Sample records for put laser light

  1. Research on non-direct reflection columnar microstructure

    NASA Astrophysics Data System (ADS)

    Wu, B. Q.; Wang, X. Z.; Dong, L. H.

    2015-10-01

    To minimize the risk of laser accidents, especially those involving eye and skin injuries, it is crucial to pay more attention to laser safety. To control the risk of injury, depending on the laser power and wavelength, a number of required safety measures have been put forward, such as specific protection walls, and wearing safety goggles when operating lasers. The direct reflection columnar microstructure can also be used for laser safety. Based on mathematical foundations , a columnar microstructure is designed by the optical design software LightTools. Simulation showed that there is a tilt angle between the emergent and incident light, the incident light being perpendicular to the microstructure, as well as the phenomenon of no direct reflection happened. A novel testing platform was built for the columnar microstructure after it was machined. The applied testing method can measure the angle between the emergent and incident light. The method lays the condition for the further research. It is shown that the columnar microstructure with no direct reflection can be utilized in laser protection systems.

  2. Light scattering in optical CT scanning of Presage dosimeters

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Adamovics, J.; Cheeseborough, J. C.; Chao, K. S.; Wuu, C. S.

    2010-11-01

    The intensity of the scattered light from the Presage dosimeters was measured using a Thorlabs PM100D optical power meter (Thorlabs Inc, Newton, NJ) with an optical sensor of 1 mm diameter sensitive area. Five Presage dosimeters were made as cylinders of 15.2 cm, 10 cm, 4 cm diameters and irradiated with 6 MV photons using a Varian Clinac 2100EX. Each dosimeter was put into the scanning tank of an OCTOPUS" optical CT scanner (MGS Research Inc, Madison, CT) filled with a refractive index matching liquid. A laser diode was positioned at one side of the water tank to generate a stationary laser beam of 0.8 mm width. On the other side of the tank, an in-house manufactured positioning system was used to move the optical sensor in the direction perpendicular to the outgoing laser beam from the dosimeters at an increment of 1 mm. The amount of scattered photons was found to be more than 1% of the primary light signal within 2 mm from the laser beam but decreases sharply with increasing off-axis distance. The intensity of the scattered light increases with increasing light attenuations and/or absorptions in the dosimeters. The scattered light at the same off-axis distance was weaker for dosimeters of larger diameters and for larger detector-to-dosimeter distances. Methods for minimizing the effect of the light scattering in different types of optical CT scanners are discussed.

  3. Energy, Electron Transfer and Photocatalytic Reactions of Visible Light Absorbing Transition Metal Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmehl, Russell H.

    2016-03-02

    This is the final technical report for a project carried out at Tulane University of New Orleans that describes the development of light induced (solar) reactions geared toward decomposing water into its component elements : hydrogen and oxygen. Much of the work involved optimizing systems for absorbing visible light and undergoing light promoted reactions to generate very strong reducing agents that are capable of reacting with water to produce hydrogen. Additional portions of the research were collaborative efforts to put the strong reducing agents to work in reaction with hydrogen generation catalysts prepared elsewhere. Time resolved laser spectroscopic methods weremore » used to evaluate the light induced reactions and characterize very reactive intermediate substances formed during the reactions.« less

  4. Chiral hide-and-seek: retention of enantiomorphism in laser-induced nucleation of molten sodium chlorate.

    PubMed

    Ward, Martin R; Copeland, Gary W; Alexander, Andrew J

    2011-09-21

    We report the observation of non-photochemical laser-induced nucleation (NPLIN) of sodium chlorate from its melt using nanosecond pulses of light at 1064 nm. The fraction of samples that nucleate is shown to depend linearly on the peak power density of the laser pulses. Remarkably, we observe that most samples are nucleated by the laser back into the enantiomorph (dextrorotatory or levorotatory) of the solid prior to melting. We do not observe a significant dependence on polarization of the light, and we put forward symmetry arguments that rule out an optical Kerr effect mechanism. Our observations of retention of chirality can be explained by decomposition of small amounts of the sodium chlorate to form sodium chloride, which provide cavities for retention of clusters of sodium chlorate even 18 °C above the melting point. These clusters remain sub-critical on cooling, but can be activated by NPLIN via an isotropic polarizability mechanism. We have developed a heterogeneous model of NPLIN in cavities, which reproduces the experimental data using simple physical data available for sodium chlorate.

  5. Laser entertainment and light shows in education

    NASA Astrophysics Data System (ADS)

    Sabaratnam, Andrew T.; Symons, Charles

    2002-05-01

    Laser shows and beam effects have been a source of entertainment since its first public performance May 9, 1969, at Mills College in Oakland, California. Since 1997, the Photonics Center, NgeeAnn Polytechnic, Singapore, has been using laser shows as a teaching tool. Students are able to exhibit their creative skills and learn at the same time how lasers are used in the entertainment industry. Students will acquire a number of skills including handling three- phase power supply, operation of cooling system, and laser alignment. Students also acquire an appreciation of the arts, learning about shapes and contours as they develop graphics for the shows. After holography, laser show animation provides a combination of the arts and technology. This paper aims to briefly describe how a krypton-argon laser, galvanometer scanners, a polychromatic acousto-optic modulator and related electronics are put together to develop a laser projector. The paper also describes how students are trained to make their own laser animation and beam effects with music, and at the same time have an appreciation of the operation of a Class IV laser and the handling of optical components.

  6. Demonstrations of Wave Optics (Interference and Diffraction of Light) for Large Audiences Using a Laser and a Multimedia Projector

    ERIC Educational Resources Information Center

    Ivanov, Dragia; Nikolov, Stefan

    2011-01-01

    This article presents a new technique for performing most well-known demonstrations of wave optics. Demonstrations which are normally very hard to show to more than a few people can be presented easily to very large audiences with excellent visibility for everyone. The proposed setup is easy to put together and use and can be very useful for…

  7. Enhanced Interferometry with Programmable Spatial Light Modulator

    DTIC Science & Technology

    2010-06-07

    metrolaserinc.com6-7-2010-Monday 6 Simulated by Zemax  Lenslet diameters, d, define spatial resolution over the wavefront being measured.  (sensitivity...MetroLaser Irvine, California Fitted Zernike Polynomials upto 36 terms, found and put into Zemax Simulated Cats’ eye wavefronts by ZEMAX Experimental...measurement Simulated Fringes Leftover < 0.1λ 23 Cat’s eye wavefronts by ZEMAX based on Experimental results Jtrolinger@metrolaserinc.com6-7-2010

  8. High-energy vacuum birefringence and dichroism in an ultrastrong laser field

    NASA Astrophysics Data System (ADS)

    Meuren, Sebastian; Bragin, Sergey; Keitel, Christoph H.; di Piazza, Antonino

    2017-10-01

    The interaction between real photons in vacuum is a long-standing prediction of quantum electrodynamics, which has never been observed experimentally. Upcoming 10 PW laser systems like the Extreme Light Infrastructure (ELI) will provide laser pulses with unprecedented intensities. If combined with highly energetic gamma photons - obtainable via Compton backscattering from laser-wakefield accelerated electron beams - the QED critical field becomes accessible. In we have derived how a generally polarized probe photon beam is influenced by both vacuum birefringence and dichroism in a strong linearly polarized plane-wave laser field. We put forward an experimental scheme to measure these effects in the nontrivial high-energy regime, where the QED critical field is reached and the Euler-Heisenberg approximation, valid for low-frequency electromagnetic fields, breaks down. Our results suggest the feasibility of verifying/rejecting the QED prediction for vacuum birefringence/dichroism at the 3 σ confidence level on the time scale of a few days at several upcoming laser facilities. Now at Princeton University, Princeton, NJ.

  9. Pulsewidth-dependent nature of laser-induced DNA damage in RPE cells

    NASA Astrophysics Data System (ADS)

    Hall, Rebecca M.; Glickman, Randolph D.; Rockwell, Benjamin A.; Kumar, Neeru; Noojin, Gary D.

    2001-07-01

    Ultrashort pulse laser radiation may produce cellular damage through unique mechanisms. Primary cultures of bovine retinal pigment epithelial (RPE) cells were exposed to the out put of a Ti:Sapphire laser producing 30 fs (mode-locked) pulses, 44 amplified fs pulses, or continuous wave exposures at 800 nm. Laser exposures at and below the damage threshold were studied. DNA damage was detected using single cell gel electrophoresis (comet assay). Unexposed (control) cells produced short tails with low tail moments. In contrast, all laser-exposed cells showed some degree of DNA fragmentation, but the size and shape of the resulting comets differed among the various modalities. CW-exposed cells produced generally light and relatively compact tails, suggesting fewer and larger DNA fragments, while mode-locked laser exposures (30 fs pulses) resulted in large and diffuse comets, indicating the DNA was fragmented into many very small pieces. Work is continuing to define the relationship of laser pulsewidth and intensity with the degree of DNA fragmentation. These results suggest that DNA damage may result from multiple mechanisms of laser-cell interaction, including multiphoton absorption.

  10. Optofluidic FRET Lasers Using Aqueous Quantum Dots as Donors

    PubMed Central

    Chen, Qiushu; Kiraz, Alper; Fan, Xudong

    2015-01-01

    An optofluidic FRET (fluorescence resonance energy transfer) laser is formed by putting FRET pairs inside a microcavity acting as gain medium. This integration of optofluidic laser and FRET mechanism provides novel research frontiers, including sensitive biochemical analysis and novel photonic devices, such as on-chip coherent light sources and bio-tunable lasers. Here we investigated an optofluidic FRET laser using quantum dots (QDs) as FRET donors. We achieved lasing from Cy5 as the acceptor in the QD-Cy5 pair when excited at 450 nm where Cy5 has negligible absorption by itself. The threshold was approximately 14 µJ/mm2. The demonstrated capability of QDs as the donor in a FRET laser greatly improves the versatility of optofluidic laser operation due to the broad and large absorption cross section of QDs in the blue and UV spectral region. The excitation efficiency of the acceptor molecules through FRET channel was also analyzed, showing that the energy transfer rate and the non-radiative Auger recombination rate of QDs plays a significant role in FRET laser performance. PMID:26659274

  11. Optofluidic FRET lasers using aqueous quantum dots as donors.

    PubMed

    Chen, Qiushu; Kiraz, Alper; Fan, Xudong

    2016-01-21

    An optofluidic FRET (fluorescence resonance energy transfer) laser is formed by putting FRET pairs inside a microcavity acting as a gain medium. This integration of an optofluidic laser and the FRET mechanism provides novel research frontiers, including sensitive biochemical analysis and novel photonic devices, such as on-chip coherent light sources and bio-tunable lasers. Here, we investigated an optofluidic FRET laser using quantum dots (QDs) as FRET donors. We achieved lasing from Cy5 as the acceptor in a QD-Cy5 pair upon excitation at 450 nm, where Cy5 has negligible absorption by itself. The threshold was approximately 14 μJ mm(-2). The demonstrated capability of QDs as donors in the FRET laser greatly improves the versatility of optofluidic laser operation due to the broad and large absorption cross section of the QDs in the blue and UV spectral regions. The excitation efficiency of the acceptor molecules through a FRET channel was also analyzed, showing that the energy transfer rate and the non-radiative Auger recombination rate of QDs play a significant role in FRET laser performance.

  12. Integrated InAs/InP quantum-dot coherence comb lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lu, Zhenguo; Liu, Jiaren; Poole, Philip J.; Song, Chun-Ying; Webber, John; Mao, Linda; Chang, Shoude; Ding, Heping; Barrios, Pedro J.; Poitras, Daniel; Janz, Siegfried

    2017-02-01

    Current communication networks needs to keep up with the exponential growth of today's internet traffic, and telecommunications industry is looking for radically new integrated photonics components for new generation optical networks. We at National Research Council (NRC) Canada have successfully developed nanostructure InAs/InP quantum dot (QD) coherence comb lasers (CCLs) around 1.55 μm. Unlike uniform semiconductor layers in most telecommunication lasers, in these QD CCLs light is emitted and amplified by millions of semiconductor QDs less than 60 nm in diameter. Each QD acts like an isolated light source acting independently of its neighbours, and each QD emits light at its own unique wavelength. The end result is a QD CCL is more stable and has ultra-low timing jitter. But most importantly, a single QD CCL can simultaneously produce 50 or more separate laser beams at distinct wavelengths over the telecommunications C-band. Utilizing those unique properties we have put considerable effort well to design, grow and fabricate InAs/InP QD gain materials. After our integrated packaging and using electrical feedback-loop control systems, we have successfully demonstrated ultra-low intensity and phase noise, frequency-stabilized integrated QD CCLs with the repetition rates from 10 GHz to 100 GHz and the total output power up to 60 mW at room temperature. We have investigated their relative intensity noises, phase noises, RF beating signals and other performance of both filtered individual channel and the whole CCLs. Those highly phase-coherence comb lasers are the promising candidates for flexible bandwidth terabit coherent optical networks and signal processing applications.

  13. Sample holder for axial rotation of specimens in 3D microscopy.

    PubMed

    Bruns, T; Schickinger, S; Schneckenburger, H

    2015-10-01

    In common light microscopy, observation of samples is only possible from one perspective. However, especially for larger three-dimensional specimens observation from different views is desirable. Therefore, we are presenting a sample holder permitting rotation of the specimen around an axis perpendicular to the light path of the microscope. Thus, images can be put into a defined multidimensional context, enabling reliable three-dimensional reconstructions. The device can be easily adapted to a great variety of common light microscopes and is suitable for various applications in science, education and industry, where the observation of three-dimensional specimens is essential. Fluorescence z-projection images of copepods and ixodidae ticks at different rotation angles obtained by confocal laser scanning microscopy and light sheet fluorescence microscopy are reported as representative results. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  14. Initial research on the characterization methods of sparkle spots in optical thin films

    NASA Astrophysics Data System (ADS)

    Jiang, Jinhu; Gu, Wenhua

    2018-01-01

    In this article, we made a preliminary study on the main influencing factors of sparkle spots, put forward the concept of "sparklingness" to characterize the strength of sparkle spots, and proposed a standard measurement method for the sparklingness. We proposed to use 532 nm green laser pointer as the testing light source, let the light pass through the film and form a sparkle spots image at the receiving CCD or a piece of white paper. A standard image processing method was used to obtain an index number standing for the scattering status of the laser, which is defined as "sparklingness". In the experiment, we also analyzed the power dependence of sparklingness. With proper calibration, the measurement error of the sparklingness can be minimized, and it can be used as a physical quantity to describe the film quality as of the sparkle issue. This work can be a useful reference for further study of the sparkle issue in optical films.

  15. Visible light-harvesting of TiO2 nanotubes array by pulsed laser deposited CdS

    NASA Astrophysics Data System (ADS)

    Bjelajac, Andjelika; Djokic, Veljko; Petrovic, Rada; Socol, Gabiel; Mihailescu, Ion N.; Florea, Ileana; Ersen, Ovidiu; Janackovic, Djordje

    2014-08-01

    Titanium dioxide (TiO2) nanotubes arrays, obtained by anodization technique and annealing, were decorated with CdS using pulsed laser deposition method. Their structural, morphological and chemical characterization was carried out by electron microscopy in scanning (SEM) and transmission (TEM) modes, combined with energy dispersive spectroscopy (EDS) and electron energy loss spectroscopy (EELS). It was demonstrated that the quantity of deposited CdS can be controlled by varying the number of laser pulses. The chemical mapping of the elements of interest was performed using the energy filtered mode of the electron microscope. The results showed that pulse laser deposition is an adequate technique for deposition of CdS inside and between 100 nm wide TiO2 nanotubes. The diffuse reflectance spectroscopy investigation of selected samples proved that the absorption edge of the prepared CdS/TiO2 nanocomposites is significantly extended to the visible range. The corresponding band gaps were determinated from the Tauc plot of transformed Kubelka-Munk function. The band gap reduction of TiO2 nanotubes by pulsed laser deposition of CdS was put in evidence.

  16. Study on the measurement system of the target polarization characteristics and test

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Zhu, Yong; Zhang, Su; Duan, Jin; Yang, Di; Zhan, Juntong; Wang, Xiaoman; Jiang, Hui-Lin

    2015-10-01

    The polarization imaging detection technology increased the polarization information on the basis of the intensity imaging, which is extensive application in the military and civil and other fields, the research on the polarization characteristics of target is particularly important. The research of the polarization reflection model was introduced in this paper, which describes the scattering vector light energy distribution in reflecting hemisphere polarization characteristics, the target polarization characteristics test system solutions was put forward, by the irradiation light source, measuring turntable and camera, etc, which illuminate light source shall direct light source, with laser light sources and xenon lamp light source, light source can be replaced according to the test need; Hemispherical structure is used in measuring circumarotate placed near its base material sample, equipped with azimuth and pitching rotation mechanism, the manual in order to adjust the azimuth Angle and high Angle observation; Measuring camera pump works, through the different in the way of motor control polaroid polarization test, to ensure the accuracy of measurement and imaging resolution. The test platform has set up by existing laboratory equipment, the laser is 532 nm, line polaroid camera, at the same time also set the sending and receiving optical system. According to the different materials such as wood, metal, plastic, azimuth Angle and zenith Angle in different observation conditions, measurement of target in the polarization scattering properties of different exposure conditions, implementation of hemisphere space pBRDF measurement.

  17. Techniques in Broadband Interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erskine, D J

    2004-01-04

    This is a compilation of my patents issued from 1997 to 2002, generally describing interferometer techniques that modify the coherence properties of broad-bandwidth light and other waves, with applications to Doppler velocimetry, range finding, imaging and spectroscopy. Patents are tedious to read in their original form. In an effort to improve their readability I have embedded the Figures throughout the manuscript, put the Figure captions underneath the Figures, and added section headings. Otherwise I have resisted the temptation to modify the words, though I found many places which could use healthy editing. There may be minor differences with the officialmore » versions issued by the US Patent and Trademark Office, particularly in the claims sections. In my shock physics work I measured the velocities of targets impacted by flyer plates by illuminating them with laser light and analyzing the reflected light with an interferometer. Small wavelength changes caused by the target motion (Doppler effect) were converted into fringe shifts by the interferometer. Lasers having long coherence lengths were required for the illumination. While lasers are certainly bright sources, and their collimated beams are convenient to work with, they are expensive. Particularly if one needs to illuminate a wide surface area, then large amounts of power are needed. Orders of magnitude more power per dollar can be obtained from a simple flashlamp, or for that matter, a 50 cent light bulb. Yet these inexpensive sources cannot practically be used for Doppler velocimetry because their coherence length is extremely short, i.e. their bandwidth is much too wide. Hence the motivation for patents 1 & 2 is a method (White Light Velocimetry) for allowing use of these powerful but incoherent lamps for interferometry. The coherence of the illumination is modified by passing it through a preparatory interferometer.« less

  18. Study on the amplifier experiment of end-pumped long pulse slab laser

    NASA Astrophysics Data System (ADS)

    Jin, Quanwei; Chen, Xiaoming; Jiang, JianFeng; Pang, Yu; Tong, Lixin; Li, Mi; Hu, Hao; Lv, Wenqiang; Gao, Qingsong; Tang, Chun

    2018-03-01

    The amplifier experiment research of end-pumped long pulse slab laser is developed, the results of out-put energy, optical-optical efficiency and pulse waveform are obtained at different experiment conditions, such as peak pumped power, amplifier power and pumped pulse width. The seed laser is CW fundamental transverse-mode operation fiber laser, the laser medium is composited Nd:YAG slab. Under end-pumped and the 2 passes, the laser obtain 7.65J out-put energy and 43.1% optical-optical efficiency with 45kW peak-pumped power and 386μs pump pulse width. The experimental results provide the basic for the optimization design to high frequency, high energy and high beam-quality slab lasers.

  19. Three-channel dynamic photometric stereo: a new method for 4D surface reconstruction and volume recovery

    NASA Astrophysics Data System (ADS)

    Schroeder, Walter; Schulze, Wolfram; Wetter, Thomas; Chen, Chi-Hsien

    2008-08-01

    Three-dimensional (3D) body surface reconstruction is an important field in health care. A popular method for this purpose is laser scanning. However, using Photometric Stereo (PS) to record lumbar lordosis and the surface contour of the back poses a viable alternative due to its lower costs and higher flexibility compared to laser techniques and other methods of three-dimensional body surface reconstruction. In this work, we extended the traditional PS method and proposed a new method for obtaining surface and volume data of a moving object. The principle of traditional Photometric Stereo uses at least three images of a static object taken under different light sources to obtain 3D information of the object. Instead of using normal light, the light sources in the proposed method consist of the RGB-Color-Model's three colors: red, green and blue. A series of pictures taken with a video camera can now be separated into the different color channels. Each set of the three images can then be used to calculate the surface normals as a traditional PS. This method waives the requirement that the object imaged must be kept still as in almost all the other body surface reconstruction methods. By putting two cameras opposite to a moving object and lighting the object with the colored light, the time-varying surface (4D) data can easily be calculated. The obtained information can be used in many medical fields such as rehabilitation, diabetes screening or orthopedics.

  20. Compact mode-locked diode laser system for high precision frequency comparisons in microgravity

    NASA Astrophysics Data System (ADS)

    Christopher, H.; Kovalchuk, E. V.; Wicht, A.; Erbert, G.; Tränkle, G.; Peters, A.

    2017-11-01

    Nowadays cold atom-based quantum sensors such as atom interferometers start leaving optical labs to put e.g. fundamental physics under test in space. One of such intriguing applications is the test of the Weak Equivalence Principle, the Universality of Free Fall (UFF), using different quantum objects such as rubidium (Rb) and potassium (K) ultra-cold quantum gases. The corresponding atom interferometers are implemented with light pulses from narrow linewidth lasers emitting near 767 nm (K) and 780 nm (Rb). To determine any relative acceleration of the K and Rb quantum ensembles during free fall, the frequency difference between the K and Rb lasers has to be measured very accurately by means of an optical frequency comb. Micro-gravity applications not only require good electro-optical characteristics but are also stringent in their demand for compactness, robustness and efficiency. For frequency comparison experiments the rather complex fiber laser-based frequency comb system may be replaced by one semiconductor laser chip and some passive components. Here we present an important step towards this direction, i.e. we report on the development of a compact mode-locked diode laser system designed to generate a highly stable frequency comb in the wavelength range of 780 nm.

  1. Effects of malicious ocular laser exposure in commercial airline pilots.

    PubMed

    Palakkamanil, Mathew M; Fielden, Michael P

    2015-12-01

    Intentional malicious laser strikes on commercial pilots are committed by individuals who target a laser into airplane cockpits during takeoff and landing. Because laser exposure to pilots is a relatively new but growing occurrence, our study investigates the ocular effect of this laser exposure in pilots. Retrospective chart review by a single ophthalmologist. All commercial airline pilots (58 male, 3 female) who experienced a laser strike while flying between April 2012 and November 2014 who presented to our clinic were included. A retrospective chart review was performed in a retinal specialist's practice. Ocular assessment was performed within 3 days of laser exposure. A complete ophthalmic evaluation was conducted, including Early Treatment Diabetic Retinopathy Study visual acuity, colour vision, visual fields, intraocular pressure, slit-lamp examination, dilated fundus examination, colour fundus photographs, and ocular coherence tomography. Sixty-four laser strike incidents involving commercial pilots were included. All pilots in the study experienced some degree of immediate ocular irritation or light sensitivity. No definite cases of ocular damage were attributed to laser strikes. No pilot had any functional ocular deficits. Our study revealed that laser strikes on aircraft did not result in permanent visual functional or structural deficits. However, laser strikes cause immediate visual effects, including glare, flash blindness, and ocular irritation that can interfere with a pilot's visual function. Given the widespread accessibility of high-power lasers and the rapid increase in incidents, laser strikes threaten to jeopardize aviation safety unless effective preventative measures are put in place. Copyright © 2015 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  2. Lasers in space

    NASA Astrophysics Data System (ADS)

    Michaelis, M. M.; Forbes, A.; Bingham, R.; Kellett, B. J.; Mathye, A.

    2008-05-01

    A variety of laser applications in space, past, present, future and far future are reviewed together with the contributions of some of the scientists and engineers involved, especially those that happen to have South African connections. Historically, two of the earliest laser applications in space, were atmospheric LIDAR and lunar ranging. These applications involved atmospheric physicists, several astronauts and many of the staff recruited into the Soviet and North American lunar exploration programmes. There is a strong interest in South Africa in both LIDAR and lunar ranging. Shortly after the birth of the laser (and even just prior) theoretical work on photonic propulsion and space propulsion by laser ablation was initiated by Georgii Marx, Arthur Kantrowitz and Eugen Saenger. Present or near future experimental programs are developing in the following fields: laser ablation propulsion, possibly coupled with rail gun or gas gun propulsion; interplanetary laser transmission; laser altimetry; gravity wave detection by space based Michelson interferometry; the de-orbiting of space debris by high power lasers; atom laser interferometry in space. Far future applications of laser-photonic space-propulsion were also pioneered by Carl Sagan and Robert Forward. They envisaged means of putting Saenger's ideas into practice. Forward also invented a laser based method for manufacturing solid antimatter or SANTIM, well before the ongoing experiments at CERN with anti-hydrogen production and laser-trapping. SANTIM would be an ideal propellant for interstellar missions if it could be manufactured in sufficient quantities. It would be equally useful as a power source for the transmission of information over light year distances. We briefly mention military lasers. Last but not least, we address naturally occurring lasers in space and pose the question: "did the Big Bang lase?"

  3. LLE Review, Volume 57. Quarterly report, October--December 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, A.

    During this quarter, the visible fruits of long design labors on the OMEGA Upgrade began to appear. The target mirror structure was put in place, along with the target chamber itself. The laser bay structures were also installed, and the bay is now being prepared to receive optomechanical, control, and laser assemblies. Further details are in the OMEGA Upgrade Status Report in this issue. Theory and analysis of previous experiments continued during this reporting period. Articles contained herein describe an improved theory of the ablative Rayleigh-Taylor instability; a novel proposal for characterizing plasma-density profiles by using grid image refractometry; amore » much-improved treatment of the damping of ion sound waves in a mixture of light and heavy ions; and, finally, a new interpretation of measurements of 3/2-harmonic radiation emitted from the long-scale-length plasmas created in earlier OMEGA experiments.« less

  4. Photo-mediated ultrasound therapy (PUT): a novel method of selectively treating neovascularization (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Haonan; Hu, Zi Zhong; Li, Jia; Mordovanakis, Aghapi G.; Yang, Xinmai; Paulus, Yannis M.; Wang, Xueding

    2017-02-01

    Retinal and choroidal neovascularization play a pivotal role in the leading causes of blindness including macular degeneration and diabetic retinopathy (DR). Current therapy by focal laser photocoagulation can damage the normal surrounding cells, such as the photoreceptor inner and outer segments which are adjacent to the retinal pigment epithelium (RPE), due to the use of high laser energy and millisecond pulse duration. Therapies with pharmaceutical agents involve systemic administration of drugs, which can cause adverse effects and patients may become drug-resistant. We have developed a noninvasive photo-mediated ultrasound therapy (PUT) technique as a localized antivascular method, and applied it to remove micro blood vessels in the retina. PUT takes advantage of the high native optical contrast among biological tissues, and has the unique capability to self-target microvessels without causing unwanted damages to the surrounding tissues. This technique promotes cavitation activity in blood vessels by synergistically applying nanosecond laser pulses and ultrasound bursts. Through the interaction between cavitation and blood vessel wall, blood clots in microvessels and vasoconstriction can be induced. As a result, microvessels can be occluded. In comparison with other techniques that involves cavitation, both laser and ultrasound energy needed in PUT is significantly lower, and hence improves the safety in therapy.

  5. 3D printing of functional biomaterials for tissue engineering.

    PubMed

    Zhu, Wei; Ma, Xuanyi; Gou, Maling; Mei, Deqing; Zhang, Kang; Chen, Shaochen

    2016-08-01

    3D printing is emerging as a powerful tool for tissue engineering by enabling 3D cell culture within complex 3D biomimetic architectures. This review discusses the prevailing 3D printing techniques and their most recent applications in building tissue constructs. The work associated with relatively well-known inkjet and extrusion-based bioprinting is presented with the latest advances in the fields. Emphasis is put on introducing two relatively new light-assisted bioprinting techniques, including digital light processing (DLP)-based bioprinting and laser based two photon polymerization (TPP) bioprinting. 3D bioprinting of vasculature network is particularly discussed for its foremost significance in maintaining tissue viability and promoting functional maturation. Limitations to current bioprinting approaches, as well as future directions of bioprinting functional tissues are also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Laser system for testing radiation imaging detector circuits

    NASA Astrophysics Data System (ADS)

    Zubrzycka, Weronika; Kasinski, Krzysztof

    2015-09-01

    Performance and functionality of radiation imaging detector circuits in charge and position measurement systems need to meet tight requirements. It is therefore necessary to thoroughly test sensors as well as read-out electronics. The major disadvantages of using radioactive sources or particle beams for testing are high financial expenses and limited accessibility. As an alternative short pulses of well-focused laser beam are often used for preliminary tests. There are number of laser-based devices available on the market, but very often their applicability in this field is limited. This paper describes concept, design and validation of laser system for testing silicon sensor based radiation imaging detector circuits. The emphasis is put on keeping overall costs low while achieving all required goals: mobility, flexible parameters, remote control and possibility of carrying out automated tests. The main part of the developed device is an optical pick-up unit (OPU) used in optical disc drives. The hardware includes FPGA-controlled circuits for laser positioning in 2 dimensions (horizontal and vertical), precision timing (frequency and number) and amplitude (diode current) of short ns-scale (3.2 ns) light pulses. The system is controlled via USB interface by a dedicated LabVIEW-based application enabling full manual or semi-automated test procedures.

  7. Non-conventional optomechanical choppers: analysis and design of novel prototypes

    NASA Astrophysics Data System (ADS)

    Duma, Virgil-Florin; Demian, Dorin; Csukas, Eduard Sebastian; Pop, Nicolina; Cira, Octavian

    2017-10-01

    Optical choppers are widely used in laser systems - for light modulation and/or attenuation. In their most used and wellknown configuration, they are built as a rotational wheel with windows, which transforms a continuous-wave laser beam into a series of impulses with a certain frequency and profile. We briefly present the analysis and design we have completed for the classical chopper wheels (i.e., with windows with linear margins) for both top-hat and Gaussian laser beams. Further on, novel chopper wheels configurations, with outward or inward semi-circular (or with other non-linear shaped) margins of the windows is pointed out; we completed for them both analytic functions and simulations, for both top-hat and Gaussian beams, in order to deduce their transmission functions (i.e., the time profile of the laser impulses generated by the device). The stress of the presentation is put on the novel choppers with shafts (patent pending); their transmission functions are pointed out for top-hat laser beams. Finally, an example of such choppers is considered, with regard to the necessary Finite Element Analysis (FEA) that has to be performed for their rotational shaft. Both the mechanical stress and the deformations in the shaft have to be taken into account, especially at high rotational speeds of the mobile element.

  8. Automated Laser-Light Scattering measurements of Impurities, Bubbles, and Imperfections in Ice Cores

    NASA Astrophysics Data System (ADS)

    Stolz, M. R.; Ram, M.

    2004-12-01

    Laser- light scattering (LLS) on polar ice, or on polar ice meltwater, is an accepted method for measuring the concentration of water insoluble aerosol deposits (dust) in the ice. LLS on polar ice can also be used to measure water soluble aerosols, as well as imperfections (air bubbles and cavities) in the ice. LLS was originally proposed by Hammer (1977a, b) as a method for measuring the dust concentration in polar ice meltwater. Ram et al. (1995) later advanced the method and applied it to solid ice, measuring the dust concentration profile along the deep, bubble-free sections of the Greenland Ice Sheet Projetct 2 (GISP2) ice core (Ram et al., 1995, 2000) from central Greenland. In this paper, we will put previous empirical findings (Ram et al., 1995, 2000) on a theoretical footing, and extend the usability of LLS on ice into the realm of the non-transparent, bubbly polar ice. For LLS on clear, bubble-free polar ice, we studied numerically the scattering of light by soluble and insoluble (dust) aerosol particles embedded in the ice to complement previous experimental studies (Ram et al., 2000). For air bubbles in polar ice, we calculated the effects of multiple light scattering using Mie theory and Monte Carlo simulations, and found a method for determining the bubble number size and concentration using LLS on bubbly ice. We also demonstrated that LLS can be used on bubbly ice to measure annual layers rapidly in an objective manner. Hammer, C. U. (1977a), Dating of Greenland ice cores by microparticle concentration analyses., in International Symposium on Isotopes and Impurities in Snow and Ice, pp. 297-301, IAHS publ. no. 118. Hammer, C. U. (1977b), Dust studies on Greenland ice cores, in International Symposium on Isotopes and Impurities in Snow and Ice, pp. 365-370, IAHS publ. no. 118. Ram, M., M. Illing, P. Weber, G. Koenig, and M. Kaplan (1995), Polar ice stratigraphy from laser-light scattering: Scattering from ice, Geophys. Res. Lett., 22(24), 3525-3527. Ram, M., J. Donarummo, M. R. Stolz, and G. Koenig (2000), Calibration of laser-light scattering measurements of dust concentration for Wisconsinan GISP2 ice using instrumental neutron activation analysis of aluminum: Results and discussion, J. Geophys. Res., 105(D20), 24,731--24,738.

  9. Ammonia emissions from air cleaners at pig farms in Denmark using a Picarro cavity ring-down spectrometer

    NASA Astrophysics Data System (ADS)

    Winkler, Renato; Adamsen, Anders Peter S.

    2017-04-01

    Ammonia emissions from agricultural activities such as, cattle, pig and poultry farms have become an ever more important topic both for scientists as well as for regulatory bodies due to the severe impacts of ammonia on human health and the environment. In the European Union, the agricultural sector accounts for most of the ammonia emissions, and therefore the EU authorities have put in place reduction targets for the member states. In Denmark, most pig farmers have to deploy one or more ammonia abatement technologies in order to fulfill the national regulation when building new pig houses. A promising ammonia abatement technology is partial floor ventilation and subsequent cleaning using one or two step chemical air cleaners. The cleaned air will have ammonia concentration is the sub-ppm level and with high humidity. Here we present method of monitoring NH3 emissions from air cleaners deployed on pig farms using the G2103 Picarro laser spectrometer. The Picarro G2103 NH3 analyzer is a high precision cavity ring-down spectrometer using a high finesse optical cavity and a near infra-red light laser light source with a very narrow light band. The latter eliminates cross-interferences from other gases present in livestock air. Picarro instruments are built for field measurements and have been widely used for atmospheric monitoring of greenhouse gases and of air pollutants such as NH3.

  10. The development and progress of XeCl Excimer laser system

    NASA Astrophysics Data System (ADS)

    Zhang, Yongsheng; Ma, Lianying; Wang, Dahui; Zhao, Xueqing; Zhu, Yongxiang; Hu, Yun; Qian, Hang; Shao, Bibo; Yi, Aiping; Liu, Jingru

    2015-05-01

    A large angularly multiplexed XeCl Excimer laser system is under development at the Northwest Institute of Nuclear Technology (NINT). It is designed to explore the technical issues of uniform and controllable target illumination. Short wavelength, uniform and controllable target illumination is the fundamental requirement of high energy density physics research using large laser facility. With broadband, extended light source and multi-beam overlapping techniques, rare gas halide Excimer laser facility will provide uniform target illumination theoretically. Angular multiplexing and image relay techniques are briefly reviewed and some of the limitations are examined to put it more practical. The system consists of a commercial oscillator front end, three gas discharge amplifiers, two electron beam pumped amplifiers and the optics required to relay, encode and decode the laser beam. An 18 lens array targeting optics direct and focus the laser in the vacuum target chamber. The system is operational and currently undergoing tests. The total 18 beams output energy is more than 100J and the pulse width is 7ns (FWHM), the intensities on the target will exceed 1013W/cm2. The aberration of off-axis imaging optics at main amplifier should be minimized to improve the final image quality at the target. Automatic computer controlled alignment of the whole system is vital to efficiency and stability of the laser system, an array of automatic alignment model is under test and will be incorporated in the system soon.

  11. Hemangiomas

    MedlinePlus

    ... grow. The flash-lamp pulse dye, pump dye, diode, and sclero-laser are the primary lasers used ... go through several trials of dosing-tapering. The current protocol is to put them on the initial ...

  12. Discrete wavelength-locked external cavity laser

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S. (Inventor); Silver, Joel A. (Inventor)

    2005-01-01

    An external cavity laser (and method of generating laser light) comprising: a laser light source; means for collimating light output by the laser light source; a diffraction grating receiving collimated light; a cavity feedback mirror reflecting light received from the diffraction grating back to the diffraction grating; and means for reliably tuning the external cavity laser to discrete wavelengths.

  13. 50th anniversary of the laser

    NASA Astrophysics Data System (ADS)

    Bertolotti, M.

    2010-09-01

    On July, 7, 1960 a press conference at Huyghes announced that Maiman had assembled and put into operation the first laser. It was the very pulsed ruby laser that everybody knows today. The announcement came as a bomb. Nobody expected that in an unknown laboratory, new to the race to build a laser, this result could be obtained. It was such an unexpected result that many still today mantain that the true laser was discovered at Bell by Shawlow. This result was achieved through a long story which passed by the Townes maser and many tentative experiments and discussions both in the USA and Soviet Union. In this special issue we present a collection of papers which provide further information as to what happened after Einstein introduced the concept of stimulated emission. The first paper is a short paper by Townes on the development of the physics of microwaves following the creation of the maser. When the laser came on the stage one of its properties was the inherent coherence of the emitted light. Emil Wolf's contribution enlights the early days of coherence to which he so much contributed and the very timely first Rochester Conference which was held on June 27-29, 1960 a few days before the Times announcement of the Maiman achievement. Important contributions were given by Soviet Scientists and, Svetlana Lukishova's contributions helps us understand the work of Valentin Fabrikant which was mostly unknown to western scientists. At the end of his life, Maiman went to Vancouver in Canada and Andrew H. Rawicz gives his testimoniancy of his friendship there. Coherence and the statistical properties of laser light were much studied and we have two exceptional papers by Roy Pike and Jan Perina discussing these arguments. The issue also contains three more papers presenting some earlier achievements in the construction of multiquantumwell laser (M. L. Dotor, P. Huertas, P. A. Postigo, D. Golmayo and F. Briones), the first measurements on very short pulses (H. P. Weber and R. Dandliker) and spatial coherence (D. P. Barato and M. L. Calvo).

  14. Heterodyne interferometer with angstrom-level periodic nonlinearity

    DOEpatents

    Schmitz, Tony L.; Beckwith, John F.

    2005-01-25

    Displacement measuring interferometer systems and methods are disclosed. One or more acousto-optic modulators for receiving a laser light beam from a laser light source can be utilized to split the laser light beam into two or more laser light beams, while spatially separating frequencies thereof. One or more reflective mechanisms can be utilized to reflect one or more of the laser light beams back to the acousto-optic modulator. Interference of two or more of the laser light beams generally at the acousto-optic modulator can provide an interfered laser light beam thereof. A detector for receiving the interfered laser light beam can be utilized to provide interferometer measurement data.

  15. 10-kW-class YAG laser application for heavy components

    NASA Astrophysics Data System (ADS)

    Ishide, Takashi; Tsubota, S.; Nayama, Michisuke; Shimokusu, Yoshiaki; Nagashima, Tadashi; Okimura, K.

    2000-02-01

    The authors have put the YAG laser of the kW class to practical use for repair welding of nuclear power plant steam generator heat exchanger tubes, all-position welding of pipings, etc. This paper describes following developed methods and systems of high power YAG laser processing. First, we apply the 6 kW to 10 kW YAG lasers for welding and cutting in heavy components. The beam guide systems we have used are optical fibers which core diameter is 0.6 mm to 0.8 mm and its length is 200 m as standard one. Using these system, we can get the 1 pass penetration of 15 mm to 20 mm and multi pass welding for more thick plates. Cutting of 100 mm thickness plate data also described for dismantling of nuclear power plants. In these systems we carried out the in-process monitoring by using CCD camera image processing and monitoring fiber which placed coaxial to the YAG optical lens system. In- process monitoring by the monitoring fiber, we measured the light intensity from welding area. Further, we have developed new hybrid welding with the TIG electrode at the center of lens for high power. The hybrid welding with TIG-YAG system aims lightening of welding groove allowances and welding of high quality. Through these techniques we have applied 7 kW class YAG laser for welding in the components of nuclear power plants.

  16. Laser welding of chitosan-GNRs films for the closure of a capsulorhexis

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Matteini, Paolo; Ratto, Fulvio; Menabuoni, Luca; Lenzetti, Ivo; Pini, Roberto

    2011-03-01

    In this work we present the first attempt to close the anterior lens capsule bag by the use of chitosan patches, where Gold Nanorods (GNRs) are embedded. GNRs exhibit intense localized plasmon resonances at optical frequencies in the near infrared (NIR): upon excitation with a NIR laser, a strong photothermal effect is produced, which can be exploited to develop minimally invasive therapies. Here we use the chitosan-GNRs films as a novel NIR sensitive nanocomposite for the photothermal conversion of NIR laser light during surgical interventions of tissue welding. Chitosan is an attractive biomaterial due to its biodegradability, biocompatibility, antimicrobial and wound healing-promoting activity. Colloidal GNRs were embedded in chitosan based, highly stabilized, flexible and easy-to-handle films, which were stored in water until the time of surgery. In these preliminary tests, a capsulorhexis was performed in freshly enucleated porcine eyes. The lens was aspired, then the patch was put onto the capsule bag and welded: a diode laser (810 nm) was used to deliver single spots (200 μm core diameter optical fiber) of local capsule/patch adhesion. Then the bag was refilled with silicon oil. The result is an immediate closure of the capsular tissue, with high mechanical strength. The laser welded chitosan- GNRs films are an innovative and highly stable solution to be exploited for the treatment of capsular breaks and for the implementation of a lens refilling procedure.

  17. Color speckle in laser displays

    NASA Astrophysics Data System (ADS)

    Kuroda, Kazuo

    2015-07-01

    At the beginning of this century, lighting technology has been shifted from discharge lamps, fluorescent lamps and electric bulbs to solid-state lighting. Current solid-state lighting is based on the light emitting diodes (LED) technology, but the laser lighting technology is developing rapidly, such as, laser cinema projectors, laser TVs, laser head-up displays, laser head mounted displays, and laser headlamps for motor vehicles. One of the main issues of laser displays is the reduction of speckle noise1). For the monochromatic laser light, speckle is random interference pattern on the image plane (retina for human observer). For laser displays, RGB (red-green-blue) lasers form speckle patterns independently, which results in random distribution of chromaticity, called color speckle2).

  18. Phototherapy for Improvement of Performance and Exercise Recovery: Comparison of 3 Commercially Available Devices.

    PubMed

    De Marchi, Thiago; Schmitt, Vinicius Mazzochi; Danúbia da Silva Fabro, Carla; da Silva, Larissa Lopes; Sene, Juliane; Tairova, Olga; Salvador, Mirian

    2017-05-01

      Recent studies suggest the prophylactic use of low-powered laser/light has ergogenic effects on athletic performance and postactivity recovery. Manufacturers of high-powered lasers/light devices claim that these can produce the same clinical benefits with increased power and decreased irradiation time; however, research with high-powered lasers is lacking.   To evaluate the magnitude of observed phototherapeutic effects with 3 commercially available devices.   Randomized double-blind placebo-controlled study.   Laboratory.   Forty healthy untrained male participants.   Participants were randomized into 4 groups: placebo, high-powered continuous laser/light, low-powered continuous laser/light, or low-powered pulsed laser/light (comprising both lasers and light-emitting diodes). A single dose of 180 J or placebo was applied to the quadriceps.   Maximum voluntary contraction, delayed-onset muscle soreness (DOMS), and creatine kinase (CK) activity from baseline to 96 hours after the eccentric exercise protocol.   Maximum voluntary contraction was maintained in the low-powered pulsed laser/light group compared with placebo and high-powered continuous laser/light groups in all time points (P < .05). Low-powered pulsed laser/light demonstrated less DOMS than all groups at all time points (P < .05). High-powered continuous laser/light did not demonstrate any positive effects on maximum voluntary contraction, CK activity, or DOMS compared with any group at any time point. Creatine kinase activity was decreased in low-powered pulsed laser/light compared with placebo (P < .05) and high-powered continuous laser/light (P < .05) at all time points. High-powered continuous laser/light resulted in increased CK activity compared with placebo from 1 to 24 hours (P < .05).   Low-powered pulsed laser/light demonstrated better results than either low-powered continuous laser/light or high-powered continuous laser/light in all outcome measures when compared with placebo. The increase in CK activity using the high-powered continuous laser/light compared with placebo warrants further research to investigate its effect on other factors related to muscle damage.

  19. Study on the autofluorescence profiles of iris pigment epithelium and retinal pigment epithetlium

    NASA Astrophysics Data System (ADS)

    Xu, Gaixia; Qu, Junle; Chen, Danni; Sun, Yiwen; Zhao, Lingling; Lin, Ziyang; Ding, Zhihua; Niu, Hanben

    2007-05-01

    Transplantation technique of retinal pigment epithelium has been noticeable in recent years and gradually put into clinical practice in treatment of retinal degenerative diseases. Generally, immunological, histochemical, and physical methods are used to study the iris pigment epithelium (IPE) and retinal pigment epithelium (RPE) cells, which need complex sample preparation. In this paper, we provided a simple autofluorescence microscopy to investigate the fresh porcine IPE and RPE cells without any pretreatment. The results showed that the morphology and size of both were similar, round and about 15 μm. The main flourophore in both cells was similar, i.e. lipofuscin. In additional, the autofluorescence spectrum of RPE shifted blue after light-induced damage by laser illuminating. Because it was easier for IPE to be damaged by laser than for RPE, and the power of one scanning operation to get a full image was strong enough to damage IPE sample, we hadn't get any satisfied autofluorescence spectrum of IPE.

  20. Lasers in Cancer Treatment

    MedlinePlus

    ... Cancer Treatment On This Page What is laser light? What is laser therapy, and how is it ... future hold for laser therapy? What is laser light? The term “ laser ” stands for light amplification by ...

  1. Optical fiber switch

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    Optical fiber switches operated by electrical activation of at least one laser light modulator through which laser light is directed into at least one polarizer are used for the sequential transport of laser light from a single laser into a plurality of optical fibers. In one embodiment of the invention, laser light from a single excitation laser is sequentially transported to a plurality of optical fibers which in turn transport the laser light to separate individual remotely located laser fuel ignitors. The invention can be operated electro-optically with no need for any mechanical or moving parts, or, alternatively, can be operated electro-mechanically. The invention can be used to switch either pulsed or continuous wave laser light.

  2. Mechanical properties improvement of pulsed laser-deposited hydroxyapatite thin films by high energy ion-beam implantation

    NASA Astrophysics Data System (ADS)

    Nelea, V.; Pelletier, H.; Müller, D.; Broll, N.; Mille, P.; Ristoscu, C.; Mihailescu, I. N.

    2002-01-01

    Major problems in the hydroxyapatite (HA), Ca 5(PO 4) 3OH, thin films processing still keep the poor mechanical properties and the lack in density. We present a study on the feasibility of high energy ion-beam implantation technique to densify HA bioceramic films. Crystalline HA films were grown by pulsed laser deposition (PLD) method using an excimer KrF ∗ laser ( λ=248 nm, τ FWHM≥20 ns). The films were deposited on Ti-5Al-2.5Fe alloys substrates previously coated with a ceramic TiN buffer layer. After deposition the films were implanted with Ar + ions at high energy. Optical microscopy (OM), white light confocal microscopy (WLCM), grazing incidence X-ray diffraction (GIXRD) and Berkovich nanoindentation in normal and scratch options have been applied for the characterization of the obtained structures. We put into evidence an enhancement of the mechanical characteristics after implantation, while GIXRD measurements confirm that the crystalline structure of HA phase is preserved. The improvement in mechanical properties is an effect of a densification after ion treatment as a result of pores elimination and grains regrowth.

  3. Effect of laser speckle on light from laser diode-pumped phosphor-converted light sources.

    PubMed

    Aquino, Felipe; Jadwisienczak, Wojciech M; Rahman, Faiz

    2017-01-10

    Laser diode (LD) pumped white light sources are being developed as an alternative to light-emitting diode-pumped sources for high efficiency and/or high brightness applications. While several performance metrics of laser-pumped phosphor-converted light sources have been investigated, the effect of laser speckle has not been sufficiently explored. This paper describes our experimental studies on how laser speckle affects the behavior of light from laser-excited phosphor lamps. A single LD pumping a phosphor plate was the geometry explored in this work. Overall, our findings are that the down-converted light did not exhibit any speckle, whereas speckle was present in the residual pump light but much reduced from that in direct laser light. Furthermore, a thicker coating of small-grained phosphors served to effectively reduce speckle through static pump light diffusion in the phosphor coating. Our investigations showed that speckle is not of concern in illumination from LD-pumped phosphor-converted light sources.

  4. Comparative effectiveness of light emitting diodes (LEDs) and Lasers in near infrared photoimmunotherapy

    PubMed Central

    Sato, Kazuhide; Watanabe, Rira; Hanaoka, Hirofumi; Nakajima, Takahito; Choyke, Peter L.; Kobayashi, Hisataka

    2016-01-01

    Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. Herein we compare two NIR-light sources; light emitting diodes (LEDs) and Lasers, for their effectiveness in NIR-PIT. A photosensitizer, IRDye-700DX, conjugated to panitumumab (pan-IR700), was incubated with EGFR-expressing A431 and MDA-MB-468-luc cells. NIR-light was provided by LEDs or Lasers at the same light dose. Laser-light produced more cytotoxicity and greater reductions in IR700-fluorescence intensity than LED-light. Laser-light also produced more cytotoxicity in vivo in both cell lines. Assessment of super-enhanced permeability and retention (SUPR) effects were stronger with Laser than LED. These results suggest that Laser-light produced significantly more cytotoxic effects compared to LEDs. Although LED is less expensive, Laser-light produces superior results in NIR-PIT. PMID:26885688

  5. Comparative effectiveness of light emitting diodes (LEDs) and Lasers in near infrared photoimmunotherapy.

    PubMed

    Sato, Kazuhide; Watanabe, Rira; Hanaoka, Hirofumi; Nakajima, Takahito; Choyke, Peter L; Kobayashi, Hisataka

    2016-03-22

    Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. Herein we compare two NIR-light sources; light emitting diodes (LEDs) and Lasers, for their effectiveness in NIR-PIT. A photosensitizer, IRDye-700DX, conjugated to panitumumab (pan-IR700), was incubated with EGFR-expressing A431 and MDA-MB-468-luc cells. NIR-light was provided by LEDs or Lasers at the same light dose. Laser-light produced more cytotoxicity and greater reductions in IR700-fluorescence intensity than LED-light. Laser-light also produced more cytotoxicity in vivo in both cell lines. Assessment of super-enhanced permeability and retention (SUPR) effects were stronger with Laser than LED. These results suggest that Laser-light produced significantly more cytotoxic effects compared to LEDs. Although LED is less expensive, Laser-light produces superior results in NIR-PIT.

  6. Solid-State Laser Source of Tunable Narrow-Bandwidth Ultraviolet Radiation

    NASA Technical Reports Server (NTRS)

    Goldberg, Lew; Kliner, Dahv A.; Koplow, Jeffrey P.

    1998-01-01

    A solid-state laser source of tunable and narrow-bandwidth UV light is disclosed. The system relies on light from a diode laser that preferably generates light at infrared frequencies. The light from the seed diode laser is pulse amplified in a light amplifier, and converted into the ultraviolet by frequency tripling, quadrupling, or quintupling the infrared light. The narrow bandwidth, or relatively pure light, of the seed laser is preserved, and the pulse amplifier generates high peak light powers to increase the efficiency of the nonlinear crystals in the frequency conversion stage. Higher output powers may be obtained by adding a fiber amplifier to power amplify the pulsed laser light prior to conversion.

  7. Laser-induced bulk damage of silica glass at 355nm and 266nm

    NASA Astrophysics Data System (ADS)

    Kashiwagi, R.; Aramomi, S.

    2016-12-01

    Laser processing machines using Nd:YAG 3rd harmonic wave (355 nm) and 4th harmonic wave (266 nm) have been developed and put into practical use lately. Due to this, optical elements with high laser durability to 355 nm and 266 nm are required. Silica glass is the optical element which has high UV transmission and high laser durability. Laser-induced surface damage of the silica glass has been studied in detail, but we hardly have the significant knowledge of laserinduced bulk damage. This knowledge is required in order to evaluate the silica glass itself. That is because cracks and scratches on the surface give rise to a higher possibility of damage. Therefore, we studied the laser durability of a variety of the silica glass samples by 1-on-1 and S-on-1 laser-induced bulk damage threshold (LIDT) at 355 nm and 266 nm. In this study, we gained knowledge in three areas about bulk damage to the silica glass. First, the LIDT became lower as shot counts increased. Second, the LIDT decreased as the hydroxyl content in the silica glass increased. Last, the LIDT became higher as the hydrogen concentration in the silica glass increased. Under the UV irradiation, impurities are generated and the silica glass absorbs more light. Therefore, the LIDT decreased as shot counts increased. Also, the hydroxyl in particular generates more impurities, so damage easily occurs. On the other hand, the hydrogen reacts with impurities and absorption is suppressed. Based on these results, we can improve laser durability at 355 nm and 266 nm by reducing the hydroxyl content and increasing the hydrogen concentration in the silica glass.

  8. Synchronization of video recording and laser pulses including background light suppression

    NASA Technical Reports Server (NTRS)

    Kalshoven, Jr., James E. (Inventor); Tierney, Jr., Michael (Inventor); Dabney, Philip W. (Inventor)

    2004-01-01

    An apparatus for and a method of triggering a pulsed light source, in particular a laser light source, for predictable capture of the source by video equipment. A frame synchronization signal is derived from the video signal of a camera to trigger the laser and position the resulting laser light pulse in the appropriate field of the video frame and during the opening of the electronic shutter, if such shutter is included in the camera. Positioning of the laser pulse in the proper video field allows, after recording, for the viewing of the laser light image with a video monitor using the pause mode on a standard cassette-type VCR. This invention also allows for fine positioning of the laser pulse to fall within the electronic shutter opening. For cameras with externally controllable electronic shutters, the invention provides for background light suppression by increasing shutter speed during the frame in which the laser light image is captured. This results in the laser light appearing in one frame in which the background scene is suppressed with the laser light being uneffected, while in all other frames, the shutter speed is slower, allowing for the normal recording of the background scene. This invention also allows for arbitrary (manual or external) triggering of the laser with full video synchronization and background light suppression.

  9. Utility and safety of a novel surgical microscope laser light source

    PubMed Central

    Bakhit, Mudathir S.; Suzuki, Kyouichi; Sakuma, Jun; Fujii, Masazumi; Murakami, Yuta; Ito, Yuhei; Sugano, Tetsuo; Saito, Kiyoshi

    2018-01-01

    Objective Tissue injuries caused by the thermal effects of xenon light microscopes have previously been reported. Due to this, the development of a safe microscope light source became a necessity. A newly developed laser light source is evaluated regarding its effectiveness and safety as an alternative to conventional xenon light source. Methods We developed and tested a new laser light source for surgical microscopes. Four experiments were conducted to compare xenon and laser lights: 1) visual luminance comparison, 2) luminous and light chromaticity measurements, 3) examination and analysis of visual fatigue, and 4) comparison of focal temperature elevation due to light source illumination using porcine muscle samples. Results Results revealed that the laser light could be used at a lower illumination value than the xenon light (p < 0.01). There was no significant difference in visual fatigue status between the laser light and the xenon light. The laser light was superior to the xenon light regarding luminous intensity and color chromaticity. The focal temperature elevation of the muscle samples was significantly higher when irradiated with xenon light in vitro than with laser light (p < 0.01). Conclusion The newly developed laser light source is more efficient and safer than a conventional xenon light source. It lacks harmful ultraviolet waves, has a longer lifespan, a lower focal temperature than that of other light sources, a wide range of brightness and color production, and improved safety for the user’s vision. Further clinical trials are necessary to validate the impact of this new light source on the patient’s outcome and prognosis. PMID:29390016

  10. Saving Strokes with Space Technology

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Inventor Dave Pelz developed a space spinoff Teacher Alignment Computer for Sunmark Preceptor Golf Ltd. which helps golfers learn proper putting aim. The light beam, reflected into the computer, measures putter alignment and lights atop the box tell the golfer he is on target or off to either side and how much. A related putting aid idea is to stroke the ball at the putter's "sweet spot," which is bracketed by metal prongs. Regular practice develops solid impacts for better putting.

  11. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2003-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In a third embodiment, alternating short and long pulses of light from the excitation light source are directed into the ignitor laser. Each of the embodiments of the invention can be multiplexed so as to provide laser light energy sequentially to more than one ignitor laser.

  12. The non-planar single-frequency ring laser with variable output coupling

    NASA Astrophysics Data System (ADS)

    Wu, Ke-ying; Yang, Su-hui; Wei, Guang-hui

    2002-03-01

    We put forward a novel non-planar single-frequency ring laser, which consists of a corner cube prism and a specially cut Porro prism made by Nd:YAG crystal. The relative angle between the corner cube and the Porro prism could be adjusted to control the output coupling of the laser resonator and the polarization-state of the output laser. A 1.06 μm single-frequency laser with 1 W output has been obtained.

  13. Waves and rays in plano-concave laser cavities: I. Geometric modes in the paraxial approximation

    NASA Astrophysics Data System (ADS)

    Barré, N.; Romanelli, M.; Lebental, M.; Brunel, M.

