Regulation of the alpha-glucuronidase-encoding gene ( aguA) from Aspergillus niger.
de Vries, R P; van de Vondervoort, P J I; Hendriks, L; van de Belt, M; Visser, J
2002-09-01
The alpha-glucuronidase gene aguA from Aspergillus niger was cloned and characterised. Analysis of the promoter region of aguA revealed the presence of four putative binding sites for the major carbon catabolite repressor protein CREA and one putative binding site for the transcriptional activator XLNR. In addition, a sequence motif was detected which differed only in the last nucleotide from the XLNR consensus site. A construct in which part of the aguA coding region was deleted still resulted in production of a stable mRNA upon transformation of A. niger. The putative XLNR binding sites and two of the putative CREA binding sites were mutated individually in this construct and the effects on expression were examined in A. niger transformants. Northern analysis of the transformants revealed that the consensus XLNR site is not actually functional in the aguA promoter, whereas the sequence that diverges from the consensus at a single position is functional. This indicates that XLNR is also able to bind to the sequence GGCTAG, and the XLNR binding site consensus should therefore be changed to GGCTAR. Both CREA sites are functional, indicating that CREA has a strong influence on aguA expression. A detailed expression analysis of aguA in four genetic backgrounds revealed a second regulatory system involved in activation of aguA gene expression. This system responds to the presence of glucuronic and galacturonic acids, and is not dependent on XLNR.
The LacI family protein GlyR3 co-regulates the celC operon and manB in Clostridium thermocellum
Choi, Jinlyung; Klingeman, Dawn M.; Brown, Steven D.; ...
2017-06-24
In this paper, we demonstrate that the GlyR3 protein mediates the regulation of manB. We first identify putative GlyR3 binding sites within or just upstream of the coding regions of manB and celT. Using an electrophoretic mobility shift assay (EMSA), we determined that a higher concentration of GlyR3 is required to effectively bind to the putative manB site in comparison to the celC site. Neither the putative celT site nor random DNA significantly binds GlyR3. While laminaribiose interfered with GlyR3 binding to the celC binding site, binding to the manB site was unaffected. In the presence of laminaribiose, in vivomore » transcription of the celC–glyR3–licA gene cluster increases, while manB expression is repressed, compared to in the absence of laminaribiose, consistent with the results from the EMSA. An in vitro transcription assay demonstrated that GlyR3 and laminaribiose interactions were responsible for the observed patters of in vivo transcription.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, M.; Yamamura, H.I.; Roeske, W.R.
The binding and regulation of selected muscarinic agonists to putative subtypes in rat cerebral cortex and heart were studied. Parallel inhibition studies of (/sup 3/H)pirenzepine ((/sup 3/H)PZ) and (-)-(/sup 3/H)quinuclidinylbenzilate ((-)-(/sup 3/H)QNB)-labeled membranes were done with and without 30 microM guanyl-5'-yl imidodiphosphate (Gpp(NH)p) at 25 degrees C in 10 mM Na-K-phosphate buffer which enhances PZ binding affinity and in modified Krebs-phosphate buffer, which mimics physiological conditions. Classical agonists such as carbachol, oxotremorine and acetylcholine inhibited (-)-(/sup 3/H)QNB binding to membranes with shallow Hill values (nH less than 1), were better fit to a 2-state model, were Gpp(NH)p-regulated and showed lowermore » affinity in modified Krebs-phosphate buffer than in 10 mM Na-K-phosphate buffer. Some agonists were not significantly better fit to a 2-state model in (/sup 3/H)PZ-labeled cortical membranes, especially in 10 mM Na-K-phosphate buffer. Whereas putative M1 and M2 binding sites distinguished by PZ possessed multiple agonist affinity states, as judged by carbachol, and agonist binding to (/sup 3/H)PZ-labeled sites were Gpp(NH)p modulated, the partial agonist pilocarpine and nonclassical agonist McN-A-343 (3-(m-chlorophenylcarbamoyloxy)-2-butynyl trimethylammonium chloride) showed little Gpp(NH)p-induced shift in (/sup 3/H)PZ-labeled cortical membranes in physiological conditions. Agonist binding to (-)-(/sup 3/H)QNB-labeled putative M2 cardiac sites was more sensitive to Gpp(NH)p than (-)-(/sup 3/H)QNB-labeled cortical sites. Carbachol and acetylcholine showed significant selectivity for putative M2 sites.« less
SITEHOUND-web: a server for ligand binding site identification in protein structures.
Hernandez, Marylens; Ghersi, Dario; Sanchez, Roberto
2009-07-01
SITEHOUND-web (http://sitehound.sanchezlab.org) is a binding-site identification server powered by the SITEHOUND program. Given a protein structure in PDB format SITEHOUND-web will identify regions of the protein characterized by favorable interactions with a probe molecule. These regions correspond to putative ligand binding sites. Depending on the probe used in the calculation, sites with preference for different ligands will be identified. Currently, a carbon probe for identification of binding sites for drug-like molecules, and a phosphate probe for phosphorylated ligands (ATP, phoshopeptides, etc.) have been implemented. SITEHOUND-web will display the results in HTML pages including an interactive 3D representation of the protein structure and the putative sites using the Jmol java applet. Various downloadable data files are also provided for offline data analysis.
Structural analysis of the receptor binding domain of botulinum neurotoxin serotype D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yanfeng; Buchko, Garry W.; Qin, Lin
2010-10-28
Botulinum neurotoxins (BoNTs) are the most toxic proteins known. The mechanism for entry into neuronal cells for serotypes A, B, E, F, and G involves a well understood dual receptor (protein and ganglioside) process, however, the mechanism of entry for serotypes C and D remains unclear. To provide structural insights into how BoNT/D enters neuronal cells, the crystal structure of the receptor binding domain (S863-E1276) for this serotype (BoNT/D-HCR) was determined at 1.65 Å resolution. While BoNT/D-HCR adopts an overall fold similar to that observed in other known BoNT HCRs, several major structural differences are present. These structural differences aremore » located at, or near, putative receptor binding sites and may be responsible for BoNT/D host preferences. Two loops, S1195-I1204 and K1236-N1244, located on both sides of the putative protein receptor binding pocket, are displaced >10 Å relative to the corresponding residues in the crystal structures of BoNT/B and G. Obvious clashes were observed in the putative protein receptor binding site when the BoNT/B protein receptor synaptotagmin II was modeled into the BoNT/D-HCR structure. Although a ganglioside binding site has never been unambiguously identified in BoNT/D-HCR, a shallow cavity in an analogous location to the other BoNT serotypes HCR domains is observed in BoNT/D-HCR that has features compatible with membrane binding. A portion of a loop near the putative receptor binding site, K1236-N1244, is hydrophobic and solvent-exposed and may directly bind membrane lipids. Liposome-binding experiments with BoNT/D-HCR demonstrate that this membrane lipid may be phosphatidylethanolamine.« less
Structural Analysis of the Receptor Binding Domain of Botulinum Neurotoxin Serotype D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y Zhang; G Buchko; L Qin
2011-12-31
Botulinum neurotoxins (BoNTs) are the most toxic proteins known. The mechanism for entry into neuronal cells for serotypes A, B, E, F, and G involves a well understood dual receptor (protein and ganglioside) process, however, the mechanism of entry for serotypes C and D remains unclear. To provide structural insights into how BoNT/D enters neuronal cells, the crystal structure of the receptor binding domain (S863-E1276) for this serotype (BoNT/D-HCR) was determined at 1.65{angstrom} resolution. While BoNT/D-HCR adopts an overall fold similar to that observed in other known BoNT HCRs, several major structural differences are present. These structural differences are locatedmore » at, or near, putative receptor binding sites and may be responsible for BoNT/D host preferences. Two loops, S1195-I1204 and K1236-N1244, located on both sides of the putative protein receptor binding pocket, are displaced >10{angstrom} relative to the corresponding residues in the crystal structures of BoNT/B and G. Obvious clashes were observed in the putative protein receptor binding site when the BoNT/B protein receptor synaptotagmin II was modeled into the BoNT/D-HCR structure. Although a ganglioside binding site has never been unambiguously identified in BoNT/D-HCR, a shallow cavity in an analogous location to the other BoNT serotypes HCR domains is observed in BoNT/D-HCR that has features compatible with membrane binding. A portion of a loop near the putative receptor binding site, K1236-N1244, is hydrophobic and solvent-exposed and may directly bind membrane lipids. Liposome-binding experiments with BoNT/D-HCR demonstrate that this membrane lipid may be phosphatidylethanolamine.« less
Galka, Marek M.; Rajagopalan, Nandhakishore; Buhrow, Leann M.; Nelson, Ken M.; Switala, Jacek; Cutler, Adrian J.; Palmer, David R. J.; Loewen, Peter C.; Abrams, Suzanne R.; Loewen, Michele C.
2015-01-01
Abscisic acid ((+)-ABA) is a phytohormone involved in the modulation of developmental processes and stress responses in plants. A chemical proteomics approach using an ABA mimetic probe was combined with in vitro assays, isothermal titration calorimetry (ITC), x-ray crystallography and in silico modelling to identify putative (+)-ABA binding-proteins in crude extracts of Arabidopsis thaliana. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was identified as a putative ABA-binding protein. Radiolabelled-binding assays yielded a Kd of 47 nM for (+)-ABA binding to spinach Rubisco, which was validated by ITC, and found to be similar to reported and experimentally derived values for the native ribulose-1,5-bisphosphate (RuBP) substrate. Functionally, (+)-ABA caused only weak inhibition of Rubisco catalytic activity (Ki of 2.1 mM), but more potent inhibition of Rubisco activation (Ki of ~ 130 μM). Comparative structural analysis of Rubisco in the presence of (+)-ABA with RuBP in the active site revealed only a putative low occupancy (+)-ABA binding site on the surface of the large subunit at a location distal from the active site. However, subtle distortions in electron density in the binding pocket and in silico docking support the possibility of a higher affinity (+)-ABA binding site in the RuBP binding pocket. Overall we conclude that (+)-ABA interacts with Rubisco. While the low occupancy (+)-ABA binding site and weak non-competitive inhibition of catalysis may not be relevant, the high affinity site may allow ABA to act as a negative effector of Rubisco activation. PMID:26197050
Galka, Marek M; Rajagopalan, Nandhakishore; Buhrow, Leann M; Nelson, Ken M; Switala, Jacek; Cutler, Adrian J; Palmer, David R J; Loewen, Peter C; Abrams, Suzanne R; Loewen, Michele C
2015-01-01
Abscisic acid ((+)-ABA) is a phytohormone involved in the modulation of developmental processes and stress responses in plants. A chemical proteomics approach using an ABA mimetic probe was combined with in vitro assays, isothermal titration calorimetry (ITC), x-ray crystallography and in silico modelling to identify putative (+)-ABA binding-proteins in crude extracts of Arabidopsis thaliana. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was identified as a putative ABA-binding protein. Radiolabelled-binding assays yielded a Kd of 47 nM for (+)-ABA binding to spinach Rubisco, which was validated by ITC, and found to be similar to reported and experimentally derived values for the native ribulose-1,5-bisphosphate (RuBP) substrate. Functionally, (+)-ABA caused only weak inhibition of Rubisco catalytic activity (Ki of 2.1 mM), but more potent inhibition of Rubisco activation (Ki of ~ 130 μM). Comparative structural analysis of Rubisco in the presence of (+)-ABA with RuBP in the active site revealed only a putative low occupancy (+)-ABA binding site on the surface of the large subunit at a location distal from the active site. However, subtle distortions in electron density in the binding pocket and in silico docking support the possibility of a higher affinity (+)-ABA binding site in the RuBP binding pocket. Overall we conclude that (+)-ABA interacts with Rubisco. While the low occupancy (+)-ABA binding site and weak non-competitive inhibition of catalysis may not be relevant, the high affinity site may allow ABA to act as a negative effector of Rubisco activation.
Absence of specific binding of several putative neuro-transmitters to human fibroblasts.
Berrettini, W H; Nadi, N S; Gershon, E S
1983-01-01
Fibroblasts were examined for specific binding sites of ten putative neurotransmitters to determine whether this tissue could be used in receptor studies of neurologic and psychiatric disorders. Stereospecific saturable binding was not found for any of the ligands: arginine vasopressin, neurotensin, somatostatin, angiotensin II, thyrotropin-releasing hormone (TRH), alpha-bungarotoxin, LSD, dihydromorphine, muscimol and spiperone.
Putative melatonin receptors in a human biological clock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reppert, S.M.; Weaver, D.R.; Rivkees, S.A.
In vitro autoradiography with /sup 125/I-labeled melatonin was used to examine melatonin binding sites in human hypothalamus. Specific /sup 125/I-labeled melatonin binding was localized to the suprachiasmatic nuclei, the site of a putative biological clock, and was not apparent in other hypothalamic regions. Specific /sup 125/I-labeled melatonin binding was consistently found in the suprachiasmatic nuclei of hypothalami from adults and fetuses. Densitometric analysis of competition experiments with varying concentrations of melatonin showed monophasic competition curves, with comparable half-maximal inhibition values for the suprachiasmatic nuclei of adults (150 picomolar) and fetuses (110 picomolar). Micromolar concentrations of the melatonin agonist 6-chloromelatonin completelymore » inhibited specific /sup 125/I-labeled melatonin binding, whereas the same concentrations of serotonin and norepinephrine caused only a partial reduction in specific binding. The results suggest that putative melatonin receptors are located in a human biological clock.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norman, A.B.; Creese, I.
1986-03-01
The EC/sub 50/ of EEDQ for the inhibition of (/sup 3/H)(-)QNB binding in vitro was approximately 3 fold lower for homogenates of hippocampus than brainstem (containing predominantly putative M/sub 1/ and M/sub 2/ muscarinic receptor subtypes respectively). Furthermore, the time-dependent loss of (/sup 3/H)(-)QNB binding produced by 100 ..mu..M EEDQ was faster in homogenates of hippocampus than brainstem. Administration of EEDQ (20 mg/kg i.p.) irreversibly reduced the Bmax of (/sup 3/H)(-)QNB binding by 56% and 34% in hippocampus and brainstem respectively. Pirenzepine competition for the remaining (/sup 3/H)(-)QNB binding sites following in vitro and in vivo treatment with EEDQ revealedmore » a significant increase in the proportion of (/sup 3/H)(-)QNB binding sites having low affinity for pirenzepine (M/sub 2/ receptors), indicating that the high affinity pirenzepine binding sites (M/sub 1/ receptors) were selectively and irreversibly lost. Thus, EEDQ discriminates the same putative M/sub 1/ and M/sub 2/ muscarinic receptor subtypes that are discriminated by pirenzepine. The reduction of (/sup 3/H)(-)QNB binding could be prevented both in vitro and in vivo by atropine or scopolamine. These data may indicate differences in the accessibility of these putative receptor subtypes to EEDQ or, alternatively, differences in the availability of carboxyl groups able to interact with EEDQ at the ligand recognition site of M/sub 1/ and M/sub 2/ muscarinic receptors.« less
Pharmacophore screening of the protein data bank for specific binding site chemistry.
Campagna-Slater, Valérie; Arrowsmith, Andrew G; Zhao, Yong; Schapira, Matthieu
2010-03-22
A simple computational approach was developed to screen the Protein Data Bank (PDB) for putative pockets possessing a specific binding site chemistry and geometry. The method employs two commonly used 3D screening technologies, namely identification of cavities in protein structures and pharmacophore screening of chemical libraries. For each protein structure, a pocket finding algorithm is used to extract potential binding sites containing the correct types of residues, which are then stored in a large SDF-formatted virtual library; pharmacophore filters describing the desired binding site chemistry and geometry are then applied to screen this virtual library and identify pockets matching the specified structural chemistry. As an example, this approach was used to screen all human protein structures in the PDB and identify sites having chemistry similar to that of known methyl-lysine binding domains that recognize chromatin methylation marks. The selected genes include known readers of the histone code as well as novel binding pockets that may be involved in epigenetic signaling. Putative allosteric sites were identified on the structures of TP53BP1, L3MBTL3, CHEK1, KDM4A, and CREBBP.
Pirenzepine binding to membrane-bound, solubilized and purified muscarinic receptor subtypes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumgold, J.
1986-05-01
Muscarinic receptors were purified to near-homogeneity from bovine cortex, an area rich in the putative M1 subtype, and from bovine pons/medulla, an area rich in the putative M2 subtype. In both cases, the receptors were solubilized in digitonin and purified over an affinity column. Both the cortical and pons/medulla preparations yielded receptor proteins of 70,000 daltons. Pirenzepine binding was deduced from its competition with /sup 3/H-N-methyl scopolamine. The binding of pirenzepine to membrane-bound receptors from cortex was best described by a two site model, with approximately half the sites having a Ki of 6.4 x 10/sup -9/ M and themore » remaining sites having a Ki of 3.5 x 10/sup -7/ M. Membrane-bound receptors from pons/medulla bound pirenzepine according to a one-site model with a Ki of 1.1 x 10/sup -7/ M. After solubilization the two-site binding of cortical receptors became a one-site binding, Ki = 1.1 x 10/sup -7/M. This value was still five-fold lower than that of soluble receptors from pons/medulla. After purification however the affinity of pirenzepine for the pons/medulla receptor increased so that the two putative subtypes bound pirenzepine with approximately the same affinity. These findings suggest that the different pirenzepine binding characteristics used to define muscarinic receptor subtypes are not inherent in the receptor protein itself but may be due to coupling factors associated with the receptor.« less
Jacobsen, Jacob P R; Plenge, Per; Sachs, Benjamin D; Pehrson, Alan L; Cajina, Manuel; Du, Yunzhi; Roberts, Wendy; Rudder, Meghan L; Dalvi, Prachiti; Robinson, Taylor J; O'Neill, Sharon P; Khoo, King S; Morillo, Connie Sanchez; Zhang, Xiaodong; Caron, Marc G
2014-12-01
Escitalopram appears to be a superior antidepressant to racemic citalopram. It has been hypothesized that binding of R-citalopram to the serotonin transporter (SERT) antagonizes escitalopram binding to and inhibition of the SERT, there by curtailing the elevation of extracellular 5-hydroxytryptamine (5-HTExt), and hence anti-depressant efficacy. Further, it has been suggested that a putative allosteric binding site is important for binding of escitalopram to the primary, orthosteric, site, and for R-citalopram's inhibition here of. Primary: Investigate at the human (h)SERT, at clinical relevant doses, whether R-citalopram antagonizes escitalopram-induced 5-HTExt elevation. Secondary: Investigate whether abolishing the putative allosteric site affects escitalopram-induced 5-HTExt elevation and/or modulates the effect of R-citalopram. Recombinant generation of hSERT transgenic mice; in vivo microdialysis; SERT binding; pharmacokinetics; 5-HT sensitive behaviors (tail suspension, marble burying). We generated mice expressing either the wild-type human SERT (hSERT(WT)) or hSERT carrying amino acid substitutions (A505V, L506F, I507L, S574T and I575T) collectively abolishing the putative allosteric site (hSERT(ALI/VFL+SI/TT)). One mg/kg escitalopram yielded clinical relevant plasma levels and brain levels consistent with therapeutic SERT occupancy. The hSERT mice showed normal basal 5-HTExt levels. Escitalopram-induced 5-HTExt elevation was not decreased by R-citalopram co-treatment and was unaffected by loss of the allosteric site. The behavioral effects of the clinically relevant escitalopram dose were small and tended to be enhanced by R-citalopram co-administration. We find no evidence that R-citalopram directly antagonizes escitalopram or that the putative allosteric site is important for hSERT inhibition by escitalopram.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moses, Alan M.; Chiang, Derek Y.; Pollard, Daniel A.
2004-10-28
We introduce a method (MONKEY) to identify conserved transcription-factor binding sites in multispecies alignments. MONKEY employs probabilistic models of factor specificity and binding site evolution, on which basis we compute the likelihood that putative sites are conserved and assign statistical significance to each hit. Using genomes from the genus Saccharomyces, we illustrate how the significance of real sites increases with evolutionary distance and explore the relationship between conservation and function.
Jacobsen, Jacob P.R.; Plenge, Per; Sachs, Benjamin D.; Pehrson, Alan L.; Cajina, Manuel; Du, Yunzhi; Roberts, Wendy; Rudder, Meghan L.; Dalvi, Prachiti; Robinson, Taylor J.; O’Neill, Sharon P.; Khoo, King S.; Morillo, Connie Sanchez; Zhang, Xiaodong; Caron, Marc G.
2015-01-01
Rationale Escitalopram is a superior antidepressant to racemic citalopram. It has been hypothesized that binding of R-citalopram to the serotonin transporter (SERT) antagonizes escitalopram binding to and inhibition of the SERT, curtailing the elevation of extracellular 5-hydroxytryptamine (5-HTExt), and antidepressant efficacy. Further, it has been suggested that a putative allosteric binding site is important for binding of escitalopram to the primary, orthosteric, site, and for R-citalopram’s inhibition hereof. Objectives Primary: Investigate at the human (h)SERT, at clinical relevant doses, whether R-citalopram antagonizes escitalopram-induced 5-HTExt elevation. Secondary: Investigate whether abolishing the putative allosteric site affects escitalopram-induced 5-HTExt elevation and/or modulates the effect of R-citalopram. Methods Recombinant technology; in vivo microdialysis; receptor binding; pharmacokinetics; 5-HT sensitive behaviors (tail suspension, marble burying). Results We generated mice expressing either the wild-type human SERT (hSERTWT) or hSERT carrying amino acid substitutions (A505V, L506F, I507L, S574T and I575T) collectively abolishing the putative allosteric site (hSERTALI/VFL+SI/TT). One mg/kg escitalopram yielded clinical relevant plasma levels and brain levels consistent with therapeutic SERT occupancy. Importantly, escitalopram-induced 5-HTExt elevation was not decreased by R-citalopram co-treatment. Further, escitalopram-induced 5-HTExt elevation was not affected by loss of the allosteric site. The behavioral effects of the clinically relevant escitalopram dose were small, tending to be enhanced by R-citalopram co-administration. Conclusions We find no evidence that R-citalopram directly antagonizes escitalopram or that the putative allosteric site is important for hSERT inhibition by escitalopram. Our findings points to mechanisms for R-citalopram antagonism of escitalopram’s antidepressant action other than direct antagonistic binding interactions at the hSERT. PMID:24810106
Tumour suppressor protein p53 regulates the stress activated bilirubin oxidase cytochrome P450 2A6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Hao, E-mail: hao.hu1@uqconnect.edu.au; Yu, Ting, E-mail: t.yu2@uq.edu.au; Arpiainen, Satu, E-mail: Satu.Juhila@orion.fi
2015-11-15
Human cytochrome P450 (CYP) 2A6 enzyme has been proposed to play a role in cellular defence against chemical-induced oxidative stress. The encoding gene is regulated by various stress activated transcription factors. This paper demonstrates that p53 is a novel transcriptional regulator of the gene. Sequence analysis of the CYP2A6 promoter revealed six putative p53 binding sites in a 3 kb proximate promoter region. The site closest to transcription start site (TSS) is highly homologous with the p53 consensus sequence. Transfection with various stepwise deletions of CYP2A6-5′-Luc constructs – down to − 160 bp from the TSS – showed p53 responsivenessmore » in p53 overexpressed C3A cells. However, a further deletion from − 160 to − 74 bp, including the putative p53 binding site, totally abolished the p53 responsiveness. Electrophoretic mobility shift assay with a probe containing the putative binding site showed specific binding of p53. A point mutation at the binding site abolished both the binding and responsiveness of the recombinant gene to p53. Up-regulation of the endogenous p53 with benzo[α]pyrene – a well-known p53 activator – increased the expression of the p53 responsive positive control and the CYP2A6-5′-Luc construct containing the intact p53 binding site but not the mutated CYP2A6-5′-Luc construct. Finally, inducibility of the native CYP2A6 gene by benzo[α]pyrene was demonstrated by dose-dependent increases in CYP2A6 mRNA and protein levels along with increased p53 levels in the nucleus. Collectively, the results indicate that p53 protein is a regulator of the CYP2A6 gene in C3A cells and further support the putative cytoprotective role of CYP2A6. - Highlights: • CYP2A6 is an immediate target gene of p53. • Six putative p53REs located on 3 kb proximate CYP2A6 promoter region. • The region − 160 bp from TSS is highly homologous with the p53 consensus sequence. • P53 specifically bind to the p53RE on the − 160 bp region. • HNF4α may interact with p53 in regulating CYP2A6 expression.« less
Simon, S; Le Goff, A; Frobert, Y; Grassi, J; Massoulié, J
1999-09-24
We investigated the target sites of three inhibitory monoclonal antibodies on Electrophorus acetylcholinesterase (AChE). Previous studies showed that Elec-403 and Elec-410 are directed to overlapping but distinct epitopes in the peripheral site, at the entrance of the catalytic gorge, whereas Elec-408 binds to a different region. Using Electrophorus/rat AChE chimeras, we identified surface residues that differed between sensitive and insensitive AChEs: the replacement of a single Electrophorus residue by its rat homolog was able to abolish binding and inhibition, for each antibody. Reciprocally, binding and inhibition by Elec-403 and by Elec-410 could be conferred to rat AChE by the reverse mutation. Elec-410 appears to bind to one side of the active gorge, whereas Elec-403 covers its opening, explaining why the AChE-Elec-410 complex reacts faster than the AChE-Elec-403 or AChE-fasciculin complexes with two active site inhibitors, m-(N,N, N-trimethyltammonio)trifluoro-acetophenone and echothiophate. Elec-408 binds to the region of the putative "back door," distant from the peripheral site, and does not interfere with the access of inhibitors to the active site. The binding of an antibody to this novel regulatory site may inhibit the enzyme by blocking the back door or by inducing a conformational distortion within the active site.
Wein, Thomas; Höfner, Georg; Rappenglück, Sebastian; Sichler, Sonja; Niessen, Karin V; Seeger, Thomas; Worek, Franz; Thiermann, Horst; Wanner, Klaus T
2018-09-01
Irreversible inhibition of the acetylcholine esterase upon intoxication with organophosphorus compounds leads to an accumulation of acetylcholine in the synaptic cleft and a subsequent desensitization of nicotinic acetylcholine receptors which may ultimately result in respiratory failure. The bispyridinium compound MB327 has been found to restore functional activity of nAChR thus representing a promising starting point for the development of new drugs for the treatment of organophosphate poisoning. In order to optimize the resensitizing effect of MB327 on nAChR, it would be very helpful to know the MB327 specific binding site to apply structure based molecular modeling. The binding site for MB327 at the nAChR is not known and so far goal of speculations, but it has been shown that MB327 does not bind to the orthosteric acetylcholine binding site. We have used docking calculations to screen the surface of nAChR for possible binding sites of MB327. The results indicate that at least two potential binding sites for MB327 at nAChR are present inside the channel pore. In these binding sites, MB327 intercalates between the γ-α and β-δ subunits of nAChR, respectively. Both putative MB327 binding sites show an unsymmetrical distribution of surrounding hydrophilic and lipophilic amino acids. This suggests that substitution of MB327-related bispyridinium compounds on one of the two pyridinium rings with polar substituents should have a favorable effect on the pharmacological function. Copyright © 2017 Elsevier B.V. All rights reserved.
Cholesterol-Binding Sites in GIRK Channels: The Devil is in the Details.
Rosenhouse-Dantsker, Avia
2018-01-01
In recent years, it has become evident that cholesterol plays a direct role in the modulation of a variety of ion channels. In most cases, cholesterol downregulates channel activity. In contrast, our earlier studies have demonstrated that atrial G protein inwardly rectifying potassium (GIRK) channels are upregulated by cholesterol. Recently, we have shown that hippocampal GIRK currents are also upregulated by cholesterol. A combined computational-experimental approach pointed to putative cholesterol-binding sites in the transmembrane domain of the GIRK2 channel, the primary subunit in hippocampal GIRK channels. In particular, the principal cholesterol-binding site was located in the center of the transmembrane domain in between the inner and outer α-helices of 2 adjacent subunits. Further studies pointed to a similar cholesterol-binding site in GIRK4, a major subunit in atrial GIRK channels. However, a close look at a sequence alignment of the transmembrane helices of the 2 channels reveals surprising differences among the residues that interact with the cholesterol molecule in these 2 channels. Here, we compare the residues that form putative cholesterol-binding sites in GIRK2 and GIRK4 and discuss the similarities and differences among them.
Osato, Naoki
2018-01-19
Transcriptional target genes show functional enrichment of genes. However, how many and how significantly transcriptional target genes include functional enrichments are still unclear. To address these issues, I predicted human transcriptional target genes using open chromatin regions, ChIP-seq data and DNA binding sequences of transcription factors in databases, and examined functional enrichment and gene expression level of putative transcriptional target genes. Gene Ontology annotations showed four times larger numbers of functional enrichments in putative transcriptional target genes than gene expression information alone, independent of transcriptional target genes. To compare the number of functional enrichments of putative transcriptional target genes between cells or search conditions, I normalized the number of functional enrichment by calculating its ratios in the total number of transcriptional target genes. With this analysis, native putative transcriptional target genes showed the largest normalized number of functional enrichments, compared with target genes including 5-60% of randomly selected genes. The normalized number of functional enrichments was changed according to the criteria of enhancer-promoter interactions such as distance from transcriptional start sites and orientation of CTCF-binding sites. Forward-reverse orientation of CTCF-binding sites showed significantly higher normalized number of functional enrichments than the other orientations. Journal papers showed that the top five frequent functional enrichments were related to the cellular functions in the three cell types. The median expression level of transcriptional target genes changed according to the criteria of enhancer-promoter assignments (i.e. interactions) and was correlated with the changes of the normalized number of functional enrichments of transcriptional target genes. Human putative transcriptional target genes showed significant functional enrichments. Functional enrichments were related to the cellular functions. The normalized number of functional enrichments of human putative transcriptional target genes changed according to the criteria of enhancer-promoter assignments and correlated with the median expression level of the target genes. These analyses and characters of human putative transcriptional target genes would be useful to examine the criteria of enhancer-promoter assignments and to predict the novel mechanisms and factors such as DNA binding proteins and DNA sequences of enhancer-promoter interactions.
Identification of Candidate Transcription Factor Binding Sites in the Cattle Genome
Bickhart, Derek M.; Liu, George E.
2013-01-01
A resource that provides candidate transcription factor binding sites (TFBSs) does not currently exist for cattle. Such data is necessary, as predicted sites may serve as excellent starting locations for future omics studies to develop transcriptional regulation hypotheses. In order to generate this resource, we employed a phylogenetic footprinting approach—using sequence conservation across cattle, human and dog—and position-specific scoring matrices to identify 379,333 putative TFBSs upstream of nearly 8000 Mammalian Gene Collection (MGC) annotated genes within the cattle genome. Comparisons of our predictions to known binding site loci within the PCK1, ACTA1 and G6PC promoter regions revealed 75% sensitivity for our method of discovery. Additionally, we intersected our predictions with known cattle SNP variants in dbSNP and on the Illumina BovineHD 770k and Bos 1 SNP chips, finding 7534, 444 and 346 overlaps, respectively. Due to our stringent filtering criteria, these results represent high quality predictions of putative TFBSs within the cattle genome. All binding site predictions are freely available at http://bfgl.anri.barc.usda.gov/BovineTFBS/ or http://199.133.54.77/BovineTFBS. PMID:23433959
Wright, J F; Pernollet, M; Reboul, A; Aude, C; Colomb, M G
1992-05-05
Tetanus toxin was shown to contain a metal-binding site for zinc and copper. Equilibrium dialysis binding experiments using 65Zn indicated an association constant of 9-15 microM, with one zinc-binding site/toxin molecule. The zinc-binding site was localized to the toxin light chain as determined by binding of 65Zn to the light chain but not to the heavy chain after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transfer to Immobilon membranes. Copper was an efficient inhibitor of 65Zn binding to tetanus toxin and caused two peptide bond cleavages in the toxin light chain in the presence of ascorbate. These metal-catalyzed oxidative cleavages were inhibited by the presence of zinc. Partial characterization of metal-catalyzed oxidative modifications of a peptide based on a putative metal-binding site (HELIH) in the toxin light chain was used to map the metal-binding site in the protein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Biaoyang; Nasir, J.; Kalchman, M.A.
1995-02-10
We have previously cloned and characterized the murine homologue of the Huntington disease (HD) gene and shown that it maps to mouse chromosome 5 within a region of conserved synteny with human chromosome 4p16.3. Here we present a detailed comparison of the sequence of the putative promoter and the organization of the 5{prime} genomic region of the murine (Hdh) and human HD genes encompassing the first five exons. We show that in this region these two genes share identical exon boundaries, but have different-size introns. Two dinucleotide (CT) and one trinucleotide intronic polymorphism in Hdh and an intronic CA polymorphismmore » in the HD gene were identified. Comparison of 940-bp sequence 5{prime} to the putative translation start site reveals a highly conserved region (78.8% nucleotide identity) between Hdh and the HD gene from nucleotide -56 to -206 (of Hdh). Neither Hdh nor the HD gene have typical TATA or CCAAT elements, but both show one putative AP2 binding site and numerous potential Sp1 binding sites. The high sequence identity between Hdh and the HD gene for approximately 200 bp 5{prime} to the putative translation start site indicates that these sequences may play a role in regulating expression of the Huntington disease gene. 30 refs., 4 figs., 2 tabs.« less
2013-01-01
Background Polycomb Repressive Complex 2 (PRC2) is an essential regulator of gene expression that maintains genes in a repressed state by marking chromatin with trimethylated Histone H3 lysine 27 (H3K27me3). In Arabidopsis, loss of PRC2 function leads to pleiotropic effects on growth and development thought to be due to ectopic expression of seed and embryo-specific genes. While there is some understanding of the mechanisms by which specific genes are targeted by PRC2 in animal systems, it is still not clear how PRC2 is recruited to specific regions of plant genomes. Results We used ChIP-seq to determine the genome-wide distribution of hemagglutinin (HA)-tagged FERTLIZATION INDEPENDENT ENDOSPERM (FIE-HA), the Extra Sex Combs homolog protein present in all Arabidopsis PRC2 complexes. We found that the FIE-HA binding sites co-locate with a subset of the H3K27me3 sites in the genome and that the associated genes were more likely to be de-repressed in mutants of PRC2 components. The FIE-HA binding sites are enriched for three sequence motifs including a putative GAGA factor binding site that is also found in Drosophila Polycomb Response Elements (PREs). Conclusions Our results suggest that PRC2 binding sites in plant genomes share some sequence features with Drosophila PREs. However, unlike Drosophila PREs which are located in promoters and devoid of H3K27me3, Arabidopsis FIE binding sites tend to be in gene coding regions and co-localize with H3K27me3. PMID:24001316
Design and synthesis of inositolphosphoglycan putative insulin mediators.
López-Prados, Javier; Cuevas, Félix; Reichardt, Niels-Christian; de Paz, José-Luis; Morales, Ezequiel Q; Martín-Lomas, Manuel
2005-03-07
The binding modes of a series of molecules, containing the glucosamine (1-->6) myo-inositol structural motif, into the ATP binding site of the catalytic subunit of cAMP-dependent protein kinase (PKA) have been analysed using molecular docking. These calculations predict that the presence of a phosphate group at the non-reducing end in pseudodisaccharide and pseudotrisaccharide structures properly orientate the molecule into the binding site and that pseudotrisaccharide structures present the best shape complementarity. Therefore, pseudodisaccharides and pseudotrisaccharides have been synthesised from common intermediates using effective synthetic strategies. On the basis of this synthetic chemistry, the feasibility of constructing small pseudotrisaccharide libraries on solid-phase using the same intermediates has been explored. The results from the biological evaluation of these molecules provide additional support to an insulin-mediated signalling system which involves the intermediacy of inositolphosphoglycans as putative insulin mediators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dam, T.V.; Takeda, Y.; Krause, J.E.
1990-01-01
The presence of N-terminally extended forms of neurokinin A has recently been reported in the mammalian brain. Among them, gamma-preprotachykinin-(72-92)-peptide amide (gamma-PPT-(72-92)-NH2), a peptide derived by posttranslational processing of gamma-preprotachykinin, is most prominent. We report here that this peptide most likely acts on neurokinin-2 receptor sites since neurokinin A (a putative neurokinin-2 agonist) and gamma-PPT-(72-92)-NH2 are potent competitors of 125I-labeled gamma-PPT-(72-92)-NH2 binding whereas selective neurokinin-1 and -3 agonists are not. Moreover, the distribution of 125I-labeled gamma-PPT-(72-92)-NH2 and 125I-labeled neurokinin A binding sites are very similar in rat brain. On the other hand, 125I-labeled Bolton-Hunter-substance P (a neurokinin-1 ligand) and 125I-labeledmore » Bolton-Hunter-eledoisin (a neurokinin-3 ligand) binding sites are differentially located in this tissue. Thus, it appears that gamma-PPT-(72-92)-NH2 binds to neurokinin-2 receptors and should be considered as a putative endogenous ligand for this receptor class.« less
Ceelie, H; Spaargaren-Van Riel, C C; De Jong, M; Bertina, R M; Vos, H L
2003-08-01
Prothrombin is a key component in blood coagulation. Overexpression of prothrombin leads to an increased risk of venous thrombosis. Therefore, the study of the transcriptional regulation of the prothrombin gene may help to identify mechanisms of overexpression. The aim of our study was to localize the regions within the prothrombin enhancer responsible for its activity, to identify the proteins binding to these regions, and to establish their functional importance. We constructed a set of prothrombin promoter 5' deletion constructs containing the firefly luciferase reporter gene, which were transiently transfected in HepG2, HuH7 and HeLa cells. Putative transcription factor (TF) binding sites were evaluated by electrophoretic mobility shift assays. The functional importance of each TF binding site was evaluated by site directed mutagenesis and transient transfection of the mutant constructs. We confirmed the major contribution of the enhancer region to the transcriptional activity of the prothrombin promoter. Analysis of this region revealed putative binding sites for hepatocyte nuclear factor HNF4, HNF3-beta and specificity protein(Sp)1. We identified six different TFs binding to three evolutionary conserved sites in the enhancer: HNF4-alpha (site 1), HNF1-alpha, HNF3-beta and an as yet unidentified TF (site 2) and the ubiquitously expressed TFs Sp1 and Sp3 (site 3). Mutagenesis studies showed that loss of binding of HNF3-beta resulted in a considerable decrease of enhancer activity, whereas loss of HNF4-alpha or Sp1/Sp3 resulted in milder reductions. The prothrombin enhancer plays a major role in regulation of prothrombin expression. Six different TFs are able to bind to this region. At least three of these TFs, HNF4-alpha, HNF3-beta and Sp1/Sp3, are important in regulation of prothrombin expression.
Kim, Kye-Won; Smith, Clyde A.; Daily, Michael D.; ...
2014-11-19
Control over phenoxy radical-radical coupling reactions in vivo in vascular plants was enigmatic until our discovery of dirigent proteins (DPs, from the Latin dirigere, to guide or align). The first three-dimensional structure of a DP ((+)-pinoresinol-forming DP, 1.95 Å resolution, rhombohedral space group H32)) is reported herein. It has a tightly packed trimeric structure with an eight-stranded β-barrel topology for each DP monomer. Each putative substrate binding and orientation coupling site is located on the trimer surface but too far apart for intermolecular coupling between sites. It is proposed that each site enables stereoselective coupling (using either two coniferyl alcoholmore » radicals or a radical and a monolignol). Interestingly, there are six differentially conserved residues in DPs affording either the (+)- or (₋)-antipodes in the vicinity of the putative binding site and region known to control stereoselectivity. We find DPs are involved in lignan biosynthesis, whereas dirigent domains/sites have been implicated in lignin deposition.« less
Perdomo-Sabogal, Alvaro; Nowick, Katja; Piccini, Ilaria; Sudbrak, Ralf; Lehrach, Hans; Yaspo, Marie-Laure; Warnatz, Hans-Jörg; Querfurth, Robert
2016-01-01
A substantial fraction of phenotypic differences between closely related species are likely caused by differences in gene regulation. While this has already been postulated over 30 years ago, only few examples of evolutionary changes in gene regulation have been verified. Here, we identified and investigated binding sites of the transcription factor GA-binding protein alpha (GABPa) aiming to discover cis-regulatory adaptations on the human lineage. By performing chromatin immunoprecipitation-sequencing experiments in a human cell line, we found 11,619 putative GABPa binding sites. Through sequence comparisons of the human GABPa binding regions with orthologous sequences from 34 mammals, we identified substitutions that have resulted in 224 putative human-specific GABPa binding sites. To experimentally assess the transcriptional impact of those substitutions, we selected four promoters for promoter-reporter gene assays using human and African green monkey cells. We compared the activities of wild-type promoters to mutated forms, where we have introduced one or more substitutions to mimic the ancestral state devoid of the GABPa consensus binding sequence. Similarly, we introduced the human-specific substitutions into chimpanzee and macaque promoter backgrounds. Our results demonstrate that the identified substitutions are functional, both in human and nonhuman promoters. In addition, we performed GABPa knock-down experiments and found 1,215 genes as strong candidates for primary targets. Further analyses of our data sets link GABPa to cognitive disorders, diabetes, KRAB zinc finger (KRAB-ZNF), and human-specific genes. Thus, we propose that differences in GABPa binding sites played important roles in the evolution of human-specific phenotypes. PMID:26814189
Tracing Cytoplasmic Ca2+ Ion and Water Access Points in the Ca2+-ATPase
Musgaard, Maria; Thøgersen, Lea; Schiøtt, Birgit; Tajkhorshid, Emad
2012-01-01
Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) transports two Ca2+ ions across the membrane of the sarco(endo)plasmic reticulum against the concentration gradient, harvesting the required energy by hydrolyzing one ATP molecule during each transport cycle. Although SERCA is one of the best structurally characterized membrane transporters, it is still largely unknown how the transported Ca2+ ions reach their transmembrane binding sites in SERCA from the cytoplasmic side. Here, we performed extended all-atom molecular dynamics simulations of SERCA. The calculated electrostatic potential of the protein reveals a putative mechanism by which cations may be attracted to and bind to the Ca2+-free state of the transporter. Additional molecular dynamics simulations performed on a Ca2+-bound state of SERCA reveal a water-filled pathway that may be used by the Ca2+ ions to reach their buried binding sites from the cytoplasm. Finally, several residues that are involved in attracting and guiding the cations toward the possible entry channel are identified. The results point to a single Ca2+ entry site close to the kinked part of the first transmembrane helix, in a region loaded with negatively charged residues. From this point, a water pathway outlines a putative Ca2+ translocation pathway toward the transmembrane ion-binding sites. PMID:22339863
Identification of functional domains in Arabidopsis thaliana mRNA decapping enzyme (AtDcp2)
Gunawardana, Dilantha; Cheng, Heung-Chin; Gayler, Kenwyn R.
2008-01-01
The Arabidopsis thaliana decapping enzyme (AtDcp2) was characterized by bioinformatics analysis and by biochemical studies of the enzyme and mutants produced by recombinant expression. Three functionally significant regions were detected: (i) a highly disordered C-terminal region with a putative PSD-95, Discs-large, ZO-1 (PDZ) domain-binding motif, (ii) a conserved Nudix box constituting the putative active site and (iii) a putative RNA binding domain consisting of the conserved Box B and a preceding loop region. Mutation of the putative PDZ domain-binding motif improved the stability of recombinant AtDcp2 and secondary mutants expressed in Escherichia coli. Such recombinant AtDcp2 specifically hydrolysed capped mRNA to produce 7-methyl GDP and decapped RNA. AtDcp2 activity was Mn2+- or Mg2+-dependent and was inhibited by the product 7-methyl GDP. Mutation of the conserved glutamate-154 and glutamate-158 in the Nudix box reduced AtDcp2 activity up to 400-fold and showed that AtDcp2 employs the catalytic mechanism conserved amongst Nudix hydrolases. Unlike many Nudix hydrolases, AtDcp2 is refractory to inhibition by fluoride ions. Decapping was dependent on binding to the mRNA moiety rather than to the 7-methyl diguanosine triphosphate cap of the substrate. Mutational analysis of the putative RNA-binding domain confirmed the functional significance of an 11-residue loop region and the conserved Box B. PMID:18025047
Dayan, Avraham; Babin, Gilad; Ganoth, Assaf; Kayouf, Nivin Samir; Nitoker Eliaz, Neta; Mukkala, Srijana; Tsfadia, Yossi; Fleminger, Gideon
2017-08-01
Titanium (Ti) and its alloys are widely used in orthodontic and orthopedic implants by virtue to their high biocompatibility, mechanical strength, and high resistance to corrosion. Biointegration of the implants with the tissue requires strong interactions, which involve biological molecules, proteins in particular, with metal oxide surfaces. An exocellular high-affinity titanium dioxide (TiO 2 )-binding protein (TiBP), purified from Rhodococcus ruber, has been previously studied in our lab. This protein was shown to be homologous with the orthologous cytoplasmic rhodococcal dihydrolipoamide dehydrogenase (rhDLDH). We have found that rhDLDH and its human homolog (hDLDH) share the TiO 2 -binding capabilities with TiBP. Intrigued by the unique TiO 2 -binding properties of hDLDH, we anticipated that it may serve as a molecular bridge between Ti-based medical structures and human tissues. The objective of the current study was to locate the region and the amino acids of the protein that mediate the protein-TiO 2 surface interaction. We demonstrated the role of acidic amino acids in the nonelectrostatic enzyme/dioxide interactions at neutral pH. The observation that the interaction of DLDH with various metal oxides is independent of their isoelectric values strengthens this notion. DLDH does not lose its enzymatic activity upon binding to TiO 2 , indicating that neither the enzyme undergoes major conformational changes nor the TiO 2 binding site is blocked. Docking predictions suggest that both rhDLDH and hDLDH bind TiO 2 through similar regions located far from the active site and the dimerization sites. The putative TiO 2 -binding regions of both the bacterial and human enzymes were found to contain a CHED (Cys, His, Glu, Asp) motif, which has been shown to participate in metal-binding sites in proteins. Copyright © 2017 John Wiley & Sons, Ltd.
Bu, Huajie; Narisu, Narisu; Schlick, Bettina; Rainer, Johannes; Manke, Thomas; Schäfer, Georg; Pasqualini, Lorenza; Chines, Peter; Schweiger, Michal R.; Fuchsberger, Christian
2015-01-01
ABSTRACT Genome‐wide association studies have identified genomic loci, whose single‐nucleotide polymorphisms (SNPs) predispose to prostate cancer (PCa). However, the mechanisms of most of these variants are largely unknown. We integrated chromatin‐immunoprecipitation‐coupled sequencing and microarray expression profiling in TMPRSS2‐ERG gene rearrangement positive DUCaP cells with the GWAS PCa risk SNPs catalog to identify disease susceptibility SNPs localized within functional androgen receptor‐binding sites (ARBSs). Among the 48 GWAS index risk SNPs and 3,917 linked SNPs, 80 were found located in ARBSs. Of these, rs11891426:T>G in an intron of the melanophilin gene (MLPH) was within a novel putative auxiliary AR‐binding motif, which is enriched in the neighborhood of canonical androgen‐responsive elements. T→G exchange attenuated the transcriptional activity of the ARBS in an AR reporter gene assay. The expression of MLPH in primary prostate tumors was significantly lower in those with the G compared with the T allele and correlated significantly with AR protein. Higher melanophilin level in prostate tissue of patients with a favorable PCa risk profile points out a tumor‐suppressive effect. These results unravel a hidden link between AR and a functional putative PCa risk SNP, whose allele alteration affects androgen regulation of its host gene MLPH. PMID:26411452
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, S.K.
1987-01-01
Because arginine vasotocin (AVT) activates male sexual behaviors in the rough-skinned newt (Taricha granulosa), quantitative autoradiography with radiolabeled arginine vasopressin (/sup 3/H-AVP) was used to localize and characterize putative AVT receptors in the brain of this amphibian. Binding of /sup 3/H-AVP to sites within the medial pallium was saturable, specific, reversible, of high affinity and low capacity. These binding sites appear to represent authentic central nervous system receptors for AVT. Furthermore, ligand specificity for the binding sites in this amphibian differs from that reported for AVP binding sites in rat brains. Dense concentrations of specific binding sites were located inmore » the olfactory nerve as it entered the olfactory bulb within the medial pallium, dorsal pallium, and amygdala pars lateralis of the telencephalon, and in the tegmental region of the medulla. Concentrations of binding sites differed significantly among various brain regions. A comparison of male and female newts collected during the breeding season revealed no sexual dimorphism. These areas may represent site(s) of action where AVT elicits sexual behaviors in male T. granulosa.« less
Kim, Kye-Won; Smith, Clyde A; Daily, Michael D; Cort, John R; Davin, Laurence B; Lewis, Norman G
2015-01-16
Control over phenoxy radical-radical coupling reactions in vivo in vascular plants was enigmatic until our discovery of dirigent proteins (DPs, from the Latin dirigere, to guide or align). The first three-dimensional structure of a DP ((+)-pinoresinol-forming DP, 1.95 Å resolution, rhombohedral space group H32)) is reported herein. It has a tightly packed trimeric structure with an eight-stranded β-barrel topology for each DP monomer. Each putative substrate binding and orientation coupling site is located on the trimer surface but too far apart for intermolecular coupling between sites. It is proposed that each site enables stereoselective coupling (using either two coniferyl alcohol radicals or a radical and a monolignol). Interestingly, there are six differentially conserved residues in DPs affording either the (+)- or (-)-antipodes in the vicinity of the putative binding site and region known to control stereoselectivity. DPs are involved in lignan biosynthesis, whereas dirigent domains/sites have been implicated in lignin deposition. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unterberger, Claudia; Hanson, Steven; Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester LE1 9HN
Little is known about determinants regulating expression of Mannan-binding lectin associated serine protease-2 (MASP-2), the effector component of the lectin pathway of complement activation. Comparative bioinformatic analysis of the MASP2 promoter regions in human, mouse, and rat, revealed conservation of two putative Stat binding sites, termed StatA and StatB. Site directed mutagenesis specific for these sites was performed. Transcription activity was decreased 5-fold when StatB site was mutated in the wildtype reporter gene construct. Gel retardation and competition assays demonstrated that proteins contained in the nuclear extract prepared from HepG2 specifically bound double-stranded StatB oligonucleotides. Supershift analysis revealed Stat3 tomore » be the major specific binding protein. We conclude that Stat3 binding is important for MASP2 promoter activity.« less
Prigozhin, Daniil M; Papavinasasundaram, Kadamba G; Baer, Christina E; Murphy, Kenan C; Moskaleva, Alisa; Chen, Tony Y; Alber, Tom; Sassetti, Christopher M
2016-10-28
Monitoring the environment with serine/threonine protein kinases is critical for growth and survival of Mycobacterium tuberculosis, a devastating human pathogen. Protein kinase B (PknB) is a transmembrane serine/threonine protein kinase that acts as an essential regulator of mycobacterial growth and division. The PknB extracellular domain (ECD) consists of four repeats homologous to penicillin-binding protein and serine/threonine kinase associated (PASTA) domains, and binds fragments of peptidoglycan. These properties suggest that PknB activity is modulated by ECD binding to peptidoglycan substructures, however, the molecular mechanisms underpinning PknB regulation remain unclear. In this study, we report structural and genetic characterization of the PknB ECD. We determined the crystal structures of overlapping ECD fragments at near atomic resolution, built a model of the full ECD, and discovered a region on the C-terminal PASTA domain that has the properties of a ligand-binding site. Hydrophobic interaction between this surface and a bound molecule of citrate was observed in a crystal structure. Our genetic analyses in M. tuberculosis showed that nonfunctional alleles were produced either by deletion of any of single PASTA domain or by mutation of individual conserved residues lining the putative ligand-binding surface of the C-terminal PASTA repeat. These results define two distinct structural features necessary for PknB signal transduction, a fully extended ECD and a conserved, membrane-distal putative ligand-binding site. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Structural analysis of a putative SAM-dependent methyltransferase, YtqB, from Bacillus subtilis.
Park, Sun Cheol; Song, Wan Seok; Yoon, Sung-il
2014-04-18
S-adenosyl-L-methionine (SAM)-dependent methyltransferases (MTases) methylate diverse biological molecules using a SAM cofactor. The ytqB gene of Bacillus subtilis encodes a putative MTase and its biological function has never been characterized. To reveal the structural features and the cofactor binding mode of YtqB, we have determined the crystal structures of YtqB alone and in complex with its cofactor, SAM, at 1.9 Å and 2.2 Å resolutions, respectively. YtqB folds into a β-sheet sandwiched by two α-helical layers, and assembles into a dimeric form. Each YtqB monomer contains one SAM binding site, which shapes SAM into a slightly curved conformation and exposes the reactive methyl group of SAM potentially to a substrate. Our comparative structural analysis of YtqB and its homologues indicates that YtqB is a SAM-dependent class I MTase, and provides insights into the substrate binding site of YtqB. Copyright © 2014 Elsevier Inc. All rights reserved.
GATA-1 directly regulates Nanog in mouse embryonic stem cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wen-Zhong; Ai, Zhi-Ying; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100
2015-09-25
Nanog safeguards pluripotency in mouse embryonic stem cells (mESCs). Insight into the regulation of Nanog is important for a better understanding of the molecular mechanisms that control pluripotency of mESCs. In a silico analysis, we identify four GATA-1 putative binding sites in Nanog proximal promoter. The Nanog promoter activity can be significantly repressed by ectopic expression of GATA-1 evidenced by a promoter reporter assay. Mutation studies reveal that one of the four putative binding sites counts for GATA-1 repressing Nanog promoter activity. Direct binding of GATA-1 on Nanog proximal promoter is confirmed by electrophoretic mobility shift assay and chromatin immunoprecipitation.more » Our data provide new insights into the expanded regulatory circuitry that coordinates Nanog expression. - Highlights: • The Nanog proximal promoter conceives functional element for GATA-1. • GATA-1 occupies the Nanog proximal promoter in vitro and in vivo. • GATA-1 transcriptionally suppresses Nanog.« less
Autoradiographic demonstration of oxytocin-binding sites in the macula densa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoeckel, M.E.; Freund-Mercier, M.J.
1989-08-01
Specific oxytocin (OT)-binding sites were localized in the rat kidney with use of a selective {sup 125}I-labeled OT antagonist ({sup 125}I-OTA). High concentrations of OT binding sites were detected on the juxtaglomerular apparatus with use of the conventional film autoradiographic technique. No labeling occurred on other renal structures. The cellular localization of the OT binding sites within the juxtaglomerular apparatus was studied in light microscope autoradiography, on semithin sections from paraformaldehyde-fixed kidney slices incubated in the presence of {sup 125}I-OTA. These preparations revealed selective labeling of the macula densa, mainly concentrated at the basal pole of the cells. Control experimentsmore » showed first that {sup 125}I-OTA binding characteristics were not noticeably altered by prior paraformaldehyde fixation of the kidneys and second that autoradiographic detection of the binding sites was not impaired by histological treatments following binding procedures. In view of the role of the macula densa in the tubuloglomerular feedback, the putative OT receptors of this structure might mediate the stimulatory effect of OT on glomerular filtration.« less
PPARγ regulates exocrine pancreas lipase.
Danino, Hila; Naor, Ronny Peri-; Fogel, Chen; Ben-Harosh, Yael; Kadir, Rotem; Salem, Hagit; Birk, Ruth
2016-12-01
Pancreatic lipase (triacylglycerol lipase EC 3.1.1.3) is an essential enzyme in hydrolysis of dietary fat. Dietary fat, especially polyunsaturated fatty acids (PUFA), regulate pancreatic lipase (PNLIP); however, the molecular mechanism underlying this regulation is mostly unknown. As PUFA are known to regulate expression of proliferator-activated receptor gamma (PPARγ), and as we identified in-silico putative PPARγ binding sites within the putative PNLIP promoter sequence, we hypothesized that PUFA regulation of PNLIP might be mediated by PPARγ. We used in silico bioinformatics tools, reporter luciferase assay, PPARγ agonists and antagonists, PPARγ overexpression in exocrine pancreas AR42J and primary cells to study PPARγ regulation of PNLIP. Using in silico bioinformatics tools we mapped PPARγ binding sites (PPRE) to the putative promoter region of PNLIP. Reporter luciferase assay in AR42J rat exocrine pancreas acinar cells transfected with various constructs of the putative PNLIP promoter showed that PNLIP transcription is significantly enhanced by PPARγ dose-dependently, reaching maximal levels with multi PPRE sites. This effect was significantly augmented in the presence of PPARγ agonists and reduced by PPARγ antagonists or mutagenesis abrogating PPRE sites. Over-expression of PPARγ significantly elevated PNLIP transcript and protein levels in AR42J cells and in primary pancreas cells. Moreover, PNLIP expression was up-regulated by PPARγ agonists (pioglitazone and 15dPGJ2) and significantly down-regulated by PPARγ antagonists in non-transfected rat exocrine pancreas AR42J cell line cells. PPARγ transcriptionally regulates PNLIP gene expression. This transcript regulation resolves part of the missing link between dietary PUFA direct regulation of PNLIP. Copyright © 2016 Elsevier B.V. All rights reserved.
Diurnal rhythm of melatonin binding in the rat suprachiasmatic nucleus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laitinen, J.T.; Castren, E.; Vakkuri, O.
1989-03-01
We used quantitative in vitro autoradiography to localize and characterize 2-/sup 125/I-melatonin binding sites in the rat suprachiasmatic nuclei in relation to pineal melatonin production. In a light:dark cycle of 12:12 h, binding density exhibited significant diurnal variation with a peak at the dark-light transition and a trough 12 hours later. Saturation studies suggested that the decreased binding at light-dark transition might be due to a shift of the putative melatonin receptor to a low affinity state.
Acceleration of Binding Site Comparisons by Graph Partitioning.
Krotzky, Timo; Klebe, Gerhard
2015-08-01
The comparison of protein binding sites is a prominent task in computational chemistry and has been studied in many different ways. For the automatic detection and comparison of putative binding cavities the Cavbase system has been developed which uses a coarse-grained set of pseudocenters to represent the physicochemical properties of a binding site and employs a graph-based procedure to calculate similarities between two binding sites. However, the comparison of two graphs is computationally quite demanding which makes large-scale studies such as the rapid screening of entire databases hardly feasible. In a recent work, we proposed the method Local Cliques (LC) for the efficient comparison of Cavbase binding sites. It employs a clique heuristic to detect the maximum common subgraph of two binding sites and an extended graph model to additionally compare the shape of individual surface patches. In this study, we present an alternative to further accelerate the LC method by partitioning the binding-site graphs into disjoint components prior to their comparisons. The pseudocenter sets are split with regard to their assigned phyiscochemical type, which leads to seven much smaller graphs than the original one. Applying this approach on the same test scenarios as in the former comprehensive way results in a significant speed-up without sacrificing accuracy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Investigating MUC1/ICAM-1 Binding Induced Signaling in Breast Cancer Metastasis
2011-05-01
expected that covalently linked species would remain intact. Reducing (R, + !-mercaptoethanol) and non-reducing (NR, no !-mercaptoethanol) samples were...binding site, containing both proline and arginine residues. We mutated the SH2 and/or putative SH3 binding domains on the MUC1-CFP-Fv plasmid...Structure and regulation of Src family kinases. Oncogene 2004, 23:7918- 7927. 31. Li SSC: Specificity and versatility of SH3 and other proline -recognition
Regulation of the aceI multidrug efflux pump gene in Acinetobacter baumannii.
Liu, Qi; Hassan, Karl A; Ashwood, Heather E; Gamage, Hasinika K A H; Li, Liping; Mabbutt, Bridget C; Paulsen, Ian T
2018-06-01
To investigate the function of AceR, a putative transcriptional regulator of the chlorhexidine efflux pump gene aceI in Acinetobacter baumannii. Chlorhexidine susceptibility and chlorhexidine induction of aceI gene expression were determined by MIC and quantitative real-time PCR, respectively, in A. baumannii WT and ΔaceR mutant strains. Recombinant AceR was prepared as both a full-length protein and as a truncated protein, AceR (86-299), i.e. AceRt, which has the DNA-binding domain deleted. The binding interaction of the purified AceR protein and its putative operator region was investigated by electrophoretic mobility shift assays and DNase I footprinting assays. The binding of AceRt with its putative ligand chlorhexidine was examined using surface plasmon resonance and tryptophan fluorescence quenching assays. MIC determination assays indicated that the ΔaceI and ΔaceR mutant strains both showed lower resistance to chlorhexidine than the parental strain. Chlorhexidine-induced expression of aceI was abolished in a ΔaceR background. Electrophoretic mobility shift assays and DNase I footprinting assays demonstrated chlorhexidine-stimulated binding of AceR with two sites upstream of the putative aceI promoter. Surface plasmon resonance and tryptophan fluorescence quenching assays suggested that the purified ligand-binding domain of the AceR protein was able to bind with chlorhexidine with high affinity. This study provides strong evidence that AceR is an activator of aceI gene expression when challenged with chlorhexidine. This study is the first characterization, to our knowledge, of a regulator controlling expression of a PACE family multidrug efflux pump.
