glucose). When a mixture of glucose and fructose was used as carbon source, strain 1B reached a value of q2-HBP=1.90 μmol/g/hour, close to that in fructose (q2-HBP=2.12 μmol/g/hour). The highest values for both cell growth (μ=0.091 hour(-1)) and 2-HPB production (9.29μm/hour) were obtained when strain 1B was desulfurizing DBT in the presence of fructose as the only carbon source, indicating a fructophilic behaviour by this bacterium. This fact is in agreement with the highest value of biomass

  20. Anion-exchange resin-based desulfurization process. Quarterly technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Sheth, A.C.; Dharmapurikar, R.

    1993-06-01

    Under DOE Grant No. FG22-90PC90309, the University of Tennessee Space Institute (UTSI) is contracted to further develop its anion-exchange, resin-based desulfurization concept to desulfurize alkali metal sulfates. From environmental as well as economic viewpoints, it is necessary to remove soluble sulfates from the wastes created by flue gas desulfurization systems. In order to do this economically, a low-cost desulfurization process for spent sorbents is necessary. UTSI`s anion-exchange resin-based desulfurization concept is believed to satisfy these requirements. UTSI has completed the batch mode experiments to locate the position of the CO{sub 3}{sup 2} and SO{sub 4}{sup 2} ions in the affinity chart. Also, the reviews of the ASPEN Code`s capabilities and EPRI-TAG document`s methodology are in progress for developing the Best Process Schematic and related economics. The fixed-bed experiments are also in progress to evaluate the cycle efficiency of the candidate resins. So far we have completed ten consecutive cycles of exhaustion/carbonation and regeneration for IRA-35 resin. Because of the past problems (now resolved) with the fixed-bed system, the addition of batch mode screening experiments, Christmas holidays and spring break, and the moving of UTSI`s Chemistry Laboratory to a new location, the program is about 6--8 weeks behind schedule, but well within the budget.

  1. 40 CFR 86.1514 - Analytical gases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... carbon monoxide on a dry basis. (b) If the raw CO sampling system specified in 40 CFR part 1065 is used, the analytical gases specified in 40 CFR part 1065, subpart H, shall be used. (c) If a CVS sampling system is used, the analytical gases specified in 40 CFR part 1065, subpart H, shall be used....

  2. 40 CFR 86.1514 - Analytical gases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... on a dry basis. (b) If the raw CO sampling system specified in 40 CFR part 1065 is used, the analytical gases specified in 40 CFR part 1065, subpart H, shall be used. (c) If a CVS sampling system is used, the analytical gases specified in 40 CFR part 1065, subpart H, shall be used....

  3. 40 CFR 86.1514 - Analytical gases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... carbon monoxide on a dry basis. (b) If the raw CO sampling system specified in 40 CFR part 1065 is used, the analytical gases specified in 40 CFR part 1065, subpart H, shall be used. (c) If a CVS sampling system is used, the analytical gases specified in 40 CFR part 1065, subpart H, shall be used....

  4. 40 CFR 91.312 - Analytical gases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Analytical gases. 91.312 Section 91.312... EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.312 Analytical gases. (a) The shelf life of a calibration gas may not be exceeded. Record the expiration date stated by...

  5. 40 CFR 86.1514 - Analytical gases.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... carbon monoxide on a dry basis. (b) If the raw CO sampling system specified in 40 CFR part 1065 is used, the analytical gases specified in 40 CFR part 1065, subpart H, shall be used. (c) If a CVS sampling system is used, the analytical gases specified in 40 CFR part 1065, subpart H, shall be used....

  6. 40 CFR 86.1514 - Analytical gases.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... carbon monoxide on a dry basis. (b) If the raw CO sampling system specified in 40 CFR part 1065 is used, the analytical gases specified in 40 CFR part 1065, subpart H, shall be used. (c) If a CVS sampling system is used, the analytical gases specified in 40 CFR part 1065, subpart H, shall be used....

  7. Facilitating Conceptual Change in Gases Concepts

    ERIC Educational Resources Information Center

    Cetin, Pinar Seda; Kaya, Ebru; Geban, Omer

    2009-01-01

    The aim of this study is to investigate the effectiveness of conceptual change oriented instruction (CCOI) over traditionally designed chemistry instruction (TDCI) on overcoming 10th grade students' misconceptions on gases concepts. In addition, the effect of gender difference on students' understanding of gases concepts was investigated. The…

  8. Toxicity of pyrolysis gases from polyoxymethylene

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Schneider, J. E.; Brauer, D. P.

