Sample records for push rod string

  1. Wireline system for multiple direct push tool usage

    DOEpatents

    Bratton, Wesley L.; Farrington, Stephen P.; Shinn, II, James D.; Nolet, Darren C.

    2003-11-11

    A tool latching and retrieval system allows the deployment and retrieval of a variety of direct push subsurface characterization tools through an embedded rod string during a single penetration without requiring withdrawal of the string from the ground. This enables the in situ interchange of different tools, as well as the rapid retrieval of soil core samples from multiple depths during a single direct push penetration. The system includes specialized rods that make up the rod string, a tool housing which is integral to the rod string, a lock assembly, and several tools which mate to the lock assembly.

  2. Hydraulic tests with direct-push equipment

    USGS Publications Warehouse

    Butler, J.J.; Healey, J.M.; McCall, G.W.; Garnett, E.J.; Loheide, Steven P.

    2002-01-01

    The potential of direct-push technology for hydraulic characterization of saturated flow systems was investigated at a field site with a considerable degree of subsurface control. Direct-push installations were emplaced by attaching short lengths of screen (shielded and unshielded) to the bottom end of a tool string that was then advanced into the unconsolidated sediments. A series of constant-rate pumping tests were performed in a coarse sand and gravel aquifer using direct-push tool strings as observation wells. Very good agreement (within 4%) was found between hydraulic conductivity (K) estimates from direct-push installations and those from conventional wells. A program of slug tests was performed in direct-push installations using small-diameter adaptations of solid-slug and pneumatic methods. In a sandy silt interval of moderate hydraulic conductivity, K values from tests in a shielded screen tool were in excellent agreement (within 2%) with those from tests in a nearby well. In the coarse sand and gravel aquifer, K values were within 12% of those from multilevel slug tests at a nearby well. However, in the more permeable portions of the aquifer (K > 70 m/day), the smaller-diameter direct-push rods (0.016 m inner diameter [I.D.]) attenuated test responses, leading to an underprediction of K. In those conditions, use of larger-diameter rods (e.g., 0.038 m I.D.) is necessary to obtain K values representative of the formation. This investigation demonstrates that much valuable information can be obtained from hydraulic tests in direct-push installations. As with any type of hydraulic test, K estimates are critically dependent on use of appropriate emplacement and development procedures. In particular, driving an unshielded screen through a heterogeneous sequence will often lead to a buildup of low-K material that can be difficult to remove with standard development procedures.

  3. Modeling and simulation performance of sucker rod beam pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aditsania, Annisa, E-mail: annisaaditsania@gmail.com; Rahmawati, Silvy Dewi, E-mail: silvyarahmawati@gmail.com; Sukarno, Pudjo, E-mail: psukarno@gmail.com

    2015-09-30

    Artificial lift is a mechanism to lift hydrocarbon, generally petroleum, from a well to surface. This is used in the case that the natural pressure from the reservoir has significantly decreased. Sucker rod beam pumping is a method of artificial lift. Sucker rod beam pump is modeled in this research as a function of geometry of the surface part, the size of sucker rod string, and fluid properties. Besides its length, sucker rod string also classified into tapered and un-tapered. At the beginning of this research, for easy modeling, the sucker rod string was assumed as un-tapered. The assumption provedmore » non-realistic to use. Therefore, the tapered sucker rod string modeling needs building. The numerical solution of this sucker rod beam pump model is computed using finite difference method. The numerical result shows that the peak of polished rod load for sucker rod beam pump unit C-456-D-256-120, for non-tapered sucker rod string is 38504.2 lb, while for tapered rod string is 25723.3 lb. For that reason, to avoid the sucker rod string breaks due to the overload, the use of tapered sucker rod beam string is suggested in this research.« less

  4. A simple wave driver

    NASA Astrophysics Data System (ADS)

    Kağan Temiz, Burak; Yavuz, Ahmet

    2015-08-01

    This study was done to develop a simple and inexpensive wave driver that can be used in experiments on string waves. The wave driver was made using a battery-operated toy car, and the apparatus can be used to produce string waves at a fixed frequency. The working principle of the apparatus is as follows: shortly after the car is turned on, the wheel starts to turn at a constant angular speed. A rod that is fixed on the wheel turns at the same constant angular speed, too. A tight string that the wave will be created on is placed at a distance where the rod can touch the string. During each rotation of the wheel, the rod vibrates the string up and down. The vibration frequency of this rod equals the wheel’s rotation frequency, and this frequency value can be measured easily with a small magnet and a bicycle speedometer. In this way, the frequency of the waves formed in the rope can also be measured.

  5. Effective Size Analysis of the Diametral Compression (Brazil) Test Specimen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jadaan, Osama M.; Wereszczak, Andrew A

    2009-04-01

    This study considers the finite element analysis (FEA) simulation and Weibull effective size analysis for the diametral compression (DC) or Brazil specimen loaded with three different push-rod geometries. Those geometries are a flat push-rod, a push-rod whose radius of curvature is larger than that for the DC specimen, and a push-rod whose radius of curvature matches that of the DC specimen. Such established effective size analysis recognizes that the tensile strength of structural ceramics is typically one to two orders of magnitude less than its compressive strength. Therefore, because fracture is much more apt to result from a tensile stressmore » than a compressive one, this traditional analysis only considers the first principal tensile stress field in the mechanically loaded ceramic component for the effective size analysis. The effective areas and effective volumes were computed as function of Weibull modulus using the CARES/Life code. Particular attention was devoted to the effect of mesh sensitivity and localized stress concentration. The effect of specimen width on the stress state was also investigated. The effects of push-rod geometry, the use of steel versus WC push-rods, and considering a frictionless versus no-slip interface between push-rod and specimen on the maximum stresses, where those stresses are located, and the effective area and effective volume results are described. Of the three push-rod geometries, it is concluded that the push-rod (made from WC rather than steel) whose radius of curvature matches that of the DC specimen is the most apt to cause fracture initiation within the specimen's bulk rather than at the loading interface. Therefore, its geometry is the most likely to produce a valid diametral compression strength test. However, the DC specimen remains inefficient in terms of its area and volume efficiencies; namely, the tensile strength of only a few percent of the specimen's entire area or volume is sampled. Given the high probability that a valid (or invalid) test can be proven by ceramic fractographic practices suggests that this test method and specimen is questionable for use with relatively strong structural ceramics.« less

  6. Apparatus and systems for measuring elongation of objects, methods of measuring, and reactor

    DOEpatents

    Rempe, Joy L [Idaho Falls, ID; Knudson, Darrell L [Firth, ID; Daw, Joshua E [Idaho Falls, ID; Condie, Keith G [Idaho Falls, ID; Stoots, Carl M [Idaho Falls, ID

    2011-11-29

    Elongation measurement apparatuses and systems comprise at least two Linear Variable Differential Transformers (LVDTs) with a push rod coupled to each of the at least two LVDTs at one longitudinal end thereof. At least one push rod extends to a base and is coupled thereto at an opposing longitudinal end, and at least one other push rod extends to a location spaced apart from the base and is configured to receive a sample between an opposing longitudinal end of the at least one other push rod and the base. Nuclear reactors comprising such apparatuses and systems and methods of measuring elongation of a material are also disclosed.

  7. Finite Element Analysis of MEMS Devices

    NASA Technical Reports Server (NTRS)

    Corrigan, Jennifer

    2004-01-01

    A side-slide actuator and a corrugated diaphragm actuator will be analyzed and optimized this summer. Coupled electrostatic and fluid analyses will also be initiated. Both the side-slide actuator and the corrugated diaphragm actuator will be used to regulate the flow of fuel in a jet engine. Many of the side-slide actuators will be placed on top of a fuel injector that is still in the developmental stage as well. The corrugated diaphragm actuator will also be used to regulate the flow of fuel in fuel injectors. A comparative analysis of the performance matrix of both actuators will be conducted. The side-slide actuator uses the concept of mechanical advantage to regulate the flow of fuel using electrostatic forces. It is made from Nickel, Silicon Carbide, and thin layers of Oxide. The slider will have a hole in the middle that will allow fuel to pass through the hole underneath it. The goal is to regulate the flow of fuel through the inlet. This means that the actuator needs to be designed so that when a voltage is applied to the push rod, the slider will deflect in the x-direction and be able to completely block the inlet and no fuel can pass through. Different voltage levels will be tested. The parameters that are being optimized are the thickness of the diaphragm, what kind of corrugation the diaphragm should have, the length, width, and thickness of the push rod, and what design should be used to return the slider. The current possibilities for a return rod are a built in spring on the slider, a return rod that acts like a spring, or a return rod that is identical to the push rod. The final actuator design should have a push rod that has rotational motion and no translation motion, a push rod thickness that prevents warping due to the slider, and a large ratio of the displacement on the bottom of the push rod to displacement on the top of the push rod. The corrugated diaphragm actuator was optimized last winter and this summer will be spent completing the optimization of the coupled electrostatic and fluid flow parameters. It was found that Nickel is the best material to use for the diaphragm because it has a higher yield strength and allows for a larger stress, deflection and applied pressure. The parameters that were optimized were the wavelength and thickness of the diaphragm.

  8. Sample push-out fixture

    DOEpatents

    Biernat, John L.

    2002-11-05

    This invention generally relates to the remote removal of pelletized samples from cylindrical containment capsules. V-blocks are used to receive the samples and provide guidance to push out rods. Stainless steel liners fit into the v-channels on the v-blocks which permits them to be remotely removed and replaced or cleaned to prevent cross contamination between capsules and samples. A capsule holder securely holds the capsule while allowing manual up/down and in/out movement to align each sample hole with the v-blocks. Both end sections contain identical v-blocks; one that guides the drive out screw and rods or manual push out rods and the other to receive the samples as they are driven out of the capsule.

  9. [A new technic for esophago-enteral anastomosis with a mechanical stapler without purse-string sutures].

    PubMed

    Liboni, A; Mari, C; Zamboni, P; Uzzau, A; Noce, L; Bucoliero, F; Mele, M; Masala, C

    1989-01-01

    Staplers have improved the results of esophageal surgery, in our experience and in others experience, as esophago-enteric anastomoses have become safer and faster than when manual suturing is used. Probably one of the last problems in the stapler technique, especially in the thoracic area, is the performance of on adequate esophageal purse-string suture: an improper performance of this suture can cause a dangerous leak of the anastomosis. So, many surgeons, to reduce the risk of esophageal dehiscence connected with the esophageal purse-string, use either purse-string devices or alternative methods such as a second handsewn purse-string, U stitches of the esophagus, etc. We think that the risk of improper anastomoses after esophageal resection can be reduced if the need for the esophageal purse-string can be eliminated. This work shows our personal technique for performing esophagoenterostomy, especially in the thoracic area, using the new CEEA stapler (Autosuture) without esophageal purse-string sutures. According to the modified procedure the stapler anvil and the mini rod are introduced in the esophagectomy and a 2-0 thread is knotted around the CEEA mini rod. Then the esophageal mutilated part is closed by a linear stapler keeping a syringe needle, which contains the thread, through the linear suture. Then, using the thread as a pulling system, the surgeon makes the needle and the tip of the mini rod slide out of the esophageal suture. Now the surgeon can reassemble the CEEA and perform the anastomosis. There are many clinical reports that cite no leaks following circular stapled anastomoses across linear stapled closures.

  10. Simultaneous double-rod rotation technique in posterior instrumentation surgery for correction of adolescent idiopathic scoliosis.

    PubMed

    Ito, Manabu; Abumi, Kuniyoshi; Kotani, Yoshihisa; Takahata, Masahiko; Sudo, Hideki; Hojo, Yoshihiro; Minami, Akio

    2010-03-01

    The authors present a new posterior correction technique consisting of simultaneous double-rod rotation using 2 contoured rods and polyaxial pedicle screws with or without Nesplon tapes. The purpose of this study is to introduce the basic principles and surgical procedures of this new posterior surgery for correction of adolescent idiopathic scoliosis. Through gradual rotation of the concave-side rod by 2 rod holders, the convex-side rod simultaneously rotates with the the concave-side rod. This procedure does not involve any force pushing down the spinal column around the apex. Since this procedure consists of upward pushing and lateral translation of the spinal column with simultaneous double-rod rotation maneuvers, it is simple and can obtain thoracic kyphosis as well as favorable scoliosis correction. This technique is applicable not only to a thoracic single curve but also to double major curves in cases of adolescent idiopathic scoliosis.

  11. Hierarchical Nanostructures Self-Assembled from a Mixture System Containing Rod-Coil Block Copolymers and Rigid Homopolymers

    PubMed Central

    Li, Yongliang; Jiang, Tao; Lin, Shaoliang; Lin, Jiaping; Cai, Chunhua; Zhu, Xingyu

    2015-01-01

    Self-assembly behavior of a mixture system containing rod-coil block copolymers and rigid homopolymers was investigated by using Brownian dynamics simulations. The morphologies of formed hierarchical self-assemblies were found to be dependent on the Lennard-Jones (LJ) interaction εRR between rod blocks, lengths of rod and coil blocks in copolymer, and mixture ratio of block copolymers to homopolymers. As the εRR value decreases, the self-assembled structures of mixtures are transformed from an abacus-like structure to a helical structure, to a plain fiber, and finally are broken into unimers. The order parameter of rod blocks was calculated to confirm the structure transition. Through varying the length of rod and coil blocks, the regions of thermodynamic stability of abacus, helix, plain fiber, and unimers were mapped. Moreover, it was discovered that two levels of rod block ordering exist in the helices. The block copolymers are helically wrapped on the homopolymer bundles to form helical string, while the rod blocks are twistingly packed inside the string. In addition, the simulation results are in good agreement with experimental observations. The present work reveals the mechanism behind the formation of helical (experimentally super-helical) structures and may provide useful information for design and preparation of the complex structures. PMID:25965726

  12. Method and device for removing a non-aqueous phase liquid from a groundwater system

    DOEpatents

    Looney, Brian B.; Rossabi, Joseph; Riha, Brian D.

    2002-01-01

    A device for removing a non-aqueous phase liquid from a groundwater system includes a generally cylindrical push-rod defining an internal recess therein. The push-rod includes first and second end portions and an external liquid collection surface. A liquid collection member is detachably connected to the push-rod at one of the first and second end portions thereof. The method of the present invention for removing a non-aqueous phase liquid from a contaminated groundwater system includes providing a lance including an external hydrophobic liquid collection surface, an internal recess, and a collection chamber at the bottom end thereof. The lance is extended into the groundwater system such that the top end thereof remains above the ground surface. The liquid is then allowed to collect on the liquid collection surface, and flow downwardly by gravity into the collection chamber to be pumped upwardly through the internal recess in the lance.

  13. Structural Integrity Testing Method for PRSEUS Rod-Wrap Stringer Design

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Grenoble, Ray W.; Pickell, Robert D.

    2012-01-01

    NASA Langley Research Center and The Boeing Company are developing an innovative composite structural concept, called PRSEUS, for the flat center section of a future environmentally friendly hybrid wing body (HWB) aircraft. The PRSEUS (Pultruded Rod Stitched Efficient Unitized Structure) concept uses dry textile preforms for the skins, frames, and stiffener webs. The highly loaded stiffeners are made from precured unidirectional carbon/epoxy rods and dry fiber preforms. The rods are wrapped with the dry fiber preforms and a resin infusion process is used to form the rod-wrap stiffeners. The structural integrity of the rod-wrap interface is critical for maintaining the panel s high strength and bending rigidity. No standard testing method exists for testing the strength of the rod-wrap bondline. Recently, Boeing proposed a rod push-out testing method and conducted some preliminary tests using this method. This paper details an analytical study of the rod-wrap bondline. The rod-wrap interface is modeled as a cohesive zone for studying the initiation and growth of interfacial debonding during push-out testing. Based on the correlations of analysis results and Boeing s test data, the adequacy of the rod-wrap testing method is evaluated, and potential approaches for improvement of the test method are proposed.

  14. Hydraulic Actuator for Ganged Control Rods

    NASA Technical Reports Server (NTRS)

    Thompson, D. C.; Robey, R. M.

    1986-01-01

    Hydraulic actuator moves several nuclear-reactor control rods in unison. Electromagnetic pump pushes liquid lithium against ends of control rods, forcing them out of or into nuclear reactor. Color arrows show lithium flow for reactor startup and operation. Flow reversed for shutdown. Conceived for use aboard spacecraft, actuator principle applied to terrestrial hydraulic machinery involving motion of ganged rods.

  15. A modified efficient purse-string stapling technique (mEST) that uses a new metal rod for intracorporeal esophagojejunostomy in laparoscopic total gastrectomy

    PubMed Central

    Moon, Jeong-Ho; Yamamoto, Kazuyoshi; Yanagimoto, Yoshitomo; Sugimura, Keijirou; Miyata, Hiroshi; Yano, Masahiko; Sakon, Masato

    2017-01-01

    Intracorporeal esophagojejunostomy after laparoscopic total gastrectomy is technically difficult because this procedure should be performed in a narrow surgical field in the upper abdomen even when completely laparoscopic approaches are used. The placement of the anvil of a circular stapling device into the esophagus and connection the instrument to the anvil are extremely difficult steps in this surgery. Therefore, we developed a simple technique for intracorporeal esophagojejunostomy using hemi-double stapling technique; we named this technique the efficient purse-string stapling technique (EST). More recently, we have developed a modified EST (mEST) that utilizes a new stainless steel anvil rod instead of a plastic rod. Relative to the plastic rod, the steel rod is reusable and shorter; thus, it was easier to perform anvil placement into the esophagus with the steel rod. Anvil preparation for mEST: a stainless steel rod is attached to the shaft of the anvil, and the needle and thread are sutured to the tip of the rod. After complete insertion of the anvil into the esophageal cavity, the needle and thread are used to penetrate the anterior esophageal wall, and the esophagus is then clamped using a linear stapler just distal to the site penetrated by the thread. The linear stapler is fired, and anvil placement in the esophagus is simultaneously accomplished. After the rod is removed from the anvil, the instrument is intracorporeally connected to the anvil and then fired to complete the gastrojejunostomy. This technique is simple and facilitates intracorporeal reconstruction procedures in laparoscopic total gastrectomy. PMID:28815221

  16. "Push-Through" Rod Passage Technique for the Improvement of Lumbar Lordosis and Sagittal Balance in Minimally Invasive Adult Degenerative Scoliosis Surgery.

    PubMed

    Haque, Raqeeb M; Uddin, Omar M; Ahmed, Yousef; El Ahmadieh, Tarek Y; Hashmi, Sohaib Z; Shah, Amir; Fessler, Richard G

    2016-10-01

    Traditional open surgical techniques for correction of adult degenerative scoliosis (ADS) are often associated with increased blood loss, postoperative pain, and complications. Minimally invasive (MIS) techniques have been utilized to address these issues; however, concerns regarding improving certain alignment parameters have been raised. A new "push-through" technique for MIS correction of ADS has been developed wherein a rod is bent before its placement into the screw heads and then contoured further to yield improved correction of radiographic parameters. Preoperative and postoperative radiographic measurements of 3 patients who underwent MIS correction of scoliosis using the "push-through" technique were compared with 22 prior patients who had received traditional MIS correction. All patients received staged correction of scoliosis. The first stage involved insertion of lateral lumbar interbodies. Standing x-rays were then evaluated for overall global balance. The second stage involved appropriate MIS facetectomies, facet fusions, posterior transforaminal interbodies at lower lumbar segments, and finally the placement of rods.TECHNIQUE OVERVIEW:: (1) A long rod composed of titanium is bent with a mild lordosis and passed through the extensions of the screw heads cephalad to caudad. (2) The rod is passed fully through the incision so it extrudes from the caudal end of the construct. At this point, further lordosis is bent into the rods. (3) The rod is then pulled back into the appropriate position. (4) The unnecessary cephalad rod is then cut to appropriate length with a circular saw. (5) Rod reducers are then sequentially lowered and tightened to achieve the desired correction. Mean age for all patients was 66.02 years. Preoperative coronal Cobb, sagittal vertical axis (SVA), and pelvic incidence (PI) were similar in all patients, whereas lumbar lordosis (LL) was smaller (15.27 vs. 29.85 degrees, P=0.00389) and pelvic tilt (PT) was larger (37.00 vs. 27.00 degrees, P=0.00011) in "push-through" patients. Postoperatively, "pushthrough" patients experienced greater correction of LL (21.93 vs. 3.70 degrees, P=0.00001), PI-LL (-18.57 vs. -0.26 degrees, P=0.00471), PT (-7.67 vs. -0.40 degrees, P=0.00341), SVA (-40.67 mm vs. 0.95 mm, P=0.05846), and coronal Cobb (-20.23 vs. -18.76 degrees, P=0.75). This new method of contouring a rod enables improved LL. This technique is easy to perform and can be a valuable tool in treating ADS using MIS techniques.

  17. Handheld magnetic sensor for measurement of tension

    NASA Astrophysics Data System (ADS)

    Singal, K.; Rajamani, R.

    2012-04-01

    This letter develops an analytical formulation for measurement of tension in a string using a handheld sensor. By gently pushing the sensor against the string, the tension in the string can be obtained. An experimental sensor prototype is constructed to verify the analytical formulation. The centimeter-sized prototype utilizes three moving pistons and magnetic field based measurements of their positions. Experimental data show that the sensor can accurately measure tension on a bench top rig. The developed sensor could be useful in a variety of orthopedic surgical procedures, including knee replacement, hip replacement, ligament repair, shoulder stabilization, and tendon repair.

  18. TEFLON BELLOWS PULSE GENERATORS FOR SOLVENT EXTRACTION PULSE COLUMNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, P.B.

    1954-01-01

    A Teflon bellows-type pulse generator is described which consists of two 3-in. nominal diameter Teflon bellows mounted on either end of a flanged spool piece and rigidly connected internally by a push rod so that the two of bellows move in tandem. The ends of the two bellows are closed by means of blind flanges. Tne spool piece is designed for insertion in a 6-in. diameter nozzle on a solvent extraction pulse column. The double bellows arrangement constitutes a safety feature to prevent loss of the column contents in the event of failure of the inner bellows in contact withmore » column solution. Failure of the inner bellows may be detected by a conductivity probe mounted in the air space inside of the double bellows assembly. Reciprocating motion is imcrank arm rigidly connected through a cross head and push rod to the face of the external bellows flange. The push rod is guided by means of linear ball bushings. Frequency variation over a range of 30 to 100 cycles/ min.was obtained by use of a Thymotrol-controlled electric motor to drive the crank arm. Variable stroke adjustment (0 to 1-in. range) was possible by adjustment of linkages on the crank arm. A load compensating spring was founnd desirable to counteract the thrust on the push rod resulting tom the static pressure at the bottom of the solvent extraction column. Without the spring, accelerated wear of the bearing on the crank arm occured. The pulse generator operated uneventfully for 1776 hours (6.61x lO/sup 6/ cycles) at a frequency of 62 cycles/min. and a bellows travel of l-in. (equivalent to a displacement of 1.6 in. in a 3-in. diam. column). (auth)« less

  19. Lunar drill footplate and casing

    NASA Technical Reports Server (NTRS)

    Maassen, Erik C.; Hendrix, Thomas H.; Morrison, Eddie W.; Phillips, Rodrick B.; Le, Vu Quang; Works, Bruce A.

    1989-01-01

    To prevent hole collapse during lunar drilling operations, a casing has been devised of a graphite reinforced polyimide composite which will be able to withstand the lunar environment. Additionally, this casing will be inserted into the ground in segments two meters long which will penetrate the regolith simultaneously with the auger. The vertical action of the mobile platform will provide a downward force to the casing string through a special adaptor, giving the casing the needed impetus to sink the anticipated depth of ten meters. Casing segments will be connected with a simple snap arrangement. Excess casing will be cut off by a cylindrical cutting tool which will also transport the excess casing away from the hole. A footplate will be incorporated to grasp the auger rod string during rod segment additions or removals. The footplate grasping mechanism will consist of a set of vice-like arms, one end of each bearing threaded to a common power screw. The power screw will be threaded such that one end's thread pitch opposes that of the other end. The weight of the auger and rod string will be transmitted through the arms to the power screw and absorbed by a set of three ball bearing assemblies. The power screw will be driven by a one-half horsepower brushless motor actuated by radio control. The footplate will rest on four short legs and be anchored with pins that are an integral part of each leg.

  20. Simple Excitation of Standing Waves in Rubber Bands and Membranes

    NASA Astrophysics Data System (ADS)

    Cortel, Adolf

    2004-04-01

    Many methods to excite standing waves in strings, plates, membranes, rods, tubes, and soap bubbles have been described. Usually a loudspeaker or a vibrating reed is driven by the amplified output of an audio oscillator. A novel and simple method consists of using a tuning fork or a singing rod to excite transversal standing waves in stretched rubber membranes sprinkled with fine sand.

  1. DETECTION OF A GROUND-WATER/SURFACE-WATER INTERFACE WITH DIRECT-PUSH EQUIPMENT

    EPA Science Inventory

    A ground-water/surface-water interface (GSI) was documented at the Thermo Chem CERCLA Site in Muskegon, MI via direct-push (DP) sampling. At that time, contaminated ground water flowed from the upland area of the site into the Black Creek floodplain. DP rods equipped with a 1.5...

  2. Study on dynamic characteristics of hydraulic pumping unit on offshore platform

    NASA Astrophysics Data System (ADS)

    Chang, Zong-yu; Yu, Yan-qun; Qi, Yao-guang

    2017-12-01

    A new technology of offshore oil rod pumping production is developed for offshore heavy oil recovery. A new type of miniature hydraulic pumping unit with long-stroke, low pumping speed and compact structure is designed based on the spatial characteristics of offshore platforms. By combining the strengths of sinusoidal velocity curve and trapezoidal velocity curve, a kinematical model of the acceleration, the velocity and displacement of the pumping unit's hanging point is established. The results show that the pumping unit has good kinematic characteristics of smooth motion and small dynamic load. The multi-degree-of-freedom dynamic model of the single-well pumping unit is established. The first and second order natural frequencies of the sucker rod string subsystem and the pumping unit subsystem are studied. The results show that the first and the second order natural frequencies among the pumping rod string, pumping unit-platform subsystem and the dynamic excitation have differences over 5 times from each other, indicating that resonance phenomenon will not appear during the operation and the dynamic requirements for field use are met in the system.

  3. Characterization of Fluid Flow through a Simplified Heart Valve Model

    NASA Astrophysics Data System (ADS)

    Katija, Kakani

    2005-11-01

    Research has shown that the leading vortex of a starting jet makes a larger contribution to mass transport than a straight jet. Physical processes terminate growth of the leading vortex ring at a stroke ratio (L/D) between 3.5 and 4.5. This has enhanced the idea that biological systems optimize vortex formation for fluid transport. Of present interest is how fluid transport through a heart valve induces flutter of the valve leaflets. An attempt to characterize the fluid flow through a heart valve was made using a simplified cylinder-string system. Experiments were conducted in a water tank where a piston pushed fluid out of a cylinder (of diameter D) into surrounding fluid. A latex string was attached to the end of the cylinder to simulate a heart valve leaflet. The FFT of the string motion was computed to quantify the flutter behavior observed in the cylinder-string system. By increasing the stroke ratio, the amplitude of transverse oscillations for all string lengths increases. For the string length D/2, the occurrence of flutter coincides with the formation of the vortex ring trailing jet.

  4. Robust technology and system for management of sucker rod pumping units in oil wells

    NASA Astrophysics Data System (ADS)

    Aliev, T. A.; Rzayev, A. H.; Guluyev, G. A.; Alizada, T. A.; Rzayeva, N. E.

    2018-01-01

    We propose a technology for calculating the robust, normalized correlation functions of the signal from the force sensor on the rod string attached to the hanger of the sucker rod pumping unit. The robust normalized correlation functions are used to form sets of informative attribute combinations, each of which corresponds to a technical condition of the sucker rod pumping unit. We demonstrate how these sets can be used to solve identification and management problems in the oil production process in real time using inexpensive controllers. The results obtained from using the system on real objects are also presented in this paper. It was determined that the energy saved and prolonged overhaul period substantially increased the cost-effectiveness.

  5. One-dimensional reduction of viscous jets. II. Applications

    NASA Astrophysics Data System (ADS)

    Pitrou, Cyril

    2018-04-01

    In a companion paper [Phys. Rev. E 97, 043115 (2018), 10.1103/PhysRevE.97.043115], a formalism allowing to describe viscous fibers as one-dimensional objects was developed. We apply it to the special case of a viscous fluid torus. This allows to highlight the differences with the basic viscous string model and with its viscous rod model extension. In particular, an elliptic deformation of the torus section appears because of surface tension effects, and this cannot be described by viscous string nor viscous rod models. Furthermore, we study the Rayleigh-Plateau instability for periodic deformations around the perfect torus, and we show that the instability is not sufficient to lead to the torus breakup in several droplets before it collapses to a single spherical drop. Conversely, a rotating torus is dynamically attracted toward a stationary solution, around which the instability can develop freely and split the torus in multiple droplets.

  6. Suppressing turbulence of self-propelling rods by strongly coupled passive particles.

    PubMed

    Su, Yen-Shuo; Wang, Hao-Chen; I, Lin

    2015-03-01

    The strong turbulence suppression, mainly for large-scale modes, of two-dimensional self-propelling rods, by increasing the long-range coupling strength Γ of low-concentration passive particles, is numerically demonstrated. It is found that large-scale collective rod motion in forms of swirls or jets is mainly contributed from well-aligned dense patches, which can push small poorly aligned rod patches and uncoupled passive particles. The more efficient momentum transfer and dissipation through increasing passive particle coupling leads to the formation of a more ordered and slowed down network of passive particles, which competes with coherent dense active rod clusters. The frustration of active rod alignment ordering and coherent motion by the passive particle network, which interrupt the inverse cascading of forming large-scale swirls, is the key for suppressing collective rod motion with scales beyond the interpassive distance, even in the liquid phase of passive particles. The loosely packed active rods are weakly affected by increasing passive particle coupling due to the weak rod-particle interaction. They mainly contribute to the small-scale modes and high-speed motion.

  7. Nuclear reactor fuel rod attachment system

    DOEpatents

    Not Available

    1980-09-17

    A reusable system is described for removably attaching a nuclear reactor fuel rod to a support member. A locking cap is secured to the fuel rod and a locking strip is fastened to the support member. The locking cap has two opposing fingers shaped to form a socket having a body portion. The locking strip has an extension shaped to rigidly attach to the socket's body portion. The locking cap's fingers are resiliently deflectable. For attachment, the locking cap is longitudinally pushed onto the locking strip causing the extension to temporarily deflect open the fingers to engage the socket's body portion. For removal, the process is reversed.

  8. Ultrasonic Nondestructive Evaluation of Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) During Large-Scale Load Testing and Rod Push-Out Testing

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick H.; Juarez, Peter D.

    2016-01-01

    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept developed by the Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body (HWB) aircraft configuration. The HWB has long been a focus of NASA's environmentally responsible aviation (ERA) project, following a building block approach to structures development, culminating with the testing of a nearly full-scale multi-bay box (MBB), representing a segment of the pressurized, non-circular fuselage portion of the HWB. PRSEUS is an integral structural concept wherein skins, frames, stringers and tear straps made of variable number of layers of dry warp-knit carbon-fiber stacks are stitched together, then resin-infused and cured in an out-of-autoclave process. The PRSEUS concept has the potential for reducing the weight and cost and increasing the structural efficiency of transport aircraft structures. A key feature of PRSEUS is the damage-arresting nature of the stitches, which enables the use of fail-safe design principles. During the load testing of the MBB, ultrasonic nondestructive evaluation (NDE) was used to monitor several sites of intentional barely-visible impact damage (BVID) as well as to survey the areas surrounding the failure cracks after final loading to catastrophic failure. The damage-arresting ability of PRSEUS was confirmed by the results of NDE. In parallel with the large-scale structural testing of the MBB, mechanical tests were conducted of the PRSEUS rod-to-overwrap bonds, as measured by pushing the rod axially from a short length of stringer.

  9. Advanced Liquid-Free, Piezoresistive, SOI-Based Pressure Sensors for Measurements in Harsh Environments.

    PubMed

    Ngo, Ha-Duong; Mukhopadhyay, Biswaijit; Ehrmann, Oswin; Lang, Klaus-Dieter

    2015-08-18

    In this paper we present and discuss two innovative liquid-free SOI sensors for pressure measurements in harsh environments. The sensors are capable of measuring pressures at high temperatures. In both concepts media separation is realized using a steel membrane. The two concepts represent two different strategies for packaging of devices for use in harsh environments and at high temperatures. The first one is a "one-sensor-one-packaging_technology" concept. The second one uses a standard flip-chip bonding technique. The first sensor is a "floating-concept", capable of measuring pressures at temperatures up to 400 °C (constant load) with an accuracy of 0.25% Full Scale Output (FSO). A push rod (mounted onto the steel membrane) transfers the applied pressure directly to the center-boss membrane of the SOI-chip, which is placed on a ceramic carrier. The chip membrane is realized by Deep Reactive Ion Etching (DRIE or Bosch Process). A novel propertied chip housing employing a sliding sensor chip that is fixed during packaging by mechanical preloading via the push rod is used, thereby avoiding chip movement, and ensuring optimal push rod load transmission. The second sensor can be used up to 350 °C. The SOI chips consists of a beam with an integrated centre-boss with was realized using KOH structuring and DRIE. The SOI chip is not "floating" but bonded by using flip-chip technology. The fabricated SOI sensor chip has a bridge resistance of 3250 Ω. The realized sensor chip has a sensitivity of 18 mV/µm measured using a bridge current of 1 mA.

  10. Use of Site Characterization and Analysis Penetrometer System at the Walnut Creek Watershed, Ames, Iowa

    DTIC Science & Technology

    1993-08-01

    grout is pumped through a central tube in the push rod cable and exits through the probe tip. Retraction grouting (as the rod is withdrawn through the...soil) with a microfine Portland cement grout is normally utilized for all projects; however, subfreezing weather mandated that post - retraction grouting...ELECTRODES (4) P2 RESISTIVITY C2 MODULE GROUTING TUBES (2) 24 IN(61 CM) Grout Injector -- 1.4 IN(3.57 CM) o.D. 0" RINGS GROUTING CONE SLEEVE FRICTION

  11. Biomechanical stability according to different configurations of screws and rods.

    PubMed

    Ha, Kee-Yong; Hwang, Sung-Chul; Whang, Tae-Hyuk

    2013-05-01

    Comparison of biomechanical strength according to 2 different configurations of screws and rods. To compare the biomechanical strength of different configurations of screws and rods composed of the same material and of the same size. Many complications related to instrumentation have been reported. The incidence of metallic failure would differ according to the materials and configurations of the assembly of the screws and rods used. However, to our knowledge, the biomechanical effects of implant assembly rods and screws with different configurations and different contours have not been reported. Biomechanical testing was conducted to compare top tightening (TT) screw-rod configuration with side tightening (ST) screw-rod configuration. All tests were conducted using a hydraulic all-purpose testing machine. All data were acquired at a rate of 10 Hz. Both screw systems used spinal rods of 6 mm diameter and were made of TiAl4V ELI material. Among 5 types of tests, 3 were conducted on the basis of American Society for Testing and Materials (ASTM) F 1798 to 97 and F1717-10. The other 2 tests were conducted for comparing the characteristics between TT and ST pedicle screws according to modified methods from ASTM F 1717-10 and ASTM F 1798-97. All results including axial gripping capacity and yield forces were obtained using the same methods on the basis of the mentioned ASTM standards. In the axial gripping capacity test, the mean axial gripping capacity of the TT screw-rod configuration was 3332 ± 118 N and that of ST was 2222 ± 147 N in straight rods (P = 0.019). In 15-degree contoured rods, TT was 2988 ± 199 N and ST was 2116 ± 423 N (P = 0.014). In 30-degree contoured rods, TT was 2227 ± 408 N and ST was 1814 ± 285 N (P = 0.009). In the pulling-out test, the pulling-out force of ST was 8695 ± 1616 N and that of TT was 6106 ± 195 N (P = 0.014). In the rod-pushing test, the failure force of ST was 4131 ± 205 N and that of TT was 5639 ± 105 N. In the compressive fatigue test, the maximum load was 145 N in ST and 119 N in TT. In the cycle fatigue test, the fatigue strength of ST was higher than that of TT. In the rod-pushing test, the failure force of ST was 4131 ± 205 N and that of TT was 5639 ± 105 N (P=0.046). Two different configurations of rod-screw systems found statistically significant differences with axial gripping, pulling out, and fatigue failures. ST constructs improved fixation stability over TT constructs. It was concluded that ST configuration may reduce complications related to implantation.

  12. Birth of the Universe from the Multiverse

    NASA Astrophysics Data System (ADS)

    Mersini-Houghton, Laura

    2015-01-01

    Compactification of extra dimensions in string theory leads to a vast number of (3+1) dimensional worlds, (about 10500 so far), coined the landscape. At the time of the discovery of the landscape, the question which one of these worlds is our universe seemed hopeless. Many argued that the vastness of the landscape undermines the very foundations of string theory for two reasons: (i) the theory seemed unfalsifiable since for every observation we could find a matching world on the landscape; (ii) the method advocated at the time for making sense of this landscape was the anthropic principle. The former objection implied string theory can not be scientific. The latter concern is that anthropics do not help scientific inquiry and rigor but rather it may seem to push some version of creationism to the next level. For these reasons the whole field of string theory and also, of cosmology that relied on it for answers about fundamental questions such as the origins of the universe, seemed to be in deep crisis at the beginning of the millenia...

  13. Next generation dilatometer for highest accuracy thermal expansion measurement of ZERODUR®

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Engel, Axel; Kunisch, Clemens; Westenberger, Gerhard; Fischer, Peter; Westerhoff, Thomas

    2015-09-01

    In the recent years, the ever tighter tolerance for the Coefficient of thermal expansion (CTE) of IC Lithography component materials is requesting significant progress in the metrology accuracy to determine this property as requested. ZERODUR® is known for its extremely low CTE between 0°C to 50°C. The current measurement of the thermal expansion coefficient is done using push rod dilatometer measurement systems developed at SCHOTT. In recent years measurements have been published showing the excellent CTE homogeneity of ZERODUR® in the one-digit ppb/K range using these systems. The verifiable homogeneity was limited by the CTE(0°C, 50°C) measurement repeatability in the range of ± 1.2 ppb/K of the current improved push rod dilatometer setup using an optical interferometer as detector instead of an inductive coil. With ZERODUR® TAILORED, SCHOTT introduced a low thermal expansion material grade that can be adapted to individual customer application temperature profiles. The basis for this product is a model that has been developed in 2010 for better understanding of the thermal expansion behavior under given temperature versus time conditions. The CTE behavior predicted by the model has proven to be in very good alignment with the data determined in the thermal expansions measurements. The measurements to determine the data feeding the model require a dilatometer setup with excellent stability and accuracy for long measurement times of several days. In the past few years SCHOTT spent a lot of effort to drive a dilatometer measurement technology based on the push rod setup to its limit, to fulfill the continuously demand for higher CTE accuracy and deeper material knowledge of ZERODUR®. This paper reports on the status of the dilatometer technology development at SCHOTT.

  14. Advanced Liquid-Free, Piezoresistive, SOI-Based Pressure Sensors for Measurements in Harsh Environments

    PubMed Central

    Ngo, Ha-Duong; Mukhopadhyay, Biswaijit; Ehrmann, Oswin; Lang, Klaus-Dieter

    2015-01-01

    In this paper we present and discuss two innovative liquid-free SOI sensors for pressure measurements in harsh environments. The sensors are capable of measuring pressures at high temperatures. In both concepts media separation is realized using a steel membrane. The two concepts represent two different strategies for packaging of devices for use in harsh environments and at high temperatures. The first one is a “one-sensor-one-packaging_technology” concept. The second one uses a standard flip-chip bonding technique. The first sensor is a “floating-concept”, capable of measuring pressures at temperatures up to 400 °C (constant load) with an accuracy of 0.25% Full Scale Output (FSO). A push rod (mounted onto the steel membrane) transfers the applied pressure directly to the center-boss membrane of the SOI-chip, which is placed on a ceramic carrier. The chip membrane is realized by Deep Reactive Ion Etching (DRIE or Bosch Process). A novel propertied chip housing employing a sliding sensor chip that is fixed during packaging by mechanical preloading via the push rod is used, thereby avoiding chip movement, and ensuring optimal push rod load transmission. The second sensor can be used up to 350 °C. The SOI chips consists of a beam with an integrated centre-boss with was realized using KOH structuring and DRIE. The SOI chip is not “floating” but bonded by using flip-chip technology. The fabricated SOI sensor chip has a bridge resistance of 3250 Ω. The realized sensor chip has a sensitivity of 18 mV/µm measured using a bridge current of 1 mA. PMID:26295235

  15. Formation of a pinched electron beam and an intense x-ray source in radial foil rod-pinch diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorokin, S. A.

    2016-04-15

    Low-impedance rod-pinch diode experiments were performed on the MIG generator at Institute of High Current Electronics using an aluminum foil placed between concentric electrodes of a rod-pinch diode. The J × B force accelerates the foil plasma in the axial and radial directions. After the foil plasma is pushed beyond the tip of the rod, a vacuum gap and a pinched electron beam form. The anode and cathode plasmas expansion and the following plasmas sweeping up by the J × B force can result in repetitive gap formations and closures, which are evident in the several successive intense x-ray pulses. A 0.7-mm-size point-like x-raymore » source was realized using a 1-mm-diameter tungsten rod, tapered to a point over the last 10 mm. The results of experiments show that the foil-shorted rod-pinch diode configuration has the potential to form low-impedance diodes, to shorten x-ray pulse duration and to realize submillimeter spot-size x-ray sources.« less

  16. Nuclear reactor fuel rod attachment system

    DOEpatents

    Christiansen, David W.

    1982-01-01

    A reusable system for removably attaching a nuclear reactor fuel rod (12) to a support member (14). A locking cap (22) is secured to the fuel rod (12) and a locking strip (24) is fastened to the support member (14). The locking cap (22) has two opposing fingers (24a and 24b) shaped to form a socket having a body portion (26). The locking strip has an extension (36) shaped to rigidly attach to the socket's body portion (26). The locking cap's fingers are resiliently deflectable. For attachment, the locking cap (22) is longitudinally pushed onto the locking strip (24) causing the extension (36) to temporarily deflect open the fingers (24a and 24b) to engage the socket's body portion (26). For removal, the process is reversed.

  17. Shotgun cartridge rock breaker

    DOEpatents

    Ruzzi, Peter L.; Morrell, Roger J.

    1995-01-01

    A rock breaker uses shotgun cartridges or other firearm ammunition as the explosive charge at the bottom of a drilled borehole. The breaker includes a heavy steel rod or bar, a gun with a firing chamber for the ammunition which screws onto the rod, a long firing pin running through a central passage in the rod, and a firing trigger mechanism at the external end of the bar which strikes the firing pin to fire the cartridge within the borehole. A tubular sleeve surround the main body of the rod and includes slits the end to allow it to expand. The rod has a conical taper at the internal end against which the end of the sleeve expands when the sleeve is forced along the rod toward the taper by a nut threaded onto the external end of the rod. As the sleeve end expands, it pushes against the borehole and holds the explosive gasses within, and also prevents the breaker from flying out of the borehole. The trigger mechanism includes a hammer with a slot and a hole for accepting a drawbar or drawpin which, when pulled by a long cord, allows the cartridge to be fired from a remote location.

  18. When experiment and energy conservation collide: video analysis of an unrolling mat

    NASA Astrophysics Data System (ADS)

    Mungan, Carl E.; Lipscombe, Trevor C.

    2018-03-01

    A mat consisting of round bamboo rods connected by strings perpendicular to their axes unrolls without slipping on a horizontal table. Video analysis is used to measure the position of the centre of the remaining roll as a function of time. It is found to accelerate with time due to the ‘rocket effect’ of the roll ejecting rods backward relative to itself. Mechanical energy is not conserved because of the inelastic collisions of the rods with the table. The fitted coefficient of restitution (COR) is 0.59 ± 0.04 which is consistent with known values for wood on wood. In support of this explanation, progressively smaller values of the COR are found when the mat is unrolled on a flat woven rug and on a shock-absorbing pad. The level of analysis is appropriate to an undergraduate course in physical mechanics.

  19. Visual probes and methods for placing visual probes into subsurface areas

    DOEpatents

    Clark, Don T.; Erickson, Eugene E.; Casper, William L.; Everett, David M.

    2004-11-23

    Visual probes and methods for placing visual probes into subsurface areas in either contaminated or non-contaminated sites are described. In one implementation, the method includes driving at least a portion of a visual probe into the ground using direct push, sonic drilling, or a combination of direct push and sonic drilling. Such is accomplished without providing an open pathway for contaminants or fugitive gases to reach the surface. According to one implementation, the invention includes an entry segment configured for insertion into the ground or through difficult materials (e.g., concrete, steel, asphalt, metals, or items associated with waste), at least one extension segment configured to selectively couple with the entry segment, at least one push rod, and a pressure cap. Additional implementations are contemplated.

  20. A Fragile Birth

    ERIC Educational Resources Information Center

    Desrochers, Lindsay A.

    2007-01-01

    The project of building the tenth University of California (UC) campus--UC Merced--was a lightning rod for all the various pushes and pulls in California society between 1983 and 2005. In fact, the author suggests, the project provides a clear window into California during this period. In this chapter, she describes the political and economic…

  1. An acoustic study of the Brazilian cuica

    NASA Astrophysics Data System (ADS)

    Wheeler, Paul A.

    2002-11-01

    The cuica is a friction drum of African origin played in the batucada (an ensemble of instruments used for the samba) during the Brazilian carnival. It is played by rubbing a bamboo rod which is connected to the center of a drum head, giving a rhythmic grunting sound. Pitch is changed by applying pressure to the membrane. This paper discusses several acoustic aspects of a folk cuica (made of a gourd) including the waveforms, spectra, and time envelopes produced. Rubbing the bamboo rod gives a primitive saw-toothed excitation, similar to a bowed violin string. This is connected to the center of a membrane which modifies and radiates the sound. The body of the cuica contributes little to the sound.

  2. Requiring School Districts to Spend Comparable Amounts on Title I Schools Is Pushing on a String. Evidence Speaks Reports, Vol 1, #21

    ERIC Educational Resources Information Center

    Dynarski, Mark; Kainz, Kirsten

    2016-01-01

    Of all the rules that the U.S. Department of Education will have to formulate for the Every Student Succeeds Act, the proposed regulations to monitor that states and districts spend comparable amounts for schools eligible and not eligible to use Title I funds are attracting the most attention. Currently, districts can show comparability based on…

  3. Feasibility of using cone penetrometer truck (CPT) to install time domain reflectometry (TDR) and fiber optic slope failure detectors in pavement structures.

    DOT National Transportation Integrated Search

    2011-02-01

    A new method of cable installation using a heavy-duty Cone Penetration Test : (CPT) truck was developed and practiced successfully in this study. The coaxial and fiber : optic cables were pushed along with the cone rods by the hydraulic system integr...

  4. 30 CFR 18.31 - Enclosures-joints and fastenings.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pressed fit shall result in a minimum interference of 0.001 inch between the parts. The minimum length of the pressed fit shall be equal to the minimum thickness requirement of paragraph (a)(6) of this.... The length of fit shall not be reduced when a push button is depressed. Operating rods shall have a...

  5. Properties of Interfacial Tribo-Films

    DTIC Science & Technology

    1993-06-01

    cf these rods is such as to have the center of gravity of or the attraction of water into the re-entrant peripheral gap the whole sample as close as...difference between the fluid dynamics, acoustic effects in stringed musical static and the kinetic friction coefficients increases with instruments...interfacial fluid molecules to static minimize oscillations, the center of gravity of the sample friction have been explored and, in this regard, adsorbed

  6. Deliquification (SIC) of gas wells. Liberal District-Amoco Production Company

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smalley, R. Jr.

    Various solutions are presented to the problem of deliquefying gas wells to achieve maximum ultimate recovery and avoid premature abandonment. Advantages and disadvantages of each method of deliquefication are discussed. The methods described include blowing up the casing, siphon strings (gas and liquids up tubing, or gas up casing-tubing annulus, and liquids up tubing), gas cycling, compression, bottomhole separators, plunger lift, and sucker rod pumping.

  7. 77 FR 66409 - Airworthiness Directives; Diamond Aircraft Industries GmbH Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-05

    ... of an unsuitable self-locking nut on the bell crank of the elevator push rod that can cause failure... in the tail section of the fuselage, as a result of installation of a non-suitable self-locking nut... identified that its current configuration has a failure potential when components such as thin self-securing...

  8. Hydro-ball in-core instrumentation system and method of operation

    DOEpatents

    Tower, Stephen N.; Veronesi, Luciano; Braun, Howard E.

    1990-01-01

    A hydro-ball in-core instrumentation system employs detector strings each comprising a wire having radiation sensitive balls affixed diametrically at spaced positions therealong and opposite tip ends of which are transportable by fluid drag through interior passageways. In the passageways primary coolant is caused to flow selectively in first and second opposite directions for transporting the detector strings from stored positions in an exterior chamber to inserted positions within the instrumentation thimbles of the fuel rod assemblies of a pressure vessel, and for return. The coolant pressure within the detector passageways is the same as that within the vessel; face contact, disconnectable joints between sections of the interior passageways within the vessel facilitate assembly and disassembly of the vessel for refueling and routine maintenance operations. The detector strings may pass through a very short bend radius thereby minimizing space requirements for the connections of the instrumentation system to the vessel and concomitantly the vessel containment structure. Improved radiation mapping and a significant reduction in potential exposure of personnel to radiation are provided. Both top head and bottom head penetration embodiments are disclosed.

  9. Pushing the limits of photoreception in twilight conditions: The rod-like cone retina of the deep-sea pearlsides.

    PubMed

    de Busserolles, Fanny; Cortesi, Fabio; Helvik, Jon Vidar; Davies, Wayne I L; Templin, Rachel M; Sullivan, Robert K P; Michell, Craig T; Mountford, Jessica K; Collin, Shaun P; Irigoien, Xabier; Kaartvedt, Stein; Marshall, Justin

    2017-11-01

    Most vertebrates have a duplex retina comprising two photoreceptor types, rods for dim-light (scotopic) vision and cones for bright-light (photopic) and color vision. However, deep-sea fishes are only active in dim-light conditions; hence, most species have lost their cones in favor of a simplex retina composed exclusively of rods. Although the pearlsides, Maurolicus spp., have such a pure rod retina, their behavior is at odds with this simplex visual system. Contrary to other deep-sea fishes, pearlsides are mostly active during dusk and dawn close to the surface, where light levels are intermediate (twilight or mesopic) and require the use of both rod and cone photoreceptors. This study elucidates this paradox by demonstrating that the pearlside retina does not have rod photoreceptors only; instead, it is composed almost exclusively of transmuted cone photoreceptors. These transmuted cells combine the morphological characteristics of a rod photoreceptor with a cone opsin and a cone phototransduction cascade to form a unique photoreceptor type, a rod-like cone, specifically tuned to the light conditions of the pearlsides' habitat (blue-shifted light at mesopic intensities). Combining properties of both rods and cones into a single cell type, instead of using two photoreceptor types that do not function at their full potential under mesopic conditions, is likely to be the most efficient and economical solution to optimize visual performance. These results challenge the standing paradigm of the function and evolution of the vertebrate duplex retina and emphasize the need for a more comprehensive evaluation of visual systems in general.

  10. Pushing the limits of photoreception in twilight conditions: The rod-like cone retina of the deep-sea pearlsides

    PubMed Central

    de Busserolles, Fanny; Cortesi, Fabio; Helvik, Jon Vidar; Davies, Wayne I. L.; Templin, Rachel M.; Sullivan, Robert K. P.; Michell, Craig T.; Mountford, Jessica K.; Collin, Shaun P.; Irigoien, Xabier; Kaartvedt, Stein; Marshall, Justin

    2017-01-01

    Most vertebrates have a duplex retina comprising two photoreceptor types, rods for dim-light (scotopic) vision and cones for bright-light (photopic) and color vision. However, deep-sea fishes are only active in dim-light conditions; hence, most species have lost their cones in favor of a simplex retina composed exclusively of rods. Although the pearlsides, Maurolicus spp., have such a pure rod retina, their behavior is at odds with this simplex visual system. Contrary to other deep-sea fishes, pearlsides are mostly active during dusk and dawn close to the surface, where light levels are intermediate (twilight or mesopic) and require the use of both rod and cone photoreceptors. This study elucidates this paradox by demonstrating that the pearlside retina does not have rod photoreceptors only; instead, it is composed almost exclusively of transmuted cone photoreceptors. These transmuted cells combine the morphological characteristics of a rod photoreceptor with a cone opsin and a cone phototransduction cascade to form a unique photoreceptor type, a rod-like cone, specifically tuned to the light conditions of the pearlsides’ habitat (blue-shifted light at mesopic intensities). Combining properties of both rods and cones into a single cell type, instead of using two photoreceptor types that do not function at their full potential under mesopic conditions, is likely to be the most efficient and economical solution to optimize visual performance. These results challenge the standing paradigm of the function and evolution of the vertebrate duplex retina and emphasize the need for a more comprehensive evaluation of visual systems in general. PMID:29134201

  11. Enhanced Phosphorylation-Independent Arrestins and Gene Therapy

    PubMed Central

    Gurevich, Vsevolod V.; Song, Xiufeng; Vishnivetskiy, Sergey A.; Gurevich, Eugenia V.

    2015-01-01

    A variety of heritable and acquired disorders is associated with excessive signaling by mutant or overstimulated GPCRs. Since any conceivable treatment of diseases caused by gain-of-function mutations requires gene transfer, one possible approach is functional compensation. Several structurally distinct forms of enhanced arrestins that bind phosphorylated and even non-phosphorylated active GPCRs with much higher affinity than parental wild-type proteins have the ability to dampen the signaling by hyperactive GPCR, pushing the balance closer to normal. In vivo this approach was so far tested only in rod photoreceptors deficient in rhodopsin phosphorylation, where enhanced arrestin improved the morphology and light sensitivity of rods, prolonged their survival, and accelerated photoresponse recovery. Considering that rods harbor the fastest, as well as the most demanding and sensitive GPCR-driven signaling cascade, even partial success of functional compensation of defect in rhodopsin phosphorylation by enhanced arrestin demonstrates the feasibility of this strategy and its therapeutic potential. PMID:24292828

  12. Multi-lead heat sink

    DOEpatents

    Roose, L.D.

    1984-07-03

    The disclosure relates to a heat sink used to protect integrated circuits from the heat resulting from soldering them to circuit boards. A tubular housing contains a slidable member which engages somewhat inwardly extending connecting rods, each of which is rotatably attached at one end to the bottom of the housing. The other end of each rod is fastened to an expandable coil spring loop. As the member is pushed downward in the housing, its bottom edge engages and forces outward the connecting rods, thereby expanding the spring so that it will fit over an integrated circuit. After the device is in place, the member is slid upward and the spring contracts about the leads of the integrated circuit. Soldering is now conducted and the spring absorbs excess heat therefrom to protect the integrated circuit. The placement steps are repeated in reverse order to remove the heat sink for use again. 4 figs.

  13. Multi-lead heat sink

    DOEpatents

    Roose, Lars D.

    1984-01-01

    The disclosure relates to a heat sink used to protect integrated circuits from the heat resulting from soldering them to circuit boards. A tubular housing contains a slidable member which engages somewhat inwardly extending connecting rods, each of which is rotatably attached at one end to the bottom of the housing. The other end of each rod is fastened to an expandable coil spring loop. As the member is pushed downward in the housing, its bottom edge engages and forces outward the connecting rods, thereby expanding the spring so that it will fit over an integrated circuit. After the device is in place, the member is slid upward and the spring contracts about the leads of the integrated circuit. Soldering is now conducted and the spring absorbs excess heat therefrom to protect the integrated circuit. The placement steps are repeated in reverse order to remove the heat sink for use again.

  14. Multi-lead heat sink

    DOEpatents

    Roose, L.D.

    1982-08-25

    The disclosure relates to a heat sink used to protect integrated circuits from the heat resulting from soldering them to circuit boards. A tubular housing contains a slidable member which engages somewhat inwardly extending connecting rods, each of which is rotatably attached at one end to the bottom of the housing. The other end of each rod is fastened to an expandable coil spring loop. As the member is pushed downward in the housing, its bottom edge engages and forces outward the connecting rods, thereby expanding the spring so that it will fit over an integrated circuit. After the device is in place, the member is slid upward and the spring contracts about the leads of the integrated circuit. Soldering is now conducted and the spring absorbs excess heat therefrom to protect the integrated circuit. The placement steps are repeated in reverse order to remove the heat sink for use again.

  15. Helicopter Fatigue Design Guide

    DTIC Science & Technology

    1983-11-01

    for example, glass and carbon fibre reinforced plastics. The general principles behind the substantiation procedures for these materials are...initiating cause of many minor (and sometimes major) cracks that can lead to expensive repair, even though they may not immediately cause a safety...be seen, blade stresses correlated well with both unsteady models. However, push rod loads calculated with the Time Delay Model are much less than

  16. Scoliosis corrective force estimation from the implanted rod deformation using 3D-FEM analysis.

    PubMed

    Abe, Yuichiro; Ito, Manabu; Abumi, Kuniyoshi; Sudo, Hideki; Salmingo, Remel; Tadano, Shigeru

    2015-01-01

    Improvement of material property in spinal instrumentation has brought better deformity correction in scoliosis surgery in recent years. The increase of mechanical strength in instruments directly means the increase of force, which acts on bone-implant interface during scoliosis surgery. However, the actual correction force during the correction maneuver and safety margin of pull out force on each screw were not well known. In the present study, estimated corrective forces and pull out forces were analyzed using a novel method based on Finite Element Analysis (FEA). Twenty adolescent idiopathic scoliosis patients (1 boy and 19 girls) who underwent reconstructive scoliosis surgery between June 2009 and Jun 2011 were included in this study. Scoliosis correction was performed with 6mm diameter titanium rod (Ti6Al7Nb) using the simultaneous double rod rotation technique (SDRRT) in all cases. The pre-maneuver and post-maneuver rod geometry was collected from intraoperative tracing and postoperative 3D-CT images, and 3D-FEA was performed with ANSYS. Cobb angle of major curve, correction rate and thoracic kyphosis were measured on X-ray images. Average age at surgery was 14.8, and average fusion length was 8.9 segments. Major curve was corrected from 63.1 to 18.1 degrees in average and correction rate was 71.4%. Rod geometry showed significant change on the concave side. Curvature of the rod on concave and convex sides decreased from 33.6 to 17.8 degrees, and from 25.9 to 23.8 degrees, respectively. Estimated pull out forces at apical vertebrae were 160.0N in the concave side screw and 35.6N in the convex side screw. Estimated push in force at LIV and UIV were 305.1N in the concave side screw and 86.4N in the convex side screw. Corrective force during scoliosis surgery was demonstrated to be about four times greater in the concave side than in convex side. Averaged pull out and push in force fell below previously reported safety margin. Therefore, the SDRRT maneuver was safe for correcting moderate magnitude curves. To prevent implant breakage or pedicle fracture during the maneuver in a severe curve correction, mobilization of spinal segment by releasing soft tissue or facet joint could be more important than using a stronger correction maneuver with a rigid implant.