Nuclear factor Y regulates ancient budgerigar hepadnavirus core promoter activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Zhongliang; Liu, Yanfeng; Luo, Mengjun
Endogenous viral elements (EVE) in animal genomes are the fossil records of ancient viruses and provide invaluable information on the origin and evolution of extant viruses. Extant hepadnaviruses include avihepadnaviruses of birds and orthohepadnaviruses of mammals. The core promoter (Cp) of hepadnaviruses is vital for viral gene expression and replication. We previously identified in the budgerigar genome two EVEs that contain the full-length genome of an ancient budgerigar hepadnavirus (eBHBV1 and eBHBV2). Here, we found eBHBV1 Cp and eBHBV2 Cp were active in several human and chicken cell lines. A region from nt −85 to −11 in eBHBV1 Cp was critical formore » the promoter activity. Bioinformatic analysis revealed a putative binding site of nuclear factor Y (NF-Y), a ubiquitous transcription factor, at nt −64 to −50 in eBHBV1 Cp. The NF-Y core binding site (ATTGG, nt −58 to −54) was essential for eBHBV1 Cp activity. The same results were obtained with eBHBV2 Cp and duck hepatitis B virus Cp. The subunit A of NF-Y (NF-YA) was recruited via the NF-Y core binding site to eBHBV1 Cp and upregulated the promoter activity. Finally, the NF-Y core binding site is conserved in the Cps of all the extant avihepadnaviruses but not of orthohepadnaviruses. Interestingly, a putative and functionally important NF-Y core binding site is located at nt −21 to −17 in the Cp of human hepatitis B virus. In conclusion, our findings have pinpointed an evolutionary conserved and functionally critical NF-Y binding element in the Cps of avihepadnaviruses. - Highlights: • Endogenous budgerigar hepadnavirus (eBHBV) core promoters (Cps) are active in cells. • NF-Y binding site exists in the Cps of eBHBVs and all the extant avihepadnaviruses. • NF-Y binding and mediated upregulation is critical for eBHBV Cp activity.« less
Distinct p53 genomic binding patterns in normal and cancer-derived human cells
McCorkle, Sean R; McCombie, WR; Dunn, John J
2011-01-01
Here, we report genome-wide analysis of the tumor suppressor p53 binding sites in normal human cells. 743 high-confidence ChIP-seq peaks representing putative genomic binding sites were identified in normal IMR90 fibroblasts using a reference chromatin sample. More than 40% were located within 2 kb of a transcription start site (TSS), a distribution similar to that documented for individually studied, functional p53 binding sites and, to date, not observed by previous p53 genome-wide studies. Nearly half of the high-confidence binding sites in the IMR90 cells reside in CpG islands in marked contrast to sites reported in cancer-derived cells. The distinct genomic features of the IMR90 binding sites do not reflect a distinct preference for specific sequences, since the de novo developed p53 motif based on our study is similar to those reported by genome-wide studies of cancer cells. More likely, the different chromatin landscape in normal, compared with cancer-derived cells, influences p53 binding via modulating availability of the sites. We compared the IMR90 ChIP-seq peaks to the recently published IMR90 methylome1 and demonstrated that they are enriched at hypomethylated DNA. Our study represents the first genome-wide, de novo mapping of p53 binding sites in normal human cells and reveals that p53 binding sites reside in distinct genomic landscapes in normal and cancer-derived human cells. PMID:22127205
Fukuda, Yohta
2018-01-01
Abstract Though anhydrobiotic tardigrades (micro‐animals also known as water bears) possess many genes of secretory abundant heat soluble (SAHS) proteins unique to Tardigrada, their functions are unknown. A previous crystallographic study revealed that a SAHS protein (RvSAHS1) from one of the toughest tardigrades, Ramazzottius varieornatus, has a β‐barrel architecture similar to fatty acid binding proteins (FABPs) and two putative ligand binding sites (LBS1 and LBS2) where fatty acids can bind. However, some SAHS proteins such as RvSAHS4 have different sets of amino acid residues at LBS1 and LBS2, implying that they prefer other ligands and have different functions. Here RvSAHS4 was crystallized and analyzed under a condition similar to that for RvSAHS1. There was no electron density corresponding to a fatty acid at LBS1 of RvSAHS4, where a putative fatty acid was observed in RvSAHS1. Instead, LBS2 of RvSAHS4, which was composed of uncharged residues, captured a putative polyethylene glycol molecule. These results suggest that RvSAHS4 mainly uses LBS2 for the binding of uncharged molecules. PMID:29493034
Molecular and functional characterization of the promoter of ETS2, the human c-ets-2 gene.
Mavrothalassitis, G J; Watson, D K; Papas, T S
1990-01-01
The 5' end of the human c-ets-2 gene, ETS2, was cloned and characterized. The major transcription initiation start sites were identified, and the pertinent sequences surrounding the ETS2 promoter were determined. The promoter region of ETS2 does not possess typical "TATA" and "CAAT" elements. However, this promoter contains several repeat regions, as well as two consensus AP2 binding sites and three putative Sp1 sites. There is also a palindromic region similar to the serum response element of the c-fos gene, located 1400 base pairs (bp) upstream from the first major transcription initiation site. A G + C-rich sequence (GC element) with dyad symmetry can be seen in the ETS2 promoter, immediately following an unusually long (approximately 250-bp) polypurine-polypyrimidine tract. A series of deletion fragments from the putative promoter region were ligated in front of the bacterial chloramphenicol acetyltransferase gene and tested for activity following transfection into HeLa cells. The 5' boundary of the region needed for maximum promoter activity was found to be 159 bp upstream of the major initiation site. This region of 159 bp contains putative binding sites for transcription factors Sp1 and AP2 (one for each), the GC element, one small forward repeat, one inverted repeat, and half of the polypurine-pyrimidine tract. The promoter of ETS2 (within the polypyrimidine tract) serves to illustrate an alternative structure that may be present in genes with "TATA-less" promoters. Images PMID:2405393
The RNA-Binding Site of Poliovirus 3C Protein Doubles as a Phosphoinositide-Binding Domain.
Shengjuler, Djoshkun; Chan, Yan Mei; Sun, Simou; Moustafa, Ibrahim M; Li, Zhen-Lu; Gohara, David W; Buck, Matthias; Cremer, Paul S; Boehr, David D; Cameron, Craig E
2017-12-05
Some viruses use phosphatidylinositol phosphate (PIP) to mark membranes used for genome replication or virion assembly. PIP-binding motifs of cellular proteins do not exist in viral proteins. Molecular-docking simulations revealed a putative site of PIP binding to poliovirus (PV) 3C protein that was validated using nuclear magnetic resonance spectroscopy. The PIP-binding site was located on a highly dynamic α helix, which also functions in RNA binding. Broad PIP-binding activity was observed in solution using a fluorescence polarization assay or in the context of a lipid bilayer using an on-chip, fluorescence assay. All-atom molecular dynamics simulations of the 3C protein-membrane interface revealed PIP clustering and perhaps PIP-dependent conformations. PIP clustering was mediated by interaction with residues that interact with the RNA phosphodiester backbone. We conclude that 3C binding to membranes will be determined by PIP abundance. We suggest that the duality of function observed for 3C may extend to RNA-binding proteins of other viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Zur regulon of Corynebacterium glutamicum ATCC 13032
2010-01-01
Background Zinc is considered as an essential element for all living organisms, but it can be toxic at large concentrations. Bacteria therefore tightly regulate zinc metabolism. The Cg2502 protein of Corynebacterium glutamicum was a candidate to control zinc metabolism in this species, since it was classified as metalloregulator of the zinc uptake regulator (Zur) subgroup of the ferric uptake regulator (Fur) family of DNA-binding transcription regulators. Results The cg2502 (zur) gene was deleted in the chromosome of C. glutamicum ATCC 13032 by an allelic exchange procedure to generate the zur-deficient mutant C. glutamicum JS2502. Whole-genome DNA microarray hybridizations and real-time RT-PCR assays comparing the gene expression in C. glutamicum JS2502 with that of the wild-type strain detected 18 genes with enhanced expression in the zur mutant. The expression data were combined with results from cross-genome comparisons of shared regulatory sites, revealing the presence of candidate Zur-binding sites in the mapped promoter regions of five transcription units encoding components of potential zinc ABC-type transporters (cg0041-cg0042/cg0043; cg2911-cg2912-cg2913), a putative secreted protein (cg0040), a putative oxidoreductase (cg0795), and a putative P-loop GTPase of the COG0523 protein family (cg0794). Enhanced transcript levels of the respective genes in C. glutamicum JS2502 were verified by real-time RT-PCR, and complementation of the mutant with a wild-type zur gene reversed the effect of differential gene expression. The zinc-dependent expression of the putative cg0042 and cg2911 operons was detected in vivo with a gfp reporter system. Moreover, the zinc-dependent binding of purified Zur protein to double-stranded 40-mer oligonucleotides containing candidate Zur-binding sites was demonstrated in vitro by DNA band shift assays. Conclusion Whole-genome expression profiling and DNA band shift assays demonstrated that Zur directly represses in a zinc-dependent manner the expression of nine genes organized in five transcription units. Accordingly, the Zur (Cg2502) protein is the key transcription regulator for genes involved in zinc homeostasis in C. glutamicum. PMID:20055984
NASA Astrophysics Data System (ADS)
Kang, Seung-Gu; Huynh, Tien; Zhou, Ruhong
2013-03-01
Biocompatibility is often regarded as one important aspect of de novo designed nanomaterials for biosafety. However, the toxicological effect, appearing along with its latency, is much more difficult to address by linearly mapping physicochemical properties of related nanomaterials with biological effects such as immune or cellular regulatory responses due to the complicated protein-protein interactions. Here, we investigate a potential interference of a metallofullerenol, Gd@C82(OH)22, on the function of SH3 domain, a highly promiscuous protein-protein interaction mediator involved in signaling and regulatory pathways through its binding with the proline-rich motif (PRM) peptides, using the atomistic molecular dynamics simulation. Our study shows that when only Gd@C82(OH)22 and the SH3 domain are present (without the PRM ligand), Gd@C82(OH)22 can interact with the SH3 domain by either directly blocking the hydrophobic active site or binding with a hydrophilic off-site with almost equal probability, which can be understood from its intrinsic amphiphilic nature. In a binding competition with the PRM onto the SH3 domain, however, the on-site binding mode is depleted while Gd@C82(OH)22 effectively intercepts the PRM from the putative binding site of the SH3 domain, implying that Gd@C82(OH)22 can disturb protein-protein interactions mediated by the SH3 domain. Despite a successful surface modification in an aqueous biological medium and a more recent demonstration as potential de novo cancer therapeutics, our study indicates that greater attention is needed in assessing the potential cytotoxicity of these nanomaterials.Biocompatibility is often regarded as one important aspect of de novo designed nanomaterials for biosafety. However, the toxicological effect, appearing along with its latency, is much more difficult to address by linearly mapping physicochemical properties of related nanomaterials with biological effects such as immune or cellular regulatory responses due to the complicated protein-protein interactions. Here, we investigate a potential interference of a metallofullerenol, Gd@C82(OH)22, on the function of SH3 domain, a highly promiscuous protein-protein interaction mediator involved in signaling and regulatory pathways through its binding with the proline-rich motif (PRM) peptides, using the atomistic molecular dynamics simulation. Our study shows that when only Gd@C82(OH)22 and the SH3 domain are present (without the PRM ligand), Gd@C82(OH)22 can interact with the SH3 domain by either directly blocking the hydrophobic active site or binding with a hydrophilic off-site with almost equal probability, which can be understood from its intrinsic amphiphilic nature. In a binding competition with the PRM onto the SH3 domain, however, the on-site binding mode is depleted while Gd@C82(OH)22 effectively intercepts the PRM from the putative binding site of the SH3 domain, implying that Gd@C82(OH)22 can disturb protein-protein interactions mediated by the SH3 domain. Despite a successful surface modification in an aqueous biological medium and a more recent demonstration as potential de novo cancer therapeutics, our study indicates that greater attention is needed in assessing the potential cytotoxicity of these nanomaterials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr33756a
CisMiner: Genome-Wide In-Silico Cis-Regulatory Module Prediction by Fuzzy Itemset Mining
Navarro, Carmen; Lopez, Francisco J.; Cano, Carlos; Garcia-Alcalde, Fernando; Blanco, Armando
2014-01-01
Eukaryotic gene control regions are known to be spread throughout non-coding DNA sequences which may appear distant from the gene promoter. Transcription factors are proteins that coordinately bind to these regions at transcription factor binding sites to regulate gene expression. Several tools allow to detect significant co-occurrences of closely located binding sites (cis-regulatory modules, CRMs). However, these tools present at least one of the following limitations: 1) scope limited to promoter or conserved regions of the genome; 2) do not allow to identify combinations involving more than two motifs; 3) require prior information about target motifs. In this work we present CisMiner, a novel methodology to detect putative CRMs by means of a fuzzy itemset mining approach able to operate at genome-wide scale. CisMiner allows to perform a blind search of CRMs without any prior information about target CRMs nor limitation in the number of motifs. CisMiner tackles the combinatorial complexity of genome-wide cis-regulatory module extraction using a natural representation of motif combinations as itemsets and applying the Top-Down Fuzzy Frequent- Pattern Tree algorithm to identify significant itemsets. Fuzzy technology allows CisMiner to better handle the imprecision and noise inherent to regulatory processes. Results obtained for a set of well-known binding sites in the S. cerevisiae genome show that our method yields highly reliable predictions. Furthermore, CisMiner was also applied to putative in-silico predicted transcription factor binding sites to identify significant combinations in S. cerevisiae and D. melanogaster, proving that our approach can be further applied genome-wide to more complex genomes. CisMiner is freely accesible at: http://genome2.ugr.es/cisminer. CisMiner can be queried for the results presented in this work and can also perform a customized cis-regulatory module prediction on a query set of transcription factor binding sites provided by the user. PMID:25268582
Lee, Donghan; Walsh, Joseph D; Yu, Ping; Markus, Michelle A; Choli-Papadopoulou, Theodora; Schwieters, Charles D; Krueger, Susan; Draper, David E; Wang, Yun-Xing
2007-04-06
The L11 binding site is one of the most important functional sites in the ribosome. The N-terminal domain of L11 has been implicated as a "reversible switch" in facilitating the coordinated movements associated with EF-G-driven GTP hydrolysis. The reversible switch mechanism has been hypothesized to require conformational flexibility involving re-orientation and re-positioning of the two L11 domains, and warrants a close examination of the structure and dynamics of L11. Here we report the solution structure of free L11, and relaxation studies of free L11, L11 complexed to its 58 nt RNA recognition site, and L11 in a ternary complex with the RNA and thiostrepton antibiotic. The binding site of thiostrepton on L11 was also defined by analysis of structural and dynamics data and chemical shift mapping. The conclusions of this work are as follows: first, the binding of L11 to RNA leads to sizable conformation changes in the regions flanking the linker and in the hinge area that links a beta-sheet and a 3(10)-helix-turn-helix element in the N terminus. Concurrently, the change in the relative orientation may lead to re-positioning of the N terminus, as implied by a decrease of radius of gyration from 18.5 A to 16.2 A. Second, the regions, which undergo large conformation changes, exhibit motions on milliseconds-microseconds or nanoseconds-picoseconds time scales. Third, binding of thiostrepton results in more rigid conformations near the linker (Thr71) and near its putative binding site (Leu12). Lastly, conformational changes in the putative thiostrepton binding site are implicated by the re-emergence of cross-correlation peaks in the spectrum of the ternary complex, which were missing in that of the binary complex. Our combined analysis of both the chemical shift perturbation and dynamics data clearly indicates that thiostrepton binds to a pocket involving residues in the 3(10)-helix in L11.
Lee, Donghan; Walsh, Joseph D.; Yu, Ping; Markus, Michelle A.; Choli-Papadopoulou, Theodora; Schwieters, Charles D.; Krueger, Susan; Draper, David E.; Wang, Yun-Xing
2007-01-01
Summary The L11 binding site is one of the most important functional sites in the ribosome. The N-terminal domain of L11 has been implicated as a “reversible switch” in facilitating the coordinated movements associated with EF-G–driven GTP hydrolysis. The “reversible switch” mechanism has been hypothesized to require conformational flexibility involving re-orientation and re-positioning of the two L11 domains, and warrants a close examination of the structure and dynamics of L11. Here we report the solution structure of free L11, and relaxation studies of free L11, L11complexed to its 58 nt RNA recognition site, and L11 in a ternary complex with the RNA and thiostrepton antibiotic. The binding site of thiostrepton on L11 was also defined by analysis of structural and dynamics data and chemical shift mapping. The conclusions of this work are as follows: First, the binding of L11 to RNA leads to sizable conformation changes in the regions flanking the linker and in the hinge area that links a β-sheets and a 310-helix-turn-helix element in the N-terminus. Concurrently, the change in the relative orientation may lead to re-positioning of the N-terminus, as implied by a decrease of radius of gyration from 18.5 Å to 16.2 Å. Second, the regions, which undergo large conformation changes, exhibit motions on ms-μs or ns-ps time scales. Third, binding of thiostrepton results in more rigid conformations near the linker (Thr71) and near its putative binding site (Leu12). Lastly, conformational changes in the putative thiostrepton binding site are implicated by the re-emergence of cross-correlation peaks in the spectrum of the ternary complex, which were missing in that of the binary complex. Our combined analysis of both the chemical shift perturbation and dynamics data clearly indicates that thiostrepton binds to a pocket involving residues in the 310-helix in L11. PMID:17292917
Fleischli, Christoph; Sirena, Dominique; Lesage, Guillaume; Havenga, Menzo J E; Cattaneo, Roberto; Greber, Urs F; Hemmi, Silvio
2007-11-01
We recently characterized the domains of the human cofactor protein CD46 involved in binding species B2 adenovirus (Ad) serotype 35. Here, the CD46 binding determinants are mapped for the species B1 Ad serotypes 3 and 7 and for the species B2 Ad11. Ad3, 7 and 11 bound and transduced CD46-positive rodent BHK cells at levels similar to Ad35. By using antibody-blocking experiments, hybrid CD46-CD4 receptor constructs and CD46 single point mutants, it is shown that Ad3, 7 and 11 share many of the Ad35-binding features on CD46. Both CD46 short consensus repeat domains SCR I and SCR II were necessary and sufficient for optimal binding and transgene expression, provided that they were positioned at an appropriate distance from the cell membrane. Similar to Ad35, most of the putative binding residues of Ad3, 7 and 11 were located on the same glycan-free, solvent-exposed face of the SCR I or SCR II domains, largely overlapping with the binding surface of the recently solved fiber knob Ad11-SCR I-II three-dimensional structure. Differences between species B1 and B2 Ads were documented with competition experiments based on anti-CD46 antibodies directed against epitopes flanking the putative Ad-binding sites, and with competition experiments based on soluble CD46 protein. It is concluded that the B1 and B2 species of Ad engage CD46 through similar binding surfaces.
Armas, Pablo; Margarit, Ezequiel; Mouguelar, Valeria S; Allende, Miguel L; Calcaterra, Nora B
2013-01-01
CNBP is a nucleic acid chaperone implicated in vertebrate craniofacial development, as well as in myotonic dystrophy type 2 (DM2) and sporadic inclusion body myositis (sIBM) human muscle diseases. CNBP is highly conserved among vertebrates and has been implicated in transcriptional regulation; however, its DNA binding sites and molecular targets remain elusive. The main goal of this work was to identify CNBP DNA binding sites that might reveal target genes involved in vertebrate embryonic development. To accomplish this, we used a recently described yeast one-hybrid assay to identify DNA sequences bound in vivo by CNBP. Bioinformatic analyses revealed that these sequences are G-enriched and show high frequency of putative G-quadruplex DNA secondary structure. Moreover, an in silico approach enabled us to establish the CNBP DNA-binding site and to predict CNBP putative targets based on gene ontology terms and synexpression with CNBP. The direct interaction between CNBP and candidate genes was proved by EMSA and ChIP assays. Besides, the role of CNBP upon the identified genes was validated in loss-of-function experiments in developing zebrafish. We successfully confirmed that CNBP up-regulates tbx2b and smarca5, and down-regulates wnt5b gene expression. The highly stringent strategy used in this work allowed us to identify new CNBP target genes functionally important in different contexts of vertebrate embryonic development. Furthermore, it represents a novel approach toward understanding the biological function and regulatory networks involving CNBP in the biology of vertebrates.
Cammen, Kristina M; Rosel, Patricia E; Wells, Randall S; Read, Andrew J
2014-12-01
In coastal marine ecosystems, neurotoxins produced by harmful algal blooms (HABs) often result in large-scale mortality events of many marine species. Historical and frequent exposure to HABs therefore may provide a strong selective pressure for adaptations that result in toxin resistance. Neurotoxin resistance has independently evolved in a variety of terrestrial and marine species via mutations in genes encoding the toxin binding sites within the voltage-gated sodium channel gene complex. Accordingly, we tested the hypothesis that genetic variation in the putative binding site of brevetoxins in common bottlenose dolphins (Tursiops truncatus) explains differences among individuals or populations in resistance to harmful Karenia brevis blooms in the Gulf of Mexico. We found very little variation in the sodium channel exons encoding the putative brevetoxin binding site among bottlenose dolphins from central-west Florida and the Florida Panhandle. Our study included samples from several bottlenose dolphin mortality events associated with HABs, but we found no association between genetic variation and survival. We observed a significant effect of geographic region on genetic variation for some sodium channel isoforms, but this can be primarily explained by rare private alleles and is more likely a reflection of regional genetic differentiation than the cause of different levels of HAB resistance between regions. In contrast to many other previously studied neurotoxin-resistant species, we conclude that bottlenose dolphins have not evolved resistance to HABs via mutations in genes encoding the brevetoxin binding site on the voltage-gated sodium channels. Copyright © 2014 Elsevier B.V. All rights reserved.
Mouguelar, Valeria S.; Allende, Miguel L.; Calcaterra, Nora B.
2013-01-01
CNBP is a nucleic acid chaperone implicated in vertebrate craniofacial development, as well as in myotonic dystrophy type 2 (DM2) and sporadic inclusion body myositis (sIBM) human muscle diseases. CNBP is highly conserved among vertebrates and has been implicated in transcriptional regulation; however, its DNA binding sites and molecular targets remain elusive. The main goal of this work was to identify CNBP DNA binding sites that might reveal target genes involved in vertebrate embryonic development. To accomplish this, we used a recently described yeast one-hybrid assay to identify DNA sequences bound in vivo by CNBP. Bioinformatic analyses revealed that these sequences are G-enriched and show high frequency of putative G-quadruplex DNA secondary structure. Moreover, an in silico approach enabled us to establish the CNBP DNA-binding site and to predict CNBP putative targets based on gene ontology terms and synexpression with CNBP. The direct interaction between CNBP and candidate genes was proved by EMSA and ChIP assays. Besides, the role of CNBP upon the identified genes was validated in loss-of-function experiments in developing zebrafish. We successfully confirmed that CNBP up-regulates tbx2b and smarca5, and down-regulates wnt5b gene expression. The highly stringent strategy used in this work allowed us to identify new CNBP target genes functionally important in different contexts of vertebrate embryonic development. Furthermore, it represents a novel approach toward understanding the biological function and regulatory networks involving CNBP in the biology of vertebrates. PMID:23667590
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, R. L., Hamaguchi, L., Busch, M. A., and Weigel, D.
2003-06-01
OAK-B135 In Arabidopsis thaliana, cis-regulatory sequences of the floral homeotic gene AGAMOUS (AG) are located in the second intron. This 3 kb intron contains binding sites for two direct activators of AG, LEAFY (LFY) and WUSCHEL (WUS), along with other putative regulatory elements. We have used phylogenetic footprinting and the related technique of phylogenetic shadowing to identify putative cis-regulatory elements in this intron. Among 29 Brassicaceae, several other motifs, but not the LFY and WUS binding sites previously identified, are largely invariant. Using reporter gene analyses, we tested six of these motifs and found that they are all functionally importantmore » for activity of AG regulatory sequences in A. thaliana. Although there is little obvious sequence similarity outside the Brassicaceae, the intron from cucumber AG has at least partial activity in A. thaliana. Our studies underscore the value of the comparative approach as a tool that complements gene-by-gene promoter dissection, but also highlight that sequence-based studies alone are insufficient for a complete identification of cis-regulatory sites.« less
Structural basis for the interaction of antibiotics with peptidyl transferase center in eubacteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlunzen, Frank; Zarivach, Raz; Harms, Jörg
2009-10-07
Ribosomes, the site of protein synthesis, are a major target for natural and synthetic antibiotics. Detailed knowledge of antibiotic binding sites is central to understanding the mechanisms of drug action. Conversely, drugs are excellent tools for studying the ribosome function. To elucidate the structural basis of ribosome-antibiotic interactions, we determined the high-resolution X-ray structures of the 50S ribosomal subunit of the eubacterium Deinococcus radiodurans, complexed with the clinically relevant antibiotics chloramphenicol, clindamycin and the three macrolides erythromycin, clarithromycin and roxithromycin. We found that antibiotic binding sites are composed exclusively of segments of 23S ribosomal RNA at the peptidyl transferase cavitymore » and do not involve any interaction of the drugs with ribosomal proteins. Here we report the details of antibiotic interactions with the components of their binding sites. Our results also show the importance of putative Mg{sup +2} ions for the binding of some drugs. This structural analysis should facilitate rational drug design.« less
Structure of the Zinc-Bound Amino-Terminal Domain of the NMDA Receptor NR2B Subunit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karakas, E.; Simorowski, N; Furukawa, H
2009-01-01
N-methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors (iGluRs) that mediate the majority of fast excitatory synaptic transmission in the mammalian brain. One of the hallmarks for the function of NMDA receptors is that their ion channel activity is allosterically regulated by binding of modulator compounds to the extracellular amino-terminal domain (ATD) distinct from the L-glutamate-binding domain. The molecular basis for the ATD-mediated allosteric regulation has been enigmatic because of a complete lack of structural information on NMDA receptor ATDs. Here, we report the crystal structures of ATD from the NR2B NMDA receptor subunit in the zinc-freemore » and zinc-bound states. The structures reveal the overall clamshell-like architecture distinct from the non-NMDA receptor ATDs and molecular determinants for the zinc-binding site, ion-binding sites, and the architecture of the putative phenylethanolamine-binding site.« less
Turatsinze, Jean-Valery; Thomas-Chollier, Morgane; Defrance, Matthieu; van Helden, Jacques
2008-01-01
This protocol shows how to detect putative cis-regulatory elements and regions enriched in such elements with the regulatory sequence analysis tools (RSAT) web server (http://rsat.ulb.ac.be/rsat/). The approach applies to known transcription factors, whose binding specificity is represented by position-specific scoring matrices, using the program matrix-scan. The detection of individual binding sites is known to return many false predictions. However, results can be strongly improved by estimating P value, and by searching for combinations of sites (homotypic and heterotypic models). We illustrate the detection of sites and enriched regions with a study case, the upstream sequence of the Drosophila melanogaster gene even-skipped. This protocol is also tested on random control sequences to evaluate the reliability of the predictions. Each task requires a few minutes of computation time on the server. The complete protocol can be executed in about one hour.
Determination of Surface-Exposed, Functional Domains of Gonococcal Transferrin-Binding Protein A
Yost-Daljev, Mary Kate; Cornelissen, Cynthia Nau
2004-01-01
The gonococcal transferrin receptor is composed of two distinct proteins, TbpA and TbpB. TbpA is a member of the TonB-dependent family of integral outer membrane transporters, while TbpB is lipid modified and thought to be peripherally surface exposed. We previously proposed a hypothetical topology model for gonococcal TbpA that was based upon computer predictions and similarity with other TonB-dependent transporters for which crystal structures have been determined. In the present study, the hemagglutinin epitope was inserted into TbpA to probe the surface topology of this protein and secondarily to test the functional impacts of site-specific mutagenesis. Twelve epitope insertion mutants were constructed, five of which allowed us to confirm the surface exposure of loops 2, 3, 5, 7, and 10. In contrast to the predictions set forth by the hypothetical model, insertion into the plug region resulted in an epitope that was surface accessible, while epitope insertions into two putative loops (9 and 11) were not surface accessible. Insertions into putative loop 3 and β strand 9 abolished transferrin binding and utilization, and the plug insertion mutant exhibited decreased transferrin-binding affinity concomitant with an inability to utilize it. Insertion into putative β strand 16 generated a mutant that was able to bind transferrin normally but that was unable to mediate utilization. Mutants with insertions into putative loops 2, 9, and 11 maintained wild-type binding affinity but could utilize only transferrin in the presence of TbpB. This is the first demonstration of the ability of TbpB to compensate for a mutation in TbpA. PMID:14977987
Ravindranath, Pradeep Anand; Sanner, Michel F.
2016-01-01
Motivation: The identification of ligand-binding sites from a protein structure facilitates computational drug design and optimization, and protein function assignment. We introduce AutoSite: an efficient software tool for identifying ligand-binding sites and predicting pseudo ligand corresponding to each binding site identified. Binding sites are reported as clusters of 3D points called fills in which every point is labelled as hydrophobic or as hydrogen bond donor or acceptor. From these fills AutoSite derives feature points: a set of putative positions of hydrophobic-, and hydrogen-bond forming ligand atoms. Results: We show that AutoSite identifies ligand-binding sites with higher accuracy than other leading methods, and produces fills that better matches the ligand shape and properties, than the fills obtained with a software program with similar capabilities, AutoLigand. In addition, we demonstrate that for the Astex Diverse Set, the feature points identify 79% of hydrophobic ligand atoms, and 81% and 62% of the hydrogen acceptor and donor hydrogen ligand atoms interacting with the receptor, and predict 81.2% of water molecules mediating interactions between ligand and receptor. Finally, we illustrate potential uses of the predicted feature points in the context of lead optimization in drug discovery projects. Availability and Implementation: http://adfr.scripps.edu/AutoDockFR/autosite.html Contact: sanner@scripps.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27354702
Kamalakaran, Sitharthan; Radhakrishnan, Senthil K; Beck, William T
2005-06-03
We developed a pipeline to identify novel genes regulated by the steroid hormone-dependent transcription factor, estrogen receptor, through a systematic analysis of upstream regions of all human and mouse genes. We built a data base of putative promoter regions for 23,077 human and 19,984 mouse transcripts from National Center for Biotechnology Information annotation and 8793 human and 6785 mouse promoters from the Data Base of Transcriptional Start Sites. We used this data base of putative promoters to identify potential targets of estrogen receptor by identifying estrogen response elements (EREs) in their promoters. Our program correctly identified EREs in genes known to be regulated by estrogen in addition to several new genes whose putative promoters contained EREs. We validated six genes (KIAA1243, NRIP1, MADH9, NME3, TPD52L, and ABCG2) to be estrogen-responsive in MCF7 cells using reverse transcription PCR. To allow for extensibility of our program in identifying targets of other transcription factors, we have built a Web interface to access our data base and programs. Our Web-based program for Promoter Analysis of Genome, PAGen@UIC, allows a user to identify putative target genes for vertebrate transcription factors through the analysis of their upstream sequences. The interface allows the user to search the human and mouse promoter data bases for potential target genes containing one or more listed transcription factor binding sites (TFBSs) in their upstream elements, using either regular expression-based consensus or position weight matrices. The data base can also be searched for promoters harboring user-defined TFBSs given as a consensus or a position weight matrix. Furthermore, the user can retrieve putative promoter sequences for any given gene together with identified TFBSs located on its promoter. Orthologous promoters are also analyzed to determine conserved elements.
A ternary metal binding site in the C2 domain of phosphoinositide-specific phospholipase C-delta1.
Essen, L O; Perisic, O; Lynch, D E; Katan, M; Williams, R L
1997-03-11
We have determined the crystal structures of complexes of phosphoinositide-specific phospholipase C-delta1 from rat with calcium, barium, and lanthanum at 2.5-2.6 A resolution. Binding of these metal ions is observed in the active site of the catalytic TIM barrel and in the calcium binding region (CBR) of the C2 domain. The C2 domain of PLC-delta1 is a circularly permuted topological variant (P-variant) of the synaptotagmin I C2A domain (S-variant). On the basis of sequence analysis, we propose that both the S-variant and P-variant topologies are present among other C2 domains. Multiple adjacent binding sites in the C2 domain were observed for calcium and the other metal/enzyme complexes. The maximum number of binding sites observed was for the calcium analogue lanthanum. This complex shows an array-like binding of three lanthanum ions (sites I-III) in a crevice on one end of the C2 beta-sandwich. Residues involved in metal binding are contained in three loops, CBR1, CBR2, and CBR3. Sites I and II are maintained in the calcium and barium complexes, whereas sites II and III coincide with a binary calcium binding site in the C2A domain of synaptotagmin I. Several conformers for CBR1 are observed. The conformation of CBR1 does not appear to be strictly dependent on metal binding; however, metal binding may stabilize certain conformers. No significant structural changes are observed for CBR2 or CBR3. The surface of this ternary binding site provides a cluster of freely accessible liganding positions for putative phospholipid ligands of the C2 domain. It may be that the ternary metal binding site is also a feature of calcium-dependent phospholipid binding in solution. A ternary metal binding site might be a conserved feature among C2 domains that contain the critical calcium ligands in their CBR's. The high cooperativity of calcium-mediated lipid binding by C2 domains described previously is explained by this novel type of calcium binding site.
Kinetic and Spectroscopic Studies of Bicupin Oxalate Oxidase and Putative Active Site Mutants
Moomaw, Ellen W.; Hoffer, Eric; Moussatche, Patricia; Salerno, John C.; Grant, Morgan; Immelman, Bridget; Uberto, Richard; Ozarowski, Andrew; Angerhofer, Alexander
2013-01-01
Ceriporiopsis subvermispora oxalate oxidase (CsOxOx) is the first bicupin enzyme identified that catalyzes manganese-dependent oxidation of oxalate. In previous work, we have shown that the dominant contribution to catalysis comes from the monoprotonated form of oxalate binding to a form of the enzyme in which an active site carboxylic acid residue must be unprotonated. CsOxOx shares greatest sequence homology with bicupin microbial oxalate decarboxylases (OxDC) and the 241-244DASN region of the N-terminal Mn binding domain of CsOxOx is analogous to the lid region of OxDC that has been shown to determine reaction specificity. We have prepared a series of CsOxOx mutants to probe this region and to identify the carboxylate residue implicated in catalysis. The pH profile of the D241A CsOxOx mutant suggests that the protonation state of aspartic acid 241 is mechanistically significant and that catalysis takes place at the N-terminal Mn binding site. The observation that the D241S CsOxOx mutation eliminates Mn binding to both the N- and C- terminal Mn binding sites suggests that both sites must be intact for Mn incorporation into either site. The introduction of a proton donor into the N-terminal Mn binding site (CsOxOx A242E mutant) does not affect reaction specificity. Mutation of conserved arginine residues further support that catalysis takes place at the N-terminal Mn binding site and that both sites must be intact for Mn incorporation into either site. PMID:23469254
Gunawardana, Dilantha
2016-01-01
Diverse cellular activities are mediated through the interaction of protein domains and their binding partners. One such protein domain widely distributed in the higher metazoan world is the PDZ domain, which facilitates abundant protein-protein interactions. The PDZ domain-PDZ binding domain interaction has been implicated in several pathologies including Alzheimer's disease, Parkinson's disease and Down syndrome. PDZ domains bind to C-terminal peptides/proteins which have either of the following combinations: S/T-X-hydrophobic-COOH for type I, hydrophobic-Xhydrophobic- COOH for type II, and D/E-X-hydrophobic-COOH for type III, although hydrophobicity in the termini form the key characteristic of the PDZ-binding domains. We identified and characterized a Dcp2 type mRNA decapping enzyme from Arabidopsis thaliana, a protein containing a putative PDZ-binding domain using mutagenesis and protein biochemistry. Now we are using bioinformatics to study the Cterminal end of mRNA decapping enzymes from complex metazoans with the aim of (1) identifying putative PDZ-binding domains (2) Correlating structural disorder with PDZ binding domains and (3) Demonstrating the presence of phosphorylation sites in C-terminal extremities of Dcp2 type mRNA decapping enzymes. It is proposed here that the trinity of PDZbinding domains, structural disorder and phosphorylation-susceptible sites are a feature of the Dcp2 family of decapping enzymes and perhaps is a wider trick in protein evolution where scaffolding/tethering is a requirement for localization and function. It is critical though laboratory-based supporting evidence is sought to back-up this bioinformatics exploration into tail regions of mRNA decapping enzymes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, M.W.; Chen, J.P.; Wallis, C.
1992-02-26
({sup 3}H)RO15-4513, a partial inverse agonist at GABAA receptors, binds to two sites in cerebellar membranes, one sensitive (DZ-S) and one insensitive (DZ-IS) to inhibition by diazepam. These binding sites may represent different isoforms of the GABAA receptor and may play a role in ethanol (EtOH) dependence. The authors tested the hypothesis that chronic intake of EtOH induces changes in the binding properties of one or both of these putative GABBA receptors. Rats were fed a liquid diet of 4.5% EtOH for 7 d, gavaged with a 3g/kg dose of EtOH, and then sacrificed after 2 h, 12 h, ormore » 4.5 d. Binding of ({sup 3}H)RO15-4513 to cerebellar membranes was performed in the absence or presence of 10{mu}M diazepam (DZ-IS binding); DZ-S binding was calculated as the difference between total and DZ-IS. Nonlinear regression analysis showed that each class of binding site fit a model of mass action binding to a single, noninteractive population of sites. No significant difference was observed between any of the treatment groups in the apparent affinity (Kd) for ({sup 3}H)RO15-4513 at total, DZ-S, or DZ-IS sites following chronic EtOH intake or withdrawal. In addition, no significant difference was observed in the apparent number of DZ-S or DZ-IS binding sites or the ratio of DZ-S to DZ-IS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Mahavir; Wang, Zhonghua; Cascio, Duilio
Shq1 is an essential protein involved in the early steps of biogenesis and assembly of H/ACA ribonucleoprotein particles (RNPs). Shq1 binds to dyskerin (Cbf5 in yeast) at an early step of H/ACA RNP assembly and is subsequently displaced by the H/ACA RNA. Shq1 contains an N-terminal CS and a C-terminal Shq1-specific domain (SSD). Dyskerin harbors many mutations associated with dyskeratosis congenita. Structures of yeast Shq1 SSD bound to Cbf5 revealed that only a subset of these mutations is in the SSD binding site, implicating another subset in the putative CS binding site. Here in this paper, we present the crystalmore » structure of human Shq1 CS (hCS) and the nuclear magnetic resonance (NMR) and crystal structures of hCS containing a serine substitution for proline 22 that is associated with some prostate cancers. The structure of hCS is similar to yeast Shq1 CS domain (yCS) and consists of two β-sheets that form an immunoglobulin-like β-sandwich fold. The N-terminal affinity tag sequence AHHHHHH associates with a neighboring protein in the crystal lattice to form an extra β-strand. Deletion of this tag was required to get spectra suitable for NMR structure determination, while the tag was required for crystallization. NMR chemical shift perturbation (CSP) experiments with peptides derived from putative CS binding sites on dyskerin and Cbf5 revealed a conserved surface on CS important for Cbf5/dyskerin binding. A HADDOCK (high-ambiguity-driven protein-protein docking) model of a Shq1-Cbf5 complex that defines the position of CS domain in the pre-H/ACA RNP was calculated using the CSP data.« less
Structure and Interactions of the CS Domain of Human H/ACA RNP Assembly Protein Shq1
Singh, Mahavir; Wang, Zhonghua; Cascio, Duilio; ...
2014-12-29
Shq1 is an essential protein involved in the early steps of biogenesis and assembly of H/ACA ribonucleoprotein particles (RNPs). Shq1 binds to dyskerin (Cbf5 in yeast) at an early step of H/ACA RNP assembly and is subsequently displaced by the H/ACA RNA. Shq1 contains an N-terminal CS and a C-terminal Shq1-specific domain (SSD). Dyskerin harbors many mutations associated with dyskeratosis congenita. Structures of yeast Shq1 SSD bound to Cbf5 revealed that only a subset of these mutations is in the SSD binding site, implicating another subset in the putative CS binding site. Here in this paper, we present the crystalmore » structure of human Shq1 CS (hCS) and the nuclear magnetic resonance (NMR) and crystal structures of hCS containing a serine substitution for proline 22 that is associated with some prostate cancers. The structure of hCS is similar to yeast Shq1 CS domain (yCS) and consists of two β-sheets that form an immunoglobulin-like β-sandwich fold. The N-terminal affinity tag sequence AHHHHHH associates with a neighboring protein in the crystal lattice to form an extra β-strand. Deletion of this tag was required to get spectra suitable for NMR structure determination, while the tag was required for crystallization. NMR chemical shift perturbation (CSP) experiments with peptides derived from putative CS binding sites on dyskerin and Cbf5 revealed a conserved surface on CS important for Cbf5/dyskerin binding. A HADDOCK (high-ambiguity-driven protein-protein docking) model of a Shq1-Cbf5 complex that defines the position of CS domain in the pre-H/ACA RNP was calculated using the CSP data.« less
Ortega, Marcos E.; Gaussier, Helene; Catalano, Carlos E.
2007-01-01
Summary Terminase enzymes are common to double-stranded DNA (dsDNA) viruses and are responsible for packaging viral DNA into the confines of an empty capsid shell. In bacteriophage lambda the catalytic terminase subunit is gpA, which is responsible for maturation of the genome end prior to packaging and subsequent translocation of the matured DNA into the capsid. DNA packaging requires an ATPase catalytic site situated in the N-terminus of the protein. A second ATPase catalytic site associated with the DNA maturation activities of the protein has been proposed; however, direct demonstration of this putative second site is lacking. Here we describe biochemical studies that define protease-resistant peptides of gpA and expression of these putative domains in E. coli. Biochemical characterization of gpA-ΔN179, a construct in which the N-terminal 179 residues of gpA have been deleted, indicates that this protein encompasses the DNA maturation domain of gpA. The construct is folded, soluble and possesses an ATP-dependent nuclease activity. Moreover, the construct binds and hydrolyzes ATP despite the fact that the DNA packaging ATPase site in the N-terminus of gpA has been deleted. Mutation of lysine 497, which alters the conserved lysine in a predicted Walker A “P-loop” sequence, does not affect ATP binding but severely impairs ATP hydrolysis. Further, this mutation abrogates the ATP-dependent nuclease activity of the protein. These studies provide direct evidence for the elusive nucleotide-binding site in gpA that is directly associated with the DNA maturation activity of the protein. The implications of these results with respect to the two roles of the terminase holoenzyme – DNA maturation and DNA packaging – are discussed. PMID:17870092
Pauly, Thorsten; Ratliff, Miriam; Pietrowski, Eweline; Neugebauer, Rainer; Schlicksupp, Andrea; Kirsch, Joachim; Kuhse, Jochen
2008-07-16
Functional and structural alterations of clustered postsynaptic ligand gated ion channels in neuronal cells are thought to contribute to synaptic plasticity and memory formation in the human brain. Here, we describe a novel molecular mechanism for structural alterations of NR1 subunits of the NMDA receptor. In cultured rat spinal cord neurons, chronic NMDA receptor stimulation induces disappearance of extracellular epitopes of NMDA receptor NR1 subunits, which was prevented by inhibiting matrix metalloproteinases (MMPs). Immunoblotting revealed the digestion of solubilized NR1 subunits by MMP-3 and identified a fragment of about 60 kDa as MMPs-activity-dependent cleavage product of the NR1 subunit in cultured neurons. The expression of MMP-3 in the spinal cord culture was shown by immunoblotting and immunofluorescence microscopy. Recombinant NR1 glycine binding protein was used to identify MMP-3 cleavage sites within the extracellular S1 and S2-domains. N-terminal sequencing and site-directed mutagenesis revealed S542 and L790 as two putative major MMP-3 cleavage sites of the NR1 subunit. In conclusion, our data indicate that MMPs, and in particular MMP-3, are involved in the activity dependent alteration of NMDA receptor structure at postsynaptic membrane specializations in the CNS.
Pietrowski, Eweline; Neugebauer, Rainer; Schlicksupp, Andrea; Kirsch, Joachim; Kuhse, Jochen
2008-01-01
Functional and structural alterations of clustered postsynaptic ligand gated ion channels in neuronal cells are thought to contribute to synaptic plasticity and memory formation in the human brain. Here, we describe a novel molecular mechanism for structural alterations of NR1 subunits of the NMDA receptor. In cultured rat spinal cord neurons, chronic NMDA receptor stimulation induces disappearance of extracellular epitopes of NMDA receptor NR1 subunits, which was prevented by inhibiting matrix metalloproteinases (MMPs). Immunoblotting revealed the digestion of solubilized NR1 subunits by MMP-3 and identified a fragment of about 60 kDa as MMPs-activity-dependent cleavage product of the NR1 subunit in cultured neurons. The expression of MMP-3 in the spinal cord culture was shown by immunoblotting and immunofluorescence microscopy. Recombinant NR1 glycine binding protein was used to identify MMP-3 cleavage sites within the extracellular S1 and S2-domains. N-terminal sequencing and site-directed mutagenesis revealed S542 and L790 as two putative major MMP-3 cleavage sites of the NR1 subunit. In conclusion, our data indicate that MMPs, and in particular MMP-3, are involved in the activity dependent alteration of NMDA receptor structure at postsynaptic membrane specializations in the CNS. PMID:18629001
BLSSpeller: exhaustive comparative discovery of conserved cis-regulatory elements.
De Witte, Dieter; Van de Velde, Jan; Decap, Dries; Van Bel, Michiel; Audenaert, Pieter; Demeester, Piet; Dhoedt, Bart; Vandepoele, Klaas; Fostier, Jan
2015-12-01
The accurate discovery and annotation of regulatory elements remains a challenging problem. The growing number of sequenced genomes creates new opportunities for comparative approaches to motif discovery. Putative binding sites are then considered to be functional if they are conserved in orthologous promoter sequences of multiple related species. Existing methods for comparative motif discovery usually rely on pregenerated multiple sequence alignments, which are difficult to obtain for more diverged species such as plants. As a consequence, misaligned regulatory elements often remain undetected. We present a novel algorithm that supports both alignment-free and alignment-based motif discovery in the promoter sequences of related species. Putative motifs are exhaustively enumerated as words over the IUPAC alphabet and screened for conservation using the branch length score. Additionally, a confidence score is established in a genome-wide fashion. In order to take advantage of a cloud computing infrastructure, the MapReduce programming model is adopted. The method is applied to four monocotyledon plant species and it is shown that high-scoring motifs are significantly enriched for open chromatin regions in Oryza sativa and for transcription factor binding sites inferred through protein-binding microarrays in O.sativa and Zea mays. Furthermore, the method is shown to recover experimentally profiled ga2ox1-like KN1 binding sites in Z.mays. BLSSpeller was written in Java. Source code and manual are available at http://bioinformatics.intec.ugent.be/blsspeller Klaas.Vandepoele@psb.vib-ugent.be or jan.fostier@intec.ugent.be. Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
BLSSpeller: exhaustive comparative discovery of conserved cis-regulatory elements
De Witte, Dieter; Van de Velde, Jan; Decap, Dries; Van Bel, Michiel; Audenaert, Pieter; Demeester, Piet; Dhoedt, Bart; Vandepoele, Klaas; Fostier, Jan
2015-01-01
Motivation: The accurate discovery and annotation of regulatory elements remains a challenging problem. The growing number of sequenced genomes creates new opportunities for comparative approaches to motif discovery. Putative binding sites are then considered to be functional if they are conserved in orthologous promoter sequences of multiple related species. Existing methods for comparative motif discovery usually rely on pregenerated multiple sequence alignments, which are difficult to obtain for more diverged species such as plants. As a consequence, misaligned regulatory elements often remain undetected. Results: We present a novel algorithm that supports both alignment-free and alignment-based motif discovery in the promoter sequences of related species. Putative motifs are exhaustively enumerated as words over the IUPAC alphabet and screened for conservation using the branch length score. Additionally, a confidence score is established in a genome-wide fashion. In order to take advantage of a cloud computing infrastructure, the MapReduce programming model is adopted. The method is applied to four monocotyledon plant species and it is shown that high-scoring motifs are significantly enriched for open chromatin regions in Oryza sativa and for transcription factor binding sites inferred through protein-binding microarrays in O.sativa and Zea mays. Furthermore, the method is shown to recover experimentally profiled ga2ox1-like KN1 binding sites in Z.mays. Availability and implementation: BLSSpeller was written in Java. Source code and manual are available at http://bioinformatics.intec.ugent.be/blsspeller Contact: Klaas.Vandepoele@psb.vib-ugent.be or jan.fostier@intec.ugent.be Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26254488
DOE Office of Scientific and Technical Information (OSTI.GOV)
Card, G L; Peterson, N A; Smith, C A
2005-02-15
Mycobacterium tuberculosis, the cause of TB, is a devastating human pathogen. The emergence of multi-drug resistance in recent years has prompted a search for new drug targets and for a better understanding of mechanisms of resistance. Here we focus on the gene product of an open reading frame from M. tuberculosis, Rv1347c, which is annotated as a putative aminoglycoside N-acetyltransferase. The Rv1347c protein does not show this activity, however, and we show from its crystal structure, coupled with functional and bioinformatic data, that its most likely role is in the biosynthesis of mycobactin, the M. tuberculosis siderophore. The crystal structuremore » of Rv1347c was determined by MAD phasing from selenomethionine-substituted protein and refined at 2.2 {angstrom} resolution (R = 0.227, R{sub free} = 0.257). The protein is monomeric, with a fold that places it in the GCN5-related N-acetyltransferase (GNAT) family of acyltransferases. Features of the structure are an acylCoA binding site that is shared with other GNAT family members, and an adjacent hydrophobic channel leading to the surface that could accommodate long-chain acyl groups. Modeling the postulated substrate, the N{sup {var_epsilon}}-hydroxylysine side chain of mycobactin, into the acceptor substrate binding groove identifies two residues at the active site, His130 and Asp168, that have putative roles in substrate binding and catalysis.« less
Laubinger, W; Reiser, G
1999-01-29
Nucleotide receptors are of considerable importance in the treatment of lung diseases, such as cystic fibrosis. Because diadenosine polyphosphates may also be of significance as signalling molecules in lung, as they are in a variety of tissues, in the present work we investigated the binding sites for [3H]diadenosine-5',5'''-P1,P4-tetraphosphate (Ap4A) in plasma membranes from rat lung and studied their possible coupling to G proteins. We present evidence for a single high-affinity binding site for [3H]Ap4A with similar affinity for other diadenosine polyphosphates ApnA (n = 2 to 6). Displacement studies with different nucleotides revealed that the [3H]Ap4A binding site was different from P2X and P2Y2 receptor binding sites. Pretreatment of lung membranes with GTPgammaS or GTP in the presence of Mg2+ increased the Ki for Ap4A from 91 nM to 5.1 microM, which is indicative of G protein coupling. The putative coupling to G proteins was further confirmed by the enhancement of [35S]GTPgammaS binding (to Galpha proteins) to lung membranes by Ap4A (63% increase over basal) in a concentration-dependent manner. Therefore, our data for the first time provide evidence of a G protein-coupled Ap4A binding site in lung membranes.
Theory on the mechanism of site-specific DNA-protein interactions in the presence of traps
NASA Astrophysics Data System (ADS)
Niranjani, G.; Murugan, R.
2016-08-01
The speed of site-specific binding of transcription factor (TFs) proteins with genomic DNA seems to be strongly retarded by the randomly occurring sequence traps. Traps are those DNA sequences sharing significant similarity with the original specific binding sites (SBSs). It is an intriguing question how the naturally occurring TFs and their SBSs are designed to manage the retarding effects of such randomly occurring traps. We develop a simple random walk model on the site-specific binding of TFs with genomic DNA in the presence of sequence traps. Our dynamical model predicts that (a) the retarding effects of traps will be minimum when the traps are arranged around the SBS such that there is a negative correlation between the binding strength of TFs with traps and the distance of traps from the SBS and (b) the retarding effects of sequence traps can be appeased by the condensed conformational state of DNA. Our computational analysis results on the distribution of sequence traps around the putative binding sites of various TFs in mouse and human genome clearly agree well the theoretical predictions. We propose that the distribution of traps can be used as an additional metric to efficiently identify the SBSs of TFs on genomic DNA.
Behera, Pabitra Mohan; Behera, Deepak Kumar; Satpati, Suresh; Agnihotri, Geetanjali; Nayak, Sanghamitra; Padhi, Payodhar; Dixit, Anshuman
2015-04-01
The glucose phosphorylating enzyme glucokinase (GK) is a 50kD monomeric protein having 465 amino acids. It maintains glucose homeostasis inside cells, acts as a glucose sensor in pancreatic β-cells and as a rate controlling enzyme for hepatic glucose clearance and glycogen synthesis. It has two binding sites, one for binding d-glucose and the other for a putative allosteric activator named glucokinase activator (GKA). The GKAs interact with the same region of the GK enzyme that is commonly affected by naturally occurring mutations in humans. However, many GKAs do not bind to GK in the absence of glucose. Recently, it has been reported that GKAs are highly effective in patients with type 2 diabetes mellitus. In this milieu a molecular modeling study has been carried out on three natural variants of GK that lie in the GKA binding site and are known to cause maturity onset diabetes of young (MODY). Additionally, a 10ns molecular dynamics simulation was done on each of the modeled variant in order to explore the flexibility of this site. Subsequently, a systematic virtual screening study was done to identify compounds which can bind with high affinity at GKA binding site of mutant GK. Copyright © 2015 Elsevier Inc. All rights reserved.
Heterogeneity of signal transduction by Na-K-ATPase α-isoforms: role of Src interaction.
Yu, Hui; Cui, Xiaoyu; Zhang, Jue; Xie, Joe X; Banerjee, Moumita; Pierre, Sandrine V; Xie, Zijian
2018-02-01
Of the four Na-K-ATPase α-isoforms, the ubiquitous α1 Na-K-ATPase possesses both ion transport and Src-dependent signaling functions. Mechanistically, we have identified two putative pairs of domain interactions between α1 Na-K-ATPase and Src that are critical for α1 signaling function. Our subsequent report that α2 Na-K-ATPase lacks these putative Src-binding sites and fails to carry on Src-dependent signaling further supported our proposed model of direct interaction between α1 Na-K-ATPase and Src but fell short of providing evidence for a causative role. This hypothesis was specifically tested here by introducing key residues of the two putative Src-interacting domains present on α1 but not α2 sequence into the α2 polypeptide, generating stable cell lines expressing this mutant, and comparing its signaling properties to those of α2-expressing cells. The mutant α2 was fully functional as a Na-K-ATPase. In contrast to wild-type α2, the mutant gained α1-like signaling function, capable of Src interaction and regulation. Consistently, the expression of mutant α2 redistributed Src into caveolin-1-enriched fractions and allowed ouabain to activate Src-mediated signaling cascades, unlike wild-type α2 cells. Finally, mutant α2 cells exhibited a growth phenotype similar to that of the α1 cells and proliferated much faster than wild-type α2 cells. These findings reveal the structural requirements for the Na-K-ATPase to function as a Src-dependent receptor and provide strong evidence of isoform-specific Src interaction involving the identified key amino acids. The sequences surrounding the putative Src-binding sites in α2 are highly conserved across species, suggesting that the lack of Src binding may play a physiologically important and isoform-specific role.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Min, Andrew B; Miallau, Linda; Sawaya, Michael R
VapBC pairs account for 45 out of 88 identified toxin-antitoxin (TA) pairs in the Mycobacterium tuberculosis (Mtb) H37Rv genome. A working model suggests that under times of stress, antitoxin molecules are degraded, releasing the toxins to slow the metabolism of the cell, which in the case of VapC toxins is via their RNase activity. Otherwise the TA pairs remain bound to their promoters, autoinhibiting transcription. The crystal structure of Rv0301-Rv0300, an Mtb VapBC TA complex determined at 1.49 Å resolution, suggests a mechanism for these three functions: RNase activity, its inhibition by antitoxin, and its ability to bind promoter DNA.more » The Rv0301 toxin consists of a core of five parallel beta strands flanked by alpha helices. Three proximal aspartates coordinate a Mg2+ ion forming the putative RNase active site. The Rv0300 antitoxin monomer is extended in structure, consisting of an N-terminal beta strand followed by four helices. The last two helices wrap around the toxin and terminate near the putative RNase active site, but with different conformations. In one conformation, the C-terminal arginine interferes with Mg2+ ion coordination, suggesting a mechanism by which the antitoxin can inhibit toxin activity. At the N-terminus of the antitoxin, two pairs of Ribbon-Helix-Helix (RHH) motifs are related by crystallographic twofold symmetry. The resulting hetero-octameric complex is similar to the FitAB system, but the two RHH motifs are about 30 Å closer together in the Rv0301-Rv0300 complex, suggesting either a different span of the DNA recognition sequence or a conformational change.« less
NF-{kappa}B p65 represses {beta}-catenin-activated transcription of cyclin D1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Injoo; Choi, Yong Seok; Jeon, Mi-Ya
2010-12-03
Research highlights: {yields} Cyclin D1 transcription is directly activated by {beta}-catenin; however, {beta}-catenin-induced cyclin D1 transcription is reduced by NF-{kappa}B p65. {yields} Protein-protein interaction between NF-{kappa}B p65 and {beta}-catenin might be responsible for p65-mediated repression of cyclin D1. {yields} One of five putative binding sites, located further upstream of other sites, is the major {beta}-catenin binding site in the cyclin D1 promoter. {yields} NF-{kappa}B binding site in cyclin D1 is occupied not only by p65 but also by {beta}-catenin, which is dynamically regulated by the signal. -- Abstract: Signaling crosstalk between the {beta}-catenin and NF-{kappa}B pathways represents a functional network.more » To test whether the crosstalk also occurs on their common target genes, the cyclin D1 promoter was used as a model because it contains binding sites for both proteins. {beta}-catenin activated transcription from the cyclin D1 promoter, while co-expression of NF-{kappa}B p65 reduced {beta}-catenin-induced transcription. Chromatin immunoprecipitation revealed lithium chloride-induced binding of {beta}-catenin on one of the T-cell activating factor binding sites. More interestingly, {beta}-catenin binding was greatly reduced by NF-{kappa}B p65, possibly by the protein-protein interaction between the two proteins. Such a dynamic and complex binding of {beta}-catenin and NF-{kappa}B on promoters might contribute to the regulated expression of their target genes.« less
Chai, Kian Piaw; Othman, Noor Farhan Binti; Teh, Aik-Hong; Ho, Kok Lian; Chan, Kok-Gan; Shamsir, Mohd Shahir; Goh, Kian Mau; Ng, Chyan Leong
2016-03-15
A new subfamily of glycosyl hydrolase family GH13 was recently proposed for α-amylases from Anoxybacillus species (ASKA and ADTA), Geobacillus thermoleovorans (GTA, Pizzo, and GtamyII), Bacillus aquimaris (BaqA), and 95 other putative protein homologues. To understand this new GH13 subfamily, we report crystal structures of truncated ASKA (TASKA). ASKA is a thermostable enzyme capable of producing high levels of maltose. Unlike GTA, biochemical analysis showed that Ca(2+) ion supplementation enhances the catalytic activities of ASKA and TASKA. The crystal structures reveal the presence of four Ca(2+) ion binding sites, with three of these binding sites are highly conserved among Anoxybacillus α-amylases. This work provides structural insights into this new GH13 subfamily both in the apo form and in complex with maltose. Furthermore, structural comparison of TASKA and GTA provides an overview of the conformational changes accompanying maltose binding at each subsite.
The Evolving Field of Biodefence: Therapeutic Developments and Diagnostics
2005-04-01
several ways. One method would be to interfere with the furin -medi- ated cleavage of PA to its active form (PA 63 ) following host-cell receptor binding4...b | The inactive form of protective antigen (PA83) binds to a host-cell receptor, where it is cleaved by a furin -related protease, to give active PA63...explore whether a putative target, such as furin cleavage site of Ebola virus, is essential for viral infection88. Compared with filoviruses, poxvirus
Yu, Xiaoli; Kang, Mingjiang; Liu, Li; Guo, Xingqi; Xu, Baohua
2013-01-01
Fatty acid-binding proteins (FABPs) play pivotal roles in cellular signaling, gene transcription, and lipid metabolism in vertebrates and invertebrates. In this study, a putative FABP gene, referred to as AccFABP, was isolated from the Asian honeybee, Apis cerana cerana Fabricius (Hymenoptera: Apidae). The full-length cDNA consisted of 725 bp, and encoded a protein of 204 amino acids. Homology and phylogenetic analysis indicated that AccFABP was a member of the FABP multifamily. The genomic structure of this gene, which was common among FABP multifamily members, spanned 1,900 bp, and included four exons and three introns. Gene expression analysis revealed that AccFABP was highly expressed in the dark-pigmented phase of pupal development, with peak expression observed in the fat bodies of the dark-pigmented phase pupae. The AccFABP transcripts in the fat body were upregulated by exposure to dietary fatty acids such as conjugated linoleic acid, docosahexaenoic acid, and arachidonic acid. Transcription factor binding sites for Caudal-Related Homeobox and functional CCAAT/enhancer binding site, which were respectively associated with tissue expression and lipid metabolism, were detected in the 5' promoter sequence. The evidence provided in the present study suggests that AccFABP may regulate insect growth and development, and lipid metabolism.