    1979-01-01

    A sample of polyoxymethylene was evaluated for toxicity of pyrolysis gases, using the toxicity screening test method developed at the University of San Francisco. Under several test conditions, this material gave shorter times to death than many other synthetic polymers. Carbon monoxide appeared to be the principal toxicant in the pyrolysis gases.

  9. Recognizing and Dealing with Dangerous Gases.

    ERIC Educational Resources Information Center

    Bove, Robert A.

    1978-01-01

    When handling hazardous gases, it is necessary to know their properties, precautions that can be taken to protect workers, and proper first aid. This article gives everyday rules for handling gas cylinders, and a brief first aid guide for 12 common toxic gases and vapors. (BB)

  10. 40 CFR 1065.750 - Analytical gases.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 1065.750 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... with calibration gases. Use gases with contamination no higher than the highest of the following values in the gas cylinder or at the outlet of a zero-gas generator: (i) 2% contamination, measured...

  11. Magnetism for understanding catalyst analysis of purified carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Bellouard, Christine; Mercier, Guillaume; Cahen, Sébastien; Ghanbaja, Jaafar; Medjahdi, Ghouti; Gleize, Jérôme; Lamura, Gianrico; Hérold, Claire; Vigolo, Brigitte

    2016-08-01

    The precise quantification of catalyst residues in purified carbon nanotubes is often a major issue in view of any fundamental and/or applicative studies. More importantly, since the best CNTs are successfully grown with magnetic catalysts, their quantification becomes strictly necessary to better understand intrinsic properties of CNT. For these reasons, we have deeply analyzed the catalyst content remained in nickel-yttrium arc-discharge single walled carbon nanotubes purified by both a chlorine-gas phase and a standard acid-based treatment. The study focuses on Ni analysis which has been investigated by transmission electron microscopy, X-ray diffraction, thermogravimetry analysis, and magnetic measurements. In the case of the acid-based treatment, all quantifications result in a decrease of the nanocrystallized Ni by a factor of two. In the case of the halogen gas treatment, analysis and quantification of Ni content is less straightforward: a huge difference appears between X-ray diffraction and thermogravimetry results. Thanks to magnetic measurements, this disagreement is explained by the presence of Ni2+ ions, belonging to NiCl2 formed during the Cl-based purification process. In particular, NiCl2 compound appears under different magnetic/crystalline phases: paramagnetic or diamagnetic, or well intercalated in between carbon sheets with an ordered magnetic phase at low temperature.

  12. Monarch larvae sensitivity to Bacillus thuringiensis- purified proteins and pollen

    PubMed Central

    Hellmich, Richard L.; Siegfried, Blair D.; Sears, Mark K.; Stanley-Horn, Diane E.; Daniels, Michael J.; Mattila, Heather R.; Spencer, Terrence; Bidne, Keith G.; Lewis, Leslie C.

    2001-01-01

    Laboratory tests were conducted to establish the relative toxicity of Bacillus thuringiensis (Bt) toxins and pollen from Bt corn to monarch larvae. Toxins tested included Cry1Ab, Cry1Ac, Cry9C, and Cry1F. Three methods were used: (i) purified toxins incorporated into artificial diet, (ii) pollen collected from Bt corn hybrids applied directly to milkweed leaf discs, and (iii) Bt pollen contaminated with corn tassel material applied directly to milkweed leaf discs. Bioassays of purified Bt toxins indicate that Cry9C and Cry1F proteins are relatively nontoxic to monarch first instars, whereas first instars are sensitive to Cry1Ab and Cry1Ac proteins. Older instars were 12 to 23 times less susceptible to Cry1Ab toxin compared with first instars. Pollen bioassays suggest that pollen contaminants, an artifact of pollen processing, can dramatically influence larval survival and weight gains and produce spurious results. The only transgenic corn pollen that consistently affected monarch larvae was from Cry1Ab event 176 hybrids, currently <2% corn planted and for which re-registration has not been applied. Results from the other types of Bt corn suggest that pollen from the Cry1Ab (events Bt11 and Mon810) and Cry1F, and experimental Cry9C hybrids, will have no acute effects on monarch butterfly larvae in field settings. PMID:11559841