  17. Material test machine for tension-compression tests at high temperature

    DOEpatents

    Cioletti, Olisse C.

    1988-01-01

    Apparatus providing a device for testing the properties of material specimens at high temperatures and pressures in controlled water chemistries includes, inter alia, an autoclave housing the specimen which is being tested. The specimen is connected to a pull rod which couples out of the autoclave to an external assembly which includes one or more transducers, a force balance chamber and a piston type actuator. The pull rod feeds through the force balance chamber and is compensated thereby for the pressure conditions existing within the autoclave and tending to eject the pull rod therefrom. The upper end of the push rod is connected to the actuator through elements containing a transducer comprising a linear variable differential transformer (LVDT). The housing and coil assembly of the LVDT is coupled to a tube which runs through a central bore of the pull rod into the autoclave where it is connected to one side of the specimen. The movable core of the LVDT is coupled to a stem which runs through the tube where it is then connected to the other side of the specimen through a coupling member. A transducer in the form of a load cell including one or more strain gages is located on a necked-down portion of the upper part of the pull rod intermediate the LVDT and force balance chamber.

  18. Particle Engulfment and Pushing by Solidifying Interfaces. Pt. 2; Micro-Gravity Experiments and Theoretical Analysis

    NASA Technical Reports Server (NTRS)

    Stefanescu, Doru M.; Juretzko, Frank R.; Dhindaw, Brij K.; Catalina, Adrian; Sen, Subhayu; Curreri, Peter A.

    1998-01-01

    Results of the directional solidification experiments on Particle Engulfment and Pushing by Solidifying Interfaces (PEP) conducted on the space shuttle Columbia during the Life and Microgravity Science Mission are reported. Two pure aluminum (99.999%) 9 mm cylindrical rods, loaded with about 2 vol.% 500 micrometers diameter zirconia particles were melted and resolidified in the microgravity (microg) environment of the shuttle. One sample was processed at step-wise increased solidification velocity, while the other at step-wise decreased velocity. It was found that a pushing-to-engulfment transition (PET) occurred in the velocity range of 0.5 to 1 micrometers. This is smaller than the ground PET velocity of 1.9 to 2.4 micrometers. This demonstrates that natural convection increases the critical velocity. A previously proposed analytical model for PEP was further developed. A major effort to identify and produce data for the surface energy of various interfaces required for calculation was undertaken. The predicted critical velocity for PET was of 0.775 micrometers/s.

  19. Input-independent, Scalable and Fast String Matching on the Cray XMT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villa, Oreste; Chavarría-Miranda, Daniel; Maschhoff, Kristyn J

    2009-05-25

    String searching is at the core of many security and network applications like search engines, intrusion detection systems, virus scanners and spam filters. The growing size of on-line content and the increasing wire speeds push the need for fast, and often real- time, string searching solutions. For these conditions, many software implementations (if not all) targeting conventional cache-based microprocessors do not perform well. They either exhibit overall low performance or exhibit highly variable performance depending on the types of inputs. For this reason, real-time state of the art solutions rely on the use of either custom hardware or Field-Programmable Gatemore » Arrays (FPGAs) at the expense of overall system flexibility and programmability. This paper presents a software based implementation of the Aho-Corasick string searching algorithm on the Cray XMT multithreaded shared memory machine. Our so- lution relies on the particular features of the XMT architecture and on several algorith- mic strategies: it is fast, scalable and its performance is virtually content-independent. On a 128-processor Cray XMT, it reaches a scanning speed of ≈ 28 Gbps with a performance variability below 10 %. In the 10 Gbps performance range, variability is below 2.5%. By comparison, an Intel dual-socket, 8-core system running at 2.66 GHz achieves a peak performance which varies from 500 Mbps to 10 Gbps depending on the type of input and dictionary size.« less

  20. On viscoelastic cavitating flows: A numerical study

    NASA Astrophysics Data System (ADS)

    Naseri, Homa; Koukouvinis, Phoevos; Malgarinos, Ilias; Gavaises, Manolis

    2018-03-01

    The effect of viscoelasticity on turbulent cavitating flow inside a nozzle is simulated for Phan-Thien-Tanner (PTT) fluids. Two different flow configurations are used to show the effect of viscoelasticity on different cavitation mechanisms, namely, cloud cavitation inside a step nozzle and string cavitation in an injector nozzle. In incipient cavitation condition in the step nozzle, small-scale flow features including cavitating microvortices in the shear layer are suppressed by viscoelasticity. Flow turbulence and mixing are weaker compared to the Newtonian fluid, resulting in suppression of microcavities shedding from the cavitation cloud. Moreover, mass flow rate fluctuations and cavity shedding frequency are reduced by the stabilizing effect of viscoelasticity. Time averaged values of the liquid volume fraction show that cavitation formation is strongly suppressed in the PTT viscoelastic fluid, and the cavity cloud is pushed away from the nozzle wall. In the injector nozzle, a developed cloud cavity covers the nozzle top surface, while a vortex-induced string cavity emerges from the turbulent flow inside the sac volume. Similar to the step nozzle case, viscoelasticity reduces the vapor volume fraction in the cloud region. However, formation of the streamwise string cavity is stimulated as turbulence is suppressed inside the sac volume and the nozzle orifice. Vortical perturbations in the vicinity of the vortex are damped, allowing more vapor to develop in the string cavity region. The results indicate that the effect of viscoelasticity on cavitation depends on the alignment of the cavitating vortices with respect to the main flow direction.

  1. Propulsion at low Reynolds number via beam extrusion

    NASA Astrophysics Data System (ADS)

    Gosselin, Frederick; Neetzow, Paul

    2014-03-01

    We present experimental and theoretical results on the extrusion of a slender beam in a viscous fluid. We are particularly interested in the force necessary to extrude the beam as it buckles with large amplitude due to viscous friction. The problem is inspired by the propulsion of Paramecium via trichocyst extrusion. Self-propulsion in micro-organisms is mostly achieved through the beating of flagella or cilia. However, to avoid a severe aggression, unicellular Paramecium has been observed to extrude trichocysts in the direction of the aggression to burst away. These trichocysts are rod-like organelles which, upon activation, grow to about 40 μm in length in 3 milliseconds before detaching from the animal. The drag force created by these extruding rods pushing against the viscous fluid generates thrust in the opposite direction. We developed an experimental setup to measure the force required to push a steel piano wire into an aquarium filled with corn syrup. This setup offers a near-zero Reynolds number, and allows studying deployments for a range of constant extrusion speeds. The experimental results are reproduced with a numerical model coupling a large amplitude Euler-Bernoulli beam theory with a fluid load model proportional to the local beam velocity. This study was funded in part by the The Natural Sciences and Engineering Research Council of Canada.

  2. Particle Engulfment and Pushing by Solidifying Interfaces LMS Mission Results

    NASA Technical Reports Server (NTRS)

    Juretzko, Frank R.; Catalina, Adrian V.; Stefanescu, Doru M.; Dhindaw, Brij K.; Sen, Subhayu; Curreri, Peter A.; Mullins, Jennifer

    1998-01-01

    Results of the directional solidification experiments on Particle Engulfment and Pushing by Solidifying Interfaces (PEP) conducted on the space shuttle Columbia are reported. The experiment was manifested as part of The Life and Microgravity Science Mission. Two pure aluminum (99.999%) 9 mm cylindrical rods, loaded with about 2 vol.% 500 microns diameter zirconia particles were melted and directionally solidified in the microgravity (micro-g) environment of the shuttle. The particles were non-reactive with the matrices within the temperature range of interest. The experiments were conducted such as to insure a planar solid/liquid interface during solidification. Two different cartridge - crucible - sample designs were used: a spring-piston and expansion void. Both resulted in sound samples. Samples were evaluated post-flight for soundness by X-ray computer tomography (XCT).

  3. Meniscal shear stress for punching.

    PubMed

    Tuijthof, Gabrielle J M; Meulman, Hubert N; Herder, Just L; van Dijk, C Niek

    2009-01-01

    Experimental determination of the shear stress for punching meniscal tissue. Meniscectomy (surgical treatment of a lesion of one of the menisci) is the most frequently performed arthroscopic procedure. The performance of a meniscectomy is not optimal with the currently available instruments. To design new instruments, the punching force of meniscal tissue is an important parameter. Quantitative data are unavailable. The meniscal punching process was simulated by pushing a rod through meniscal tissue at constant speed. Three punching rods were tested: a solid rod of Oslash; 3.00 mm, and two hollow tubes (Oslash; 3.00-2.60 mm) with sharpened cutting edges of 0.15 mm and 0.125 mm thick, respectively. Nineteen menisci acquired from 10 human cadaveric knee joints were punched (30 tests). The force and displacement were recorded from which the maximum shear stress was determined (average added with three times the standard deviation). The maximum shear stress for the solid rod was determined at 10.2 N/mm2. This rod required a significantly lower punch force in comparison with the hollow tube having a 0.15 mm cutting edge (plt;0.01). The maximum shear stress for punching can be applied to design instruments, and virtual reality training environments. This type of experiment is suitable to form a database with material properties of human tissue similar to databases for the manufacturing industry.

  4. The Causes and Prevention Measures of Stuck Pump Phenomenon of Rod-pumped Well in CBM Field

    NASA Astrophysics Data System (ADS)

    Yonggui, Mei

    2018-02-01

    In the process of CBM field exploitation, in order to realize the drainage equipment to work continuous stably, the article pays attention to study and solve the stuck pump problem, and aim of reducing reservoir damage and lowing production costs. Through coal particles stuck pump experiment and sediment composition analysis, we find out five primary cause of stuck pump phenomenon: sand from coal seam, sediment from ground, iron corrosion, iron scrap caused by eccentric wear, coal cake. According to stuck pump mechanism, the article puts forward 8 measures to prevent stuck pump phenomenon, and the measures are focused on technology optimization, operation management and drainage process control. After 7 years production practice, the yearly stuck pump rate has dropped from 8.9% to 1.2%, and the pump inspection period has prolonged 2 times. The experiment result shows that pure coal particles cannot cause stuck pump, but sand, scrap iron, and iron corrosion are the primary cause of stuck pump. The article study and design the new pipe string structure that the bottom of the pipe string is open. This kind of pipe string applied the sedimentation terminal velocity theory to solve the stuck pump phenomenon, and it can be widely used in CBM drainage development.

  5. Gasket and snap ring installation tool

    DOEpatents

    Southerland, Jr., James M.; Barringer, Jr., Curtis N.

    1994-01-01

    A tool for installing a gasket and a snap ring including a shaft, a first plate attached to the forward end of the shaft, a second plate slidably carried by the shaft, a spring disposed about the shaft between the first and second plates, and a sleeve that is free to slide over the shaft and engage the second plate. The first plate has a loading surface with a loading groove for receiving a snap ring and a shoulder for holding a gasket. A plurality of openings are formed through the first plate, communicating with the loading groove and approximately equally spaced about the groove. A plurality of rods are attached to the second plate, each rod slidable in one of the openings. In use, the loaded tool is inserted into a hollow pipe or pipe fitting having an internal flange and an internal seating groove, such that the gasket is positioned against the flange and the ring is in the approximate plane of the seating groove. The sleeve is pushed against the second plate, sliding the second plate towards the first plate, compressing the spring and sliding the rods forwards in the openings. The rods engage the snap ring and urge the ring from the loading groove into the seating groove.

  6. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1987-01-01

    Diode-laser-pumped solid-state laser oscillators and nonlinear processes were investigated. A new generation on nonplanar oscillator was fabricated, and it is anticipated that passive linewidths will be pushed to the kilohertz regime. A number of diode-pumped laser transitions were demonstrated in the rod configuration. Second-harmonic conversion efficiencies as high as 15% are routinely obtained in a servo-locked external resonant doubling crystal at 15 mW cw input power levels at 1064 nm.

  7. USDC based rapid penetrator of packed soil

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Chang, Zensheu; Sherrit, Stewart; Badescu, Mircea

    2006-01-01

    Environment protection requires more testing and analysis tools. To detect buried chemical containers or other objects embedded in soil and avoid possible damages of them, a penetrator of packed soil operated using low pushing force was developed. The design was based on a novel driving mechanism of the ultrasonic/sonic driller/corer (USDC) device developed in the NDEAA lab at JPL [Bar-Cohen et al 2001, Bao et al 2003]. In the penetrator, a small free-flying mass is energized by a piezoelectric transducer and impacts a rod probe on its shoulder at frequencies of hundreds times per second. The impacts help the probe to penetrate the packed soil rapidly. A great reduction of the needed pushing force for penetration was achieved. The details of the design of the prototype penetrator and the results of performance tests are presented.

  8. Efficient sequential and parallel algorithms for finding edit distance based motifs.

    PubMed

    Pal, Soumitra; Xiao, Peng; Rajasekaran, Sanguthevar

    2016-08-18

    Motif search is an important step in extracting meaningful patterns from biological data. The general problem of motif search is intractable and there is a pressing need to develop efficient, exact and approximation algorithms to solve this problem. In this paper, we present several novel, exact, sequential and parallel algorithms for solving the (l,d) Edit-distance-based Motif Search (EMS) problem: given two integers l,d and n biological strings, find all strings of length l that appear in each input string with atmost d errors of types substitution, insertion and deletion. One popular technique to solve the problem is to explore for each input string the set of all possible l-mers that belong to the d-neighborhood of any substring of the input string and output those which are common for all input strings. We introduce a novel and provably efficient neighborhood exploration technique. We show that it is enough to consider the candidates in neighborhood which are at a distance exactly d. We compactly represent these candidate motifs using wildcard characters and efficiently explore them with very few repetitions. Our sequential algorithm uses a trie based data structure to efficiently store and sort the candidate motifs. Our parallel algorithm in a multi-core shared memory setting uses arrays for storing and a novel modification of radix-sort for sorting the candidate motifs. The algorithms for EMS are customarily evaluated on several challenging instances such as (8,1), (12,2), (16,3), (20,4), and so on. The best previously known algorithm, EMS1, is sequential and in estimated 3 days solves up to instance (16,3). Our sequential algorithms are more than 20 times faster on (16,3). On other hard instances such as (9,2), (11,3), (13,4), our algorithms are much faster. Our parallel algorithm has more than 600 % scaling performance while using 16 threads. Our algorithms have pushed up the state-of-the-art of EMS solvers and we believe that the techniques introduced in this paper are also applicable to other motif search problems such as Planted Motif Search (PMS) and Simple Motif Search (SMS).

  9. Fuel Fabrication and Nuclear Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpius, Peter Joseph

    2017-02-02

    The uranium from the enrichment plant is still in the form of UF 6. UF 6 is not suitable for use in a reactor due to its highly corrosive chemistry as well as its phase diagram. UF 6 is converted into UO 2 fuel pellets, which are in turn placed in fuel rods and assemblies. Reactor designs are variable in moderators, coolants, fuel, performance etc.The dream of energy ‘too-cheap to meter’ is no more, and now the nuclear power industry is pushing ahead with advanced reactor designs.

  10. Abundance and ultrastructural diversity of neuronal gap junctions in the OFF and ON sublaminae of the inner plexiform layer of rat and mouse retina.

    PubMed

    Kamasawa, N; Furman, C S; Davidson, K G V; Sampson, J A; Magnie, A R; Gebhardt, B R; Kamasawa, M; Yasumura, T; Zumbrunnen, J R; Pickard, G E; Nagy, J I; Rash, J E

    2006-11-03

    Neuronal gap junctions are abundant in both outer and inner plexiform layers of the mammalian retina. In the inner plexiform layer (IPL), ultrastructurally-identified gap junctions were reported primarily in the functionally-defined and anatomically-distinct ON sublamina, with few reported in the OFF sublamina. We used freeze-fracture replica immunogold labeling and confocal microscopy to quantitatively analyze the morphologies and distributions of neuronal gap junctions in the IPL of adult rat and mouse retina. Under "baseline" conditions (photopic illumination/general anesthesia), 649 neuronal gap junctions immunogold-labeled for connexin36 were identified in rat IPL, of which 375 were photomapped to OFF vs. ON sublaminae. In contrast to previous reports, the volume-density of gap junctions was equally abundant in both sublaminae. Five distinctive morphologies of gap junctions were identified: conventional crystalline and non-crystalline "plaques" (71% and 3%), plus unusual "string" (14%), "ribbon" (7%) and "reticular" (2%) forms. Plaque and reticular gap junctions were distributed throughout the IPL. However, string and ribbon gap junctions were restricted to the OFF sublamina, where they represented 48% of gap junctions in that layer. In string and ribbon junctions, curvilinear strands of connexons were dispersed over 5 to 20 times the area of conventional plaques having equal numbers of connexons. To define morphologies of gap junctions under different light-adaptation conditions, we examined an additional 1150 gap junctions from rats and mice prepared after 30 min of photopic, mesopic and scotopic illumination, with and without general anesthesia. Under these conditions, string and ribbon gap junctions remained abundant in the OFF sublamina and absent in the ON sublamina. Abundant gap junctions in the OFF sublamina of these two rodents with rod-dominant retinas revealed previously-undescribed but extensive pathways for inter-neuronal communication; and the wide dispersion of connexons in string and ribbon gap junctions suggests unique structural features of gap junctional coupling in the OFF vs. ON sublamina.

  11. Mobile remote manipulator vehicle system

    NASA Technical Reports Server (NTRS)

    Bush, Harold G. (Inventor); Mikulas, Martin M., Jr. (Inventor); Wallsom, Richard E. (Inventor); Jensen, J. Kermit (Inventor)

    1987-01-01

    A mobile remote manipulator system is disclosed for assembly, repair and logistics transport on, around and about a space station square bay truss structure. The vehicle is supported by a square track arrangement supported by guide pins integral with the space station truss structure and located at each truss node. Propulsion is provided by a central push-pull drive mechanism that extends out from the vehicle one full structural bay over the truss and locks drive rods into the guide pins. The draw bar is now retracted and the mobile remote manipulator system is pulled onto the next adjacent structural bay. Thus, translation of the vehicle is inchworm style. The drive bar can be locked onto two guide pins while the extendable draw bar is within the vehicle and then push the vehicle away one bay providing bidirectional push-pull drive. The track switches allow the vehicle to travel in two orthogonal directions over the truss structure which coupled with the bidirectional drive, allow movement in four directions on one plane. The top layer of this trilayered vehicle is a logistics platform. This platform is capable of 369 degees of rotation and will have two astronaut foot restraint platforms and a space crane integral.

  12. A Real-Time High Performance Data Compression Technique For Space Applications

    NASA Technical Reports Server (NTRS)

    Yeh, Pen-Shu; Venbrux, Jack; Bhatia, Prakash; Miller, Warner H.

    2000-01-01

    A high performance lossy data compression technique is currently being developed for space science applications under the requirement of high-speed push-broom scanning. The technique is also error-resilient in that error propagation is contained within a few scan lines. The algorithm is based on block-transform combined with bit-plane encoding; this combination results in an embedded bit string with exactly the desirable compression rate. The lossy coder is described. The compression scheme performs well on a suite of test images typical of images from spacecraft instruments. Hardware implementations are in development; a functional chip set is expected by the end of 2001.

  13. Cooperative particle motion in complex (dusty) plasmas

    NASA Astrophysics Data System (ADS)

    Zhdanov, Sergey; Morfill, Gregor

    2014-05-01

    Strongly coupled complex (dusty) plasmas give us a unique opportunity to go beyond the limits of continuous media and study various generic processes occurring in liquids or solids at the kinetic level. A particularly interesting and challenging topic is to study dynamic cooperativity at local and intermediate scales. As an important element of self-organization, cooperative particle motion is present in many physical, astrophysical and biological systems. As a rule, cooperative dynamics, bringing to life 'abnormal' effects like enhanced diffusion, self-dragging, or self-propelling of particles, hold aspects of 'strange' kinetics. The synergy effects are also important. Such kind of cooperative behavior was evidenced for string-like formations of colloidal rods, dynamics of mono- and di-vacancies in 2d colloidal crystals. Externally manipulated 'dust molecules' and self-assembled strings in driven 3d particle clusters were other noticeable examples. There is a certain advantage to experiment with complex plasmas merely because these systems are easy to manipulate in a controllable way. We report on the first direct observation of microparticle cooperative movements occurring under natural conditions in a 2d complex plasma.

  14. AdS/CFT beyond the N = 4 SYM paradigm

    NASA Astrophysics Data System (ADS)

    Pomoni, Elli

    In this thesis we present studies in the AdS/CFT correspondence that intend to push the present knowledge beyond the N = 4 super Yang-Mills (SYM) paradigm. The first part is concerned with the study of non-supersymmetric deformations of N = 4 SYM (which still are in the N = 4 universality class). For non-supersymmetric CFT's at Large N we explore the correspondence between string theory tachyons in the bulk and instabilities on the boundary effective action. The operators dual to AdS tachyons have anomalous dimensions that are purely complex numbers. We give a prescription for calculating the mass of the tachyon from the field theory side. Moreover, we apply this general dictionary to the case of intersecting D7 flavor branes in AdS 5 x S5 and obtain the mass of the open string tachyon that is dual to the instability in the mesonic sector of the theory. In the second part we present work aiming at finding string theory duals for gauge theories beyond the N = 4 universality class, i.e. theories that have genuinely less supersymmetry and unquenched flavor. Arguably the next simplest example after N = 4 SYM is N = 2 SU(Nc) SYM coupled to Nf = 2Nc fundamental hypermultiplets. The theory admits a Veneziano expansion of large Nc and large Nf, with Nf/Nc and lambda = g2Nc kept fixed. The topological structure of large N diagrams invites a general conjecture: the flavor-singlet sector of a gauge theory in the Veneziano limit is dual to a closed string theory. We present the one-loop Hamiltonian for the scalar sector of N = 2 superconformal QCD and study this integrability of the theory. Furthermore, we explore the chiral spectrum of the protected operators of the theory using the one-loop anomalous dimensions and, additionally, by studying the index of the theory. We finally search for possible AdS dual trying to match the chiral spectrum. We conclude that the string dual is a sub-critical background containing both an AdS 5 and an S1 factor.

  15. Rod gripper, changer, and storage system

    NASA Technical Reports Server (NTRS)

    Benson, Mark; Demi, Todd; Mcneill, Robert; Waldo, Keith; Afghan, Alex; Oliver, Jim

    1989-01-01

    A rod changer and storage design is presented for the lunar deep drill apparatus to be used in conjunction with the Skitter walking platform. The design must take into account all of the lunar environment and working conditions. Some of these are: (1) the moon has one sixth the gravity of earth; (2) temperature gradients can range from about -170 to 265 C; (3) because of the high transportation costs, the design must be as light as possible; and (4) the process must be remotely operated (from earth or satellite) and must be automated. Because of Skitter's multiple degree of freedom movement, the design will utilize Skitter's movement to locate an implement and transport it from the rack to the drill string. The implement will be gripped by a thumb and two finger device, identified through an electronic sensing device on the thumb, and transported from the rack to the footplate and back from the footplate to the rack. The major designs discussed in this report have been broken down into three major areas: (1) gripper design (linear transport mechanism); (2) indexing system; and (3) rack design.

  16. Shallow (2-meter) Temperature Surveys in Colorado

    DOE Data Explorer

    Richard E. Zehner

    2012-02-01

    Shallow temperature surveys are useful in early-stage geothermal exploration to delineate surface outflow zones, with the intent to identify the source of upwelling, usually a fault. Detailed descriptions of the 2-meter survey method and equipment design can be found in Coolbaugh et al. (2007) and Sladek et al. (2007), and are summarized here. The survey method was devised to measure temperature as far below the zone of solar influence as possible, have minimal equilibration time, and yet be portable enough to fit on the back of an all-terrain vehicle (ATV); Figure 2). This method utilizes a direct push technology (DPT) technique where 2.3 m long, 0.54" outer diameter hollow steel rods are pounded into the ground using a demolition hammer. Resistance temperature devices (RTD) are then inserted into the rods at 2-meter depths, and allowed to equilibrate for one hour. The temperatures are then measured and recorded, the rods pulled out of the ground, and re-used at future sites. Usually multiple rods are planted over the course of an hour, and then the sampler returns back to the first station, measures the temperatures, pulls the rods, and so on, to eliminate waiting time. At Wagon Wheel Gap, 32 rods were planted around the hot springs between June 20 and July 1, 2012. The purpose was to determine the direction of a possible upflow fault or other structure. Temperatures at 1.5m and 2m depths were measured and recorded in the attribute table of this point shapefile. Several anomalous temperatures suggest that outflow is coming from a ~N60W striking fault or shear zone that contains the quartz-fluorite-barite veins of the adjacent patented mining claims. It should be noted that temperatures at 2m depth vary according to the amount of solar heating from above, as well as possible geothermal heating from below.

  17. Dynamic Calibration of the NASA Ames Rotor Test Apparatus Steady/Dynamic Rotor Balance

    NASA Technical Reports Server (NTRS)

    Peterson, Randall L.; vanAken, Johannes M.

    1996-01-01

    The NASA Ames Rotor Test Apparatus was modified to include a Steady/Dynamic Rotor Balance. The dynamic calibration procedures and configurations are discussed. Random excitation was applied at the rotor hub, and vibratory force and moment responses were measured on the steady/dynamic rotor balance. Transfer functions were computed using the load cell data and the vibratory force and moment responses from the rotor balance. Calibration results showing the influence of frequency bandwidth, hub mass, rotor RPM, thrust preload, and dynamic loads through the stationary push rods are presented and discussed.

  18. Development of a novel digestion chamber for human and porcine islet isolation.

    PubMed

    Gray, D W R; Sudhakaran, N; Titus, T T; McShane, P; Johnson, P

    2004-05-01

    The current technique of human pancreas digestion for islet isolation relies on selective distribution of collagenase delivered via the pancreatic duct to produce digestion and removal of peri-acinar fibrous tissue. However, the collagenase has relatively little effect on the interlobular fibrous tissue, which must therefore be broken down by mechanical means within the digestion chamber so as to release the contained acini and islets. The current way of achieving this in the Ricordi chamber is to place five or six stainless steel balls within the chamber and shake vigorously. The shaking presumably breaks down the interlobular fibrous tissue by a combination of shear force induced by the movement of tissue through the shaking process, assisted by numerous blows from the steel balls. Intuitively, one would expect some islets would be destroyed rather than released by such a battering. In an attempt to improve the efficiency of islet isolation we have designed a new digestion/filtration chamber that consists of a glass cylinder, sealed with Teflon plates holding in mesh filters at each end, secured in place by a central threaded tie-rod and external knurled nuts. A ring-shaped piston within the cylinder can be pushed up and down the travel by two rods passing out through sealed ports in the Teflon disk at one end and connected to an external handle. The handle is used to gently push the piston up and down the travel of the cylinder, which pushes the fluid and tissue through the central lumen of the ring-piston. A series of hooks attached to the central tie-rod catch the fibrous strands of the passing tissue; the shearing forces produced cause disruption by a process thought to be similar to teasing the tissue apart with fine forceps. A series of initial experiments with human pancreas showed the prototype to be too large, causing temperature control problems, and a redesigned smaller chamber was produced, maintaining the crucial design features. Experience processing five human pancreata has now demonstrated that in three of five pancreata the new chamber produced a good yield (>200,000 I.E.) of remarkably well separated and intact islets, the entire dispersion process being under 1 hour. However, in two isolations the collagenase digestion was poor, with few free islets. A copy of the new chamber (reserved for porcine work only) has been produced, as well as a copy of the Ricordi chamber. We have confirmed that the new chamber can isolate porcine islets in large numbers (>5000 islets/g pancreas [n = 2], but note that pig islets are small). These preliminary studies are sufficiently encouraging to justify further direct comparison with the Ricordi chamber for the purpose of animal and human islet isolation.

  19. The role of consolidation in learning context-dependent phonotactic patterns in speech and digital sequence production.

    PubMed

    Anderson, Nathaniel D; Dell, Gary S

    2018-04-03

    Speakers implicitly learn novel phonotactic patterns by producing strings of syllables. The learning is revealed in their speech errors. First-order patterns, such as "/f/ must be a syllable onset," can be distinguished from contingent, or second-order, patterns, such as "/f/ must be an onset if the vowel is /a/, but a coda if the vowel is /o/." A metaanalysis of 19 experiments clearly demonstrated that first-order patterns affect speech errors to a very great extent in a single experimental session, but second-order vowel-contingent patterns only affect errors on the second day of testing, suggesting the need for a consolidation period. Two experiments tested an analogue to these studies involving sequences of button pushes, with fingers as "consonants" and thumbs as "vowels." The button-push errors revealed two of the key speech-error findings: first-order patterns are learned quickly, but second-order thumb-contingent patterns are only strongly revealed in the errors on the second day of testing. The influence of computational complexity on the implicit learning of phonotactic patterns in speech production may be a general feature of sequence production.

  20. Sediment Core Extrusion Method at Millimeter Resolution Using a Calibrated, Threaded-rod.

    PubMed

    Schwing, Patrick T; Romero, Isabel C; Larson, Rebekka A; O'Malley, Bryan J; Fridrik, Erika E; Goddard, Ethan A; Brooks, Gregg R; Hastings, David W; Rosenheim, Brad E; Hollander, David J; Grant, Guy; Mulhollan, Jim

    2016-08-17

    Aquatic sediment core subsampling is commonly performed at cm or half-cm resolution. Depending on the sedimentation rate and depositional environment, this resolution provides records at the annual to decadal scale, at best. An extrusion method, using a calibrated, threaded-rod is presented here, which allows for millimeter-scale subsampling of aquatic sediment cores of varying diameters. Millimeter scale subsampling allows for sub-annual to monthly analysis of the sedimentary record, an order of magnitude higher than typical sampling schemes. The extruder consists of a 2 m aluminum frame and base, two core tube clamps, a threaded-rod, and a 1 m piston. The sediment core is placed above the piston and clamped to the frame. An acrylic sampling collar is affixed to the upper 5 cm of the core tube and provides a platform from which to extract sub-samples. The piston is rotated around the threaded-rod at calibrated intervals and gently pushes the sediment out the top of the core tube. The sediment is then isolated into the sampling collar and placed into an appropriate sampling vessel (e.g., jar or bag). This method also preserves the unconsolidated samples (i.e., high pore water content) at the surface, providing a consistent sampling volume. This mm scale extrusion method was applied to cores collected in the northern Gulf of Mexico following the Deepwater Horizon submarine oil release. Evidence suggests that it is necessary to sample at the mm scale to fully characterize events that occur on the monthly time-scale for continental slope sediments.

  1. Sediment Core Extrusion Method at Millimeter Resolution Using a Calibrated, Threaded-rod

    PubMed Central

    Schwing, Patrick T.; Romero, Isabel C.; Larson, Rebekka A.; O'Malley, Bryan J.; Fridrik, Erika E.; Goddard, Ethan A.; Brooks, Gregg R.; Hastings, David W.; Rosenheim, Brad E.; Hollander, David J.; Grant, Guy; Mulhollan, Jim

    2016-01-01

    Aquatic sediment core subsampling is commonly performed at cm or half-cm resolution. Depending on the sedimentation rate and depositional environment, this resolution provides records at the annual to decadal scale, at best. An extrusion method, using a calibrated, threaded-rod is presented here, which allows for millimeter-scale subsampling of aquatic sediment cores of varying diameters. Millimeter scale subsampling allows for sub-annual to monthly analysis of the sedimentary record, an order of magnitude higher than typical sampling schemes. The extruder consists of a 2 m aluminum frame and base, two core tube clamps, a threaded-rod, and a 1 m piston. The sediment core is placed above the piston and clamped to the frame. An acrylic sampling collar is affixed to the upper 5 cm of the core tube and provides a platform from which to extract sub-samples. The piston is rotated around the threaded-rod at calibrated intervals and gently pushes the sediment out the top of the core tube. The sediment is then isolated into the sampling collar and placed into an appropriate sampling vessel (e.g., jar or bag). This method also preserves the unconsolidated samples (i.e., high pore water content) at the surface, providing a consistent sampling volume. This mm scale extrusion method was applied to cores collected in the northern Gulf of Mexico following the Deepwater Horizon submarine oil release. Evidence suggests that it is necessary to sample at the mm scale to fully characterize events that occur on the monthly time-scale for continental slope sediments. PMID:27585268

  2. A method for sampling microbial aerosols using high altitude balloons.

    PubMed

    Bryan, N C; Stewart, M; Granger, D; Guzik, T G; Christner, B C

    2014-12-01

    Owing to the challenges posed to microbial aerosol sampling at high altitudes, very little is known about the abundance, diversity, and extent of microbial taxa in the Earth-atmosphere system. To directly address this knowledge gap, we designed, constructed, and tested a system that passively samples aerosols during ascent through the atmosphere while tethered to a helium-filled latex sounding balloon. The sampling payload is ~ 2.7 kg and comprised of an electronics box and three sampling chambers (one serving as a procedural control). Each chamber is sealed with retractable doors that can be commanded to open and close at designated altitudes. The payload is deployed together with radio beacons that transmit GPS coordinates (latitude, longitude and altitude) in real time for tracking and recovery. A cut mechanism separates the payload string from the balloon at any desired altitude, returning all equipment safely to the ground on a parachute. When the chambers are opened, aerosol sampling is performed using the Rotorod® collection method (40 rods per chamber), with each rod passing through 0.035 m3 per km of altitude sampled. Based on quality control measurements, the collection of ~ 100 cells rod(-1) provided a 3-sigma confidence level of detection. The payload system described can be mated with any type of balloon platform and provides a tool for characterizing the vertical distribution of microorganisms in the troposphere and stratosphere. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Digital Material Assembly by Passive Means and Modular Isotropic Lattice Extruder System

    NASA Technical Reports Server (NTRS)

    Gershenfeld, Neil (Inventor); Carney, Matthew Eli (Inventor); Jenett, Benjamin (Inventor)

    2017-01-01

    A set of machines and related systems build structures by the additive assembly of discrete parts. These digital material assemblies constrain the constituent parts to a discrete set of possible positions and orientations. In doing so, the structures exhibit many of the properties inherent in digital communication such as error correction, fault tolerance and allow the assembly of precise structures with comparatively imprecise tools. Assembly of discrete cellular lattices by a Modular Isotropic Lattice Extruder System (MILES) is implemented by pulling strings of lattice elements through a forming die that enforces geometry constraints that lock the elements into a rigid structure that can then be pushed against and extruded out of the die as an assembled, loadbearing structure.

  4. Subjective vs Objective Accommodative Amplitude: Preschool to Presbyopia

    PubMed Central

    Anderson, Heather A.; Stuebing, Karla K.

    2014-01-01

    Purpose This study compared subjective and objective accommodative amplitudes to characterize changes from preschool to presbyopia. Methods Monocular accommodative amplitude was measured with three techniques in random order (subjective push-up, objective minus lens stimulated, and objective proximal stimulated) on 236 subjects 3–64 years using a 1.5mm letter. Subjective push-up amplitudes were the dioptric distance at which the target first blurred along a near-point rod. Objective minus lens stimulated amplitudes were the greatest accommodative response obtained by Grand Seiko autorefraction as subjects viewed the stimulus at 33cm through increasing minus lens powers. Objective proximal stimulated amplitudes were the greatest accommodative response obtained by Grand Seiko autorefraction as subjects viewed the stimulus at increasing proximity from 40cm up to 3.33cm. Results In comparison with subjective push-up amplitudes, objective amplitudes were lower at all ages, with the most dramatic difference occurring in the 3–5 year group (subjective push-up = 16.00 ± 4.98D versus objective proximal stimulated = 7.94 ± 2.37D and objective lens stimulated = 6.20 ± 1.99D). Objective proximal and lens stimulated amplitudes were largest in the 6–10 year group (8.81 ± 1.24D and 8.05 ± 1.82D, respectively) and gradually decreased until the fourth decade of life when a rapid decline to presbyopia occurred. There was a significant linear relationship between objective techniques (y = 0.74 + 0.96x, R2 = 0.85, p<0.001) with greater amplitudes measured for the proximal stimulated technique (mean difference = 0.55D). Conclusions Objective measurements of accommodation demonstrate that accommodative amplitude is substantially less than that measured by the subjective push-up technique, particularly in young children. These findings have important clinical implications for the management of uncorrected hyperopia. PMID:25602235

  5. Downhole surge valve for earth boring apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, D.W.

    1990-05-29

    This patent describes a boring tool assembly having an underground percussion mole boring tool powered by a working fluid, the tool being driven through the earth by a rigid drill string pushed by a drilling frame, and a downhole valve assembly fixed between the downhole end of the drill string and the too, the improved downhole valve assembly. It comprises: a valve spool having an open first end, a closed second end and a peripheral sidewall, an axial bore extending partly through the valve spool from the open first end; a radial passage adjacent the closed second and of themore » valve spool, the radial passage extending radially from the valve spool axial bore through the valve spool peripheral sidewall; an axial groove in the peripheral sidewall of the valve spool; a valve body having a first end, a second end and a peripheral sidewall, an axial bore extending through the valve body, the valve spool extending through the valve body axial bore so that the second end of the valve body is adjacent the closed second end of the valve spool, the valve spool being axially moveable within the valve body axial bore; an axial slot; a free-floating key element; a valve housing; and seal means.« less

  6. Failure analysis of energy storage spring in automobile composite brake chamber

    NASA Astrophysics Data System (ADS)

    Luo, Zai; Wei, Qing; Hu, Xiaofeng

    2015-02-01

    This paper set energy storage spring of parking brake cavity, part of automobile composite brake chamber, as the research object. And constructed the fault tree model of energy storage spring which caused parking brake failure based on the fault tree analysis method. Next, the parking brake failure model of energy storage spring was established by analyzing the working principle of composite brake chamber. Finally, the data of working load and the push rod stroke measured by comprehensive test-bed valve was used to validate the failure model above. The experimental result shows that the failure model can distinguish whether the energy storage spring is faulted.

  7. ABUNDANCE AND ULTRASTRUCTURAL DIVERSITY OF NEURONAL GAP JUNCTIONS IN THE OFF AND ON SUBLAMINAE OF THE INNER PLEXIFORM LAYER OF RAT AND MOUSE RETINA

    PubMed Central

    KAMASAWA, N.; FURMAN, C. S.; DAVIDSON, K. G. V.; SAMPSON, J. A.; MAGNIE, A. R.; GEBHARDT, B. R.; KAMASAWA, M.; YASUMURA, T.; ZUMBRUNNEN, J. R.; PICKARD, G. E.; NAGY, J. I.; RASH, J. E.

    2007-01-01

    Neuronal gap junctions are abundant in both outer and inner plexiform layers of the mammalian retina. In the inner plexiform layer (IPL), ultrastructurally-identified gap junctions were reported primarily in the functionally-defined and anatomically-distinct ON sublamina, with few reported in the OFF sublamina. We used freeze-fracture replica immunogold labeling and confocal microscopy to quantitatively analyze the morphologies and distributions of neuronal gap junctions in the IPL of adult rat and mouse retina. Under “baseline” conditions (photopic illumination/general anesthesia), 649 neuronal gap junctions immunogold-labeled for connexin36 were identified in rat IPL, of which 375 were photomapped to OFF vs. ON sublaminae. In contrast to previous reports, the volume-density of gap junctions was equally abundant in both sublaminae. Five distinctive morphologies of gap junctions were identified: conventional crystalline and non-crystalline “plaques” (71% and 3%), plus unusual “string” (14%), “ribbon” (7%) and “reticular” (2%) forms. Plaque and reticular gap junctions were distributed throughout the IPL. However, string and ribbon gap junctions were restricted to the OFF sublamina, where they represented 48% of gap junctions in that layer. In string and ribbon junctions, curvilinear strands of connexons were dispersed over 5 to 20 times the area of conventional plaques having equal numbers of connexons. To define morphologies of gap junctions under different light-adaptation conditions, we examined an additional 1150 gap junctions from rats and mice prepared after 30 min of photopic, mesopic and scotopic illumination, with and without general anesthesia. Under these conditions, string and ribbon gap junctions remained abundant in the OFF sublamina and absent in the ON sublamina. Abundant gap junctions in the OFF sublamina of these two rodents with rod-dominant retinas revealed previously-undescribed but extensive pathways for inter-neuronal communication; and the wide dispersion of connexons in string and ribbon gap junctions suggests unique structural features of gap junctional coupling in the OFF vs. ON sublamina. PMID:17010526

  8. METHOD AND APPARATUS FOR FABRICATING TUBULAR UNITS

    DOEpatents

    Haldeman, G.W.

    1959-02-24

    A method and apparatus are described for fabricating tubular assemblies such as clad fuel elements for nuclear reactors. According to this method, a plurality of relatively short cylindrical slug-shaped members are inserted in an outer protective tubular jacket, and the assembly is passed through a reducing die to draw the outer tubular member into tight contact with the slug members, the slugs being automatically spaced with respect to each other and helium being inserted during the drawing operation to fill the spaces. The apparatus includes a pusher rod which functions to space the slugelements equidistantly by pushing on them in the direction of drawing but traveling at a slower rate than that of the tubular member.

  9. Efficient processing of MPEG-21 metadata in the binary domain

    NASA Astrophysics Data System (ADS)

    Timmerer, Christian; Frank, Thomas; Hellwagner, Hermann; Heuer, Jörg; Hutter, Andreas

    2005-10-01

    XML-based metadata is widely adopted across the different communities and plenty of commercial and open source tools for processing and transforming are available on the market. However, all of these tools have one thing in common: they operate on plain text encoded metadata which may become a burden in constrained and streaming environments, i.e., when metadata needs to be processed together with multimedia content on the fly. In this paper we present an efficient approach for transforming such kind of metadata which are encoded using MPEG's Binary Format for Metadata (BiM) without additional en-/decoding overheads, i.e., within the binary domain. Therefore, we have developed an event-based push parser for BiM encoded metadata which transforms the metadata by a limited set of processing instructions - based on traditional XML transformation techniques - operating on bit patterns instead of cost-intensive string comparisons.

  10. Meteorological Sensor Array (MSA)-Phase I. Volume 2 (Data Management Tool: Proof of Concept)

    DTIC Science & Technology

    2014-10-01

    directory of next hourly file to read *** utcString = CStr (CInt(utcString) + 1) utcString = String(2 - Len(utcString), Ŕ...hourly file to read *** utcString = CStr (CInt(utcString) + 1) utcString = String(2 - Len(utcString), Ŕ") & utcString

  11. Implementation and Characterization of Three-Dimensional Particle-in-Cell Codes on Multiple-Instruction-Multiple-Data Massively Parallel Supercomputers

    NASA Technical Reports Server (NTRS)

    Lyster, P. M.; Liewer, P. C.; Decyk, V. K.; Ferraro, R. D.

    1995-01-01

    A three-dimensional electrostatic particle-in-cell (PIC) plasma simulation code has been developed on coarse-grain distributed-memory massively parallel computers with message passing communications. Our implementation is the generalization to three-dimensions of the general concurrent particle-in-cell (GCPIC) algorithm. In the GCPIC algorithm, the particle computation is divided among the processors using a domain decomposition of the simulation domain. In a three-dimensional simulation, the domain can be partitioned into one-, two-, or three-dimensional subdomains ("slabs," "rods," or "cubes") and we investigate the efficiency of the parallel implementation of the push for all three choices. The present implementation runs on the Intel Touchstone Delta machine at Caltech; a multiple-instruction-multiple-data (MIMD) parallel computer with 512 nodes. We find that the parallel efficiency of the push is very high, with the ratio of communication to computation time in the range 0.3%-10.0%. The highest efficiency (> 99%) occurs for a large, scaled problem with 64(sup 3) particles per processing node (approximately 134 million particles of 512 nodes) which has a push time of about 250 ns per particle per time step. We have also developed expressions for the timing of the code which are a function of both code parameters (number of grid points, particles, etc.) and machine-dependent parameters (effective FLOP rate, and the effective interprocessor bandwidths for the communication of particles and grid points). These expressions can be used to estimate the performance of scaled problems--including those with inhomogeneous plasmas--to other parallel machines once the machine-dependent parameters are known.

  12. A five-year performance review of field-scale, slow-release permanganate candles with recommendations for second-generation improvements

    PubMed Central

    Christenson, Mark; Kambhu, Ann; Reece, James; Comfort, Steve; Brunner, Laurie

    2016-01-01

    In 2009, we identified a TCE plume at an abandoned landfill that was located in a low permeable silty-clay aquifer. To treat the TCE, we manufactured slow-release potassium permanganate cylinders (oxidant candles) that had diameters of either 5.1 or 7.6 cm and were 91.4 cm long. In 2010, we compared two methods of candle installation by inserting equal masses of the oxidant candles (7.6-cm vs 5.1-cm dia). The 5.1-cm dia candles were inserted with direct-push rods while the 7.6-cm candles were housed in screens and lowered into 10 permanent wells. Since installation, the 7.6-cm oxidant candles have been refurbished approximately once per year by gently scraping off surface oxides. In 2012, we reported initial results; in this paper, we provide a 5-yr performance review since installation. Temporal sampling shows oxidant candles placed in wells have steadily reduced migrating TCE concentrations. Moreover, these candles still maintain an inner core of oxidant that has yet to contribute to the dissolution front and should provide several more years of service. Oxidant candles inserted by direct-push have stopped reducing TCE concentrations because a MnO2 scale developed on the outside of the candles. To counteract oxide scaling, we fabricated a second generation of oxidant candles that contain sodium hexametaphosphate. Laboratory experiments (batch and flow-through) show that these second-generation permanganate candles have better release characteristics and are less prone to oxide scaling. This improvement should reduce the need to perform maintenance on candles placed in wells and provide greater longevity for candles inserted by direct-push. PMID:26901481

  13. A five-year performance review of field-scale, slow-release permanganate candles with recommendations for second-generation improvements.

    PubMed

    Christenson, Mark; Kambhu, Ann; Reece, James; Comfort, Steve; Brunner, Laurie

    2016-05-01

    In 2009, we identified a TCE plume at an abandoned landfill that was located in a low permeable silty-clay aquifer. To treat the TCE, we manufactured slow-release potassium permanganate cylinders (oxidant candles) that had diameters of either 5.1 or 7.6 cm and were 91.4 cm long. In 2010, we compared two methods of candle installation by inserting equal masses of the oxidant candles (7.6-cm vs 5.1-cm dia). The 5.1-cm dia candles were inserted with direct-push rods while the 7.6-cm candles were housed in screens and lowered into 10 permanent wells. Since installation, the 7.6-cm oxidant candles have been refurbished approximately once per year by gently scraping off surface oxides. In 2012, we reported initial results; in this paper, we provide a 5-yr performance review since installation. Temporal sampling shows oxidant candles placed in wells have steadily reduced migrating TCE concentrations. Moreover, these candles still maintain an inner core of oxidant that has yet to contribute to the dissolution front and should provide several more years of service. Oxidant candles inserted by direct-push have stopped reducing TCE concentrations because a MnO2 scale developed on the outside of the candles. To counteract oxide scaling, we fabricated a second generation of oxidant candles that contain sodium hexametaphosphate. Laboratory experiments (batch and flow-through) show that these second-generation permanganate candles have better release characteristics and are less prone to oxide scaling. This improvement should reduce the need to perform maintenance on candles placed in wells and provide greater longevity for candles inserted by direct-push. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Using slow-release permanganate candles to remove TCE from a low permeable aquifer at a former landfill.

    PubMed

    Christenson, Mark D; Kambhu, Ann; Comfort, Steve D

    2012-10-01

    Past disposal of industrial solvents into unregulated landfills is a significant source of groundwater contamination. In 2009, we began investigating a former unregulated landfill with known trichloroethene (TCE) contamination. Our objective was to pinpoint the location of the plume and treat the TCE using in situ chemical oxidation (ISCO). We accomplished this by using electrical resistivity imaging (ERI) to survey the landfill and map the subsurface lithology. We then used the ERI survey maps to guide direct push groundwater sampling. A TCE plume (100-600 μg L(-1)) was identified in a low permeable silty-clay aquifer (K(h)=0.5 md(-1)) that was within 6m of ground surface. To treat the TCE, we manufactured slow-release potassium permanganate candles (SRPCs) that were 91.4 cm long and either 5. cm or 7.6 cm in dia. For comparison, we inserted equal masses of SRPCs (7.6-cm versus 5.1-cm dia) into the low permeable aquifer in staggered rows that intersected the TCE plume. The 5.1-cm dia candles were inserted using direct push rods while the 7.6-cm SRPCs were placed in 10 permanent wells. Pneumatic circulators that emitted small air bubbles were placed below the 7.6-cm SRPCs in the second year. Results 15 months after installation showed significant TCE reductions in the 7.6-cm candle treatment zone (67-85%) and between 10% and 66% decrease in wells impacted by the direct push candles. These results support using slow-release permanganate candles as a means of treating chlorinated solvents in low permeable aquifers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. AXAF SIM focus mechanism study

    NASA Technical Reports Server (NTRS)

    Tananbaum, H. D.; Whitbeck, E.

    1994-01-01

    The design requirements and initial design concept for the AXAF-I Science Instrument Module (SIM) were reviewed at Ball on September 29, 1993. The concept design SIM focus mechanism utilizes a planetary gearset, with redundant motors, to drive a large ring (called 'main housing bearing') via a spur gearset. This large drive ring actuates three tangent bar links (called 'push rods'), which in turn actuate three levers (called 'pin levers'). Each of the three pin levers rotates an 'eccentric pin,' which in turn moves the base of a bipod flexure in both the radial (normal to optical axis) and axial (focus along optical axis) directions. Three bipod flexures are employed, equally spaced at 120 degrees apart, the base of each being translated in the two directions as described above. A focus adjustment is made by rotating the drive ring, which drives the push rods and therefore the pin levers, which in turn rotate the eccentric pins, finally imparting the two motions to the base of each of the bipod flexures. The axial translation (focus adjustment) of the focused structure is the sum of the direct axial motion plus axial motion which comes from uniformly squeezing the three bipod bases radially inward. SAO documented the following concerns regarding the focus mechanism in memo WAP-FY94-001, dated October 7, 1993: (1) The focus adjustment depends, in large part, on the structural properties (stiffnesses and end fixities) of the bipod flexures, push rods, pin levers and eccentric pins. If these properties are not matched very well, then lateral translations as well as unwanted rotations of the focussed structure will accompany focus motion. In addition, the stackup of linkage tolerances and any nonuniform wear in the linkages will result in the same unwanted motions. Thermal gradients will also affect these motions. At the review Ball did not present supporting analyses to support their choice of this design concept. (2) The proposed 'primary' method of measuring focus is by counting motor steps. The 'backup' method is by a pot mounted on the drive ring. Neither method provides for a direct measurement of the quantity desired (focus position). This is of concern because of the long and indirect relationship between focus and the sensed quantity (drive ring rotation). There are three sinusoidal relationships and structural stiffness in the path, and the resulting calibration is likely to be highly nonlinear. These methods would require an accurate ground calibration. (3) Ground calibration (and verification) of focus vs. drive position must be done in 1-g on the ground. This calibration will be complicated by both the structural characteristics of the bipods and the fact that the CG of the translating portion of the SIM is not on the optical axis (thereby causing unwated rotations and changing the focus position vs. motor step and pot readout relationships). The SIM translating weight could be offloaded, but the calibration then becomes sensitive to any errors in offloading (both magnitude and direction). There are concerns as to whether a calibration to the required accuracy can be accomplished on the ground. (4) The choice of a potentiometer as the focus position sensor is questionable in terms of reliability for a five year mission. The results of SAO's study of items 1, 2 and 3 described above are presented in this report.

  16. A novel design for application of pure moments in-vitro: application to the kinematic analysis of the cervical spine.

    PubMed

    Caravaggi, Paolo; Chaudary, Saad; Uko, Linda; Chen, Linda; Khamsi, Babak; Vives, Michael

    2013-04-05

    The simple and cost-effective cable-pulley apparatus proposed by Crawford et al. (1995) has been long and widely used to assess the kinematics and biomechanics of the spine in-vitro. A major limitation of that fixed-ring system relies on the manual readjustment of the cable guides, which is required to maintain parallelism of the tension-cables during spine rotations. While several solutions have since been suggested to improve this loading approach, their implementation may be challenging for research groups with limited resources. In this study we propose an upgrade to the traditional fixed-ring design which aims to improve its usability while retaining the simplicity. The main novelty of this setup is the coupling of a through-hole along the diameter of the pulley with a rod fixated to the top of the spine. The coupling allows relative translation of the pulley along the rod's axis, thus permitting readjustment of the tension-cables' orientation with minimal manual intervention. The effectiveness of the system was demonstrated by measuring intervertebral kinematics in three 7-vertebra cervical spines. During sagittal and frontal-plane rotations, tension-cables parallelism could be easily and quickly restored by pushing the pulley along the rod's axis. The measured intervertebral rotations were consistent with data from the literature. The interspecimen standard deviation of the total range of motion ranged between 2.1° and 9.6° across all loading configurations. The simple and light mobile-pulley fixture presented in this study has shown to be easy to use and its application may represent a viable alternative to the original fixed-ring design. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. One-dimensional reduction of viscous jets. I. Theory

    NASA Astrophysics Data System (ADS)

    Pitrou, Cyril

    2018-04-01

    We build a general formalism to describe thin viscous jets as one-dimensional objects with an internal structure. We present in full generality the steps needed to describe the viscous jets around their central line, and we argue that the Taylor expansion of all fields around that line is conveniently expressed in terms of symmetric trace-free tensors living in the two dimensions of the fiber sections. We recover the standard results of axisymmetric jets and we report the first and second corrections to the lowest order description, also allowing for a rotational component around the axis of symmetry. When applied to generally curved fibers, the lowest order description corresponds to a viscous string model whose sections are circular. However, when including the first corrections, we find that curved jets generically develop elliptic sections. Several subtle effects imply that the first corrections cannot be described by a rod model since it amounts to selectively discard some corrections. However, in a fast rotating frame, we find that the dominant effects induced by inertial and Coriolis forces should be correctly described by rod models. For completeness, we also recover the constitutive relations for forces and torques in rod models and exhibit a missing term in the lowest order expression of viscous torque. Given that our method is based on tensors, the complexity of all computations has been beaten down by using an appropriate tensor algebra package such as xAct, allowing us to obtain a one-dimensional description of curved viscous jets with all the first order corrections consistently included. Finally, we find a description for straight fibers with elliptic sections as a special case of these results, and recover that ellipticity is dynamically damped by surface tension. An application to toroidal viscous fibers is presented in the companion paper [Pitrou, Phys. Rev. E 97, 043116 (2018), 10.1103/PhysRevE.97.043116].

  18. String scattering amplitudes and deformed cubic string field theory

    NASA Astrophysics Data System (ADS)

    Lai, Sheng-Hong; Lee, Jen-Chi; Lee, Taejin; Yang, Yi

    2018-01-01

    We study string scattering amplitudes by using the deformed cubic string field theory which is equivalent to the string field theory in the proper-time gauge. The four-string scattering amplitudes with three tachyons and an arbitrary string state are calculated. The string field theory yields the string scattering amplitudes evaluated on the world sheet of string scattering whereas the conventional method, based on the first quantized theory brings us the string scattering amplitudes defined on the upper half plane. For the highest spin states, generated by the primary operators, both calculations are in perfect agreement. In this case, the string scattering amplitudes are invariant under the conformal transformation, which maps the string world sheet onto the upper half plane. If the external string states are general massive states, generated by non-primary field operators, we need to take into account carefully the conformal transformation between the world sheet and the upper half plane. We show by an explicit calculation that the string scattering amplitudes calculated by using the deformed cubic string field theory transform into those of the first quantized theory on the upper half plane by the conformal transformation, generated by the Schwarz-Christoffel mapping.

  19. Covariant open bosonic string field theory on multiple D-branes in the proper-time gauge

    NASA Astrophysics Data System (ADS)

    Lee, Taejin

    2017-12-01

    We construct a covariant open bosonic string field theory on multiple D-branes, which reduces to a non-Abelian group Yang-Mills gauge theory in the zero-slope limit. Making use of the first quantized open bosonic string in the proper time gauge, we convert the string amplitudes given by the Polyakov path integrals on string world sheets into those of the second quantized theory. The world sheet diagrams generated by the constructed open string field theory are planar in contrast to those of the Witten's cubic string field theory. However, the constructed string field theory is yet equivalent to the Witten's cubic string field theory. Having obtained planar diagrams, we may adopt the light-cone string field theory technique to calculate the multi-string scattering amplitudes with an arbitrary number of external strings. We examine in detail the three-string vertex diagram and the effective four-string vertex diagrams generated perturbatively by the three-string vertex at tree level. In the zero-slope limit, the string scattering amplitudes are identified precisely as those of non-Abelian Yang-Mills gauge theory if the external states are chosen to be massless vector particles.

  20. E(lementary)-strings in six-dimensional heterotic F-theory

    NASA Astrophysics Data System (ADS)

    Choi, Kang-Sin; Rey, Soo-Jong

    2017-09-01

    Using E-strings, we can analyze not only six-dimensional superconformal field theories but also probe vacua of non-perturabative heterotic string. We study strings made of D3-branes wrapped on various two-cycles in the global F-theory setup. We claim that E-strings are elementary in the sense that various combinations of E-strings can form M-strings as well as heterotic strings and new kind of strings, called G-strings. Using them, we show that emissions and combinations of heterotic small instantons generate most of known six-dimensional superconformal theories, their affinizations and little string theories. Taking account of global structure of compact internal geometry, we also show that special combinations of E-strings play an important role in constructing six-dimensional theories of D- and E-types. We check global consistency conditions from anomaly cancellation conditions, both from five-branes and strings, and show that they are given in terms of elementary E-string combinations.

  1. Gravitational Scattering Amplitudes and Closed String Field Theory in the Proper-Time Gauge

    NASA Astrophysics Data System (ADS)

    Lee, Taejin

    2018-01-01

    We construct a covariant closed string field theory by extending recent works on the covariant open string field theory in the proper-time gauge. Rewriting the string scattering amplitudes generated by the closed string field theory in terms of the Polyakov string path integrals, we identify the Fock space representations of the closed string vertices. We show that the Fock space representations of the closed string field theory may be completely factorized into those of the open string field theory. It implies that the well known Kawai-Lewellen-Tye (KLT) relations of the first quantized string theory may be promoted to the second quantized closed string theory. We explicitly calculate the scattering amplitudes of three gravitons by using the closed string field theory in the proper-time gauge.

  2. Hot string soup: Thermodynamics of strings near the Hagedorn transition

    NASA Astrophysics Data System (ADS)

    Lowe, David A.; Thorlacius, Lárus

    1995-01-01

    Above the Hagedorn energy density closed fundamental strings form a long string phase. The dynamics of weakly interacting long strings is described by a simple Boltzmann equation which can be solved explicitly for equilibrium distributions. The averge total number of long strings grows logarithmically with total energy in the microcanonical ensemble. This is consistent with calculations of the free single string density of states provided the thermodynamic limit is carefully defined. If the theory contains open strings the long string phase is suppressed.