    2017-05-01

    Eigenmodes of laser cavities are studied theoretically and experimentally in two companion papers, with the aim of making connections between undulatory and geometric properties of light. In this first paper, we focus on macroscopic open-cavity lasers with localized gain. The model is based on the wave equation in the paraxial approximation; experiments are conducted with a simple diode-pumped Nd:YAG laser with a variable cavity length. After recalling fundamentals of laser beam optics, we consider plano-concave cavities with on-axis or off-axis pumping, with emphasis put on degenerate cavity lengths, where modes of different order resonate at the same frequency, and combine to form surprising transverse beam profiles. Degeneracy leads to the oscillation of so-called geometric modes whose properties can be understood, to a certain extent, also within a ray optics picture. We first provide a heuristic description of these modes, based on geometric reasoning, and then show more rigorously how to derive them analytically by building wave superpositions, within the framework of paraxial wave optics. The numerical methods, based on the Fox-Li approach, are described in detail. The experimental setup, including the imaging system, is also detailed and relatively simple to reproduce. The aim is to facilitate implementation of both the numerics and of the experiments, and to show that one can have access not only to the common higher-order modes but also to more exotic patterns.

  14. Spectral and Radiometric Calibration Using Tunable Lasers

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel (Inventor)

    2017-01-01

    A tunable laser system includes a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, and a controller operable to simultaneously control parameters of at least the tunable laser, the first optical parametric oscillator, and the adjustable laser cavity to produce a range of wavelengths emitted from the tunable laser system. A method of operating a tunable laser system includes using a controller to simultaneously control parameters of a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, and a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, to produce a range of wavelengths emitted from the tunable laser system.

  15. The distribution of the scattered laser light in laser-plate-target coupling

    NASA Astrophysics Data System (ADS)

    Xiao-bo, Nie; Tie-qiang, Chang; Dong-xian, Lai; Shen-ye, Liu; Zhi-jian, Zheng

    1997-04-01

    Theoretical and experimental studies of the angular distributions of scattered laser light in laser-Au-plate-target coupling are reported. A simple model that describes three-dimensional plasmas and scattered laser light is presented. The approximate shape of critical density surface has been given and the three-dimensional laser ray tracing is applied in the model. The theoretical results of the model are consistent with the experimental data for the scattered laser light in the polar angle range of 25° to 145° from the laser beam.

  16. Sutureless closure of scleral wounds in animal models by the use of laser welded biocompatible patches

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Matteini, Paolo; Menabuoni, Luca; Lenzetti, Ivo; Pini, Roberto

    2011-03-01

    The common procedures used to seal the scleral or conjunctival injuries are based on the traditional suturing techniques, that may induce foreign body reaction during the follow up, with subsequent inflammation and distress for the patient. In this work we present an experimental study on the laser welding of biocompatible patches onto ocular tissues, for the closure of surgical or trauma wounds. The study was performed ex vivo in animal models (porcine eyes). A penetrating perforation of the ocular tissue was performed with a surgical knife. The wound walls were approximated, and a biocompatible patch was put onto the outer surface of the tissue, in order to completely cover the wound as a plaster. The patches were prepared with a biocompatible and biodegradable polymer, showing high mechanical strength, good elasticity, high permeability for vapour and gases and rather low biodegradation. During preparation, Indocyanine Green (ICG) was included in the biopolymeric matrix, so that the films presented high absorption at 810 nm. Effective adhesion of the membranes to the ocular tissues was obtained by using diode laser light emitted from an 810 nm diode laser and delivered by means of a 300 μm core diameter optical fiber, to produce spots of local film/tissue adhesion, due to the photothermal effect at the interface. The result is an immediate closure of the wound, thus reducing post-operative complications due to inflammation.

  17. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  18. Lasers | RadTown USA | US EPA

    EPA Pesticide Factsheets

    2018-05-01

    Laser light is an intense, focused beam of visible light radiation. Lasers are used in many workplaces, including construction, surveying and medicine. High-powered laser light can cause severe skin burns and permanent eye damage.

  19. Fiber optic laser-induced breakdown spectroscopy sensor for molten material analysis

    DOEpatents

    Zhang, Hansheng; Rai, Awadesh K.; Singh, Jagdish P.; Yueh, Fang-Yu

    2004-07-13

    A fiber optic laser-induced breakdown spectroscopy (LIBS) sensor, including a laser light source, a harmonic separator for directing the laser light, a dichroic mirror for reflecting the laser light, a coupling lens for coupling the laser light at an input of a multimode optical fiber, a connector for coupling the laser light from an output of the multimode optical fiber to an input of a high temperature holder, such as a holder made of stainless steel, and a detector portion for receiving emission signal and analyzing LIBS intensities. In one variation, the multimode optical fiber has silica core and silica cladding. The holder includes optical lenses for collimating and focusing the laser light in a molten alloy to produce a plasma, and for collecting and transmitting an emission signal to the multimode optical fiber.

  20. Laser illumination of helicopters : a comparative analysis with fixed-wing aircraft for the period 1980 - 2011.

    DOT National Transportation Integrated Search

    2013-04-01

    INTRODUCTION. Laser illuminations of aircraft have resulted in pilots reporting distraction, disruption, disorientation, adverse visual effects, and operational problems that put at risk the safety of the aircraft and those onboard. FAA Order 7400.2 ...

  1. Covert laser remote sensing and vibrometry

    NASA Technical Reports Server (NTRS)

    Maleki, Lutfollah (Inventor); Yu, Nan (Inventor); Matsko, Andrey B. (Inventor); Savchenkov, Anatoliy (Inventor)

    2012-01-01

    Designs of single-beam laser vibrometry systems and methods. For example, a method for detecting vibrations of a target based on optical sensing is provided to include operating a laser to produce a laser probe beam at a laser frequency and modulated at a modulation frequency onto a target; collecting light at or near the laser to collect light from the target while the target is being illuminated by the laser probe beam through an optical receiver aperture; using a narrow-band optical filter centered at the laser frequency to filter light collected from the optical receiver aperture to transmit light at the laser frequency while blocking light at other frequencies; using an optical detector to convert filtered light from the narrow-band optical filter to produce a receiver electrical signal; using a lock-in amplifier to detect and amplify the receiver electrical signal at the modulation frequency while rejecting signal components at other frequencies to produce an amplified receiver electrical signal; processing the amplified receiver electrical signal to extract information on vibrations of the target carried by reflected laser probe beam in the collected light; and controlling optical power of the laser probe beam at the target to follow optical power of background illumination at the target.

  2. Integrated RGB laser light module for autostereoscopic outdoor displays

    NASA Astrophysics Data System (ADS)

    Reitterer, Jörg; Fidler, Franz; Hambeck, Christian; Saint Julien-Wallsee, Ferdinand; Najda, Stephen; Perlin, Piotr; Stanczyk, Szymon; Czernecki, Robert; McDougall, Stewart D.; Meredith, Wyn; Vickers, Garrie; Landles, Kennedy; Schmid, Ulrich

    2015-02-01

    We have developed highly compact RGB laser light modules to be used as light sources in multi-view autostereoscopic outdoor displays and projection devices. Each light module consists of an AlGaInP red laser diode, a GaInN blue laser diode, a GaInN green laser diode, as well as a common cylindrical microlens. The plano-convex microlens is a so-called "fast axis collimator", which is widely used for collimating light beams emitted from high-power laser diode bars, and has been optimized for polychromatic RGB laser diodes. The three light beams emitted from the red, green, and blue laser diodes are collimated in only one transverse direction, the so-called "fast axis", and in the orthogonal direction, the so-called "slow axis", the beams pass the microlens uncollimated. In the far field of the integrated RGB light module this produces Gaussian beams with a large ellipticity which are required, e.g., for the application in autostereoscopic outdoor displays. For this application only very low optical output powers of a few milliwatts per laser diode are required and therefore we have developed tailored low-power laser diode chips with short cavity lengths of 250 μm for red and 300 μm for blue. Our RGB laser light module including the three laser diode chips, associated monitor photodiodes, the common microlens, as well as the hermetically sealed package has a total volume of only 0.45 cm³, which to our knowledge is the smallest RGB laser light source to date.

  3. Research on the laser transmission characteristics simulation and comprehensive test in complex channel environment

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Liu, Jianhua; Wang, Xiaoman; Jiang, Huilin; Liu, Zhi

    2014-12-01

    The laser transmission characteristics affected in the complex channel environment, which limits the performance of laser equipment and engineering application severely. The article aim at the influence of laser transmission in atmospheric and seawater channels, summarizes the foreign researching work of the simulation and comprehensive test regarding to the laser transmission characteristics in complex environment. And researched the theory of atmospheric turbulence effect, water attenuation features, and put forward the corresponding theoretical model. And researched the simulate technology of atmospheric channel and sea water channel, put forward the analog device plan, adopt the similar theory of flowing to simulate the atmosphere turbulence .When the flowing has the same condition of geometric limits including the same Reynolds, they must be similar to each other in the motivation despite of the difference in the size, speed, and intrinsic quality. On this basis, set up a device for complex channel simulation and comprehensive testing, the overall design of the structure of the device, Hot and Cold Air Convection Simulation of Atmospheric Turbulence, mainly consists of cell body, heating systems, cooling systems, automatic control system. he simulator provides platform and method for the basic research of laser transmission characteristics in the domestic.

  4. Investigation on RGB laser source applied to dynamic photoelastic experiment

    NASA Astrophysics Data System (ADS)

    Li, Songgang; Yang, Guobiao; Zeng, Weiming

    2014-06-01

    When the elastomer sustains the shock load or the blast load, its internal stress state of every point will change rapidly over time. Dynamic photoelasticity method is an experimental stress analysis method, which researches the dynamic stress and the stress wave propagation. Light source is one of very important device in dynamic photoelastic experiment system, and the RGB laser light source applied in dynamic photoelastic experiment system is innovative and evolutive to the system. RGB laser is synthesized by red laser, green laser and blue laser, either as a single wavelength laser light source, also as synthesized white laser light source. RGB laser as a light source for dynamic photoelastic experiment system, the colored isochromatic can be captured in dynamic photoelastic experiment, and even the black zero-level stripe can be collected, and the isoclinics can also be collected, which conducively analysis and study of transient stress and stress wave propagation. RGB laser is highly stable and continuous output, and its power can be adjusted. The three wavelengths laser can be synthesized by different power ratio. RGB laser light source used in dynamic photoelastic experiment has overcome a number of deficiencies and shortcomings of other light sources, and simplifies dynamic photoelastic experiment, which has achieved good results.

  5. Correlated-Intensity velocimeter for Arbitrary Reflector

    DOEpatents

    Wang, Zhehui; Luo, Shengnian; Barnes, Cris W.; Paul, Stephen F.

    2008-11-11

    A velocimetry apparatus and method comprising splitting incoming reflected laser light and directing the laser light into first and second arms, filtering the laser light with passband filters in the first and second arms, one having a positive passband slope and the other having a negative passband slope, and detecting the filtered laser light via light intensity detectors following the passband filters in the first and second arms

  6. Intraoperative Fluorescence Cerebral Angiography by Laser Surgical Microscopy: Comparison With Xenon Microscopy and Simultaneous Observation of Cerebral Blood Flow and Surrounding Structures.

    PubMed

    Ito, Yuhei; Suzuki, Kyouichi; Ichikawa, Tsuyoshi; Watanabe, Yoichi; Sato, Taku; Sakuma, Jun; Saito, Kiyoshi

    2018-06-12

    Laser surgical microscopes should enable uniform illumination of the operative field, and require less luminous energy compared with existing xenon surgical microscopes. To examine the utility of laser illumination in fluorescence cerebral angiography. Fluorescein sodium (fluorescein) was used as a fluorescent dye. We first compared the clarity of cerebral blood flow images collected by fluorescence angiography between the laser illumination and xenon illumination methods. We then assessed use of the laser illuminator for simultaneous observation of blood flow and surrounding structures during fluorescence angiography. Furthermore, the study was designed to evaluate usefulness of the thus determined excitation light in clinical cases. Fluorescence angiography using blue light laser for excitation provided higher clarity and contrast blood flow images compared with using blue light generated from a xenon lamp. Further, illumination with excitation light consisting of a combination of 3 types of laser (higher level of blue light, no green light, and lower level of red light) enabled both blood flow and surrounding structures to be observed through the microscope directly by the surgeon. Laser-illuminated fluorescence angiography provides high clarity and contrast images of cerebral blood flow. Further, a laser providing strong blue light and weak red light for excitation light enables simultaneous visual observation of fluorescent blood flow and surrounding structures by the surgeon using a surgical microscope. Overall, these data suggest that laser surgical microscopes are useful for both ordinary operative manipulations and fluorescence angiography.

  7. Laser ablation system, and method of decontaminating surfaces

    DOEpatents

    Ferguson, Russell L.; Edelson, Martin C.; Pang, Ho-ming

    1998-07-14

    A laser ablation system comprising a laser head providing a laser output; a flexible fiber optic cable optically coupled to the laser output and transmitting laser light; an output optics assembly including a nozzle through which laser light passes; an exhaust tube in communication with the nozzle; and a blower generating a vacuum on the exhaust tube. A method of decontaminating a surface comprising the following steps: providing an acousto-optic, Q-switched Nd:YAG laser light ablation system having a fiber optically coupled output optics assembly; and operating the laser light ablation system to produce an irradiance greater than 1.times.10.sup.7 W/cm.sup.2, and a pulse width between 80 and 170 ns.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xian; Amaro-Seoane, Pau, E-mail: xian.chen@pku.edu.cn, E-mail: pau@ice.cat

    The formation of compact stellar-mass binaries is a difficult, but interesting problem in astrophysics. There are two main formation channels: in the field via binary star evolution, or in dense stellar systems via dynamical interactions. The Laser Interferometer Gravitational-wave Observatory (LIGO) has detected black hole binaries (BHBs) via their gravitational radiation. These detections provide us with information about the physical parameters of the system. It has been claimed that when the Laser Interferometer Space Antenna (LISA) is operating, the joint observation of these binaries with LIGO will allow us to derive the channels that lead to their formation. However, wemore » show that for BHBs in dense stellar systems dynamical interactions could lead to high eccentricities such that a fraction of the relativistic mergers are not audible to LISA. A non-detection by LISA puts a lower limit of about 0.005 on the eccentricity of a BHB entering the LIGO band. On the other hand, a deci-Hertz observatory, like DECIGO or Tian Qin, would significantly enhance the chances of a joint detection and shed light on the formation channels of these binaries.« less

  9. Reporting guide for laser-light shows and displays (21 CFR 1002)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The guide is to be used for reporting laser-light shows or displays incorporating Class IIIb or Class IV lasers only. Separate reports are not required for shows or displays that incorporate Class I, IIa, II, or IIIa laser-projection systems. Such show descriptions must be included in the user instructions and the report for the laser projector. Laser projectors used in any light shows or displays regardless of the class of the projector must be certified by the manufacturer and reported using the guide titled, Guide for Preparing Initial Reports and Model Change Reports on Lasers and Products Containing Lasers, HHSmore » Publication FDA 86-8259. These guides assist manufacturers in providing the information that the Center for Devices and Radiological Health (CDRH) needs to determine how laser-light-shown projections and laser-light shows comply with the Federal standard for laser products (21 CDR 1040.10 and 1040.11) and with the conditions of an approved variance.« less

  10. Laser-Based Lighting: Experimental Analysis and Perspectives

    PubMed Central

    Yushchenko, Maksym; Buffolo, Matteo; Meneghini, Matteo; Zanoni, Enrico

    2017-01-01

    This paper presents an extensive analysis of the operating principles, theoretical background, advantages and limitations of laser-based lighting systems. In the first part of the paper we discuss the main advantages and issues of laser-based lighting, and present a comparison with conventional LED-lighting technology. In the second part of the paper, we present original experimental data on the stability and reliability of phosphor layers for laser lighting, based on high light-intensity and high-temperature degradation tests. In the third part of the paper (for the first time) we present a detailed comparison between three different solutions for laser lighting, based on (i) transmissive phosphor layers; (ii) a reflective/angled phosphor layer; and (iii) a parabolic reflector, by discussing the advantages and drawbacks of each approach. The results presented within this paper can be used as a guideline for the development of advanced lighting systems based on laser diodes. PMID:29019958

  11. Method of mounting a fuel pellet in a laser-excited fusion reactor

    DOEpatents

    Hirsch, Robert L.

    1979-01-01

    Laser irradiation means for irradiating a target, wherein a single laser light beam from a source and a mirror close to the target are used with aperture means for directing laser light to interact with the target over a broad area of the surface, and for protecting the laser light source.

  12. Comment on 'Electron acceleration by an intense short pulse laser in a static magnetic field in vacuum'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Shihua; Wu Fengmin

    2006-12-15

    K. P. Singh [Phys. Rev. E 69, 056410 (2004)] put forward a scheme of vacuum laser acceleration in a static magnetic field. We point out that one of the assumptions used in their model does not stand on a solid physical ground and that it seriously influences electrons to obtain net energy gains from the laser field.

  13. Laser warning receiver to identify the wavelength and angle of arrival of incident laser light

    DOEpatents

    Sinclair; Michael B.; Sweatt, William C.

    2010-03-23

    A laser warning receiver is disclosed which has up to hundreds of individual optical channels each optically oriented to receive laser light from a different angle of arrival. Each optical channel has an optical wedge to define the angle of arrival, and a lens to focus the laser light onto a multi-wavelength photodetector for that channel. Each multi-wavelength photodetector has a number of semiconductor layers which are located in a multi-dielectric stack that concentrates the laser light into one of the semiconductor layers according to wavelength. An electrical signal from the multi-wavelength photodetector can be processed to determine both the angle of arrival and the wavelength of the laser light.

  14. A compact high brightness laser synchrotron light source for medical applications

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuhisa

    1999-07-01

    The present high-brightness hard X-ray sources have been developed as third generation synchrotron light sources based on large high energy electron storage rings and magnetic undulators. Recently availability of compact terawatt lasers arouses a great interest in the use of lasers as undulators. The laser undulator concept makes it possible to construct an attractive compact synchrotron radiation source which has been proposed as a laser synchrotron light source. This paper proposes a compact laser synchrotron light source for mediacal applications, such as an intravenous coronary angiography and microbeam therapy.

  15. Influence of surface light scattering in hydrophobic acrylic intraocular lenses on laser beam transmittance.

    PubMed

    Shiraya, Tomoyasu; Kato, Satoshi; Minami, Keiichiro; Miyata, Kazunori

    2017-02-01

    The aim of this study was to experimentally examine the changes in the transmittances of photocoagulation lasers when surface light scattering increases in AcrySof intraocular lenses (IOLs). SA60AT IOLs (Alcon) were acceleratingly aging for 0, 3, 5, and 10 years to simulate surface light scattering, and the surface light-scattering intensities of both IOL surfaces were measured using a Scheimpflug photographer. The powers of laser beams that passed from a laser photocoagulator through the aged IOLs were measured at 532, 577, and 647 nm. Changes in the laser power and transmittance with the years of aging and the intensities of surface light scattering were examined. Although the intensity of surface light scattering increased with the years of aging, the laser power did not change with the years of aging (P > 0.30, Kruskal-Wallis test). There were no significant changes in the laser transmittance with the years of aging or the laser wavelength (P > 0.30 and 0.57, respectively). The intensity of surface light scattering revealed no significant association with the laser transmittance at any wavelength (P > 0.37, liner regression). The increases in the surface light scattering of the AcrySof IOLs would not influence retinal photocoagulation treatments for up to 10 years after implantation.

  16. Laser-scanned fluorescence of nonlased/normal, lased/normal, nonlased/carious, and lased/carious enamel

    NASA Astrophysics Data System (ADS)

    Zakariasen, Kenneth L.; Barron, Joseph R.; Paton, Barry E.

    1992-06-01

    Research has shown that low levels of CO2 laser irradiation raise enamel resistance to sub-surface demineralization. Additionally, laser scanned fluorescence analysis of enamel, as well a laser and white light reflection studies, have potential for both clinical diagnosis and comparative research investigations of the caries process. This study was designed to compare laser fluorescence and laser/white light reflection of (1) non-lased/normal with lased/normal enamel and (2) non-lased/normal with non-lased/carious and lased/carious enamel. Specimens were buccal surfaces of extracted third molars, coated with acid resistant varnish except for either two or three 2.25 mm2 windows (two window specimens: non-lased/normal, lased/normal--three window specimens: non-lased/normal, non-lased carious, lased/carious). Teeth exhibiting carious windows were immersed in a demineralizing solution for twelve days. Non-carious windows were covered with wax during immersion. Following immersion, the wax was removed, and fluorescence and laser/white light reflection analyses were performed on all windows utilizing a custom scanning laser fluorescence spectrometer which focuses light from a 25 mWatt He-Cd laser at 442 nm through an objective lens onto a cross-section >= 3 (mu) in diameter. For laser/white light reflection analyses, reflected light intensities were measured. A HeNe laser was used for laser light reflection studies. Following analyses, the teeth are sectioned bucco-lingually into 80 micrometers sections, examined under polarized light microscopy, and the lesions photographed. This permits comparison between fluorescence/reflected light values and the visualized decalcification areas for each section, and thus comparisons between various enamel treatments and normal enamel. The enamel specimens are currently being analyzed.

  17. Visible high-power laser sources for today and beyond

    NASA Astrophysics Data System (ADS)

    Smolka, Gregory L.

    1995-04-01

    The diversity and proliferation of 'real-world' laser applications continues to put increasing demand on laser technology. New system constraints, often dictated by the operation environment, stretch the capabilities of conventional laboratory lasers. As the applications proliferate, so too do the users. Today's laser user is often not a laser engineer, but rather views the laser simply as a tool to help him perform his job. For lasers to reach their true market potential, laser designers must respond to these user-mandated requirements with simple, compact, rugged devices. Traditional commercial lasers are far too large, bulky and complex for many of these new applications. Design techniques for shrinking, simplifying the ruggedizing solid-state lasers for today's applications will be discussed.

  18. In vitro study of bactericidal effect of low-level laser therapy in the presence of photosensitizer on cariogenic bacteria

    NASA Astrophysics Data System (ADS)

    Zanin, Iriana C. J.; Brugnera, Aldo, Jr.; Goncalves, Reginaldo B.

    2002-06-01

    The aim of this in vitro study was to determine whether low-level laser light in the presence of a photosensitizer could kill Streptococcus mutans and Streptococcus sobrinus. Suspensions of these microorganisms were exposed to a gallium-aluminium-arsenide laser light (660 nm) in the presence of photosensitizer toluidine blue O. Viable microorganisms were counted on brain heart agar plates after incubation at 37 degree(s)C in partial atmosphere of 10% CO2 for 48 hours. Their exposure to the laser light in the absence of the dye or the dye in the absence of the laser light presented no significant effect on the viability of the microorganisms. However, a decrease in the number of viable microorganisms was only verified when they were exposed to both the laser light and the dye at the same time. Their total growth inhibition was achieved with a dye concentration of 100 mg/mL and a light energy density of 28.8 J/cm2, after being exposed to laser light for 900 seconds. In conclusion, these results imply that these bacteria can be killed by low-power laser light in the presence of the photosensitizer.

  19. Light and Laser Modalities in the Treatment of Cutaneous Sarcoidosis: A Systematic Review.

    PubMed

    Lima, Ana Luiza; Goetze, Steven; Illing, Tanja; Elsner, Peter

    2018-04-27

    Sarcoidosis is a systemic non-caseating granulomatous disease of unknown aetiology. Cutaneous manifestations are present in approximately 10-30% of the patients with the systemic form. Therapy is indicated in case of disabling symptoms, organ dysfunction or cosmetically distressing manifestation. Despite different therapeutic possibilities, cutaneous sarcoidosis remains exceptionally difficult to treat. Light and laser therapy may be a promising alternative. In this systematic review, we summarised the available treatments according to the literature concerning light and laser therapy for cutaneous sarcoidosis. Publications written in English and German, published between January 1990 and July 2016 in the database PubMed, MEDLINE, Embase, and Scopus were analysed. Light therapy with intense pulsed light, photodynamic therapy, and ultraviolet A light therapy, as well as laser therapy with pulsed dye laser, YAG laser, and Q-switched ruby laser were described. The results are based on individual case reports and small case series. Randomised controlled studies are lacking.

  20. Laser beam monitoring system

    DOEpatents

    Weil, Bradley S.; Wetherington, Jr., Grady R.

    1985-01-01

    Laser beam monitoring systems include laser-transparent plates set at an angle to the laser beam passing therethrough and light sensor for detecting light reflected from an object on which the laser beam impinges.

  1. Laser beam monitoring system

    DOEpatents

    Weil, B.S.; Wetherington, G.R. Jr.

    Laser beam monitoring systems include laser-transparent plates set at an angle to the laser beam passing therethrough and light sensor for detecting light reflected from an object on which the laser beam impinges.

  2. Control over high peak-power laser light and laser-driven X-rays

    NASA Astrophysics Data System (ADS)

    Zhao, Baozhen; Banerjee, Sudeep; Yan, Wenchao; Zhang, Ping; Zhang, Jun; Golovin, Grigory; Liu, Cheng; Fruhling, Colton; Haden, Daniel; Chen, Shouyuan; Umstadter, Donald

    2018-04-01

    An optical system was demonstrated that enables continuous control over the peak power level of ultrashort duration laser light. The optical characteristics of amplified and compressed femtosecond-duration light from a chirped-pulse amplification laser are shown to remain invariant and maintain high-fidelity using this system. When the peak power was varied by an order-of-magnitude, up to its maximum attainable value, the phase, spectral bandwidth, polarization state, and focusability of the light remained constant. This capability led to precise control of the focused laser intensity and enabled a correspondingly high level of control over the power of an all-laser-driven Thomson X-ray light source.

  3. SLAC All Access: Laser Labs

    ScienceCinema

    Minitti, Mike; Woods, Mike

    2018-05-23

    From supermarket checkouts to video game consoles, lasers are ubiquitous in our lives. Here at SLAC, high-power lasers are critical to the cutting-edge research conducted at the laboratory. But, despite what you might imagine, SLAC's research lasers bear little resemblance to the blasters and phasers of science fiction. In this edition of All Access we put on our safety goggles for a peek at what goes on inside some of SLAC's many laser labs. LCLS staff scientist Mike Minitti and SLAC laser safety officer Mike Woods detail how these lasers are used to study the behavior of subatomic particles, broaden our understanding of cosmic rays and even unlock the mysteries of photosynthesis.

  4. Navy Lasers, Railgun, and Hypervelocity Projectile: Background and Issues for Congress

    DTIC Science & Technology

    2017-03-17

    Congressional Research Service 3 it would be cost effective to spend money spreading offensive weapons across a wider array of Navy surface ships might...different kind of laser, called the free electron laser (FEL). In recent years, Navy research and development work on potential shipboard lasers has...We are going to say [to the next administration] ‘Look, we believe this is the place where you want to put your money , but we’re going to have

  5. New alternatives for laser vaporization of the prostate: experimental evaluation of a 980-, 1,318- and 1,470-nm diode laser device.

    PubMed

    Wezel, Felix; Wendt-Nordahl, Gunnar; Huck, Nina; Bach, Thorsten; Weiss, Christel; Michel, Maurice Stephan; Häcker, Axel

    2010-04-01

    Several diode laser systems were introduced in recent years for the minimal-invasive surgical therapy of benign prostate enlargement. We investigated the ablation capacities, hemostatic properties and extend of tissue necrosis of different diode lasers at wavelengths of 980, 1,318 and 1,470 nm and compared the results to the 120 W GreenLight HPS laser. The laser devices were evaluated in an ex vivo model using isolated porcine kidneys. The weight difference of the porcine kidneys after 10 min of laser vaporization defined the amount of ablated tissue. Blood loss was measured in blood-perfused kidneys following laser vaporization. Histological examination was performed to assess the tissue effects. The side-firing 980 and 1,470 nm diode lasers displayed similar ablative capacities compared to the GreenLight HPS laser (n.s.). The 1,318-nm laser, equipped with a bare-ended fiber, reached a higher ablation rate compared to the other laser devices (each P < 0.05). A calculated 'output power efficiency per watt' revealed that the 1,318-nm laser with a bare-ended fiber reached the highest rate compared to the side-firing devices (each P < 0.0001). All three diode lasers showed superior hemostatic properties compared to the GreenLight HPS laser (each P < 0.01). The extend of morphological tissue necrosis was 4.62 mm (1,318 nm), 1.30 mm (1,470 nm), 4.18 mm (980 nm) and 0.84 mm (GreenLight HPS laser), respectively. The diode lasers offered similar ablative capacities and improved hemostatic properties compared to the 120 W GreenLight HPS laser in this experimental ex vivo setting. The higher tissue penetration of the diode lasers compared to the GreenLight HPS laser may explain improved hemostasis.

  6. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source capable of producing alternating beams of light having different wavelengths is used in tandem with one or more ignitor lasers to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using the single remote excitation light source for pumping one or more small lasers located proximate to one or more fuel combustion zones with alternating wavelengths of light.

  7. Optical diagnostics integrated with laser spark delivery system

    DOEpatents

    Yalin, Azer [Fort Collins, CO; Willson, Bryan [Fort Collins, CO; Defoort, Morgan [Fort Collins, CO; Joshi, Sachin [Fort Collins, CO; Reynolds, Adam [Fort Collins, CO

    2008-09-02

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  8. Fiber laser coupled optical spark delivery system

    DOEpatents

    Yalin, Azer [Fort Collins, CO; Willson, Bryan [Fort Collins, CO; Defoort, Morgan [Fort Collins, CO; Joshi, Sachin [Fort Collins, CO; Reynolds, Adam [Fort Collins, CO

    2008-03-04

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  9. Compact and highly efficient laser pump cavity

    DOEpatents

    Chang, Jim J.; Bass, Isaac L.; Zapata, Luis E.

    1999-01-01

    A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.

  10. Dynamically variable spot size laser system

    NASA Technical Reports Server (NTRS)

    Gradl, Paul R. (Inventor); Hurst, John F. (Inventor); Middleton, James R. (Inventor)

    2012-01-01

    A Dynamically Variable Spot Size (DVSS) laser system for bonding metal components includes an elongated housing containing a light entry aperture coupled to a laser beam transmission cable and a light exit aperture. A plurality of lenses contained within the housing focus a laser beam from the light entry aperture through the light exit aperture. The lenses may be dynamically adjusted to vary the spot size of the laser. A plurality of interoperable safety devices, including a manually depressible interlock switch, an internal proximity sensor, a remotely operated potentiometer, a remotely activated toggle and a power supply interlock, prevent activation of the laser and DVSS laser system if each safety device does not provide a closed circuit. The remotely operated potentiometer also provides continuous variability in laser energy output.

  11. Equipment for an Inexpensive Introductory Optics Lab.

    ERIC Educational Resources Information Center

    Siefken, H. E.; Tomaschke, H. E.

    1994-01-01

    Provides an inexpensive method (less than $125) for performing experiments usually requiring a laser. Suggests building a laser diode light source, a device for producing multiple parallel beams, a light meter, a polar/analyzer, a laser light show apparatus, and a circuit to modulate the laser diode intensity. (MVL)

  12. Four-Pass Coupler for Laser-Diode-Pumped Solid-State Laser

    NASA Technical Reports Server (NTRS)

    Coyle, Donald B.

    2008-01-01

    A four-pass optical coupler affords increased (in comparison with related prior two-pass optical couplers) utilization of light generated by a laser diode in side pumping of a solid-state laser slab. The original application for which this coupler was conceived involves a neodymium-doped yttrium aluminum garnet (Nd:YAG) crystal slab, which, when pumped by a row of laser diodes at a wavelength of 809 nm, lases at a wavelength of 1,064 nm. Heretofore, typically, a thin laser slab has been pumped in two passes, the second pass occurring by virtue of reflection of pump light from a highly reflective thin film on the side opposite the side through which the pump light enters. In two-pass pumping, a Nd:YAG slab having a thickness of 2 mm (which is typical) absorbs about 84 percent of the 809-nm pump light power, leaving about 16 percent of the pump light power to travel back toward the laser diodes. This unused power can cause localized heating of the laser diodes, thereby reducing their lifetimes. Moreover, if the slab is thinner than 2 mm, then even more unused power travels back toward the laser diodes. The four-pass optical coupler captures most of this unused pump light and sends it back to the laser slab for two more passes. As a result, the slab absorbs more pump light, as though it were twice as thick. The gain and laser cavity beam quality of a smaller laser slab in conjunction with this optical coupler can thus be made comparable to those of a larger two-pass-pumped laser slab.

  13. Rapid prototyping of reflectors for vehicle lighting using laser activated remote phosphor

    NASA Astrophysics Data System (ADS)

    Lachmayer, Roland; Kloppenburg, Gerolf; Wolf, Alexander

    2015-03-01

    Bright white light sources are of significant importance for automotive front lighting systems. Today's upper class vehicles mainly use HID or LED as light source. As a further step in this development laser diode based systems offer high luminance, efficiency and allow the realization of new styling concepts and new dynamic lighting functions. These white laser diode systems can either be realized by mixing different spectral sources or by combining diodes with specific phosphors. Based on the approach of generating light using a laser and remote phosphor, lighting modules are manufactured. Four blue laser diodes (450 nm) are used to activate a phosphor coating and thus to achieve white light. A segmented paraboloid reflector generates the desired light distribution for an additional car headlamp. We use high speed milling and selective laser melting to build the reflector system for this lighting module. We compare the spectral reflection grade of these materials. Furthermore the generated modules are analyzed regarding their efficiency and light distribution. The use of Rapid Prototyping technologies allows an early validation of the chosen concept and is supposed to reduce cost and time in the product development process significantly. Therefor we discuss costs and times of the applied manufacturing technologies.

  14. Only lasers can be used for low level laser therapy

    PubMed Central

    Moskvin, Sergey Vladimirovich

    2017-01-01

    The question of lasers' exclusivity, as well as the degree of influence of special properties of low-intensity laser illumination (LILI), such as coherence, polarity and monochromaticity, on the effectiveness of low level laser therapy (LLLT) continues to cause arguments. The study analyzes publications from 1973 to 2016, in which laser and conventional light sources are compared, and the following conclusions are drawn. First, there are a lot of publications with incorrect comparison or unfounded statements. Secondly, other sources of light are often meant by LILI without any justification. Thirdly, all studies, in which the comparison is carried out correctly and close parameters of the impact and the model are used, have a firm conclusion that laser light is much more effective. Fourthly, it is uniquely identified that the most important parameter that determines the efficiency of lasers is monochromaticity, i.e., a much narrower spectral width than for all other light sources. Only laser light sources can be used for LLLT! PMID:29130447

  15. Research on energy transmission calculation problem on laser detecting submarine

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Li, Yingchao; Zhang, Lizhong; Wang, Chao; An, Yan

    2014-12-01

    The laser detection and identification is based on the method of using laser as the source of signal to scan the surface of ocean. If the laser detection equipment finds out the target, it will immediately reflect the returning signal, and then through receiving and disposing the returning signal by the receiving system, to realize the function of detection and identification. Two mediums channels should be though in the process of laser detection transmission, which are the atmosphere and the seawater. The energy loss in the process of water transport, mainly considering the surface reflection and scattering attenuation and internal attenuation factors such as seawater. The energy consumption though atmospheric transmission, mainly considering the absorption of atmospheric and the attenuation causing by scattering, the energy consumption though seawater transmission, mainly considering the element such as surface reflection, the attenuation of scattering and internal attenuation of seawater. On the basis of the analysis and research, through the mode of establishment of atmospheric scattering, the model of sea surface reflection and the model of internal attenuation of seawater, determine the power dissipation of emitting lasers system, calculates the signal strength that reaches the receiver. Under certain conditions, the total attenuation of -98.92 dB by calculation, and put forward the related experiment scheme by the use of Atmospheric analog channel, seawater analog channel. In the experiment of the theory, we use the simulation pool of the atmosphere and the sea to replace the real environment where the laser detection system works in this kind of situation. To start with, we need to put the target in the simulating seawater pool of 10 meters large and then control the depth of the target in the sea level. We, putting the laser detection system in position where it is 2 kilometers far from one side, secondly use the equipment to aim at the target in some distance. Lastly, by launching and detecting the signal of returning wave, identify the effect of the image produced by the system.

  16. To what extent is coherence lost in tissue?

    NASA Astrophysics Data System (ADS)

    Hode, Tomas; Jenkins, Peter; Jordison, Stefan; Hode, Lars

    2011-03-01

    In a series of experiments we investigated the extent to which coherence is preserved in tissue. We investigated whether the decrease in coherence length is dependent upon the coherence length of the illuminating light and possibly also if the light is polarized. We compared highly coherent light from a HeNe laser, and less coherent light from a semiconductor laser, in scattering media such as raw ground beef. We studied the laser speckle contrast after passing through 1 - 2 cm of meat. The conclusion is that the laser light is still coherent enough to form laser speckles after passing through a 2 cm thickness of meat.

  17. On two heuristic viewpoints concerning the study of light

    NASA Astrophysics Data System (ADS)

    Bi, Siwen

    2015-02-01

    It has been a debatable problem that what the essence of light is, and how it is produced. Since the modern times, as James Clerk Maxwell setting the theory of electromagnetic up, the mainstream consciousness was occupied gradually by the wave theory of light. But at the end of 19th century, a series experimental phenomenon weren't precisely explained by the wave theory of light such as photoelectric effect experiment. Then Albert Einstein published his famous paper "On a Heuristic Viewpoint Concerning the Production and Transformation of Light", which laid the foundation of light quantum hypothesis. While solving these problems perfectly, a new problem was caused that because the wave theory and the quantum theory are both applicable to interpret some of the experiment of light, what is the essence of light. This paper first outlines the history of optical development and current status, and states the difficulties and deficiencies of the study of light. Then we put forward the key concept of the paper called lightstring which consults some points of the theory of modern optics and physics which called the optical frequency comb and the string theory, then presents the essence of light based on the light string concept in order to make the concept of photons specific. And then we put forward the production mechanism of light ---- the String-Light effect based on the concept of light string. In this paper, we attempt to put forward a new idea of the study of the essence of light and the production mechanism of it.

  18. Compact high-power red-green-blue laser light source generation from a single lithium tantalate with cascaded domain modulation.

    PubMed

    Xu, P; Zhao, L N; Lv, X J; Lu, J; Yuan, Y; Zhao, G; Zhu, S N

    2009-06-08

    1W quasi-white-light source has been generated from a single lithium tantalate with cascaded domain modulation. The quasi-white-light is combined by proper proportion of the red, green and blue laser light. The red and the blue result from a compact self-sum frequency optical parametric oscillation when pumped by a single green laser. The efficiency of quasi-white-light from the green pump reaches 27%. This compact design can be employed not only as a stable and powerful RGB light source but also an effective blue laser generator.

  19. Means to improve light source productivity: from proof of concept to field implementation

    NASA Astrophysics Data System (ADS)

    Rausa, E.; Cacouris, T.; Conley, W.; Jackson, M.; Luo, S.; Murthy, S.; Rechtsteiner, G.; Steiner, K.

    2016-03-01

    Light source technological performance is key to enabling chipmaker yield and production success. Just as important is ensuring that performance is consistent over time to help maintain as high an uptime as possible on litho-cells (scanner and track combination). While it is common to see average tool uptime of over 99% based on service intervention time, we will show that there are opportunities to improve equipment availability through a multifaceted approach that can deliver favorable results and significantly improve on the actual production efficiency of equipment. The majority of chipmakers are putting light source data generated by tools such as Cymer OnLine (COL), OnPulse Plus, and SmartPulse to good use. These data sets, combined with in-depth knowledge of the equipment, makes it possible to draw powerful conclusions that help increase both chip manufacturing consistency as well as equipment productivity. This discussion will focus on the latter, equipment availability, and how data analysis can help increase equipment availability for Cymer customers. There are several types of opportunities for increasing equipment availability, but in general we can focus on two primary categories: 1) scheduled downtime and 2) unscheduled downtime. For equipment that is under control of a larger entity, as the laser is to the scanner, there are additional categories related to either communication errors or better synchronization of events that can maximize overall litho-cell efficiency. In this article we will focus on general availability without highlighting the specific cause of litho-cell (laser, scanner and track). The goal is to increase equipment available time with a primary focus is on opportunities to minimize errors and variabilities.

  20. Laser Technology Is Primed for the Classroom.

    ERIC Educational Resources Information Center

    Lytle, Jim

    1986-01-01

    Explains the three characteristics of laser light (monochromatic light, divergence, and coherence), the components of a laser, applications of the laser (alignment, distance measurement, welding/cutting, marking, medical applications), and a complete laser training system appropriate for classroom use. (CT)

  1. Intravascular low-level laser irradiation in the treatment of psoriasis

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Shi, Hong-Min; Zhang, Hui-Guo; Zhang, Mei-Jue; Xu, Jian; Zhou, Min; Hu, Guo-Qiang

    1998-11-01

    Liu TCY et al have put forward the biological information model on low intensity laser irradiation (BIML): low intensity laser irradiation couples with intracellular messenger through the chromophore absorption in the cell membrane: hot-color laser irradiation activates cAMP phosphodiestererase through Gi protein, or activates phosphoinositide phospholipase C through G protein, or activates one of receptor-associated kinases: cAMP; cold- color laser irradiation activates adenylate cyclase through Gs protein: cAMP$ARUP. In this paper, under the guidance of BIML, we applied the intravascular low intensity He-He laser irradiation on blood to a patient of idiopathic edema, and succeeded.

  2. 193nm high power lasers for the wide bandgap material processing

    NASA Astrophysics Data System (ADS)

    Fujimoto, Junichi; Kobayashi, Masakazu; Kakizaki, Koji; Oizumi, Hiroaki; Mimura, Toshio; Matsunaga, Takashi; Mizoguchi, Hakaru

    2017-02-01

    Recently infrared laser has faced resolution limit of finer micromachining requirement on especially semiconductor packaging like Fan-Out Wafer Level Package (FO-WLP) and Through Glass Via hole (TGV) which are hard to process with less defect. In this study, we investigated ablation rate with deep ultra violet excimer laser to explore its possibilities of micromachining on organic and glass interposers. These results were observed with a laser microscopy and Scanning Electron Microscope (SEM). As the ablation rates of both materials were quite affordable value, excimer laser is expected to be put in practical use for mass production.

  3. Solar Pumped Laser

    DTIC Science & Technology

    1976-09-01

    1 dB into 50 ohm load, output VSWR less than 1.5. Phase variation relative to the optical pulse train less than +A.5 Rod Temperature...design of the PSQM laser. All phases of design, mechanical, electronic and optical , borrowed heavily from the EFM lamp pumped laser...opnical power input change for the germanium device is twice that for the silicon device, its random phase noise for a typical in- put of 1 mW optical

  4. Method for optical pumping of thin laser media at high average power

    DOEpatents

    Zapata, Luis E [Livermore, CA; Beach, Raymond J [Livermore, CA; Honea, Eric C [Sunol, CA; Payne, Stephen A [Castro Valley, CA

    2004-07-13

    A thin, planar laser material is bonded to a light guide of an index-matched material forming a composite disk. Diode array or other pump light is introduced into the composite disk through the edges of the disk. Pump light trapped within the composite disk depletes as it multi-passes the laser medium before reaching an opposing edge of the disk. The resulting compound optical structure efficiently delivers concentrated pump light and to a laser medium of minimum thickness. The external face of the laser medium is used for cooling. A high performance cooler attached to the external face of the laser medium rejects heat. Laser beam extraction is parallel to the heat flux to minimize optical distortions.

  5. SLAC All Access: Laser Labs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minitti, Mike; Woods, Mike

    2013-03-01

    From supermarket checkouts to video game consoles, lasers are ubiquitous in our lives. Here at SLAC, high-power lasers are critical to the cutting-edge research conducted at the laboratory. But, despite what you might imagine, SLAC's research lasers bear little resemblance to the blasters and phasers of science fiction. In this edition of All Access we put on our safety goggles for a peek at what goes on inside some of SLAC's many laser labs. LCLS staff scientist Mike Minitti and SLAC laser safety officer Mike Woods detail how these lasers are used to study the behavior of subatomic particles, broadenmore » our understanding of cosmic rays and even unlock the mysteries of photosynthesis.« less

  6. Regime dependence of photo-darkening-induced modal degradation in high power fiber amplifier (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Boullet, Johan; Vincont, Cyril; Jolly, Alain; Pierre, Christophe

    2017-03-01

    Thermally induced transverse modal instabilities (TMI) have attracted these five years an intense research efforts of the entire fiber laser development community, as it represents the current most limiting effect of further power scaling of high power fiber laser. Anyway, since 2014, a few publications point out a new limiting thermal effect: fiber modal degradation (FMD). It is characterized by a power rollover and simultaneous increase of the cladding light at an average power far from the TMI threshold together with a degraded beam which does not exhibit temporal fluctuations, which is one of the main characteristic of TMI. We report here on the first systemic experimental study of FMD in a high power photonic crystal fiber. We put a particular emphasis on the dependence of its average power threshold on the regime of operation. We experimentally demonstrate that this dependence is intrinsically linked to regime-dependent PD-saturated losses, which are nearly three times higher in CW regime than in short pulse picosecond regime. We make the hypothesis that the existence of these different PD equilibrium states between CW regime and picosecond QCW pulsed regime is due to a partial photo-bleaching of color centers in picosecond regime thanks to a higher probability of multi-photon process induced photobleaching (PB) at high peak power. This hypothesis is corroborated by the demonstration of the reversibility of the FMD induced in CW regime by simply switching the seed CW 1064 nm light by a short pulse, picosecond oscillator.

  7. Optimal design and evaluation of a color separation grating using rigorous coupled wave analysis

    NASA Astrophysics Data System (ADS)

    Nagayoshi, Mayumi; Oka, Keiko; Klaus, Werner; Komai, Yuki; Kodate, Kashiko

    2006-02-01

    In recent years, the technology which separates white light into the three primary colors of Red (R), Green (G) and Blue (B) and adjusts each optical intensity and composites R, G and B to display various colors is required in the development and spread of color visual equipments. Various color separation devices have been proposed and have been put to practical use in color visual equipments. We have focused on a small and light grating-type device which has the possibility of reduction in cost and large-scale production and generates only the three primary colors of R, G and B so that a high saturation level can be obtained. To perform a rigorous analysis and design of color separation gratings, our group has developed a program that is based on the Rigorous Coupled Wave Analysis (RCWA). We then calculated the parameters to obtain a diffraction efficiency of higher than 70% and the color gamut of about 70%. We will report on the design, fabrication and evaluation of color separation gratings that have been optimized for fabrication by laser drawing.

  8. Improvement in Suppression of Pulsed Nd:YAG Laser Light With Iodine Absorption Cells for Filtered Rayleigh Scattering Measurements

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Buggele, Alvin E

    1997-01-01

    Filtered Rayleigh scattering using iodine absorption cells is an effective technique for obtaining density, temperature, and velocity measurements in high speed confined flows. By tuning a single frequency laser to a strong iodine absorption line, stray scattered laser light can be greatly suppressed. For example, the minimum transmission predicted by an iodine absorption model calculation is less than 10(exp -5) at the 18788.44/cm line using a 200 mm absorption cell containing iodine vapor at 0.46 T. Measurements obtained by other researches using a CW Nd:YAG laser agree with the model calculations. However, measurements made by us and by others using Q-switched, injection-seeded, frequency doubled Nd:YAG lasers only show minimum transmission of about 3 x 10(exp -3). This greatly reduces the applicability of the filtered Rayleigh scattering technique using these lasers in experiments having large amounts of stray scattered laser light. The purposes of the present study are to characterize the spectrum of the excess light transmitted by the iodine cell and to make changes to the laser to reduce the transmitted laser light. Transmission data as a function of laser frequency for the iodine absorption line at 18788.44/cm are presented. A planar mirror Fabry-Perot interferometer was used to characterize the frequency spectrum of the light passed through the cell. Measurements taken with the laser tuned to the center of the iodine absorption line show the light transmitted through the iodine cell to have a component with a bandwidth of about 40 GHz. This is probably caused by other modes in the laser that exist in spite of the single frequency injection beam. A second broadband component was also observed, possibly caused by the laser flash lamps or by fluorescence. An intracavity etalon was installed in the laser oscillator cavity to suppress the 40 GHz component. Measurements taken with the etalon tuned to the injection frequency showed a reduction in the transmitted laser light. This improvement allows the iodine cell to block significantly more of the stray laser light in filtered Rayleigh scattering experiments. Examples are given of filtered Rayleigh scattering measurements showing the effect of the etalon on measurements taken in a Mach 3 flow in the NASA Lewis 4 inch by 10 inch supersonic wind tunnel.

  9. Fabrication of versatile cladding light strippers and fiber end-caps with CO2 laser radiation

    NASA Astrophysics Data System (ADS)

    Steinke, M.; Theeg, T.; Wysmolek, M.; Ottenhues, C.; Pulzer, T.; Neumann, J.; Kracht, D.

    2018-02-01

    We report on novel fabrication schemes of versatile cladding light strippers and end-caps via CO2 laser radiation. We integrated cladding light strippers in SMA-like connectors for reliable and stable fiber-coupling of high-power laser diodes. Moreover, the application of cladding light strippers in typical fiber geometries for high-power fiber lasers was evaluated. In addition, we also developed processes to fuse end-caps to fiber end faces via CO2 laser radiation and inscribe the fibers with cladding light strippers near the end-cap. Corresponding results indicate the great potential of such devices as a monolithic and low-cost alternative to SMA connectors.

  10. Only lasers can be used for low level laser therapy.

    PubMed

    Moskvin, Sergey Vladimirovich

    2017-12-01

    The question of lasers' exclusivity, as well as the degree of influence of special properties of low-intensity laser illumination (LILI), such as coherence, polarity and monochromaticity, on the effectiveness of low level laser therapy (LLLT) continues to cause arguments. The study analyzes publications from 1973 to 2016, in which laser and conventional light sources are compared, and the following conclusions are drawn. First, there are a lot of publications with incorrect comparison or unfounded statements. Secondly, other sources of light are often meant by LILI without any justification. Thirdly, all studies, in which the comparison is carried out correctly and close parameters of the impact and the model are used, have a firm conclusion that laser light is much more effective. Fourthly, it is uniquely identified that the most important parameter that determines the efficiency of lasers is monochromaticity, i.e., a much narrower spectral width than for all other light sources. Only laser light sources can be used for LLLT! © Author(s) 2017. This article is published with open access by China Medical University.

  11. Stretched Lens Array (SLA) for Collection and Conversion of Infrared Laser Light: 45% Efficiency Demonstrated for Near-Term 800 W/kg Space Power System

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark; Howell, Joe; Fikes, John; Fork, Richard; Phillips, Dane; Aiken, Dan; McDanal, A. J.

    2006-01-01

    For the past 2% years, our team has been developing a unique photovoltaic concentrator array for collection and conversion of infrared laser light. This laser-receiving array has evolved from the solar-receiving Stretched Lens Array (SLA). The laser-receiving version of SLA is being developed for space power applications when or where sunlight is not available (e.g., the eternally dark lunar polar craters). The laser-receiving SLA can efficiently collect and convert beamed laser power from orbiting spacecraft or other sources (e.g., solar-powered lasers on the permanently illuminated ridges of lunar polar craters). A dual-use version of SLA can produce power from sunlight during sunlit portions of the mission, and from beamed laser light during dark portions of the mission. SLA minimizes the cost and mass of photovoltaic cells by using gossamer-like Fresnel lenses to capture and focus incoming light (solar or laser) by a factor of 8.5X, thereby providing a cost-effective, ultra-light space power system.

  12. Hypericin and pulsed laser therapy of squamous cell cancer in vitro.

    PubMed

    Bublik, Michael; Head, Christian; Benharash, Peyman; Paiva, Marcos; Eshraghi, Adrian; Kim, Taiho; Saxton, Romaine

    2006-06-01

    This in vitro study compares continuous wave and pulsed laser light at longer wavelengths for activation of the phototoxic drug hypericin in human cancer cells. Two-photon pulsed laser light now allows high-resolution fluorescent imaging of cancer cells and should provide deeper tissue penetration with near infrared light for improved detection as well as phototoxicity in human tumors. Cultured Seoul National University (SNU)-1 tumor cells from a squamous cell carcinoma (SCC) were incubated with hypericin before photoirradiation at four laser wavelengths. Phototoxicity of hypericin sensitized SCC cells was measured by dimethyl thiazoldiphenyl (MTT) tetrazolium bromide cell viability assays and by confocal fluorescence microscopy via 532-nm and infrared two-photon pulsed laser light. Phototoxic response increased linearly with hypericin dose of 0.1-2 microM, light exposure time of 5-120 sec, and pulsed dye laser wavelengths of 514-593 nm. Light energy delivery for 50% cell phototoxicity (LD50) response was 9 joules at 514 nm, 3 joules at 550 nm, and less than 1 joule at the 593 nm hypericin light absorption maxima. Fluorescence confocal microscopy revealed membrane and perinuclear localization of hypericin in the SNU cells with membrane damage seen after excitation with visible 532 nm continuous wave light or two-photon 700-950 nm picosecond pulsed laser irradiation. Hypericin may be a powerful tumor targetting drug when combined with pulsed laser light in patients with recurrent head and neck SCC.

  13. High coupling efficiency of foam spherical hohlraum driven by 2ω laser light

    NASA Astrophysics Data System (ADS)

    Chen, Yao-Hua; Lan, Ke; Zheng, Wanguo; Campbell, E. M.

    2018-02-01

    The majority of solid state laser facilities built for laser fusion research irradiate targets with third harmonic light (0.35 μm) up-converted from the fundamental Nd wavelength at 1.05 μm. The motivation for this choice of wavelength is improved laser-plasma coupling. Significant disadvantages to this choice of wavelength are the reduced damage threshold of optical components and the efficiency of energy conversion to third harmonic light. Both these issues are significantly improved if second harmonic (0.53 μm) radiation is used, but theory and experiments have shown lower optical to x-ray energy conversion efficiency and increased levels of laser-plasma instabilities, resulting in reduced laser-target coupling. In this letter, we propose to use a 0.53 μm laser for the laser ignition facilities and use a low density foam wall to increase the coupling efficiency from the laser to the capsule and present two-dimensional radiation-hydrodynamic simulations of 0.53 μm laser light irradiating an octahedral-spherical hohlraum with a low density foam wall. The simulations show that the reduced optical depth of the foam wall leads to an increased laser-light conversion into thermal x-rays and about 10% higher radiation flux on the capsule than that achieved with 0.35 μm light irradiating a solid density wall commonly used in laser indirect drive fusion research. The details of the simulations and their implications and suggestions for wavelength scaling coupled with innovative hohlraum designs will be discussed.

  14. Basic study of charring detection at the laser catheter-tip using back scattering light measurement during therapeutic laser irradiation in blood.

    PubMed

    Takahashi, Mei; Ito, Arisa; Kajihara, Takuro; Matsuo, Hiroki; Arai, Tsunenori

    2010-01-01

    The purpose of this study is to investigate transient process of the charring at the laser catheter-tip in blood during therapeutic laser irradiation by the back scattering light measurement to detect precursor state of the charring. We took account of using photodynamic therapy for arrhythmia in blood through the laser catheter. We observed the influence of the red laser irradiation (λ=663 nm) upon the shape of red blood cells (RBCs). The RBCs aggregation, round formation, and hemolysis were took place sequentially before charring. With a model blood sandwiched between glass plates simulated as a catheter-tip boundary, we measured diffuse-reflected-light power and transmitted-light power simultaneously and continuously by a microscopic optics during the laser irradiation. We found that measured light power changes were originated with RBCs shape change induced by temperature rise due to the laser irradiation. A gentle peak following a slow descending was observed in the diffuse-reflected-light power history. This history might indicate the precursor state of the charring, in which the hemolysis might be considered to advance rapidly. We think that the measurement of diffuse-reflected-light power history might be able to detect precursor state of charring at the catheter-tip in blood.

  15. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  16. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A [Castro Valley, CA; Beach, Raymond J [Livermore, CA; Dawson, Jay W [Livermore, CA; Krupke, William F [Pleasanton, CA

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  17. Luminescent light source for laser pumping and laser system containing same

    DOEpatents

    Hamil, Roy A.; Ashley, Carol S.; Brinker, C. Jeffrey; Reed, Scott; Walko, Robert J.

    1994-01-01

    The invention relates to a pumping lamp for use with lasers comprising a porous substrate loaded with a component capable of emitting light upon interaction of the component with exciting radiation and a source of exciting radiation. Preferably, the pumping lamp comprises a source of exciting radiation, such as an electron beam, and an aerogel or xerogel substrate loaded with a component capable of interacting with the exciting radiation, e.g., a phosphor, to produce light, e.g., visible light, of a suitable band width and of a sufficient intensity to generate a laser beam from a laser material.

  18. An Investigation of Laser Lighting Systems to Assist Aircraft

    DOT National Transportation Integrated Search

    1979-01-01

    A model for the visual detectability of narrow light beams was developed and used to evaluate the system performance of two laser lighting system configurations: (1) a laser VASI and (2) a crossed beam glide path indicator. Laboratory experiments con...

  19. Multiperiod-grating surface-emitting lasers

    NASA Technical Reports Server (NTRS)

    Lang, Robert J. (Inventor)

    1992-01-01

    Surface-emitting distributed feedback (DFB) lasers are disclosed with hybrid gratings. A first-order grating is provided at one or both ends of the active region of the laser for retroreflection of light back into the active region, and a second-order or nonresonant grating is provided at the opposite end for coupling light out perpendicular to the surfaces of the laser or in some other selected direction. The gratings may be curved to focus light retroreflected into the active region and to focus light coupled out to a point. When so focused to a point, the DFB laser may be part of a monolithic read head for a laser recorded disk, or an optical coupler into an optical fiber.

  20. Small bore ceramic laser tube inspection light table

    DOEpatents

    Updike, Earl O.

    1990-01-01

    Apparatus for inspecting small bore ceramic laser tubes, which includes a support base with one or more support rollers. A fluorescent light tube is inserted within the laser tube and the laser tube is supported by the support rollers so that a gap is maintained between the laser tube and the fluorescent tube to enable rotation of the laser tube. In operation, the ceramic tube is illuminated from the inside by the fluorescent tube to facilitate visual inspection. Centering the tube around the axial light of the fluorescent tube provides information about straightness and wall thickness of the laser tube itself.

  1. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. The beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion of it being recombined with the first portion after a delay before injection into the ignitor laser. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones.