  13. Life cycle assessment comparison of photocatalytic coating and air purifier.

    PubMed

    Tichá, Marie; Žilka, Miroslav; Stieberová, Barbora; Freiberg, František

    2016-07-01

    This article presents a comparison of 2 very different options for removal of undesirable microorganisms and airborne pollutants from the indoor environment of hospitals, schools, homes, and other enclosed spaces using air purifiers and photocatalytic coatings based on nano titanium dioxide (TiO2 ). Both products were assessed by life cycle assessment (LCA) methodology from cradle-to-grave. The assessment also includes comparison of 2 different nano TiO2 production technologies, one by continuous hydrothermal synthesis and the other by a sulfate process. Results of the study showed a relatively large contribution of photocatalytic coatings to reducing the effects of selected indices in comparison with an air purifier, regardless of which nano TiO2 production method is used. Although the impacts of the sulfate process are significantly lower compared to those of hydrothermal synthesis when viewed in terms of production alone, taken in the context of the entire product life cycle, the net difference becomes less significant. The study has been elaborated within the Sustainable Hydrothermal Manufacturing of Nanomaterials (SHYMAN) project, which aims to develop competitive and sustainable continuous nanoparticle (NP) production technology based on supercritical hydrothermal synthesis. Integr Environ Assess Manag 2016;12:478-485. © 2016 SETAC.

  14. Life cycle assessment comparison of photocatalytic coating and air purifier.

    PubMed

    Tichá, Marie; Žilka, Miroslav; Stieberová, Barbora; Freiberg, František

    2016-07-01

    This article presents a comparison of 2 very different options for removal of undesirable microorganisms and airborne pollutants from the indoor environment of hospitals, schools, homes, and other enclosed spaces using air purifiers and photocatalytic coatings based on nano titanium dioxide (TiO2 ). Both products were assessed by life cycle assessment (LCA) methodology from cradle-to-grave. The assessment also includes comparison of 2 different nano TiO2 production technologies, one by continuous hydrothermal synthesis and the other by a sulfate process. Results of the study showed a relatively large contribution of photocatalytic coatings to reducing the effects of selected indices in comparison with an air purifier, regardless of which nano TiO2 production method is used. Although the impacts of the sulfate process are significantly lower compared to those of hydrothermal synthesis when viewed in terms of production alone, taken in the context of the entire product life cycle, the net difference becomes less significant. The study has been elaborated within the Sustainable Hydrothermal Manufacturing of Nanomaterials (SHYMAN) project, which aims to develop competitive and sustainable continuous nanoparticle (NP) production technology based on supercritical hydrothermal synthesis. Integr Environ Assess Manag 2016;12:478-485. © 2016 SETAC. PMID:27082715

  15. Antiviral activity of purified human breast milk mucin.

    PubMed

    Habte, Habtom H; Kotwal, Girish J; Lotz, Zoë E; Tyler, Marilyn G; Abrahams, Melissa; Rodriques, Jerry; Kahn, Delawir; Mall, Anwar S

    2007-01-01

    Human breast milk is known to contain numerous biologically active components which protect breast fed infants against microbes, viruses, and toxins. The purpose of this study was to purify and characterize the breast milk mucin and determine its anti-poxvirus activity. In this study human milk mucin, free of contaminant protein and of sufficient quantity for further analysis, was isolated and purified by Sepharose CL-4B gel filtration and cesiumchloride density-gradient centrifugation. Based on the criteria of size and appearance of the bands and their electrophoretic mobility on sodium dodecyl sulfate polyacrylamide-gel electrophoresis, Western blotting together with the amino acid analysis, it is very likely that the human breast milk mucin is MUC1. It was shown that this breast milk mucin inhibits poxvirus activity by 100% using an inhibition assay with a viral concentration of 2.4 million plaque-forming units/ml. As the milk mucin seems to aggregate poxviruses prior to their entry into host cells, it is possible that this mucin may also inhibit other enveloped viruses such as HIV from entry into host cells. PMID:17361093

  16. Monarch larvae sensitivity to Bacillus thuringiensis- purified proteins and pollen.

    PubMed

    Hellmich, R L; Siegfried, B D; Sears, M K; Stanley-Horn, D E; Daniels, M J; Mattila, H R; Spencer, T; Bidne, K G; Lewis, L C