Measso do Bonfim, Caroline; Simão Sobrinho, João; Lacerda Nogueira, Rodrigo; Salgado Kupper, Daniel; Cardoso Pereira Valera, Fabiana; Lacerda Nogueira, Maurício; Villa, Luisa Lina; Rahal, Paula; Sichero, Laura
2015-01-01
A significant proportion of recurrent respiratory papillomatosis (RRP) is caused by human papillomavirus type 6 (HPV-6). The long control region (LCR) contains cis-elements for regulation of transcription. Our aim was to characterize LCR HPV-6 variants in RRP cases, compare promoter activity of these isolates and search for cellular transcription factors (TFs) that could explain the differences observed. The complete LCR from 13 RRP was analyzed. Transcriptional activity of 5 variants was compared using luciferase assays. Differences in putative TFs binding sites among variants were revealed using the TRANSFAC database. Chromatin immunoprecipation (CHIP) and luciferase assays were used to evaluate TF binding and impact upon transcription, respectively. Juvenile-onset RRP cases harbored exclusively HPV-6vc related variants, whereas among adult-onset cases HPV-6a variants were more prevalent. The HPV-6vc reference was more transcriptionally active than the HPV-6a reference. Active FOXA1, ELF1 and GATA1 binding sites overlap variable nucleotide positions among isolates and influenced LCR activity. Furthermore, our results support a crucial role for ELF1 on transcriptional downregulation. We identified TFs implicated in the regulation of HPV-6 early gene expression. Many of these factors are mutated in cancer or are putative cancer biomarkers, and must be further studied. PMID:26151558
The Role of the EGF Receptor First Intron in Its Regulation in Breast Canceer.
1997-08-01
of EGFR, to malignantly transform mammary glands in transgenic mice (46). Future work could determine if these putative oncogene factor binding sites...general transcription factors, and the use or overuse of one promoter could monopolize the abundance of these transcription factors within a cell. The ideal
Identification of regulatory targets for the bacterial Nus factor complex.
Baniulyte, Gabriele; Singh, Navjot; Benoit, Courtney; Johnson, Richard; Ferguson, Robert; Paramo, Mauricio; Stringer, Anne M; Scott, Ashley; Lapierre, Pascal; Wade, Joseph T
2017-12-11
Nus factors are broadly conserved across bacterial species, and are often essential for viability. A complex of five Nus factors (NusB, NusE, NusA, NusG and SuhB) is considered to be a dedicated regulator of ribosomal RNA folding, and has been shown to prevent Rho-dependent transcription termination. Here, we identify an additional cellular function for the Nus factor complex in Escherichia coli: repression of the Nus factor-encoding gene, suhB. This repression occurs primarily by translation inhibition, followed by Rho-dependent transcription termination. Thus, the Nus factor complex can prevent or promote Rho activity depending on the gene context. Conservation of putative NusB/E binding sites upstream of Nus factor genes suggests that Nus factor autoregulation occurs in many bacterial species. Additionally, many putative NusB/E binding sites are also found upstream of other genes in diverse species, and we demonstrate Nus factor regulation of one such gene in Citrobacter koseri. We conclude that Nus factors have an evolutionarily widespread regulatory function beyond ribosomal RNA, and that they are often autoregulatory.
Luis, Luis; Serrano, María Luisa; Hidalgo, Mariana; Mendoza-León, Alexis
2013-01-01
Differential susceptibility to microtubule agents has been demonstrated between mammalian cells and kinetoplastid organisms such as Leishmania spp. and Trypanosoma spp. The aims of this study were to identify and characterize the architecture of the putative colchicine binding site of Leishmania spp. and investigate the molecular basis of colchicine resistance. We cloned and sequenced the β-tubulin gene of Leishmania (Viannia) guyanensis and established the theoretical 3D model of the protein, using the crystallographic structure of the bovine protein as template. We identified mutations on the Leishmania β-tubulin gene sequences on regions related to the putative colchicine-binding pocket, which generate amino acid substitutions and changes in the topology of this region, blocking the access of colchicine. The same mutations were found in the β-tubulin sequence of kinetoplastid organisms such as Trypanosoma cruzi, T. brucei, and T. evansi. Using molecular modelling approaches, we demonstrated that conformational changes include an elongation and torsion of an α-helix structure and displacement to the inside of the pocket of one β-sheet that hinders access of colchicine. We propose that kinetoplastid organisms show resistance to colchicine due to amino acids substitutions that generate structural changes in the putative colchicine-binding domain, which prevent colchicine access. PMID:24083244
Kinoshita, Kengo; Murakami, Yoichi; Nakamura, Haruki
2007-07-01
We have developed a method to predict ligand-binding sites in a new protein structure by searching for similar binding sites in the Protein Data Bank (PDB). The similarities are measured according to the shapes of the molecular surfaces and their electrostatic potentials. A new web server, eF-seek, provides an interface to our search method. It simply requires a coordinate file in the PDB format, and generates a prediction result as a virtual complex structure, with the putative ligands in a PDB format file as the output. In addition, the predicted interacting interface is displayed to facilitate the examination of the virtual complex structure on our own applet viewer with the web browser (URL: http://eF-site.hgc.jp/eF-seek).
Assadi-Porter, Fariba M.; Maillet, Emeline L.; Radek, James T.; Quijada, Jeniffer; Markley, John L.; Max, Marianna
2010-01-01
The sweet protein brazzein activates the human sweet receptor, a heterodimeric G-protein coupled receptor (GPCR) composed of subunits T1R2 and T1R3. In order to elucidate the key amino acid(s) responsible for this interaction, we mutated residues in brazzein and each of the two subunits of the receptor. The effects of brazzein mutations were assayed by a human taste panel and by an in vitro assay involving receptor subunits expressed recombinantly in human embryonic kidney cells; the effects of the receptor mutations were assayed by the in vitro assay. We mutated surface residues of brazzein at three putative interaction sites: Site 1 (Loop43), Site 2 (N- and C-terminus and adjacent Glu36, Loop33), and Site 3 (Loop9–19). Basic residues in Site 1 and acidic residues in Site 2 were essential for positive responses from each assay. Mutation of Y39A (Site 1) greatly reduced positive responses. A bulky side chain at position 54 (Site 2), rather than a side chain with hydrogen bonding potential, was required for positive responses as was the presence of the native disulfide bond in Loop 9–19 (Site 3). Results from mutagenesis and chimeras of the receptor indicated that brazzein interacts with both T1R2 and T1R3 and that the Venus fly trap module of T1R2 is important for brazzein agonism. With one exception, all mutations of receptor residues at putative interaction sites predicted by wedge models failed to yield the expected decrease in the brazzein response. The exception, hT1R2:R217A-hT1R3, which contained a substitution in lobe 2 at the interface between the two subunits, exhibited a small selective decrease in brazzein activity. However, because the mutation was found to increase the positive cooperativity of binding by multiple ligands proposed to bind both T1R subunits (brazzein, monellin, and sucralose) but not those that bind to a single subunit (neotame and cyclamate), we suggest that this site in involved in subunit-subunit interaction rather than direct brazzein binding. Results from this study support a multipoint interaction between brazzein and the sweet receptor by some mechanism other than the proposed wedge models. PMID:20302879
Zimmerman, Carl-Ulrich R; Rosengarten, Renate; Spergser, Joachim
2013-01-01
Phase variation of two loci (‘mba locus’ and ‘UU172 phase-variable element’) in Ureaplasma parvum serovar 3 has been suggested as result of site-specific DNA inversion occurring at short inverted repeats. Three potential tyrosine recombinases (RipX, XerC, and CodV encoded by the genes UU145, UU222, and UU529) have been annotated in the genome of U. parvum serovar 3, which could be mediators in the proposed recombination event. We document that only orthologs of the gene xerC are present in all strains that show phase variation in the two loci. We demonstrate in vitro binding of recombinant maltose-binding protein fusions of XerC to the inverted repeats of the phase-variable loci, of RipX to a direct repeat that flanks a 20-kbp region, which has been proposed as putative pathogenicity island, and of CodV to a putative dif site. Co-transformation of the model organism Mycoplasma pneumoniae M129 with both the ‘mba locus’ and the recombinase gene xerC behind an active promoter region resulted in DNA inversion in the ‘mba locus’. Results suggest that XerC of U. parvum serovar 3 is a mediator in the proposed DNA inversion event of the two phase-variable loci. PMID:23305333
Banderas, Alvaro; Guiliani, Nicolas
2013-08-16
The biomining bacterium Acidithiobacillus ferrooxidans oxidizes sulfide ores and promotes metal solubilization. The efficiency of this process depends on the attachment of cells to surfaces, a process regulated by quorum sensing (QS) cell-to-cell signalling in many Gram-negative bacteria. At. ferrooxidans has a functional QS system and the presence of AHLs enhances its attachment to pyrite. However, direct targets of the QS transcription factor AfeR remain unknown. In this study, a bioinformatic approach was used to infer possible AfeR direct targets based on the particular palindromic features of the AfeR binding site. A set of Hidden Markov Models designed to maintain palindromic regions and vary non-palindromic regions was used to screen for putative binding sites. By annotating the context of each predicted binding site (PBS), we classified them according to their positional coherence relative to other putative genomic structures such as start codons, RNA polymerase promoter elements and intergenic regions. We further used the Multiple EM for Motif Elicitation algorithm (MEME) to further filter out low homology PBSs. In summary, 75 target-genes were identified, 34 of which have a higher confidence level. Among the identified genes, we found afeR itself, zwf, genes encoding glycosyltransferase activities, metallo-beta lactamases, and active transport-related proteins. Glycosyltransferases and Zwf (Glucose 6-phosphate-1-dehydrogenase) might be directly involved in polysaccharide biosynthesis and attachment to minerals by At. ferrooxidans cells during the bioleaching process.
Banderas, Alvaro; Guiliani, Nicolas
2013-01-01
The biomining bacterium Acidithiobacillus ferrooxidans oxidizes sulfide ores and promotes metal solubilization. The efficiency of this process depends on the attachment of cells to surfaces, a process regulated by quorum sensing (QS) cell-to-cell signalling in many Gram-negative bacteria. At. ferrooxidans has a functional QS system and the presence of AHLs enhances its attachment to pyrite. However, direct targets of the QS transcription factor AfeR remain unknown. In this study, a bioinformatic approach was used to infer possible AfeR direct targets based on the particular palindromic features of the AfeR binding site. A set of Hidden Markov Models designed to maintain palindromic regions and vary non-palindromic regions was used to screen for putative binding sites. By annotating the context of each predicted binding site (PBS), we classified them according to their positional coherence relative to other putative genomic structures such as start codons, RNA polymerase promoter elements and intergenic regions. We further used the Multiple EM for Motif Elicitation algorithm (MEME) to further filter out low homology PBSs. In summary, 75 target-genes were identified, 34 of which have a higher confidence level. Among the identified genes, we found afeR itself, zwf, genes encoding glycosyltransferase activities, metallo-beta lactamases, and active transport-related proteins. Glycosyltransferases and Zwf (Glucose 6-phosphate-1-dehydrogenase) might be directly involved in polysaccharide biosynthesis and attachment to minerals by At. ferrooxidans cells during the bioleaching process. PMID:23959118
Mithöfer, A; Fliegmann, J; Neuhaus-Url, G; Schwarz, H; Ebel, J
2000-08-01
The ability of legumes to recognize and respond to beta-glucan elicitors by synthesizing phytoalexins is consistent with the existence of a membrane-bound beta-glucan-binding site. Related proteins of approximately 75 kDa and the corresponding mRNAs were detected in various species of legumes which respond to beta-glucans. The cDNAs for the beta-glucan-binding proteins of bean and soybean were cloned. The deduced 75-kDa proteins are predominantly hydrophilic and constitute a unique class of glucan-binding proteins with no currently recognizable functional domains. Heterologous expression of the soybean beta-glucan-binding protein in tomato cells resulted in the generation of a high-affinity binding site for the elicitor-active hepta-beta-glucoside conjugate (Kd = 4.5 nM). Ligand competition experiments with the recombinant binding sites demonstrated similar ligand specificities when compared with soybean. In both soybean and transgenic tomato, membrane-bound, active forms of the glucan-binding proteins coexist with immunologically detectable, soluble but inactive forms of the proteins. Reconstitution of a soluble protein fraction into lipid vesicles regained beta-glucoside-binding activity but with lower affinity (Kd = 130 nM). We conclude that the beta-glucan elicitor receptors of legumes are composed of the 75 kDa glucan-binding proteins as the critical components for ligand-recognition, and of an as yet unknown membrane anchor constituting the plasma membrane-associated receptor complex.
CisMapper: predicting regulatory interactions from transcription factor ChIP-seq data
O'Connor, Timothy; Bodén, Mikael
2017-01-01
Abstract Identifying the genomic regions and regulatory factors that control the transcription of genes is an important, unsolved problem. The current method of choice predicts transcription factor (TF) binding sites using chromatin immunoprecipitation followed by sequencing (ChIP-seq), and then links the binding sites to putative target genes solely on the basis of the genomic distance between them. Evidence from chromatin conformation capture experiments shows that this approach is inadequate due to long-distance regulation via chromatin looping. We present CisMapper, which predicts the regulatory targets of a TF using the correlation between a histone mark at the TF's bound sites and the expression of each gene across a panel of tissues. Using both chromatin conformation capture and differential expression data, we show that CisMapper is more accurate at predicting the target genes of a TF than the distance-based approaches currently used, and is particularly advantageous for predicting the long-range regulatory interactions typical of tissue-specific gene expression. CisMapper also predicts which TF binding sites regulate a given gene more accurately than using genomic distance. Unlike distance-based methods, CisMapper can predict which transcription start site of a gene is regulated by a particular binding site of the TF. PMID:28204599
Terentiev, Alexander A; Moldogazieva, Nurbubu T; Levtsova, Olga V; Maximenko, Dmitry M; Borozdenko, Denis A; Shaitan, Konstantin V
2012-04-01
It has been long experimentally demonstrated that human alpha-fetoprotein (HAFP) has an ability to bind immobilized estrogens with the most efficiency for synthetic estrogen analog - diethylstilbestrol (DES). However, the question remains why the human AFP (HAFP), unlike rodent AFP, cannot bind free estrogens. Moreover, despite the fact that AFP was first discovered more than 50 years ago and is presently recognized as a "golden standard" among onco-biomarkers, its three-dimensional (3D) structure has not been experimentally solved yet. In this work using MODELLER program, we generated 3D model of HAFP on the basis of homology with human serum albumin (HSA) and Vitamin D-binding protein (VTDB) with subsequent molecular docking of DES to the model structure and molecular dynamics (MD) simulation study of the complex obtained. The model constructed has U-shaped structure in which a cavity may be distinguished. In this cavity the putative estrogen-binding site is localized. Validation by RMSD calculation and with the use of PROCHECK program showed good quality of the model and stability of extended region of four alpha-helical structures that contains putative hormone-binding residues. Data extracted from MD simulation trajectory allow proposing two types of interactions between amino acid residues of HAFP and DES molecule: (1) hydrogen bonding with involvement of residues S445, R452, and E551; (2) hydrophobic interactions with participation of L138, M448, and M548 residues. A suggestion is made that immobilization of the hormone using a long spacer provides delivery of the estrogen molecule to the binding site and, thereby, facilitates interaction between HAFP and the hormone.
Dilley, David R.; Wang, Zhenyong; Kadirjan-Kalbach, Deena K.; Ververidis, Fillipos; Beaudry, Randolph; Padmanabhan, Kallaithe
2013-01-01
1-Aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACCO) catalyses the final step in ethylene biosynthesis converting ACC to ethylene, cyanide, CO2, dehydroascorbate and water with inputs of Fe(II), ascorbate, bicarbonate (as activators) and oxygen. Cyanide activates ACCO. A ‘nest’ comprising several positively charged amino acid residues from the C-terminal α-helix 11 along with Lys158 and Arg299 are proposed as binding sites for ascorbate and bicarbonate to coordinately activate the ACCO reaction. The binding sites for ACC, bicarbonate and ascorbic acid for Malus domestica ACCO1 include Arg175, Arg244, Ser246, Lys158, Lys292, Arg299 and Phe300. Glutamate 297, Phe300 and Glu301 in α-helix 11 are also important for the ACCO reaction. Our proposed reaction pathway incorporates cyanide as an ACCO/Fe(II) ligand after reaction turnover. The cyanide ligand is likely displaced upon binding of ACC and ascorbate to provide a binding site for oxygen. We propose that ACCO may be involved in the ethylene signal transduction pathway not directly linked to the ACCO reaction. ACC oxidase has significant homology with Lycopersicon esculentum cysteine protease LeCp, which functions as a protease and as a regulator of 1-aminocyclopropane-1-carboxylic acid synthase (Acs2) gene expression. ACC oxidase may play a similar role in signal transduction after post-translational processing. ACC oxidase becomes inactivated by fragmentation and apparently has intrinsic protease and transpeptidase activity. ACC oxidase contains several amino acid sequence motifs for putative protein–protein interactions, phosphokinases and cysteine protease. ACC oxidase is subject to autophosphorylaton in vitro and promotes phosphorylation of some apple fruit proteins in a ripening-dependent manner. PMID:24244837
Yilmaz, S; Altinkanat-Gelmez, G; Bolelli, K; Guneser-Merdan, D; Ufuk Over-Hasdemir, M; Aki-Yalcin, E; Yalcin, I
2015-01-01
The resistance-nodulation-division (RND) family efflux pumps are important in the antibiotic resistance of Gram-negative bacteria. However, although a number of bacterial RND efflux pump inhibitors have been developed, there has been no clinically available RND efflux pump inhibitor to date. A set of BSN-coded 2-substituted benzothiazoles were tested alone and in combinations with ciprofloxacin (CIP) against the AcrAB-TolC overexpressor Escherichia coli AG102 clinical strain. The results indicated that the BSN compounds did not show intrinsic antimicrobial activity when tested alone. However, when used in combinations with CIP, a reversal in the antibacterial activity of CIP with up to 10-fold better MIC values was observed. In order to describe the binding site features of these BSN compounds with AcrB, docking studies were performed using the CDocker method. The performed docking poses and the calculated binding energy scores revealed that the tested compounds BSN-006, BSN-023, and BSN-004 showed significant binding interactions with the phenylalanine-rich region in the distal binding site of the AcrB binding monomer. Moreover, the tested compounds BSN-006 and BSN-023 possessed stronger binding energies than CIP, verifying that BSN compounds are acting as the putative substrates of AcrB.
Deconstructing the DGAT1 enzyme: membrane interactions at substrate binding sites.
Lopes, Jose L S; Beltramini, Leila M; Wallace, Bonnie A; Araujo, Ana P U
2015-01-01
Diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in the triacylglyceride synthesis pathway. Bovine DGAT1 is an endoplasmic reticulum membrane-bound protein associated with the regulation of fat content in milk and meat. The aim of this study was to evaluate the interaction of DGAT1 peptides corresponding to putative substrate binding sites with different types of model membranes. Whilst these peptides are predicted to be located in an extramembranous loop of the membrane-bound protein, their hydrophobic substrates are membrane-bound molecules. In this study, peptides corresponding to the binding sites of the two substrates involved in the reaction were examined in the presence of model membranes in order to probe potential interactions between them that might influence the subsequent binding of the substrates. Whilst the conformation of one of the peptides changed upon binding several types of micelles regardless of their surface charge, suggesting binding to hydrophobic domains, the other peptide bound strongly to negatively-charged model membranes. This binding was accompanied by a change in conformation, and produced leakage of the liposome-entrapped dye calcein. The different hydrophobic and electrostatic interactions observed suggest the peptides may be involved in the interactions of the enzyme with membrane surfaces, facilitating access of the catalytic histidine to the triacylglycerol substrates.
Independent signaling by Drosophila insulin receptor for axon guidance and growth.
Li, Caroline R; Guo, Dongyu; Pick, Leslie
2013-01-01
The Drosophila insulin receptor (DInR) regulates a diverse array of biological processes including growth, axon guidance, and sugar homeostasis. Growth regulation by DInR is mediated by Chico, the Drosophila homolog of vertebrate insulin receptor substrate proteins IRS1-4. In contrast, DInR regulation of photoreceptor axon guidance in the developing visual system is mediated by the SH2-SH3 domain adaptor protein Dreadlocks (Dock). In vitro studies by others identified five NPXY motifs, one in the juxtamembrane region and four in the signaling C-terminal tail (C-tail), important for interaction with Chico. Here we used yeast two-hybrid assays to identify regions in the DInR C-tail that interact with Dock. These Dock binding sites were in separate portions of the C-tail from the previously identified Chico binding sites. To test whether these sites are required for growth or axon guidance in whole animals, a panel of DInR proteins, in which the putative Chico and Dock interaction sites had been mutated individually or in combination, were tested for their ability to rescue viability, growth and axon guidance defects of dinr mutant flies. Sites required for viability were identified. Unexpectedly, mutation of both putative Dock binding sites, either individually or in combination, did not lead to defects in photoreceptor axon guidance. Thus, either sites also required for viability are necessary for DInR function in axon guidance and/or there is redundancy built into the DInR/Dock interaction such that Dock is able to interact with multiple regions of DInR. We also found that simultaneous mutation of all five NPXY motifs implicated in Chico interaction drastically decreased growth in both male and female adult flies. These animals resembled chico mutants, supporting the notion that DInR interacts directly with Chico in vivo to control body size. Mutation of these five NPXY motifs did not affect photoreceptor axon guidance, segregating the roles of DInR in the processes of growth and axon guidance.
Wang, Defu; Wang, Xiaobing; Mei, Yu; Dong, Hansong
2016-03-01
Powdery mildew, one of the most destructive wheat diseases worldwide, is caused by Blumeria graminis f. sp. tritici (Bgt), a fungal species with a consistently high mutation rate that makes individual resistance (R) genes ineffective. Therefore, effective resistance-related gene cloning is vital for breeding and studying the resistance mechanisms of the disease. In this study, a putative nucleotide-binding site-leucine-rich repeat (NBS-LRR) R gene (TaRGA) was cloned using a homology-based cloning strategy and analyzed for its effect on powdery mildew disease and wheat defense responses. Real-time reverse transcription-PCR (RT-PCR) analyses revealed that a Bgt isolate 15 and salicylic acid stimulation significantly induced TaRGA in the resistant variety. Furthermore, the silencing of TaRGA in powdery mildew-resistant plants increased susceptibility to Bgt15 and prompted conidia propagation at the infection site. However, the expression of TaRGA in leaf segments after single-cell transient expression assay highly increased the defense responses to Bgt15 by enhancing callose deposition and phenolic autofluorogen accumulation at the pathogen invading sites. Meanwhile, the expression of pathogenesis-related genes decreased in the TaRGA-silenced plants and increased in the TaRGA-transient-overexpressing leaf segments. These results implied that the TaRGA gene positively regulates the defense response to powdery mildew disease in wheat.
Regulation of CYBB Gene Expression in Human Phagocytes by a Distant Upstream NF-κB Binding Site.
Frazão, Josias B; Thain, Alison; Zhu, Zhiqing; Luengo, Marcos; Condino-Neto, Antonio; Newburger, Peter E
2015-09-01
The human CYBB gene encodes the gp91-phox component of the phagocyte oxidase enzyme complex, which is responsible for generating superoxide and other downstream reactive oxygen species essential to microbial killing. In the present study, we have identified by sequence analysis a putative NF-κB binding site in a DNase I hypersensitive site, termed HS-II, located in the distant 5' flanking region of the CYBB gene. Electrophoretic mobility assays showed binding of the sequence element by recombinant NF-κB protein p50 and by proteins in nuclear extract from the HL-60 myeloid leukemia cell line corresponding to p50 and to p50/p65 heterodimers. Chromatin immunoprecipitation demonstrated NF-κB binding to the site in intact HL-60 cells. Chromosome conformation capture (3C) assays demonstrated physical interaction between the NF-κB binding site and the CYBB promoter region. Inhibition of NF-κB activity by salicylate reduced CYBB expression in peripheral blood neutrophils and differentiated U937 monocytic leukemia cells. U937 cells transfected with a mutant inhibitor of κB "super-repressor" showed markedly diminished CYBB expression. Luciferase reporter analysis of the NF-κB site linked to the CYBB 5' flanking promoter region revealed enhanced expression, augmented by treatment with interferon-γ. These studies indicate a role for this distant, 15 kb upstream, binding site in NF-κB regulation of the CYBB gene, an essential component of phagocyte-mediated host defense. © 2015 Wiley Periodicals, Inc.
Kumar, Atul; Sýkorová, Petra; Demo, Gabriel; Dobeš, Pavel; Hyršl, Pavel
2016-01-01
Photorhabdus luminescens is known for its symbiosis with the entomopathogenic nematode Heterorhabditis bacteriophora and its pathogenicity toward insect larvae. A hypothetical protein from P. luminescens was identified, purified from the native source, and characterized as an l-fucose-binding lectin, named P. luminescens lectin (PLL). Glycan array and biochemical characterization data revealed PLL to be specific toward l-fucose and the disaccharide glycan 3,6-O-Me2-Glcβ1–4(2,3-O-Me2)Rhaα-O-(p-C6H4)-OCH2CH2NH2. PLL was discovered to be a homotetramer with an intersubunit disulfide bridge. The crystal structures of native and recombinant PLL revealed a seven-bladed β-propeller fold creating seven putative fucose-binding sites per monomer. The crystal structure of the recombinant PLL·l-fucose complex confirmed that at least three sites were fucose-binding. Moreover, the crystal structures indicated that some of the other sites are masked either by the tetrameric nature of the lectin or by incorporation of the C terminus of the lectin into one of these sites. PLL exhibited an ability to bind to insect hemocytes and the cuticular surface of a nematode, H. bacteriophora. PMID:27758853
Sand, Olivier; Thomas-Chollier, Morgane; Vervisch, Eric; van Helden, Jacques
2008-01-01
This protocol shows how to access the Regulatory Sequence Analysis Tools (RSAT) via a programmatic interface in order to automate the analysis of multiple data sets. We describe the steps for writing a Perl client that connects to the RSAT Web services and implements a workflow to discover putative cis-acting elements in promoters of gene clusters. In the presented example, we apply this workflow to lists of transcription factor target genes resulting from ChIP-chip experiments. For each factor, the protocol predicts the binding motifs by detecting significantly overrepresented hexanucleotides in the target promoters and generates a feature map that displays the positions of putative binding sites along the promoter sequences. This protocol is addressed to bioinformaticians and biologists with programming skills (notions of Perl). Running time is approximately 6 min on the example data set.
Ringwald, M; Schuh, R; Vestweber, D; Eistetter, H; Lottspeich, F; Engel, J; Dölz, R; Jähnig, F; Epplen, J; Mayer, S
1987-01-01
We have determined the amino acid sequence of the Ca2+-dependent cell adhesion molecule uvomorulin as it appears on the cell surface. The extracellular part of the molecule exhibits three internally repeated domains of 112 residues which are most likely generated by gene duplication. Each of the repeated domains contains two highly conserved units which could represent putative Ca2+-binding sites. Secondary structure predictions suggest that the putative Ca2+-binding units are located in external loops at the surface of the protein. The protein sequence exhibits a single membrane-spanning region and a cytoplasmic domain. Sequence comparison reveals extensive homology to the chicken L-CAM. Both uvomorulin and L-CAM are identical in 65% of their entire amino acid sequence suggesting a common origin for both CAMs. Images Fig. 1. Fig. 4. Fig. 7. PMID:3501370
Wei, C H; Chou, W Y; Huang, S M; Lin, C C; Chang, G G
1994-06-28
Pigeon liver malic enzyme was rapidly inactivated by micromolar concentrations of ferrous sulfate in the presence of ascorbate at neutral pH and 0 or 25 degrees C. Omitting the ascorbate or replacing the ferrous ion with manganese ion did not lead to any inactivation. Manganese, magnesium, zinc, cobalt, or calcium ion at 200 molar excess over ferrous ion offered complete protection of the enzyme from Fe(2+)-induced inactivation. Ni2+ provided partial protection, while Ba2+ or imidazole was ineffective in protection. Addition of 4 mM Mn2+ or 5 mM EDTA into a partially modified enzyme stopped further inactivation of the enzyme. Inclusion of substrates (L-malate or NADP+, singly or in combination) in the incubation mixture did not affect the inactivation rate. The enzyme inactivation was demonstrated to be followed by protein cleavage. Native pigeon liver malic enzyme had a subunit M(r) of 65,000. The inactivated enzyme with residual activity of only 0.3% was cleaved into two fragments with M(r) of 31,000 and 34,000, respectively. The cleavage site was identified as the peptide bond between Asp258 and Ile259. Native pigeon liver malic enzyme was blocked at the N-terminus. Cleavage at the putative metal-binding site exposed a new N-terminus, which was identified to be at the 34-kDa fragment containing the C-terminal half of original sequence 259-557. Our results indicated that Fe2+ catalyzed a specific oxidation of pigeon liver malic enzyme at Asp258 and/or some other essential amino acid residues that caused enzyme inactivation. The modified enzyme was then affinity cleaved at the Mn(2+)-binding site.
Ellestad, Laura E.
2013-01-01
Glucocorticoids play a role in functional differentiation of pituitary somatotrophs and lactotrophs during embryogenesis. Ras-dva was identified as a gene regulated by anterior neural fold protein-1/homeobox expressed in embryonic stem cells-1, a transcription factor known to be critical in pituitary development, and has an expression profile in the chicken embryonic pituitary gland that is consistent with in vivo regulation by glucocorticoids. The objective of this study was to characterize expression and regulation of ras-dva mRNA in the developing chicken anterior pituitary. Pituitary ras-dva mRNA levels increased during embryogenesis to a maximum on embryonic day (e) 18 and then decreased and remained low or undetectable after hatch. Ras-dva expression was highly enriched in the pituitary gland on e18 relative to other tissues examined. Glucocorticoid treatment of pituitary cells from mid- and late-stage embryos rapidly increased ras-dva mRNA, suggesting it may be a direct transcriptional target of glucocorticoids. A reporter construct driven by 4 kb of the chicken ras-dva 5′-flanking region, containing six putative pituitary-specific transcription factor-1 (Pit-1) binding sites and two potential glucocorticoid receptor (GR) binding sites, was highly activated in embryonic pituitary cells and up-regulated by corticosterone. Mutagenesis of the most proximal Pit-1 site decreased promoter activity in chicken e11 pituitary cells, indicating regulation of ras-dva by Pit-1. However, mutating putative GR binding sites did not substantially reduce induction of ras-dva promoter activity by corticosterone, suggesting additional DNA elements within the 5′-flanking region are responsible for glucocorticoid regulation. We have identified ras-dva as a glucocorticoid-regulated gene that is likely expressed in cells of the Pit-1 lineage within the developing anterior pituitary gland. PMID:23161868
Ellestad, Laura E; Porter, Tom E
2013-01-01
Glucocorticoids play a role in functional differentiation of pituitary somatotrophs and lactotrophs during embryogenesis. Ras-dva was identified as a gene regulated by anterior neural fold protein-1/homeobox expressed in embryonic stem cells-1, a transcription factor known to be critical in pituitary development, and has an expression profile in the chicken embryonic pituitary gland that is consistent with in vivo regulation by glucocorticoids. The objective of this study was to characterize expression and regulation of ras-dva mRNA in the developing chicken anterior pituitary. Pituitary ras-dva mRNA levels increased during embryogenesis to a maximum on embryonic day (e) 18 and then decreased and remained low or undetectable after hatch. Ras-dva expression was highly enriched in the pituitary gland on e18 relative to other tissues examined. Glucocorticoid treatment of pituitary cells from mid- and late-stage embryos rapidly increased ras-dva mRNA, suggesting it may be a direct transcriptional target of glucocorticoids. A reporter construct driven by 4 kb of the chicken ras-dva 5'-flanking region, containing six putative pituitary-specific transcription factor-1 (Pit-1) binding sites and two potential glucocorticoid receptor (GR) binding sites, was highly activated in embryonic pituitary cells and up-regulated by corticosterone. Mutagenesis of the most proximal Pit-1 site decreased promoter activity in chicken e11 pituitary cells, indicating regulation of ras-dva by Pit-1. However, mutating putative GR binding sites did not substantially reduce induction of ras-dva promoter activity by corticosterone, suggesting additional DNA elements within the 5'-flanking region are responsible for glucocorticoid regulation. We have identified ras-dva as a glucocorticoid-regulated gene that is likely expressed in cells of the Pit-1 lineage within the developing anterior pituitary gland.
Structural insights into xenobiotic and inhibitor binding to human aldehyde oxidase.
Coelho, Catarina; Foti, Alessandro; Hartmann, Tobias; Santos-Silva, Teresa; Leimkühler, Silke; Romão, Maria João
2015-10-01
Aldehyde oxidase (AOX) is a xanthine oxidase (XO)-related enzyme with emerging importance due to its role in the metabolism of drugs and xenobiotics. We report the first crystal structures of human AOX1, substrate free (2.6-Å resolution) and in complex with the substrate phthalazine and the inhibitor thioridazine (2.7-Å resolution). Analysis of the protein active site combined with steady-state kinetic studies highlight the unique features, including binding and substrate orientation at the active site, that characterize human AOX1 as an important drug-metabolizing enzyme. Structural analysis of the complex with the noncompetitive inhibitor thioridazine revealed a new, unexpected and fully occupied inhibitor-binding site that is structurally conserved among mammalian AOXs and XO. The new structural insights into the catalytic and inhibition mechanisms of human AOX that we now report will be of great value for the rational analysis of clinical drug interactions involving inhibition of AOX1 and for the prediction and design of AOX-stable putative drugs.
Regulation of E2s: A Role for Additional Ubiquitin Binding Sites?
Middleton, Adam J; Wright, Joshua D; Day, Catherine L
2017-11-10
Attachment of ubiquitin to proteins relies on a sophisticated enzyme cascade that is tightly regulated. The machinery of ubiquitylation responds to a range of signals, which remarkably includes ubiquitin itself. Thus, ubiquitin is not only the central player in the ubiquitylation cascade but also a key regulator. The ubiquitin E3 ligases provide specificity to the cascade and often bind the substrate, while the ubiquitin-conjugating enzymes (E2s) have a pivotal role in determining chain linkage and length. Interaction of ubiquitin with the E2 is important for activity, but the weak nature of these contacts has made them hard to identify and study. By reviewing available crystal structures, we identify putative ubiquitin binding sites on E2s, which may enhance E2 processivity and the assembly of chains of a defined linkage. The implications of these new sites are discussed in the context of known E2-ubiquitin interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Structural Basis for Xenon Inhibition in a Cationic Pentameric Ligand-Gated Ion Channel
Sauguet, Ludovic; Fourati, Zeineb; Prangé, Thierry; Delarue, Marc; Colloc'h, Nathalie
2016-01-01
GLIC receptor is a bacterial pentameric ligand-gated ion channel whose action is inhibited by xenon. Xenon has been used in clinical practice as a potent gaseous anaesthetic for decades, but the molecular mechanism of interactions with its integral membrane receptor targets remains poorly understood. Here we characterize by X-ray crystallography the xenon-binding sites within both the open and “locally-closed” (inactive) conformations of GLIC. Major binding sites of xenon, which differ between the two conformations, were identified in three distinct regions that all belong to the trans-membrane domain of GLIC: 1) in an intra-subunit cavity, 2) at the interface between adjacent subunits, and 3) in the pore. The pore site is unique to the locally-closed form where the binding of xenon effectively seals the channel. A putative mechanism of the inhibition of GLIC by xenon is proposed, which might be extended to other pentameric cationic ligand-gated ion channels. PMID:26910105
Structural Basis for Xenon Inhibition in a Cationic Pentameric Ligand-Gated Ion Channel.
Sauguet, Ludovic; Fourati, Zeineb; Prangé, Thierry; Delarue, Marc; Colloc'h, Nathalie
2016-01-01
GLIC receptor is a bacterial pentameric ligand-gated ion channel whose action is inhibited by xenon. Xenon has been used in clinical practice as a potent gaseous anaesthetic for decades, but the molecular mechanism of interactions with its integral membrane receptor targets remains poorly understood. Here we characterize by X-ray crystallography the xenon-binding sites within both the open and "locally-closed" (inactive) conformations of GLIC. Major binding sites of xenon, which differ between the two conformations, were identified in three distinct regions that all belong to the trans-membrane domain of GLIC: 1) in an intra-subunit cavity, 2) at the interface between adjacent subunits, and 3) in the pore. The pore site is unique to the locally-closed form where the binding of xenon effectively seals the channel. A putative mechanism of the inhibition of GLIC by xenon is proposed, which might be extended to other pentameric cationic ligand-gated ion channels.
Mabrouk, T; Lemay, G
1994-01-01
It has been demonstrated that the sigma 3 protein of reovirus harbors a zinc-binding domain in its amino-terminal portion. A putative zinc finger in the CCHH form is located in this domain and was considered to be a good candidate for the zinc-binding motif. We performed site-directed mutagenesis to substitute amino acids in this region and demonstrated that many of these mutants, although expressed in COS cells, were unstable compared with the wild-type protein. Further analysis revealed that zinc-binding capability, as measured by retention on a zinc chelate affinity adsorbent, correlates with stability. These studies also allowed us to identify a CCHC box as the most probable zinc-binding motif. Images PMID:8035527
Wines, Bruce D; Ramsland, Paul A; Trist, Halina M; Gardam, Sandra; Brink, Robert; Fraser, John D; Hogarth, P Mark
2011-09-23
Host survival depends on an effective immune system and pathogen survival on the effectiveness of immune evasion mechanisms. Staphylococcus aureus utilizes a number of molecules to modulate host immunity, including the SSL family of which SSL7 binds IgA and inhibits Fcα receptor I (FcαRI)-mediated function. Other Gram-positive bacterial pathogens produce IgA binding proteins, which, similar to SSL7, also bind the Fc at the CH2/CH3 interface (the junction between constant domains 2 and 3 of the heavy chain). The opposing activities of the host FcαRI-IgA receptor ligand pair and the pathogen decoy proteins select for host and pathogen variants, which exert stronger protection or evasion, respectively. Curiously, mouse but not rat IgA contains a putative N-linked glycosylation site in the center of this host receptor and pathogen-binding site. Here, we demonstrate that this site is glycosylated and that the effect of amino acid changes and glycosylation of the CH2/CH3 interface inhibits interaction with the pathogen IgA binding protein SSL7, while maintaining binding of pIgR, essential to the biosynthesis and transport of SIgA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, D.A.
1992-11-01
A putative transcription factor in Rhodobactor capsulatus which binds upstream of the crt and bch pigment biosynthesis operons and appears to play a role in the adaptation of the organism from the aerobic to the anaerobic-photosynthetic growth mode was characterized. Chapter 2 describes the identification of this factor through an in vitro mobility shift assay, as well as the determination of its binding properties and sequence specificity. Chapter 3 focuses on the isolation of this factor. Biochemistry of later carotenoid biosynthesis enzymes derived from the non-photosynthetic bacterium, Erwinia herbicola. Chapter 4 describes the separate overexpression and in vitro analysis ofmore » two enzymes involved in the main sequence of the carotenoid biosynthesis pathway, lycopene cyclase and 5-carotene hydroxylase. Chapter 5 examines the overexpression and enzymology of functionally active zeaxanthin glucosyltransferase, an enzyme which carries out a more unusual transformation, converting a carotenoid into its more hydrophilic mono- and diglucoside derivatives. In addition, amino acid homology with other glucosyltransferases suggests a putative binding site for the UDP-activated glucose substrate.« less
Doxey, Andrew C; Cheng, Zhenyu; Moffatt, Barbara A; McConkey, Brendan J
2010-08-03
Aromatic amino acids play a critical role in protein-glycan interactions. Clusters of surface aromatic residues and their features may therefore be useful in distinguishing glycan-binding sites as well as predicting novel glycan-binding proteins. In this work, a structural bioinformatics approach was used to screen the Protein Data Bank (PDB) for coplanar aromatic motifs similar to those found in known glycan-binding proteins. The proteins identified in the screen were significantly associated with carbohydrate-related functions according to gene ontology (GO) enrichment analysis, and predicted motifs were found frequently within novel folds and glycan-binding sites not included in the training set. In addition to numerous binding sites predicted in structural genomics proteins of unknown function, one novel prediction was a surface motif (W34/W36/W192) in the tobacco pathogenesis-related protein, PR-5d. Phylogenetic analysis revealed that the surface motif is exclusive to a subfamily of PR-5 proteins from the Solanaceae family of plants, and is absent completely in more distant homologs. To confirm PR-5d's insoluble-polysaccharide binding activity, a cellulose-pulldown assay of tobacco proteins was performed and PR-5d was identified in the cellulose-binding fraction by mass spectrometry. Based on the combined results, we propose that the putative binding site in PR-5d may be an evolutionary adaptation of Solanaceae plants including potato, tomato, and tobacco, towards defense against cellulose-containing pathogens such as species of the deadly oomycete genus, Phytophthora. More generally, the results demonstrate that coplanar aromatic clusters on protein surfaces are a structural signature of glycan-binding proteins, and can be used to computationally predict novel glycan-binding proteins from 3 D structure.
Polymorphisms A387P in thrombospondin-4 and N700S in thrombospondin-1 perturb calcium binding sites.
Stenina, Olga I; Ustinov, Valentin; Krukovets, Irene; Marinic, Tina; Topol, Eric J; Plow, Edward F
2005-11-01
Recent genetic studies have associated members of the thrombospondin (TSP) gene family with premature cardiovascular disease. The disease-associated polymorphisms lead to single amino acid changes in TSP-4 (A387P) and TSP-1 (N700S). These substitutions reside in adjacent domains of these highly homologous proteins. Secondary structural predictive programs and the homology of the domains harboring these amino acid substitutions to those in other proteins pointed to potential alterations of putative Ca2+ binding sites that reside in close proximity to the polymorphic amino acids. Since Ca2+ binding is critical for the structure and function of TSP family members, direct evidence for differences in Ca2+ binding by the polymorphic forms was sought. Using synthetic peptides and purified recombinant variant fragments bearing the amino acid substitutions, we measured differences in Tb3+ luminescence as an index of Ca2+ binding. The Tb3+ binding constants placed the TSP-1 region affected by N700S polymorphism among other high-affinity Ca2+ binding sites. The affinity of Ca2+ binding was lower for peptides (3.5-fold) and recombinant fragments (10-fold) containing the S700 vs. the N700 form. In TSP-4, the P387 form acquired an additional Ca2+ binding site absent in the A387 form. The results of our study suggest that both substitutions (A387P in TSP-4 and N700S in TSP-1) alter Ca2+ binding properties. Since these substitutions exert the opposite effects on Ca2+ binding, a decrease in TSP-1 and an increase in TSP-4, the two TSP variants are likely to influence cardiovascular functions in distinct but yet pathogenic ways.
Stapleton, P C; Dobson, A D W
2003-04-25
Cellobiose dehydrogenase (CDH) production in Trametes versicolor is induced in the presence of cellulose, but decreases when additional carbon sources such as glucose and maltose are added to the fungal cultures. Using T. versicolor-specific cdh primers in a reverse transcription-polymerase chain reaction-based approach, it appears that this repression in CDH production is being mediated at the level of gene transcription. When a 1.6-kb upstream region of the T. versicolor cdh gene was cloned and sequenced, a number of putative CreA-like binding sites were observed. We propose that these sites may be involved in mediating this repressive effect, based on their similarity to the consensus [5'-SYGGRGG-3'] site for binding of the CreA and Cre1 repressor proteins.
Arcario, Mark J; Mayne, Christopher G; Tajkhorshid, Emad
2017-06-09
General anesthetics exert their effects on the central nervous system by acting on ion channels, most notably pentameric ligand-gated ion channels. Although numerous studies have focused on pentameric ligand-gated ion channels, the details of anesthetic binding and channel modulation are still debated. A better understanding of the anesthetic mechanism of action is necessary for the development of safer and more efficacious drugs. Herein, we present a computational study identifying two anesthetic binding sites in the transmembrane domain of the Gloeobacter violaceus ligand-gated ion channel (GLIC) channel, characterize the putative binding pathway, and observe structural changes associated with channel function. Molecular simulations of desflurane reveal a binding pathway to GLIC via a membrane-embedded tunnel using an intrasubunit protein lumen as the conduit, an observation that explains the Meyer-Overton hypothesis, or why the lipophilicity of an anesthetic and its potency are generally proportional. Moreover, employing high concentrations of ligand led to the identification of a second transmembrane site (TM2) that inhibits dissociation of anesthetic from the TM1 site and is consistent with the high concentrations of anesthetics required to achieve clinical effects. Finally, asymmetric binding patterns of anesthetic to the channel were found to promote an iris-like conformational change that constricts and dehydrates the ion pore, creating a 13.5 kcal/mol barrier to ion translocation. Together with previous studies, the simulations presented herein demonstrate a novel anesthetic binding site in GLIC that is accessed through a membrane-embedded tunnel and interacts with a previously known site, resulting in conformational changes that produce a non-conductive state of the channel. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Villoutreix, B O; Härdig, Y; Wallqvist, A; Covell, D G; García de Frutos, P; Dahlbäck, B
1998-06-01
C4b-binding protein (C4BP) contributes to the regulation of the classical pathway of the complement system and plays an important role in blood coagulation. The main human C4BP isoform is composed of one beta-chain and seven alpha-chains essentially built from three and eight complement control protein (CCP) modules, respectively, followed by a nonrepeat carboxy-terminal region involved in polymerization of the chains. C4BP is known to interact with heparin, C4b, complement factor I, serum amyloid P component, streptococcal Arp and Sir proteins, and factor VIII/VIIIa via its alpha-chains and with protein S through its beta-chain. The principal aim of the present study was to localize regions of C4BP involved in the interaction with C4b, Arp, and heparin. For this purpose, a computer model of the 8 CCP modules of C4BP alpha-chain was constructed, taking into account data from previous electron microscopy (EM) studies. This structure was investigated in the context of known and/or new experimental data. Analysis of the alpha-chain model, together with monoclonal antibody studies and heparin binding experiments, suggests that a patch of positively charged residues, at the interface between the first and second CCP modules, plays an important role in the interaction between C4BP and C4b/Arp/Sir/heparin. Putative binding sites, secondary-structure prediction for the central core, and an overall reevaluation of the size of the C4BP molecule are also presented. An understanding of these intermolecular interactions should contribute to the rational design of potential therapeutic agents aiming at interfering specifically some of these protein-protein interactions.
Zuotin, a putative Z-DNA binding protein in Saccharomyces cerevisiae
NASA Technical Reports Server (NTRS)
Zhang, S.; Lockshin, C.; Herbert, A.; Winter, E.; Rich, A.
1992-01-01
A putative Z-DNA binding protein, named zuotin, was purified from a yeast nuclear extract by means of a Z-DNA binding assay using [32P]poly(dG-m5dC) and [32P]oligo(dG-Br5dC)22 in the presence of B-DNA competitor. Poly(dG-Br5dC) in the Z-form competed well for the binding of a zuotin containing fraction, but salmon sperm DNA, poly(dG-dC) and poly(dA-dT) were not effective. Negatively supercoiled plasmid pUC19 did not compete, whereas an otherwise identical plasmid pUC19(CG), which contained a (dG-dC)7 segment in the Z-form was an excellent competitor. A Southwestern blot using [32P]poly(dG-m5dC) as a probe in the presence of MgCl2 identified a protein having a molecular weight of 51 kDa. The 51 kDa zuotin was partially sequenced at the N-terminal and the gene, ZUO1, was cloned, sequenced and expressed in Escherichia coli; the expressed zuotin showed similar Z-DNA binding activity, but with lower affinity than zuotin that had been partially purified from yeast. Zuotin was deduced to have a number of potential phosphorylation sites including two CDC28 (homologous to the human and Schizosaccharomyces pombe cdc2) phosphorylation sites. The hexapeptide motif KYHPDK was found in zuotin as well as in several yeast proteins, DnaJ of E.coli, csp29 and csp32 proteins of Drosophila and the small t and large T antigens of the polyoma virus. A 60 amino acid segment of zuotin has similarity to several histone H1 sequences. Disruption of ZUO1 in yeast resulted in a slow growth phenotype.
Zubieta, Chloe; Krishna, S Sri; Kapoor, Mili; Kozbial, Piotr; McMullan, Daniel; Axelrod, Herbert L; Miller, Mitchell D; Abdubek, Polat; Ambing, Eileen; Astakhova, Tamara; Carlton, Dennis; Chiu, Hsiu-Ju; Clayton, Thomas; Deller, Marc C; Duan, Lian; Elsliger, Marc-André; Feuerhelm, Julie; Grzechnik, Slawomir K; Hale, Joanna; Hampton, Eric; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K; Klock, Heath E; Knuth, Mark W; Kumar, Abhinav; Marciano, David; Morse, Andrew T; Nigoghossian, Edward; Okach, Linda; Oommachen, Silvya; Reyes, Ron; Rife, Christopher L; Schimmel, Paul; van den Bedem, Henry; Weekes, Dana; White, Aprilfawn; Xu, Qingping; Hodgson, Keith O; Wooley, John; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A
2007-11-01
BtDyP from Bacteroides thetaiotaomicron (strain VPI-5482) and TyrA from Shewanella oneidensis are dye-decolorizing peroxidases (DyPs), members of a new family of heme-dependent peroxidases recently identified in fungi and bacteria. Here, we report the crystal structures of BtDyP and TyrA at 1.6 and 2.7 A, respectively. BtDyP assembles into a hexamer, while TyrA assembles into a dimer; the dimerization interface is conserved between the two proteins. Each monomer exhibits a two-domain, alpha+beta ferredoxin-like fold. A site for heme binding was identified computationally, and modeling of a heme into the proposed active site allowed for identification of residues likely to be functionally important. Structural and sequence comparisons with other DyPs demonstrate a conservation of putative heme-binding residues, including an absolutely conserved histidine. Isothermal titration calorimetry experiments confirm heme binding, but with a stoichiometry of 0.3:1 (heme:protein). (c) 2007 Wiley-Liss, Inc.
Chai, Kian Piaw; Othman, Noor Farhan Binti; Teh, Aik-Hong; Ho, Kok Lian; Chan, Kok-Gan; Shamsir, Mohd Shahir; Goh, Kian Mau; Ng, Chyan Leong
2016-01-01
A new subfamily of glycosyl hydrolase family GH13 was recently proposed for α-amylases from Anoxybacillus species (ASKA and ADTA), Geobacillus thermoleovorans (GTA, Pizzo, and GtamyII), Bacillus aquimaris (BaqA), and 95 other putative protein homologues. To understand this new GH13 subfamily, we report crystal structures of truncated ASKA (TASKA). ASKA is a thermostable enzyme capable of producing high levels of maltose. Unlike GTA, biochemical analysis showed that Ca2+ ion supplementation enhances the catalytic activities of ASKA and TASKA. The crystal structures reveal the presence of four Ca2+ ion binding sites, with three of these binding sites are highly conserved among Anoxybacillus α-amylases. This work provides structural insights into this new GH13 subfamily both in the apo form and in complex with maltose. Furthermore, structural comparison of TASKA and GTA provides an overview of the conformational changes accompanying maltose binding at each subsite. PMID:26975884
Medkova, M; Cho, W
1998-07-10
The C2 domains of conventional protein kinase C (PKC) have been implicated in their Ca2+-dependent membrane binding. The C2 domain of PKC-alpha contains several Ca2+ ligands that bind multiple Ca2+ ions and other putative membrane binding residues. To understand the roles of individual Ca2+ ligands and protein-bound Ca2+ ions in the membrane binding and activation of PKC-alpha, we mutated five putative Ca2+ ligands (D187N, D193N, D246N, D248N, and D254N) and measured the effects of mutations on vesicle binding, enzyme activity, and monolayer penetration of PKC-alpha. Altered properties of these mutants indicate that individual Ca2+ ions and their ligands have different roles in the membrane binding and activation of PKC-alpha. The binding of Ca2+ to Asp187, Asp193, and Asp246 of PKC-alpha is important for the initial binding of protein to membrane surfaces. On the other hand, the binding of another Ca2+ to Asp187, Asp246, Asp248, and Asp254 induces the conformational change of PKC-alpha, which in turn triggers its membrane penetration and activation. Among these Ca2+ ligands, Asp246 was shown to be most essential for both membrane binding and activation of PKC-alpha, presumably due to its coordination to multiple Ca2+ ions. Furthermore, to identify the residues in the C2 domain that are involved in membrane binding of PKC-alpha, we mutated four putative membrane binding residues (Trp245, Trp247, Arg249, and Arg252). Membrane binding and enzymatic properties of two double-site mutants (W245A/W247A and R249A/R252A) indicate that Arg249 and Arg252 are involved in electrostatic interactions of PKC-alpha with anionic membranes, whereas Trp245 and Trp247 participate in its penetration into membranes and resulting hydrophobic interactions. Taken together, these studies provide the first experimental evidence for the role of C2 domain of conventional PKC as a membrane docking unit as well as a module that triggers conformational changes to activate the protein.
Interactions of a Pop5/Rpp1 heterodimer with the catalytic domain of RNase MRP.
Perederina, Anna; Khanova, Elena; Quan, Chao; Berezin, Igor; Esakova, Olga; Krasilnikov, Andrey S
2011-10-01
Ribonuclease (RNase) MRP is a multicomponent ribonucleoprotein complex closely related to RNase P. RNase MRP and eukaryotic RNase P share most of their protein components, as well as multiple features of their catalytic RNA moieties, but have distinct substrate specificities. While RNase P is practically universally found in all three domains of life, RNase MRP is essential in eukaryotes. The structural organizations of eukaryotic RNase P and RNase MRP are poorly understood. Here, we show that Pop5 and Rpp1, protein components found in both RNase P and RNase MRP, form a heterodimer that binds directly to the conserved area of the putative catalytic domain of RNase MRP RNA. The Pop5/Rpp1 binding site corresponds to the protein binding site in bacterial RNase P RNA. Structural and evolutionary roles of the Pop5/Rpp1 heterodimer in RNases P and MRP are discussed.
Interactions of a Pop5/Rpp1 heterodimer with the catalytic domain of RNase MRP
Perederina, Anna; Khanova, Elena; Quan, Chao; Berezin, Igor; Esakova, Olga; Krasilnikov, Andrey S.
2011-01-01
Ribonuclease (RNase) MRP is a multicomponent ribonucleoprotein complex closely related to RNase P. RNase MRP and eukaryotic RNase P share most of their protein components, as well as multiple features of their catalytic RNA moieties, but have distinct substrate specificities. While RNase P is practically universally found in all three domains of life, RNase MRP is essential in eukaryotes. The structural organizations of eukaryotic RNase P and RNase MRP are poorly understood. Here, we show that Pop5 and Rpp1, protein components found in both RNase P and RNase MRP, form a heterodimer that binds directly to the conserved area of the putative catalytic domain of RNase MRP RNA. The Pop5/Rpp1 binding site corresponds to the protein binding site in bacterial RNase P RNA. Structural and evolutionary roles of the Pop5/Rpp1 heterodimer in RNases P and MRP are discussed. PMID:21878546
Propeptide cleavage conditions sortilin/neurotensin receptor-3 for ligand binding.
Munck Petersen, C; Nielsen, M S; Jacobsen, C; Tauris, J; Jacobsen, L; Gliemann, J; Moestrup, S K; Madsen, P
1999-02-01
We recently reported the isolation and sequencing of sortilin, a new putative sorting receptor that binds receptor-associated protein (RAP). The luminal N-terminus of sortilin comprises a consensus sequence for cleavage by furin, R41WRR44, which precedes a truncation originally found in sortilin isolated from human brain. We now show that the truncation results from cellular processing. Sortilin is synthesized as a proform which, in late Golgi compartments, is converted to the mature receptor by furin-mediated cleavage of a 44 residue N-terminal propeptide. We further demonstrate that the propeptide exhibits pH-dependent high affinity binding to fully processed sortilin, that the binding is competed for by RAP and the newly discovered sortilin ligand neurotensin, and that prevention of propeptide cleavage essentially prevents binding of RAP and neurotensin. The findings evidence that the propeptide sterically hinders ligands from gaining access to overlapping binding sites in prosortilin, and that cleavage and release of the propeptide preconditions sortilin for full functional activity. Although proteolytic processing is involved in the maturation of several receptors, the described exposure of previously concealed ligand-binding sites after furin-mediated cleavage of propeptide represents a novel mechanism in receptor activation.
Propeptide cleavage conditions sortilin/neurotensin receptor-3 for ligand binding.
Munck Petersen, C; Nielsen, M S; Jacobsen, C; Tauris, J; Jacobsen, L; Gliemann, J; Moestrup, S K; Madsen, P
1999-01-01
We recently reported the isolation and sequencing of sortilin, a new putative sorting receptor that binds receptor-associated protein (RAP). The luminal N-terminus of sortilin comprises a consensus sequence for cleavage by furin, R41WRR44, which precedes a truncation originally found in sortilin isolated from human brain. We now show that the truncation results from cellular processing. Sortilin is synthesized as a proform which, in late Golgi compartments, is converted to the mature receptor by furin-mediated cleavage of a 44 residue N-terminal propeptide. We further demonstrate that the propeptide exhibits pH-dependent high affinity binding to fully processed sortilin, that the binding is competed for by RAP and the newly discovered sortilin ligand neurotensin, and that prevention of propeptide cleavage essentially prevents binding of RAP and neurotensin. The findings evidence that the propeptide sterically hinders ligands from gaining access to overlapping binding sites in prosortilin, and that cleavage and release of the propeptide preconditions sortilin for full functional activity. Although proteolytic processing is involved in the maturation of several receptors, the described exposure of previously concealed ligand-binding sites after furin-mediated cleavage of propeptide represents a novel mechanism in receptor activation. PMID:9927419
Pintchovski, Sean A.; Peebles, Carol L.; Kim, Hong Joo; Verdin, Eric; Finkbeiner, Steven
2010-01-01
The immediate-early effector gene Arc/Arg3.1 is robustly upregulated by synaptic activity associated with learning and memory. Here we show in primary cortical neuron culture that diverse stimuli induce Arc expression through new transcription. Searching for regulatory regions important for Arc transcription, we found nine DNaseI-sensitive nucleosome-depleted sites at this genomic locus. A reporter gene encompassing these sites responded to synaptic activity in an NMDA receptor–dependent manner, consistent with endogenous Arc mRNA. Responsiveness mapped to two enhancer regions ∼6.5 kb and ∼1.4 kb upstream of Arc. We dissected these regions further and found that the proximal enhancer contains a functional and conserved “Zeste-like” response element that binds a putative novel nuclear protein in neurons. Therefore, activity regulates Arc transcription partly by a novel signaling pathway. We also found that the distal enhancer has a functional and highly conserved serum response element. This element binds serum response factor, which is recruited by synaptic activity to regulate Arc. Thus, Arc is the first target of serum response factor that functions at synapses to mediate plasticity. PMID:19193899
NASA Astrophysics Data System (ADS)
Li, Shengjie; Bai, Junjie; Wang, Lin
2008-08-01
Myostatin or GDF-8, a member of the transforming growth factor-β (TGF-β) superfamily, has been demonstrated to be a negative regulator of skeletal muscle mass in mammals. In the present study, we obtained a 5.64 kb sequence of myostatin encoding gene and its promoter from largemouth bass ( Micropterus salmoides). The myostatin encoding gene consisted of three exons (488 bp, 371 bp and 1779 bp, respectively) and two introns (390 bp and 855 bp, respectively). The intron-exon boundaries were conservative in comparison with those of mammalian myostatin encoding genes, whereas the size of introns was smaller than that of mammals. Sequence analysis of 1.569 kb of the largemouth bass myostatin gene promoter region revealed that it contained two TATA boxes, one CAAT box and nine putative E-boxes. Putative muscle growth response elements for myocyte enhancer factor 2 (MEF2), serum response factor (SRF), activator protein 1 (AP1), etc., and muscle-specific Mt binding site (MTBF) were also detected. Some of the transcription factor binding sites were conserved among five teleost species. This information will be useful for studying the transcriptional regulation of myostatin in fish.