  2. Apparatus, system, and method for laser-induced breakdown spectroscopy

    DOEpatents

    Effenberger, Jr., Andrew J; Scott, Jill R; McJunkin, Timothy R

    2014-11-18

    In laser-induced breakdown spectroscopy (LIBS), an apparatus includes a pulsed laser configured to generate a pulsed laser signal toward a sample, a constructive interference object and an optical element, each located in a path of light from the sample. The constructive interference object is configured to generate constructive interference patterns of the light. The optical element is configured to disperse the light. A LIBS system includes a first and a second optical element, and a data acquisition module. The data acquisition module is configured to determine an isotope measurement based, at least in part, on light received by an image sensor from the first and second optical elements. A method for performing LIBS includes generating a pulsed laser on a sample to generate light from a plasma, generating constructive interference patterns of the light, and dispersing the light into a plurality of wavelengths.

  3. Self-tuning method for monitoring the density of a gas vapor component using a tunable laser

    DOEpatents

    Hagans, Karla; Berzins, Leon; Galkowski, Joseph; Seng, Rita

    1996-01-01

    The present invention relates to a vapor density monitor and laser atomic absorption spectroscopy method for highly accurate, continuous monitoring of vapor densities, composition, flow velocity, internal and kinetic temperatures and constituent distributions. The vapor density monitor employs a diode laser, preferably of an external cavity design. By using a diode laser, the vapor density monitor is significantly less expensive and more reliable than prior art vapor density monitoring devices. In addition, the compact size of diode lasers enables the vapor density monitor to be portable. According to the method of the present invention, the density of a component of a gas vapor is calculated by tuning the diode laser to a frequency at which the amount of light absorbed by the component is at a minimum or a maximum within about 50 MHz of that frequency. Laser light from the diode laser is then transmitted at the determined frequency across a predetermined pathlength of the gas vapor. By comparing the amount of light transmitted by the diode laser to the amount of light transmitted after the laser light passes through the gas vapor, the density of the component can be determined using Beer's law.

  4. Self-tuning method for monitoring the density of a gas vapor component using a tunable laser

    DOEpatents

    Hagans, K.; Berzins, L.; Galkowski, J.; Seng, R.

    1996-08-27

    The present invention relates to a vapor density monitor and laser atomic absorption spectroscopy method for highly accurate, continuous monitoring of vapor densities, composition, flow velocity, internal and kinetic temperatures and constituent distributions. The vapor density monitor employs a diode laser, preferably of an external cavity design. By using a diode laser, the vapor density monitor is significantly less expensive and more reliable than prior art vapor density monitoring devices. In addition, the compact size of diode lasers enables the vapor density monitor to be portable. According to the method of the present invention, the density of a component of a gas vapor is calculated by tuning the diode laser to a frequency at which the amount of light absorbed by the component is at a minimum or a maximum within about 50 MHz of that frequency. Laser light from the diode laser is then transmitted at the determined frequency across a predetermined pathlength of the gas vapor. By comparing the amount of light transmitted by the diode laser to the amount of light transmitted after the laser light passes through the gas vapor, the density of the component can be determined using Beer`s law. 6 figs.

  5. Lasers: A Valuable Tool for Chemists.

    ERIC Educational Resources Information Center

    Findsen, E. W.; Ondrias, M. R.

    1986-01-01

    Discusses the properties of laser light, reviews types of lasers, presents operating principles, and considers mechanical aspects of laser light production. Applications reviewed include spectroscopy, photochemical reaction initiation, and investigation of biological processes involving porphyrins. (JM)

  6. Diode-laser-based therapy device

    NASA Astrophysics Data System (ADS)

    Udrea, Mircea V.; Nica, Adriana S.; Florian, Mariana; Poenaru, Daniela; Udrea, Gabriela; Lungeanu, Mihaela; Sporea, Dan G.; Vasiliu, Virgil V.; Vieru, Roxana

    2004-10-01

    A new therapy laser device is presented. The device consists of a central unit and different types of laser probes. The laser probe model SL7-650 delivers seven red (650 nm), 5 mW diode lasers convergent beams. The beams converge at about 30 cm in front of the laser probe and the irradiated area might be varied by simple displacement of the laser probe with respect to the target. The laser probe SL1-808 emits single infrared laser beam up to 500 mW. The efficiency of the use of this device in physiotherapy, and rheumatology, has been put into evidence after years of testing. Dermatology and microsurgery are users of infrared powerful laser probes. The device has successfully passed technical and clinical tests in order to be certified. The laser device design and some medical results are given.

  7. Industrial laser marketplace

    NASA Astrophysics Data System (ADS)

    Belforte, David A.

    1990-05-01

    Introduction: Gary Forrest As with medical, we have a specific individual, Dave Belforte, who, in addition to writing for Laser Focus, publishes with Laser Focus the Industrial Laser Review. Again, this is an area that has some really unique aspects to it which is why we have a specialist at the magazine who tracks this as well as having his own business interests. I just have one quick example. One of the things that I've noticed and I've put this in your handout is it's always interesting to me to see why how the lasers actually impact on finished goods that people buy. So I just clipped out one recent article that mentions some of the different areas when lasers are used in automotive production. There's an ad for the Infinity car of course they've had a strange ad program anyway, but the latest version is "Look at the paint." It's a super high gloss paint. I know in Japan, what I would call laser priming, the use of laser in surface preparation of the metal to obtain a super high gloss is something that's become popular. Now I don't know whether the Infinity is using that or not but it's another example as Moe Levitt indicated earlier lasers have moved into the industrial segment maybe not in the volume that people would like but in a quality sense that is definitely starting to have an impact on the people who are buying those finished products. So I'll give you Dave for the details. David Belforte: The answer is yes, the Infinity has a body which has been processed in what is called laser texturizing process. In Japan, it's known as a mirror finish, and it's not actually applied to the steel of the car. It's a texturizing process on the rolls that reduce the steel down to body thickness. They emboss on that steel a regular pattern which tends to trap radiated light and reflect it back to your eye in a much more intense pattern to give you what appears to be brighter paint. But that was not developed in Japan. It was developed in Belgium actually.

  8. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2004-01-13

    Sequenced pulses of light from an excitation laser with at least two resonator cavities with separate output couplers are directed through a light modulator and a first polarzing analyzer. A portion of the light not rejected by the first polarizing analyzer is transported through a first optical fiber into a first ignitor laser rod in an ignitor laser. Another portion of the light is rejected by the first polarizing analyzer and directed through a halfwave plate into a second polarization analyzer. A first portion of the output of the second polarization analyzer passes through the second polarization analyzer to a second, oscillator, laser rod in the ignitor laser. A second portion of the output of the second polarization analyzer is redirected by the second polarization analyzer to a second optical fiber which delays the beam before the beam is combined with output of the first ignitor laser rod. Output of the second laser rod in the ignitor laser is directed into the first ignitor laser rod which was energized by light passing through the first polarizing analyzer. Combined output of the first ignitor laser rod and output of the second optical fiber is focused into a combustible fuel where the first short duration, high peak power pulse from the ignitor laser ignites the fuel and the second long duration, low peak power pulse directly from the excitation laser sustains the combustion.

  9. Method and apparatus for monitoring the power of a laser beam

    DOEpatents

    Paris, R.D.; Hackel, R.P.

    1996-02-06

    A method for monitoring the power of a laser beam in real time is disclosed. At least one optical fiber is placed through the laser beam, where a portion of light from the laser beam is coupled into the optical fiber. The optical fiber may be maintained in a stationary position or moved periodically over a cross section of the laser beam to couple light from each area traversed. Light reaching both fiber ends is monitored according to frequency and processed to determine the power of the laser beam. 6 figs.

  10. Method and apparatus for monitoring the power of a laser beam

    DOEpatents

    Paris, Robert D.; Hackel, Richard P.

    1996-01-01

    A method for monitoring the power of a laser beam in real time is disclosed. At least one optical fiber is placed through the laser beam, where a portion of light from the laser beam is coupled into the optical fiber. The optical fiber may be maintained in a stationary position or moved periodically over a cross section of the laser beam to couple light from each area traversed. Light reaching both fiber ends is monitored according to frequency and processed to determine the power of the laser beam.

  11. Production of plasmas by long-wavelength lasers

    DOEpatents

    Dawson, J.M.

    1973-10-01

    A long-wavelength laser system for heating low-density plasma to high temperatures is described. In one embodiment, means are provided for repeatedly receiving and transmitting long-wavelength laser light in successive stages to form a laser-light beam path that repeatedly intersects with the equilibrium axis of a magnetically confined toroidal plasma column for interacting the laser light with the plasma for providing controlled thermonuclear fusion. Embodiments for heating specific linear plasmas are also provided. (Official Gazette)

  12. High-power visible laser effect on a Boston Micromachines' MEMS deformable mirror

    NASA Astrophysics Data System (ADS)

    Norton, Andrew; Gavel, Donald; Dillon, Daren; Cornelissen, Steven

    2010-07-01

    Continuous-facesheet and segmented Boston Micromachines Corporations' (BMC) Micro-Electrical Mechanical Systems (MEMS) Deformable Mirrors (DM) have been tested for their response to high-power visible-wavelength laser light. The deformable mirrors, coated with either protected silver or bare aluminum, were subjected to a maximum of 2 Watt laser-light at a wavelength of 532 nanometers. The laser light was incident on a ~ 3.5×3.5 cm area for time periods from minutes to 7 continuous hours. Spot heating from the laser-light is measured to induce a local bulge in the surface of each DM. For the aluminum-coated continuous facesheet DM, the induced spot heating changes the surface figure by 16 nm rms. The silver-coated continuous-facesheet and segmented (spatial light modulator) DMs experience a 6 and 8 nm surface rms change in surface quality with the laser at 2 Watts. For spatial frequencies less than the actuator spacing (300 mm), the laser induced surface bulge is shown to be removable, as the DMs continued to be fully functional during and after their exposure. Over the full 10 mm aperture one could expect the same results with a 15 Watt laser guide star (LGS). These results are very promising for use of the MEMS DM to pre-correct the outgoing laser light in the Laboratory for Adaptive Optics' (LAO) laser uplink application.

  13. Check for Safety: A Home Fall Prevention Checklist for Older Adults

    MedlinePlus

    ... Avoid going barefoot or wearing slippers. Improve the lighting in your home. Put in brighter light bulbs. ... less to use. It’s safest to have uniform lighting in a room. Add lighting to dark areas. ...

  14. Laser & Fiber Optics: Instructional Manual. The North Dakota High Technology Mobile Laboratory Project.

    ERIC Educational Resources Information Center

    Eickhoff, Luvern R.

    This instructional manual contains 20 learning activity packets for use in a workshop on lasers and fiber optics. The lessons cover the following topics: what a laser; coherent light; setting up the laser; characteristics of the laser beam; scattering of light; laser beam divergence, intensity, color, ophthalmology, and reflections; directivity of…

  15. Thermal lens elimination by gradient-reduced zone coupling of optical beams

    DOEpatents

    Page, Ralph H.; Beach, Raymond J.

    2000-01-01

    A thermal gradient-reduced-zone laser includes a laser medium and an optically transparent plate with an index of refraction that is less than the index of refraction of the laser medium. The pump face of the laser medium is bonded to a surface of the optically transparent member. Pump light is directed through the transparent plate to optically pump the solid state laser medium. Heat conduction is mainly through the surface of the laser medium where the heat is introduced by the pump light. Heat flows in a direction opposite to that of the pump light because the side of the laser medium that is opposite to that of the pump face is not in thermal contact with a conductor and thus there is no heat flux (and hence, no temperature gradient), thus producing a thermal gradient-reduced zone. A laser cavity is formed around the laser medium such that laser light oscillating within the laser cavity reflects by total-internal-reflection from the interface between the pump face and the optically transparent plate and enters and exits through a thermal gradient-reduced zone.

  16. Use of a white light supercontinuum laser for confocal interference-reflection microscopy

    PubMed Central

    Chiu, L-D; Su, L; Reichelt, S; Amos, WB

    2012-01-01

    Shortly after its development, the white light supercontinuum laser was applied to confocal scanning microscopy as a more versatile substitute for the multiple monochromatic lasers normally used for the excitation of fluorescence. This light source is now available coupled to commercial confocal fluorescence microscopes. We have evaluated a supercontinuum laser as a source for a different purpose: confocal interferometric imaging of living cells and artificial models by interference reflection. We used light in the range 460–700 nm where this source provides a reasonably flat spectrum, and obtained images free from fringe artefacts caused by the longer coherence length of conventional lasers. We have also obtained images of cytoskeletal detail that is difficult to see with a monochromatic laser. PMID:22432542

  17. Schlieren with a laser diode source

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Franke, J. M.

    1981-01-01

    The use of a laser diode as a light source for a schlieren system designed to study phase objects such as a wind-tunnel flow is explored. A laser diode schlieren photograph and a white light schlieren photograph (zirconium arc source) are presented for comparison. The laser diode has increased sensitivity, compared with light schlieren, without appreciable image degradiation, and is an acceptable source for schlieren flow visualization.

  18. Twin-Mirrored-Galvanometer Laser-Light-Sheet Generator

    NASA Technical Reports Server (NTRS)

    Rhodes, David B.; Franke, John M.; Jones, Stephen B.; Leighty, Bradley D.

    1991-01-01

    Multiple, rotating laser-light sheets generated to illuminate flows in wind tunnels. Designed and developed to provide flexibility and adaptability to wide range of applications. Design includes capability to control size and location of laser-light sheet in real time, to generate horizontal or vertical sheets, to sweep sheet repeatedly through volume, to generate multiple sheets with controllable separation, and to rotate single or multiple laser-light sheets. Includes electronic equipment and laser mounted on adjustable-height platform. Twin-mirrored galvanometer unit supported by tripod to reduce vibration. Other possible applications include use in construction industry to align beams of building. Artistic or display applications also possible.

  19. Investigation of laser dynamics, modulation and control by means of intra-cavity time varying perturbation

    NASA Technical Reports Server (NTRS)

    Harris, S. E.; Siegman, A. E.; Kuizenga, D. J.; Kung, A. H.; Young, J. F.; Bekkers, G. W.; Bloom, D. M.; Newton, J. H.; Phillion, D. W.

    1975-01-01

    The generation of tunable visible, infrared, and ultraviolet light is examined, along with the control of this light by means of novel mode-locking and modulation techniques. Transient mode-locking of the Nd:YAG laser and generation of short tunable pulses in the visible and the alkali metal inert gas excimer laser systems were investigated. Techniques for frequency conversion of high power and high energy laser radiation are discussed, along with high average power blue and UV laser light sources.

  20. Semiconductor Laser with a Self-Pumped Phase Conjugate External Cavity

    DTIC Science & Technology

    1992-10-01

    laser light is considered planar. In actuality, the HLP 1400 laser diode used in this experiment has a gaussian profile. This approximation is frequently...return beam is in phase with either the light transmitted through or reflected off the rear facet of the diode laser. In Fig. 3.2, E, is the light ...In the first case an anti-reflection coated laser diode was used. It emitted a broadband spectrum without the feedback. The PCM just lowered the

  1. Laser biostimulation of patients suffering from multiple sclerosis in respect to the biological influence of laser light

    NASA Astrophysics Data System (ADS)

    Peszynski-Drews, Cezary; Klimek, Andrzej; Sopinski, Marek; Obrzejta, Dominik

    2003-10-01

    The authors discuss the results, obtained so far during three years' clinical examination, of laser therapy in the treatment of patients suffering from multiple sclerosis. They regard both the results of former laboratory experiments and so far discovered mechanisms of biological influence of laser light as an objective explanation of high effectiveness of laser therapy in the csae of this so far incurable disease. They discuss wide range of biological mechanisms of laser therapy, examined so far on different levels (cell, tissue, organ), allowing the explanation of beneficial influence of laser light in pathogenetically different morbidities.

  2. Apparatus and process for active pulse intensity control of laser beam

    DOEpatents

    Wilcox, Russell B.

    1992-01-01

    An optically controlled laser pulse energy control apparatus and process is disclosed wherein variations in the energy of a portion of the laser beam are used to vary the resistance of a photodetector such as a photoresistor through which a control voltage is fed to a light intensity controlling device through which a second portion of the laser beam passes. Light attenuation means are provided to vary the intensity of the laser light used to control the resistance of the photodetector. An optical delay path is provided through which the second portion of the beam travels before reaching the light intensity controlling device. The control voltage is supplied by a variable power supply. The apparatus may be tuned to properly attenuate the laser beam passing through the intensity controlling device by adjusting the power supply, the optical delay path, or the light attenuating means.

  3. Experiments with Lasers and Frequency Doublers

    NASA Technical Reports Server (NTRS)

    Bachor, H.-A.; Taubman, M.; White, A. G.; Ralph, T.; McClelland, D. E.

    1996-01-01

    Solid state laser sources, such as diode-pumped Nd:YAG lasers, have given us CW laser light of high power with unprecedented stability and low noise performance. In these lasers most of the technical sources of noise can be eliminated allowing them to be operated close to the theoretical noise limit set by the quantum properties of light. The next step of reducing the noise below the standard limit is known as squeezing. We present experimental progress in generating reliably squeezed light using the process of frequency doubling. We emphasize the long term stability that makes this a truly practical source of squeezed light. Our experimental results match noise spectra calculated with our recently developed models of coupled systems which include the noise generated inside the laser and its interaction with the frequency doubler. We conclude with some observations on evaluating quadrature squeezed states of light.

  4. Space-Borne Laser Altimeter Geolocation Error Analysis

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Fang, J.; Ai, Y.

    2018-05-01

    This paper reviews the development of space-borne laser altimetry technology over the past 40 years. Taking the ICESAT satellite as an example, a rigorous space-borne laser altimeter geolocation model is studied, and an error propagation equation is derived. The influence of the main error sources, such as the platform positioning error, attitude measurement error, pointing angle measurement error and range measurement error, on the geolocation accuracy of the laser spot are analysed by simulated experiments. The reasons for the different influences on geolocation accuracy in different directions are discussed, and to satisfy the accuracy of the laser control point, a design index for each error source is put forward.

  5. NASA Laser Light Scattering Advanced Technology Development Workshop, 1988

    NASA Technical Reports Server (NTRS)

    Meyer, William V. (Editor)

    1989-01-01

    The major objective of the workshop was to explore the capabilities of existing and prospective laser light scattering hardware and to assess user requirements and needs for a laser light scattering instrument in a reduced gravity environment. The workshop addressed experimental needs and stressed hardware development.

  6. Impact of mismatched and misaligned laser light sheet profiles on PIV performance

    NASA Astrophysics Data System (ADS)

    Grayson, K.; de Silva, C. M.; Hutchins, N.; Marusic, I.

    2018-01-01

    The effect of mismatched or misaligned laser light sheet profiles on the quality of particle image velocimetry (PIV) results is considered in this study. Light sheet profiles with differing widths, shapes, or alignment can reduce the correlation between PIV images and increase experimental errors. Systematic PIV simulations isolate these behaviours to assess the sensitivity and implications of light sheet mismatch on measurements. The simulations in this work use flow fields from a turbulent boundary layer; however, the behaviours and impacts of laser profile mismatch are highly relevant to any fluid flow or PIV application. Experimental measurements from a turbulent boundary layer facility are incorporated, as well as additional simulations matched to experimental image characteristics, to validate the synthetic image analysis. Experimental laser profiles are captured using a modular laser profiling camera, designed to quantify the distribution of laser light sheet intensities and inform any corrective adjustments to an experimental configuration. Results suggest that an offset of just 1.35 standard deviations in the Gaussian light sheet intensity distributions can cause a 40% reduction in the average correlation coefficient and a 45% increase in spurious vectors. Errors in measured flow statistics are also amplified when two successive laser profiles are no longer well matched in alignment or intensity distribution. Consequently, an awareness of how laser light sheet overlap influences PIV results can guide faster setup of an experiment, as well as achieve superior experimental measurements.

  7. Growth and development of Arabidopsis thaliana under single-wavelength red and blue laser light.

    PubMed

    Ooi, Amanda; Wong, Aloysius; Ng, Tien Khee; Marondedze, Claudius; Gehring, Christoph; Ooi, Boon S

    2016-09-23

    Indoor horticulture offers a sensible solution for sustainable food production and is becoming increasingly widespread. However, it incurs high energy and cost due to the use of artificial lighting such as high-pressure sodium lamps, fluorescent light or increasingly, the light-emitting diodes (LEDs). The energy efficiency and light quality of currently available horticultural lighting is suboptimal, and therefore less than ideal for sustainable and cost-effective large-scale plant production. Here, we demonstrate the use of high-powered single-wavelength lasers for indoor horticulture. They are highly energy-efficient and can be remotely guided to the site of plant growth, thus reducing on-site heat accumulation. Furthermore, laser beams can be tailored to match the absorption profiles of different plant species. We have developed a prototype laser growth chamber and demonstrate that plants grown under laser illumination can complete a full growth cycle from seed to seed with phenotypes resembling those of plants grown under LEDs reported previously. Importantly, the plants have lower expression of proteins diagnostic for light and radiation stress. The phenotypical, biochemical and proteome data show that the single-wavelength laser light is suitable for plant growth and therefore, potentially able to unlock the advantages of this next generation lighting technology for highly energy-efficient horticulture.

  8. Growth and development of Arabidopsis thaliana under single-wavelength red and blue laser light

    PubMed Central

    Ooi, Amanda; Wong, Aloysius; Ng, Tien Khee; Marondedze, Claudius; Gehring, Christoph; Ooi, Boon S.

    2016-01-01

    Indoor horticulture offers a sensible solution for sustainable food production and is becoming increasingly widespread. However, it incurs high energy and cost due to the use of artificial lighting such as high-pressure sodium lamps, fluorescent light or increasingly, the light-emitting diodes (LEDs). The energy efficiency and light quality of currently available horticultural lighting is suboptimal, and therefore less than ideal for sustainable and cost-effective large-scale plant production. Here, we demonstrate the use of high-powered single-wavelength lasers for indoor horticulture. They are highly energy-efficient and can be remotely guided to the site of plant growth, thus reducing on-site heat accumulation. Furthermore, laser beams can be tailored to match the absorption profiles of different plant species. We have developed a prototype laser growth chamber and demonstrate that plants grown under laser illumination can complete a full growth cycle from seed to seed with phenotypes resembling those of plants grown under LEDs reported previously. Importantly, the plants have lower expression of proteins diagnostic for light and radiation stress. The phenotypical, biochemical and proteome data show that the single-wavelength laser light is suitable for plant growth and therefore, potentially able to unlock the advantages of this next generation lighting technology for highly energy-efficient horticulture. PMID:27659906

  9. Integrated optics reflectometer

    DOEpatents

    Couch, Philip R; Murphy, Kent A.; Gunther, Michael F; Gause, Charles B

    2017-01-31

    An apparatus includes a laser source configured to output laser light at a target frequency, and a measurement unit configured to measure a deviation between an actual frequency outputted by the laser source at a current period of time and the target frequency of the laser source. The apparatus includes a feedback control unit configured to, based on the measured deviation between the actual and target frequencies, control the laser source to maintain a constant frequency of laser output from the laser source so that the frequency of laser light transmitted from the laser source is adjusted to the target frequency. The feedback control unit can control the laser source to maintain a linear rate of change in the frequency of its laser light output, and compensate for characteristics of the measurement unit utilized for frequency measurement. A method is provided for performing the feedback control of the laser source.

  10. Multi-objective optimization of laser-scribed micro grooves on AZO conductive thin film using Data Envelopment Analysis

    NASA Astrophysics Data System (ADS)

    Kuo, Chung-Feng Jeffrey; Quang Vu, Huy; Gunawan, Dewantoro; Lan, Wei-Luen

    2012-09-01

    Laser scribing process has been considered as an effective approach for surface texturization on thin film solar cell. In this study, a systematic method for optimizing multi-objective process parameters of fiber laser system was proposed to achieve excellent quality characteristics, such as the minimum scribing line width, the flattest trough bottom, and the least processing edge surface bumps for increasing incident light absorption of thin film solar cell. First, the Taguchi method (TM) obtained useful statistical information through the orthogonal array with relatively fewer experiments. However, TM is only appropriate to optimize single-objective problems and has to rely on engineering judgment for solving multi-objective problems that can cause uncertainty to some degree. The back-propagation neural network (BPNN) and data envelopment analysis (DEA) were utilized to estimate the incomplete data and derive the optimal process parameters of laser scribing system. In addition, analysis of variance (ANOVA) method was also applied to identify the significant factors which have the greatest effects on the quality of scribing process; in other words, by putting more emphasis on these controllable and profound factors, the quality characteristics of the scribed thin film could be effectively enhanced. The experiments were carried out on ZnO:Al (AZO) transparent conductive thin film with a thickness of 500 nm and the results proved that the proposed approach yields better anticipated improvements than that of the TM which is only superior in improving one quality while sacrificing the other qualities. The results of confirmation experiments have showed the reliability of the proposed method.

  11. Laser velocimeter for near-surface measurements

    NASA Technical Reports Server (NTRS)

    Johnson, Dennis A. (Inventor)

    1992-01-01

    The present invention relates to a laser Doppler velocimeter for near-wall measurements which includes at least one beam-turning device. The beam-turning device receives laser light, reflects and redirects the light at various angles in order to obtain measurements for all three velocity components at grazing incident angles. The beam-turning device includes a mirror or prism at one end which reflects the received light in a particular direction. A collector lens receives the particle scattered light from which the relevant velocity components are determined. The beam-turning device can also be a miniature fiber optic head which outputs laser light and can be turned in any direction.

  12. Explosively pumped laser light

    DOEpatents

    Piltch, Martin S.; Michelotti, Roy A.

    1991-01-01

    A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

  13. Transcranial light-tissue interaction analysis

    NASA Astrophysics Data System (ADS)

    Aulakh, Kavleen; Zakaib, Scott; Willmore, William G.; Ye, Winnie N.

    2016-03-01

    The penetration depth of light plays a crucial role in therapeutic medical applications. In order to design effective medical photonic devices, an in-depth understanding of light's ability to penetrate tissues (including bone, skin, and fat) is necessary. The amount of light energy absorbed or scattered by tissues affects the intensity of light reaching an intended target in vivo. In this study, we examine the transmittance of light through a variety of cranial tissues for the purpose of determining the efficacy of neuro stimulation using a transcranial laser. Tissue samples collected from a pig were irradiated with a pulsed laser. We first determine the optimal irradiation wavelength of the laser to be 808nm. With varying peak and average power of the laser, we found an inverse and logarithmic relationship between the penetration depth and the intensity of the light. After penetrating the skin and skull of the pig, the light decreases in intensity at a rate of approximately 90.8 (+/-0.4) percent for every 5 mm of brain tissue penetrated. We also found the correlation between the irradiation time and dosage, using three different lasers (with peak power of 500, 1000, and 1500mW respectively). These data will help deduce what laser power is required to achieve a clinically-realistic model for a given irradiation time. This work is fundamental and the experimental data can be used to supplement existing and future research on the effects of laser light on brain tissue for the design of medical devices.

  14. Ellipsoidal cell flow system

    DOEpatents

    Salzman, Gary C.; Mullaney, Paul F.

    1976-01-01

    The disclosure relates to a system incorporating an ellipsoidal flow chamber having light reflective walls for low level light detection in practicing cellular analysis. The system increases signal-to-noise ratio by a factor of ten over prior art systems. In operation, laser light passes through the primary focus of the ellipsoid. A controlled flow of cells simultaneously passes through this focus so that the laser light impinges on the cells and is modulated by the cells. The reflective walls of the ellipsoid reflect the cell-modulated light to the secondary focus of the ellipsoid. A tapered light guide at the secondary focus picks up a substantial portion of modulated reflective light and directs it onto a light detector to produce a signal. The signal is processed to obtain the intensity distribution of the modulated light and hence sought after characteristics of the cells. In addition, cells may be dyed so as to fluoresce in response to the laser light and their fluorescence may be processed as cell-modulated light above described. A light discriminating filter would be used to distinguish reflected modulated laser light from reflected fluorescent light.

  15. 78 FR 35279 - Agency Information Collection Activities; Proposed Collection; Comment Request; Electronic Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-12

    ... Lasers and Products Containing Lasers'' FDA Form 3633 ``General Variance Request'' FDA Form 3634 ``Television Products Annual Report'' FDA Form 3635 ``Laser Light Show Notification'' FDA Form 3636 ``Guide for Preparing Annual Reports on Radiation Safety Testing of Laser and Laser Light Show Products'' FDA Form 3637...

  16. Industrial Materials Processing Laser Markets

    NASA Astrophysics Data System (ADS)

    Followwill, Dorman

    1989-03-01

    The way I would like to handle this morning is first, to give you an overview before I put anything up in terms of slides. An overview of the study that we produced a couple of months ago. It is entitled "Industrial Materials Processing Laser Markets", and if you want information on that particular study, then you can speak with me at the coffee break.

  17. Propagation in compressed matter of hot electrons created by short intense lasers

    NASA Astrophysics Data System (ADS)

    Batani, D.; Bernardinello, A.; Masella, V.; Pisani, F.; Koenig, M.; Krishnan, J.; Benuzzi, A.; Ellwi, S.; Hall, T.; Norreys, P.; Djaoui, A.; Neely, D.; Rose, S.; Fews, P.; Key, M.

    1998-02-01

    We performed the first experimental study of propagation in compressed matter of hot electrons created by a short pulse intense laser. The experiment has been carried out with the VULCAN laser at Rutherford compressing plastic targets with two ns laser beams at an intensity ⩾1014W/cm2. A CPA beam with an intensity ⩾1016W/cm2 irradiated the rear side of the target and created hot electrons propagating through the compressed matter. K-α emission was used as diagnostics of hot electron penetration by putting a chloride plastic layer inside the target.

  18. Study of improving signal-noise ratio for fluorescence channel

    NASA Astrophysics Data System (ADS)

    Wang, Guoqing; Li, Xin; Lou, Yue; Chen, Dong; Zhao, Xin; Wang, Ran; Yan, Debao; Zhao, Qi

    2017-10-01

    Laser-induced fluorescence(LIFS), which is one of most effective discrimination methods to identify the material at the molecular level by inducing fluorescence spectrum, has been popularized for its fast and accurate probe's results. According to the research, violet laser or ultraviolet laser is always used as excitation light source. While, There is no atmospheric window for violet laser and ultraviolet laser, causing laser attenuation along its propagation path. What's worse, as the laser reaching sample, part of the light is reflected. That is, excitation laser really react on sample to produce fluorescence is very poor, leading to weak fluorescence mingled with the background light collected by LIFS' processing unit, when it used outdoor. In order to spread LIFS to remote probing under the complex background, study of improving signal-noise ratio for fluorescence channel is a meaningful work. Enhancing the fluorescence intensity and inhibiting background light both can improve fluorescence' signal-noise ratio. In this article, three different approaches of inhibiting background light are discussed to improve the signal-noise ratio of LIFS. The first method is increasing fluorescence excitation area in the proportion of LIFS' collecting field by expanding laser beam, if the collecting filed is fixed. The second one is changing field angle base to accommodate laser divergence angle. The third one is setting a very narrow gating circuit to control acquisition circuit, which is shortly open only when fluorescence arriving. At some level, these methods all can reduce the background light. But after discussion, the third one is best with adding gating acquisition circuit to acquisition circuit instead of changing light path, which is effective and economic.

  19. Even illumination in total internal reflection fluorescence microscopy using laser light.

    PubMed

    Fiolka, R; Belyaev, Y; Ewers, H; Stemmer, A

    2008-01-01

    In modern fluorescence microscopy, lasers are a widely used source of light, both for imaging in total internal reflection and epi-illumination modes. In wide-field imaging, scattering of highly coherent laser light due to imperfections in the light path typically leads to nonuniform illumination of the specimen, compromising image analysis. We report the design and construction of an objective-launch total internal reflection fluorescence microscopy system with excellent evenness of specimen illumination achieved by azimuthal rotation of the incoming illuminating laser beam. The system allows quick and precise changes of the incidence angle of the laser beam and thus can also be used in an epifluorescence mode. 2007 Wiley-Liss, Inc

  20. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In the embodiment of the invention claimed herein, the beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion of it being combined with either the first portion after a delay before injection into the ignitor laser.

  1. Laser-To-Fibre Couplers In Optical Recording Applications

    NASA Astrophysics Data System (ADS)

    Ophey, W. G.; Benschop, J. P. H.

    1988-02-01

    In optical recording, the use of single-mode fibres can considerably increase the coupling efficiency of the laser light into the light path. Important here is the performance of the laser-to-fibre coupler used. A mathematical treatment of different kinds of laser-to-fibre couplers is presented using scalar diffraction theory in order to obtain the field incident on the front end of the fibre. In this case the coupling efficiency of a laser-to-fibre coupler, using an aberrated light source (astigmatism) with an asymmetric far-field pattern, can easily be calculated.

  2. Diffraction effects in mechanically chopped laser pulses

    NASA Astrophysics Data System (ADS)

    Gambhir, Samridhi; Singh, Mandip

    2018-06-01

    A mechanical beam chopper consists of a rotating disc of regularly spaced wide slits which allow light to pass through them. A continuous light beam, after passing through the rotating disc, is switched-on and switched-off periodically, and a series of optical pulses are produced. The intensity of each pulse is expected to rise and fall smoothly with time. However, a careful study has revealed that the edges of mechanically chopped laser light pulses consist of periodic intensity undulations which can be detected with a photo detector. In this paper, it is shown that the intensity undulations in mechanically chopped laser pulses are produced by diffraction of light from the rotating disc, and a detailed explanation is given of the intensity undulations in mechanically chopped laser pulses. An experiment presented in this paper provides an efficient method to capture a one dimensional diffraction profile of light from a straight sharp-edge in the time domain. In addition, the experiment accurately measures wavelengths of three different laser beams from the undulations in mechanically chopped laser light pulses.

  3. Broadband Lidar Technique for Precision CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Heaps, William S.

    2008-01-01

    Presented are preliminary experimental results, sensitivity measurements and discuss our new CO2 lidar system under development. The system is employing an erbium-doped fiber amplifier (EDFA), superluminescent light emitting diode (SLED) as a source and our previously developed Fabry-Perot interferometer subsystem as a detector part. Global measurement of carbon dioxide column with the aim of discovering and quantifying unknown sources and sinks has been a high priority for the last decade. The goal of Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission is to significantly enhance the understanding of the role of CO2 in the global carbon cycle. The National Academy of Sciences recommended in its decadal survey that NASA put in orbit a CO2 lidar to satisfy this long standing need. Existing passive sensors suffer from two shortcomings. Their measurement precision can be compromised by the path length uncertainties arising from scattering within the atmosphere. Also passive sensors using sunlight cannot observe the column at night. Both of these difficulties can be ameliorated by lidar techniques. Lidar systems present their own set of problems however. Temperature changes in the atmosphere alter the cross section for individual CO2 absorption features while the different atmospheric pressures encountered passing through the atmosphere broaden the absorption lines. Currently proposed lidars require multiple lasers operating at multiple wavelengths simultaneously in order to untangle these effects. The current goal is to develop an ultra precise, inexpensive new lidar system for precise column measurements of CO2 changes in the lower atmosphere that uses a Fabry-Perot interferometer based system as the detector portion of the instrument and replaces the narrow band laser commonly used in lidars with the newly available high power SLED as the source. This approach reduces the number of individual lasers used in the system from three or more to one - considerably reducing the risk of failure. It also tremendously reduces the requirement for wavelength stability in the source putting this responsibility instead on the Fabry-Perot subsystem.

  4. Evolution of the Intelligent Telecommunications Network.

    ERIC Educational Resources Information Center

    Mayo, John S.

    1982-01-01

    Discusses the evolution of the nationwide telecommunications network, including key technologies (transistors, communications satellites, and lasers), putting these technologies together, current and future services, and challenges for the future. (JN)

  5. Methods and Devices for Space Optical Communications Using Laser Beams

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M. (Inventor)

    2018-01-01

    Light is used to communicate between objects separated by a large distance. Light beams are received in a telescopic lens assembly positioned in front of a cat's-eye lens. The light can thereby be received at various angles to be output by the cat's-eye lens to a focal plane of the cat's-eye lens, the position of the light beams upon the focal plane corresponding to the angle of the beam received. Lasers and photodetectors are distributed along this focal plane. A processor receives signals from the photodetectors, and selectively signal lasers positioned proximate the photodetectors detecting light, in order to transmit light encoding data through the cat's-eye lens and also through a telescopic lens back in the direction of the received light beams, which direction corresponds to a location upon the focal plane of the transmitting lasers.

  6. Extraordinary variation of pump light intensity inside a four-level solid-state laser medium

    NASA Astrophysics Data System (ADS)

    Qin, Hua; Fu, Rulian; Wang, Zhaoqi; Liu, Juan

    2008-08-01

    A theoretical investigation of the absorption of the pump light at different intensities through a four-level solid-state laser medium is presented. It is found that the variation of the pump intensity inside the laser medium cannot always simply be dominated by Beer's law. Transmission of the pump light through this laser medium is closely related to the pump intensity itself. In fact, when the pump intensity is relatively low, whose values depend on the characteristics of the medium, the variation of the pump light through the laser medium is consistent with Beer's law. However, while the pump intensity is high enough, the relationship between the transmission of the pump light and its propagation distance is demonstrated to be linear. These theoretical results have been confirmed by the experiment with a medium of YAG:Nd.

  7. Light pollution generated by laser guide star at Canarian Observatories

    NASA Astrophysics Data System (ADS)

    Chueca, Sergio; Fuensalida, Jesus J.

    2004-11-01

    A new generation of instrument using a launching laser is been developed to correct the atmospheric image blurring and to establish optical communication with space. Then, light pollution generated by laser will be a serious operational problem in next years. This laser could affect astronomical works of adjacent telescopes when the laser lay across the field of view of the observing telescope, this is a kind of light pollution. This could be avoided with an adequate operational politic to detect possible interference between the laser and the astronomical telescopes. In this paper is analysed the mathematical probability of a cross-event happen.

  8. Aerosol mass spectrometry systems and methods

    DOEpatents

    Fergenson, David P.; Gard, Eric E.

    2013-08-20

    A system according to one embodiment includes a particle accelerator that directs a succession of polydisperse aerosol particles along a predetermined particle path; multiple tracking lasers for generating beams of light across the particle path; an optical detector positioned adjacent the particle path for detecting impingement of the beams of light on individual particles; a desorption laser for generating a beam of desorbing light across the particle path about coaxial with a beam of light produced by one of the tracking lasers; and a controller, responsive to detection of a signal produced by the optical detector, that controls the desorption laser to generate the beam of desorbing light. Additional systems and methods are also disclosed.

  9. OPO-based compact laser projection display

    NASA Astrophysics Data System (ADS)

    Lee, Dicky; Moulton, Peter F.; Bergstedt, Robert; Flint, Graham W.

    2001-09-01

    In this paper we discuss our red, green, and blue (RGB) optical parametric oscillator (OPO) based laser projection display. The complete project display consists of two subsystems, the RGB-OPO laser head and the light modulation unit. The RGB lights from rack-mounted laser head are fibers coupled to the projection unit for independent placement. The light source consists of a diode-pumped pump laser and a LBO-based OPO. Based on our Nd:YLF gain module design, the pump laser is frequency doubled to serve as the pump source for the OPO. The unconverted pump power is recycled as the green light for projection. The singly resonant, non- critically phase-matched (NCPM) OPO has, to date, generated 13 W of 898-nm signal power and an estimated 9.3 W of intra- cavity idler power at 1256 nm. With approximately 76% of pump depletion, the power of the residual green light for projection is about 5.8 W. We have extra-cavity doubled the signal to produce approximately 3.5 W of 449-nm blue light and intra-cavity doubled the idler to produce approximately 6 W of 628-nm red light. The OPO-based RGB source generates about 4000 lumens of D65-balanced white light. The overall electrical power on a commercially available JVC's three- panel D-ILA (reflective LCD) projector with the arc-lamp removed and extensive modifications. The projector has a native resolution of 1365 x 1024 and the expected on screen lumens from our laser display is about 1200 lumens.

  10. Unique Color Converter Architecture Enabling Phosphor-in-Glass (PiG) Films Suitable for High-Power and High-Luminance Laser-Driven White Lighting.

    PubMed

    Zheng, Peng; Li, Shuxing; Wang, Le; Zhou, Tian-Liang; You, Shihai; Takeda, Takashi; Hirosaki, Naoto; Xie, Rong-Jun

    2018-05-02

    As a next-generation high-power lighting technology, laser lighting has attracted great attention in high-luminance applications. However, thermally robust and highly efficient color converters suitable for high-quality laser lighting are scarce. Despite its versatility, the phosphor-in-glass (PiG) has been seldom applied in laser lighting because of its low thermal conductivity. In this work, we develop a unique architecture in which a phosphor-in-glass (PiG) film was directly sintered on a high thermally conductive sapphire substrate coated by one-dimensional photonic crystals. The designed color converter with the composite architecture exhibits a high internal quantum efficiency close to that of the original phosphor powders and an excellent packaging efficiency up to 90%. Furthermore, the PiG film can even be survived under the 11.2 W mm -2 blue laser excitation. Combining blue laser diodes with the YAG-PiG-on-sapphire plate, a uniform white light with a high luminance of 845 Mcd m -2 (luminous flux: 1839 lm), luminous efficacy of 210 lm W -1 , and correlated color temperature of 6504 K was obtained. A high color rendering index of 74 was attained by adding a robust orange or red phosphor layer to the architecture. These outstanding properties meet the standards of vehicle regulations, enabling the PiG films with the composite architecture to be applied in automotive lighting or other high-power and high-luminance laser lighting.

  11. Investigation of the low-level modulated light action

    NASA Astrophysics Data System (ADS)

    Antonov, Sergei N.; Sotnikov, V. N.; Koreneva, L. G.

    1994-07-01

    Now there exists no clear complete knowledge about mechanisms and pathways by which low level laser bioactivation works. Modulated laser light action has been investigated two new ways: dynamical infrared thermography and computing image of living brain. These ways permit observation in real time laser action on peripheral blood flow, reflex reactions to functional probes, thermoregulation mechanisms as well as brain electrical activity changes of humans. We have designed a universal apparatus which produced all regimes of the output laser light. It has a built-in He-Ne laser with an acousto-optic modulator and an infrared GaAs laser. The device provided spatial combination of both the light beams and permitted us to irradiate an object both separately and simultaneously. This research shows that the most effective frequencies range from several to dozens of hertz. The duty factor and frequency scanning are also important. On the basis of these results in Russian clinics new treatment methods using modulated light are applied in practical neurology, gynecology, etc.

  12. Standard guidelines of care: laser and IPL hair reduction.

    PubMed

    Buddhadev, Rajesh M

    2008-01-01

    Laser-assisted hair removal, Laser hair removal, Laser and light-assisted hair removal, Laser and light-assisted, long-term hair reduction, IPL photodepilation, LHE photodepilation; all these are acceptable synonyms. Laser (Ruby, Nd Yag, Alexandrite, Diode), intense pulse light, light and heat energy system are the different light-/Laser-based systems used for hair removal; each have its advantages and disadvantages. The word "LONG-TERM HAIR REDUCTION" should be used rather than permanent hair removal. Patient counseling is essential about the need for multiple sessions. PHYSICIANS' QUALIFICATIONS: Laser hair removal may be practiced by any dermatologist, who has received adequate background training during postgraduation or later at a centre that provides education and training in Lasers or in focused workshops providing such training. The dermatologist should have adequate knowledge of the machines, the parameters and aftercare. The physician may allow the actual procedure to be performed under his/her direct supervision by a trained nurse assistant/junior doctor. However, the final responsibility for the procedure would lie with the physician. The procedure may be performed in the physician's minor procedure room. Investigations to rule out any underlying cause for hair growth are important; concurrent drug therapy may be needed. Laser parameters vary with area, type of hair, and the machine used. Full knowledge about the machine and cooling system is important. Future maintenance treatments may be needed.

  13. MPPT Algorithm Development for Laser Powered Surveillance Camera Power Supply Unit

    NASA Astrophysics Data System (ADS)

    Zhang, Yungui; Dushantha Chaminda, P. R.; Zhao, Kun; Cheng, Lin; Jiang, Yi; Peng, Kai

    2018-03-01

    Photovoltaics (PV) cells, modules which are semiconducting materials, convert light energy into electricity. Operation of a PV cell requires 3 basic features. When the light is absorbed it generate pairs of electron holes or excitons. An external circuit carrier opposite types of electrons irrespective of the source (sunlight or LASER light). The PV arrays have photovoltaic effect and the PV cells are defined as a device which has electrical characteristics: such as current, voltage and resistance. It varies when exposed to light, that the power output is depend on direct Laser-light. In this paper Laser-light to electricity by direct conversion with the use of PV cells and its concept of Band gap Energy, Series Resistance, Conversion Efficiency and Maximum Power Point Tracking (MPPT) methods [1].

  14. X-ray frequency combs from optically controlled resonance fluorescence

    NASA Astrophysics Data System (ADS)

    Cavaletto, Stefano M.; Harman, Zoltán; Buth, Christian; Keitel, Christoph H.

    2013-12-01

    An x-ray pulse-shaping scheme is put forward for imprinting an optical frequency comb onto the radiation emitted on a driven x-ray transition, thus producing an x-ray frequency comb. A four-level system is used to describe the level structure of N ions driven by narrow-bandwidth x rays, an optical auxiliary laser, and an optical frequency comb. By including many-particle enhancement of the emitted resonance fluorescence, a spectrum is predicted consisting of equally spaced narrow lines which are centered on an x-ray transition energy and separated by the same tooth spacing as the driving optical frequency comb. Given an x-ray reference frequency, our comb could be employed to determine an unknown x-ray frequency. While relying on the quality of the light fields used to drive the ensemble of ions, the model has validity at energies from the 100 eV to the keV range.

  15. Improving Range Estimation of a 3-Dimensional Flash Ladar via Blind Deconvolution

    DTIC Science & Technology

    2010-09-01

    12 2.1.4 Optical Imaging as a Linear and Nonlinear System 15 2.1.5 Coherence Theory and Laser Light Statistics . . . 16 2.2 Deconvolution...rather than deconvolution. 2.1.5 Coherence Theory and Laser Light Statistics. Using [24] and [25], this section serves as background on coherence theory...the laser light incident on the detector surface. The image intensity related to different types of coherence is governed by the laser light’s spatial

  16. Evaluation of Ho:KPb2Cl5 as a Diode-Pumpable Mid-IR Laser Material

    DTIC Science & Technology

    2016-09-01

    is the decay of the upper laser level without emitting light , due to the simultaneous emission of enough lattice vibrational quanta (phonons) to...have an energy level spacing that can result in emission at the desired laser wavelength, and that state must emit light efficiently. It is also...extremely desirable that it absorb light in the wavelength region where laser diodes operate most efficiently, approximately 800–1000 nm. This enables

  17. Laser induced white lighting of tungsten filament

    NASA Astrophysics Data System (ADS)

    Strek, W.; Tomala, R.; Lukaszewicz, M.

    2018-04-01

    The sustained bright white light emission of thin tungsten filament was induced under irradiation with focused beam of CW infrared laser diode. The broadband emission centered at 600 nm has demonstrated the threshold behavior on excitation power. Its intensity increased non-linearly with excitation power. The emission occurred only from the spot of focused beam of excitation laser diode. The white lighting was accompanied by efficient photocurrent flow and photoelectron emission which both increased non-linearly with laser irradiation power.

  18. Design of laser-driven SiO2-YAG:Ce composite thick film: Facile synthesis, robust thermal performance, and application in solid-state laser lighting

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Liu, Bingguo; Liu, Zhiwen; Gong, Yuxuan; Hu, Baofu; Wang, Jian; Li, Hui; Wang, Xinliang; Du, Baoli

    2018-01-01

    In recent times, there have been rapid advances in the solid-state laser lighting technology. Due to the large amounts of heat accumulated from the high flux laser radiation, color conversion materials used in solid-state laser lighting devices should possess high durability, high thermal conductivity, and low thermal quenching. The aim of this study is to develop a thermally robust SiO2-YAG:Ce composite thick film (CTF) for high-power solid-state laser lighting applications. Commercial colloidal silica which was used as the source of SiO2, played the roles of an adhesive, a filler, and a protecting agent. Compared to the YAG:Ce powder, the CTF exhibits remarkable thermal stability (11.3% intensity drop at 200 °C) and durability (4.5% intensity drop after 1000 h, at 85 °C and 85% humidity). Furthermore, the effects of the substrate material and the thickness of the CTF on the laser lighting performance were investigated in terms of their thermal quenching and luminescence saturation behaviors, respectively. The CTF with a thickness of 50 μm on a sapphire substrate does not show luminescence saturation, despite a high-power density of incident radiation i.e. 20 W/mm2. These results demonstrate the potential applicability of the CTF in solid-state laser lighting devices.

  19. Micro-Welding of Copper Plate by Frequency Doubled Diode Pumped Pulsed Nd:YAG Laser

    NASA Astrophysics Data System (ADS)

    Nakashiba, Shin-Ichi; Okamoto, Yasuhiro; Sakagawa, Tomokazu; Takai, Sunao; Okada, Akira

    A pulsed laser of 532 nm wavelength with ms range pulse duration was newly developed by second harmonic generation of diode pumped pulsed Nd:YAG laser. High electro-optical conversion efficiency more than 13% could be achieved, and 1.5 kW peak power green laser pulse was put in optical fiber of 100 μm in diameter. In micro- welding of 1.0 mm thickness copper plate, a keyhole welding was successfully performed by 1.0 kW peak power at spot diameter less than 200 μm. The frequency doubled pulsed laser improved the processing efficiency of copper welding, and narrow and deep weld bead was stably obtained.

  20. 3D Monte Carlo simulation of light propagation for laser acupuncture and optimization of illumination parameters

    NASA Astrophysics Data System (ADS)

    Zhong, Fulin; Li, Ting; Pan, Boan; Wang, Pengbo

    2017-02-01

    Laser acupuncture is an effective photochemical and nonthermal stimulation of traditional acupuncture points with lowintensity laser irradiation, which is advantageous in painless, sterile, and safe compared to traditional acupuncture. Laser diode (LD) provides single wavelength and relatively-higher power light for phototherapy. The quantitative effect of illumination parameters of LD in use of laser acupuncture is crucial for practical operation of laser acupuncture. However, this issue is not fully demonstrated, especially since experimental methodologies with animals or human are pretty hard to address to this issue. For example, in order to protect viability of cells and tissue, and get better therapeutic effect, it's necessary to control the output power varied at 5mW 10mW range, while the optimized power is still not clear. This study aimed to quantitatively optimize the laser output power, wavelength, and irradiation direction with highly realistic modeling of light transport in acupunctured tissue. A Monte Carlo Simulation software for 3D vowelized media and the highest-precision human anatomical model Visible Chinese Human (VCH) were employed. Our 3D simulation results showed that longer wavelength/higher illumination power, larger absorption in laser acupuncture; the vertical direction emission of the acupuncture laser results in higher amount of light absorption in both the acupunctured voxel of tissue and muscle layer. Our 3D light distribution of laser acupuncture within VCH tissue model is potential to be used in optimization and real time guidance in clinical manipulation of laser acupuncture.

  1. A review of melasma treatment focusing on laser and light devices.

    PubMed

    Li, Janet Y; Geddes, Elizabeth Rc; Robinson, Deanne M; Friedman, Paul M

    2016-12-01

    Melasma is a pigmentary disorder of unclear etiology with numerous treatment options and high recurrence rates. Laser and light therapies may be utilized cautiously as second- or third-line options for recalcitrant melasma, but low-energy settings are preferred due to the risk of postinflammatory hyperpigmentation and melasma stimulation. Commonly used lasers include the low-fluence 1064-nm Q-switched neodymium-doped yttrium aluminum garnet laser, nonablative fractionated lasers, and intense pulsed light. Strict sun protection, concomitant use of bleaching agents, and maintenance treatments are necessary. A variety of other treatments that may also help to improve results are now being more widely adopted, including oral tranexamic acid, pulsed dye laser, antioxidants, and laser-assisted drug delivery. ©2016 Frontline Medical Communications.

  2. Support for High Power Laser Ablation 2010

    DTIC Science & Technology

    2010-04-16

    Johannes-Kepler University, Linz, Austria could not attend. Ultimately, we lost half of our European attendance from this cause. The organizer put...attosecond level control of the half -cycle THz polarization and investigate the coupling of femtosecond-laser-generated plasmas through THz emission...manipulation of trapped particles, by changing the polarization and by changing the distance between the focal planes of two optical vortex beams

  3. Vacuum-Compatible Wideband White Light and Laser Combiner Source System

    NASA Technical Reports Server (NTRS)

    Azizi, Alineza; Ryan, Daniel J.; Tang, Hong; Demers, Richard T.; Kadogawa, Hiroshi; An, Xin; Sun, George Y.

    2010-01-01

    For the Space Interferometry Mission (SIM) Spectrum Calibration Development Unit (SCDU) testbed, wideband white light is used to simulate starlight. The white light source mount requires extremely stable pointing accuracy (<3.2 microradians). To meet this and other needs, the laser light from a single-mode fiber was combined, through a beam splitter window with special coating from broadband wavelengths, with light from multimode fiber. Both lights were coupled to a photonic crystal fiber (PCF). In many optical systems, simulating a point star with broadband spectrum with stability of microradians for white light interferometry is a challenge. In this case, the cameras use the white light interference to balance two optical paths, and to maintain close tracking. In order to coarse align the optical paths, a laser light is sent into the system to allow tracking of fringes because a narrow band laser has a great range of interference. The design requirements forced the innovators to use a new type of optical fiber, and to take a large amount of care in aligning the input sources. The testbed required better than 1% throughput, or enough output power on the lowest spectrum to be detectable by the CCD camera (6 nW at camera). The system needed to be vacuum-compatible and to have the capability for combining a visible laser light at any time for calibration purposes. The red laser is a commercially produced 635-nm laser 5-mW diode, and the white light source is a commercially produced tungsten halogen lamp that gives a broad spectrum of about 525 to 800 nm full width at half maximum (FWHM), with about 1.4 mW of power at 630 nm. A custom-made beam splitter window with special coating for broadband wavelengths is used with the white light input via a 50-mm multi-mode fiber. The large mode area PCF is an LMA-8 made by Crystal Fibre (core diameter of 8.5 mm, mode field diameter of 6 mm, and numerical aperture at 625 nm of 0.083). Any science interferometer that needs a tracking laser fringe to assist in alignment can use this system.

  4. Laser Light Scattering with Multiple Scattering Suppression Used to Measure Particle Sizes

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Tin, Padetha; Lock, James A.; Cannell, David S.; Smart, Anthony E.; Taylor, Thomas W.

    1999-01-01

    Laser light scattering is the technique of choice for noninvasively sizing particles in a fluid. The members of the Advanced Technology Development (ATD) project in laser light scattering at the NASA Lewis Research Center have invented, tested, and recently enhanced a simple and elegant way to extend the concentration range of this standard laboratory particle-sizing technique by several orders of magnitude. With this technique, particles from 3 nm to 3 mm can be measured in a solution. Recently, laser light scattering evolved to successfully size particles in both clear solutions and concentrated milky-white solutions. The enhanced technique uses the property of light that causes it to form tall interference patterns at right angles to the scattering plane (perpendicular to the laser beam) when it is scattered from a narrow laser beam. Such multiple-scattered light forms a broad fuzzy halo around the focused beam, which, in turn, forms short interference patterns. By placing two fiber optics on top of each other and perpendicular to the laser beam (see the drawing), and then cross-correlating the signals they produce, only the tall interference patterns formed by singly scattered light are detected. To restate this, unless the two fiber optics see the same interference pattern, the scattered light is not incorporated into the signal. With this technique, only singly scattered light is seen (multiple-scattered light is rejected) because only singly scattered light has an interference pattern tall enough to span both of the fiber-optic pickups. This technique is simple to use, easy to align, and works at any angle. Placing a vertical slit in front of the signal collection fibers enhanced this approach. The slit serves as an optical mask, and it significantly shortens the time needed to collect good data by selectively masking out much of the unwanted light before cross-correlation is applied.

  5. Laser diode side-pumped Nd:YVO4 microchip laser with film-etched microcavity mirrors.

    PubMed

    Li, Jiyang; Niu, Yanxiong; Chen, Sanbin; Tan, Yidong

    2017-10-01

    Microchip lasers are applied as the light sources on various occasions with the end-pumping scheme. However, the vibration, the temperature drift, or the mechanical deformation of the pumping light in laser diodes in the end-pumping scheme will lead to instability in the microchip laser output, which causes errors and malfunctioning in the optic systems. In this paper, the side-pumping scheme is applied for improving the disturbance-resisting ability of the microchip laser. The transverse mode and the frequency purity of the laser output are tested. To ensure unicity in the frequency of the laser output, numerical simulations based on Fresnel-Kirchhoff diffraction theory are conducted on the parameters of the microchip laser cavity. Film-etching technique is applied to restrain the area of the film and form the microcavity mirrors. The laser output with microcavity mirrors is ensured to be in single frequency and with good beam quality, which is significant in the applications of microchip lasers as the light sources in optical systems.

  6. Electro-optic harmonic conversion to switch a laser beam out of a cavity

    DOEpatents

    Haas, Roger A.; Henesian, Mark A.

    1987-01-01

    The invention is a switch to permit a laser beam to escape a laser cavity through the use of an externally applied electric field across a harmonic conversion crystal. Amplification takes place in the laser cavity, and then the laser beam is switched out by the laser light being harmonically converted with dichroic or polarization sensitive elements present to alter the optical path of the harmonically converted laser light. Modulation of the laser beam can also be accomplished by varying the external electric field.

  7. Compensating the electron beam energy spread by the natural transverse gradient of laser undulator in all-optical x-ray light sources.

    PubMed

    Zhang, Tong; Feng, Chao; Deng, Haixiao; Wang, Dong; Dai, Zhimin; Zhao, Zhentang

    2014-06-02

    All-optical ideas provide a potential to dramatically cut off the size and cost of x-ray light sources to the university-laboratory scale, with the combination of the laser-plasma accelerator and the laser undulator. However, the large longitudinal energy spread of the electron beam from laser-plasma accelerator may hinder the way to high brightness of these all-optical light sources. In this paper, the beam energy spread effect is proposed to be significantly compensated by the natural transverse gradient of a laser undulator when properly transverse-dispersing the electron beam. Theoretical analysis and numerical simulations on conventional laser-Compton scattering sources and high-gain all-optical x-ray free-electron lasers with the electron beams from laser-plasma accelerators are presented.