  3. NUCLEAR REACTOR UNLOADING APPARATUS

    DOEpatents

    Leverett, M.C.; Howe, J.P.

    1959-01-20

    An unloading device is described for a heterogeneous reactor of the type wherein the fuel elements are in the form of cylindrical slugs and are disposed in horizontal coolant tubes which traverse the reactor core, coolant fluid being circulated through the tubes. The coolant tubes have at least two inwardly protruding ribs from their lower surfaces to support the slugs in spaced relationship to the inside walls of the tubes. The unloading device consists of a ribbon-like extractor member insertable into the coolant tubes in the space between the ribs and adapted to slide under the fuel slugs thereby raising them off of the ribs and forming a slideway for removing them from the reactor. The fuel slugs are ejected by being forced out of the tubes by incoming new fuel slugs or by a push rod insentable through the inlet end of the fuel tubes.

  4. High temperature spectral emissivity measurement using integral blackbody method

    NASA Astrophysics Data System (ADS)

    Pan, Yijie; Dong, Wei; Lin, Hong; Yuan, Zundong; Bloembergen, Pieter

    2016-10-01

    Spectral emissivity is a critical material's thermos-physical property for heat design and radiation thermometry. A prototype instrument based upon an integral blackbody method was developed to measure material's spectral emissivity above 1000 °. The system was implemented with an optimized commercial variable-high-temperature blackbody, a high speed linear actuator, a linear pyrometer, and an in-house designed synchronization circuit. A sample was placed in a crucible at the bottom of the blackbody furnace, by which the sample and the tube formed a simulated blackbody which had an effective total emissivity greater than 0.985. During the measurement, the sample was pushed to the end opening of the tube by a graphite rod which was actuated through a pneumatic cylinder. A linear pyrometer was used to monitor the brightness temperature of the sample surface through the measurement. The corresponding opto-converted voltage signal was fed and recorded by a digital multi-meter. A physical model was proposed to numerically evaluate the temperature drop along the process. Tube was discretized as several isothermal cylindrical rings, and the temperature profile of the tube was measurement. View factors between sample and rings were calculated and updated along the whole pushing process. The actual surface temperature of the sample at the end opening was obtained. Taking advantages of the above measured voltage profile and the calculated true temperature, spectral emissivity under this temperature point was calculated.

  5. ZERODUR thermo-mechanical modelling and advanced dilatometry for the ELT generation

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Kunisch, Clemens; Westerhoff, Thomas

    2016-07-01

    Large amounts of low thermal expansion material are required for the upcoming ELT projects. The main mirror is designed using several hundreds of hexagonal 1.4 m sized mirror blanks. The M2 and M3 are monolithic 4 m class mirror blanks. The mirror blank material needs to fulfill tight requirements regarding CTE specification and homogeneity. Additionally the mirror blanks need to be dimensionally stable for more than 30 years. In particular, stress effects due to the changes in the environment shall not entail shape variation of more than 0.5 μm PV within 30 years. In 2010 SCHOTT developed a physically based model to describe the thermal and mechanical long time behavior of ZERODUR. The model enables simulation of the long time behavior of ZERODUR mirror blanks under realistic mechanical and thermal constraints. This presentation shows FEM simulation results on the long time behavior of the ELT M1, M2 and M3 mirror blanks under different loading conditions. Additionally the model results will be compared to an already 15 years lasting long time measurement of a ZERODUR sample at the German federal physical standardization institute (PTB). In recent years SCHOTT pushed the push rod dilatometer measurement technology to its limit. With the new Advanced Dilatometer CTE measurement accuracies of +- 3 ppb/K and reproducibilities of better 1 ppb/K have been achieved. The new Advanced Dilatometer exhibits excellent long time stability.

  6. The evens and odds of CMB anomalies

    NASA Astrophysics Data System (ADS)

    Gruppuso, A.; Kitazawa, N.; Lattanzi, M.; Mandolesi, N.; Natoli, P.; Sagnotti, A.

    2018-06-01

    The lack of power of large-angle CMB anisotropies is known to increase its statistical significance at higher Galactic latitudes, where a string-inspired pre-inflationary scale Δ can also be detected. Considering the Planck 2015 data, and relying largely on a Bayesian approach, we show that the effect is mostly driven by the even - ℓ harmonic multipoles with ℓ ≲ 20, which appear sizably suppressed in a way that is robust with respect to Galactic masking, along with the corresponding detections of Δ. On the other hand, the first odd - ℓ multipoles are only suppressed at high Galactic latitudes. We investigate this behavior in different sky masks, constraining Δ through even and odd multipoles, and we elaborate on possible implications. We include low- ℓ polarization data which, despite being noise-limited, help in attaining confidence levels of about 3 σ in the detection of Δ. We also show by direct forecasts that a future all-sky E-mode cosmic-variance-limited polarization survey may push the constraining power for Δ beyond 5 σ.

  7. Visually Lossless Data Compression for Real-Time Frame/Pushbroom Space Science Imagers

    NASA Technical Reports Server (NTRS)

    Yeh, Pen-Shu; Venbrux, Jack; Bhatia, Prakash; Miller, Warner H.

    2000-01-01

    A visually lossless data compression technique is currently being developed for space science applications under the requirement of high-speed push-broom scanning. The technique is also applicable to frame based imaging and is error-resilient in that error propagation is contained within a few scan lines. The algorithm is based on a block transform of a hybrid of modulated lapped transform (MLT) and discrete cosine transform (DCT), or a 2-dimensional lapped transform, followed by bit-plane encoding; this combination results in an embedded bit string with exactly the desirable compression rate as desired by the user. The approach requires no unique table to maximize its performance. The compression scheme performs well on a suite of test images typical of images from spacecraft instruments. Flight qualified hardware implementations are in development; a functional chip set is expected by the end of 2001. The chip set is being designed to compress data in excess of 20 Msamples/sec and support quantizations from 2 to 16 bits.

  8. Stimulus learning and response learning by observation in the European starling, in a two-object/two-action test.

    PubMed

    Campbell; Heyes; Goldsmith

    1999-07-01

    Juvenile European starlings, Sturnus vulgaris, were allowed to observe a conspecific demonstrator using its beak to remove one of two distinctively coloured objects (i.e. a red or a black plug) from a hole in the lid of a plastic box. Both plugs could be removed by either pulling up on a loop of string inserted through the centre of the plug, or pushing down on the plug. When subsequently allowed access to the plugs, and rewarded with food for all removal responses, regardless of the object to which they were made and their direction, observer birds removed the same plug in the same direction as their demonstrator. These results suggest that the two-object/two-action paradigm is a valuable procedure for testing for the simultaneous effects of learning about a stimulus and a response, an object and an action, through conspecific observation. Copyright 1999 The Association for the Study of Animal Behaviour.

  9. Synthetic C-start maneuver in fish-like swimming

    NASA Astrophysics Data System (ADS)

    Zenit, R.; Godoy-Diana, R.

    2013-11-01

    We investigate the mechanics of the unsteady fish-like swimming maneuver using a simplified experimental model in a water tank. A flexible foil (which emulates the fish body) is impulsively actuated by rotating a cylindrical rod that holds the foil. This rod constitutes the head of the swimmer and is mounted through the shaft of the driving motor on an rail with an air bearing. The foil is initially positioned at a start angle and then rapidly rotated to a final angle, which coincides with the free-moving direction of the rail. As the foil rotates, it pushes the surrounding fluid, it deforms and stores elastic energy which drive the recovery of the straight body shape after the motor actuation has stopped; during the rotation, a trust force is induced which accelerates the array. We measure the resulting escape velocity and acceleration as a function of the beam stiffness, size, initial angle, etc. Some measurements of the velocity field during the escape were obtained using a PIV technique. The measurements agree well with a simple mechanical model that quantifies the impulse of the maneuver. The objective of this work is to understand the fundamental mechanisms of thrust generation in unsteady fast-start swimming. We acknowledge support of EADS Foundation through the project ``Fluids and elasticity in biomimetic propulsion'' and of the Chaire Total for RZ as a visiting professor at ESPCI ParisTech.

  10. Cosmic strings and superconducting cosmic strings

    NASA Technical Reports Server (NTRS)

    Copeland, Edmund

    1988-01-01

    The possible consequences of forming cosmic strings and superconducting cosmic strings in the early universe are discussed. Lecture 1 describes the group theoretic reasons for and the field theoretic reasons why cosmic strings can form in spontaneously broken gauge theories. Lecture 2 discusses the accretion of matter onto string loops, emphasizing the scenario with a cold dark matter dominated universe. In lecture 3 superconducting cosmic strings are discussed, as is a mechanism which leads to the formation of structure from such strings.

  11. From decay to complete breaking: pulling the strings in SU(2) Yang-Mills theory.

    PubMed

    Pepe, M; Wiese, U-J

    2009-05-15

    We study {2Q+1} strings connecting two static charges Q in (2+1)D SU(2) Yang-Mills theory. While the fundamental {2} string between two charges Q=1/2 is unbreakable, the adjoint {3} string connecting two charges Q=1 can break. When a {4} string is stretched beyond a critical length, it decays into a {2} string by gluon pair creation. When a {5} string is stretched, it first decays into a {3} string, which eventually breaks completely. The energy of the screened charges at the ends of a string is well described by a phenomenological constituent gluon model.

  12. Subterranean barriers, methods, and apparatuses for forming, inspecting, selectively heating, and repairing same

    DOEpatents

    Nickelson, Reva A.; Sloan, Paul A.; Richardson, John G.; Walsh, Stephanie; Kostelnik, Kevin M.

    2009-04-07

    A subterranean barrier and method for forming same are disclosed, the barrier including a plurality of casing strings wherein at least one casing string of the plurality of casing strings may be affixed to at least another adjacent casing string of the plurality of casing strings through at least one weld, at least one adhesive joint, or both. A method and system for nondestructively inspecting a subterranean barrier is disclosed. For instance, a radiographic signal may be emitted from within a casing string toward an adjacent casing string and the radiographic signal may be detected from within the adjacent casing string. A method of repairing a barrier including removing at least a portion of a casing string and welding a repair element within the casing string is disclosed. A method of selectively heating at least one casing string forming at least a portion of a subterranean barrier is disclosed.

  13. Informing New String Programmes: Lessons Learned from an Australian Experience

    ERIC Educational Resources Information Center

    Murphy, Fintan; Rickard, Nikki; Gill, Anneliese; Grimmett, Helen

    2011-01-01

    Although there are many examples of notable string programmes there has been relatively little comparative analysis of these programmes. This paper examines three benchmark string programmes (The University of Illinois String Project, The Tower Hamlets String Teaching Project and Colourstrings) alongside Music4All, an innovative string programme…

  14. [ital N]-string vertices in string field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bordes, J.; Abdurrahman, A.; Anton, F.

    1994-03-15

    We give the general form of the vertex corresponding to the interaction of an arbitrary number of strings. The technique employed relies on the comma'' representation of string field theory where string fields and interactions are represented as matrices and operations between them such as multiplication and trace. The general formulation presented here shows that the interaction vertex of [ital N] strings, for any arbitrary [ital N], is given as a function of particular combinations of matrices corresponding to the change of representation between the full string and the half string degrees of freedom.

  15. The Birth of String Theory

    NASA Astrophysics Data System (ADS)

    Cappelli, Andrea; Castellani, Elena; Colomo, Filippo; Di Vecchia, Paolo

    2012-04-01

    Part I. Overview: 1. Introduction and synopsis; 2. Rise and fall of the hadronic string G. Veneziano; 3. Gravity, unification, and the superstring J. H. Schwarz; 4. Early string theory as a challenging case study for philosophers E. Castellani; Part II. The Prehistory: The Analytic S-Matrix: 5. Introduction to Part II; 6. Particle theory in the sixties: from current algebra to the Veneziano amplitude M. Ademollo; 7. The path to the Veneziano model H. R. Rubinstein; 8. Two-component duality and strings P. G. O. Freund; 9. Note on the prehistory of string theory M. Gell-Mann; Part III. The Dual Resonance Model: 10. Introduction to Part III; 11. From the S-matrix to string theory P. Di Vecchia; 12. Reminiscence on the birth of string theory J. A. Shapiro; 13. Personal recollections D. Amati; 14. Early string theory at Fermilab and Rutgers L. Clavelli; 15. Dual amplitudes in higher dimensions: a personal view C. Lovelace; 16. Personal recollections on dual models R. Musto; 17. Remembering the 'supergroup' collaboration F. Nicodemi; 18. The '3-Reggeon vertex' S. Sciuto; Part IV. The String: 19. Introduction to Part IV; 20. From dual models to relativistic strings P. Goddard; 21. The first string theory: personal recollections L. Susskind; 22. The string picture of the Veneziano model H. B. Nielsen; 23. From the S-matrix to string theory Y. Nambu; 24. The analogue model for string amplitudes D. B. Fairlie; 25. Factorization in dual models and functional integration in string theory S. Mandelstam; 26. The hadronic origins of string theory R. C. Brower; Part V. Beyond the Bosonic String: 27. Introduction to Part V; 28. From dual fermion to superstring D. I. Olive; 29. Dual models with fermions: memoirs of an early string theorist P. Ramond; 30. Personal recollections A. Neveu; 31. Aspects of fermionic dual models E. Corrigan; 32. The dual quark models K. Bardakci and M. B. Halpern; 33. Remembering the dawn of relativistic strings J.-L. Gervais; 34. Early string theory in Cambridge: personal recollections C. Montonen; Part VI. The Superstring: 35. Introduction to Part VI; 36. Supersymmetry in string theory F. Gliozzi; 37. Gravity from strings: personal reminiscences of early developments T. Yoneya; 38. From the Nambu-Goto to the σ-model action L. Brink; 39. Locally supersymmetric action for superstring P. Di Vecchia; 40. Personal recollections E. Cremmer; 41. The scientific contributions of Joël Scherk J. H. Schwarz; Part VII. Preparing the String Renaissance: 42. Introduction to Part VII; 43. From strings to superstrings: a personal perspective M. B. Green; 44. Quarks, strings and beyond A. M. Polyakov; 45. The rise of the superstring theory A. Cappelli and F. Colomo; Appendices; Index.

  16. String resistance detector

    NASA Technical Reports Server (NTRS)

    Hall, A. Daniel (Inventor); Davies, Francis J. (Inventor)

    2007-01-01

    Method and system are disclosed for determining individual string resistance in a network of strings when the current through a parallel connected string is unknown and when the voltage across a series connected string is unknown. The method/system of the invention involves connecting one or more frequency-varying impedance components with known electrical characteristics to each string and applying a frequency-varying input signal to the network of strings. The frequency-varying impedance components may be one or more capacitors, inductors, or both, and are selected so that each string is uniquely identifiable in the output signal resulting from the frequency-varying input signal. Numerical methods, such as non-linear regression, may then be used to resolve the resistance associated with each string.

  17. String mediated phase transitions

    NASA Technical Reports Server (NTRS)

    Copeland, ED; Haws, D.; Rivers, R.; Holbraad, S.

    1988-01-01

    It is demonstrated from first principles how the existence of string-like structures can cause a system to undergo a phase transition. In particular, the role of topologically stable cosmic string in the restoration of spontaneously broken symmetries is emphasized. How the thermodynamic properties of strings alter when stiffness and nearest neighbor string-string interactions are included is discussed.

  18. Black string in dRGT massive gravity

    NASA Astrophysics Data System (ADS)

    Tannukij, Lunchakorn; Wongjun, Pitayuth; Ghosh, Suchant G.

    2017-12-01

    We present a cylindrically symmetric solution, both charged and uncharged, which is known as a black string solution to the nonlinear ghost-free massive gravity found by de Rham, Gabadadze, and Tolley (dRGT). This "dRGT black string" can be thought of as a generalization of the black string solution found by Lemos. Moreover, the dRGT black string solution includes other classes of black string solution such as the monopole-black string ones since the graviton mass contributes to the global monopole term as well as the cosmological-constant term. To investigate the solution, we compute mass, temperature, and entropy of the dRGT black string. We found that the existence of the graviton mass drastically affects the thermodynamics of the black string. Furthermore, the Hawking-Page phase transition is found to be possible for the dRGT black string as well as the charged dRGT black string. The dRGT black string solution is thermodynamically stable for r>r_c with negative thermodynamical potential and positive heat capacity while it is unstable for r

  19. Kite-flying: a unique but dangerous mode of electrical injury in children.

    PubMed

    Tiwari, V K; Sharma, D

    1999-09-01

    A retrospective study was conducted to evaluate the cause of a sudden rise in number of pediatric admissions with electrical injuries at our centre during the year 1998. In evaluating the cause, six out of twelve admissions were found to be related to kite-flying which is a popular sport during the months of June, July, August and September. In two out of six cases current travelled directly through the string of the kite. In two others, flame burns occured following ignition of clothing. Another patient had contact with wire through a metal rod. In the last case, arcing pulled the hand of the patient leading to direct contact with wire. The average burns size was approximately 31% body surface area (BSA), with all patients having burns over the palmar aspect of at least one hand. No patient required amputation for the injuries. In this article, attention has been focussed on the various modes of electrical injuries associated with kite-flying and some measures have been advised to avoid such accidents.

  20. Isotope effect in acetylene C2H2 and C2D2 rotations on Cu(001)

    NASA Astrophysics Data System (ADS)

    Shchadilova, Yulia E.; Tikhodeev, Sergei G.; Paulsson, Magnus; Ueba, Hiromu

    2014-04-01

    A comprehensive analysis of the elementary processes behind the scanning tunneling microscope controlled rotation of C2H2 and C2D2, isotopologues of a single acetylene molecule adsorbed on the Cu(001) surface, is given, with a focus on the isotope effects. With the help of density-functional theory we calculate the vibrational modes of C2H2 and C2D2 on Cu(001) and estimate the anharmonic couplings between them, using a simple strings-on-rods model. The probability of the elementary processes, nonlinear and combination band, is estimated using the Keldysh diagram technique. This allows us to clarify the main peculiarities and the isotope effects of the C2H2 and C2D2 on Cu(001) rotation, discovered in the pioneering work [B. C. Stipe et al., Phys. Rev. Lett. 81, 1263 (1998), 10.1103/PhysRevLett.81.1263], which have not been previously understood.

  1. The "Magic" String

    ERIC Educational Resources Information Center

    Hoover, Todd F.

    2010-01-01

    The "Magic" String is a discrepant event that includes a canister with what appears to be the end of two strings protruding from opposite sides of it. Due to the way the strings are attached inside the canister, it appears as if the strings can magically switch the way they are connected. When one string end is pulled, the observer's expectation…

  2. Automatic generation and analysis of solar cell IV curves

    DOEpatents

    Kraft, Steven M.; Jones, Jason C.

    2014-06-03

    A photovoltaic system includes multiple strings of solar panels and a device presenting a DC load to the strings of solar panels. Output currents of the strings of solar panels may be sensed and provided to a computer that generates current-voltage (IV) curves of the strings of solar panels. Output voltages of the string of solar panels may be sensed at the string or at the device presenting the DC load. The DC load may be varied. Output currents of the strings of solar panels responsive to the variation of the DC load are sensed to generate IV curves of the strings of solar panels. IV curves may be compared and analyzed to evaluate performance of and detect problems with a string of solar panels.

  3. Charged string loops in Reissner-Nordström black hole background

    NASA Astrophysics Data System (ADS)

    Oteev, Tursinbay; Kološ, Martin; Stuchlík, Zdeněk

    2018-03-01

    We study the motion of current carrying charged string loops in the Reissner-Nordström black hole background combining the gravitational and electromagnetic field. Introducing new electromagnetic interaction between central charge and charged string loop makes the string loop equations of motion to be non-integrable even in the flat spacetime limit, but it can be governed by an effective potential even in the black hole background. We classify different types of the string loop trajectories using effective potential approach, and we compare the innermost stable string loop positions with loci of the charged particle innermost stable orbits. We examine string loop small oscillations around minima of the string loop effective potential, and we plot radial profiles of the string loop oscillation frequencies for both the radial and vertical modes. We construct charged string loop quasi-periodic oscillations model and we compare it with observed data from microquasars GRO 1655-40, XTE 1550-564, and GRS 1915+105. We also study the acceleration of current carrying string loops along the vertical axis and the string loop ejection from RN black hole neighbourhood, taking also into account the electromagnetic interaction.

  4. Effect of Notched Strings on Tennis Racket Spin Performance: Ultrahigh-Speed Video Analysis of Spin Rate, Contact Time, and Post-Impact Ball Velocity

    NASA Astrophysics Data System (ADS)

    Kawazoe, Yoshihiko; Takeda, Yukihiro; Nakagawa, Masamichi

    While some tennis racket strings have more grip than others do, this does not guarantee that they will impart more spin to a tennis ball. Experiments with hand-held rackets are required to determine the longstanding question of how players can discern that different strings behave differently when laboratory tests indicate that they should play the same. In a previous study, we clarified the top-spin mechanism of a tennis racket by using high-speed video analysis on a tennis court for the first time. Furthermore, we improved it by using lubricated notched nylon strings. These experiments revealed that the more the main strings stretch and bend laterally, the more spin is imparted to the ball. This is due to the restoring force being parallel to the string face when the main strings spring back and the ball is released from the strings. Notched strings reduce the spin rate, but this can be effectively counteracted by employing lubricants. Furthermore, we found that imparting more spin reduces shock vibrations on the wrist during impact. The present study revealed that a ball has a 40% lower spin rate when hit with a racket with notched strings than with one with unnotched strings in the case of nylon (it had to be determined whether new strings or lubricated used strings give more spin). The experiments also showed that 30% more spin is imparted to a ball when the string intersections are lubricated by oil than when notched used nylon strings are used. Furthermore, we found that used natural gut notched strings reduced the spin rate by 70% compared to when new natural gut unnotched strings are used. We also investigated different top-spin behaviors obtained when professional and amateur tennis players hit a ball.

  5. Syntactic transfer in artificial grammar learning.

    PubMed

    Beesley, T; Wills, A J; Le Pelley, M E

    2010-02-01

    In an artificial grammar learning (AGL) experiment, participants were trained with instances of one grammatical structure before completing a test phase in which they were required to discriminate grammatical from randomly created strings. Importantly, the underlying structure used to generate test strings was different from that used to generate the training strings. Despite the fact that grammatical training strings were more similar to nongrammatical test strings than they were to grammatical test strings, this manipulation resulted in a positive transfer effect, as compared with controls trained with nongrammatical strings. It is suggested that training with grammatical strings leads to an appreciation of set variance that aids the detection of grammatical test strings in AGL tasks. The analysis presented demonstrates that it is useful to conceptualize test performance in AGL as a form of unsupervised category learning.

  6. An Ada/SQL (Structured Query Language) Application Scanner.

    DTIC Science & Technology

    1988-03-01

    Digital ...8217 (" DIGITS "), 46 new STRING’ ("DO"), new STRING’ ("ELSE"), new STRING’ ("ELSIF"), new STRING’ ("END"), new STRING’ ("ENTRY"), new STRING’ ("EXCEPTION...INTEGERPRINT; generic type NUM is digits <>; package FLOATPRINT is package txtprts.ada 18 prcdr PR (FL inFL %YE LINE n LINTYPE UNCLASSIFIED procedure

  7. Pitch glide effect induced by a nonlinear string-barrier interaction

    NASA Astrophysics Data System (ADS)

    Kartofelev, Dmitri; Stulov, Anatoli; Välimäki, Vesa

    2015-10-01

    Interactions of a vibrating string with its supports and other spatially distributed barriers play a significant role in the physics of many stringed musical instruments. It is well known that the tone of the string vibrations is determined by the string supports, and that the boundary conditions of the string termination may cause a short-lasting initial fundamental frequency shifting. Generally, this phenomenon is associated with the nonlinear modulation of the stiff string tension. The aim of this paper is to study the initial frequency glide phenomenon that is induced only by the string-barrier interaction, apart from other possible physical causes, and without the interfering effects of dissipation and dispersion. From a numerical simulation perspective, this highly nonlinear problem may present various difficulties, not the least of which is the risk of numerical instability. We propose a numerically stable and a purely kinematic model of the string-barrier interaction, which is based on the travelling wave solution of the ideal string vibration. The model is capable of reproducing the motion of the vibrating string exhibiting the initial fundamental frequency glide, which is caused solely by the complex nonlinear interaction of the string with its termination. The results presented in this paper can expand our knowledge and understanding of the timbre evolution and the physical principles of sound generation of numerous stringed instruments, such as lutes called the tambura, sitar and biwa.

  8. Constraint Reasoning Over Strings

    NASA Technical Reports Server (NTRS)

    Koga, Dennis (Technical Monitor); Golden, Keith; Pang, Wanlin

    2003-01-01

    This paper discusses an approach to representing and reasoning about constraints over strings. We discuss how many string domains can often be concisely represented using regular languages, and how constraints over strings, and domain operations on sets of strings, can be carried out using this representation.

  9. The physics of unwound and wound strings on the electric guitar applied to the pitch intervals produced by tremolo/vibrato arm systems.

    PubMed

    Kemp, Jonathan A

    2017-01-01

    The physics of wound and unwound strings on the electric guitar are presented here, and the pitch intervals produced by the movements of a Fender Stratocaster tremolo unit are explained. Predicted changes in pitch sensitivity of different strings are given, and experimentally verified, for changes in saddle height, the distance of string free to move behind the nut and ratio of diameters/masses of the core and windings of wound strings. Also, it is shown that changes to the gauge of strings (assuming the string tension is sufficient for linear behaviour and in absence of changes to other construction details) don't alter the pitch intervals produced by a given angle of tremolo arm use assuming the instrument is set up with the same sounding pitches and starting bridge angle. It is demonstrated that it not possible to equalise the relative sensitivity of unwound steel stings on a Fender Stratocaster type tremolo unit through string construction techniques. The ratio of core to winding mass in the string, on the other hand, was found to be a very powerful design parameter for choosing the sensitivity of the string to tremolo arm use and standard pitch bends. For instance, the pitch intervals produced by operation of tremolo arm for wound strings may be made to approximately match that for one of the unwound strings if they share very similar core gauges (assuming the winding masses are chosen to give approximately the same tension at their sounding pitches). Such a design, only available currently by custom order, also delivers the optimum equalisation in sensitivity of strings for standard string bends (due to these also being produced by altering the length of the string to generate changes in tension and therefore pitch).

  10. Entanglement branes in a two-dimensional string theory

    DOE PAGES

    Donnelly, William; Wong, Gabriel

    2017-09-20

    What is the meaning of entanglement in a theory of extended objects such as strings? To address this question we consider the spatial entanglement between two intervals in the Gross-Taylor model, the string theory dual to two-dimensional Yang-Mills theory at large N. The string diagrams that contribute to the entanglement entropy describe open strings with endpoints anchored to the entangling surface, as first argued by Susskind. We develop a canonical theory of these open strings, and describe how closed strings are divided into open strings at the level of the Hilbert space. Here, we derive the modular Hamiltonian for themore » Hartle-Hawking state and show that the corresponding reduced density matrix describes a thermal ensemble of open strings ending on an object at the entangling surface that we call an entanglement brane, or E-brane.« less

  11. String-driven inflation

    NASA Technical Reports Server (NTRS)

    Turok, Neil

    1988-01-01

    It is argued that, in fundamental string theories, as one traces the universe back in time a point is reached when the expansion rate is so fast that the rate of string creation due to quantum effects balances the dilution of the string density due to the expansion. One is therefore led into a phase of constant string density and an exponentially expanding universe. Fundamental strings therefore seem to lead naturally to inflation.

  12. p-adic string theories provide lattice Discretization to the ordinary string worldsheet.

    PubMed

    Ghoshal, Debashis

    2006-10-13

    A class of models called p-adic strings is useful in understanding the tachyonic instability of string theory. These are found to be empirically related to the ordinary strings in the p-->1 limit. We propose that these models provide discretization for the string worldsheet and argue that the limit is naturally thought of as a continuum limit in the sense of the renormalization group.

  13. Self-organization in a system of binary strings with spatial interactions

    NASA Astrophysics Data System (ADS)

    Banzhaf, W.; Dittrich, P.; Eller, B.

    1999-01-01

    We consider an artificial reaction system whose components are binary strings. Upon encounter, two binary strings produce a third string which competes for storage space with the originators. String types or species can only survive when produced in sufficient numbers. Spatial interactions through introduction of a topology and rules for distance-dependent reactions are discussed. We observe various kinds of survival strategies of binary strings.

  14. p-adic String Theories Provide Lattice Discretization to the Ordinary String Worldsheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghoshal, Debashis

    2006-10-13

    A class of models called p-adic strings is useful in understanding the tachyonic instability of string theory. These are found to be empirically related to the ordinary strings in the p{yields}1 limit. We propose that these models provide discretization for the string worldsheet and argue that the limit is naturally thought of as a continuum limit in the sense of the renormalization group.

  15. Progress report for a research program in theoretical high energy physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, D.; Fried, H.M.; Jevicki, A.

    This year's research has dealt with: superstrings in the early universe; the invisible axion emissions from SN1987A; quartic interaction in Witten's superstring field theory; W-boson associated multiplicity and the dual parton model; cosmic strings and galaxy formation; cosmic strings and baryogenesis; quark flavor mixing; p -- /bar p/ scattering at TeV energies; random surfaces; ordered exponentials and differential equations; initial value and back-reaction problems in quantum field theory; string field theory and Weyl invariance; the renormalization group and string field theory; the evolution of scalar fields in an inflationary universe, with and without the effects of gravitational perturbations; cosmic stringmore » catalysis of skyrmion decay; inflation and cosmic strings from dynamical symmetry breaking; the physic of flavor mixing; string-inspired cosmology; strings at high-energy densities and complex temperatures; the problem of non-locality in string theory; string statistical mechanics; large-scale structures with cosmic strings and neutrinos; the delta expansion for stochastic quantization; high-energy neutrino flux from ordinary cosmic strings; a physical picture of loop bremsstrahlung; cylindrically-symmetric solutions of four-dimensional sigma models; large-scale structure with hot dark matter and cosmic strings; the unitarization of the odderon; string thermodynamics and conservation laws; the dependence of inflationary-universe models on initial conditions; the delta expansion and local gauge invariance; particle physics and galaxy formation; chaotic inflation with metric and matter perturbations; grand-unified theories, galaxy formation, and large-scale structure; neutrino clustering in cosmic-string-induced wakes; and infrared approximations to nonlinear differential equations. 17 refs.« less

  16. Self-propelled in-tube shuttle and control system for automated measurements of magnetic field alignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boroski, W.N.; Nicol, T.H.; Pidcoe, S.V.

    1990-03-01

    A magnetic field alignment gauge is used to measure the field angle as a function of axial position in each of the magnets for the Superconducting Super Collider (SSC). Present measurements are made by manually pushing the through the magnet bore tube and stopping at intervals to record field measurements. Gauge location is controlled through graduation marks and alignment pins on the push rods. Field measurements are recorded on a logging multimeter with tape output. Described is a computerized control system being developed to replace the manual procedure for field alignment measurements. The automated system employs a pneumatic walking devicemore » to move the measurement gauge through the bore tube. Movement of the device, called the Self-Propelled In-Tube Shuttle (SPITS), is accomplished through an integral, gas driven, double-acting cylinder. The motion of the SPITS is transferred to the bore tube by means of a pair of controlled, retractable support feet. Control of the SPITS is accomplished through an RS-422 interface from an IBM-compatible computer to a series of solenoid-actuated air valves. Direction of SPITS travel is determined by the air-valve sequence, and is managed through the control software. Precise axial position of the gauge within the magnet is returned to the control system through an optically-encoded digital position transducer attached to the shuttle. Discussed is the performance of the transport device and control system during preliminary testing of the first prototype shuttle. 1 ref., 7 figs.« less

  17. String Formatting Considered Harmful for Novice Programmers

    ERIC Educational Resources Information Center

    Hughes, Michael C.; Jadud, Matthew C.; Rodrigo, Ma. Mercedes T.

    2010-01-01

    In Java, "System.out.printf" and "String.format" consume a specialised kind of string commonly known as a format string. In our study of first-year students at the Ateneo de Manila University, we discovered that format strings present a substantial challenge for novice programmers. Focusing on their first laboratory we found…

  18. Charting the landscape of supercritical string theory.

    PubMed

    Hellerman, Simeon; Swanson, Ian

    2007-10-26

    Special solutions of string theory in supercritical dimensions can interpolate in time between theories with different numbers of spacetime dimensions and different amounts of world sheet supersymmetry. These solutions connect supercritical string theories to the more familiar string duality web in ten dimensions and provide a precise link between supersymmetric and purely bosonic string theories. Dimension quenching and c duality appear to be natural concepts in string theory, giving rise to large networks of interconnected theories.

  19. String solutions in spherically-symmetric f(R) gravity vacuum

    NASA Astrophysics Data System (ADS)

    Dil, Emre

    Dynamical evolution of the cosmic string in a spherically symmetric f(R) gravity vacuum is studied for a closed and straight string. We first set the background spacetime metric for a constant curvature scalar R = R0, and obtain the Killing fields for it. Using the standard gauge coordinates and constraints for both closed and straight strings, we present the equation of motions and find the solutions of them. We then analyze the dynamics of the string by studying the behavior of the string radius and periastron radius, with respect to both proper time and azimuthal angle, for various values of f(R) functions. Consequently, we conclude that the value of f(R) dramatically affects the closed string collapse time and the straight string angular deviation.

  20. Diffusion of massive particles around an Abelian-Higgs string

    NASA Astrophysics Data System (ADS)

    Saha, Abhisek; Sanyal, Soma

    2018-03-01

    We study the diffusion of massive particles in the space time of an Abelian Higgs string. The particles in the early universe plasma execute Brownian motion. This motion of the particles is modeled as a two dimensional random walk in the plane of the Abelian Higgs string. The particles move randomly in the space time of the string according to their geodesic equations. We observe that for certain values of their energy and angular momentum, an overdensity of particles is observed close to the string. We find that the string parameters determine the distribution of the particles. We make an estimate of the density fluctuation generated around the string as a function of the deficit angle. Though the thickness of the string is small, the length is large and the overdensity close to the string may have cosmological consequences in the early universe.

  1. Remarks on entanglement entropy in string theory

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Vijay; Parrikar, Onkar

    2018-03-01

    Entanglement entropy for spatial subregions is difficult to define in string theory because of the extended nature of strings. Here we propose a definition for bosonic open strings using the framework of string field theory. The key difference (compared to ordinary quantum field theory) is that the subregion is chosen inside a Cauchy surface in the "space of open string configurations." We first present a simple calculation of this entanglement entropy in free light-cone string field theory, ignoring subtleties related to the factorization of the Hilbert space. We reproduce the answer expected from an effective field theory point of view, namely a sum over the one-loop entanglement entropies corresponding to all the particle-excitations of the string, and further show that the full string theory regulates ultraviolet divergences in the entanglement entropy. We then revisit the question of factorization of the Hilbert space by analyzing the covariant phase-space associated with a subregion in Witten's covariant string field theory. We show that the pure gauge (i.e., BRST exact) modes in the string field become dynamical at the entanglement cut. Thus, a proper definition of the entropy must involve an extended Hilbert space, with new stringy edge modes localized at the entanglement cut.

  2. Cosmic string catalysis of skyrmion decay

    NASA Technical Reports Server (NTRS)

    Gregory, Ruth; Davis, Anne-Christine; Brandenberger, Robert

    1988-01-01

    The Callan-Witten picture is developed for monopole catalyzed skyrmion decay in order to analyze the corresponding cosmic string scenario. It is discovered that cosmic strings (both ordinary and superconducting) can catalyze proton decay, but that this catalysis only occurs on the scale of the core of the string. In order to do this we have to develop a vortex model for the superconducting string. An argument is also given for the difference in the enhancement factors for monopoles and strings.

  3. Hydraulics Graphics Package. Users Manual

    DTIC Science & Technology

    1985-11-01

    ENTER: VARIABLE/SEPARATOR/VALUE OR STRING GLBL, TETON DAM FAILURE ENTER: VARIABLE/SEPARATOR/VALUE OR STRING SLOC ,DISCHARGE HISTOGRAM ENTER: VARIABLE...ENTER: VARIABLE/SEPARATOR/VALUE OR STRING YLBL,FLOW IN 1000 CFS ENTER: VARIABLE/SEPARATORVA LUE OR STRING GLBL, TETON DAM FAILURE ENTER: VARIABLE...SEPARATOR/VALUE OR STRING SECNO, 0 ENTER: VARIABLE/SEPARATOR/VALUE OR STRING GO 1ee0. F go L 0 U I Goo. 200. TETON DAM FAILUPE N\\ rLOIJ Alr 4wi. fiNT. I .I

  4. Impaired letter-string processing in developmental dyslexia: what visual-to-phonology code mapping disorder?

    PubMed

    Valdois, Sylviane; Lassus-Sangosse, Delphine; Lobier, Muriel

    2012-05-01

    Poor parallel letter-string processing in developmental dyslexia was taken as evidence of poor visual attention (VA) span, that is, a limitation of visual attentional resources that affects multi-character processing. However, the use of letter stimuli in oral report tasks was challenged on its capacity to highlight a VA span disorder. In particular, report of poor letter/digit-string processing but preserved symbol-string processing was viewed as evidence of poor visual-to-phonology code mapping, in line with the phonological theory of developmental dyslexia. We assessed here the visual-to-phonological-code mapping disorder hypothesis. In Experiment 1, letter-string, digit-string and colour-string processing was assessed to disentangle a phonological versus visual familiarity account of the letter/digit versus symbol dissociation. Against a visual-to-phonological-code mapping disorder but in support of a familiarity account, results showed poor letter/digit-string processing but preserved colour-string processing in dyslexic children. In Experiment 2, two tasks of letter-string report were used, one of which was performed simultaneously to a high-taxing phonological task. Results show that dyslexic children are similarly impaired in letter-string report whether a concurrent phonological task is simultaneously performed or not. Taken together, these results provide strong evidence against a phonological account of poor letter-string processing in developmental dyslexia. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Multiflavor string-net models

    NASA Astrophysics Data System (ADS)

    Lin, Chien-Hung

    2017-05-01

    We generalize the string-net construction to multiple flavors of strings, each of which is labeled by the elements of an Abelian group Gi. The same flavor of strings can branch, while different flavors of strings can cross one another and thus they form intersecting string nets. We systematically construct the exactly soluble lattice Hamiltonians and the ground-state wave functions for the intersecting string-net condensed phases. We analyze the braiding statistics of the low-energy quasiparticle excitations and find that our model can realize all the topological phases as the string-net model with group G =∏iGi . In this respect, our construction provides various ways of building lattice models which realize topological order G , corresponding to different partitions of G and thus different flavors of string nets. In fact, our construction concretely demonstrates the Künneth formula by constructing various lattice models with the same topological order. As an example, we construct the G =Z2×Z2×Z2 string-net model which realizes a non-Abelian topological phase by properly intersecting three copies of toric codes.

  6. Photovoltaic power generation system with photovoltaic cells as bypass diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentine, Anthony L.; Nielson, Gregory N.; Tauke-Pedretti, Anna

    A photovoltaic power generation system that includes a solar panel is described herein. The solar panel includes a photovoltaic sub-module, which includes a group of microsystem enabled photovoltaic cells. The group includes a first string of photovoltaic cells, a second string of photovoltaic cells, and a differing photovoltaic cell. Photovoltaic cells in the first string are electrically connected in series, and photovoltaic cells in the second string are electrically connected in series. Further, the first string of photovoltaic cells, the second string of photovoltaic cells, and the differing photovoltaic cell are electrically connected in parallel. Moreover, the differing photovoltaic cellmore » is used as a bypass diode for the first string of photovoltaic cells and the second string of photovoltaic cells.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donnelly, William; Wong, Gabriel

    What is the meaning of entanglement in a theory of extended objects such as strings? To address this question we consider the spatial entanglement between two intervals in the Gross-Taylor model, the string theory dual to two-dimensional Yang-Mills theory at large N. The string diagrams that contribute to the entanglement entropy describe open strings with endpoints anchored to the entangling surface, as first argued by Susskind. We develop a canonical theory of these open strings, and describe how closed strings are divided into open strings at the level of the Hilbert space. Here, we derive the modular Hamiltonian for themore » Hartle-Hawking state and show that the corresponding reduced density matrix describes a thermal ensemble of open strings ending on an object at the entangling surface that we call an entanglement brane, or E-brane.« less

  8. Device for balancing parallel strings

    DOEpatents

    Mashikian, Matthew S.

    1985-01-01

    A battery plant is described which features magnetic circuit means in association with each of the battery strings in the battery plant for balancing the electrical current flow through the battery strings by equalizing the voltage across each of the battery strings. Each of the magnetic circuit means generally comprises means for sensing the electrical current flow through one of the battery strings, and a saturable reactor having a main winding connected electrically in series with the battery string, a bias winding connected to a source of alternating current and a control winding connected to a variable source of direct current controlled by the sensing means. Each of the battery strings is formed by a plurality of batteries connected electrically in series, and these battery strings are connected electrically in parallel across common bus conductors.

  9. Aspects of some dualities in string theory

    NASA Astrophysics Data System (ADS)

    Kim, Bom Soo

    AdS/CFT correspondence in string theory has changed landscape of the theoretical physics. Through this celebrated duality between gravity theory and field theory, one can investigate analytically strongly coupled gauge theories such as Quantum Chromodynamics (QCD) in terms of weakly coupled string theory such as supergravity theory and vice versa. In the first part of this thesis we used this duality to construct a new type of nonlocal field theory, called Puff Field Theory, in terms of D3 branes in type IIB string theory with a geometric twist. In addition to the strong-weak duality of AdS/CFT, there also exists a weak-weak duality, called Twistor String Theory. Twistor technique is successfully used to calculate the SYM scattering amplitude in an elegant fashion. Yet, the progress in the string theory side was hindered by a non-unitary conformal gravity. We extend the Twistor string theory by introducing mass terms, in the second part of the thesis. A chiral mass term is identified as a vacuum expectation value of a conformal supergravity field and is tied with the breaking of the conformal symmetry of gravity. As a prime candidate for a quantum theory of gravity, string theory revealed many promising successes such as counting the number of microstates in supersymmetric Black Holes thermodynamics and resolution of timelike and null singularities, to name a few. Yet, the fundamental string and M-theroy formulations are not yet available. Various string theories without gravity, such as Non-Commutative Open String (NCOS) and Open Membrane (OM) theories, are very nice playground to investigate the fundamental structure of string and M-theory without the complication of gravity. In the last part of the thesis, simpler Non-Relativistic String Theories are constructed and investigated. One important motivation for those theories is related to the connection between Non-Relativistic String Theories and Non-critical String Theories through the bosonization of betagamma CFT.

  10. The physics of unwound and wound strings on the electric guitar applied to the pitch intervals produced by tremolo/vibrato arm systems

    PubMed Central

    2017-01-01

    The physics of wound and unwound strings on the electric guitar are presented here, and the pitch intervals produced by the movements of a Fender Stratocaster tremolo unit are explained. Predicted changes in pitch sensitivity of different strings are given, and experimentally verified, for changes in saddle height, the distance of string free to move behind the nut and ratio of diameters/masses of the core and windings of wound strings. Also, it is shown that changes to the gauge of strings (assuming the string tension is sufficient for linear behaviour and in absence of changes to other construction details) don’t alter the pitch intervals produced by a given angle of tremolo arm use assuming the instrument is set up with the same sounding pitches and starting bridge angle. It is demonstrated that it not possible to equalise the relative sensitivity of unwound steel stings on a Fender Stratocaster type tremolo unit through string construction techniques. The ratio of core to winding mass in the string, on the other hand, was found to be a very powerful design parameter for choosing the sensitivity of the string to tremolo arm use and standard pitch bends. For instance, the pitch intervals produced by operation of tremolo arm for wound strings may be made to approximately match that for one of the unwound strings if they share very similar core gauges (assuming the winding masses are chosen to give approximately the same tension at their sounding pitches). Such a design, only available currently by custom order, also delivers the optimum equalisation in sensitivity of strings for standard string bends (due to these also being produced by altering the length of the string to generate changes in tension and therefore pitch). PMID:28934268

  11. Formation of Electron Strings in Narrow Band Polar Semiconductors

    NASA Astrophysics Data System (ADS)

    Kusmartsev, F. V.

    2000-01-01

    We show that linear electron strings may arise in polar semiconductors. A single string consists of M spinless fermions trapped by an extended polarization well of a cigar shape. Inside the string the particles are free although they interact with each other via Coulomb forces. The strings arise as a result of an electronic phase separation associated with an instability of small adiabatic polarons. We have found the length of the string which depends on dielectric constants of semiconductors. The appearance of these electron strings may have an impact on the effect of stripe formation observed in a variety of high- Tc experiments.

  12. Optimal management of batteries in electric systems

    DOEpatents

    Atcitty, Stanley; Butler, Paul C.; Corey, Garth P.; Symons, Philip C.

    2002-01-01

    An electric system including at least a pair of battery strings and an AC source minimizes the use and maximizes the efficiency of the AC source by using the AC source only to charge all battery strings at the same time. Then one or more battery strings is used to power the load while management, such as application of a finish charge, is provided to one battery string. After another charge cycle, the roles of the battery strings are reversed so that each battery string receives regular management.

  13. The waiting time problem in a model hominin population.

    PubMed

    Sanford, John; Brewer, Wesley; Smith, Franzine; Baumgardner, John

    2015-09-17

    Functional information is normally communicated using specific, context-dependent strings of symbolic characters. This is true within the human realm (texts and computer programs), and also within the biological realm (nucleic acids and proteins). In biology, strings of nucleotides encode much of the information within living cells. How do such information-bearing nucleotide strings arise and become established? This paper uses comprehensive numerical simulation to understand what types of nucleotide strings can realistically be established via the mutation/selection process, given a reasonable timeframe. The program Mendel's Accountant realistically simulates the mutation/selection process, and was modified so that a starting string of nucleotides could be specified, and a corresponding target string of nucleotides could be specified. We simulated a classic pre-human hominin population of at least 10,000 individuals, with a generation time of 20 years, and with very strong selection (50% selective elimination). Random point mutations were generated within the starting string. Whenever an instance of the target string arose, all individuals carrying the target string were assigned a specified reproductive advantage. When natural selection had successfully amplified an instance of the target string to the point of fixation, the experiment was halted, and the waiting time statistics were tabulated. Using this methodology we tested the effect of mutation rate, string length, fitness benefit, and population size on waiting time to fixation. Biologically realistic numerical simulations revealed that a population of this type required inordinately long waiting times to establish even the shortest nucleotide strings. To establish a string of two nucleotides required on average 84 million years. To establish a string of five nucleotides required on average 2 billion years. We found that waiting times were reduced by higher mutation rates, stronger fitness benefits, and larger population sizes. However, even using the most generous feasible parameters settings, the waiting time required to establish any specific nucleotide string within this type of population was consistently prohibitive. We show that the waiting time problem is a significant constraint on the macroevolution of the classic hominin population. Routine establishment of specific beneficial strings of two or more nucleotides becomes very problematic.

  14. The IMS Software Integration Platform

    DTIC Science & Technology

    1993-04-12

    products to incorporate all data shared by the IMS applications. Some entities (time-series, images, a algorithm -specific parameters) must be managed...dbwhoanii, dbcancel Transaction Management: dbcommit, dbrollback Key Counter Assignment: dbgetcounter String Handling: cstr ~to~pad, pad-to- cstr Error...increment *value; String Maniputation: int cstr topad (array, string, arraylength) char *array, *string; int arrayjlength; int pad tocstr (string

  15. Cosmic superstrings: Observable remnants of brane inflation

    NASA Astrophysics Data System (ADS)

    Wyman, Mark Charles

    Brane inflation provides a natural dynamical model for the physics which underlie the inflationary paradigm. Besides their inflationary predictions, brane models imply another observable consequence: cosmic strings. In this dissertation I outline the background of how cosmic strings arise in brane inflationary models and how the properties of the strings and the models are mutually tied (Chapter 2). I then use cosmological observations to put limits on the properties of any actually-existing cosmic string network (Chapter 3). Next, I study the question of how cosmic superstrings, as the cosmic strings arising from string theory are known, could be distinct from classical gauge- theory cosmic strings. In particular, I propose an analytical model for the cosmological evolution of a network of binding cosmic strings (Chapter 4); I also describe the distinctive gravitational lensing phenomena that are caused by binding strings (Chapter 5). Finally, I lay out the background for the numerical study of a gauge theory model for the dynamics of cosmic superstring binding (Chapter 6).

  16. String theory--the physics of string-bending and other electric guitar techniques.

    PubMed

    Grimes, David Robert

    2014-01-01

    Electric guitar playing is ubiquitous in practically all modern music genres. In the hands of an experienced player, electric guitars can sound as expressive and distinct as a human voice. Unlike other more quantised instruments where pitch is a discrete function, guitarists can incorporate micro-tonality and, as a result, vibrato and sting-bending are idiosyncratic hallmarks of a player. Similarly, a wide variety of techniques unique to the electric guitar have emerged. While the mechano-acoustics of stringed instruments and vibrating strings are well studied, there has been comparatively little work dedicated to the underlying physics of unique electric guitar techniques and strings, nor the mechanical factors influencing vibrato, string-bending, fretting force and whammy-bar dynamics. In this work, models for these processes are derived and the implications for guitar and string design discussed. The string-bending model is experimentally validated using a variety of strings and vibrato dynamics are simulated. The implications of these findings on the configuration and design of guitars is also discussed.

  17. PhD Thesis: String theory in the early universe

    NASA Astrophysics Data System (ADS)

    Gwyn, Rhiannon

    2009-11-01

    The intersection of string theory with cosmology is unavoidable in the early universe, and its exploration may shine light on both fields. In this thesis, three papers at this intersection are presented and reviewed, with the aim of providing a thorough and pedagogical guide to their results. First, we address the longstanding problem of finding a string theory realisation of the axion. Using warped compactifications in heterotic string theory, we show that the axion decay constant can be lowered to acceptable values by the warp factor. Next, we move to the subject of cosmic strings, whose network evolution could have important consequences for astrophysics and cosmology. In particular, there are quantitative differences between cosmic superstring networks and GUT cosmic string networks. We investigate the properties of cosmic superstring networks in warped backgrounds, giving the tension and properties of three-string junctions in these backgrounds. Finally, we examine the possibility that cosmic strings in heterotic string theory could be responsible for generating the galactic magnetic fields that seeded those observed today.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciuca, Razvan; Hernández, Oscar F., E-mail: razvan.ciuca@mail.mcgill.ca, E-mail: oscarh@physics.mcgill.ca

    There exists various proposals to detect cosmic strings from Cosmic Microwave Background (CMB) or 21 cm temperature maps. Current proposals do not aim to find the location of strings on sky maps, all of these approaches can be thought of as a statistic on a sky map. We propose a Bayesian interpretation of cosmic string detection and within that framework, we derive a connection between estimates of cosmic string locations and cosmic string tension G μ. We use this Bayesian framework to develop a machine learning framework for detecting strings from sky maps and outline how to implement this frameworkmore » with neural networks. The neural network we trained was able to detect and locate cosmic strings on noiseless CMB temperature map down to a string tension of G μ=5 ×10{sup −9} and when analyzing a CMB temperature map that does not contain strings, the neural network gives a 0.95 probability that G μ≤2.3×10{sup −9}.« less

  19. String Theory - The Physics of String-Bending and Other Electric Guitar Techniques

    PubMed Central

    Grimes, David Robert

    2014-01-01

    Electric guitar playing is ubiquitous in practically all modern music genres. In the hands of an experienced player, electric guitars can sound as expressive and distinct as a human voice. Unlike other more quantised instruments where pitch is a discrete function, guitarists can incorporate micro-tonality and, as a result, vibrato and sting-bending are idiosyncratic hallmarks of a player. Similarly, a wide variety of techniques unique to the electric guitar have emerged. While the mechano-acoustics of stringed instruments and vibrating strings are well studied, there has been comparatively little work dedicated to the underlying physics of unique electric guitar techniques and strings, nor the mechanical factors influencing vibrato, string-bending, fretting force and whammy-bar dynamics. In this work, models for these processes are derived and the implications for guitar and string design discussed. The string-bending model is experimentally validated using a variety of strings and vibrato dynamics are simulated. The implications of these findings on the configuration and design of guitars is also discussed. PMID:25054880

  20. Minimal string theories and integrable hierarchies

    NASA Astrophysics Data System (ADS)

    Iyer, Ramakrishnan

    Well-defined, non-perturbative formulations of the physics of string theories in specific minimal or superminimal model backgrounds can be obtained by solving matrix models in the double scaling limit. They provide us with the first examples of completely solvable string theories. Despite being relatively simple compared to higher dimensional critical string theories, they furnish non-perturbative descriptions of interesting physical phenomena such as geometrical transitions between D-branes and fluxes, tachyon condensation and holography. The physics of these theories in the minimal model backgrounds is succinctly encoded in a non-linear differential equation known as the string equation, along with an associated hierarchy of integrable partial differential equations (PDEs). The bosonic string in (2,2m-1) conformal minimal model backgrounds and the type 0A string in (2,4 m) superconformal minimal model backgrounds have the Korteweg-de Vries system, while type 0B in (2,4m) backgrounds has the Zakharov-Shabat system. The integrable PDE hierarchy governs flows between backgrounds with different m. In this thesis, we explore this interesting connection between minimal string theories and integrable hierarchies further. We uncover the remarkable role that an infinite hierarchy of non-linear differential equations plays in organizing and connecting certain minimal string theories non-perturbatively. We are able to embed the type 0A and 0B (A,A) minimal string theories into this single framework. The string theories arise as special limits of a rich system of equations underpinned by an integrable system known as the dispersive water wave hierarchy. We find that there are several other string-like limits of the system, and conjecture that some of them are type IIA and IIB (A,D) minimal string backgrounds. We explain how these and several other string-like special points arise and are connected. In some cases, the framework endows the theories with a non-perturbative definition for the first time. Notably, we discover that the Painleve IV equation plays a key role in organizing the string theory physics, joining its siblings, Painleve I and II, whose roles have previously been identified in this minimal string context. We then present evidence that the conjectured type II theories have smooth non-perturbative solutions, connecting two perturbative asymptotic regimes, in a 't Hooft limit. Our technique also demonstrates evidence for new minimal string theories that are not apparent in a perturbative analysis.

  1. Dynamical AdS strings across horizons

    DOE PAGES

    Ishii, Takaaki; Murata, Keiju

    2016-03-01

    We examine the nonlinear classical dynamics of a fundamental string in anti-deSitter spacetime. The string is dual to the flux tube between an external quark-antiquark pair in $N = 4$ super Yang-Mills theory. We perturb the string by shaking the endpoints and compute its time evolution numerically. We find that with sufficiently strong perturbations the string continues extending and plunges into the Poincare´ horizon. In the evolution, effective horizons are also dynamically created on the string worldsheet. The quark and antiquark are thus causally disconnected, and the string transitions to two straight strings. The forces acting on the endpoints vanishmore » with a power law whose slope depends on the perturbations. Lastly, the condition for this transition to occur is that energy injection exceeds the static energy between the quark-antiquark pair.« less

  2. Cosmic strings and the microwave sky. I - Anisotropy from moving strings

    NASA Technical Reports Server (NTRS)

    Stebbins, Albert

    1988-01-01

    A method is developed for calculating the component of the microwave anisotropy around cosmic string loops due to their rapidly changing gravitational fields. The method is only valid for impact parameters from the string much smaller than the horizon size at the time the photon passes the string. The method makes it possible to calculate the temperature pattern around arbitrary string configurations numerically in terms of one-dimensional integrals. This method is applied to temperature jump across a string, confirming and extending previous work. It is also applied to cusps and kinks on strings, and to determining the temperature pattern far from a strong loop. The temperature pattern around a few loop configurations is explicitly calculated. Comparisons with the work of Brandenberger et al. (1986) indicates that they have overestimated the MBR anisotropy from gravitational radiation emitted from loops.

  3. The Development of a String Sight-Reading Pitch Skill Hierarchy

    ERIC Educational Resources Information Center

    Alexander, Michael L.; Henry, Michele L.

    2012-01-01

    This study was designed to determine a pitch skill hierarchy for string sight-reading, to determine the effects of key on string sight-reading achievement, and to determine the validity of a tonal pattern system as a measurement of melodic sight-reading skill for string players. High school string students (n = 94) obtained a mean score of 27.28…

  4. Actomyosin purse strings: renewable resources that make morphogenesis robust and resilient

    PubMed Central

    Rodriguez-Diaz, Alice; Toyama, Yusuke; Abravanel, Daniel L.; Wiemann, John M.; Wells, Adrienne R.; Tulu, U. Serdar; Edwards, Glenn S.; Kiehart, Daniel P.

    2008-01-01

    Dorsal closure in Drosophila is a model system for cell sheet morphogenesis and wound healing. During closure two sheets of lateral epidermis move dorsally to close over the amnioserosa and form a continuous epidermis. Forces from the amnioserosa and actomyosin-rich, supracellular purse strings at the leading edges of these lateral epidermal sheets drive closure. Purse strings generate the largest force for closure and occur during development and wound healing throughout phylogeny. We use laser microsurgery to remove some or all of the purse strings from developing embryos. Free edges produced by surgery undergo characteristic responses as follows. Intact cells in the free edges, which previously had no purse string, recoil away from the incision and rapidly assemble new, secondary purse strings. Next, recoil slows, then pauses at a turning point. Following a brief delay, closure resumes and is powered to completion by the secondary purse strings. We confirm that the assembly of the secondary purse strings requires RhoA. We show that α-actinin alternates with nonmuscle myosin II along purse strings and requires nonmuscle myosin II for its localization. Together our data demonstrate that purse strings are renewable resources that contribute to the robust and resilient nature of closure. PMID:19404432

  5. Physical cognition: birds learn the structural efficacy of nest material

    PubMed Central

    Bailey, Ida E.; Morgan, Kate V.; Bertin, Marion; Meddle, Simone L.; Healy, Susan D.

    2014-01-01

    It is generally assumed that birds’ choice of structurally suitable materials for nest building is genetically predetermined. Here, we tested that assumption by investigating whether experience affected male zebra finches’ (Taeniopygia guttata) choice of nest material. After a short period of building with relatively flexible string, birds preferred to build with stiffer string while those that had experienced a stiffer string were indifferent to string type. After building a complete nest with either string type, however, all birds increased their preference for stiff string. The stiffer string appeared to be the more effective building material as birds required fewer pieces of stiffer than flexible string to build a roofed nest. For birds that raised chicks successfully, there was no association between the material they used to build their nest and the type they subsequently preferred. Birds’ material preference reflected neither the preference of their father nor of their siblings but juvenile experience of either string type increased their preference for stiffer string. Our results represent two important advances: (i) birds choose nest material based on the structural properties of the material; (ii) nest material preference is not entirely genetically predetermined as both the type and amount of experience influences birds’ choices. PMID:24741011

  6. Physical cognition: birds learn the structural efficacy of nest material.

    PubMed

    Bailey, Ida E; Morgan, Kate V; Bertin, Marion; Meddle, Simone L; Healy, Susan D

    2014-06-07

    It is generally assumed that birds' choice of structurally suitable materials for nest building is genetically predetermined. Here, we tested that assumption by investigating whether experience affected male zebra finches' (Taeniopygia guttata) choice of nest material. After a short period of building with relatively flexible string, birds preferred to build with stiffer string while those that had experienced a stiffer string were indifferent to string type. After building a complete nest with either string type, however, all birds increased their preference for stiff string. The stiffer string appeared to be the more effective building material as birds required fewer pieces of stiffer than flexible string to build a roofed nest. For birds that raised chicks successfully, there was no association between the material they used to build their nest and the type they subsequently preferred. Birds' material preference reflected neither the preference of their father nor of their siblings but juvenile experience of either string type increased their preference for stiffer string. Our results represent two important advances: (i) birds choose nest material based on the structural properties of the material; (ii) nest material preference is not entirely genetically predetermined as both the type and amount of experience influences birds' choices.