The binding sites for benztropines and dopamine in the dopamine transporter overlap
Bisgaard, Heidi; Larsen, M. Andreas B.; Mazier, Sonia; Beuming, Thijs; Newman, Amy Hauck; Weinstein, Harel; Shi, Lei; Loland, Claus J.; Gether, Ulrik
2013-01-01
Analogues of benztropines (BZTs) are potent inhibitors of the dopamine transporter (DAT) but are less effective than cocaine as behavioral stimulants. As a result, there have been efforts to evaluate these compounds as leads for potential medication for cocaine addiction. Here we use computational modeling together with site-directed mutagenesis to characterize the binding site for BZTs in DAT. Docking into molecular models based on the structure of the bacterial homologue LeuT supported a BZT binding site that overlaps with the substrate binding pocket. In agreement, mutations of residues within the pocket, including Val1523.46* to Ala or Ile, Ser4228.60 to Ala and Asn1573.51 to Cys or Ala, resulted in decreased affinity for BZT and the analog JHW007, as assessed in [3H]dopamine uptake inhibition assays and/or [3H]CFT competition binding assay. A putative polar interaction of one of the phenyl ring fluorine substituents in JHW007 with Asn1573.51 was used as a criterion for determining likely binding poses and establish a structural context for the mutagenesis findings. The analysis positioned the other fluorine substituted phenyl ring of JHW007 in close proximity to Ala47910.51/Ala48010.52 in transmembrane segment (TM) 10. The lack of such an interaction for BZT led to a more tilted orientation, as compared to JHW007, bringing one of the phenyl rings even closer to Ala47910.51/Ala48010.52. Mutation of Ala47910.51 and Ala48010.52 to valines supported these predictions with a larger decrease in the affinity for BZT than for JHW007. Summarized, our data suggest that BZTs display a classical competitive binding mode with binding sites overlapping those of cocaine and dopamine. PMID:20816875
Structure, Regulation, and Putative Function of the Arginine Deiminase System of Streptococcus suis
Gruening, Petra; Fulde, Marcus; Valentin-Weigand, Peter; Goethe, Ralph
2006-01-01
Streptococcus suis is an important cause of infectious diseases in young pigs. Little is known about the virulence factors or protective antigens of S. suis. Recently, we have identified two proteins of the arginine deiminase system (ADS) of S. suis, which were temperature induced and expressed on the streptococcal surface (N. Winterhoff, R. Goethe, P. Gruening, M. Rohde, H. Kalisz, H. E. Smith, and P. Valentin-Weigand, J. Bacteriol. 184:6768-6776, 2002). In the present study, we analyzed the complete ADS of S. suis. Due to their homologies to the recently published S. gordonii ADS genes, the genes for arginine deiminase, ornithine carbamoyl-transferase, and carbamate kinase, which were previously designated adiS, octS, and ckS, respectively, were renamed arcA, arcB, and arcC, respectively. Our data revealed that arcA, arcB, and arcC of the S. suis ADS are transcribed from an operon (arcABC operon). Additionally, putative ADS-associated genes were cloned and sequenced which, however, did not belong to the arcABC operon. These were the flpS gene upstream of the arcABC operon with homology to the flp transcription regulator of S. gordonii and the arcD, arcT, arcH, and argR genes downstream of the arcABC operon with high homologies to a putative arginine-ornithine antiporter, a putative dipeptidase of S. gordonii, a putative β-N-acetylhexosaminidase of S. pneumoniae, and a putative arginine repressor of S. gordonii, respectively. The transcriptional start point of the arcABC operon was determined, and promoter analysis provided evidence that multiple factors contribute to the regulation of the ADS. Thus, a putative binding site for a transcription regulator of the Crp/Fnr family, an ArgR-binding site, and two cis-acting catabolite response elements were identified in the promoter-operator region of the operon. Consistent with this, we could demonstrate that the ADS of S. suis is inducible by arginine and reduced O2 tension and subject to carbon catabolite repression. Furthermore, comparing an arcA knockout mutant in which expression of the three operon-encoded proteins was abolished with the parental wild-type strain showed that the arcABC operon of S. suis contributes to survival under acidic conditions. PMID:16385025
Structure, regulation, and putative function of the arginine deiminase system of Streptococcus suis.
Gruening, Petra; Fulde, Marcus; Valentin-Weigand, Peter; Goethe, Ralph
2006-01-01
Streptococcus suis is an important cause of infectious diseases in young pigs. Little is known about the virulence factors or protective antigens of S. suis. Recently, we have identified two proteins of the arginine deiminase system (ADS) of S. suis, which were temperature induced and expressed on the streptococcal surface (N. Winterhoff, R. Goethe, P. Gruening, M. Rohde, H. Kalisz, H. E. Smith, and P. Valentin-Weigand, J. Bacteriol. 184:6768-6776, 2002). In the present study, we analyzed the complete ADS of S. suis. Due to their homologies to the recently published S. gordonii ADS genes, the genes for arginine deiminase, ornithine carbamoyl-transferase, and carbamate kinase, which were previously designated adiS, octS, and ckS, respectively, were renamed arcA, arcB, and arcC, respectively. Our data revealed that arcA, arcB, and arcC of the S. suis ADS are transcribed from an operon (arcABC operon). Additionally, putative ADS-associated genes were cloned and sequenced which, however, did not belong to the arcABC operon. These were the flpS gene upstream of the arcABC operon with homology to the flp transcription regulator of S. gordonii and the arcD, arcT, arcH, and argR genes downstream of the arcABC operon with high homologies to a putative arginine-ornithine antiporter, a putative dipeptidase of S. gordonii, a putative beta-N-acetylhexosaminidase of S. pneumoniae, and a putative arginine repressor of S. gordonii, respectively. The transcriptional start point of the arcABC operon was determined, and promoter analysis provided evidence that multiple factors contribute to the regulation of the ADS. Thus, a putative binding site for a transcription regulator of the Crp/Fnr family, an ArgR-binding site, and two cis-acting catabolite response elements were identified in the promoter-operator region of the operon. Consistent with this, we could demonstrate that the ADS of S. suis is inducible by arginine and reduced O2 tension and subject to carbon catabolite repression. Furthermore, comparing an arcA knockout mutant in which expression of the three operon-encoded proteins was abolished with the parental wild-type strain showed that the arcABC operon of S. suis contributes to survival under acidic conditions.
Bao, Haibo; Liu, Yang; Zhang, Yixi; Liu, Zewen
2017-08-01
Due to great diversity of nicotinic acetylcholine receptor (nAChR) subtypes in insects, one β subunit may be contained in numerous nAChR subtypes. In the locust Locusta migratoria, a model insect species with agricultural importance, the third β subunits (Locβ3) was identified in this study, which reveals at least three β subunits in this insect species. Imidacloprid was found to bind nAChRs in L. migratoria central nervous system at two sites with different affinities, with K d values of 0.16 and 10.31nM. The specific antisera (L1-1, L2-1 and L3-1) were raised against fusion proteins at the large cytoplasmic loop of Locβ1, Locβ2 and Locβ3 respectively. Specific immunodepletion of Locβ1 with antiserum L1-1 resulted in the selective loss of the low affinity binding site for imidacloprid, whereas the immunodepletion of Locβ3 with L3-1 caused the selective loss of the high affinity site. Dual immunodepletion with L1-1 and L3-1 could completely abolish imidacloprid binding. In contrast, the immunodepletion of Locβ2 had no significant effect on the specific [ 3 H]imidacloprid binding. Taken together, these data indicated that Locβ1 and Locβ3 were respectively contained in the low- and high-affinity binding sites for imidacloprid in L. migratoria, which is different to the previous finding in Nilaparvata lugens that Nlβ1 was in two binding sites for imidacloprid. The involvement of two β subunits separately in two binding sites may decrease the risk of imidacloprid resistance due to putative point mutations in β subunits in L. migratoria. Copyright © 2017 Elsevier B.V. All rights reserved.
Naz, Sadia; Ngo, Tony; Farooq, Umar
2017-01-01
Background The rapid increase in antibiotic resistance by various bacterial pathogens underlies the significance of developing new therapies and exploring different drug targets. A fraction of bacterial pathogens abbreviated as ESKAPE by the European Center for Disease Prevention and Control have been considered a major threat due to the rise in nosocomial infections. Here, we compared putative drug binding pockets of twelve essential and mostly conserved metabolic enzymes in numerous bacterial pathogens including those of the ESKAPE group and Mycobacterium tuberculosis. The comparative analysis will provide guidelines for the likelihood of transferability of the inhibitors from one species to another. Methods Nine bacterial species including six ESKAPE pathogens, Mycobacterium tuberculosis along with Mycobacterium smegmatis and Eschershia coli, two non-pathogenic bacteria, have been selected for drug binding pocket analysis of twelve essential enzymes. The amino acid sequences were obtained from Uniprot, aligned using ICM v3.8-4a and matched against the Pocketome encyclopedia. We used known co-crystal structures of selected target enzyme orthologs to evaluate the location of their active sites and binding pockets and to calculate a matrix of pairwise sequence identities across each target enzyme across the different species. This was used to generate sequence maps. Results High sequence identity of enzyme binding pockets, derived from experimentally determined co-crystallized structures, was observed among various species. Comparison at both full sequence level and for drug binding pockets of key metabolic enzymes showed that binding pockets are highly conserved (sequence similarity up to 100%) among various ESKAPE pathogens as well as Mycobacterium tuberculosis. Enzymes orthologs having conserved binding sites may have potential to interact with inhibitors in similar way and might be helpful for design of similar class of inhibitors for a particular species. The derived pocket alignments and distance-based maps provide guidelines for drug discovery and repurposing. In addition they also provide recommendations for the relevant model bacteria that may be used for initial drug testing. Discussion Comparing ligand binding sites through sequence identity calculation could be an effective approach to identify conserved orthologs as drug binding pockets have shown higher level of conservation among various species. By using this approach we could avoid the problems associated with full sequence comparison. We identified essential metabolic enzymes among ESKAPE pathogens that share high sequence identity in their putative drug binding pockets (up to 100%), of which known inhibitors can potentially antagonize these identical pockets in the various species in a similar manner. PMID:28948099
Naz, Sadia; Ngo, Tony; Farooq, Umar; Abagyan, Ruben
2017-01-01
The rapid increase in antibiotic resistance by various bacterial pathogens underlies the significance of developing new therapies and exploring different drug targets. A fraction of bacterial pathogens abbreviated as ESKAPE by the European Center for Disease Prevention and Control have been considered a major threat due to the rise in nosocomial infections. Here, we compared putative drug binding pockets of twelve essential and mostly conserved metabolic enzymes in numerous bacterial pathogens including those of the ESKAPE group and Mycobacterium tuberculosis . The comparative analysis will provide guidelines for the likelihood of transferability of the inhibitors from one species to another. Nine bacterial species including six ESKAPE pathogens, Mycobacterium tuberculosis along with Mycobacterium smegmatis and Eschershia coli , two non-pathogenic bacteria, have been selected for drug binding pocket analysis of twelve essential enzymes. The amino acid sequences were obtained from Uniprot, aligned using ICM v3.8-4a and matched against the Pocketome encyclopedia. We used known co-crystal structures of selected target enzyme orthologs to evaluate the location of their active sites and binding pockets and to calculate a matrix of pairwise sequence identities across each target enzyme across the different species. This was used to generate sequence maps. High sequence identity of enzyme binding pockets, derived from experimentally determined co-crystallized structures, was observed among various species. Comparison at both full sequence level and for drug binding pockets of key metabolic enzymes showed that binding pockets are highly conserved (sequence similarity up to 100%) among various ESKAPE pathogens as well as Mycobacterium tuberculosis . Enzymes orthologs having conserved binding sites may have potential to interact with inhibitors in similar way and might be helpful for design of similar class of inhibitors for a particular species. The derived pocket alignments and distance-based maps provide guidelines for drug discovery and repurposing. In addition they also provide recommendations for the relevant model bacteria that may be used for initial drug testing. Comparing ligand binding sites through sequence identity calculation could be an effective approach to identify conserved orthologs as drug binding pockets have shown higher level of conservation among various species. By using this approach we could avoid the problems associated with full sequence comparison. We identified essential metabolic enzymes among ESKAPE pathogens that share high sequence identity in their putative drug binding pockets (up to 100%), of which known inhibitors can potentially antagonize these identical pockets in the various species in a similar manner.
Kirshner, Daniel A.; Nilmeier, Jerome P.; Lightstone, Felice C.
2013-01-01
The catalytic site identification web server provides the innovative capability to find structural matches to a user-specified catalytic site among all Protein Data Bank proteins rapidly (in less than a minute). The server also can examine a user-specified protein structure or model to identify structural matches to a library of catalytic sites. Finally, the server provides a database of pre-calculated matches between all Protein Data Bank proteins and the library of catalytic sites. The database has been used to derive a set of hypothesized novel enzymatic function annotations. In all cases, matches and putative binding sites (protein structure and surfaces) can be visualized interactively online. The website can be accessed at http://catsid.llnl.gov. PMID:23680785
Kirshner, Daniel A; Nilmeier, Jerome P; Lightstone, Felice C
2013-07-01
The catalytic site identification web server provides the innovative capability to find structural matches to a user-specified catalytic site among all Protein Data Bank proteins rapidly (in less than a minute). The server also can examine a user-specified protein structure or model to identify structural matches to a library of catalytic sites. Finally, the server provides a database of pre-calculated matches between all Protein Data Bank proteins and the library of catalytic sites. The database has been used to derive a set of hypothesized novel enzymatic function annotations. In all cases, matches and putative binding sites (protein structure and surfaces) can be visualized interactively online. The website can be accessed at http://catsid.llnl.gov.
Teh, Aik-Hong; Saito, Jennifer A.; Najimudin, Nazalan; Alam, Maqsudul
2015-01-01
Globins are haem-binding proteins with a conserved fold made up of α-helices and can possess diverse properties. A putative globin-coupled sensor from Methylacidiphilum infernorum, HGbRL, contains an N-terminal globin domain whose open and closed structures reveal an untypical dimeric architecture. Helices E and F fuse into an elongated helix, resulting in a novel site-swapped globin fold made up of helices A–E, hence the distal site, from one subunit and helices F–H, the proximal site, from another. The open structure possesses a large cavity binding an imidazole molecule, while the closed structure forms a unique Lys–His hexacoordinated species, with the first turn of helix E unravelling to allow Lys52(E10) to bind to the haem. Ligand binding induces reorganization of loop CE, which is stabilized in the closed form, and helix E, triggering a large conformational movement in the open form. These provide a mechanical insight into how a signal may be relayed between the globin domain and the C-terminal domain of HGbRL, a Roadblock/LC7 domain. Comparison with HGbI, a closely related globin, further underlines the high degree of structural versatility that the globin fold is capable of, enabling it to perform a diversity of functions. PMID:26094577
Prediction of Protein-Protein Interaction Sites Using Electrostatic Desolvation Profiles
Fiorucci, Sébastien; Zacharias, Martin
2010-01-01
Abstract Protein-protein complex formation involves removal of water from the interface region. Surface regions with a small free energy penalty for water removal or desolvation may correspond to preferred interaction sites. A method to calculate the electrostatic free energy of placing a neutral low-dielectric probe at various protein surface positions has been designed and applied to characterize putative interaction sites. Based on solutions of the finite-difference Poisson equation, this method also includes long-range electrostatic contributions and the protein solvent boundary shape in contrast to accessible-surface-area-based solvation energies. Calculations on a large set of proteins indicate that in many cases (>90%), the known binding site overlaps with one of the six regions of lowest electrostatic desolvation penalty (overlap with the lowest desolvation region for 48% of proteins). Since the onset of electrostatic desolvation occurs even before direct protein-protein contact formation, it may help guide proteins toward the binding region in the final stage of complex formation. It is interesting that the probe desolvation properties associated with residue types were found to depend to some degree on whether the residue was outside of or part of a binding site. The probe desolvation penalty was on average smaller if the residue was part of a binding site compared to other surface locations. Applications to several antigen-antibody complexes demonstrated that the approach might be useful not only to predict protein interaction sites in general but to map potential antigenic epitopes on protein surfaces. PMID:20441756
Yakhnin, Helen; Baker, Carol S.; Berezin, Igor; Evangelista, Michael A.; Rassin, Alisa; Romeo, Tony; Babitzke, Paul
2011-01-01
The RNA binding protein CsrA is the central component of a conserved global regulatory system that activates or represses gene expression posttranscriptionally. In every known example of CsrA-mediated translational control, CsrA binds to the 5′ untranslated region of target transcripts, thereby repressing translation initiation and/or altering the stability of the RNA. Furthermore, with few exceptions, repression by CsrA involves binding directly to the Shine-Dalgarno sequence and blocking ribosome binding. sdiA encodes the quorum-sensing receptor for N-acyl-l-homoserine lactone in Escherichia coli. Because sdiA indirectly stimulates transcription of csrB, which encodes a small RNA (sRNA) antagonist of CsrA, we further explored the relationship between sdiA and the Csr system. Primer extension analysis revealed four putative transcription start sites within 85 nucleotides of the sdiA initiation codon. Potential σ70-dependent promoters were identified for each of these primer extension products. In addition, two CsrA binding sites were predicted in the initially translated region of sdiA. Expression of chromosomally integrated sdiA′-′lacZ translational fusions containing the entire promoter and CsrA binding site regions indicates that CsrA represses sdiA expression. The results from gel shift and footprint studies demonstrate that tight binding of CsrA requires both of these sites. Furthermore, the results from toeprint and in vitro translation experiments indicate that CsrA represses translation of sdiA by directly competing with 30S ribosomal subunit binding. Thus, this represents the first example of CsrA preventing translation by interacting solely within the coding region of an mRNA target. PMID:21908661
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, E.A.; Bannon, G.A.; Glenn, K.C.
2008-11-21
The lysine insensitive Corynebacterium glutamicum dihydrodipicolinate synthase enzyme (cDHDPS) was recently successfully introduced into maize plants to enhance the level of lysine in the grain. To better understand lysine insensitivity of the cDHDPS, we expressed, purified, kinetically characterized the protein, and solved its X-ray crystal structure. The cDHDPS enzyme has a fold and overall structure that is highly similar to other DHDPS proteins. A noteworthy feature of the active site is the evidence that the catalytic lysine residue forms a Schiff base adduct with pyruvate. Analyses of the cDHDPS structure in the vicinity of the putative binding site for S-lysinemore » revealed that the allosteric binding site in the Escherichia coli DHDPS protein does not exist in cDHDPS due to three non-conservative amino acids substitutions, and this is likely why cDHDPS is not feedback inhibited by lysine.« less
Marcus, N; Green, M
1997-09-01
The accumulation of incompletely assembled immunoglobulin mu heavy chain in transfected COS cells stimulates the cellular response to protein traffic that results in the increased transcription and elevated synthesis of several ER chaperones, including ERP72, a member of the protein disulfide isomerase family of molecular chaperones. The ERp72 promoter contains an 82 bp ER protein traffic response element (ERPTRE) that is sufficient to mediate this response. Previously, it had been shown that the alteration of a putative AP-2 site and a CCAAT and inverted CCAAT site within the ERPTRE significantly decreased the response of ERp72 promoter to mu chain accumulation. We have extended these findings by demonstrating a role for NF-Y and a potentially novel DNA-binding protein in the regulation of transcription from the ERp72 promoter. The fact that NF-Y binding to the ERPTRE is observed in extracts from both control cells and cells in which the response to protein traffic has been activated indicates that the binding of NF-Y, while necessary, is not sufficient to account for the response. Each of the two CCAAT sites in the ERPTRE can bind NF-Y independently, but both sites must be intact for full ERPTRE function. A second protein can bind to the ERPTRE independently of NF-Y and at a site overlapping or close to the 3' end of the reverse CCAAT site. It is possible that interactions between NF-Y, this protein and perhaps other factors are responsible for the regulation of the protein traffic response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boudreaux, David A.; Maiti, Tushar K.; Davies, Christopher W.
Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is a Parkinson disease-associated, putative cysteine protease found abundantly and selectively expressed in neurons. The crystal structure of apo UCHL1 showed that the active-site residues are not aligned in a canonical form, with the nucleophilic cysteine being 7.7 {angstrom} from the general base histidine, an arrangement consistent with an inactive form of the enzyme. Here we report the crystal structures of the wild type and two Parkinson disease-associated variants of the enzyme, S18Y and I93M, bound to a ubiquitin-based suicide substrate, ubiquitin vinyl methyl ester. These structures reveal that ubiquitin vinyl methyl ester binds primarilymore » at two sites on the enzyme, with its carboxy terminus at the active site and with its amino-terminal {beta}-hairpin at the distal site - a surface-exposed hydrophobic crevice 17 {angstrom} away from the active site. Binding at the distal site initiates a cascade of side-chain movements in the enzyme that starts at a highly conserved, surface-exposed phenylalanine and is relayed to the active site resulting in the reorientation and proximal placement of the general base within 4 {angstrom} of the catalytic cysteine, an arrangement found in productive cysteine proteases. Mutation of the distal-site, surface-exposed phenylalanine to alanine reduces ubiquitin binding and severely impairs the catalytic activity of the enzyme. These results suggest that the activity of UCHL1 may be regulated by its own substrate.« less
Feller, Stephan M; Wecklein, Heike; Lewitzky, Marc; Kibler, Eike; Raabe, Thomas
2002-08-01
Activation of the Sevenless (Sev) receptor tyrosine kinase (RTK) in the developing Drosophila eye is required for the specification of the R7 photoreceptor cell fate. Daughter of Sevenless (Dos), a putative multi-site adaptor protein, is a substrate of the Sev kinase and is known to associate with the tyrosine phosphatase Corkscrew (Csw). Binding of Csw to Dos depends on the Csw Src homology 2 (SH2) domains and is an essential step for signaling by the Sev RTK. Dos, however, lacks a recognizable phosphotyrosine interaction domain and it was previously unclear how it is recruited to the Sev receptor. Here it is shown that the SH2/SH3 domain adaptor protein Drk can provide this link. Drk binds with its SH2 domain to the autophosphorylated Sev receptor while the C-terminal SH3 domain is able to associate with Dos. The Drk SH3 domain binding motifs on Dos were mapped to two sites which do not conform the known Drk SH3 domain binding motif (PxxPxR) but instead have the consensus PxxxRxxKP. Mutational analysis in vitro and in vivo provided evidence that both Drk binding sites fulfil an important function in the context of Sev and Drosophila epidermal growth factor receptor mediated signaling processes.
Agonist trapped in ATP-binding sites of the P2X2 receptor.
Jiang, Ruotian; Lemoine, Damien; Martz, Adeline; Taly, Antoine; Gonin, Sophie; Prado de Carvalho, Lia; Specht, Alexandre; Grutter, Thomas
2011-05-31
ATP-gated P2X receptors are trimeric ion channels, as recently confirmed by X-ray crystallography. However, the structure was solved without ATP and even though extracellular intersubunit cavities surrounded by conserved amino acid residues previously shown to be important for ATP function were proposed to house ATP, the localization of the ATP sites remains elusive. Here we localize the ATP-binding sites by creating, through a proximity-dependent "tethering" reaction, covalent bonds between a synthesized ATP-derived thiol-reactive P2X2 agonist (NCS-ATP) and single cysteine mutants engineered in the putative binding cavities of the P2X2 receptor. By combining whole-cell and single-channel recordings, we report that NCS-ATP covalently and specifically labels two previously unidentified positions N140 and L186 from two adjacent subunits separated by about 18 Å in a P2X2 closed state homology model, suggesting the existence of at least two binding modes. Tethering reaction at both positions primes subsequent agonist binding, yet with distinct functional consequences. Labeling of one position impedes subsequent ATP function, which results in inefficient gating, whereas tethering of the other position, although failing to produce gating by itself, enhances subsequent ATP function. Our results thus define a large and dynamic intersubunit ATP-binding pocket and suggest that receptors trapped in covalently agonist-bound states differ in their ability to gate the ion channel.
Independent signaling by Drosophila insulin receptor for axon guidance and growth
Li, Caroline R.; Guo, Dongyu; Pick, Leslie
2014-01-01
The Drosophila insulin receptor (DInR) regulates a diverse array of biological processes including growth, axon guidance, and sugar homeostasis. Growth regulation by DInR is mediated by Chico, the Drosophila homolog of vertebrate insulin receptor substrate proteins IRS1–4. In contrast, DInR regulation of photoreceptor axon guidance in the developing visual system is mediated by the SH2-SH3 domain adaptor protein Dreadlocks (Dock). In vitro studies by others identified five NPXY motifs, one in the juxtamembrane region and four in the signaling C-terminal tail (C-tail), important for interaction with Chico. Here we used yeast two-hybrid assays to identify regions in the DInR C-tail that interact with Dock. These Dock binding sites were in separate portions of the C-tail from the previously identified Chico binding sites. To test whether these sites are required for growth or axon guidance in whole animals, a panel of DInR proteins, in which the putative Chico and Dock interaction sites had been mutated individually or in combination, were tested for their ability to rescue viability, growth and axon guidance defects of dinr mutant flies. Sites required for viability were identified. Unexpectedly, mutation of both putative Dock binding sites, either individually or in combination, did not lead to defects in photoreceptor axon guidance. Thus, either sites also required for viability are necessary for DInR function in axon guidance and/or there is redundancy built into the DInR/Dock interaction such that Dock is able to interact with multiple regions of DInR. We also found that simultaneous mutation of all five NPXY motifs implicated in Chico interaction drastically decreased growth in both male and female adult flies. These animals resembled chico mutants, supporting the notion that DInR interacts directly with Chico in vivo to control body size. Mutation of these five NPXY motifs did not affect photoreceptor axon guidance, segregating the roles of DInR in the processes of growth and axon guidance. PMID:24478707
Ng, Chai Ann; Ke, Ying; Perry, Matthew D.; Tan, Peter S.; Hill, Adam P.; Vandenberg, Jamie I.
2013-01-01
Kv11.1 potassium channels are important for regulation of the normal rhythm of the heartbeat. Reduced activity of Kv11.1 channels causes long QT syndrome type 2, a disorder that increases the risk of cardiac arrhythmias and sudden cardiac arrest. Kv11.1 channels are members of the KCNH subfamily of voltage-gated K+ channels. However, they also share many similarities with the cyclic nucleotide gated ion channel family, including having a cyclic nucleotide-binding homology (cNBH) domain. Kv11.1 channels, however, are not directly regulated by cyclic nucleotides. Recently, crystal structures of the cNBH domain from mEAG and zELK channels, both members of the KCNH family of voltage-gated potassium channels, revealed that a C-terminal β9-strand in the cNBH domain occupied the putative cyclic nucleotide-binding site thereby precluding binding of cyclic nucleotides. Here we show that mutations to residues in the β9-strand affect the stability of the open state relative to the closed state of Kv11.1 channels. We also show that disrupting the structure of the β9-strand reduces the stability of the inactivated state relative to the open state. Clinical mutations located in this β9-strand result in reduced trafficking efficiency, which suggests that binding of the C-terminal β9-strand to the putative cyclic nucleotide-binding pocket is also important for assembly and trafficking of Kv11.1 channels. PMID:24204727
PdhR, the pyruvate dehydrogenase repressor, does not regulate lipoic acid synthesis.
Feng, Youjun; Cronan, John E
2014-01-01
Lipoic acid is a covalently-bound enzyme cofactor required for central metabolism all three domains of life. In the last 20 years the pathway of lipoic acid synthesis and metabolism has been established in Escherichia coli. Expression of the genes of the lipoic acid biosynthesis pathway was believed to be constitutive. However, in 2010 Kaleta and coworkers (BMC Syst. Biol. 4:116) predicted a binding site for the pyruvate dehydrogenase operon repressor, PdhR (referred to lipA site 1) upstream of lipA, the gene encoding lipoic acid synthase and concluded that PdhR regulates lipA transcription. We report in vivo and in vitro evidence that lipA is not controlled by PdhR and that the putative regulatory site deduced by the prior workers is nonfunctional and physiologically irrelevant. E. coli PdhR was purified to homogeneity and used for electrophoretic mobility shift assays. The lipA site 1 of Kaleta and coworkers failed to bind PdhR. The binding detected by these workers is due to another site (lipA site 3) located far upstream of the lipA promoter. Relative to the canonical PdhR binding site lipA site 3 is a half-palindrome and as expected had only weak PdhR binding ability. Manipulation of lipA site 3 to construct a palindrome gave significantly enhanced PdhR binding affinity. The native lipA promoter and the version carrying the artificial lipA3 palindrome were transcriptionally fused to a LacZ reporter gene to directly assay lipA expression. Deletion of pdhR gave no significant change in lipA promoter-driven β-galactosidase activity with either the native or constructed palindrome upstream sequences, indicating that PdhR plays no physiological role in regulation of lipA expression. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Heyma, P; Harrison, L C
1984-01-01
The thyrotropin (TSH) receptor is a putative target for autoantibodies in Graves' hyperthyroidism and therefore, should be capable of being identified, isolated, and structurally characterized by immunological means. To this end, four sera from patients with hyperthyroidism, three of which inhibited the binding of 125I-TSH to Triton-solubilized human thyroid membranes, were used to isolate TSH receptors by immunoprecipitation. To account for an effect of TSH binding or receptor occupancy on the ability of Graves' immunoglobulins to precipitate TSH receptors, two approaches were taken: (a) specific 125I-TSH binding activity was measured after solubilized thyroid membranes had been incubated with Graves' sera followed by precipitation with Staphylococcus protein A ("receptor depletion"); (b) TSH binding sites were labeled with 125I-TSH and the complexes were precipitated using Graves' sera and Staphylococcus protein A ("receptor precipitation"). The three sera which inhibited 125I-TSH binding depleted 125I-TSH binding activity between 30-80%. Preformed complexes between Staphylococcus protein A and immunoglobulins in these sera were also able to deplete 125I-TSH binding activity. However, after receptor depletion, the one serum that did not inhibit 125I-TSH binding was associated with a significant increase in 125I-TSH binding. All four sera specifically precipitated 80-100% of receptors identified by prelabeling with 125I-TSH. The dilutions of sera that precipitated 50% of 125I-TSH-receptor complexes ranged from 1:150-1:20. Complexes were partially precipitated by high concentrations of control sera (1:20), but the relative potency of control sera was at least fourfold less than Graves' sera. Immunoprecipitates of 125I-labeled thyroid membranes were analysed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography to reveal Graves'-specific bands of reduced molecular weights of 100-110,000, 80-90,000, and 70-75,000. These bands were similar to those obtained from 125I-labeled thyroid membranes purified by TSH affinity chromatography. Thus, Graves' immunoglobulins: (a) precipitate unoccupied and occupied TSH receptors, (b) in one case, neither inhibit binding nor immunodeplete the unoccupied receptor but immunoprecipitate 125I-TSH-receptor complexes, suggesting that binding of TSH may initiate an interaction between the binding site and a separate immunoreactive molecule, and (c) identify the molecular structure of Graves' autoantigens, putatively, the TSH receptor. Images PMID:6088581
Hamilton, Natasha A; Tammen, Imke; Raadsma, Herman W
2013-01-01
Angiotensin converting enzyme (ACE) is essential for control of blood pressure. The human ACE gene contains an intronic Alu indel (I/D) polymorphism that has been associated with variation in serum enzyme levels, although the functional mechanism has not been identified. The polymorphism has also been associated with cardiovascular disease, type II diabetes, renal disease and elite athleticism. We have characterized the ACE gene in horses of breeds selected for differing physical abilities. The equine gene has a similar structure to that of all known mammalian ACE genes. Nine common single nucleotide polymorphisms (SNPs) discovered in pooled DNA were found to be inherited in nine haplotypes. Three of these SNPs were located in intron 16, homologous to that containing the Alu polymorphism in the human. A highly conserved 18 bp sequence, also within that intron, was identified as being a potential binding site for the transcription factors Oct-1, HFH-1 and HNF-3β, and lies within a larger area of higher than normal homology. This putative regulatory element may contribute to regulation of the documented inter-individual variation in human circulating enzyme levels, for which a functional mechanism is yet to be defined. Two equine SNPs occurred within the conserved area in intron 16, although neither of them disrupted the putative binding site. We propose a possible regulatory mechanism of the ACE gene in mammalian species which was previously unknown. This advance will allow further analysis leading to a better understanding of the mechanisms underpinning the associations seen between the human Alu polymorphism and enzyme levels, cardiovascular disease states and elite athleticism.
Hamilton, Natasha A.; Tammen, Imke; Raadsma, Herman W.
2013-01-01
Angiotensin converting enzyme (ACE) is essential for control of blood pressure. The human ACE gene contains an intronic Alu indel (I/D) polymorphism that has been associated with variation in serum enzyme levels, although the functional mechanism has not been identified. The polymorphism has also been associated with cardiovascular disease, type II diabetes, renal disease and elite athleticism. We have characterized the ACE gene in horses of breeds selected for differing physical abilities. The equine gene has a similar structure to that of all known mammalian ACE genes. Nine common single nucleotide polymorphisms (SNPs) discovered in pooled DNA were found to be inherited in nine haplotypes. Three of these SNPs were located in intron 16, homologous to that containing the Alu polymorphism in the human. A highly conserved 18 bp sequence, also within that intron, was identified as being a potential binding site for the transcription factors Oct-1, HFH-1 and HNF-3β, and lies within a larger area of higher than normal homology. This putative regulatory element may contribute to regulation of the documented inter-individual variation in human circulating enzyme levels, for which a functional mechanism is yet to be defined. Two equine SNPs occurred within the conserved area in intron 16, although neither of them disrupted the putative binding site. We propose a possible regulatory mechanism of the ACE gene in mammalian species which was previously unknown. This advance will allow further analysis leading to a better understanding of the mechanisms underpinning the associations seen between the human Alu polymorphism and enzyme levels, cardiovascular disease states and elite athleticism. PMID:23408978
Zako, Tamotsu; Murase, Yosuke; Iizuka, Ryo; Yoshida, Takao; Kanzaki, Taro; Ide, Naoki; Maeda, Mizuo; Funatsu, Takashi; Yohda, Masafumi
2006-11-17
Prefoldin is a molecular chaperone that captures a protein-folding intermediate and transfers it to a group II chaperonin for correct folding. The manner by which prefoldin interacts with a group II chaperonin is poorly understood. Here, we have examined the prefoldin interaction site in the archaeal group II chaperonin, comparing the interaction of two Thermococcus chaperonins and their mutants with Pyrococcus prefoldin by surface plasmon resonance. We show that the mutations of Lys250 and Lys256 of Thermococcus alpha chaperonin residues to Glu residues increase the affinity to Pyrococcus prefoldin to the level of Thermococcus beta chaperonin and Pyrococcus chaperonin, indicating that their Glu250 and Glu256 residues of the helical protrusion region are responsible for relatively stronger binding to Pyrococcus prefoldin than Thermococcus alpha chaperonin. Since the putative chaperonin binding sites in the distal ends of Pyrococcus prefoldin are rich in basic residues, electrostatic interaction seems to be important for their interaction. The substrate protein transfer rate from prefoldin correlates well with its affinity for chaperonin.
GPU-Based Point Cloud Superpositioning for Structural Comparisons of Protein Binding Sites.
Leinweber, Matthias; Fober, Thomas; Freisleben, Bernd
2018-01-01
In this paper, we present a novel approach to solve the labeled point cloud superpositioning problem for performing structural comparisons of protein binding sites. The solution is based on a parallel evolution strategy that operates on large populations and runs on GPU hardware. The proposed evolution strategy reduces the likelihood of getting stuck in a local optimum of the multimodal real-valued optimization problem represented by labeled point cloud superpositioning. The performance of the GPU-based parallel evolution strategy is compared to a previously proposed CPU-based sequential approach for labeled point cloud superpositioning, indicating that the GPU-based parallel evolution strategy leads to qualitatively better results and significantly shorter runtimes, with speed improvements of up to a factor of 1,500 for large populations. Binary classification tests based on the ATP, NADH, and FAD protein subsets of CavBase, a database containing putative binding sites, show average classification rate improvements from about 92 percent (CPU) to 96 percent (GPU). Further experiments indicate that the proposed GPU-based labeled point cloud superpositioning approach can be superior to traditional protein comparison approaches based on sequence alignments.
Kathiravan, P; Goyal, S; Kataria, R S; Mishra, B P; Jayakumar, S; Joshi, B K
2011-01-01
The present study was undertaken to characterize the structure of S100A8 gene and its promoter in water buffalo and yak. Sequence data of 2.067 kb, 2.071 kb, and 2.052 kb with respect to complete S100A8 gene including 5' flanking region was generated in river buffalo, swamp buffalo, and yak, respectively. BLAST analysis of coding DNA sequences (CDS) of S100A8 gene revealed 95% homology of buffalo sequence with cattle, 85% with pig and horse, 83% with dog, 72-73% with murines, and around 79% with primates and humans. Phylogenetic analysis of predicted CDS revealed distinct clustering of murines, primates, and domestic animals with bovines and bubalines forming a subcluster among farm animals. In silico translation of predicted CDS revealed a sequence of 89 amino acids with 7 amino acid changes between cattle and buffalo and 2 changes between cattle and yak. The search for Pfam family revealed the N-terminal calcium binding domain and the noncanonical EF hand domain in the carboxy terminus, with more variations being observed in the N-terminal domain among different species. Two amino acid changes observed in carboxy terminal EF hand domain resulted in altered secondary structure of yak S100A8 protein. Analysis of S100A8 gene promoter revealed 14 putative motifs for transcriptional factor binding sites. Two putative motifs viz. C/EBP and v-Myb were found to be absent in swamp buffalo as compared to river buffalo and cattle. Differences in the structure of S100A8 protein and the transcriptional factor binding sites identified in the present study need to be analyzed further for their functional significance in yak and swamp buffalo respectively. Copyright © Taylor & Francis Group, LLC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stojanoski, Vlatko; Sankaran, Banumathi; Prasad, B. V. Venkataram
Due to the paucity of novel antibiotics, colistin has become a last resort antibiotic for treating multidrug resistant bacteria. Colistin acts by binding the lipid A component of lipopolysaccharides and subsequently disrupting the bacterial membrane. The recently identified plasmid-encoded MCR-1 enzyme is the first transmissible colistin resistance determinant and is a cause for concern for the spread of this resistance trait. MCR-1 is a phosphoethanolamine transferase that catalyzes the addition of phosphoethanolamine to lipid A to decrease colistin affinity. The structure of the catalytic domain of MCR-1 at 1.32 Å reveals the active site is similar to that of relatedmore » phosphoethanolamine transferases. The putative nucleophile for catalysis, threonine 285, is phosphorylated in cMCR-1 and a zinc is present at a conserved site in addition to three zincs more peripherally located in the active site. As noted for catalytic domains of other phosphoethanolamine transferases, binding sites for the lipid A and phosphatidylethanolamine substrates are not apparent in the cMCR-1 structure, suggesting that they are present in the membrane domain.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumaran,D.; Bonnano, J.; Burley, S.
2006-01-01
Phosphatidylglycerophosphatase (PGPase), an enzyme involved in lipid metabolism, catalyzes formation of phosphatidylglycerol from phosphatidylglycerophosphate. Phosphatidylglycerol is a multifunctional phospholipid, found in the biological membranes of many organisms. Here, we report the crystal structure of Listeria monocytogenes PGPase at 1.8 Angstroms resolution. PGPase, an all-helical molecule, forms a homotetramer. Each protomer contains an independent active site with two metal ions, Ca{sup 2+} and Mg{sup 2+}, forming a hetero-binuclear center located in a hydrophilic cavity near the surface of the molecule. The binuclear center, conserved ligands, metal-bound water molecules, and an Asp-His dyad form the active site. The catalytic mechanism of thismore » enzyme is likely to proceed via binuclear metal activated nucleophilic water. The binuclear metal-binding active-site environment of this structure should provide insights into substrate binding and metal-dependent catalysis. A long channel with inter-linked linear water chains, termed 'proton wires', is observed at the tetramer interface. Comparison of similar water chain structures in photosynthetic reaction centers (RCs), Cytochrome f, gramicidin, and bacteriorhodopsin, suggests that PGPase may conduct protons via proton wires.« less
Ananvoranich, S; Lafontaine, D A; Perreault, J P
1999-01-01
Our previous report on delta ribozyme cleavage using a trans -acting antigenomic delta ribozyme and a collection of short substrates showed that the middle nucleotides of the P1 stem, the substrate binding site, are essential for the cleavage activity. Here we have further investigated the effect of alterations in the P1 stem on the kinetic and thermodynamic parameters of delta ribozyme cleavage using various ribozyme variants carrying single base mutations at putative positions reported. The kinetic and thermodynamic values obtained in mutational studies of the two middle nucleotides of the P1 stem suggest that the binding and active sites of the delta ribozyme are uniquely formed. Firstly, the substrate and the ribozyme are engaged in the formation of a helix, known as the P1 stem, which may contain a weak hydrogen bond(s) or a bulge. Secondly, a tertiary interaction involving the base moieties in the middle of the P1 stem likely plays a role in defining the chemical environment. As a con-sequence, the active site might form simultaneously or subsequently to the binding site during later steps of the pathway. PMID:10037808
Ripoche, Hugues; Laine, Elodie; Ceres, Nicoletta; Carbone, Alessandra
2017-01-04
The database JET2 Viewer, openly accessible at http://www.jet2viewer.upmc.fr/, reports putative protein binding sites for all three-dimensional (3D) structures available in the Protein Data Bank (PDB). This knowledge base was generated by applying the computational method JET 2 at large-scale on more than 20 000 chains. JET 2 strategy yields very precise predictions of interacting surfaces and unravels their evolutionary process and complexity. JET2 Viewer provides an online intelligent display, including interactive 3D visualization of the binding sites mapped onto PDB structures and suitable files recording JET 2 analyses. Predictions were evaluated on more than 15 000 experimentally characterized protein interfaces. This is, to our knowledge, the largest evaluation of a protein binding site prediction method. The overall performance of JET 2 on all interfaces are: Sen = 52.52, PPV = 51.24, Spe = 80.05, Acc = 75.89. The data can be used to foster new strategies for protein-protein interactions modulation and interaction surface redesign. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Li, Hao; Redinbo, Matthew R.; Venkatesh, Madhukumar; Ekins, Sean; Chaudhry, Anik; Bloch, Nicolin; Negassa, Abdissa; Mukherjee, Paromita; Kalpana, Ganjam; Mani, Sridhar
2013-01-01
The pregnane X receptor (PXR) is a master regulator of xenobiotic metabolism, and its activity is critical toward understanding the pathophysiology of several diseases, including inflammation, cancer, and steatosis. Previous studies have demonstrated that ketoconazole binds to ligand-activated PXR and antagonizes receptor control of gene expression. Structure-function as well as computational docking analysis suggested a putative binding region containing critical charge clamp residues Gln-272, and Phe-264 on the AF-2 surface of PXR. To define the antagonist binding surface(s) of PXR, we developed a novel assay to identify key amino acid residues on PXR based on a yeast two-hybrid screen that examined mutant forms of PXR. This screen identified multiple “gain-of-function” mutants that were “resistant” to the PXR antagonist effects of ketoconazole. We then compared our screen results identifying key PXR residues to those predicted by computational methods. Of 15 potential or putative binding residues based on docking, we identified three residues in the yeast screen that were then systematically verified to functionally interact with ketoconazole using mammalian assays. Among the residues confirmed by our study was Ser-208, which is on the opposite side of the protein from the AF-2 region critical for receptor regulation. The identification of new locations for antagonist binding on the surface or buried in PXR indicates novel aspects to the mechanism of receptor antagonism. These results significantly expand our understanding of antagonist binding sites on the surface of PXR and suggest new avenues to regulate this receptor for clinical applications. PMID:23525103
Niederwanger, Michael; Dvorak, Martin; Schnegg, Raimund; Pedrini-Martha, Veronika; Bacher, Katharina; Bidoli, Massimo; Dallinger, Reinhard
2017-08-11
Metallothioneins (MTs) are low-molecular-mass, cysteine-rich, metal binding proteins. In most animal species, they are involved in metal homeostasis and detoxification, and provide protection from oxidative stress. Gastropod MTs are highly diversified, exhibiting unique features and adaptations like metal specificity and multiplications of their metal binding domains. Here, we show that the MT gene of Biomphalaria glabrata , one of the largest MT genes identified so far, is composed in a unique way. The encoding for an MT protein has a three-domain structure and a C-terminal, Cys-rich extension. Using a bioinformatic approach involving structural and in silico analysis of putative transcription factor binding sites (TFBs), we found that this MT gene consists of five exons and four introns. It exhibits a regulatory promoter region containing three metal-responsive elements (MREs) and several TFBs with putative involvement in environmental stress response, and regulation of gene expression. Quantitative real-time polymerase chain reaction (qRT-PCR) data indicate that the MT gene is not inducible by cadmium (Cd) nor by temperature challenges (heat and cold), despite significant Cd uptake within the midgut gland and the high Cd tolerance of metal-exposed snails.
Dvorak, Martin; Schnegg, Raimund; Pedrini-Martha, Veronika; Bacher, Katharina; Bidoli, Massimo; Dallinger, Reinhard
2017-01-01
Metallothioneins (MTs) are low-molecular-mass, cysteine-rich, metal binding proteins. In most animal species, they are involved in metal homeostasis and detoxification, and provide protection from oxidative stress. Gastropod MTs are highly diversified, exhibiting unique features and adaptations like metal specificity and multiplications of their metal binding domains. Here, we show that the MT gene of Biomphalaria glabrata, one of the largest MT genes identified so far, is composed in a unique way. The encoding for an MT protein has a three-domain structure and a C-terminal, Cys-rich extension. Using a bioinformatic approach involving structural and in silico analysis of putative transcription factor binding sites (TFBs), we found that this MT gene consists of five exons and four introns. It exhibits a regulatory promoter region containing three metal-responsive elements (MREs) and several TFBs with putative involvement in environmental stress response, and regulation of gene expression. Quantitative real-time polymerase chain reaction (qRT-PCR) data indicate that the MT gene is not inducible by cadmium (Cd) nor by temperature challenges (heat and cold), despite significant Cd uptake within the midgut gland and the high Cd tolerance of metal-exposed snails. PMID:28800079
Glinsky, Gennadi V.
2015-01-01
Despite significant progress in the structural and functional characterization of the human genome, understanding of the mechanisms underlying the genetic basis of human phenotypic uniqueness remains limited. Here, I report that transposable element-derived sequences, most notably LTR7/HERV-H, LTR5_Hs, and L1HS, harbor 99.8% of the candidate human-specific regulatory loci (HSRL) with putative transcription factor-binding sites in the genome of human embryonic stem cells (hESC). A total of 4,094 candidate HSRL display selective and site-specific binding of critical regulators (NANOG [Nanog homeobox], POU5F1 [POU class 5 homeobox 1], CCCTC-binding factor [CTCF], Lamin B1), and are preferentially located within the matrix of transcriptionally active DNA segments that are hypermethylated in hESC. hESC-specific NANOG-binding sites are enriched near the protein-coding genes regulating brain size, pluripotency long noncoding RNAs, hESC enhancers, and 5-hydroxymethylcytosine-harboring regions immediately adjacent to binding sites. Sequences of only 4.3% of hESC-specific NANOG-binding sites are present in Neanderthals’ genome, suggesting that a majority of these regulatory elements emerged in Modern Humans. Comparisons of estimated creation rates of novel TF-binding sites revealed that there was 49.7-fold acceleration of creation rates of NANOG-binding sites in genomes of Chimpanzees compared with the mouse genomes and further 5.7-fold acceleration in genomes of Modern Humans compared with the Chimpanzees genomes. Preliminary estimates suggest that emergence of one novel NANOG-binding site detectable in hESC required 466 years of evolution. Pathway analysis of coding genes that have hESC-specific NANOG-binding sites within gene bodies or near gene boundaries revealed their association with physiological development and functions of nervous and cardiovascular systems, embryonic development, behavior, as well as development of a diverse spectrum of pathological conditions such as cancer, diseases of cardiovascular and reproductive systems, metabolic diseases, multiple neurological and psychological disorders. A proximity placement model is proposed explaining how a 33–47% excess of NANOG, CTCF, and POU5F1 proteins immobilized on a DNA scaffold may play a functional role at distal regulatory elements. PMID:25956794
Byrne, C; Miclet, E; Broutin, I; Gallo, D; Pelekanou, V; Kampa, M; Castanas, E; Leclercq, G; Jacquot, Y
2013-10-01
Protein-protein interactions are crucial for signal transductions required for cell differentiation and proliferation. Their modulation is therefore key to the development of therapeutic alternatives, particularly in the context of cancer. According to literature data, the polyproline-rich nuclear receptor coactivators PNRC and PNRC2 interact with estrogen receptor (ERα) through their PxxP SH3-binding motifs. In a search to identify the molecular features governing this interaction, we explored using electronic circular dichroism (ECD) spectroscopy and molecular dynamics (MD) calculations, the capacity of a range of putative biologically active peptides derived from these proteins and containing this PxxP motif(s) to form polyproline II (PPII) domains. An additional more exhaustive structural study on a lead PPII peptide was also performed using 2D nuclear magnetic resonance (NMR) spectroscopy. With the exception of one of all the investigated peptides (PNRC-D), binding assays failed to detect any affinity for Grb2 SH3 domains, suggesting that PPII motifs issued from Grb2 antagonists have a binding mode distinct from those derived from Grb2 agonists. Instead, the peptides revealed a competitive binding ability against a synthetic peptide (ERα17p) with a putative PPII-cognate domain located within a coregulator recruitment region of ERα (AF-2 site). Our work, which constitutes the first structure-related interaction study concerning PNRC and PNRC2, supports not only the existence of PxxP-induced PPII sequences in these coregulators, but also confirms the presence of a PPII recognition site in the AF-2 of the steroid receptor ERα, a region important for transcription regulation. © 2013 Wiley Periodicals, Inc.
Stieb, Stefanie; Roth, Ziv; Dal Magro, Christina; Fischer, Sabine; Butz, Eric; Sagi, Amir; Khalaila, Isam; Lieb, Bernhard; Schenk, Sven; Hoeger, Ulrich
2014-12-01
The novel discoidal lipoprotein (dLp) recently detected in the crayfish, differs from other crustacean lipoproteins in its large size, apoprotein composition and high lipid binding capacity, We identified the dLp sequence by transcriptome analyses of the hepatopancreas and mass spectrometry. Further de novo assembly of the NGS data followed by BLAST searches using the sequence of the high density lipoprotein/1-glucan binding protein (HDL-BGBP) of Astacus leptodactylus as query revealed a putative precursor molecule with an open reading frame of 14.7 kb and a deduced primary structure of 4889 amino acids. The presence of an N-terminal lipid bind- ing domain and a DUF 1943 domain suggests the relationship with the large lipid transfer proteins. Two-putative dibasic furin cleavage sites were identified bordering the sequence of the HDL-BGBP. When subjected to mass spectroscopic analyses, tryptic peptides of the large apoprotein of dLp matched the N-terminal part of the precursor, while the peptides obtained for its small apoprotein matched the C-terminal part. Repeating the analysis in the prawn Macrobrachium rosenbergii revealed a similar protein with identical domain architecture suggesting that our findings do not represent an isolated instance. Our results indicate that the above three apolipoproteins (i.e HDL-BGBP and both the large and the small subunit of dLp) are translated as a large precursor. Cleavage at the furin type sites releases two subunits forming a heterodimeric dLP particle, while the remaining part forms an HDL-BGBP whose relationship with other lipoproteins as well as specific functions are yet to be elucidated.
Non-B-DNA structures on the interferon-beta promoter?
Robbe, K; Bonnefoy, E
1998-01-01
The high mobility group (HMG) I protein intervenes as an essential factor during the virus induced expression of the interferon-beta (IFN-beta) gene. It is a non-histone chromatine associated protein that has the dual capacity of binding to a non-B-DNA structure such as cruciform-DNA as well as to AT rich B-DNA sequences. In this work we compare the binding affinity of HMGI for a synthetic cruciform-DNA to its binding affinity for the HMGI-binding-site present in the positive regulatory domain II (PRDII) of the IFN-beta promoter. Using gel retardation experiments, we show that HMGI protein binds with at least ten times more affinity to the synthetic cruciform-DNA structure than to the PRDII B-DNA sequence. DNA hairpin sequences are present in both the human and the murine PRDII-DNAs. We discuss in this work the presence of, yet putative, non-B-DNA structures in the IFN-beta promoter.
Structural Basis for Sialoglycan Binding by the Streptococcus sanguinis SrpA Adhesin*♦
Bensing, Barbara A.; Loukachevitch, Lioudmila V.; McCulloch, Kathryn M.; Yu, Hai; Vann, Kendra R.; Wawrzak, Zdzislaw; Anderson, Spencer; Chen, Xi; Sullam, Paul M.; Iverson, T. M.
2016-01-01
Streptococcus sanguinis is a leading cause of infective endocarditis, a life-threatening infection of the cardiovascular system. An important interaction in the pathogenesis of infective endocarditis is attachment of the organisms to host platelets. S. sanguinis expresses a serine-rich repeat adhesin, SrpA, similar in sequence to platelet-binding adhesins associated with increased virulence in this disease. In this study, we determined the first crystal structure of the putative binding region of SrpA (SrpABR) both unliganded and in complex with a synthetic disaccharide ligand at 1.8 and 2.0 Å resolution, respectively. We identified a conserved Thr-Arg motif that orients the sialic acid moiety and is required for binding to platelet monolayers. Furthermore, we propose that sequence insertions in closely related family members contribute to the modulation of structural and functional properties, including the quaternary structure, the tertiary structure, and the ligand-binding site. PMID:26833566
Incorporating evolution of transcription factor binding sites into annotated alignments.
Bais, Abha S; Grossmann, Stefen; Vingron, Martin
2007-08-01
Identifying transcription factor binding sites (TFBSs) is essential to elucidate putative regulatory mechanisms. A common strategy is to combine cross-species conservation with single sequence TFBS annotation to yield "conserved TFBSs". Most current methods in this field adopt a multi-step approach that segregates the two aspects. Again, it is widely accepted that the evolutionary dynamics of binding sites differ from those of the surrounding sequence. Hence, it is desirable to have an approach that explicitly takes this factor into account. Although a plethora of approaches have been proposed for the prediction of conserved TFBSs, very few explicitly model TFBS evolutionary properties, while additionally being multi-step. Recently, we introduced a novel approach to simultaneously align and annotate conserved TFBSs in a pair of sequences. Building upon the standard Smith-Waterman algorithm for local alignments, SimAnn introduces additional states for profiles to output extended alignments or annotated alignments. That is, alignments with parts annotated as gaplessly aligned TFBSs (pair-profile hits)are generated. Moreover,the pair- profile related parameters are derived in a sound statistical framework. In this article, we extend this approach to explicitly incorporate evolution of binding sites in the SimAnn framework. We demonstrate the extension in the theoretical derivations through two position-specific evolutionary models, previously used for modelling TFBS evolution. In a simulated setting, we provide a proof of concept that the approach works given the underlying assumptions,as compared to the original work. Finally, using a real dataset of experimentally verified binding sites in human-mouse sequence pairs,we compare the new approach (eSimAnn) to an existing multi-step tool that also considers TFBS evolution. Although it is widely accepted that binding sites evolve differently from the surrounding sequences, most comparative TFBS identification methods do not explicitly consider this.Additionally, prediction of conserved binding sites is carried out in a multi-step approach that segregates alignment from TFBS annotation. In this paper, we demonstrate how the simultaneous alignment and annotation approach of SimAnn can be further extended to incorporate TFBS evolutionary relationships. We study how alignments and binding site predictions interplay at varying evolutionary distances and for various profile qualities.
ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data
2010-01-01
Background Chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) or ChIP followed by genome tiling array analysis (ChIP-chip) have become standard technologies for genome-wide identification of DNA-binding protein target sites. A number of algorithms have been developed in parallel that allow identification of binding sites from ChIP-seq or ChIP-chip datasets and subsequent visualization in the University of California Santa Cruz (UCSC) Genome Browser as custom annotation tracks. However, summarizing these tracks can be a daunting task, particularly if there are a large number of binding sites or the binding sites are distributed widely across the genome. Results We have developed ChIPpeakAnno as a Bioconductor package within the statistical programming environment R to facilitate batch annotation of enriched peaks identified from ChIP-seq, ChIP-chip, cap analysis of gene expression (CAGE) or any experiments resulting in a large number of enriched genomic regions. The binding sites annotated with ChIPpeakAnno can be viewed easily as a table, a pie chart or plotted in histogram form, i.e., the distribution of distances to the nearest genes for each set of peaks. In addition, we have implemented functionalities for determining the significance of overlap between replicates or binding sites among transcription factors within a complex, and for drawing Venn diagrams to visualize the extent of the overlap between replicates. Furthermore, the package includes functionalities to retrieve sequences flanking putative binding sites for PCR amplification, cloning, or motif discovery, and to identify Gene Ontology (GO) terms associated with adjacent genes. Conclusions ChIPpeakAnno enables batch annotation of the binding sites identified from ChIP-seq, ChIP-chip, CAGE or any technology that results in a large number of enriched genomic regions within the statistical programming environment R. Allowing users to pass their own annotation data such as a different Chromatin immunoprecipitation (ChIP) preparation and a dataset from literature, or existing annotation packages, such as GenomicFeatures and BSgenome, provides flexibility. Tight integration to the biomaRt package enables up-to-date annotation retrieval from the BioMart database. PMID:20459804
Divergent assembly mechanisms of the manganese/iron cofactors in R2lox and R2c proteins.
Kutin, Yuri; Srinivas, Vivek; Fritz, Matthieu; Kositzki, Ramona; Shafaat, Hannah S; Birrell, James; Bill, Eckhard; Haumann, Michael; Lubitz, Wolfgang; Högbom, Martin; Griese, Julia J; Cox, Nicholas
2016-09-01
A manganese/iron cofactor which performs multi-electron oxidative chemistry is found in two classes of ferritin-like proteins, the small subunit (R2) of class Ic ribonucleotide reductase (R2c) and the R2-like ligand-binding oxidase (R2lox). It is unclear how a heterodimeric Mn/Fe metallocofactor is assembled in these two related proteins as opposed to a homodimeric Fe/Fe cofactor, especially considering the structural similarity and proximity of the two metal-binding sites in both protein scaffolds and the similar first coordination sphere ligand preferences of Mn II and Fe II . Using EPR and Mössbauer spectroscopies as well as X-ray anomalous dispersion, we examined metal loading and cofactor activation of both proteins in vitro (in solution). We find divergent cofactor assembly mechanisms for the two systems. In both cases, excess Mn II promotes heterobimetallic cofactor assembly. In the absence of Fe II , R2c cooperatively binds Mn II at both metal sites, whereas R2lox does not readily bind Mn II at either site. Heterometallic cofactor assembly is favored at substoichiometric Fe II concentrations in R2lox. Fe II and Mn II likely bind to the protein in a stepwise fashion, with Fe II binding to site 2 initiating cofactor assembly. In R2c, however, heterometallic assembly is presumably achieved by the displacement of Mn II by Fe II at site 2. The divergent metal loading mechanisms are correlated with the putative in vivo functions of R2c and R2lox, and most likely with the intracellular Mn II /Fe II concentrations in the host organisms from which they were isolated. Copyright © 2016 Elsevier Inc. All rights reserved.
Newman-Tancredi, A; Gavaudan, S; Conte, C; Chaput, C; Touzard, M; Verrièle, L; Audinot, V; Millan, M J
1998-08-21
Recombinant human (h) 5-HT1A receptor-mediated G-protein activation was characterised in membranes of transfected Chinese hamster ovary (CHO) cells by use of guanosine-5'-O-(3-[35S]thio)-triphosphate ([35S]GTPgammaS binding). The potency and efficacy of 21 5-HT receptor agonists and antagonists was determined. The agonists, 5-CT (carboxamidotryptamine) and flesinoxan displayed high affinity (subnanomolar Ki values) and high efficacy (Emax > 90%, relative to 5-HT = 100%). In contrast, ipsapirone, zalospirone and buspirone displayed partial agonist activity. EC50s for agonist stimulation of [35S]GTPgammaS binding correlated well with Ki values from competition binding (r = +0.99). Among the compounds tested for antagonist activity, methiothepin and (+)butaclamol exhibited 'inverse agonist' behaviour, inhibiting basal [35S]GTPgammaS binding. The actions of 17 antipsychotic agents were investigated. Clozapine and several putatively 'atypical' antipsychotic agents, including ziprasidone, quetiapine and tiospirone, exhibited partial agonist activity and marked affinity at h5-HT1A receptors, similar to their affinity at hD2 dopamine receptors. In contrast, risperidone and sertindole displayed low affinity at h5-HT1A receptors and behaved as 'neutral' antagonists, inhibiting 5-HT-stimulated [35S]GTPgammaS binding. Likewise the 'typical' neuroleptics, haloperidol, pimozide, raclopride and chlorpromazine exhibited relatively low affinity and 'neutral' antagonist activity at h5-HT1A receptors with Ki values which correlated with their respective Kb values. The present data show that (i) [35S]GTPgammaS binding is an effective method to evaluate the efficacy and potency of agonists and antagonists at recombinant human 5-HT1A receptors. (ii) Like clozapine, several putatively 'atypical' antipsychotic drugs display balanced serotonin h5-HT1A/dopamine hD2 receptor affinity and partial agonist activity at h5-HT1A receptors. (iii) Several 'typical' and some putatively 'atypical' antipsychotic agents displayed antagonist properties at h5-HT1A sites with generally much lower affinity than at hD2 dopamine receptors. It is suggested that agonist activity at 5-HT1A receptors may be of utility for certain antipsychotic agents.
Characterization and functional analysis of the Paralichthys olivaceus prdm1 gene promoter.