  8. Non surgical laser and light in the treatment of chronic diseases: a review based on personal experiences

    NASA Astrophysics Data System (ADS)

    Longo, L.

    2010-11-01

    Since many years some effects of non surgical laser and light on biological tissue have been demonstrated, in vitro and in vivo. This review is based on the results obtained by me and my colleagues/follower in Italy. Aim of our study is to verify the anti-inflammatory and regenerative effects of non surgical laser and light therapy on patients with chronic diseases not good treatable with traditional therapies, as diabetes, and central nervous system injuries. In addition, many clinical data have emerged from double-blind trials on laser treatment of rheumatic diseases and in sports medicine. So, we would like to do a review on the state of the art of non surgical laser treatment in medicine, included aesthetic laser and light therapy field. We discuss the indications and limitations of aesthetic laser medicine, as concluded from the data analysis of the published literature and from over thirty years of personal experiences.

  9. Laser under ultrastrong light-matter interaction: Qualitative aspects and quantitative influences by level and mode truncations

    NASA Astrophysics Data System (ADS)

    Bamba, Motoaki; Ogawa, Tetsuo

    2016-03-01

    We investigate theoretically the light amplification by stimulated emission of radiation (laser) in the ultrastrong light-matter interaction regime under the two-level and single-mode approximations. The conventional picture of the laser is broken under the ultrastrong interaction. Instead, we must explicitly discuss the dynamics of the electric field and of the magnetic one distinctively, which make the "laser" qualitatively different from the conventional laser. We found that the laser generally accompanies odd-order harmonics of the electromagnetic fields both inside and outside the cavity and a synchronization with an oscillation of atomic population. A bistability is also demonstrated. However, since our model is quite simplified, we got quantitatively different results from the Hamiltonians in the velocity and length forms of the light-matter interaction, while the appearance of the multiple harmonics and the bistability is qualitatively reliable.

  10. Quick and Easy Measurements of the Inherent Optical Property of Water by Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izadi, Dina; Hajiesmaeilbaigi, Fereshteh

    2009-04-19

    To generate realistic images of natural waters, one must consider in some detail the interaction of light with the water body. The reflectance and attenuation coefficient of the second harmonic of Nd:YAG laser light through distilled water and a sample of water from the Oman Sea were measured in a solid-state laser laboratory to estimate inherent optical properties of natural waters. These measurements determined the bottom conditions and the impurities of the water. The water's reflectivity varied depending on the angle of incidence, height of the laser from water surface, wavelength of laser light, radiant intensities, and depth of water.more » In these experiments laser light propagated through the water nonlinearly, and different reflectance showed different bottom slopes. The differences among various water samples were obtained taking into account the exponential equation in attenuation coefficient versus depth graphs.« less

  11. [Theory of lasers and lamps].

    PubMed

    Mordon, S; Michaud, T

    2009-10-01

    Lasers emit a coherent and monochromatic light beam, whereas pulsed lights produce a polychromatic light whose bandwidth is selected by adapted filters. The skin's chromophores are made up of water, hemoglobin, and melanin, to which must be added the exogenous pigments of tattoos. Each chromophore has its specific absorption spectrum. Lasers' main mechanisms of action are the photothermal effect and the photomechanical effect.

  12. [Theory of lasers and lamps].

    PubMed

    Michaud, T; Mordon, S

    2008-02-01

    Lasers emit a coherent and monochromatic light beam, whereas pulsed lights produce a polychromatic light whose bandwidth is selected by adapted filters. The skin's chromophores are made up of water, hemoglobin, and melanin, to which must be added the exogenous pigments of tattoos. Each chromophore has its specific absorption spectrum. Lasers' main mechanisms of action are the photothermal effect and the photomechanical effect.

  13. Diode-pumped laser with improved pumping system

    DOEpatents

    Chang, Jim J.

    2004-03-09

    A laser wherein pump radiation from laser diodes is delivered to a pump chamber and into the lasing medium by quasi-three-dimensional compound parabolic concentrator light channels. The light channels have reflective side walls with a curved surface and reflective end walls with a curved surface. A flow tube between the lasing medium and the light channel has a roughened surface.

  14. Explosive laser light initiation of propellants

    DOEpatents

    Piltch, Martin S.

    1993-01-01

    A improved initiator for artillery shell using an explosively generated laser light to uniformly initiate the propellent. A small quantity of a high explosive, when detonated, creates a high pressure and temperature, causing the surrounding noble gas to fluoresce. This fluorescence is directed into a lasing material, which lases, and directs laser light into a cavity in the propellant, uniformly initiating the propellant.

  15. Explosive laser light initiation of propellants

    DOEpatents

    Piltch, M.S.

    1993-05-18

    A improved initiator for artillery shell using an explosively generated laser light to uniformly initiate the propellent. A small quantity of a high explosive, when detonated, creates a high pressure and temperature, causing the surrounding noble gas to fluoresce. This fluorescence is directed into a lasing material, which lases, and directs laser light into a cavity in the propellant, uniformly initiating the propellant.

  16. Measurement technology based on laser internal/external cavity tuning

    NASA Astrophysics Data System (ADS)

    Zhang, Shulian

    2011-08-01

    For an ordinary laser with two cavity mirrors, if the length of laser cavity changes half wavelength the laser frequency changes one longitudinal mode separation. For a laser with three cavity mirrors, in which a feedback mirror is used to feed part of the laser output beam back into the laser cavity, the external cavity length changes half wavelength the laser intensity fluctuates one period. This presentation gives some research results in measurement field based on changing (tuning) the length of laser internal/external cavity, including 1) HeNe laser cavity-tuning nanometer displacement measurement instruments (laser nanometer rulers), 2) HeNe laser feedback displacement measurement, 3) Nd:YAG laser feedback nanometer displacement measurement, 4) benchmark of waveplate phase retardation measurement based on laser frequency splitting, 5) in-site waveplate phase retardation measurement instruments based on laser feedback and polarization hopping, 6) quasi-common-path microchip Nd:YAG laser feedback interferometer, 7) non-contact Nd:YAG laser feedback surface profile measurement. Some of these instruments have been put into application and display some irreplaceable advantages.

  17. Laser light scattering from wood samples soaked in water or in benzyl benzoate

    NASA Astrophysics Data System (ADS)

    Simonaho, S.-P.; Tolonen, Y.; Rouvinen, J.; Silvennoinen, R.

    Laser light scattering from Scots pine (Pinus Sylvesteris L.) wood samples soaked in two different liquids, which were tap water and benzyl benzoate, has been experimentally investigated. Differences in the characteristics of the scattering pattern as function of the soaking time as well as the moisture effect in the orientation of scattering pattern has been experimentally investigated. The wood samples soaked in the test liquids altered the laser light scattering in along and across the grain directions. No correlation between the content of the water in the wood sample and the orientation of laser light scattering pattern was observed.

  18. Lateral scattered light used to study laser light propagation in turbid media phantoms

    NASA Astrophysics Data System (ADS)

    Valdes, Claudia; Solarte, Efrain

    2010-02-01

    Laser light propagation in soft tissues is important because of the growing biomedical applications of lasers and the need to optically characterize the biological media. Following previous developments of the group, we have developed low cost models, Phantoms, of soft tissue. The process was developed in a clean room to avoid the medium contamination. Each model was characterized by measuring the refractive index, and spectral reflectance and transmittance. To study the laser light propagation, each model was illuminated with a clean beam of laser light, using sources such as He-Ne (632nm) and DPSSL (473 nm). Laterally scattered light was imaged and these images were digitally processed. We analyzed the intensity distribution of the scattered radiation in order to obtain details of the beam evolution in the medium. Line profiles taken from the intensity distribution surface allow measuring the beam spread, and to find expressions for the longitudinal (along the beam incident direction) and transversal (across the beam incident direction) intensities distributions. From these behaviors, the radiation penetration depth and the total coefficient of extinction have been determined. The multiple scattering effects were remarkable, especially for the low wavelength laser beam.

  19. High reliability low jitter pulse generator

    DOEpatents

    Savage, Mark E.; Stoltzfus, Brian S.

    2013-01-01

    A method and concomitant apparatus for generating pulses comprising providing a laser light source, disposing a voltage electrode between ground electrodes, generating laser sparks using the laser light source via laser spark gaps between the voltage electrode and the ground electrodes, and outputting pulses via one or more insulated ground connectors connected to the voltage electrode.

  20. Sub-pixel accuracy thickness calculation of poultry fillets from scattered laser profiles

    NASA Astrophysics Data System (ADS)

    Jing, Hansong; Chen, Xin; Tao, Yang; Zhu, Bin; Jin, Fenghua

    2005-11-01

    A laser range imaging system based on the triangulation method was designed and implemented for online high-resolution thickness calculation of poultry fillets. A laser pattern was projected onto the surface of the chicken fillet for calculation of the thickness of the meat. Because chicken fillets are relatively loosely-structured material, a laser light easily penetrates the meat, and scattering occurs both at and under the surface. When laser light is scattered under the surface it is reflected back and further blurs the laser line sharpness. To accurately calculate the thickness of the object, the light transportation has to be considered. In the system, the Bidirectional Reflectance Distribution Function (BSSRDF) was used to model the light transportation and the light pattern reflected into the cameras. BSSRDF gives the reflectance of a target as a function of illumination geometry and viewing geometry. Based on this function, an empirical method has been developed and it has been proven that this method can be used to accurately calculate the thickness of the object from a scattered laser profile. The laser range system is designed as a sub-system that complements the X-ray bone inspection system for non-invasive detection of hazardous materials in boneless poultry meat with irregular thickness.

  1. Laser-irradiated Kondo insulators: Controlling the Kondo effect and topological phases

    NASA Astrophysics Data System (ADS)

    Takasan, Kazuaki; Nakagawa, Masaya; Kawakami, Norio

    2017-09-01

    We investigate theoretically the nature of laser-irradiated Kondo insulators. Using Floquet theory and the slave-boson approach, we study a periodic Anderson model and derive an effective model that describes laser-irradiated Kondo insulators. In this model, we find two generic effects induced by laser light. One is dynamical localization, which suppresses hopping and hybridization. The other is laser-induced hopping and hybridization, which can be interpreted as synthetic spin-orbit coupling or a magnetic field. The first effect drastically changes the behavior of the Kondo effect. In particular, the Kondo effect under laser light qualitatively changes its character depending on whether the hybridization is on-site or off-site. The second effect triggers topological phase transitions. In topological Kondo insulators, linearly polarized laser light realizes phase transitions between trivial, weak topological, and strong topological Kondo insulators. Moreover, circularly polarized laser light breaks time-reversal symmetry and induces Weyl semimetallic phases. Our results make it possible to dynamically control the Kondo effect and topological phases in heavy-fermion systems. We also discuss experimental setups to detect the signatures.

  2. Fabrication of novel bundled fiber and performance assessment for clinical applications.

    PubMed

    Kim, Changhwan; Jeon, Myung Jin; Jung, Jin Hyang; Yang, Jung Dug; Park, Hoyong; Kang, Hyun Wook; Lee, Ho

    2014-11-01

    During laser vaporization of benign prostate hyperplasia (BPH), high precision of optical fiber handling is pivotal to minimize any post-operative complications. The aim of the study was to evaluate the feasible applications of a bundled fiber to treat BPH by directionally and selectively manipulating laser light onto the targeted tissue. A bundled optical fiber, consisting of four side-firing fibers, was fabricated to selectively emit laser beams in from one to four directions. Both transmission efficiency and light distribution were qualitatively and quantitatively characterized on the bundled fiber. In terms of interstitial application of the proposed fiber with 1064 nm on porcine liver tissue, the extent of thermal denaturation was estimated and compared at various laser parameterizations and for different directions of light. From the laser source to the fiber tip, the fabricated fiber device demonstrated a total light transmission of 52%. Due to internal light reflection, a secondary beam was emitted backward from the fiber tip and was responsible for 25% of the transmission loss. According to tissue testing, the extent of tissue denaturation generally increased with laser power, irradiation time, and number of light directions. The geometrical shape of thermal coagulation correlated well with the direction of light emission. Thermal damage to the glass tube occurred during excessive heat accumulation generated by continuous irradiation. The proposed fiber can be beneficial for laser vaporization of BPH by providing a selective light direction irradiation along with minimal thermal damage. Further studies will extend the applicability of the bundled fiber to treat tubular tissue structure. © 2014 Wiley Periodicals, Inc.

  3. Low Energy Laser Biostimulation: New Prospects For Medical Applications

    NASA Astrophysics Data System (ADS)

    Castel, John C.; Abergel, R. Patrick; Willner, Robert E.; Baumann, James G.

    1987-03-01

    The therapeutic benefits of light-energy is not a new concept to the modern world. Documented applications from ancient times tell of the therapeutic effects of ordinary sun-light to treat such common ailments as painful body joints, wounds, compound fractures and tetanus. The discovery of laser light in the 1960's, opened up new prospects for the medical use of light. Laser light differs from other forms of electromagnetic spectrum in that a single wavelength rather than a spectrum of wavelengths is emitted. Since the early 1970's, low-energy laser radiation has been reported to enhance wound healing rates, reduce edema, and relieve musculoskeletal pain. There is no detectable thermal effect of this laser on the tissue being treated. The effects are considered to occur as a result of photochemical, non thermal effects of the laser beam. Photons are absorbed by the tissue being treated and, in turn, produce positive therapeutic effects such as reduction of pain and edema. Pre-clinical and clinical evaluations are, presently, underway to document the safety and efficacy of low energy laser therapy, which represents a significant advance in the non-invasive treatment of pain.

  4. Residential area streetlight intelligent monitoring management system based on ZigBee and GPRS

    NASA Astrophysics Data System (ADS)

    Liang, Guozhuang; Xu, Xiaoyu

    2017-05-01

    According to current situation of green environmental protection lighting policy and traditional residential lighting system automation degree, low energy efficiency, difficult to management and other problems, the residential area streetlight monitoring management system based on ZigBee and GPRS is proposed. This design is put forward by using sensor technology, ZigBee and GPRS wireless communication technology network. To realize intelligent lighting parameters adjustment, coordination control method of various kinds of sensors is used. The system through multiple ZigBee nodes topology network to collect street light's information, each subnet through the ZigBee coordinator and GPRS network to transmit data. The street lamps can be put on or off, or be adjusted the brightness automatic ally according to the surrounding environmental illumination.

  5. Supercontinuum white light lasers for flow cytometry

    PubMed Central

    Telford, William G.; Subach, Fedor V.; Verkhusha, Vladislav V.

    2009-01-01

    Excitation of fluorescent probes for flow cytometry has traditionally been limited to a few discrete laser lines, an inherent limitation in our ability to excite the vast array of fluorescent probes available for cellular analysis. In this report, we have used a supercontinuum (SC) white light laser as an excitation source for flow cytometry. By selectively filtering the wavelength of interest, almost any laser wavelength in the visible spectrum can be separated and used for flow cytometric analysis. The white light lasers used in this study were integrated into a commercial flow cytometry platform, and a series of high-transmission bandpass filters used to select wavelength ranges from the blue (~480 nm) to the long red (>700 nm). Cells labeled with a variety of fluorescent probes or expressing fluorescent proteins were then analyzed, in comparison with traditional lasers emitting at wavelengths similar to the filtered SC source. Based on a standard sensitivity metric, the white light laser bandwidths produced similar excitation levels to traditional lasers for a wide variety of fluorescent probes and expressible proteins. Sensitivity assessment using fluorescent bead arrays confirmed that the SC laser and traditional sources resulted in similar levels of detection sensitivity. Supercontinuum white light laser sources therefore have the potential to remove a significant barrier in flow cytometric analysis, namely the limitation of excitation wavelengths. Almost any visible wavelength range can be made available for excitation, allowing access to virtually any fluorescent probe, and permitting “fine-tuning” of excitation wavelength to particular probes. PMID:19072836

  6. Laser light scattering instrument advanced technology development

    NASA Technical Reports Server (NTRS)

    Wallace, J. F.

    1993-01-01

    The objective of this advanced technology development (ATD) project has been to provide sturdy, miniaturized laser light scattering (LLS) instrumentation for use in microgravity experiments. To do this, we assessed user requirements, explored the capabilities of existing and prospective laser light scattering hardware, and both coordinated and participated in the hardware and software advances needed for a flight hardware instrument. We have successfully breadboarded and evaluated an engineering version of a single-angle glove-box instrument which uses solid state detectors and lasers, along with fiber optics, for beam delivery and detection. Additionally, we have provided the specifications and written verification procedures necessary for procuring a miniature multi-angle LLS instrument which will be used by the flight hardware project which resulted from this work and from this project's interaction with the laser light scattering community.

  7. Noninvasive hemoglobin measurement using dynamic spectrum

    NASA Astrophysics Data System (ADS)

    Yi, Xiaoqing; Li, Gang; Lin, Ling

    2017-08-01

    Spectroscopy methods for noninvasive hemoglobin (Hgb) measurement are interfered by individual difference and particular weak signal. In order to address these problems, we have put forward a series of improvement methods based on dynamic spectrum (DS), including instrument design, spectrum extraction algorithm, and modeling approach. The instrument adopts light sources composed of eight laser diodes with the wavelength range from 600 nm to 1100 nm and records photoplethysmography signals at eight wavelengths synchronously. In order to simplify the optical design, we modulate the light sources with orthogonal square waves and design the corresponding demodulation algorithm, instead of adopting a beam-splitting system. A newly designed algorithm named difference accumulation has been proved to be effective in improving the accuracy of dynamic spectrum extraction. 220 subjects are involved in the clinical experiment. An extreme learning machine calibration model between the DS data and the Hgb levels is established. Correlation coefficient and root-mean-square error of prediction sets are 0.8645 and 8.48 g/l, respectively. The results indicate that the Hgb level can be derived by this approach noninvasively with acceptable precision and accuracy. It is expected to achieve a clinic application in the future.

  8. Modification in oxidative processes in muscle tissues exposed to laser- and light-emitting diode radiation.

    PubMed

    Monich, Victor A; Bavrina, Anna P; Malinovskaya, Svetlana L

    2018-01-01

    Exposure of living tissues to high-intensity red or near-infrared light can produce the oxidative stress effects both in the target zone and adjacent ones. The protein oxidative modification (POM) products can be used as reliable and early markers of oxidative stress. The contents of modified proteins in the investigated specimens can be evaluated by the 2,4-dinitrophenylhydrazine assay (the DNPH assay). Low-intensity red light is able to decrease the activity of oxidative processes and the DNPH assay data about the POM products in the biological tissues could show both an oxidative stress level and an efficiency of physical agent protection against the oxidative processes. Two control groups of white rats were irradiated by laser light, the first control group by red light and the second one by near-infrared radiation (NIR).Two experimental groups were consequently treated with laser and red low-level light-emitting diode radiation (LED). One of them was exposed to red laser light + LED and the other to NIR + LED. The fifth group was intact. Each group included ten animals. The effect of laser light was studied by methods of protein oxidative modifications. We measured levels of both induced and spontaneous POM products by the DNPH assay. The dramatic increase in levels of POM products in the control group samples when compared with the intact group data as well as the sharp decrease in the POM products in the experimental groups treated with LED low-level light were statistically significant (p ≤ 0.05). Exposure of skeletal muscles to high-intensity red and near-infrared laser light causes oxidative stress that continues not less than 3 days. The method of measurement of POM product contents by the DNPH assay is a reliable test of an oxidative process rate. Red low-intensity LED radiation can provide rehabilitation of skeletal muscle tissues treated with high-intensity laser light.

  9. Monolithic translucent BaMgAl 10O 17:Eu 2+ phosphors for laser-driven solid state lighting

    DOE PAGES

    Cozzan, Clayton; Brady, Michael J.; O’Dea, Nicholas; ...

    2016-10-11

    With high power light emitting diodes and laser diodes being explored for white light generation and visible light communication, thermally robust encapsulation schemes for color-converting inorganic phosphors are essential. In the current work, the canonical blue-emitting phosphor, high purity Eu-doped BaMgAl 10O 17, has been prepared using microwave-assisted heating (25 min) and densified into translucent ceramic phosphor monoliths using spark plasma sintering (30 min). Lastly, the resulting translucent ceramic monoliths convert UV laser light to blue light with the same efficiency as the starting powder and provide superior thermal management in comparison with silicone encapsulation.

  10. White light velocity interferometer

    DOEpatents

    Erskine, D.J.

    1999-06-08

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

  11. On the possibility of using the dynamic Franz - Keldysh effect to detect the parameters of high-power IR laser radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigor'ev, A M

    2011-05-31

    The increase in the absorption of light by a semiconductor (when the light photon energy is somewhat smaller than the semiconductor bandgap or equals it) in the presence of a strong light wave (for which the semiconductor is transparent) has been investigated. The possibility of designing novel light detectors for measuring the energy parameters and spatial and temporal characteristics of high-power IR laser radiation is demonstrated. (measurement of laser radiation parameters)

  12. White light velocity interferometer

    DOEpatents

    Erskine, David J.

    1997-01-01

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.

  13. White light velocity interferometer

    DOEpatents

    Erskine, David J.

    1999-01-01

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.

  14. White light velocity interferometer

    DOEpatents

    Erskine, D.J.

    1997-06-24

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

  15. Laser ablation of hard tissue: correlation between the laser beam parameters and the post-ablative tissue characteristics

    NASA Astrophysics Data System (ADS)

    Serafetinides, Alexandros A.; Makropoulou, Mersini I.; Khabbaz, Maruan

    2003-11-01

    Hard dental tissue laser applications, such as preventive treatment, laser diagnosis of caries, laser etching of enamel, laser decay removal and cavity preparation, and more recently use of the laser light to enlarge the root canal during the endodontic therapy, have been investigated for in vitro and in vivo applications. Post-ablative surface characteristics, e.g. degree of charring, cracks and other surface deformation, can be evaluated using scanning electron microscopy. The experimental data are discussed in relevance with the laser beam characteristics, e.g. pulse duration, beam profile, and the beam delivery systems employed. Techniques based on the laser illumination of the dental tissues and the subsequent evaluation of the scattered fluorescent light will be a valuable tool in early diagnosis of tooth diseases, as carious dentin or enamel. The laser induced autofluorescence signal of healthy dentin is much stronger than that of the carious dentin. However, a better understanding of the transmission patterns of laser light in teeth, for both diagnosis and therapy is needed, before the laser procedures can be used in a clinical environment.

  16. Optical-fiber-based laser-induced breakdown spectroscopy for detection of early caries

    NASA Astrophysics Data System (ADS)

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji

    2015-06-01

    A laser-induced breakdown spectroscopy (LIBS) system targeting for the in vivo analysis of tooth enamel is described. The system is planned to enable real-time analysis of teeth during laser dental treatment by utilizing a hollow optical fiber that transmits both Q-switched Nd:YAG laser light for LIBS and infrared Er:YAG laser light for tooth ablation. The sensitivity of caries detection was substantially improved by expanding the spectral region under analysis to ultraviolet (UV) light and by focusing on emission peaks of Zn in the UV region. Subsequently, early caries were distinguished from healthy teeth with accuracy rates above 80% in vitro.

  17. A review of monochromatic light devices for the treatment of alopecia areata.

    PubMed

    Darwin, Evan; Arora, Harleen; Hirt, Penelope A; Wikramanayake, Tongyu Cao; Jimenez, Joaquin J

    2018-02-01

    There are many laser technologies that are being tested that claim to support hair regrowth for patients with alopecia areata (AA). In this paper, we will determine whether the body of evidence supports the use of devices using monochromatic light sources to treat AA. Articles were gathered from PubMed, Embase, and the Cochrane database using these keywords: lasers, excimer laser, low-level laser therapy (LLLT), low-level light therapy, alopecia, alopecia areata, and hair loss with a category modifier of English. Ten clinical trials and seven case reports/abstracts were assessed. Eight clinical trials and two case reports demonstrated hair regrowth with the 308-nm excimer laser/light in men, women, and children. One case report demonstrated hair regrowth with the ALBA 355® laser. One clinical trial and two case reports demonstrated hair regrowth with LLLT. While two case reports demonstrated hair regrowth with fractional laser therapy, one clinical trial showed no improvement. The 308-nm excimer laser is a safe and effective treatment for men, women, and children with refractory AA of the scalp and beard. Larger, double-blinded clinical trials should be conducted to compare excimer laser therapy to standard treatments. More data is needed to determine the efficacy of LLLT and fractional laser therapy in the treatment of AA.

  18. Coherence transfer of subhertz-linewidth laser light via an 82-km fiber link

    NASA Astrophysics Data System (ADS)

    Ma, Chaoqun; Wu, Lifei; Jiang, Yanyi; Yu, Hongfu; Bi, Zhiyi; Ma, Longsheng

    2015-12-01

    We demonstrate optical coherence transfer of subhertz-linewidth laser light through fiber links by actively compensating random fiber phase noise induced by environmental perturbations. The relative linewidth of laser light after transferring through a 32-km urban fiber link is suppressed within 1 mHz (resolution bandwidth limited), and the absolute linewidth of the transferred laser light is less than 0.36 Hz. For an 82-km fiber link, a repeater station is constructed between a 32-km urban fiber and a 50-km spooled fiber to recover the spectral purity. A relative linewidth of 1 mHz is also demonstrated for light transferring through the 82-km cascaded fiber. Such an optical signal distribution network based on repeater stations allows optical coherence and synchronization available over spatially separated places.

  19. Laser barometer

    DOEpatents

    Abercrombie, Kevin R.; Shiels, David; Rash, Tim

    2001-02-06

    A pressure measuring instrument that utilizes the change of the refractive index of a gas as a function of pressure and the coherent nature of a laser light to determine the barometric pressure within an environment. As the gas pressure in a closed environment varies, the index of refraction of the gas changes. The amount of change is a function of the gas pressure. By illuminating the gas with a laser light source, causing the wavelength of the light to change, pressure can be quantified by measuring the shift in fringes (alternating light and dark bands produced when coherent light is mixed) in an interferometer.

  20. NASA Dryden's Dave Bushman aims the optics of a laser device at a panel on a model aircraft during the first flight demonstration of an aircraft powered by laser light.

    NASA Image and Video Library

    2003-09-17

    NASA Dryden project engineer Dave Bushman carefully aims the optics of a laser device at a solar cell panel on a model aircraft during the first flight demonstration of an aircraft powered by laser light.

  1. Continuous-Integration Laser Energy Lidar Monitor

    NASA Technical Reports Server (NTRS)

    Karsh, Jeremy

    2011-01-01

    This circuit design implements an integrator intended to allow digitization of the energy output of a pulsed laser, or the energy of a received pulse of laser light. It integrates the output of a detector upon which the laser light is incident. The integration is performed constantly, either by means of an active integrator, or by passive components.

  2. Fully utilizing high power diode lasers by synergizing diode laser light sources and beam shaping micro-optics

    NASA Astrophysics Data System (ADS)

    Fan, Yingmin; Wang, Jingwei; Cai, Lei; Mitra, Thomas; Hauschild, Dirk; Zah, Chung-En; Liu, Xingsheng

    2018-02-01

    High power diode lasers (HPDLs) offer the highest wall-plug efficiency, highest specific power (power-to-weight ratio), arguably the lowest cost and highest reliability among all laser types. However, the poor beam quality of commercially HPDLs is the main bottleneck limiting their direct applications requiring high brightness at least in one dimension. In order to expand the applications of HPDLs, beam shaping and optical design are essential. In this work, we report the recent progresses on maximizing applications of HPDLs by synergizing diode laser light source and beam shaping micro-optics. Successful examples of matching of diode laser light sources and beam shaping micro-optics driving new applications are presented.

  3. Far-infrared-light shadowgraphy for high extraction efficiency of extreme ultraviolet light from a CO2-laser-generated tin plasma

    NASA Astrophysics Data System (ADS)

    Matsukuma, Hiraku; Hosoda, Tatsuya; Suzuki, Yosuke; Yogo, Akifumi; Yanagida, Tatsuya; Kodama, Takeshi; Nishimura, Hiroaki

    2016-08-01

    The two-color, double-pulse method is an efficient scheme to generate extreme ultraviolet light for fabricating the next generation semiconductor microchips. In this method, a Nd:YAG laser pulse is used to expand a several-tens-of-micrometers-scale tin droplet, and a CO2 laser pulse is subsequently directed at the expanded tin vapor after an appropriate delay time. We propose the use of shadowgraphy with a CO2 laser probe-pulse scheme to optimize the CO2 main-drive laser. The distribution of absorption coefficients is derived from the experiment, and the results are converted to a practical absorption rate for the CO2 main-drive laser.

  4. Differential Gene Expression in Explanted Human Retinal Pigment Epithelial Cells 24-Hours Post-Exposure to 532 nm, 3.0 ns Pulsed Laser Light and 1064 nm, 170 ps Pulsed Laser Light 12-Hours Post-Exposure: Results Compendium

    DTIC Science & Technology

    2004-06-01

    Additionally, we offer 3 conceptual cartoons outlining our vision for the future progres of laser bioeffects research, metabonomic risk assessment...future progress of laser bioeffects research, metabonomic risk assessment modeling and knowledge building from laser bioeffects data. BACKGROUND In the...our concepts of future laser bioeffects research directions (Figure 5), a metabonomic risk assessment model of laser tissue interaction (Figure 6

  5. Cranz-Schardin camera with a large working distance for the observation of small scale high-speed flows.

    PubMed

    Skupsch, C; Chaves, H; Brücker, C

    2011-08-01

    The Cranz-Schardin camera utilizes a Q-switched Nd:YAG laser and four single CCD cameras. Light pulse energy in the range of 25 mJ and pulse duration of about 5 ns is provided by the laser. The laser light is converted to incoherent light by Rhodamine-B fluorescence dye in a cuvette. The laser beam coherence is intentionally broken in order to avoid speckle. Four light fibers collect the fluorescence light and are used for illumination. Different light fiber lengths enable a delay of illumination between consecutive images. The chosen interframe time is 25 ns, corresponding to 40 × 10(6) frames per second. Exemplarily, the camera is applied to observe the bow shock in front of a water jet, propagating in air at supersonic speed. The initial phase of the formation of a jet structure is recorded.

  6. Evaluating the beam quality of double-cladding fiber lasers in applications.

    PubMed

    Yan, Ping; Wang, Xuejiao; Gong, Mali; Xiao, Qirong

    2016-08-10

    We put forward a new βFL factor, which is used exclusively in fiber lasers and is suitable to assess beam quality and choose the LP01 mode as the new suitable ideal beam. We present a new simple measurement method and verify the reasonability of the βFL factor in experiment in a 20/400 μm fiber laser. Furthermore, we use the βFL factor to evaluate the beam quality of a 3-kW-level fiber laser. It can be concluded that βFL is a key factor not only for assessing the performance of the high-power fiber laser that is our main focus, but also for the simple measurement.

  7. The design and development of CO2 medium-level laser power calibration system for industrial and medical applications in Thailand

    NASA Astrophysics Data System (ADS)

    Nontapot, Kanokwan

    2018-03-01

    The carbon dioxide laser (CO2 laser) is one of the most useful and is the highest CW laser at the present. The laser produces infrared light at 10.6 um. Due to its high power, CO2 lasers are usually used in industrial applications such as cutting and welding, or for engraving at less power. CO2 lasers are also used widely in medical applications, such as laser surgery, skin resurfacing, and removing mold, due to water (biological tissue) absorb light at this wavelength very well. CO2 lasers are also used as LIDAR laser source for military range finding applications because of the transparency of the atmosphere to infrared light. Due to the increasing use of CO2 lasers laser in industrial and medical applications in Thailand, the National Institute of Metrology (Thailand) has set up a CO2 laser power calibration system and provide calibration service to customers this year. The service support calibration of medium-level laser power at wavelength of 10.6 um and at power range 100 mW-10W. The design and development of the calibration system will be presented.

  8. Effect of 457 nm diode-pumped solid state laser on the polymerization composite resins: microhardness, cross-link density, and polymerization shrinkage.

    PubMed

    Son, Sung-Ae; Park, Jeong-Kil; Jung, Kyoung-Hwa; Ko, Ching-Chang; Jeong, Chang-Mo; Kwon, Yong Hoon

    2015-01-01

    The purpose of the present study was to test the usefulness of 457 nm diode-pumped solid state (DPSS) laser as a light source to cure composite resins. Five different composite resins were light cured using three different light-curing units (LCUs): a DPSS 457 nm laser (LAS), a light-emitting diode (LED), and quartz-tungsten-halogen (QTH) units. The light intensity of LAS was 560 mW/cm(2), whereas LED and QTH LCUs was ∼900 mW/cm(2). The degree of polymerization was tested by evaluating microhardness, cross-link density, and polymerization shrinkage. Before water immersion, the microhardness of laser-treated specimens ranged from 40.8 to 84.7 HV and from 31.7 to 79.0 HV on the top and bottom surfaces, respectively, and these values were 3.3-23.2% and 2.9-31.1% lower than the highest microhardness obtained using LED or QTH LCUs. Also, laser-treated specimens had lower top and bottom microhardnesses than the other LCUs treated specimens by 2.4-19.4% and 1.4-27.8%, respectively. After ethanol immersion for 24 h, the microhardness of laser-treated specimens ranged from 20.3 to 63.2 HV on top and bottom surfaces, but from 24.9 to 71.5 HV when specimens were cured using the other LCUs. Polymerization shrinkage was 9.8-14.7 μm for laser-treated specimens, and these were significantly similar or lower (10.2-16.0 μm) than those obtained using the other LCUs. The results may suggest that the 457 nm DPSS laser can be used as a light source for light-curing dental resin composites.

  9. Laser Studies of Gas Phase Radical Reactions.

    DTIC Science & Technology

    1989-01-01

    synchronised chopper ( Rofin 7500) to block the laser beam on alternate shots to allow background subtraction. Signal due to scattered laser light was...synchronised chopper ( Rofin 7500) to block the laser beam on alternate shots to allow background subtraction. Signal due to scattered laser light was...Cassufication) (U) Laser Studies of Gas Phase Radical Reactions 𔃼 ,ERSRP4AL UTHOR($) I3a. TYPE Of REPORT 13b. TIME COVERtD 14 D T8?’F JPORT (Year, Maonlth, Da

  10. Laser remote sensing of backscattered light from a target sample

    DOEpatents

    Sweatt, William C [Albuquerque, NM; Williams, John D [Albuquerque, NM

    2008-02-26

    A laser remote sensing apparatus comprises a laser to provide collimated excitation light at a wavelength; a sensing optic, comprising at least one optical element having a front receiving surface to focus the received excitation light onto a back surface comprising a target sample and wherein the target sample emits a return light signal that is recollimated by the front receiving surface; a telescope for collecting the recollimated return light signal from the sensing optic; and a detector for detecting and spectrally resolving the return light signal. The back surface further can comprise a substrate that absorbs the target sample from an environment. For example the substrate can be a SERS substrate comprising a roughened metal surface. The return light signal can be a surface-enhanced Raman signal or laser-induced fluorescence signal. For fluorescence applications, the return signal can be enhanced by about 10.sup.5, solely due to recollimation of the fluorescence return signal. For SERS applications, the return signal can be enhanced by 10.sup.9 or more, due both to recollimation and to structuring of the SERS substrate so that the incident laser and Raman scattered fields are in resonance with the surface plasmons of the SERS substrate.

  11. Nonlinear propagation of light in Dirac matter.

    PubMed

    Eliasson, Bengt; Shukla, P K

    2011-09-01

    The nonlinear interaction between intense laser light and a quantum plasma is modeled by a collective Dirac equation coupled with the Maxwell equations. The model is used to study the nonlinear propagation of relativistically intense laser light in a quantum plasma including the electron spin-1/2 effect. The relativistic effects due to the high-intensity laser light lead, in general, to a downshift of the laser frequency, similar to a classical plasma where the relativistic mass increase leads to self-induced transparency of laser light and other associated effects. The electron spin-1/2 effects lead to a frequency upshift or downshift of the electromagnetic (EM) wave, depending on the spin state of the plasma and the polarization of the EM wave. For laboratory solid density plasmas, the spin-1/2 effects on the propagation of light are small, but they may be significant in superdense plasma in the core of white dwarf stars. We also discuss extensions of the model to include kinetic effects of a distribution of the electrons on the nonlinear propagation of EM waves in a quantum plasma.

  12. Bacteriostatic influence of red laser light on the growth of Staphylococcus aureus and photodynamic enhancement of this effect with Photoditazine

    NASA Astrophysics Data System (ADS)

    Egorova, A. V.; Brill, G. E.; Bugaeva, I. O.; Tuchina, E. S.; Ponomaryov, G. V.; Ushakova, O. V.

    2018-04-01

    The influence of red laser irradiation on the growth of colonies of Staphylococcus aureus and photodynamic effect of the photosensitizer Photoditazine were performed. It was established that the emission of red laser light caused an inhibition of bacterial growth. This effect on standard strain of Staphylococcus aureus was evident only when relatively high doses of radiation (180 j/cm2). Photosensitivity of the methicillin-resistant strains was much higher: bacteriostatic effect of red light was observed already at the dose of 60 j/cm2 . Pre-treatment of bacterial cells by Photoditazine significantly enhances the inhibitory effect of the laser light.

  13. The role of lasers and intense pulsed light technology in dermatology

    PubMed Central

    Husain, Zain; Alster, Tina S

    2016-01-01

    The role of light-based technologies in dermatology has expanded dramatically in recent years. Lasers and intense pulsed light have been used to safely and effectively treat a diverse array of cutaneous conditions, including vascular and pigmented lesions, tattoos, scars, and undesired hair, while also providing extensive therapeutic options for cosmetic rejuvenation and other dermatologic conditions. Dermatologic laser procedures are becoming increasingly popular worldwide, and demand for them has fueled new innovations and clinical applications. These systems continue to evolve and provide enhanced therapeutic outcomes with improved safety profiles. This review highlights the important roles and varied clinical applications that lasers and intense pulsed light play in the dermatologic practice. PMID:26893574

  14. Scalable pumping approach for extracting the maximum TEM(00) solar laser power.

    PubMed

    Liang, Dawei; Almeida, Joana; Vistas, Cláudia R

    2014-10-20

    A scalable TEM(00) solar laser pumping approach is composed of four pairs of first-stage Fresnel lens-folding mirror collectors, four fused-silica secondary concentrators with light guides of rectangular cross-section for radiation homogenization, four hollow two-dimensional compound parabolic concentrators for further concentration of uniform radiations from the light guides to a 3 mm diameter, 76 mm length Nd:YAG rod within four V-shaped pumping cavities. An asymmetric resonator ensures an efficient large-mode matching between pump light and oscillating laser light. Laser power of 59.1 W TEM(00) is calculated by ZEMAX and LASCAD numerical analysis, revealing 20 times improvement in brightness figure of merit.

  15. CO2 laser-fabricated cladding light strippers for high-power fiber lasers and amplifiers.

    PubMed

    Boyd, Keiron; Simakov, Nikita; Hemming, Alexander; Daniel, Jae; Swain, Robert; Mies, Eric; Rees, Simon; Andrew Clarkson, W; Haub, John

    2016-04-10

    We present and characterize a simple CO2 laser processing technique for the fabrication of compact all-glass optical fiber cladding light strippers. We investigate the cladding light loss as a function of radiation angle of incidence and demonstrate devices in a 400 μm diameter fiber with cladding losses of greater than 20 dB for a 7 cm device length. The core losses are also measured giving a loss of <0.008±0.006  dB/cm. Finally we demonstrate the successful cladding light stripping of a 300 W laser diode with minimal heating of the fiber coating and packaging adhesives.

  16. Laser-induced micro-plasmas in air for incoherent broadband cavity-enhanced absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ruth, Albert; Dixneuf, Sophie; Orphal, Johannes

    2016-04-01

    Incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) is an experimentally straightforward absorption method where the intensity of light transmitted by an optically stable (high finesse) cavity is measured. The technique is realized using broadband incoherent sources of radiation and therefore the amount of light transmitted by a cavity consisting of high reflectance mirrors (typically R > 99.9%) can be low. In order to find an alternative to having an incoherent light source outside the cavity, an experiment was devised, where a laser-induced plasma in ambient air was generated inside a quasi-confocal cavity by a high-power femtosecond laser. The emission from the laser-induced plasma was utilized as pulsed broadband light source. The time-dependent spectra of the light leaking from the cavity were compared with those of the laser-induced plasma emission without the cavity. It was found that the light emission was sustained by the cavity despite the initially large optical losses caused by the laser-induced plasma in the cavity. The light sustained by the cavity was used to measure part of the S1 ← S0 absorption spectrum of gaseous azulene at its vapour pressure at room temperature in ambient air, as well as the strongly forbidden γ-band in molecular oxygen (b1Σ(2,0) ← X3Σ(0,0)).

  17. Optical effects of exposing intact human lenses to ultraviolet radiation and visible light.

    PubMed

    Kessel, Line; Eskildsen, Lars; Lundeman, Jesper Holm; Jensen, Ole Bjarlin; Larsen, Michael

    2011-12-30

    The human lens is continuously exposed to high levels of light. Ultraviolet radiation is believed to play a causative role in the development of cataract. In vivo, however, the lens is mainly exposed to visible light and the ageing lens absorbs a great part of the short wavelength region of incoming visible light. The aim of the present study was to examine the optical effects on human lenses of short wavelength visible light and ultraviolet radiation. Naturally aged human donor lenses were irradiated with UVA (355 nm), violet (400 and 405 nm) and green (532 nm) lasers. The effect of irradiation was evaluated qualitatively by photography and quantitatively by measuring the direct transmission before and after irradiation. Furthermore, the effect of pulsed and continuous laser systems was compared as was the effect of short, intermediate and prolonged exposures. Irradiation with high intensity lasers caused scattering lesions in the human lenses. These effects were more likely to be seen when using pulsed lasers because of the high pulse intensity. Prolonged irradiation with UVA led to photodarkening whereas no detrimental effects were observed after irradiation with visible light. Irradiation with visible light does not seem to be harmful to the human lens except if the lens is exposed to laser irradiances that are high enough to warrant thermal protein denaturation that is more readily seen using pulsed laser systems.

  18. Argon Ion Laser Polymerized Acrylic Resin: A Comparative Analysis of Mechanical Properties of Laser Cured, Light Cured and Heat Cured Denture Base Resins

    PubMed Central

    Murthy, S Srinivasa; Murthy, Gargi S

    2015-01-01

    Background: Dentistry in general and prosthodontics in particular is evolving at greater pace, but the denture base resins poly methyl methacrylate. There has been vast development in modifying chemically and the polymerization techniques for better manipulation and enhancement of mechanical properties. One such invention was introduction of visible light cure (VLC) denture base resin. Argon ion lasers have been used extensively in dentistry, studies has shown that it can polymerize restorative composite resins. Since composite resin and VLC resin share the same photo initiator, Argon laser is tested as activator for polymerizing VLC resin. In the Phase 1 study, the VLC resin was evaluated for exposure time for optimum polymerization using argon ion laser and in Phase 2; flexural strength, impact strength, surface hardness and surface characteristics of laser cured resin was compared with light cure and conventional heat cure resin. Materials and Methods: Phase 1; In compliance with American Dental Association (ADA) specification no. 12, 80 samples were prepared with 10 each for different curing time using argon laser and evaluated for flexural strength on three point bend test. Results were compared to established performance requirement specified. Phase 2, 10 specimen for each of the mechanical properties (30 specimen) were polymerized using laser, visible light and heat and compared. Surface and fractured surface of laser, light and heat cured resins were examined under scanning electron microscope (SEM). Results: In Phase 1, the specimen cured for 7, 8, 9 and 10 min fulfilled ADA requirement. 8 min was taken as suitable curing time for laser curing. Phase 2 the values of mechanical properties were computed and subjected to statistical analysis using one-way ANOVA and Tukey post-hoc test. The means of three independent groups showed significant differences between any two groups (P < 0.001). Conclusion: Triad VLC resin can be polymerized by argon ion laser with 1 W/mm2 power and exposure time of 8 min to satisfy ADA specification. Impact strength, surface hardness of laser cure was better than light cure and heat cure resin. Flexural strength of light cure was better than laser cure and heat cure resin. The SEM study showed similar density on surface, the fractured surface of heat cure resin was dense and compact. PMID:26124596

  19. The potential of ill-nitride laser diodes for solid-state lighting [Advantages of III-Nitride Laser Diodes in Solid-State Lighting

    DOE PAGES

    Wierer, Jonathan; Tsao, Jeffrey Y.

    2014-09-01

    III-nitride laser diodes (LDs) are an interesting light source for solid-state lighting (SSL). Modelling of LDs is performed to reveal the potential advantages over traditionally used light-emitting diodes (LEDs). The first, and most notable, advantage is LDs have higher efficiency at higher currents when compared to LEDs. This is because Auger recombination that causes efficiency droop can no longer grow after laser threshold. Second, the same phosphor-converted methods used with LEDs can also be used with LDs to produce white light with similar color rendering and color temperature. Third, producing white light from direct emitters is equally challenging for bothmore » LEDs and LDs, with neither source having a direct advantage. Lastly, the LD emission is directional and can be more readily captured and focused, leading to the possibility of novel and more compact luminaires. These advantages make LDs a compelling source for future SSL.« less

  20. Imaging System With Confocally Self-Detecting Laser.

    DOEpatents

    Webb, Robert H.; Rogomentich, Fran J.

    1996-10-08

    The invention relates to a confocal laser imaging system and method. The system includes a laser source, a beam splitter, focusing elements, and a photosensitive detector. The laser source projects a laser beam along a first optical path at an object to be imaged, and modulates the intensity of the projected laser beam in response to light reflected from the object. A beam splitter directs a portion of the projected laser beam onto a photodetector. The photodetector monitors the intensity of laser output. The laser source can be an electrically scannable array, with a lens or objective assembly for focusing light generated by the array onto the object of interest. As the array is energized, its laser beams scan over the object, and light reflected at each point is returned by the lens to the element of the array from which it originated. A single photosensitive detector element can generate an intensity-representative signal for all lasers of the array. The intensity-representative signal from the photosensitive detector can be processed to provide an image of the object of interest.

  1. Laser aircraft. [using kerosene

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.; Sun, K.; Jones, W. S.

    1979-01-01

    The concept of a laser-powered aircraft is discussed. Laser flight would be completely compatible with existing airports and air-traffic control, with the airplane using kerosene only power, up to a cruising altitude of 9 km where the laser satellite would lock on and beam laser energy to it. Two major components make up the laser turbofan, a heat exchanger for converting laser radiation into thermal energy, and conventional turbomachinery. The laser power satellite would put out 42 Mw using a solar-powered thermal engine to generate electrical power for the closed-cycle supersonic electric discharge CO laser, whose radiators, heat exchangers, supersonic diffuser, and ducting will amount to 85% of the total subsystem mass. Relay satellites will be used to intercept the beam from the laser satellite, correct outgoing beam aberrations, and direct the beam to the next target. A 300-airplane fleet with transcontinental range is projected to save enough kerosene to equal the energy content of the entire system, including power and relay satellites, in one year.

  2. A remote sensing laser fluorometer. [for detecting oil, ligninsulfonates, and chlorophyll in water

    NASA Technical Reports Server (NTRS)

    Oneill, R. A.; Davis, A. R.; Gross, H. G.; Kruus, J.

    1975-01-01

    A sensor is reported which is able to identify certain specific substances in water by means of their fluorescence spectra. In particular, the sensor detects oil, ligninsulfonates and chlorophyll. The device is able to measure the fluorescence spectra of water at ranges up to 75 m and to detect oil spills on water at altitudes up to 300 m. Blue light from a laser is used to excite the fluorescence of the target. Any light from the ambient background illumination, from the reflected laser light or from the induced fluorescence is gathered by a small telescope focused on the target. Optical filters are used to block the reflected laser light and to select the wavelengths of interest in the fluorescence spectrum of the target. The remaining light is detected with a photomultiplier tube. The amplitude of the laser induced fluorescence in the wavelength interval selected by the optical filters is displayed on a meter or strip chart recorder.

  3. Laser surgery: using the carbon dioxide laser.

    PubMed Central

    Wright, V. C.

    1982-01-01

    In 1917 Einstein theorized tha through an atomic process a unique kind of electromagnetic radiation could be produced by stimulated emission. When such radiation is in the optical or infrared spectrum it is termed laser (light amplification by stimulated emission of radiation) light. A laser, a high-intensity light source, emits a nearly parallel electromagnetic beam of energy at a given wavelength that can be captured by a lens and concentrated in the focal spot. The wavelength determines how the laser will be used. The carbon dioxide laser is now successfully employed for some surgical procedures in gynecology, otorhinolaryngology, neurosurgery, and plastic and general surgery. The CO2 laser beam is directed through the viewing system of an operating microscope or through a hand-held laser component. Its basic action in tissue is thermal vaporization; it causes minimal damage to adjacent tissues. Surgeons require special training in the basic methods and techniques of laser surgery, as well as in the safety standards that must be observed. Images FIG. 5 PMID:7074503

  4. Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes.

    PubMed

    Jia, Yuechen; Cheng, Chen; Vázquez de Aldana, Javier R; Castillo, Gabriel R; Rabes, Blanca del Rosal; Tan, Yang; Jaque, Daniel; Chen, Feng

    2014-08-07

    Miniature laser sources with on-demand beam features are desirable devices for a broad range of photonic applications. Lasing based on direct-pump of miniaturized waveguiding active structures offers a low-cost but intriguing solution for compact light-emitting devices. In this work, we demonstrate a novel family of three dimensional (3D) photonic microstructures monolithically integrated in a Nd:YAG laser crystal wafer. They are produced by the femtosecond laser writing, capable of simultaneous light waveguiding and beam manipulation. In these guiding systems, tailoring of laser modes by both passive/active beam splitting and ring-shaped transformation are achieved by an appropriate design of refractive index patterns. Integration of graphene thin-layer as saturable absorber in the 3D laser structures allows for efficient passive Q-switching of tailored laser radiations which may enable miniature waveguiding lasers for broader applications. Our results pave a way to construct complex integrated passive and active laser circuits in dielectric crystals by using femtosecond laser written monolithic photonic chips.

  5. Efficient solar-pumped Nd:YAG laser by a double-stage light-guide/V-groove cavity

    NASA Astrophysics Data System (ADS)

    Almeida, Joana; Liang, Dawei

    2011-05-01

    Since the first reported Nd:YAG solar laser, researchers have been exploiting parabolic mirrors and heliostats for enhancing laser output performance. We are now investigating the production of an efficient solar-pumped laser for the reduction of magnesium from magnesium oxide, which could be an alternative solution to fossil fuel. Therefore both high conversion efficiency and excellent beam quality are imperative. By using a single fused silica light guide of rectangular cross section, highly concentrated solar radiation at the focal spot of a stationary parabolic mirror is efficiently transferred to a water-flooded V-groove pump cavity. It allows for the double-pass absorption of pump light along a 4mm diameter, 30mm length, 1.1at% Nd:YAG rod. Optimum pumping parameters and solar laser output power are found through ZEMAXTM non-sequential ray-tracing and LASCADTM laser cavity analysis. 11.0 W of multimode laser output power with excellent beam profile is numerically calculated, corresponding to 6.1W/m2 collection efficiency. To validate the proposed pumping scheme, an experimental setup of the double-stage light-guide/V-groove cavity was built. 78% of highly concentrated solar radiation was efficiently transmitted by the fused silica light guide. The proposed pumping scheme can be an effective solution for enhancing solar laser performances when compared to other side-pump configurations.

  6. Ultra-Stable Laser Clock.

    DTIC Science & Technology

    1983-03-01

    43. L circumference of ring laser cavity 44. LF pathlength through Faraday rotator 45. 1 distance between resonator mirrors of linear laser 46. M...limited clock stability 68. q mode number 69. Ri reflectivity of mirror i 70. eF angle between magnetic field and direction of light propagation 71...containing low pressure methane. The light reflects off a mirror and passes back through the cell. Then the light reflects from the beam splitter into

  7. [Light, laser and PDT therapy for acne].

    PubMed

    Borelli, C; Merk, K; Plewig, G; Degitz, K

    2005-11-01

    In recent years, a number of studies have evaluated the treatment of acne using electromagnetic waves, such as lasers, photodynamic therapy, visible light or radio waves. While the efficacy of laser treatment is still uncertain, photodynamic therapy shows promising results, but with marked side-effects, as destruction of sebaceous glands. Treatment with blue light (405-420 nm wavelength) also appears effective and can be regarded as an treatment option for inflammatory acne.

  8. Overview of Optical and Thermal Laser-Tissue Interaction and Nomenclature

    NASA Astrophysics Data System (ADS)

    Welch, Ashley J.; van Gemert, Martin J. C.

    The development of a unified theory for the optical and thermal response of tissue to laser radiation is no longer in its infancy, though it is still not fully developed. This book describes our current understanding of the physical events that can occur when light interacts with tissue, particularly the sequence of formulations that estimate the optical and thermal responses of tissue to laser radiation. This overview is followed by an important chapter that describes the basic interactions of light with tissue. Part I considers basic tissue optics. Tissue is treated as an absorbing and scattering medium and methods are presented for calculating and measuring light propagation, including polarized light. Also, methods for estimating tissue optical properties from measurements of reflection and transmission are discussed. Part II concerns the thermal response of tissue owing to absorbed light, and rate reactions are presented for predicting the extent of laser induced thermal damage. Methods for measuring temperature, thermal properties, rate constants, pulsed ablation and laser tissue interactions are detailed. Part III is devoted to examples that use the theory presented in Parts I and II to analyze various medical applications of lasers. Discussions of Optical Coherence Tomography (OCT), forensic optics, and light stimulation of nerves are also included.

  9. Effects of laser irradiation on immature olfactory neuroepithelial explants from the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mester, A.F.; Snow, J.B. Jr.

    1988-07-01

    The photobiological effect of low-output laser irradiation on the maturation and regeneration of immature olfactory bipolar receptor cells of the rat was studied. The maturation and regeneration of the receptor cells of rat fetuses were quantified in neuroepithelial explants with morphometric analysis. The number of explants with outgrowth and the number and length of neuritic outgrowths were determined on a regular basis for 12 days. Explants in the experimental group were irradiated with a helium-neon laser using different incident energy densities (IED). Explants in the fluorescent light control group were exposed to fluorescent light for the same periods of timemore » as those in the experimental group were exposed to laser irradiation. Explants in another control group were not exposed to laser or fluorescent light irradiation. The IED of 0.5 J/cm2 laser irradiation has been found to increase significantly the number of explants with outgrowth and the number and length of the outgrowths. Other laser IEDs or fluorescent light irradiation did not influence maturation or regeneration.« less

  10. Comparison of light absorption levels with different skin phantoms and the Monte Carlo simulation using Fourier-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jo, Hang Chan; Kim, Jae Hun; Kim, Dae Yu

    2018-02-01

    Dermatologic patients have various skin characteristics such as skin tone and pigmentation color. However most studies on laser ablation and treatment only considered laser operating conditions like wavelength, output power and pulse duration. The laser ablation arises from photothermal effect by photon energy absorption. Chromophores like melanin exist as the absorber in the skin. In this study, we painted color to mimic chromophores on in-vivo and in-vitro skin models to demonstrate influence on the laser ablation by skin color. Water-based pens were used to paint color. Cross sectional images of the laser ablation were acquired by Fourier-domain optical coherence tomography (Fd-OCT). Light source to make ablation was a Q-switch diode-pumped Nd:YVO4 nanosecond laser (532nm central wavelength). Irradiated light energy dose of the laser could not make ablation craters in the control group. However experimental groups showed craters with same irradiation light energy dose. These results show painting on skin increased tissue damage by absorption in painted color without dyeing cells or tissues.

  11. The high frequency characteristics of laser reflection and visible light during solid state disk laser welding

    NASA Astrophysics Data System (ADS)

    Gao, Xiangdong; You, Deyong; Katayama, Seiji

    2015-07-01

    Optical properties are related to weld quality during laser welding. Visible light radiation generated from optical-induced plasma and laser reflection is considered a key element reflecting weld quality. An in-depth analysis of the high-frequency component of optical signals is conducted. A combination of a photoelectric sensor and an optical filter helped to obtain visible light reflection and laser reflection in the welding process. Two groups of optical signals were sampled at a high sampling rate (250 kHz) using an oscilloscope. Frequencies in the ranges 1-10 kHz and 10-125 kHz were investigated respectively. Experimental results showed that there was an obvious correlation between the high-frequency signal and the laser power, while the high-frequency signal was not sensitive to changes in welding speed. In particular, when the defocus position was changed, only a high frequency of the visible light signal was observed, while the high frequency of the laser reflection signal remained unchanged. The basic correlation between optical features and welding status during the laser welding process is specified, which helps to provide a new research focus for investigating the stability of welding status.

  12. The application of image processing in the measurement for three-light-axis parallelity of laser ranger

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Wang, Qianqian

    2008-12-01

    When laser ranger is transported or used in field operations, the transmitting axis, receiving axis and aiming axis may be not parallel. The nonparallelism of the three-light-axis will affect the range-measuring ability or make laser ranger not be operated exactly. So testing and adjusting the three-light-axis parallelity in the production and maintenance of laser ranger is important to ensure using laser ranger reliably. The paper proposes a new measurement method using digital image processing based on the comparison of some common measurement methods for the three-light-axis parallelity. It uses large aperture off-axis paraboloid reflector to get the images of laser spot and white light cross line, and then process the images on LabVIEW platform. The center of white light cross line can be achieved by the matching arithmetic in LABVIEW DLL. And the center of laser spot can be achieved by gradation transformation, binarization and area filter in turn. The software system can set CCD, detect the off-axis paraboloid reflector, measure the parallelity of transmitting axis and aiming axis and control the attenuation device. The hardware system selects SAA7111A, a programmable vedio decoding chip, to perform A/D conversion. FIFO (first-in first-out) is selected as buffer.USB bus is used to transmit data to PC. The three-light-axis parallelity can be achieved according to the position bias between them. The device based on this method has been already used. The application proves this method has high precision, speediness and automatization.