    2001-10-01

    Laboratory tests were conducted to establish the relative toxicity of Bacillus thuringiensis (Bt) toxins and pollen from Bt corn to monarch larvae. Toxins tested included Cry1Ab, Cry1Ac, Cry9C, and Cry1F. Three methods were used: (i) purified toxins incorporated into artificial diet, (ii) pollen collected from Bt corn hybrids applied directly to milkweed leaf discs, and (iii) Bt pollen contaminated with corn tassel material applied directly to milkweed leaf discs. Bioassays of purified Bt toxins indicate that Cry9C and Cry1F proteins are relatively nontoxic to monarch first instars, whereas first instars are sensitive to Cry1Ab and Cry1Ac proteins. Older instars were 12 to 23 times less susceptible to Cry1Ab toxin compared with first instars. Pollen bioassays suggest that pollen contaminants, an artifact of pollen processing, can dramatically influence larval survival and weight gains and produce spurious results. The only transgenic corn pollen that consistently affected monarch larvae was from Cry1Ab event 176 hybrids, currently <2% corn planted and for which re-registration has not been applied. Results from the other types of Bt corn suggest that pollen from the Cry1Ab (events Bt11 and Mon810) and Cry1F, and experimental Cry9C hybrids, will have no acute effects on monarch butterfly larvae in field settings. PMID:11559841

  17. Research of medical gases in Poland

    PubMed Central

    2013-01-01

    Research of medical gases is well established in Poland and has been marked with the foundation of several professional societies. Numerous academic centers including those dealing with hyperbaric and diving medicine conduct studies of medical gases, in vast majority supported with intramural funds. In general, Polish research of medical gases is very much clinical in nature, covering new applications and safety of medical gases in medicine; on the other hand there are several academic centers pursuing preclinical studies, and elaborating basic theories of gas physiology and mathematical modeling of gas exchange. What dominates is research dealing with oxygen and ozone as well as studies of anesthetic gases and their applications. Finally, several research directions involving noble gas, hydrogen and hydrogen sulfide for cell protection, only begin to gain recognition of basic scientists and clinicians. However, further developments require more monetary spending on research and clinical testing as well as formation of new collective bodies for coordinating efforts in this matter. PMID:23916016

  18. Analysis of gases in the Earth's crust

    NASA Astrophysics Data System (ADS)

    Jenden, P. D.

    1986-05-01

    To investigate the origin and fate of natural gas in the Earth's crust, approximately 700 gas samples have been analyzed for chemical composition and stable isotopic ratios of carbon, hydrogen, nitrogen, sulfur and oxygen. During the current reporting period, helium isotope measurements confirmed the presence of mantle volatiles in the Sacramento basin, a dry gas province in northern California. Methane carbon isotope ratios and N2/Ar ratios suggest that Sacramento basin commercial gases with up to 88% nitrogen are derived from metasedimentary rocks. Studies of seep gases in Los Angeles indicate that ethane and higher hydrocarbons may be retarded during natural gas migration and the propane is selectively attacked during bacterial alteration. Carbon dioxide reduction and acetate dissimilation, the two main pathways for microbial methane formation, are characterized by different methane hydrogen isotope ratios. Hydrogen isotope ratios of methane and carbon isotope ratios of carbon dioxide and ethane help to distinguish microbial gases, thermogenic gases, and mixed gases.

  19. Hot coal gas desulfurization with manganese-based sorbents

    SciTech Connect

    Hepworth, M.T.; Ben-Slimane, R.

    1994-10-01

    In this paper, the physical and chemical behavior of several sorbent formulations fabricated from a manganese-containing compound, alundum (Al{sub 2}O{sub 3}), and a binder are addressed. The thermodynamic feasibility of hydrogen sulfide (H{sub 2}S)-removal from hot-simulated coal-gases using these sorbents and their subsequent regeneration with air are established. A formulation, FORM4-A, which consists of MnCO{sub 3}, alundum, and bentonite exhibits the best combination of capacity and reactivity; whereas, FORM1-A, which consists of Mn-ore, alundum, and dextrin exhibits the best combination of strength and reactivity. One important finding is that the capacity of the pellets for sulfur pickup from a H{sub 2}/H{sub 2}S mixture (at 950{degrees}C) and the kinetics of reduction, sulfidation and regeneration (at 1000{degrees}C) improve with recycling without compromising the strength. The leading formulation, FORM4-A, was subjected to 20 consecutive cycles of sulfidation and regeneration at 900{degrees}C in a 2-inch fixed bed reactor. The sulfidation gas was a simulated Tampella U-gas with an increased hydrogen sulfide content of 3% by volume to accelerate the rate of breakthrough, arbitrarily taken as 500 ppmv. Consistent with thermo-gravimetric analysis (TGA) on individual pellets, the fixed bed tests show small improvement in capacity and kinetics with the sulfur-loading capacity being about 22% by weight of the original pellet, which corresponds to approximately 90% bed utilization.