Li, Peizhen; Wang, Bo; Cao, Dandan; Liu, Yuezhong; Zhang, Quanqi; Wang, Xubo
2017-10-01
PR domain containing protein 1 (Prdm1) is a transcriptional repressor identified in various species and plays multiple important roles in immune response and embryonic development. However, little is known about the transcriptional regulation of the prdm1 gene. This study aims to characterize the promoter of Paralichthys olivaceus prdm1 (Po-prdm1) gene and determine the regulatory mechanism of Po-prdm1 expression. A 2000bp-long 5'-flanking region (translation initiation site designated as +1) of the Po-prdm1 gene was isolated and characterized. The regulatory elements in this fragment were then investigated and many putative transcription factor (TF) binding sites involved in immunity and multiple tissue development were identified. A 5'-deletion analysis was then conducted, and the ability of the deletion mutants to promote luciferase and green fluorescent protein (GFP) expression in a flounder gill cell line was examined. The results revealed that the minimal promoter is located in the region between -446 and -13bp, and the region between -1415 and -13bp enhanced the promoter activity. Site-directed mutation analysis was subsequently performed on the putative regulatory elements sites, and the results indicated that FOXP1, MSX and BCL6 binding sites play negative functional roles in the regulation of the Po-prdm1 expression in FG cells. In vivo analysis demonstrated that a GFP reporter gene containing 1.4kb-long promoter fragment (-1415/-13) was expressed in the head and trunk muscle fibres of transient transgenic zebrafish embryos. Our study provided the basic information for the exploration of Po-prdm1 regulation and expression. Copyright © 2017 Elsevier Inc. All rights reserved.
Prediction of protein-protein interaction sites using electrostatic desolvation profiles.
Fiorucci, Sébastien; Zacharias, Martin
2010-05-19
Protein-protein complex formation involves removal of water from the interface region. Surface regions with a small free energy penalty for water removal or desolvation may correspond to preferred interaction sites. A method to calculate the electrostatic free energy of placing a neutral low-dielectric probe at various protein surface positions has been designed and applied to characterize putative interaction sites. Based on solutions of the finite-difference Poisson equation, this method also includes long-range electrostatic contributions and the protein solvent boundary shape in contrast to accessible-surface-area-based solvation energies. Calculations on a large set of proteins indicate that in many cases (>90%), the known binding site overlaps with one of the six regions of lowest electrostatic desolvation penalty (overlap with the lowest desolvation region for 48% of proteins). Since the onset of electrostatic desolvation occurs even before direct protein-protein contact formation, it may help guide proteins toward the binding region in the final stage of complex formation. It is interesting that the probe desolvation properties associated with residue types were found to depend to some degree on whether the residue was outside of or part of a binding site. The probe desolvation penalty was on average smaller if the residue was part of a binding site compared to other surface locations. Applications to several antigen-antibody complexes demonstrated that the approach might be useful not only to predict protein interaction sites in general but to map potential antigenic epitopes on protein surfaces. Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Fleischli, Christoph; Verhaagh, Sandra; Havenga, Menzo; Sirena, Dominique; Schaffner, Walter; Cattaneo, Roberto; Greber, Urs F; Hemmi, Silvio
2005-08-01
The human regulator of complement activation membrane cofactor protein (CD46) has recently been identified as an attachment receptor for most species B adenoviruses (Ads), including Ad type 3 (Ad3), Ad11, and Ad35, as well as species D Ad37. To characterize the interaction between Ad35 and CD46, hybrid receptors composed of different CD46 short consensus repeat (SCR) domains fused to immunoglobulin-like domains of CD4 and a set of 36 CD46 mutants containing semiconservative changes of single amino acids within SCR domains I and II were tested in binding and in Ad35-mediated luciferase transduction assays. In addition, anti-CD46 antibodies and soluble polypeptides constituting various CD46 domains were used in binding inhibition studies. Our data indicate that (i) CD46 SCR I or SCR II alone confers low but significant Ad35 binding; (ii) the presence of SCR I and II is required for optimal binding and transgene expression; (iii) transduction efficiencies equivalent to that of full-length CD46 are obtained if SCR I and II are at an appropriate distance from the cell membrane; (iv) ablation of the N-glycan attached to SCR I has no influence on receptor function, whereas ablation of the SCR II N-glycan results in about a two- to threefold reduction of binding and transgene expression; (v) most putative Ad35 binding residues are located on the same solvent-exposed face of the SCR I or SCR II domain, which are twisted by about 90 degrees ; and (vi) the putative Ad35 binding sites partly overlap with the measles virus binding surface.
Fleischli, Christoph; Verhaagh, Sandra; Havenga, Menzo; Sirena, Dominique; Schaffner, Walter; Cattaneo, Roberto; Greber, Urs F.; Hemmi, Silvio
2005-01-01
The human regulator of complement activation membrane cofactor protein (CD46) has recently been identified as an attachment receptor for most species B adenoviruses (Ads), including Ad type 3 (Ad3), Ad11, and Ad35, as well as species D Ad37. To characterize the interaction between Ad35 and CD46, hybrid receptors composed of different CD46 short consensus repeat (SCR) domains fused to immunoglobulin-like domains of CD4 and a set of 36 CD46 mutants containing semiconservative changes of single amino acids within SCR domains I and II were tested in binding and in Ad35-mediated luciferase transduction assays. In addition, anti-CD46 antibodies and soluble polypeptides constituting various CD46 domains were used in binding inhibition studies. Our data indicate that (i) CD46 SCR I or SCR II alone confers low but significant Ad35 binding; (ii) the presence of SCR I and II is required for optimal binding and transgene expression; (iii) transduction efficiencies equivalent to that of full-length CD46 are obtained if SCR I and II are at an appropriate distance from the cell membrane; (iv) ablation of the N-glycan attached to SCR I has no influence on receptor function, whereas ablation of the SCR II N-glycan results in about a two- to threefold reduction of binding and transgene expression; (v) most putative Ad35 binding residues are located on the same solvent-exposed face of the SCR I or SCR II domain, which are twisted by about 90°; and (vi) the putative Ad35 binding sites partly overlap with the measles virus binding surface. PMID:16014961
A Specific Two-pore Domain Potassium Channel Blocker Defines the Structure of the TASK-1 Open Pore*
Streit, Anne K.; Netter, Michael F.; Kempf, Franca; Walecki, Magdalena; Rinné, Susanne; Bollepalli, Murali K.; Preisig-Müller, Regina; Renigunta, Vijay; Daut, Jürgen; Baukrowitz, Thomas; Sansom, Mark S. P.; Stansfeld, Phillip J.; Decher, Niels
2011-01-01
Two-pore domain potassium (K2P) channels play a key role in setting the membrane potential of excitable cells. Despite their role as putative targets for drugs and general anesthetics, little is known about the structure and the drug binding site of K2P channels. We describe A1899 as a potent and highly selective blocker of the K2P channel TASK-1. As A1899 acts as an open-channel blocker and binds to residues forming the wall of the central cavity, the drug was used to further our understanding of the channel pore. Using alanine mutagenesis screens, we have identified residues in both pore loops, the M2 and M4 segments, and the halothane response element to form the drug binding site of TASK-1. Our experimental data were used to validate a K2P open-pore homology model of TASK-1, providing structural insights for future rational design of drugs targeting K2P channels. PMID:21362619
Euro, Liliya; Haapanen, Outi; Róg, Tomasz; Vattulainen, Ilpo; Suomalainen, Anu; Sharma, Vivek
2017-03-07
DNA polymerase γ (Pol γ) is a key component of the mitochondrial DNA replisome and an important cause of neurological diseases. Despite the availability of its crystal structures, the molecular mechanism of DNA replication, the switch between polymerase and exonuclease activities, the site of replisomal interactions, and functional effects of patient mutations that do not affect direct catalysis have remained elusive. Here we report the first atomistic classical molecular dynamics simulations of the human Pol γ replicative complex. Our simulation data show that DNA binding triggers remarkable changes in the enzyme structure, including (1) completion of the DNA-binding channel via a dynamic subdomain, which in the apo form blocks the catalytic site, (2) stabilization of the structure through the distal accessory β-subunit, and (3) formation of a putative transient replisome-binding platform in the "intrinsic processivity" subdomain of the enzyme. Our data indicate that noncatalytic mutations may disrupt replisomal interactions, thereby causing Pol γ-associated neurodegenerative disorders.
Schlecht, Ulrich; Erb, Ionas; Demougin, Philippe; Robine, Nicolas; Borde, Valérie; van Nimwegen, Erik; Nicolas, Alain
2008-01-01
The autonomously replicating sequence binding factor 1 (Abf1) was initially identified as an essential DNA replication factor and later shown to be a component of the regulatory network controlling mitotic and meiotic cell cycle progression in budding yeast. The protein is thought to exert its functions via specific interaction with its target site as part of distinct protein complexes, but its roles during mitotic growth and meiotic development are only partially understood. Here, we report a comprehensive approach aiming at the identification of direct Abf1-target genes expressed during fermentation, respiration, and sporulation. Computational prediction of the protein's target sites was integrated with a genome-wide DNA binding assay in growing and sporulating cells. The resulting data were combined with the output of expression profiling studies using wild-type versus temperature-sensitive alleles. This work identified 434 protein-coding loci as being transcriptionally dependent on Abf1. More than 60% of their putative promoter regions contained a computationally predicted Abf1 binding site and/or were bound by Abf1 in vivo, identifying them as direct targets. The present study revealed numerous loci previously unknown to be under Abf1 control, and it yielded evidence for the protein's variable DNA binding pattern during mitotic growth and meiotic development. PMID:18305101
Ito, Jun-ichi; Ikeda, Kazuyoshi; Yamada, Kazunori; Mizuguchi, Kenji; Tomii, Kentaro
2015-01-01
PoSSuM (http://possum.cbrc.jp/PoSSuM/) is a database for detecting similar small-molecule binding sites on proteins. Since its initial release in 2011, PoSSuM has grown to provide information related to 49 million pairs of similar binding sites discovered among 5.5 million known and putative binding sites. This enlargement of the database is expected to enhance opportunities for biological and pharmaceutical applications, such as predictions of new functions and drug discovery. In this release, we have provided a new service named PoSSuM drug search (PoSSuMds) at http://possum.cbrc.jp/PoSSuM/drug_search/, in which we selected 194 approved drug compounds retrieved from ChEMBL, and detected their known binding pockets and pockets that are similar to them. Users can access and download all of the search results via a new web interface, which is useful for finding ligand analogs as well as potential target proteins. Furthermore, PoSSuMds enables users to explore the binding pocket universe within PoSSuM. Additionally, we have improved the web interface with new functions, including sortable tables and a viewer for visualizing and downloading superimposed pockets. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Wang, G; Liao, J; Tang, M; Yu, S
2018-02-01
1. Microphthalmia-associated transcription factor (MITF) plays a pivotal role in melanocyte development by regulating the transcription of major pigmentation enzymes (e.g. TYR, TYRP1 and DCT). A single-nucleotide polymorphism (SNP), c.-638T>C, was identified in the MITF promoter, and genotyping of a population (n = 426) revealed that SNP c.-638T>C was associated with skin colour in black-boned chickens. 2. Individuals with genotypes CC and TC exhibited greater MTIF expression than those with genotype TT. Luciferase assays also revealed that genotype CC and TC promoters had higher activity levels than genotype TT. Expression of melanogenesis-related gene (TYR) was higher in the skin of chickens with the CC and CT genotype compared to TT chickens (P < 0.05). 3. Transcription factor-binding site analyses showed that the c.-638C allele contains a putative binding site for transcription factor sterol regulatory element-binding transcription factor 2, aryl hydrocarbon receptor nuclear translocator, transcription factor binding to IGHM enhancer 3 and upstream transcription factor 2. In contrast, the c.-638T allele contains binding sites for Sp3 transcription factor and Krüppel-like factor 1. 4. It was concluded that MITF promoter polymorphisms affected chicken skin colour. SNP c.-638T>C could be used for the marker-assisted selection of skin colour in black-boned chicken breeding.
Bes, M T; Hernández, J A; Peleato, M L; Fillat, M F
2001-01-15
A gene coding for a Fur (ferric uptake regulation) protein from the cyanobacterium Anabaena PCC 7119 has been cloned and overexpressed in Escherichia coli. DNA sequence analysis confirmed the presence of a 151-amino-acid open reading frame that showed homology with the Fur proteins reported for the unicellular cyanobacteria Synechococcus 7942 and Synechocystis PCC 6803. Two putative Fur-binding sites were detected in the promoter regions of the fur gene from Anabaena. Partially purified recombinant Fur binds to the flavodoxin promoter as well as its own promoter. This suggests that the Fur gene is autoregulated in Anabaena.
Shi, Jiye; Anderson, Dina; Lynch, Berkley A; Castaigne, Jean-Gabriel; Foerch, Patrik; Lebon, Florence
2011-10-01
LEV (levetiracetam), an antiepileptic drug which possesses a unique profile in animal models of seizure and epilepsy, has as its unique binding site in brain, SV2A (synaptic vesicle protein 2A). Previous studies have used a chimaeric and site-specific mutagenesis approach to identify three residues in the putative tenth transmembrane helix of SV2A that, when mutated, alter binding of LEV and related racetam derivatives to SV2A. In the present paper, we report a combined modelling and mutagenesis study that successfully identifies another 11 residues in SV2A that appear to be involved in ligand binding. Sequence analysis and modelling of SV2A suggested residues equivalent to critical functional residues of other MFS (major facilitator superfamily) transporters. Alanine scanning of these and other SV2A residues resulted in the identification of residues affecting racetam binding, including Ile273 which differentiated between racetam analogues, when mutated to alanine. Integrating mutagenesis results with docking analysis led to the construction of a mutant in which six SV2A residues were replaced with corresponding SV2B residues. This mutant showed racetam ligand-binding affinity intermediate to the affinities observed for SV2A and SV2B.
SP-A binding sites on bovine alveolar macrophages.
Plaga, S; Plattner, H; Schlepper-Schaefer, J
1998-11-25
Surfactant protein A (SP-A) binding to bovine alveolar macrophages was examined in order to characterize SP-A binding proteins on the cell surface and to isolate putative receptors from these cells that could be obtained in large amounts. Human SP-A, unlabeled or labeled with gold particles, was bound to freshly isolated macrophages and analyzed with ELISA or the transmission electron microscope. Binding of SP-A was inhibited by Ca2+ chelation, by an excess of unlabeled SP-A, or by the presence of 20 mg/ml mannan. We conclude that bovine alveolar macrophages expose binding sites for SP-A that are specific and that depend on Ca2+ and on mannose residues. For isolation of SP-A receptors with homologous SP-A as ligand we isolated SP-A from bovine lung lavage. SDS-PAGE analysis of the purified SP-A showed a protein of 32-36 kDa. Functional integrity of the protein was demonstrated. Bovine SP-A bound to Dynabeads was used to isolate SP-A binding proteins. From the fractionated and blotted proteins of the receptor preparation two proteins bound SP-A in a Ca2+-dependent manner, a 40-kDa protein showing mannose dependency and a 210-kDa protein, showing no mannose sensitivity. Copyright 1998 Academic Press.
Agonist trapped in ATP-binding sites of the P2X2 receptor
Jiang, Ruotian; Lemoine, Damien; Martz, Adeline; Taly, Antoine; Gonin, Sophie; Prado de Carvalho, Lia; Specht, Alexandre; Grutter, Thomas
2011-01-01
ATP-gated P2X receptors are trimeric ion channels, as recently confirmed by X-ray crystallography. However, the structure was solved without ATP and even though extracellular intersubunit cavities surrounded by conserved amino acid residues previously shown to be important for ATP function were proposed to house ATP, the localization of the ATP sites remains elusive. Here we localize the ATP-binding sites by creating, through a proximity-dependent “tethering” reaction, covalent bonds between a synthesized ATP-derived thiol-reactive P2X2 agonist (NCS-ATP) and single cysteine mutants engineered in the putative binding cavities of the P2X2 receptor. By combining whole-cell and single-channel recordings, we report that NCS-ATP covalently and specifically labels two previously unidentified positions N140 and L186 from two adjacent subunits separated by about 18 Å in a P2X2 closed state homology model, suggesting the existence of at least two binding modes. Tethering reaction at both positions primes subsequent agonist binding, yet with distinct functional consequences. Labeling of one position impedes subsequent ATP function, which results in inefficient gating, whereas tethering of the other position, although failing to produce gating by itself, enhances subsequent ATP function. Our results thus define a large and dynamic intersubunit ATP-binding pocket and suggest that receptors trapped in covalently agonist-bound states differ in their ability to gate the ion channel. PMID:21576497
Isvoran, Adriana; Craciun, Dana; Martiny, Virginie; Sperandio, Olivier; Miteva, Maria A
2013-06-14
Protein-Protein Interactions (PPIs) are key for many cellular processes. The characterization of PPI interfaces and the prediction of putative ligand binding sites and hot spot residues are essential to design efficient small-molecule modulators of PPI. Terphenyl and its derivatives are small organic molecules known to mimic one face of protein-binding alpha-helical peptides. In this work we focus on several PPIs mediated by alpha-helical peptides. We performed computational sequence- and structure-based analyses in order to evaluate several key physicochemical and surface properties of proteins known to interact with alpha-helical peptides and/or terphenyl and its derivatives. Sequence-based analysis revealed low sequence identity between some of the analyzed proteins binding alpha-helical peptides. Structure-based analysis was performed to calculate the volume, the fractal dimension roughness and the hydrophobicity of the binding regions. Besides the overall hydrophobic character of the binding pockets, some specificities were detected. We showed that the hydrophobicity is not uniformly distributed in different alpha-helix binding pockets that can help to identify key hydrophobic hot spots. The presence of hydrophobic cavities at the protein surface with a more complex shape than the entire protein surface seems to be an important property related to the ability of proteins to bind alpha-helical peptides and low molecular weight mimetics. Characterization of similarities and specificities of PPI binding sites can be helpful for further development of small molecules targeting alpha-helix binding proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blatteis, C.M.
1981-11-01
Although it has been demonstrated that their central, exogenous application induces thermal responses, it is not yet established whether various substances found in the hypothalami of many species function as neurotransmitters in central thermoregulatory pathways. Available data concerning their presence, synthesis, release, possible binding sites, and inactivation are reviewed in the light of established criteria for determining a neurotransmitter role for such substances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, Matthew R.; Rajashankar, Kanagalaghatta R.; Crowley, Paula J.
2012-05-29
The Streptococcus mutans antigen I/II (AgI/II) is a cell surface-localized protein that adheres to salivary components and extracellular matrix molecules. Here we report the 2.5 {angstrom} resolution crystal structure of the complete C-terminal region of AgI/II. The C-terminal region is comprised of three major domains: C{sub 1}, C{sub 2}, and C{sub 3}. Each domain adopts a DE-variant IgG fold, with two {beta}-sheets whose A and F strands are linked through an intramolecular isopeptide bond. The adherence of the C-terminal AgI/II fragments to the putative tooth surface receptor salivary agglutinin (SAG), as monitored by surface plasmon resonance, indicated that the minimalmore » region of binding was contained within the first and second DE-variant-IgG domains (C{sub 1} and C{sub 2}) of the C terminus. The minimal C-terminal region that could inhibit S. mutans adherence to SAG was also confirmed to be within the C{sub 1} and C{sub 2} domains. Competition experiments demonstrated that the C- and N-terminal regions of AgI/II adhere to distinct sites on SAG. A cleft formed at the intersection between these C{sub 1} and C{sub 2} domains bound glucose molecules from the cryo-protectant solution, revealing a putative binding site for its highly glycosylated receptor SAG. Finally, electron microscopy images confirmed the elongated structure of AgI/II and enabled building a composite tertiary model that encompasses its two distinct binding regions.« less
Analysis of Glucose Transporter Topology and Structural Dynamics*
Blodgett, David M.; Graybill, Christopher; Carruthers, Anthony
2008-01-01
Homology modeling and scanning cysteine mutagenesis studies suggest that the human glucose transport protein GLUT1 and its distant bacterial homologs LacY and GlpT share similar structures. We tested this hypothesis by mapping the accessibility of purified, reconstituted human erythrocyte GLUT1 to aqueous probes. GLUT1 contains 35 potential tryptic cleavage sites. Fourteen of 16 lysine residues and 18 of 19 arginine residues were accessible to trypsin. GLUT1 lysine residues were modified by isothiocyanates and N-hydroxysuccinimide (NHS) esters in a substrate-dependent manner. Twelve lysine residues were accessible to sulfo-NHS-LC-biotin. GLUT1 trypsinization released full-length transmembrane helix 1, cytoplasmic loop 6–7, and the long cytoplasmic C terminus from membranes. Trypsin-digested GLUT1 retained cytochalasin B and d-glucose binding capacity and released full-length transmembrane helix 8 upon cytochalasin B (but not d-glucose) binding. Transmembrane helix 8 release did not abrogate cytochalasin B binding. GLUT1 was extensively proteolyzed by α-chymotrypsin, which cuts putative pore-forming amphipathic α-helices 1, 2, 4, 7, 8, 10, and 11 at multiple sites to release transmembrane peptide fragments into the aqueous solvent. Putative scaffolding membrane helices 3, 6, 9, and 12 are strongly hydrophobic, resistant to α-chymotrypsin, and retained by the membrane bilayer. These observations provide experimental support for the proposed GLUT1 architecture; indicate that the proposed topology of membrane helices 5, 6, and 12 requires adjustment; and suggest that the metastable conformations of transmembrane helices 1 and 8 within the GLUT1 scaffold destabilize a sugar translocation intermediate. PMID:18981181
Yamamoto, A M; Cresteil, D; Boniface, O; Clerc, F F; Alvarez, F
1993-05-01
Anti-liver-kidney microsome type-1 antibodies (LKM1), present in sera from a group of patients with autoimmune hepatitis, are directed against P450IID6. Previous work, using cDNA constructions spanning most of the P450IID6 protein defined the main immunogenic site between the amino acids (aa), 254-271 and predicted the presence of other putative immunogenic sites in the molecule. Fusion proteins from new cDNA constructions, spanning so-far-untested regions between aa 1-125 and 431-522, were not recognized by LKM1-positive sera. Synthetic peptides, representing sequences from putative immunogenic regions or previously untested regions, allowed a precise definition of four antigenic sites located between peptides 257-269, 321-351, 373-389 and 410-429, which were recognized, respectively, by 14, 8, 1 and 2 out of 15 LKM1-positive sera tested. The minimal sequence of the main antigenic site (peptide 257-269) recognized by the autoantibody was established to be WDPAQPPRD (peptide 262-270). In addition, deletion and replacement experiments showed that aa 263 (Asp) was essential for the binding of the autoantibody to peptide 262-270. Analysis of the second most frequently recognized peptide between aa 321-351, was performed using peptides 321-339 and 340-351 in competitive inhibition studies. Complete elimination of antibody binding to peptide 321-351 obtained by absorption of both shorter peptides indicated that peptide 321-351 is a discontinuous antigenic site. LKM1-positive sera reacting against peptide 321-351 recognized either both the shorter peptides or just one of them preferentially. Results of the present study suggest that the production of LKM1 antibodies is an antigen-driven, poly- or oligoclonal B cell response. The identification of antigenic sites will allow: (i) the development of specific diagnostic tests and (ii) further studies on the pathogenic value of LKM1 antibodies in autoimmune hepatitis.
Identification and analysis of pig chimeric mRNAs using RNA sequencing data
2012-01-01
Background Gene fusion is ubiquitous over the course of evolution. It is expected to increase the diversity and complexity of transcriptomes and proteomes through chimeric sequence segments or altered regulation. However, chimeric mRNAs in pigs remain unclear. Here we identified some chimeric mRNAs in pigs and analyzed the expression of them across individuals and breeds using RNA-sequencing data. Results The present study identified 669 putative chimeric mRNAs in pigs, of which 251 chimeric candidates were detected in a set of RNA-sequencing data. The 618 candidates had clear trans-splicing sites, 537 of which obeyed the canonical GU-AG splice rule. Only two putative pig chimera variants whose fusion junction was overlapped with that of a known human chimeric mRNA were found. A set of unique chimeric events were considered middle variances in the expression across individuals and breeds, and revealed non-significant variance between sexes. Furthermore, the genomic region of the 5′ partner gene shares a similar DNA sequence with that of the 3′ partner gene for 458 putative chimeric mRNAs. The 81 of those shared DNA sequences significantly matched the known DNA-binding motifs in the JASPAR CORE database. Four DNA motifs shared in parental genomic regions had significant similarity with known human CTCF binding sites. Conclusions The present study provided detailed information on some pig chimeric mRNAs. We proposed a model that trans-acting factors, such as CTCF, induced the spatial organisation of parental genes to the same transcriptional factory so that parental genes were coordinatively transcribed to give birth to chimeric mRNAs. PMID:22925561
NASA Astrophysics Data System (ADS)
Wrobel, Eva; Rothenberg, Ina; Krisp, Christoph; Hundt, Franziska; Fraenzel, Benjamin; Eckey, Karina; Linders, Joannes T. M.; Gallacher, David J.; Towart, Rob; Pott, Lutz; Pusch, Michael; Yang, Tao; Roden, Dan M.; Kurata, Harley T.; Schulze-Bahr, Eric; Strutz-Seebohm, Nathalie; Wolters, Dirk; Seebohm, Guiscard
2016-10-01
Most small-molecule inhibitors of voltage-gated ion channels display poor subtype specificity because they bind to highly conserved residues located in the channel's central cavity. Using a combined approach of scanning mutagenesis, electrophysiology, chemical ligand modification, chemical cross-linking, MS/MS-analyses and molecular modelling, we provide evidence for the binding site for adamantane derivatives and their putative access pathway in Kv7.1/KCNE1 channels. The adamantane compounds, exemplified by JNJ303, are highly potent gating modifiers that bind to fenestrations that become available when KCNE1 accessory subunits are bound to Kv7.1 channels. This mode of regulation by auxiliary subunits may facilitate the future development of potent and highly subtype-specific Kv channel inhibitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garzon, J.; Sanchez-Blazquez, P.; Lee, N.M.
1984-10-01
The binding of the putative kappa agonist ethylketocyclazocine (EKC) to synaptosomal membranes of mouse brain was studied. This benzomorphan was able to bind to different opioid receptors. A portion of this binding was not inhibited by the agonist naloxone, even at high concentrations (10 microM). This population of receptors, to which opioate alkaloids and opiod peptides display very low affinity, is probably the sigma receptor. Another class of binding sites was identified by the simultaneous addition of the selective agonists Sandoz FK-33824 and D-Ala2-D-Leu5-enkephalin, which blocked the access of EKC to mu and delta opioid receptors, respectively, leaving a portionmore » of naloxone-displaceable benzomorphan binding still detectable. Analysis of this remaining binding revealed a small population of receptors of high affinity, the kappa receptor. Therefore, EKC binds to the mu, delta, kappa and sigma receptors in the mouse brain, with similar affinities for the mu and kappa (0.22 and 0.15 nM). These results confirm the existence of a kappa opioid receptor type in the mouse brain.« less
Chowdhury, Shomeek; Zhang, Jian; Kurgan, Lukasz
2018-05-28
Deciphering a complete landscape of protein-RNA interactions in the human proteome remains an elusive challenge. We computationally elucidate RNA binding proteins (RBPs) using an approach that complements previous efforts. We employ two modern complementary sequence-based methods that provide accurate predictions from the structured and the intrinsically disordered sequences, even in the absence of sequence similarity to the known RBPs. We generate and analyze putative RNA binding residues on the whole proteome scale. Using a conservative setting that ensures low, 5% false positive rate, we identify 1511 putative RBPs that include 281 known RBPs and 166 RBPs that were previously predicted. We empirically demonstrate that these overlaps are statistically significant. We also validate the putative RBPs based on two major hallmarks of their RNA binding residues: high levels of evolutionary conservation and enrichment in charged amino acids. Moreover, we show that the novel RBPs are significantly under-annotated functionally which coincides with the fact that they were not yet found to interact with RNAs. We provide two examples of our novel putative RBPs for which there is recent evidence of their interactions with RNAs. The dataset of novel putative RBPs and RNA binding residues for the future hypothesis generation is provided in the Supporting Information. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
In Vivo Chromatin Targets of the Transcription Factor Yin Yang 2 in Trophoblast Stem Cells
Pérez-Palacios, Raquel; Macías-Redondo, Sofía; Climent, María; Contreras-Moreira, Bruno; Muniesa, Pedro; Schoorlemmer, Jon
2016-01-01
Background Yin Yang 2 (YY2) is a zinc finger protein closely related to the well-characterized Yin Yang 1 (YY1). YY1 is a DNA-binding transcription factor, with defined functions in multiple developmental processes, such as implantation, cell differentiation, X inactivation, imprinting and organogenesis. Yy2 has been treated as a largely immaterial duplication of Yy1, as they share high homology in the Zinc Finger-region and similar if not identical in vitro binding sites. In contrast to these similarities, gene expression alterations in HeLa cells with attenuated levels of either Yy1 or Yy2 were to some extent gene-specific. Moreover, the chromatin binding sites for YY2, except for its association with transposable retroviral elements (RE) and Endogenous Retroviral Elements (ERVs), remain to be identified. As a first step towards defining potential Yy2 functions matching or complementary to Yy1, we considered in vivo DNA binding sites of YY2 in trophoblast stem (TS) cells. Results We report the presence of YY2 protein in mouse-derived embryonic stem (ES) and TS cell lines. Following up on our previous report on ERV binding by YY2 in TS cells, we investigated the tissue-specificity of REX1 and YY2 binding and confirm binding to RE/ERV targets in both ES cells and TS cells. Because of the higher levels of expression, we chose TS cells to understand the role of Yy2 in gene and chromatin regulation. We used in vivo YY2 association as a measure to identify potential target genes. Sequencing of chromatin obtained in chromatin-immunoprecipitation (ChIP) assays carried out with αYY2 serum allowed us to identify a limited number of chromatin targets for YY2. Some putative binding sites were validated in regular ChIP assays and gene expression of genes nearby was altered in the absence of Yy2. Conclusions YY2 binding to ERVs is not confined to TS cells. In vivo binding sites share the presence of a consensus binding motif. Selected sites were uniquely bound by YY2 as opposed to YY1, suggesting that YY2 exerts unique contributions to gene regulation. YY2 binding was not generally associated with gene promoters. However, several YY2 binding sites are linked to long noncoding RNA (lncRNA) genes and we show that the expression levels of a few of those are Yy2-dependent. PMID:27191592
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodder, Anthony N.; Malby, Robyn L.; Clarke, Oliver B.
The sera genes of the malaria-causing parasite Plasmodium encode a family of unique proteins that are maximally expressed at the time of egress of parasites from infected red blood cells. These multi-domain proteins are unique, containing a central papain-like cysteine-protease fragment enclosed between the disulfide-linked N- and C-terminal domains. However, the central fragment of several members of this family, including serine repeat antigen 5 (SERA5), contains a serine (S596) in place of the active-site cysteine. Here we report the crystal structure of the central protease-like domain of Plasmodium falciparum SERA5, revealing a number of anomalies in addition to the putativemore » nucleophilic serine: (1) the structure of the putative active site is not conducive to binding substrate in the canonical cysteine-protease manner; (2) the side chain of D594 restricts access of substrate to the putative active site; and (3) the S{sub 2} specificity pocket is occupied by the side chain of Y735, reducing this site to a small depression on the protein surface. Attempts to determine the structure in complex with known inhibitors were not successful. Thus, despite having revealed its structure, the function of the catalytic domain of SERA5 remains an enigma.« less
Structure of the bacteriophage T4 long tail fiber receptor-binding tip
Bartual, Sergio G.; Otero, José M.; Garcia-Doval, Carmela; Llamas-Saiz, Antonio L.; Kahn, Richard; Fox, Gavin C.; van Raaij, Mark J.
2010-01-01
Bacteriophages are the most numerous organisms in the biosphere. In spite of their biological significance and the spectrum of potential applications, little high-resolution structural detail is available on their receptor-binding fibers. Here we present the crystal structure of the receptor-binding tip of the bacteriophage T4 long tail fiber, which is highly homologous to the tip of the bacteriophage lambda side tail fibers. This structure reveals an unusual elongated six-stranded antiparallel beta-strand needle domain containing seven iron ions coordinated by histidine residues arranged colinearly along the core of the biological unit. At the end of the tip, the three chains intertwine forming a broader head domain, which contains the putative receptor interaction site. The structure reveals a previously unknown beta-structured fibrous fold, provides insights into the remarkable stability of the fiber, and suggests a framework for mutations to expand or modulate receptor-binding specificity. PMID:21041684
Blancato, Víctor S.; Pagliai, Fernando A.; Magni, Christian; Gonzalez, Claudio F.; Lorca, Graciela L.
2016-01-01
The regulator of citrate metabolism, CitO, from Enterococcus faecalis belongs to the FCD family within the GntR superfamily. In the presence of citrate, CitO binds to cis-acting sequences located upstream of the cit promoters inducing the expression of genes involved in citrate utilization. The quantification of the molecular binding affinities, performed by isothermal titration calorimetry (ITC), indicated that CitO has a high affinity for citrate (KD = 1.2 ± 0.2 μM), while it did not recognize other metabolic intermediates. Based on a structural model of CitO where a putative small molecule and a metal binding site were identified, it was hypothesized that the metal ion is required for citrate binding. In agreement with this model, citrate binding to CitO sharply decreased when the protein was incubated with EDTA. This effect was reverted by the addition of Ni2+, and Zn2+ to a lesser extent. Structure-based site-directed mutagenesis was conducted and it was found that changes to alanine in residues Arg97 and His191 resulted in decreased binding affinities for citrate, as determined by EMSA and ITC. Further assays using lacZ fusions confirmed that these residues in CitO are involved in sensing citrate in vivo. These results indicate that the molecular modifications induced by a ligand and a metal binding in the C-terminal domain of CitO are required for optimal DNA binding activity, and consequently, transcriptional activation. PMID:26903980
1994-01-01
Elevation of cAMP can cause gene-specific inhibition of interleukin 2 (IL-2) expression. To investigate the mechanism of this effect, we have combined electrophoretic mobility shift assays and in vivo genomic footprinting to assess both the availability of putative IL-2 transcription factors in forskolin-treated cells and the functional capacity of these factors to engage their sites in vivo. All observed effects of forskolin depended upon protein kinase A, for they were blocked by introduction of a dominant negative mutant subunit of protein kinase A. In the EL4.E1 cell line, we report specific inhibitory effects of cAMP elevation both on NF-kappa B/Rel family factors binding at -200 bp, and on a novel, biochemically distinct "TGGGC" factor binding at -225 bp with respect to the IL-2 transcriptional start site. Neither NF-AT nor AP-1 binding activities are detectably inhibited in gel mobility shift assays. Elevation of cAMP inhibits NF-kappa B activity with delayed kinetics in association with a delayed inhibition of IL-2 RNA accumulation. Activation of cells in the presence of forskolin prevents the maintenance of stable protein- DNA interactions in vivo, not only at the NF-kappa B and TGGGC sites of the IL-2 enhancer, but also at the NF-AT, AP-1, and other sites. This result, and similar results in cyclosporin A-treated cells, imply that individual IL-2 transcription factors cannot stably bind their target sequences in vivo without coengagement of all other distinct factors at neighboring sites. It is proposed that nonhierarchical, cooperative enhancement of binding is a structural basis of combinatorial transcription factor action at the IL-2 locus. PMID:8113685
Ansel, Ashley; Lewis, James D; Melnick, Don J; Martins, Cristiana; Valladares-Padua, Claudio; Perez-Sweeney, Beatriz
2017-10-01
The DARC (Duffy antigen receptor for chemokines) gene encodes the DARC protein, which serves multiple roles in the immune system, as a binding site for the malarial parasites Plasmodium vivax and Plasmodium knowlesi, a promiscuous chemokine receptor and a blood group antigen. Variation in DARC may play particularly significant roles in innate immunity, immunotolerance and pathogen entry in callitrichines, such as the black lion tamarin (Leontopithecus chrysopygus). We compared amino acid sequences of DARC in the black lion tamarin (BLT) to non-human Haplorhine primates and Homo sapiens. Consistent with prior studies in other Haplorhines, we observed that the chemokine receptor experiences two opposing selection forces: (1) positive selection on the Plasmodium binding site and (2) purifying selection. We observed also that D21N, F22L, and V25L differentiated BLT from humans at a critical site for P. vivax and P. knowlesi binding. One amino acid residue, F22L, was subject to both positive selection and fixation in New World monkeys, suggesting a beneficial role as an adaptive barrier to Plasmodium entry. Unlike in humans, we observed no variation in DARC among BLTs, suggesting that the protein does not play a role in immunotolerance. In addition, lion tamarins differed from humans at the blood compatibility Fy a /Fy b antigen-binding site 44, as well as at the putative destabilizing residues A61, T68, A187, and L215, further supporting a difference in the functional role of DARC in these primates compared with humans. Further research is needed to determine whether changes in the Plasmodium and Fy a /Fy b antigen-binding sites disrupt DARC function in callitrichines. © 2017 Wiley Periodicals, Inc.
Wang, Yu-Ling; Kuo, Je-Hung; Lee, Shao-Chen; Liu, Jai-Shin; Hsieh, Yin-Cheng; Shih, Yu-Tsung; Chen, Chun-Jung; Chiu, Jeng-Jiann; Wu, Wen-Guey
2010-11-26
Cysteine-rich secretory proteins (CRISPs) have been identified as a toxin family in most animal venoms with biological functions mainly associated with the ion channel activity of cysteine-rich domain (CRD). CRISPs also bind to Zn(2+) at their N-terminal pathogenesis-related (PR-1) domain, but their function remains unknown. Interestingly, similar the Zn(2+)-binding site exists in all CRISP family, including those identified in a wide range of organisms. Here, we report that the CRISP from Naja atra (natrin) could induce expression of vascular endothelial cell adhesion molecules, i.e. intercellular adhesion molecule-1, vascular adhesion molecule-1, and E-selectin, to promote monocytic cell adhesion in a heparan sulfate (HS)- and Zn(2+)-dependent manner. Using specific inhibitors and small interfering RNAs, the activation mechanisms are shown to involve both mitogen-activated protein kinases and nuclear factor-κB. Biophysical characterization of natrin by using fluorescence, circular dichroism, and x-ray crystallographic methods further reveals the presence of two Zn(2+)-binding sites for natrin. The strong binding site is located near the putative Ser-His-Glu catalytic triad of the N-terminal domain. The weak binding site remains to be characterized, but it may modulate HS binding by enhancing its interaction with long chain HS. Our results strongly suggest that natrin may serve as an inflammatory modulator that could perturb the wound-healing process of the bitten victim by regulating adhesion molecule expression in endothelial cells. Our finding uncovers a new aspect of the biological role of CRISP family in immune response and is expected to facilitate future development of new therapeutic strategy for the envenomed victims.
Structure of the catalytic domain of the colistin resistance enzyme MCR-1
Stojanoski, Vlatko; Sankaran, Banumathi; Prasad, B. V. Venkataram; ...
2016-09-21
Due to the paucity of novel antibiotics, colistin has become a last resort antibiotic for treating multidrug resistant bacteria. Colistin acts by binding the lipid A component of lipopolysaccharides and subsequently disrupting the bacterial membrane. The recently identified plasmid-encoded MCR-1 enzyme is the first transmissible colistin resistance determinant and is a cause for concern for the spread of this resistance trait. MCR-1 is a phosphoethanolamine transferase that catalyzes the addition of phosphoethanolamine to lipid A to decrease colistin affinity. The structure of the catalytic domain of MCR-1 at 1.32 Å reveals the active site is similar to that of relatedmore » phosphoethanolamine transferases. The putative nucleophile for catalysis, threonine 285, is phosphorylated in cMCR-1 and a zinc is present at a conserved site in addition to three zincs more peripherally located in the active site. As noted for catalytic domains of other phosphoethanolamine transferases, binding sites for the lipid A and phosphatidylethanolamine substrates are not apparent in the cMCR-1 structure, suggesting that they are present in the membrane domain.« less
Molecular Basis for Differential Anion Binding and Proton Coupling in the Cl−/H+ Exchanger ClC-ec1
Jiang, Tao; Han, Wei; Maduke, Merritt; Tajkhorshid, Emad
2016-01-01
Cl−/H+ transporters of the CLC superfamily form a ubiquitous class of membrane proteins that catalyze stoichiometrically coupled exchange of Cl− and H+ across biological membranes. CLC transporters exchange H+ for halides and certain polyatomic anions, but exclude cations, F−, and larger physiological anions, such as PO43− and SO42−. Despite comparable transport rates of different anions, the H+ coupling in CLC transporters varies significantly depending on the chemical nature of the transported anion. Although the molecular mechanism of exchange remains unknown, studies on bacterial ClC-ec1 transporter revealed that Cl− binding to the central anion-binding site (Scen) is crucial for the anion-coupled H+ transport. Here, we show that Cl−, F−, NO3−, and SCN− display distinct binding coordinations at the Scen site and are hydrated in different manners. Consistent with the observation of differential bindings, ClC-ec1 exhibits markedly variable ability to support the formation of the transient water wires, which are necessary to support the connection of the two H+ transfer sites (Gluin and Gluex), in the presence of different anions. While continuous water wires are frequently observed in the presence of physiologically transported Cl−, binding of F− or NO3− leads to the formation of pseudo-water-wires that are substantially different from the wires formed with Cl−. Binding of SCN−, however, eliminates the water wires altogether. These findings provide structural details of anion binding in ClC-ec1 and reveal a putative atomic-level mechanism for the decoupling of H+ transport to the transport of anions other than Cl−. PMID:26880377
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchman, A.R.; Kimmerly, W.J.; Rine, J.
1988-01-01
Two DNA-binding factors from Saccharomyces cerevisiae have been characterized, GRFI (general regulatory factor I) and ABFI (ARS-binding factor I), that recognize specific sequences within diverse genetic elements. GRFI bound to sequences at the negative regulatory elements (silencers) of the silent mating type loci HML E and HMR E and to the upstream activating sequence (UAS) required for transcription of the MAT ..cap alpha.. genes. A putative conserved UAS located at genes involved in translation (RPG box) was also recognized by GRFI. In addition, GRFI bound with high affinity to sequences within the (C/sub 1-3/A)-repeat region at yeast telomeres. Binding sitesmore » for GRFI with the highest affinity appeared to be of the form 5'-(A/G)(A/C)ACCCAN NCA(T/C)(T/C)-3', where N is any nucleotide. ABFI-binding sites were located next to autonomously replicating sequences (ARSs) at controlling elements of the silent mating type loci HMR E, HMR I, and HML I and were associated with ARS1, ARS2, and the 2..mu..m plasmid ARS. Two tandem ABFI binding sites were found between the HIS3 and DED1 genes, several kilobase pairs from any ARS, indicating that ABFI-binding sites are not restricted to ARSs. The sequences recognized by AFBI showed partial dyad-symmetry and appeared to be variations of the consensus 5'-TATCATTNNNNACGA-3'. GRFI and ABFI were both abundant DNA-binding factors and did not appear to be encoded by the SIR genes, whose product are required for repression of the silent mating type loci. Together, these results indicate that both GRFI and ABFI play multiple roles within the cell.« less
The Leptospiral Antigen Lp49 is a Two-Domain Protein with Putative Protein Binding Function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira Giuseppe,P.; Oliveira Neves, F.; Nascimento, A.
2008-01-01
Pathogenic Leptospira is the etiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. Currently available vaccines have limited effectiveness and therapeutic interventions are complicated by the difficulty in making an early diagnosis of leptospirosis. The genome of Leptospira interrogans was recently sequenced and comparative genomic analysis contributed to the identification of surface antigens, potential candidates for development of new vaccines and serodiagnosis. Lp49 is a membrane-associated protein recognized by antibodies present in sera from early and convalescent phases of leptospirosis patients. Its crystal structure was determined by single-wavelength anomalous diffraction using selenomethionine-labelled crystals and refined at 2.0 Angstromsmore » resolution. Lp49 is composed of two domains and belongs to the all-beta-proteins class. The N-terminal domain folds in an immunoglobulin-like beta-sandwich structure, whereas the C-terminal domain presents a seven-bladed beta-propeller fold. Structural analysis of Lp49 indicates putative protein-protein binding sites, suggesting a role in Leptospira-host interaction. This is the first crystal structure of a leptospiral antigen described to date.« less
Broillet, M C; Firestein, S
1996-02-01
The activation of a cyclic nucleotide-gated channel is the final step in sensory transduction in olfaction. Normally, this channel is opened by the intracellular cyclic nucleotide second messenger cAMP or cGMP. However, in single channel recordings we found that donors of nitric oxide, a putative intercellular messenger, could directly activate the native olfactory neuron channel. Its action was independent of the presence of the normal ligand and did not involve the cyclic nucleotide binding site, suggesting an alternate site on the molecule that is critical in channel gating. The biochemical pathway appears to utilize nitric oxide in one of its alternate redox states, the nitrosonium ion, transnitrosylating a free sulfhydryl group belonging to a cysteine residue tentatively identified as being in the region linking the S6 transmembrane domain to the ligand binding domain.
Picornavirus Modification of a Host mRNA Decay Protein
Rozovics, Janet M.; Chase, Amanda J.; Cathcart, Andrea L.; Chou, Wayne; Gershon, Paul D.; Palusa, Saiprasad; Wilusz, Jeffrey; Semler, Bert L.
2012-01-01
ABSTRACT Due to the limited coding capacity of picornavirus genomic RNAs, host RNA binding proteins play essential roles during viral translation and RNA replication. Here we describe experiments suggesting that AUF1, a host RNA binding protein involved in mRNA decay, plays a role in the infectious cycle of picornaviruses such as poliovirus and human rhinovirus. We observed cleavage of AUF1 during poliovirus or human rhinovirus infection, as well as interaction of this protein with the 5′ noncoding regions of these viral genomes. Additionally, the picornavirus proteinase 3CD, encoded by poliovirus or human rhinovirus genomic RNAs, was shown to cleave all four isoforms of recombinant AUF1 at a specific N-terminal site in vitro. Finally, endogenous AUF1 was found to relocalize from the nucleus to the cytoplasm in poliovirus-infected HeLa cells to sites adjacent to (but distinct from) putative viral RNA replication complexes. PMID:23131833
GBshape: a genome browser database for DNA shape annotations
Chiu, Tsu-Pei; Yang, Lin; Zhou, Tianyin; Main, Bradley J.; Parker, Stephen C.J.; Nuzhdin, Sergey V.; Tullius, Thomas D.; Rohs, Remo
2015-01-01
Many regulatory mechanisms require a high degree of specificity in protein-DNA binding. Nucleotide sequence does not provide an answer to the question of why a protein binds only to a small subset of the many putative binding sites in the genome that share the same core motif. Whereas higher-order effects, such as chromatin accessibility, cooperativity and cofactors, have been described, DNA shape recently gained attention as another feature that fine-tunes the DNA binding specificities of some transcription factor families. Our Genome Browser for DNA shape annotations (GBshape; freely available at http://rohslab.cmb.usc.edu/GBshape/) provides minor groove width, propeller twist, roll, helix twist and hydroxyl radical cleavage predictions for the entire genomes of 94 organisms. Additional genomes can easily be added using the GBshape framework. GBshape can be used to visualize DNA shape annotations qualitatively in a genome browser track format, and to download quantitative values of DNA shape features as a function of genomic position at nucleotide resolution. As biological applications, we illustrate the periodicity of DNA shape features that are present in nucleosome-occupied sequences from human, fly and worm, and we demonstrate structural similarities between transcription start sites in the genomes of four Drosophila species. PMID:25326329
Fox, Ellen M.; Gardiner, Donald M.; Keller, Nancy P.; Howlett, Barbara J.
2008-01-01
A gene, sirZ, encoding a Zn(II)2Cys6 DNA binding protein is present in a cluster of genes responsible for the biosynthesis of the epipolythiodioxopiperazine (ETP) toxin, sirodesmin PL in the ascomycete plant pathogen, Leptosphaeria maculans. RNA-mediated silencing of sirZ gives rise to transformants that produce only residual amounts of sirodesmin PL and display a decrease in the transcription of several sirodesmin PL biosynthetic genes. This indicates that SirZ is a major regulator of this gene cluster. Proteins similar to SirZ are encoded in the gliotoxin biosynthetic gene cluster of Aspergillus fumigatus (gliZ) and in an ETP-like cluster in Penicillium lilacinoechinulatum (PlgliZ). Despite its high level of sequence similarity to gliZ, PlgliZ is unable to complement the gliotoxin-deficiency of a mutant of gliZ in A. fumigatus. Putative binding sites for these regulatory proteins in the promoters of genes in these clusters were predicted using bioinformatic analysis. These sites are similar to those commonly bound by other proteins with Zn(II)2Cys6 DNA binding domains. PMID:18023597
Ligand Entry and Exit Pathways in the β2-adrenergic Receptor
Wang, Ting; Duan, Yong
2009-01-01
The recently determined crystal structure of the human β2-adrenergic (β2AR) G-protein coupled receptor provides an excellent structural basis for exploring β2AR -ligand binding and dissociation process. Based on this crystal structure, we simulated ligand exit from the β2AR receptor by applying the random acceleration molecular dynamics (RAMD) simulation method. The simulation results showed that the extracellular opening on the receptor surface was the most frequently observed egress point (referred to as pathway A) and a few other pathways through inter-helical clefts were also observed with significantly lower frequencies. In the egress trajectories along pathway A, the D192-K305 salt bridge between the extracellular loop 2 (ECL2) and the apex of the transmembrane helix 7 (TM7) was exclusively broken. The spatial occupancy maps of the ligand computed from the 100 RAMD simulation trajectories indicated that the receptor-ligand interactions that restrained the ligand in the binding pocket were the major resistance encountered by the ligand during exit and no second barrier was notable. We next performed RAMD simulations by using a putative ligand-free conformation of the receptor as input structure. This conformation was obtained in a standard MD simulation in the absence of the ligand and it differed from the ligand-bound conformation in a hydrophobic patch bridging ECL2 and TM7 due to the rotation of F193 of ECL2. Results from the RAMD simulations with this putative ligand-free conformation suggest that the cleft formed by the hydrophobic bridge, TM2, TM3 and TM7 on the extracellular surface likely serves as a more specific ligand-entry site and the ECL2-TM7 hydrophobic junction can be partially interrupted upon the entry of ligand that pushes F193 to rotate, resulting in a conformation as observed in the ligand-bound crystal structure. These results may help design β2AR-targeting drugs with improved efficacy as well as understand the receptor subtype-selectivity of ligand binding in the β family of the adrenergic receptors that share almost identical ligand-binding pockets but show notable amino acid sequence divergence in the putative ligand-entry site, including ECL2 and the extracellular end of TM7. PMID:19665031
Chang, C P; Hüsler, T; Zhao, J; Wiedmer, T; Sims, P J
1994-10-21
The CD59 antigen is a plasma membrane glycoprotein that serves as an inhibitor of the C5b-9 complex of complement. This inhibitory activity appears related to the capacity of CD59 to bind with high affinity to sites that are nascently exposed in the alpha-chain subunit of human C8, as well as within the C9b domain (amino acid residues 245-538) of human C9, during assembly of the C5b-9 complex on the target membrane (Ninomiya, H., and Sims, P. J. (1992) J. Biol. Chem. 267, 13675-13680). The CD59 binding site in C9 was first investigated by N-terminal sequencing of CD59-binding peptides generated by limited digest of the isolated C9b domain. These experiments revealed a 17-kDa fragment (starting at C9 residue Thr-320) that retained affinity for CD59, suggesting the possibility for localizing the CD59 binding site by mapping with small C9-derived peptides. Peptides spanning the entire C9b sequence were expressed in Escherichia coli and then probed with CD59. CD59 bound specifically to all peptides starting N-terminal to C9 residue 359 with C termini extending beyond residue 411. Little to no CD59 binding was observed for various C9-derived peptides that started C-terminal to residue 359 or that were truncated N-terminal to residue 411. Affinity-purified antibody against C9 residues 320-411 inhibited CD59 binding to C9 by > 50% and completely inhibited its binding to the isolated C9b domain. Little to no specific binding of CD59 was detected for peptides restricted to the putative hinge domain within C9b (residues 245-271). These results indicate that a CD59 binding site is located between residues 320 and 411 of the C9 polypeptide and suggest that the affinity of this site is principally determined by residues 359-411.
Structural Basis for Sialoglycan Binding by the Streptococcus sanguinis SrpA Adhesin.
Bensing, Barbara A; Loukachevitch, Lioudmila V; McCulloch, Kathryn M; Yu, Hai; Vann, Kendra R; Wawrzak, Zdzislaw; Anderson, Spencer; Chen, Xi; Sullam, Paul M; Iverson, T M
2016-04-01
Streptococcus sanguinisis a leading cause of infective endocarditis, a life-threatening infection of the cardiovascular system. An important interaction in the pathogenesis of infective endocarditis is attachment of the organisms to host platelets.S. sanguinisexpresses a serine-rich repeat adhesin, SrpA, similar in sequence to platelet-binding adhesins associated with increased virulence in this disease. In this study, we determined the first crystal structure of the putative binding region of SrpA (SrpABR) both unliganded and in complex with a synthetic disaccharide ligand at 1.8 and 2.0 Å resolution, respectively. We identified a conserved Thr-Arg motif that orients the sialic acid moiety and is required for binding to platelet monolayers. Furthermore, we propose that sequence insertions in closely related family members contribute to the modulation of structural and functional properties, including the quaternary structure, the tertiary structure, and the ligand-binding site. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Aurora Kinase B, a novel regulator of TERF1 binding and telomeric integrity
Chan, Foong Lyn; Vinod, Benjamin; Novy, Karel; Schittenhelm, Ralf B.; Huang, Cheng; Udugama, Maheshi; Nunez-Iglesias, Juan; Lin, Jane I.; Hii, Linda; Chan, Julie; Pickett, Hilda A.; Daly, Roger J.
2017-01-01
Abstract AURKB (Aurora Kinase B) is a serine/threonine kinase better known for its role at the mitotic kinetochore during chromosome segregation. Here, we demonstrate that AURKB localizes to the telomeres in mouse embryonic stem cells, where it interacts with the essential telomere protein TERF1. Loss of AURKB function affects TERF1 telomere binding and results in aberrant telomere structure. In vitro kinase experiments successfully identified Serine 404 on TERF1 as a putative AURKB target site. Importantly, in vivo overexpression of S404-TERF1 mutants results in fragile telomere formation. These findings demonstrate that AURKB is an important regulator of telomere structural integrity. PMID:29040668
Andera, L; Spangler, C J; Galeone, A; Mayol, L; Geiduschek, E P
1994-02-11
TF1, a homodimeric DNA-binding and -bending protein with a preference for hydroxymethyluracil-containing DNA is the Bacillus subtilis-encoded homolog of the bacterial HU proteins and of the E. coli integration host factor. A temperature-sensitive mutation at amino acid 25 of TF1 (L25-->A) and two intragenic second site revertants at amino acids 15 (E15-->G) and 32 (L32-->I) were previously identified and their effects on virus development were examined. The DNA-binding properties of these proteins and the thermal stability of their secondary structures have now been analyzed. Amino acids 15 and 32 are far removed from the putative DNA-binding domains of TF1 but changes there exert striking effects on DNA affinity that correlate with effects on structure. The double mutant protein TF1-G15I32 binds to a preferred site in hydroxymethyluracil-containing DNA 40 times more tightly, denatures at higher temperature (delta tm = 21 degrees C), and also exchanges subunits much more slowly than does the wild-type protein. The L25-->A mutation makes TF1 secondary structure and DNA-binding highly salt concentration-dependent. The E15-->G mutation partly suppresses this effect: secondary structure of TF1-A25G15 is restored at 21 degrees C by 1 M NaCl or, at low NaCl concentration, by binding to DNA.
Braunger, J; Schleithoff, L; Schulz, A S; Kessler, H; Lammers, R; Ullrich, A; Bartram, C R; Janssen, J W
1997-06-05
Ufo/Axl belongs to a new family of receptor tyrosine kinases with an extracellular structure similar to that of neural cell adhesion molecules. In order to elucidate intracellular signaling, the cytoplasmic moiety of Ufo/Axl was used to screen an expression library according to the CORT (cloning of receptor targets) method. Three putative Ufo substrates were identified: phospholipase Cgamma1 (PLCgamma), as well as p85alpha and p85beta subunits of phosphatidylinositol 3'-kinase (PI3-kinase). Subsequently, chimeric EGFR/Ufo receptors consisting of the extracellular domains of the epidermal growth factor receptor (EGFR) and the transmembrane and intracellular moiety of Ufo were engineered. Using different far-Western blot analyses and coimmunoprecipitation assays, receptor binding of PLCgamma and p85 proteins as well as GRB2, c-src and lck was examined in vitro and in vivo. Competitive inhibition of substrate binding and mutagenesis experiments with EGFR/Ufo constructs revealed C-terminal tyrosine 821 (EILpYVNMDEG) as a docking site for multiple effectors, namely PLCgamma, p85 proteins, GRB2, c-src and lck. Tyrosine 779 (DGLpYALMSRC) demonstrated an additional, but lower binding affinity for the p85 proteins in vitro. In addition, binding of PLCgamma occurred through tyrosine 866 (AGRpYVLCPST). Moreover, our in vivo data indicate that further direct or indirect binding sites for PLCgamma, GRB2, c-src and lck on the human Ufo receptor may exist.
Tuupanen, Sari; Yan, Jian; Turunen, Mikko; Gylfe, Alexandra E; Kaasinen, Eevi; Li, Li; Eng, Charis; Culver, Daniel A; Kalady, Matthew F; Pennison, Michael J; Pasche, Boris; Manne, Upender; de la Chapelle, Albert; Hampel, Heather; Henderson, Brian E; Marchand, Loic Le; Hautaniemi, Sampsa; Askhtorab, Hassan; Smoot, Duane; Sandler, Robert S; Keku, Temitope; Kupfer, Sonia S; Ellis, Nathan A; Haiman, Christopher A; Taipale, Jussi; Aaltonen, Lauri A
2012-01-01
Recent genome-wide association studies have identified multiple regions at 8q24 that confer susceptibility to many cancers. In our previous work, we showed that the colorectal cancer (CRC) risk variant rs6983267 at 8q24 resides within a TCF4 binding site at the MYC-335 enhancer, with the risk allele G having a stronger binding capacity and Wnt responsiveness. Here, we searched for other potential functional variants within MYC-335. Genetic variation within MYC-335 was determined in samples from individuals of European, African, and Asian descent, with emphasis on variants in putative transcription factor binding sites. A 2-bp GA deletion rs67491583 was found to affect a growth factor independent (GFI) binding site and was present only in individuals with African ancestry. Chromatin immunoprecipitation performed in heterozygous cells showed that the GA deletion had an ability to reduce binding of the transcriptional repressors GFI1 and GFI1b. Screening of 1,027 African American colorectal cancer cases and 1,773 healthy controls did not reveal evidence for association (odds ratio: 1.17, 95% confidence interval: 0.97-1.41, P = 0.095). In this study, rs67491583 was identified as another functional variant in the CRC-associated enhancer MYC-335, but further studies are needed to establish the role of rs67491583 in the colorectal cancer predisposition of African Americans. Copyright © 2012 Elsevier Inc. All rights reserved.
Adams, C; Dowling, D N; O'Sullivan, D J; O'Gara, F
1994-06-03
An iron-regulated gene, pbsC, required for siderophore production in fluorescent Pseudomonas sp. strain M114 has been identified. A kanamycin-resistance cassette was inserted at specific restriction sites within a 7 kb genomic fragment of M114 DNA and by marker exchange two siderophore-negative mutants, designated M1 and M2, were isolated. The nucleotide sequence of approximately 4 kb of the region flanking the insertion sites was determined and a large open reading frame (ORF) extending for 2409 bp was identified. This gene was designated pbsC (pseudobactin synthesis C) and its putative protein product termed PbsC. PbsC was found to be homologous to a family of enzymes involved in the biosynthesis of secondary metabolites, including EntF of Escherichia coli. These enzymes are believed to act via ATP-dependent binding of AMP to their substrate. Several areas of high sequence homology between these proteins and PbsC were observed, including a conserved AMP-binding domain. The expression of pbsC is iron-regulated as revealed when a DNA fragment containing the upstream region was cloned in a promoter probe vector and conjugated into the wild-type strain, M114. The nucleotide sequence upstream of the putative translational start site contains a region homologous to previously defined -16 to -25 sequences of iron-regulated genes but did not contain an iron-box consensus sequence. It was noted that inactivation of the pbsC gene also affected other iron-regulated phenotypes of Pseudomonas M114.
Peluso, John J; Romak, Jonathan; Liu, Xiufang
2008-02-01
Progesterone (P4) receptor membrane component-1 (PGRMC1) and its binding partner, plasminogen activator inhibitor 1 RNA binding protein (PAIRBP1) are thought to form a complex that functions as membrane receptor for P4. The present investigations confirm PGRMC1's role in this membrane receptor complex by demonstrating that depleting PGMRC1 with PGRMC1 small interfering RNA results in a 60% decline in [(3)H]P4 binding and the loss of P4's antiapoptotic action. Studies conducted on partially purified GFP-PGRMC1 fusion protein indicate that [(3)H]P4 specifically binds to PGRMC1 at a single site with an apparent K(d) of about 35 nm. In addition, experiments using various deletion mutations reveal that the entire PGRMC1 molecule is required for maximal [(3)H]P4 binding and P4 responsiveness. Analysis of the binding data also suggests that the P4 binding site is within a segment of PGRMC1 that is composed of the transmembrane domain and the initial segment of the C terminus. Interestingly, PAIRBP1 appears to bind to the C terminus between amino acids 70-130, which is distal to the putative P4 binding site. Taken together, these data provide compelling evidence that PGRMC1 is the P4 binding protein that mediates P4's antiapoptotic action. Moreover, the deletion mutation studies indicate that each domain of PGRMC1 plays an essential role in modulating PGRMC1's capacity to both bind and respond to P4. Additional studies are required to more precisely delineate the role of each PGRMC1 domain in transducing P4's antiapoptotic action.