  13. Bactericidal effect of visible light in the presence of erythrosine on Porphyromonas gingivalis and Fusobacterium nucleatum compared with diode laser, an in vitro study.

    PubMed

    Habiboallah, Ghanbari; Mahdi, Zakeri; Mahbobeh, Naderi Nasab; Mina, Zareian Jahromi; Sina, Faghihi; Majid, Zakeri

    2014-12-27

    Recently, photodynamic therapy (PDT) has been introduced as a new modality in oral bacterial decontamination. Besides, the ability of laser irradiation in the presence of photosensitizing agent to lethal effect on oral bacteria is well documented. Current research aims to evaluate the effect of photodynamic killing of visible blue light in the presence of plaque disclosing agent erythrosine as photosensitizer on Porphyromonas gingivalis associated with periodontal bone loss and Fusobacterium nucleatum associated with soft tissue inflammation, comparing with the near-infrared diode laser. Standard suspension of P. gingivalis and F. nucleatum were exposed to Light Emitting Diode (LED) (440-480 nm) used to photopolymerize composite resine dental restoration in combination with erythrosine (22 µm) up to 5 minutes. Bacterial sample were also exposed to a near-infrared diode laser (wavelength, 830 nm), using identical irradiation parameters for comparison. Bacterial samples from each treatment groups (radiation-only group, erythrosine-only group and light or laser with erythrosine group) were subcultured onto the surface of agar plates. Survival of these bacteria was determined by counting the number of colony forming units (CFU) after incubation. Exposure to visible blue light and diode laser in conjugation with erythrosine significantly reduced both species examined viability, whereas erythrosine-treated samples exposed to visible light suggested a statically meaningful differences comparing to diode laser. In addition, bactericidal effect of visible light or diode laser alone on P. gingivalis as black-pigmented bacteria possess endogenous porphyrins was noticeably. Our result suggested that visible blue light source in the presence of plaque disclosing agent erythrosine could can be consider as potential approach of PDT to kill the main gram-negative periodontal pathogens. From a clinical standpoint, this regimen could be established as an additional minimally invasive antibacterial treatment of plaque induced periodontal pathologies.

  14. Localization of intense electromagnetic waves in plasmas.

    PubMed

    Shukla, Padma Kant; Eliasson, Bengt

    2008-05-28

    We present theoretical and numerical studies of the interaction between relativistically intense laser light and a two-temperature plasma consisting of one relativistically hot and one cold component of electrons. Such plasmas are frequently encountered in intense laser-plasma experiments where collisionless heating via Raman instabilities leads to a high-energetic tail in the electron distribution function. The electromagnetic waves (EMWs) are governed by the Maxwell equations, and the plasma is governed by the relativistic Vlasov and hydrodynamic equations. Owing to the interaction between the laser light and the plasma, we can have trapping of electrons in the intense wakefield of the laser pulse and the formation of relativistic electron holes (REHs) in which laser light is trapped. Such electron holes are characterized by a non-Maxwellian distribution of electrons where we have trapped and free electron populations. We present a model for the interaction between laser light and REHs, and computer simulations that show the stability and dynamics of the coupled electron hole and EMW envelopes.

  15. A Treatment of Amblyopia Using Laser Diodes

    NASA Astrophysics Data System (ADS)

    Wang, Di; Wang, Yi-Ding; Liu, Bing-Chun

    2000-04-01

    We propose the treatment of amblyopia using yellow-green laser diodes. There are amblyopia children in excess of fifty million in the world. Because the causative agent of amblyopia hasn't been well understood,only roughly considered to be concerned with visual sense cell, optic nerve network and function of nerve center, no appropriate treatment is found up to date. The vision of person is determined by the center hollow region of retina, where there are three kinds of cone cell. The corresponding peak wavelength in absorption spectrum locates 447nm (blue light), 532nm (green light) and 565nm (yellow light), respectively. When stimulated by white light, excited degree of three kinds of cone cell are identical,or yellow-green light, to which person eye is most sensitive, will significantly takes effects. Therefore the yellow-green laser diode is suitable for treating amblyopia. The weak laser, namely laser power less than mW order of magnitude, shows curative by stimulating bion tissue. When stimulating light power density is less than 0.001W/cm, the compounding speed of nucleic acid DNA is significantly increased. The growth rate of cell, activity of enzyme, content of hemoglobin and the growth of blood vessel, are all increased. However, it's key to control the dose of light. When the dose transcend some value, a inhibition will occur. The little dose of weak laser treatment can be accumulated with a parabolic characteristics, that is the weak laser generate bion response stengthening gradually versus time. Then it will weaken gradually after the peak. When the treatment duration is longer than a certain time, a inhibition also takes place. A suggested theraphy is characterized by little dose and short treatment course. In a conclusion, the yellow-green laser diode should be used for the treatment of amblyopia. The little dose and short treatment couse are to be adopted. Key words:treatment amblyopia laser diode

  16. GreenLight HPS laser 120-W versus diode laser 200-W vaporization of the prostate: comparative clinical experience.

    PubMed

    Chiang, Po Hui; Chen, Chien Hsu; Kang, Chih Hsiung; Chuang, Yao Chi

    2010-09-01

    We present our clinical experiences of two recently introduced vaporization laser systems: the GreenLight High Performance System (HPS) laser (532 nm, 120 W) and the Diolas LFD diode laser (980 nm, 200 W). Two laser systems were evaluated to compare their clinical results for the treatment of benign prostatic hyperplasia (BPH). Patients were treated using either the GreenLight HPS laser (n = 84) or the diode laser (n = 55) in a prospective randomized study. The data of International Prostate Symptom Score (IPSS), maximum flow rate (Q(max)), post-void residual urine (PVR), and quality of life score (Qols) were recorded at baseline, 1-, 6-, and 12-month follow-ups. The prostate volume and prostate-specific antigen (PSA) level were assessed at baseline and 6-month follow-up. All complications were also recorded. There was a statistically significant difference in IPSS, Q(max), PVR, and QoLs in each laser group at the 1-, 6-, and 12-month follow-ups compared with baseline. There was no statistical significant difference in any of these parameters at any follow-up interval between each group. The diode laser demonstrates superior hemostatic properties compared with the GreenLight HPS laser. Postoperative incontinence and postoperative irritative symptoms are more pronounced (P < 0.05) after diode laser prostatectomy. Higher incidence of dysuria with sloughing tissues and epididymitis (P < 0.05) is noted after diode laser prostatectomy. Other complications were comparable for both procedures. Although both lasers can improve subjective and objective parameters of BPH, both can produce undesired effects. The search for the ideal vaporization laser to treat BPH still continues. 2010 Wiley-Liss, Inc.

  17. Effect of part thickness, glass fiber and crystallinity on light scattering during laser transmission welding of thermoplastics

    NASA Astrophysics Data System (ADS)

    Xu, Xin Feng; Parkinson, Alexander; Bates, Philip J.; Zak, Gene

    2015-12-01

    It is important to understand how laser energy scatters within the transparent component in order to predict and optimize the laser transmission welding process. This paper examines the influence of part thickness, glass fiber and crystallinity levels on the distribution of laser light after transmission through amorphous polycarbonate (PC) and semi-crystalline polymers such as polyamide 6 (PA6), polypropylene (PP), and polyethylene (PE). An experimental technique based on laser-scanned lines of progressively increasing power was used to assess the transmitted energy distribution. This distribution was characterized using a two-parameter model that captures scattered and un-scattered components of the laser beam. The results clearly show how the scattering is increased by increasing the numbers of interactions between laser light and phase boundaries either by increasing the particle concentration (i.e., glass fiber level and crystallinity) or increasing part thickness.

  18. Ultraviolet laser beam monitor using radiation responsive crystals

    DOEpatents

    McCann, Michael P.; Chen, Chung H.

    1988-01-01

    An apparatus and method for monitoring an ultraviolet laser beam includes disposing in the path of an ultraviolet laser beam a substantially transparent crystal that will produce a color pattern in response to ultraviolet radiation. The crystal is exposed to the ultraviolet laser beam and a color pattern is produced within the crystal corresponding to the laser beam intensity distribution therein. The crystal is then exposed to visible light, and the color pattern is observed by means of the visible light to determine the characteristics of the laser beam that passed through crystal. In this manner, a perpendicular cross sectional intensity profile and a longitudinal intensity profile of the ultraviolet laser beam may be determined. The observation of the color pattern may be made with forward or back scattered light and may be made with the naked eye or with optical systems such as microscopes and television cameras.

  19. Applications of laser wakefield accelerator-based light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Felicie; Thomas, Alec G. R.

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons inmore » the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. Here, we first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.« less

  20. Applications of laser wakefield accelerator-based light sources

    DOE PAGES

    Albert, Felicie; Thomas, Alec G. R.

    2016-10-01

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons inmore » the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. Here, we first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.« less

  1. Traditional Chinese medicine on the effects of low-intensity laser irradiation on cells

    NASA Astrophysics Data System (ADS)

    Liu, Timon C.; Duan, Rui; Li, Yan; Cai, Xiongwei

    2002-04-01

    In previous paper, process-specific times (PSTs) are defined by use of molecular reaction dynamics and time quantum theory established by TCY Liu et al., and the change of PSTs representing two weakly nonlinearly coupled bio-processes are shown to be parallel, which is called time parallel principle (TPP). The PST of a physiological process (PP) is called physiological time (PT). After the PTs of two PPs are compared with their Yin-Yang property of traditional Chinese medicine (TCM), the PST model of Yin and Yang (YPTM) was put forward: for two related processes, the process of small PST is Yin, and the other process is Yang. The Yin-Yang parallel principle (YPP) was put forward in terms of YPTM and TPP, which is the fundamental principle of TCM. In this paper, we apply it to study TCM on the effects of low intensity laser on cells, and successfully explained observed phenomena.

  2. Laser-Induced Plasmas in Ambient Air for Incoherent Broadband Cavity-Enhanced Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ruth, Albert A.; Dixneuf, Sophie; Orphal, Johannes

    2015-06-01

    The emission from a laser-induced plasma in ambient air, generated by a high power femtosecond laser, was utilized as pulsed incoherent broadband light source in the center of a quasi-confocal high finesse cavity. The time dependent spectra of the light leaking from the cavity was compared with those of the laser-induced plasma emission without the cavity. It was found that the light emission was sustained by the cavity despite the initially large optical losses of the laser-induced plasma in the cavity. The light sustained by the cavity was used to measure part of the S_1←S_0 absorption spectrum of gaseous azulene at its vapour pressure at room temperature in ambient air as well as the strongly forbidden γ--band in molecular oxygen: b^1σ^+_g (ν'=2)← X^3σ^-_g (ν''=0)

  3. Miniature Tunable Laser Spectrometer for Detection of a Trace Gas

    NASA Technical Reports Server (NTRS)

    Christensen, Lance E. (Inventor)

    2017-01-01

    An open-path laser spectrometer (OPLS) for measuring a concentration of a trace gas, the OPLS including an open-path multi-pass analysis region including a first mirror, a second mirror at a distance and orientation from the first mirror, and a support structure for locating the mirrors, a laser coupled to the analysis region and configured to emit light of a wavelength range and to enable a plurality of reflections of the emitted light between the mirrors, a detector coupled to the analysis region and configured to detect a portion of the emitted light impinging on the detector and to generate a corresponding signal, and an electronic system coupled to the laser and the detector, and configured to adjust the wavelength range of the emitted light from the laser based on the generated signal, and to measure the concentration of the trace gas based on the generated signal.

  4. Electrically switchable organo–inorganic hybrid for a white-light laser source

    PubMed Central

    Huang, Jui-Chieh; Hsiao, Yu-Cheng; Lin, Yu-Ting; Lee, Chia-Rong; Lee, Wei

    2016-01-01

    We demonstrate a spectrally discrete white-light laser device based on a photonic bandgap hybrid, which is composed of a soft photonic crystal; i.e., a layer of dye-doped cholesteric liquid crystal (CLC), sandwiched between two imperfect but identical, inorganic multilayer photonic crystals. With a sole optical pump, a mono-, bi-, or tri-chromatic laser can be obtained and, through the soft photonic crystal regulated by an applied voltage, the hybrid possesses electrical tunability in laser wavelength. The three emitted spectral peaks originate from two bandedges of the CLC reflection band as well as one of the photonic defect modes in dual-mode lasing. Thanks to the optically bistable nature of CLC, such a white-light laser device can operate in quite an energy-saving fashion. This technique has potential to fulfill the present mainstream in the coherent white-light source. PMID:27324219

  5. Analysis of lasers as a solution to efficiency droop in solid-state lighting

    DOE PAGES

    Chow, Weng W.; Crawford, Mary H.

    2015-10-06

    This letter analyzes the proposal to mitigate the efficiency droop in solid-state light emitters by replacing InGaN light-emitting diodes (LEDs) with lasers. The argument in favor of this approach is that carrier-population clamping after the onset of lasing limits carrier loss to that at threshold, while stimulated emission continues to grow with injection current. A fully quantized (carriers and light) theory that is applicable to LEDs and lasers (above and below threshold) is used to obtain a quantitative evaluation. The results confirm the potential advantage of higher laser output power and efficiency above lasing threshold, while also indicating disadvantages includingmore » low efficiency prior to lasing onset, sensitivity of lasing threshold to temperature, and the effects of catastrophic laser failure. As a result, a solution to some of these concerns is suggested that takes advantage of recent developments in nanolasers.« less

  6. National Ignition Facility main laser stray light analysis and control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    English, R E; Miller, J L; Peterson, G

    1998-06-26

    Stray light analysis has been carried out for the main laser section of the National Ignition Facility main laser section using a comprehensive non-sequential ray trace model supplemented with additional ray trace and diffraction propagation modeling. This paper describes the analysis and control methodology, gives examples of ghost paths and required tilted lenses, baffles, absorbers, and beam dumps, and discusses analysis of stray light "pencil beams" in the system.

  7. Frequency chirped light at large detuning with an injection-locked diode laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, K.; Disla, M.; Dellatto, J.

    2015-04-15

    We have developed a laser system to generate frequency-chirped light at rapid modulation speeds (∼100 MHz) with a large frequency offset. Light from an external cavity diode laser with its frequency locked to an atomic resonance is passed through a lithium niobate electro-optical phase modulator. The phase modulator is driven by a ∼6 GHz signal whose frequency is itself modulated with a RF MHz signal (<200 MHz). A second injection locked diode laser is used to filter out all of the light except the frequency-chirped ±1 order by more than 30 dB. Using this system, it is possible to generatemore » a 1 GHz frequency chirp in 5 ns.« less

  8. Research on key technology of space laser communication network

    NASA Astrophysics Data System (ADS)

    Chang, Chengwu; Huang, Huiming; Liu, Hongyang; Gao, Shenghua; Cheng, Liyu

    2016-10-01

    Since the 21st century, Spatial laser communication has made a breakthrough development. Europe, the United States, Japan and other space powers have carried out the test of spatial laser communication technology on-orbit, and put forward a series of plans. In 2011, China made the first technology demonstration of satellite-ground laser communication carried by HY-2 satellite. Nowadays, in order to improve the transmission rate of spatial network, the topic of spatial laser communication network is becoming a research hotspot at home and abroad. This thesis, from the basic problem of spatial laser communication network to solve, analyzes the main difference between spatial network and ground network, which draws forth the key technology of spatial laser communication backbone network, and systematically introduces our research on aggregation, addressing, architecture of spatial network. From the perspective of technology development status and trends, the thesis proposes the development route of spatial laser communication network in stages. So as to provide reference about the development of spatial laser communication network in China.

  9. Benefit from NASA

    NASA Image and Video Library

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique called photodynamic therapy, requires the surgeon to use tiny pinhead-size Light Emitting Diodes (LEDs) (a source releasing long wavelengths of light) to activate light-sensitive, tumor-treating drugs. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can also be used for hours at a time while still remaining cool to the touch. The LED probe consists of 144 tiny pinhead-size diodes, is 9-inches long, and about one-half-inch in diameter. The small balloon aids in even distribution of the light source. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The probe was developed for photodynamic cancer therapy by the Marshall Space Flight Center under a NASA Small Business Innovative Research program grant.

  10. A non-laser light source for photodynamic therapy: in vitro effects on normal and malignant cells.

    PubMed

    Kashtan, Hanoch; Haddad, Riad; Greenberg, Ron; Skornick, Yehuda; Kaplan, Ofer

    2002-01-01

    Photodynamic therapy (PDT) involves the use of photosensitizing drugs combined with light to treat tumors. Laser systems, the current source of light for PDT, have several inherent drawbacks: the spectrum is essentially monochromatic which may be problematic for second generation photosensitizers, the systems are bulky and nearly impossible to move between hospital locations and require complicated electrical and cooling installations, the cost of a typical system is enormous, and its maintenance and operation require highly trained personnel. We now introduce a new non-laser light system, Versa-Light, which appears to work as effectively and has none of the above drawbacks. A series of in vitro studies were performed using various murine and human normal and cancer cells which underwent PDT using aluminum phthalocyanine (AlPcS4) as a photosensitizer and Versa-Light as the light source. PDT of cancer cells at light energy levels of 50, 100 and 200 j/cm2 significantly decreased cell viability. PDT also decreased cell viability of normal murine splenocytes and normal human lymphocytes, but to a lesser extent. The observed significant hyperthermia was light dose-dependent. We believe that Versa-Light can replace laser systems as an enhanced light source for PDT. Further in vitro and pre-clinical studies are in progress.

  11. Post-filamentation high-intensive light channels formation upon ultrashort laser pulses self-focusing in air

    NASA Astrophysics Data System (ADS)

    Geints, Yu. E.; Ionin, A. A.; Mokrousova, D. V.; Seleznev, L. V.; Sinitsyn, D. V.; Sunchugasheva, E. S.; Zemlyanov, A. A.

    2017-01-01

    Experimental and theoretical study of the post-filamentation stage of focused high-power Ti:Sa laser pulses in air is presented. Angular divergence of the laser beam, as well as angular and spatial characteristics of specific spatially localized light structures, the post-filament channels (PFCs), under different initial focusing conditions and laser beam energy are investigated. We show that PFC angular divergence is always less than that of the whole laser beam and tends to decrease with laser pulse energy increase and beam focal length elongation.

  12. Electronic-beam analysis of excimer lasers used for photorefractive keratotomy

    NASA Astrophysics Data System (ADS)

    Roundy, Carlos B.

    1998-07-01

    Excimer lasers are an excellent instrument for performing photorefractive keratotomy, PRK. The UV light from the laser causes an ablation of the cornea in proportion to the intensity of the light. The primary characteristic essential to successful PRK is the uniformity of the Top Hat, or working portion of the laser beam. In order for this intensity profile to be sufficiently uniform for PRK, it is essential to periodically measure the equality of the laser beam profile. This ensures that the laser continues to operate properly and provide the expected performance.

  13. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.

    1987-01-01

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

  14. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.

    1977-01-01

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, in the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

  15. Ultraviolet Raman scattering from persistent chemical warfare agents

    NASA Astrophysics Data System (ADS)

    Kullander, Fredrik; Wästerby, Pär.; Landström, Lars

    2016-05-01

    Laser induced Raman scattering at excitation wavelengths in the middle ultraviolet was examined using a pulsed tunable laser based spectrometer system. Droplets of chemical warfare agents, with a volume of 2 μl, were placed on a silicon surface and irradiated with sequences of laser pulses. The Raman scattering from V-series nerve agents, Tabun (GA) and Mustard gas (HD) was studied with the aim of finding the optimum parameters and the requirements for a detection system. A particular emphasis was put on V-agents that have been previously shown to yield relatively weak Raman scattering in this excitation band.

  16. Hybrid fiber-rod laser

    DOEpatents

    Beach, Raymond J.; Dawson, Jay W.; Messerly, Michael J.; Barty, Christopher P. J.

    2012-12-18

    Single, or near single transverse mode waveguide definition is produced using a single homogeneous medium to transport both the pump excitation light and generated laser light. By properly configuring the pump deposition and resulting thermal power generation in the waveguide device, a thermal focusing power is established that supports perturbation-stable guided wave propagation of an appropriately configured single or near single transverse mode laser beam and/or laser pulse.

  17. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Effect of laser light on the kinetics of the oxidation of titanium films during heat treatment

    NASA Astrophysics Data System (ADS)

    Chaplanov, A. M.; Shibko, A. N.

    1993-02-01

    The application of laser light to materials in a heated state stimulates oxidation-reduction reactions in them. The illumination of titanium films by a beam of photons with hν =1.96 eV during annealing in vacuum stimulates photochemical processes of a nonthermal nature in addition to recrystallization.

  18. The optical effect of a semiconductor laser on protecting wheat from UV-B radiation damage.

    PubMed

    Qiu, Zong-Bo; Zhu, Xin-Jun; Li, Fang-Min; Liu, Xiao; Yue, Ming

    2007-07-01

    Lasers have been widely used in the field of biology along with the development of laser technology, but the mechanism of the bio-effect of lasers is not explicit. The objective of this paper was to test the optical effect of a laser on protecting wheat from UV-B damage. A patent instrument was employed to emit semiconductor laser (wavelength 650 nm) and incoherent red light, which was transformed from the semiconductor laser. The wavelength, power and lightfleck diameter of the incoherent red light are the same as those of the semiconductor laser. The semiconductor laser (wavelength 650 nm, power density 3.97 mW mm(-2)) and incoherent red light (wavelength 650 nm, power density 3.97 mW mm(-2)) directly irradiated the embryo of wheat seeds for 3 min respectively, and when the seedlings were 12-day-old they were irradiated by UV-B radiation (10.08 kJ m(-2)) for 12 h in the dark. Changes in the concentration of malondialdehyde (MDA), hydrogen peroxide (H(2)O(2)), glutathione (GSH), ascorbate (AsA), carotenoids (CAR), the production rate of superoxide radical (O(2)(-)), the activities of peroxidase (POD), catalase (CAT), superoxide dismutase (SOD) and the growth parameters of seedlings (plant height, leaf area and fresh weight) were measured to test the optical effect of the laser. The results showed that the incoherent red light treatment could not enhance the activities of SOD, POD and CAT and the concentration of AsA and CAR. When the plant cells were irradiated by UV-B, the incoherent red light treatment could not eliminate active oxygen and prevent lipid peroxidation in wheat. The results also clearly demonstrate that the plant DNA was damaged by UV-B radiation and semiconductor laser irradiance had the capability to protect plants from UV-B-induced DNA damage, while the incoherent red light could not. This is the first investigation reporting the optical effect of a semiconductor laser on protecting wheat from UV-B radiation damage.

  19. Laser light propagation in adipose tissue and laser effects on adipose cell membranes

    NASA Astrophysics Data System (ADS)

    Solarte, Efraín; Rebolledo, Aldo; Gutierrez, Oscar; Criollo, William; Neira, Rodrigo; Arroyave, José; Ramírez, Hugo

    2006-01-01

    Recently Neira et al. have presented a new liposuction technique that demonstrated the movement of fat from inside to outside of the cell, using a low-level laser device during a liposuction procedure with Ultrawet solution. The clinical observations, allowed this new surgical development, started a set of physical, histological and pharmacological studies aimed to determine the mechanisms involved in the observed fat mobilization concomitant to external laser application in liposuction procedures. Scanning and Transmission Electron Microscopy, studies show that the cellular arrangement of normal adipose tissue changes when laser light from a diode laser: 10 mW, 635 nm is applied. Laser exposures longer than 6 minutes cause the total destruction of the adipocyte panicles. Detailed observation of the adipose cells show that by short irradiation times (less than four minutes) the cell membrane exhibits dark zones, that collapse by longer laser exposures. Optical measurements show that effective penetration length depends on the laser intensity. Moreover, the light scattering is enhanced by diffraction and subsequent interference effects, and the tumescent solution produces a clearing of the tissue optical medium. Finally, isolate adipose cell observation show that fat release from adipocytes is a concomitant effect between the tumescent solution (adrenaline) and laser light, revealing a synergism which conduces to the aperture, and maybe the disruption, of the cell membrane. All these studies were consistent with a laser induced cellular process, which causes fat release from inside the adipocytes into the intercellular space, besides a strong modification of the cellular membranes.

  20. 2 W quasi-white-light based on idler-resonant optical parametric oscillation cascading sum-frequency generation with PPSLT

    NASA Astrophysics Data System (ADS)

    Zhao, L. N.; Liu, J.; Yuan, Y.; Hu, X. P.; Zhao, G.; Gao, Z. D.; Zhu, S. N.

    2012-03-01

    We present a high power red-green-blue (RGB) laser light source based on cascaded quasi-phasematched wavelength conversions in a single stoichiometric lithium tantalate. The superiority of the experimental setup is: the facula of the incident beam is elliptical to increase interaction volume, and the cavity was an idler resonant configuration for realizing more efficient red and blue light output. An average power of 2 W of quasi-white-light was obtained by proper combination of the RGB three colors. The conversion efficiency for the power of the quasi-white-light over pump power reached 36%. This efficiency and powerful RGB laser light source has potential applications in laser-based projection display et al.

  1. A compact, coherent light source system architecture

    NASA Astrophysics Data System (ADS)

    Biedron, S. G.; Dattoli, G.; DiPalma, E.; Einstein, J.; Milton, S. V.; Petrillo, V.; Rau, J. V.; Sabia, E.; Spassovsky, I. P.; van der Slot, P. J. M.

    2016-09-01

    Our team has been examining several architectures for short-wavelength, coherent light sources. We are presently exploring the use and role of advanced, high-peak power lasers for both accelerating the electrons and generating a compact light source with the same laser. Our overall goal is to devise light sources that are more accessible by industry and in smaller laboratory settings. Although we cannot and do not want to compete directly with sources such as third-generation light sources or that of national-laboratory-based free-electron lasers, we have several interesting schemes that could bring useful and more coherent, short-wavelength light source to more researchers. Here, we present and discuss several results of recent simulations and our future steps for such dissemination.

  2. Fluorescence Spectra of Highlighter Inks

    ERIC Educational Resources Information Center

    Birriel, Jennifer J.; King, Damon

    2018-01-01

    Fluorescence spectra excited by laser pointers have been the subject of several papers in "TPT". These papers all describe a fluorescence phenomenon in which the reflected laser light undergoes a change in color: this color change results from the combination of some partially reflected laser light and additional colors generated by…

  3. Low-intensity red and infrared lasers on XPA and XPC gene expression

    NASA Astrophysics Data System (ADS)

    Fonseca, A. S.; Magalhães, L. A. G.; Mencalha, A. L.; Ferreira-Machado, S. C.; Geller, M.; Paoli, F.

    2014-09-01

    Laser devices emit monochromatic, coherent, and highly collimated intense beams of light that are useful for a number of biomedical applications. However, for low-intensity lasers, possible adverse effects of laser light on DNA are still controversial. In this work, the expression of XPA and XPC genes in skin and muscle tissue exposed to low-intensity red and infrared lasers was evaluated. Skin and muscle tissue of Wistar rats were exposed to low-intensity red and infrared lasers at different fluences in continuous mode emission. Skin and muscle tissue samples were withdrawn for total RNA extraction, cDNA synthesis, and evaluation of actin gene expression by quantitative polymerase chain reaction. Data obtained show that laser radiation alters the expression of XPA and XPC mRNA differently in skin and muscle tissue of Wistar rats, depending on physical (fluence and wavelength) and biological (tissue) parameters. Laser light could modify expression of genes related to the nucleotide excision repair pathway at fluences and wavelengths used in clinical protocols.

  4. Sealing glass ampoules with CO2 lasers.

    PubMed

    Jiao, Junke; Wang, Xinbing; Tang, Wenlong

    2008-12-10

    Glass ampoules were always sealed by melting in the presence of a flame to create closures. Some poisonous gases were generated in this sealing process that pollute the injection drug and are physically harmful. In this study, CO(2) lasers were proposed for sealing glass ampoules. Because of the clean noncontact sealing process with lasers, there was nearly no pollution of the injection drug. To study in detail the principle of this sealing process, a mathematical model was put forward, and the temperature and the thermal stress field around the ampoule's neck were calculated by ANSYS software. Through experimental study, 1 ml and 5 ml ampoules were sealed successfully by a dual-laser-beam method. The results show that a laser source is an ideal heat source for sealing glass ampoules.

  5. Development of high yielding photonic light delivery system for photodynamic therapy of esophageal carcinomas

    NASA Astrophysics Data System (ADS)

    Premasiri, Amaranath; Happawana, Gemunu; Rosen, Arye

    2007-02-01

    Photodynamic therapy (PDT) is an approved treatment modality for Barrett's and invasive esophageal carcinoma. Proper Combination of photosentizing agent, oxygen, and a specific wavelength of light to activate the photosentizing agents is necessary for the cytotoxic destruction of cancerous cells by PDT. As a light source expensive solid-state laser sources currently are being used for the treatment. Inexpensive semiconductor lasers have been suggested for the light delivery system, however packaging of semiconductor lasers for optimal optical power output is challenging. In this paper, we present a multidirectional direct water-cooling of semiconductor lasers that provides a better efficiency than the conventional unidirectional cooling. AlGaAsP lasers were tested under de-ionized (DI) water and it is shown that the optical power output of the lasers under the DI water is much higher than that of the uni-directional cooling of lasers. Also, in this paper we discuss how direct DI water-cooling can optimize power output of semiconductor lasers. Thereafter an optimal design of the semiconductor laser package is shown with the DI water-cooling system. Further, a microwave antenna is designed which is to be imprinted on to a balloon catheter in order to provide local heating of esophagus, leading to an increase in local oxygenation of the tumor to generate an effective level of singlet oxygen for cellular death. Finally the optimal level of light energy that is required to achieve the expected level of singlet oxygen is modeled to design an efficient PDT protocol.

  6. Argon laser irradiation of rabbits' eyes-changes in prostaglandin E2 levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naveh, N.; Peer, J.; Bartov, E.

    1991-02-01

    Laser irradiation of the eye is a widely used therapeutic measure in various ocular disorders. We investigated in laser-treated rabbits' eyes the changes in prostaglandin E2 (PGE2) levels of the tissue affected by the laser (the retina/choroid) and of its adjacent vitreous over a two-week period. The parameters studied were; PGE2 in vitro production by the retina/choroid, as well as PGE2 and protein levels in the vitreous, the latter indicative of a break in the blood retinal barrier (BRB). The effect of noncoherent light exposure used for illumination, and that of the mechanical manipulation involved (sham exposure) were also studied.more » Following laser exposure vitreal PGE2 levels were increased two-fold above baseline (days three and 14), whereas light exposure resulted in a single peak. PGE2 in vitro production by the retina/choroid in the laser-exposed group was elevated throughout the observation period, peaking twice (days 3 and 14), in the light-exposed group the enhanced production was evident during a shorter period, whereas in the sham group it remained unchanged from baseline. An elevation in vitreal protein levels to above baseline levels occurred in both the laser- and, to a lesser degree, in the noncoherent light-exposed groups, but not in the sham group. Our study demonstrated an enhanced PGE2 in vitro production by retina/choroid of laser-exposed eyes, which might be attributable to the additive effect of the laser induced trauma, and the noncoherent light photochemical changes; the clinical significance of the recurrent increase in vitreal PGE2 levels in laser-treated eyes might be related to its anti-inflammatory properties.« less

  7. Speckle reduction in laser projection displays through angle and wavelength diversity.

    PubMed

    Tran, Trinh-Thi-Kim; Svensen, Øyvind; Chen, Xuyuan; Akram, Muhammad Nadeem

    2016-02-20

    Speckle is the main obstacle for the use of laser light sources in projection technology. This paper focuses on speckle suppression by the reduction of temporal coherence which is provided by the broadband laser light. The investigation of the effect of laser spectrum width and multiple lasers on speckle contrast is discussed. A broader spectrum width of the laser light is attained by the use of multiple semiconductor laser diodes of the broad area type. Measurements of speckle contrast with and without angle diversity are performed for two and four laser diodes. The measurement of speckle contrast for a single laser diode is also presented for comparison. The experimental results show that multiple laser diodes provide lower speckle contrast as compared to a single laser diode. In addition, it is also shown in this paper that the wavelength distribution of independent laser diodes has an effect on speckle contrast. Two different types of blue laser diodes, Nichia NUB802T and Nichia NUB801E, which have slightly different central wavelengths, were used for the measurements. Four laser diodes with a combination of two types of laser diodes offer better speckle contrast reduction than four laser diodes of the same type due to an effective broader spectrum. Additional speckle contrast reduction is achieved through the angle diversity by using a dynamic deformable mirror.

  8. Enhanced photoluminescence intensity by modifying the surface nanostructure of Nd3+-doped (Pb, La)(Zr, Ti)O3 ceramics.

    PubMed

    Xu, Long; Zhang, Jingwen; Zhao, Hua; Sun, Haibin; Xu, Caixia

    2017-09-01

    Quasi-period cylindrical nanostructures with both diameters and intervals of about 100 nm are manufactured on the surfaces of Nd 3+ -doped lanthanum lead zirconate titanate ceramics by femtosecond laser irradiation under SF 6 atmosphere. A light-emission enhancement of more than 20 times is investigated, accompanied by an extremely long trailing-off time of light emission and lower threshold. A specific polarization state of the light emission is achieved and tuned by changing the incident regions of the pumping source. The increased absorption coefficient of the specimen is discussed based on multiple scattering and weak localization of light. In addition, both the scatterers provided by the laser-machined nanostructure and the recurrent photoinduced trapping and re-excitation process participated in the enhancement of the light emission. This Letter offers new insight to improve the luminescence property of laser materials, as well as to broaden the range of exploring the weak localization of light and random lasers.

  9. A Laser Stabilization System for Rydberg Atom Physics

    DTIC Science & Technology

    2015-09-06

    offset locking method which we did. For each system, a small amount of light from a 852 nm (780 nm) diode laser is picked off from the output beam ...this way, tunable sidebands, from 1-10 GHz, that are themselves modulated at .05-5 MHz, can be generated on the input laser beam . The light from the...phase modulation signal. This signal is fed back into the fast (10 MHz bandwidth) locking electronics of the diode laser system to lock the laser to

  10. Optical laser systems at the Linac Coherent Light Source

    DOE PAGES

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; ...

    2015-04-22

    Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.

  11. Polarization methods for diode laser excitation of solid state lasers

    DOEpatents

    Holtom, Gary R.

    2008-11-25

    A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. A Yb-doped gain medium can be used that absorbs light having a first polarization and emits light having a second polarization. Using such pumping with laser cavity dispersion control, pulse durations of less than 100 fs can be achieved.

  12. High flux, narrow bandwidth compton light sources via extended laser-electron interactions

    DOEpatents

    Barty, V P

    2015-01-13

    New configurations of lasers and electron beams efficiently and robustly produce high flux beams of bright, tunable, polarized quasi-monoenergetic x-rays and gamma-rays via laser-Compton scattering. Specifically, the use of long-duration, pulsed lasers and closely-spaced, low-charge and low emittance bunches of electron beams increase the spectral flux of the Compton-scattered x-rays and gamma rays, increase efficiency of the laser-electron interaction and significantly reduce the overall complexity of Compton based light sources.

  13. Applications of high power lasers in the battlefield

    NASA Astrophysics Data System (ADS)

    Kalisky, Yehoshua

    2009-09-01

    Laser weapon is currently considered as tactical as well as strategic beam weapons, and is considered as a part of a general layered defense system against ballistic missiles and short-range rockets. This kind of weapon can disable or destroy military targets or incoming objects used by small groups of terrorists or countries, at the speed of light. Laser weapon is effective at long or short distances, owing to beam's unique characteristics such as narrow bandwidth, high brightness, coherent both in time and space, and it travels at the speed of light. Unlike kinetic weapon, laser weapon converts the energy stored in an electromagnetic laser beam into a large amount of heat aimed on a small area spot at the skin of the missile, usually close to the liquid fuel storage tank, warhead case or engine area, following by a temperature increase and finally-catastrophic failure by material ablation or melt. The usefulness of laser light as a weapon has been studied for decades but only in recent years became feasible. There are two types of lasers being used: gas lasers and solid state lasers, including fiber lasers. All these types of lasers will be discussed below.

  14. A new linear structured light module based on the MEMS micromirror

    NASA Astrophysics Data System (ADS)

    Zhou, Peng; Shen, Wenjiang; Yu, Huijun

    2017-10-01

    A new linear structured light module based on the Micro-Electro-Mechanical System (MEMS) two-dimensional scanning micromirror was designed and created. This module consists of a laser diode, a convex lens, and the MEMS micromirror. The laser diode generates the light and the convex lens control the laser beam to converge on a single point with large depth of focus. The fast scan in horizontal direction of the micromirror will turn the laser spot into a homogenous laser line. Meanwhile, the slow scan in vertical direction of the micromirror will move the laser line in the vertical direction. The width of the line generated by this module is 300μm and the length is 120mm and the moving distance is 100mm at 30cm away from the module. It will promote the development of industrial detection.

  15. Once the Light Touch to the Brain: Cytotoxic Effects of Low-Dose Gamma-Ray, Laser Light, and Visible Light on Rat Neuronal Cell Culture

    PubMed Central

    Cakir, Murteza; Colak, Abdullah; Calikoglu, Cagatay; Taspinar, Numan; Sagsoz, Mustafa Erdem; Kadioglu, Hakan Hadi; Hacimuftuoglu, Ahmet; Seven, Sabriye

    2016-01-01

    Objective: We aimed to evaluate the effects of gamma-ray, laser light, and visible light, which neurons are commonly exposed to during treatment of various cranial diseases, on the viability of neurons. Materials and Methods: Neuronal cell culture was prepared from the frontal cortex of 9 newborn rats. Cultured cells were irradiated with gamma-ray for 1–10 min by 152Eu, 241Am, and 132Ba isotopes, visible light for 1–160 min, and laser light for 0.2–2 seconds. The MTT tetrazolium reduction assay was used to assess the number of viable cells in the neuronal cell cultures. Wavelength dispersive X-ray fluorescence spectrometer was used to determine Na, K, and Ca levels in cellular fluid obtained from neuronal cell culture plaques. Results: Under low-dose radiation with 152Eu, 241Am, and 132Ba isotopes, cell viability insignificantly decreased with time (p>0.05). On the other hand, exposure to visible light produced statistically significant decrease in cell viability at both short- (1–10 min) and long-term (20–160 min). Cell viability did not change with 2 seconds of laser exposure. Na, K, and Ca levels significantly decreased with gamma-ray and visible light. The level of oxidative stress markers significantly changed with gamma-ray. Conclusion: In conclusion, while low dose gamma-ray has slight to moderate apoptotic effect in neuronal cell cultures by oxidative stress, long-term visible light induces remarkable apoptosis and cell death. Laser light has no significant effect on neurons. Further genetic studies are needed to clarify the chronic effect of visible light on neuronal development and functions. PMID:27551168

  16. Development of a PC interface board for true color control using an Ar Kr white-light laser

    NASA Astrophysics Data System (ADS)

    Shin, Yongjin; Park, Sohee; Kim, Youngseop; Lee, Jangwoen

    2006-06-01

    For the optimal laser display, it is crucial to select and control color signals of proper wavelengths in order to construct a wide range of laser display colors. In traditional laser display schemes, color control has been achieved through the mechanical manipulation of red, green, and blue (RGB) laser beam intensities using color filters. To maximize the effect of a laser display and its color contents, it is desirable to generate laser beams with wide selection of wavelengths. We present an innovative laser display control technique, which generates six channel laser wavelengths from a white-light laser using a RF-controlled polychromatic acousto optical modulator (PCAOM). This technique enables us not only to control the intensity of individual channels, but also to achieve true color signals for the laser beam display including RGB, yellow, cyan, and violet (YCV), and other intermediate colors. For the optimal control of the PCAOM and galvano-mirror, we designed and fabricated a PC interface board. Using this PC control, we separated the white-light from an Ar-Kr mixed gas laser into various wavelengths and reconstructed them into different color schemes. Also we demonstrated the effective control and simultaneous display of reconstructed true color laser beams on a flat screen.

  17. Light-driven phase shifter

    DOEpatents

    Early, James W.

    1990-01-01

    A light-driven phase shifter is provided for modulating a transmission light beam. A gaseous medium such as argon is provided with electron energy states excited to populate a metastable state. A tunable dye laser is selected with a wavelength effective to deplete the metastable electron state and may be intensity modulated. The dye laser is directed through the gaseous medium to define a first optical path having an index of refraction determined by the gaseous medium having a depleted metastable electron state. A transmission laser beam is also directed through the gaseous medium to define a second optical path at least partially coincident with the first optical path. The intensity of the dye laser beam may then be varied to phase modulate the transmission laser beam.

  18. Note: Laser beam scanning using a ferroelectric liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Das, Abhijit; Boruah, Bosanta R.

    2014-04-01

    In this work we describe laser beam scanning using a ferroelectric liquid crystal spatial light modulator. Commercially available ferroelectric liquid crystal spatial light modulators are capable of displaying 85 colored images in 1 s using a time dithering technique. Each colored image, in fact, comprises 24 single bit (black and white) images displayed sequentially. We have used each single bit image to write a binary phase hologram. For a collimated laser beam incident on the hologram, one of the diffracted beams can be made to travel along a user defined direction. We have constructed a beam scanner employing the above arrangement and demonstrated its use to scan a single laser beam in a laser scanning optical sectioning microscope setup.

  19. Dense pattern multiple pass cells

    DOEpatents

    Silver, Joel A.; Bomse, David S.

    2010-09-21

    An optical cell and a method of operating an optical cell comprising employing a first mirror comprising a first hole therein at approximately a center of the first mirror and through which laser light enters the cell, employing a second mirror comprising a second hole therein at approximately a center of the second mirror and through which laser light exits the cell, and forming a Lissajous pattern of spots on the mirrors by repeated reflection of laser light entering the cell.

  20. Advantages of III-nitride laser diodes in solid-state lighting: Advantages of III-nitride laser diodes in solid-state lighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wierer, Jonathan J.; Tsao, Jeffrey Y.

    2015-01-14

    III-nitride laser diodes (LDs) are an interesting light source for solid-state lighting (SSL). Modelling of LDs is performed to reveal the potential advantages over traditionally used light-emitting diodes (LEDs). The first, and most notable, advantage is LDs have higher efficiency at higher currents when compared to LEDs. This is because Auger recombination that causes efficiency droop can no longer grow after laser threshold. Second, the same phosphor-converted methods used with LEDs can also be used with LDs to produce white light with similar color rendering and color temperature. Third, producing white light from color mixed emitters is equally challenging formore » both LEDs and LDs, with neither source having a direct advantage. Fourth, the LD emission is directional and can be more readily captured and focused, leading to the possibility of novel and more compact luminaires. Finally, the smaller area and higher current density operation of LDs provides them with a potential cost advantage over LEDs. These advantages make LDs a compelling source for future SSL.« less

  1. Light Emitting Diode (LED)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique called photodynamic therapy, requires the surgeon to use tiny pinhead-size Light Emitting Diodes (LEDs) (a source releasing long wavelengths of light) to activate light-sensitive, tumor-treating drugs. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can also be used for hours at a time while still remaining cool to the touch. The LED probe consists of 144 tiny pinhead-size diodes, is 9-inches long, and about one-half-inch in diameter. The small balloon aids in even distribution of the light source. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The probe was developed for photodynamic cancer therapy by the Marshall Space Flight Center under a NASA Small Business Innovative Research program grant.

  2. Electro-optic harmonic conversion to switch a laser beam out of a cavity

    DOEpatents

    Haas, R.A.; Henesian, M.A.

    1984-10-19

    The present invention relates to switching laser beams out of laser cavities, and more particularly, it relates to the use of generating harmonics of the laser beam to accomplish the switching. When laser light is generatd in a laser cavity the problem arises of how to switch the laser light out of the cavity in order to make use of the resulting laser beam in a well known multitude of ways. These uses include range finding, communication, remote sensing, medical surgery, laser fusion applications and many more. The switch-out problem becomes more difficult as the size of the laser aperture grows such as in laser fusion applications. The final amplifier stages of the Nova and Novette lasers at Lawrence Livermore National Laboratory are 46 centimeters with the laser beam expanded to 74 centimeters thereafter. Larger aperture lasers are planned.

  3. Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes

    PubMed Central

    Jia, Yuechen; Cheng, Chen; Vázquez de Aldana, Javier R.; Castillo, Gabriel R.; Rabes, Blanca del Rosal; Tan, Yang; Jaque, Daniel; Chen, Feng

    2014-01-01

    Miniature laser sources with on-demand beam features are desirable devices for a broad range of photonic applications. Lasing based on direct-pump of miniaturized waveguiding active structures offers a low-cost but intriguing solution for compact light-emitting devices. In this work, we demonstrate a novel family of three dimensional (3D) photonic microstructures monolithically integrated in a Nd:YAG laser crystal wafer. They are produced by the femtosecond laser writing, capable of simultaneous light waveguiding and beam manipulation. In these guiding systems, tailoring of laser modes by both passive/active beam splitting and ring-shaped transformation are achieved by an appropriate design of refractive index patterns. Integration of graphene thin-layer as saturable absorber in the 3D laser structures allows for efficient passive Q-switching of tailored laser radiations which may enable miniature waveguiding lasers for broader applications. Our results pave a way to construct complex integrated passive and active laser circuits in dielectric crystals by using femtosecond laser written monolithic photonic chips. PMID:25100561

  4. A 10-cm Discharge-Length He-ZnII White Light Laser

    NASA Astrophysics Data System (ADS)

    Sasaki, Wakao; Itani, Kimihiko; Ohta, Tatehisa

    1989-06-01

    We demonstrate a unique, efficient white light laser source realized by the He-Zn mixture with substantially short discharge length of 10 cm. The white laser light can be made up of only two wavelengths at simultaneous oscillation --- 492.4 nm (4f2Fo712_4d2D5/2) and 610.2 nm (5d 2D 512 -5 2p03/2 The ideal white color region for human eyes lies just between these two wavelengths in the chromaticity diagram. Therefore, such a compact white light laser will be useful for some specific purposes such as a white color standard. Moreover, we have analyzed the proper relation between the electron energy and the discharge sustaining voltage which appears as a function of the Zn vapor pressure measured at the terminal of the tube, considering the Druyvesteyn distribution of electron energy. Then we succeeded to operate a He-Zn laser tube in white light with 10-cm discharge length. The derived output beam was estimated to be about 0.5 mW.

  5. Formation of 100-nm periodic structures on a titanium surface by exploiting the oxidation and third harmonic generation induced by femtosecond laser pulses.

    PubMed

    Li, Xian-Feng; Zhang, Cheng-Yun; Li, Hui; Dai, Qiao-Feng; Lan, Sheng; Tie, Shao-Long

    2014-11-17

    Periodic surface structures with periods as small as about one-tenth of the irradiating femtosecond (fs) laser light wavelength were created on the surface of a titanium (Ti) foil by exploiting laser-induced oxidation and third harmonic generation (THG). They were achieved by using 100-fs laser pulses with a repetition rate of 1 kHz and a wavelength ranging from 1.4 to 2.2 μm. It was revealed that an extremely thin TixOy layer was formed on the surface of the Ti foil after irradiating fs laser light with a fluence smaller than the ablation threshold of Ti, leading to a significant enhancement in THG which may exceed the ablation threshold of TixOy. As compared with Ti, the maximum efficacy factor for TixOy appears at a larger normalized wavevector in the direction perpendicular to the polarization of the fs laser light. As a result, the THG-dominated laser ablation of TixOy induces 100-nm periodic structures parallel to the polarization of the fs laser light. The depth of the periodic structures was found to be ~10 nm by atomic force microscopy and the formation of the thin TixOy layer was verified by energy dispersive X-ray spectroscopy.

  6. Laser Teeth Bleaching: Evaluation of Eventual Side Effects on Enamel and the Pulp and the Efficiency In Vitro and In Vivo

    PubMed Central

    De Moor, Roeland Jozef Gentil; Meire, Maarten August; De Coster, Peter Jozef

    2015-01-01

    Light and heat increase the reactivity of hydrogen peroxide. There is no evidence that light activation (power bleaching with high-intensity light) results in a more effective bleaching with a longer lasting effect with high concentrated hydrogen peroxide bleaching gels. Laser light differs from conventional light as it requires a laser-target interaction. The interaction takes place in the first instance in the bleaching gel. The second interaction has to be induced in the tooth, more specifically in the dentine. There is evidence that interaction exists with the bleaching gel: photothermal, photocatalytical, and photochemical interactions are described. The reactivity of the gel is increased by adding photocatalyst of photosensitizers. Direct and effective photobleaching, that is, a direct interaction with the colour molecules in the dentine, however, is only possible with the argon (488 and 415 nm) and KTP laser (532 nm). A number of risks have been described such as heat generation. Nd:YAG and especially high power diode lasers present a risk with intrapulpal temperature elevation up to 22°C. Hypersensitivity is regularly encountered, being it of temporary occurrence except for a number of diode wavelengths and the Nd:YAG. The tooth surface remains intact after laser bleaching. At present, KTP laser is the most efficient dental bleaching wavelength. PMID:25874258

  7. The application of laser triangulation method on the blind guidance

    NASA Astrophysics Data System (ADS)

    Wu, Jih-Huah; Wang, Jinn-Der; Fang, Wei; Shan, Yi-Chia; Ma, Shih-Hsin; Kao, Hai-Ko; Jiang, Joe-Air; Lee, Yun-Parn

    2011-08-01

    A new apparatus for blind-guide is proposed in this paper. Optical triangulation method was used to realize the system. The main components comprise a notebook computer, a camera and two laser modules. One laser module emits a light line beam on the vertical axis. Another laser module emits a light line beam on the tilt horizontal axis. The track of the light line beam on the ground or on the object is captured by the camera, and the image is sent to the notebook computer for calculation. The system can calculate the object width and the distance between the object and the blind in terms of the light line positions on the image. Based on the experiment, the distance between the test object and the blind can be measured with a standard deviation of less than 3% within the range of 60 to 150 cm. The test object width can be measured with a standard deviation of less than 1% within the range of 60 to 150 cm. For saving the power consumption, the laser modules are switched on/off with a trigger pulse. And for reducing the complex computation, the two laser modules are switched on alternately. Besides this, a band pass filter is used to filter out the signal except the specific laser light, which can increase the signal to noise ratio.

  8. Reversible photoinduced spectral change in Eu2O3 at room temperature

    NASA Astrophysics Data System (ADS)

    Mochizuki, Shosuke; Nakanishi, Tauto; Suzuki, Yuya; Ishi, Kimihiro

    2001-12-01

    When Eu2O3 powder compact and film are irradiated with ultraviolet (UV) laser light in a vacuum, their photoluminescence (PL) spectra change from a red sharp-line structure to a white broad band, which can be clearly seen with the naked eye. After removing the UV laser light, the white PL continues for more than several months at room temperature under room light, in spite of any changes of atmosphere. By irradiating with the same UV laser light at room temperature under O2 gas atmosphere, the original red PL state reappears. Such a reversible phenomenon may well yield materials for white-light-emitting devices and erasable optical storage.

  9. Efficacy of corneal eye shields in protecting patients' eyes from laser irradiation.

    PubMed

    Russell, S W; Dinehart, S M; Davis, I; Flock, S T

    1996-07-01

    The continuing development of new types and applications of lasers has appeared to surpass the development of specific eye protection for these lasers. There are a variety of eye shields on the market, but few are specifically designed for laser protection. Our purpose was to test a variety of eye shields by two parameters, light transmission and temperature rise, and to determine from these measurements the most protective shield for patients. We tested four plastic shields, one metal shield, and two sets of tanning goggles for temperature rise and light transmission when irradiated with a beam from a flashlamp-pumped, pulsed-dye laser. The temperature rise at the surface of the shield opposite the laser impacts was no more than 0.2 degree C in any case. White light was transmitted at significant levels through several of the shields, but yellow light transmittance was noted only through the green eye shield. Our measurements indicate that all except the green shield appeared safe from transmission of the 585-nm radiant energy. However, the optimal laser eye shield, in our opinion, would be a composite of several different shields' characteristics.

  10. Cadmium-induced accumulation of putrescine in oat and bean leaves

    NASA Technical Reports Server (NTRS)

    Weinstein, L. H.; Kaur-Sawhney, R.; Rajam, M. V.; Wettlaufer, S. H.; Galston, A. W.

    1986-01-01

    The effects of Cd2+ on putrescine (Put), spermidine (Spd), and spermine (Spm) titers were studied in oat and bean leaves. Treatment with Cd2+ for up to 16 hours in the light or dark resulted in a large increase in Put titer, but had little or no effect on Spd or Spm. The activity of arginine decarboxylase (ADC) followed the pattern of Put accumulation, and experiments with alpha-difluoromethylarginine established that ADC was the enzyme responsible for Put increase. Concentrations of Cd2+ as low as 10 micromolar increased Put titer in oat segments. In bean leaves, there was a Cd(2+)-induced accumulation of Put in the free and soluble conjugated fractions, but not in the insoluble fraction. This suggests a rapid exchange between Put that exists in the free form and Put found in acid soluble conjugate forms. It is concluded that Cd2+ can act like certain other stresses (K+ and Mg2+ deficiency, excess NH4+, low pH, salinity, osmotic stress, wilting) to induce substantial increases in Put in plant cells.

  11. Benefit from NASA

    NASA Image and Video Library

    1999-01-01

    The red light from the Light Emitting Diode (LED) probe shines through the fingers of Dr. Harry Whelan, a pediatric neurologist at the Children's Hospital of Wisconsin in Milwaukee. Dr. Whelan uses the long waves of light from the LED surgical probe to activate special drugs that kill brain tumors. Laser light previously has been used for this type of surgery, but the LED light illuminates through all nearby tissues, reaching parts of tumors that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. Also, it can be used for hours at a time while still remaining cool to the touch. The probe was developed for photodynamic cancer therapy under a NASA Small Business Innovative Research Program grant. The program is part of NASA's Technology Transfer Department at the Marshall Space Flight Center.

  12. Organic light emitters gain longevity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Service, R.E.

    1996-08-16

    Organic thin-film displays were for many years a research curiosity with no staying power. Now their stamina is beginning to match their unbeatable toughness and lightness. For much of the past decade, researchers have been promising to put thin films of light-emitting plastics and other organic materials on display: large, flexible, inexpensive and efficient screens to be used for everything from lightweight backlights for computer displays to TVs that you can hang flat on the wall or roll up and put in your pocket. Yet, many of these promises have fallen flat as well. Organic lights have tended to burnmore » out after just days or weeks of operation. But now long-lived organic thin film displays are beginning to shine. By crafting films without as many burnout causing defects and building devices with additional film layers to enhance light emission, researchers around the work have recently improved the brightness, lifetime, and future prosects of their devices. This article describes recent developments and improvements in the field.« less

  13. Verteporfin Injection

    MedlinePlus

    ... Fifteen minutes after the start of the verteporfin infusion, your doctor will administer a special laser light ... second eye 1 week later with another verteporfin infusion and laser light treatment.Your doctor will examine ...

  14. Integrated all-optical infrared switchable plasmonic quantum cascade laser.

    PubMed

    Kohoutek, John; Bonakdar, Alireza; Gelfand, Ryan; Dey, Dibyendu; Nia, Iman Hassani; Fathipour, Vala; Memis, Omer Gokalp; Mohseni, Hooman

    2012-05-09

    We report a type of infrared switchable plasmonic quantum cascade laser, in which far field light in the midwave infrared (MWIR, 6.1 μm) is modulated by a near field interaction of light in the telecommunications wavelength (1.55 μm). To achieve this all-optical switch, we used cross-polarized bowtie antennas and a centrally located germanium nanoslab. The bowtie antenna squeezes the short wavelength light into the gap region, where the germanium is placed. The perturbation of refractive index of the germanium due to the free carrier absorption produced by short wavelength light changes the optical response of the antenna and the entire laser intensity at 6.1 μm significantly. This device shows a viable method to modulate the far field of a laser through a near field interaction.

  15. AFOSR/AFRPL Rocket Propulsion Research Meeting Held at Lancaster, California on 12-15 March 1984. Abstracts and Agenda

    DTIC Science & Technology

    1984-02-01

    MA 0900 28 HIGH TEMPERATURE MOLECULAR ABSORBERS FOR CW LASER PROPULSION. David 0 Rosen, David 0 Ham , and Lauren M Cowles, Physical Sciences Inc...been put into the dcvulopmunt of* computer codes uo wodel various aspects of rocket propellant behavior such a cobustion :..echawica and DSDT. However...Differential Scanning Calorimeter, and (2) thermal diffusivit- using U laser flash apparatus. All measurements are madc under digital computer contro

  16. Investigation of Laser-Induced Retinal Damage: Wavelength and Pulsewidth Dependent Mechanisms

    DTIC Science & Technology

    1994-08-31

    transformation. Biochim Biophys Acta 1991; 1072:129-57. 2. Artuc M, Ramshad M, Kappus H. Studies on acute toxic effects to keratinocytes induced by...hematoporphyrin derivatives and laser light Arch Dermatol Res 1989;281:491-4. 3. Artuc M, Ramshad M, Reinhold C, Kappus H. DNA damage caused by laser light

  17. Color digital lensless holographic microscopy: laser versus LED illumination.

    PubMed

    Garcia-Sucerquia, Jorge

    2016-08-20

    A comparison of the performance of color digital lensless holographic microscopy (CDLHM) as utilized for illumination of RGB lasers or a super-bright white-light LED with a set of spectral filters is presented. As the use of lasers in CDLHM conceals the possibility of having a compact, lightweight, portable, and low cost microscope, and additionally the limited available laser radiation wavelengths limit a real multispectral imaging microscope, here we present the use of super-bright white-light LED and spectral filters for illuminating the sample. The performance of RGB laser-CDLHM and LED-CDLHM is evaluated on imaging a section of the head of a Drosophila melanogaster fly. This comparison shows that there is trade-off between the spatial resolution of the microscope and the light sources utilized, which can be understood with regard to the coherence properties of the illuminating light. Despite the smaller spatial coherence features of LED-CDLHM in comparison with laser-CDLHM, the former shows promise as a portable RGB digital lensless holographic microscope that could be extended to other wavelengths by the use of different spectral filters.