  7. Pushing typists back on the learning curve: Memory chunking in the hierarchical control of skilled typewriting.

    PubMed

    Yamaguchi, Motonori; Logan, Gordon D

    2016-12-01

    Hierarchical control of skilled performance depends on the ability of higher level control to process several lower level units as a single chunk. The present study investigated the development of hierarchical control of skilled typewriting, focusing on the process of memory chunking. In the first 3 experiments, skilled typists typed words or nonwords under concurrent memory load. Memory chunks developed and consolidated into long-term memory when the same typing materials were repeated in 6 consecutive trials, but chunks did not develop when repetitions were spaced. However, when concurrent memory load was removed during training, memory chunks developed more efficiently with longer lags between repetitions than shorter lags. From these results, it is proposed that memory chunking requires 2 representations of the same letter string to be maintained simultaneously in short-term memory: 1 representation from the current trial, and the other from an earlier trial that is either retained from the immediately preceding trial or retrieved from long-term memory (i.e., study state retrieval). (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  8. Text String Detection from Natural Scenes by Structure-based Partition and Grouping

    PubMed Central

    Yi, Chucai; Tian, YingLi

    2012-01-01

    Text information in natural scene images serves as important clues for many image-based applications such as scene understanding, content-based image retrieval, assistive navigation, and automatic geocoding. However, locating text from complex background with multiple colors is a challenging task. In this paper, we explore a new framework to detect text strings with arbitrary orientations in complex natural scene images. Our proposed framework of text string detection consists of two steps: 1) Image partition to find text character candidates based on local gradient features and color uniformity of character components. 2) Character candidate grouping to detect text strings based on joint structural features of text characters in each text string such as character size differences, distances between neighboring characters, and character alignment. By assuming that a text string has at least three characters, we propose two algorithms of text string detection: 1) adjacent character grouping method, and 2) text line grouping method. The adjacent character grouping method calculates the sibling groups of each character candidate as string segments and then merges the intersecting sibling groups into text string. The text line grouping method performs Hough transform to fit text line among the centroids of text candidates. Each fitted text line describes the orientation of a potential text string. The detected text string is presented by a rectangle region covering all characters whose centroids are cascaded in its text line. To improve efficiency and accuracy, our algorithms are carried out in multi-scales. The proposed methods outperform the state-of-the-art results on the public Robust Reading Dataset which contains text only in horizontal orientation. Furthermore, the effectiveness of our methods to detect text strings with arbitrary orientations is evaluated on the Oriented Scene Text Dataset collected by ourselves containing text strings in non-horizontal orientations. PMID:21411405

  9. Text string detection from natural scenes by structure-based partition and grouping.

    PubMed

    Yi, Chucai; Tian, YingLi

    2011-09-01

    Text information in natural scene images serves as important clues for many image-based applications such as scene understanding, content-based image retrieval, assistive navigation, and automatic geocoding. However, locating text from a complex background with multiple colors is a challenging task. In this paper, we explore a new framework to detect text strings with arbitrary orientations in complex natural scene images. Our proposed framework of text string detection consists of two steps: 1) image partition to find text character candidates based on local gradient features and color uniformity of character components and 2) character candidate grouping to detect text strings based on joint structural features of text characters in each text string such as character size differences, distances between neighboring characters, and character alignment. By assuming that a text string has at least three characters, we propose two algorithms of text string detection: 1) adjacent character grouping method and 2) text line grouping method. The adjacent character grouping method calculates the sibling groups of each character candidate as string segments and then merges the intersecting sibling groups into text string. The text line grouping method performs Hough transform to fit text line among the centroids of text candidates. Each fitted text line describes the orientation of a potential text string. The detected text string is presented by a rectangle region covering all characters whose centroids are cascaded in its text line. To improve efficiency and accuracy, our algorithms are carried out in multi-scales. The proposed methods outperform the state-of-the-art results on the public Robust Reading Dataset, which contains text only in horizontal orientation. Furthermore, the effectiveness of our methods to detect text strings with arbitrary orientations is evaluated on the Oriented Scene Text Dataset collected by ourselves containing text strings in nonhorizontal orientations.

  10. How to simulate global cosmic strings with large string tension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klaer, Vincent B.; Moore, Guy D., E-mail: vklaer@theorie.ikp.physik.tu-darmstadt.de, E-mail: guy.moore@physik.tu-darmstadt.de

    Global string networks may be relevant in axion production in the early Universe, as well as other cosmological scenarios. Such networks contain a large hierarchy of scales between the string core scale and the Hubble scale, ln( f {sub a} / H ) ∼ 70, which influences the network dynamics by giving the strings large tensions T ≅ π f {sub a} {sup 2} ln( f {sub a} / H ). We present a new numerical approach to simulate such global string networks, capturing the tension without an exponentially large lattice.

  11. Closed timelike curves produced by pairs of moving cosmic strings - Exact solutions

    NASA Technical Reports Server (NTRS)

    Gott, J. Richard, III

    1991-01-01

    Exact solutions of Einstein's field equations are presented for the general case of two moving straight cosmic strings that do not intersect. The solutions for parallel cosmic strings moving in opposite directions show closed timelike curves (CTCs) that circle the two strings as they pass, allowing observers to visit their own past. Similar results occur for nonparallel strings, and for masses in (2+1)-dimensional spacetime. For finite string loops the possibility that black-hole formation may prevent the formation of CTCs is discussed.

  12. Coulomb string tension, asymptotic string tension, and the gluon chain

    DOE PAGES

    Greensite, Jeff; Szczepaniak, Adam P.

    2015-02-01

    We compute, via numerical simulations, the non-perturbative Coulomb potential and position-space ghost propagator in pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.

  13. Simulation of swimming strings immersed in a viscous fluid flow

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Xi; Sung, Hyung Jin

    2006-11-01

    In nature, many phenomena involve interactions between flexible bodies and their surrounding viscous fluid, such as a swimming fish or a flapping flag. The intrinsic dynamics is complicate and not well understood. A flexible string can be regarded as a one-dimensional flag model. Many similarities can be found between the flapping string and swimming fish, although different wake speed results in a drag force for the flapping string and a propulsion force for the swimming fish. In the present study, we propose a mathematical formulation for swimming strings immersed in a viscous fluid flow. Fluid motion is governed by the Navier-Stokes equations and a momentum forcing is added in order to bring the fluid to move at the same velocity with the immersed surface. A flexible inextensible string model is described by another set of equations with an additional momentum forcing which is a result of the fluid viscosity and the pressure difference across the string. The momentum forcing is calculated by a feedback loop. Simulations of several numerical examples are carried out, including a hanging string which starts moving under gravity without ambient fluid, a swinging string immersed in a quiescent viscous fluid, a string swimming within a uniform surrounding flow, and flow over two side-by-side strings. The numerical results agree well with the theoretical analysis and previous experimental observations. Further simulation of a swimming fish is under consideration.

  14. Noncommutative Field Theories and (super)string Field Theories

    NASA Astrophysics Data System (ADS)

    Aref'eva, I. Ya.; Belov, D. M.; Giryavets, A. A.; Koshelev, A. S.; Medvedev, P. B.

    2002-11-01

    In this lecture notes we explain and discuss some ideas concerning noncommutative geometry in general, as well as noncommutative field theories and string field theories. We consider noncommutative quantum field theories emphasizing an issue of their renormalizability and the UV/IR mixing. Sen's conjectures on open string tachyon condensation and their application to the D-brane physics have led to wide investigations of the covariant string field theory proposed by Witten about 15 years ago. We review main ingredients of cubic (super)string field theories using various formulations: functional, operator, conformal and the half string formalisms. The main technical tools that are used to study conjectured D-brane decay into closed string vacuum through the tachyon condensation are presented. We describe also methods which are used to study the cubic open string field theory around the tachyon vacuum: construction of the sliver state, "comma" and matrix representations of vertices.

  15. Gravitational lensing effects of vacuum strings - Exact solutions

    NASA Technical Reports Server (NTRS)

    Gott, J. R., III

    1985-01-01

    Exact interior and exterior solutions to Einstein's field equations are derived for vacuum strings. The exterior solution for a uniform density vacuum string corresponds to a conical space while the interior solution is that of a spherical cap. For Mu equals 0-1/4 the external metric is ds-squared = -dt-squared + dr-squared + (1-4 Mu)-squared r-squared dphi-squared + dz-squared, where Mu is the mass per unit length in the string in Planck masses per Planck length. A maximum mass per unit length for a string is 6.73 x 10 to the 27th g/cm. It is shown that strings cause temperature fluctuations in the cosmic microwave background and produce equal brightness double QSO images separated by up to several minutes of arc. Formulae for lensing probabilities, image splittings, and time delays are derived for strings in a realistic cosmological setting. String searches using ST, the VLA, and the COBE satellite are discussed.

  16. Fitting cosmic microwave background data with cosmic strings and inflation.

    PubMed

    Bevis, Neil; Hindmarsh, Mark; Kunz, Martin; Urrestilla, Jon

    2008-01-18

    We perform a multiparameter likelihood analysis to compare measurements of the cosmic microwave background (CMB) power spectra with predictions from models involving cosmic strings. Adding strings to the standard case of a primordial spectrum with power-law tilt ns, we find a 2sigma detection of strings: f10=0.11+/-0.05, where f10 is the fractional contribution made by strings in the temperature power spectrum (at l=10). CMB data give moderate preference to the model ns=1 with cosmic strings over the standard zero-strings model with variable tilt. When additional non-CMB data are incorporated, the two models become on a par. With variable ns and these extra data, we find that f10<0.11, which corresponds to Gmicro<0.7x10(-6) (where micro is the string tension and G is the gravitational constant).

  17. Modal analysis of a nonuniform string with end mass and variable tension

    NASA Technical Reports Server (NTRS)

    Rheinfurth, M. H.; Galaboff, Z. J.

    1983-01-01

    Modal synthesis techniques for dynamic systems containing strings describe the lateral displacements of these strings by properly chosen shape functions. An iterative algorithm is provided to calculate the natural modes of a nonuniform string and variable tension for some typical boundary conditions including one end mass. Numerical examples are given for a string in a constant and a gravity gradient force field.

  18. Self-energy and self-force in the space-time of a thick cosmic string

    NASA Astrophysics Data System (ADS)

    Khusnutdinov, N. R.; Bezerra, V. B.

    2001-10-01

    We calculate the self-energy and self-force for an electrically charged particle at rest in the background of Gott-Hiscock cosmic string space-time. We find the general expression for the self-energy which is expressed in terms of the S matrix of the scattering problem. The self-energy continuously falls down outward from the string's center with the maximum at the origin of the string. The self-force is repulsive for an arbitrary position of the particle. It tends to zero in the string's center and also far from the string and it has a maximum value at the string's surface. The plots of the numerical calculations of the self-energy and self-force are shown.

  19. The implications of the COBE diffuse microwave radiation results for cosmic strings

    NASA Technical Reports Server (NTRS)

    Bennett, David P.; Stebbins, Albert; Bouchet, Francois R.

    1992-01-01

    We compare the anisotropies in the cosmic microwave background radiation measured by the COBE experiment to those predicted by cosmic string theories. We use an analytic model for the Delta T/T power spectrum that is based on our previous numerical simulations of strings, under the assumption that cosmic strings are the sole source of the measured anisotropy. This implies a value for the string mass per unit length of 1.5 +/- 0.5 x 10 exp -6 C-squared/G. This is within the range of values required for cosmic strings to successfully seed the formation of large-scale structures in the universe. These results clearly encourage further studies of Delta T/T and large-scale structure in the cosmic string model.

  20. Identification of market trends with string and D2-brane maps

    NASA Astrophysics Data System (ADS)

    Bartoš, Erik; Pinčák, Richard

    2017-08-01

    The multidimensional string objects are introduced as a new alternative for an application of string models for time series forecasting in trading on financial markets. The objects are represented by open string with 2-endpoints and D2-brane, which are continuous enhancement of 1-endpoint open string model. We show how new object properties can change the statistics of the predictors, which makes them the candidates for modeling a wide range of time series systems. String angular momentum is proposed as another tool to analyze the stability of currency rates except the historical volatility. To show the reliability of our approach with application of string models for time series forecasting we present the results of real demo simulations for four currency exchange pairs.

  1. Mechanism of Tennis Racket Spin Performance

    NASA Astrophysics Data System (ADS)

    Kawazoe, Yoshihiko; Okimoto, Kenji; Okimoto, Keiko

    Players often say that some strings provide a better grip and more spin than others, but ball spin did not depend on string type, gauge, or tension in pervious laboratory experiments. There was no research work on spin to uncover what is really happening during an actual tennis impact because of the difficulty of performing the appropriate experiments. The present paper clarified the mechanism of top spin and its improvement by lubrication of strings through the use of high-speed video analysis. It also provided a more detailed explanation of spin behavior by comparing a racket with lubricated strings with the famous “spaghetti” strung racket, which was banned in 1978 by the International Tennis Federation because it used plastic spaghetti tubing over the strings to reduce friction, resulting in excessive ball spin. As the main strings stretch and slide sideways more, the ball is given additional spin due to the restoring force parallel to the string face when the main strings spring back and the ball is released from the strings. Herein, we also showed that the additional spin results in a reduction of shock vibrations of the wrist joint during impact.

  2. Two Studies of Pitch in String Instrument Vibrato: Perception and Pitch Matching Responses of University and High School String Players

    ERIC Educational Resources Information Center

    Geringer, John M.; MacLeod, Rebecca B.; Ellis, Julia C.

    2014-01-01

    We investigated pitch perception of string vibrato tones among string players in two separate studies. In both studies we used tones of acoustic instruments (violin and cello) as stimuli. In the first, we asked 192 high school and university string players to listen to a series of tonal pairs: one tone of each pair was performed with vibrato and…

  3. Geometric phase for a static two-level atom in cosmic string spacetime

    NASA Astrophysics Data System (ADS)

    Cai, Huabing; Ren, Zhongzhou

    2018-05-01

    We investigate the geometric phase of a static two-level atom immersed in a bath of fluctuating vacuum electromagnetic field in the background of a cosmic string. Our results indicate that due to the existence of the string, the geometric phase depends crucially on the position and the polarizability of the atom relative to the string. This can be ascribed to the fact that the presence of the string profoundly modify the distribution of electric field in Minkowski spacetime. So in principle, we can detect the cosmic string by experiments involving geometric phase.

  4. Current balancing for battery strings

    DOEpatents

    Galloway, James H.

    1985-01-01

    A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.

  5. Constraints on cosmic strings due to black holes formed from collapsed cosmic string loops

    NASA Technical Reports Server (NTRS)

    Caldwell, R. R.; Gates, Evalyn

    1993-01-01

    The cosmological features of primordial black holes formed from collapsed cosmic string loops are studied. Observational restrictions on a population of primordial black holes are used to restrict f, the fraction of cosmic string loops which collapse to form black holes, and mu, the cosmic string mass-per-unit length. Using a realistic model of cosmic strings, we find the strongest restriction on the parameters f and mu is due to the energy density in 100MeV photons radiated by the black holes. We also find that inert black hole remnants cannot serve as the dark matter. If earlier, crude estimates of f are reliable, our results severely restrict mu, and therefore limit the viability of the cosmic string large-scale structure scenario.

  6. Stochastic gravitational wave background from light cosmic strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DePies, Matthew R.; Hogan, Craig J.

    2007-06-15

    Spectra of the stochastic gravitational wave backgrounds from cosmic strings are calculated and compared with present and future experimental limits. Motivated by theoretical expectations of light cosmic strings in superstring cosmology, improvements in experimental sensitivity, and recent demonstrations of large, stable loop formation from a primordial network, this study explores a new range of string parameters with masses lighter than previously investigated. A standard 'one-scale' model for string loop formation is assumed. Background spectra are calculated numerically for dimensionless string tensions G{mu}/c{sup 2} between 10{sup -7} and 10{sup -18}, and initial loop sizes as a fraction of the Hubble radiusmore » {alpha} from 0.1 to 10{sup -6}. The spectra show a low frequency power-law tail, a broad spectral peak due to loops decaying at the present epoch (including frequencies higher than their fundamental mode, and radiation associated with cusps), and a flat (constant energy density) spectrum at high frequencies due to radiation from loops that decayed during the radiation-dominated era. The string spectrum is distinctive and unlike any other known source. The peak of the spectrum for light strings appears at high frequencies, significantly affecting predicted signals. The spectra of the cosmic string backgrounds are compared with current millisecond pulsar limits and Laser Interferometer Space Antenna (LISA) sensitivity curves. For models with large stable loops ({alpha}=0.1), current pulsar-timing limits exclude G{mu}/c{sup 2}>10{sup -9}, a much tighter limit on string tension than achievable with other techniques, and within the range of current models based on brane inflation. LISA may detect a background from strings as light as G{mu}/c{sup 2}{approx_equal}10{sup -16}, corresponding to field theory strings formed at roughly 10{sup 11} GeV.« less

  7. CMB ISW-lensing bispectrum from cosmic strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamauchi, Daisuke; Sendouda, Yuuiti; Takahashi, Keitaro, E-mail: yamauchi@resceu.s.u-tokyo.ac.jp, E-mail: sendouda@cc.hirosaki-u.ac.jp, E-mail: keitaro@sci.kumamoto-u.ac.jp

    2014-02-01

    We study the effect of weak lensing by cosmic (super-)strings on the higher-order statistics of the cosmic microwave background (CMB). A cosmic string segment is expected to cause weak lensing as well as an integrated Sachs-Wolfe (ISW) effect, the so-called Gott-Kaiser-Stebbins (GKS) effect, to the CMB temperature fluctuation, which are thus naturally cross-correlated. We point out that, in the presence of such a correlation, yet another kind of the post-recombination CMB temperature bispectra, the ISW-lensing bispectra, will arise in the form of products of the auto- and cross-power spectra. We first present an analytic method to calculate the autocorrelation ofmore » the temperature fluctuations induced by the strings, and the cross-correlation between the temperature fluctuation and the lensing potential both due to the string network. In our formulation, the evolution of the string network is assumed to be characterized by the simple analytic model, the velocity-dependent one scale model, and the intercommutation probability is properly incorporated in order to characterize the possible superstringy nature. Furthermore, the obtained power spectra are dominated by the Poisson-distributed string segments, whose correlations are assumed to satisfy the simple relations. We then estimate the signal-to-noise ratios of the string-induced ISW-lensing bispectra and discuss the detectability of such CMB signals from the cosmic string network. It is found that in the case of the smaller string tension, Gμ << 10{sup -7}, the ISW-lensing bispectrum induced by a cosmic string network can constrain the string-model parameters even more tightly than the purely GKS-induced bispectrum in the ongoing and future CMB observations on small scales.« less

  8. CMB ISW-lensing bispectrum from cosmic strings

    NASA Astrophysics Data System (ADS)

    Yamauchi, Daisuke; Sendouda, Yuuiti; Takahashi, Keitaro

    2014-02-01

    We study the effect of weak lensing by cosmic (super-)strings on the higher-order statistics of the cosmic microwave background (CMB). A cosmic string segment is expected to cause weak lensing as well as an integrated Sachs-Wolfe (ISW) effect, the so-called Gott-Kaiser-Stebbins (GKS) effect, to the CMB temperature fluctuation, which are thus naturally cross-correlated. We point out that, in the presence of such a correlation, yet another kind of the post-recombination CMB temperature bispectra, the ISW-lensing bispectra, will arise in the form of products of the auto- and cross-power spectra. We first present an analytic method to calculate the autocorrelation of the temperature fluctuations induced by the strings, and the cross-correlation between the temperature fluctuation and the lensing potential both due to the string network. In our formulation, the evolution of the string network is assumed to be characterized by the simple analytic model, the velocity-dependent one scale model, and the intercommutation probability is properly incorporated in order to characterize the possible superstringy nature. Furthermore, the obtained power spectra are dominated by the Poisson-distributed string segments, whose correlations are assumed to satisfy the simple relations. We then estimate the signal-to-noise ratios of the string-induced ISW-lensing bispectra and discuss the detectability of such CMB signals from the cosmic string network. It is found that in the case of the smaller string tension, Gμ << 10-7, the ISW-lensing bispectrum induced by a cosmic string network can constrain the string-model parameters even more tightly than the purely GKS-induced bispectrum in the ongoing and future CMB observations on small scales.

  9. Ghost vertices for the bosonic string using the group-theoretic approach to string theory

    NASA Astrophysics Data System (ADS)

    Freeman, M. D.; West, P.

    1988-04-01

    The N-string tree-level scattering vertices for the bosonic string are extended to include anticommuting (ghost) oscillators. These vertices behave correctly under the action of the BRST charge Q and reproduce the known results for the scattering of physical states. This work is an application of the group-theoretic approach to string theory. Permanent address: Mathematics Department, King's College, Strand, London WC2R 2LS, UK.

  10. Cosmic strings and galaxy formation

    NASA Technical Reports Server (NTRS)

    Bertschinger, Edmund

    1989-01-01

    The cosmogonical model proposed by Zel'dovich and Vilenkin (1981), in which superconducting cosmic strings act as seeds for the origin of structure in the universe, is discussed, summarizing the results of recent theoretical investigations. Consideration is given to the formation of cosmic strings, the microscopic structure of strings, gravitational effects, cosmic string evolution, and the formation of galaxies and large-scale structure. Simulation results are presented in graphs, and several outstanding issues are listed and briefly characterized.

  11. String Things.

    ERIC Educational Resources Information Center

    Mesa Public Schools, AZ.

    Designed for music educators instructing grades 4 through 8 in string instruments, this Mesa (Arizona) public schools guide presents information on the string curriculum, orchestras, and practicing. The goals and objectives for string instruments delineate grade levels and how student skills will be verified. Following 17 curriculum goal tests,…

  12. Embellished String Prints. Cover Story.

    ERIC Educational Resources Information Center

    Smith, Mary Ruth

    1999-01-01

    Focuses on a printmaking activity in which students create embellished string prints using the relief process of string glued to chip board. Explains that string prints can easily be embellished with oil pastels. Provides a description of the procedure and a list of materials and methods. (CMK)

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marolf, Donald; Palmer, Belkis Cabrera; Physics Department, Syracuse University, Syracuse, New York 13244

    A thermodynamic argument is presented suggesting that near-extremal spinning D1-D5-P black strings become unstable when their angular momentum exceeds J{sub crit}=3Q{sub 1}Q{sub 5}/2{radical}(2). In contrast, the dimensionally reduced black holes are thermodynamically stable. The proposed instability involves a phase in which the spin angular momentum above J{sub crit} is transferred to gyration of the string in space, i.e., to orbital angular momentum of parts of the string about the mean location in space. Thus the string becomes a rotating helical coil. We note that an instability of this form would yield a counter-example to the Gubser-Mitra conjecture, which proposes amore » particular link between dynamic black string instabilities and the thermodynamics of black strings. There may also be other instabilities associated with radiation modes of various fields. Our arguments also apply to the D-brane bound states associated with these black strings in weakly coupled string theory.« less

  14. Semiclassical (qft) and Quantum (string) Rotating Black Holes and Their Evaporation:. New Results

    NASA Astrophysics Data System (ADS)

    Bouchareb, A.; Ramón Medrano, M.; Sánchez, N. G.

    Combination of both quantum field theory (QFT) and string theory in curved backgrounds in a consistent framework, the string analogue model, allows us to provide a full picture of the Kerr-Newman black hole and its evaporation going beyond the current picture. We compute the quantum emission cross-section of strings by a Kerr-Newman black hole (KNbh). It shows the black hole emission at the Hawking temperature Tsem in the early stage of evaporation and the new string emission featuring a Hagedorn transition into a string state of temperature Ts at the last stages. New bounds on J and Q emerge in the quantum string regime (besides the known ones of the classical/semiclassical QFT regime). The last state of evaporation of a semiclassical Kerr-Newman black hole with mass M > mPl, angular momentum J and charge Q is a string state of temperature Ts, string mass Ms, J = 0 and Q = 0, decaying as usual quantum strings do into all kinds of particles. (Naturally, in this framework, there is no loss of information, (there is no paradox at all).) We compute the string entropy Ss(m, j) from the microscopic string density of states of mass m and spin mode j, ρ(m, j). (Besides the Hagedorn transition at Ts) we find for high j (extremal string states j → m2α‧c), a new phase transition at a temperature Tsj = √ {j/hbar }Ts, higher than Ts. By precisely identifying the semiclassical and quantum (string) gravity regimes, we find a new formula for the Kerr black hole entropy Ssem(M, J), as a function of the usual Bekenstein-Hawking entropy S sem(0). For M ≫ mPl and J < GM2/c, S sem(0) is the leading term, but for high angular momentum, (nearly extremal case J = GM2/c), a gravitational phase transition operates and the whole entropy Ssem is drastically different from the Bekenstein-Hawking entropy S sem(0). This new extremal black hole transition occurs at a temperature Tsem J = (J/ℏ)Tsem, higher than the Hawking temperature Tsem.

  15. Light Z' in heterotic string standardlike models

    NASA Astrophysics Data System (ADS)

    Athanasopoulos, P.; Faraggi, A. E.; Mehta, V. M.

    2014-05-01

    The discovery of the Higgs boson at the LHC supports the hypothesis that the Standard Model provides an effective parametrization of all subatomic experimental data up to the Planck scale. String theory, which provides a viable perturbative approach to quantum gravity, requires for its consistency the existence of additional gauge symmetries beyond the Standard Model. The construction of heterotic string models with a viable light Z' is, however, highly constrained. We outline the construction of standardlike heterotic string models that allow for an additional Abelian gauge symmetry that may remain unbroken down to low scales. We present a string inspired model, consistent with the string constraints.

  16. Scaling properties of cosmic (super)string networks

    NASA Astrophysics Data System (ADS)

    Martins, C. J. A. P.

    2014-10-01

    I use a combination of state-of-the-art numerical simulations and analytic modelling to discuss the scaling properties of cosmic defect networks, including superstrings. Particular attention is given to the role of extra degrees of freedom in the evolution of these networks. Compared to the 'plain vanilla' case of Goto-Nambu strings, three such extensions play important but distinct roles in the network dynamics: the presence of charges/currents on the string worldsheet, the existence of junctions, and the possibility of a hierarchy of string tensions. I also comment on insights gained from studying simpler defect networks, including Goto-Nambu strings themselves, domain walls and semilocal strings.

  17. Evolution of cosmic string networks

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Turok, Neil

    1989-01-01

    A discussion of the evolution and observable consequences of a network of cosmic strings is given. A simple model for the evolution of the string network is presented, and related to the statistical mechanics of string networks. The model predicts the long string density throughout the history of the universe from a single parameter, which researchers calculate in radiation era simulations. The statistical mechanics arguments indicate a particular thermal form for the spectrum of loops chopped off the network. Detailed numerical simulations of string networks in expanding backgrounds are performed to test the model. Consequences for large scale structure, the microwave and gravity wave backgrounds, nucleosynthesis and gravitational lensing are calculated.

  18. Gödel universes in string theory

    NASA Astrophysics Data System (ADS)

    Barrow, John D.; Dabrowski, Mariusz P.

    1998-11-01

    We show that homogeneous Gödel spacetimes need not contain closed timelike curves in low-energy-effective string theories. We find exact solutions for the Gödel metric in string theory for the full O(α') action including both dilaton and axion fields. The results are valid for bosonic, heterotic and super-strings. To first order in the inverse string tension α', these solutions display a simple relation between the angular velocity of the Gödel universe, Ω, and the inverse string tension of the form α'=1/Ω2 in the absence of the axion field. The generalization of this relationship is also found when the axion field is present.

  19. A note on closed-string interactions a la witten

    NASA Astrophysics Data System (ADS)

    Romans, L. J.

    1987-08-01

    We consider the problem of formulating a field theory of interacting closed strings analogous to Witten's open-string field theory. Two natural candidates have been suggested for an off-shell three-string interaction vertex: one scheme involves a cyclic geometric overlap in spacetime, while the other is obtained by ``stuttering'' the Fock-space realization of the open-string vertex. We demonstrate that these two approaches are in fact equivalent, utilizing the operator formalism as developed to describe Witten's theory. Implications of this result for the construction of closed-string theories are briefly discussed. Address after August 1, 1987: Department of Physics, University of Southern California, Los Angeles, CA 90089, USA.

  20. Reconstruction of piano hammer force from string velocity.

    PubMed

    Chaigne, Antoine

    2016-11-01

    A method is presented for reconstructing piano hammer forces through appropriate filtering of the measured string velocity. The filter design is based on the analysis of the pulses generated by the hammer blow and propagating along the string. In the five lowest octaves, the hammer force is reconstructed by considering two waves only: the incoming wave from the hammer and its first reflection at the front end. For the higher notes, four- or eight-wave schemes must be considered. The theory is validated on simulated string velocities by comparing imposed and reconstructed forces. The simulations are based on a nonlinear damped stiff string model previously developed by Chabassier, Chaigne, and Joly [J. Acoust. Soc. Am. 134(1), 648-665 (2013)]. The influence of absorption, dispersion, and amplitude of the string waves on the quality of the reconstruction is discussed. Finally, the method is applied to real piano strings. The measured string velocity is compared to the simulated velocity excited by the reconstructed force, showing a high degree of accuracy. A number of simulations are compared to simulated strings excited by a force derived from measurements of mass and acceleration of the hammer head. One application to an historic piano is also presented.

  1. Improving Upon String Methods for Transition State Discovery.

    PubMed

    Chaffey-Millar, Hugh; Nikodem, Astrid; Matveev, Alexei V; Krüger, Sven; Rösch, Notker

    2012-02-14

    Transition state discovery via application of string methods has been researched on two fronts. The first front involves development of a new string method, named the Searching String method, while the second one aims at estimating transition states from a discretized reaction path. The Searching String method has been benchmarked against a number of previously existing string methods and the Nudged Elastic Band method. The developed methods have led to a reduction in the number of gradient calls required to optimize a transition state, as compared to existing methods. The Searching String method reported here places new beads on a reaction pathway at the midpoint between existing beads, such that the resolution of the path discretization in the region containing the transition state grows exponentially with the number of beads. This approach leads to favorable convergence behavior and generates more accurate estimates of transition states from which convergence to the final transition states occurs more readily. Several techniques for generating improved estimates of transition states from a converged string or nudged elastic band have been developed and benchmarked on 13 chemical test cases. Optimization approaches for string methods, and pitfalls therein, are discussed.

  2. Selective laser melting of titanium alloy enables osseointegration of porous multi-rooted implants in a rabbit model.

    PubMed

    Peng, Wei; Xu, Liangwei; You, Jia; Fang, Lihua; Zhang, Qing

    2016-07-21

    Osseointegration refers to the direct connection between living bone and the surface of a load-bearing artificial implant. Porous implants with well-controlled porosity and pore size can enhance osseointegration. However, until recently implants were produced by machining solid core titanium rods. The aim of this study was to develop a multi-rooted dental implant (MRI) with a connected porous surface structure to facilitate osseointegration. MRIs manufactured by selective laser melting (SLM) and commercial implants with resorbable blasting media (RBM)-treated surfaces were inserted into the hind limbs of New Zealand white rabbits. Osseointegration was evaluated periodically over 12 weeks by micro-computerized tomography (CT) scanning, histological analysis, mechanical push-out tests, and torque tests. Bone volume densities were consistently higher in the MRI group than in the RBM group throughout the study period, ultimately resulting in a peak value of 48.41 % for the MRI group. Histological analysis revealed denser surrounding bone growth in the MRIs; after 4 and 8 weeks, bone tissue had grown into the pore structures and root bifurcation areas, respectively. Biomechanics tests indicated binding of the porous MRIs to the neobone tissues, as push-out forces strengthened from 294.7 to 446.5 N and maximum mean torque forces improved from 81.15 to 289.57 N (MRI), versus 34.79 to 87.8 N in the RBM group. MRIs manufactured by SLM possess a connected porous surface structure that improves the osteogenic characteristics of the implant surface.

  3. Social Impacts Module (SIM) Transition

    DTIC Science & Technology

    2012-09-28

    User String The authorized user’s name to access the PAVE database. Applies only to Microsoft SQL Server; leave blank, otherwise. passwd String The...otherwise. passwd String The password if an authorized user’s name is required; otherwise, leave blank driver String The class name for the driver to

  4. Novel string field theory with also negative energy constituents/objects gives Veneziano amplitude

    NASA Astrophysics Data System (ADS)

    Nielsen, H. B.; Ninomiya, M.

    2018-02-01

    We have proposed a new type of string field theory. The main point of the present article is to cure some technical troubles: missing two out three terms in Veneziano amplitude. Our novel string field theory, describes a theory with many strings in terms of "objects", which are not exactly, but close to Charles Thorn's string bits. The new point is that the objects in terms of which the universe states are constructed, and which have an essentially 26-momentum variable called J μ , can have the energy J 0 be also negative as well as positive. We get a long way in deriving in this model the Veneziano model and obtain all the three terms needed for a four point amplitude. This result strongly indicates that our novel string field theory is indeed string theory.

  5. Axion string dynamics I: 2+1D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleury, Leesa M.; Moore, Guy D.

    2016-05-03

    If the axion exists and if the initial axion field value is uncorrelated at causally disconnected points, then it should be possible to predict the efficiency of cosmological axion production, relating the axionic dark matter density to the axion mass. The main obstacle to making this prediction is correctly treating the axion string cores. We develop a new algorithm for treating the axionic string cores correctly in 2+1 dimensions. When the axionic string cores are given their full physical string tension, axion production is about twice as efficient as in previous simulations. We argue that the string network in 2+1more » dimensions should behave very differently than in 3+1 dimensions, so this result cannot be simply carried over to the physical case. We outline how to extend our method to 3+1D axion string dynamics.« less

  6. A numerical study of the string function using a primitive equation ocean model

    NASA Astrophysics Data System (ADS)

    Tyler, R. H.; Käse, R.

    We use results from a primitive-equation ocean numerical model (SCRUM) to test a theoretical 'string function' formulation put forward by Tyler and Käse in another article in this issue. The string function acts as a stream function for the large-scale potential energy flow under the combined beta and topographic effects. The model results verify that large-scale anomalies propagate along the string function contours with a speed correctly given by the cross-string gradient. For anomalies having a scale similar to the Rossby radius, material rates of change in the layer mass following the string velocity are balanced by material rates of change in relative vorticity following the flow velocity. It is shown that large-amplitude anomalies can be generated when wind stress is resonant with the string function configuration.

  7. Scattering of Cosmic Strings by Black Holes:. Loop Formation

    NASA Astrophysics Data System (ADS)

    Dubath, Florian; Sakellariadou, Mairi; Viallet, Claude Michel

    We study the deformation of a long cosmic string by a nearby rotating black hole. We examine whether the deformation of a cosmic string, induced by the gravitational field of a Kerr black hole, may lead to the formation of a string loop. The segment of the string which enters the ergo-sphere of a rotating black hole gets deformed and, if it is sufficiently twisted, it can self-intersect, chopping off a loop. We find that the formation of a loop, via such a mechanism, is a rare event. It will only arise in a small region of the collision phase space, which depends on the string velocity, the impact parameter and the black hole angular momentum. We conclude that, generically, a long cosmic string is simply scattered, or captured, by a nearby rotating black hole.

  8. Factorization of chiral string amplitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye

    We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to bemore » auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.« less

  9. Factorization of chiral string amplitudes

    DOE PAGES

    Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye

    2016-09-16

    We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to bemore » auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.« less

  10. Pauses enhance chunk recognition in song element strings by zebra finches.

    PubMed

    Spierings, Michelle; de Weger, Anouk; Ten Cate, Carel

    2015-07-01

    When learning a language, it is crucial to know which syllables of a continuous sound string belong together as words. Human infants achieve this by attending to pauses between words or to the co-occurrence of syllables. It is not only humans that can segment a continuous string. Songbirds learning their song tend to copy 'chunks' from one or more tutors' songs and combine these into their own song. In the tutor songs, these chunks are often separated by pauses and a high co-occurrence of elements, suggesting that these features affect chunking and song learning. We examined experimentally whether the presence of pauses and element co-occurrence affect the ability of adult zebra finches to discriminate strings of song elements. Using a go/no-go design, two groups of birds were trained to discriminate between two strings. In one group (Pause-group), pauses were inserted between co-occurring element triplets in the strings, and in the other group (No-pause group), both strings were continuous. After making a correct discrimination, an individual proceeded to a reversal training using string segments. Segments were element triplets consistent in co-occurrence, triplets that were partly consistent in composition and triplets consisting of elements that did not co-occur in the strings. The Pause-group was faster in discriminating between the two strings. This group also responded differently to consistent triplets in the reversal training, compared to inconsistent triplets. The No-pause group did not differentiate among the triplet types. These results indicate that pauses in strings of song elements aid song discrimination and memorization of co-occurring element groups.

  11. From the currency rate quotations onto strings and brane world scenarios

    NASA Astrophysics Data System (ADS)

    Horváth, D.; Pincak, R.

    2012-11-01

    In the paper, we study the projections of the real exchange rate dynamics onto the string-like topology. Our approach is inspired by the contemporary movements in the string theory. The string map of data is defined here by the boundary conditions, characteristic length, real valued and the method of redistribution of information. As a practical matter, this map represents the detrending and data standardization procedure. We introduced maps onto 1-end-point and 2-end-point open strings that satisfy the Dirichlet and Neumann boundary conditions. The questions of the choice of extra-dimensions, symmetries, duality and ways to the partial compactification are discussed. Subsequently, we pass to higher dimensional and more complex objects. The 2D-Brane was suggested which incorporated bid-ask spreads. Polarization by the spread was considered which admitted analyzing arbitrage opportunities on the market where transaction costs are taken into account. The model of the rotating string which naturally yields calculation of angular momentum is suitable for tracking of several currency pairs. The systematic way which allows one suggest more structured maps suitable for a simultaneous study of several currency pairs was analyzed by means of the Gâteaux generalized differential calculus. The effect of the string and brane maps on test data was studied by comparing their mean statistical characteristics. The study revealed notable differences between topologies. We review the dependence on the characteristic string length, mean fluctuations and properties of the intra-string statistics. The study explores the coupling of the string amplitude and volatility. The possible utilizations of the string theory approach in financial markets are slight.

  12. Haptic Distal Spatial Perception Mediated by Strings: Haptic "Looming"

    ERIC Educational Resources Information Center

    Cabe, Patrick A.

    2011-01-01

    Five experiments tested a haptic analog of optical looming, demonstrating string-mediated haptic distal spatial perception. Horizontally collinear hooks supported a weighted string held taut by a blindfolded participant's finger midway between the hooks. At the finger, the angle between string segments increased as the finger approached…

  13. Cryogenic coefficient of thermal expansion measurements of type 440 and 630 stainless steel

    NASA Astrophysics Data System (ADS)

    Cease, H.; Alvarez, M.; Flaugher, B.; Montes, J.

    2014-01-01

    The Dark Energy Camera is now installed on the Blanco 4m telescope at the Cerro Tololo Inter-American Observatory in Chile. The camera is cooled to 170K using a closed loop two-phase liquid nitrogen system. A submerged centrifugal pump is used to circulate the liquid from the base of the telescope to the camera in the prime focus cage. As part of the pump maintenance schedule, the rotor shaft bearings are periodically replaced. Common bearing and shaft materials are type 440 and 630 (17-4 PH) stainless steel. The coefficient of thermal expansion of the materials used is needed to predict the shaft and bearing housing dimensional changes at the 77K pump operating temperature. The thermal expansion from room temperature to 77K of type 440 and 630 stainless steel is presented . Measurements are performed using the ASTM E228 standard with a quartz push-rod dilatometer test stand. Aluminum 6061-T6 is used to calibrate the test stand.

  14. A novel cluster-tube self-adaptive robot hand.

    PubMed

    Fu, Hong; Yang, Haokun; Song, Weishu; Zhang, Wenzeng

    2017-01-01

    This paper proposes a novel cluster-tube self-adaptive robot hand (CTSA Hand). The CTSA Hand consists of a base, a motor, a transmission mechanism, multiple elastic tendons, and a group of sliding-tube assemblies. Each sliding-tube assembly is composed of a sliding tube, a guide rod, two springs and a hinge. When the hand grasping an object, the object pushes some sliding tubes to different positions according to the surface shape of the object, the motor pulls the tendons tight to cluster tubes. The CTSA Hand can realize self-adaptive grasping of objects of different sizes and shapes. The CTSA Hand can grasp multiple objects simultaneously because the grasping of the hand acts as many grippers in different directions and heights. The grasping forces of the hand are adjusted by a closed-loop control system with potentiometer. Experimental results show that the CTSA Hand has the features of highly self-adaption and large grasping forces when grasping various objects.

  15. Understanding nanocellulose chirality and structure–properties relationship at the single fibril level

    PubMed Central

    Usov, Ivan; Nyström, Gustav; Adamcik, Jozef; Handschin, Stephan; Schütz, Christina; Fall, Andreas; Bergström, Lennart; Mezzenga, Raffaele

    2015-01-01

    Nanocellulose fibrils are ubiquitous in nature and nanotechnologies but their mesoscopic structural assembly is not yet fully understood. Here we study the structural features of rod-like cellulose nanoparticles on a single particle level, by applying statistical polymer physics concepts on electron and atomic force microscopy images, and we assess their physical properties via quantitative nanomechanical mapping. We show evidence of right-handed chirality, observed on both bundles and on single fibrils. Statistical analysis of contours from microscopy images shows a non-Gaussian kink angle distribution. This is inconsistent with a structure consisting of alternating amorphous and crystalline domains along the contour and supports process-induced kink formation. The intrinsic mechanical properties of nanocellulose are extracted from nanoindentation and persistence length method for transversal and longitudinal directions, respectively. The structural analysis is pushed to the level of single cellulose polymer chains, and their smallest associated unit with a proposed 2 × 2 chain-packing arrangement. PMID:26108282

  16. Analysis of open loop higher harmonic control at high airspeeds on a modern four-bladed articulated rotor

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi; Leyland, Jane

    1991-01-01

    The effects of open loop higher harmonic control (HHC) on rotor hub loads, performance, and push rod loads of a Sikorsky S-76 helicopter rotor at high airspeeds (up to 200 knots) and moderate lift (10,000 lbs) were studied analytically. The analysis was performed as part of a wind tunnel pre-test prediction and preparation procedure, as well as to provide analytical results for post-test correlation efforts. The test associated with this study is to be concluded in the 40- by 80-Foot Wind Tunnel of the National Full-Scale Aerodynamics Complex (NFAC) at the NASA Ames Research Center. The results from this analytical study show that benefits from HHC can be achieved at high airspeeds. These results clear the way for conducting (with the requirement of safe pushrod loads) an open loop HHC test a high airspeeds in the 40- by 80-Foot Wind Tunnel using an S-76 rotor as the test article.

  17. PUSH-PULL POWER REACTOR

    DOEpatents

    Froman, D.K.

    1959-02-24

    Power generating nuclear reactors of the homogeneous liquid fuel type are discussed. The apparatus utilizes two identical reactors interconnected by conduits through heat exchanging apparatus. Each reactor contains a critical geometry region and a vapor region separated from the critical region by a baffle. When the liquid in the first critical region becomes critical, the vapor pressure above the fuel is increased due to the rise in the temperature until it forces the liquid fuel out of the first critical region through the heat exchanger and into the second critical region, which is at a lower temperature and consequently a lower vapor pressure. The above reaction is repeated in the second critical region and the liquid fuel is forced back into the first critical region. In this manner criticality is achieved alternately in each critical region and power is extracted by the heat exchanger from the liquid fuel passing therethrough. The vapor region and the heat exchanger have a non-critical geometry and reactivity control is effected by conventional control rods in the critical regions.

  18. Thermal expansion of ceramic samples containing natural zeolite

    NASA Astrophysics Data System (ADS)

    Sunitrová, Ivana; Trník, Anton

    2017-07-01

    In this study the thermal expansion of ceramic samples made from natural zeolite is investigated. Samples are prepared from the two most commonly used materials in ceramic industry (kaolin and illite). The first material is Sedlec kaolin from Czech Republic, which contains more than 90 mass% of mineral kaolinite. The second one is an illitic clay from Tokaj area in Hungary, which contains about 80 mass% of mineral illite. Varying amount of the clay (0 % - 50 %) by a natural zeolite from Nižný Hrabovec (Slovak Republic), containing clinoptilolite as major mineral phase is replaced. The measurements are performed on cylindrical samples with a diameter 14 mm and a length about 35 mm by a horizontal push - rod dilatometer. Samples made from pure kaolin, illite and zeolite are also subjected to this analysis. The temperature regime consists from linear heating rate of 5 °C/min from 30 °C to 1100 °C. The results show that the relative shrinkage of ceramic samples increases with amount of zeolite in samples.

  19. Tilted string cosmologies

    NASA Astrophysics Data System (ADS)

    Clancy, Dominic; Feinstein, Alexander; Lidsey, James E.; Tavakol, Reza

    1999-04-01

    Global symmetries of the string effective action are employed to generate tilted, homogeneous Bianchi type VIh string cosmologies from a previously known stiff perfect fluid solution to Einstein gravity. The dilaton field is not constant on the surfaces of homogeneity. The future asymptotic state of the models is interpreted as a plane wave and is itself an exact solution to the string equations of motion to all orders in the inverse string tension. An inhomogeneous generalization of the Bianchi type III model is also found.

  20. Long constructs in the thoracic and lumbar spine with a minimally invasive technique.

    PubMed

    Roldan, H; Perez-Orribo, L; Spreafico, M; Ginoves-Sierra, M

    2011-04-01

    Literature about long implants used together with a minimally invasive spine surgery (MISS) technique is scarce. Our objective is to contribute our surgical experience in this field and to specifically focus on several technical details. A digitally-dissected canal along the paravertebral muscles was created linking the stab wounds on each side in relation with the pedicles to be cannulated. Screws were inserted following the percutaneous technique. Long rods were modelled, threaded through the extender sleeves along the paravertebral canal and pushed into the screw heads with the reduction forceps. When fusion was needed, the facet complex was decorticated with a drill. To insert a cross-link, a canal between the 2 rods was digitally created and the spinous process was drilled. 8 patients underwent surgery (age range: 25-77 years). Indications were postosteomyelitis kyphosis in 3 patients, bone tumor in 3, and spine fracture in 2. No blood transfusions were necessary during or after surgery. A cross-link was inserted in 2 patients. Posterolateral bone fusion was attempted in 4, but radiologically identifiable in none. In one patient a cantilever manoeuvre was done to correct kyphosis. Mean duration of surgery was 4 h. There were no clinical complications related to the operation or the hardware (mean follow-up of 7.14 months, range: 1-15 months). The application of MISS techniques can be broadened to long spinal constructs to assess fractures, tumors or deformity, especially in elderly or debilitated patients. Nevertheless, posterolateral fusion is still a challenge through these limited exposures. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Propagating stress-pulses and wiggling transition revealed in string dynamics

    NASA Astrophysics Data System (ADS)

    Yao, Zhenwei

    2018-02-01

    Understanding string dynamics yields insights into the intricate dynamic behaviors of various filamentary thin structures in nature and industry covering multiple length scales. In this work, we investigate the planar dynamics of a flexible string where one end is free and the other end is subject to transverse and longitudinal motions. Under transverse harmonic motion, we reveal the propagating pulse structure in the stress profile over the string, and analyze its role in bringing the system into a chaotic state. For a string where one end is under longitudinal uniform acceleration, we identify the wiggling transition, derive the analytical wiggling solution from the string equations, and present the phase diagram.

  2. Noncommutative-geometry model for closed bosonic strings

    NASA Technical Reports Server (NTRS)

    Sen, Siddhartha; Holman, R.

    1987-01-01

    It is shown how Witten's (1986) noncommutative geometry may be extended to describe the closed bosonic string. For closed strings, an explicit representation is provided of the integral operator needed to construct an action and of an associative product on string fields. The proper choice of the action of the integral operator and the associative product in order to give rise to a reasonable theory is explained, and the consequences of such a choice are discussed. It is shown that the ghost numbers of the operator and associative product can be chosen arbitrarily for both open and closed strings, and that this construct can be used as an action for interacting closed bosonic strings.

  3. Surface operators from M -strings

    NASA Astrophysics Data System (ADS)

    Mori, Hironori; Sugimoto, Yuji

    2017-01-01

    It has been found that surface operators have a significant role in Alday-Gaiotto-Tachikawa (AGT) relation. This duality is an outstanding consequence of M -theory, but it is actually encoded into the brane web for which the topological string can work. From this viewpoint, the surface defect in AGT relation is geometrically engineered as a toric brane realization. Also, there is a class of the brane configuration in M -theory called M -strings which can be translated into the language of the topological string. In this work, we propose a new M -string configuration which can realize AGT relation in the presence of the surface defect by utilizing the geometric transition in the refined topological string.

  4. Voltage-Matched, Monolithic, Multi-Band-Gap Devices

    DOEpatents

    Wanlass, M. W.; Mascarenhas, A.

    2006-08-22

    Monolithic, tandem, photonic cells include at least a first semiconductor layer and a second semiconductor layer, wherein each semiconductor layer includes an n-type region, a p-type region, and a given band-gap energy. Formed within each semiconductor layer is a string of electrically connected photonic sub-cells. By carefully selecting the numbers of photonic sub-cells in the first and second layer photonic sub-cell string(s), and by carefully selecting the manner in which the sub-cells in a first and second layer photonic sub-cell string(s) are electrically connected, each of the first and second layer sub-cell strings may be made to achieve one or more substantially identical electrical characteristics.

  5. Non-perturbative String Theory from Water Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyer, Ramakrishnan; Johnson, Clifford V.; /Southern California U.

    2012-06-14

    We use a combination of a 't Hooft limit and numerical methods to find non-perturbative solutions of exactly solvable string theories, showing that perturbative solutions in different asymptotic regimes are connected by smooth interpolating functions. Our earlier perturbative work showed that a large class of minimal string theories arise as special limits of a Painleve IV hierarchy of string equations that can be derived by a similarity reduction of the dispersive water wave hierarchy of differential equations. The hierarchy of string equations contains new perturbative solutions, some of which were conjectured to be the type IIA and IIB string theoriesmore » coupled to (4, 4k ? 2) superconformal minimal models of type (A, D). Our present paper shows that these new theories have smooth non-perturbative extensions. We also find evidence for putative new string theories that were not apparent in the perturbative analysis.« less

  6. The Neural Substrates for Letter String Readings in The Normal and Reverse Directions: An fMRI Study

    NASA Astrophysics Data System (ADS)

    Ge, Sheng; Saito, Takashi; Wu, Jing-Long; Ogasawara, Jun-Ichi; Yamauchi, Shuichi; Matsunaga, Naofumi; Iramina, Keiji

    In order to investigate the difference in cortical activations between reading letter strings in the normal direction and the reverse direction, an fMRI study was conducted. In this study, the cortical activations elicited by Japanese letter string reading and Chinese letter string reading were investigated. The subjects performed the normal direction reading task (read letter strings from left to right), and the reverse direction reading task (read letter strings from right to left). According to the experimental results, the activated brain regions during the normal and the reverse direction reading tasks were compared. It was found that visuospatial transformation was involved in the reverse direction reading task, while this function was not significant during the normal direction reading task. Furthermore, we found that there was no significant difference in cortical activation between Japanese and Chinese letter string readings.

  7. Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bersanetti, D.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Canton, T. Dal; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Deleeuw, E.; Deléglise, S.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Iafrate, J.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jaranowski, P.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kremin, A.; Kringel, V.; Królak, A.; Kucharczyk, C.; Kudla, S.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, J.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levine, B.; Lewis, J. B.; Lhuillier, V.; Li, T. G. F.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Liu, F.; Liu, H.; Liu, Y.; Liu, Z.; Lloyd, D.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Mokler, F.; Moraru, D.; Moreno, G.; Morgado, N.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; Ortega Larcher, W.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Peiris, P.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pindor, B.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poole, V.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Roever, C.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Soden, K.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Straniero, N.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vlcek, B.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vrinceanu, D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Wan, Y.; Wang, J.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wibowo, S.; Wiesner, K.; Wilkinson, C.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2014-04-01

    Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension Gμ below 10-8 in some regions of the cosmic string parameter space.

  8. Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors

    NASA Technical Reports Server (NTRS)

    Aasi, J.; Abadie, J.; Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M.R.; Accadia, T.; Adams, C.; Adams, T.; Adhikari, R.X.; hide

    2014-01-01

    Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension (Newton's Constant x mass per unit length) below 10(exp -8) in some regions of the cosmic string parameter space.

  9. Constraints on cosmic strings from the LIGO-Virgo gravitational-wave detectors.

    PubMed

    Aasi, J; Abadie, J; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Accadia, T; Acernese, F; Adams, C; Adams, T; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ajith, P; Allen, B; Allocca, A; Amador Ceron, E; Amariutei, D; Anderson, R A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J; Ast, S; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Austin, L; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barker, D; Barnum, S H; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J; Bauchrowitz, J; Bauer, Th S; Bebronne, M; Behnke, B; Bejger, M; Beker, M G; Bell, A S; Bell, C; Belopolski, I; Bergmann, G; Berliner, J M; Bersanetti, D; Bertolini, A; Bessis, D; Betzwieser, J; Beyersdorf, P T; Bhadbhade, T; Bilenko, I A; Billingsley, G; Birch, J; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Blom, M; Bock, O; Bodiya, T P; Boer, M; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, S; Bosi, L; Bowers, J; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brannen, C A; Brau, J E; Breyer, J; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Calderón Bustillo, J; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castiglia, A; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, D E; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Colombini, M; Constancio, M; Conte, A; Conte, R; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corsi, A; Costa, C A; Coughlin, M W; Coulon, J-P; Countryman, S; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Craig, K; Creighton, J D E; Creighton, T D; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Dal Canton, T; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daudert, B; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; De Rosa, R; Debreczeni, G; Degallaix, J; Del Pozzo, W; Deleeuw, E; Deléglise, S; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R; DeSalvo, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Díaz, M; Dietz, A; Dmitry, K; Donovan, F; Dooley, K L; Doravari, S; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dumas, J-C; Dwyer, S; Eberle, T; Edwards, M; Effler, A; Ehrens, P; Eichholz, J; Eikenberry, S S; Endrőczi, G; Essick, R; Etzel, T; Evans, K; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W; Favata, M; Fazi, D; Fehrmann, H; Feldbaum, D; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R; Flaminio, R; Foley, E; Foley, S; Forsi, E; Fotopoulos, N; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fujimoto, M-K; Fulda, P; Fyffe, M; Gair, J; Gammaitoni, L; Garcia, J; Garufi, F; Gehrels, N; Gemme, G; Genin, E; Gennai, A; Gergely, L; Ghosh, S; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Gil-Casanova, S; Gill, C; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Griffo, C; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gushwa, K E; Gustafson, E K; Gustafson, R; Hall, B; Hall, E; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hartman, M T; Haughian, K; Hayama, K; Heefner, J; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Holtrop, M; Hong, T; Hooper, S; Horrom, T; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Hua, Z; Huang, V; Huerta, E A; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Iafrate, J; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; James, E; Jang, H; Jang, Y J; Jaranowski, P; Jiménez-Forteza, F; Johnson, W W; Jones, D; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kasprzack, M; Kasturi, R; Katsavounidis, E; Katzman, W; Kaufer, H; Kaufman, K; Kawabe, K; Kawamura, S; Kawazoe, F; Kéfélian, F; Keitel, D; Kelley, D B; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, B K; Kim, C; Kim, K; Kim, N; Kim, W; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D; Kremin, A; Kringel, V; Królak, A; Kucharczyk, C; Kudla, S; Kuehn, G; Kumar, A; Kumar, P; Kumar, R; Kurdyumov, R; Kwee, P; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lawrie, C; Lazzarini, A; Le Roux, A; Leaci, P; Lebigot, E O; Lee, C-H; Lee, H K; Lee, H M; Lee, J; Lee, J; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levine, B; Lewis, J B; Lhuillier, V; Li, T G F; Lin, A C; Littenberg, T B; Litvine, V; Liu, F; Liu, H; Liu, Y; Liu, Z; Lloyd, D; Lockerbie, N A; Lockett, V; Lodhia, D; Loew, K; Logue, J; Lombardi, A L; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Luan, J; Lubinski, M J; Lück, H; Lundgren, A P; Macarthur, J; Macdonald, E; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Mageswaran, M; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Manca, G M; Mandel, I; Mandic, V; Mangano, V; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Martinelli, L; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; May, G; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meier, T; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Miao, H; Michel, C; Mikhailov, E E; Milano, L; Miller, J; Minenkov, Y; Mingarelli, C M F; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Mohan, M; Mohapatra, S R P; Mokler, F; Moraru, D; Moreno, G; Morgado, N; Mori, T; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Nanda Kumar, D; Nardecchia, I; Nash, T; Naticchioni, L; Nayak, R; Necula, V; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nishida, E; Nishizawa, A; Nitz, A; Nocera, F; Nolting, D; Normandin, M E; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oppermann, P; O'Reilly, B; Ortega Larcher, W; O'Shaughnessy, R; Osthelder, C; Ott, C D; Ottaway, D J; Ottens, R S; Ou, J; Overmier, H; Owen, B J; Padilla, C; Pai, A; Palomba, C; Pan, Y; Pankow, C; Paoletti, F; Paoletti, R; Papa, M A; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Peiris, P; Penn, S; Perreca, A; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pinard, L; Pindor, B; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Poole, V; Poux, C; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Quetschke, V; Quintero, E; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramet, C; Rapagnani, P; Raymond, V; Re, V; Reed, C M; Reed, T; Regimbau, T; Reid, S; Reitze, D H; Ricci, F; Riesen, R; Riles, K; Robertson, N A; Robinet, F; Rocchi, A; Roddy, S; Rodriguez, C; Rodruck, M; Roever, C; Rolland, L; Rollins, J G; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sanders, J; Sannibale, V; Santiago-Prieto, I; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Schilling, R; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schulz, B; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Seifert, F; Sellers, D; Sengupta, A S; Sentenac, D; Sergeev, A; Shaddock, D; Shah, S; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Sintes, A M; Skelton, G R; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, R J E; Smith-Lefebvre, N D; Soden, K; Son, E J; Sorazu, B; Souradeep, T; Sperandio, L; Staley, A; Steinert, E; Steinlechner, J; Steinlechner, S; Steplewski, S; Stevens, D; Stochino, A; Stone, R; Strain, K A; Straniero, N; Strigin, S; Stroeer, A S; Sturani, R; Stuver, A L; Summerscales, T Z; Susmithan, S; Sutton, P J; Swinkels, B; Szeifert, G; Tacca, M; Talukder, D; Tang, L; Tanner, D B; Tarabrin, S P; Taylor, R; ter Braack, A P M; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tokmakov, K V; Tomlinson, C; Toncelli, A; Tonelli, M; Torre, O; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Ugolini, D; Unnikrishnan, C S; Vahlbruch, H; Vajente, G; Vallisneri, M; van den Brand, J F J; Van Den Broeck, C; van der Putten, S; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Verma, S; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J-Y; Vitale, S; Vlcek, B; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vrinceanu, D; Vyachanin, S P; Wade, A; Wade, L; Wade, M; Waldman, S J; Walker, M; Wallace, L; Wan, Y; Wang, J; Wang, M; Wang, X; Wanner, A; Ward, R L; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wibowo, S; Wiesner, K; Wilkinson, C; Williams, L; Williams, R; Williams, T; Willis, J L; Willke, B; Wimmer, M; Winkelmann, L; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Yablon, J; Yakushin, I; Yamamoto, H; Yancey, C C; Yang, H; Yeaton-Massey, D; Yoshida, S; Yum, H; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J-P; Zhang, F; Zhang, L; Zhao, C; Zhu, H; Zhu, X J; Zotov, N; Zucker, M E; Zweizig, J

    2014-04-04

    Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension Gμ below 10(-8) in some regions of the cosmic string parameter space.