Identification and removal of low-complexity sites in allele-specific analysis of ChIP-seq data.
Waszak, Sebastian M; Kilpinen, Helena; Gschwind, Andreas R; Orioli, Andrea; Raghav, Sunil K; Witwicki, Robert M; Migliavacca, Eugenia; Yurovsky, Alisa; Lappalainen, Tuuli; Hernandez, Nouria; Reymond, Alexandre; Dermitzakis, Emmanouil T; Deplancke, Bart
2014-01-15
High-throughput sequencing technologies enable the genome-wide analysis of the impact of genetic variation on molecular phenotypes at unprecedented resolution. However, although powerful, these technologies can also introduce unexpected artifacts. We investigated the impact of library amplification bias on the identification of allele-specific (AS) molecular events from high-throughput sequencing data derived from chromatin immunoprecipitation assays (ChIP-seq). Putative AS DNA binding activity for RNA polymerase II was determined using ChIP-seq data derived from lymphoblastoid cell lines of two parent-daughter trios. We found that, at high-sequencing depth, many significant AS binding sites suffered from an amplification bias, as evidenced by a larger number of clonal reads representing one of the two alleles. To alleviate this bias, we devised an amplification bias detection strategy, which filters out sites with low read complexity and sites featuring a significant excess of clonal reads. This method will be useful for AS analyses involving ChIP-seq and other functional sequencing assays. The R package abs filter for library clonality simulations and detection of amplification-biased sites is available from http://updepla1srv1.epfl.ch/waszaks/absfilter
Small molecule correctors of F508del-CFTR discovered by structure-based virtual screening
NASA Astrophysics Data System (ADS)
Kalid, Ori; Mense, Martin; Fischman, Sharon; Shitrit, Alina; Bihler, Hermann; Ben-Zeev, Efrat; Schutz, Nili; Pedemonte, Nicoletta; Thomas, Philip J.; Bridges, Robert J.; Wetmore, Diana R.; Marantz, Yael; Senderowitz, Hanoch
2010-12-01
Folding correctors of F508del-CFTR were discovered by in silico structure-based screening utilizing homology models of CFTR. The intracellular segment of CFTR was modeled and three cavities were identified at inter-domain interfaces: (1) Interface between the two Nucleotide Binding Domains (NBDs); (2) Interface between NBD1 and Intracellular Loop (ICL) 4, in the region of the F508 deletion; (3) multi-domain interface between NBD1:2:ICL1:2:4. We hypothesized that compounds binding at these interfaces may improve the stability of the protein, potentially affecting the folding yield or surface stability. In silico structure-based screening was performed at the putative binding-sites and a total of 496 candidate compounds from all three sites were tested in functional assays. A total of 15 compounds, representing diverse chemotypes, were identified as F508del folding correctors. This corresponds to a 3% hit rate, tenfold higher than hit rates obtained in corresponding high-throughput screening campaigns. The same binding sites also yielded potentiators and, most notably, compounds with a dual corrector-potentiator activity (dual-acting). Compounds harboring both activity types may prove to be better leads for the development of CF therapeutics than either pure correctors or pure potentiators. To the best of our knowledge this is the first report of structure-based discovery of CFTR modulators.
Sivakamavalli, Jeyachandran; Tripathi, Sunil Kumar; Singh, Sanjeev Kumar; Vaseeharan, Baskaralingam
2015-01-01
Lipopolysaccharide and β-1,3 glucan-binding protein (LGBP) is a family of pattern-recognition transmembrane proteins (PRPs) which plays a vital role in the immune mechanism of crustaceans in adverse conditions. Fenneropenaeus indicus LGBP-deduced amino acid has conserved potential recognition motif for β-1,3 linkages of polysaccharides and putative RGD (Arg-Gly-Asp) cell adhesion sites for the activation of innate defense mechanism. In order to understand the stimulating activity of β-1,3 glucan (β-glucan) and its interaction with LGBP, a 3D model of LGBP is generated. Molecular docking is performed with this model, and the results indicate Arg71 with strong hydrogen bond from RGD domain of LGBP. Moreover, from the docking studies, we also suggest that Arg34, Lys68, Val135, and Ala146 in LGBP are important amino acid residues in binding as they have strong bonding interaction in the active site of LGBP. In our in vitro studies, yeast agglutination results suggest that shrimp F. indicus LGBP possesses sugar binding and recognition sites in its structure, which is responsible for agglutination reaction. Our results were synchronized with the already reported evidence both in vivo and in vitro experiments. This investigation may be valuable for further experimental investigation in the synthesis of novel immunomodulator.
Streptococcus pneumonia YlxR at 1.35 A shows a putative new fold.
Osipiuk, J; Górnicki, P; Maj, L; Dementieva, I; Laskowski, R; Joachimiak, A
2001-11-01
The structure of the YlxR protein of unknown function from Streptococcus pneumonia was determined to 1.35 A. YlxR is expressed from the nusA/infB operon in bacteria and belongs to a small protein family (COG2740) that shares a conserved sequence motif GRGA(Y/W). The family shows no significant amino-acid sequence similarity with other proteins. Three-wavelength diffraction MAD data were collected to 1.7 A from orthorhombic crystals using synchrotron radiation and the structure was determined using a semi-automated approach. The YlxR structure resembles a two-layer alpha/beta sandwich with the overall shape of a cylinder and shows no structural homology to proteins of known structure. Structural analysis revealed that the YlxR structure represents a new protein fold that belongs to the alpha-beta plait superfamily. The distribution of the electrostatic surface potential shows a large positively charged patch on one side of the protein, a feature often found in nucleic acid-binding proteins. Three sulfate ions bind to this positively charged surface. Analysis of potential binding sites uncovered several substantial clefts, with the largest spanning 3/4 of the protein. A similar distribution of binding sites and a large sharply bent cleft are observed in RNA-binding proteins that are unrelated in sequence and structure. It is proposed that YlxR is an RNA-binding protein.
From reads to regions: a Bioconductor workflow to detect differential binding in ChIP-seq data
Lun, Aaron T. L.; Smyth, Gordon K.
2016-01-01
Chromatin immunoprecipitation with massively parallel sequencing (ChIP-seq) is widely used to identify the genomic binding sites for protein of interest. Most conventional approaches to ChIP-seq data analysis involve the detection of the absolute presence (or absence) of a binding site. However, an alternative strategy is to identify changes in the binding intensity between two biological conditions, i.e., differential binding (DB). This may yield more relevant results than conventional analyses, as changes in binding can be associated with the biological difference being investigated. The aim of this article is to facilitate the implementation of DB analyses, by comprehensively describing a computational workflow for the detection of DB regions from ChIP-seq data. The workflow is based primarily on R software packages from the open-source Bioconductor project and covers all steps of the analysis pipeline, from alignment of read sequences to interpretation and visualization of putative DB regions. In particular, detection of DB regions will be conducted using the counts for sliding windows from the csaw package, with statistical modelling performed using methods in the edgeR package. Analyses will be demonstrated on real histone mark and transcription factor data sets. This will provide readers with practical usage examples that can be applied in their own studies. PMID:26834993
Cueno, Marni E; Imai, Kenichi; Shimizu, Kazufumi; Ochiai, Kuniyasu
2013-07-01
Influenza hemagglutinin (HA) consists of a fibrous globular stem (HA2) inserted into the viral membrane supporting a globular head (HA1). HA1 receptor-binding has been hypothesized to be structurally correlated to the HA2 B-loop, however, this was never fully understood. Here, we elucidated the structural relationship between the HA2 B-loop and the HA1 receptor-binding site (RBS). Throughout this study, we analyzed 2486 H1N1 HA homology models obtained from human, swine and avian strains during 1976-2012. Quality of all homology models were verified before further analyses. We established that amino acid residue 882 is putatively strain-conserved and differs in the human (K882), swine (H882) and avian (N882) strains. Moreover, we observed that the amino acid at residue 882 and, similarly, its orientation has the potential to influence the HA1 RBS diameter measurements which we hypothesize may consequentially affect influenza H1N1 viral infectivity, immune escape, transmissibility, and evolution. Copyright © 2013 Elsevier Inc. All rights reserved.
Exploring the recognized bio-mimicry materials for gas sensing.
Wu, T Z; Lo, Y R; Chan, E C
2001-12-01
This study was undertaken to synthesize peptides that are partially similar to the binding sites of human olfactory receptor protein. First, a putative 3-D model structure of human olfactory receptor protein (P30953) was modeled using a molecular simulation method. The computer docking simulation was then performed to determine the most plausible binding sites between the model structure and target gases, trimethylamine, ammonia, acetic acid, and o-xylene. According to the simulation result, a series of polypeptide sequences, horp61 for TMA, horp103 for o-xylene, horp109 for ammonia, and horp193 for acetic acid as recognized molecules were designed for gas sensing purposes. Preparing these peptides as corresponding gas sensing probes, the results showed a high relative sensitivity response of 6.7 for TMA (probe horp61), 5.1 for o-xylene (probe horp103), 11 for ammonia (probe horp109), and 28 for acetic acid (probe horp193), respectively. These results indicate that peptide mimicking of binding domain on olfactory receptor opens a new window and offers a novel strategy for the further development of recognized materials for gas sensing.
Dick, Gregory M
2002-01-01
Oestrogen and tamoxifen activate large conductance Ca2+-activated K+ (BKCa) channels in smooth muscle through a non-genomic mechanism that depends on the regulatory β1 subunit and an extracellular binding site. It is unknown whether a ‘pure' anti-oestrogen such as ICI 182,780 (Faslodex™), that has no known oestrogenic properties, would have any effect on BKCa channels. Using single channel patch clamp techniques on canine colonic myocytes, the hypothesis that ICI 182,780 would activate BKCa channels was tested. ICI 182,780 increased the open probability of BKCa channels in inside-out patches with an EC50 of 1 μM. These data suggest that molecules with the ability to bind nuclear oestrogen receptors, regardless of oestrogenic or anti-oestrogenic nature, activate BKCa channels through this nongenomic, membrane-delimited mechanism. The identity and characteristics of this putative binding site remain unclear; however, it has pharmacological similarity to oestrogen receptors α and β, as ICI 182,780 interacts with it. PMID:12145095
Miller, Myrna M; Jarosinski, Keith W; Schat, Karel A
2008-12-01
Expression of enhanced green fluorescent protein (EGFP) under control of the promoter-enhancer of chicken infectious anemia virus (CAV) is increased in an oestrogen receptor-enhanced cell line when treated with oestrogen and the promoter-enhancer binds unidentified proteins that recognize a consensus oestrogen response element (ERE). Co-transfection assays with the CAV promoter and the nuclear receptor chicken ovalbumin upstream promoter transcription factor 1 (COUP-TF1) showed that expression of EGFP was decreased by 50 to 60 % in DF-1 and LMH cells. The CAV promoter that included sequences at and downstream of the transcription start point had less expression than a short promoter construct. Mutation of a putative E box at this site restored expression levels. Electromobility shift assays showed that the transcription regulator delta-EF1 (deltaEF1) binds to this E box region. These findings indicate that the CAV promoter activity can be affected directly or indirectly by COUP-TF1 and deltaEF1.
IspE Inhibitors Identified by a Combination of In Silico and In Vitro High-Throughput Screening
Tidten-Luksch, Naomi; Grimaldi, Raffaella; Torrie, Leah S.; Frearson, Julie A.; Hunter, William N.; Brenk, Ruth
2012-01-01
CDP-ME kinase (IspE) contributes to the non-mevalonate or deoxy-xylulose phosphate (DOXP) pathway for isoprenoid precursor biosynthesis found in many species of bacteria and apicomplexan parasites. IspE has been shown to be essential by genetic methods and since it is absent from humans it constitutes a promising target for antimicrobial drug development. Using in silico screening directed against the substrate binding site and in vitro high-throughput screening directed against both, the substrate and co-factor binding sites, non-substrate-like IspE inhibitors have been discovered and structure-activity relationships were derived. The best inhibitors in each series have high ligand efficiencies and favourable physico-chemical properties rendering them promising starting points for drug discovery. Putative binding modes of the ligands were suggested which are consistent with established structure-activity relationships. The applied screening methods were complementary in discovering hit compounds, and a comparison of both approaches highlights their strengths and weaknesses. It is noteworthy that compounds identified by virtual screening methods provided the controls for the biochemical screens. PMID:22563402
2014-01-01
Background Protein coding genes account for only about 2% of the human genome, whereas the vast majority of transcripts are non-coding RNAs including long non-coding RNAs. A growing volume of literature has proposed that lncRNAs are important players in cancer. HOTAIR was previously shown to be an oncogene and negative prognostic factor in a variety of cancers. However, the factors that contribute to its upregulation and the interaction between HOTAIR and miRNAs are largely unknown. Methods A computational screen of HOTAIR promoter was conducted to search for transcription-factor-binding sites. HOTAIR promoter activities were examined by luciferase reporter assay. The function of the c-Myc binding site in the HOTAIR promoter region was tested by a promoter assay with nucleotide substitutions in the putative E-box. The association of c-Myc with the HOTAIR promoter in vivo was confirmed by chromatin immunoprecipitation assay and Electrophoretic mobility shift assay. A search for miRNAs with complementary base paring with HOTAIR was performed utilizing online software program. Gain and loss of function approaches were employed to investigate the expression changes of HOTAIR or miRNA-130a. The expression levels of HOTAIR, c-Myc and miRNA-130a were examined in 65 matched pairs of gallbladder cancer tissues. The effects of HOTAIR and miRNA-130a on gallbladder cancer cell invasion and proliferation was tested using in vitro cell invasion and flow cytometric assays. Results We demonstrate that HOTAIR is a direct target of c-Myc through interaction with putative c-Myc target response element (RE) in the upstream region of HOTAIR in gallbladder cancer cells. A positive correlation between c-Myc and HOTAIR mRNA levels was observed in gallbladder cancer tissues. We predicted that HOTAIR harbors a miRNA-130a binding site. Our data showed that this binding site is vital for the regulation of miRNA-130a by HOTAIR. Moreover, a negative correlation between HOTAIR and miRNA-130a was observed in gallbladder cancer tissues. Finally, we demonstrate that the oncogenic activity of HOTAIR is in part through its negative regulation of miRNA-130a. Conclusion Together, these results suggest that HOTAIR is a c-Myc-activated driver of malignancy, which acts in part through repression of miRNA-130a. PMID:24953832
Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project.
Gerstein, Mark B; Lu, Zhi John; Van Nostrand, Eric L; Cheng, Chao; Arshinoff, Bradley I; Liu, Tao; Yip, Kevin Y; Robilotto, Rebecca; Rechtsteiner, Andreas; Ikegami, Kohta; Alves, Pedro; Chateigner, Aurelien; Perry, Marc; Morris, Mitzi; Auerbach, Raymond K; Feng, Xin; Leng, Jing; Vielle, Anne; Niu, Wei; Rhrissorrakrai, Kahn; Agarwal, Ashish; Alexander, Roger P; Barber, Galt; Brdlik, Cathleen M; Brennan, Jennifer; Brouillet, Jeremy Jean; Carr, Adrian; Cheung, Ming-Sin; Clawson, Hiram; Contrino, Sergio; Dannenberg, Luke O; Dernburg, Abby F; Desai, Arshad; Dick, Lindsay; Dosé, Andréa C; Du, Jiang; Egelhofer, Thea; Ercan, Sevinc; Euskirchen, Ghia; Ewing, Brent; Feingold, Elise A; Gassmann, Reto; Good, Peter J; Green, Phil; Gullier, Francois; Gutwein, Michelle; Guyer, Mark S; Habegger, Lukas; Han, Ting; Henikoff, Jorja G; Henz, Stefan R; Hinrichs, Angie; Holster, Heather; Hyman, Tony; Iniguez, A Leo; Janette, Judith; Jensen, Morten; Kato, Masaomi; Kent, W James; Kephart, Ellen; Khivansara, Vishal; Khurana, Ekta; Kim, John K; Kolasinska-Zwierz, Paulina; Lai, Eric C; Latorre, Isabel; Leahey, Amber; Lewis, Suzanna; Lloyd, Paul; Lochovsky, Lucas; Lowdon, Rebecca F; Lubling, Yaniv; Lyne, Rachel; MacCoss, Michael; Mackowiak, Sebastian D; Mangone, Marco; McKay, Sheldon; Mecenas, Desirea; Merrihew, Gennifer; Miller, David M; Muroyama, Andrew; Murray, John I; Ooi, Siew-Loon; Pham, Hoang; Phippen, Taryn; Preston, Elicia A; Rajewsky, Nikolaus; Rätsch, Gunnar; Rosenbaum, Heidi; Rozowsky, Joel; Rutherford, Kim; Ruzanov, Peter; Sarov, Mihail; Sasidharan, Rajkumar; Sboner, Andrea; Scheid, Paul; Segal, Eran; Shin, Hyunjin; Shou, Chong; Slack, Frank J; Slightam, Cindie; Smith, Richard; Spencer, William C; Stinson, E O; Taing, Scott; Takasaki, Teruaki; Vafeados, Dionne; Voronina, Ksenia; Wang, Guilin; Washington, Nicole L; Whittle, Christina M; Wu, Beijing; Yan, Koon-Kiu; Zeller, Georg; Zha, Zheng; Zhong, Mei; Zhou, Xingliang; Ahringer, Julie; Strome, Susan; Gunsalus, Kristin C; Micklem, Gos; Liu, X Shirley; Reinke, Valerie; Kim, Stuart K; Hillier, LaDeana W; Henikoff, Steven; Piano, Fabio; Snyder, Michael; Stein, Lincoln; Lieb, Jason D; Waterston, Robert H
2010-12-24
We systematically generated large-scale data sets to improve genome annotation for the nematode Caenorhabditis elegans, a key model organism. These data sets include transcriptome profiling across a developmental time course, genome-wide identification of transcription factor-binding sites, and maps of chromatin organization. From this, we created more complete and accurate gene models, including alternative splice forms and candidate noncoding RNAs. We constructed hierarchical networks of transcription factor-binding and microRNA interactions and discovered chromosomal locations bound by an unusually large number of transcription factors. Different patterns of chromatin composition and histone modification were revealed between chromosome arms and centers, with similarly prominent differences between autosomes and the X chromosome. Integrating data types, we built statistical models relating chromatin, transcription factor binding, and gene expression. Overall, our analyses ascribed putative functions to most of the conserved genome.
Search for Partner Proteins of A. thaliana Immunophilins Involved in the Control of Plant Immunity.
Abdeeva, Inna A; Pogorelko, Gennady V; Maloshenok, Liliya G; Mokrykova, Maria V; Fursova, Oksana V; Bruskin, Sergey A
2018-04-19
The involvement of plant immunophilins in multiple essential processes such as development, various ways of adapting to biotic and abiotic stresses, and photosynthesis has already been established. Previously, research has demonstrated the involvement of three immunophilin genes ( AtCYP19-1/ROC3 , AtFKBP65/ROF2 , and AtCYP57 ) in the control of plant response to invasion by various pathogens. Current research attempts to identify host target proteins for each of the selected immunophilins. As a result, candidate interactors have been determined and confirmed using a yeast 2-hybrid (Y2H) system for protein⁻protein interaction assays. The generation of mutant isoforms of ROC3 and AtCYP57 harboring substituted amino acids in the in silico-predicted active sites became essential to achieving significant binding to its target partners. This data shows that ROF2 targets calcium-dependent lipid-binding domain-containing protein (At1g70790; AT1) and putative protein phosphatase (At2g30020; АТ2), whereas ROC3 interacts with GTP-binding protein (At1g30580; ENGD-1) and RmlC-like cupin (At5g39120). The immunophilin AtCYP57 binds to putative pyruvate decarboxylase-1 (Pdc1) and clathrin adaptor complex-related protein (At5g05010). Identified interactors confirm our previous findings that immunophilins ROC3 , ROF2 , and AtCYP57 are directly involved with stress response control. Further, these findings extend our understanding of the molecular functional pathways of these immunophilins.
Transcription activation mediated by a cyclic AMP receptor protein from Thermus thermophilus HB8.
Shinkai, Akeo; Kira, Satoshi; Nakagawa, Noriko; Kashihara, Aiko; Kuramitsu, Seiki; Yokoyama, Shigeyuki
2007-05-01
The extremely thermophilic bacterium Thermus thermophilus HB8, which belongs to the phylum Deinococcus-Thermus, has an open reading frame encoding a protein belonging to the cyclic AMP (cAMP) receptor protein (CRP) family present in many bacteria. The protein named T. thermophilus CRP is highly homologous to the CRP family proteins from the phyla Firmicutes, Actinobacteria, and Cyanobacteria, and it forms a homodimer and interacts with cAMP. CRP mRNA and intracellular cAMP were detected in this strain, which did not drastically fluctuate during cultivation in a rich medium. The expression of several genes was altered upon disruption of the T. thermophilus CRP gene. We found six CRP-cAMP-dependent promoters in in vitro transcription assays involving DNA fragments containing the upstream regions of the genes exhibiting decreased expression in the CRP disruptant, indicating that the CRP is a transcriptional activator. The consensus T. thermophilus CRP-binding site predicted upon nucleotide sequence alignment is 5'-(C/T)NNG(G/T)(G/T)C(A/C)N(A/T)NNTCACAN(G/C)(G/C)-3'. This sequence is unique compared with the known consensus binding sequences of CRP family proteins. A putative -10 hexamer sequence resides at 18 to 19 bp downstream of the predicted T. thermophilus CRP-binding site. The CRP-regulated genes found in this study comprise clustered regularly interspaced short palindromic repeat (CRISPR)-associated (cas) ones, and the genes of a putative transcriptional regulator, a protein containing the exonuclease III-like domain of DNA polymerase, a GCN5-related acetyltransferase homolog, and T. thermophilus-specific proteins of unknown function. These results suggest a role for cAMP signal transduction in T. thermophilus and imply the T. thermophilus CRP is a cAMP-responsive regulator.
Yang, Yingfeng; Xie, Fangyu; Qin, Dandan; Zong, Chen; Han, Feng; Pu, Zeqing; Liu, Dong; Li, Xia; Zhang, Yuchao; Liu, Yuantao; Wang, Xiangdong
2018-06-15
Our previous study showed that NR4A1 protects against oxidative stress-induced cell apoptosis. However, the targets downstream of NR4A1 are incompletely known. Glutathione peroxidase 1 (GPX1) is the most common antioxidant enzyme in the glutathione peroxidase class. In this study, we aimed to investigate whether GPX1 is a mediator of the protective effects of NR4A1 in pancreatic β cells. A pancreatic β cell line, MIN6, was used to generate NR4A1 over-expression cell line. GPX1 expression and GPX1 promoter trans-activation in these cells was determined. These cells were then treated with H 2 O 2 , and the active caspase3 level was determined. NR4A1 over-expression in MIN6 cells resulted in increased GPX1 expression at both mRNA and protein levels. Dual luciferase assay showed that NR4A1 over-expression was able to enhance the trans-activation of GPX1 promoter, and the critical regulatory elements were narrowed down between 0 to -2000 bp in GPX1 promoter with a putative NR4A1 binding site (-273 to -268). ChIP assays demonstrated that NR4A1 physically associates with the GPX1 promoter. Over-expression of GPX1 reduced the active level of Caspase3 after H 2 O 2 treatment. NR4A1 increases the expression of GPX1 by enhancing the trans-activation of GPX1 promoter through binding to the putative binding site on GPX1 promoter. NR4A1 potentially protects pancreatic β cells against oxidative stress-induced apoptosis by increasing GPX1 expression. Copyright © 2018 Elsevier Inc. All rights reserved.
Montgomery, H J; Romanov, V; Guillemette, J G
2000-02-18
Neuronal nitric-oxide synthase (NOS) and endothelial NOS are constitutive NOS isoforms that are activated by binding calmodulin in response to elevated intracellular calcium. In contrast, the inducible NOS isoform binds calmodulin at low basal levels of calcium in resting cells. Primary sequence comparisons show that each constitutive NOS isozyme contains a polypeptide segment within its reductase domain, which is absent in the inducible NOS enzyme. To study a possible link between the presence of these additional polypeptide segments in constitutive NOS enzymes and their calcium-dependent calmodulin activation, three deletion mutants were created. The putative inhibitory insert was removed from the FMN binding regions of the neuronal NOS holoenzyme and from two truncated neuronal NOS reductase enzymes in which the calmodulin binding region was either included or deleted. All three mutant enzymes showed reduced incorporation of FMN and required reconstitution with exogenous FMN for activity. The combined removal of both the calmodulin binding domain and the putative inhibitory insert did not result in a calmodulin-independent neuronal NOS reductase. Thus, although the putative inhibitory element has an effect on the calcium-dependent calmodulin activation of neuronal NOS, it does not have the properties of the typical autoinhibitory domain found in calmodulin-activated enzymes.
Lijun Liu; Trevor Ramsay; Matthew S. Zinkgraf; David Sundell; Nathaniel Robert Street; Vladimir Filkov; Andrew Groover
2015-01-01
Identifying transcription factor target genes is essential for modeling the transcriptional networks underlying developmental processes. Here we report a chromatin immunoprecipitation sequencing (ChIP-seq) resource consisting of genome-wide binding regions and associated putative target genes for four Populus homeodomain transcription factors...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kendall, Amy; Bian, Wen; Maris, Alexander
We have used fiber diffraction, cryo-electron microscopy, and scanning transmission electron microscopy to confirm the symmetry of three potexviruses, potato virus X, papaya mosaic virus, and narcissus mosaic virus, and to determine their low-resolution structures. All three viruses have slightly less than nine subunits per turn of the viral helix. Our data strongly support the view that all potexviruses have approximately the same symmetry. The structures are dominated by a large domain at high radius in the virion, with a smaller domain, which includes the putative RNA-binding site, extending to low radius.
Heterogeneity of Opioid Binding Sites in Guinea Pig Spinal Cord
1984-11-30
the release of substance P from spinal cord. Substance P is one of the putative transmitters of y nociceptive i m p u l ^ (Lembeck et al., 1981), and...is located in primary afferents of spinal cord (Jessel et al., 1978). Demonstration of morphine’s abil it/ to inhibit the relea^ of substance P ...demonstrate enkephalin’s ability to inhibit substance P relea^ from senajry neurons in culture as well as to cteirease the action potential of these
Mapping a nucleolar targeting sequence of an RNA binding nucleolar protein, Nop25
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujiwara, Takashi; Suzuki, Shunji; Kanno, Motoko
2006-06-10
Nop25 is a putative RNA binding nucleolar protein associated with rRNA transcription. The present study was undertaken to determine the mechanism of Nop25 localization in the nucleolus. Deletion experiments of Nop25 amino acid sequence showed Nop25 to contain a nuclear targeting sequence in the N-terminal and a nucleolar targeting sequence in the C-terminal. By expressing derivative peptides from the C-terminal as GFP-fusion proteins in the cells, a lysine and arginine residue-enriched peptide (KRKHPRRAQDSTKKPPSATRTSKTQRRRR) allowed a GFP-fusion protein to be transported and fully retained in the nucleolus. When the peptide was fused with cMyc epitope and expressed in the cells, amore » cMyc epitope was then detected in the nucleolus. Nop25 did not localize in the nucleolus by deletion of the peptide from Nop25. Furthermore, deletion of a subdomain (KRKHPRRAQ) in the peptide or amino acid substitution of lysine and arginine residues in the subdomain resulted in the loss of Nop25 nucleolar localization. These results suggest that the lysine and arginine residue-enriched peptide is the most prominent nucleolar targeting sequence of Nop25 and that the long stretch of basic residues might play an important role in the nucleolar localization of Nop25. Although Nop25 contained putative SUMOylation, phosphorylation and glycosylation sites, the amino acid substitution in these sites had no effect on the nucleolar localization, thus suggesting that these post-translational modifications did not contribute to the localization of Nop25 in the nucleolus. The treatment of the cells, which expressed a GFP-fusion protein with a nucleolar targeting sequence of Nop25, with RNase A resulted in a complete dislocation of the protein from the nucleolus. These data suggested that the nucleolar targeting sequence might therefore play an important role in the binding of Nop25 to RNA molecules and that the RNA binding of Nop25 might be essential for the nucleolar localization of Nop25.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jha, Jyoti K.; Li, Mi; Ghirlando, Rodolfo
Replication of Vibrio cholerae chromosome 2 (Chr2) depends on molecular chaperone DnaK to facilitate binding of the initiator (RctB) to the replication origin. The binding occurs at two kinds of site, 12-mers and 39-mers, which promote and inhibit replication, respectively. Here we show that DnaK employs different mechanisms to enhance the two kinds of binding. We found that mutations inrctBthat reduce DnaK binding also reduce 12-mer binding and initiation. The initiation defect is suppressed by second-site mutations that increase 12-mer binding only marginally. Instead, they reduce replication inhibitory mechanisms: RctB dimerization and 39-mer binding. One suppressing change was in amore » dimerization domain which is folded similarly to the initiator of an iteron plasmid—the presumed progenitor of Chr2. In plasmids, DnaK promotes initiation by reducing dimerization. A different mutation was in the 39-mer binding domain of RctB and inactivated it, indicating an alternative suppression mechanism. Paradoxically, although DnaK increases 39-mer binding, the increase was also achieved by inactivating the DnaK binding site of RctB. This result suggests that the site inhibits the 39-mer binding domain (via autoinhibition) when prevented from binding DnaK. Taken together, our results reveal an important feature of the transition from plasmid to chromosome: the Chr2 initiator retains the plasmid-like dimerization domain and its control by chaperones but uses the chaperones in an unprecedented way to control the inhibitory 39-mer binding. IMPORTANCE The capacity of proteins to undergo remodeling provides opportunities to control their function. However, remodeling remains a poorly understood aspect of the structure-function paradigm due to its dynamic nature. Here we have studied remodeling of the initiator of replication ofVibrio choleraeChr2 by the molecular chaperone, DnaK. We show that DnaK binds to a site on the Chr2 initiator (RctB) that promotes initiation by reducing the initiator’s propensity to dimerize. Dimerization of the initiator of the putative plasmid progenitor of Chr2 is also reduced by DnaK, which promotes initiation. Paradoxically, the DnaK binding also promotes replication inhibition by reducing an autoinhibitory activity of RctB. In the plasmid-to-chromosome transition, it appears that the initiator has acquired an autoinhibitory activity and along with it a new chaperone activity that apparently helps to control replication inhibition independently of replication promotion.« less
Wang, Zhen; Anderson, Nicholas Scott; Benning, Christoph
2013-01-01
Chloroplast membrane lipid synthesis relies on the import of glycerolipids from the ER. The TGD (TriGalactosylDiacylglycerol) proteins are required for this lipid transfer process. The TGD1, -2, and -3 proteins form a putative ABC (ATP-binding cassette) transporter transporting ER-derived lipids through the inner envelope membrane of the chloroplast, while TGD4 binds phosphatidic acid (PtdOH) and resides in the outer chloroplast envelope. We identified two sequences in TGD4, amino acids 1–80 and 110–145, which are necessary and sufficient for PtdOH binding. Deletion of both sequences abolished PtdOH binding activity. We also found that TGD4 from 18:3 plants bound specifically and with increased affinity PtdOH. TGD4 did not interact with other proteins and formed a homodimer both in vitro and in vivo. Our results suggest that TGD4 is an integral dimeric β-barrel lipid transfer protein that binds PtdOH with its N terminus and contains dimerization domains at its C terminus. PMID:23297418
Albury, Mary S; Elliott, Catherine; Moore, Anthony L
2010-12-01
The alternative oxidase (AOX) is a non-protonmotive ubiquinol oxidase that is found in all plants, some fungi, green algae, bacteria and pathogenic protozoa. The lack of AOX in the mammalian host renders this protein an important potential therapeutic target in the treatment of pathogenic protozoan infections. Bioinformatic searches revealed that, within a putative ubiquinol-binding crevice in AOX, Gln242, Asn247, Tyr253, Ser256, His261 and Arg262 were highly conserved. To confirm that these amino-acid residues are important for ubiquinol-binding and hence activity substitution mutations were generated and characterised. Assessment of AOX activity in isolated Schizosaccharomyces pombe mitochondria revealed that mutation of either Gln242, Ser256, His261 and Arg262 resulted in >90% inhibition of antimycin A-insensitive respiration suggesting that hydroxyl, guanidino, imidazole groups, polar and charged residues in addition to the size of the amino-acid chain are important for ubiquinone-binding. Substitution of Asn247 with glutamine or Tyr253 with phenylalanine had little effect upon the respiratory rate indicating that these residues are not critical for AOX activity. However replacement of Tyr253 by alanine resulted in a 72% loss of activity suggesting that the benzoquinone group and not hydroxyl group is important for quinol binding. These results provide important new insights into the ubiquinol-binding site of the alternative oxidase, the identity of which maybe important for future rational drug design. Copyright © 2010 Elsevier B.V. All rights reserved.
2010-01-01
Background The Eight-Twenty-One (ETO) nuclear co-repressor gene belongs to the ETO homologue family also containing Myeloid Translocation Gene on chromosome 16 (MTG16) and myeloid translocation Gene-Related protein 1 (MTGR1). By chromosomal translocations ETO and MTG16 become parts of fusion proteins characteristic of morphological variants of acute myeloid leukemia. Normal functions of ETO homologues have as yet not been examined. The goal of this work was to identify structural and functional promoter elements upstream of the coding sequence of the ETO gene in order to explore lineage-specific hematopoietic expression and get hints to function. Results A putative proximal ETO promoter was identified within 411 bp upstream of the transcription start site. Strong ETO promoter activity was specifically observed upon transfection of a promoter reporter construct into erythroid/megakaryocytic cells, which have endogeneous ETO gene activity. An evolutionary conserved region of 228 bp revealed potential cis-elements involved in transcription of ETO. Disruption of the evolutionary conserved GATA -636 consensus binding site repressed transactivation and disruption of the ETS1 -705 consensus binding site enhanced activity of the ETO promoter. The promoter was stimulated by overexpression of GATA-1 into erythroid/megakaryocytic cells. Electrophoretic mobility shift assay with erythroid/megakaryocytic cells showed specific binding of GATA-1 to the GATA -636 site. Furthermore, results from chromatin immunoprecipitation showed GATA-1 binding in vivo to the conserved region of the ETO promoter containing the -636 site. The results suggest that the GATA -636 site may have a role in activation of the ETO gene activity in cells with erythroid/megakaryocytic potential. Leukemia associated AML1-ETO strongly suppressed an ETO promoter reporter in erythroid/megakaryocytic cells. Conclusions We demonstrate that the GATA-1 transcription factor binds and transactivates the ETO proximal promoter in an erythroid/megakaryocytic-specific manner. Thus, trans-acting factors that are essential in erythroid/megakaryocytic differentiation govern ETO expression. PMID:20487545
Liu, Fei; Xue, Zhi-Qin; Deng, Si-Hao; Kun, Xiong; Luo, Xue-Gang; Patrylo, Peter R; Rose, Gregory M; Cai, Huaibin; Struble, Robert G; Cai, Yan; Yan, Xiao-Xin
2013-05-01
Deposition of β -amyloid (Aβ) peptides, cleavage products of β-amyloid precursor protein (APP) by β-secretase-1 (BACE1) and γ-secretase, is a neuropathological hallmark of Alzheimer's disease (AD). γ-Secretase inhibition is a therapeutical anti-Aβ approach, although changes in the enzyme's activity in AD brain are unclear. Cerebrospinal fluid (CSF) Aβ peptides are thought to derive from brain parenchyma and thus may serve as biomarkers for assessing cerebral amyloidosis and anti-Aβ efficacy. The present study compared active γ-secretase binding sites with Aβ deposition in aged and AD human cerebrum, and explored the possibility of Aβ production and secretion by the choroid plexus (CP). The specific binding density of [(3) H]-L-685,458, a radiolabeled high-affinity γ-secretase inhibitor, in the temporal neocortex and hippocampal formation was similar for AD and control cases with similar ages and post-mortem delays. The CP in post-mortem samples exhibited exceptionally high [(3) H]-L-685,458 binding density, with the estimated maximal binding sites (Bmax) reduced in the AD relative to control groups. Surgically resected human CP exhibited APP, BACE1 and presenilin-1 immunoreactivity, and β-site APP cleavage enzymatic activity. In primary culture, human CP cells also expressed these amyloidogenic proteins and released Aβ40 and Aβ42 into the medium. Overall, our results suggest that γ-secretase activity appears unaltered in the cerebrum in AD and is not correlated with regional amyloid plaque pathology. The CP appears to be a previously unrecognised non-neuronal contributor to CSF Aβ, probably at reduced levels in AD. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Liu, Fei; Xue, Zhi-Qin; Deng, Si-Hao; Kun, Xiong; Luo, Xue-Gang; Patrylo, Peter R.; Rose, Gregory M.; Cai, Huaibin; Struble, Robert G.; Cai, Yan; Yan, Xiao-Xin
2013-01-01
Deposition of β-amyloid (Aβ) peptides, cleavage products of β-amyloid precursor protein (APP) by β-secretase-1 (BACE1) and γ-secretase, is a neuropathological hallmark of Alzheimer’s disease (AD). γ-Secretase inhibition is a therapeutical anti-Aβ approach, although less is clear about the change of the enzyme’s activity in AD brain. Cerebrospinal fluid (CSF) Aβ peptides are considered to derive from brain parenchyma, thus may serve as biomarkers for assessing cerebral amyloidosis and anti-Aβ efficacy. The present study compared active γ-secretase binding sites with Aβ deposition in aged and AD human cerebrum, and explored a possibility of Aβ production and secretion by the choroid plexus (CP). Specific binding density of [3H]-L-685,458, a radiolabeled high affinity γ-secretase inhibitor, in the temporal neocortex and hippocampal formation was similar for AD and control cases with comparable ages and postmortem delays. The CP in postmortem samples exhibited exceptionally high [3H]-L-685,458 binding density, with the estimated maximal binding sites (Bmax) reduced in the AD relative to control groups. Surgically resected human CP exhibited APP, BACE1 and presenilin-1 immunoreactivity, and β-site APP cleavage enzymatic activity. In primary culture, human CP cells also expressed these amyloidogenic proteins but released Aβ40 and Aβ42 into the medium. These results suggest that γ-secretase activity appears not altered in the cerebrum in AD related to aged control, nor correlated with regional amyloid plaque pathology. The choroid plexus appears to represent a novel non-neuronal source in the brain that may contribute Aβ into cerebrospinal fluid, probably at reduced levels in AD. PMID:23432732
A novel paired domain DNA recognition motif can mediate Pax2 repression of gene transcription.
Håvik, B; Ragnhildstveit, E; Lorens, J B; Saelemyr, K; Fauske, O; Knudsen, L K; Fjose, A
1999-12-20
The paired domain (PD) is an evolutionarily conserved DNA-binding domain encoded by the Pax gene family of developmental regulators. The Pax proteins are transcription factors and are involved in a variety of processes such as brain development, patterning of the central nervous system (CNS), and B-cell development. In this report we demonstrate that the zebrafish Pax2 PD can interact with a novel type of DNA sequences in vitro, the triple-A motif, consisting of a heptameric nucleotide sequence G/CAAACA/TC with an invariant core of three adjacent adenosines. This recognition sequence was found to be conserved in known natural Pax5 repressor elements involved in controlling the expression of the p53 and J-chain genes. By identifying similar high affinity binding sites in potential target genes of the Pax2 protein, including the pax2 gene itself, we obtained further evidence that the triple-A sites are biologically significant. The putative natural target sites also provide a basis for defining an extended consensus recognition sequence. In addition, we observed in transformation assays a direct correlation between Pax2 repressor activity and the presence of triple-A sites. The results suggest that a transcriptional regulatory function of Pax proteins can be modulated by PD binding to different categories of target sequences. Copyright 1999 Academic Press.
Developing Hypothetical Inhibition Mechanism of Novel Urea Transporter B Inhibitor
NASA Astrophysics Data System (ADS)
Li, Min; Tou, Weng Ieong; Zhou, Hong; Li, Fei; Ren, Huiwen; Chen, Calvin Yu-Chian; Yang, Baoxue
2014-07-01
Urea transporter B (UT-B) is a membrane channel protein that specifically transports urea. UT-B null mouse exhibited urea selective urine concentrating ability deficiency, which suggests the potential clinical applications of the UT-B inhibitors as novel diuretics. Primary high-throughput virtual screening (HTVS) of 50000 small-molecular drug-like compounds identified 2319 hit compounds. These 2319 compounds were screened by high-throughput screening using an erythrocyte osmotic lysis assay. Based on the pharmacological data, putative UT-B binding sites were identified by structure-based drug design and validated by ligand-based and QSAR model. Additionally, UT-B structural and functional characteristics under inhibitors treated and untreated conditions were simulated by molecular dynamics (MD). As the result, we identified four classes of compounds with UT-B inhibitory activity and predicted a human UT-B model, based on which computative binding sites were identified and validated. A novel potential mechanism of UT-B inhibitory activity was discovered by comparing UT-B from different species. Results suggest residue PHE198 in rat and mouse UT-B might block the inhibitor migration pathway. Inhibitory mechanisms of UT-B inhibitors and the functions of key residues in UT-B were proposed. The binding site analysis provides a structural basis for lead identification and optimization of UT-B inhibitors.
Harmane: an atypical neurotransmitter?
Abu Ghazaleh, Haya; Lalies, Maggie D; Nutt, David J; Hudson, Alan L
2015-03-17
Harmane is an active component of clonidine displacing substance and a candidate endogenous ligand for imidazoline binding sites. The neurochemistry of tritiated harmane was investigated in the present study examining its uptake and release properties in the rat brain central nervous system (CNS) in vitro. At physiological temperature, [(3)H]harmane was shown to be taken up in rat brain cortex. Further investigations demonstrated that treatment with monoamine uptake blockers (citalopram, nomifensine and nisoxetine) did not alter [(3)H]harmane uptake implicating that the route of [(3)H]harmane transport was distinct from the monoamine uptake systems. Furthermore, imidazoline ligands (rilmenidine, efaroxan, 2-BFI and idazoxan) showed no prominent effect on [(3)H]harmane uptake suggesting the lack of involvement of imidazoline binding sites. Subsequent analyses showed that disruption of the Na(+) gradient using ouabain or choline chloride did not block [(3)H]harmane uptake suggesting a Na(+)-independent transport mechanism. Moreover, higher temperatures (50°C) failed to impede [(3)H]harmane uptake implying a non-physiological transporter. The failure of potassium to evoke the release of preloaded [(3)H]harmane from rat brain cortex indicates that the properties of this putative endogenous ligand for imidazoline binding sites do not resemble that of a conventional neurotransmitter. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Cui, Wei; Hawley, R. Scott
2005-01-01
Nod is a chromokinesin-like protein that plays a critical role in segregating achiasmate chromosomes during female meiosis. The C-terminal half of the Nod protein contains two putative DNA-binding domains. The first of these domains, known as the HMGN domain, consists of three tandemly repeated high-mobility group N motifs. This domain was previously shown to be both necessary and sufficient for binding of the C-terminal half of Nod to mitotic chromosomes in embryos. The second putative DNA-binding domain, denoted HhH(2)/NDD, is a helix-hairpin-helix(2)/Nod-like DNA-binding domain. Although the HhH(2)/NDD domain is not required or sufficient for chromosome binding in embryos, several well-characterized nod mutations have been mapped in this domain. To characterize the role of the HhH(2)/NDD domain in mediating Nod function, we created a series of UAS-driven transgene constructs capable of expressing either a wild-type Nod-GFP fusion protein or proteins in which the HhH(2)/NDD domain had been altered by site-directed mutagenesis. Although wild-type Nod-GFP localizes to the oocyte chromosomes and rescues the segregation defect in nod mutant oocytes, two of three proteins carrying mutants in the HhH(2)/NDD domain fail to either rescue the nod mutant phenotype or bind to oocyte chromosomes. However, these mutant proteins do bind to the polytene chromosomes in nurse-cell nuclei and enter the oocyte nucleus. Thus, even though the HhH(2)/NDD domain is not essential for chromosome binding in other cell types, it is required for chromosome binding in the oocyte. These HhH(2)/NDD mutants also block the localization of Nod to the posterior pole of stage 9–10A oocytes, a process that is thought to facilitate the interaction of Nod with the plus ends of microtubules (Cui et al. 2005). This observation suggests that the Nod HhH2/NDD domain may play other roles in addition to binding Nod to meiotic chromosomes. PMID:16143607
Novel Broad Spectrum Inhibitors Targeting the Flavivirus Methyltransferase
Liu, Binbin; Banavali, Nilesh K.; Jones, Susan A.; Zhang, Jing; Li, Zhong; Kramer, Laura D.; Li, Hongmin
2015-01-01
The flavivirus methyltransferase (MTase) is an essential enzyme that sequentially methylates the N7 and 2’-O positions of the viral RNA cap, using S-adenosyl-L-methionine (SAM) as a methyl donor. We report here that small molecule compounds, which putatively bind to the SAM-binding site of flavivirus MTase and inhibit its function, were identified by using virtual screening. In vitro methylation experiments demonstrated significant MTase inhibition by 13 of these compounds, with the most potent compound displaying sub-micromolar inhibitory activity. The most active compounds showed broad spectrum activity against the MTase proteins of multiple flaviviruses. Two of these compounds also exhibited low cytotoxicity and effectively inhibited viral replication in cell-based assays, providing further structural insight into flavivirus MTase inhibition. PMID:26098995
Yersinia Type III Secretion System Master Regulator LcrF
Schwiesow, Leah; Lam, Hanh
2015-01-01
Many Gram-negative pathogens express a type III secretion (T3SS) system to enable growth and survival within a host. The three human-pathogenic Yersinia species, Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica, encode the Ysc T3SS, whose expression is controlled by an AraC-like master regulator called LcrF. In this review, we discuss LcrF structure and function as well as the environmental cues and pathways known to regulate LcrF expression. Similarities and differences in binding motifs and modes of action between LcrF and the Pseudomonas aeruginosa homolog ExsA are summarized. In addition, we present a new bioinformatics analysis that identifies putative LcrF binding sites within Yersinia target gene promoters. PMID:26644429
Engineering vanilloid-sensitivity into the rat TRPV2 channel
Zhang, Feng; Hanson, Sonya M; Jara-Oseguera, Andres; Krepkiy, Dmitriy; Bae, Chanhyung; Pearce, Larry V; Blumberg, Peter M; Newstead, Simon; Swartz, Kenton J
2016-01-01
The TRPV1 channel is a detector of noxious stimuli, including heat, acidosis, vanilloid compounds and lipids. The gating mechanisms of the related TRPV2 channel are poorly understood because selective high affinity ligands are not available, and the threshold for heat activation is extremely high (>50°C). Cryo-EM structures of TRPV1 and TRPV2 reveal that they adopt similar structures, and identify a putative vanilloid binding pocket near the internal side of TRPV1. Here we use biochemical and electrophysiological approaches to investigate the resiniferatoxin(RTx) binding site in TRPV1 and to explore the functional relationships between TRPV1 and TRPV2. Collectively, our results support the interaction of vanilloids with the proposed RTx binding pocket, and demonstrate an allosteric influence of a tarantula toxin on vanilloid binding. Moreover, we show that sensitivity to RTx can be engineered into TRPV2, demonstrating that the gating and permeation properties of this channel are similar to TRPV1. DOI: http://dx.doi.org/10.7554/eLife.16409.001 PMID:27177419
Engineering vanilloid-sensitivity into the rat TRPV2 channel.
Zhang, Feng; Hanson, Sonya M; Jara-Oseguera, Andres; Krepkiy, Dmitriy; Bae, Chanhyung; Pearce, Larry V; Blumberg, Peter M; Newstead, Simon; Swartz, Kenton J
2016-05-13
The TRPV1 channel is a detector of noxious stimuli, including heat, acidosis, vanilloid compounds and lipids. The gating mechanisms of the related TRPV2 channel are poorly understood because selective high affinity ligands are not available, and the threshold for heat activation is extremely high (>50°C). Cryo-EM structures of TRPV1 and TRPV2 reveal that they adopt similar structures, and identify a putative vanilloid binding pocket near the internal side of TRPV1. Here we use biochemical and electrophysiological approaches to investigate the resiniferatoxin(RTx) binding site in TRPV1 and to explore the functional relationships between TRPV1 and TRPV2. Collectively, our results support the interaction of vanilloids with the proposed RTx binding pocket, and demonstrate an allosteric influence of a tarantula toxin on vanilloid binding. Moreover, we show that sensitivity to RTx can be engineered into TRPV2, demonstrating that the gating and permeation properties of this channel are similar to TRPV1.
Gillard, Michel; Chatelain, Pierre; Fuks, Bruno
2006-04-24
A specific binding site for the antiepileptic drug levetiracetam (2S-(oxo-1-pyrrolidinyl)butanamide, Keppra) in rat brain, referred to as the levetiracetam binding site, was discovered several years ago. More recently, this binding site has been identified as the synaptic vesicle protein 2A (SV2A), a protein present in synaptic vesicles [Lynch, B., Lambeng, N., Nocka, K., Kensel-Hammes, P., Bajjalieh, S.M., Matagne, A., Fuks, B., 2004. The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc. Natl. Acad. Sci. USA, 101, 9861-9866.]. In this study, we characterized the binding properties of levetiracetam in post-mortem human brain and compared them to human SV2A expressed in Chinese hamster ovary (CHO) cells. The results showed that the binding properties of levetiracetam and [3H]ucb 30889, an analogue that was previously characterized as a suitable ligand for levetiracetam binding site/SV2A in rat brain [Gillard, M., Fuks, B., Michel, P., Vertongen, P., Massingham, R. Chatelain, P., 2003. Binding characteristics of [3H]ucb 30889 to levetiracetam binding sites in rat brain. Eur. J. Pharmacol. 478, 1-9.], are almost identical in human brain samples (cerebral cortex, hippocampus and cerebellum) and in CHO cell membranes expressing the human SV2A protein. Moreover, the results are also similar to those previously obtained in rat brain. [3H]ucb 30889 binding in human brain and to SV2A was saturable and reversible. At 4 degrees C, its binding kinetics were best fitted assuming a two-phase model in all tissues. The half-times of association for the fast component ranged between 1 to 2 min and represent 30% to 36% of the sites whereas the half-times for the slow component ranged from 20 to 29 min. In dissociation experiments, the half-times were from 2 to 4 min for the fast component (33% to 49% of the sites) and 20 to 41 min for the slow component. Saturation binding curves led to Kd values for [3H]ucb 30889 of 53+/-7, 55+/-9, 70+/-11 and 75+/-33 nM in human cerebral cortex, hippocampus, cerebellum and CHO cells expressing SV2A respectively. Bmax values around 3-4 pmol/mg protein were calculated in all brain regions. Some of the saturation curves displayed curvilinear Scatchard plots indicating the presence of high and low affinity binding sites. When this was the case, Kd values from 25 to 30 nM for the high affinity sites (24% to 34% of total sites) and from 200 to 275 nM for the low affinity sites were calculated. This was observed in all brain regions and in CHO cell membranes expressing the SV2A protein. It cannot be explained by putative binding of [3H]ucb 30889 to SV2B or C isoforms but may reflect different patterns of SV2A glycosylation or the formation of SV2A oligomers. Competition experiments were performed to determine the affinities for SV2A of a variety of compounds including levetiracetam, some of its analogues and other molecules known to interact with levetiracetam binding sites in rat brain such as bemegride, pentylenetetrazol and chlordiazepoxide. We found an excellent correlation between the affinities of these compounds measured in human brain, rat brain and CHO cells expressing human SV2A. In conclusion, we report for the first time that the binding characteristics of native levetiracetam binding sites/SV2A in human brain and rat brain share very similar properties with human recombinant SV2A expressed in CHO cells.
Dweep, Harsh; Sticht, Carsten; Pandey, Priyanka; Gretz, Norbert
2011-10-01
MicroRNAs are small, non-coding RNA molecules that can complementarily bind to the mRNA 3'-UTR region to regulate the gene expression by transcriptional repression or induction of mRNA degradation. Increasing evidence suggests a new mechanism by which miRNAs may regulate target gene expression by binding in promoter and amino acid coding regions. Most of the existing databases on miRNAs are restricted to mRNA 3'-UTR region. To address this issue, we present miRWalk, a comprehensive database on miRNAs, which hosts predicted as well as validated miRNA binding sites, information on all known genes of human, mouse and rat. All mRNAs, mitochondrial genes and 10 kb upstream flanking regions of all known genes of human, mouse and rat were analyzed by using a newly developed algorithm named 'miRWalk' as well as with eight already established programs for putative miRNA binding sites. An automated and extensive text-mining search was performed on PubMed database to extract validated information on miRNAs. Combined information was put into a MySQL database. miRWalk presents predicted and validated information on miRNA-target interaction. Such a resource enables researchers to validate new targets of miRNA not only on 3'-UTR, but also on the other regions of all known genes. The 'Validated Target module' is updated every month and the 'Predicted Target module' is updated every 6 months. miRWalk is freely available at http://mirwalk.uni-hd.de/. Copyright © 2011 Elsevier Inc. All rights reserved.
Newcomer, Rebecca L.; Fraser, LaTasha C.R.; Teschke, Carolyn M.; Alexandrescu, Andrei T.
2015-01-01
The I-domain is an insertion domain of the bacteriophage P22 coat protein that drives rapid folding and accounts for over half of the stability of the full-length protein. We sought to determine the role of hydrogen bonds (H-bonds) in the unfolding of the I-domain by examining 3JNC’ couplings transmitted through H-bonds, the temperature and urea-concentration dependence of 1HN and 15N chemical shifts, and native-state hydrogen exchange at urea concentrations where the domain is predominantly folded. The native-state hydrogen-exchange data suggest that the six-stranded β-barrel core of the I-domain is more stable against unfolding than a smaller subdomain comprised of a short α-helix and three-stranded β-sheet. H-bonds, separately determined from solvent protection and 3JNC’ H-bond couplings, are identified with an accuracy of 90% by 1HN temperature coefficients. The accuracy is improved to 95% when 15N temperature coefficients are also included. In contrast, the urea dependence of 1HN and 15N chemical shifts is unrelated to H-bonding. The protein segments with the largest chemical-shift changes in the presence of urea show curved or sigmoidal titration curves suggestive of direct urea binding. Nuclear Overhauser effects to urea for these segments are also consistent with specific urea-binding sites in the I-domain. Taken together, the results support a mechanism of urea unfolding in which denaturant binds to distinct sites in the I-domain. Disordered segments bind urea more readily than regions in stable secondary structure. The locations of the putative urea-binding sites correlate with the lower stability of the structure against solvent exchange, suggesting that partial unfolding of the structure is related to urea accessibility. PMID:26682823
Substrate channel in nitrogenase revealed by a molecular dynamics approach.
Smith, Dayle; Danyal, Karamatullah; Raugei, Simone; Seefeldt, Lance C
2014-04-15
Mo-dependent nitrogenase catalyzes the biological reduction of N2 to two NH3 molecules at FeMo-cofactor buried deep inside the MoFe protein. Access of substrates, such as N2, to the active site is likely restricted by the surrounding protein, requiring substrate channels that lead from the surface to the active site. Earlier studies on crystallographic structures of the MoFe protein have suggested three putative substrate channels. Here, we have utilized submicrosecond atomistic molecular dynamics simulations to allow the nitrogenase MoFe protein to explore its conformational space in an aqueous solution at physiological ionic strength, revealing a putative substrate channel. The viability of this observed channel was tested by examining the free energy of passage of N2 from the surface through the channel to FeMo-cofactor, resulting in the discovery of a very low energy barrier. These studies point to a viable substrate channel in nitrogenase that appears during thermal motions of the protein in an aqueous environment and that approaches a face of FeMo-cofactor earlier implicated in substrate binding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Dayle; Danyal, Karamatullah; Raugei, Simone
Mo-dependent nitrogenase catalyzes the biological reduction of N 2 to 2NH 3 at the FeMo-cofactor buried deep inside the MoFe protein. Access of substrates, such as N 2, to the active site is likely restricted by the surrounding protein, requiring substrate channels that lead from the surface to the active site. Earlier studies on crystallographic structures of the MoFe protein have suggested three putative substrate channels. Here, we have utilized sub-microsecond atomistic molecular dynamics simulations to allow the nitrogenase MoFe protein to explore its conformational space in an aqueous solution at physiological ionic strength, revealing a putative substrate channel notmore » previously reported. The viability of the proposed channel was tested by examining the free energy of passage of N 2 from the surface through the channel to FeMo-cofactor, with discovery of a very low energy barrier. These studies point to a viable substrate channel in nitrogenase that appears during thermal motions of the protein in an aqueous environment that approaches a face of FeMo-cofactor earlier implicated in substrate binding.« less
Acetylcholine receptors in the human retina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchins, J.B.; Hollyfield, J.G.
1985-11-01
Evidence for a population of acetylcholine (ACh) receptors in the human retina is presented. The authors have used the irreversible ligand TH-propylbenzilylcholine mustard (TH-PrBCM) to label muscarinic receptors. TH- or SVI-alpha-bungarotoxin (alpha-BTx) was used to label putative nicotinic receptors. Muscarinic receptors are apparently present in the inner plexiform layer of the retina. Autoradiographic grain densities are reduced in the presence of saturating concentrations of atropine, quinuclidinyl benzilate or scopolamine; this indicates that TH-PrBCM binding is specific for a population of muscarinic receptors in the human retina. Binding sites for radiolabeled alpha-BTx are found predominantly in the inner plexiform layer ofmore » the retina. Grain densities are reduced in the presence of d-tubocurarine, indicating that alpha-BTx may bind to a pharmacologically relevant nicotinic ACh receptor. This study provides evidence for cholinergic neurotransmission in the human retina.« less
G = MAT: linking transcription factor expression and DNA binding data.
Tretyakov, Konstantin; Laur, Sven; Vilo, Jaak
2011-01-31
Transcription factors are proteins that bind to motifs on the DNA and thus affect gene expression regulation. The qualitative description of the corresponding processes is therefore important for a better understanding of essential biological mechanisms. However, wet lab experiments targeted at the discovery of the regulatory interplay between transcription factors and binding sites are expensive. We propose a new, purely computational method for finding putative associations between transcription factors and motifs. This method is based on a linear model that combines sequence information with expression data. We present various methods for model parameter estimation and show, via experiments on simulated data, that these methods are reliable. Finally, we examine the performance of this model on biological data and conclude that it can indeed be used to discover meaningful associations. The developed software is available as a web tool and Scilab source code at http://biit.cs.ut.ee/gmat/.
G = MAT: Linking Transcription Factor Expression and DNA Binding Data
Tretyakov, Konstantin; Laur, Sven; Vilo, Jaak
2011-01-01
Transcription factors are proteins that bind to motifs on the DNA and thus affect gene expression regulation. The qualitative description of the corresponding processes is therefore important for a better understanding of essential biological mechanisms. However, wet lab experiments targeted at the discovery of the regulatory interplay between transcription factors and binding sites are expensive. We propose a new, purely computational method for finding putative associations between transcription factors and motifs. This method is based on a linear model that combines sequence information with expression data. We present various methods for model parameter estimation and show, via experiments on simulated data, that these methods are reliable. Finally, we examine the performance of this model on biological data and conclude that it can indeed be used to discover meaningful associations. The developed software is available as a web tool and Scilab source code at http://biit.cs.ut.ee/gmat/. PMID:21297945
Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi.
Slot, Jason C; Rokas, Antonis
2011-01-25
Genes involved in intermediary and secondary metabolism in fungi are frequently physically linked or clustered. For example, in Aspergillus nidulans the entire pathway for the production of sterigmatocystin (ST), a highly toxic secondary metabolite and a precursor to the aflatoxins (AF), is located in a ∼54 kb, 23 gene cluster. We discovered that a complete ST gene cluster in Podospora anserina was horizontally transferred from Aspergillus. Phylogenetic analysis shows that most Podospora cluster genes are adjacent to or nested within Aspergillus cluster genes, although the two genera belong to different taxonomic classes. Furthermore, the Podospora cluster is highly conserved in content, sequence, and microsynteny with the Aspergillus ST/AF clusters and its intergenic regions contain 14 putative binding sites for AflR, the transcription factor required for activation of the ST/AF biosynthetic genes. Examination of ∼52,000 Podospora expressed sequence tags identified transcripts for 14 genes in the cluster, with several expressed at multiple life cycle stages. The presence of putative AflR-binding sites and the expression evidence for several cluster genes, coupled with the recent independent discovery of ST production in Podospora [1], suggest that this HGT event probably resulted in a functional cluster. Given the abundance of metabolic gene clusters in fungi, our finding that one of the largest known metabolic gene clusters moved intact between species suggests that such transfers might have significantly contributed to fungal metabolic diversity. PAPERFLICK: Copyright © 2011 Elsevier Ltd. All rights reserved.