  20. Effect of soil moisture and temperature on N2O and CO2 concentrations in soil irrigated with purified wastewater

    NASA Astrophysics Data System (ADS)

    Nosalewicz, M.; Stępniewska, Z.; Nosalewicz, A.

    2013-09-01

    Flooded organic soils are potentially important sources of greenhouse gases. The effect of soil temperature and moisture on the concentration of N2O and CO2 at two depths of organic soil flooded with two doses of purified wastewater was studied. Nitrous oxide concentrations at the 10-30 cm depth range were generally increased with an increase in soil moisture, showing dependence on the aeration status of soil. The maximum values of N2O concentrations were higher at the 50-100 than 10-30 cm depth range, but a similar pattern of increasing maximum values of N2O concentration with an increasing input of nitrogen in treatments at both depth ranges was observed. The maximum concentrations of carbon dioxide within the 50-100 cm depth range remained at a similar level in all treatments reaching 7.1-7.7%, which indicated weak relations with the input of water and nitrogen at this depth range. We conclude that the N2O and CO2 concentrations at 10-30 cm depths in the examined organic soil flooded with 600mm year-1 of purified wastewater exhibited a similar level as the concentrations in soil watered only by precipitation.

  1. 40 CFR 86.514-78 - Analytical gases.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Analytical gases. 86.514-78 Section 86... Later New Motorcycles; Test Procedures § 86.514-78 Analytical gases. (a) Analyzer gases. (1) Gases for... diluent. (2) Gases for the THC analyzer shall be: (i) Single blends of propane using air as the...

  2. 40 CFR 86.514-78 - Analytical gases.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Analytical gases. 86.514-78 Section 86... Later New Motorcycles; Test Procedures § 86.514-78 Analytical gases. (a) Analyzer gases. (1) Gases for... diluent. (2) Gases for the THC analyzer shall be: (i) Single blends of propane using air as the...

  3. 40 CFR 86.514-78 - Analytical gases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Analytical gases. 86.514-78 Section 86... Later New Motorcycles; Test Procedures § 86.514-78 Analytical gases. (a) Analyzer gases. (1) Gases for... diluent. (2) Gases for the THC analyzer shall be: (i) Single blends of propane using air as the...

  4. 40 CFR 86.114-94 - Analytical gases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Analytical gases. 86.114-94 Section 86...-Duty Vehicles; Test Procedures § 86.114-94 Analytical gases. (a) Analyzer gases. (1) Gases for the CO...) Gases for the THC analyzer shall be: (i) Single blends of propane using air as the diluent; and...

  5. 40 CFR 86.514-78 - Analytical gases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Analytical gases. 86.514-78 Section 86... Later New Motorcycles; Test Procedures § 86.514-78 Analytical gases. (a) Analyzer gases. (1) Gases for... diluent. (2) Gases for the THC analyzer shall be: (i) Single blends of propane using air as the...

  6. 40 CFR 86.514-78 - Analytical gases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Analytical gases. 86.514-78 Section 86... Later New Motorcycles; Test Procedures § 86.514-78 Analytical gases. (a) Analyzer gases. (1) Gases for... diluent. (2) Gases for the THC analyzer shall be: (i) Single blends of propane using air as the...

  7. Method of concurrently filtering particles and collecting gases

    SciTech Connect

    Mitchell, Mark A; Meike, Annemarie; Anderson, Brian L

    2015-04-28

    A system for concurrently filtering particles and collecting gases. Materials are be added (e.g., via coating the ceramic substrate, use of loose powder(s), or other means) to a HEPA filter (ceramic, metal, or otherwise) to collect gases (e.g., radioactive gases such as iodine). The gases could be radioactive, hazardous, or valuable gases.

  8. A recyclable ionic liquid-oxomolybdenum(vi) catalytic system for the oxidative desulfurization of model and real diesel fuel.