  10. Dualities in String Cosmology

    NASA Astrophysics Data System (ADS)

    Meissner, K. A.

    We describe in this chapter a set of duality symmetries present in the string-inspired theory of gravity coupled to the dilaton. These dualities are the cornerstones of String Cosmology, which provides alternatives to the usual inflation scenario. The crucial role of Prof. Gabriele Veneziano in the discovery and the development of string dualities is described and emphasized.

  11. Effects of overlapping strings in pp collisions

    DOE PAGES

    Bierlich, Christian; Gustafson, Gösta; Lönnblad, Leif; ...

    2015-03-26

    In models for hadron collisions based on string hadronization, the strings are usually treated as independent, allowing no interaction between the confined colour fields. In studies of nucleus collisions it has been suggested that strings close in space can fuse to form "colour ropes." Such ropes are expected to give more strange particles and baryons, which also has been suggested as a signal for plasma formation. Overlapping strings can also be expected in pp collisions, where usually no phase transition is expected. In particular at the high LHC energies the expected density of strings is quite high. To investigate possiblemore » effects of rope formation, we present a model in which strings are allowed to combine into higher multiplets, giving rise to increased production of baryons and strangeness, or recombine into singlet structures and vanish. Also a crude model for strings recombining into junction structures is considered, again giving rise to increased baryon production. The models are implemented in the DIPSY MC event generator, using PYTHIA8 for hadronization, and comparison to pp minimum bias data, reveals improvement in the description of identified particle spectra.« less

  12. Hydraulic drill string breakdown and bleed off unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeringue, F.J. Jr.

    1987-02-17

    An apparatus is described for use within an oil well rig for decoupling a tubing string into pipe segments comprising, in combination: rotary tong means for applying an unthreading torque to a first, upper pipe segment within the tubing string; torque resisting means for securing a second, lower pipe segment within the tubing string against the unthreading torque; containing means, intermediate the rotary tong means and the torque resisting means, enclosing a threaded joint of the tubing string, adapted for containing pressurized gases, liquids, and particulates, released from the threaded joint upon the decoupling; fluid communicating means for allowing fluidmore » communication between the containing means and a receiving point adapted for receiving the pressurized gases, liquids, and particulates; means for moving the rotary tong means, the torque resisting means and the containing means between a closed, engaging position with the tubing string and an open position; and means for horizontally moving the rotary tong means, the torque resisting means and the containing means between a position adjacent the tubing string and a position away from the tubing string.« less

  13. Perceiving the affordance of string tension for power strokes in badminton: expertise allows effective use of all string tensions.

    PubMed

    Zhu, Qin

    2013-01-01

    Affordances mean opportunities for action. These affordances are important for sports performance and relevant to the abilities developed by skilled athletes. In racquet sports such as badminton, different players prefer widely different string tension because it is believed to provide opportunities for effective strokes. The current study examined whether badminton players can perceive the affordance of string tension for power strokes and whether the perception of affordance itself changed as a function of skill level. The results showed that string tension constrained the striking performance of both novice and recreational players, but not of expert players. When perceptual capability was assessed, perceptual mode did not affect perception of the optimal string tension. Skilled players successfully perceived the affordance of string tension, but only experts were concerned about saving energy. Our findings demonstrated that perception of the affordance of string tension in badminton was determined by action abilities. Furthermore, experts could adjust the action to maintain a superior level of performance based on the perception of affordance.

  14. The three-dimensional simulation analysis of dynamic response on perforated strings

    NASA Astrophysics Data System (ADS)

    Li, M. F.; Liu, H. F.; Dou, Y. H.; Cao, L. H.; Liu, Y. X.

    2018-06-01

    It analyzes the dynamic response and stresses of perforating tubular string to detonating impact load in oil-gas well in ANSYS, obtains the response of vibration displacement, velocity and acceleration of perforating tubularstring caused by detonating impact load, finds the influence of the length and wall thickness of perforating tubular string to working stresses. The result shows that:when the detonating impact load exerts the perforating tubular string with compressive and tensile axial force alternatively;the vibration displacement, velocity and acceleration of perfora-ting tubular string change periodically at same cycle;the closer to the perforating gun, the larger the amplitude of vi-bration velocity and acceleration;the closer to the packer the smaller the vibration displacement, the larger the work-ing equivalent stress of perforating tubular string;the longer or the thicker the perforating tubular string, the smaller the working equivalent stress and the higher the strength safety. Therefore, it uses the damping tube between packer and perforating gun as well as thick walled tubing to increase the strength safety of perforating tubular string.

  15. Worldsheet factorization for twistor-strings

    NASA Astrophysics Data System (ADS)

    Adamo, Tim

    2014-04-01

    We study the multiparticle factorization properties of two worldsheet theories which — at tree-level — describe the scattering of massless particles in four dimensions: the Berkovits-Witten twistor-string for = 4 super-Yang-Mills coupled to = 4 conformal supergravity, and the Skinner twistor-string for = 8 supergravity. By considering these string-like theories, we can study factorization at the level of the worldsheet before any Wick contractions or integrals have been performed; this is much simpler than considering the factorization properties of the amplitudes themselves. In Skinner's twistor-string this entails the addition of worldsheet gravity as well as a formalism that represents all external states in a manifestly symmetric way, which we develop explicitly at genus zero. We confirm that the scattering amplitudes of Skinner's theory, as well as the gauge theory amplitudes for the planar sector of the Berkovits-Witten theory, factorize appropriately at genus zero. In the non-planar sector, we find behavior indicative of conformal gravity in the Berkovits-Witten twistor-string. We contrast factorization in twistor-strings with the story in ordinary string theory, and also make some remarks on higher genus factorization and disconnected prescriptions.

  16. The role of visual spatial attention in adult developmental dyslexia.

    PubMed

    Collis, Nathan L; Kohnen, Saskia; Kinoshita, Sachiko

    2013-01-01

    The present study investigated the nature of visual spatial attention deficits in adults with developmental dyslexia, using a partial report task with five-letter, digit, and symbol strings. Participants responded by a manual key press to one of nine alternatives, which included other characters in the string, allowing an assessment of position errors as well as intrusion errors. The results showed that the dyslexic adults performed significantly worse than age-matched controls with letter and digit strings but not with symbol strings. Both groups produced W-shaped serial position functions with letter and digit strings. The dyslexics' deficits with letter string stimuli were limited to position errors, specifically at the string-interior positions 2 and 4. These errors correlated with letter transposition reading errors (e.g., reading slat as "salt"), but not with the Rapid Automatized Naming (RAN) task. Overall, these results suggest that the dyslexic adults have a visual spatial attention deficit; however, the deficit does not reflect a reduced span in visual-spatial attention, but a deficit in processing a string of letters in parallel, probably due to difficulty in the coding of letter position.

  17. Self-similar motion of a Nambu-Goto string

    NASA Astrophysics Data System (ADS)

    Igata, Takahisa; Houri, Tsuyoshi; Harada, Tomohiro

    2016-09-01

    We study the self-similar motion of a string in a self-similar spacetime by introducing the concept of a self-similar string, which is defined as the world sheet to which a homothetic vector field is tangent. It is shown that in Nambu-Goto theory, the equations of motion for a self-similar string reduce to those for a particle. Moreover, under certain conditions such as the hypersurface orthogonality of the homothetic vector field, the equations of motion for a self-similar string simplify to the geodesic equations on a (pseudo)Riemannian space. As a concrete example, we investigate a self-similar Nambu-Goto string in a spatially flat Friedmann-Lemaître-Robertson-Walker expanding universe with self-similarity and obtain solutions of open and closed strings, which have various nontrivial configurations depending on the rate of the cosmic expansion. For instance, we obtain a circular solution that evolves linearly in the cosmic time while keeping its configuration by the balance between the effects of the cosmic expansion and string tension. We also show the instability for linear radial perturbation of the circular solutions.

  18. Wavelet-Bayesian inference of cosmic strings embedded in the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    McEwen, J. D.; Feeney, S. M.; Peiris, H. V.; Wiaux, Y.; Ringeval, C.; Bouchet, F. R.

    2017-12-01

    Cosmic strings are a well-motivated extension to the standard cosmological model and could induce a subdominant component in the anisotropies of the cosmic microwave background (CMB), in addition to the standard inflationary component. The detection of strings, while observationally challenging, would provide a direct probe of physics at very high-energy scales. We develop a framework for cosmic string inference from observations of the CMB made over the celestial sphere, performing a Bayesian analysis in wavelet space where the string-induced CMB component has distinct statistical properties to the standard inflationary component. Our wavelet-Bayesian framework provides a principled approach to compute the posterior distribution of the string tension Gμ and the Bayesian evidence ratio comparing the string model to the standard inflationary model. Furthermore, we present a technique to recover an estimate of any string-induced CMB map embedded in observational data. Using Planck-like simulations, we demonstrate the application of our framework and evaluate its performance. The method is sensitive to Gμ ∼ 5 × 10-7 for Nambu-Goto string simulations that include an integrated Sachs-Wolfe contribution only and do not include any recombination effects, before any parameters of the analysis are optimized. The sensitivity of the method compares favourably with other techniques applied to the same simulations.

  19. A string theory which isn't about strings

    NASA Astrophysics Data System (ADS)

    Lee, Kanghoon; Rey, Soo-Jong; Rosabal, J. A.

    2017-11-01

    Quantization of closed string proceeds with a suitable choice of worldsheet vacuum. A priori, the vacuum may be chosen independently for left-moving and right-moving sectors. We construct ab initio quantized bosonic string theory with left-right asymmetric worldsheet vacuum and explore its consequences and implications. We critically examine the validity of new vacuum and carry out first-quantization using standard operator formalism. Remarkably, the string spectrum consists only of a finite number of degrees of freedom: string gravity (massless spin-two, Kalb-Ramond and dilaton fields) and two massive spin-two Fierz-Pauli fields. The massive spin-two fields have negative norm, opposite mass-squared, and provides a Lee-Wick type extension of string gravity. We compute two physical observables: tree-level scattering amplitudes and one-loop cosmological constant. Scattering amplitude of four dilatons is shown to be a rational function of kinematic invariants, and in D = 26 factorizes into contributions of massless spin-two and a pair of massive spin-two fields. The string one loop partition function is shown to perfectly agree with one loop Feynman diagram of string gravity and two massive spin-two fields. In particular, it does not exhibit modular invariance. We critically compare our construction with recent studies and contrast differences.

  20. Critical non-Abelian vortex in four dimensions and little string theory

    NASA Astrophysics Data System (ADS)

    Shifman, M.; Yung, A.

    2017-08-01

    As was shown recently, non-Abelian vortex strings supported in four-dimensional N =2 supersymmetric QCD with the U(2) gauge group and Nf=4 quark multiplets (flavors) become critical superstrings. In addition to the translational moduli, non-Abelian strings under consideration carry six orientational and size moduli. Together, they form a ten-dimensional target space required for a superstring to be critical. The target space of the string sigma model is a product of the flat four-dimensional space and a Calabi-Yau noncompact threefold, namely, the conifold. We study closed string states which emerge in four dimensions and identify them with hadrons of four-dimensional N =2 QCD. One massless state was found previously; it emerges as a massless hypermultiplet associated with the deformation of the complex structure of the conifold. In this paper, we find a number of massive states. To this end, we exploit the approach used in LST little string theory, namely, the equivalence between the critical string on the conifold and noncritical c =1 string with the Liouville field and a compact scalar at the self-dual radius. The states we find carry "baryonic" charge (its definition differs from standard). We interpret them as "monopole necklaces" formed (at strong coupling) by the closed string with confined monopoles attached.

  1. Patterned-string tasks: relation between fine motor skills and visual-spatial abilities in parrots.

    PubMed

    Krasheninnikova, Anastasia

    2013-01-01

    String-pulling and patterned-string tasks are often used to analyse perceptual and cognitive abilities in animals. In addition, the paradigm can be used to test the interrelation between visual-spatial and motor performance. Two Australian parrot species, the galah (Eolophus roseicapilla) and the cockatiel (Nymphicus hollandicus), forage on the ground, but only the galah uses its feet to manipulate food. I used a set of string pulling and patterned-string tasks to test whether usage of the feet during foraging is a prerequisite for solving the vertical string pulling problem. Indeed, the two species used techniques that clearly differed in the extent of beak-foot coordination but did not differ in terms of their success in solving the string pulling task. However, when the visual-spatial skills of the subjects were tested, the galahs outperformed the cockatiels. This supports the hypothesis that the fine motor skills needed for advanced beak-foot coordination may be interrelated with certain visual-spatial abilities needed for solving patterned-string tasks. This pattern was also found within each of the two species on the individual level: higher motor abilities positively correlated with performance in patterned-string tasks. This is the first evidence of an interrelation between visual-spatial and motor abilities in non-mammalian animals.

  2. Spontaneous knotting of an agitated string.

    PubMed

    Raymer, Dorian M; Smith, Douglas E

    2007-10-16

    It is well known that a jostled string tends to become knotted; yet the factors governing the "spontaneous" formation of various knots are unclear. We performed experiments in which a string was tumbled inside a box and found that complex knots often form within seconds. We used mathematical knot theory to analyze the knots. Above a critical string length, the probability P of knotting at first increased sharply with length but then saturated below 100%. This behavior differs from that of mathematical self-avoiding random walks, where P has been proven to approach 100%. Finite agitation time and jamming of the string due to its stiffness result in lower probability, but P approaches 100% with long, flexible strings. We analyzed the knots by calculating their Jones polynomials via computer analysis of digital photos of the string. Remarkably, almost all were identified as prime knots: 120 different types, having minimum crossing numbers up to 11, were observed in 3,415 trials. All prime knots with up to seven crossings were observed. The relative probability of forming a knot decreased exponentially with minimum crossing number and Möbius energy, mathematical measures of knot complexity. Based on the observation that long, stiff strings tend to form a coiled structure when confined, we propose a simple model to describe the knot formation based on random "braid moves" of the string end. Our model can qualitatively account for the observed distribution of knots and dependence on agitation time and string length.

  3. A method for the automated processing and analysis of images of ULVWF-platelet strings.

    PubMed

    Reeve, Scott R; Abbitt, Katherine B; Cruise, Thomas D; Hose, D Rodney; Lawford, Patricia V

    2013-01-01

    We present a method for identifying and analysing unusually large von Willebrand factor (ULVWF)-platelet strings in noisy low-quality images. The method requires relatively inexpensive, non-specialist equipment and allows multiple users to be employed in the capture of images. Images are subsequently enhanced and analysed, using custom-written software to perform the processing tasks. The formation and properties of ULVWF-platelet strings released in in vitro flow-based assays have recently become a popular research area. Endothelial cells are incorporated into a flow chamber, chemically stimulated to induce ULVWF release and perfused with isolated platelets which are able to bind to the ULVWF to form strings. The numbers and lengths of the strings released are related to characteristics of the flow. ULVWF-platelet strings are routinely identified by eye from video recordings captured during experiments and analysed manually using basic NIH image software to determine the number of strings and their lengths. This is a laborious, time-consuming task and a single experiment, often consisting of data from four to six dishes of endothelial cells, can take 2 or more days to analyse. The method described here allows analysis of the strings to provide data such as the number and length of strings, number of platelets per string and the distance between each platelet to be found. The software reduces analysis time, and more importantly removes user subjectivity, producing highly reproducible results with an error of less than 2% when compared with detailed manual analysis.

  4. Characterization of binary string statistics for syntactic landmine detection

    NASA Astrophysics Data System (ADS)

    Nasif, Ahmed O.; Mark, Brian L.; Hintz, Kenneth J.

    2011-06-01

    Syntactic landmine detection has been proposed to detect and classify non-metallic landmines using ground penetrating radar (GPR). In this approach, the GPR return is processed to extract characteristic binary strings for landmine and clutter discrimination. In our previous work, we discussed the preprocessing methodology by which the amplitude information of the GPR A-scan signal can be effectively converted into binary strings, which identify the impedance discontinuities in the signal. In this work, we study the statistical properties of the binary string space. In particular, we develop a Markov chain model to characterize the observed bit sequence of the binary strings. The state is defined as the number of consecutive zeros between two ones in the binarized A-scans. Since the strings are highly sparse (the number of zeros is much greater than the number of ones), defining the state this way leads to fewer number of states compared to the case where each bit is defined as a state. The number of total states is further reduced by quantizing the number of consecutive zeros. In order to identify the correct order of the Markov model, the mean square difference (MSD) between the transition matrices of mine strings and non-mine strings is calculated up to order four using training data. The results show that order one or two maximizes this MSD. The specification of the transition probabilities of the chain can be used to compute the likelihood of any given string. Such a model can be used to identify characteristic landmine strings during the training phase. These developments on modeling and characterizing the string statistics can potentially be part of a real-time landmine detection algorithm that identifies landmine and clutter in an adaptive fashion.

  5. Drill string enclosure

    DOEpatents

    Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.

    1993-03-02

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  6. Drill string enclosure

    DOEpatents

    Jorgensen, Douglas K.; Kuhns, Douglass J.; Wiersholm, Otto; Miller, Timothy A.

    1993-01-01

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  7. The Illusive Sound of a Bundengan String

    ERIC Educational Resources Information Center

    Parikesit, Gea O. F.; Kusumaningtyas, Indraswari

    2017-01-01

    The acoustics of a vibrating string is frequently used as a simple example of how physics can be applied in the field of art. In this paper we describe a simple experiment and analysis using a clipped string. This experiment can generate scientific curiosity among students because the sound generated by the string seem surprising to our senses.…

  8. Hammered Strings

    NASA Astrophysics Data System (ADS)

    Rossing, Thomas D.

    In the next three chapters we consider the science of hammered string instruments. In this chapter, we present a brief discussion of vibrating strings excited by a hard or soft hammer. Chapter 20 discusses the most important hammered string instrument, the piano - probably the most versatile and popular of all musical instruments. Chapter 21 discusses hammered dulcimers, especially the American folk dulcimer.

  9. Reflecting on the Rationales for String Study in Schools

    ERIC Educational Resources Information Center

    Brenner, Brenda

    2010-01-01

    This essay will address the question of the value of string education by first examining arguments offered on behalf of string education in schools, and noting their somewhat mixed value. Then a set of arguments will be presented that may have greater promise. The focal point will be the establishment of excellence in string teaching and playing.…

  10. Got 'Em on a String: The Skills, Knowledge and Attributes of Group String Teachers in Queensland

    ERIC Educational Resources Information Center

    Ashton, Graham R.; Klopper, Christopher J.

    2018-01-01

    There appear to be considerable differences in the outcomes of group string teaching programs in Queensland. Some teachers appear to be able to generate, manage, and administrate highly efficacious programs; others seem to experience difficulty transferring the knowledge and skills required for students to become successful string players. As a…

  11. Upgrades to the Closed Bomb Facility and Measurement of Propellant Burning Rate

    DTIC Science & Technology

    2010-01-01

    attenuation ratio myScope.WriteString (":CHAN1:RANGe " + CStr (Me.tbVRange.value)) ‘Sets the vertical voltage range myScope.WriteString (":CHAN1...OFFSet " + CStr (Me.tboffset.value)) ‘Sets the voltage offset myScope.WriteString ":CHAN1:PROB:STYP SING" ‘Sets the signal type...myScope.WriteString (":TRIG:EDGE:SOURce CHAN" + CStr (Int(val(GetRegistry(CollType, cCHANNEL))))) ‘Sets the source channel myScope.WriteString

  12. Bell's Inequalities, Superquantum Correlations, and String Theory

    DOE PAGES

    Chang, Lay Nam; Lewis, Zachary; Minic, Djordje; ...

    2011-01-01

    We offermore » an interpretation of superquantum correlations in terms of a “doubly” quantum theory. We argue that string theory, viewed as a quantum theory with two deformation parameters, the string tension α ' , and the string coupling constant g s , is such a superquantum theory that transgresses the usual quantum violations of Bell's inequalities. We also discuss the ℏ → ∞ limit of quantum mechanics in this context. As a superquantum theory, string theory should display distinct experimentally observable supercorrelations of entangled stringy states.« less

  13. The Hubble Web: The Dark Matter Problem and Cosmic Strings

    NASA Astrophysics Data System (ADS)

    Alexander, Stephon

    2009-07-01

    I propose a reinterpretation of cosmic dark matter in which a rigid network of cosmic strings formed at the end of inflation. The cosmic strings fulfill three functions: At recombination they provide an accretion mechanism for virializing baryonic and warm dark matter into disks. These cosmic strings survive as configurations which thread spiral and elliptical galaxies leading to the observed flatness of rotation curves and the Tully-Fisher relation. We find a relationship between the rotational velocity of the galaxy and the string tension and discuss the testability of this model.

  14. Surface controlled blade stabilizer

    DOEpatents

    Russell, Larry R.

    1983-01-01

    Drill string stabilizer apparatus, controllable to expand and retract entirely from the surface by control of drill string pressure, wherein increase of drill string pressure from the surface closes a valve to create a piston means which is moved down by drill string pressure to expand the stabilizer blades, said valve being opened and the piston moving upward upon reduction of drill string pressure to retract the stabilizer blades. Upward and downward movements of the piston and an actuator sleeve therebelow are controlled by a barrel cam acting between the housing and the actuator sleeve.

  15. Null cosmological singularities and free strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan, K.

    2010-03-15

    We continue exploring free strings in the background of null Kasner-like cosmological singularities, following K. Narayan, arXiv:0904.4532. We study the free string Schrodinger wave functional along the lines of K. Narayan, arXiv:0807.1517. We find the wave functional to be nonsingular in the vicinity of singularities whose Kasner exponents satisfy certain relations. We compare this with the description in other variables. We then study certain regulated versions of these singularities where the singular region is replaced by a substringy but nonsingular region and study the string spectra in these backgrounds. The string modes can again be solved for exactly, giving somemore » insight into how string oscillator states get excited near the singularity.« less

  16. CMB temperature trispectrum of cosmic strings

    NASA Astrophysics Data System (ADS)

    Hindmarsh, Mark; Ringeval, Christophe; Suyama, Teruaki

    2010-03-01

    We provide an analytical expression for the trispectrum of the cosmic microwave background (CMB) temperature anisotropies induced by cosmic strings. Our result is derived for the small angular scales under the assumption that the temperature anisotropy is induced by the Gott-Kaiser-Stebbins effect. The trispectrum is predicted to decay with a noninteger power-law exponent ℓ-ρ with 6<ρ<7, depending on the string microstructure, and thus on the string model. For Nambu-Goto strings, this exponent is related to the string mean square velocity and the loop distribution function. We then explore two classes of wave number configuration in Fourier space, the kite and trapezium quadrilaterals. The trispectrum can be of any sign and appears to be strongly enhanced for all squeezed quadrilaterals.

  17. Galileon string measure and other modified measure extended objects

    NASA Astrophysics Data System (ADS)

    Vulfs, T. O.; Guendelman, E. I.

    2017-12-01

    We show that it is possible to formulate string theory as a “Galileon string theory”. The Galileon field χ enters in the definition of the integration measure in the action. Following the methods of the modified measure string theory, we find that the final equations are again those of the sigma-model. Moreover, the string tension appears again as an additional dynamical degree of freedom. At the same time, the theory satisfies all requirements of the Galileon higher derivative theory at the action level while the equations of motion are still of the second-order. A Galileon symmetry is displayed explicitly in the conformal string worldsheet frame. Also, we define the Galileon gauge transformations. Generalizations to branes with other modified measures are discussed.

  18. Large-D gravity and low-D strings.

    PubMed

    Emparan, Roberto; Grumiller, Daniel; Tanabe, Kentaro

    2013-06-21

    We show that in the limit of a large number of dimensions a wide class of nonextremal neutral black holes has a universal near-horizon limit. The limiting geometry is the two-dimensional black hole of string theory with a two-dimensional target space. Its conformal symmetry explains the properties of massless scalars found recently in the large-D limit. For black branes with string charges, the near-horizon geometry is that of the three-dimensional black strings of Horne and Horowitz. The analogies between the α' expansion in string theory and the large-D expansion in gravity suggest a possible effective string description of the large-D limit of black holes. We comment on applications to several subjects, in particular to the problem of critical collapse.

  19. Quantum vacuum interaction between two cosmic strings revisited

    NASA Astrophysics Data System (ADS)

    Muñoz-Castañeda, J. M.; Bordag, M.

    2014-03-01

    We reconsider the quantum vacuum interaction energy between two straight parallel cosmic strings. This problem was discussed several times in an approach treating both strings perturbatively and treating only one perturbatively. Here we point out that a simplifying assumption made by Bordag [Ann. Phys. (Berlin) 47, 93 (1990).] can be justified and show that, despite the global character of the background, the perturbative approach delivers a correct result. We consider the applicability of the scattering methods, developed in the past decade for the Casimir effect, for the cosmic string and find it not applicable. We calculate the scattering T-operator on one string. Finally, we consider the vacuum interaction of two strings when each carries a two-dimensional delta function potential.

  20. Racquet string tension directly affects force experienced at the elbow: implications for the development of lateral epicondylitis in tennis players

    PubMed Central

    Mohandhas, Badri R; Makaram, Navnit; Drew, Tim S; Wang, Weijie; Arnold, Graham P

    2016-01-01

    Background Lateral epicondylitis (LE) occurs in almost half of all tennis players. Racket-string tension is considered to be an important factor influencing the development of LE. No literature yet exists that substantiates how string-tension affects force transmission to the elbow, as implicated in LE development. We establish a quantitative relationship between string-tension and elbow loading, analyzing tennis strokes using rackets with varying string-tensions. Methods Twenty recreational tennis players simulated backhand tennis strokes using three rackets strung at tensions of 200 N, 222 N and 245 N. Accelerometers recorded accelerations at the elbow, wrist and racket handle. Average peak acceleration was determined to correlate string-tension with elbow loading. Results Statistically significant differences (p < 0.05) were observed when average peak acceleration at the elbow at 200 N string-tension (acceleration of 5.58 m/s2) was compared with that at 222 N tension (acceleration of 6.83 m/s2) and 245 N tension (acceleration of 7.45 m/s2). The 200 N racket induced the least acceleration at the elbow. Conclusions Although parameters determining force transmission to the elbow during a tennis stroke are complex, the present study was able to control these parameters, isolating the effect of string-tension. Lower string-tensions transmit less force to the elbow in backhand strokes. Reducing string-tension should be considered favourably with respect to reducing the risk of developing LE. PMID:27583017

  1. Integrated hydraulic booster/tool string technology for unfreezing of stuck downhole strings in horizontal wells

    NASA Astrophysics Data System (ADS)

    Tian, Q. Z.

    2017-12-01

    It is common to use a jarring tool to unfreeze stuck downhole string. However, in a horizontal well, influenced by the friction caused by the deviated section, jarring effect is poor; on the other hand, the forcing point can be located in the horizontal section by a hydraulic booster and the friction can be reduced, but it is time-consuming and easy to break downhole string using a large-tonnage and constant pull force. A hydraulic booster - jar tool string has been developed for unfreezing operation in horizontal wells. The technical solution involves three elements: a two-stage parallel spring cylinder structure for increasing the energy storage capacity of spring accelerators; multiple groups of spring accelerators connected in series to increase the working stroke; a hydraulic booster intensifying jarring force. The integrated unfreezing tool string based on these three elements can effectively overcome the friction caused by a deviated borehole, and thus unfreeze a stuck string with the interaction of the hydraulic booster and the mechanical jar which form an alternatively dynamic load. Experimental results show that the jarring performance parameters of the hydraulic booster-jar unfreezing tool string for the horizontal wells are in accordance with original design requirements. Then field technical parameters were developed based on numerical simulation and experimental data. Field application shows that the hydraulic booster-jar unfreezing tool string is effective to free stuck downhole tools in a horizontal well, and it reduces hook load by 80% and lessens the requirement of workover equipment. This provides a new technology to unfreeze stuck downhole string in a horizontal well.

  2. Effect of changing of the parameters of the cable network of monitoring systems of high-rise buildings on the basis of string converters on their operability

    NASA Astrophysics Data System (ADS)

    Gusev, Nikolay; Svatovskaya, Larisa; Kucherenko, Alexandr

    2018-03-01

    The article is devoted to the problem of improving the reliability of monitoring systems for the technical conditions of high-rise buildings. The improvement is based on string sensors with an impulsed excitation method ensuring the maximum signal-to-noise ratio at their output. The influence of the parameters of the monitoring system on the shape of the excitation impulses of the string, and, consequently, on the amplitude of the string vibration of the string converter is also considered in the article. It has been experimentally proved that the parameters of the excitation impulses of the string converters. The article presents the results of the experiments showing the effect of the fronts duration of the excitation impulses on the amplitude of the oscillations of the strings. The influence of the fronts duration of the excitation impulse with the frontal lengths up to 0.5 ms is studied at the excitation impulse duration not exceeding 0.5 times the duration of natural oscillation periods of the string. The experimental data are compared with the theoretical ones and hypotheses explaining their difference are advanced. The article suggests some methods of reducing the influence of the cable-switching equipment system parameters on the amplitude of string oscillations. The possibilities of improving the reliability of the systems developed on the basis of string sensors with an impulsed excitation method and used for monitoring the technical conditions of the high-rise buildings are proposed.

  3. Whiteheadian Actual Entitities and String Theory

    NASA Astrophysics Data System (ADS)

    Bracken, Joseph A.

    2012-06-01

    In the philosophy of Alfred North Whitehead, the ultimate units of reality are actual entities, momentary self-constituting subjects of experience which are too small to be sensibly perceived. Their combination into "societies" with a "common element of form" produces the organisms and inanimate things of ordinary sense experience. According to the proponents of string theory, tiny vibrating strings are the ultimate constituents of physical reality which in harmonious combination yield perceptible entities at the macroscopic level of physical reality. Given that the number of Whiteheadian actual entities and of individual strings within string theory are beyond reckoning at any given moment, could they be two ways to describe the same non-verifiable foundational reality? For example, if one could establish that the "superject" or objective pattern of self- constitution of an actual entity vibrates at a specific frequency, its affinity with the individual strings of string theory would be striking. Likewise, if one were to claim that the size and complexity of Whiteheadian 'societies" require different space-time parameters for the dynamic interrelationship of constituent actual entities, would that at least partially account for the assumption of 10 or even 26 instead of just 3 dimensions within string theory? The overall conclusion of this article is that, if a suitably revised understanding of Whiteheadian metaphysics were seen as compatible with the philosophical implications of string theory, their combination into a single world view would strengthen the plausibility of both schemes taken separately. Key words: actual entities, subject/superjects, vibrating strings, structured fields of activity, multi-dimensional physical reality.

  4. Detection of low tension cosmic superstrings

    NASA Astrophysics Data System (ADS)

    Chernoff, David F.; Tye, S.-H. Henry

    2018-05-01

    Cosmic superstrings of string theory differ from conventional cosmic strings of field theory. We review how the physical and cosmological properties of the macroscopic string loops influence experimental searches for these relics from the epoch of inflation. The universe's average density of cosmic superstrings can easily exceed that of conventional cosmic strings having the same tension by two or more orders of magnitude. The cosmological behavior of the remnant superstring loops is qualitatively distinct because the string tension is exponentially smaller than the string scale in flux compactifications in string theory. Low tension superstring loops live longer, experience less recoil (rocket effect from the emission of gravitational radiation) and tend to cluster like dark matter in galaxies. Clustering enhances the string loop density with respect to the cosmological average in collapsed structures in the universe. The enhancement at the Sun's position is ~ 105. We develop a model encapsulating the leading order string theory effects, the current understanding of the string network loop production and the influence of cosmological structure formation suitable for forecasting the detection of superstring loops via optical microlensing, gravitational wave bursts and fast radio bursts. We evaluate the detection rate of bursts from cusps and kinks by LIGO- and LISA-like experiments. Clustering dominates rates for G μ < 10‑11.9 (LIGO cusp), G μ<10‑11.2 (LISA cusp), G μ < 10‑10.6 (LISA kink); we forecast experimentally accessible gravitational wave bursts for G μ>10‑14.2 (LIGO cusp), G μ>10‑15 (LISA cusp) and G μ>10‑ 14.1 (LISA kink).

  5. Constraints on cosmic strings using data from the first Advanced LIGO observing run

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steer, D. A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y.-F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2018-05-01

    Cosmic strings are topological defects which can be formed in grand unified theory scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitational waves, thus offering an experimental signature for the existence of cosmic strings. Here we report on the analysis conducted to specifically search for gravitational-wave bursts from cosmic string loops in the data of Advanced LIGO 2015-2016 observing run (O1). No evidence of such signals was found in the data, and as a result we set upper limits on the cosmic string parameters for three recent loop distribution models. In this paper, we initially derive constraints on the string tension G μ and the intercommutation probability, using not only the burst analysis performed on the O1 data set but also results from the previously published LIGO stochastic O1 analysis, pulsar timing arrays, cosmic microwave background and big-bang nucleosynthesis experiments. We show that these data sets are complementary in that they probe gravitational waves produced by cosmic string loops during very different epochs. Finally, we show that the data sets exclude large parts of the parameter space of the three loop distribution models we consider.

  6. Modeling the influence of string collective phenomena on the long range rapidity correlations between the transverse momentum and the multiplicities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andronov, E.; Vechernin, V.

    2016-01-22

    The long-range rapidity correlations between the multiplicities (n-n) and the transverse momentum and the multiplicity (pT-n) of charge particles are analyzed in the framework of the simple string inspired model with two types of sources. The sources of the first type correspond to the initial strings formed in a hadronic collision. The sources of the second type imitate the appearance of the emitters of a new kind resulting from interaction (fusion) of the initial strings. The model enabled to describe effectively the influence of the string fusion effects on the strength both the n-n and the pT-n correlations. It wasmore » found that in the region, where the process of string fusion comes into play, the calculation results predict the non-monotonic behaviour of the n-n and pT-n correlation coefficients with the growth of the mean number of initial strings, i.e. with the increase of the collision centrality. It was shown also that the increase of the event-by-event fluctuation in the number of primary strings leads to the change of the pT-n correlation sign from negative to positive. One can try to search these signatures of string collective phenomena in interactions of various nuclei at different energies varying the class of collision centrality and its width.« less

  7. On Atwood's Machine with a Nonzero Mass String

    NASA Astrophysics Data System (ADS)

    Tarnopolski, Mariusz

    2015-11-01

    Let us consider a classical high school exercise concerning two weights on a pulley and a string, illustrated in Fig. 1(a). A system like this is called an Atwood's machine and was invented by George Atwood in 1784 as a laboratory experiment to verify the mechanical laws of motion with constant acceleration. Nowadays, Atwood's machine is used for didactic purposes to demonstrate uniformly accelerated motion with acceleration arbitrarily smaller than the gravitational acceleration g. The simplest case is with a massless and frictionless pulley and a massless string. With little effort one can include the mass of the pulley in calculations. The mass of a string has been incorporated previously in some considerations and experiments. These include treatments focusing on friction, justifying the assumption of a massless string, incorporating variations in Earth's gravitational field, comparing the calculated value of g based on a simple experiment, taking the mass of the string into account in such a way that the resulting acceleration is constant, or in one exception solely focusing on a heavy string, but with a slightly different approach. Here we wish to provide i) a derivation of the acceleration and position dependence on the weights' masses based purely on basic dynamical reasoning similar to the conventional version of the exercise, and ii) focus on the influence of the string's linear density, or equivalently its mass, on the outcome compared to a massless string case.

  8. A group theoretic method for string loop diagram

    NASA Astrophysics Data System (ADS)

    Neveu, A.; West, P.

    1987-08-01

    The new approach to arbitrary string scattering proposed by the authors is used to compute the planar tadpole operator, including its measure, for the open bosonic string. The Virasoro gauge identities play a crucial role and are found to contain in general anomalous terms for open strings. Permanent address: Mathematics Department, King's College, London WC2R 2LS, UK.

  9. Self-Gravitating Fundamental Strings and Black Holes

    NASA Technical Reports Server (NTRS)

    Damour, T.; Veneziano, G.

    1999-01-01

    The configuration of typically highly excited M much greater than M(sub s) which is approximately equal to alpha(prime) to the 1/2 power string states is considered as the string coupling g is adiabatically increased. The size distribution of very massive single string states is studied and the mass shift, due to a long-range gravitational, dilatonic, and axionic attraction, is estimated.

  10. String junction as a baryonic constituent

    NASA Astrophysics Data System (ADS)

    Kalashnikova, Yu. S.; Nefediev, A. V.

    1996-02-01

    We extend the model for QCD string with quarks to consider the Mercedes Benz string configuration describing the three-quark baryon. Under the assumption of adiabatic separation of quark and string junction motion we formulate and solve the classical equation of motion for the junction. We dare to quantize the motion of the junction, and discuss the impact of these modes on the baryon spectra.

  11. Development and Trial of a Two Year Program of String Instruction. Final Report.

    ERIC Educational Resources Information Center

    Rolland, Paul; And Others

    A series of films focused on movement education and rhythm training in string playing with emphasis on the violin were developed. An introductory film deals with principles of movement in string playing. Fifteen additional titles offer guidance to the student and teacher in the various details of basic string instruction. A summary film presents a…

  12. The Physics of "String Passing through Ice"

    ERIC Educational Resources Information Center

    Mohazzabi, Pirooz

    2011-01-01

    One of the oldest yet interesting experiments related to heat and thermodynamics is placing a string on a block of ice and hanging two masses from the ends of the string. Sometime later, it is discovered that the string has passed through the ice without cutting it in half. A simple explanation of this effect is that the pressure caused by the…

  13. String Stability of a Linear Formation Flight Control System

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.; Ryan, Jack; Hanson, Curtis E.; Parle, James F.

    2002-01-01

    String stability analysis of an autonomous formation flight system was performed using linear and nonlinear simulations. String stability is a measure of how position errors propagate from one vehicle to another in a cascaded system. In the formation flight system considered here, each i(sup th) aircraft uses information from itself and the preceding ((i-1)(sup th)) aircraft to track a commanded relative position. A possible solution for meeting performance requirements with such a system is to allow string instability. This paper explores two results of string instability and outlines analysis techniques for string unstable systems. The three analysis techniques presented here are: linear, nonlinear formation performance, and ride quality. The linear technique was developed from a worst-case scenario and could be applied to the design of a string unstable controller. The nonlinear formation performance and ride quality analysis techniques both use nonlinear formation simulation. Three of the four formation-controller gain-sets analyzed in this paper were limited more by ride quality than by performance. Formations of up to seven aircraft in a cascaded formation could be used in the presence of light gusts with this string unstable system.

  14. Self-force on an electric dipole in the spacetime of a cosmic string

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muniz, C.R., E-mail: celiomuniz@yahoo.com; Bezerra, V.B., E-mail: valdir@ufpb.br

    2014-01-15

    We calculate the electrostatic self-force on an electric dipole in the spacetime generated by a static, thin, infinite and straight cosmic string. The electric dipole is held fixed in different configurations, namely, parallel, perpendicular to the cosmic string and oriented along the azimuthal direction around this topological defect, which is stretched along the z axis. We show that the self-force is equivalent to an interaction of the electric dipole with an effective dipole moment which depends on the linear mass density of the cosmic string and on the configuration. The plots of the self-forces as functions of the parameter whichmore » determines the angular deficit of the cosmic string are shown for those different configurations. -- Highlights: •Review of regularized Green’s function applied to the problem. •Self-force on an electric dipole in the string spacetime for some orientations. •Representation via graphs of the self-forces versus angular parameter of the cosmic string. •Self-force induced by the string seen as an interaction between two dipoles. •Discussion about the superposition principle in this non-trivial background.« less

  15. Chern-Simons improved Hamiltonians for strings in three space dimensions

    NASA Astrophysics Data System (ADS)

    Gordeli, Ivan; Melnikov, Dmitry; Niemi, Antti J.; Sedrakyan, Ara

    2016-07-01

    In the case of a structureless string the extrinsic curvature and torsion determine uniquely its shape in three-dimensional ambient space, by way of solution of the Frenet equation. In many physical scenarios there are in addition symmetries that constrain the functional form of the ensuing energy function. For example, the energy of a structureless string should be independent of the way the string is framed in the Frenet equation. Thus the energy should only involve the curvature and torsion as dynamical variables, in a manner that resembles the Hamiltonian of the Abelian Higgs model. Here we investigate the effect of symmetry principles in the construction of Hamiltonians for structureless strings. We deduce from the concept of frame independence that in addition to extrinsic curvature and torsion, the string can also engage a three-dimensional Abelian bulk gauge field as a dynamical variable. We find that the presence of a bulk gauge field gives rise to a long-range interaction between different strings. Moreover, when this gauge field is subject to Chern-Simons self-interaction, it becomes plausible that interacting strings are subject to fractional statistics in three space dimensions.

  16. Survival of pq -superstrings in field theory simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lizarraga, Joanes; Urrestilla, Jon, E-mail: joanes.lizarraga@ehu.eus, E-mail: jon.urrestilla@ehu.eus

    2016-04-01

    We perform large-scale field theoretical simulations in expanding universe to characterize a network of strings that can form composed bound states. The network consists of two copies of Abelian Higgs strings (which we label p and q , respectively) coupled via a potential term to give pq bound states. The simulations are performed using two different kinds of initial conditions: the first one with a network of p - and q -strings, and the second one with a network of q - and pq -strings. This way, we start from two opposite situations: one with no initial pq -strings, andmore » one with a large initial number of pq -strings. We find that in both cases the system scales, and in both cases the system prefers to have a low fraction of pq -strings. This is somewhat surprising in the case for the second type of conditions, showing that the unzipping mechanism is very efficient. We also find hints that both initial conditions tend to asymptote to a common configuration, though we would need a larger dynamical range to confirm it. The average velocities of the different types of strings in the network have also been explored for the first time.« less

  17. The reproductive output of sea lice Caligus rogercresseyi under controlled conditions.

    PubMed

    Bravo, Sandra

    2010-05-01

    Gravid females of Caligus rogercresseyi were collected from Atlantic salmon (Salmo salar) from a farm located at Chiloe Island (42 degrees 40'S73 degrees 15'W), Chile, to obtain information about the reproductive output of this parasite in vitro. The egg strings removed from the females were incubated under controlled conditions to obtain virgin adult females. One female which had mated only once produced eleven generations of eggs strings in a period of 74 days. The first egg strings of the females obtained in vitro were produced at 389 degree days ( degrees D) after egg incubation, while the next generations of eggs strings were produced with a periodicity between 4 and 6 days dependent on the water temperature. The average length of the egg string was 3.1mm and the mean number of eggs per string was 31. The values recorded in captivity for the egg string length and the number of eggs per string, were lower than the values recorded in gravid females from the field. One female survived for 79 days and males, maintained separately from the females, survived for 60 days. Copyright 2009 Elsevier Inc. All rights reserved.

  18. Searching for cosmic strings in CMB anisotropy maps using wavelets and curvelets

    NASA Astrophysics Data System (ADS)

    Hergt, Lukas; Amara, Adam; Brandenberger, Robert; Kacprzak, Tomasz; Réfrégier, Alexandre

    2017-06-01

    We use wavelet and curvelet transforms to extract signals of cosmic strings from simulated cosmic microwave background (CMB) temperature anisotropy maps, and to study the limits on the cosmic string tension which various ongoing CMB temperature anisotropy experiments will be able to achieve. We construct sky maps with size and angular resolution corresponding to various experiments. These maps contain the signals of a scaling solution of long string segments with a given string tension G μ, the contribution of the dominant Gaussian primordial cosmological fluctuations, and pixel by pixel white noise with an amplitude corresponding to the instrumental noise of the various experiments. In the case that we include white noise, we find that using curvelets we obtain lower bounds on the string tension than with wavelets. For maps with Planck specification, we obtain bounds comparable to what was obtained by the Planck collaboration [1]. Experiments with better angular resolution such as the South Pole Telescope third generation (SPT-3G) survey will be able to yield stronger limits. For maps with a specification of SPT-3G we find that string signals will be visible down to a string tension of G μ = 1.4 × 10-7.

  19. Segmented strings in AdS 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callebaut, Nele; Gubser, Steven S.; Samberg, Andreas

    We study segmented strings in flat space and in AdS 3. In flat space, these well known classical motions describe strings which at any instant of time are piecewise linear. In AdS 3, the worldsheet is composed of faces each of which is a region bounded by null geodesics in an AdS 2 subspace of AdS 3. The time evolution can be described by specifying the null geodesic motion of kinks in the string at which two segments are joined. The outcome of collisions of kinks on the worldsheet can be worked out essentially using considerations of causality. We studymore » several examples of closed segmented strings in AdS 3 and find an unexpected quasi-periodic behavior. Here, we also work out a WKB analysis of quantum states of yo-yo strings in AdS 5 and find a logarithmic term reminiscent of the logarithmic twist of string states on the leading Regge trajectory.« less

  20. Segmented strings in AdS 3

    DOE PAGES

    Callebaut, Nele; Gubser, Steven S.; Samberg, Andreas; ...

    2015-11-17

    We study segmented strings in flat space and in AdS 3. In flat space, these well known classical motions describe strings which at any instant of time are piecewise linear. In AdS 3, the worldsheet is composed of faces each of which is a region bounded by null geodesics in an AdS 2 subspace of AdS 3. The time evolution can be described by specifying the null geodesic motion of kinks in the string at which two segments are joined. The outcome of collisions of kinks on the worldsheet can be worked out essentially using considerations of causality. We studymore » several examples of closed segmented strings in AdS 3 and find an unexpected quasi-periodic behavior. Here, we also work out a WKB analysis of quantum states of yo-yo strings in AdS 5 and find a logarithmic term reminiscent of the logarithmic twist of string states on the leading Regge trajectory.« less

  1. Self-gravitating strings in 2+1 dimensions

    NASA Astrophysics Data System (ADS)

    Ben-Menahem, Shahar

    1993-05-01

    We present a family of classical spacetimes in 2+1 dimensions. Such a spacetime is produced by a Nambu-Goto self-gravitating string. Because of the special properties of three-dimensional gravity, the metric is completely described as a Minkowski space with two identified world sheets. In the flat limit, the standard string is recovered. The formalism is developed for an open string with massive end points, but applies to other boundary conditions as well. We consider another limit, where the string tension vanishes in geometrical units but the end masses produce finite deficit angles. In this limit, our open string reduces to the free-masses solution of Gott, which possesses closed timelike curves when the relative motion of the two masses is sufficiently rapid. It is shown that the induced world sheet Liouville mode obeys (-classically)- a sinh- or cosh-Gordon differential equation, which reduces to the Liouville equation in the flat limit. A quadratic-action formulation of this system is presented. The possibility and significance of quantizing the self-gravitating string is discussed.

  2. Elliptic genus of E-strings

    NASA Astrophysics Data System (ADS)

    Kim, Joonho; Kim, Seok; Lee, Kimyeong; Park, Jaemo; Vafa, Cumrun

    2017-09-01

    We study a family of 2d N=(0, 4) gauge theories which describes at low energy the dynamics of E-strings, the M2-branes suspended between a pair of M5 and M9 branes. The gauge theory is engineered using a duality with type IIA theory, leading to the D2-branes suspended between an NS5-brane and 8 D8-branes on an O8-plane. We compute the elliptic genus of this family of theories, and find agreement with the known results for single and two E-strings. The partition function can in principle be computed for arbitrary number of E-strings, and we compute them explicitly for low numbers. We test our predictions against the partially known results from topological strings, as well as from the instanton calculus of 5d Sp(1) gauge theory. Given the relation to topological strings, our computation provides the all genus partition function of the refined topological strings on the canonical bundle over 1/2K3.

  3. Experimental observation of Bethe strings

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Wu, Jianda; Yang, Wang; Bera, Anup Kumar; Kamenskyi, Dmytro; Islam, A. T. M. Nazmul; Xu, Shenglong; Law, Joseph Matthew; Lake, Bella; Wu, Congjun; Loidl, Alois

    2018-02-01

    Almost a century ago, string states—complex bound states of magnetic excitations—were predicted to exist in one-dimensional quantum magnets. However, despite many theoretical studies, the experimental realization and identification of string states in a condensed-matter system have yet to be achieved. Here we use high-resolution terahertz spectroscopy to resolve string states in the antiferromagnetic Heisenberg-Ising chain SrCo2V2O8 in strong longitudinal magnetic fields. In the field-induced quantum-critical regime, we identify strings and fractional magnetic excitations that are accurately described by the Bethe ansatz. Close to quantum criticality, the string excitations govern the quantum spin dynamics, whereas the fractional excitations, which are dominant at low energies, reflect the antiferromagnetic quantum fluctuations. Today, Bethe’s result is important not only in the field of quantum magnetism but also more broadly, including in the study of cold atoms and in string theory; hence, we anticipate that our work will shed light on the study of complex many-body systems in general.

  4. The acoustics of the bagana

    NASA Astrophysics Data System (ADS)

    Weisser, Stephanie; Demolin, Didier

    2002-11-01

    The bagana is a big Ethiopian lyre with ten strings. The instrument is found in the area of the Amhara, the culturally dominant tribe of Ethiopia. It is an intimate instrument, played only with the voice, for prayer and meditation. It can be tuned in two pentatonic scales, and can be plucked with the fingers, string by string or with a plectrum, all strings together. The box of the bagana is made of wood covered with leather, and the strings are made of gut. They are very thick and between them and the bridge, there are ten buzzers. Therefore, the bagana produces a very deep and buzzing sound. The paper will analyze the acoustical function of several parts of this instrument, e.g., the sound box and its crosslike hole at the back. The influence of the buzzers on the fundamental frequency, the spectrum, the duration, and the intensity of the signal will be closely examined. The role of the five unused strings (the ''rest'' strings) will also be examined.

  5. Mechanical Properties of Nylon Harp Strings

    PubMed Central

    Lynch-Aird, Nicolas; Woodhouse, Jim

    2017-01-01

    Monofilament nylon strings with a range of diameters, commercially marketed as harp strings, have been tested to establish their long-term mechanical properties. Once a string had settled into a desired stress state, the Young’s modulus was measured by a variety of methods that probe different time-scales. The modulus was found to be a strong function of testing frequency and also a strong function of stress. Strings were also subjected to cyclical variations of temperature, allowing various thermal properties to be measured: the coefficient of linear thermal expansion and the thermal sensitivities of tuning, Young’s modulus and density. The results revealed that the particular strings tested are divided into two groups with very different properties: stress-strain behaviour differing by a factor of two and some parametric sensitivities even having the opposite sign. Within each group, correlation studies allowed simple functional fits to be found to the key properties, which have the potential to be used in automated tuning systems for harp strings. PMID:28772858

  6. Hydroball string sensing system

    DOEpatents

    Hurwitz, Michael J.; Ekeroth, Douglas E.; Squarer, David

    1991-01-01

    A hydroball string sensing system for a nuclear reactor that includes stainless tubes positioned to guide hydroball strings into and out of the nuclear reactor core. A sensor such as an ultrasonic transducer transmitter and receiver is positioned outside of the nuclear reactor core and adjacent to the tube. The presence of an object such a bullet member positioned at an end a hydroball string, or any one of the hydroballs interrupts the transmission of ultrasound from the transmitter to the receiver. Alternatively, if the bullet member and hydroballs include a ferritic material, either a Hall effect sensor or other magnetic field sensors such as a magnetic field rate of change sensor can be used to detect the location and position of a hydroball string. Placing two sensors along the tube with a known distance between the sensors enables the velocity of a hydroball string to be determined. This determined velocity can be used to control the flow rate of a fluid within the tube so as to control the velocity of the hydroball string.

  7. Open string with a background B field as the first order mechanics, noncommutativity, and soldering formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deriglazov, A. A.; Neves, C.; Oliveira, W.

    2007-09-15

    To study noncommutativity properties of the open string with constant B field, we construct a mechanical action that reproduces classical dynamics of the string sector under consideration. It allows one to apply the Dirac quantization procedure for constrained systems in a direct and unambiguous way. The mechanical action turns out to be the first order system without taking the strong field limit B{yields}{infinity}. In particular, it is true for the zero mode of the string coordinate, which means that the noncommutativity is an intrinsic property of this mechanical system. We describe the arbitrariness in the relation existing between the mechanicalmore » and the string variables and show that noncommutativity of the string variables on the boundary can be removed. This is in correspondence with the result of Seiberg and Witten on the relation among noncommutative and ordinary Yang-Mills theories. The recently developed soldering formalism helps us to establish a connection between the original open string action and the Polyakov action.« less

  8. Mechanical Properties of Nylon Harp Strings.

    PubMed

    Lynch-Aird, Nicolas; Woodhouse, Jim

    2017-05-04

    Monofilament nylon strings with a range of diameters, commercially marketed as harp strings, have been tested to establish their long-term mechanical properties. Once a string had settled into a desired stress state, the Young's modulus was measured by a variety of methods that probe different time-scales. The modulus was found to be a strong function of testing frequency and also a strong function of stress. Strings were also subjected to cyclical variations of temperature, allowing various thermal properties to be measured: the coefficient of linear thermal expansion and the thermal sensitivities of tuning, Young's modulus and density. The results revealed that the particular strings tested are divided into two groups with very different properties: stress-strain behaviour differing by a factor of two and some parametric sensitivities even having the opposite sign. Within each group, correlation studies allowed simple functional fits to be found to the key properties, which have the potential to be used in automated tuning systems for harp strings.

  9. Further Development of HS Field Theory

    NASA Astrophysics Data System (ADS)

    Abdurrahman, Abdulmajeed; Faridani, Jacqueline; Gassem, Mahmoud

    2006-04-01

    We present a systematic treatment of the HS Field theory of the open bosonic string and discuss its relationship to other full string field theories of the open bosonic string such as Witten's theory and the CVS theory. In the development of the HS field theory we encounter infinite dimensional matrices arising from the change of representation between the two theories, i.e., the HS field theory and the full string field theory. We give a general procedure of how to invert these gigantic matrices. The inversion of these matrices involves the computation of many infinite sums. We give the values of these sums and state their generalizations arising from considering higher order vertices (i.e., more than three strings) in string field theory. Moreover, we give a general procedure, on how to evaluate the generalized sums, that can be extended to many generic sums of similar properties. We also discuss the conformal operator connecting the HS field theory to that of the CVS string field theory.

  10. Plucked String on a Shoestring Budget

    NASA Astrophysics Data System (ADS)

    Gluck, Paul

    2009-01-01

    The physics of the plucked string has been treated in many articles and books.1-4 For our 12th-grade high school physics laboratory, we have built a cheap, simple sonometer apparatus for each pair of students on which they may investigate some interesting phenomena that arise when a string is plucked. Among these are the generation of harmonics (overtones) and the way their number depends on the length of a string and on where one plucks, the relation between the frequencies of the fundamental and those of the harmonics, and the way these are affected by changes in the length and the tension in the string. Such an experiment will help students appreciate the working of stringed musical instruments and, in particular, the contribution of overtones to the richness of sound produced.

  11. A Search for Cosmic String Loops Using GADGET-2 Cosmological N-Body Simulator

    NASA Astrophysics Data System (ADS)

    Braverman, William; Cousins, Bryce; Jia, Hewei

    2018-01-01

    Cosmic string loops are an extremely elusive hypothetical entity that have eluded the grasp of physicists and astronomers since their existence was postulated in the 1970’s. Finding evidence of their existence could be the first empirical evidence of string theory.Simulating their basic motion in a cold dark matter background using GADGET-2 allows us to predict where they may cluster during large scale structure formation (if they cluster at all). Here, we present our progress in placing cosmic strings into GADGET-2 with their basic equations of motion to lay a ground work for more complex simulations to find where these strings cluster. Ultimately, these simulations could lay a groundwork as to where future microlensing and gravitational wave observatories should look for cosmic strings.

  12. CMB temperature trispectrum of cosmic strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hindmarsh, Mark; Ringeval, Christophe; Suyama, Teruaki

    2010-03-15

    We provide an analytical expression for the trispectrum of the cosmic microwave background (CMB) temperature anisotropies induced by cosmic strings. Our result is derived for the small angular scales under the assumption that the temperature anisotropy is induced by the Gott-Kaiser-Stebbins effect. The trispectrum is predicted to decay with a noninteger power-law exponent l{sup -{rho}}with 6<{rho}<7, depending on the string microstructure, and thus on the string model. For Nambu-Goto strings, this exponent is related to the string mean square velocity and the loop distribution function. We then explore two classes of wave number configuration in Fourier space, the kite andmore » trapezium quadrilaterals. The trispectrum can be of any sign and appears to be strongly enhanced for all squeezed quadrilaterals.« less

  13. Semianalytic calculation of cosmic microwave background anisotropies from wiggly and superconducting cosmic strings

    NASA Astrophysics Data System (ADS)

    Rybak, I. Yu.; Avgoustidis, A.; Martins, C. J. A. P.

    2017-11-01

    We study how the presence of world-sheet currents affects the evolution of cosmic string networks, and their impact on predictions for the cosmic microwave background (CMB) anisotropies generated by these networks. We provide a general description of string networks with currents and explicitly investigate in detail two physically motivated examples: wiggly and superconducting cosmic string networks. By using a modified version of the CMBact code, we show quantitatively how the relevant network parameters in both of these cases influence the predicted CMB signal. Our analysis suggests that previous studies have overestimated the amplitude of the anisotropies for wiggly strings. For superconducting strings the amplitude of the anisotropies depends on parameters which presently are not well known—but which can be measured in future high-resolution numerical simulations.