Effects of mutations at amino acid 61 in the arm of TF1 on its DNA-binding properties.
Sayre, M H; Geiduschek, E P
1990-12-20
Transcription factor 1 (TF1) is the Bacillus subtilis phage SPO1-encoded member of the family of bacterial DNA-binding proteins that includes Escherichia coli HU and integration host factor (IHF). We have initiated a mutational analysis of the TF1 molecule to understand better its unique DNA-binding properties and to investigate its physiological function. We report here the consequences of mutating the putative DNA-binding "arms" of TF1. At position 61 in its primary sequence, TF1 contains a Phe residue in place of the Arg residue found in all other known members of the HU family. Substituting polar, uncharged residues for Phe61 substantially reduced the DNA-binding affinity and site-selectivity of TF1 in vitro, whereas the substitution of Tyr had no effect. Substituting Trp or Arg for Phe61 had little effect on the affinity of TF1 for SPO1 DNA, but altered the electrophoretic mobilities of protein-DNA complexes in non-denaturing gels. The Arg61 substitution increased the affinity of the protein for non-specific sites on thymine-containing DNA, thus reducing the natural preference of TF1 for (5-hydroxymethyluracil)-containing DNA. The Phe61-to-Arg mutation was also correlated with decreased phage yield and aberrant regulation of viral protein synthesis in vivo.
Novel antibody binding determinants on the capsid surface of serotype O foot-and-mouth disease virus
Asfor, Amin S.; Upadhyaya, Sasmita; Knowles, Nick J.; King, Donald P.; Paton, David J.
2014-01-01
Five neutralizing antigenic sites have been described for serotype O foot-and-mouth disease viruses (FMDV) based on monoclonal antibody (mAb) escape mutant studies. However, a mutant virus selected to escape neutralization of mAb binding at all five sites was previously shown to confer complete cross-protection with the parental virus in guinea pig challenge studies, suggesting that amino acid residues outside the mAb binding sites contribute to antibody-mediated in vivo neutralization of FMDV. Comparison of the ability of bovine antisera to neutralize a panel of serotype O FMDV identified three novel putative sites at VP2-74, VP2-191 and VP3-85, where amino acid substitutions correlated with changes in sero-reactivity. The impact of these positions was tested using site-directed mutagenesis to effect substitutions at critical amino acid residues within an infectious copy of FMDV O1 Kaufbeuren (O1K). Recovered viruses containing additional mutations at VP2-74 and VP2-191 exhibited greater resistance to neutralization with both O1K guinea pig and O BFS bovine antisera than a virus that was engineered to include only mutations at the five known antigenic sites. The changes at VP2-74 and VP3-85 are adjacent to critical amino acids that define antigenic sites 2 and 4, respectively. However VP2-191 (17 Å away from VP2-72), located at the threefold axis and more distant from previously identified antigenic sites, exhibited the most profound effect. These findings extend our knowledge of the surface features of the FMDV capsid known to elicit neutralizing antibodies, and will improve our strategies for vaccine strain selection and rational vaccine design. PMID:24584474
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Dashuang; Li, Yongdong; Cabrera-Luque, Juan
2012-05-24
Novel bifunctional N-acetylglutamate synthase/kinases (NAGS/K) that catalyze the first two steps of arginine biosynthesis and are homologous to vertebrate N-acetylglutamate synthase (NAGS), an essential cofactor-producing enzyme in the urea cycle, were identified in Maricaulis maris and several other bacteria. Arginine is an allosteric inhibitor of NAGS but not NAGK activity. The crystal structure of M. maris NAGS/K (mmNAGS/K) at 2.7 {angstrom} resolution indicates that it is a tetramer, in contrast to the hexameric structure of Neisseria gonorrhoeae NAGS. The quaternary structure of crystalline NAGS/K from Xanthomonas campestris (xcNAGS/K) is similar, and cross-linking experiments indicate that both mmNAGS/K and xcNAGS aremore » tetramers in solution. Each subunit has an amino acid kinase (AAK) domain, which is likely responsible for N-acetylglutamate kinase (NAGK) activity and has a putative arginine binding site, and an N-acetyltransferase (NAT) domain that contains the putative NAGS active site. These structures and sequence comparisons suggest that the linker residue 291 may determine whether arginine acts as an allosteric inhibitor or activator in homologous enzymes in microorganisms and vertebrates. In addition, the angle of rotation between AAK and NAT domains varies among crystal forms and subunits within the tetramer. A rotation of 26{sup o} is sufficient to close the predicted AcCoA binding site, thus reducing enzymatic activity. Since mmNAGS/K has the highest degree of sequence homology to vertebrate NAGS of NAGS and NAGK enzymes whose structures have been determined, the mmNAGS/K structure was used to develop a structural model of human NAGS that is fully consistent with the functional effects of the 14 missense mutations that were identified in NAGS-deficient patients.« less
GBshape: a genome browser database for DNA shape annotations.
Chiu, Tsu-Pei; Yang, Lin; Zhou, Tianyin; Main, Bradley J; Parker, Stephen C J; Nuzhdin, Sergey V; Tullius, Thomas D; Rohs, Remo
2015-01-01
Many regulatory mechanisms require a high degree of specificity in protein-DNA binding. Nucleotide sequence does not provide an answer to the question of why a protein binds only to a small subset of the many putative binding sites in the genome that share the same core motif. Whereas higher-order effects, such as chromatin accessibility, cooperativity and cofactors, have been described, DNA shape recently gained attention as another feature that fine-tunes the DNA binding specificities of some transcription factor families. Our Genome Browser for DNA shape annotations (GBshape; freely available at http://rohslab.cmb.usc.edu/GBshape/) provides minor groove width, propeller twist, roll, helix twist and hydroxyl radical cleavage predictions for the entire genomes of 94 organisms. Additional genomes can easily be added using the GBshape framework. GBshape can be used to visualize DNA shape annotations qualitatively in a genome browser track format, and to download quantitative values of DNA shape features as a function of genomic position at nucleotide resolution. As biological applications, we illustrate the periodicity of DNA shape features that are present in nucleosome-occupied sequences from human, fly and worm, and we demonstrate structural similarities between transcription start sites in the genomes of four Drosophila species. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
A structure-based catalytic mechanism for the xanthine oxidase family of molybdenum enzymes.
Huber, R; Hof, P; Duarte, R O; Moura, J J; Moura, I; Liu, M Y; LeGall, J; Hille, R; Archer, M; Romão, M J
1996-01-01
The crystal structure of the xanthine oxidase-related molybdenum-iron protein aldehyde oxido-reductase from the sulfate reducing anaerobic Gram-negative bacterium Desulfovibrio gigas (Mop) was analyzed in its desulfo-, sulfo-, oxidized, reduced, and alcohol-bound forms at 1.8-A resolution. In the sulfo-form the molybdenum molybdopterin cytosine dinucleotide cofactor has a dithiolene-bound fac-[Mo, = O, = S, ---(OH2)] substructure. Bound inhibitory isopropanol in the inner compartment of the substrate binding tunnel is a model for the Michaelis complex of the reaction with aldehydes (H-C = O,-R). The reaction is proposed to proceed by transfer of the molybdenum-bound water molecule as OH- after proton transfer to Glu-869 to the carbonyl carbon of the substrate in concert with hydride transfer to the sulfido group to generate [MoIV, = O, -SH, ---(O-C = O, -R)). Dissociation of the carboxylic acid product may be facilitated by transient binding of Glu-869 to the molybdenum. The metal-bound water is replenished from a chain of internal water molecules. A second alcohol binding site in the spacious outer compartment may cause the strong substrate inhibition observed. This compartment is the putative binding site of large inhibitors of xanthine oxidase. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8799115
Rego, Fabiane G M; Pedrosa, Fábio O; Chubatsu, Leda S; Yates, M Geoffrey; Wassem, Roseli; Steffens, Maria B R; Rigo, Liu U; Souza, Emanuel M
2006-12-01
The putative nifB promoter region of Herbaspirillum seropedicae contained two sequences homologous to NifA-binding site and a -24/-12 type promoter. A nifB::lacZ fusion was assayed in the backgrounds of both Escherichia coli and H. seropedicae. In E. coli, the expression of nifB::lacZ occurred only in the presence of functional rpoN and Klebsiella pneumoniae nifA genes. In addition, the integration host factor (IHF) stimulated the expression of the nifB::lacZ fusion in this background. In H. seropedicae, nifB expression occurred only in the absence of ammonium and under low levels of oxygen, and it was shown to be strictly dependent on NifA. DNA band shift experiments showed that purified K. pneumoniae RpoN and E. coli IHF proteins were capable of binding to the nifB promoter region, and in vivo dimethylsulfate footprinting showed that NifA binds to both NifA-binding sites. These results strongly suggest that the expression of the nifB promoter of H. seropedicae is dependent on the NifA and RpoN proteins and that the IHF protein stimulates NifA activation of nifB promoter.
Characterization of putative receptors specific for quercetin on bovine aortic smooth-muscle cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, S.C.; Becker, C.G.
The authors have reported that tobacco glycoprotein (TGP), rutin-bovine serum albumin conjugates (R-BSA), quercetin, and chlorogenic acid are mitogenic for bovine aortic smooth-muscle cells (SMC). To investigate whether there are binding sites or receptors for these polyphenol-containing molecules on SMC, the authors have synthesized /sup 125/I-labeled rutin-bovine serum albumin ((/sup 125/I)R-BSA) of high specific activity (20 Ci/mmol). SMC were isolated from a bovine thoracic aorta and maintained in Eagle's minimum essential medium with 10% calf serum in culture. These SMC at early subpassages were suspended (3-5 x 10/sup 7/ cells/ml) in phosphate-buffered saline and incubated with (/sup 125/I)R-BSA (10 pmol)more » in the presence or absence of 200-fold unlabeled R-BSA, TGP, BSA, rutin, quercetin or related polyphenols, and catecholamines. Binding of (/sup 125/I)R-BSA to SMC was found to be reproducible and the radioligand was displaced by R-BSA, and also by TGP, rutin, quercetin, and chlorogenic acid, but not by BSA, ellagic acid, naringin, hesperetin, dopamine, epinephrine, or isoproterenol. The binding was saturable, reversible, and pH-dependent. These results demonstrate the presence of specific binding sites for quercetinon arterial SMC.« less
Cui, Xian-Wei; Xiao, Wen; Ji, Chen-Bo; Tian, Ai-Ying; Zhang, Jie; Zhang, Shuang-Quan
2012-05-01
Here we describe the identification of the hedgehog Erinaceus europaeus homologue of a proliferation-inducing ligand (APRIL) of the TNF family (designated heAPRIL). Hedgehog APRIL contains two cysteine residues (Cys(196) and Cys(211)), a furin protease cleavage site and a conserved putative N-glycosylation site (Asn(124)). Real-time quantitative PCR (qPCR) analysis revealed that heAPRIL could be detected in various tissues. MTT assays and flow cytometric analysis revealed that Nus-hesAPRIL and hesAPRIL could promote the survival/proliferation of splenic B cells. Laser scanning confocal microscopy analysis showed GFP-hesAPRIL could successfully bind to the APRIL receptors of lymphocytes.
Lo, Hsueh-Hsia; Cheng, Wei-Shan
2015-01-01
Distribution of virulence factors and association with emm polymorphism or isolation site among beta-hemolytic group G Streptococcus dysgalactiae subspecies equisimilis. Streptococcus dysgalactiae subspecies equisimilis (SDSE), the dominant human pathogenic species among group G streptococci, is the causative agent of several invasive and non-invasive diseases worldwide. However, limited information is available about the distribution of virulence factors among SDSE isolates, or their association with emm types and the isolation sites. In this study, 246 beta-hemolytic group G SDSE isolates collected in central Taiwan between February 2007 and August 2011 were under investigation. Of these, 66 isolates were obtained from normally sterile sites and 180 from non-sterile sites. emm typing revealed 32 types, with the most prevalent one being stG10.0 (39.8%), followed by stG245.0 (15.4%), stG840.0 (12.2%), stG6.1 (7.7%), and stG652.0 (4.1%). The virulence genes lmb (encoding laminin-binding protein), gapC (glyceraldehyde 3-phosphate dehydrogenase), sagA (streptolysin S), and hylB (hyaluronidase) existed in all isolates. Also, 99.2% of the isolates possessed slo (streptolysin O) and scpA (C5a peptidase) genes. In addition, 72.8%, 14.6%, 9.4%, and 2.4% of the isolates possessed the genes ska (streptokinase), cbp (putative collagen-binding protein, SDEG_1781), fbp (putative fibronectin-binding protein, SDEG_0161), and sicG (streptococcal inhibitor of complement), respectively. The only superantigen gene detected was spegg (streptococcus pyrogenic exotoxin G(dys) ), which was possessed by 74.4% of the isolates; these isolates correlated with non-sterile sites. Positive correlations were observed between the following emm types and virulence genes: stG10.0 and stG840.0 with spegg, stG6.1 and stG652.0 with ska, and stG840.0 with cbp. On the other hand, negative correlations were observed between the following: stG245.0, stG6.1, and stG652.0 types with spegg, stG10.0 with ska, and stG10.0, stG245.0, and stG6.1 types with cbp. The prevalence of emm types of SDSE in central Taiwan was investigated for the first time. Moreover, the distribution of virulence factors among beta-hemolytic group G SDSE isolates, as well as their association with emm types or isolation sites were also examined. © 2014 APMIS. Published by John Wiley & Sons Ltd.
Interaction of a dinoflagellate neurotoxin with voltage-activated ion channels in a marine diatom.
Kitchen, Sheila A; Bourdelais, Andrea J; Taylor, Alison R
2018-01-01
The potent neurotoxins produced by the harmful algal bloom species Karenia brevis are activators of sodium voltage-gated channels (VGC) in animals, resulting in altered channel kinetics and membrane hyperexcitability. Recent biophysical and genomic evidence supports widespread presence of homologous sodium (Na + ) and calcium (Ca 2+ ) permeable VGCs in unicellular algae, including marine phytoplankton. We therefore hypothesized that VGCs of these phytoplankton may be an allelopathic target for waterborne neurotoxins produced by K. brevis blooms that could lead to ion channel dysfunction and disruption of signaling in a similar manner to animal Na + VGCs. We examined the interaction of brevetoxin-3 (PbTx-3), a K. brevis neurotoxin, with the Na + /Ca 2+ VGC of the non-toxic diatom Odontella sinensi s using electrophysiology. Single electrode current- and voltage- clamp recordings from O. sinensis in the presence of PbTx-3 were used to examine the toxin's effect on voltage gated Na + /Ca 2+ currents. In silico analysis was used to identify the putative PbTx binding site in the diatoms. We identified Na + /Ca 2+ VCG homologs from the transcriptomes and genomes of 12 diatoms, including three transcripts from O. sinensis and aligned them with site-5 of Na + VGCs, previously identified as the PbTx binding site in animals. Up to 1 µM PbTx had no effect on diatom resting membrane potential or membrane excitability. The kinetics of fast inward Na + /Ca 2+ currents that underlie diatom action potentials were also unaffected. However, the peak inward current was inhibited by 33%, delayed outward current was inhibited by 25%, and reversal potential of the currents shifted positive, indicating a change in permeability of the underlying channels. Sequence analysis showed a lack of conservation of the PbTx binding site in diatom VGC homologs, many of which share molecular features more similar to single-domain bacterial Na + /Ca 2+ VGCs than the 4-domain eukaryote channels. Although membrane excitability and the kinetics of action potential currents were unaffected, the permeation of the channels underlying the diatom action potential was significantly altered in the presence of PbTx-3. However, at environmentally relevant concentrations the effects of PbTx- on diatom voltage activated currents and interference of cell signaling through this pathway may be limited. The relative insensitivity of phytoplankton VGCs may be due to divergence of site-5 (the putative PbTx binding site), and in some cases, such as O. sinensis , resistance to toxin effects may be because of evolutionary loss of the 4-domain eukaryote channel, while retaining a single domain bacterial-like VGC that can substitute in the generation of fast action potentials.
NASA Astrophysics Data System (ADS)
Lawrenz, Morgan E.; Salter, E. A.; Wierzbicki, Andrzej; Thompson, W. J.
Cyclic nucleotide phosphodiesterases (PDEs) comprise a superfamily of enzymes that hydrolyze the second messengers adenosine and guanosine 3',5'-cyclic monophosphate (cAMP and cGMP) to their noncyclic nucleotides (5'-AMP and 5'-GMP). Selective inhibitors of all 11 gene families of PDEs are being sought based on the different biochemical properties of the different isoforms, including their substrate specificities. The PDE4 gene family consists of cAMP-specific isoforms; selective PDE4 inhibitors such as rolipram have been developed, and related agents are used clinically as anti-inflammatory agents for asthma and COPD. The known crystal structures of PDE4 bound with rolipram and IBMX have allowed us to define plausible binding orientations for a novel class of benzylpyridazinone-based PDE4 inhibitors represented by EMD 94360 and EMD 95832 that are structurally distinct from rolipram. Molecular mechanics modeling with autodocking is used to explore energetically favorable binding orientations within the PDE4 catalytic site. We present two putative orientations for EMD 94360/95832 inhibitor binding. Our estimated interaction energies for rolipram, IBMX, EMD 94360, and EMD 95832 are consistent with the experimental data for their IC50 values. Key binding residues and interactions in these orientations are identified and compared with known binding motifs proposed for rolipram. The experimentally observed improved strength of inhibition exhibited by this novel class of PDE4 inhibitors is explained by the molecular modeling reported here.
Alqarni, Mohammed; Myint, Kyaw Zeyar; Tong, Qin; Yang, Peng; Bartlow, Patrick; Wang, Lirong; Feng, Rentian; Xie, Xiang-Qun
2014-09-26
We performed molecular modeling and docking to predict a putative binding pocket and associated ligand-receptor interactions for human cannabinoid receptor 2 (CB2). Our data showed that two hydrophobic residues came in close contact with three structurally distinct CB2 ligands: CP-55,940, SR144528 and XIE95-26. Site-directed mutagenesis experiments and subsequent functional assays implicated the roles of Valine residue at position 3.32 (V113) and Leucine residue at position 5.41 (L192) in the ligand binding function and downstream signaling activities of the CB2 receptor. Four different point mutations were introduced to the wild type CB2 receptor: V113E, V113L, L192S and L192A. Our results showed that mutation of Val113 with a Glutamic acid and Leu192 with a Serine led to the complete loss of CB2 ligand binding as well as downstream signaling activities. Substitution of these residues with those that have similar hydrophobic side chains such as Leucine (V113L) and Alanine (L192A), however, allowed CB2 to retain both its ligand binding and signaling functions. Our modeling results validated by competition binding and site-directed mutagenesis experiments suggest that residues V113 and L192 play important roles in ligand binding and downstream signaling transduction of the CB2 receptor. Copyright © 2014 Elsevier Inc. All rights reserved.
Honda, Takashi; Morimoto, Daichi; Sako, Yoshihiko; Yoshida, Takashi
2018-05-17
Previously, we showed that DNA replication and cell division in toxic cyanobacterium Microcystis aeruginosa are coordinated by transcriptional regulation of cell division gene ftsZ and that an unknown protein specifically bound upstream of ftsZ (BpFz; DNA-binding protein to an upstream site of ftsZ) during successful DNA replication and cell division. Here, we purified BpFz from M. aeruginosa strain NIES-298 using DNA-affinity chromatography and gel-slicing combined with gel electrophoresis mobility shift assay (EMSA). The N-terminal amino acid sequence of BpFz was identified as TNLESLTQ, which was identical to that of transcription repressor LexA from NIES-843. EMSA analysis using mutant probes showed that the sequence GTACTAN 3 GTGTTC was important in LexA binding. Comparison of the upstream regions of lexA in the genomes of closely related cyanobacteria suggested that the sequence TASTRNNNNTGTWC could be a putative LexA recognition sequence (LexA box). Searches for TASTRNNNNTGTWC as a transcriptional regulatory site (TRS) in the genome of M. aeruginosa NIES-843 showed that it was present in genes involved in cell division, photosynthesis, and extracellular polysaccharide biosynthesis. Considering that BpFz binds to the TRS of ftsZ during normal cell division, LexA may function as a transcriptional activator of genes related to cell reproduction in M. aeruginosa, including ftsZ. This may be an example of informality in the control of bacterial cell division.
Gonsky, R; Deem, R L; Bream, J H; Young, H A; Targan, S R
2006-07-01
This study examines mucosa-specific regulatory pathways involved in modulation of interferon-gamma (IFN-gamma) in lamina propria T cells. Previous studies identified mucosa-specific CD2 cis-elements within the -204 to -108 bp IFNG promoter. Within this region, a single-site nucleotide polymorphism, -179G/T, imparts tumor necrosis factor-alpha stimulation of IFNG in peripheral blood lymphocytes, and is linked with accelerated AIDS progression. We discovered a putative estrogen response element (ERE) introduced by the -179T, which displays selective activation in peripheral blood mononuclear cells (PBMC) vs lamina propria mononuclear cells (LPMC). Transfection of PBMC with constructs containing the -179G or -179T site revealed CD2-mediated enhancement of the -179T compared to -179G allele, although, in LPMC, a similar level of expression was detected. Electrophoretic mobility shift assay (EMSA) analysis demonstrated CD2-mediated nucleoprotein binding to the -179T but not the -179G in PBMC. In LPMC, binding is constitutive to both -179G and -179T regions. Sequence and EMSA analysis suggests that the -179T allele creates an ERE-like binding site capable of binding recombinant estrogen receptor. Estrogen response element transactivation is enhanced by CD2 signaling, but inhibited by estrogen in PBMC but not in LPMC, although expression of estrogen receptor was similar. This is the first report to describe a potential molecular mechanism responsible for selectively controlling IFN-gamma production in LPMC.
Song, Peng; Zhu, Haixia; Zhang, Dong; Chu, Haiyan; Wu, Dongmei; Kang, Meiyun; Wang, Meilin; Gong, Weida; Zhou, Jianwei; Zhang, Zhengdong; Zhao, Qinghong
2014-11-17
Single nucleotide polymorphisms (SNPs) in the 3'-untranslated regions targeted by putative mircoRNA can change its binding strength, affecting the susceptibility and prognosis of cancer. We aimed to investigate the associations between SNPs within miR-148a binding sites and gastric cancer (GC) risk and prognosis. Using bioinformatics tools, we selected two SNPs (SCRN1 rs6976789 and PDYN rs2235749) located in miR-148a target sites. We genotyped the two SNPs in a case-control study comprising 753 GC patients and 949 cancer-free subjects. We found a significantly increased risk of GC associated with the SCRN1 rs6976789 C>T polymorphism [adjusted OR = 1.25, 95% confidence interval (CI) = 1.02-1.53; CT/TT vs. CC]. However, no significant association was found between the PDYN rs2235749 and GC risk in all genetic models. Furthermore, we evaluated whether SCRN1 rs6976789 affected the survival of GC patients. Results showed that individuals with SCRN1 rs6976789 TT genotype had poorer overall survival compared with those carried CC/CT genotypes in intestinal-type GC (adjusted HR = 2.47, 95% CI = 1.21-5.05). Luciferase report assay showed that the rs6976789 variant T allele influenced the binding ability of miR-148a. Our results suggested that the SCRN1 rs6976789 polymorphism may play an important role in the GC development and progression.
Nakano, Shogo; Okazaki, Seiji; Ishitsubo, Erika; Kawahara, Nobuhiro; Komeda, Hidenobu; Tokiwa, Hiroaki; Asano, Yasuhisa
2015-01-01
Alkaline D-peptidase from Bacillus cereus DF4-B, called ADP, is a D-stereospecific endopeptidase reacting with oligopeptides containing D-phenylalanine (D-Phe) at N-terminal penultimate residue. ADP has attracted increasing attention because it is useful as a catalyst for synthesis of D-Phe oligopeptides or, with the help of substrate mimetics, L-amino acid peptides and proteins. Structure and functional analysis of ADP is expected to elucidate molecular mechanism of ADP. In this study, the crystal structure of ADP (apo) form was determined at 2.1 Å resolution. The fold of ADP is similar to that of the class C penicillin-binding proteins of type-AmpH. Docking simulations and fragment molecular orbital analyses of two peptides, (D-Phe)4 and (D-Phe)2-(L-Phe)2, with the putative substrate binding sites of ADP indicated that the P1 residue of the peptide interacts with hydrophobic residues at the S1 site of ADP. Furthermore, molecular dynamics simulation of ADP for 50 nsec suggested that the ADP forms large cavity at the active site. Formation of the cavity suggested that the ADP has open state in the solution. For the ADP, having the open state is convenient to bind the peptides having bulky side chain, such as (D-Phe)4. Taken together, we predicted peptide recognition mechanism of ADP. PMID:26370172
Predicting protein-binding RNA nucleotides with consideration of binding partners.
Tuvshinjargal, Narankhuu; Lee, Wook; Park, Byungkyu; Han, Kyungsook
2015-06-01
In recent years several computational methods have been developed to predict RNA-binding sites in protein. Most of these methods do not consider interacting partners of a protein, so they predict the same RNA-binding sites for a given protein sequence even if the protein binds to different RNAs. Unlike the problem of predicting RNA-binding sites in protein, the problem of predicting protein-binding sites in RNA has received little attention mainly because it is much more difficult and shows a lower accuracy on average. In our previous study, we developed a method that predicts protein-binding nucleotides from an RNA sequence. In an effort to improve the prediction accuracy and usefulness of the previous method, we developed a new method that uses both RNA and protein sequence data. In this study, we identified effective features of RNA and protein molecules and developed a new support vector machine (SVM) model to predict protein-binding nucleotides from RNA and protein sequence data. The new model that used both protein and RNA sequence data achieved a sensitivity of 86.5%, a specificity of 86.2%, a positive predictive value (PPV) of 72.6%, a negative predictive value (NPV) of 93.8% and Matthews correlation coefficient (MCC) of 0.69 in a 10-fold cross validation; it achieved a sensitivity of 58.8%, a specificity of 87.4%, a PPV of 65.1%, a NPV of 84.2% and MCC of 0.48 in independent testing. For comparative purpose, we built another prediction model that used RNA sequence data alone and ran it on the same dataset. In a 10 fold-cross validation it achieved a sensitivity of 85.7%, a specificity of 80.5%, a PPV of 67.7%, a NPV of 92.2% and MCC of 0.63; in independent testing it achieved a sensitivity of 67.7%, a specificity of 78.8%, a PPV of 57.6%, a NPV of 85.2% and MCC of 0.45. In both cross-validations and independent testing, the new model that used both RNA and protein sequences showed a better performance than the model that used RNA sequence data alone in most performance measures. To the best of our knowledge, this is the first sequence-based prediction of protein-binding nucleotides in RNA which considers the binding partner of RNA. The new model will provide valuable information for designing biochemical experiments to find putative protein-binding sites in RNA with unknown structure. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Roy, Amit; Das, Sampa
2015-01-01
Colocasia esculenta tuber agglutinin (CEA), a mannose binding lectin, exhibits insecticidal efficacy against different hemipteran pests. Dysdercus cingulatus, red cotton bug (RCB), has also shown significant susceptibility to CEA intoxication. However, the molecular basis behind such entomotoxicity of CEA has not been addressed adequately. The present study elucidates the mechanism of insecticidal efficacy of CEA against RCB. Confocal and scanning electron microscopic analyses documented CEA binding to insect midgut tissue, resulting in an alteration of perimicrovillar membrane (PMM) morphology. Internalization of CEA into insect haemolymph and ovary was documented by western blotting analyses. Ligand blot followed by mass spectrometric identification revealed the cognate binding partners of CEA as actin, ATPase and cytochrome P450. Deglycosylation and mannose inhibition assays indicated the interaction to probably be mannose mediated. Bioinformatic identification of putative glycosylation or mannosylation sites in the binding partners further supports the sugar mediated interaction. Correlating entomotoxicity of CEA with immune histological and binding assays to the insect gut contributes to a better understanding of the insecticidal potential of CEA and endorses its future biotechnological application.
BPF-1, a pathogen-induced DNA-binding protein involved in the plant defense response.
da Costa e Silva, O; Klein, L; Schmelzer, E; Trezzini, G F; Hahlbrock, K
1993-07-01
The mechanisms by which plants restrict the growth of pathogens include transient activation of numerous defense-related genes. Box P is a putative cis-acting element of a distinct group of such genes, including those encoding the enzyme phenylalanine ammonialyase (PAL). A DNA-binding activity to Box P was identified in nuclear extracts from cultured parsley cells and a cDNA encoding the protein BPF-1 (Box P-binding Factor) partially characterized. BPF-1 binds to this element with specificity similar to that of the binding activity in nuclear extracts. BPF-1 mRNA accumulates rapidly in elicitor-treated parsley cells and around fungal infection sites on parsley leaves. This accumulation is, at least partly, due to a rapid and transient increase in the transcription rate of BPF-1. Moreover, tight correlation between the relative amounts of BPF-1 and PAL mRNAs was observed in different organs of a parsley plant. These results are consistent with the hypothesis that BPF-1 is involved in disease resistance by modulating plant defense gene expression.
Csermely, P; Szamel, M; Resch, K; Somogyi, J
1988-05-15
In the primary structure of protein kinase C, the presence of a putative metal-binding site has been suggested (Parker, P.J., Coussens, L., Totty, N., Rhee, L., Young, S., Chen, E., Stabel, S., Waterfield, M.D., and Ullrich, A. (1986) Science 233, 853-859). In the present report, we demonstrate that the most abundant intracellular heavy metal, zinc, can increase the activity of cytosolic protein kinase C. Zinc reversibly binds the enzyme to plasma membranes, and it may contribute to the calcium-induced binding as well. The intracellular heavy metal chelator N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine prevents the phorbol ester- and antigen-induced translocation of protein kinase C. This effect can be totally reversed by the concomitant addition of Zn2+, while Fe2+ and Mn2+ are only partially counteractive. Our results suggest that zinc can activate protein kinase C and contributes to its binding to plasma membranes in T lymphocytes induced by Ca2+, phorbol ester, or antigen.
Snake Cytotoxins Bind to Membranes via Interactions with Phosphatidylserine Head Groups of Lipids
Konshina, Anastasia G.; Boldyrev, Ivan A.; Utkin, Yuri N.; Omel'kov, Anton V.; Efremov, Roman G.
2011-01-01
The major representatives of Elapidae snake venom, cytotoxins (CTs), share similar three-fingered fold and exert diverse range of biological activities against various cell types. CT-induced cell death starts from the membrane recognition process, whose molecular details remain unclear. It is known, however, that the presence of anionic lipids in cell membranes is one of the important factors determining CT-membrane binding. In this work, we therefore investigated specific interactions between one of the most abundant of such lipids, phosphatidylserine (PS), and CT 4 of Naja kaouthia using a combined, experimental and modeling, approach. It was shown that incorporation of PS into zwitterionic liposomes greatly increased the membrane-damaging activity of CT 4 measured by the release of the liposome-entrapped calcein fluorescent dye. The CT-induced leakage rate depends on the PS concentration with a maximum at approximately 20% PS. Interestingly, the effects observed for PS were much more pronounced than those measured for another anionic lipid, sulfatide. To delineate the potential PS binding sites on CT 4 and estimate their relative affinities, a series of computer simulations was performed for the systems containing the head group of PS and different spatial models of CT 4 in aqueous solution and in an implicit membrane. This was done using an original hybrid computational protocol implementing docking, Monte Carlo and molecular dynamics simulations. As a result, at least three putative PS-binding sites with different affinities to PS molecule were delineated. Being located in different parts of the CT molecule, these anion-binding sites can potentially facilitate and modulate the multi-step process of the toxin insertion into lipid bilayers. This feature together with the diverse binding affinities of the sites to a wide variety of anionic targets on the membrane surface appears to be functionally meaningful and may adjust CT action against different types of cells. PMID:21559494
Memory Effects of Benzodiazepines: Memory Stages and Types Versus Binding-Site Subtypes
Savić, Miroslav M.; Obradović, Dragan I.; Ugrešić, Nenad D.; Bokonjić, Dubravko R.
2005-01-01
Benzodiazepines are well established as inhibitory modulators of memory processing. This effect is especially prominent when applied before the acquisition phase of a memory task. This minireview concentrates on the putative subtype selectivity of the acquisition-impairing action of benzodiazepines. Namely, recent genetic studies and standard behavioral tests employing subtype-selective ligands pointed to the predominant involvement of two subtypes of benzodiazepine binding sites in memory modulation. Explicit memory learning seems to be affected through the GABAA receptors containing the α1 and α1 subunits, whereas the effects on procedural memory can be mainly mediated by the α1 subunit. The pervading involvement of the α1 subunit in memory modulation is not at all unexpected because this subunit is the major subtype, present in 60% of all GABAA receptors. On the other hand, the role of α5 subunits, mainly expressed in the hippocampus, in modulating distinct forms of memory gives promise of selective pharmacological coping with certain memory deficit states. PMID:16444900
Human adenosine A2A receptor binds calmodulin with high affinity in a calcium-dependent manner.
Piirainen, Henni; Hellman, Maarit; Tossavainen, Helena; Permi, Perttu; Kursula, Petri; Jaakola, Veli-Pekka
2015-02-17
Understanding how ligands bind to G-protein-coupled receptors and how binding changes receptor structure to affect signaling is critical for developing a complete picture of the signal transduction process. The adenosine A2A receptor (A2AR) is a particularly interesting example, as it has an exceptionally long intracellular carboxyl terminus, which is predicted to be mainly disordered. Experimental data on the structure of the A2AR C-terminus is lacking, because published structures of A2AR do not include the C-terminus. Calmodulin has been reported to bind to the A2AR C-terminus, with a possible binding site on helix 8, next to the membrane. The biological meaning of the interaction as well as its calcium dependence, thermodynamic parameters, and organization of the proteins in the complex are unclear. Here, we characterized the structure of the A2AR C-terminus and the A2AR C-terminus-calmodulin complex using different biophysical methods, including native gel and analytical gel filtration, isothermal titration calorimetry, NMR spectroscopy, and small-angle X-ray scattering. We found that the C-terminus is disordered and flexible, and it binds with high affinity (Kd = 98 nM) to calmodulin without major conformational changes in the domain. Calmodulin binds to helix 8 of the A2AR in a calcium-dependent manner that can displace binding of A2AR to lipid vesicles. We also predicted and classified putative calmodulin-binding sites in a larger group of G-protein-coupled receptors. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Ceccarelli, A; Zhukovskaya, N; Kawata, T; Bozzaro, S; Williams, J
2000-12-01
The ecmB gene of Dictyostelium is expressed at culmination both in the prestalk cells that enter the stalk tube and in ancillary stalk cell structures such as the basal disc. Stalk tube-specific expression is regulated by sequence elements within the cap-site proximal part of the promoter, the stalk tube (ST) promoter region. Dd-STATa, a member of the STAT transcription factor family, binds to elements present in the ST promoter-region and represses transcription prior to entry into the stalk tube. We have characterised an activatory DNA sequence element, that lies distal to the repressor elements and that is both necessary and sufficient for expression within the stalk tube. We have mapped this activator to a 28 nucleotide region (the 28-mer) within which we have identified a GA-containing sequence element that is required for efficient gene transcription. The Dd-STATa protein binds to the 28-mer in an in vitro binding assay, and binding is dependent upon the GA-containing sequence. However, the ecmB gene is expressed in a Dd-STATa null mutant, therefore Dd-STATa cannot be responsible for activating the 28-mer in vivo. Instead, we identified a distinct 28-mer binding activity in nuclear extracts from the Dd-STATa null mutant, the activity of this GA binding activity being largely masked in wild type extracts by the high affinity binding of the Dd-STATa protein. We suggest, that in addition to the long range repression exerted by binding to the two known repressor sites, Dd-STATa inhibits transcription by direct competition with this putative activator for binding to the GA sequence.
Hara, Yasushi; Hayashi, Kyohei; Nakajima, Takuya; Kagawa, Shizuko; Tazumi, Akihiro; Moore, John E; Matsuda, Motoo
2013-09-01
Clustered regularly interspaced short palindromic repeats (CRISPRs), of approximately 10,000 base pairs (bp) in length, were shown to occur in the Japanese Taylorella equigenitalis strain, EQ59. The locus was composed of the putative CRISPRs-associated with 5 (cas5), RAMP csd1, csd2, recB, cas1, a leader region, 13 CRISPR consensus sequence repeats (each 32 bp; 5'-TCAGCCACGTTCGCGTGGCTGTGTGTTTAAAG-3'). These were in turn separated by 12 non repetitive unique spacer regions of similar length. In addition, a leader region, a transposase/IS protein, a leader region, and cas3 were also seen. All seven putative open reading frames carry their ribosome binding sites. Promoter consensus sequences at the -35 and -10 regions and putative intrinsic ρ-independent transcription terminator regions also occurred. A possible long overlap of 170 bp in length occurred between the recB and cas1 loci. Positive reverse transcription PCR signals of cas5, RAMP csd1, csd2-recB/cas1, and cas3 were generated. A putative secondary structure of the CRISPR consensus repeats was constructed. Following this, CRISPR results of the T. equigenitalis EQ59 isolate were subsequently compared with those from the Taylorella asinigenitalis MCE3 isolate.
Grade, Carla Vermeulen Carvalho; Mantovani, Carolina Stefano; Fontoura, Marina Alves; Yusuf, Faisal; Brand-Saberi, Beate; Alvares, Lúcia Elvira
2017-10-01
Myostatin (MSTN) is a strong inhibitor of skeletal muscle growth in human and other vertebrates. Its transcription is controlled by a proximal promoter/enhancer (Mstn P/E) containing a TATA box besides CREB, NF-Y, MEIS1 and FXR transcription factor binding sites (TFBSs), which are conserved throughout evolution. The aim of this work was to investigate the role of these TFBSs on Mstn P/E activity and evaluate the potential of their putative ligands as Mstn trans regulators. Mstn P/E mutant constructs were used to establish the role of conserved TFBSs using dual-luciferase assays. Expression analyses were performed by RT-PCR and in situ hybridization in C2C12 myoblasts and E10.5 mouse embryos, respectively. Our results revealed that CREB, NF-Y and MEIS1 sites are required to balance Mstn P/E activity, keeping Mstn transcription within basal levels during myoblast proliferation. Furthermore, our data showed that NF-Y site is essential, although not sufficient, to mediate Mstn P/E transcriptional activity. In turn, CREB and MEIS1 binding sites seem to depend on the presence of NF-Y site to induce Mstn P/E. FXR appears not to confer any effect on Mstn P/E activity, except in the absence of all other conserved TFBS. Accordingly, expression studies pointed to CREB, NF-Y and MEIS1 but not to FXR factors as possible regulators of Mstn transcription in the myogenic context. Altogether, our findings indicated that CREB, NF-Y and MEIS1 conserved sites are essential to control basal Mstn transcription during early myogenesis, possibly by interacting with these or other related factors.
Characterization of the human UDP-galactose:ceramide galactosyltransferase gene promoter.
Tencomnao, T; Yu, R K; Kapitonov, D
2001-02-16
UDP-galactose:ceramide galactosyltransferase (CGT, EC 2.4.1.45) is a key enzyme in the biosynthesis of galactocerebroside, the most abundant glycosphingolipid in the myelin sheath. An 8 kb fragment upstream from the transcription initiation site of CGT gene was isolated from a human genomic DNA library. Primer extension analysis revealed a single transcription initiation site 329 bp upstream from the ATG start codon. Neither a consensus TATA nor a CCAAT box was identified in the proximity to the transcription start site; however, this region contains a high GC content and multiple putative regulatory elements. To investigate the transcriptional regulation of CGT, a series of 5' deletion constructs of the 5'-flanking region were generated and cloned upstream from the luciferase reporter gene. By comparing promoter activity in the human oligodendroglioma (HOG) and human neuroblastoma (LAN-5) cell lines, we found that the CGT promoter functions in a cell type-specific manner. Three positive cis-acting regulatory regions were identified, including a proximal region at -292/-256 which contains the potential binding sites for known transcription factors (TFs) such as Ets and SP1 (GC box), a distal region at -747/-688 comprising a number of binding sites such as the ERE half-site, NF1-like, TGGCA-BP, and CRE, and a third positive cis-acting region distally localized at -1325/-1083 consisting of binding sites for TFs such as nitrogen regulatory, TCF-1, TGGCA-BP, NF-IL6, CF1, bHLH, NF1-like, GATA, and gamma-IRE. A negative cis-acting domain localized in a far distal region at -1594/-1326 was also identified. Our results suggest the presence of both positive and negative cis-regulatory regions essential for the cell-specific expression in the TATA-less promoter of the human CGT gene.
Waligora, Elizabeth A.; Ramsey, Deborah M.; Pryor, Edward E.; Lu, Haiping; Hollis, Thomas; Sloan, Gina P.; Deora, Rajendar; Wozniak, Daniel J.
2010-01-01
AmrZ is a putative ribbon-helix-helix (RHH) transcriptional regulator. RHH proteins utilize residues within the β-sheet for DNA binding, while the α-helices promote oligomerization. AmrZ is of interest due to its dual roles as a transcriptional activator and as a repressor, regulating genes encoding virulence factors associated with both chronic and acute Pseudomonas aeruginosa infection. In this study, cross-linking revealed that AmrZ forms oligomers in solution but that the amino terminus, containing an unordered region and a β-sheet, were not required for oligomerization. The first 12 unordered residues (extended amino terminus) contributed minimally to DNA binding. Mutagenesis of the AmrZ β-sheet demonstrated that residues 18, 20, and 22 were essential for DNA binding at both activation and repressor sites, suggesting that AmrZ utilizes a similar mechanism for binding to these sites. Mice infected with amrZ mutants exhibited reduced bacterial burden, morbidity, and mortality. Direct in vivo competition assays showed a 5-fold competitive advantage for the wild type over an isogenic amrZ mutant. Finally, the reduced infection phenotype of the amrZ-null strain was similar to that of a strain expressing a DNA-binding-deficient AmrZ variant, indicating that DNA binding and transcriptional regulation by AmrZ is responsible for the in vivo virulence defect. These recent infection data, along with previously identified AmrZ-regulated virulence factors, suggest the necessity of AmrZ transcriptional regulation for optimal virulence during acute infection. PMID:20709902
Liu, Lijun; Ramsay, Trevor; Zinkgraf, Matthew; Sundell, David; Street, Nathaniel Robert; Filkov, Vladimir; Groover, Andrew
2015-06-01
Identifying transcription factor target genes is essential for modeling the transcriptional networks underlying developmental processes. Here we report a chromatin immunoprecipitation sequencing (ChIP-seq) resource consisting of genome-wide binding regions and associated putative target genes for four Populus homeodomain transcription factors expressed during secondary growth and wood formation. Software code (programs and scripts) for processing the Populus ChIP-seq data are provided within a publically available iPlant image, including tools for ChIP-seq data quality control and evaluation adapted from the human Encyclopedia of DNA Elements (ENCODE) project. Basic information for each transcription factor (including members of Class I KNOX, Class III HD ZIP, BEL1-like families) binding are summarized, including the number and location of binding regions, distribution of binding regions relative to gene features, associated putative target genes, and enriched functional categories of putative target genes. These ChIP-seq data have been integrated within the Populus Genome Integrative Explorer (PopGenIE) where they can be analyzed using a variety of web-based tools. We present an example analysis that shows preferential binding of transcription factor ARBORKNOX1 to the nearest neighbor genes in a pre-calculated co-expression network module, and enrichment for meristem-related genes within this module including multiple orthologs of Arabidopsis KNOTTED-like Arabidopsis 2/6. © 2015 Society for Experimental Biology and John Wiley & Sons Ltd This article has been contributed to by US Government employees and their work is in the public domain in the USA.
c-Fos downregulation positively regulates EphA5 expression in a congenital hypothyroidism rat model.
Song, Honghua; Zheng, Yuqin; Cai, Fuying; Ma, Yanyan; Yang, Jingyue; Wu, Youjia
2018-04-01
The EphA5 receptor is well established as an axon guidance molecule during neural system development and plays an important role in dendritic spine formation and synaptogenesis. Our previous study has showed that EphA5 is decreased in the developing brain of congenital hypothyroidism (CH) and the EphA5 promoter methylation modification participates in its decrease. c-Fos, a well-kown transcription factor, has been considered in association with brain development. Bioinformatics analysis showed that the EphA5 promoter region contained five putative c-fos binding sites. The chromatin immunoprecipitation (ChIP) assays were used to assess the direct binding of c-fos to the EphA5 promoter. Furthermore, dual-luciferase assays showed that these three c-fos protein binding sites were positive regulatory elements for EphA5 expression in PC12 cells. Moreover, We verified c-fos positively regulation for EphA5 expression in CH model. Q-PCR and Western blot showed that c-fos overexpression could upregulate EphA5 expression in hippocampal neurons of rats with CH. Our results suggest that c-fos positively regulates EphA5 expression in CH rat model.
A split motor domain in a cytoplasmic dynein
Straube, Anne; Enard, Wolfgang; Berner, Alexandra; Wedlich-Söldner, Roland; Kahmann, Regine; Steinberg, Gero
2001-01-01
The heavy chain of dynein forms a globular motor domain that tightly couples the ATP-cleavage region and the microtubule-binding site to transform chemical energy into motion along the cytoskeleton. Here we show that, in the fungus Ustilago maydis, two genes, dyn1 and dyn2, encode the dynein heavy chain. The putative ATPase region is provided by dyn1, while dyn2 includes the predicted microtubule-binding site. Both genes are located on different chromosomes, are transcribed into independent mRNAs and are translated into separate polypeptides. Both Dyn1 and Dyn2 co-immunoprecipitated and co-localized within growing cells, and Dyn1–Dyn2 fusion proteins partially rescued mutant phenotypes, suggesting that both polypeptides interact to form a complex. In cell extracts the Dyn1–Dyn2 complex dissociated, and microtubule affinity purification indicated that Dyn1 or associated polypeptides bind microtubules independently of Dyn2. Both Dyn1 and Dyn2 were essential for cell survival, and conditional mutants revealed a common role in nuclear migration, cell morphogenesis and microtubule organization, indicating that the Dyn1–Dyn2 complex serves multiple cellular functions. PMID:11566874
Ashworth, Justin; Plaisier, Christopher L.; Lo, Fang Yin; Reiss, David J.; Baliga, Nitin S.
2014-01-01
Widespread microbial genome sequencing presents an opportunity to understand the gene regulatory networks of non-model organisms. This requires knowledge of the binding sites for transcription factors whose DNA-binding properties are unknown or difficult to infer. We adapted a protein structure-based method to predict the specificities and putative regulons of homologous transcription factors across diverse species. As a proof-of-concept we predicted the specificities and transcriptional target genes of divergent archaeal feast/famine regulatory proteins, several of which are encoded in the genome of Halobacterium salinarum. This was validated by comparison to experimentally determined specificities for transcription factors in distantly related extremophiles, chromatin immunoprecipitation experiments, and cis-regulatory sequence conservation across eighteen related species of halobacteria. Through this analysis we were able to infer that Halobacterium salinarum employs a divergent local trans-regulatory strategy to regulate genes (carA and carB) involved in arginine and pyrimidine metabolism, whereas Escherichia coli employs an operon. The prediction of gene regulatory binding sites using structure-based methods is useful for the inference of gene regulatory relationships in new species that are otherwise difficult to infer. PMID:25255272
Ashworth, Justin; Plaisier, Christopher L; Lo, Fang Yin; Reiss, David J; Baliga, Nitin S
2014-01-01
Widespread microbial genome sequencing presents an opportunity to understand the gene regulatory networks of non-model organisms. This requires knowledge of the binding sites for transcription factors whose DNA-binding properties are unknown or difficult to infer. We adapted a protein structure-based method to predict the specificities and putative regulons of homologous transcription factors across diverse species. As a proof-of-concept we predicted the specificities and transcriptional target genes of divergent archaeal feast/famine regulatory proteins, several of which are encoded in the genome of Halobacterium salinarum. This was validated by comparison to experimentally determined specificities for transcription factors in distantly related extremophiles, chromatin immunoprecipitation experiments, and cis-regulatory sequence conservation across eighteen related species of halobacteria. Through this analysis we were able to infer that Halobacterium salinarum employs a divergent local trans-regulatory strategy to regulate genes (carA and carB) involved in arginine and pyrimidine metabolism, whereas Escherichia coli employs an operon. The prediction of gene regulatory binding sites using structure-based methods is useful for the inference of gene regulatory relationships in new species that are otherwise difficult to infer.
Transcriptional analysis of the bglP gene from Streptococcus mutans.
Cote, Christopher K; Honeyman, Allen L
2006-04-21
An open reading frame encoding a putative antiterminator protein, LicT, was identified in the genomic sequence of Streptococcus mutans. A potential ribonucleic antitermination (RAT) site to which the LicT protein would potentially bind has been identified immediately adjacent to this open reading frame. The licT gene and RAT site are both located 5' to a beta-glucoside PTS regulon previously described in S. mutans that is responsible for esculin utilization in the presence of glucose. It was hypothesized that antitermination is the regulatory mechanism that is responsible for the control of the bglP gene expression, which encodes an esculin-specific PTS enzyme II. To localize the promoter activity associated with the bglP locus, a series of transcriptional lacZ gene fusions was formed on a reporter shuttle vector using various DNA fragments from the bglP promoter region. Subsequent beta-galactosidase assays in S. mutans localized the bglP promoter region and identified putative -35 and -10 promoter elements. Primer extension analysis identified the bglP transcriptional start site. In addition, a terminated bglP transcript formed by transcriptional termination was identified via transcript mapping experiments. The physical location of these genetic elements, the RAT site and the promoter regions, and the identification of a short terminated mRNA support the hypothesis that antitermination regulates the bglP transcript.
Transcriptional analysis of the bglP gene from Streptococcus mutans
Cote, Christopher K; Honeyman, Allen L
2006-01-01
Background An open reading frame encoding a putative antiterminator protein, LicT, was identified in the genomic sequence of Streptococcus mutans. A potential ribonucleic antitermination (RAT) site to which the LicT protein would potentially bind has been identified immediately adjacent to this open reading frame. The licT gene and RAT site are both located 5' to a beta-glucoside PTS regulon previously described in S. mutans that is responsible for esculin utilization in the presence of glucose. It was hypothesized that antitermination is the regulatory mechanism that is responsible for the control of the bglP gene expression, which encodes an esculin-specific PTS enzyme II. Results To localize the promoter activity associated with the bglP locus, a series of transcriptional lacZ gene fusions was formed on a reporter shuttle vector using various DNA fragments from the bglP promoter region. Subsequent beta-galactosidase assays in S. mutans localized the bglP promoter region and identified putative -35 and -10 promoter elements. Primer extension analysis identified the bglP transcriptional start site. In addition, a terminated bglP transcript formed by transcriptional termination was identified via transcript mapping experiments. Conclusion The physical location of these genetic elements, the RAT site and the promoter regions, and the identification of a short terminated mRNA support the hypothesis that antitermination regulates the bglP transcript. PMID:16630357
Matsumoto, Yuiko; Buemio, Alvin; Chu, Randy; Vafaee, Mozhgon; Crews, David
2013-01-01
In the red-eared slider turtle (Trachemys scripta), a species with temperature-dependent sex determination (TSD), the expression of the aromatase gene during gonad development is strictly limited to the female-producing temperature. The underlying mechanism remains unknown. In this study, we identified the upstream 5′-flanking region of the aromatase gene, gonad-specific promoter, and the temperature-dependent DNA methylation signatures during gonad development in the red-eared slider turtle. The 5′-flanking region of the slider aromatase exhibited sequence similarities to the aromatase genes of the American alligator, chicken, quail, and zebra finch. A putative TATA box was located 31 bp upstream of the gonad-specific transcription start site. DNA methylation at the CpG sites between the putative binding sites of the fork head domain factor (FOX) and vertebrate steroidogenic factor 1 (SF1) and adjacent TATA box in the promoter region were significantly lower in embryonic gonads at the female-producing temperature compared the male-producing temperature. A shift from male- to female-, but not from female- to male-, producing temperature changed the level of DNA methylation in gonads. Taken together these results indicate that the temperature, particularly female-producing temperature, allows demethylation at the specific CpG sites of the promoter region which leads the temperature-specific expression of aromatase during gonad development. PMID:23762231
Mathupala, S P; Lowe, S E; Podkovyrov, S M; Zeikus, J G
1993-08-05
The complete nucleotide sequence of the gene encoding the dual active amylopullulanase of Thermoanaerobacter ethanolicus 39E (formerly Clostridium thermohydrosulfuricum) was determined. The structural gene (apu) contained a single open reading frame 4443 base pairs in length, corresponding to 1481 amino acids, with an estimated molecular weight of 162,780. Analysis of the deduced sequence of apu with sequences of alpha-amylases and alpha-1,6 debranching enzymes enabled the identification of four conserved regions putatively involved in substrate binding and in catalysis. The conserved regions were localized within a 2.9-kilobase pair gene fragment, which encoded a M(r) 100,000 protein that maintained the dual activities and thermostability of the native enzyme. The catalytic residues of amylopullulanase were tentatively identified by using hydrophobic cluster analysis for comparison of amino acid sequences of amylopullulanase and other amylolytic enzymes. Asp597, Glu626, and Asp703 were individually modified to their respective amide form, or the alternate acid form, and in all cases both alpha-amylase and pullulanase activities were lost, suggesting the possible involvement of 3 residues in a catalytic triad, and the presence of a putative single catalytic site within the enzyme. These findings substantiate amylopullulanase as a new type of amylosaccharidase.
Klomp, Adriana E M; Juijn, Jenneke A; van der Gun, Linda T M; van den Berg, Inge E T; Berger, Ruud; Klomp, Leo W J
2003-01-01
We have used indirect immunofluorescense studies and glycosylation-site insertion and deletion mapping to characterize the topology of human copper transporter 1 (hCTR1), the putative human high-affinity copper-import protein. Both approaches indicated that hCTR1 contains three transmembrane domains and that the N-terminus of hCTR1, which contains several putative copper-binding sites, is localized extracellularly, whereas the C-terminus is exposed to the cytosol. Based on previous observations that CTR1 proteins form high-molecular-mass complexes, we investigated directly whether CTR1 proteins interact with themselves. Yeast two-hybrid studies showed that interaction of yeast, mouse, rat and human CTR1 occurs at the sites of their N-terminal domains, and is not dependent on the copper concentration in the growth media. Analysis of deletion constructs indicated that multiple regions in the N-terminus are essential for this self-interaction. In contrast, the N-terminal tail of the presumed low-affinity copper transporter, hCTR2, does not interact with itself. Taken together, these results suggest that CTR1 spans the membrane at least six times, permitting formation of a channel, which is consistent with its proposed role as a copper transporter. PMID:12466020
Catteau, Aurélie; Rosewell, Ian; Solomon, Ellen; Taylor-Papadimitriou, Joyce
2004-07-01
The recently cloned gene PLU-1 shows restricted expression in adult tissues, with high expression being found in testis, and transiently in the pregnant mammary gland. However, both the gene and the protein product are specifically up-regulated in breast cancer. To investigate the control of expression of the PLU-1 gene, we have cloned and functionally characterised the 5' flanking region of the gene, which was found to contain another putative gene. Two transcription start sites of the PLU-1 gene were mapped by 5' RACE. A short proximal 249 bp region was defined using reporter gene assays, which encompasses the major transcription start site and exhibits a strong constitutive promoter activity in all cell lines tested. However, regions upstream of this sequence repress transcription more effectively in a non-malignant breast cell line as compared to breast cancer cell lines. The 249 bp region is GC-rich and includes consensus Sp1 sites, GC boxes, cAMP-responsive element (CRE) and other putative cis-elements. Mutational analysis showed that two intact conserved Sp1 binding sites (shown here to bind Sp1 and/or Sp3) are critical for constitutive promoter activity, while a negative role for a neighbouring GC box is indicated. The sequence of the core promoter is highly conserved in the mouse and Plu-1 expression in the mouse embryo has been documented. Using transgenesis, we therefore examined the ability of the 249 bp fragment to control expression of a reporter gene during embryogenesis. We found that not only is the core promoter sufficient to activate transcription in vivo, but that the expression of the reporter gene coincides both temporally and spatially with regions where endogenous Plu-1 is highly expressed. This suggests that tissue specific controlling elements are found within the short fragment and are functional in the embryonic environment.
Fang, Caiyun; Zhang, Lei; Zhang, Xiaoqin; Lu, Haojie
2015-06-21
Metal binding proteins play many important roles in a broad range of biological processes. Characterization of metal binding proteins is important for understanding their structure and biological functions, thus leading to a clear understanding of metal associated diseases. The present study is the first to investigate the effectiveness of magnetic microspheres functionalized with metal cations (Ca(2+), Cu(2+), Zn(2+) and Fe(3+)) as the absorbent matrix in IMAC technology to enrich metal containing/binding proteins. The putative metal binding proteins in rat liver were then globally characterized by using this strategy which is very easy to handle and can capture a number of metal binding proteins effectively. In total, 185 putative metal binding proteins were identified from rat liver including some known less abundant and membrane-bound metal binding proteins such as Plcg1, Acsl5, etc. The identified proteins are involved in many important processes including binding, catalytic activity, translation elongation factor activity, electron carrier activity, and so on.
Differential Sox10 Genomic Occupancy in Myelinating Glia
Lopez-Anido, Camila; Sun, Guannan; Koenning, Matthias; Srinivasan, Rajini; Hung, Holly A.; Emery, Ben; Keles, Sunduz; Svaren, John
2015-01-01
Myelin is formed by specialized myelinating glia: oligodendrocytes and Schwann cells in the central and peripheral nervous systems, respectively. While there are distinct developmental aspects and regulatory pathways in these two cell types, myelination in both systems requires the transcriptional activator Sox10. Sox10 interacts with cell type-specific transcription factors at some loci to induce myelin gene expression, but it is largely unknown how Sox10 transcriptional networks globally compare between oligodendrocytes and Schwann cells. We used in vivo ChIP-Seq analysis of spinal cord and peripheral nerve (sciatic nerve) to identify unique and shared Sox10 binding sites and assess their correlation with active enhancers and transcriptional profiles in oligodendrocytes and Schwann cells. Sox10 binding sites overlap with active enhancers and critical cell type-specific regulators of myelination, such as Olig2 and Myrf in oligodendrocytes, and Egr2/Krox20 in Schwann cells. Sox10 sites also associate with genes critical for myelination in both oligodendrocytes and Schwann cells, and are found within super-enhancers previously defined in brain. In Schwann cells, Sox10 sites contain binding motifs of putative partners in the Sp/Klf, Tead, and nuclear receptor protein families. Specifically, siRNA analysis of nuclear receptors Nr2f1 and Nr2f2 revealed downregulation of myelin genes Mbp and Ndrg1 in primary Schwann cells. Our analysis highlights different mechanisms that establish cell type-specific genomic occupancy of Sox10, which reflects the unique characteristics of oligodendrocyte and Schwann cell differentiation. PMID:25974668
Damienikan, Aliaksandr U.
2016-01-01
The majority of bacterial genome annotations are currently automated and based on a ‘gene by gene’ approach. Regulatory signals and operon structures are rarely taken into account which often results in incomplete and even incorrect gene function assignments. Here we present SigmoID, a cross-platform (OS X, Linux and Windows) open-source application aiming at simplifying the identification of transcription regulatory sites (promoters, transcription factor binding sites and terminators) in bacterial genomes and providing assistance in correcting annotations in accordance with regulatory information. SigmoID combines a user-friendly graphical interface to well known command line tools with a genome browser for visualising regulatory elements in genomic context. Integrated access to online databases with regulatory information (RegPrecise and RegulonDB) and web-based search engines speeds up genome analysis and simplifies correction of genome annotation. We demonstrate some features of SigmoID by constructing a series of regulatory protein binding site profiles for two groups of bacteria: Soft Rot Enterobacteriaceae (Pectobacterium and Dickeya spp.) and Pseudomonas spp. Furthermore, we inferred over 900 transcription factor binding sites and alternative sigma factor promoters in the annotated genome of Pectobacterium atrosepticum. These regulatory signals control putative transcription units covering about 40% of the P. atrosepticum chromosome. Reviewing the annotation in cases where it didn’t fit with regulatory information allowed us to correct product and gene names for over 300 loci. PMID:27257541
Moskvin, Oleg V; Bolotin, Dmitry; Wang, Andrew; Ivanov, Pavel S; Gomelsky, Mark
2011-02-01
We present Rhodobase, a web-based meta-analytical tool for analysis of transcriptional regulation in a model anoxygenic photosynthetic bacterium, Rhodobacter sphaeroides. The gene association meta-analysis is based on the pooled data from 100 of R. sphaeroides whole-genome DNA microarrays. Gene-centric regulatory networks were visualized using the StarNet approach (Jupiter, D.C., VanBuren, V., 2008. A visual data mining tool that facilitates reconstruction of transcription regulatory networks. PLoS ONE 3, e1717) with several modifications. We developed a means to identify and visualize operons and superoperons. We designed a framework for the cross-genome search for transcription factor binding sites that takes into account high GC-content and oligonucleotide usage profile characteristic of the R. sphaeroides genome. To facilitate reconstruction of directional relationships between co-regulated genes, we screened upstream sequences (-400 to +20bp from start codons) of all genes for putative binding sites of bacterial transcription factors using a self-optimizing search method developed here. To test performance of the meta-analysis tools and transcription factor site predictions, we reconstructed selected nodes of the R. sphaeroides transcription factor-centric regulatory matrix. The test revealed regulatory relationships that correlate well with the experimentally derived data. The database of transcriptional profile correlations, the network visualization engine and the optimized search engine for transcription factor binding sites analysis are available at http://rhodobase.org. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
The crystal structure of a cyanobacterial water-soluble carotenoid binding protein.