  18. Mid-infrared optical parametric oscillator pumped by an amplified random fiber laser

    NASA Astrophysics Data System (ADS)

    Shang, Yaping; Shen, Meili; Wang, Peng; Li, Xiao; Xu, Xiaojun

    2017-01-01

    Recently, the concept of random fiber lasers has attracted a great deal of attention for its feature to generate incoherent light without a traditional laser resonator, which is free of mode competition and insure the stationary narrow-band continuous modeless spectrum. In this Letter, we reported the first, to the best of our knowledge, optical parametric oscillator (OPO) pumped by an amplified 1070 nm random fiber laser (RFL), in order to generate stationary mid-infrared (mid-IR) laser. The experiment realized a watt-level laser output in the mid-IR range and operated relatively stable. The use of the RFL seed source allowed us to take advantage of its respective stable time-domain characteristics. The beam profile, spectrum and time-domain properties of the signal light were measured to analyze the process of frequency down-conversion process under this new pumping condition. The results suggested that the near-infrared (near-IR) signal light `inherited' good beam performances from the pump light. Those would be benefit for further develop about optical parametric process based on different pumping circumstances.

  19. TRASER - Total Reflection Amplification of Spontaneous Emission of Radiation

    PubMed Central

    Zachary, Christopher B.; Gustavsson, Morgan

    2012-01-01

    Background and Objective Light and lasers in medical therapy have made dramatic strides since their invention five decades ago. However, the manufacture of lasers can be complex and expensive which often makes treatments limited and costly. Further, no single laser will provide the correct parameters to treat all things. Hence, laser specialists often need multiple devices to practice their specialty. A new concept is described herein that has the potential to replace many lasers and light sources with a single ‘tunable’ device. Study Design/Material and Methods This device amplifies spontaneous emission of radiation by capturing and retaining photons through total internal reflection, hence the acronym Total Reflection Amplification of Spontaneous Emission of Radiation, or TRASER. Results Specific peaks of light can be produced in a reproducible manner with high peak powers of variable pulse durations, a large spot size, and high repetition rate. Conclusion Considering the characteristics and parameters of Traser technology, it is possible that this one device would likely be able to replace the pulsed dye laser and many other light based systems. PMID:22558261

  20. Low-Light-Shift Cesium Fountain without Mechanical Shutters

    NASA Technical Reports Server (NTRS)

    Enzer, Daphna

    2008-01-01

    A new technique for reducing errors in a laser-cooled cesium fountain frequency standard provides for strong suppression of the light shift without need for mechanical shutters. Because mechanical shutters are typically susceptible to failure after operating times of the order of months, the elimination of mechanical shutters could contribute significantly to the reliability of frequency standards that are required to function continuously for longer time intervals. With respect to the operation of an atomic-fountain frequency standard, the term "light shift" denotes an undesired relative shift in the two energy levels of the atoms (in this case, cesium atoms) in the atomic fountain during interrogation by microwaves. The shift in energy levels translates to a frequency shift that reduces the precision and possibly accuracy of the frequency standard. For reasons too complex to describe within the space available for this article, the light shift is caused by any laser light that reaches the atoms during the microwave- interrogation period, but is strongest for near-resonance light. In the absence of any mitigating design feature, the light shift, expressed as a fraction of the standard fs frequency, could be as large as approx. 2 x 10(exp -11), the largest error in the standard. In a typical prior design, to suppress light shift, the intensity of laser light is reduced during the interrogation period by using a single-pass acoustooptic modulator to deflect the majority of light away from the main optical path. Mechanical shutters are used to block the remaining undeflected light to ensure complete attenuation. Without shutters, this remaining undeflected light could cause a light shift of as much as .10.15, which is unacceptably large in some applications. The new technique implemented here involves additionally shifting the laser wavelength off resonance by a relatively large amount (typically of the order of nanometers) during microwave interrogation. In this design, when microwave interrogation is not underway, the atoms are illuminated by a slave laser locked to the lasing frequency of a lower power master laser.

  1. Lasers for Frontier Spectroscopy

    NASA Astrophysics Data System (ADS)

    Baldacchini, Giuseppe

    The first laser has been invented in 1960 by using the red light from a ruby crystal, and since then the laser field exploded almost exponentially, and thousands of different materials, in the state of solids, liquids, vapors, gases, plasmas, and elementary particles have lased up to now from less than I Å to more than 1 mm. Many of them have been used with outstanding results both in basic science, and in industrial and commercial applications, by changing for ever the same lifestyle of humankind. As far as spectroscopy is concerned, the laser light has started an unprecedented revolution because of its unique properties as monochromaticity, coherence, power, brightness and short-pulse regime, unrivaled by any other natural and artificial light source. Spectroscopy applications increased qualitatively and quantitatively with the laser sources themselves, and they are still proceeding in parallel with the moving of the laser field towards new territories. Apart the opening up of new regions of the electromagnetic spectrum, like the terahertz gap, and the outstanding increase of the output power which is giving rise to completely new spectroscopic effects, the improvement of laser sources and auxiliary equipment is producing a growth of traditional laser spectroscopy with superior resolution and sensitivity. Moreover, spectroscopic techniques and laser light contributed to the development of new chemical and physical processes which have been used to fabricate photonic materials with new spectroscopic properties enriching the laser field itself, in a virtuous cycle spectroscopy→aser→material and back to spectroscopy with no end in sight.

  2. Program Models A Laser Beam Focused In An Aerosol Spray

    NASA Technical Reports Server (NTRS)

    Barton, J. P.

    1996-01-01

    Monte Carlo analysis performed on packets of light. Program for Analysis of Laser Beam Focused Within Aerosol Spray (FLSPRY) developed for theoretical analysis of propagation of laser pulse optically focused within aerosol spray. Applied for example, to analyze laser ignition arrangement in which focused laser pulse used to ignite liquid aerosol fuel spray. Scattering and absorption of laser light by individual aerosol droplets evaluated by use of electromagnetic Lorenz-Mie theory. Written in FORTRAN 77 for both UNIX-based computers and DEC VAX-series computers. VAX version of program (LEW-16051). UNIX version (LEW-16065).

  3. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C.P.; Rockwood, S.D.; Jensen, R.J.; Lyman, J.L.; Aldridge, J.P. III.

    1987-04-07

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO[sub 2] laser light may be used to highly enrich [sup 34]S in natural SF[sub 6] and [sup 11]B in natural BCl[sub 3]. 8 figs.

  4. Health-friendly high-quality white light using violet-green-red laser and InGaN nanowires-based true yellow nanowires light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Janjua, Bilal; Ng, Tien K.; Zhao, Chao; Anjum, Dalaver H.; Prabaswara, Aditya; Consiglio, Giuseppe Bernardo; Shen, Chao; Ooi, Boon S.

    2017-02-01

    White light based on blue laser - YAG: Ce3+ phosphor has the advantage of implementing solid-state lighting and optical wireless communications combined-functionalities in a single lamp. However, the blue light was found to disrupt melatonin production, and therefore the human circadian rhythm in general; while the yellow phosphor is susceptible to degradation by laser irradiation and also lack tunability in color rendering index (CRI). In this investigation, by using a violet laser, which has 50% less impact on circadian response, as compared to blue light, and an InGaN-quantum-disks nanowires-based light-emitting diode (NWs-LED), we address both issues simultaneously. The white light is therefore generated using violet-green-red lasers, in conjunction with a yellow NWs-LED realized using molecular beam epitaxy technique, on titanium-coated silicon substrates. Unlike the conventional quantum-well-based LED, the NWs-LED showed efficiency-droop free behavior up to 9.8 A/cm2 with peak output power of 400 μW. A low turn-on voltage of 2.1 V was attributed to the formation of conducting titanium nitride layer at NWs nucleation site and improved fabrication process in the presence of relatively uniform height distribution. The 3D quantum confinement and the reduced band bending improve carriers-wavefunctions overlap, resulting in an IQE of 39 %. By changing the relative intensities of the individual color components, CRI of >85 was achieved with tunable correlated color temperature (CCT), thus covering the desired room lighting conditions. Our architecture provides important considerations in designing smart solid-state lighting while addressing the harmful effect of blue light.

  5. Laser Techniques in Conservation of Artworks:. Problems and Breakthroughs

    NASA Astrophysics Data System (ADS)

    Salimbeni, Renzo; Siano, Salvatore

    2010-04-01

    After more than thirty years since the first experiment in Venice, only in the last decade laser techniques have been widely recognised as one of the most important innovation introduced in the conservation of artworks for diagnostics, restoration and monitoring aims. Especially the use of laser ablation for the delicate phase of cleaning has been debated for many years, because of the problems encountered in finding an appropriate setting of the laser parameters. Many experimentations carried out on stone, metals and pigments put in evidence unacceptable side effects such as discoloration and yellowing after the treatment, or scarce cleaning productivity in respect of other techniques. Many research projects organised at European level have contributed to find breakthroughs in laser techniques that could avoid such problems. The choices of specific laser parameters better suited for cleaning of stone, metals and pigments are described. A series of validation case studies is reported.

  6. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOEpatents

    Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

    1996-06-11

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

  7. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOEpatents

    Albrecht, Georg; George, E. Victor; Krupke, William F.; Sooy, Walter; Sutton, Steven B.

    1996-01-01

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes.

  8. Determination of wood grain direction from laser light scattering pattern

    NASA Astrophysics Data System (ADS)

    Simonaho, Simo-Pekka; Palviainen, Jari; Tolonen, Yrjö; Silvennoinen, Raimo

    2004-01-01

    Laser light scattering patterns from the grains of wood are investigated in detail to gain information about the characteristics of scattering patterns related to the direction of the grains. For this purpose, wood samples of Scots pine ( Pinus sylvestris L.) and silver birch ( Betula pubescens) were investigated. The orientation and shape of the scattering pattern of laser light in wood was found to correlate well with the direction of grain angles in a three-dimensional domain. The proposed method was also experimentally verified.

  9. Absorption of a laser light pulse in a dense plasma.

    NASA Technical Reports Server (NTRS)

    Mehlman-Balloffet, G.

    1973-01-01

    An experimental study of the absorption of a laser light pulse in a transient, high-density, high-temperature plasma is presented. The plasma is generated around a metallic anode tip by a fast capacitive discharge occurring in vacuum. The amount of transmitted light is measured for plasmas made of different metallic ions in the regions of the discharge of high electronic density. Variation of the transmission during the laser pulse is also recorded. Plasma electrons are considered responsible for the very high absorption observed.

  10. Photochemical cutting of fabrics

    DOEpatents

    Piltch, Martin S.

    1994-01-01

    Apparatus for the cutting of garment patterns from one or more layers of fabric. A laser capable of producing laser light at an ultraviolet wavelength is utilized to shine light through a pattern, such as a holographic phase filter, and through a lens onto the one or more layers of fabric. The ultraviolet laser light causes rapid photochemical decomposition of the one or more layers of fabric, but only along the pattern. The balance of the fabric of the one or more layers of fabric is undamaged.

  11. Control of Laser High-Harmonic Generation with Counterpropagating Light

    NASA Astrophysics Data System (ADS)

    Voronov, S. L.; Kohl, I.; Madsen, J. B.; Simmons, J.; Terry, N.; Titensor, J.; Wang, Q.; Peatross, J.

    2001-09-01

    Relatively weak counterpropagating light is shown to disrupt the emission of laser high-harmonic generation. Harmonic orders ranging from the teens to the low thirties produced by a 30-femtosecond pulse in a narrow argon jet are ``shut down'' with a contrast as high as 2 orders of magnitude by a chirped 1-picosecond counterpropagating laser pulse (60 times less intense). Alternatively, under poor phase-matching conditions, the counterpropagating light boosts harmonic production by similar contrast through quasiphase matching where out-of-phase emission is suppressed.

  12. Blue, green, orange, and red upconversion laser

    DOEpatents

    Xie, Ping; Gosnell, Timothy R.

    1998-01-01

    A laser for outputting visible light at the wavelengths of blue, green, orange and red light. This is accomplished through the doping of a substrate, such as an optical fiber or waveguide, with Pr.sup.3+ ions and Yb.sup.3+ ions. A light pump such as a diode laser is used to excite these ions into energy states which will produce lasing at the desired wavelengths. Tuning elements such as prisms and gratings can be employed to select desired wavelengths for output.

  13. Blue, green, orange, and red upconversion laser

    DOEpatents

    Xie, P.; Gosnell, T.R.

    1998-09-08

    A laser is disclosed for outputting visible light at the wavelengths of blue, green, orange and red light. This is accomplished through the doping of a substrate, such as an optical fiber or waveguide, with Pr{sup 3+} ions and Yb{sup 3+} ions. A light pump such as a diode laser is used to excite these ions into energy states which will produce lasing at the desired wavelengths. Tuning elements such as prisms and gratings can be employed to select desired wavelengths for output. 11 figs.

  14. A clinical review of phototherapy for psoriasis.

    PubMed

    Zhang, Ping; Wu, Mei X

    2018-01-01

    Psoriasis is an autoimmune inflammatory skin disease. In the past several decades, phototherapy has been widely used to treat stable psoriatic lesions, including trunk, scalp, arms and legs, and partial nail psoriasis. A variety of light/lasers with different mechanisms of action have been developed for psoriasis including ultraviolet B (UVB), psoralen ultraviolet A (PUVA), pulsed dye laser (PDL), photodynamic therapy (PDT), intense pulsed light (IPL), light-emitting diodes (LED), and so on. Because light/laser each has specific therapeutic and adverse effects, it is important to adequately choose the sources and parameters in management of psoriasis with different pathogenic sites, severities, and duration of the disorder. This review aims at providing most updated clinic information to physicians about how to select light/laser sources and individual therapeutic regimens. To date, UV light is primarily for stable plaque psoriasis and PDL for topical psoriatic lesions with small area, both of which are safe and effective. On the other hand, PUVA has better curative effects than UVB for managing refractory psoriasis plaques, if its side effects can be better controlled. PDL provides optimal outcomes on nail psoriasis compared with other lasers. Although the trails of low-level light/laser therapy (LLLT) are still small, the near infrared (NIR) and visible red light with low energy show promise for treating psoriasis due to its strong penetration and encouraging photobiomodulation. IPL is rarely reported for psoriasis treatment, but PDT-IPL has been found to offer a moderate effect on nail psoriasis. In brief, various phototherapies have been used either in different combinations or as monotherapy. The modality has become a mainstay in the treatment of mild-to-moderate psoriasis without systemic adverse events in today's clinical practice.

  15. Advances in detection of diffuse seafloor venting using structured light imaging.

    NASA Astrophysics Data System (ADS)

    Smart, C.; Roman, C.; Carey, S.

    2016-12-01

    Systematic, remote detection and high resolution mapping of low temperature diffuse hydrothermal venting is inefficient and not currently tractable using traditional remotely operated vehicle (ROV) mounted sensors. Preliminary results for hydrothermal vent detection using a structured light laser sensor were presented in 2011 and published in 2013 (Smart) with continual advancements occurring in the interim. As the structured light laser passes over active venting, the projected laser line effectively blurs due to the associated turbulence and density anomalies in the vent fluid. The degree laser disturbance is captured by a camera collecting images of the laser line at 20 Hz. Advancements in the detection of the laser and fluid interaction have included extensive normalization of the collected laser data and the implementation of a support vector machine algorithm to develop a classification routine. The image data collected over a hydrothermal vent field is then labeled as seafloor, bacteria or a location of venting. The results can then be correlated with stereo images, bathymetry and backscatter data. This sensor is a component of an ROV mounted imaging suite which also includes stereo cameras and a multibeam sonar system. Originally developed for bathymetric mapping, the structured light laser sensor, and other imaging suite components, are capable of creating visual and bathymetric maps with centimeter level resolution. Surveys are completed in a standard mowing the lawn pattern completing a 30m x 30m survey with centimeter level resolution in under an hour. Resulting co-registered data includes, multibeam and structured light laser bathymetry and backscatter, stereo images and vent detection. This system allows for efficient exploration of areas with diffuse and small point source hydrothermal venting increasing the effectiveness of scientific sampling and observation. Recent vent detection results collected during the 2013-2015 E/V Nautilus seasons will be presented. Smart, C. J. and Roman, C. and Carey, S. N. (2013) Detection of diffuse seafloor venting using structured light imaging, Geochemistry, Geophysics, Geosystems, 14, 4743-4757

  16. Light Pollution in Québec: Progress Report

    NASA Astrophysics Data System (ADS)

    Dutil, Yvan

    2005-08-01

    Quebecers are among the worst light polluters in the world, producing 2 to 3 times more light than Americans or Europeans. Nevertheless, there is hope of losing this infamous title in the near future. Recently, there was a large increase in awareness both from the public and policy makers and action is now taken to preserve the dark sky elsewhere in Quebec. A Dark-Sky Preserve is now being put in place around Mont Mégantic Observatory. With a radius of 50 km, it will be will be, once completed, one of the largest in North America. In addition, the city of Sherbrooke is putting in place its own dark-sky policy to complement the protection provide by the preserve. These efforts are expected to stop the growth of light pollution at Mont Mégantic, which has doubled in the last 25 years. Even the cities of Montréal and Québec are taking action against the light pollution. This is a good example of how a few dedicated persons can change perceptions and fight efficiently against light pollution.

  17. Modes in light wave propagating in semiconductor laser

    NASA Technical Reports Server (NTRS)

    Manko, Margarita A.

    1994-01-01

    The study of semiconductor laser based on an analogy of the Schrodinger equation and an equation describing light wave propagation in nonhomogeneous medium is developed. The active region of semiconductor laser is considered as optical waveguide confining the electromagnetic field in the cross-section (x,y) and allowing waveguide propagation along the laser resonator (z). The mode structure is investigated taking into account the transversal and what is the important part of the suggested consideration longitudinal nonhomogeneity of the optical waveguide. It is shown that the Gaussian modes in the case correspond to spatial squeezing and correlation. Spatially squeezed two-mode structure of nonhomogeneous optical waveguide is given explicitly. Distribution of light among the laser discrete modes is presented. Properties of the spatially squeezed two-mode field are described. The analog of Franck-Condon principle for finding the maxima of the distribution function and the analog of Ramsauer effect for control of spatial distribution of laser emission are discussed.

  18. Rapid laser fabrication of microlens array using colorless liquid photopolymer for AMOLED devices

    NASA Astrophysics Data System (ADS)

    Kim, Kwang-Ryul; Jeong, Han-Wook; Lee, Kong-Soo; Yi, Junsin; Yoo, Jae-Chern; Cho, Myung-Woo; Cho, Sung-Hak; Choi, Byoungdeog

    2011-01-01

    Microlens array (MLA) is microfabricated using Ultra Violet (UV) laser for display device applications. A colorless liquid photopolymer, Norland Optical Adhesive (NOA) 60, is spin-coated and pre-cured via UV light for completing the laser process. The laser energy controlled by a galvano scanner is radiated on the surface of the NOA 60. A rapid thermal volume expansion inside the material creates microlens array when the Gaussian laser energy is absorbed. The fabrication process conditions for various shapes and densities of MLA using a non-contact surface profiler are investigated. Furthermore, we analyze the optical and display characteristics for the Organic Light Emitting Diode (OLED) devices. Optimized condition furnishes the OLED with the enhancement of light emission by 15%. We show that UV laser technique, which is installed with NOA 60 MLA layer, is eligible for improving the performance of the next generation display devices.

  19. Laser and Light-based Treatment of Keloids – A Review

    PubMed Central

    Mamalis, A.D.; Lev-Tov, H.; Nguyen, D.H.; Jagdeo, J.R.

    2015-01-01

    Keloids are an overgrowth of fibrotic tissue outside the original boundaries of an injury and occur secondary to defective wound healing. Keloids often have a functional, aesthetic, or psychosocial impact on patients as highlighted by quality-of-life studies. Our goal is to provide clinicians and scientists an overview of the data available on laser and light-based therapies for treatment of keloids, and highlight emerging light-based therapeutic technologies and the evidence available to support their use. We employed the following search strategy to identify the clinical evidence reported in the biomedical literature: in November 2012, we searched PubMed.gov, Ovid MEDLINE, Embase, and Cochrane Reviews (1980-present) for published randomized clinical trials, clinical studies, case series, and case reports related to the treatment of keloids. The search terms we utilized were ‘keloid(s)’ AND ‘laser’ OR ‘light-emitting diode’ OR ‘photodynamic therapy’ OR ‘intense pulsed light’ OR ‘low level light’ OR ‘phototherapy.’ Our search yielded 347 unique articles. Of these, 33 articles met our inclusion and exclusion criteria. We qualitatively conclude that laser and light-based treatment modalities may achieve favorable patient outcomes. Clinical studies using CO2 laser are more prevalent in current literature and a combination regimen may be an adequate ablative approach. Adding light-based treatments, such as LED phototherapy or photodynamic therapy, to laser treatment regimens may enhance patient outcomes. Lasers and other light-based technology have introduced new ways to manage keloids that may result in improved aesthetic and symptomatic outcomes and decreased keloid recurrence. PMID:24033440

  20. Quantum properties of light emitted by dipole nano-laser

    NASA Astrophysics Data System (ADS)

    Ghannam, Talal

    Recent technological advances allow entire optical systems to be lithographically implanted on small silicon chips. These systems include tiny semiconductor lasers that function as light sources for digital optical signals. Future advances will rely on even smaller components. At the theoretical limit of this process, the smallest lasers will have an active medium consisting of a single atom (natural or artificial). Several suggestions for how this can be accomplished have already been published, such as nano-lasers based on photonic crystals and nano wires. In particular, the "dipole nanolaser" consists of a single quantum dot functioning as the active medium. It is optically coupled to a metal nanoparticles that form a resonant cavity. Laser light is generated from the near-field optical signal. The proposed work is a theoretical exploration of the nature of the resulting laser light. The dynamics of the system will be studied and relevant time scales described. These will form the basis for a set of operator equations describing the quantum properties of the emitted light. The dynamics will be studied in both density matrix and quantum Langevin formulations, with attention directed to noise sources. The equations will be linearized and solved using standard techniques. The result of the study will be a set of predicted noise spectra describing the statistics of the emitted light. The goal will be to identify the major noise contributions and suggest methods for suppressing them. This will be done by studying the probability of getting squeezed light from the nanoparticle for the certain scheme of parameters.

  1. How to harvest efficient laser from solar light

    NASA Astrophysics Data System (ADS)

    Zhao, Changming; Guan, Zhe; Zhang, Haiyang

    2018-02-01

    Solar Pumped Solid State Lasers (SPSSL) is a kind of solid state lasers that can transform solar light into laser directly, with the advantages of least energy transform procedure, higher energy transform efficiency, simpler structure, higher reliability, and longer lifetime, which is suitable for use in unmanned space system, for solar light is the only form of energy source in space. In order to increase the output power and improve the efficiency of SPSSL, we conducted intensive studies on the suitable laser material selection for solar pump, high efficiency/large aperture focusing optical system, the optimization of concave cavity as the second focusing system, laser material bonding and surface processing. Using bonded and grooved Nd:YAG rod as laser material, large aperture Fresnel lens as the first stage focusing element, concave cavity as the second stage focusing element, we finally got 32.1W/m2 collection efficiency, which is the highest collection efficiency in the world up to now.

  2. Quantum Optical Transistor and Other Devices Based on Nanostructures

    NASA Astrophysics Data System (ADS)

    Li, Jin-Jin; Zhu, Ka-Di

    Laser and strong coupling can coexist in a single quantum dot (QD) coupled to nanostructures. This provides an important clue toward the realization of quantum optical devices, such as quantum optical transistor, slow light device, fast light device, or light storage device. In contrast to conventional electronic transistor, a quantum optical transistor uses photons as signal carriers rather than electrons, which has a faster and more powerful transfer efficiency. Under the radiation of a strong pump laser, a signal laser can be amplified or attenuated via passing through a single quantum dot coupled to a photonic crystal (PC) nanocavity system. Such a switching and amplifying behavior can really implement the quantum optical transistor. By simply turning on or off the input pump laser, the amplified or attenuated signal laser can be obtained immediately. Based on this transistor, we further propose a method to measure the vacuum Rabi splitting of exciton in all-optical domain. Besides, we study the light propagation in a coupled QD and nanomechanical resonator (NR) system. We demonstrate that it is possible to achieve the slow light, fast light, and quantum memory for light on demand, which is based on the mechanically induced coherent population oscillation (MICPO) and exciton polaritons. These QD devices offer a route toward the use of all-optical technique to investigate the coupled QD systems and will make contributions to quantum internets and quantum computers.

  3. Efficient second-harmonic conversion of CW single-frequency Nd:YAG laser light by frequency locking to a monolithic ring frequency doubler

    NASA Technical Reports Server (NTRS)

    Gerstenberger, D. C.; Tye, G. E.; Wallace, R. W.

    1991-01-01

    Efficient second-harmonic conversion of the 1064-nm output of a diode-pumped CW single-frequency Nd:YAG laser to 532 nm was obtained by frequency locking the laser to a monolithic ring resonator constructed of magnesium-oxide-doped lithium niobate. The conversion efficiency from the fundamental to the second harmonic was 65 percent. Two hundred milliwatts of CW single-frequency 532-nm light were produced from 310 mW of power of 1064-nm light. This represents a conversion efficiency of 20 percent from the 1-W diode laser used to pump the Nd:YAG laser to single-frequency 532-nm output. No signs of degradation were observed for over 500 h of operation.

  4. Review on recent research progress on laser power measurement based on light pressure

    NASA Astrophysics Data System (ADS)

    Lai, WenChang; Zhou, Pu

    2018-03-01

    Accurate measuring the laser power is one of the most important issue to evaluate the performance of high power laser. For the time being, most of the demonstrated technique could be attributed to direct measuring route. Indirect measuring laser power based on light pressure, which has been under intensive investigation, has the advantages such as fast response, real-time measuring and high accuracy, compared with direct measuring route. In this paper, we will review several non-traditional methods based on light pressure to precisely measure the laser power proposed recently. The system setup, measuring principle and scaling methods would be introduced and analyzed in detail. We also compare the benefit and the drawback of these methods and analyze the uncertainties of the measurements.

  5. Simulation of laser propagation through a three-layer human skin model in the spectral range from 1000 to 1900 nm.

    PubMed

    Nasouri, Babak; Murphy, Thomas E; Berberoglu, Halil

    2014-01-01

    For understanding the mechanisms of low-level laser/light therapy (LLLT), accurate knowledge of light interaction with tissue is necessary. We present a three-dimensional, multilayer reduced-variance Monte Carlo simulation tool for studying light penetration and absorption in human skin. Local profiles of light penetration and volumetric absorption were calculated for uniform as well as Gaussian profile beams with different spreads over the spectral range from 1000 to 1900 nm. The results showed that lasers within this wavelength range could be used to effectively and safely deliver energy to specific skin layers as well as achieve large penetration depths for treating deep tissues, without causing skin damage. In addition, by changing the beam profile from uniform to Gaussian, the local volumetric dosage could increase as much as three times for otherwise similar lasers. We expect that this tool along with the results presented will aid researchers in selecting wavelength and laser power in LLLT.

  6. Comparative clinical study using laser and LED-therapy for orofacial pain relief: dentin hypersensitivity and cervicogenic headache

    NASA Astrophysics Data System (ADS)

    Lizarelli, Rosane F. Z.; Pizzo, Renata C. A.; Florez, Fernando L. E.; Grecco, Clovis; Speciali, Jose G.; Bagnato, Vanderlei S.

    2015-06-01

    Considering several clinical situations, low intensity laser therapy has been widely applied in pain relief or analgesia mechanism. With the advent of new LED-based (light emitting diode) light sources, the need of further clinical experiments aiming to compare the effectiveness among them is paramount. The LED system therapeutic use can be denominated as LEDT - Light Emitting Diode Therapy. This study proposed two clinical evaluations of pain relief effect: to dentin hypersensitivity and to cervicogenic headache using different sources of lasers (low and high intensity) and light emitting diodes (LEDs), one emitting at the spectral band of red (630+/- 5nm) and the other one at infrared band (880+/- 5nm). Two different clinical studies were performed and presented interesting results. Considering dentin hypersensitivity, red and infrared led were so effective than the control group (high intensity laser system); by the other side, considering cervicogenic headache, control group (infrared laser) was the best treatment in comparison to red and infrared led system.

  7. Through-transmission laser welding of glass fibre composite: Experimental light scattering identification

    NASA Astrophysics Data System (ADS)

    Cosson, Benoit; Asséko, André Chateau Akué; Dauphin, Myriam

    2018-05-01

    The purpose of this paper is to develop a cost-effective, efficient and quick to implement experimental optical method in order to predict the optical properties (extinction coefficient) of semi-transparent polymer composites. The extinction coefficient takes into account the effects due to the absorption and the scattering phenomena in a semi-transparent component during the laser processes, i.e. TTLW (through-transmission laser welding). The present method used a laser as light source and a reflex camera equipped with a macro lens as a measurement device and is based on the light transmission measurement through different thickness samples. The interaction between the incident laser beam and the semi-transparent composite is exanimated. The results are presented for the case of a semi-transparent composite reinforced with the unidirectional glass fiber (UD). A numerical method, ray tracing, is used to validate the experimental results. The ray tracing method is appropriate to characterize the light-scattering phenomenon in semi-transparent materials.

  8. Wavelength adjustability of frequency conversion light of Yb-doped fiber laser based on FBGs

    NASA Astrophysics Data System (ADS)

    Dobashi, Kazuma; Tomihari, Yasuhiro; Imai, Koichi; Hirohashi, Junji; Makio, Satoshi

    2018-02-01

    We focused on wavelength conversion of simple and compact CW Yb-Doped fiber laser based on FBGs with wavelength adjustable function. By controlling temperatures of FBGs in fiber laser, it was possible to tune oscillated wavelength from 1064.101 nm to 1064.414 nm with more than 20 W in CW operation mode. Based on this fundamental light, frequency converted light (SHG and THG) were generated by utilizing two PP:Mg-SLT devises. We obtained more than 3 W of SHG light with tuning range of 150 pm and more than 35 mW of THG with tuning range of 100 pm. By selecting FBG grating and QPM grating properly, we can realize adjustable wavelength laser with the same scheme from 1040 nm to 1090 nm and their SHG/THG. With this combination of FBG based fiber laser and QPM devices, it is possible to tune the wavelength just by temperature tuning without any changes of beam shape and beam pointing.

  9. Simulation of laser propagation through a three-layer human skin model in the spectral range from 1000 to 1900 nm

    NASA Astrophysics Data System (ADS)

    Nasouri, Babak; Murphy, Thomas E.; Berberoglu, Halil

    2014-07-01

    For understanding the mechanisms of low-level laser/light therapy (LLLT), accurate knowledge of light interaction with tissue is necessary. We present a three-dimensional, multilayer reduced-variance Monte Carlo simulation tool for studying light penetration and absorption in human skin. Local profiles of light penetration and volumetric absorption were calculated for uniform as well as Gaussian profile beams with different spreads over the spectral range from 1000 to 1900 nm. The results showed that lasers within this wavelength range could be used to effectively and safely deliver energy to specific skin layers as well as achieve large penetration depths for treating deep tissues, without causing skin damage. In addition, by changing the beam profile from uniform to Gaussian, the local volumetric dosage could increase as much as three times for otherwise similar lasers. We expect that this tool along with the results presented will aid researchers in selecting wavelength and laser power in LLLT.

  10. First light from the Diocles laser: Relativistic laser-plasmas and beams

    NASA Astrophysics Data System (ADS)

    Umstadter, Donald

    2007-06-01

    Reported are first experimental results from a new high-power (150 TW) laser, Diocles, now in operation at the University of Nebraska, Lincoln. Discussed are novel approaches to using the ultra-high-intensity light from this laser to study relativistic laser plasma interactions. Bright, ultrashort duration (femtosecond ) pulses of energetic (keV -- MeV) x-ray and charged-particle beams are generated through these interactions. Also covered in this talk will be applications of these unique radiation sources for research in the physical sciences, as well as biomedicine, defense and homeland security.

  11. A study of optical design and optimization of laser optics

    NASA Astrophysics Data System (ADS)

    Tsai, C.-M.; Fang, Yi-Chin

    2013-09-01

    This paper propose a study of optical design of laser beam shaping optics with aspheric surface and application of genetic algorithm (GA) to find the optimal results. Nd: YAG 355 waveband laser flat-top optical system, this study employed the Light tools LDS (least damped square) and the GA of artificial intelligence optimization method to determine the optimal aspheric coefficient and obtain the optimal solution. This study applied the aspheric lens with GA for the flattening of laser beams using collimated laser beam light, aspheric lenses in order to achieve best results.

  12. Method for Ground-to-Satellite Laser Calibration System

    NASA Technical Reports Server (NTRS)

    Lukashin, Constantine (Inventor); Wielicki, Bruce A. (Inventor)

    2015-01-01

    The present invention comprises an approach for calibrating the sensitivity to polarization, optics degradation, spectral and stray light response functions of instruments on orbit. The concept is based on using an accurate ground-based laser system, Ground-to-Space Laser Calibration (GSLC), transmitting laser light to instrument on orbit during nighttime substantially clear-sky conditions. To minimize atmospheric contribution to the calibration uncertainty the calibration cycles should be performed in short time intervals, and all required measurements are designed to be relative. The calibration cycles involve ground operations with laser beam polarization and wavelength changes.

  13. Method for Ground-to-Space Laser Calibration System

    NASA Technical Reports Server (NTRS)

    Lukashin, Constantine (Inventor); Wielicki, Bruce A. (Inventor)

    2014-01-01

    The present invention comprises an approach for calibrating the sensitivity to polarization, optics degradation, spectral and stray light response functions of instruments on orbit. The concept is based on using an accurate ground-based laser system, Ground-to-Space Laser Calibration (GSLC), transmitting laser light to instrument on orbit during nighttime substantially clear-sky conditions. To minimize atmospheric contribution to the calibration uncertainty the calibration cycles should be performed in short time intervals, and all required measurements are designed to be relative. The calibration cycles involve ground operations with laser beam polarization and wavelength changes.

  14. Face pumping of thin, solid-state slab lasers with laser diodes.

    PubMed

    Faulstich, A; Baker, H J; Hall, D R

    1996-04-15

    A new technique for face pumping of slab lasers uses transfer of light from 10 quasi-cw laser diode bars through a slotted mirror into a rectangular, highly ref lective pump chamber, giving efficient multipass pumping of a thin Nd:glass slab laser. A slope efficiency of 28% and a maximum pulse energy of 65 mJ have been obtained, and gain and loss measurements with thickness t = 0.45-1.04 mm have confirmed the 1/t scaling of gain in thin slabs and the high efficiency of pump light transfer.

  15. Study of working principle and thermal balance process of a double longitudinal-mode He-Ne laser

    NASA Astrophysics Data System (ADS)

    Wang, Li-qiang

    2009-07-01

    A double longitudinal mode He-Ne laser with frequency stabilization is proposed. Compared with general methods, such as Lamb dip, Zeeman splitting and molecule saturation absorption method, this design has some advantages, such as no piezocrystal or magnetic field, a short frequency-stabilized time, lower cost, and higher frequency stability and reproducibility. The metal wire is uniformly wrapped on the discharge tube of the laser. When the metal wire is heated up, the resonant cavity changes with the temperature field around the discharge tube to make the frequency of the laser to be tuned. The polarizations of the two longitudinal modes from the laser must be orthogonal. The parallelly polarized light and the vertically polarized light compete with each other, i. e., the parallelly polarized light generates a larger output power, while, the vertically polarized light correspondingly generates a smaller one, but an equal value is found at the reference frequencies by automatically adjusting the length of the resonant cavity, due to change of the temperature in the discharge tube. Consequently the frequencies of the laser are stabilized. In my experiment, an intracavity He-Ne laser whose length of the resonant cavity is larger than 50mm and smaller than 300mm is selected for the double longitudinal-mode laser. Influence factors of frequency stability of this laser is only change of the length of the resonant cavity. The laser includes three stages: mode hopping, transition stage, and modes stability from startup to laser stability. When this laser is in modes stability, the waveform of heating metal wire is observed to a pulse whose duty is almost 50%, and thermal balances of the resonant cavity mainly rely on discharge tube.

  16. HUBBLE DISCOVERS POWERFUL LASER BEAMED FROM CHAOTIC STAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is an artist's concept of a gas cloud (left) that acts as a natural ultraviolet laser, near the huge, unstable star Eta Carinae (right) -- one of most massive and energetic stars in our Milky Way Galaxy. The super-laser was identified by a team led by Kris Davidson of the University of Minnesota, and including nine other collaborators in the U.S. and Sweden during spectroscpic observations made with the Goddard High Resolution spectrograph aboard NASA's Hubble Space Telescope. Since it's unlikely that a single beam from the cloud would happen to be precisely aimed in earth's driection, the astronomers conclude that numerous beams must be radiating from the cloud in all directions - beams from a dance hall mirror-ball. The interstellar laser may result from Eta Carinae's violently chaotic eruptions, illustrated here as a reddish (due to light scattering by dust) outflow from the bright star. A laser, (an acronym for Light Amplification by Stimulated Emission of Radiation) creates an intense coherent beam of light when atoms or molecules in a gas, liquid or solid medium, force an incoming mix of wavelengths (or colors) of light to work in phase, or, at the same wavelength. Though a natural infrared laser was identified in space in 1995, lasers are very rare in space and nothing like the UV laser has ever been seen before. Eta Carinae is several million times brighter than the Sun, and one hundred times as massive. The superstar, located 8,000 light-years away in the souther constellation Carina, underwent a colossal outburst 150 years ago. Illustration courtesy James Gitlin/STScI

  17. Dr. Harry Whelan With the Light Emitting Diode Probe

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The red light from the Light Emitting Diode (LED) probe shines through the fingers of Dr. Harry Whelan, a pediatric neurologist at the Children's Hospital of Wisconsin in Milwaukee. Dr. Whelan uses the long waves of light from the LED surgical probe to activate special drugs that kill brain tumors. Laser light previously has been used for this type of surgery, but the LED light illuminates through all nearby tissues, reaching parts of tumors that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. Also, it can be used for hours at a time while still remaining cool to the touch. The probe was developed for photodynamic cancer therapy under a NASA Small Business Innovative Research Program grant. The program is part of NASA's Technology Transfer Department at the Marshall Space Flight Center.

  18. The use of laser in hysteroscopic surgery.

    PubMed

    Nappi, Luigi; Sorrentino, Felice; Angioni, Stefano; Pontis, Alessandro; Greco, Pantaleo

    2016-12-01

    The term laser, an acronym for light amplification by stimulated emission of radiation, covers a wide range of devices. Lasers are commonly described by the emitted wavelength that covers the entire light spectrum from infrared to ultraviolet and the active lasing medium. Currently, over forty different types of lasers have found application in medicine. Moreover, advances made by gynecologists in the field of operative hysteroscopy have developed a very great interest in the use of surgical lasers. Technical improvements in hysteroscopes and lasers have led several gynecologists to evaluate their use in the surgical treatment of intrauterine pathologies. This narrative review concerns the most common used lasers in hysteroscopic surgery with particular attention to the latest promising results of the laser technology.

  19. Development of an Integrated Raman and Turbidity Fiber Optic Sensor for the In-Situ Analysis of High Level Nuclear Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasbarro, Christina; Bello, Job M.; Bryan, Samuel A.

    2013-02-24

    Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fibermore » optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source.« less

  20. Development of an Integrated Raman and Turbidity Fiber Optic Sensor for the In-Situ Analysis of High Level Nuclear Waste - 13532

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasbarro, Christina; Bello, Job; Bryan, Samuel

    2013-07-01

    Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fibermore » optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source. (authors)« less

  1. Index of Refraction Measurements Using a Laser Distance Meter

    ERIC Educational Resources Information Center

    Ochoa, Romulo; Fiorillo, Richard; Ochoa, Cris

    2014-01-01

    We present a simple method to determine the refractive indices of transparent media using a laser distance meter. Indices of refraction have been obtained by measuring the speed of light in materials. Some speed of light techniques use time-of-flight measurements in which pulses are emitted by lasers and the time interval is measured for the pulse…

  2. Interference effects in laser-induced plasma emission from surface-bound metal micro-particles

    DOE PAGES

    Feigenbaum, Eyal; Malik, Omer; Rubenchik, Alexander M.; ...

    2017-04-19

    Here, the light-matter interaction of an optical beam and metal micro-particulates at the vicinity of an optical substrate surface is critical to the many fields of applied optics. Examples of impacted fields are laser-induced damage in high power laser systems, sub-wavelength laser machining of transmissive materials, and laser-target interaction in directed energy applications. We present a full-wave-based model that predicts the laser-induced plasma pressure exerted on a substrate surface as a result of light absorption in surface-bound micron-scale metal particles. The model predictions agree with experimental observation of laser-induced shallow pits, formed by plasma emission and etching from surface-bound metalmore » micro-particulates. It provides an explanation for the prototypical side lobes observed along the pit profile, as well as for the dependence of the pit shape on the incident laser and particle parameters. Furthermore, the model highlights the significance of the interference of the incident light in the open cavity geometry formed between the micro-particle and the substrate in the resulting pit shape.« less

  3. Study of cylindrical optical micro-structure technology used in infrared laser protection

    NASA Astrophysics Data System (ADS)

    Sun, Yanjun; Liu, Shunrui; Wang, Zhining; Zhao, Yixuan; Wu, Boqi; Leng, Yanbing; Wang, Li

    2016-10-01

    The paper aimed at the problem that strong absorption in visible wavelengths and equipment or operator injury caused by specular reflection exist in infrared laser protection technology to propose an infrared laser non-specular reflection optical micro-structure formed from optical window surface. It has the function of little effect on visible light transmission and large-angle scattering to 1064nm infrared laser in order to enable laser protection. The paper uses light track method to design double-side micro-cylindrical lens arrays with dislocation construction. Array period T and curvature radius of lens units R should meet the condition:0

  4. Interference effects in laser-induced plasma emission from surface-bound metal micro-particles.

    PubMed

    Feigenbaum, Eyal; Malik, Omer; Rubenchik, Alexander M; Matthews, Manyalibo J

    2017-05-01

    The light-matter interaction of an optical beam and metal micro-particulates at the vicinity of an optical substrate surface is critical to the many fields of applied optics. Examples of impacted fields are laser-induced damage in high power laser systems, sub-wavelength laser machining of transmissive materials, and laser-target interaction in directed energy applications. We present a full-wave-based model that predicts the laser-induced plasma pressure exerted on a substrate surface as a result of light absorption in surface-bound micron-scale metal particles. The model predictions agree with experimental observation of laser-induced shallow pits, formed by plasma emission and etching from surface-bound metal micro-particulates. It provides an explanation for the prototypical side lobes observed along the pit profile, as well as for the dependence of the pit shape on the incident laser and particle parameters. Furthermore, the model highlights the significance of the interference of the incident light in the open cavity geometry formed between the micro-particle and the substrate in the resulting pit shape.

  5. Novel, compact, and simple ND:YVO4 laser with 12 W of CW optical output power and good beam quality

    NASA Astrophysics Data System (ADS)

    Zimer, H.; Langer, B.; Wittrock, U.; Heine, F.; Hildebrandt, U.; Seel, S.; Lange, R.

    2017-11-01

    We present first, promising experiments with a novel, compact and simple Nd:YVO4 slab laser with 12 W of 1.06 μm optical output power and a beam quality factor M2 2.5. The laser is made of a diffusion-bonded YVO4/Nd:YVO4 composite crystal that exhibits two unique features. First, it ensures a one-dimensional heat removal from the laser crystal, which leads to a temperature profile without detrimental influence on the laser beam. Thus, the induced thermo-optical aberrations to the laser field are low, allowing power scaling with good beam quality. Second, the composite crystal itself acts as a waveguide for the 809 nm pump-light that is supplied from a diode laser bar. Pump-light shaping optics, e.g. fast- or slow-axis collimators can be omitted, reducing the complexity of the system. Pump-light redundancy can be easily achieved. Eventually, the investigated slab laser might be suitable for distortion-free high gain amplification of weak optical signals.

  6. Lasers and light sources for rosacea.

    PubMed

    Goldberg, David J

    2005-03-01

    Pharmacologic agents remain the mainstay for initial and maintenance treatment of rosacea. However, monochromatic (i.e., laser) and polychromatic light-based therapies are increasingly being used for the treatment of certain signs of rosacea. Despite the increased use of lasers and other light-based therapies, few well-controlled studies have been conducted on their use for the treatment of rosacea. The studies that do exist suggest that these modalities have value in treating erythematotelangiectatic rosacea, including persistent erythema and phymatous rosacea. Light-based therapies should be strongly considered in cases of serious erythema, flushing, and telangiectasia because these signs are not optimally addressed by pharmacologic interventions.

  7. Multiplex electric discharge gas laser system

    NASA Technical Reports Server (NTRS)

    Laudenslager, James B. (Inventor); Pacala, Thomas J. (Inventor)

    1987-01-01

    A multiple pulse electric discharge gas laser system is described in which a plurality of pulsed electric discharge gas lasers are supported in a common housing. Each laser is supplied with excitation pulses from a separate power supply. A controller, which may be a microprocessor, is connected to each power supply for controlling the application of excitation pulses to each laser so that the lasers can be fired simultaneously or in any desired sequence. The output light beams from the individual lasers may be combined or utilized independently, depending on the desired application. The individual lasers may include multiple pairs of discharge electrodes with a separate power supply connected across each electrode pair so that multiple light output beams can be generated from a single laser tube and combined or utilized separately.

  8. Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosoya, Toshiyuki; Miranda, Martin; Inoue, Ryotaro

    2015-07-15

    We developed a high-power laser system at a wavelength of 399 nm for laser cooling of ytterbium atoms with ultraviolet laser diodes. The system is composed of an external cavity laser diode providing frequency stabilized output at a power of 40 mW and another laser diode for amplifying the laser power up to 220 mW by injection locking. The systematic method for optimization of our injection locking can also be applied to high power light sources at any other wavelengths. Our system does not depend on complex nonlinear frequency-doubling and can be made compact, which will be useful for providing light sources formore » laser cooling experiments including transportable optical lattice clocks.« less

  9. A Feasibility Study on Generation of Acoustic Waves Utilizing Evanescent Light

    NASA Astrophysics Data System (ADS)

    Matsuya, I.; Matozaki, K.; Kosugi, A.; Ihara, I.

    2014-06-01

    A new approach of generating acoustic waves utilizing evanescent light is presented. The evanescent light is a non-propagating electromagnetic wave that exhibits exponential decay with distance from the surface at which the total internal reflection of light is formed. In this research, the evanescent light during total internal reflection at prism surface is utilized for generating acoustic waves in aluminium and the feasibility for ultrasonic measurements is discussed. Pulsed Nd:YAG laser with 0.36 J/cm2 power density is used and the incident angle during the total internal reflection is arranged to be 69.0° for generating the evanescent light. It has been demonstrated that the amplitude of the acoustic waves by means of evanescent light is about 1/14 as large as the one generated by the conventional pulsed laser. This reveals the possibility of using a laser ultrasonic technique with near-field optics.

  10. Direct periodic patterning of GaN-based light-emitting diodes by three-beam interference laser ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jeomoh; Ji, Mi-Hee; Detchprohm, Theeradetch

    2014-04-07

    We report on the direct patterning of two-dimensional periodic structures in GaN-based light-emitting diodes (LEDs) through laser interference ablation for the fast and reliable fabrication of periodic micro- and nano-structures aimed at enhancing light output. Holes arranged in a two-dimensional hexagonal lattice array having an opening size of 500 nm, depth of 50 nm, and a periodicity of 1 μm were directly formed by three-beam laser interference without photolithography or electron-beam lithography processes. The laser-patterned LEDs exhibit an enhancement in light output power of 20% compared to conventional LEDs having a flat top surface without degradation of electrical and optical properties of themore » top p-GaN layer and the active region, respectively.« less

  11. 300-mW narrow-linewidth deep-ultraviolet light generation at 193 nm by frequency mixing between Yb-hybrid and Er-fiber lasers.

    PubMed

    Xuan, Hongwen; Zhao, Zhigang; Igarashi, Hironori; Ito, Shinji; Kakizaki, Kouji; Kobayashi, Yohei

    2015-04-20

    A narrow-linewidth, high average power deep-ultraviolet (DUV) coherent laser emitting at 193 nm is demonstrated by frequency mixing a Yb-hybrid laser with an Er-fiber laser. The Yb-hybrid laser consists of Yb-fiber lasers and an Yb:YAG amplifier. The average output power of the 193 nm laser is 310 mW at 6 kHz, which corresponds to a pulse energy of 51 μJ. To the best of our knowledge, this is the highest average power and pulse energy ever reported for a narrow-linewidth 193 nm light generated by a combination of solid-state and fiber lasers with frequency mixing. We believe this laser will be beneficial for the application of interference lithography by seeding an injection-locking ArF eximer laser.

  12. a Method of 3d Measurement and Reconstruction for Cultural Relics in Museums

    NASA Astrophysics Data System (ADS)

    Zheng, S.; Zhou, Y.; Huang, R.; Zhou, L.; Xu, X.; Wang, C.

    2012-07-01

    Three-dimensional measurement and reconstruction during conservation and restoration of cultural relics have become an essential part of a modem museum regular work. Although many kinds of methods including laser scanning, computer vision and close-range photogrammetry have been put forward, but problems still exist, such as contradiction between cost and good result, time and fine effect. Aimed at these problems, this paper proposed a structure-light based method for 3D measurement and reconstruction of cultural relics in museums. Firstly, based on structure-light principle, digitalization hardware has been built and with its help, dense point cloud of cultural relics' surface can be easily acquired. To produce accurate 3D geometry model from point cloud data, multi processing algorithms have been developed and corresponding software has been implemented whose functions include blunder detection and removal, point cloud alignment and merge, 3D mesh construction and simplification. Finally, high-resolution images are captured and the alignment of these images and 3D geometry model is conducted and realistic, accurate 3D model is constructed. Based on such method, a complete system including hardware and software are built. Multi-kinds of cultural relics have been used to test this method and results prove its own feature such as high efficiency, high accuracy, easy operation and so on.

  13. NIF unconverted light and its influence on DANTE measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girard, Frederic; Suter, Larry; Landen, Otto

    2009-06-15

    NIF laser facility produces 1053 nm light and a fundamental requirement for NIF is to give up to 1.8 MJ of 351 nm light for target physics experiments. The 351 nm light is provided by frequency tripling the 1053 nm light in nonlinear crystals in the final optics assembly, just before the laser light enters the target chamber. Since this tripling process is not 100% efficient, unconverted light from the conversion process also enters the chamber. This unconverted light does not directly hit the target but it can strike target support structures at average intensities of few TW/cm{sup 2} wheremore » it can generate unwanted, background soft x-rays that are measured by the soft x-ray diagnostic DANTE installed on the NIF target chamber. This diagnostic quantifies the x-radiation intensity inside the hohlraum by measuring the x-ray flux coming from the target's laser entrance hole. Due to its centimeter wide field of view, it integrates x-ray emission from both the flux exiting a hohlraum laser entrance hole and from the target support structure irradiated by residual 1{omega} and 2{omega} unconverted light. This work gives quantitative evaluations of the unconverted light for the first time and the effects on DANTE measurements for the future NIF tuning experiment called ''Shock timing.'' Emission spectra are significantly modified leading to an overestimation of radiative temperature during the foot of the laser pulse since background x-rays are predominant in first two DANTE channel measurements. Mitigations of these effects by coating silicon paddle with plastic, using a smaller collimator to reduce DANTE field of view or eliminating DANTE channels in the analysis have been investigated.« less

  14. NIF unconverted light and its influence on DANTE measurements.

    PubMed

    Girard, Frederic; Suter, Larry; Landen, Otto; Munro, Dave; Regan, Sean; Kline, John

    2009-06-01

    NIF laser facility produces 1053 nm light and a fundamental requirement for NIF is to give up to 1.8 MJ of 351 nm light for target physics experiments. The 351 nm light is provided by frequency tripling the 1053 nm light in nonlinear crystals in the final optics assembly, just before the laser light enters the target chamber. Since this tripling process is not 100% efficient, unconverted light from the conversion process also enters the chamber. This unconverted light does not directly hit the target but it can strike target support structures at average intensities of few TW/cm2 where it can generate unwanted, background soft x-rays that are measured by the soft x-ray diagnostic DANTE installed on the NIF target chamber. This diagnostic quantifies the x-radiation intensity inside the hohlraum by measuring the x-ray flux coming from the target's laser entrance hole. Due to its centimeter wide field of view, it integrates x-ray emission from both the flux exiting a hohlraum laser entrance hole and from the target support structure irradiated by residual 1omega and 2omega unconverted light. This work gives quantitative evaluations of the unconverted light for the first time and the effects on DANTE measurements for the future NIF tuning experiment called "Shock timing." Emission spectra are significantly modified leading to an overestimation of radiative temperature during the foot of the laser pulse since background x-rays are predominant in first two DANTE channel measurements. Mitigations of these effects by coating silicon paddle with plastic, using a smaller collimator to reduce DANTE field of view or eliminating DANTE channels in the analysis have been investigated.

  15. Blue laser diode (LD) and light emitting diode (LED) applications

    NASA Astrophysics Data System (ADS)

    Bergh, Arpad A.

    2004-09-01

    The family of blue LEDs, edge emitting and surface emitting lasers, enable a number of applications. Blue lasers are used in digital applications such as optical storage in high density DVDs. The resolution of the spot size and hence the storage density is diffraction limited and is inversely proportional to the square of the wavelength of the laser. Other applications include printing, optical scanners, and high-resolution photo-lithography.As light emitters, blue LEDs are used for signaling and in direct view large area emissive displays. They are also making inroads into signage and LCD back-lighting, mobile platforms, and decorative accent lighting in curtains, furniture, etc.Blue LEDs produce white light either with phosphor wavelength converters or in combination with red and green LEDs. The full potential of LED light sources will require three devices to enable complete control over color and intensity.Sensing and medical/bio applications have a major impact on home security, on monitoring the environment, and on health care. New emerging diagnostic and therapeutic applications will improve the quality and reduce the cost of health care.

  16. Two-photon fluorescence bioimaging with an all-semiconductor laser picosecond pulse source.

    PubMed

    Kuramoto, Masaru; Kitajima, Nobuyoshi; Guo, Hengchang; Furushima, Yuji; Ikeda, Masao; Yokoyama, Hiroyuki

    2007-09-15

    We have demonstrated successful two-photon excitation fluorescence bioimaging using a high-power pulsed all-semiconductor laser. Toward this purpose, we developed a pulsed light source consisting of a mode-locked laser diode and a two-stage diode laser amplifier. This pulsed light source provided optical pulses of 5 ps duration and having a maximum peak power of over 100 W at a wavelength of 800 nm and a repetition frequency of 500 MHz.

  17. Fiber optic geophysical sensors

    DOEpatents

    Homuth, Emil F.

    1991-01-01

    A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

  18. Method of making self-aligned lightly-doped-drain structure for MOS transistors

    DOEpatents

    Weiner, Kurt H.; Carey, Paul G.

    2001-01-01

    A process for fabricating lightly-doped-drains (LDD) for short-channel metal oxide semiconductor (MOS) transistors. The process utilizes a pulsed laser process to incorporate the dopants, thus eliminating the prior oxide deposition and etching steps. During the process, the silicon in the source/drain region is melted by the laser energy. Impurities from the gas phase diffuse into the molten silicon to appropriately dope the source/drain regions. By controlling the energy of the laser, a lightly-doped-drain can be formed in one processing step. This is accomplished by first using a single high energy laser pulse to melt the silicon to a significant depth and thus the amount of dopants incorporated into the silicon is small. Furthermore, the dopants incorporated during this step diffuse to the edge of the MOS transistor gate structure. Next, many low energy laser pulses are used to heavily dope the source/drain silicon only in a very shallow region. Because of two-dimensional heat transfer at the MOS transistor gate edge, the low energy pulses are inset from the region initially doped by the high energy pulse. By computer control of the laser energy, the single high energy laser pulse and the subsequent low energy laser pulses are carried out in a single operational step to produce a self-aligned lightly-doped-drain-structure.

  19. Power blue and green laser diodes and their applications

    NASA Astrophysics Data System (ADS)

    Hager, Thomas; Strauß, Uwe; Eichler, Christoph; Vierheilig, Clemens; Tautz, Sönke; Brüderl, Georg; Stojetz, Bernhard; Wurm, Teresa; Avramescu, Adrian; Somers, André; Ristic, Jelena; Gerhard, Sven; Lell, Alfred; Morgott, Stefan; Mehl, Oliver

    2013-03-01

    InGaN based green laser diodes with output powers up to 50mW are now well established for variety of applications ranging from leveling to special lighting effects and mobile projection of 12lm brightness. In future the highest market potential for visible single mode profile lasers might be laser projection of 20lm. Therefore direct green single-mode laser diodes with higher power are required. We found that self heating was the limiting factor for higher current operation. We present power-current characteristics of improved R and D samples with up to 200mW in cw-operation. An optical output power of 100mW is reached at 215mA, a current level which is suitable for long term operation. Blue InGaN laser diodes are also the ideal source for phosphor based generation of green light sources of high luminance. We present a light engine based on LARP (Laser Activated Remote Phosphor) which can be used in business projectors of several thousand lumens on screen. We discuss the advantages of a laser based systems in comparison with LED light engines. LARP requires highly efficient blue power laser diodes with output power above 1W. Future market penetration of LARP will require lower costs. Therefore we studied new designs for higher powers levels. R and D chips with power-current characteristics up to 4W in continuous wave operation on C-mount at 25°C are presented.

  20. Effect of radiant heat on conventional glass ionomer cements during setting by using a blue light diode laser system (445 nm).