  14. Exploring the spectrum of regularized bosonic string theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambjørn, J., E-mail: ambjorn@nbi.dk; Makeenko, Y., E-mail: makeenko@nbi.dk

    2015-03-15

    We implement a UV regularization of the bosonic string by truncating its mode expansion and keeping the regularized theory “as diffeomorphism invariant as possible.” We compute the regularized determinant of the 2d Laplacian for the closed string winding around a compact dimension, obtaining the effective action in this way. The minimization of the effective action reliably determines the energy of the string ground state for a long string and/or for a large number of space-time dimensions. We discuss the possibility of a scaling limit when the cutoff is taken to infinity.

  15. Evolution of cosmic string networks

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Turok, Neil

    1989-01-01

    Results on cosmic strings are summarized including: (1) the application of non-equilibrium statistical mechanics to cosmic string evolution; (2) a simple one scale model for the long strings which has a great deal of predictive power; (3) results from large scale numerical simulations; and (4) a discussion of the observational consequences of our results. An upper bound on G mu of approximately 10(-7) emerges from the millisecond pulsar gravity wave bound. How numerical uncertainties affect this are discussed. Any changes which weaken the bound would probably also give the long strings the dominant role in producing observational consequences.

  16. Perturbations from cosmic strings in cold dark matter

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Stebbins, Albert

    1992-01-01

    A systematic linear analysis of the perturbations induced by cosmic strings in cold dark matter is presented. The power spectrum is calculated and it is found that the strings produce a great deal of power on small scales. It is shown that the perturbations on interesting scales are the result of many uncorrelated string motions, which indicates a much more Gaussian distribution than was previously supposed.

  17. Mean transverse momenta correlations in hadron-hadron collisions in MC toy model with repulsing strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altsybeev, Igor

    2016-01-22

    In the present work, Monte-Carlo toy model with repulsing quark-gluon strings in hadron-hadron collisions is described. String repulsion creates transverse boosts for the string decay products, giving modifications of observables. As an example, long-range correlations between mean transverse momenta of particles in two observation windows are studied in MC toy simulation of the heavy-ion collisions.

  18. Perturbations from cosmic strings in cold dark matter

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Stebbins, Albert

    1991-01-01

    A systematic linear analysis of the perturbations induced by cosmic strings in cold dark matter is presented. The power spectrum is calculated and it is found that the strings produce a great deal of power on small scales. It is shown that the perturbations on interesting scales are the result of many uncorrelated string motions, which indicates a much more Gaussian distribution than was previously supposed.

  19. Relativistic strings - From soap films to a grand unified theory

    NASA Astrophysics Data System (ADS)

    Nesterenko, V. V.

    1986-11-01

    The concept of relativistic strings is considered in connection with the theory of minimal surfaces (e.g., soap films stretched onto closed wire contours). The role of relativistic strings in hadron physics is discussed. Attention is then given to the creation of a grand unified theory on the basis of the superstring concept. Finally, the role of relativistic strings in cosmology is examined.

  20. D1 string dynamics in curved backgrounds with fluxes

    NASA Astrophysics Data System (ADS)

    Banerjee, Aritra; Biswas, Sagar; Nayak, Rashmi R.

    2016-04-01

    We study various rotating and oscillating D-string configurations in some general backgrounds with fluxes. In particular, we look for solutions to the equations of motion of various rigidly rotating D-strings in AdS3 background with mixed flux, and in the intersecting D-brane geometries. We find out relations among various conserved charges corresponding to the breathing and rotating D-string configurations.

  1. Experimenting with string musical instruments

    NASA Astrophysics Data System (ADS)

    LoPresto, Michael C.

    2012-03-01

    What follows are several investigations involving string musical instruments developed for and used in a Science of Sound & Light course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when used in physics, represent reality that can actually be observed, in this case, the operation of string musical instruments.

  2. A Concept for Continuous Monitoring that Reduces Redundancy in Information Assurance Processes

    DTIC Science & Technology

    2011-09-01

    System.out.println(“Driver loaded”); String url=“jdbc:postgresql://localhost/IAcontrols”; String user = “ postgres ”; String pwd... postgres ”; Connection DB_mobile_conn = DriverManager.getConnection(url,user,pwd); System.out.println(“Database Connect ok...user = “ postgres ”; String pwd = “ postgres ”; Connection DB_mobile_conn = DriverManager.getConnection(url,user,pwd); System.out.println

  3. Energy and Momentum Transport in String Waves

    ERIC Educational Resources Information Center

    Juenker, D. W.

    1976-01-01

    Formulas are derived for the energy, momentum, and angular momentum transmitted by waves of arbitrary shape in an inextensible string by pure transverse waves in a string using Tait's procedure. (Author/CP)

  4. Separation of traveling and standing waves in a finite dispersive string with partial or continuous viscoelastic foundation

    NASA Astrophysics Data System (ADS)

    Cheng, Xiangle; Blanchard, Antoine; Tan, Chin An; Lu, Huancai; Bergman, Lawrence A.; McFarland, D. Michael; Vakakis, Alexander F.

    2017-12-01

    The free and forced vibrations of a linear string with a local spring-damper on a partial elastic foundation, as well as a linear string on a viscoelastic foundation conceptualized as a continuous distribution of springs and dampers, are studied in this paper. Exact, analytical results are obtained for the free and forced response to a harmonic excitation applied at one end of the string. Relations between mode complexity and energy confinement with the dispersion in the string system are examined for the steady-state forced vibration, and numerical methods are applied to simulate the transient evolution of energy propagation. Eigenvalue loci veering and normal mode localization are observed for weakly coupled subsystems, when the foundation stiffness is sufficiently large, for both the spatially symmetric and asymmetric systems. The forced vibration results show that nonproportional damping-induced mode complexity, for which there are co-existing regions of purely traveling waves and standing waves, is attainable for the dispersive string system. However, this wave transition phenomenon depends strongly on the location of the attached discrete spring-damper relative to the foundation and whether the excitation frequency Ω is above or below the cutoff frequency ωc. When Ω<ωc, the wave transition cannot be attained for a string on an elastic foundation, but is possible if the string is on a viscoelastic foundation. Although this study is primarily formulated for a harmonic boundary excitation at one end of the string, generalization of the mode complexity can be deduced for the steady-state forced response of the string-foundation system to synchronous end excitations and is confirmed numerically. This work represents a novel study to understand the wave transitions in a dispersive structural system and lays the groundwork for potentially effective passive vibration control strategies.

  5. Constraining the String Gauge Field by Galaxy Rotation Curves and Perihelion Precession of Planets

    NASA Astrophysics Data System (ADS)

    Cheung, Yeuk-Kwan E.; Xu, Feng

    2013-09-01

    We discuss a cosmological model in which the string gauge field coupled universally to matter gives rise to an extra centripetal force and will have observable signatures on cosmological and astronomical observations. Several tests are performed using data including galaxy rotation curves of 22 spiral galaxies of varied luminosities and sizes and perihelion precessions of planets in the solar system. The rotation curves of the same group of galaxies are independently fit using a dark matter model with the generalized Navarro-Frenk-White (NFW) profile and the string model. A remarkable fit of galaxy rotation curves is achieved using the one-parameter string model as compared to the three-parameter dark matter model with the NFW profile. The average χ2 value of the NFW fit is 9% better than that of the string model at a price of two more free parameters. Furthermore, from the string model, we can give a dynamical explanation for the phenomenological Tully-Fisher relation. We are able to derive a relation between field strength, galaxy size, and luminosity, which can be verified with data from the 22 galaxies. To further test the hypothesis of the universal existence of the string gauge field, we apply our string model to the solar system. Constraint on the magnitude of the string field in the solar system is deduced from the current ranges for any anomalous perihelion precession of planets allowed by the latest observations. The field distribution resembles a dipole field originating from the Sun. The string field strength deduced from the solar system observations is of a similar magnitude as the field strength needed to sustain the rotational speed of the Sun inside the Milky Way. This hypothesis can be tested further by future observations with higher precision.

  6. Acoustic data transmission through a drill string

    DOEpatents

    Drumheller, D.S.

    1988-04-21

    Acoustical signals are transmitted through a drill string by canceling upward moving acoustical noise and by preconditioning the data in recognition of the comb filter impedance characteristics of the drill string. 5 figs.

  7. Computer Center: BASIC String Models of Genetic Information Transfer.

    ERIC Educational Resources Information Center

    Spain, James D., Ed.

    1984-01-01

    Discusses some of the major genetic information processes which may be modeled by computer program string manipulation, focusing on replication and transcription. Also discusses instructional applications of using string models. (JN)

  8. Effects of ordinary and superconducting cosmic strings on primordial nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Hodges, Hardy M.; Turner, Michael S.

    1988-01-01

    A precise calculation is done of the primordial nucleosynthesis constraint on the energy per length of ordinary and superconducting cosmic strings. A general formula is provided for the constraint on the string tension for ordinary strings. Using the current values for the various parameters that describe the evolution of loops, the constraint for ordinary strings is G mu less than 2.2 x 10 to the minus 5 power. Our constraint is weaker than previously quoted limits by a factor of approximately 5. For superconducting loops, with currents generated by primordial magnetic fields, the constraint can be less or more stringent than this limit, depending on the strength of the magnetic field. It is also found in this case that there is a negligible amount of entropy production if the electromagnetic radiation from strings thermalizes with the radiation background.

  9. Evolution and End Point of the Black String Instability: Large D Solution.

    PubMed

    Emparan, Roberto; Suzuki, Ryotaku; Tanabe, Kentaro

    2015-08-28

    We derive a simple set of nonlinear, (1+1)-dimensional partial differential equations that describe the dynamical evolution of black strings and branes to leading order in the expansion in the inverse of the number of dimensions D. These equations are easily solved numerically. Their solution shows that thin enough black strings are unstable to developing inhomogeneities along their length, and at late times they asymptote to stable nonuniform black strings. This proves an earlier conjecture about the end point of the instability of black strings in a large enough number of dimensions. If the initial black string is very thin, the final configuration is highly nonuniform and resembles a periodic array of localized black holes joined by short necks. We also present the equations that describe the nonlinear dynamics of anti-de Sitter black branes at large D.

  10. Effects of cosmic string velocities and the origin of globular clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Ling; Yamanouchi, Shoma; Brandenberger, Robert, E-mail: ling.lin2@mail.mcgill.ca, E-mail: shoma.yamanouchi@mail.mcgill.ca, E-mail: rhb@physics.mcgill.ca

    2015-12-01

    With the hypothesis that cosmic string loops act as seeds for globular clusters in mind, we study the role that velocities of these strings will play in determining the mass distribution of globular clusters. Loops with high enough velocities will not form compact and roughly spherical objects and can hence not be the seeds for globular clusters. We compute the expected number density and mass function of globular clusters as a function of both the string tension and the peak loop velocity, and compare the results with the observational data on the mass distribution of globular clusters in our Milkymore » Way. We determine the critical peak string loop velocity above which the agreement between the string loop model for the origin of globular clusters (neglecting loop velocities) and observational data is lost.« less

  11. Coupling of transverse and longitudinal waves in piano strings.

    PubMed

    Etchenique, Nikki; Collin, Samantha R; Moore, Thomas R

    2015-04-01

    The existence of longitudinal waves in vibrating piano strings has been previously established, as has their importance in producing the characteristic sound of the piano. Modeling of the coupling between the transverse and longitudinal motion of strings indicates that the amplitude of the longitudinal waves are quadratically related to the transverse displacement of the string, however, experimental verification of this relationship is lacking. In the work reported here this relationship is tested by driving the transverse motion of a piano string at only two frequencies, which simplifies the task of unambiguously identifying the constituent signals. The results indicate that the generally accepted relationship between the transverse motion and the longitudinal motion is valid. It is further shown that this dependence on transverse displacement is a good approximation when a string is excited by the impact of the hammer during normal play.

  12. The confining baryonic Y-strings on the lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakry, Ahmed S.; Chen, Xurong; Zhang, Peng-Ming

    2016-01-22

    In a string picture, the nucleon is conjectured as consisting of a Y-shaped gluonic string ended by constituent quarks. In this proceeding, we summarize our results on revealing the signature of the confining Y-bosonic string in the gluonic profile due to a system of three static quarks on the lattice at finite temperature. The analysis of the action density unveils a background of a filled-Δ distribution. However, we found that these Δ-shaped profiles are comprised of three Y-shaped Gaussian-like flux tubes. The length of the revealed Y-string-like distribution is maximum near the deconfinement point and approaches the geometrical minimal nearmore » the end of the QCD plateau. The action density width profile returns good fits to a baryonic string model for the junction fluctuations at large quark source separation.« less

  13. String stabilized ribbon growth a method for seeding same

    DOEpatents

    Sachs, Emanuel M.

    1987-08-25

    This invention is a method of initiating or seeding the growth of a crystalline or polycrystalline ribbon by the String Stabilized Ribbon Growth Method. The method for seeding the crystal growth comprises contacting a melt surface with a seed and two strings used in edge stabilization. The wetted strings attach to the wetted seed as a result of the freezing of the liquid melt. Upon drawing the seed, which is attached to the strings, away from the melt surface a melt liquid meniscus, a seed junction, and a growth interface forms. Further pulling of the attached seed causes a crystal ribbon to grow at the growth interface. The boundaries of the growing ribbon are: at the top the seed junction, at the bottom the freezing boundary of the melt liquid meniscus, and at the edges frozen-in strings.

  14. NanoStringNormCNV: pre-processing of NanoString CNV data.

    PubMed

    Sendorek, Dorota H; Lalonde, Emilie; Yao, Cindy Q; Sabelnykova, Veronica Y; Bristow, Robert G; Boutros, Paul C

    2018-03-15

    The NanoString System is a well-established technology for measuring RNA and DNA abundance. Although it can estimate copy number variation, relatively few tools support analysis of these data. To address this gap, we created NanoStringNormCNV, an R package for pre-processing and copy number variant calling from NanoString data. This package implements algorithms for pre-processing, quality-control, normalization and copy number variation detection. A series of reporting and data visualization methods support exploratory analyses. To demonstrate its utility, we apply it to a new dataset of 96 genes profiled on 41 prostate tumour and 24 matched normal samples. NanoStringNormCNV is implemented in R and is freely available at http://labs.oicr.on.ca/boutros-lab/software/nanostringnormcnv. paul.boutros@oicr.on.ca. Supplementary data are available at Bioinformatics online.

  15. Pointless strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Periwal, V.

    1988-01-01

    The author proves that bosonic string perturbation theory diverges and is not Borel summable. This is an indication of a non-perturbative instability of the bosonic string vacuum. He formulates two-dimensional sigma models in terms of algebras of functions. He extends this formulation to general C* algebras. He illustrates the utility of these algebraic notions by calculating some determinants of interest in the study of string propagation in orbifold backgrounds. He studies the geometry of spaces of field theories and show that the vanishing of the curvature of the natural Gel'fand-Naimark-Segal metric on such spaces is exactly the strong associativity conditionmore » of the operator product expansion.He shows that string scattering amplitudes arise as invariants of renormalization, when he formulates renormalization in terms of rescalings of the metric on the string world-sheet.« less

  16. Black strings, low viscosity fluids, and violation of cosmic censorship.

    PubMed

    Lehner, Luis; Pretorius, Frans

    2010-09-03

    We describe the behavior of 5-dimensional black strings, subject to the Gregory-Laflamme instability. Beyond the linear level, the evolving strings exhibit a rich dynamics, where at intermediate stages the horizon can be described as a sequence of 3-dimensional spherical black holes joined by black string segments. These segments are themselves subject to a Gregory-Laflamme instability, resulting in a self-similar cascade, where ever-smaller satellite black holes form connected by ever-thinner string segments. This behavior is akin to satellite formation in low-viscosity fluid streams subject to the Rayleigh-Plateau instability. The simulation results imply that the string segments will reach zero radius in finite asymptotic time, whence the classical space-time terminates in a naked singularity. Since no fine-tuning is required to excite the instability, this constitutes a generic violation of cosmic censorship.

  17. Abelian Higgs cosmic strings: Small-scale structure and loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hindmarsh, Mark; Stuckey, Stephanie; Bevis, Neil

    2009-06-15

    Classical lattice simulations of the Abelian Higgs model are used to investigate small-scale structure and loop distributions in cosmic string networks. Use of the field theory ensures that the small-scale physics is captured correctly. The results confirm analytic predictions of Polchinski and Rocha 29 for the two-point correlation function of the string tangent vector, with a power law from length scales of order the string core width up to horizon scale. An analysis of the size distribution of string loops gives a very low number density, of order 1 per horizon volume, in contrast with Nambu-Goto simulations. Further, our loopmore » distribution function does not support the detailed analytic predictions for loop production derived by Dubath et al. 30. Better agreement to our data is found with a model based on loop fragmentation 32, coupled with a constant rate of energy loss into massive radiation. Our results show a strong energy-loss mechanism, which allows the string network to scale without gravitational radiation, but which is not due to the production of string width loops. From evidence of small-scale structure we argue a partial explanation for the scale separation problem of how energy in the very low frequency modes of the string network is transformed into the very high frequency modes of gauge and Higgs radiation. We propose a picture of string network evolution, which reconciles the apparent differences between Nambu-Goto and field theory simulations.« less

  18. Anti-gravity: The key to 21st century physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noyes, H.P.

    1993-01-01

    The masses coupling constants and cosmological parameters obtained using our discrete and combinatorial physics based on discrimination between bit-strings indicate that we can achieve the unification of quantum mechanics with relativity which had become the goal of twentieth century physics. To broaden our case we show that limitations on measurement of the position and velocity of an individual massive particle observed in a colliding beam scattering experiment imply real, rational commutation relations between position and velocity. Prior to this limit being pushed down to quantum effects, the lower bound is set by the available technology, but is otherwise scale invariant.more » Replacing force by force per unit mass and force per unit charge allows us to take over the Feynman-Dyson proof of the Maxwell Equations and extend it to weak gravity. The crossing symmetry of the individual scattering processes when one or more particles are replaced by anti-particles predicts both Coulomb attraction (for charged particles) and a Newtonian repulsion between any particle and its anti-particle. Previous quantum results remain intact, and predict the expected relativistic fine structure and spin dependencies. Experimental confirmation of this anti-gravity prediction would inaugurate the physics of the twenty-first century.« less

  19. Anti-gravity: The key to 21st century physics

    NASA Astrophysics Data System (ADS)

    Noyes, H. P.

    1993-01-01

    The masses coupling constants and cosmological parameters obtained using our discrete and combinatorial physics based on discrimination between bit-strings indicate that we can achieve the unification of quantum mechanics with relativity which had become the goal of twentieth century physics. To broaden our case we show that limitations on measurement of the position and velocity of an individual massive particle observed in a colliding beam scattering experiment imply real, rational commutation relations between position and velocity. Prior to this limit being pushed down to quantum effects, the lower bound is set by the available technology, but is otherwise scale invariant. Replacing force by force per unit mass and force per unit charge allows us to take over the Feynman-Dyson proof of the Maxwell Equations and extend it to weak gravity. The crossing symmetry of the individual scattering processes when one or more particles are replaced by anti-particles predicts both Coulomb attraction (for charged particles) and a Newtonian repulsion between any particle and its anti-particle. Previous quantum results remain intact, and predict the expected relativistic fine structure and spin dependencies. Experimental confirmation of this anti-gravity prediction would inaugurate the physics of the twenty-first century.

  20. Fourier Analysis of a Vibrating String through a Low-Cost Experimental Setup and a Smartphone

    ERIC Educational Resources Information Center

    Pereyra, C. J.; Osorio, M.; Laguarda, A.; Gau, D. L.

    2018-01-01

    In this work we present a simple and low-cost setup to illustrate the dependence of the behaviour of a standing wave in a guitar string with the initial conditions. To do so, we impose two kinds of initial conditions; in the first instance, the initial shape of the string is varied. Secondly, different nodes are imposed on the string. This…

  1. System and method for advanced power management

    DOEpatents

    Atcitty, Stanley [Albuquerque, NM; Symons, Philip C [Surprise, AZ; Butler, Paul C [Albuquerque, NM; Corey, Garth P [Albuquerque, NM

    2009-07-28

    A power management system is provided that includes a power supply means comprising a plurality of power supply strings, a testing means operably connected to said plurality of power supply strings for evaluating performance characteristics of said plurality of power supply strings, and a control means for monitoring power requirements and comprising a switching means for controlling switching of said plurality of power supply strings to said testing means.

  2. K-theoretic aspects of string theory dualities

    NASA Astrophysics Data System (ADS)

    Mendez-Diez, Stefan Milo

    String theory is a a physical field theory in which point particles are replaced by 1-manifolds propagating in time, called strings. The 2-manifold representing the time evolution of a string is called the string worldsheet. Strings can be either closed (meaning their worldsheets are closed surfaces) or open (meaning their worldsheets have boundary). A D-brane is a submanifold of the spacetime manifold on which string endpoints are constrained to lie. There are five different string theories that have supersymmetry, and they are all related by various dualities. This dissertation will review how D-branes are classified by K-theory. We will then explore the K-theoretic aspects of a hypothesized duality between the type I theory compactified on a 4-torus and the type IIA theory compactified on a K3 surface, by looking at a certain blow down of the singular limit of K3. This dissertation concludes by classifying D-branes on the type II orientifold Tn/Z2 when the Z2 action is multiplication by -1 and the H-flux is trivial. We find that classifying D-branes on the singular limit of K3, T4/Z2 by equivariant K-theory agrees with the classification of D-branes on a smooth K3 surface by ordinary K-theory.

  3. CMB power spectrum contribution from cosmic strings using field-evolution simulations of the Abelian Higgs model

    NASA Astrophysics Data System (ADS)

    Bevis, Neil; Hindmarsh, Mark; Kunz, Martin; Urrestilla, Jon

    2007-03-01

    We present the first field-theoretic calculations of the contribution made by cosmic strings to the temperature power spectrum of the cosmic microwave background (CMB). Unlike previous work, in which strings were modeled as idealized one-dimensional objects, we evolve the simplest example of an underlying field theory containing local U(1) strings, the Abelian Higgs model. Limitations imposed by finite computational volumes are overcome using the scaling property of string networks and a further extrapolation related to the lessening of the string width in comoving coordinates. The strings and their decay products, which are automatically included in the field theory approach, source metric perturbations via their energy-momentum tensor, the unequal-time correlation functions of which are used as input into the CMB calculation phase. These calculations involve the use of a modified version of CMBEASY, with results provided over the full range of relevant scales. We find that the string tension μ required to normalize to the WMAP 3-year data at multipole ℓ=10 is Gμ=[2.04±0.06(stat.)±0.12(sys.)]×10-6, where we have quoted statistical and systematic errors separately, and G is Newton’s constant. This is a factor 2 3 higher than values in current circulation.

  4. String model for the dynamics of glass-forming liquids

    PubMed Central

    Pazmiño Betancourt, Beatriz A.; Douglas, Jack F.; Starr, Francis W.

    2014-01-01

    We test the applicability of a living polymerization theory to describe cooperative string-like particle rearrangement clusters (strings) observed in simulations of a coarse-grained polymer melt. The theory quantitatively describes the interrelation between the average string length L, configurational entropy Sconf, and the order parameter for string assembly Φ without free parameters. Combining this theory with the Adam-Gibbs model allows us to predict the relaxation time τ in a lower temperature T range than accessible by current simulations. In particular, the combined theories suggest a return to Arrhenius behavior near Tg and a low T residual entropy, thus avoiding a Kauzmann “entropy crisis.” PMID:24880303

  5. Spin chains and string theory.

    PubMed

    Kruczenski, Martin

    2004-10-15

    Recently, an important test of the anti de Sitter/conformal field theory correspondence has been done using rotating strings with two angular momenta. We show that such a test can be described more generally as the agreement between two actions: one a low energy description of a spin chain appearing in the field theory side, and the other a limit of the string action in AdS5xS5. This gives a map between the mean value of the spin in the boundary theory and the position of the string in the bulk, and shows how a string action can emerge from a gauge theory in the large-N limit.

  6. String model for the dynamics of glass-forming liquids.

    PubMed

    Pazmiño Betancourt, Beatriz A; Douglas, Jack F; Starr, Francis W

    2014-05-28

    We test the applicability of a living polymerization theory to describe cooperative string-like particle rearrangement clusters (strings) observed in simulations of a coarse-grained polymer melt. The theory quantitatively describes the interrelation between the average string length L, configurational entropy Sconf, and the order parameter for string assembly Φ without free parameters. Combining this theory with the Adam-Gibbs model allows us to predict the relaxation time τ in a lower temperature T range than accessible by current simulations. In particular, the combined theories suggest a return to Arrhenius behavior near Tg and a low T residual entropy, thus avoiding a Kauzmann "entropy crisis."

  7. Cosmic strings

    NASA Technical Reports Server (NTRS)

    Bennett, David P.

    1988-01-01

    Cosmic strings are linear topological defects which are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characterisitc microwave background anisotropy. It was recently discovered that details of cosmic string evolution are very differnt from the so-called standard model that was assumed in most of the string-induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain.

  8. The production of phantom partials due to nonlinearities in the structural components of the piano.

    PubMed

    Rokni, Eric; Neldner, Lauren M; Adkison, Camille; Moore, Thomas R

    2017-10-01

    Phantom partials are anomalous overtones in the spectrum of the piano sound that occur at sum and difference frequencies of the natural overtones of the string. Although they are commonly assumed to be produced by forced longitudinal waves in the string, analysis of the sound of a piano produced by mechanically vibrating the soundboard while all the strings are damped indicates that phantom partials can occur in the absence of string motion. The magnitude of the effect leads to the conclusion that nonlinearity in the non-string components may be responsible for some of the power in the phantom partials.

  9. Analytical Solutions to Backreaction on Cosmic Strings

    NASA Astrophysics Data System (ADS)

    Wachter, Jeremy M.

    2017-08-01

    We present analytical studies of gravitational and electromagnetic backreaction on cosmic strings. For oscillating loops of cosmic string, we present a general argument for how kinks must change; additionally, we apply this general argument to the geometrically simple case of the Garfinkle-Vachaspati loop. Our results suggest that the formation of cusps on loops is delayed, and so we should expect fewer cuspy signatures to be seen in gravitational wave observations. Electromagnetic backreaction we show to reduce currents on a string at least as rapidly as necessary to avoid a paradox, and currents induced on a superconducting straight string will be asymptotically reduced to zero.

  10. Tuning the light emission of novel donor-acceptor phenoxazine dye-based materials towards the red spectral range

    NASA Astrophysics Data System (ADS)

    Damaceanu, Mariana-Dana; Constantin, Catalin-Paul

    2018-04-01

    A novel red fluorescent push-pull system able to generate an intramolecular charge-transfer (ICT) complex was synthesized. The novel dye (R-POX) combines some structural features which are rarely encountered in the design of other push-pull systems: hexyl-substituted phenoxazine as donor moiety, divinylketone as π-linker, and p-fluorobenzene as electron acceptor group. The relationship between the structural motif, photo-physical and electrochemical properties by UV-Vis absorption, photoluminescence and cyclic voltammetry was thoroughly investigated both as red dopant in poly(methylmethacrylate) (PMMA) or polyimide (PI) matrix, and non-doped host emitter. The molecular rigid cores of the synthesized dye formed supramolecular rod-like structures in condensed phase with a strong impact on the emissive centers. The aggregation was totally suppressed when the dye was used as dopant in an amorphous polymeric matrix, such as PMMA or PI. Electrochemical measurements revealed the dye ability for both hole and electron injection and transport. The fluorescence emission was found to be highly sensitive to solvent polarity, rendering blue-green, yellow, orange and red light emission in different organic solvents. The absolute fluorescence quantum yield reached 39.57% in solution, and dropped to 1.2% in solid state and to 14.01% when the dye was used as dopant in PMMA matrix. According to the available CIE 1931 standard, R-POX emitted pure and saturated red light of single wavelength with chromaticity coordinates very close to those of National Television System Committee (NTSC) standard red colour. The R-POX photo-optical features were compared to those of the commercial red emitter 6, 13-diphenylpentacene.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bierlich, Christian; Gustafson, Gösta; Lönnblad, Leif

    In models for hadron collisions based on string hadronization, the strings are usually treated as independent, allowing no interaction between the confined colour fields. In studies of nucleus collisions it has been suggested that strings close in space can fuse to form "colour ropes." Such ropes are expected to give more strange particles and baryons, which also has been suggested as a signal for plasma formation. Overlapping strings can also be expected in pp collisions, where usually no phase transition is expected. In particular at the high LHC energies the expected density of strings is quite high. To investigate possiblemore » effects of rope formation, we present a model in which strings are allowed to combine into higher multiplets, giving rise to increased production of baryons and strangeness, or recombine into singlet structures and vanish. Also a crude model for strings recombining into junction structures is considered, again giving rise to increased baryon production. The models are implemented in the DIPSY MC event generator, using PYTHIA8 for hadronization, and comparison to pp minimum bias data, reveals improvement in the description of identified particle spectra.« less

  12. Compression of strings with approximate repeats.

    PubMed

    Allison, L; Edgoose, T; Dix, T I

    1998-01-01

    We describe a model for strings of characters that is loosely based on the Lempel Ziv model with the addition that a repeated substring can be an approximate match to the original substring; this is close to the situation of DNA, for example. Typically there are many explanations for a given string under the model, some optimal and many suboptimal. Rather than commit to one optimal explanation, we sum the probabilities over all explanations under the model because this gives the probability of the data under the model. The model has a small number of parameters and these can be estimated from the given string by an expectation-maximization (EM) algorithm. Each iteration of the EM algorithm takes O(n2) time and a few iterations are typically sufficient. O(n2) complexity is impractical for strings of more than a few tens of thousands of characters and a faster approximation algorithm is also given. The model is further extended to include approximate reverse complementary repeats when analyzing DNA strings. Tests include the recovery of parameter estimates from known sources and applications to real DNA strings.

  13. Don't Panic! Closed String Tachyons in ALE Spacetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverstein, Eva M

    2001-08-20

    We consider closed string tachyons localized at the fixed points of noncompact nonsupersymmetric orbifolds. We argue that tachyon condensation drives these orbifolds to flat space or supersymmetric ALE spaces. The decay proceeds via an expanding shell of dilaton gradients and curvature which interpolates between two regions of distinct angular geometry. The string coupling remains weak throughout. For small tachyon VEVs, evidence comes from quiver theories on D-branes probes, in which deformations by twisted couplings smoothly connect non-supersymmetric orbifolds to supersymmetric orbifolds of reduced order. For large tachyon VEVs, evidence comes from worldsheet RG flow and spacetime gravity. For C{sup 2}/Z{submore » n}, we exhibit infinite sequences of transitions producing SUSY ALE spaces via twisted closed string condensation from non-supersymmetric ALE spaces. In a T-dual description this provides a mechanism for creating NS5-branes via closed string tachyon condensation similar to the creation of D-branes via open string tachyon condensation. We also apply our results to recent duality conjectures involving fluxbranes and the type 0 string.« less

  14. Level crossing analysis of cosmic microwave background radiation: a method for detecting cosmic strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Movahed, M. Sadegh; Khosravi, Shahram, E-mail: m.s.movahed@ipm.ir, E-mail: khosravi@ipm.ir

    2011-03-01

    In this paper we study the footprint of cosmic string as the topological defects in the very early universe on the cosmic microwave background radiation. We develop the method of level crossing analysis in the context of the well-known Kaiser-Stebbins phenomenon for exploring the signature of cosmic strings. We simulate a Gaussian map by using the best fit parameter given by WMAP-7 and then superimpose cosmic strings effects on it as an incoherent and active fluctuations. In order to investigate the capability of our method to detect the cosmic strings for the various values of tension, Gμ, a simulated puremore » Gaussian map is compared with that of including cosmic strings. Based on the level crossing analysis, the superimposed cosmic string with Gμ∼>4 × 10{sup −9} in the simulated map without instrumental noise and the resolution R = 1' could be detected. In the presence of anticipated instrumental noise the lower bound increases just up to Gμ∼>5.8 × 10{sup −9}.« less

  15. The illusive sound of a Bundengan string

    NASA Astrophysics Data System (ADS)

    Parikesit, Gea O. F.; Kusumaningtyas, Indraswari

    2017-09-01

    The acoustics of a vibrating string is frequently used as a simple example of how physics can be applied in the field of art. In this paper we describe a simple experiment and analysis using a clipped string. This experiment can generate scientific curiosity among students because the sound generated by the string seem surprising to our senses. The first surprise comes from the gong-like sounds produced by the string, which we usually associate with metallic instruments rather than string instruments. The second surprise comes from the fact that when we shift the clip we perceive an increase of pitch, even though the measured value of the frequency with the maximum amplitude is actually decreased. We use high-speed video recording as well as audio spectral analysis to elucidate the physics behind these two surprises. A set of student activities is prepared to help them follow up their curiosity. Students can make their own clipped string, which is found in Indonesia in an instrument called Bundengan, by setting up their own prepared piano as invented by John Cage.

  16. String theory, gauge theory and quantum gravity. Proceedings. Trieste Spring School and Workshop on String Theory, Gauge Theory and Quantum Gravity, Trieste (Italy), 11 - 22 Apr 1994.

    NASA Astrophysics Data System (ADS)

    1995-04-01

    The following topics were dealt with: string theory, gauge theory, quantum gravity, quantum geometry, black hole physics and information loss, second quantisation of the Wilson loop, 2D Yang-Mills theory, topological field theories, equivariant cohomology, superstring theory and fermion masses, supergravity, topological gravity, waves in string cosmology, superstring theories, 4D space-time.

  17. Specifications for Managed Strings, Second Edition

    DTIC Science & Technology

    2010-05-01

    const char * cstr , const size_t maxsize, const char *charset); 10 | CMU/SEI-2010-TR-018 Runtime-Constraints s shall not be a null pointer...strcreate_m function creates a managed string, referenced by s, given a conventional string cstr (which may be null or empty). maxsize specifies the...characters to those in the null-terminated byte string cstr (which may be empty). If charset is a null pointer, no restricted character set is defined. If

  18. Patterns of the cosmic microwave background from evolving string networks

    NASA Technical Reports Server (NTRS)

    Bouchet, Francois R.; Bennett, David P.; Stebbins, Albert

    1988-01-01

    A network of cosmic strings generated in the early universe may still exist today. As the strings move across the sky, they produce, by gravitational lensing, a characteristic pattern of anisotropies in the temperature of the cosmic microwave background. The observed absence of such anisotropies places constraints on theories in which galaxy formation is seeded by strings, but it is anticipated that the next generation of experiments will detect them.

  19. Free field theory as a string theory?

    NASA Astrophysics Data System (ADS)

    Gopakumar, Rajesh

    2004-11-01

    An approach to systematically implement open-closed string duality for free large N gauge theories is summarised. We show how the relevant closed string moduli space emerges from a reorganisation of the Feynman diagrams contributing to free field correlators. We also indicate why the resulting integrand on moduli space has the right features to be that of a string theory on AdS. To cite this article: R. Gopakumar, C. R. Physique 5 (2004).

  20. Holography and noncommutative yang-mills theory

    PubMed

    Li; Wu

    2000-03-06

    In this Letter a recently proposed gravity dual of noncommutative Yang-Mills theory is derived from the relations between closed string moduli and open string moduli recently suggested by Seiberg and Witten. The only new input one needs is a simple form of the running string tension as a function of energy. This derivation provides convincing evidence that string theory integrates with the holographical principle and demonstrates a direct link between noncommutative Yang-Mills theory and holography.

  1. String Fragmentation Model in Space Radiation Problems

    NASA Technical Reports Server (NTRS)

    Tang, Alfred; Johnson, Eloise (Editor); Norbury, John W.; Tripathi, R. K.

    2002-01-01

    String fragmentation models such as the Lund Model fit experimental particle production cross sections very well in the high-energy limit. This paper gives an introduction of the massless relativistic string in the Lund Model and shows how it can be modified with a simple assumption to produce formulas for meson production cross sections for space radiation research. The results of the string model are compared with inclusive pion production data from proton-proton collision experiments.

  2. Effect of the cosmological constant on the deflection angle by a rotating cosmic string

    NASA Astrophysics Data System (ADS)

    Jusufi, Kimet; Övgün, Ali

    2018-03-01

    We report the effect of the cosmological constant and the internal energy density of a cosmic string on the deflection angle of light in the spacetime of a rotating cosmic string with internal structure. We first revisit the deflection angle by a rotating cosmic string and then provide a generalization using the geodesic equations and the Gauss-Bonnet theorem. We show there is an agreement between the two methods when employing higher-order terms of the linear mass density of the cosmic string. By modifying the integration domain for the global conical topology, we resolve the inconsistency between these two methods previously reported in the literature. We show that the deflection angle is not affected by the rotation of the cosmic string; however, the cosmological constant Λ strongly affects the deflection angle, which generalizes the well-known result.

  3. Vibration of a string against multiple spring-mass-damper stoppers

    NASA Astrophysics Data System (ADS)

    Shin, Ji-Hwan; Talib, Ezdiani; Kwak, Moon K.

    2018-02-01

    When a building sways due to strong wind or an earthquake, the elevator rope can undergo resonance, resulting in collision with the hoist-way wall. In this study, a hard stopper and a soft stopper comprised of a spring-mass-damper system installed along the hoist-way wall were considered to prevent the string from undergoing excessive vibrations. The collision of the string with multiple hard stoppers and multiple spring-mass-damper stoppers was investigated using an analytical method. The result revealed new formulas and computational algorithms that are suitable for simulating the vibration of the string against multiple stoppers. The numerical results show that the spring-mass-damper stopper is more effective in suppressing the vibrations of the string and reducing structural failure. The proposed algorithms were shown to be efficient to simulate the motion of the string against a vibration stopper.

  4. String theory of the Regge intercept.

    PubMed

    Hellerman, S; Swanson, I

    2015-03-20

    Using the Polchinski-Strominger effective string theory in the covariant gauge, we compute the mass of a rotating string in D dimensions with large angular momenta J, in one or two planes, in fixed ratio, up to and including first subleading order in the large J expansion. This constitutes a first-principles calculation of the value for the order-J(0) contribution to the mass squared of a meson on the leading Regge trajectory in planar QCD with bosonic quarks. For open strings with Neumann boundary conditions, and for closed strings in D≥5, the order-J(0) term in the mass squared is exactly calculated by the semiclassical approximation. This term in the expansion is universal and independent of the details of the theory, assuming only D-dimensional Poincaré invariance and the absence of other infinite-range excitations on the string world volume, beyond the Nambu-Goldstone bosons.

  5. Note on tachyon actions in string theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Headrick, Matthew

    2009-02-15

    A number of spacetime fields in string theory (notably the metric, dilaton, bosonic and type 0 bulk closed-string tachyon, and bosonic open-string tachyon) have the following property: whenever the spacetime field configuration factorizes in an appropriate sense, the matter sector of the world-sheet theory factorizes into a tensor product of two decoupled theories. Since the beta functions for such a product theory necessarily also factorize, this property strongly constrains the form of the spacetime action encoding those beta functions. We show that this constraint alone--without needing actually to compute any of the beta functions--is sufficient to fix the form ofmore » the two-derivative action for the metric-dilaton system, as well as the potential for the bosonic open-string tachyon. We also show that no action consistent with this constraint exists for the closed-string tachyon coupled to the metric and dilaton.« less

  6. Superconducting Strings in High Density QCD

    NASA Astrophysics Data System (ADS)

    Buckley, Kirk B. W.

    2003-02-01

    Recently it has been argued that the ground state of high density QCD is likely to be a combination of the CFL-phase along with condensation of the K0 field. This state spontaneously breaks a global U(1)Y symmetry, therefore one would expect the formation of U(1)Y global strings. We discuss the core structure of these strings and demonstrate that under some conditions the global U(1)Y symmetry may not be restored inside the string. Instead, K+ condensation occurs inside the core of the string if a relevant parameter \\cos θ {K0 } ≡ {{m{K0 }2 } {/ {{m{K0 }2 } {μ eff2 }}} ; . } {μ eff2 }} is larger than some critical value θ ≥ θcrit. If this phenomenon happens, the U(1)Y strings become superconducting and may considerably influence the magnetic properties of dense quark matter, in particular in neutron stars.

  7. Prior familiarity with components enhances unconscious learning of relations.

    PubMed

    Scott, Ryan B; Dienes, Zoltan

    2010-03-01

    The influence of prior familiarity with components on the implicit learning of relations was examined using artificial grammar learning. Prior to training on grammar strings, participants were familiarized with either the novel symbols used to construct the strings or with irrelevant geometric shapes. Participants familiarized with the relevant symbols showed greater accuracy when judging the correctness of new grammar strings. Familiarity with elemental components did not increase conscious awareness of the basis for discriminations (structural knowledge) but increased accuracy even in its absence. The subjective familiarity of test strings predicted grammaticality judgments. However, prior exposure to relevant symbols did not increase overall test string familiarity or reliance on familiarity when making grammaticality judgments. Familiarity with the symbols increased the learning of relations between them (bigrams and trigrams) thus resulting in greater familiarity for grammatical versus ungrammatical strings. The results have important implications for models of implicit learning.

  8. Stiff self-interacting strings at high temperature QCD

    NASA Astrophysics Data System (ADS)

    S Bakry, A.; Chen, X.; Deliyergiyev, M.; Galal, A.; Khalaf, A.; M Pengming, P.

    2018-03-01

    We investigate the implications of Nambu-Goto (NG), Lüscher Weisz (LW) and Polyakov-Kleinert (PK) effective string actions for the Casimir energy and the width of the quantum delocalization of the string in 4-dim pure SU(3) Yang-Mills lattice gauge theory. At a temperature closer to the critical point T/Tc=0.9, we found that the next to leading-order (NLO) contributions from the expansion of the NG string in addition to the boundary terms in LW action to decrease the deviations from the lattice data in the intermediate distance scales for both the quark-antiquark QQ̅ potential and broadening of the color tube compared to the free string approximation. We conjecture possible stiffness of the QCD string through studying the effects of extrinsic curvature term in PK action and find a good fitting behavior for the lattice Monte-Carlo data at both long and intermediate quark separations regions.

  9. High redshift signatures in the 21 cm forest due to cosmic string wakes

    NASA Astrophysics Data System (ADS)

    Tashiro, Hiroyuki; Sekiguchi, Toyokazu; Silk, Joseph

    2014-01-01

    Cosmic strings induce minihalo formation in the early universe. The resultant minihalos cluster in string wakes and create a ``21 cm forest'' against the cosmic microwave background (CMB) spectrum. Such a 21 cm forest can contribute to angular fluctuations of redshifted 21 cm signals integrated along the line of sight. We calculate the root-mean-square amplitude of the 21 cm fluctuations due to strings and show that these fluctuations can dominate signals from minihalos due to primordial density fluctuations at high redshift (zgtrsim10), even if the string tension is below the current upper bound, Gμ < 1.5 × 10-7. Our results also predict that the Square Kilometre Array (SKA) can potentially detect the 21 cm fluctuations due to strings with Gμ ≈ 7.5 × 10-8 for the single frequency band case and 4.0 × 10-8 for the multi-frequency band case.

  10. Termination Proofs for String Rewriting Systems via Inverse Match-Bounds

    NASA Technical Reports Server (NTRS)

    Butler, Ricky (Technical Monitor); Geser, Alfons; Hofbauer, Dieter; Waldmann, Johannes

    2004-01-01

    Annotating a letter by a number, one can record information about its history during a reduction. A string rewriting system is called match-bounded if there is a global upper bound to these numbers. In earlier papers we established match-boundedness as a strong sufficient criterion for both termination and preservation of regular languages. We show now that the string rewriting system whose inverse (left and right hand sides exchanged) is match-bounded, also have exceptional properties, but slightly different ones. Inverse match-bounded systems effectively preserve context-free languages; their sets of normalized strings and their sets of immortal strings are effectively regular. These sets of strings can be used to decide the normalization, the termination and the uniform termination problems of inverse match-bounded systems. We also show that the termination problem is decidable in linear time, and that a certain strong reachability problem is deciable, thus solving two open problems of McNaughton's.

  11. The effect of gas and fluid flows on nonlinear lateral vibrations of rotating drill strings

    NASA Astrophysics Data System (ADS)

    Khajiyeva, Lelya; Kudaibergenov, Askar; Kudaibergenov, Askat

    2018-06-01

    In this work we develop nonlinear mathematical models describing coupled lateral vibrations of a rotating drill string under the effect of external supersonic gas and internal fluid flows. An axial compressive load and a torque also affect the drill string. The mathematical models are derived by the use of Novozhilov's nonlinear theory of elasticity with implementation of Hamilton's variation principle. Expressions for the gas flow pressure are determined according to the piston theory. The fluid flow is considered as added mass inside the curved tube of the drill string. Using an algorithm developed in the Mathematica computation program on the basis of the Galerkin approach and the stiffness switching method the numerical solution of the obtained approximate differential equations is found. Influences of the external loads, drill string angular speed of rotation, parameters of the gas and fluid flows on the drill string vibrations are shown.

  12. Classical probes of string/gauge theory duality

    NASA Astrophysics Data System (ADS)

    Ishizeki, Riei

    The AdS/CFT correspondence has played an important role in the recent development of string theory. The reason is that it proposes a description of certain gauge theories in terms of string theory. It is such that simple string theory computations give information about the strong coupling regime of the gauge theory. Vice versa, gauge theory computations give information about string theory and quantum gravity. Although much is known about AdS/CFT, the precise map between the two sides of the correspondence is not completely understood. In the unraveling of such map classical string solutions play a vital role. In this thesis, several classical string solutions are proposed to help understand the AdS/CFT duality. First, rigidly rotating strings on a two-sphere are studied. Taking special limits of such solutions leads to two cases: the already known giant magnon solution, and a new solution which we call the single spike solution. Next, we compute the scattering phase shift of the single spike solutions and compare the result with the giant magnon solutions. Intriguingly, the results are the same up to non-logarithmic terms, indicating that the single spike solution should have the same rich spin chain structure as the giant magnon solution. Afterward, we consider open string solutions ending on the boundary of AdS5. The lines traced by the ends of such open strings can be viewed as Wilson loops in N = 4 SYM theory. After applying an inversion transformation, the open Wilson loops become closed Wilson loops whose expectation value is consistent with previously conjectured results. Next, several Wilson loops for N = 4 SYM in an AdS5 pp-wave background are considered and translated to the pure AdS 5 background and their interpretation as forward quark-gluon scattering is suggested. In the last part of this thesis, a class of classical solutions for closed strings moving in AdS3 x S 1 ⊂ AdS5 x S5 with energy E and spin S in AdS3 and angular momentum J and winding m in S1 is explained. The relation between different limits of the spiky string solution with the Landau-Lifshitz model is of particular interest. The presented solutions provide new classes of string motion that are used to better understand the AdS/CFT correspondence, including the single spike solution and previously unknown examples of supersymmetric Wilson loops.

  13. Walking tree heuristics for biological string alignment, gene location, and phylogenies

    NASA Astrophysics Data System (ADS)

    Cull, P.; Holloway, J. L.; Cavener, J. D.

    1999-03-01

    Basic biological information is stored in strings of nucleic acids (DNA, RNA) or amino acids (proteins). Teasing out the meaning of these strings is a central problem of modern biology. Matching and aligning strings brings out their shared characteristics. Although string matching is well-understood in the edit-distance model, biological strings with transpositions and inversions violate this model's assumptions. We propose a family of heuristics called walking trees to align biologically reasonable strings. Both edit-distance and walking tree methods can locate specific genes within a large string when the genes' sequences are given. When we attempt to match whole strings, the walking tree matches most genes, while the edit-distance method fails. We also give examples in which the walking tree matches substrings even if they have been moved or inverted. The edit-distance method was not designed to handle these problems. We include an example in which the walking tree "discovered" a gene. Calculating scores for whole genome matches gives a method for approximating evolutionary distance. We show two evolutionary trees for the picornaviruses which were computed by the walking tree heuristic. Both of these trees show great similarity to previously constructed trees. The point of this demonstration is that WHOLE genomes can be matched and distances calculated. The first tree was created on a Sequent parallel computer and demonstrates that the walking tree heuristic can be efficiently parallelized. The second tree was created using a network of work stations and demonstrates that there is suffient parallelism in the phylogenetic tree calculation that the sequential walking tree can be used effectively on a network.

  14. Voltage-matched, monolithic, multi-band-gap devices

    DOEpatents

    Wanlass, Mark W.; Mascarenhas, Angelo

    2006-08-22

    Monolithic, tandem, photonic cells include at least a first semiconductor layer and a second semiconductor layer, wherein each semiconductor layer includes an n-type region, a p-type region, and a given band-gap energy. Formed within each semiconductor layer is a sting of electrically connected photonic sub-cells. By carefully selecting the numbers of photonic sub-cells in the first and second layer photonic sub-cell string(s), and by carefully selecting the manner in which the sub-cells in a first and second layer photonic sub-cell string(s) are electrically connected, each of the first and second layer sub-cell strings may be made to achieve one or more substantially identical electrical characteristics.

  15. Subsurface drill string

    DOEpatents

    Casper, William L [Rigby, ID; Clark, Don T [Idaho Falls, ID; Grover, Blair K [Idaho Falls, ID; Mathewson, Rodney O [Idaho Falls, ID; Seymour, Craig A [Idaho Falls, ID

    2008-10-07

    A drill string comprises a first drill string member having a male end; and a second drill string member having a female end configured to be joined to the male end of the first drill string member, the male end having a threaded portion including generally square threads, the male end having a non-threaded extension portion coaxial with the threaded portion, and the male end further having a bearing surface, the female end having a female threaded portion having corresponding female threads, the female end having a non-threaded extension portion coaxial with the female threaded portion, and the female end having a bearing surface. Installation methods, including methods of installing instrumented probes are also provided.

  16. Principal Killing strings in higher-dimensional Kerr-NUT-(A)dS spacetimes

    NASA Astrophysics Data System (ADS)

    Boos, Jens; Frolov, Valeri P.

    2018-04-01

    We construct special solutions of the Nambu-Goto equations for stationary strings in a general Kerr-NUT-(A)dS spacetime in any number of dimensions. This construction is based on the existence of explicit and hidden symmetries generated by the principal tensor which exists for these metrics. The characteristic property of these string configurations, which we call "principal Killing strings," is that they are stretched out from "infinity" to the horizon of the Kerr-NUT-(A)dS black hole and remain regular at the latter. We also demonstrate that principal Killing strings extract angular momentum from higher-dimensional rotating black holes and interpret this as the action of an asymptotic torque.

  17. Connecting the ambitwistor and the sectorized heterotic strings

    NASA Astrophysics Data System (ADS)

    Azevedo, Thales; Jusinskas, Renann Lipinski

    2017-10-01

    The sectorized description of the (chiral) heterotic string using pure spinors has been misleadingly viewed as an infinite tension string. One evidence for this fact comes from the tree level 3-point graviton amplitude, which we show to contain the usual Einstein term plus a higher curvature contribution. After reintroducing a dimensionful parameter ℓ in the theory, we demonstrate that the heterotic model is in fact two-fold, depending on the choice of the supersymmetric sector, and that the spectrum also contains one massive (open string like) multiplet. By taking the limit ℓ → ∞, we finally show that the ambitwistor string is recovered, reproducing the unexpected heterotic state in Mason and Skinner's RNS description.

  18. Book Review

    NASA Astrophysics Data System (ADS)

    Rickles, Dean

    Although ostensibly a festschrift for Gabriele Veneziano, this book also marks an important step in the historical study of string theory, featuring several excellent chapters on the earliest period of string theory, as it emerged from the study of strong interaction physics and dual resonance models. Veneziano is often crowned 'the father of string theory' since it was he who discovered the amplitude that led to the dual resonance models that then led to string theory in something like the form we know it today (though not immediately into a quantum theory of gravity). However, as the historical articles in this book make plain, Veneziano was but a small (albeit vital) component in the creation of string theory.

  19. String limit of the isotropic Heisenberg chain in the four-particle sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, A. G., E-mail: aga2@csa.ru; Komarov, I. V., E-mail: ivkoma@rambler.r

    2008-05-15

    The quantum method of variable separation is applied to the spectral problem of the isotropic Heisenberg model. The Baxter difference equation is resolved by means of a special quasiclassical asymptotic expansion. States are identified by multiplicities of limiting values of the Bethe parameters. The string limit of the four-particle sector is investigated. String solutions are singled out and classified. It is shown that only a minor fraction of solutions demonstrate string behavior.

  20. Perturbations from strings don't look like strings!

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Stebbins, Albert

    1991-01-01

    A systematic analysis is challenging popular ideas about perturbation from cosmic strings. One way in which the picture has changed is reviewed. It is concluded that, while the scaling properties of cosmic strings figure significantly in the analysis, care must be taken when thinking in terms of single time snapshots. The process of seeding density perturbations is not fundamentally localized in time, and this fact can wash out many of the details which appear in a single snapshot.

  1. Cosmic Strings Stabilized by Quantum Fluctuations

    NASA Astrophysics Data System (ADS)

    Weigel, H.

    2017-03-01

    Fermion quantum corrections to the energy of cosmic strings are computed. A number of rather technical tools are needed to formulate this correction, and isospin and gauge invariance are employed to verify consistency of these tools. These corrections must also be included when computing the energy of strings that are charged by populating fermion bound states in its background. It is found that charged strings are dynamically stabilized in theories similar to the standard model of particle physics.

  2. Classical theory of radiating strings

    NASA Technical Reports Server (NTRS)

    Copeland, Edmund J.; Haws, D.; Hindmarsh, M.

    1990-01-01

    The divergent part of the self force of a radiating string coupled to gravity, an antisymmetric tensor and a dilaton in four dimensions are calculated to first order in classical perturbation theory. While this divergence can be absorbed into a renormalization of the string tension, demanding that both it and the divergence in the energy momentum tensor vanish forces the string to have the couplings of compactified N = 1 D = 10 supergravity. In effect, supersymmetry cures the classical infinities.

  3. Brane decay and an initial spacelike singularity.

    PubMed

    Kawai, Shinsuke; Keski-Vakkuri, Esko; Leigh, Robert G; Nowling, Sean

    2006-01-27

    We present a novel string theory scenario where matter in a spacetime originates from a decaying brane at the origin of time. The decay could be considered as a big-bang-like event at X0=0. The closed string interpretation is a time-dependent spacetime with a semi-infinite time direction, with the initial energy of the brane converted into energy flux from the origin. The open string interpretation can be viewed as a string theoretic nonsingular initial condition.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helinski, Ryan

    This Python package provides high-performance implementations of the functions and examples presented in "BiEntropy - The Approximate Entropy of a Finite Binary String" by Grenville J. Croll, presented at ANPA 34 in 2013. https://arxiv.org/abs/1305.0954 According to the paper, BiEntropy is "a simple algorithm which computes the approximate entropy of a finite binary string of arbitrary length" using "a weighted average of the Shannon Entropies of the string and all but the last binary derivative of the string."

  5. Stationary black holes with stringy hair

    NASA Astrophysics Data System (ADS)

    Boos, Jens; Frolov, Valeri P.

    2018-01-01

    We discuss properties of black holes which are pierced by special configurations of cosmic strings. For static black holes, we consider radial strings in the limit when the number of strings grows to infinity while the tension of each single string tends to zero. In a properly taken limit, the stress-energy tensor of the string distribution is finite. We call such matter stringy matter. We present a solution of the Einstein equations for an electrically charged static black hole with the stringy matter, with and without a cosmological constant. This solution is a warped product of two metrics. One of them is a deformed 2-sphere, whose Gaussian curvature is determined by the energy density of the stringy matter. We discuss the embedding of a corresponding distorted sphere into a three-dimensional Euclidean space and formulate consistency conditions. We also found a relation between the square of the Weyl tensor invariant of the four-dimensional spacetime of the stringy black holes and the energy density of the stringy matter. In the second part of the paper, we discuss test stationary strings in the Kerr geometry and in its Kerr-NUT-(anti-)de Sitter generalizations. Explicit solutions for strings that are regular at the event horizon are obtained. Using these solutions, the stress-energy tensor of the stringy matter in these geometries is calculated. Extraction of the angular momentum from rotating black holes by such strings is also discussed.

  6. Tensionless Strings and Supersymmetric Sigma Models: Aspects of the Target Space Geometry

    NASA Astrophysics Data System (ADS)

    Bredthauer, Andreas

    2007-01-01

    In this thesis, two aspects of string theory are discussed, tensionless strings and supersymmetric sigma models. The equivalent to a massless particle in string theory is a tensionless string. Even almost 30 years after it was first mentioned, it is still quite poorly understood. We discuss how tensionless strings give rise to exact solutions to supergravity and solve closed tensionless string theory in the ten dimensional maximally supersymmetric plane wave background, a contraction of AdS(5)xS(5) where tensionless strings are of great interest due to their proposed relation to higher spin gauge theory via the AdS/CFT correspondence. For a sigma model, the amount of supersymmetry on its worldsheet restricts the geometry of the target space. For N=(2,2) supersymmetry, for example, the target space has to be bi-hermitian. Recently, with generalized complex geometry, a new mathematical framework was developed that is especially suited to discuss the target space geometry of sigma models in a Hamiltonian formulation. Bi-hermitian geometry is so-called generalized Kaehler geometry but the relation is involved. We discuss various amounts of supersymmetry in phase space and show that this relation can be established by considering the equivalence between the Hamilton and Lagrange formulation of the sigma model. In the study of generalized supersymmetric sigma models, we find objects that favor a geometrical interpretation beyond generalized complex geometry.

  7. Document retrieval on repetitive string collections.

    PubMed

    Gagie, Travis; Hartikainen, Aleksi; Karhu, Kalle; Kärkkäinen, Juha; Navarro, Gonzalo; Puglisi, Simon J; Sirén, Jouni

    2017-01-01

    Most of the fastest-growing string collections today are repetitive, that is, most of the constituent documents are similar to many others. As these collections keep growing, a key approach to handling them is to exploit their repetitiveness, which can reduce their space usage by orders of magnitude. We study the problem of indexing repetitive string collections in order to perform efficient document retrieval operations on them. Document retrieval problems are routinely solved by search engines on large natural language collections, but the techniques are less developed on generic string collections. The case of repetitive string collections is even less understood, and there are very few existing solutions. We develop two novel ideas, interleaved LCPs and precomputed document lists , that yield highly compressed indexes solving the problem of document listing (find all the documents where a string appears), top- k document retrieval (find the k documents where a string appears most often), and document counting (count the number of documents where a string appears). We also show that a classical data structure supporting the latter query becomes highly compressible on repetitive data. Finally, we show how the tools we developed can be combined to solve ranked conjunctive and disjunctive multi-term queries under the simple [Formula: see text] model of relevance. We thoroughly evaluate the resulting techniques in various real-life repetitiveness scenarios, and recommend the best choices for each case.

  8. libFLASM: a software library for fixed-length approximate string matching.