    PubMed

    Julião, Diana; Gomes, Ana C; Pillinger, Martyn; Valença, Rita; Ribeiro, Jorge C; Gonçalves, Isabel S; Balula, Salete S

    2016-10-14

    The oxidative desulfurization of model and real diesel has been studied using the complex [MoO2Cl2(4,4'-di-tert-butyl-2,2'-bipyridine)] as (pre)catalyst, aq. H2O2 as oxidant, and an ionic liquid as extraction solvent. Under moderate conditions (50 °C) and short reaction times (<3 h), dibenzothiophene, 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene could be completely removed from the model diesel. The (pre)catalyst 1 was transformed in situ to the active catalyst [MoO(O2)2(di-tBu-bipy)]. By sequentially performing extractive desulfurization and ECODS steps, 76% sulfur removal was achieved for a real diesel (Sinitial = 2300 ppm). For both the model and real diesels, the catalyst/IL phase could be easily recycled and reused with no loss of desulfurization efficiency. PMID:27603728

  9. Evaluation of sulfur-reducing microorganisms for organic desulfurization. Final technical report, September 1, 1990--August 31, 1991

    SciTech Connect

    Miller, K.W.

    1991-12-31

    Because of substantial portion of the sulfur in Illinois coal is organic, microbial desulfurization of sulfidic and thiophenic functionalities could hold great potential for completing pyritic sulfur removal. We are testing the hypothesis that organic sulfur can be reductively removed as H{sub 2}S through the activities of anaerobic microorganisms. Our objectives for this year include the following: (1) To obtain cultures that will reductively desulfurize thiophenic model compounds. In addition to crude oil enrichments begun last year, we sampled municipal sewage sludge. (2) To continue to work toward optimizing the activity of the DBDS-reducing cultures obtained during the previous year. (3) To expand coal desulfurization work to include other coals including Illinois Basin Coal 101 and a North Dakota lignite, which might be more susceptible to the dibenzyldisulfide reducing cultures due to its lower rank. (4) To address the problem of sulfide sorption, by investigating the sorption capacity of coals in addition to Illinois Basin Coal 108.

  10. A recyclable ionic liquid-oxomolybdenum(vi) catalytic system for the oxidative desulfurization of model and real diesel fuel.

    PubMed

    Julião, Diana; Gomes, Ana C; Pillinger, Martyn; Valença, Rita; Ribeiro, Jorge C; Gonçalves, Isabel S; Balula, Salete S

    2016-10-14

    The oxidative desulfurization of model and real diesel has been studied using the complex [MoO2Cl2(4,4'-di-tert-butyl-2,2'-bipyridine)] as (pre)catalyst, aq. H2O2 as oxidant, and an ionic liquid as extraction solvent. Under moderate conditions (50 °C) and short reaction times (<3 h), dibenzothiophene, 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene could be completely removed from the model diesel. The (pre)catalyst 1 was transformed in situ to the active catalyst [MoO(O2)2(di-tBu-bipy)]. By sequentially performing extractive desulfurization and ECODS steps, 76% sulfur removal was achieved for a real diesel (Sinitial = 2300 ppm). For both the model and real diesels, the catalyst/IL phase could be easily recycled and reused with no loss of desulfurization efficiency.

  11. Synthesis of l- and d-Ubiquitin by One-Pot Ligation and Metal-Free Desulfurization.

    PubMed

    Huang, Yi-Chao; Chen, Chen-Chen; Gao, Shuai; Wang, Ye-Hai; Xiao, Hua; Wang, Feng; Tian, Chang-Lin; Li, Yi-Ming

    2016-05-23

    Native chemical ligation combined with desulfurization has become a powerful strategy for the chemical synthesis of proteins. Here we describe the use of a new thiol additive, methyl thioglycolate, to accomplish one-pot native chemical ligation and metal-free desulfurization for chemical protein synthesis. This one-pot strategy was used to prepare ubiquitin from two or three peptide segments. Circular dichroism spectroscopy and racemic protein X-ray crystallography confirmed the correct folding of ubiquitin. Our results demonstrate that proteins synthesized chemically by streamlined 9-fluorenylmethoxycarbonyl (Fmoc) solid-phase peptide synthesis coupled with a one-pot ligation-desulfurization strategy can supply useful molecules with sufficient purity for crystallographic studies.