    PubMed

    Dionysopoulos, Dimitrios; Tolidis, Kosmas; Strakas, Dimitrios; Gerasimou, Paris; Sfeikos, Thrasyvoulos; Gutknecht, Norbert

    2017-04-01

    The aim of this in vitro study was to evaluate the effect of radiant heat on surface hardness of three conventional glass ionomer cements (GICs) by using a blue diode laser system (445 nm) and a light-emitting diode (LED) unit. Additionally, the safety of the laser treatment was evaluated. Thirty disk-shaped specimens were prepared of each tested GIC (Equia Fil, Ketac Universal Aplicap and Riva Self Cure). The experimental groups (n = 10) of the study were as follows: group 1 was the control group of the study; in group 2, the specimens were irradiated for 60 s at the top surface using a LED light-curing unit; and in group 3, the specimens were irradiated for 60 s at the top surface using a blue light diode laser system (445 nm). Statistical analysis was performed using one-way ANOVA and Tukey post-hoc tests at a level of significance of a = 0.05. Radiant heat treatments, with both laser and LED devices, increased surface hardness (p < 0.05) but in different extent. Blue diode laser treatment was seemed to be more effective compared to LED treatment. There were no alterations in surface morphology or chemical composition after laser treatment. The tested radiant heat treatment with a blue diode laser may be advantageous for the longevity of GIC restorations. The safety of the use of blue diode laser for this application was confirmed.

  1. A scanning laser rangefinder for a robotic vehicle

    NASA Technical Reports Server (NTRS)

    Lewis, R. A.; Johnston, A. R.

    1977-01-01

    A scanning Laser Rangefinder (LRF) which operates in conjunction with a minicomputer as part of a robotic vehicle is described. The description, in sufficient detail for replication, modification, and maintenance, includes both hardware and software. Also included is a discussion of functional requirements relative to a detailing of the instrument and its performance, a summary of the robot system in which the LRF functions, the software organization, interfaces and description, and the applications to which the LRF has been put.

  2. Application of Low level Lasers in Dentistry (Endodontic)

    PubMed Central

    Asnaashari, Mohammad; Safavi, Nassimeh

    2013-01-01

    Low level lasers, cold or soft lasers: These lasers do not produce thermal effects on tissues and induce photoreactions in cells through light stimulation which is called photobiostimulation. Power of these lasers is usually under 250mW. The main point differentiating low level lasers and high power ones is the activation of photochemical reactions without heat formation. The most important factor to achieve this light characteristic in lasers is not their power, but their power density for each surfa ceunit (i.e cm2). Density lower than 670mW/cm2, can induce the stimulatory effects of low level lasers without thermal effects. Low level lasers (therapeutic) used today as treatment adjunctive devices in medicine and dentistry. Numerous studies have been performed on the applications of low level lasers in patient pain reduction. Mechanisms of pain reduction with therapeutic lasers and their application are expressed, and the studies realized in this field are presented. PMID:25606308

  3. Clinical comparison between the bleaching efficacy of light-emitting diode and diode laser with sodium perborate.

    PubMed

    Koçak, Sibel; Koçak, Mustafa Murat; Sağlam, Baran Can

    2014-04-01

    The aim of this clinical study was to test the efficacy of a light-emitting diode (LED) light and a diode laser, when bleaching with sodium perborate. Thirty volunteers were selected to participate in the study. The patients were randomly divided into two groups. The initial colour of each tooth to be bleached was quantified with a spectrophotometer. In group A, sodium perborate and distilled water were mixed and placed into the pulp chamber, and the LED light was source applied. In group B, the same mixture was used, and the 810 nm diode laser was applied. The final colour of each tooth was quantified with the same spectrophotometer. Initial and final spectrophotometer values were recorded. Mann-Whitney U-test and Wicoxon tests were used to test differences between both groups. Both devices successfully whitened the teeth. No statistical difference was found between the efficacy of the LED light and the diode laser. © 2013 The Authors. Australian Endodontic Journal © 2013 Australian Society of Endodontology.

  4. Fluorescent image tracking velocimeter

    DOEpatents

    Shaffer, Franklin D.

    1994-01-01

    A multiple-exposure fluorescent image tracking velocimeter (FITV) detects and measures the motion (trajectory, direction and velocity) of small particles close to light scattering surfaces. The small particles may follow the motion of a carrier medium such as a liquid, gas or multi-phase mixture, allowing the motion of the carrier medium to be observed, measured and recorded. The main components of the FITV include: (1) fluorescent particles; (2) a pulsed fluorescent excitation laser source; (3) an imaging camera; and (4) an image analyzer. FITV uses fluorescing particles excited by visible laser light to enhance particle image detectability near light scattering surfaces. The excitation laser light is filtered out before reaching the imaging camera allowing the fluoresced wavelengths emitted by the particles to be detected and recorded by the camera. FITV employs multiple exposures of a single camera image by pulsing the excitation laser light for producing a series of images of each particle along its trajectory. The time-lapsed image may be used to determine trajectory and velocity and the exposures may be coded to derive directional information.

  5. Enhanced 5-aminolevulinic acid-gold nanoparticle conjugate-based photodynamic therapy using pulse laser

    NASA Astrophysics Data System (ADS)

    Xu, Hao; Yao, Cuiping; Wang, Jing; Chang, Zhennan; Zhang, Zhenxi

    2016-02-01

    The low bioavailability is a crucial limitation for the application of 5-aminolevulinic acid (ALA) in theranostics. In this research, 5-aminolevulinic acid and gold nanoparticle conjugates (ALA-GNPs) were synthesized to improve the bioavailability of ALA and to investigate the impact of ALA photodynamic therapy (ALA-PDT) in Hela cells. A 532 nm pulse laser and light-emitting diode (central wavelengths 502 nm) were jointly used as light sources in PDT research. The results show a 532 nm pulse laser can control ALA release from ALA-GNPs by adjusting the pulse laser dose. This laser control release may be attributed to the heat generation from GNPs under pulse laser irradiation, which indicates accurately adjusting the pulse laser dose to control the drug release in the cell interior can be considered as a new cellular surgery modality. Furthermore, the PDT results in Hela cells indicate the enhancement of ALA release by pulse laser before PDT can promote the efficacy of cell eradication in the light-emitting diode PDT (LED-PDT). This laser mediated drug release system can provide a new online therapy approach in PDT and it can be utilized in the optical monitor technologies based individual theranostics.

  6. Portable biochip scanner device

    DOEpatents

    Perov, Alexander; Sharonov, Alexei; Mirzabekov, Andrei D.

    2002-01-01

    A portable biochip scanner device used to detect and acquire fluorescence signal data from biological microchips (biochips) is provided. The portable biochip scanner device employs a laser for emitting an excitation beam. An optical fiber delivers the laser beam to a portable biochip scanner. A lens collimates the laser beam, the collimated laser beam is deflected by a dichroic mirror and focused by an objective lens onto a biochip. The fluorescence light from the biochip is collected and collimated by the objective lens. The fluorescence light is delivered to a photomultiplier tube (PMT) via an emission filter and a focusing lens. The focusing lens focuses the fluorescence light into a pinhole. A signal output of the PMT is processed and displayed.

  7. Laser isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Boyer, Keith; Greiner, Norman R.

    1988-01-01

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  8. Isotope separation by laser means

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1982-06-15

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  9. In vivo studies of low level laser (light) therapy for traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Xuan, Weijun; Wu, Qiuhe; Huang, Ying-Ying; Ando, Takahiro; Huang, Liyi; Hamblin, Michael R.

    2012-03-01

    Low-level laser (or light) therapy (LLLT) is attracting growing interest to treat both stroke and traumatic brain injury (TBI). The fact that near-infrared light can penetrate into the brain allows non-invasive treatment to be carried out with a low likelihood of treatment-related adverse events. It is proposed that red and NIR light is absorbed by chromophores in the mitochondria of cells leading to changes in gene transcription and upregulation of proteins involved in cell survival, antioxidant production, collagen synthesis, reduction of chronic inflammation and cell migration and proliferation. We developed a mouse model of controlled cortical impact (CCI) TBI and examined the effect of 0, 1, 3, and 14 daily 810-nm CW laser treatments in the CCI model as measured by neurological severity score and wire grip and motion test. 1 laser Tx gave a significant improvement while 3 laser Tx was even better. Surprisingly 14 laser Tx was no better than no treatment. Histological studies at necropsy suggested that the neurodegeneration was reduced at 14 days and that the cortical lesion was repaired by BrdU+ve neural progenitor (stem) cells at 28 days. Transcranial laser therapy is a promising treatment for acute (and chronic TBI) and the lack of side-effects and paucity of alternative treatments encourages early clinical trials.

  10. Study of light scattering and transparency in human edematous corneas and application to corneal grafts

    NASA Astrophysics Data System (ADS)

    Marciano, Tal; Peyrot, Donald; Crotti, Caroline; Alahyane, Fatima; Kowalczuk, Laura; Plamann, Karsten

    2011-07-01

    The optical properties of the cornea have been a research subject of great interest for many years. Several early theories have been put forward to explain with more or less success the optical transparency of this tissue, but it was not until Maurice demonstrated in a very elegant way during the 50s that this optical transparency could be explained by the regular ultrastructure of the cornea. When becoming edematous, the cornea's ultrastructure is perturbed and the tissue becomes a strongly scattering medium. With the emergence of ophthalmologic surgery by ultrashort pulse lasers in recent years, a regain of interest in the subject of corneal transparency arose. However, relatively little and no recent data of transparency spectra measurements covering a large wavelength range is available in the literature. The purpose of this study is to provide quantitative values for light scattering and its relation to the degree of edema by measuring the spectrum of transmitted light through corneas presenting different degrees of edema. This paper focus on the comparison of laboratory measurements published earlier with a new simple method we propose We also for eye banks to quantitatively measure the degree of transparency of corneal grafts by measuring the modulation transfer function of a Siemens star viewed through a corneal graft. Indeed, there is no current method to determine the transparency of corneal graft but the subjectivity of the laboratory technician or the ophthalmic surgeon.

  11. Outlook and emerging semiconducting materials for ambipolar transistors.

    PubMed

    Bisri, Satria Zulkarnaen; Piliego, Claudia; Gao, Jia; Loi, Maria Antonietta

    2014-02-26

    Ambipolar or bipolar transistors are transistors in which both holes and electrons are mobile inside the conducting channel. This device allows switching among several states: the hole-dominated on-state, the off-state, and the electron-dominated on-state. In the past year, it has attracted great interest in exotic semiconductors, such as organic semiconductors, nanostructured materials, and carbon nanotubes. The ability to utilize both holes and electrons inside one device opens new possibilities for the development of more compact complementary metal-oxide semiconductor (CMOS) circuits, and new kinds of optoelectronic device, namely, ambipolar light-emitting transistors. This progress report highlights the recent progresses in the field of ambipolar transistors, both from the fundamental physics and application viewpoints. Attention is devoted to the challenges that should be faced for the realization of ambipolar transistors with different material systems, beginning with the understanding of the importance of interface modification, which heavily affects injections and trapping of both holes and electrons. The recent development of advanced gating applications, including ionic liquid gating, that open up more possibility to realize ambipolar transport in materials in which one type of charge carrier is highly dominant is highlighted. Between the possible applications of ambipolar field-effect transistors, we focus on ambipolar light-emitting transistors. We put this new device in the framework of its prospective for general lightings, embedded displays, current-driven laser, as well as for photonics-electronics interconnection. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Method and apparatus for free-space quantum key distribution in daylight

    DOEpatents

    Hughes, Richard J.; Buttler, William T.; Lamoreaux, Steve K.; Morgan, George L.; Nordholt, Jane E.; Peterson, C. Glen; Kwiat, Paul G.

    2004-06-08

    A quantum cryptography apparatus securely generates a key to be used for secure transmission between a sender and a receiver connected by an atmospheric transmission link. A first laser outputs a timing bright light pulse; other lasers output polarized optical data pulses after having been enabled by a random bit generator. Output optics transmit output light from the lasers that is received by receiving optics. A first beam splitter receives light from the receiving optics, where a received timing bright light pulse is directed to a delay circuit for establishing a timing window for receiving light from the lasers and where an optical data pulse from one of the lasers has a probability of being either transmitted by the beam splitter or reflected by the beam splitter. A first polarizer receives transmitted optical data pulses to output one data bit value and a second polarizer receives reflected optical data pulses to output a second data bit value. A computer receives pulses representing receipt of a timing bright timing pulse and the first and second data bit values, where receipt of the first and second data bit values is indexed by the bright timing pulse.

  13. Femtosecond self-reconfiguration of laser-induced plasma patterns in dielectrics

    NASA Astrophysics Data System (ADS)

    Déziel, Jean-Luc; Dubé, Louis J.; Messaddeq, Sandra H.; Messaddeq, Younès; Varin, Charles

    2018-05-01

    Laser-induced modification of transparent solids by intense femtosecond laser pulses allows fast integration of nanophotonic and nanofluidic devices with controlled optical properties. Experimental observations suggest that the local and dynamic nature of the interactions between light and the transient plasma plays an important role during fabrication. Current analytical models neglect these aspects and offer limited coverage of nanograting formation on dielectric surfaces. In this paper, we present a self-consistent dynamic treatment of the plasma buildup and its interaction with light within a three-dimensional electromagnetic framework. The main finding of this work is that local light-plasma interactions are responsible for the reorientation of laser-induced periodic plasma patterns with respect to the incident light polarization, when a certain energy density threshold is reached. Plasma reconfiguration occurs within a single laser pulse, on a femtosecond time scale. Moreover, we show that the reconfigured subwavelength plasma structures actually grow into the bulk of the sample, which agrees with the experimental observations of self-organized volume nanogratings. We find that mode coupling of the incident and transversely scattered light with the periodic plasma structures is sufficient to initiate the growth and self-organization of the pattern inside the medium with a characteristic half-wavelength periodicity.

  14. Simulation study of light transport in laser-processed LYSO:Ce detectors with single-side readout

    NASA Astrophysics Data System (ADS)

    Bläckberg, L.; El Fakhri, G.; Sabet, H.

    2017-11-01

    A tightly focused pulsed laser beam can locally modify the crystal structure inside the bulk of a scintillator. The result is incorporation of so-called optical barriers with a refractive index different from that of the crystal bulk, that can be used to redirect the scintillation light and control the light spread in the detector. We here systematically study the scintillation light transport in detectors fabricated using the laser induced optical barrier technique, and objectively compare their potential performance characteristics with those of the two mainstream detector types: monolithic and mechanically pixelated arrays. Among countless optical barrier patterns, we explore barriers arranged in a pixel-like pattern extending all-the-way or half-way through a 20 mm thick LYSO:Ce crystal. We analyze the performance of the detectors coupled to MPPC arrays, in terms of light response functions, flood maps, line profiles, and light collection efficiency. Our results show that laser-processed detectors with both barrier patterns constitute a new detector category with a behavior between that of the two standard detector types. Results show that when the barrier-crystal interface is smooth, no DOI information can be obtained regardless of barrier refractive index (RI). However, with a rough barrier-crystal interface we can extract multiple levels of DOI. Lower barrier RI results in larger light confinement, leading to better transverse resolution. Furthermore we see that the laser-processed crystals have the potential to increase the light collection efficiency, which could lead to improved energy resolution and potentially better timing resolution due to higher signals. For a laser-processed detector with smooth barrier-crystal interfaces the light collection efficiency is simulated to  >42%, and for rough interfaces  >73%. The corresponding numbers for a monolithic crystal is 39% with polished surfaces, and 71% with rough surfaces, and for a mechanically pixelated array 35% with polished pixel surfaces and 59% with rough surfaces.

  15. Simulation study of light transport in laser-processed LYSO:Ce detectors with single-side readout.

    PubMed

    Bläckberg, L; El Fakhri, G; Sabet, H

    2017-10-19

    A tightly focused pulsed laser beam can locally modify the crystal structure inside the bulk of a scintillator. The result is incorporation of so-called optical barriers with a refractive index different from that of the crystal bulk, that can be used to redirect the scintillation light and control the light spread in the detector. We here systematically study the scintillation light transport in detectors fabricated using the laser induced optical barrier technique, and objectively compare their potential performance characteristics with those of the two mainstream detector types: monolithic and mechanically pixelated arrays. Among countless optical barrier patterns, we explore barriers arranged in a pixel-like pattern extending all-the-way or half-way through a 20 mm thick LYSO:Ce crystal. We analyze the performance of the detectors coupled to MPPC arrays, in terms of light response functions, flood maps, line profiles, and light collection efficiency. Our results show that laser-processed detectors with both barrier patterns constitute a new detector category with a behavior between that of the two standard detector types. Results show that when the barrier-crystal interface is smooth, no DOI information can be obtained regardless of barrier refractive index (RI). However, with a rough barrier-crystal interface we can extract multiple levels of DOI. Lower barrier RI results in larger light confinement, leading to better transverse resolution. Furthermore we see that the laser-processed crystals have the potential to increase the light collection efficiency, which could lead to improved energy resolution and potentially better timing resolution due to higher signals. For a laser-processed detector with smooth barrier-crystal interfaces the light collection efficiency is simulated to  >42%, and for rough interfaces  >73%. The corresponding numbers for a monolithic crystal is 39% with polished surfaces, and 71% with rough surfaces, and for a mechanically pixelated array 35% with polished pixel surfaces and 59% with rough surfaces.

  16. First-principles modeling of laser-matter interaction and plasma dynamics in nanosecond pulsed laser shock processing

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongyang; Nian, Qiong; Doumanidis, Charalabos C.; Liao, Yiliang

    2018-02-01

    Nanosecond pulsed laser shock processing (LSP) techniques, including laser shock peening, laser peen forming, and laser shock imprinting, have been employed for widespread industrial applications. In these processes, the main beneficial characteristic is the laser-induced shockwave with a high pressure (in the order of GPa), which leads to the plastic deformation with an ultrahigh strain rate (105-106/s) on the surface of target materials. Although LSP processes have been extensively studied by experiments, few efforts have been put on elucidating underlying process mechanisms through developing a physics-based process model. In particular, development of a first-principles model is critical for process optimization and novel process design. This work aims at introducing such a theoretical model for a fundamental understanding of process mechanisms in LSP. Emphasis is placed on the laser-matter interaction and plasma dynamics. This model is found to offer capabilities in predicting key parameters including electron and ion temperatures, plasma state variables (temperature, density, and pressure), and the propagation of the laser shockwave. The modeling results were validated by experimental data.

  17. Laser interaction with tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berns, M.W.

    These proceedings collect papers on laser biomedicine. Topics include: light distributions on tissue; chemical byproducts of laser/tissue interactions; laser applications in ophthalmology; phododynamic therapy; diode pumped solid state lasers at two and three micrometers; and applications of excimer lasers to peripheral nerve repair.

  18. Lasers in medicine

    NASA Astrophysics Data System (ADS)

    Peng, Qian; Juzeniene, Asta; Chen, Jiyao; Svaasand, Lars O.; Warloe, Trond; Giercksky, Karl-Erik; Moan, Johan

    2008-05-01

    It is hard to imagine that a narrow, one-way, coherent, moving, amplified beam of light fired by excited atoms is powerful enough to slice through steel. In 1917, Albert Einstein speculated that under certain conditions atoms could absorb light and be stimulated to shed their borrowed energy. Charles Townes coined the term laser (light amplification by stimulated emission of radiation) in 1951. Theodore Maiman investigated the glare of a flash lamp in a rod of synthetic ruby, creating the first human-made laser in 1960. The laser involves exciting atoms and passing them through a medium such as crystal, gas or liquid. As the cascade of photon energy sweeps through the medium, bouncing off mirrors, it is reflected back and forth, and gains energy to produce a high wattage beam of light. Although lasers are today used by a large variety of professions, one of the most meaningful applications of laser technology has been through its use in medicine. Being faster and less invasive with a high precision, lasers have penetrated into most medical disciplines during the last half century including dermatology, ophthalmology, dentistry, otolaryngology, gastroenterology, urology, gynaecology, cardiology, neurosurgery and orthopaedics. In many ways the laser has revolutionized the diagnosis and treatment of a disease. As a surgical tool the laser is capable of three basic functions. When focused on a point it can cauterize deeply as it cuts, reducing the surgical trauma caused by a knife. It can vaporize the surface of a tissue. Or, through optical fibres, it can permit a doctor to see inside the body. Lasers have also become an indispensable tool in biological applications from high-resolution microscopy to subcellular nanosurgery. Indeed, medical lasers are a prime example of how the movement of an idea can truly change the medical world. This review will survey various applications of lasers in medicine including four major categories: types of lasers, laser-tissue interactions, therapeutics and diagnostics.

  19. Influence of laser light on bioimplants used in otorhinolaryngology.

    PubMed

    Siedek, Vanessa; Nehls, Kristina; Zur Nieden, Katrin; Leunig, Andreas; Sroka, Ronald

    2014-05-01

    In otorhinolaryngology, dermatology and reconstructive surgery biomaterials as implants and a variety of lasers are used. Laser light applied near to an implant could have the risk to damage these materials. Therefore, their resistance exposed to laser light is of interest. A diode laser emitting at 940 nm and a CO2 laser were used to investigate its effects to the biomaterials Bioverit®, Medpor® and Palacos®, and in addition, an excised implant containing Medpor® and nasal turbinate tissue, excised and fixed in formalin. The macro- and microscopic changes of the material, temperature development during laser energy application in dependency to distance of fibre and material, time of exposure and applied power were investigated. Interaction of diode laser light with Bioverit® (0 mm distance, 360 s, 10 W, 3,600 J) resulted in minimal microscopic effects in direct contact of with the fibre. Using Medpor® (1 mm, 10s, 10 W, 100 J) resulted in melting and perforation. In the case of Palacos® (0.6 mm, 10s, 10 W, 100 J), melting occurred creating a flat excavation. The effect to Medpor® in nasal turbinate (1-2 mm, 10s, 10 W, 100 J) showed tissue denaturation and carbonisation and creation of a hole. The interaction of the CO2 laser with Bioverit® (3 cm, 0.5, 1 and 5 s, 2, 10 or 20 W) induced melting and discolouring resulting finally in a perforating hole. Depending on the material, first damage starts 10 s after an impact of 100 J (threshold value). So interaction between laser energy and biomaterials occurs. This should be carefully considered during clinical laser treatments especially nearby implants.

  20. Modular approach to achieving the next-generation X-ray light source

    NASA Astrophysics Data System (ADS)

    Biedron, S. G.; Milton, S. V.; Freund, H. P.

    2001-12-01

    A modular approach to the next-generation light source is described. The "modules" include photocathode, radio-frequency, electron guns and their associated drive-laser systems, linear accelerators, bunch-compression systems, seed laser systems, planar undulators, two-undulator harmonic generation schemes, high-gain harmonic generation systems, nonlinear higher harmonics, and wavelength shifting. These modules will be helpful in distributing the next-generation light source to many more laboratories than the current single-pass, high-gain free-electron laser designs permit, due to both monetary and/or physical space constraints.

  1. Light Emitting Diodes (LEDs)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique, called Photodynamic Therapy, requires the surgeon to use tiny, pinhead-size Light Emitting Diodes (LEDs) (a source that releases long wavelengths of light ) to activate light-sensitive, tumor-treating drugs. 'A young woman operated on in May 1999 has fully recovered with no complications and no evidence of the tumor coming back,' said Dr. Harry Whelan, a pediatric neurologist at the Medical Hospital of Wisconsin in Milwaukee. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can be used for hours at a time while still remaining cool to the touch. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The LEDs, developed and managed by NASA's Marshall Space Flight Center, have been used on seven Space Shuttle flights inside the Microgravity Astroculture Facility. This technology has also been successfully used to further commercial research in crop growth.

  2. Fast photocatalytic degradation of methylene blue dye using a low-power diode laser.

    PubMed

    Liu, Xianhua; Yang, Yulou; Shi, Xiaoxuan; Li, Kexun

    2015-01-01

    This study focused on the application of diode lasers as alternative light sources for the fast photocatalytic degradation of methylene blue. The photocatalytic decomposition of methylene blue in aqueous solution under 443 nm laser light irradiation was found to be technically feasible using Ag/AgCl nanoparticles as photocatalysts. The effects of various experimental parameters, such as irradiation time, light source, catalyst loading, initial dye concentration, pH, and laser energy on decolorization and degradation were investigated. The mineralization of methylene blue was confirmed by chemical oxygen demand analysis. The results demonstrate that the laser-induced photocatalytic process can effectively degrade methylene blue under the optimum conditions (pH 9.63, 4 mg/L MB concentration, and 1.4 g/L Ag/AgCl nanoparticles). Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Laser Light Scattering, from an Advanced Technology Development Program to Experiments in a Reduced Gravity Environment

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Tscharnuter, Walther W.; Macgregor, Andrew D.; Dautet, Henri; Deschamps, Pierre; Boucher, Francois; Zuh, Jixiang; Tin, Padetha; Rogers, Richard B.; Ansari, Rafat R.

    1994-01-01

    Recent advancements in laser light scattering hardware are described. These include intelligent single card correlators; active quench/active reset avalanche photodiodes; laser diodes; and fiber optics which were used by or developed for a NASA advanced technology development program. A space shuttle experiment which will employ aspects of these hardware developments is previewed.

  4. Random laser illumination: an ideal source for biomedical polarization imaging?

    NASA Astrophysics Data System (ADS)

    Carvalho, Mariana T.; Lotay, Amrit S.; Kenny, Fiona M.; Girkin, John M.; Gomes, Anderson S. L.

    2016-03-01

    Imaging applications increasingly require light sources with high spectral density (power over spectral bandwidth. This has led in many cases to the replacement of conventional thermal light sources with bright light-emitting diodes (LEDs), lasers and superluminescent diodes. Although lasers and superluminescent diodes appear to be ideal light sources due to their narrow bandwidth and power, however, in the case of full-field imaging, their spatial coherence leads to coherent artefacts, such as speckle, that corrupt the image. LEDs, in contrast, have lower spatial coherence and thus seem the natural choice, but they have low spectral density. Random Lasers are an unconventional type of laser that can be engineered to provide low spatial coherence with high spectral density. These characteristics makes them potential sources for biological imaging applications where specific absorption and reflection are the characteristics required for state of the art imaging. In this work, a Random Laser (RL) is used to demonstrate speckle-free full-field imaging for polarization-dependent imaging in an epi-illumination configuration. We compare LED and RL illumination analysing the resulting images demonstrating that the RL illumination produces an imaging system with higher performance (image quality and spectral density) than that provided by LEDs.

  5. Cation dynamics of molecular Hydrogen in the presence of a strong laser field, preliminary results

    NASA Astrophysics Data System (ADS)

    Gatton, A.; Champenois, E.; Larsen, K.; Shivaram, N.; Bakhti, S.; Iskander, W.; Sievert, T.; Reedy, D.; Weller, M.; Williams, J. B.; Landers, A.; Weber, Th.

    2017-04-01

    We present preliminary results from a new 2-color laser+synchrotron Cold Target Recoil Ion Momentum Spectrometer (COLTRIMS) experiment in which we overlap a pulsed laser (1030 nm , 12 ps , 5 *1011 W / cm2) with light from beamline 10 . 0 . 1 (18 . 56 eV , 80 ps , 50 meV resolution) at the Advanced Light Source at Lawrence Berkeley National Lab. The data (absent the laser) shows asymmetric proton emission in the fragmenting hydrogen cation due to the retro-action of the photoelectron Coulomb potential, as reported recently by Waitz et al.. Preliminary analysis hints that this effect exists and may even be enhanced in the laser dressed states of the dissociating cation. Of even more interest, preliminary analysis hints at the signature of light induced conical intersections in the dissociation of the laser dressed hydrogen cations, as recently reported by Natan et al.. This research used the Advanced Light Source and was supported by DOE-BES under contract No. DE-AC02-05CH11231 and DE-FG02-86ER13491, the ALS Doctoral Fellowship in Residence, and the DFG and DAAD.

  6. Intramural Comparison of NIST Laser and Optical Fiber Power Calibrations.

    PubMed

    Lehman, John H; Vayshenker, Igor; Livigni, David J; Hadler, Joshua

    2004-01-01

    The responsivity of two optical detectors was determined by the method of direct substitution in four different NIST measurement facilities. The measurements were intended to demonstrate the determination of absolute responsivity as provided by NIST calibration services at laser and optical-communication wavelengths; nominally 633 nm, 850 nm, 1060 nm, 1310 nm, and 1550 nm. The optical detectors have been designated as checks standards for the purpose of routine intramural comparison of our calibration services and to meet requirements of the NIST quality system, based on ISO 17025. The check standards are two optical-trap detectors, one based on silicon and the other on indium gallium arsenide photodiodes. The four measurement services are based on: (1) the laser optimized cryogenic radiometer (LOCR) and free field collimated laser light; (2) the C-series isoperibol calorimeter and free-field collimated laser light; (3) the electrically calibrated pyroelectric radiometer and fiber-coupled laser light; (4) the pyroelectric wedge trap detector, which measures light from a lamp source and monochromator. The results indicate that the responsivity of the check standards, as determined independently using the four services, agree to within the published expanded uncertainty ranging from approximately 0.02 % to 1.24 %.

  7. Research on the speed of light transmission in a dual-frequency laser pumped single fiber with two directions

    NASA Astrophysics Data System (ADS)

    Qiu, Wei; Liu, Jianjun; Wang, Yuda; Yang, Yujing; Gao, Yuan; Lv, Pin; Jiang, Qiuli

    2018-01-01

    In this article a general theory of the coherent population oscillation effect in an erbium-doped fiber at room temperature is presented. We use dual pumping light waves with a simplified two-level system. Thus the time delay equations can be calculated from rate equations and the transmission equation. Using numerical simulation, in the case of dual-frequency pump light waves (1480 nm and 980 nm) with two directions, we analyze the influence of the pump power ratio on the group speed of light propagation. In addition, we compare slow light propagation with a single-pumping light and slow light propagation with a dual-pumping light at room temperature. The discussion shows that a larger time delay of slow light propagation can be obtained with a dual-frequency pumping laser. Compared to previous research methods, a dual-frequency laser pumped fiber with two directions is more controllable. Moreover, we conclude that the group velocity of light can be varied by changing the pump ratio.

  8. Tapered laser rods as a means of minimizing the path length of trapped barrel mode rays

    DOEpatents

    Beach, Raymond J.; Honea, Eric C.; Payne, Stephen A.; Mercer, Ian; Perry, Michael D.

    2005-08-30

    By tapering the diameter of a flanged barrel laser rod over its length, the maximum trapped path length of a barrel mode can be dramatically reduced, thereby reducing the ability of the trapped spontaneous emission to negatively impact laser performance through amplified spontaneous emission (ASE). Laser rods with polished barrels and flanged end caps have found increasing application in diode array end-pumped laser systems. The polished barrel of the rod serves to confine diode array pump light within the rod. In systems utilizing an end-pumping geometry and such polished barrel laser rods, the pump light that is introduced into one or both ends of the laser rod, is ducted down the length of the rod via the total internal reflections (TIRs) that occur when the light strikes the rod's barrel. A disadvantage of using polished barrel laser rods is that such rods are very susceptible to barrel mode paths that can trap spontaneous emission over long path lengths. This trapped spontaneous emission can then be amplified through stimulated emission resulting in a situation where the stored energy available to the desired lasing mode is effectively depleted, which then negatively impacts the laser's performance, a result that is effectively reduced by introducing a taper onto the laser rod.

  9. Biomodulation of light on cells in laser surgery

    NASA Astrophysics Data System (ADS)

    Liu, Timon C.; Li, Yan; Duan, Rui; Cai, Xiongwei

    2002-04-01

    In laser surgery, it has been observed pulsed 532-nm laser can avoid postoperative purpura, but pulsed 585-nm, 595-nm or 600-nm lasers nonetheless cause purpura when they were used to treat port-wine stains; the XeCl excimer laser (308 nm) can safely and effectively clear psoriasis; both XeCl excimer laser and Ho:YAG laser were used in coronary interventions, but only former was approved by the FDA; open channels after ultraviolet (UV) laser treatment and closed channels with infrared (IR) lasers for transmyocardial laser revascularization; and so on. In this paper, the biological information model of low intensity laser (BIML) is extended to include UVA biomodulation and is used to understand these phenomena. Although the central intensity of the laser beam is so intense that it destroys the tissue, the edge intensity is so low that it can induce biomodulation. Our investigation showed that biomodulation of light on cells might play an important role in the long-term effects of laser surgery.

  10. Diode laser for endodontic treatment: investigations of light distribution and disinfection efficiency

    NASA Astrophysics Data System (ADS)

    Stock, Karl; Graser, Rainer; Udart, Martin; Kienle, Alwin; Hibst, Raimund

    2011-03-01

    Diode lasers are used in dentistry mainly for oral surgery and disinfection of root canals in endodontic treatment. The purpose of this study was to investigate and to improve the laser induced bacteria inactivation in endodontic treatment. An essential prerequisite of the optimization of the irradiation process and device is the knowledge about the determinative factors of bacteria killing: light intensity? light dosis? temperature? In order to find out whether high power NIR laser bacterial killing is caused by a photochemical or a photothermal process we heated bacteria suspensions of E. coli K12 by a water bath and by a diode laser (940 nm) with the same temporal temperature course. Furthermore, bacteria suspensions were irradiated while the temperature was fixed by ice water. Killing of bacteria was measured via fluorescence labeling. In order to optimize the irradiation of the root canal, we designed special fiber tips with radial light emission characteristic by optical ray tracing simulations. Also, we calculated the resulting light distribution in dentin by voxelbased Monte Carlo simulations. Furthermore, we irradiated root canals of extracted human teeth using different fiber tip geometries and measured the resulting light and heat distribution by CCD-camera and thermography. Comparison of killing rates between laser and water based heating shows no significant differences, and irradiation of ice cooled suspensions has no substantial killing effect. Thus, the most important parameter for bacterial killing is the maximum temperature. Irradiation of root canals using fiber tips with radial light emission results in a more defined irradiated area with minor irradiation of the apex and higher intensity and therefore higher temperature increase on root canal surface. In conclusion, our experiments show that at least for E. coli bacteria inactivation by NIR laser irradiation is solely based on a thermal process and that heat distribution in root canal can be significantly improved by specially designed fiber tips.

  11. Evanescent-wave Infrared Optical Fiber Gas Sensor

    NASA Astrophysics Data System (ADS)

    Wang, Yiding; Wang, Di; Zhong, Hong-Jie; Zhang, Zhiguo

    2000-03-01

    We propose the treatment of amblyopia using yellow-green laser diodes.There are amblyopia children in excess of fifty million in the world.Because the causative agent of amblyopia hasn't been well understood,only roughly considered to be concerned with visual sense cell,optic nerve network and function of nerve center,no appropriate treatment is found up to date.The vision of person is determined by the center hollow region of retina,where there are three kinds of cone cell.The corresponding peak wavelength in absorption spectrum locates 447nm(blue light),532nm (green light)and 565nm(yellow light), respectively.When stimulated by white light, excited degree of three kinds of cone cell are identical,or yellow-green light,to which person eye is most sensitive, will significantly takes effects.Therefore the yellow-green laser diode is suitable for treating amblyopia. The weak laser,namely laser power less than mW order of magnitude,shows curative by stimulating bion tissue.When stimulating light power density is less than 0.001W/cm,the compounding speed of nucleic acid DNA is significantly increased.The growth rate of cell,activity of enzyme,content of hemoglobin and the growth of blood vessel,are all increased.However,it's key to control the dose of light.When the dose transcend some value,a inhibition will occur.The little dose of weak laser treatment can be accumulated with a parabolic characteristics,that is the weak laser generate bion response stengthening gradually versus time.Then it will weaken gradually after the peak.When the treatment duration is longer than a certain time,a inhibition also takes place.A suggested theraphy is characterized by little dose and short treatment course. In a conclusion, the yellow-green laser diode should be used for the treatment of amblyopia.The little dose and short treatment couse are to be adopted.

  12. Hohlraum glint and laser pre-pulse detector for NIF experiments using velocity interferometer system for any reflector.

    PubMed

    Moody, J D; Clancy, T J; Frieders, G; Celliers, P M; Ralph, J; Turnbull, D P

    2014-11-01

    Laser pre-pulse and early-time laser reflection from the hohlraum wall onto the capsule (termed "glint") can cause capsule imprint and unwanted early-time shocks on indirect drive implosion experiments. In a minor modification to the existing velocity interferometer system for any reflector diagnostic on NIF a fast-response vacuum photodiode was added to detect this light. The measurements show evidence of laser pre-pulse and possible light reflection off the hohlraum wall and onto the capsule.

  13. Fiber optic geophysical sensors

    DOEpatents

    Homuth, E.F.

    1991-03-19

    A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.

  14. Laser applications in ophthalmology: overview

    NASA Astrophysics Data System (ADS)

    Soederberg, Per G.

    1992-03-01

    In 1961, one year after its invention, the laser was used for experimental photocoagulation in animals. In 1963 it was tried for treatment of human eyes. Due to the fact that the optical media in the eye are transmissible to light, the laser offers the unique possibility of measuring and manipulating within a very strict localization without opening the eye. The properties of laser light are increasingly exploited for diagnostics in ophthalmic disease. The introduction of the laser as a tool in ophthalmology has revolutionized ophthalmic treatment. Unfortunately, it has been pointed out in international peace meetings that the biological effect evoked by lasers can also be used for intentional destruction of the vision of enemy soldiers. To prevent such an abuse of lasers against eyes, a strong formal international anti-laser weapon movement has been initiated.

  15. Characterization of measurement artefacts in fluoroptic temperature sensors: implications for laser thermal therapy at 810 nm.

    PubMed

    Davidson, Sean R H; Vitkin, I Alex; Sherar, Michael D; Whelan, William M

    2005-04-01

    Fluoroptic sensors are used to measure interstitial temperatures but their utility for monitoring laser interstitial thermal therapy (LITT) is unclear because these sensors exhibit a measurement artefact when exposed to the near-infrared (NIR) treatment light. This study investigates the cause of the artefact to determine whether fluoroptic sensors can provide reliable temperature measurements during LITT. The temperature rise measured by a fluoroptic sensor irradiated in non-absorbing media (air and water) was considered an artefact. Temperature rise was measured as a function of distance from a laser source. Two different sensor designs and several laser powers were investigated. A relationship between fluence rate and measurement artefact in water was determined and coupled with a numerical simulation of LITT in liver to estimate the error in temperature measurements made by fluoroptic sensors in tissue in proximity to the laser source. The effect of ambient light on the performance of sensors capped with a transparent material ("clear-capped sensors") was also investigated. The temperature rise recorded in air by both clear- and black-capped fluoroptic sensors decreased with distance from a laser source in a manner similar to fluence rate. Sensor cap material, laser power, and the thermal properties of the surrounding medium affected the magnitude of the artefact. Numerical simulations indicated that the accuracy of a clear-capped fluoroptic sensor used to monitor a typical LITT treatment in liver is > 1 degrees C provided the sensor is further than approximately 3 mm from the source. It was also shown that clear-capped fluoroptic sensors are affected by ambient light. The measurement artefact experienced by both black-capped and clear-capped fluoroptic sensors irradiated by NIR light scales with fluence rate and is due to direct absorption of the laser light, which results in sensor self-heating. Clear-capped fluoroptic sensors can be used to accurately monitor LITT in tissue but should be shielded from ambient light. Copyright 2005 Wiley-Liss, Inc.

  16. [Physical treatment methods for acne. Light, laser, photodynamic therapy and peeling].

    PubMed

    Borelli, C; Korting, H C

    2010-02-01

    The medical treatment of acne is generally sufficient to meet the expectations of acne patients. However, in a number of situations additional therapeutic approaches may be advisable. There are a wide variety of useful physical methods. They range from electromagnetic waves, usually light, to peeling and manual therapy. Phototherapy of acne includes not just visible light but also laser and flash lamp therapy. The present review provides an overview on the evidence. Visible light, in particular blue light, provides an effective option for treatment of inflammatory acne. Photodynamic therapy also is efficacious; however, it should not be used because of an unfavorable risk-benefit ratio. UV treatment of acne is obsolete. Newer studies on the use of a variety of laser systems and flash lamps have demonstrated in part rewarding results.

  17. A review on laser and light-based therapies for alopecia areata.

    PubMed

    Mlacker, Stephanie; Aldahan, Adam Souhail; Simmons, Brian James; Shah, Vidhi; McNamara, Colin Andrew; Samarkandy, Sahal; Nouri, Keyvan

    2017-04-01

    Alopecia areata is a form of non-scarring alopecia that results from a hyperactive immune response of T cells against hair follicles. Many patients with visible hair loss experience psychological and emotional distress, as a result of their cosmetic disfigurement, and frequently seek treatment. However, existing treatment methods, such as corticosteroids, topical irritants, sensitizing agents, immunosuppressants, and psoralen plus ultraviolet light A, may result in various adverse effects and often lack efficacy. Laser and light treatments offer a safe and effective alternative. This review aims to provide clinicians with a comprehensive summary of laser and light-based modalities used for the treatment of alopecia areata. Currently, the excimer laser is the most widely studied device and has shown positive results thus far. However, the development of future randomized controlled clinical trials will help determine the appropriate treatment protocols necessary, in order to achieve superior clinical outcomes.

  18. Investigation of Saturation Effects in Ceramic Phosphors for Laser Lighting

    PubMed Central

    Krasnoshchoka, Anastasiia; Dam-Hansen, Carsten; Corell, Dennis Dan; Petersen, Paul Michael

    2017-01-01

    We report observations of saturation effects in a Ce:LuAG and Eu-doped nitride ceramic phosphor for conversion of blue laser light for white light generation. The luminous flux from the phosphors material increases linearly with the input power until saturation effects limit the conversion. It is shown that the temperature of the phosphor layer influences the saturation power level and the conversion efficiency. It is also shown that the correlated color temperature (CCT), phosphor conversion efficiency and color rendering index (CRI) are dependent both on the incident power and spot size diameter of the illumination. A phosphor conversion efficiency up to 140.8 lm/W with CRI of 89.4 was achieved. The saturation in a ceramic phosphor, when illuminated by high intensity laser diodes, is estimated to play the main role in limiting the available luminance from laser-based lighting systems. PMID:29292770

  19. Laser Light-field Fusion for Wide-field Lensfree On-chip Phase Contrast Microscopy of Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kazemzadeh, Farnoud; Wong, Alexander

    2016-12-01

    Wide-field lensfree on-chip microscopy, which leverages holography principles to capture interferometric light-field encodings without lenses, is an emerging imaging modality with widespread interest given the large field-of-view compared to lens-based techniques. In this study, we introduce the idea of laser light-field fusion for lensfree on-chip phase contrast microscopy for detecting nanoparticles, where interferometric laser light-field encodings acquired using a lensfree, on-chip setup with laser pulsations at different wavelengths are fused to produce marker-free phase contrast images of particles at the nanometer scale. As a proof of concept, we demonstrate, for the first time, a wide-field lensfree on-chip instrument successfully detecting 300 nm particles across a large field-of-view of ~30 mm2 without any specialized or intricate sample preparation, or the use of synthetic aperture- or shift-based techniques.

  20. Laser Light-field Fusion for Wide-field Lensfree On-chip Phase Contrast Microscopy of Nanoparticles.

    PubMed

    Kazemzadeh, Farnoud; Wong, Alexander

    2016-12-13

    Wide-field lensfree on-chip microscopy, which leverages holography principles to capture interferometric light-field encodings without lenses, is an emerging imaging modality with widespread interest given the large field-of-view compared to lens-based techniques. In this study, we introduce the idea of laser light-field fusion for lensfree on-chip phase contrast microscopy for detecting nanoparticles, where interferometric laser light-field encodings acquired using a lensfree, on-chip setup with laser pulsations at different wavelengths are fused to produce marker-free phase contrast images of particles at the nanometer scale. As a proof of concept, we demonstrate, for the first time, a wide-field lensfree on-chip instrument successfully detecting 300 nm particles across a large field-of-view of ~30 mm 2 without any specialized or intricate sample preparation, or the use of synthetic aperture- or shift-based techniques.

  1. Comparison between the laser-Badal and vernier optometers

    NASA Astrophysics Data System (ADS)

    Temme, Leonard A.; Cushman, William B.

    1988-09-01

    An optometer using polarized light and a vernier alignment task was built and compared with two laser-Badal optometers. The repeat reliability of the measurements of the optometers was assessed in a sample of student naval aviators. In addition, the vernier optometer measurements were made in the dark and in a lighted room to determine whether or not special lighting would be necessary for routine testing with the vernier optometer. The results showed that the vernier optometer was easier to use and more reliable than either of the two laser-Badal optometers. Discrepancies were found between it and that the other two optometers. A number of factors were identified in the vernier optometer that would give rise to the discrepancies. In light of the several advantages of the vernier optometer over the laser-Badal optometer, it is recommended that further work be done to improve its design.

  2. In situ observation of high-pressure phase transition in silicon carbide under shock loading using ultrafast x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Tracy, Sally June

    2017-06-01

    SiC is an important high-strength ceramic material used for a range of technological applications, including lightweight impact shielding and abrasives. SiC is also relevant to geology and planetary science. It may be a host of reduced carbon in the Earth's interior and also occurs in meteorites and impact sites. SiC has also been put forward as a possible major constituent in the proposed class of extra-solar planets known as carbon planets. Previous studies have used wave profile measurements to identify a phase transition under shock loading near 1 Mbar, but lattice-level structural information was not obtained. Here we present the behavior of silicon carbide under shock loading as investigated through a series of time-resolved pump-probe x-ray diffraction measurements up to 200 GPa. Our experiments were conducted at the Materials in Extreme Conditions beamline of the Linac Coherent Light Source. In situ x-ray diffraction data on shock-compressed SiC was collected using a free electron laser source combined with a pulsed high-energy laser. These measurements allow for the determination of time-dependent atomic arrangements, demonstrating that the wurtzite phase of SiC transforms directly to the B1 structure. Our measurements also reveal details of the material texture evolution under shock loading and release.

  3. Nanofabrication with Pulsed Lasers

    PubMed Central

    2010-01-01

    An overview of pulsed laser-assisted methods for nanofabrication, which are currently developed in our Institute (LP3), is presented. The methods compass a variety of possibilities for material nanostructuring offered by laser–matter interactions and imply either the nanostructuring of the laser-illuminated surface itself, as in cases of direct laser ablation or laser plasma-assisted treatment of semiconductors to form light-absorbing and light-emitting nano-architectures, as well as periodic nanoarrays, or laser-assisted production of nanoclusters and their controlled growth in gaseous or liquid medium to form nanostructured films or colloidal nanoparticles. Nanomaterials synthesized by laser-assisted methods have a variety of unique properties, not reproducible by any other route, and are of importance for photovoltaics, optoelectronics, biological sensing, imaging and therapeutics. PMID:20672069

  4. Membrane Protein Crystallization Using Laser Irradiation

    NASA Astrophysics Data System (ADS)

    Adachi, Hiroaki; Murakami, Satoshi; Niino, Ai; Matsumura, Hiroyoshi; Takano, Kazufumi; Inoue, Tsuyoshi; Mori, Yusuke; Yamaguchi, Akihito; Sasaki, Takatomo

    2004-10-01

    We demonstrate the crystallization of a membrane protein using femtosecond laser irradiation. This method, which we call the laser irradiated growth technique (LIGHT), is useful for producing AcrB crystals in a solution of low supersaturation range. LIGHT is characterized by reduced nucleation times. This feature is important for crystallizing membrane proteins because of their labile properties when solubilized as protein-detergent micelles. Using LIGHT, high-quality crystals of a membrane transporter protein, AcrB, were obtained. The resulting crystals were found to be of sufficiently high resolution for X-ray diffraction. The results reported here indicate that LIGHT is a powerful tool for membrane protein crystallization, as well as for the growth of soluble proteins.

  5. Laser welding by dental Nd:YAG device

    NASA Astrophysics Data System (ADS)

    Fornaini, Carlo; Bertrand, Caroline; Merigo, Elisabetta; Bonanini, Mauro; Rocca, Jean-Paul; Nammour, Samir

    2009-06-01

    Welding laser was introduced in jewellery during years 70 and, just after, was successfully used also by dental technicians. Welding laser gives a great number of advantages, versus traditional welding and, for this reason, this procedure had a great diffusion in the technician laboratories and stimulated the companies to put in the market more and more evolutes appliances. Some aspects, such great dimensions, high costs and delivery system today still characterize these machines by fixed lenses, which have strictly limited its use only to technician laboratories. The aim of this study is to demonstrate the possibility, by using a fibber-delivered laser normally utilized in the dental office, to make, by dentist himself in his office, welding on different metals and to evaluate advantages and possibilities of this new technique.

  6. Collective behavior of light in vacuum

    NASA Astrophysics Data System (ADS)

    Briscese, Fabio

    2018-03-01

    Under the action of light-by-light scattering, light beams show collective behaviors in vacuum. For instance, in the case of two counterpropagating laser beams with specific initial helicity, the polarization of each beam oscillates periodically between the left and right helicity. Furthermore, the amplitudes and the corresponding intensities of each polarization propagate like waves. Such polarization waves might be observationally accessible in future laser experiments, in a physical regime complementary to those explored by particle accelerators.

  7. Laterally injected light-emitting diode and laser diode

    DOEpatents

    Miller, Mary A.; Crawford, Mary H.; Allerman, Andrew A.

    2015-06-16

    A p-type superlattice is used to laterally inject holes into an III-nitride multiple quantum well active layer, enabling efficient light extraction from the active area. Laterally-injected light-emitting diodes and laser diodes can enable brighter, more efficient devices that impact a wide range of wavelengths and applications. For UV wavelengths, applications include fluorescence-based biological sensing, epoxy curing, and water purification. For visible devices, applications include solid state lighting and projection systems.

  8. Fast wavelength tuning techniques for external cavity lasers

    DOEpatents

    Wysocki, Gerard [Princeton, NJ; Tittel, Frank K [Houston, TX

    2011-01-11

    An apparatus comprising a laser source configured to emit a light beam along a first path, an optical beam steering component configured to steer the light beam from the first path to a second path at an angle to the first path, and a diffraction grating configured to reflect back at least a portion of the light beam along the second path, wherein the angle determines an external cavity length. Included is an apparatus comprising a laser source configured to emit a light beam along a first path, a beam steering component configured to redirect the light beam to a second path at an angle to the first path, wherein the optical beam steering component is configured to change the angle at a rate of at least about one Kilohertz, and a diffraction grating configured to reflect back at least a portion of the light beam along the second path.

  9. Fabrication of Multi-point Side-Firing Optical Fiber by Laser Micro-ablation

    PubMed Central

    Nguyen, Hoang; Arnob, Md Masud Parvez; Becker, Aaron T; Wolfe, John C; Hogan, Matthew K; Horner, Philip J; Shih, Wei-Chuan

    2018-01-01

    A multi-point, side-firing design enables an optical fiber to output light at multiple desired locations along the fiber body. This provides advantages over traditional end-to-end fibers, especially in applications requiring fiber bundles such as brain stimulation or remote sensing. This paper demonstrates that continuous wave (CW) laser micro-ablation can controllably create conical-shaped cavities, or side windows, for outputting light. The dimensions of these cavities determine the amount of firing light and their firing angle. Experimental data show that a single side window on a 730 μm fiber can deliver more than 8 % of the input light. This was increased to more than 19 % on a 65 μm fiber with side windows created using femtosecond (fs) laser ablation and chemical etching. Fine control of light distribution along an optical fiber is critical for various biomedical applications such as light activated drug-release and optogenetics studies. PMID:28454166

  10. Fabrication of multipoint side-firing optical fiber by laser micro-ablation.

    PubMed

    Nguyen, Hoang; Parvez Arnob, Md Masud; Becker, Aaron T; Wolfe, John C; Hogan, Matthew K; Horner, Philip J; Shih, Wei-Chuan

    2017-05-01

    A multipoint, side-firing design enables an optical fiber to output light at multiple desired locations along the fiber body. This provides advantages over traditional end-to-end fibers, especially in applications requiring fiber bundles such as brain stimulation or remote sensing. This Letter demonstrates that continuous wave (CW) laser micro-ablation can controllably create conical-shaped cavities, or side windows, for outputting light. The dimensions of these cavities determine the amount of firing light and their firing angle. Experimental data show that a single side window on a 730 μm fiber can deliver more than 8% of the input light. This can be increased to more than 19% on a 65 μm fiber with side windows created using femtosecond laser ablation and chemical etching. Fine control of light distribution along an optical fiber is critical for various biomedical applications such as light-activated drug-release and optogenetics studies.

  11. Possibilities of lasers within NOTES.

    PubMed

    Stepp, Herbert; Sroka, Ronald

    2010-10-01

    Lasers possess unique properties that render them versatile light sources particularly for NOTES. Depending on the laser light sources used, diagnostic as well as therapeutic purposes can be achieved. The diagnostic potential offered by innovative concepts such as new types of ultra-thin endoscopes and optical probes supports the physician with optical information of ultra-high resolution, tissue discrimination and manifold types of fluorescence detection. In addition, the potential 3-D capability promises enhanced recognition of tissue type and pathological status. These diagnostic techniques might enable or at least contribute to accurate and safe procedures within the spatial restrictions inherent with NOTES. The therapeutic potential ranges from induction of phototoxic effects over tissue welding, coagulation and tissue cutting to stone fragmentation. As proven in many therapeutic laser endoscopic treatment concepts, laser surgery is potentially bloodless and transmits the energy without mechanical forces. Specialized NOTES endoscopes will likely incorporate suitable probes for improving diagnostic procedures, laser fibres with advantageous light delivery possibility or innovative laser beam manipulation systems. NOTES training centres may support the propagation of the complex handling and the safety aspects for clinical use to the benefit of the patient.

  12. High brightness diode laser module development at nLIGHT Photonics

    NASA Astrophysics Data System (ADS)

    Price, Kirk; Karlsen, Scott; Brown, Aaron; Reynolds, Mitch; Mehl, Ron; Leisher, Paul; Patterson, Steve; Bell, Jake; Martinsen, Rob

    2009-05-01

    We report on the development of ultra-high brightness laser diode modules at nLIGHT Photonics. This paper demonstrates a laser diode module capable of coupling over 100W at 976 nm into a 105 μm, 0.15 NA fiber with fiber coupling efficiency greater than 85%. The high brightness module has an optical excitation under 0.13 NA, is virtually free of cladding modes, and has been wavelength stabilized with the use of volume holographic gratings for narrow-band operation. Utilizing nLIGHT's Pearl product architecture, these modules are based on hard soldered single emitters packaged into a compact and passively-cooled package. These modules are designed to be compatible with high power 7:1 fused fiber combiners, enabling over 500W power coupled into a 220 μm, 0.22 NA fiber. These modules address the need in the market for high brightness and wavelength stabilized diode lasers for pumping fiber lasers and solid-state laser systems.

  13. Semiconductor cylinder fiber laser

    NASA Astrophysics Data System (ADS)

    Sandupatla, Abhinay; Flattery, James; Kornreich, Philipp

    2015-12-01

    We fabricated a fiber laser that uses a thin semiconductor layer surrounding the glass core as the gain medium. This is a completely new type of laser. The In2Te3 semiconductor layer is about 15-nm thick. The fiber laser has a core diameter of 14.2 μm, an outside diameter of 126 μm, and it is 25-mm long. The laser mirrors consist of a thick vacuum-deposited aluminum layer at one end and a thin semitransparent aluminum layer deposited at the other end of the fiber. The laser is pumped from the side with either light from a halogen tungsten incandescent lamp or a blue light emitting diode flash light. Both the In2Te3 gain medium and the aluminum mirrors have a wide bandwidth. Therefore, the output spectrum consists of a pedestal from a wavelength of about 454 to 623 nm with several peaks. There is a main peak at 545 nm. The main peak has an amplitude of 16.5 dB above the noise level of -73 dB.

  14. Benefit from NASA

    NASA Image and Video Library

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique, called Photodynamic Therapy, requires the surgeon to use tiny, pinhead-size Light Emitting Diodes (LEDs) (a source that releases long wavelengths of light ) to activate light-sensitive, tumor-treating drugs. "A young woman operated on in May 1999 has fully recovered with no complications and no evidence of the tumor coming back," said Dr. Harry Whelan, a pediatric neurologist at the Medical Hospital of Wisconsin in Milwaukee. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can be used for hours at a time while still remaining cool to the touch. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The LEDs, developed and managed by NASA's Marshall Space Flight Center, have been used on seven Space Shuttle flights inside the Microgravity Astroculture Facility. This technology has also been successfully used to further commercial research in crop growth.

  15. New counter-countermeasure techniques for laser anti-dazzling spectacles

    NASA Astrophysics Data System (ADS)

    Donval, Ariela; Partouche, Eran; Lipman, Ofir; Gross, Noam; Fisher, Tali; Oron, Moshe

    2016-05-01

    Aviation, commercial and military, is new area in optics that is suffering from laser threats in the last years. Dazzling and damage to pilot's eyes by laser pointers is a common threat lately. Under certain conditions, laser light, directed at aircraft can be hazardous. The most likely scenario is when bright visible laser light causes distraction and/or temporary flash blindness to the pilot, during a critical phase of flight like landing or takeoff. It is also possible, that a visible or invisible beam could cause permanent damage to a pilot's eyes. This paper presents a novel technology for protection of the human eye against laser threats in the visible range.

  16. Ultraviolet laser ablation as technique for defect repair of GaN-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Passow, Thorsten; Kunzer, Michael; Pfeuffer, Alexander; Binder, Michael; Wagner, Joachim

    2018-03-01

    Defect repair of GaN-based light-emitting diodes (LEDs) by ultraviolet laser micromachining is reported. Percussion and helical drilling in GaN by laser ablation were investigated using 248 nm nanosecond and 355 nm picosecond pulses. The influence of laser ablation including different laser parameters on electrical and optical properties of GaN-based LED chips was evaluated. The results for LEDs on sapphire with transparent conductive oxide p-type contact on top as well as for thin-film LEDs are reported. A reduction of leakage current by up to six orders in magnitude and homogeneous luminance distribution after proper laser defect treatment were achieved.