    PubMed

    Ayad, Lorraine A K; Pissis, Solon P P; Retha, Ahmad

    2016-11-10

    Approximate string matching is the problem of finding all factors of a given text that are at a distance at most k from a given pattern. Fixed-length approximate string matching is the problem of finding all factors of a text of length n that are at a distance at most k from any factor of length ℓ of a pattern of length m. There exist bit-vector techniques to solve the fixed-length approximate string matching problem in time [Formula: see text] and space [Formula: see text] under the edit and Hamming distance models, where w is the size of the computer word; as such these techniques are independent of the distance threshold k or the alphabet size. Fixed-length approximate string matching is a generalisation of approximate string matching and, hence, has numerous direct applications in computational molecular biology and elsewhere. We present and make available libFLASM, a free open-source C++ software library for solving fixed-length approximate string matching under both the edit and the Hamming distance models. Moreover we describe how fixed-length approximate string matching is applied to solve real problems by incorporating libFLASM into established applications for multiple circular sequence alignment as well as single and structured motif extraction. Specifically, we describe how it can be used to improve the accuracy of multiple circular sequence alignment in terms of the inferred likelihood-based phylogenies; and we also describe how it is used to efficiently find motifs in molecular sequences representing regulatory or functional regions. The comparison of the performance of the library to other algorithms show how it is competitive, especially with increasing distance thresholds. Fixed-length approximate string matching is a generalisation of the classic approximate string matching problem. We present libFLASM, a free open-source C++ software library for solving fixed-length approximate string matching. The extensive experimental results presented here suggest that other applications could benefit from using libFLASM, and thus further maintenance and development of libFLASM is desirable.

  9. A Platonic Sextet for Strings

    ERIC Educational Resources Information Center

    Schaffer, Karl

    2012-01-01

    The use of traditional string figures by the Dr. Schaffer and Mr. Stern Dance Ensemble led to experimentation with polyhedral string constructions. This article presents a series of polyhedra made with six loops of three colors which sequence through all the Platonic Solids.

  10. Lunar deep drill apparatus

    NASA Technical Reports Server (NTRS)

    Harvey, Jill (Editor)

    1989-01-01

    A self contained, mobile drilling and coring system was designed to operate on the Lunar surface and be controlled remotely from earth. The system uses SKITTER (Spatial Kinematic Inertial Translatory Tripod Extremity Robot) as its foundation and produces Lunar core samples two meters long and fifty millimeters in diameter. The drill bit used for this is composed of 30 per carat diamonds in a sintered tungsten carbide matrix. To drill up to 50 m depths, the bit assembly will be attached to a drill string made from 2 m rods which will be carried in racks on SKITTER. Rotary power for drilling will be supplied by a Curvo-Synchronous motor. SKITTER is to support this system through a hexagonal shaped structure which will contain the drill motor and the power supply. A micro-coring drill will be used to remove a preliminary sample 5 mm in diameter and 20 mm long from the side of the core. This whole system is to be controlled from earth. This is carried out by a continuously monitoring PLC onboard the drill rig. A touch screen control console allows the operator on earth to monitor the progress of the operation and intervene if necessary.

  11. Fabrication, Quality Assurance, and Quality Control for PROSPECT Detector Component Production

    NASA Astrophysics Data System (ADS)

    Gustafson, Ian; Prospect (The Precision Reactor Oscillation; Spectrum Experiment) Collaboration

    2017-09-01

    The Precision Reactor Oscillation and Spectrum Experiment (PROSPECT) is an electron antineutrino (νe) detector intended to make a precision measurement of the 235U neutrino spectrum and to search for the possible existence of sterile neutrinos with a mass splitting of Δm2 on the order of 1 eV2 . As a short baseline detector, PROSPECT will be located less than 10 meters from the High Flux Isotope Reactor at Oak Ridge National Laboratory. As PROSPECT intends to search for baseline-dependent oscillations, physical segmentation is needed to better measure the interaction position. PROSPECT will therefore be a segmented detector in two dimensions, thereby improving position measurements. PROSPECT will be segmented into 154 (11×14) 1.2-meter long rectangular tubes, using optical separators. Each separator will consist of a carbon fiber core, laminated with optical reflector (to increase light collection) and Teflon (to ensure compatibility with the scintillator). These optical separators will be held in place via strings of 3D printed PLA rods called `pinwheels.' This poster discusses the fabrication and quality assurance (QA) procedures used in the production of both the PROSPECT optical separators and pinwheels. For the PROSPECT collaboration.

  12. Short superstrings and the structure of overlapping strings.

    PubMed

    Armen, C; Stein, C

    1995-01-01

    Given a collection of strings S = [s1,...,sn] over an alphabet sigma, a superstring alpha of S is a string containing each si as a substring, that is, for each i, 1 < or = i < or = n, alpha contains a block of magnitude of si consecutive characters that match si exactly. The shortest superstring problem is the problem of finding a superstring alpha of minimum length. The shortest superstring problem has applications in both computational biology and data compression. The shortest superstring problem is NP-hard (Gallant et al., 1980); in fact, it was recently shown to be MAX SNP-hard (Blum et al., 1994). Given the importance of the applications, several heuristics and approximation algorithms have been proposed. Constant factor approximation algorithms have been given in Blum et al. (1994) (factor of 3), Teng and Yao (1993) (factor of 2 8/9), Czumaj et al. (1994) (factor of 2 5/6), and Kosaraju et al. (1994) (factor of 2 50/63). Informally, the key to any algorithm for the shortest superstring problem is to identify sets of strings with large amounts of similarity, or overlap. Although the previous algorithms and their analyses have grown increasingly sophisticated, they reveal remarkably little about the structure of strings with large amounts of overlap. In this sense, they are solving a more general problem than the one at hand. In this paper, we study the structure of strings with large amounts of overlap and use our understanding to give an algorithm that finds a superstring whose length is no more than 2 3/4 times that of the optimal superstring. Our algorithm runs in O(magnitude of S + n3) time, which matches that of previous algorithms. We prove several interesting properties about short periodic strings, allowing us to answer questions of the following form: Given a string with some periodic structure, characterize all the possible periodic strings that can have a large amount of overlap with the first string.

  13. String tightening as a self-organizing phenomenon.

    PubMed

    Banerjee, Bonny

    2007-09-01

    The phenomenon of self-organization has been of special interest to the neural network community throughout the last couple of decades. In this paper, we study a variant of the self-organizing map (SOM) that models the phenomenon of self-organization of the particles forming a string when the string is tightened from one or both of its ends. The proposed variant, called the string tightening self-organizing neural network (STON), can be used to solve certain practical problems, such as computation of shortest homotopic paths, smoothing paths to avoid sharp turns, computation of convex hull, etc. These problems are of considerable interest in computational geometry, robotics path-planning, artificial intelligence (AI) (diagrammatic reasoning), very large scale integration (VLSI) routing, and geographical information systems. Given a set of obstacles and a string with two fixed terminal points in a 2-D space, the STON model continuously tightens the given string until the unique shortest configuration in terms of the Euclidean metric is reached. The STON minimizes the total length of a string on convergence by dynamically creating and selecting feature vectors in a competitive manner. Proof of correctness of this anytime algorithm and experimental results obtained by its deployment have been presented in the paper.

  14. Method for compression of data using single pass LZSS and run-length encoding

    DOEpatents

    Berlin, G.J.

    1994-01-01

    A method used preferably with LZSS-based compression methods for compressing a stream of digital data. The method uses a run-length encoding scheme especially suited for data strings of identical data bytes having large run-lengths, such as data representing scanned images. The method reads an input data stream to determine the length of the data strings. Longer data strings are then encoded in one of two ways depending on the length of the string. For data strings having run-lengths less than 18 bytes, a cleared offset and the actual run-length are written to an output buffer and then a run byte is written to the output buffer. For data strings of 18 bytes or longer, a set offset and an encoded run-length are written to the output buffer and then a run byte is written to the output buffer. The encoded run-length is written in two parts obtained by dividing the run length by a factor of 255. The first of two parts of the encoded run-length is the quotient; the second part is the remainder. Data bytes that are not part of data strings of sufficient length are written directly to the output buffer.

  15. Method for compression of data using single pass LZSS and run-length encoding

    DOEpatents

    Berlin, Gary J.

    1997-01-01

    A method used preferably with LZSS-based compression methods for compressing a stream of digital data. The method uses a run-length encoding scheme especially suited for data strings of identical data bytes having large run-lengths, such as data representing scanned images. The method reads an input data stream to determine the length of the data strings. Longer data strings are then encoded in one of two ways depending on the length of the string. For data strings having run-lengths less than 18 bytes, a cleared offset and the actual run-length are written to an output buffer and then a run byte is written to the output buffer. For data strings of 18 bytes or longer, a set offset and an encoded run-length are written to the output buffer and then a run byte is written to the output buffer. The encoded run-length is written in two parts obtained by dividing the run length by a factor of 255. The first of two parts of the encoded run-length is the quotient; the second part is the remainder. Data bytes that are not part of data strings of sufficient length are written directly to the output buffer.

  16. Transplanckian censorship and global cosmic strings

    NASA Astrophysics Data System (ADS)

    Dolan, Matthew J.; Draper, Patrick; Kozaczuk, Jonathan; Patel, Hiren

    2017-04-01

    Large field excursions are required in a number of axion models of inflation. These models also possess global cosmic strings, around which the axion follows a path mirroring the inflationary trajectory. Cosmic strings are thus an interesting theoretical laboratory for the study of transplanckian field excursions. We describe connections be-tween various effective field theory models of axion monodromy and study the classical spacetimes around their supercritical cosmic strings. For small decay constants f < M p and large winding numbers n > M p /f , the EFT is under control and the string cores undergo topological inflation, which may be either of exponential or power-law type. We show that the exterior spacetime is nonsingular and equivalent to a decompactifying cigar geometry, with the radion rolling in a potential generated by axion flux. Signals are able to circumnavigate infinite straight strings in finite but exponentially long time, t ˜ e Δ a/ M p . For finite loops of supercritical string in asymptotically flat space, we argue that if topological inflation occurs, then topological censorship implies transplanckian censorship, or that external observers are forbidden from threading the loop and observing the full excursion of the axion.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hergt, Lukas; Amara, Adam; Kacprzak, Tomasz

    We use wavelet and curvelet transforms to extract signals of cosmic strings from simulated cosmic microwave background (CMB) temperature anisotropy maps, and to study the limits on the cosmic string tension which various ongoing CMB temperature anisotropy experiments will be able to achieve. We construct sky maps with size and angular resolution corresponding to various experiments. These maps contain the signals of a scaling solution of long string segments with a given string tension G μ, the contribution of the dominant Gaussian primordial cosmological fluctuations, and pixel by pixel white noise with an amplitude corresponding to the instrumental noise ofmore » the various experiments. In the case that we include white noise, we find that using curvelets we obtain lower bounds on the string tension than with wavelets. For maps with Planck specification, we obtain bounds comparable to what was obtained by the Planck collaboration [1]. Experiments with better angular resolution such as the South Pole Telescope third generation (SPT-3G) survey will be able to yield stronger limits. For maps with a specification of SPT-3G we find that string signals will be visible down to a string tension of G μ = 1.4 × 10{sup −7}.« less

  18. Bonder for Solar-Cell Strings

    NASA Technical Reports Server (NTRS)

    Garwood, G.; Frasch, W.

    1982-01-01

    String bonder for solar-cell arrays eliminates tedious manual assembly procedure that could damage cell face. Vacuum arm picks up face-down cell from cell-inverting work station and transfers it to string conveyor without changing cell orientation. Arm is activated by signal from microprocessor.

  19. Resonant acoustic transducer and driver system for a well drilling string communication system

    DOEpatents

    Chanson, Gary J.; Nicolson, Alexander M.

    1981-01-01

    The acoustic data communication system includes an acoustic transmitter and receiver wherein low frequency acoustic waves, propagating in relatively loss free manner in well drilling string piping, are efficiently coupled to the drill string and propagate at levels competitive with the levels of noise generated by drilling machinery also present in the drill string. The transmitting transducer incorporates a mass-spring piezoelectric transmitter and amplifier combination that permits self-oscillating resonant operation in the desired low frequency range.

  20. New symmetries and ghost structure of covariant string theories

    NASA Astrophysics Data System (ADS)

    Neveu, A.; Nicolai, H.; West, P.

    1986-02-01

    It is shown that there exists an infinite set of new symmetries of the previously given covariant string formulations. These symmetries have themselves an infinite set of hidden local symmetries and so on. A new physically equivalent further extended string action is given in which the infinite set of symmetries is most easily displayed. A quantization involving gauge fixing and ghosts of the various covariant string actions is given. permanent address: Kings College, Mathematics Department, London WC2R 2LS, UK.

  1. Width of the confining string in Yang-Mills theory.

    PubMed

    Gliozzi, F; Pepe, M; Wiese, U-J

    2010-06-11

    We investigate the transverse fluctuations of the confining string connecting two static quarks in (2+1)D SU(2) Yang-Mills theory using Monte Carlo calculations. The exponentially suppressed signal is extracted from the large noise by a very efficient multilevel algorithm. The resulting width of the string increases logarithmically with the distance between the static quark charges. Corrections at intermediate distances due to universal higher-order terms in the effective string action are calculated analytically. They accurately fit the numerical data.

  2. Evidence for a scaling solution in cosmic-string evolution

    NASA Technical Reports Server (NTRS)

    Bennett, David P.; Bouchet, Francois R.

    1988-01-01

    Numerical simulations are used to study the most fundamental issue of cosmic-string evolution: the existence of a scaling solution. Strong evidence is found that a scaling solution does indeed exist. This justifies the main assumption on which the cosmic-string theories of galaxy formation is based. The main conclusion coincides with that of Albrecht and Turok (1985) but the results are not consistent with theirs. In fact, the results indicate that the details of string evolution are very different from the standard dogma.

  3. Causal Structure around Spinning 5-DIMENSIONAL Cosmic Strings

    NASA Astrophysics Data System (ADS)

    Slagter, Reinoud Jan

    2008-09-01

    We present a numerical solution of a stationary 5-dimensional spinning cosmic string in the Einstein-Yang-Mills (EYM) model, where the extra bulk coordinate ψ is periodic. It turns out that when gψψ approaches zero, i.e., a closed time-like curve (CTC) would appear, the solution becomes singular. We also investigated the geometrical structure of the static 5D cosmic string. Two opposite moving 5D strings could, in contrast with the 4D case, fulfil the Gott condition for CTC formation.

  4. Quantum fluctuations of the superconducting cosmic string

    NASA Technical Reports Server (NTRS)

    Zhang, Shoucheng

    1987-01-01

    Quantum fluctuations of the proposed superconducting string with Bose charge carriers are studied in terms of the vortices on the string world sheet. In the thermodynamical limit, it is found that they appear in the form of free vortices rather than as bound pairs. This fluctuation mode violates the topological conservation law on which superconductivity is based. However, this limit may not be reached. The critical size of the superconducting string is estimated as a function of the coupling constants involved.

  5. Worldsheet geometries of ambitwistor string

    NASA Astrophysics Data System (ADS)

    Ohmori, Kantaro

    2015-06-01

    Mason and Skinner proposed the ambitwistor string theory which directly reproduces the formulas for the amplitudes of massless particles proposed by Cachazo, He and Yuan. In this paper we discuss geometries of the moduli space of worldsheets associated to the bosonic or the RNS ambitwistor string. Further, we investigate the factorization properties of the amplitudes when an internal momentum is near on-shell in the abstract CFT language. Along the way, we propose the existence of the ambitwistor strings with three or four fermionic worldsheet currents.

  6. Producing a scale-invariant spectrum of perturbations in a Hagedorn phase of string cosmology.

    PubMed

    Nayeri, Ali; Brandenberger, Robert H; Vafa, Cumrun

    2006-07-14

    We study the generation of cosmological perturbations during the Hagedorn phase of string gas cosmology. Using tools of string thermodynamics we provide indications that it may be possible to obtain a nearly scale-invariant spectrum of cosmological fluctuations on scales which are of cosmological interest today. In our cosmological scenario, the early Hagedorn phase of string gas cosmology goes over smoothly into the radiation-dominated phase of standard cosmology, without having a period of cosmological inflation.

  7. Electron string phenomenon: physics and use

    NASA Astrophysics Data System (ADS)

    Donets, Evgeny D.

    2004-01-01

    Electron string phenomenon arises as a result of phase transition of a state of multiply reflected electron beam to this new discovered state of one component electron plasma and can be easily observed in the reflex mode of EBIS operation. The transition goes via a strong instability, which causes considerable electron energy spread, which in its turn suppresses the instability. Electron string state is a stationary state of hot pure electron plasma, which is heated by injected electron beam and cooled because of electron loses. Electron string is quiet in broad regions of experimental parameters, so that it is used for confinement and ionization of positive ions by electron impact to highly charge states similar to electron beams in EBIS. Application of electron strings instead of electron beams for ion production allows to save about 99% of electric power of electron beam and simultaneously to improve reliability of an ion source considerably. The JINR EBIS `Krion-2' in the string mode of operation is used for production of N7+, Ar16+ and Fe24+ ion beams and their acceleration to relativistic energies on the facility of the JINR super conducting one turn injection synchrotron `Nuklotron'. The tubular electron string possibly can exist and it is under study now theoretically and experiments are prepared now. Estimations show that a Tubular Electron String Ion Source (TESIS) could have up to three orders of magnitude higher ion output then a Linear one (LESIS). In frames of nuclear astrophysics electron strings can be used for research of fusion nuclear reactions at low energies in conditions when both beam and target nuclei do not carry orbital electrons. The project NARITA — Nuclear Astrophysics Researches in an Ion Trap Apparatus is proposed. Polarization effects also can be studied.

  8. Cold, warm, and composite (cool) cosmic string models

    NASA Astrophysics Data System (ADS)

    Carter, B.

    1994-01-01

    The dynamical behaviour of a cosmic string is strongly affected by any reduction of the effective string tension T below the constant value, T = m2 say, that typifies a simple, longitudinally Lorentz invariant Goto-Nambu type string model, where m is a fixed mass scale determined by the internal structure of an underlying Nielsen-Olesen type vacuum vortex. Such a reduction of tension occurs in the standard ``warm'' cosmic string model in which the effect of thermal perturbations of a simple Goto-Nambu model is represented by an effective tension T given in terms of the corresponding effective temperature, Θ say, by T2 = m2(m2 - 1/3πΘ2). A qualitatively similar though analytically more complicated tension reduction phenomenon occurs in ``cold'' conducting cosmic string models of the kind whose existence was first proposed by Witten, where the role of the temperature is played by an effective mass or chemical potential μ that is constructed as the scalar magnitude of the energy momentum covector obtained as the gradient of the phase ϕ of a bosonic condensate in the core of the vacuum vortex. The present article describes the construction and essential mechanical properties of a new category of composite ``cool'' cosmic string models that are intermediate between these ``warm'' and ``cold'' limit cases. These composite models are the string analogues of the standard Landau model for a two-constituent finite temperature superfluid, and as such involve two independent currents interpretable as that of the entropy on the one hand and that of the bosonic condensate on the other. It is surmised that the stationary (in particular ring) equilibrium states of such ``cool'' cosmic strings may be of cosmologicl significance.

  9. String duality transformations in f(R) gravity from Noether symmetry approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capozziello, Salvatore; Gionti, Gabriele S.J.; Vernieri, Daniele, E-mail: capozziello@na.inf.it, E-mail: ggionti@as.arizona.edu, E-mail: vernieri@iap.fr

    2016-01-01

    We select f(R) gravity models that undergo scale factor duality transformations. As a starting point, we consider the tree-level effective gravitational action of bosonic String Theory coupled with the dilaton field. This theory inherits the Busher's duality of its parent String Theory. Using conformal transformations of the metric tensor, it is possible to map the tree-level dilaton-graviton string effective action into f(R) gravity, relating the dilaton field to the Ricci scalar curvature. Furthermore, the duality can be framed under the standard of Noether symmetries and exact cosmological solutions are derived. Using suitable changes of variables, the string-based f(R) Lagrangians aremore » shown in cases where the duality transformation becomes a parity inversion.« less

  10. String-fluid transition in systems with aligned anisotropic interactions.

    PubMed

    Brandt, P C; Ivlev, A V; Morfill, G E

    2010-06-21

    Systems with aligned anisotropic interactions between particles exhibit numerous phase transitions. A remarkable example of the fluid phase transition occurring in such systems is the formation of particle strings--the so-called "string" or "chain" fluids. We employ an approach based on the Ornstein-Zernike (OZ) equation, which allows us to calculate structural properties of fluids with aligned anisotropic interactions. We show that the string-fluid transition can be associated with the bifurcation of the "isotropic" correlation length into two distinct scales which characterize the longitudinal and transverse order in string fluids and, hence, may be used as a fingerprint of this transition. The comparison of the proposed OZ theory with the Monte Carlo simulations reveals fairly good agreement.

  11. Excited cosmic strings with superconducting currents

    NASA Astrophysics Data System (ADS)

    Hartmann, Betti; Michel, Florent; Peter, Patrick

    2017-12-01

    We present a detailed analysis of excited cosmic string solutions that possess superconducting currents. These currents can be excited inside the string core, and—if the condensate is large enough—can lead to the excitations of the Higgs field. Next to the case with global unbroken symmetry, we discuss also the effects of the gauging of this symmetry and show that excited condensates persist when coupled to an electromagnetic field. The space-time of such strings is also constructed by solving the Einstein equations numerically and we show how the local scalar curvature is modified by the excitation. We consider the relevance of our results on the cosmic string network evolution as well as observations of primordial gravitational waves and cosmic rays.

  12. Julius Edgar Lilienfeld Prize Lecture: The Higgs Boson, String Theory, and the Real World

    NASA Astrophysics Data System (ADS)

    Kane, Gordon

    2012-03-01

    In this talk I'll describe how string theory is exciting because it can address most, perhaps all, of the questions we hope to understand about our world: why quarks and leptons make up our world, what forces form our world, cosmology, parity violation, and much more. I'll explain why string theory is testable in basically the same ways as the rest of physics, and why much of what is written about that is misleading. String theory is already or soon being tested in several ways, including correctly predicting the recently observed Higgs boson properties and mass, and predictions for dark matter, LHC physics, cosmological history, and more, from work in the increasingly active subfield ``string phenomenology.''

  13. Higher order string effects and the properties of the Pomeron

    DOE PAGES

    Kharzeev, Dmitri; Shuryak, Edward; Zahed, Ismail

    2018-01-18

    In this paper, we revisit the description of the Pomeron within the effective string theory of QCD. Using a string duality relation, we show how the static potential maps onto the high-energy scattering amplitude that exhibits the Pomeron behavior. Besides the Pomeron intercept and slope, new additional terms stemming from the higher order string corrections are shown to affect both the growth of the nucleon’s size at high energies and its profile in impact parameter space. The stringy description also allows for an odderon that only disappears in critical dimension. Lastlyl, some of the Pomeron’s features that emerge within themore » effective string description can be studied at the future EIC collider.« less

  14. Klein-Gordon oscillator with position-dependent mass in the rotating cosmic string spacetime

    NASA Astrophysics Data System (ADS)

    Wang, Bing-Qian; Long, Zheng-Wen; Long, Chao-Yun; Wu, Shu-Rui

    2018-02-01

    A spinless particle coupled covariantly to a uniform magnetic field parallel to the string in the background of the rotating cosmic string is studied. The energy levels of the electrically charged particle subject to the Klein-Gordon oscillator are analyzed. Afterwards, we consider the case of the position-dependent mass and show how these energy levels depend on the parameters in the problem. Remarkably, it shows that for the special case, the Klein-Gordon oscillator coupled covariantly to a homogeneous magnetic field with the position-dependent mass in the rotating cosmic string background has the similar behaviors to the Klein-Gordon equation with a Coulomb-type configuration in a rotating cosmic string background in the presence of an external magnetic field.

  15. Comparison of delayed versus immediate pushing during second stage of labor for nulliparous women with epidural anesthesia.

    PubMed

    Gillesby, Erica; Burns, Suzan; Dempsey, Amy; Kirby, Shirley; Mogensen, Kami; Naylor, Kelly; Petrella, Joann; Vanicelli, Rebecca; Whelan, Breon

    2010-01-01

    To determine if the use of delayed pushing after the onset of the second stage of labor decreases the time of active pushing and decreases maternal fatigue. Randomized clinical trial. Labor and delivery unit of a not-for-profit community hospital. Convenience sample of nulliparous laboring women with epidural anesthesia. Immediate or delayed pushing (2 hours) during the second stage of labor at the time of complete cervical dilatation. The length of pushing, total length of the second stage, and maternal fatigue. A total of 77 women were studied (immediate pushing group=39; delayed pushing=38). The immediate pushing group averaged 94 (± 57) minutes in active pushing, while the delayed pushing group averaged 68 (± 46) minutes, a statistically significant difference (p=.04). No significant differences were found in fatigue scores between the immediate and delayed pushing groups (p>.05). We found that by delaying the onset of active pushing for 2 hours after the beginning of the second stage of labor, the time that nulliparous women with epidural anesthesia spent in active pushing was significantly decreased by 27%. Although the delayed pushing group rested for up to 2 hours, the total time in the second stage of labor averaged only 59 minutes longer than the immediate pushing group. © 2010 AWHONN, the Association of Women's Health, Obstetric and Neonatal Nurses.

  16. Intrinsic non-commutativity of closed string theory

    DOE PAGES

    Freidel, Laurent; Leigh, Robert G.; Minic, Djordje

    2017-09-14

    We show that the proper interpretation of the cocycle operators appearing in the physical vertex operators of compactified strings is that the closed string target is noncommutative. We track down the appearance of this non-commutativity to the Polyakov action of the at closed string in the presence of translational monodromies (i.e., windings). Here, in view of the unexpected nature of this result, we present detailed calculations from a variety of points of view, including a careful understanding of the consequences of mutual locality in the vertex operator algebra, as well as a detailed analysis of the symplectic structure of themore » Polyakov string. Finally, we also underscore why this non-commutativity was not emphasized previously in the existing literature. This non-commutativity can be thought of as a central extension of the zero-mode operator algebra, an effect set by the string length scale $-$ it is present even in trivial backgrounds. Clearly, this result indicates that the α'→0 limit is more subtle than usually assumed.« less

  17. THE FLOW AROUND A COSMIC STRING. I. HYDRODYNAMIC SOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beresnyak, Andrey; Nordita, KTH Royal Institute of Technology and Stockholm University, SE-10691

    2015-05-10

    Cosmic strings are linear topological defects which are hypothesized to be produced during inflation. Most searches for strings have relied on the string’s lensing of background galaxies or the cosmic microwave background. In this paper, I obtained a solution for the supersonic flow of collisional gas past the cosmic string which has two planar shocks with a shock compression ratio that depends on the angle defect of the string and its speed. The shocks result in the compression and heating of the gas and, given favorable conditions, particle acceleration. Gas heating and over-density in an unusual wedge shape can bemore » detected by observing the Hi line at high redshifts. Particle acceleration can occur in the present-day universe when the string crosses the hot gas contained in galaxy clusters and, since the consequences of such a collision persist for cosmological timescales, could be located by looking at unusual large-scale radio sources situated on a single spatial plane.« less

  18. The bispectrum of cosmic string temperature fluctuations including recombination effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regan, Donough; Hindmarsh, Mark, E-mail: d.regan@sussex.ac.uk, E-mail: m.b.hindmarsh@sussex.ac.uk

    2015-10-01

    We calculate the cosmic microwave background temperature bispectrum from cosmic strings, including the contributions from the last scattering surface, using a well-established Gaussian model for the string energy-momentum correlation functions, and a simplified model for the cosmic fluid. We check our approximation for the integrated Sachs-Wolfe (ISW) contribution against the bispectrum obtained from the full sky map of the cosmic string ISW signal used by the Planck team, obtaining good agreement. We validate our model for the last scattering surface contribution by comparing the predicted temperature power spectrum with that obtained from a full Boltzmann code treatment applied to themore » Unconnected Segment Model of a string network. We find that including the last scattering contribution has only a small impact on the upper limit on the string tension resulting from the bispectrum at Planck resolutions, and argue that the bispectrum is unlikely to be competitive with the power spectrum at any resolution.« less

  19. Domain Walls and Strings in Dense Quark Matter

    NASA Astrophysics Data System (ADS)

    Zhitnitsky, Ariel R.

    2002-12-01

    I discuss several types of domain walls and global strings which occur in colour superconducting quark matter due to the spontaneous violation of relevant U(1) and discrete symmetries. These include the baryon U(1)B, approximate axial U(1)A symmetries as well as an approximate U(1)Y symmetry arising from kaon condensation in colour-flavour locking phase. In this talk I concentrate on discussions of K strings due to their interesting internal structures. Specifically, I demonstrate that under some conditions the global U(1)Y symmetry may not be restored inside the string, in contrast with the standard expectations. Instead, K+ condensation occurs inside the core of the string if a relevant parameter \\cos θ K0 ≡ mK0^2 /μ eff2 is larger than some critical value θK0 ≥ θcrit. If this phenomenon happens, the U(1)Y strings become superconducting and may considerably influence the magnetic properties of dense quark matter, in particular in neutron stars.

  20. The structural dynamics of the American five-string banjo

    NASA Astrophysics Data System (ADS)

    Dickey, Joe

    2003-11-01

    The American five-string banjo is unique among musical instruments in that many significant parameters that effect tone are easily adjusted. This is probably why so many banjo players fiddle with their banjo. The instrument is a combination of canonical vibrating systems (strings, and a circular membrane) and therefore more amenable to analysis and modeling than most other musical instruments (e.g., the violin). Such an analysis is presented here. The model is a harmonically driven string which excites the other strings and a membrane under tension, causing the membrane to radiate sound. Three figures-of-merit, FOMs, are assumed. They are loudness, brightness, and decay of the sound. The effects of a number of parameters on the proposed FOMs are investigated. Among these are the loss factor and tension of the membrane, the mass of the bridge, and the location on the string of the excitation. It is noted that the calculated effects of the changes agree with generally accepted setup practices.

  1. On the gauge chosen by the bosonic open string

    NASA Astrophysics Data System (ADS)

    Pesando, Igor

    2017-05-01

    String theory gives S matrix elements from which is not possible to read any gauge information. Using factorization we go off shell in the simplest and most naive way and we read which are the vertices suggested by string. To compare with the associated Effective Field Theory it is natural to use color ordered vertices. The α‧ = 0 color ordered vertices suggested by string theory are more efficient than the usual ones since the three gluon color ordered vertex has three terms instead of six and the four gluon one has one term instead of three. They are written in the so called Gervais-Neveu gauge. The full Effective Field Theory is in a generalization of the Gervais-Neveu gauge with α‧ corrections. Moreover a field redefinition is required to be mapped to the field used by string theory. We also give an intuitive way of understanding why string choose this gauge in terms of the minimal number of couplings necessary to reproduce the non-abelian amplitudes starting from color ordered ones.

  2. Cosmological density fluctuations produced by vacuum strings

    NASA Astrophysics Data System (ADS)

    Vilenkin, A.

    1981-04-01

    Consideration is given to the possible role of vacuum domain strings produced in the grand unification phase transition in the early universe in the generation of the density fluctuations giving rise to galaxies. The cosmological evolution of the strings formed in the grand unification phase transition is analyzed, with attention given to possible mechanisms for the damping out of oscillations produced by tension in convoluted strings and closed loops. The cosmological density fluctuations introduced by infinite strings and closed loops smaller than the horizon are then shown to be capable of giving rise to mass condensations on a scale of approximately 10 to the 9th solar masses at the time of the decoupling of radiation from matter, around which the galaxies condense. Differences between the present theory and that suggested by Zel'dovich (1980) are pointed out, and it is noted that string formation at the grand unification phase transition is possible only if the manifold of the degenerate vacua of the gauge theory is not simply connected.

  3. Intrinsic non-commutativity of closed string theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freidel, Laurent; Leigh, Robert G.; Minic, Djordje

    We show that the proper interpretation of the cocycle operators appearing in the physical vertex operators of compactified strings is that the closed string target is noncommutative. We track down the appearance of this non-commutativity to the Polyakov action of the at closed string in the presence of translational monodromies (i.e., windings). Here, in view of the unexpected nature of this result, we present detailed calculations from a variety of points of view, including a careful understanding of the consequences of mutual locality in the vertex operator algebra, as well as a detailed analysis of the symplectic structure of themore » Polyakov string. Finally, we also underscore why this non-commutativity was not emphasized previously in the existing literature. This non-commutativity can be thought of as a central extension of the zero-mode operator algebra, an effect set by the string length scale $-$ it is present even in trivial backgrounds. Clearly, this result indicates that the α'→0 limit is more subtle than usually assumed.« less

  4. New Voltage and Current Thresholds Determined for Sustained Space Plasma Arcing

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Galofaro, Joel T.; Vayner, Boris V.

    2003-01-01

    It has been known for many years, based partly on NASA Glenn Research Center testing, that high-voltage solar arrays arc into the space plasma environment. Solar arrays are composed of solar cells in series with each other (a string), and the strings may be connected in parallel to produce the entire solar array power. Arcs on solar arrays can damage or destroy solar cells, and in the extreme case of sustained arcing, entire solar array strings, in a flash. In the case of sustained arcing (discovered at Glenn and applied to the design and construction of solar arrays on Space Systems/Loral (SS/Loral, Palo Alto, CA) satellites, Deep-Space 1, and Terra), an arc on one solar array string can couple to an adjacent string and continue to be powered by the solar array output until a permanent electrical short is produced. In other words, sustained arcs produced by arcs into the plasma (so-called trigger arcs) may turn into disastrous sustained arcs by involving other array strings.

  5. Push/Push Fastener

    NASA Technical Reports Server (NTRS)

    Jackson, Steven A.

    1996-01-01

    Modified version of Nylatch (or equivalent) commerical quick-connect/quick-disconnect fastener for joining flat panels. Fastener tightened by pushing on knob on one side and loosened by pushing on knob on other side. Push/push operation of fastener advantageous in cold or otherwise hostile environments where gloves worn, in underwater operations, or if person handicapped.

  6. CMB temperature bispectrum induced by cosmic strings

    NASA Astrophysics Data System (ADS)

    Hindmarsh, Mark; Ringeval, Christophe; Suyama, Teruaki

    2009-10-01

    The cosmic microwave background (CMB) bispectrum of the temperature anisotropies induced by a network of cosmic strings is derived for small angular scales, under the assumption that the principal cause of temperature fluctuations is the Gott-Kaiser-Stebbins effect. We provide analytical expressions for all isosceles triangle configurations in Fourier space. Their overall amplitude is amplified as the inverse cube of the angle and diverges for flat triangles. The isosceles configurations generically lead to a negative bispectrum with a power-law decay ℓ-6 for large multipole ℓ. However, collapsed triangles are found to be associated with a positive bispectrum whereas the squeezed triangles still exhibit negative values. We then compare our analytical estimates to a direct computation of the bispectrum from a set of 300 statistically independent temperature maps obtained from Nambu-Goto cosmic string simulations in a Friedmann-Lemaître-Robertson-Walker universe. We find good agreement for the overall amplitude, the power-law behavior, and the angle dependency of the various triangle configurations. At ℓ˜500 the cosmic string Gott-Kaiser-Stebbins effect contributes approximately the same equilateral CMB bispectrum amplitude as an inflationary model with |fNLloc|≃103, if the strings contribute about 10% of the temperature power spectrum at ℓ=10. Current bounds on fNL are not derived using cosmic string bispectrum templates, and so our fNL estimate cannot be used to derive bounds on strings. However it does suggest that string bispectrum templates should be included in the search of CMB non-Gaussianities.

  7. Pharmacological preconditioning by milrinone: memory preserving and neuroprotective effect in ischemia-reperfusion injury in mice.

    PubMed

    Saklani, Reetu; Jaggi, Amteshwar; Singh, Nirmal

    2010-07-01

    We tested the neuroprotective effect of milrinone, a phosphodiesterase III inhibitor, in pharmacological preconditioning. Bilateral carotid artery occlusion for 12 min followed by reperfusion for 24 h produced ischemia-reperfusion (I/R) cerebral injury in male Swiss albino mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was assessed using the Morris water maze test, and motor coordination was evaluated using the inclined beam walking test, rota-rod test, and lateral push test. Milrinone (50 microg/kg & 100 microg/kg i.v.) was administered 24 h before surgery in a separate group of animals to induce pharmacological preconditioning. I/R increased cerebral infarct size and impaired memory and motor coordination. Milrinone treatment significantly decreased cerebral infarct size and reversed I/R-induced impairments in memory and motor coordination. This neuroprotective effect was blocked by ruthenium red (3 mg/kg, s.c.), an intracellular ryanodine receptor blocker. These findings indicate that milrinone preconditioning exerts a marked neuroprotective effect on the ischemic brain, putatively due to increased intracellular calcium levels activating calcium-sensitive signal transduction cascades.

  8. Effects of pushing techniques in birth on mother and fetus: a randomized study.

    PubMed

    Yildirim, Gulay; Beji, Nezihe Kizilkaya

    2008-03-01

    The Valsalva pushing technique is used routinely in the second stage of labor in many countries, and it is accepted as standard obstetric management in Turkey. The purpose of this study was to determine the effects of pushing techniques on mother and fetus in birth in this setting. This randomized study was conducted between July 2003 and June 2004 in Bakirkoy Maternity and Children's Teaching Hospital in Istanbul, Turkey. One hundred low-risk primiparas between 38 and 42 weeks' gestation, who expected a spontaneous vaginal delivery, were randomized to either a spontaneous pushing group or a Valsalva-type pushing group. Spontaneous pushing women were informed during the first stage of labor about spontaneous pushing technique (open glottis pushing while breathing out) and were supported in pushing spontaneously in the second stage of labor. Similarly, Valsalva pushing women were informed during the first stage of labor about the Valsalva pushing technique (closed glottis pushing while holding their breath) and were supported in using Valsalva pushing in the second stage of labor. Perineal tears, postpartum hemorrhage, and hemoglobin levels were evaluated in mothers; and umbilical artery pH, Po(2) (mmHg), and Pco(2) (mmHg) levels and Apgar scores at 1 and 5 minutes were evaluated in newborns in both groups. No significant differences were found between the two groups in their demographics, incidence of nonreassuring fetal surveillance patterns, or use of oxytocin. The second stage of labor and duration of the expulsion phase were significantly longer with Valsalva-type pushing. Differences in the incidence of episiotomy, perineal tears, or postpartum hemorrhage were not significant between the groups. The baby fared better with spontaneous pushing, with higher 1- and 5-minute Apgar scores, and higher umbilical cord pH and Po(2) levels. After the birth, women expressed greater satisfaction with spontaneous pushing. Educating women about the spontaneous pushing technique in the first stage of labor and providing support for spontaneous pushing in the second stage result in a shorter second stage without interventions and in improved newborn outcomes. Women also stated that they pushed more effectively with the spontaneous pushing technique.

  9. Density fluctuations from strings and galaxy formation

    NASA Technical Reports Server (NTRS)

    Vilenkin, A.; Shafi, Q.

    1983-01-01

    The spectra of density fluctuations caused by strings in a universe dominated either by baryons, neutrinos, or axions are presented. Realistic scenarios for galaxy formation seem possible in all three cases. Examples of grand unified theories which lead to strings with the desired mass scales are given.

  10. ``SO what Will you do if String Theory is WRONG?''

    NASA Astrophysics Data System (ADS)

    Emam, Moataz H.

    2008-07-01

    I briefly discuss the accomplishments of string theory that would survive a complete falsification of the theory as a model of nature and argue the possibility that such a survival may necessarily mean that string theory would become its own discipline, independently of both physics and mathematics.

  11. A Computer String-Grammar of English.

    ERIC Educational Resources Information Center

    Sager, Naomi

    This volume is the fourth in a series of detailed reports on a working computer program for the syntactic analysis of English sentences into their component strings. The report (1) records the considerations involved in various decisions among alternative grammatical formulations and presents the word-subclasses, the linguistic strings, etc., for…

  12. Symbol-String Sensitivity and Children's Reading

    ERIC Educational Resources Information Center

    Pammer, Kristen; Lavis, Ruth; Hansen, Peter; Cornelissen, Piers L.

    2004-01-01

    In this study of primary school children, a novel "symbol-string" task is used to assess sensitivity to the position of briefly presented non-alphabetic but letter-like symbols. The results demonstrate that sensitivity in the symbol-string task explains a unique proportion of the variability in children's contextual reading accuracy. Moreover,…

  13. Spoken Idiom Recognition: Meaning Retrieval and Word Expectancy

    ERIC Educational Resources Information Center

    Tabossi, Patrizia; Fanari, Rachele; Wolf, Kinou

    2005-01-01

    This study investigates recognition of spoken idioms occurring in neutral contexts. Experiment 1 showed that both predictable and non-predictable idiom meanings are available at string offset. Yet, only predictable idiom meanings are active halfway through a string and remain active after the string's literal conclusion. Experiment 2 showed that…

  14. Matrix theory interpretation of discrete light cone quantization string worldsheets

    PubMed

    Grignani; Orland; Paniak; Semenoff

    2000-10-16

    We study the null compactification of type-IIA string perturbation theory at finite temperature. We prove a theorem about Riemann surfaces establishing that the moduli spaces of infinite-momentum-frame superstring worldsheets are identical to those of branched-cover instantons in the matrix-string model conjectured to describe M theory. This means that the identification of string degrees of freedom in the matrix model proposed by Dijkgraaf, Verlinde, and Verlinde is correct and that its natural generalization produces the moduli space of Riemann surfaces at all orders in the genus expansion.

  15. Systems and methods for photovoltaic string protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krein, Philip T.; Kim, Katherine A.; Pilawa-Podgurski, Robert C. N.

    A system and method includes a circuit for protecting a photovoltaic string. A bypass switch connects in parallel to the photovoltaic string and a hot spot protection switch connects in series with the photovoltaic string. A first control signal controls opening and closing of the bypass switch and a second control signal controls opening and closing of the hot spot protection switch. Upon detection of a hot spot condition the first control signal closes the bypass switch and after the bypass switch is closed the second control signal opens the hot spot protection switch.

  16. Simple wave drivers: electric toothbrush, shaver and razor

    NASA Astrophysics Data System (ADS)

    Kağan Temiz, Burak; Yavuz, Ahmet

    2018-05-01

    This study was conducted to develop simple and low-cost wave drivers that can be used in experiments on string waves. These wave drivers were made using a toothbrush (Oral-B Vitality), an electric shaver (Braun 7505) and a razor (Gillette Fusion Proglide Power). A common feature of all of these product is that they have vibration motors. In the experiments, string waves were generated by transferring these vibrations to a stretched string. By changing the tightness and length of the string, standing waves were generated, and various harmonics were observed.

  17. Hawking Radiation of Massive Bosons via Tunneling from Black Strings

    NASA Astrophysics Data System (ADS)

    Feng, Zhong-Wen

    2017-12-01

    In the present paper, the Hawking radiation of massive bosons from 4-dimensional and 5-dimensional black strings are studied in quantum tunneling formalism. First, we derive the Hamilton-Jacobi equation set via the Proca equation and WKB approximation. Then, the tunneling rates and Hawking temperatures of the black strings are obtained. Our calculations show that the tunneling rates and Hawking temperatures are related to the properties of black strings' spacetime. When compare our results with those of scalars and fermions cases, it finds that they are the same.

  18. Hawking Radiation of Massive Bosons via Tunneling from Black Strings

    NASA Astrophysics Data System (ADS)

    Feng, Zhong-Wen

    2018-03-01

    In the present paper, the Hawking radiation of massive bosons from 4-dimensional and 5-dimensional black strings are studied in quantum tunneling formalism. First, we derive the Hamilton-Jacobi equation set via the Proca equation and WKB approximation. Then, the tunneling rates and Hawking temperatures of the black strings are obtained. Our calculations show that the tunneling rates and Hawking temperatures are related to the properties of black strings' spacetime. When compare our results with those of scalars and fermions cases, it finds that they are the same.

  19. Type-I cosmic-string network

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Takashi; Sendouda, Yuuiti; Takahashi, Keitaro; Yamauchi, Daisuke; Yoo, Chul-Moon

    2013-10-01

    We study the network of Type-I cosmic strings using the field-theoretic numerical simulations in the Abelian-Higgs model. For Type-I strings, the gauge field plays an important role, and thus we find that the correlation length of the strings is strongly dependent upon the parameter β, the ratio between the masses of the scalar field and the gauge field, namely, β=mφ2/mA2. In particular, if we take the cosmic expansion into account, the network becomes densest in the comoving box for a specific value of β for β<1.

  20. “String of pearls pattern”: report of three cases of non clear-cell acanthoma*

    PubMed Central

    Espinosa, Ana Elena Domínguez; Akay, Bengu Nisa; González-Ramírez, Roger Adrian

    2017-01-01

    The coiled and dotted vessels in a serpiginous arrangement or “string of pearls” is considered a classical vascular pattern associated with clear cell acanthoma. We present three cases of epidermal tumors different from clear cell acanthoma that have the same “string of pearls” vascular pattern. Even though most authors keep considering the “string of pearls” vascular pattern an almost pathognomonic sign of clear-cell acanthoma, the cases presented here suggest that some other epidermal tumors can also show this pattern. PMID:29267474

  1. Bianchi type-VIh string cloud cosmological models with bulk viscosity

    NASA Astrophysics Data System (ADS)

    Tripathy, Sunil K.; Behera, Dipanjali

    2010-11-01

    String cloud cosmological models are studied using spatially homogeneous and anisotropic Bianchi type VIh metric in the frame work of general relativity. The field equations are solved for massive string cloud in presence of bulk viscosity. A general linear equation of state of the cosmic string tension density with the proper energy density of the universe is considered. The physical and kinematical properties of the models have been discussed in detail and the limits of the anisotropic parameter responsible for different phases of the universe are explored.

  2. Cosmological cosmic strings

    NASA Technical Reports Server (NTRS)

    Gregory, Ruth

    1988-01-01

    The effect of an infinite cosmic string on a cosmological background is investigated. It is found that the metric is approximately a scaled version of the empty space string metric, i.e., conical in nature. Results are used to place bounds on the amount of cylindrical gravitational radiation currently emitted by such a string. The gravitational radiation equations are then analyzed explicitly and it is shown that even initially large disturbances are rapidly damped as the expansion proceeds. The implications of the gravitational radiation background and the limitations of the quadrupole formula are discussed.

  3. Development of a Menu Driven Materials Data Base for Use on Personal Computers

    DTIC Science & Technology

    1992-07-01

    written permission. Copyright Is the responsibility of the Director Publishing and Marketing , AGPS. Enquiries should be directed to the Manager, AGPS...PROGRAM LISTING A-2-1 Program MOB; uses crt; label levell,level2,level3,shutdown,dis;play; var options,code, nlines ,nmeflitemp,i,j4,k :integer; w,chl,ch2,ch3...char; menus :array [I. .1001 of st~ring[801; nline :array [l. .100] of integer; s2 :string[21; control :string[4]; aline :string[801; inm,iflt :text

  4. Geometry, topology, and string theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varadarajan, Uday

    A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.

  5. Lithium-ion battery diagnostic and prognostic techniques

    DOEpatents

    Singh, Harmohan N.

    2009-11-03

    Embodiments provide a method and a system for determining cell imbalance condition of a multi-cell battery including a plurality of cell strings. To determine a cell imbalance condition, a charge current is applied to the battery and is monitored during charging. The charging time for each cell string is determined based on the monitor of the charge current. A charge time difference of any two cell strings in the battery is used to determine the cell imbalance condition by comparing with a predetermined acceptable charge time difference for the cell strings.

  6. LETTER TO THE EDITOR: A disintegrating cosmic string

    NASA Astrophysics Data System (ADS)

    Griffiths, J. B.; Docherty, P.

    2002-06-01

    We present a simple sandwich gravitational wave of the Robinson-Trautman family. This is interpreted as representing a shock wave with a spherical wavefront which propagates into a Minkowski background minus a wedge (i.e. the background contains a cosmic string). The deficit angle (the tension) of the string decreases through the gravitational wave, which then ceases. This leaves an expanding spherical region of Minkowski space behind it. The decay of the cosmic string over a finite interval of retarded time may be considered to generate the gravitational wave.

  7. Fourier analysis of a vibrating string through a low-cost experimental setup and a smartphone

    NASA Astrophysics Data System (ADS)

    Pereyra, C. J.; Osorio, M.; Laguarda, A.; Gau, D. L.

    2018-07-01

    In this work we present a simple and low-cost setup to illustrate the dependence of the behaviour of a standing wave in a guitar string with the initial conditions. To do so, we impose two kinds of initial conditions; in the first instance, the initial shape of the string is varied. Secondly, different nodes are imposed on the string. This dependence was studied using the Fourier analysis of the sound produced by the vibration of the string with a smartphone. The simplicity of the proposed activity makes it suitable to be implemented in any classroom to illustrate the concept of normal modes and as an example of Fourier series in a real system that is also familiar for the students.

  8. Mechanism of the Cassie-Wenzel transition via the atomistic and continuum string methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giacomello, Alberto, E-mail: alberto.giacomello@uniroma1.it; Casciola, Carlo Massimo; Meloni, Simone, E-mail: simone.meloni@epfl.ch

    2015-03-14

    The string method is a general and flexible strategy to compute the most probable transition path for an activated process (rare event). We apply here the atomistic string method in the density field to the Cassie-Wenzel transition, a central problem in the field of superhydrophobicity. We discuss in detail the mechanism of wetting of a submerged hydrophobic cavity of nanometer size and its dependence on the geometry of the cavity. Furthermore, we analyze the algorithmic analogies between the continuum “interface” string method and CREaM [Giacomello et al., Phys. Rev. Lett. 109, 226102 (2012)], a method inspired by the string thatmore » allows for a faster and simpler computation of the mechanism and of the free-energy profiles of the wetting process.« less

  9. Expertise of using striking techniques for power stroke in badminton.

    PubMed

    Zhu, Qin

    2013-10-01

    Two striking techniques (fast swing and angled striking) were examined to see if they allowed effective use of string tension for the power stroke in badminton. 12 participants (4 novices, 4 recreational, and 4 expert badminton players) were recorded by a fast-speed camera while striking a shuttlecock with racquets of 8 different string tensions. The peak speed of the shuttlecock, the racquet angle and the shuttlecock angle were analyzed. The results showed that expert players succeeded in using both striking techniques to overcome the constraint of string tension and produce a consistently superior stroke. Failure to use either striking technique resulted in inferior performance that was constrained by string tension. Expertise in badminton allows the necessary motor adjustments based on the affordance perception of the string tension.

  10. Eventful horizons: String theory in de Sitter and anti-de Sitter

    NASA Astrophysics Data System (ADS)

    Kleban, Matthew Benjamin

    String theory purports to be a theory of quantum gravity. As such, it should have much to say about the deep mysteries surrounding the very early stages of our universe. For this reason, although the theory is notoriously difficult to directly test, data from experimental cosmology may provide a way to probe the high energy physics of string theory. In the first part of this thesis, I will address the important issue of the testability of string theory using observations of the cosmic microwave background radiation. In the second part, I will study some formal difficulties that arise in attempting to understand string theory in de Sitter spacetime. In the third part, I will study the singularity of an eternal anti de Sitter Schwarzschild black hole, using the AdS/CFT correspondence.

  11. First LIGO search for gravitational wave bursts from cosmic (super)strings

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arain, M. A.; Araya, M.; Armandula, H.; Armor, P.; Aso, Y.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballmer, S.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barsotti, L.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Behnke, B.; Benacquista, M.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Bodiya, T. P.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brinkmann, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Brunet, G.; Bullington, A.; Buonanno, A.; Burmeister, O.; Byer, R. L.; Cadonati, L.; Camp, J. B.; Cannizzo, J.; Cannon, K. C.; Cao, J.; Cardenas, L.; Caride, S.; Castaldi, G.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Christensen, N.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cokelaer, T.; Colacino, C. N.; Conte, R.; Cook, D.; Corbitt, T. R. C.; Cornish, N.; Coward, D.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Danilishin, S. L.; Danzmann, K.; Daudert, B.; Davies, G.; Daw, E. J.; Debra, D.; Degallaix, J.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Drever, R. W. P.; Dueck, J.; Duke, I.; Dumas, J.-C.; Dwyer, J. G.; Echols, C.; Edgar, M.; Effler, A.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Faltas, Y.; Fan, Y.; Fazi, D.; Fehrmann, H.; Finn, L. S.; Flasch, K.; Foley, S.; Forrest, C.; Fotopoulos, N.; Franzen, A.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J. A.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grimaldi, F.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G. D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Hoyland, D.; Hughey, B.; Huttner, S. H.; Ingram, D. R.; Isogai, T.; Ito, M.; Ivanov, A.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khan, R.; Khazanov, E.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kozak, D.; Krishnan, B.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lei, H.; Lei, M.; Leindecker, N.; Leonor, I.; Li, C.; Lin, H.; Lindquist, P. E.; Littenberg, T. B.; Lockerbie, N. A.; Lodhia, D.; Longo, M.; Lormand, M.; Lu, P.; Lubiński, M.; Lucianetti, A.; Lück, H.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Mandel, I.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A.; Markowitz, J.; Maros, E.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McIntyre, G.; McKechan, D. J. A.; McKenzie, K.; Mehmet, M.; Melatos, A.; Melissinos, A. C.; Menéndez, D. F.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miller, J.; Minelli, J.; Mino, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohanty, S. D.; Mohapatra, S. R. P.; Moreno, G.; Morioka, T.; Mors, K.; Mossavi, K.; Mowlowry, C.; Mueller, G.; Müller-Ebhardt, H.; Muhammad, D.; Mukherjee, S.; Mukhopadhyay, H.; Mullavey, A.; Munch, J.; Murray, P. G.; Myers, E.; Myers, J.; Nash, T.; Nelson, J.; Newton, G.; Nishizawa, A.; Numata, K.; O'Dell, J.; O'Reilly, B.; O'Shaughnessy, R.; Ochsner, E.; Ogin, G. H.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pan, Y.; Pankow, C.; Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.; Perreca, A.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Postiglione, F.; Principe, M.; Prix, R.; Prokhorov, L.; Punken, O.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raics, Z.; Rainer, N.; Rakhmanov, M.; Raymond, V.; Reed, C. M.; Reed, T.; Rehbein, H.; Reid, S.; Reitze, D. H.; Riesen, R.; Riles, K.; Rivera, B.; Roberts, P.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Röver, C.; Rollins, J.; Romano, J. D.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Russell, P.; Ryan, K.; Sakata, S.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Savov, P.; Scanlan, M.; Schilling, R.; Schnabel, R.; Schofield, R.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Stein, A.; Stein, L. C.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A.; Stuver, A. L.; Summerscales, T. Z.; Sun, K.-X.; Sung, M.; Sutton, P. J.; Szokoly, G. P.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.; Ugolini, D.; Ulmen, J.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.; van den Broeck, C.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P.; Veltkamp, C.; Villar, A.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward, R. L.; Weidner, A.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Wilmut, I.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zur Mühlen, H.; Zweizig, J.; Robinet, F.

    2009-09-01

    We report on a matched-filter search for gravitational wave bursts from cosmic string cusps using LIGO data from the fourth science run (S4) which took place in February and March 2005. No gravitational waves were detected in 14.9 days of data from times when all three LIGO detectors were operating. We interpret the result in terms of a frequentist upper limit on the rate of gravitational wave bursts and use the limits on the rate to constrain the parameter space (string tension, reconnection probability, and loop sizes) of cosmic string models. Many grand unified theory-scale models (with string tension Gμ/c2≈10-6) can be ruled out at 90% confidence for reconnection probabilities p≤10-3 if loop sizes are set by gravitational back reaction.

  12. Second quantization of a covariant relativistic spacetime string in Steuckelberg-Horwitz-Piron theory

    NASA Astrophysics Data System (ADS)

    Suleymanov, Michael; Horwitz, Lawrence; Yahalom, Asher

    2017-06-01

    A relativistic 4D string is described in the framework of the covariant quantum theory first introduced by Stueckelberg [ Helv. Phys. Acta 14, 588 (1941)], and further developed by Horwitz and Piron [ Helv. Phys. Acta 46, 316 (1973)], and discussed at length in the book of Horwitz [Relativistic Quantum Mechanics, Springer (2015)]. We describe the space-time string using the solutions of relativistic harmonic oscillator [ J. Math. Phys. 30, 66 (1989)]. We first study the problem of the discrete string, both classically and quantum mechanically, and then turn to a study of the continuum limit, which contains a basically new formalism for the quantization of an extended system. The mass and energy spectrum are derived. Some comparison is made with known string models.

  13. Pinching parameters for open (super) strings

    NASA Astrophysics Data System (ADS)

    Playle, Sam; Sciuto, Stefano

    2018-02-01

    We present an approach to the parametrization of (super) Schottky space obtained by sewing together three-punctured discs with strips. Different cubic ribbon graphs classify distinct sets of pinching parameters; we show how they are mapped onto each other. The parametrization is particularly well-suited to describing the region within (super) moduli space where open bosonic or Neveu-Schwarz string propagators become very long and thin, which dominates the IR behaviour of string theories. We show how worldsheet objects such as the Green's function converge to graph theoretic objects such as the Symanzik polynomials in the α ' → 0 limit, allowing us to see how string theory reproduces the sum over Feynman graphs. The (super) string measure takes on a simple and elegant form when expressed in terms of these parameters.

  14. String-averaging incremental subgradients for constrained convex optimization with applications to reconstruction of tomographic images

    NASA Astrophysics Data System (ADS)

    Massambone de Oliveira, Rafael; Salomão Helou, Elias; Fontoura Costa, Eduardo

    2016-11-01

    We present a method for non-smooth convex minimization which is based on subgradient directions and string-averaging techniques. In this approach, the set of available data is split into sequences (strings) and a given iterate is processed independently along each string, possibly in parallel, by an incremental subgradient method (ISM). The end-points of all strings are averaged to form the next iterate. The method is useful to solve sparse and large-scale non-smooth convex optimization problems, such as those arising in tomographic imaging. A convergence analysis is provided under realistic, standard conditions. Numerical tests are performed in a tomographic image reconstruction application, showing good performance for the convergence speed when measured as the decrease ratio of the objective function, in comparison to classical ISM.

  15. Automated Solar Module Assembly Line

    NASA Technical Reports Server (NTRS)

    Bycer, M.

    1979-01-01

    The gathering of information that led to the design approach of the machine, and a summary of the findings in the areas of study along with a description of each station of the machine are discussed. The machine is a cell stringing and string applique machine which is flexible in design, capable of handling a variety of cells and assembling strings of cells which can then be placed in a matrix up to 4 ft x 2 ft. in series or parallel arrangement. The target machine cycle is to be 5 seconds per cell. This machine is primarily adapted to 100 MM round cells with one or two tabs between cells. It places finished strings of up to twelve cells in a matrix of up to six such strings arranged in series or in parallel.