  12. Greenhouse Trace Gases in Deadwood

    NASA Astrophysics Data System (ADS)

    Covey, Kristofer; Bueno de Mesquita, Cliff; Oberle, Brad; Maynard, Dan; Bettigole, Charles; Crowther, Thomas; Duguid, Marlyse; Steven, Blaire; Zanne, Amy; Lapin, Marc; Ashton, Mark; Oliver, Chad; Lee, Xuhui; Bradford, Mark

    2016-04-01

    Deadwood, long recognized as playing an important role in carbon cycling in forest ecosystems, is more recently drawing attention for its potential role in the cycling of other greenhouse trace gases. We report data from four independent studies measuring internal gas concentrations in deadwood in in three Quercus dominated upland forest systems in the Northeastern and Central United States. Mean methane concentrations in deadwood were 23 times atmospheric levels, indicating a lower bound, mean radial wood surface area flux of ~6 x 10-4 μmol CH4 m-2 s-1. Site, decay class, diameter, and species were all highly significant predictors of methane abundance in deadwood, and log diameter and decay stage interacted as important controls limiting methane concentrations in the smallest and most decayed logs. Nitrous oxide concentrations were negatively correlated with methane and on average ~25% lower than ambient, indicating net consumption of nitrous oxide. These data suggest nonstructural carbohydrates fuel archaeal methanogens and confirm the potential for widespread in situ methanogenesis in both living and deadwood. Applying this understanding to estimate methane emissions from microbial activity in living trees implies a potential global flux of 65.6±12.0 Tg CH4 yr-1, more than 20 times greater than currently considered.

  13. Biological production of acetic acid from waste gases with Clostridium ljungdahlii

    DOEpatents

    Gaddy, J.L.

    1998-09-15

    A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 5 figs.

  14. Biological production of acetic acid from waste gases with Clostridium ljungdahlii

    DOEpatents

    Gaddy, James L.

    1998-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.

  15. Kinetics of Mn-based sorbents for hot coal gas desulfurization: Task 2, Exploratory experimental studies: Single pellet tests; Rate mechanism analysis. Quarterly report, June 15, 1996--September 15, 1996

    SciTech Connect

    Hepworth, M.T.

    1996-09-11

    Currently, the Morgantown Energy Technology Center, Department of Energy (DOE/METC) is actively investigating alternative hot fuel gas desulfurization sorbents for application to the Integrated Gasification Combined Cycle (IGCC). A sorbent must be highly active towards sulfur at high temperatures and pressures, and under varying degrees of reducing atmospheres. Also, it must regenerate nearly ideally to maintain activity over numerous cycles. Furthermore, regeneration must yield a sulfur product which is economically recoverable directly or indirectly. Several metal oxides have been investigated as regenerable sorbents for the removal of hydrogen sulfide (the primary sulfur bearing compound) from hot fuel gases. MnO was shown to have an intrinsic reaction rate approximately one order of magnitude greater than the rate or reaction with either CaO or ZnO and two orders of magnitude greater than the reaction rate with V{sub 2}0{sub 3}. Manganese also shows desulfurization potential in the temperature range of 600-700{degrees}C where metal oxides currently known to be reactive with H{sub 2}S are unsatisfactorily. In response to stability difficulties of single and binary metal oxide sorbents, increasing effort is being directed towards incorporation of an inert component into sorbent formulation as witnessed by the various Zn-titanates. Primarily, the inert component increases pore structure integrity while stabilizing the active metal oxide against reduction. This report will address testing of Mn-based sorbents in an ambient pressure fixed-bed reactor. Steady-state H{sub 2}S concentrations and breakthrough times will be presented.

  16. The Use of Detergents to Purify Membrane Proteins.

    PubMed

    Orwick-Rydmark, Marcella; Arnold, Thomas; Linke, Dirk

    2016-04-01

    Extraction of membrane proteins from biological membranes is usually accomplished with the help of detergents. This unit describes the use of detergents to solubilize and purify membrane proteins. The chemical and physical properties of the different classes of detergents typically used with biological samples are discussed. A separate section addresses the compatibility of detergents with applications downstream of the membrane protein purification process, such as optical spectroscopy, mass spectrometry, protein crystallography, biomolecular NMR, or electron microscopy. A brief summary of alternative membrane protein solubilizing and stabilizing systems is also included. Protocols in this unit include the isolation and solubilization of biological membranes and phase separation; support protocols for detergent removal, detergent exchange, and the determination of critical micelle concentration using different methods are also included.