  17. Application of a liquid crystal spatial light modulator to laser marking.

    PubMed

    Parry, Jonathan P; Beck, Rainer J; Shephard, Jonathan D; Hand, Duncan P

    2011-04-20

    Laser marking is demonstrated using a nanosecond (ns) pulse duration laser in combination with a liquid crystal spatial light modulator to generate two-dimensional patterns directly onto thin films and bulk metal surfaces. Previous demonstrations of laser marking with such devices have been limited to low average power lasers. Application in the ns regime enables more complex, larger scale marks to be generated with more widely available and industrially proven laser systems. The dynamic nature of the device is utilized to improve mark quality by reducing the impact of the inherently speckled intensity distribution across the generated image and reduce thermal effects in the marked surface. © 2011 Optical Society of America

  18. Programmable phase plate for tool modification in laser machining applications

    DOEpatents

    Thompson Jr., Charles A.; Kartz, Michael W.; Brase, James M.; Pennington, Deanna; Perry, Michael D.

    2004-04-06

    A system for laser machining includes a laser source for propagating a laser beam toward a target location, and a spatial light modulator having individual controllable elements capable of modifying a phase profile of the laser beam to produce a corresponding irradiance pattern on the target location. The system also includes a controller operably connected to the spatial light modulator for controlling the individual controllable elements. By controlling the individual controllable elements, the phase profile of the laser beam may be modified into a desired phase profile so as to produce a corresponding desired irradiance pattern on the target location capable of performing a machining operation on the target location.

  19. Interaction of 1.05 μm and 0.53 μm lasers with gold disks

    NASA Astrophysics Data System (ADS)

    Shenye, Liu; Yaonan, Ding; Zhijian, Zheng; Daoyuan, Tang

    1996-05-01

    Gold disks were irradiated with 1.05 μm and 0.53 μm lasers at pulse duration of ˜0.8 ns, intensity ranging from 5×1013 W/cm2 to 4×1015 W/cm2 on the SHEN GUANG I laser facility in China. The experimental results of laser absorption, scattering light, x-ray emission and plasma blow-off are presented in this paper. When the laser irradiated the gold disk obliquely, the angular distribution of scattered lights produced by 0.53 μm lasers disagree with that predicted by the Brillouin scattering theory. The angular distribution is different from that reported previously by the others.

  20. Laser-based trace gas detection of ethane as a result of photo-oxidative damage in chilled cucumber leaves (invited)

    NASA Astrophysics Data System (ADS)

    Santosa, I. E.; Laarhoven, L. J. J.; Harbinson, J.; Driscoll, S.; Harren, F. J. M.

    2003-01-01

    At low temperatures, high light intensity induces strong photooxidative lipid peroxidation in chilling sensitive cucumber leaves. A sensitive laser-based photoacoustic detector was employed to monitor on-line the evolution of ethane, one of the end products of lipid peroxidation. The Δv=2 CO laser operated in the 2.62-4.06 μm infrared wavelength region with a maximum intracavity power of 11 W. In combination with an intracavity placed photoacoustic cell the laser was able to detect ethane down to 0.5 part per billion. Cucumber leaf disks chilled in the light produce ethane; the rate of ethane production depends on the applied temperature, light intensity, and period of chilling.

  1. Towards Laser Cooling Trapped Ions with Telecom Light

    NASA Astrophysics Data System (ADS)

    Dungan, Kristina; Becker, Patrick; Donoghue, Liz; Liu, Jackie; Olmschenk, Steven

    2015-05-01

    Quantum information has many potential applications in communication, atomic clocks, and the precision measurement of fundamental constants. Trapped ions are excellent candidates for applications in quantum information because of their isolation from external perturbations, and the precise control afforded by laser cooling and manipulation of the quantum state. For many applications in quantum communication, it would be advantageous to interface ions with telecom light. We present progress towards laser cooling and trapping of doubly-ionized lanthanum, which should require only infrared, telecom-compatible light. Additionally, we present progress on optimization of a second-harmonic generation cavity for laser cooling and trapping barium ions, for future sympathetic cooling experiments. This research is supported by the Army Research Office, Research Corporation for Science Advancement, and Denison University.

  2. Laser isotope separation

    DOEpatents

    Robinson, C.P.; Reed, J.J.; Cotter, T.P.; Boyer, K.; Greiner, N.R.

    1975-11-26

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light is described. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  3. Fiber optic coupled multipass gas minicell, design assembly thereof

    DOEpatents

    Bond, Tiziana C.; Bora, Mihail; Engel, Michael A.; McCarrick, James F.; Moran, Bryan D.

    2016-01-12

    A method directs a gas of interest into a minicell and uses an emitting laser to produce laser emission light that is directed into the minicell and onto the gas of interest. The laser emission light is reflected within the cell to make multipasses through the gas of interest. After the multipasses through the gas of interest the laser light is analyzed to produces gas spectroscopy data. The minicell receives the gas of interest and a transmitting optic connected to the minicell that directs a beam into the minicell and onto the gas of interest. A receiving optic connected to the minicell receives the beam from the gas of interest and directs the beam to an analyzer that produces gas spectroscopy data.

  4. Instantaneous flow measurements in a supersonic wind tunnel using spectrally resolved Rayleigh scattering

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Buggele, Alvin E.; Reeder, Mark F.

    1995-01-01

    Results of a feasibility study to apply laser Rayleigh scattering to non-intrusively measure flow properties in a small supersonic wind tunnel are presented. The technique uses an injection seeded, frequency doubled Nd:YAG laser tuned to an absorption band of iodine. The molecular Rayleigh scattered light is filtered with an iodine cell to block light at the laser frequency. The Doppler-shifted Rayleigh scattered light that passes through the iodine cell is analyzed with a planar mirror Fabry-Perot interferometer used in a static imaging mode. An intensified CCD camera is used to record the images. The images are analyzed at several subregions, where the flow velocity is determined. Each image is obtained with a single laser pulse, giving instantaneous measurements.

  5. A Comparison of Different Operating Systems for Femtosecond Lasers in Cataract Surgery.

    PubMed

    Wu, B M; Williams, G P; Tan, A; Mehta, J S

    2015-01-01

    The introduction of femtosecond lasers is potentially a major shift in the way we approach cataract surgery. The development of increasingly sophisticated intraocular lenses (IOLs), coupled with heightened patient expectation of high quality postsurgical visual outcomes, has generated the need for a more precise, highly reproducible and standardized method to carry out cataract operations. As femtosecond laser-assisted cataract surgery (FLACS) becomes more commonplace in surgical centers, further evaluation of the potential risks and benefits needs to be established, particularly in the medium/long term effects. Healthcare administrators will also have to weigh and balance out the financial costs of these lasers relative to the advantages they put forth. In this review, we provide an operational overview of three of five femtosecond laser platforms that are currently commercially available: the Catalys (USA), the Victus (USA), and the LDV Z8 (Switzerland).

  6. Mechanical properties and polymerization shrinkage of composite resins light-cured using two different lasers.

    PubMed

    Kim, Tae-Wan; Lee, Jang-Hoon; Jeong, Seung-Hwa; Ko, Ching-Chang; Kim, Hyung-Il; Kwon, Yong Hoon

    2015-04-01

    The purpose of the present study was to investigate the usefulness of 457 and 473 nm lasers for the curing of composite resins during the restoration of damaged tooth cavity. Monochromaticity and coherence are attractive features of laser compared with most other light sources. Better polymerization of composite resins can be expected. Eight composite resins were light cured using these two lasers and a light-emitting diode (LED) light-curing unit (LCU). To evaluate the degrees of polymerization achieved, polymerization shrinkage and flexural and compressive properties were measured and compared. Polymerization shrinkage values by 457 and 473 nm laser, and LED ranged from 10.9 to 26.8, from 13.2 to 26.1, and from 11.5 to 26.3 μm, respectively. The values by 457 nm laser was significantly different from those by 473 and LED LCU (p<0.05). However, there was no statistical difference between values by 473 and LED LCU. Before immersion in distilled water, flexural strength (FS) and compressive modulus (CM) of the specimens were inconsistently influenced by LCUs. On the other hand, flexural modulus (FM) and compressive strength (CS) were not significantly different for the three LCUs (p>0.05). For the tested LCUs, no specific LCU could consistently achieve highest strength and modulus from the specimens tested. Two lasers (457 and 473 nm) can polymerize composite resins to the level that LED LCU can achieve despite inconsistent trends of polymerization shrinkage and flexural and compressive properties of the tested specimens.

  7. Photoactive dye enhanced tissue ablation for endoscopic laser prostatectomy

    NASA Astrophysics Data System (ADS)

    Ahn, Minwoo; Nguyen, Trung Hau; Nguyen, Van Phuc; Oh, Junghwan; Kang, Hyun Wook

    2015-02-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia with high laser power. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue ablation with low laser power. The experiment was implemented on chicken breast due to minimal optical absorption Amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532-nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm2. Light absorbance and ablation threshold were measured with UV-VIS spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with input parameter. Among the dyes, AR created the highest ablation rate of 44.2+/-0.2 μm/pulse due to higher absorbance and lower ablation threshold. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33 % reduced laser power with almost equivalent performance. In-depth comprehension on photoactive dye-enhanced tissue ablation can help accomplish efficient and safe laser treatment for BPH with low power application.

  8. Studies on acute toxic effects to keratinocytes induced by hematoporphyrin derivatives and laser light.

    PubMed

    Artuc, M; Ramshad, M; Kappus, H

    1989-01-01

    Human epidermal keratinocytes were grown in culture and the uptake of hematoporphyrin derivatives (HPDs) used in photodynamic therapy was estimated. Keratinocytes loaded with HPDs were irradiated with laser light of 632 nm generated by a helium-neon laser and cell toxicity was determined by the trypan blue exclusion test and the measurement of enzyme release. With increasing intracellular concentration of HPDs and with increasing intensity of the laser light, an increasing number of cells took up trypan blue and released the cytosolic enzyme lactate dehydrogenase and the lysosomal enzyme acid phosphatase after 1 h incubation of the irradiated cells at 37 degrees C. Cytotoxicity was less pronounced when the irradiated cells were incubated at 0 degree C indicating the involvement of enzyme reactions in cell death. No lipid peroxidation as measured by malondialdehyde and ethane formation was detectable. Our results suggest that during photodynamic therapy with HPDs and laser light epidermal keratinocytes may be seriously damaged. The data indicate that not lipid peroxidation but rather the activation of lysosomal enzymes is responsible for the cytotoxicity observed.

  9. Optical property measurements of a novel type of upconverting reporter

    NASA Astrophysics Data System (ADS)

    Xiao, Xudong; Herring, Michael E.; Haushalter, Jeanne; Lee, Seonkyung; Kalogerakis, Kostas S.; Faris, Gregory W.

    2003-07-01

    We have recently developed a new type of reporter (upconverting chelate) for biomedical diagnostics. For this reporter, the light is absorbed and emitted by a lanthanide ion, rather than an organic molecule, as is the case for a typical fluorescent dye. These materials do not photobleach and have no autofluorescent background. We focus in this paper on neodymium ions complexed with the familiar chelating agents, EDTA, DPA, DTPA and DOTA. We have performed experimental measurements with one- and two-color laser light excitation for different chelate compounds. The samples are excited using two Nd:YAG-pumped dye laser systems that provide laser light near 587 nm and 800 nm. For one-color excitation, the emitted light depends quadratically on the incident laser power, as expected. Three strongly emitting lines are observed, located near 360 nm, 387 nm, and 417 nm. We observed more efficient upconversion in EDTA although the DPA chelates show comparable ground state absorbance. We have studied the influence of temporal delay between the two laser pulses and obtained the decay lifetime of the first intermediate state in the various chelated compounds.

  10. USSR Report, Physics and Mathematics.

    DTIC Science & Technology

    1987-03-12

    reveal that the threshold of explosive absorption depends on both the laser beam diameter and the laser pulse duration. Estimates indicate the possi...Phenomena in Parametric Generators and Amplifiers of Ultrashort Light Pulses (A. Piskarkas, A. Stabinis, et al.; USPEKHI FIZICHESKIKH NAUK, No 1, Sep...Resolution of Picosecond Absorption Spectrometer by Selection of Length of Laser Light Pulses (B. N. Korvatovskiy, V. V. Gorokhov, et al.; KVANTOVAYA

  11. Numerical Simulations of Thick Aluminum Wire Behavior Under Megampere Current Drive

    DTIC Science & Technology

    2009-06-01

    time dependences of the wire radii agree rather well with the experimental results obtained using laser diagnostics and light imaging. The...simulated time dependences of the wire radii agree rather well with the experimental results obtained using laser diagnostics and light imaging. The...experiments involved a wide range of diagnostics , including current probes, streaked imaging of optical emission, 4-frame laser shadowgraphy, fast

  12. Measuring the Dispersion in Laser Cavity Mirrors using White-Light Interferometry

    DTIC Science & Technology

    2008-03-01

    mirrors. Two AlGaInP (aluminum gallium indium phosphide ) diode lasers are aligned such that one is polarized vertically while one is polarized...linear crystals, where the index of refraction depends on beam intensity. Short pulses with high peak intensities are well 14 suited to induce the...MEASURING THE DISPERSION OF LASER CAVITY MIRRORS USING WHITE-LIGHT INTERFEROMETRY THESIS Allison S

  13. Lasers and intense pulsed light (IPL) association with cancerous lesions.

    PubMed

    Ash, Caerwyn; Town, Godfrey; Whittall, Rebecca; Tooze, Louise; Phillips, Jaymie

    2017-11-01

    The development and use of light and lasers for medical and cosmetic procedures has increased exponentially over the past decade. This review article focuses on the incidence of reported cases of skin cancer post laser or IPL treatment. The existing evidence base of over 25 years of laser and IPL use to date has not raised any concerns regarding its long-term safety with only a few anecdotal cases of melanoma post treatment over two decades of use; therefore, there is no evidence to suggest that there is a credible cancer risk. Although laser and IPL technology has not been known to cause skin cancer, this does not mean that laser and IPL therapies are without long-term risks. Light therapies and lasers to treat existing lesions and CO 2 laser resurfacing can be a preventative measure against BCC and SCC tumour formation by removing photo-damaged keratinocytes and encouraged re-epithelisation from stem cells located deeper in the epidermis. A review of the relevant literature has been performed to address the issue of long-term IPL safety, focussing on DNA damage, oxidative stress induction and the impact of adverse events.

  14. Research and application on imaging technology of line structure light based on confocal microscopy

    NASA Astrophysics Data System (ADS)

    Han, Wenfeng; Xiao, Zexin; Wang, Xiaofen

    2009-11-01

    In 2005, the theory of line structure light confocal microscopy was put forward firstly in China by Xingyu Gao and Zexin Xiao in the Institute of Opt-mechatronics of Guilin University of Electronic Technology. Though the lateral resolution of line confocal microscopy can only reach or approach the level of the traditional dot confocal microscopy. But compared with traditional dot confocal microscopy, it has two advantages: first, by substituting line scanning for dot scanning, plane imaging only performs one-dimensional scanning, with imaging velocity greatly improved and scanning mechanism simplified, second, transfer quantity of light is greatly improved by substituting detection hairline for detection pinhole, and low illumination CCD is used directly to collect images instead of photoelectric intensifier. In order to apply the line confocal microscopy to practical system, based on the further research on the theory of the line confocal microscopy, imaging technology of line structure light is put forward on condition of implementation of confocal microscopy. Its validity and reliability are also verified by experiments.

  15. Improved Radial Velocity Precision with a Tunable Laser Calibrator

    NASA Astrophysics Data System (ADS)

    Cramer, Claire; Brown, S.; Dupree, A. K.; Lykke, K. R.; Smith, A.; Szentgyorgyi, A.

    2010-01-01

    We present radial velocities obtained using a novel laser-based wavelength calibration technique. We have built a prototype laser calibrator for the Hectochelle spectrograph at the MMT 6.5 m telescope. The Hectochelle is a high-dispersion, fiber-fed, multi-object spectrograph capable of recording up to 240 spectra simultaneously with a resolving power of 40000. The standard wavelength calibration method makes use of spectra from thorium-argon hollow cathode lamps shining directly onto the fibers. The difference in light path between calibration and science light as well as the uneven distribution of spectral lines are believed to introduce errors of up to several hundred m/s in the wavelength scale. Our tunable laser wavelength calibrator solves these problems. The laser is bright enough for use with a dome screen, allowing the calibration light path to better match the science light path. Further, the laser is tuned in regular steps across a spectral order to generate a calibration spectrum, creating a comb of evenly-spaced lines on the detector. Using the solar spectrum reflected from the atmosphere to record the same spectrum in every fiber, we show that laser wavelength calibration brings radial velocity uncertainties down below 100 m/s. We present these results as well as an application of tunable laser calibration to stellar radial velocities determined with the infrared Ca triplet in globular clusters M15 and NGC 7492. We also suggest how the tunable laser could be useful for other instruments, including single-object, cross-dispersed echelle spectrographs, and adapted for infrared spectroscopy.

  16. Effects of LED or laser phototherapy on bone defects grafted with MTA and irradiated with laser or LED light: a comparative Raman spectroscopic study

    NASA Astrophysics Data System (ADS)

    Pinheiro, Antonio L. B.; Soares, Luiz G. P.; Barbosa, Artur Felipe S.; Silveira, Landulfo, Jr.

    2012-03-01

    We studied peaks of calcium hydroxyapatite - CHA on defects grafted with MTA, treated or not with Light Emitting Diode - LED or IR Laser. 54 rats were divided in 6 groups each subdivided into 3 subgroups (15,21,30d). LED (λ850 +/- 10nm) or IR Laser (λ850 nm) was applied over (LED) or in 4 points around the defect at 48 h intervals for 15 days. Raman readings were taken at the surface of the defect. The smaller overall intensity of the peak was found in Group MTA + Laser (1510.2 +/- 274.1) and the highest on Group LED (2322 +/- 715). There were no statistically significant differences between non-irradiated subjects on regards the CHA peaks. On the other hand, there were statistically significant differences between the Group Clot and LED, Clot and Laser, and Clot and MTA + Laser (p =0.01, p = 0.02, p = 0.003). There were no significant differences between Group MTA and MTA + LED (p=0.2) but significant differences were seen between Groups MTA and MTA + Laser (p=0.01). Significant differences were also observed between Groups LED and Laser (p <0.001) and between Groups MTA + LED and MTA + Laser (p=0.009). MTA, due to its characteristics, seemed to be directly affected by the light. However, the use of either phototherapy positively affected bone healing similarly as observed on different studies using other biomaterials. The overall analysis of our results indicated that the use of either light source resulted in a better, more advanced, and of quality bone repair.

  17. Laser technologies for ultrasensitive groundwater dating using long-lived isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, Sterling

    In this phase I work, we propose to construct and demonstrate a 103 nm laser based on resonantly enhanced and phase matched fifth harmonic generation in hollow waveguides driven by a high power, low cost and compact ultrafast fiber laser. (Figure 4) This VUV laser source can potentially produce >100 milliwatts of VUV light at 103 nm with pulse repetition-rates of 100 kHz to 100 MHz, ideal for the above-mentioned applications. This technology is state-of-the-art and potentially compact, fieldable, low-cost, and of broad interest for a variety of science and technology applications. Laser-based VUV sources in the past have exhibitedmore » low repetition rate, low efficiency, low beam quality, and are based on expensive laser sources. Our approch is to combine ultrafast fiber laser drive technology, ultrafast pulses, and our proven waveguide technology, to create a high repetition rate, high average power VUV source for producing high yield metastable Krypton. At KMLabs we have been offering EUV light sources employing the high harmonic generation (HHG) process driven by high-power femtosecond lasers for >5 years now. Recently, we have developed much smaller scale (briefcase size), but still high average power femtosecond fiber laser sources to supply other markets, and create new ones. By combining these new laser sources with our patented waveguide frequency upconversion technology, we expect to be able to obtain >20mW average power initially, with potentially much higher powers depending on wavelength, in an affordable VUV product. For comparison, our current EUV light sources based on ti:sapphire generate an average power of ~5 µW (albeit at shorter 29 nm wavelength), and we are aware of one other supplier that has developed a VUV (112 nm) light source with ~10-20 µW power.« less

  18. Narrow-line, cw orange light generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings.

    PubMed

    Chen, Y L; Chen, W W; Du, C E; Chang, W K; Wang, J L; Chung, T Y; Chen, Y H

    2009-12-07

    We report on the demonstration of a narrow-line, cw orange 593-nm laser achieved via intracavity sum-frequency generation (SFG) of a diode-pumped dual-wavelength (1064 and 1342 nm) Nd:YVO(4) laser using two volume Bragg grating (VBG) reflectors. At diode pump power of up to 3.6 W, the 593-nm intracavity SFG laser radiates at the single longitudinal mode of spectral linewidth as narrow as approximately 15 MHz. More than 23-mW single-longitudinal-mode or 40-mW, <8.5-GHz (10-pm) linewidth (at 4.2-W diode pump power) 593-nm orange lights can be obtained from this compact laser system. Spectral tuning of the orange light was performed via the temperature tuning of the two VBGs in this system, achieving an effective tuning rate of ~5 pm/degrees C.

  19. Light self-focusing in the atmosphere: Thin window model

    DOE PAGES

    Vaseva, Irina A.; Fedoruk, Mikhail P.; Rubenchik, Alexander M.; ...

    2016-08-02

    Ultra-high power (exceeding the self-focusing threshold by more than three orders of magnitude) light beams from ground-based laser systems may find applications in space-debris cleaning. The propagation of such powerful laser beams through the atmosphere reveals many novel interesting features compared to traditional light self-focusing. It is demonstrated here that for the relevant laser parameters, when the thickness of the atmosphere is much shorter than the focusing length (that is, of the orbit scale), the beam transit through the atmosphere in lowest order produces phase distortion only. This means that by using adaptive optics it may be possible to eliminatemore » the impact of self-focusing in the atmosphere on the laser beam. Furthermore, the area of applicability of the proposed “thin window” model is broader than the specific physical problem considered here. For instance, it might find applications in femtosecond laser material processing.« less

  20. Intense pulsed light and laser treatment regimen improves scar evolution after cleft lip repair surgery.

    PubMed

    Peng, Lihong; Tang, Shijie; Li, Qin

    2018-06-19

    To observe the effects of intense pulsed light (IPL) and lattice CO 2 laser treatment on scar evolution following cleft lip repair. Fifty cleft lip repair patients were enrolled in this study. Twenty-five patients used conventional approach with scar cream massage combined with silica gel products after operation. While other 25 patients which received IPL and lattice CO 2 laser treatments. The treatments commenced 1 week after removal of stitches and observation of scar hyperplasia. Scar evolution was evaluated with the Vancouver scar scale (VSS) by postoperative photographs. Relative to the conventional approach, the laser treatments showed improved scar softening and flattening. These differences were reflected in the groups' significantly different VSS scores. Intense pulsed light combined with lattice CO 2 laser treatment can improve cleft lip surgery scar pliability and appearance, while alleviating children from having to endure the pain of scar massage. © 2018 Wiley Periodicals, Inc.

  1. InP-based three-dimensional photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Tsou, Diana; Zaytsev, Sergey; Pauchard, Alexandre; Hummel, Steve; Lo, Yu-Hwa

    2001-10-01

    Fast-growing internet traffic volumes require high data communication bandwidth over longer distances than short wavelength (850 nm) multi-mode fiber systems can provide. Access network bottlenecks put pressure on short-range (SR) telecommunication systems. To effectively address these datacom and telecom market needs, low cost, high-speed laser modules at 1310 and 1550 nm wavelengths are required. The great success of GaAs 850 nm VCSELs for Gb/s Ethernet has motivated efforts to extend VCSEL technology to longer wavelengths in the 1310 and 1550 nm regimes. However, the technological challenges associated with available intrinsic materials for long wavelength VCSELs are tremendous. Even with recent advances in this area, it is believed that significant additional development is necessary before long wavelength VCSELs that meet commercial specifications will be widely available. In addition, the more stringent OC192 and OC768 specifications for single-mode fiber (SMF) datacom may require more than just a long wavelength laser diode, VCSEL or not, to address numerous cost and performance issues. We believe that photonic integrated circuits, which compactly integrate surface-emitting lasers with additional active and passive optical components with extended functionality, will provide the best solutions to today's problems. Photonic integrated circuits (PICs) have been investigated for more than a decade. However, they have produced limited commercial impact to date primarily because the highly complicated fabrication processes produce significant yield and device performance issues. In this presentation, we will discuss a new technology platform for fabricating InP-based photonic integrated circuits compatible with surface-emitting laser technology. Employing InP transparency at 1310 and 1550 nm wavelengths, we have created 3-D photonic integrated circuits (PICs) by utilizing light beams in both surface normal and in-plane directions within the InP-based structure. This additional beam routing flexibility allows significant size reduction and process simplification without sacrificing device performance. This innovative 3-D PIC technology platform can be easily extended to create surface-emitting lasers integrated with power monitoring detectors, micro-lenses, external modulators, amplifiers, and other passive and active components. Such added functionality can produce cost--effective solutions for the highest-end laser transmitters required for datacom and short range telecom networks, as well as fiber channels and other cost and performance sensitive applications. We present results for 1310 nm photonic IC surface-emitting laser transmitters operating at 2.5 Gbps without active thermal electric cooling.

  2. Light sources based on semiconductor current filaments

    DOEpatents

    Zutavern, Fred J.; Loubriel, Guillermo M.; Buttram, Malcolm T.; Mar, Alan; Helgeson, Wesley D.; O'Malley, Martin W.; Hjalmarson, Harold P.; Baca, Albert G.; Chow, Weng W.; Vawter, G. Allen

    2003-01-01

    The present invention provides a new type of semiconductor light source that can produce a high peak power output and is not injection, e-beam, or optically pumped. The present invention is capable of producing high quality coherent or incoherent optical emission. The present invention is based on current filaments, unlike conventional semiconductor lasers that are based on p-n junctions. The present invention provides a light source formed by an electron-hole plasma inside a current filament. The electron-hole plasma can be several hundred microns in diameter and several centimeters long. A current filament can be initiated optically or with an e-beam, but can be pumped electrically across a large insulating region. A current filament can be produced in high gain photoconductive semiconductor switches. The light source provided by the present invention has a potentially large volume and therefore a potentially large energy per pulse or peak power available from a single (coherent) semiconductor laser. Like other semiconductor lasers, these light sources will emit radiation at the wavelength near the bandgap energy (for GaAs 875 nm or near infra red). Immediate potential applications of the present invention include high energy, short pulse, compact, low cost lasers and other incoherent light sources.

  3. Method for estimating optimal spectral and energy parameters of laser irradiation in photodynamic therapy of biological tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisenko, S A; Kugeiko, M M

    We have solved the problem of layer-by-layer laser-light dosimetry in biological tissues and of selecting an individual therapeutic dose in laser therapy. A method is proposed for real-time monitoring of the radiation density in tissue layers in vivo, concentrations of its endogenous (natural) and exogenous (specially administered) chromophores, as well as in-depth distributions of the spectrum of light action on these chromophores. As the background information use is made of the spectrum of diffuse light reflected from a patient's tissue, measured by a fibre-optic spectrophotometer. The measured spectrum is quantitatively analysed by the method of approximating functions for fluxes ofmore » light multiply scattered in tissue and by a semi-analytical method for calculating the in-depth distribution of the light flux in a multi-layered medium. We have shown the possibility of employing the developed method for monitoring photosensitizer and oxyhaemoglobin concentrations in tissue, light power absorbed by chromophores in tissue layers at different depths and laser-induced changes in the tissue morphology (vascular volume content and ratios of various forms of haemoglobin) during photodynamic therapy. (biophotonics)« less

  4. Spectrally resolved laser interference microscopy

    NASA Astrophysics Data System (ADS)

    Butola, Ankit; Ahmad, Azeem; Dubey, Vishesh; Senthilkumaran, P.; Singh Mehta, Dalip

    2018-07-01

    We developed a new quantitative phase microscopy technique, namely, spectrally resolved laser interference microscopy (SR-LIM), with which it is possible to quantify multi-spectral phase information related to biological specimens without color crosstalk using a color CCD camera. It is a single shot technique where sequential switched on/off of red, green, and blue (RGB) wavelength light sources are not required. The method is implemented using a three-wavelength interference microscope and a customized compact grating based imaging spectrometer fitted at the output port. The results of the USAF resolution chart while employing three different light sources, namely, a halogen lamp, light emitting diodes, and lasers, are discussed and compared. The broadband light sources like the halogen lamp and light emitting diodes lead to stretching in the spectrally decomposed images, whereas it is not observed in the case of narrow-band light sources, i.e. lasers. The proposed technique is further successfully employed for single-shot quantitative phase imaging of human red blood cells at three wavelengths simultaneously without color crosstalk. Using the present technique, one can also use a monochrome camera, even though the experiments are performed using multi-color light sources. Finally, SR-LIM is not only limited to RGB wavelengths, it can be further extended to red, near infra-red, and infra-red wavelengths, which are suitable for various biological applications.

  5. Fiber coupled optical spark delivery system

    DOEpatents

    Yalin, Azer; Willson, Bryan; Defoort, Morgan

    2008-08-12

    A spark delivery system for generating a spark using a laser beam is provided, the spark delivery system including a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. In addition, the laser delivery assembly includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. In accordance with embodiments of the present invention, the assembly may be used to create a spark in a combustion engine. In accordance with other embodiments of the present invention, a method of using the spark delivery system is provided. In addition, a method of choosing an appropriate fiber for creating a spark using a laser beam is also presented.

  6. Laser technology and applications in gynaecology.

    PubMed

    Adelman, M R; Tsai, L J; Tangchitnob, E P; Kahn, B S

    2013-04-01

    The term 'laser' is an acronym for Light Amplification by Stimulated Emission of Radiation. Lasers are commonly described by the emitted wavelength, which determines the colour of the light, as well as the active lasing medium. Currently, over 40 types of lasers have been developed with a wide range of both industrial and medical uses. Gas and solid-state lasers are frequently used in surgical applications, with CO2 and Ar being the most common examples of gas lasers, and the Nd:YAG and KTP:YAG being the most common examples of solid-state lasers. At present, it appears that the CO2, Nd:YAG, and KTP lasers provide alternative methods for achieving similar results, as opposed to superior results, when compared with traditional endoscopic techniques, such as cold-cutting monopolar and bipolar energy. This review focuses on the physics, tissue interaction, safety and applications of commonly used lasers in gynaecological surgery.

  7. Towards manipulating relativistic laser pulses with micro-tube plasma lenses

    PubMed Central

    Ji, L. L.; Snyder, J.; Pukhov, A.; Freeman, R. R.; Akli, K. U.

    2016-01-01

    Efficient coupling of intense laser pulses to solid-density matter is critical to many applications including ion acceleration for cancer therapy. At relativistic intensities, the focus has been mainly on investigating various laser beams irradiating initially overdense flat interfaces with little or no control over the interaction. Here, we propose a novel approach that leverages recent advancements in 3D direct laser writing (DLW) of materials and high contrast lasers to manipulate the laser-matter interactions on the micro-scales. We demonstrate, via simulations, that usable intensities ≥1023 Wcm−2 could be achieved with current tabletop lasers coupled to micro-engineered plasma lenses. We show that these plasma optical elements act as a lens to focus laser light. These results open new paths to engineering light-matter interactions at ultra-relativistic intensities. PMID:26979657

  8. Low-level laser as a device for increase of drug concentration in the kidney

    NASA Astrophysics Data System (ADS)

    Koultchavenia, Ekaterina V.

    2001-01-01

    In the West Siberia every tenth tuberculous patient has an extra pulmonary lesion. Urogenital tuberculosis cases are in the first place in occurrence among extra pulmonary forms. Complicated and widespread lesions of kidney are prevailing. The high concentration of anti-tuberculous drugs in the lesion locus is one of the most important component in the success treatment of tuberculosis, including nephrotyberculosis. We put the aim to increase the isoniazid concentration in tuberculous kidney by low-level laser therapy. It was proved that the laser therapy at the expense of improving of the blood microcirculation ensures to increase drug concentration in the lesion locus in 9 times.

  9. LPP-EUV light source for HVM lithography

    NASA Astrophysics Data System (ADS)

    Saito, T.; Ueno, Y.; Yabu, T.; Kurosawa, A.; Nagai, S.; Yanagida, T.; Hori, T.; Kawasuji, Y.; Abe, T.; Kodama, T.; Nakarai, H.; Yamazaki, T.; Mizoguchi, H.

    2017-01-01

    We have been developing a laser produced plasma extremely ultra violet (LPP-EUV) light source for a high volume manufacturing (HVM) semiconductor lithography. It has several unique technologies such as the high power short pulse carbon dioxide (CO2) laser, the short wavelength solid-state pre-pulse laser and the debris mitigation technology with the magnetic field. This paper presents the key technologies for a high power LPP-EUV light source. We also show the latest performance data which is 188W EUV power at intermediate focus (IF) point with 3.7% conversion efficiency (CE) at 100 kHz.

  10. Curriculum in biomedical optics and laser-tissue interactions

    NASA Astrophysics Data System (ADS)

    Jacques, Steven L.

    2003-10-01

    A graduate student level curriculum has been developed for teaching the basic principles of how lasers and light interact with biological tissues and materials. The field of Photomedicine can be divided into two topic areas: (1) where tissue affects photons, used for diagnostic sensing, imaging, and spectroscopy of tissues and biomaterials, and (2) where photons affect tissue, used for surgical and therapeutic cutting, dissecting, machining, processing, coagulating, welding, and oxidizing tissues and biomaterials. The courses teach basic principles of tissue optical properties and light transport in tissues, and interaction of lasers and conventional light sources with tissues via photochemical, photothermal and photomechanical mechanisms.

  11. Imaging using a supercontinuum laser to assess tumors in patients with breast carcinoma

    NASA Astrophysics Data System (ADS)

    Sordillo, Laura A.; Sordillo, Peter P.; Alfano, R. R.

    2016-03-01

    The supercontinuum laser light source has many advantages over other light sources, including broad spectral range. Transmission images of paired normal and malignant breast tissue samples from two patients were obtained using a Leukos supercontinuum (SC) laser light source with wavelengths in the second and third NIR optical windows and an IR- CCD InGaAs camera detector (Goodrich Sensors Inc. high response camera SU320KTSW-1.7RT with spectral response between 900 nm and 1,700 nm). Optical attenuation measurements at the four NIR optical windows were obtained from the samples.

  12. Method and apparatus for measuring micro structures, anisotropy and birefringence in polymers using laser scattered light

    DOEpatents

    Grek, Boris; Bartolick, Joseph; Kennedy, Alan D.

    2000-01-01

    A method and apparatus for measuring microstructures, anistropy and birefringence in polymers using laser scattered light includes a laser which provides a beam that can be conditioned and is directed at a fiber or film which causes the beam to scatter. Backscatter light is received and processed with detectors and beam splitters to obtain data. The data is directed to a computer where it is processed to obtain information about the fiber or film, such as the birefringence and diameter. This information provides a basis for modifications to the production process to enhance the process.

  13. InGaN/GaN dot-in-nanowire monolithic LEDs and lasers on (001) silicon

    NASA Astrophysics Data System (ADS)

    Bhattacharya, P.; Hazari, A.; Jahangir, S.

    2017-02-01

    GaN-based nanowire arrays have been grown on (001)Si substrate by plasma-assisted molecular beam epitaxy and their structural and optical properties have been determined. InxGa1-xN disks inserted in the nanowires behave as quantum dots with emission ranging from visible to near-infrared. We have exploited these nanowire heterostructure arrays to realize light-emitting diodes and diode lasers in which the quantum dots form the active light emitting media. The fabrication and characteristics of 630nm light-emitting diodes and 1.3μm edge-emitting diode lasers are described.

  14. Patient perspectives on low level light therapy and laser therapies for rosacea-associated persistent facial redness.

    PubMed

    McGinley, Meagan; Alinia, Hossein; Kuo, Sandy; Huang, Karen E; Feldman, Steven R

    2014-12-13

    There are no definitive treatments of facial redness for rosacea. All treatments aim to alleviate symptoms. Patients' perspectives of two emerging modalities, Low level light therapy and laser treatments are not well characterized. The purpose is to further understand rosacea patients unmet needs about these modalities, Methods: The publicly accessible, online rosacea forum was accessed at august 2013. Stratified random sampling method has done to identify a 10% sample of total 27,051 posts. The Posts were published in the "Laser and IPL therapy" and "Low level light therapy" forums were qualitatively analyzed. Patients discussed a variety of topics, but most commonly discussed effectiveness (34.2%), treatment education (19.3%), and adverse effects (18%). Relationship with the health care provider (9.9%), cost (8.1%), execution of treatments (8.1%) and convenience of treatments (2.5%) were less commonly discussed, but contributed to patients' decisions about utilizing laser and light therapies. Online forums are utilized to fulfill patients' desire for educational, empathic and collaborative relationship. Patients' adherence to laser and light therapies will likely increase if costs are reduced, reduction in redness is consistent with their expectations, and if physicians empower them through education on device choices and managing adverse effects.

  15. The 'Magic Light': A Discussion on Laser Ethics.

    PubMed

    Stylianou, Andreas; Talias, Michael A

    2015-08-01

    Innovations in technology and science form novel fields that, although beneficial, introduce new bio-ethical issues. In their short history, lasers have greatly influenced our everyday lives, especially in medicine. This paper focuses particularly on medical and para-medical laser ethics and their origins, and presents the complex relationships within laser ethics through a three-dimensional matrix model. The term 'laser' and the myth of the 'magic light' can be identified as landmarks for laser related ethical issues. These ethical issues are divided into five major groups: (1) media, marketing, and advertising; (2) economic outcomes; (3) user training; (4) the user-patient/client relationship; and (5) other issues. In addition, issues arising from two of the most common applications of lasers, laser eye surgery and laser tattoo removal, are discussed. The aim of this paper is to demonstrate that the use of medical and para-medical lasers has so greatly influenced our lives that the scientific community must initiate an earnest discussion of medical laser ethics.

  16. Multi-channel automotive night vision system

    NASA Astrophysics Data System (ADS)

    Lu, Gang; Wang, Li-jun; Zhang, Yi

    2013-09-01

    A four-channel automotive night vision system is designed and developed .It is consist of the four active near-infrared cameras and an Mulit-channel image processing display unit,cameras were placed in the automobile front, left, right and rear of the system .The system uses near-infrared laser light source,the laser light beam is collimated, the light source contains a thermoelectric cooler (TEC),It can be synchronized with the camera focusing, also has an automatic light intensity adjustment, and thus can ensure the image quality. The principle of composition of the system is description in detail,on this basis, beam collimation,the LD driving and LD temperature control of near-infrared laser light source,four-channel image processing display are discussed.The system can be used in driver assistance, car BLIS, car parking assist system and car alarm system in day and night.

  17. Wideband tunable laser phase noise reduction using single sideband modulation in an electro-optical feed-forward scheme.

    PubMed

    Aflatouni, Firooz; Hashemi, Hossein

    2012-01-15

    A wideband laser phase noise reduction scheme is introduced where the optical field of a laser is single sideband modulated with an electrical signal containing the discriminated phase noise of the laser. The proof-of-concept experiments on a commercially available 1549 nm distributed feedback laser show linewidth reduction from 7.5 MHz to 1.8 kHz without using large optical cavity resonators. This feed-forward scheme performs wideband phase noise cancellation independent of the light source and, as such, it is compatible with the original laser source tunability without requiring tunable optical components. By placing the proposed phase noise reduction system after a commercial tunable laser, a tunable coherent light source with kilohertz linewidth over a tuning range of 1530-1570 nm is demonstrated.

  18. The 1.083 micron tunable CW semiconductor laser

    NASA Technical Reports Server (NTRS)

    Wang, C. S.; Chen, Jan-Shin; Lu, Ken-Gen; Ouyang, Keng

    1991-01-01

    A tunable CW laser is desired to produce light equivalent to the helium spectral line at 1.08 microns. This laser will serve as an optical pumping source for He-3 and He-4 atoms used in space magnetometers. This light source can be fabricated either as a semiconductor laser diode or a pumped solid state laser. Continuous output power of greater than 10 mW is desired. Semiconductor lasers can be thermally tuned, but must be capable of locking onto the helium resonance lines. Solid state lasers must have efficient pumping sources suitable for space configuration. Additional requirements are as follows: space magnetometer applications will include low mass (less than 0.5 kg), low power consumption (less than 0.75 W), and high stability/reliability for long missions (5-10 years).

  19. Laser absorption of carbon fiber reinforced polymer with randomly distributed carbon fibers

    NASA Astrophysics Data System (ADS)

    Hu, Jun; Xu, Hebing; Li, Chao

    2018-03-01

    Laser processing of carbon fiber reinforced polymer (CFRP) is a non-traditional machining method which has many prospective applications. The laser absorption characteristics of CFRP are analyzed in this paper. A ray tracing model describing the interaction of the laser spot with CFRP is established. The material model contains randomly distributed carbon fibers which are generated using an improved carbon fiber placement method. It was found that CFRP has good laser absorption due to multiple reflections of the light rays in the material’s microstructure. The randomly distributed carbon fibers make the absorptivity of the light rays change randomly in the laser spot. Meanwhile, the average absorptivity fluctuation is obvious during movement of the laser. The experimental measurements agree well with the values predicted by the ray tracing model.

  20. Second-harmonic generation of a dual-frequency laser in a MgO:PPLN crystal.

    PubMed

    Kang, Ying; Yang, Suhui; Brunel, Marc; Cheng, Lijun; Zhao, Changming; Zhang, Haiyang

    2017-04-10

    A dual-frequency CW laser at a wavelength of 1.064 μm is frequency doubled in a MgO:PPLN nonlinear crystal. The fundamental dual-frequency laser has a tunable beat note from 125 MHz to 175 MHz. A laser-diode pumped fiber amplifier is used to amplify the dual-frequency fundamental output to a maximum power of 50 W before frequency doubling. The maximum output power of the green light is 1.75 W when the input fundamental power is 12 W, corresponding to a frequency doubling efficiency of 14.6%. After frequency doubling, green light with modulation frequencies in two bands from 125 MHz to 175 MHz and from 250 MHz to 350 MHz is achieved simultaneously. The relative intensities of the beat notes at the two bands can be adjusted by changing the relative intensities at different frequencies of the fundamental light. The spectral width and frequency stabilities of the beat notes in fundamental wave and green light are also measured, respectively. The modulated green light has potential applications in underwater ranging, communication, and imaging.

  1. A three-dimensional laser vibration measurement technology realized on five laser beam and its calibration

    NASA Astrophysics Data System (ADS)

    Li, Lu-Ke; Zhang, Shen-Feng

    2018-03-01

    Put forward a kind of three-dimensional vibration information technology of vibrating object by the mean of five laser beam of He-Ne laser, and with the help of three-way sensor, measure the three-dimensional laser vibration developed by above mentioned technology. The technology based on the Doppler principle of interference and signal demodulation technology, get the vibration information of the object, through the algorithm processing, extract the three-dimensional vibration information of space objects, and can achieve the function of angle calibration of five beam in the space, which avoid the effects of the mechanical installation error, greatly improve the accuracy of measurement. With the help of a & B K4527 contact three axis sensor, measure and calibrate three-dimensional laser vibrometer, which ensure the accuracy of the measurement data. Summarize the advantages and disadvantages of contact and non-contact sensor, and analysis the future development trends of the sensor industry.

  2. Simulation of a polarized laser beam reflected at the sea surface: modeling and validation

    NASA Astrophysics Data System (ADS)

    Schwenger, Frédéric

    2015-05-01

    A 3-D simulation of the polarization-dependent reflection of a Gaussian shaped laser beam on the dynamic sea surface is presented. The simulation considers polarized or unpolarized laser sources and calculates the polarization states upon reflection at the sea surface. It is suitable for the radiance calculation of the scene in different spectral wavebands (e.g. near-infrared, SWIR, etc.) not including the camera degradations. The simulation also considers a bistatic configuration of laser source and receiver as well as different atmospheric conditions. In the SWIR, the detected total power of reflected laser light is compared with data collected in a field trial. Our computer simulation combines the 3-D simulation of a maritime scene (open sea/clear sky) with the simulation of polarized or unpolarized laser light reflected at the sea surface. The basic sea surface geometry is modeled by a composition of smooth wind driven gravity waves. To predict the input of a camera equipped with a linear polarizer, the polarized sea surface radiance must be calculated for the specific waveband. The s- and p-polarization states are calculated for the emitted sea surface radiance and the specularly reflected sky radiance to determine the total polarized sea surface radiance of each component. The states of polarization and the radiance of laser light specularly reflected at the wind-roughened sea surface are calculated by considering the s- and p- components of the electric field of laser light with respect to the specular plane of incidence. This is done by using the formalism of their coherence matrices according to E. Wolf [1]. Additionally, an analytical statistical sea surface BRDF (bidirectional reflectance distribution function) is considered for the reflection of laser light radiances. Validation of the simulation results is required to ensure model credibility and applicability to maritime laser applications. For validation purposes, field measurement data (images and meteorological data) was analyzed. An infrared laser, with or without a mounted polarizer, produced laser beam reflection at the water surface and images were recorded by a camera equipped with a polarizer with horizontal or vertical alignment. The validation is done by numerical comparison of measured total laser power extracted from recorded images with the corresponding simulation results. The results of the comparison are presented for different incident (zenith/azimuth) angles of the laser beam and different alignment for the laser polarizers (vertical/horizontal/without) and the camera (vertical/horizontal).

  3. Nanoimprinted polymer lasers with threshold below 100 W/cm2 using mixed-order distributed feedback resonators.

    PubMed

    Wang, Yue; Tsiminis, Georgios; Kanibolotsky, Alexander L; Skabara, Peter J; Samuel, Ifor D W; Turnbull, Graham A

    2013-06-17

    Organic semiconductor lasers were fabricated by UV-nanoimprint lithography with thresholds as low as 57 W/cm(2) under 4 ns pulsed operation. The nanoimprinted lasers employed mixed-order distributed feedback resonators, with second-order gratings surrounded by first-order gratings, combined with a light-emitting conjugated polymer. They were pumped by InGaN LEDs to produce green-emitting lasers, with thresholds of 208 W/cm(2) (102 nJ/pulse). These hybrid lasers incorporate a scalable UV-nanoimprint lithography process, compatible with high-performance LEDs, therefore we have demonstrated a coherent, compact, low-cost light source.

  4. GaAs laser diode pumped Nd:YAG laser

    NASA Technical Reports Server (NTRS)

    Conant, L. C.; Reno, C. W.

    1974-01-01

    A 1.5-mm by 3-cm neodymium-ion doped YAG laser rod has been side pumped using a GaAs laser diode array tuned to the 8680-A absorption line, achieving a multimode average output power of 120 mW for a total input power of 20 W to the final-stage laser diode drivers. The pumped arrangement was designed to take advantage of the high brightness of a conventional GaAs array as a linear source by introducing the pump light through a slit into a close-wrapped gold coated pump cavity. This cavity forms an integrating chamber for the pump light.

  5. 5W intracavity frequency-doubled green laser for laser projection

    NASA Astrophysics Data System (ADS)

    Yan, Boxia; Bi, Yong; Li, Shu; Wang, Dongdong; Wang, Dongzhou; Qi, Yan; Fang, Tao

    2014-11-01

    High power green laser has many applications such as high brightness laser projection and large screen laser theater. A compact and high power green-light source has been developed in diode-pumped solid-state laser based on MgO doped periodically poled LiNbO3 (MgO:PPLN). 5W fiber coupled green laser is achieved by dual path Nd:YVO4/MgO:PPLN intra-cacity frequency-doubled. Single green laser maximum power 2.8W at 532nm is obtained by a 5.5W LD pumped, MgO:PPLN dimensions is 5mm(width)×1mm(thickness)×2mm(length), and the optical to optical conversion efficiency is 51%. The second LD series connected with the one LD, the second path green laser is obtained using the same method. Then the second path light overlap with the first path by the reflection mirrors, then couple into the fiber with a focus mirror. Dual of LD, Nd:YVO4, MgO:PPLN are placed on the same heat sink using a TEC cooling, the operating temperature bandwidth is about 12°C and the stablity is 5% in 96h. A 50×50×17mm3 laser module which generated continuous-wave 5 W green light with high efficiency and width temperature range is demonstrated.

  6. Influence of light absorption on relativistic self-focusing of Gaussian laser beam in cold quantum plasma

    NASA Astrophysics Data System (ADS)

    Patil, S. D.; Valkunde, A. T.; Vhanmore, B. D.; Urunkar, T. U.; Gavade, K. M.; Takale, M. V.

    2018-05-01

    When inter particle distance is comparable to the de Broglies wavelength of charged particles, quantum effects in plasmas are unavoidable. We have exploited an influence of light absorption on self-focusing of Gaussian laser beam in cold quantum plasma by considering relativistic nonlinearity. Nonlinear differential equation governing beam-width parameter has been established by using parabolic equation approach under paraxial and WKB approximations. The effect of light absorption on variation of beam-width parameter with dimensionless distance of propagation is presented graphically and discussed. It is found that light absorption plays vital role in weakening the relativistic self-focusing of laser beam during propagation in cold quantum plasma and gives reasonably interesting results.

  7. Space Optical Communications Using Laser Beams

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M. (Inventor)

    2017-01-01

    A system for communicating between an object in space and a ground station, between objects in space, or between ground stations, includes a telecentric lens. Photodetectors positioned upon a focal plane of the telecentric lens detect an inbound light beam, received from a source, that has passed through the telecentric lens to the focal plane. Lasers positioned upon the focal plane transmit light beams from the focal plane through the telecentric lens to an area that includes the source of the inbound light beam. A processor detect signals from individual photodetectors corresponding to light detected, and selectively signals individual lasers that are close to those photodetectors, resulting in a returning beam that arrives close to the source, and which carries encoded data.

  8. Concepts and performance of solid state RGB laser sources for large-frame laser projection displays

    NASA Astrophysics Data System (ADS)

    Nebel, Achim; Wallenstein, Richard E.

    2000-04-01

    We report on concepts and the performance of diode pumped solid state laser systems which generate simultaneously red (R), green (G) and blue (B) laser light with output powers of up to 7.1 W at 629 nm, 6.9 W at 532 nm and 5.0 W at 446 nm. The superposition of this RGB radiation provides white light with a power of 19 W. In respect to the diode pump power of 110 W the RGB output corresponds to an optical efficiency of 17%.

  9. Laser ablation based fuel ignition

    DOEpatents

    Early, J.W.; Lester, C.S.

    1998-06-23

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.

  10. Laser ablation based fuel ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    1998-01-01

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition.

  11. Dissipative Structures At Laser-Solid Interactions

    NASA Astrophysics Data System (ADS)

    Nanai, Laszlo

    1989-05-01

    The questions which are discussed in this lecture refer to one of sections of laser-solid interactions, namely: to formation of different dissipative structures on the surface of metals and semiconductors when they are irradiated by intensive laser light in chemically active media (f.e.air). Some particular examples of the development at different spatial and time instabilities, periodic and stochastic structures, auto-wave processes are present-ed using testing materials vanadium metal and semiconducting V205 single crystals and light sources: cw and pulsed CO2 and YAG lasers.

  12. Efficient, high-power, and radially polarized fiber laser

    PubMed Central

    Lin, Di; Xia, Kegui; Li, Jianlang; Li, Ruxin; Ueda, Ken-ichi; Li, Guoqiang; Li, Xiaojun

    2017-01-01

    We demonstrate an ytterbium-doped fiber laser that emits high-power radially polarized light efficiently. In this study, a photonic crystal grating (PCG) was used as a polarization-selective output coupler, and the power of the radially polarized laser reached 2.42 W with a slope efficiency of 45.9% and a polarization purity of 96%. The results reveal that the inclusion of the PCG mirror into the fiber laser are particularly promising for generating high-power radially polarized light efficiently in view of its many important applications. PMID:20596223

  13. Current treatments of acne: Medications, lights, lasers, and a novel 650-μs 1064-nm Nd: YAG laser.

    PubMed

    Gold, Michael H; Goldberg, David J; Nestor, Mark S

    2017-09-01

    The treatment of acne, especially severe acne, remains a challenge to dermatologists. Therapies include retinoids, antibiotics, hormones, lights, lasers, and various combinations of these modalities. Acne is currently considered a chronic rather than an adolescent condition. The appropriate treatment depends on the patient and the severity of disease. The purpose of this study was to review current therapies for acne of all severities and to introduce the 650-μs 1064-nm laser for the treatment of acne. © 2017 Wiley Periodicals, Inc.

  14. APPLICATIONS OF LASERS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Determination of reflection coefficients of mirrors using a mode-locked laser and a dissector

    NASA Astrophysics Data System (ADS)

    Apolonskiĭ, A. A.; Vinokurov, Nikolai A.; Zinin, É. I.; Ishchenko, P. I.; Kuklin, A. E.; Popik, V. M.; Sokolov, A. S.; Shchebetov, S. D.

    1992-09-01

    A method is described for determining the reflection coefficients of high-density mirrors, based on the use of a mode-locked laser and a sensitive detector with a fast time resolution. The laser light is transmitted through an optical resonator formed by the investigated mirrors. The measured delay in the decay of a light pulse gives the damping time of the optical resonator. This is related to its Q factor determined by the reflection coefficients of its mirrors.

  15. Optically pumped cerium-doped LiSrAlF{sub 6} and LiCaAlF{sub 6}

    DOEpatents

    Marshall, C.D.; Payne, S.A.; Krupke, W.F.

    1996-05-14

    Ce{sup 3+}-doped LiSrAlF{sub 6} crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF{sub 6} with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF{sub 6} type of chemical formula, e.g. Ce-doped LiCaAlF{sub 6} and LiSrGaF{sub 6}, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator. 10 figs.

  16. Optically pumped cerium-doped LiSrAlF.sub.6 and LiCaAlF.sub.6

    DOEpatents

    Marshall, Christopher D.; Payne, Stephen A.; Krupke, William F.

    1996-01-01

    Ce.sup.3+ -doped LiSrAlF.sub.6 crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF.sub.6 with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF.sub.6 type of chemical formula, e.g. Ce-doped LiCaAlF.sub.6 and LiSrGaF.sub.6, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator.

  17. Temperature issues with white laser diodes, calculation and approach for new packages

    NASA Astrophysics Data System (ADS)

    Lachmayer, Roland; Kloppenburg, Gerolf; Stephan, Serge

    2015-01-01

    Bright white light sources are of significant importance for automotive front lighting systems. Today's upper class systems mainly use HID or LED light sources. As a further step laser diode based systems offer a high luminance, efficiency and allow the realization of new dynamic and adaptive light functions and styling concepts. The use of white laser diode systems in automotive applications is still limited to laboratories and prototypes even though announcements of laser based front lighting systems have been made. But the environment conditions for vehicles and other industry sectors differ from laboratory conditions. Therefor a model of the system's thermal behavior is set up. The power loss of a laser diode is transported as thermal flux from the junction layer to the diode's case and on to the environment. Therefor its optical power is limited by the maximum junction temperature (for blue diodes typically 125 - 150 °C), the environment temperature and the diode's packaging with its thermal resistances. In a car's headlamp the environment temperature can reach up to 80 °C. While the difference between allowed case temperature and environment temperature is getting small or negative the relevant heat flux also becomes small or negative. In early stages of LED development similar challenges had to be solved. Adapting LED packages to the conditions in a vehicle environment lead to today's efficient and bright headlights. In this paper the need to transfer these results to laser diodes is shown by calculating the diodes lifetimes based on the presented model.

  18. HairMax LaserComb laser phototherapy device in the treatment of male androgenetic alopecia: A randomized, double-blind, sham device-controlled, multicentre trial.

    PubMed

    Leavitt, Matt; Charles, Glenn; Heyman, Eugene; Michaels, David

    2009-01-01

    The use of low levels of visible or near infrared light for reducing pain, inflammation and oedema, promoting healing of wounds, deeper tissue and nerves, and preventing tissue damage has been known for almost 40 years since the invention of lasers. The HairMax LaserComb is a hand-held Class 3R lower level laser therapy device that contains a single laser module that emulates 9 beams at a wavelength of 655 nm (+/-5%). The device uses a technique of parting the user's hair by combs that are attached to the device. This improves delivery of distributed laser light to the scalp. The combs are designed so that each of the teeth on the combs aligns with a laser beam. By aligning the teeth with the laser beams, the hair can be parted and the laser energy delivered to the scalp of the user without obstruction by the individual hairs on the scalp. The primary aim of the study was to assess the safety and effectiveness of the HairMax LaserComb laser phototherapy device in the promotion of hair growth and in the cessation of hair loss in males diagnosed with androgenetic alopecia (AGA). This double-blind, sham device-controlled, multicentre, 26-week trial randomized male patients with Norwood-Hamilton classes IIa-V AGA to treatment with the HairMax LaserComb or the sham device (2 : 1). The sham device used in the study was identical to the active device except that the laser light was replaced by a non-active incandescent light source. Of the 110 patients who completed the study, subjects in the HairMax LaserComb treatment group exhibited a significantly greater increase in mean terminal hair density than subjects in the sham device group (p < 0.0001). Consistent with this evidence for primary effectiveness, significant improvements in overall hair regrowth were demonstrated in terms of patients' subjective assessment (p < 0.015) at 26 weeks over baseline. The HairMax LaserComb was well tolerated with no serious adverse events reported and no statistical difference in adverse effects between the study groups. The results of this study suggest that the HairMax LaserComb is an effective, well tolerated and safe laser phototherapy device for the treatment of AGA in males.

  19. The Amateur Scientist.

    ERIC Educational Resources Information Center

    Walker, Jearl

    1981-01-01

    Describes several methods by which an amateur might prepare a laser light display in the home or the classroom. Methods described include the use of particles in lasers, filters, reflecting laser beams, vibration's effects on laser beams, rotating mirrors, and the use of prisms with laser beams. (DS)

  20. Laser light-scattering spectroscopy: a new application in the study of ciliary activity.

    PubMed Central

    Lee, W I; Verdugo, P

    1976-01-01

    A uniquely precise and simple method to study ciliary activity by laser light-scattering spectroscopy has been developed and validated. A concurrent study of the effect of Ca2+ on ciliary activity in vitro by laser scattering spectroscopy and high speed cinematography has demonstrated that this new method is simpler and as accurate and reproducible as the high speed film technique. PMID:963208

Top