  16. Interaction with a field: a simple integrable model with backreaction

    NASA Astrophysics Data System (ADS)

    Mouchet, Amaury

    2008-09-01

    The classical model of an oscillator linearly coupled to a string captures, for a low price in technique, many general features of more realistic models for describing a particle interacting with a field or an atom in an electromagnetic cavity. The scattering matrix and the asymptotic in and out-waves on the string can be computed exactly and the phenomenon of resonant scattering can be introduced in the simplest way. The dissipation induced by the coupling of the oscillator to the string can be studied completely. In the case of a d'Alembert string, the backreaction leads to an Abraham-Lorentz-Dirac-like equation. In the case of a Klein-Gordon string, one can see explicitly how radiation governs the (meta)stability of the (quasi)bounded mode.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmark, Troels; Orselli, Marta

    We match the Hagedorn/deconfinement temperature of planar N=4 super Yang-Mills (SYM) on RxS{sup 3} to the Hagedorn temperature of string theory on AdS{sub 5}xS{sup 5}. The match is done in a near-critical region where both gauge theory and string theory are weakly coupled. The near-critical region is near a point with zero temperature and critical chemical potential. On the gauge-theory side we are taking a decoupling limit found in Ref. 7 in which the physics of planar N=4 SYM is given exactly by the ferromagnetic XXX{sub 1/2} Heisenberg spin chain. We find moreover a general relation between the Hagedorn/deconfinement temperaturemore » and the thermodynamics of the Heisenberg spin chain and we use this to compute it in two distinct regimes. On the string-theory side, we identify the dual limit for which the string tension and string coupling go to zero. This limit is taken of string theory on a maximally supersymmetric pp-wave background with a flat direction, obtained from a Penrose limit of AdS{sub 5}xS{sup 5}. We compute the Hagedorn temperature of the string theory and find agreement with the Hagedorn/deconfinement temperature computed on the gauge-theory side.« less

  18. An Investigation into the Cognition Behind Spontaneous String Pulling in New Caledonian Crows

    PubMed Central

    Taylor, Alex H.; Medina, Felipe S.; Holzhaider, Jennifer C.; Hearne, Lindsay J.; Hunt, Gavin R.; Gray, Russell D.

    2010-01-01

    The ability of some bird species to pull up meat hung on a string is a famous example of spontaneous animal problem solving. The “insight” hypothesis claims that this complex behaviour is based on cognitive abilities such as mental scenario building and imagination. An operant conditioning account, in contrast, would claim that this spontaneity is due to each action in string pulling being reinforced by the meat moving closer and remaining closer to the bird on the perch. We presented experienced and naïve New Caledonian crows with a novel, visually restricted string-pulling problem that reduced the quality of visual feedback during string pulling. Experienced crows solved this problem with reduced efficiency and increased errors compared to their performance in standard string pulling. Naïve crows either failed or solved the problem by trial and error learning. However, when visual feedback was available via a mirror mounted next to the apparatus, two naïve crows were able to perform at the same level as the experienced group. Our results raise the possibility that spontaneous string pulling in New Caledonian crows may not be based on insight but on operant conditioning mediated by a perceptual-motor feedback cycle. PMID:20179759

  19. Method for compression of data using single pass LZSS and run-length encoding

    DOEpatents

    Berlin, G.J.

    1997-12-23

    A method used preferably with LZSS-based compression methods for compressing a stream of digital data is disclosed. The method uses a run-length encoding scheme especially suited for data strings of identical data bytes having large run-lengths, such as data representing scanned images. The method reads an input data stream to determine the length of the data strings. Longer data strings are then encoded in one of two ways depending on the length of the string. For data strings having run-lengths less than 18 bytes, a cleared offset and the actual run-length are written to an output buffer and then a run byte is written to the output buffer. For data strings of 18 bytes or longer, a set offset and an encoded run-length are written to the output buffer and then a run byte is written to the output buffer. The encoded run-length is written in two parts obtained by dividing the run length by a factor of 255. The first of two parts of the encoded run-length is the quotient; the second part is the remainder. Data bytes that are not part of data strings of sufficient length are written directly to the output buffer. 3 figs.

  20. 33 CFR 90.3 - Pushing vessel and vessel being pushed: Composite unit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... pushed: Composite unit. 90.3 Section 90.3 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... vessel being pushed: Composite unit. Rule 24(b) of the Inland Rules states that when a pushing vessel and a vessel being pushed ahead are rigidly connected in a composite unit, they are regarded as a power...

  1. 33 CFR 82.3 - Pushing vessel and vessel being pushed: Composite unit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... pushed: Composite unit. 82.3 Section 82.3 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... vessel being pushed: Composite unit. Rule 24(b) of the 72 COLREGS states that when a pushing vessel and a vessel being pushed ahead are rigidly connected in a composite unit, they are regarded as a power-driven...

  2. Scapular kinematics and muscle activities during pushing tasks.

    PubMed

    Huang, Chun-Kai; Siu, Ka-Chun; Lien, Hen-Yu; Lee, Yun-Ju; Lin, Yang-Hua

    2013-01-01

    Pushing tasks are functional activities of daily living. However, shoulder complaints exist among workers exposed to regular pushing conditions. It is crucial to investigate the control of shoulder girdles during pushing tasks. The objective of the study was to demonstrate scapular muscle activities and motions on the dominant side during pushing tasks and the relationship between scapular kinematics and muscle activities in different pushing conditions. Thirty healthy adults were recruited to push a four-wheel cart in six pushing conditions. The electromyographic signals of the upper trapezius (UT) and serratus anterior (SA) muscles were recorded. A video-based system was used for measuring the movement of the shoulder girdle and scapular kinematics. Differences in scapular kinematics and muscle activities due to the effects of handle heights and weights of the cart were analyzed using two-way ANOVA with repeated measures. The relationships between scapular kinematics and muscle activities were examined by Pearson's correlation coefficients. The changes in upper trapezius and serratus anterior muscle activities increased significantly with increased pushing weights in the one-step pushing phase. The UT/SA ratio on the dominant side decreases significantly with increased handle heights in the one-step pushing phase. The changes in upward rotation, lateral slide and elevation of the scapula decreased with increased pushing loads in the trunk-forward pushing phase. This study indicated that increased pushing loads result in decreased motions of upward rotation, lateral slide and elevation of the scapula; decreased handle heights result in relatively increased activities of the serratus anterior muscles during pushing tasks.

  3. The String Stability of a Trajectory-Based Interval Management Algorithm in the Midterm Airspace

    NASA Technical Reports Server (NTRS)

    Swieringa, Kurt A.

    2015-01-01

    NASA's first Air Traffic Management (ATM) Technology Demonstration (ATD-1) was created to facilitate the transition of mature ATM technologies from the laboratory to operational use. The technologies selected for demonstration are the Traffic Management Advisor with Terminal Metering (TMA-TM), which provides precise time-based scheduling in the terminal airspace; Controller Managed Spacing (CMS), which provides terminal controllers with decision support tools enabling precise schedule conformance; and Interval Management (IM), which consists of flight deck automation that enables aircraft to achieve or maintain a precise spacing interval behind a target aircraft. As the percentage of IM equipped aircraft increases, controllers may provide IM clearances to sequences, or strings, of IM-equipped aircraft. It is important for these strings to maintain stable performance. This paper describes an analytic analysis of the string stability of the latest version of NASA's IM algorithm and a fast-time simulation designed to characterize the string performance of the IM algorithm. The analytic analysis showed that the spacing algorithm has stable poles, indicating that a spacing error perturbation will be reduced as a function of string position. The fast-time simulation investigated IM operations at two airports using constraints associated with the midterm airspace, including limited information of the target aircraft's intended speed profile and limited information of the wind forecast on the target aircraft's route. The results of the fast-time simulation demonstrated that the performance of the spacing algorithm is acceptable for strings of moderate length; however, there is some degradation in IM performance as a function of string position.

  4. Landau quantization in the spinning cosmic string spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muniz, C.R., E-mail: celiomuniz@yahoo.com; Bezerra, V.B.; Cunha, M.S.

    2014-11-15

    We analyze the quantum phenomenon arising from the interaction of a spinless charged particle with a rotating cosmic string, under the action of a static and uniform magnetic field parallel to the string. We calculate the energy levels of the particle in the non-relativistic approach, showing how these energies depend on the parameters involved in the problem. In order to do this, we solve the time independent Schrödinger equation in the geometry of the spinning cosmic string, taking into account that the coupling between the rotation of the spacetime and the angular momentum of the particle is very weak, suchmore » that makes sense to apply the Schrödinger equation in a curved background whose metric has an off diagonal term which involves time and space. It is also assumed that the particle orbits sufficiently far from the boundary of the region of closed timelike curves which exist around this topological defect. Finally, we find the Landau levels of the particle in the presence of a spinning cosmic string endowed with internal structure, i.e., having a finite width and uniformly filled with both material and vacuum energies. - Highlights: • Solution of the wave equation characterizing the problem. • Energy levels of the particle in spacetime of the structureless string. • Expression for an analogous of the quadratic Zeeman effect. • Energy levels of the particle in spacetime of the string with internal structure. • Evidence of the string structure by the internal existence of the vacuum energy.« less

  5. The meaning behind observed pT regions at the LHC energies

    NASA Astrophysics Data System (ADS)

    Suleymanov, M.

    We argue that pT distribution data from the LHC on the invariant differential yield of the charged primary particles in pp collisions at s = 0.9TeV, 2.76TeV, 7TeV and in Pb-Pb collisions at sNN = 2.76TeV with six centrality bins contains several pT regions with special properties. These distributions were analyzed by fitting the data with exponential functions. We conclude that the regions reflect features of fragmentation and hadronization of partons through the string dynamics. The nuclear transparency results in negligible influence of the medium in the III region (pT > 17-20GeV/c), which has highest pT values. The effects and changes by the medium start to appear weakly in the II region (4-6GeV/c < pT < 17-20GeV/c) and become stronger in the I region (pT < 4-6GeV/c). It seems that the II region has highest number of strings. The increase in string density in this region could lead to fusion of strings, appearance of a new string and collective behavior of the partons in the most central collisions. These phenomena can explain anomalous behavior of the Nuclear Modification Factor in the II region. We propose the II region as a possible area of Quark Gluon Plasma formation through string fusion. The first pT regions are the ones with the maximum number of hadrons and minimum number of strings due to direct hadronization of the low energy strings into two quark systems-mesons.

  6. Natural frequencies, modeshapes and modal interactions for strings vibrating against an obstacle: Relevance to Sitar and Veena

    NASA Astrophysics Data System (ADS)

    Mandal, A. K.; Wahi, P.

    2015-03-01

    We study the vibration characteristics of a string with a smooth unilateral obstacle placed at one of the ends similar to the strings in musical instruments like sitar and veena. In particular, we explore the correlation between the string vibrations and some unique sound characteristics of these instruments like less inharmonicity in the frequencies, a large number of overtones and the presence of both frequency and amplitude modulations. At the obstacle, we have a moving boundary due to the wrapping of the string and an appropriate scaling of the spatial variable leads to a fixed boundary at the cost of introducing nonlinearity in the governing equation. Reduced order system of equations has been obtained by assuming a functional form for the string displacement which satisfies all the boundary conditions and gives the free length of the string in terms of the modal coordinates. To study the natural frequencies and mode-shapes, the nonlinear governing equation is linearized about the static configuration. The natural frequencies have been found to be harmonic and they depend on the shape of the obstacle through the effective free length of the string. Expressions have been obtained for the time-varying mode-shapes as well as the variation of the nodal points. Modal interactions due to coupling have been studied which show the appearance of higher overtones as well as amplitude modulations in our theoretical model akin to the experimental observations. All the obtained results have been verified with an alternate formulation based on the assumed mode method with polynomial shape functions.

  7. CMB temperature bispectrum induced by cosmic strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hindmarsh, Mark; Ringeval, Christophe; Suyama, Teruaki

    2009-10-15

    The cosmic microwave background (CMB) bispectrum of the temperature anisotropies induced by a network of cosmic strings is derived for small angular scales, under the assumption that the principal cause of temperature fluctuations is the Gott-Kaiser-Stebbins effect. We provide analytical expressions for all isosceles triangle configurations in Fourier space. Their overall amplitude is amplified as the inverse cube of the angle and diverges for flat triangles. The isosceles configurations generically lead to a negative bispectrum with a power-law decay l{sup -6} for large multipole l. However, collapsed triangles are found to be associated with a positive bispectrum whereas the squeezedmore » triangles still exhibit negative values. We then compare our analytical estimates to a direct computation of the bispectrum from a set of 300 statistically independent temperature maps obtained from Nambu-Goto cosmic string simulations in a Friedmann-Lemaitre-Robertson-Walker universe. We find good agreement for the overall amplitude, the power-law behavior, and the angle dependency of the various triangle configurations. At l{approx}500 the cosmic string Gott-Kaiser-Stebbins effect contributes approximately the same equilateral CMB bispectrum amplitude as an inflationary model with |f{sub NL}{sup loc}|{approx_equal}10{sup 3}, if the strings contribute about 10% of the temperature power spectrum at l=10. Current bounds on f{sub NL} are not derived using cosmic string bispectrum templates, and so our f{sub NL} estimate cannot be used to derive bounds on strings. However it does suggest that string bispectrum templates should be included in the search of CMB non-Gaussianities.« less

  8. Preserved hyperaemic response in (distal) string sign left internal mammary artery grafts.

    PubMed

    Hartman, Joost; Kelder, Hans; Ackerstaff, Rob; van Swieten, Henry; Vermeulen, Freddy; Bogers, Ad

    2007-02-01

    To correlate supraclavicular ultrasonography at rest and in hyperaemic response with angiographically patent and (distal) 'string sign' left internal mammary artery (LIMA) to left anterior descending (LAD) area grafts. Fifty-three patients with LIMA to LAD area grafting were prospectively entered in a follow-up study. Arteriography (native and LIMA) was performed at 1.4+/-0.8 years postoperatively and ultrasonography was performed at rest, in hyperaemic response and 2min after hyperaemic response at 1.8+/-0.8 years postoperatively and was compared to arteriography. Ultrasonographic parameters analysed were systolic and diastolic peak velocity, systolic and diastolic velocity integral, diastolic/systolic peak velocity ratio and diastolic/total velocity integral ratio. One patient was excluded because obesity hampered ultrasonography. Arteriography demonstrated functional grafts in 43 patients (group I), sequential distal 'string sign grafts' in 4 patients (group II) and total 'string sign grafts' in 5 patients (group III). Between the groups all ultrasonographic velocities showed a significant linear relation (p

  9. Gravitational waves and cosmic strings

    NASA Astrophysics Data System (ADS)

    Siemens, Xavier

    2002-08-01

    Cosmic strings are potential candidates for a variety of interesting cosmological phenomena such as gamma ray bursts, gravitational wave bursts and ultra high energy cosmic rays. The predictions of cosmic string models, however, depend sensitively on the so far unresolved question of the size of the small-scale structure. This thesis deals largely with this problem. First, I present a gravitational back-reaction model that assumes the interaction between all Fourier modes that make up a given perturbation on a long cosmic string. This calculation leads to the generally accepted value of the small scale structure cutoff. It also, however, leads to paradoxical behaviour when applied to two oppositely moving modes: As one of the modes is stretched conformally the gravitational power radiated approaches a constant. This result is in contradiction with our expectation for the straight string limit in which no power is radiated. A more careful investigation of this problem reveals that, in the case of two oppositely moving modes, the gravitational power is exponentially suppressed when the wavelengths of the modes are sufficiently different. I use this result to construct an improved gravitational back-reaction model in which modes of very different wavelengths do not interact. This model leads to a new small scale structure cutoff which is sensitive to the initial spectrum of perturbations present on the string. I also tentatively examine the consequences of this result for the evolution of cosmic string loops. Finally, I investigate the effect of the presence of small scale structure on the gravitational wave-bursts produced at cosmic string cusps.

  10. Resonant acoustic transducer system for a well drilling string

    DOEpatents

    Nardi, Anthony P.

    1981-01-01

    For use in transmitting acoustic waves propated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting a resonant operation in the desired low frequency range.

  11. Resonant acoustic transducer system for a well drilling string

    DOEpatents

    Kent, William H.; Mitchell, Peter G.

    1981-01-01

    For use in transmitting acoustic waves propagated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting resonant operation in the desired low frequency range.

  12. A Qualitative Exploration of Higher Self-Efficacy String Students Preparing for a Competition

    ERIC Educational Resources Information Center

    Clark, Jennifer Cahill

    2013-01-01

    This study examined and qualitatively described the music practice behaviors, strategies, and thoughts of four high school string students who indicated a high string playing self-efficacy. Concepts of practice, motivation, achievement, and self-efficacy were linked together to analyze tendencies and summarize strategies. These students were…

  13. Collaborative Composing in High School String Chamber Music Ensembles

    ERIC Educational Resources Information Center

    Hopkins, Michael T.

    2015-01-01

    The purpose of this study was to examine collaborative composing in high school string chamber music ensembles. Research questions included the following: (a) How do high school string instrumentalists in chamber music ensembles use verbal and musical forms of communication to collaboratively compose a piece of music? (b) How do selected variables…

  14. Mathematical String Sculptures: A Case Study in Computationally-Enhanced Mathematical Crafts

    ERIC Educational Resources Information Center

    Eisenberg, Michael

    2007-01-01

    Mathematical string sculptures constitute an extremely beautiful realm of mathematical crafts. This snapshot begins with a description of a marvelous (and no longer manufactured) toy called Space Spider, which provided a framework with which children could experiment with string sculptures. Using a computer-controlled laser cutter to create frames…

  15. Lean and Efficient Software: Whole Program Optimization of Executables

    DTIC Science & Technology

    2016-12-31

    format string “ baked in”? (If multiple printf calls pass the same format string, they could share the same new function.) This leads to the...format string becomes baked into the target function.  Moving down: o Moving from the first row to the second makes any potential user control of the

  16. 40 CFR 147.1955 - Requirements for wells authorized by permit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (ii) Cemented back to the surface by recirculating the cement; and (2) Long string casing and tubing... volume. (3) For new enhanced recovery wells, install tubing or long string casing extending to the injection zone. (4) For new salt water disposal wells, install long string casing and tubing extending to...

  17. std::string Append

    DTIC Science & Technology

    2015-10-01

    UNCLASSIFIED AD-E403 689 Technical Report ARWSE-TR-14026 STD::STRING APPEND Tom Nealis...DATES COVERED (From – To) 4. TITLE AND SUBTITLE STD::STRING APPEND 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Appending

  18. Cosmic strings and the large-scale structure

    NASA Technical Reports Server (NTRS)

    Stebbins, Albert

    1988-01-01

    A possible problem for cosmic string models of galaxy formation is presented. If very large voids are common and if loop fragmentation is not much more efficient than presently believed, then it may be impossible for string scenarios to produce the observed large-scale structure with Omega sub 0 = 1 and without strong environmental biasing.

  19. The Careers of Three Experienced String Teachers: Some Observations

    ERIC Educational Resources Information Center

    Ha, Joy

    2017-01-01

    The purpose of this study was to explore the career development process of three experienced string instrument teachers and how they understood their career development. The following questions guided this interpretative phenomenological case study: (a) How do the string teachers in this study learn to teach? (b) What sort of phases are involved…

  20. Using 4th order Runge-Kutta method for solving a twisted Skyrme string equation

    NASA Astrophysics Data System (ADS)

    Hadi, Miftachul; Anderson, Malcolm; Husein, Andri

    2016-03-01

    We study numerical solution, especially using 4th order Runge-Kutta method, for solving a twisted Skyrme string equation. We find numerically that the value of minimum energy per unit length of vortex solution for a twisted Skyrmion string is 20.37 × 1060 eV/m.

  1. Quantum space foam and string theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nekrasov, Nikita

    2006-11-03

    String theory is originally defined as a modification of the Feynman rules in perturbation theory. It contains gravity in its perturbative spectrum. We review some recent developments which demonstrate that nonperturbative effects of quantum gravity, such as spacetime foam, arise in string theory as well.Prepared for the proceedings of 'Albert Einstein Century Conference' , Paris July 2005.

  2. Windings of twisted strings

    NASA Astrophysics Data System (ADS)

    Casali, Eduardo; Tourkine, Piotr

    2018-03-01

    Twistor string models have been known for more than a decade now but have come back under the spotlight recently with the advent of the scattering equation formalism which has greatly generalized the scope of these models. A striking ubiquitous feature of these models has always been that, contrary to usual string theory, they do not admit vibrational modes and thus describe only conventional field theory. In this paper we report on the surprising discovery of a whole new sector of one of these theories which we call "twisted strings," when spacetime has compact directions. We find that the spectrum is enhanced from a finite number of states to an infinite number of interacting higher spin massive states. We describe both bosonic and world sheet supersymmetric models, their spectra and scattering amplitudes. These models have distinctive features of both string and field theory, for example they are invariant under stringy T-duality but have the high energy behavior typical of field theory. Therefore they describe a new kind of field theories in target space, sitting on their own halfway between string and field theory.

  3. Force and torque of a string on a pulley

    NASA Astrophysics Data System (ADS)

    de Oliveira, Thiago R.; Lemos, Nivaldo A.

    2018-04-01

    Every university introductory physics course considers the problem of Atwood's machine taking into account the mass of the pulley. In the usual treatment, the tensions at the two ends of the string are offhandedly taken to act on the pulley and be responsible for its rotation. However, such a free-body diagram of the forces on the pulley is not a priori justified, inducing students to construct wrong hypotheses such as that the string transfers its tension to the pulley or that some symmetry is in operation. We reexamine this problem by integrating the contact forces between each element of the string and the pulley and show that although the pulley does behave as if the tensions were acting on its ends, this comes only as the final result of a detailed analysis. We also address the question of how much friction is needed to prevent the string from slipping over the pulley. Finally, we deal with the case in which the string is on the verge of sliding and show that this cannot happen unless certain conditions are met by the coefficient of static friction and the masses involved.

  4. On the BV formalism of open superstring field theory in the large Hilbert space

    NASA Astrophysics Data System (ADS)

    Matsunaga, Hiroaki; Nomura, Mitsuru

    2018-05-01

    We construct several BV master actions for open superstring field theory in the large Hilbert space. First, we show that a naive use of the conventional BV approach breaks down at the third order of the antifield number expansion, although it enables us to define a simple "string antibracket" taking the Darboux form as spacetime antibrackets. This fact implies that in the large Hilbert space, "string fields-antifields" should be reassembled to obtain master actions in a simple manner. We determine the assembly of the string anti-fields on the basis of Berkovits' constrained BV approach, and give solutions to the master equation defined by Dirac antibrackets on the constrained string field-antifield space. It is expected that partial gauge-fixing enables us to relate superstring field theories based on the large and small Hilbert spaces directly: reassembling string fields-antifields is rather natural from this point of view. Finally, inspired by these results, we revisit the conventional BV approach and construct a BV master action based on the minimal set of string fields-antifields.

  5. Second order perturbations of a macroscopic string: Covariant approach

    NASA Astrophysics Data System (ADS)

    Larsen, A. L.; Nicolaidis, A.

    2001-06-01

    Using a world-sheet covariant formalism, we derive the equations of motion for second order perturbations of a generic macroscopic string, thus generalizing previous results for first order perturbations. We give the explicit results for the first and second order perturbations of a contracting near-circular string; these results are relevant for the understanding of the possible outcome when a cosmic string contracts under its own tension, as discussed in a series of papers by Vilenkin and Garriga. In particular, second order perturbations are necessary for a consistent computation of the energy. We also quantize the perturbations and derive the mass formula up to second order in perturbations for an observer using world-sheet time τ. The high frequency modes give the standard Minkowski result while, interestingly enough, the Hamiltonian turns out to be nondiagonal in oscillators for low-frequency modes. Using an alternative definition of the vacuum, it is possible to diagonalize the Hamiltonian, and the standard string mass spectrum appears for all frequencies. We finally discuss how our results are also relevant for the problems concerning string-spreading near a black hole horizon, as originally discussed by Susskind.

  6. Democratic Superstring Field Theory and Its Gauge Fixing

    NASA Astrophysics Data System (ADS)

    Kroyter, M.

    This work is my contribution to the proceedings of the conference``SFT2010 -- the third international conference on string field theory and related topics'' and it reflects my talk there, which described the democratic string field theory and its gauge fixing. The democratic string field theory is the only fully RNS string field theory to date. It lives in the large Hilbert space and includes all picture numbers. Picture changing amounts in this formalism to a gauge transformation. We describe the theory and its properties and show that when partially gauge fixed it can be reduced to the modified theory and to the non-polynomial theory. In the latter case we can even include the Ramond sector in the picture-fixed action. We also show that another partial gauge-fixing leads to a new consistent string field theory at picture number -1.

  7. Distributed downhole drilling network

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Fox, Joe; Pixton, David S.

    2006-11-21

    A high-speed downhole network providing real-time data from downhole components of a drilling strings includes a bottom-hole node interfacing to a bottom-hole assembly located proximate the bottom end of a drill string. A top-hole node is connected proximate the top end of the drill string. One or several intermediate nodes are located along the drill string between the bottom-hole node and the top-hole node. The intermediate nodes are configured to receive and transmit data packets transmitted between the bottom-hole node and the top-hole node. A communications link, integrated into the drill string, is used to operably connect the bottom-hole node, the intermediate nodes, and the top-hole node. In selected embodiments, a personal or other computer may be connected to the top-hole node, to analyze data received from the intermediate and bottom-hole nodes.

  8. Did BICEP2 see vector modes? First B-mode constraints on cosmic defects.

    PubMed

    Moss, Adam; Pogosian, Levon

    2014-05-02

    Scaling networks of cosmic defects, such as strings and textures, actively generate scalar, vector, and tensor metric perturbations throughout the history of the Universe. In particular, vector modes sourced by defects are an efficient source of the cosmic microwave background B-mode polarization. We use the recently released BICEP2 and POLARBEAR B-mode polarization spectra to constrain properties of a wide range of different types of cosmic strings networks. We find that in order for strings to provide a satisfactory fit on their own, the effective interstring distance needs to be extremely large--spectra that fit the data best are more representative of global strings and textures. When a local string contribution is considered together with the inflationary B-mode spectrum, the fit is improved. We discuss implications of these results for theories that predict cosmic defects.

  9. Manual handling: differences in perceived effort, success rate and kinematics between three different pushing techniques.

    PubMed

    Varcin, Lynn; Claus, Andrew; van den Hoorn, Wolbert; Hodges, Paul

    2015-01-01

    This study examined the perceived effort, success rates and kinematics for three push strategies in a simulated lateral patient transfer (horizontal slide). Thirteen healthy subjects (four males) completed three repetition pushing loads of 6, 10 and 14 kg in random order; with a spontaneous push strategy, then with a straight-back bent-knees (squat) strategy and the preparatory pelvic movement ('rockback') strategy in random order. Perceived effort and kinematic parameters measured at the onset of movement and at maximum push excursion were compared between strategies and between loads with repeated measures ANOVA. The spontaneous and 'rockback' strategies achieved the pushing task with less perceived effort across all loads than the squat push (P < 0.001). Only 3/13 participants were successful on all attempts at pushing the 14 kg load using a squat strategy, which contrasted with 12/13 participants when the spontaneous strategy or the 'rockback' strategy was used. Forward movement of the pelvis and forward trunk inclination may be positively associated with lower perceived effort in the push task. Practitioner Summary: In a manual-handling task that simulated a lateral patient transfer (horizontal slide), perceived effort and success rates of three push strategies were compared. A straight-back bent-knees push (squat) strategy demonstrated greater perceived effort and lower success rates than a spontaneous push strategy, or a push strategy with preparatory 'rockback' pelvic movement.

  10. Contribution of limb momentum to power transfer in athletic wheelchair pushing.

    PubMed

    Masson, G; Bégin, M-A; Lopez Poncelas, M; Pelletier, S-K; Lessard, J-L; Laroche, J; Berrigan, F; Langelier, E; Smeesters, C; Rancourt, D

    2016-09-06

    Pushing capacity is a key parameter in athletic racing wheelchair performance. This study estimated the potential contribution of upper limb momentum to pushing. The question is relevant since it may affect the training strategy adopted by an athlete. A muscle-free Lagrangian dynamic model of the upper limb segments was developed and theoretical predictions of power transfer to the wheelchair were computed during the push phase. Results show that limb momentum capacity for pushing can be in the order of 40J per push cycle at 10m/s, but it varies with the specific pushing range chosen by the athlete. Although use of momentum could certainly help an athlete improve performance, quantifying the actual contribution of limb momentum to pushing is not trivial. A preliminary experimental investigation on an ergometer, along with a simplified model of the upper limb, suggests that momentum is not the sole contributor to power transfer to a wheelchair. Muscles substantially contribute to pushing, even at high speeds. Moreover, an optimal pushing range is challenging to find since it most likely differs if an athlete chooses a limb momentum pushing strategy versus a muscular exertion pushing strategy, or both at the same time. The study emphasizes the importance of controlling pushing range, although one should optimize it while also taking the dynamics of the recovery period into account. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Effects of pushing techniques during the second stage of labor: A randomized controlled trial.

    PubMed

    Koyucu, Refika Genç; Demirci, Nurdan

    2017-10-01

    Spontaneous pushing is a method that is used in the management of the second stage of labor and suggested to be more physiological for the mother and infant. The present study aims to evaluate the effects of pushing techniques on the mother and newborn. This randomized prospective study was performed between June 2013-March 2014 in a tertiary maternity clinic in Istanbul. 80 low risk, nulliparous cases were randomized to pushing groups. Valsalva pushing group was told to hold their breath while pushing. No visual-verbal instructions were given to spontaneous pushing group and they were encouraged to push without preventing respiration. Demographic data, second stage period, perineal laceration rates, fetal heart rate patterns, presence of meconium stained amniotic liquid, newborn APGAR scores, POP-Q examination and Q-tip test results were evaluated in these cases. The second stage of labor was significantly longer with spontaneous pushing. Decrease in Hb levels in valsalva pushing group was determined to be higher than spontaneous pushing group. An increased urethral mobility was observed in valsalva pushing group. Although the duration of the second stage of labor was longer compared to valsalva pushing technique, women were able to give birth without requiring any verbal or visual instruction, without exceeding the limit value of two hours and without affecting fetal wellness and neonatal results. Copyright © 2017. Published by Elsevier B.V.

  12. CONSTRAINING THE STRING GAUGE FIELD BY GALAXY ROTATION CURVES AND PERIHELION PRECESSION OF PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Yeuk-Kwan E.; Xu Feng, E-mail: cheung@nju.edu.cn

    2013-09-01

    We discuss a cosmological model in which the string gauge field coupled universally to matter gives rise to an extra centripetal force and will have observable signatures on cosmological and astronomical observations. Several tests are performed using data including galaxy rotation curves of 22 spiral galaxies of varied luminosities and sizes and perihelion precessions of planets in the solar system. The rotation curves of the same group of galaxies are independently fit using a dark matter model with the generalized Navarro-Frenk-White (NFW) profile and the string model. A remarkable fit of galaxy rotation curves is achieved using the one-parameter stringmore » model as compared to the three-parameter dark matter model with the NFW profile. The average {chi}{sup 2} value of the NFW fit is 9% better than that of the string model at a price of two more free parameters. Furthermore, from the string model, we can give a dynamical explanation for the phenomenological Tully-Fisher relation. We are able to derive a relation between field strength, galaxy size, and luminosity, which can be verified with data from the 22 galaxies. To further test the hypothesis of the universal existence of the string gauge field, we apply our string model to the solar system. Constraint on the magnitude of the string field in the solar system is deduced from the current ranges for any anomalous perihelion precession of planets allowed by the latest observations. The field distribution resembles a dipole field originating from the Sun. The string field strength deduced from the solar system observations is of a similar magnitude as the field strength needed to sustain the rotational speed of the Sun inside the Milky Way. This hypothesis can be tested further by future observations with higher precision.« less

  13. Non-Abelian string and particle braiding in topological order: Modular SL (3 ,Z ) representation and (3 +1 ) -dimensional twisted gauge theory

    NASA Astrophysics Data System (ADS)

    Wang, Juven C.; Wen, Xiao-Gang

    2015-01-01

    String and particle braiding statistics are examined in a class of topological orders described by discrete gauge theories with a gauge group G and a 4-cocycle twist ω4 of G 's cohomology group H4(G ,R /Z ) in three-dimensional space and one-dimensional time (3 +1 D ) . We establish the topological spin and the spin-statistics relation for the closed strings and their multistring braiding statistics. The 3 +1 D twisted gauge theory can be characterized by a representation of a modular transformation group, SL (3 ,Z ) . We express the SL (3 ,Z ) generators Sx y z and Tx y in terms of the gauge group G and the 4-cocycle ω4. As we compactify one of the spatial directions z into a compact circle with a gauge flux b inserted, we can use the generators Sx y and Tx y of an SL (2 ,Z ) subgroup to study the dimensional reduction of the 3D topological order C3 D to a direct sum of degenerate states of 2D topological orders Cb2 D in different flux b sectors: C3 D=⊕bCb2 D . The 2D topological orders Cb2 D are described by 2D gauge theories of the group G twisted by the 3-cocycle ω3 (b ), dimensionally reduced from the 4-cocycle ω4. We show that the SL (2 ,Z ) generators, Sx y and Tx y, fully encode a particular type of three-string braiding statistics with a pattern that is the connected sum of two Hopf links. With certain 4-cocycle twists, we discover that, by threading a third string through two-string unlink into a three-string Hopf-link configuration, Abelian two-string braiding statistics is promoted to non-Abelian three-string braiding statistics.

  14. Control rod driveline and grapple

    DOEpatents

    Germer, John H.

    1987-01-01

    A control rod driveline and grapple is disclosed for placement between a control rod drive and a nuclear reactor control rod containing poison for parasitic neutron absorption required for reactor shutdown. The control rod is provided with an enlarged cylindrical handle which terminates in an upwardly extending rod to provide a grapple point for the driveline. The grapple mechanism includes a tension rod which receives the upwardly extending handle and is provided with a lower annular flange. A plurality of preferably six grapple segments surround and grip the control rod handle. Each grapple rod segment grips the flange on the tension rod at an interior upper annular indentation, bears against the enlarged cylindrical handle at an intermediate annulus and captures the upwardly flaring frustum shaped handle at a lower and complementary female segment. The tension rods and grapple segments are surrounded by and encased within a cylinder. The cylinder terminates immediately and outward extending annulus at the lower portion of the grapple segments. Excursion of the tension rod relative to the encasing cylinder causes rod release at the handle by permitting the grapple segments to pivot outwardly and about the annulus on the tension rod so as to open the lower defined frustum shaped annulus and drop the rod. Relative movement between the tension rod and cylinder can occur either due to electromagnetic release of the tension rod within defined limits of travel or differential thermal expansion as between the tension rod and cylinder as where the reactor exceeds design thermal limits.

  15. Cosmic string lensing and closed timelike curves

    NASA Astrophysics Data System (ADS)

    Shlaer, Benjamin; Tye, S.-H. Henry

    2005-08-01

    In an analysis of the gravitational lensing by two relativistic cosmic strings, we argue that the formation of closed timelike curves proposed by Gott is unstable in the presence of particles (e.g. the cosmic microwave background radiation). Because of the attractorlike behavior of the closed timelike curve, we argue that this instability is very generic. A single graviton or photon in the vicinity, no matter how soft, is sufficient to bend the strings and prevent the formation of closed timelike curves. We also show that the gravitational lensing due to a moving cosmic string is enhanced by its motion, not suppressed.

  16. Improved Tennis Racquets Have Tapered Strings

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1995-01-01

    Design concept for better performing tennis racquet. Essence of concept to taper strings in such way as to shift center of percussion (also called "sweet spot") toward the toe (outer end of racquet, farthest from player's hand). In addition to increasing power on serves, also improves player's control and feel of racquet in player's hand. Racquet less likely to twist in player's hand on off-center shots. Important element of better feel is better absorption of vibrations; especially for players having chronic arm problems. String material nylon, animal gut, or other naturally or artifically spun threads. String can be attached to conventional racquet frame.

  17. Interaction of solitons with a string of coupled quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Vijendra, E-mail: vsmedphysics@gmail.com; Swami, O. P., E-mail: omg1789@gmail.com; Nagar, A. K., E-mail: ajaya.nagar@gmail.com

    2016-05-06

    In this paper, we develop a theory for discrete solitons interaction with a string of coupled quantum dots in view of the local field effects. Discrete nonlinear Schrodinger (DNLS) equations are used to describe the dynamics of the string. Numerical calculations are carried out and results are analyzed with the help of matlab software. With the help of numerical solutions we demonstrate that in the quantum dots string, Rabi oscillations (RO) are self trapped into stable bright Rabi solitons. The Rabi oscillations in different types of nanostructures have potential applications to the elements of quantum logic and quantum memory.

  18. A hybrid metaheuristic for closest string problem.

    PubMed

    Mousavi, Sayyed Rasoul

    2011-01-01

    The Closest String Problem (CSP) is an optimisation problem, which is to obtain a string with the minimum distance from a number of given strings. In this paper, a new metaheuristic algorithm is investigated for the problem, whose main feature is relatively high speed in obtaining good solutions, which is essential when the input size is large. The proposed algorithm is compared with four recent algorithms suggested for the problem, outperforming them in more than 98% of the cases. It is also remarkably faster than all of them, running within 1 s in most of the experimental cases.

  19. Final Report: "Strings 2014"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witten, Edward

    2015-10-21

    The Strings 2014 meeting was held at Princeton University June 23-27, 2014, co-sponsored by Princeton University and the Institute for Advanced Study. The goal of the meeting was to provide a stimulating and up-to-date overview of research in string theory and its relations to other areas of physics and mathematics, ranging from geometry to quantum field theory, condensed matter physics, and more. This brief report lists committee members and speakers but contains no scientific information. Note that the talks at Strings 2014 were videotaped and are available on the conference website: http://physics.princeton.edustrings2014/Talk_titles.shtml.

  20. Note on tachyon moduli and closed strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carneiro da Cunha, Bruno

    2008-07-15

    The collective behavior of the SL(2,R) covariant brane states of noncritical c=1 string theory, found in a previous work, is studied in the Fermi liquid approximation. It is found that such states mimic the coset WZW model, whereas only by further restrictions one recovers the double-scaling limit which was purported to be equivalent to closed string models. Another limit is proposed, inspired by the tachyon condensation ideas, where the spectrum is the same of two-dimensional string theory. We close by noting some strange connections between vacuum states of the theory in their different interpretations.

  1. Dark solitons, D-branes and noncommutative tachyon field theory

    NASA Astrophysics Data System (ADS)

    Giaccari, Stefano; Nian, Jun

    2017-11-01

    In this paper we discuss the boson/vortex duality by mapping the (3+1)D Gross-Pitaevskii theory into an effective string theory in the presence of boundaries. Via the effective string theory, we find the Seiberg-Witten map between the commutative and the noncommutative tachyon field theories, and consequently identify their soliton solutions with D-branes in the effective string theory. We perform various checks of the duality map and the identification of soliton solutions. This new insight between the Gross-Pitaevskii theory and the effective string theory explains the similarity of these two systems at quantitative level.

  2. Near-point string: Simple method to demonstrate anticipated near point for multifocal and accommodating intraocular lenses.

    PubMed

    George, Monica C; Lazer, Zane P; George, David S

    2016-05-01

    We present a technique that uses a near-point string to demonstrate the anticipated near point of multifocal and accommodating intraocular lenses (IOLs). Beads are placed on the string at distances corresponding to the near points for diffractive and accommodating IOLs. The string is held up to the patient's eye to demonstrate where each of the IOLs is likely to provide the best near vision. None of the authors has a financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  3. Quark-antiquark potential in defect conformal field theory

    NASA Astrophysics Data System (ADS)

    Preti, Michelangelo; Trancanelli, Diego; Vescovi, Edoardo

    2017-10-01

    We consider antiparallel Wilson lines in N = 4 super Yang-Mills in the presence of a codimension-1 defect. We compute the Wilson lines' expectation value both at weak coupling, in the gauge theory, and at strong coupling, by finding the string configurations which are dual to this operator. These configurations display a Gross-Ooguri transition between a connected, U-shaped string phase and a phase in which the string breaks into two disconnected surfaces. We analyze in detail the critical configurations separating the two phases and compare the string result with the gauge theory one in a certain double scaling limit.

  4. Knowledge, Models and Tools in Support of Advanced Distance Learning

    DTIC Science & Technology

    2006-06-01

    including " Dodger Blue", "Indian Red", and "Light Slate Gray" as well as such conventional colors as "Blue" and "Yellow". Which color names are supported...Format String: 1 1 S I 1 1 3 Either one string or an array of 3 numbers Legal Params: (" Dodger Blue") ([0.0235, 0.38, 1.0]) Format String: * *l* Any number...specifying the values of the red, green, and blue components of the color) or a string that names a predefined color. E.g., makeColor (" Dodger Blue

  5. Exact solutions of the Schrödinger equation with a coulomb ring-shaped potential in the cosmic string spacetime

    NASA Astrophysics Data System (ADS)

    Wang, Zhi; Long, Zheng-wen; Long, Chao-yun; Teng, Jing

    2015-05-01

    We study the Schrödinger equation with a Coulomb ring-shaped potential in the spacetime of a cosmic string, and the solutions of the system are obtained by using the generalized parametric Nikiforov-Uvarov (NU) method. They show that the quantum dynamics of a physical system depend on the non-trivial topological features of the cosmic string spacetime and the energy levels of the considered quantum system depend explicitly on the angular deficit α which characterizes the global structure of the metric in the cosmic string spacetime.

  6. The influence of push-off timing in a robotic ankle-foot prosthesis on the energetics and mechanics of walking.

    PubMed

    Malcolm, Philippe; Quesada, Roberto E; Caputo, Joshua M; Collins, Steven H

    2015-02-22

    Robotic ankle-foot prostheses that provide net positive push-off work can reduce the metabolic rate of walking for individuals with amputation, but benefits might be sensitive to push-off timing. Simple walking models suggest that preemptive push-off reduces center-of-mass work, possibly reducing metabolic rate. Studies with bilateral exoskeletons have found that push-off beginning before leading leg contact minimizes metabolic rate, but timing was not varied independently from push-off work, and the effects of push-off timing on biomechanics were not measured. Most lower-limb amputations are unilateral, which could also affect optimal timing. The goal of this study was to vary the timing of positive prosthesis push-off work in isolation and measure the effects on energetics, mechanics and muscle activity. We tested 10 able-bodied participants walking on a treadmill at 1.25 m · s(-1). Participants wore a tethered ankle-foot prosthesis emulator on one leg using a rigid boot adapter. We programmed the prosthesis to apply torque bursts that began between 46% and 56% of stride in different conditions. We iteratively adjusted torque magnitude to maintain constant net positive push-off work. When push-off began at or after leading leg contact, metabolic rate was about 10% lower than in a condition with Spring-like prosthesis behavior. When push-off began before leading leg contact, metabolic rate was not different from the Spring-like condition. Early push-off led to increased prosthesis-side vastus medialis and biceps femoris activity during push-off and increased variability in step length and prosthesis loading during push-off. Prosthesis push-off timing had no influence on intact-side leg center-of-mass collision work. Prosthesis push-off timing, isolated from push-off work, strongly affected metabolic rate, with optimal timing at or after intact-side heel contact. Increased thigh muscle activation and increased human variability appear to have caused the lack of reduction in metabolic rate when push-off was provided too early. Optimal timing with respect to opposite heel contact was not different from normal walking, but the trends in metabolic rate and center-of-mass mechanics were not consistent with simple model predictions. Optimal push-off timing should also be characterized for individuals with amputation, since meaningful benefits might be realized with improved timing.

  7. Does delayed pushing in the second stage of labor impact perinatal outcomes?

    PubMed

    Frey, Heather A; Tuuli, Methodius G; Cortez, Sarah; Odibo, Anthony O; Roehl, Kimberly A; Shanks, Anthony L; Macones, George A; Cahill, Alison G

    2012-11-01

    To estimate maternal, neonatal, and labor outcomes associated with delayed pushing. A retrospective cohort study of all consecutive women admitted to a single institution in labor at term who reached the second stage of labor. Pregnancies with multiple fetuses or major anomalies were excluded. Delayed pushing was defined as initiation of pushing ≥60 minutes after complete dilatation. Primary outcome was mode of delivery. Multivariable logistic regression was used to control for confounding. Of the 5290 women who met inclusion criteria, 471 (8.9%) employed delayed pushing, and 4819 (91.1%) pushed immediately. Delayed pushing was associated with increased rates of cesarean, operative vaginal delivery, maternal fever, and lower arterial cord pH. Duration of the second stage and length of time spent pushing were significantly longer with delayed pushing. Delayed pushing is associated with lower rates of spontaneous vaginal delivery and increased adverse maternal and neonatal outcomes. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  8. An improved cooperative adaptive cruise control (CACC) algorithm considering invalid communication

    NASA Astrophysics Data System (ADS)

    Wang, Pangwei; Wang, Yunpeng; Yu, Guizhen; Tang, Tieqiao

    2014-05-01

    For the Cooperative Adaptive Cruise Control (CACC) Algorithm, existing research studies mainly focus on how inter-vehicle communication can be used to develop CACC controller, the influence of the communication delays and lags of the actuators to the string stability. However, whether the string stability can be guaranteed when inter-vehicle communication is invalid partially has hardly been considered. This paper presents an improved CACC algorithm based on the sliding mode control theory and analyses the range of CACC controller parameters to maintain string stability. A dynamic model of vehicle spacing deviation in a platoon is then established, and the string stability conditions under improved CACC are analyzed. Unlike the traditional CACC algorithms, the proposed algorithm can ensure the functionality of the CACC system even if inter-vehicle communication is partially invalid. Finally, this paper establishes a platoon of five vehicles to simulate the improved CACC algorithm in MATLAB/Simulink, and the simulation results demonstrate that the improved CACC algorithm can maintain the string stability of a CACC platoon through adjusting the controller parameters and enlarging the spacing to prevent accidents. With guaranteed string stability, the proposed CACC algorithm can prevent oscillation of vehicle spacing and reduce chain collision accidents under real-world circumstances. This research proposes an improved CACC algorithm, which can guarantee the string stability when inter-vehicle communication is invalid.

  9. Merging of multi-string BWTs with applications

    PubMed Central

    Holt, James; McMillan, Leonard

    2014-01-01

    Motivation: The throughput of genomic sequencing has increased to the point that is overrunning the rate of downstream analysis. This, along with the desire to revisit old data, has led to a situation where large quantities of raw, and nearly impenetrable, sequence data are rapidly filling the hard drives of modern biology labs. These datasets can be compressed via a multi-string variant of the Burrows–Wheeler Transform (BWT), which provides the side benefit of searches for arbitrary k-mers within the raw data as well as the ability to reconstitute arbitrary reads as needed. We propose a method for merging such datasets for both increased compression and downstream analysis. Results: We present a novel algorithm that merges multi-string BWTs in O(LCS×N) time where LCS is the length of their longest common substring between any of the inputs, and N is the total length of all inputs combined (number of symbols) using O(N×log2(F)) bits where F is the number of multi-string BWTs merged. This merged multi-string BWT is also shown to have a higher compressibility compared with the input multi-string BWTs separately. Additionally, we explore some uses of a merged multi-string BWT for bioinformatics applications. Availability and implementation: The MSBWT package is available through PyPI with source code located at https://code.google.com/p/msbwt/. Contact: holtjma@cs.unc.edu PMID:25172922

  10. Higher winding strings and confined monopoles in N=2 supersymmetric QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auzzi, R.; Bolognesi, S.; Shifman, M.

    2010-04-15

    We consider composite string solutions in N=2 SQCD with the gauge group U(N), the Fayet-Iliopoulos term {xi}{ne}0 and N (s)quark flavors. These bulk theories support non-Abelian strings and confined monopoles identified with kinks in the two-dimensional world-sheet theory. Similar and more complicated kinks (corresponding to composite confined monopoles) must exist in the world-sheet theories on composite strings. In a bid to detect them we analyze the Hanany-Tong (HT) model, focusing on a particular example of N=2. Unequal quark mass terms in the bulk theory result in the twisted masses in the N=(2,2) HT model. For spatially coinciding 2-strings, we findmore » three distinct minima of potential energy, corresponding to three different 2-strings. Then we find BPS-saturated kinks interpolating between each pair of vacua. Two kinks can be called elementary. They emanate one unit of the magnetic flux and have the same mass as the conventional 't Hooft-Polyakov monopole on the Coulomb branch of the bulk theory ({xi}=0). The third kink represents a composite bimonopole, with twice the minimal magnetic flux. Its mass is twice the mass of the elementary confined monopole. We find instantons in the HT model, and discuss quantum effects in composite strings at strong coupling. In addition, we study the renormalization group flow in this model.« less

  11. Dynamics of cosmic strings with higher-dimensional windings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamauchi, Daisuke; Lake, Matthew J.; Thailand Center of Excellence in Physics, Ministry of Education,Bangkok 10400

    2015-06-11

    We consider F-strings with arbitrary configurations in the Minkowski directions of a higher-dimensional spacetime, which also wrap and spin around S{sup 1} subcycles of constant radius in an arbitrary internal manifold, and determine the relation between the higher-dimensional and the effective four-dimensional quantities that govern the string dynamics. We show that, for any such configuration, the motion of the windings in the compact space may render the string effectively tensionless from a four-dimensional perspective, so that it remains static with respect to the large dimensions. Such a critical configuration occurs when (locally) exactly half the square of the string lengthmore » lies in the large dimensions and half lies in the compact space. The critical solution is then seen to arise as a special case, in which the wavelength of the windings is equal to their circumference. As examples, long straight strings and circular loops are considered in detail, and the solutions to the equations of motion that satisfy the tensionless condition are presented. These solutions are then generalized to planar loops and arbitrary three-dimensional configurations. Under the process of dimensional reduction, in which higher-dimensional motion is equivalent to an effective worldsheet current (giving rise to a conserved charge), this phenomenon may be seen as the analogue of the tensionless condition which arises for superconducting and chiral-current carrying cosmic strings.« less

  12. Dynamics of cosmic strings with higher-dimensional windings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamauchi, Daisuke; Lake, Matthew J., E-mail: yamauchi@resceu.s.u-tokyo.ac.jp, E-mail: matthewj@nu.ac.th

    2015-06-01

    We consider F-strings with arbitrary configurations in the Minkowski directions of a higher-dimensional spacetime, which also wrap and spin around S{sup 1} subcycles of constant radius in an arbitrary internal manifold, and determine the relation between the higher-dimensional and the effective four-dimensional quantities that govern the string dynamics. We show that, for any such configuration, the motion of the windings in the compact space may render the string effectively tensionless from a four-dimensional perspective, so that it remains static with respect to the large dimensions. Such a critical configuration occurs when (locally) exactly half the square of the string lengthmore » lies in the large dimensions and half lies in the compact space. The critical solution is then seen to arise as a special case, in which the wavelength of the windings is equal to their circumference. As examples, long straight strings and circular loops are considered in detail, and the solutions to the equations of motion that satisfy the tensionless condition are presented. These solutions are then generalized to planar loops and arbitrary three-dimensional configurations. Under the process of dimensional reduction, in which higher-dimensional motion is equivalent to an effective worldsheet current (giving rise to a conserved charge), this phenomenon may be seen as the analogue of the tensionless condition which arises for superconducting and chiral-current carrying cosmic strings.« less

  13. Ecohydraulics of Strings and Beads in Bedrock Rivers

    NASA Astrophysics Data System (ADS)

    Wohl, E.

    2016-12-01

    Twenty years ago, Jack Stanford and others described rivers in bedrock canyons as resembling beads on a string when viewed in planform. The beads are relatively wide, low gradient river segments with floodplains, whereas the strings are the intervening steep, narrow river segments with minimal floodplain development. This pattern of longitudinal variations in channel and valley morphology along bedrock canyon rivers is very common, from small channels to major rivers such as the Colorado. Basic understanding of river ecosystems, as well as limited studies, indicates that the beads are more retentive and biologically productive. Although both strings and beads can provide habitat for diverse organisms, strings are more likely to serve as migration corridors, whereas beads provide spawning and nursery habitat, facilitate lateral (channel-floodplain) and vertical (channel-hyporheic) exchanges and associated habitat diversity, and retain dissolved and particulate organic matter. Recognition of the different characteristics and functions of strings and beads can be used to identify their spatial distribution along a river or within a river network and the hydraulically driven processes that sustain channel form, water quality, and biota within strings and beads. Diverse modeling approaches can then be used to quantify the fluxes of water and sediment needed to maintain these hydraulically driven processes. This conceptual framework is illustrated using examples from mountain streams in the Southern Rockies and canyon rivers in the southwestern United States.

  14. The role of heuristic appraisal in conflicting assessments of string theory

    NASA Astrophysics Data System (ADS)

    Camilleri, Kristian; Ritson, Sophie

    2015-08-01

    Over the last three decades, string theory has emerged as one of the leading hopes for a consistent theory of quantum gravity that unifies particle physics with general relativity. Despite the fact that string theory has been a thriving research program for the better part of three decades, it has been subjected to extensive criticism from a number of prominent physicists. The aim of this paper is to obtain a clearer picture of where the conflict lies in competing assessments of string theory, through a close reading of the argumentative strategies employed by protagonists on both sides. Although it has become commonplace to construe this debate as stemming from different attitudes to the absence of testable predictions, we argue that this presents an overly simplified view of the controversy, which ignores the critical role of heuristic appraisal. While string theorists and their defenders see the theoretical achievements of the string theory program as providing strong indication that it is 'on the right track', critics have challenged such claims, by calling into question the status of certain 'solved problems' and its purported 'explanatory coherence'. The debates over string theory are therefore particularly instructive from a philosophical point of view, not only because they offer important insights into the nature of heuristic appraisal and theoretical progress, but also because they raise deep questions about what constitutes a solved problem and an explanation in fundamental physics.

  15. Psychophysical basis for maximum pushing and pulling forces: A review and recommendations.

    PubMed

    Garg, Arun; Waters, Thomas; Kapellusch, Jay; Karwowski, Waldemar

    2014-03-01

    The objective of this paper was to perform a comprehensive review of psychophysically determined maximum acceptable pushing and pulling forces. Factors affecting pushing and pulling forces are identified and discussed. Recent studies show a significant decrease (compared to previous studies) in maximum acceptable forces for males but not for females when pushing and pulling on a treadmill. A comparison of pushing and pulling forces measured using a high inertia cart with those measured on a treadmill shows that the pushing and pulling forces using high inertia cart are higher for males but are about the same for females. It is concluded that the recommendations of Snook and Ciriello (1991) for pushing and pulling forces are still valid and provide reasonable recommendations for ergonomics practitioners. Regression equations as a function of handle height, frequency of exertion and pushing/pulling distance are provided to estimate maximum initial and sustained forces for pushing and pulling acceptable to 75% male and female workers. At present it is not clear whether pushing or pulling should be favored. Similarly, it is not clear what handle heights would be optimal for pushing and pulling. Epidemiological studies are needed to determine relationships between psychophysically determined maximum acceptable pushing and pulling forces and risk of musculoskeletal injuries, in particular to low back and shoulders.

  16. Psychophysical basis for maximum pushing and pulling forces: A review and recommendations

    PubMed Central

    Garg, Arun; Waters, Thomas; Kapellusch, Jay; Karwowski, Waldemar

    2015-01-01

    The objective of this paper was to perform a comprehensive review of psychophysically determined maximum acceptable pushing and pulling forces. Factors affecting pushing and pulling forces are identified and discussed. Recent studies show a significant decrease (compared to previous studies) in maximum acceptable forces for males but not for females when pushing and pulling on a treadmill. A comparison of pushing and pulling forces measured using a high inertia cart with those measured on a treadmill shows that the pushing and pulling forces using high inertia cart are higher for males but are about the same for females. It is concluded that the recommendations of Snook and Ciriello (1991) for pushing and pulling forces are still valid and provide reasonable recommendations for ergonomics practitioners. Regression equations as a function of handle height, frequency of exertion and pushing/pulling distance are provided to estimate maximum initial and sustained forces for pushing and pulling acceptable to 75% male and female workers. At present it is not clear whether pushing or pulling should be favored. Similarly, it is not clear what handle heights would be optimal for pushing and pulling. Epidemiological studies are needed to determine relationships between psychophysically determined maximum acceptable pushing and pulling forces and risk of musculoskeletal injuries, in particular to low back and shoulders. PMID:26664045

  17. Effect of External Loading on Force and Power Production During Plyometric Push-ups.

    PubMed

    Hinshaw, Taylour J; Stephenson, Mitchell L; Sha, Zhanxin; Dai, Boyi

    2018-04-01

    Hinshaw, TJ, Stephenson, ML, Sha, Z, and Dai, B. Effect of external loading on force and power production during plyometric push-ups. J Strength Cond Res 32(4): 1099-1108, 2018-One common exercise to train upper-body strength and power is the push-up. Training at the loads that would produce the greatest power is an effective way to increase peak power. The purpose of the current study was to quantify the changes in peak force, peak power, and peak velocity among a modified plyometric push-up and plyometric push-ups with or without external loading in physically active young adults. Eighteen male and 17 female participants completed 4 push-ups: (a) modified plyometric push-up on the knees, (b) plyometric push-up without external loading, (c) plyometric push-up with an external load of 5% of body weight, and (d) plyometric push-up with an external load of 10% of body weight. Two force platforms were set up to collect vertical ground reaction forces at the hands and feet. The modified plyometric push-up demonstrated the lowest force, power, and velocity (5.4≥ Cohen's dz ≥1.2). Peak force and force at peak velocity increased (3.8≥ Cohen's dz ≥0.3) and peak velocity and velocity at peak power decreased (1.4≥ Cohen's dz ≥0.8) for the push-up without external loading compared with the 2 push-ups with external loading. No significant differences were observed for peak power among the push-ups with or without external loading (0.4≥ Cohen's dz ≥0.1). Although peak power is similar with or without external loading, push-ups without external loading may be more beneficial for a quick movement, and push-ups with external loading may be more beneficial for a greater force production.

  18. Is the Orthographic/Phonological Onset a Single Unit in Reading Aloud?

    ERIC Educational Resources Information Center

    Mousikou, Petroula; Coltheart, Max; Saunders, Steven; Yen, Lisa

    2010-01-01

    Two main theories of visual word recognition have been developed regarding the way orthographic units in printed words map onto phonological units in spoken words. One theory suggests that a string of single letters or letter clusters corresponds to a string of phonemes (Coltheart, 1978; Venezky, 1970), while the other suggests that a string of…

  19. String Theory: Big Problem for Small Size

    ERIC Educational Resources Information Center

    Sahoo, S.

    2009-01-01

    String theory is the most promising candidate theory for a unified description of all the fundamental forces that exist in nature. It provides a mathematical framework that combines quantum theory with Einstein's general theory of relativity. The typical size of a string is of the order of 10[superscript -33] cm, called the Planck length. But due…

  20. Current Status of String Teacher Education at University Music Teacher Training Schools in Turkey

    ERIC Educational Resources Information Center

    Gokturk , Dilek

    2010-01-01

    The purpose of this study was to examine the status of undergraduate string teacher education curriculum in Turkish universities in both eastern and western regions. To accomplish this task, the relative strengths and weaknesses of Turkish string teacher education were investigated through an intensive literature review and a survey. Seventy-one…

Top