  17. Properties of photochemical reaction centers purified from Rhodopseudomonas gelatinosa.

    PubMed

    Clayton, B J; Clayton, R K

    1978-03-13

    Reaction centers were isolated from a carotenoidless mutant of Rhodopseudomonas gelatinosa by hydroxyapatite chromatography of purified chromatophores treated with lauryl dimethyl amine oxide. Absorption spectra and spectra of light-induced absorbance changes are similar to those of reaction centers from Rhodopseudomonas sphaeroides. The ratio of absorbance at 280 nm to that at 799 nm was 1.8 in the purest preparations. The extinction coefficient at the 799 nm absorption maximum was estimated to be 305 +/- 20 mM--1 . CM--1. The molecular weight based on protein and chromophore assays was found to be 1.5 . 10(5); the reaction center protein accounted for 6% of the total membrane protein. These reaction centers contained no cytochrome and showed just two components of apparent molecular weights 33 000 and 25 000 in polyacrylamide gel electrophoresis. The chromatophores contained 42 molecules of antenna bacteriochlorophyll for each reaction center.

  18. X-ray diffraction study of highly purified human ceruloplasmin

    SciTech Connect

    Samygina, V. R.; Sokolov, A. V.; Pulina, M. O.; Bartunik, H. D.; Vasil'ev, V. B.

    2008-07-15

    The three-dimensional structure of ceruloplasmin (CP) with unoccupied labile metal-binding sites and the structure of CP containing Ni{sup 2+} in the labile sites were solved for the first time at 2.6 and 2.95 A resolution, respectively. Crystallization was performed with the use of storage-stable CP, which was prepared in the presence of proteinase inhibitors and purified from (pre)proteinases. Ceruloplasmin with Ni{sup 2+} crystallized in the orthorhombic space group, which had been earlier unknown for CP. Ceruloplasmin with the unoccupied labile sites crystallized in the trigonal crystal form. The differences in intermolecular contacts observed in the trigonal and orthorhombic crystal structures of CP are considered. The conformational changes attendant upon Ni{sup 2+} binding are described. It was suggested that the labile sites are multifunctional and can both bind metal ions potentially toxic to organisms and be involved in electron transfer from substrates to the active site.

  19. Regulated Eukaryotic DNA Replication Origin Firing with Purified Proteins

    PubMed Central

    Yeeles, Joseph T.P.; Deegan, Tom D.; Janska, Agnieszka; Early, Anne; Diffley, John F. X.

    2016-01-01

    Eukaryotic cells initiate DNA replication from multiple origins, which must be tightly regulated to promote precise genome duplication in every cell cycle. To accomplish this, initiation is partitioned into two temporally discrete steps: a double hexameric MCM complex is first loaded at replication origins during G1 phase, and then converted to the active CMG (Cdc45, MCM, GINS) helicase during S phase. Here we describe the reconstitution of budding yeast DNA replication initiation with 16 purified replication factors, made from 42 polypeptides. Origin-dependent initiation recapitulates regulation seen in vivo. Cyclin dependent kinase (CDK) inhibits MCM loading by phosphorylating the origin recognition complex (ORC) and promotes CMG formation by phosphorylating Sld2 and Sld3. Dbf4 dependent kinase (DDK) promotes replication by phosphorylating MCM, and can act either before or after CDK. These experiments define the minimum complement of proteins, protein kinase substrates and co-factors required for regulated eukaryotic DNA replication. PMID:25739503

  20. Regulated eukaryotic DNA replication origin firing with purified proteins.

    PubMed

    Yeeles, Joseph T P; Deegan, Tom D; Janska, Agnieszka; Early, Anne; Diffley, John F X

    2015-03-26

    Eukaryotic cells initiate DNA replication from multiple origins, which must be tightly regulated to promote precise genome duplication in every cell cycle. To accomplish this, initiation is partitioned into two temporally discrete steps: a double hexameric minichromosome maintenance (MCM) complex is first loaded at replication origins during G1 phase, and then converted to the active CMG (Cdc45-MCM-GINS) helicase during S phase. Here we describe the reconstitution of budding yeast DNA replication initiation with 16 purified replication factors, made from 42 polypeptides. Origin-dependent initiation recapitulates regulation seen in vivo. Cyclin-dependent kinase (CDK) inhibits MCM loading by phosphorylating the origin recognition complex (ORC) and promotes CMG formation by phosphorylating Sld2 and Sld3. Dbf4-dependent kinase (DDK) promotes replication by phosphorylating MCM, and can act either before or after CDK. These experiments define the minimum complement of proteins, protein kinase substrates and co-factors required for regulated eukaryotic DNA replication. PMID:25739503