Kerfeld, Cheryl A; Sawaya, Michael R; Brahmandam, Vishnu; Cascio, Duilio; Ho, Kwok Ki; Trevithick-Sutton, Colleen C; Krogmann, David W; Yeates, Todd O
2003-01-01
Carotenoids undergo a wide range of photochemical reactions in animal, plant, and microbial systems. In photosynthetic organisms, in addition to light harvesting, they perform an essential role in protecting against light-induced damage by quenching singlet oxygen, superoxide anion radicals, or triplet-state chlorophyll. We have determined the crystal structure of a water-soluble orange carotenoid protein (OCP) isolated from the cyanobacterium Arthrospira maxima at a resolution of 2.1 A. OCP forms a homodimer with one carotenoid molecule per monomer. The carotenoid binding site is lined by a striking number of methionine residues. The structure reveals several possible ways in which the protein environment influences the spectral properties of the pigment and provides insight into how the OCP carries out its putative functions in photoprotection.
Noor, Sina Ibne; Dietz, Steffen; Heidtmann, Hella; Boone, Christopher D.; McKenna, Robert; Deitmer, Joachim W.; Becker, Holger M.
2015-01-01
Proton-coupled monocarboxylate transporters (MCTs) mediate the exchange of high energy metabolites like lactate between different cells and tissues. We have reported previously that carbonic anhydrase II augments transport activity of MCT1 and MCT4 by a noncatalytic mechanism, while leaving transport activity of MCT2 unaltered. In the present study, we combined electrophysiological measurements in Xenopus oocytes and pulldown experiments to analyze the direct interaction between carbonic anhydrase II (CAII) and MCT1, MCT2, and MCT4, respectively. Transport activity of MCT2-WT, which lacks a putative CAII-binding site, is not augmented by CAII. However, introduction of a CAII-binding site into the C terminus of MCT2 resulted in CAII-mediated facilitation of MCT2 transport activity. Interestingly, introduction of three glutamic acid residues alone was not sufficient to establish a direct interaction between MCT2 and CAII, but the cluster had to be arranged in a fashion that allowed access to the binding moiety in CAII. We further demonstrate that functional interaction between MCT4 and CAII requires direct binding of the enzyme to the acidic cluster 431EEE in the C terminus of MCT4 in a similar fashion as previously shown for binding of CAII to the cluster 489EEE in the C terminus of MCT1. In CAII, binding to MCT1 and MCT4 is mediated by a histidine residue at position 64. Taken together, our results suggest that facilitation of MCT transport activity by CAII requires direct binding between histidine 64 in CAII and a cluster of glutamic acid residues in the C terminus of the transporter that has to be positioned in surroundings that allow access to CAII. PMID:25561737
Kaufmann, Kristian W.; Dawson, Eric S.; Henry, L. Keith; Field, Julie R.; Blakely, Randy D.; Meiler, Jens
2009-01-01
To identify potential determinants of substrate selectivity in serotonin (5-HT) transporters (SERT), models of human and Drosophila serotonin transporters (hSERT, dSERT) were built based on the leucine transporter (LeuTAa) structure reported by Yamashita et al. (Nature 2005;437:215–223), PBDID 2A65. Although the overall amino acid identity between SERTs and the LeuTAa is only 17%, it increases to above 50% in the first shell of the putative 5-HT binding site, allowing de novo computational docking of tryptamine derivatives in atomic detail. Comparison of hSERT and dSERT complexed with substrates pinpoints likely structural determinants for substrate binding. Forgoing the use of experimental transport and binding data of tryptamine derivatives for construction of these models enables us to cHitically assess and validate their predictive power: A single 5-HT binding mode was identified that retains the amine placement observed in the LeuTAa structure, matches site-directed mutagenesis and substituted cysteine accessibility method (SCAM) data, complies with support vector machine derived relations activity relations, and predicts computational binding energies for 5-HT analogs with a significant correlation coefficient (R = 0.72). This binding mode places 5-HT deep in the binding pocket of the SERT with the 5-position near residue hSERT A169/dSERT D164 in transmembrane helix 3, the indole nitrogen next to residue Y176/Y171, and the ethylamine tail under residues F335/F327 and S336/S328 within 4 Å of residue D98. Our studies identify a number of potential contacts whose contribution to substrate binding and transport was previously unsuspected. PMID:18704946
Characterization of lithium coordination sites with magic-angle spinning NMR
NASA Astrophysics Data System (ADS)
Haimovich, A.; Goldbourt, A.
2015-05-01
Lithium, in the form of lithium carbonate, is one of the most common drugs for bipolar disorder. Lithium is also considered to have an effect on many other cellular processes hence it possesses additional therapeutic as well as side effects. In order to quantitatively characterize the binding mode of lithium, it is required to identify the interacting species and measure their distances from the metal center. Here we use magic-angle spinning (MAS) solid-state NMR to study the binding site of lithium in complex with glycine and water (LiGlyW). Such a compound is a good enzyme mimetic since lithium is four-coordinated to one water molecule and three carboxylic groups. Distance measurements to carbons are performed using a 2D transferred echo double resonance (TEDOR) MAS solid-state NMR experiment, and water binding is probed by heteronuclear high-resolution proton-lithium and proton-carbon correlation (wPMLG-HETCOR) experiments. Both HETCOR experiments separate the main complex from impurities and non-specifically bound lithium species, demonstrating the sensitivity of the method to probe the species in the binding site. Optimizations of the TEDOR pulse scheme in the case of a quadrupolar nucleus with a small quadrupole coupling constant show that it is most efficient when pulses are positioned on the spin-1/2 (carbon-13) nucleus. Since the intensity of the TEDOR signal is not normalized, careful data analysis that considers both intensity and dipolar oscillations has to be performed. Nevertheless we show that accurate distances can be extracted for both carbons of the bound glycine and that these distances are consistent with the X-ray data and with lithium in a tetrahedral environment. The lithium environment in the complex is very similar to the binding site in inositol monophosphatase, an enzyme associated with bipolar disorder and the putative target for lithium therapy. A 2D TEDOR experiment applied to the bacterial SuhB gene product of this enzyme was designed to probe direct correlations between lithium, the enzyme inhibitor, and the closest carboxyl carbons of the binding site. At this point, the chemical shift of the bound carboxyl groups in this 29 kDa enzyme could be determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ris-Stalpers, C.; Verleun-Mooijman, M.C.T.; Blaeij, T.J.P. de
1994-04-01
The analysis of the androgen receptor (AR) gene, mRNA, and protein in a subject with X-linked Reifenstein syndrome (partial androgen insensitivity) is reported. The presence of two mature AR transcripts in genital skin fibroblasts of the patient is established, and, by reverse transcriptase-PCR and RNase transcription analysis, the wild-type transcript and a transcript in which exon 3 sequences are absent without disruption of the translational reading frame are identified. Sequencing and hybridization analysis show a deletion of >6 kb in intron 2 of the human AR gene, starting 18 bp upstream of exon 3. The deletion includes the putative branch-pointmore » sequence (BPS) but not the acceptor splice site on the intron 2/exon 3 boundary. The deletion of the putative intron 2 BPS results in 90% inhibition of wild-type splicing. The mutant transcript encodes an AR protein lacking the second zinc finger of the DNA-binding domain. Western/immunoblotting analysis is used to show that the mutant AR protein is expressed in genital skin fibroblasts of the patient. The residual 10% wild-type transcript can be the result of the use of a cryptic BPS located 63 bp upstream of the intron 2/exon 3 boundary of the mutant AR gene. The mutated AR protein has no transcription-activating potential and does not influence the transactivating properties of the wild-type AR, as tested in cotransfection studies. It is concluded that the partial androgen-insensitivity syndrome of this patient is the consequence of the limited amount of wild-type AR protein expressed in androgen target cells, resulting from the deletion of the intron 2 putative BPS. 42 refs., 6 figs., 1 tab.« less
Eslami, Habib; Mohtashami, Seyed Kaveh; Basmanj, Maryam Taghavi; Rahati, Maryam; Rahimi, Hamzeh
2017-07-01
The enzyme amorphadiene synthase (ADS) conducts the first committed step in the biosynthetic conversion of the substrate farnesyl pyrophosphate (FPP) to artemisinin, which is a highly effective natural product against multidrug-resistant strains of malaria. Due to the either low abundance or low turn-over rate of the enzyme, obtaining artemisinin from both natural and synthetic sources is costly and laborious. In this in silico study, we strived to elucidate the substrate binding site specificities of the ADS, with the rational that unraveling enzyme features paves the way for enzyme engineering to increase synthesis rate. A homology model of the ADS from Artemisia annua L. was constructed based on the available crystal structure of the 5-epiaristolochene synthase (TEAS) and further analyzed with molecular dynamic simulations to determine residues forming the substrate recognition pocket. We also investigated the structural aspects of Mg 2+ binding. Results revealed DDYTD and NDLMT as metal-binding motifs in the putative active site gorge, which is composed of the D and H helixes and one loop region (aa519-532). Moreover, several representative residues including Tyr519, Asp444, Trp271, Asn443, Thr399, Arg262, Val292, Gly400 and Leu405, determine the FPP binding mode and its fate in terms of stereochemistry as well as the enzyme fidelity for the specific end product. These findings lead to inferences concerning key components of the ADS catalytic cavity, and provide evidence for the spatial localization of the FPP and Mg 2+ . Such detailed understanding will probably help to design an improved enzyme.
Rainger, Jacqueline K.; Bhatia, Shipra; Bengani, Hemant; Gautier, Philippe; Rainger, Joe; Pearson, Matt; Ansari, Morad; Crow, Jayne; Mehendale, Felicity; Palinkasova, Bozena; Dixon, Michael J.; Thompson, Pamela J.; Matarin, Mar; Sisodiya, Sanjay M.; Kleinjan, Dirk A.; FitzPatrick, David R.
2014-01-01
Heterozygous loss-of-function (LOF) mutations in the gene encoding the DNA-binding protein, SATB2, result in micrognathia and cleft palate in both humans and mice. In three unrelated individuals, we show that translocation breakpoints (BPs) up to 896 kb 3′ of SATB2 polyadenylation site cause a phenotype which is indistinguishable from that caused by SATB2 LOF mutations. This syndrome comprises long nose, small mouth, micrognathia, cleft palate, arachnodactyly and intellectual disability. These BPs map to a gene desert between PLCL1 and SATB2. We identified three putative cis-regulatory elements (CRE1–3) using a comparative genomic approach each of which would be placed in trans relative to SATB2 by all three BPs. CRE1–3 each bind p300 and mono-methylated H3K4 consistent with enhancer function. In silico analysis suggested that CRE1–3 contain one or more conserved SOX9-binding sites, and this binding was confirmed using chromatin immunoprecipitation on cells derived from mouse embryonic pharyngeal arch. Interphase bacterial artificial chromosome fluorescence in situ hybridization measurements in embryonic craniofacial tissues showed that the orthologous region in mice exhibits Satb2 expression-dependent chromatin decondensation consistent with Satb2 being a target gene of CRE1–3. To assess their in vivo function, we made multiple stable reporter transgenic lines for each enhancer in zebrafish. CRE2 was shown to drive SATB2-like expression in the embryonic craniofacial region. This expression could be eliminated by mutating the SOX9-binding site of CRE2. These observations suggest that SATB2 and SOX9 may be acting together via complex cis-regulation to coordinate the growth of the developing jaw. PMID:24363063
Wang, Zhiqiang; Kwon, Shin Hwa; Hwang, Seung Hwan; Kang, Young-Hee; Lee, Jae-Yong; Lim, Soon Sung
2017-03-24
The purpose of this study was to assess the possibility of using competitive binding experiments with ultrafiltration-HPLC analysis to identify potent xanthine oxidase (XO) inhibitors from the Perilla frutescens extract as an attempt to reduce the number of false positive results. To isolate the enzyme-ligand complex from unbound compounds, the P. frutescens extract was either incubated in the absence of XO, in the presence of XO, or with the active site blocked XO before the ultrafiltration was performed. Allopurinaol was used as the XO active site blocker. The unbound compounds were subjected to HPLC analysis. The degree of total binding (TBD) and degree of specific binding (SBD) of each compound were calculated using the peak areas. TBD represents the binding affinities of compounds from the P. frutescens extract for the XO binding site. SBD represents the XO competitive binding between allopurinol and ligands from the extract samples. Two criteria were applied to select putative targets that could help avoid false positives. These include TBD>30% and SBD>10%. Using that approach, kaempferol-3-O-rutinoside, rosmarinic acid, methyl-rosmarinic acid, apigenin, and 4',5,7-trimethoxyflavone were identified, from total 11 compounds, as potent XO inhibitors. Finally, apigenin, 4',5,7-trimethoxyflavone, and luteolin were XO inhibitors verified through an XO inhibition assay and structural simulation of the complex. These results showed that the newly developed strategy has the advantage that the number of targets identified via ultrafiltration-HPLC can be narrowed from many false positives. However, not all false positives can be eliminated with this approach. Some potent inhibitors might also be excluded with the use of this method. The limitations of this method are also discussed herein. Copyright © 2017 Elsevier B.V. All rights reserved.
Le, Hai Van; Kim, Jae Young
2016-06-01
Toll-like receptor 10 (TLR10) is the only orphan receptor whose natural ligand and function are unknown among the 10 human TLRs. In this study, to test whether TLR10 recognizes some known TLR ligands, we established a stable TLR10 knockdown human monocytic cell line THP-1 using TLR10 short hairpin RNA lentiviral particle and puromycin selection. Among 60 TLR10 knockdown clones that were derived from each single transduced cell, six clones were randomly selected, and then one of those clones, named E7, was chosen for the functional study. E7 exhibited approximately 50% inhibition of TLR10 mRNA and protein expression. Of all the TLRs, only the expression of TLR10 changed significantly in this cell line. Additionally, phorbol 12-myristate 13-acetate-induced macrophage differentiation of TLR10 knockdown cells was not affected in the knockdown cells. When exposed to TLR ligands, such as synthetic diacylated lipoprotein (FSL-1), lipopolysaccharide (LPS), and flagellin, significant induction of proinflammatory cytokine gene expression including Interleukin-8 (IL-8), Interleukin-1 beta (IL-1β), Tumor necrosis factor-alpha (TNF-α) and Chemokine (C-C Motif) Ligand 20 (CCL20) expression, was found in the control THP-1 cells, whereas the TLR10 knockdown cells exhibited a significant reduction in the expression of IL-8, IL-1β, and CCL20. TNF-α was the only cytokine for which the expression did not decrease in the TLR10 knockdown cells from that measured in the control cells. Analysis of putative binding sites for transcription factors using a binding-site-prediction program revealed that the TNF-α promoter does not have putative binding sites for AP-1 or c-Jun, comprising a major transcription factor along with NF-κB for TLR signaling. Our results suggest that TLR10 is involved in the recognition of FSL-1, LPS, and flagellin and TLR-ligand-induced expression of TNF-α does not depend on TLR10.
Structure of deformed wing virus, a major honey bee pathogen.
Škubník, Karel; Nováček, Jiří; Füzik, Tibor; Přidal, Antonín; Paxton, Robert J; Plevka, Pavel
2017-03-21
The worldwide population of western honey bees ( Apis mellifera ) is under pressure from habitat loss, environmental stress, and pathogens, particularly viruses that cause lethal epidemics. Deformed wing virus (DWV) from the family Iflaviridae , together with its vector, the mite Varroa destructor , is likely the major threat to the world's honey bees. However, lack of knowledge of the atomic structures of iflaviruses has hindered the development of effective treatments against them. Here, we present the virion structures of DWV determined to a resolution of 3.1 Å using cryo-electron microscopy and 3.8 Å by X-ray crystallography. The C-terminal extension of capsid protein VP3 folds into a globular protruding (P) domain, exposed on the virion surface. The P domain contains an Asp-His-Ser catalytic triad that is, together with five residues that are spatially close, conserved among iflaviruses. These residues may participate in receptor binding or provide the protease, lipase, or esterase activity required for entry of the virus into a host cell. Furthermore, nucleotides of the DWV RNA genome interact with VP3 subunits. The capsid protein residues involved in the RNA binding are conserved among honey bee iflaviruses, suggesting a putative role of the genome in stabilizing the virion or facilitating capsid assembly. Identifying the RNA-binding and putative catalytic sites within the DWV virion structure enables future analyses of how DWV and other iflaviruses infect insect cells and also opens up possibilities for the development of antiviral treatments.
Kamstra, Rhiannon L; Floriano, Wely B
2014-11-01
Carbonic anhydrase IX (CAIX) is a biomarker for tumor hypoxia. Fluorescent inhibitors of CAIX have been used to study hypoxic tumor cell lines. However, these inhibitor-based fluorescent probes may have a therapeutic effect that is not appropriate for monitoring treatment efficacy. In the search for novel fluorescent probes that are not based on known inhibitors, a database of 20,860 fluorescent compounds was virtually screened against CAIX using hierarchical virtual ligand screening (HierVLS). The screening database contained 14,862 compounds tagged with the ATTO680 fluorophore plus an additional 5998 intrinsically fluorescent compounds. Overall ranking of compounds to identify hit molecular probe candidates utilized a principal component analysis (PCA) approach. Four potential binding sites, including the catalytic site, were identified within the structure of the protein and targeted for virtual screening. Available sequence information for 23 carbonic anhydrase isoforms was used to prioritize the four sites based on the estimated "uniqueness" of each site in CAIX relative to the other isoforms. A database of 32 known inhibitors and 478 decoy compounds was used to validate the methodology. A receiver-operating characteristic (ROC) analysis using the first principal component (PC1) as predictive score for the validation database yielded an area under the curve (AUC) of 0.92. AUC is interpreted as the probability that a binder will have a better score than a non-binder. The use of first component analysis of binding energies for multiple sites is a novel approach for hit selection. The very high prediction power for this approach increases confidence in the outcome from the fluorescent library screening. Ten of the top scoring candidates for isoform-selective putative binding sites are suggested for future testing as fluorescent molecular probe candidates. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Wang, W.; Poovaiah, B. W.
1999-01-01
A chimeric Ca2+/calmodulin-dependent protein kinase (CCaMK) was previously cloned and characterized in this laboratory. To investigate the biological functions of CCaMK, the yeast two-hybrid system was used to isolate genes encoding proteins that interact with CCaMK. One of the cDNA clones obtained from the screening (LlEF-1alpha1) has high similarity with the eukaryotic elongation factor-1alpha (EF-1alpha). CCaMK phosphorylated LlEF-1alpha1 in a Ca2+/calmodulin-dependent manner. The phosphorylation site for CCaMK (Thr-257) was identified by site-directed mutagenesis. Interestingly, Thr-257 is located in the putative tRNA-binding region of LlEF-1alpha1. An isoform of Ca2+-dependent protein kinase (CDPK) phosphorylated multiple sites of LlEF-1alpha1 in a Ca2+-dependent but calmodulin-independent manner. Unlike CDPK, CCaMK phosphorylated only one site, and this site is different from CDPK phosphorylation sites. This suggests that the phosphorylation of EF-1alpha by these two kinases may have different functional significance. Although the phosphorylation of LlEF-1alpha1 by CCaMK is Ca2+/calmodulin-dependent, in vitro binding assays revealed that CCaMK binds to LlEF-1alpha1 in a Ca2+-independent manner. This was further substantiated by coimmunoprecipitation of CCaMK and EF-1alpha using the protein extract from lily anthers. Dissociation of CCaMK from EF-1alpha by Ca2+ and phosphorylation of EF-1alpha by CCaMK in a Ca2+/calmodulin-dependent manner suggests that these interactions may play a role in regulating the biological functions of EF-1alpha.
Mauricio-Castillo, J A; Torres-Herrera, S I; Cárdenas-Conejo, Y; Pastor-Palacios, G; Méndez-Lozano, J; Argüello-Astorga, G R
2014-09-01
A novel begomovirus isolated from a Sida rhombifolia plant collected in Sinaloa, Mexico, was characterized. The genomic components of sida mosaic Sinaloa virus (SiMSinV) shared highest sequence identity with DNA-A and DNA-B components of chino del tomate virus (CdTV), suggesting a vertical evolutionary relationship between these viruses. However, recombination analysis indicated that a short segment of SiMSinV DNA-A encompassing the plus-strand replication origin and the 5´-proximal 43 codons of the Rep gene was derived from tomato mottle Taino virus (ToMoTV). Accordingly, the putative cis- and trans-acting replication specificity determinants of SiMSinV were identical to those of ToMoTV but differed from those of CdTV. Modeling of the SiMSinV and CdTV Rep proteins revealed significant differences in the region comprising the small β1/β5 sheet element, where five putative DNA-binding specificity determinants (SPDs) of Rep (i.e., amino acid residues 5, 8, 10, 69 and 71) were previously identified. Computer-assisted searches of public databases led to identification of 33 begomoviruses from three continents encoding proteins with SPDs identical to those of the Rep encoded by SiMSinV. Sequence analysis of the replication origins demonstrated that all 33 begomoviruses harbor potential Rep-binding sites identical to those of SiMSinV. These data support the hypothesis that the Rep β1/β5 sheet region determines specificity of this protein for DNA replication origin sequences.
Konami, Y; Yamamoto, K; Osawa, T; Irimura, T
1995-04-01
The complete amino acid sequence of a lactose-binding Cytisus sessilifolius anti-H(O) lectin II (CSA-II) was determined using a protein sequencer. After digestion of CSA-II with endoproteinase Lys-C or Asp-N, the resulting peptides were purified by reversed-phase high performance liquid chromatography (HPLC) and then subjected to sequence analysis. Comparison of the complete amino acid sequence of CSA-II with the sequences of other leguminous seed lectins revealed regions of extensive homology. The amino acid sequence of a putative carbohydrate-binding domain of CSA-II was found to be similar to those of several anti-H(O) leguminous lectins, especially to that of the L-fucose-binding Ulex europaeus lectin I (UEA-I).
Conformational changes in the M2 muscarinic receptor induced by membrane voltage and agonist binding
Navarro-Polanco, Ricardo A; Galindo, Eloy G Moreno; Ferrer-Villada, Tania; Arias, Marcelo; Rigby, J Ryan; Sánchez-Chapula, José A; Tristani-Firouzi, Martin
2011-01-01
Abstract The ability to sense transmembrane voltage is a central feature of many membrane proteins, most notably voltage-gated ion channels. Gating current measurements provide valuable information on protein conformational changes induced by voltage. The recent observation that muscarinic G-protein-coupled receptors (GPCRs) generate gating currents confirms their intrinsic capacity to sense the membrane electrical field. Here, we studied the effect of voltage on agonist activation of M2 muscarinic receptors (M2R) in atrial myocytes and how agonist binding alters M2R gating currents. Membrane depolarization decreased the potency of acetylcholine (ACh), but increased the potency and efficacy of pilocarpine (Pilo), as measured by ACh-activated K+ current, IKACh. Voltage-induced conformational changes in M2R were modified in a ligand-selective manner: ACh reduced gating charge displacement while Pilo increased the amount of charge displaced. Thus, these ligands manifest opposite voltage-dependent IKACh modulation and exert opposite effects on M2R gating charge displacement. Finally, mutations in the putative ligand binding site perturbed the movement of the M2R voltage sensor. Our data suggest that changes in voltage induce conformational changes in the ligand binding site that alter the agonist–receptor interaction in a ligand-dependent manner. Voltage-dependent GPCR modulation has important implications for cellular signalling in excitable tissues. Gating current measurement allows for the tracking of subtle conformational changes in the receptor that accompany agonist binding and changes in membrane voltage. PMID:21282291
Shao, Jiaofang; Zhang, Jing; Zhang, Zengming; Jiang, Huawei; Lou, Xiaoyan; Foltz, Gregory; Lan, Qing; Huang, Qiang
2013-01-01
Abstract Alternative polyadenylation (APA) is widely present in the human genome and plays a key role in carcinogenesis. We conducted a comprehensive analysis of the APA products in glioblastoma multiforme (GBM, one of the most lethal brain tumors) and normal brain tissues and further developed a computational pipeline, RNAelements (http://sysbio.zju.edu.cn/RNAelements/), using covariance model from known RNA binding protein (RBP) targets acquired by RNA Immunoprecipitation (RIP) analysis. We identified 4530 APA isoforms for 2733 genes in GBM, and found that 182 APA isoforms from 148 genes showed significant differential expression between normal and GBM brain tissues. We then focused on three genes with long and short APA isoforms that show inconsistent expression changes between normal and GBM brain tissues. These were myocyte enhancer factor 2D, heat shock factor binding protein 1, and polyhomeotic homolog 1 (Drosophila). Using the RNAelements program, we found that RBP binding sites were enriched in the alternative regions between the first and the last polyadenylation sites, which would result in the short APA forms escaping regulation from those RNA binding proteins. To the best of our knowledge, this report is the first comprehensive APA isoform dataset for GBM and normal brain tissues. Additionally, we demonstrated a putative novel APA-mediated mechanism for controlling RNA stability and translation for APA isoforms. These observations collectively lay a foundation for novel diagnostics and molecular mechanisms that can inform future therapeutic interventions for GBM. PMID:23421905
Oh, Chang-Sik; Carpenter, Sara C D; Hayes, Marshall L; Beer, Steven V
2010-04-01
DspA/E is a type III effector of Erwinia amylovora, the bacterial pathogen that causes fire blight disease in roseaceous plants. This effector is indispensable for disease development, and it is translocated into plant cells. A DspA/E-specific chaperone, DspB/F, is necessary for DspA/E secretion and possibly for its translocation. In this work, DspB/F-binding sites and secretion and translocation signals in the DspA/E protein were determined. Based on yeast two-hybrid assays, DspB/F was found to bind DspA/E within the first 210 amino acids of the protein. Surprisingly, both DspB/F and OrfA, the putative chaperone of Eop1, also interacted with the C-terminal 1059 amino acids of DspA/E; this suggests another chaperone-binding site. Secretion and translocation assays using serial N-terminal lengths of DspA/E fused with the active form of AvrRpt2 revealed that at least the first 109 amino acids, including the first N-terminal chaperone-binding motif and DspB/F, were required for efficient translocation of DspA/E, although the first 35 amino acids were sufficient for its secretion and the presence of DspB/F was not required. These results indicate that secretion and translocation signals are present in the N terminus of DspA/E, and that at least one DspB/F-binding motif is required for efficient translocation into plant cells.
Liu, Yi-Chen; Li, Fu-Hua; Dong, Bo; Wang, Bing; Luan, Wei; Zhang, Xiao-Jun; Zhang, Liu-Suo; Xiang, Jian-Hai
2007-01-01
Lectin is regarded as a potential molecule involved in immune recognition and phagocytosis through opsonization in crustacean. Knowledge on lectin at molecular level would help us to understand its regulation mechanism in crustacean immune system. A novel C-type lectin gene (Fclectin) was cloned from hemocytes of Chinese shrimp Fenneropenaeus chinensis by 3' and 5' rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA consists of 1482 bp with an 861 bp open reading frame, encoding 287 amino acids. The deduced amino acid sequence contains a putative signal peptide of 19 amino acids. It also contains two carbohydrate recognition domains/C-type lectin-like domains (CRD1 and CRD2), which share 78% identity with each other. CRD1 and CRD2 showed 34% and 30% identity with that of mannose-binding lectin from Japanese lamprey (Lethenteron japonicum), respectively. Both CRD1 and CRD2 of Fclectin have 11 amino acids residues, which are relatively invariant in animals' C-type lectin CRDs. Five residues at Ca2+ binding site 1 are conserved in Fclectin. The potential Ca2+/carbohydrate-binding (site 2) motif QPD, E, NP (Gln-Pro-Asp, Glu, Asn-Pro) presented in the two CRDs of Fclectin may support its ability to bind galactose-type sugars. It could be deduced that Fclectin is a member of C-type lectin superfamily. Transcripts of Fclectin were found only in hemocytes by Northern blotting and RNA in situ hybridization. The variation of mRNA transcription level in hemocytes during artificial infection with bacteria and white spot syndrome virus (WSSV) was quantitated by capillary electrophoresis after RT-PCR. An exploration of mRNA expression variation after LPS stimulation was carried out in primarily cultured hemocytes in vitro. Expression profiles of Fclectin gene were greatly modified after bacteria, LPS or WSSV challenge. The above-stated data can provide us clues to understand the probable role of C-type lectin in innate immunity of shrimp and would be helpful to shrimp disease control.
DJ-1 Is a Copper Chaperone Acting on SOD1 Activation*
Girotto, Stefania; Cendron, Laura; Bisaglia, Marco; Tessari, Isabella; Mammi, Stefano; Zanotti, Giuseppe; Bubacco, Luigi
2014-01-01
Lack of oxidative stress control is a common and often prime feature observed in many neurodegenerative diseases. Both DJ-1 and SOD1, proteins involved in familial Parkinson disease and amyotrophic lateral sclerosis, respectively, play a protective role against oxidative stress. Impaired activity and modified expression of both proteins have been observed in different neurodegenerative diseases. A potential cooperative action of DJ-1 and SOD1 in the same oxidative stress response pathway may be suggested based on a copper-mediated interaction between the two proteins reported here. To investigate the mechanisms underlying the antioxidative function of DJ-1 in relation to SOD1 activity, we investigated the ability of DJ-1 to bind copper ions. We structurally characterized a novel copper binding site involving Cys-106, and we investigated, using different techniques, the kinetics of DJ-1 binding to copper ions. The copper transfer between the two proteins was also examined using both fluorescence spectroscopy and specific biochemical assays for SOD1 activity. The structural and functional analysis of the novel DJ-1 copper binding site led us to identify a putative role for DJ-1 as a copper chaperone. Alteration of the coordination geometry of the copper ion in DJ-1 may be correlated to the physiological role of the protein, to a potential failure in metal transfer to SOD1, and to successive implications in neurodegenerative etiopathogenesis. PMID:24567322
On the role of water density fluctuations in the inhibition of a proton channel
Gianti, Eleonora; Delemotte, Lucie; Klein, Michael L.; Carnevale, Vincenzo
2016-01-01
Hv1 is a transmembrane four-helix bundle that transports protons in a voltage-controlled manner. Its crucial role in many pathological conditions, including cancer and ischemic brain damage, makes Hv1 a promising drug target. Starting from the recently solved crystal structure of Hv1, we used structural modeling and molecular dynamics simulations to characterize the channel’s most relevant conformations along the activation cycle. We then performed computational docking of known Hv1 inhibitors, 2-guanidinobenzimidazole (2GBI) and analogs. Although salt-bridge patterns and electrostatic potential profiles are well-defined and distinctive features of activated versus nonactivated states, the water distribution along the channel lumen is dynamic and reflects a conformational heterogeneity inherent to each state. In fact, pore waters assemble into intermittent hydrogen-bonded clusters that are replaced by the inhibitor moieties upon ligand binding. The entropic gain resulting from releasing these conformationally restrained waters to the bulk solvent is likely a major contributor to the binding free energy. Accordingly, we mapped the water density fluctuations inside the pore of the channel and identified the regions of maximum fluctuation within putative binding sites. Two sites appear as outstanding: One is the already known binding pocket of 2GBI, which is accessible to ligands from the intracellular side; the other is a site located at the exit of the proton permeation pathway. Our analysis of the waters confined in the hydrophobic cavities of Hv1 suggests a general strategy for drug discovery that can be applied to any ion channel. PMID:27956641
Shriver, Z; Liu, D; Hu, Y; Sasisekharan, R
1999-02-12
The heparinases from Flavobacterium heparinum are lyases that specifically cleave heparin-like glycosaminoglycans. Previously, amino acids located in the active site of heparinase I have been identified and mapped. In an effort to further understand the mechanism by which heparinase I cleaves its polymer substrate, we sought to understand the role of calcium, as a necessary cofactor, in the enzymatic activity of heparinase I. Specifically, we undertook a series of biochemical and biophysical experiments to answer the question of whether heparinase I binds to calcium and, if so, which regions of the protein are involved in calcium binding. Using the fluorescent calcium analog terbium, we found that heparinase I tightly bound divalent and trivalent cations. Furthermore, we established that this interaction was specific for ions that closely approximate the ionic radius of calcium. Through the use of the modification reagents N-ethyl-5-phenylisoxazolium-3'-sulfonate (Woodward's reagent K) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride, we showed that the interaction between heparinase I and calcium was essential for proper functioning of the enzyme. Preincubation with either calcium alone or calcium in the presence of heparin was able to protect the enzyme from inactivation by these modifying reagents. In addition, through mapping studies of Woodward's reagent K-modified heparinase I, we identified two putative calcium-binding sites, CB-1 (Glu207-Ala219) and CB-2 (Thr373-Arg384), in heparinase I that not only are specifically modified by Woodward's reagent K, leading to loss of enzymatic activity, but also conform to the calcium-coordinating consensus motif.
Senghoi, Wilaiwan; Runsaeng, Phanthipha; Utarabhand, Prapaporn
2017-11-01
Crustaceans are deficient in adaptive immune system. They depend completely on an innate immunity to protect themselves from invading microorganisms. One kind of pattern recognition receptors that contribute roles in the innate immunity is lectin. A new C-type lectin gene designated as FmLC5 was isolated from Fenneropenaeus merguiensis. Its full-length cDNA is composed of 1526bp and one open reading frame of 852bp encoding a peptide of 284 amino acids. The deduced amino acid sequence of FmLC5 comprises a signal peptide of 20 contiguous amino acids with a molecular mass of 31.47kDa and an isoelectric point of 4.35. The primary structure of FmLC5 consists of two similar carbohydrate recognition domains (CRDs), each CRD contains a Ca 2+ binding site-2 and a QPD motif specific for galactose-binding. The FmLC5 transcripts were detected only in the hemocytes analyzed by RT-PCR and in situ hybridization. The FmLC5 expression was significantly up-regulated after challenge with Vibrio harveyi, white spot syndrome virus (WSSV) or lipopolysaccharide. RNAi-based silencing with co-injection by V. harveyi or WSSV resulted in critical suppression of the FmLC5 expression, increasing in mortality and reduction of the median lethal time. These results conclude that FmLC5 is unique putative galactose-binding C-type lectin in F. merguiensis that may contribute as receptor molecule in the immune response to defend the shrimp from pathogenic bacteria and viruses. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarke, P.B.; Hamill, G.S.; Nadi, N.S.
1986-09-15
The cholinergic innervation of the interpeduncular nucleus (IPN) is wholly extrinsic and is greatly attenuated by bilateral habenular destruction. We describe changes in the labeling of putative nicotinic receptors within this nucleus at 3, 5, or 11 days after bilateral habenular lesions. Adjacent tissue sections of the rat IPN were utilized for /sup 3/H-nicotine and /sup 125/I-alpha-bungarotoxin (/sup 125/I-BTX) receptor autoradiography. Compared to sham-operated controls, habenular destruction significantly reduced autoradiographic /sup 3/H-nicotine labeling in rostral (-25%), intermediate (-13%), and lateral subnuclei (-36%). Labeling in the central subnucleus was unchanged. Loss of labeling was maximal at the shortest survival time (3more » days) and did not change thereafter. In order to establish whether this loss was due to a reduction in the number or the affinity of /sup 3/H-nicotine-binding sites, a membrane assay was performed on microdissected IPN tissue from rats that had received surgery 3 days previously. Bilateral habenular lesions produced a 35% reduction of high-affinity /sup 3/H-nicotine-binding sites, with no change in binding affinity. Bilateral habenular lesions reduced /sup 125/I-BTX labeling in the intermediate subnuclei, and a slight increase occurred in the rostral subnucleus. In the lateral subnuclei, /sup 125/I-BTX labeling was significantly reduced (27%) at 3 days but not at later survival times. In view of the known synaptic morphology of the habenulointerpeduncular tract, it is concluded that a subpopulation of /sup 3/H-nicotine binding sites within the IPN is located on afferent axons and/or terminals. This subpopulation, located within rostral, intermediate, and lateral subnuclei, may correspond to presynaptic nicotinic cholinergic receptors. Sites that bind /sup 125/I-BTX may include a presynaptic subpopulation located in the lateral and possibly the intermediate subnuclei.« less
WNK3-SPAK interaction is required for the modulation of NCC and other members of the SLC12 family.
Pacheco-Alvarez, Diana; Vázquez, Norma; Castañeda-Bueno, María; de-Los-Heros, Paola; Cortes-González, César; Moreno, Erika; Meade, Patricia; Bobadilla, Norma A; Gamba, Gerardo
2012-01-01
The serine/threonine with no lysine kinase 3 (WNK3) modulates the activity of the electroneutral cation-coupled chloride cotransporters (CCC) to promote Cl(-) influx and prevent Cl(-) efflux, thus fitting the profile for a putative "Cl(-)-sensing kinase". The Ste20-type kinases, SPAK/OSR1, become phosphorylated in response to reduction in intracellular chloride concentration and regulate the activity of NKCC1. Several studies have now shown that WNKs function upstream of SPAK/OSR1. This study was designed to analyze the role of WNK3-SPAK interaction in the regulation of CCCs with particular emphasis on NCC. In this study we used the functional expression system of Xenopus laevis oocytes to show that different SPAK binding sites in WNK3 ((241, 872, 1336)RFxV) are required for the kinase to have effects on CCCs. WNK3-F1337A no longer activated NKCC2, but the effects on NCC, NKCC1, and KCC4 were preserved. In contrast, the effects of WNK3 on these cotransporters were prevented in WNK3-F242A. The elimination of F873 had no consequence on WNK3 effects. WNK3 promoted NCC phosphorylation at threonine 58, even in the absence of the unique SPAK binding site of NCC, but this effect was abolished in the mutant WNK3-F242A. Thus, our data support the hypothesis that the effects of WNK3 upon NCC and other CCCs require the interaction and activation of the SPAK kinase. The effect is dependent on one of the three binding sites for SPAK that are present in WNK3, but not on the SPAK binding sites on the CCCs, which suggests that WNK3 is capable of binding both SPAK and CCCs to promote their phosphorylation. Copyright © 2012 S. Karger AG, Basel.
Structural and functional insights into the HIV-1 maturation inhibitor binding pocket.
Waki, Kayoko; Durell, Stewart R; Soheilian, Ferri; Nagashima, Kunio; Butler, Scott L; Freed, Eric O
2012-01-01
Processing of the Gag precursor protein by the viral protease during particle release triggers virion maturation, an essential step in the virus replication cycle. The first-in-class HIV-1 maturation inhibitor dimethylsuccinyl betulinic acid [PA-457 or bevirimat (BVM)] blocks HIV-1 maturation by inhibiting the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA. A structurally distinct molecule, PF-46396, was recently reported to have a similar mode of action to that of BVM. Because of the structural dissimilarity between BVM and PF-46396, we hypothesized that the two compounds might interact differentially with the putative maturation inhibitor-binding pocket in Gag. To test this hypothesis, PF-46396 resistance was selected for in vitro. Resistance mutations were identified in three regions of Gag: around the CA-SP1 cleavage site where BVM resistance maps, at CA amino acid 201, and in the CA major homology region (MHR). The MHR mutants are profoundly PF-46396-dependent in Gag assembly and release and virus replication. The severe defect exhibited by the inhibitor-dependent MHR mutants in the absence of the compound is also corrected by a second-site compensatory change far downstream in SP1, suggesting structural and functional cross-talk between the HIV-1 CA MHR and SP1. When PF-46396 and BVM were both present in infected cells they exhibited mutually antagonistic behavior. Together, these results identify Gag residues that line the maturation inhibitor-binding pocket and suggest that BVM and PF-46396 interact differentially with this putative pocket. These findings provide novel insights into the structure-function relationship between the CA MHR and SP1, two domains of Gag that are critical to both assembly and maturation. The highly conserved nature of the MHR across all orthoretroviridae suggests that these findings will be broadly relevant to retroviral assembly. Finally, the results presented here provide a framework for increased structural understanding of HIV-1 maturation inhibitor activity.
Witzgall, R; O'Leary, E; Gessner, R; Ouellette, A J; Bonventre, J V
1993-01-01
We have identified a new putative transcription factor from the rat kidney, termed Kid-1 (for kidney, ischemia and developmentally regulated gene 1). Kid-1 belongs to the C2H2 class of zinc finger genes. Its mRNA accumulates with age in postnatal renal development and is detected predominantly in the kidney. Kid-1 mRNA levels decline after renal injury secondary to ischemia or folic acid administration, two insults which result in epithelial cell dedifferentiation, followed by regenerative hyperplasia and differentiation. The low expression of Kid-1 early in postnatal development, and when renal tissue is recovering after injury, suggests that the gene product is involved in establishment of a differentiated phenotype and/or regulation of the proliferative response. The deduced protein contains 13 C2H2 zinc fingers at the COOH end in groups of 4 and 9 separated by a 32-amino-acid spacer. There are consensus sites for phosphorylation in the NH2 terminus non-zinc finger region as well as in the spacer region between zinc fingers 4 and 5. A region of the deduced protein shares extensive homology with a catalytic region of Raf kinases, a feature shared only with TFIIE among transcription factors. To determine whether Kid-1 can modulate transcription, a chimeric construct encoding the Kid-1 non-zinc finger region (sense or antisense) and the DNA-binding region of GAL4 was transfected into COS and LLC-PK1 cells together with a chloramphenicol acetyltransferase (CAT) reporter plasmid containing GAL4 binding sites, driven by either a minimal promoter or a simian virus 40 enhancer. CAT activity was markedly inhibited in cells transfected with the sense construct compared with the activity in cells transfected with the antisense construct. To our knowledge, this pattern of developmental regulation, kidney expression, and regulation of transcription is unique among the C2H2 class of zinc finger-containing DNA-binding proteins. Images PMID:8382778
MiR-181b targets Six2 and inhibits the proliferation of metanephric mesenchymal cells in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyu, Zhongshi; Mao, Zhaomin; Wang, Honglian
2013-11-01
Highlights: •We do bio-informatics websites to analysis of Six2 3′UTR. •MiR181b is a putative miRNA which can targets Six2 3′UTR. •MiR-181b binding site in the 3′UTR of Six2 is functional. •MiR-181b suppresses MK3 cells cell proliferation by targeting Six2. -- Abstract: MicroRNAs (miRNAs) are small non-coding RNAs that down-regulate gene expression by binding to target mRNA for cleavage or translational repression, and play important regulatory roles in renal development. Despite increasing genes have been predicted to be miRNA targets by bioinformatic analysis during kidney development, few of them have been verified by experiment. The objective of our study is tomore » identify the miRNAs targeting Six2, a critical transcription factor that maintains the mesenchymal progenitor pool via self-renewal (proliferation) during renal development. We initially analyzed the 3′UTR of Six2 and found 37 binding sites targeted by 50 putative miRNAs in the 3′UTR of Six2. Among the 50 miRNAs, miR-181b is the miRNAs predicted by the three used websites. In our study, the results of luciferase reporter assay, realtime-PCR and Western blot demonstrated that miR-181b directly targeted on the 3′UTR of Six2 and down-regulate the expression of Six2 at mRNA and protein levels. Furthermore, EdU proliferation assay along with the Six2 rescue strategy showed that miR-181b suppresses the proliferation of metanephric mesenchymal by targeting Six2 in part. In our research, we concluded that by targeting the transcription factor gene Six2, miR-181b inhibits the proliferation of metanephric mesenchymal cells in vitro and might play an important role in the formation of nephrons.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Xiaokuang; Davis, F.C.; Ingram, L.O.
1997-02-01
Genomic libraries from nine cellobiose-metabolizing bacteria were screened for cellobiose utilization. Positive clones were recovered from six libraries, all of which encode phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) proteins. Clones from Bacillus subtilis, Butyrivibrio fibrisolvens, and Klebsiella oxytoca allowed the growth of recombinant Escherichia coli in cellobiose-M9 minimal medium. The K. oxytoca clone, pLOI1906, exhibited an unusually broad substrate range (cellobiose, arbutin, salicin, and methylumbelliferyl derivatives of glucose, cellobiose, mannose, and xylose) and was sequenced. The insert in this plasmid encoded the carboxy-terminal region of a putative regulatory protein, cellobiose permease (single polypeptide), and phospho-{beta}-glucosidase, which appear to form an operon (casRAB).more » Subclones allowed both casA and casB to be expressed independently, as evidenced by in vitro complementation. An analysis of the translated sequences from the EIIC domains of cellobiose, aryl-{beta}-glucoside, and other disaccharide permeases allowed the identification of a 50-amino-acid conserved region. A disaccharide consensus sequence is proposed for the most conserved segment (13 amino acids), which may represent part of the EIIC active site for binding and phosphorylation. 63 refs., 4 figs., 4 tabs.« less
Sarhan, Maen F; Van Petegem, Filip; Ahern, Christopher A
2009-11-27
Voltage-gated sodium channels maintain the electrical cadence and stability of neurons and muscle cells by selectively controlling the transmembrane passage of their namesake ion. The degree to which these channels contribute to cellular excitability can be managed therapeutically or fine-tuned by endogenous ligands. Intracellular calcium, for instance, modulates sodium channel inactivation, the process by which sodium conductance is negatively regulated. We explored the molecular basis for this effect by investigating the interaction between the ubiquitous calcium binding protein calmodulin (CaM) and the putative sodium channel inactivation gate composed of the cytosolic linker between homologous channel domains III and IV (DIII-IV). Experiments using isothermal titration calorimetry show that CaM binds to a novel double tyrosine motif in the center of the DIII-IV linker in a calcium-dependent manner, N-terminal to a region previously reported to be a CaM binding site. An alanine scan of aromatic residues in recombinant DIII-DIV linker peptides shows that whereas multiple side chains contribute to CaM binding, two tyrosines (Tyr(1494) and Tyr(1495)) play a crucial role in binding the CaM C-lobe. The functional relevance of these observations was then ascertained through electrophysiological measurement of sodium channel inactivation gating in the presence and absence of calcium. Experiments on patch-clamped transfected tsA201 cells show that only the Y1494A mutation of the five sites tested renders sodium channel steady-state inactivation insensitive to cytosolic calcium. The results demonstrate that calcium-dependent calmodulin binding to the sodium channel inactivation gate double tyrosine motif is required for calcium regulation of the cardiac sodium channel.
Oh, So-Young; Shin, Jung-Ho; Roe, Jung-Hye
2007-01-01
Organic hydroperoxide resistance in bacteria is achieved primarily through reducing oxidized membrane lipids. The soil-inhabiting aerobic bacterium Streptomyces coelicolor contains three paralogous genes for organic hydroperoxide resistance: ohrA, ohrB, and ohrC. The ohrA gene is transcribed divergently from ohrR, which encodes a putative regulator of MarR family. Both the ohrA and ohrR genes were induced highly by various organic hydroperoxides. The ohrA gene was induced through removal of repression by OhrR, whereas the ohrR gene was induced through activation by OhrR. Reduced OhrR bound to the ohrA-ohrR intergenic region, which contains a central (primary) and two adjacent (secondary) inverted-repeat motifs that overlap with promoter elements. Organic peroxide decreased the binding affinity of OhrR for the primary site, with a concomitant decrease in cooperative binding to the adjacent secondary sites. The single cysteine C28 in OhrR was involved in sensing oxidants, as determined by substitution mutagenesis. The C28S mutant of OhrR bound to the intergenic region without any change in binding affinity in response to organic peroxides. These results lead us to propose a model for the dual action of OhrR as a repressor and an activator in S. coelicolor. Under reduced conditions, OhrR binds cooperatively to the intergenic region, repressing transcription from both genes. Upon oxidation, the binding affinity of OhrR decreases, with a concomitant loss of cooperative binding, which allows RNA polymerase to bind to both the ohrA and ohrR promoters. The loosely bound oxidized OhrR can further activate transcription from the ohrR promoter. PMID:17586628
PuTmiR: A database for extracting neighboring transcription factors of human microRNAs
2010-01-01
Background Some of the recent investigations in systems biology have revealed the existence of a complex regulatory network between genes, microRNAs (miRNAs) and transcription factors (TFs). In this paper, we focus on TF to miRNA regulation and provide a novel interface for extracting the list of putative TFs for human miRNAs. A putative TF of an miRNA is considered here as those binding within the close genomic locality of that miRNA with respect to its starting or ending base pair on the chromosome. Recent studies suggest that these putative TFs are possible regulators of those miRNAs. Description The interface is built around two datasets that consist of the exhaustive lists of putative TFs binding respectively in the 10 kb upstream region (USR) and downstream region (DSR) of human miRNAs. A web server, named as PuTmiR, is designed. It provides an option for extracting the putative TFs for human miRNAs, as per the requirement of a user, based on genomic locality, i.e., any upstream or downstream region of interest less than 10 kb. The degree distributions of the number of putative TFs and miRNAs against each other for the 10 kb USR and DSR are analyzed from the data and they explore some interesting results. We also report about the finding of a significant regulatory activity of the YY1 protein over a set of oncomiRNAs related to the colon cancer. Conclusion The interface provided by the PuTmiR web server provides an important resource for analyzing the direct and indirect regulation of human miRNAs. While it is already an established fact that miRNAs are regulated by TFs binding to their USR, this database might possibly help to study whether an miRNA can also be regulated by the TFs binding to their DSR. PMID:20398296
Structure of Drosophila Oskar reveals a novel RNA binding protein
Yang, Na; Yu, Zhenyu; Hu, Menglong; Wang, Mingzhu; Lehmann, Ruth; Xu, Rui-Ming
2015-01-01
Oskar (Osk) protein plays critical roles during Drosophila germ cell development, yet its functions in germ-line formation and body patterning remain poorly understood. This situation contrasts sharply with the vast knowledge about the function and mechanism of osk mRNA localization. Osk is predicted to have an N-terminal LOTUS domain (Osk-N), which has been suggested to bind RNA, and a C-terminal hydrolase-like domain (Osk-C) of unknown function. Here, we report the crystal structures of Osk-N and Osk-C. Osk-N shows a homodimer of winged-helix–fold modules, but without detectable RNA-binding activity. Osk-C has a lipase-fold structure but lacks critical catalytic residues at the putative active site. Surprisingly, we found that Osk-C binds the 3′UTRs of osk and nanos mRNA in vitro. Mutational studies identified a region of Osk-C important for mRNA binding. These results suggest possible functions of Osk in the regulation of stability, regulation of translation, and localization of relevant mRNAs through direct interaction with their 3′UTRs, and provide structural insights into a novel protein–RNA interaction motif involving a hydrolase-related domain. PMID:26324911
NASA Astrophysics Data System (ADS)
Velikova, Nadya; Fulle, Simone; Manso, Ana Sousa; Mechkarska, Milena; Finn, Paul; Conlon, J. Michael; Oggioni, Marco Rinaldo; Wells, Jerry M.; Marina, Alberto
2016-05-01
Novel antibacterials are urgently needed to address the growing problem of bacterial resistance to conventional antibiotics. Two-component systems (TCS) are widely used by bacteria to regulate gene expression in response to various environmental stimuli and physiological stress and have been previously proposed as promising antibacterial targets. TCS consist of a sensor histidine kinase (HK) and an effector response regulator. The HK component contains a highly conserved ATP-binding site that is considered to be a promising target for broad-spectrum antibacterial drugs. Here, we describe the identification of putative HK autophosphorylation inhibitors following two independent experimental approaches: in vitro fragment-based screen via differential scanning fluorimetry and in silico structure-based screening, each followed up by the exploration of analogue compounds as identified by ligand-based similarity searches. Nine of the tested compounds showed antibacterial effect against multi-drug resistant clinical isolates of bacterial pathogens and include three novel scaffolds, which have not been explored so far in other antibacterial compounds. Overall, putative HK autophosphorylation inhibitors were found that together provide a promising starting point for further optimization as antibacterials.
Binding of the Ras activator son of sevenless to insulin receptor substrate-1 signaling complexes.
Baltensperger, K; Kozma, L M; Cherniack, A D; Klarlund, J K; Chawla, A; Banerjee, U; Czech, M P
1993-06-25
Signal transmission by insulin involves tyrosine phosphorylation of a major insulin receptor substrate (IRS-1) and exchange of Ras-bound guanosine diphosphate for guanosine triphosphate. Proteins containing Src homology 2 and 3 (SH2 and SH3) domains, such as the p85 regulatory subunit of phosphatidylinositol-3 kinase and growth factor receptor-bound protein 2 (GRB2), bind tyrosine phosphate sites on IRS-1 through their SH2 regions. Such complexes in COS cells were found to contain the heterologously expressed putative guanine nucleotide exchange factor encoded by the Drosophila son of sevenless gene (dSos). Thus, GRB2, p85, or other proteins with SH2-SH3 adapter sequences may link Sos proteins to IRS-1 signaling complexes as part of the mechanism by which insulin activates Ras.
Fukuda, Yohta; Miura, Yoshimasa; Mizohata, Eiichi; Inoue, Tsuyoshi
2017-08-01
Upon stopping metabolic processes, some tardigrades can undergo anhydrobiosis. Secretory abundant heat-soluble (SAHS) proteins have been reported as candidates for anhydrobiosis-related proteins in tardigrades, which seem to protect extracellular components and/or secretory organelles. We determined structures of a SAHS protein from Ramazzottius varieornatus (RvSAHS1), which is one of the toughest tardigrades. RvSAHS1 shows a β-barrel structure similar to fatty acid-binding proteins (FABPs), in which hydrophilic residues form peculiar hydrogen bond networks, which would provide RvSAHS1 with better tolerance against dehydration. We identified two putative ligand-binding sites: one that superimposes on those of some FABPs and the other, unique to and conserved in SAHS proteins. These results indicate that SAHS proteins constitute a new FABP family. © 2017 Federation of European Biochemical Societies.
Structure of C3b reveals conformational changes that underlie complement activity.
Janssen, Bert J C; Christodoulidou, Agni; McCarthy, Andrew; Lambris, John D; Gros, Piet
2006-11-09
Resistance to infection and clearance of cell debris in mammals depend on the activation of the complement system, which is an important component of innate and adaptive immunity. Central to the complement system is the activated form of C3, called C3b, which attaches covalently to target surfaces to amplify complement response, label cells for phagocytosis and stimulate the adaptive immune response. C3b consists of 1,560 amino-acid residues and has 12 domains. It binds various proteins and receptors to effect its functions. However, it is not known how C3 changes its conformation into C3b and thereby exposes its many binding sites. Here we present the crystal structure at 4-A resolution of the activated complement protein C3b and describe the conformational rearrangements of the 12 domains that take place upon proteolytic activation. In the activated form the thioester is fully exposed for covalent attachment to target surfaces and is more than 85 A away from the buried site in native C3 (ref. 5). Marked domain rearrangements in the alpha-chain present an altered molecular surface, exposing hidden and cryptic sites that are consistent with known putative binding sites of factor B and several complement regulators. The structural data indicate that the large conformational changes in the proteolytic activation and regulation of C3 take place mainly in the first conversion step, from C3 to C3b. These insights are important for the development of strategies to treat immune disorders that involve complement-mediated inflammation.
Felts, Bruce; Pramod, Akula Bala; Sandtner, Walter; Burbach, Nathan; Bulling, Simon; Sitte, Harald H; Henry, L Keith
2014-01-17
Neurotransmitter transporters of the SLC6 family of proteins, including the human serotonin transporter (hSERT), utilize Na(+), Cl(-), and K(+) gradients to induce conformational changes necessary for substrate translocation. Dysregulation of ion movement through monoamine transporters has been shown to impact neuronal firing potentials and could play a role in pathophysiologies, such as depression and anxiety. Despite multiple crystal structures of prokaryotic and eukaryotic SLC transporters indicating the location of both (or one) conserved Na(+)-binding sites (termed Na1 and Na2), much remains uncertain in regard to the movements and contributions of these cation-binding sites in the transport process. In this study, we utilize the unique properties of a mutation of hSERT at a single, highly conserved asparagine on TM1 (Asn-101) to provide several lines of evidence demonstrating mechanistically distinct roles for Na1 and Na2. Mutations at Asn-101 alter the cation dependence of the transporter, allowing Ca(2+) (but not other cations) to functionally replace Na(+) for driving transport and promoting 5-hydroxytryptamine (5-HT)-dependent conformational changes. Furthermore, in two-electrode voltage clamp studies in Xenopus oocytes, both Ca(2+) and Na(+) illicit 5-HT-induced currents in the Asn-101 mutants and reveal that, although Ca(2+) promotes substrate-induced current, it does not appear to be the charge carrier during 5-HT transport. These findings, in addition to functional evaluation of Na1 and Na2 site mutants, reveal separate roles for Na1 and Na2 and provide insight into initiation of the translocation process as well as a mechanism whereby the reported SERT stoichiometry can be obtained despite the presence of two putative Na(+)-binding sites.
Felts, Bruce; Pramod, Akula Bala; Sandtner, Walter; Burbach, Nathan; Bulling, Simon; Sitte, Harald H.; Henry, L. Keith
2014-01-01
Neurotransmitter transporters of the SLC6 family of proteins, including the human serotonin transporter (hSERT), utilize Na+, Cl−, and K+ gradients to induce conformational changes necessary for substrate translocation. Dysregulation of ion movement through monoamine transporters has been shown to impact neuronal firing potentials and could play a role in pathophysiologies, such as depression and anxiety. Despite multiple crystal structures of prokaryotic and eukaryotic SLC transporters indicating the location of both (or one) conserved Na+-binding sites (termed Na1 and Na2), much remains uncertain in regard to the movements and contributions of these cation-binding sites in the transport process. In this study, we utilize the unique properties of a mutation of hSERT at a single, highly conserved asparagine on TM1 (Asn-101) to provide several lines of evidence demonstrating mechanistically distinct roles for Na1 and Na2. Mutations at Asn-101 alter the cation dependence of the transporter, allowing Ca2+ (but not other cations) to functionally replace Na+ for driving transport and promoting 5-hydroxytryptamine (5-HT)-dependent conformational changes. Furthermore, in two-electrode voltage clamp studies in Xenopus oocytes, both Ca2+ and Na+ illicit 5-HT-induced currents in the Asn-101 mutants and reveal that, although Ca2+ promotes substrate-induced current, it does not appear to be the charge carrier during 5-HT transport. These findings, in addition to functional evaluation of Na1 and Na2 site mutants, reveal separate roles for Na1 and Na2 and provide insight into initiation of the translocation process as well as a mechanism whereby the reported SERT stoichiometry can be obtained despite the presence of two putative Na+-binding sites. PMID:24293367
Newcomer, Rebecca L; Fraser, LaTasha C R; Teschke, Carolyn M; Alexandrescu, Andrei T
2015-12-15
The I-domain is an insertion domain of the bacteriophage P22 coat protein that drives rapid folding and accounts for over half of the stability of the full-length protein. We sought to determine the role of hydrogen bonds (H-bonds) in the unfolding of the I-domain by examining (3)JNC' couplings transmitted through H-bonds, the temperature and urea-concentration dependence of (1)HN and (15)N chemical shifts, and native-state hydrogen exchange at urea concentrations where the domain is predominantly folded. The native-state hydrogen-exchange data suggest that the six-stranded β-barrel core of the I-domain is more stable against unfolding than a smaller subdomain comprised of a short α-helix and three-stranded β-sheet. H-bonds, separately determined from solvent protection and (3)JNC' H-bond couplings, are identified with an accuracy of 90% by (1)HN temperature coefficients. The accuracy is improved to 95% when (15)N temperature coefficients are also included. In contrast, the urea dependence of (1)HN and (15)N chemical shifts is unrelated to H-bonding. The protein segments with the largest chemical-shift changes in the presence of urea show curved or sigmoidal titration curves suggestive of direct urea binding. Nuclear Overhauser effects to urea for these segments are also consistent with specific urea-binding sites in the I-domain. Taken together, the results support a mechanism of urea unfolding in which denaturant binds to distinct sites in the I-domain. Disordered segments bind urea more readily than regions in stable secondary structure. The locations of the putative urea-binding sites correlate with the lower stability of the structure against solvent exchange, suggesting that partial unfolding of the structure is related to urea accessibility. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Kopecný, David; Briozzo, Pierre; Popelková, Hana; Sebela, Marek; Koncitíková, Radka; Spíchal, Lukás; Nisler, Jaroslav; Madzak, Catherine; Frébort, Ivo; Laloue, Michel; Houba-Hérin, Nicole
2010-08-01
Cytokinin oxidase/dehydrogenase (CKO) is a flavoenzyme, which irreversibly degrades the plant hormones cytokinins and thereby participates in their homeostasis. Several synthetic cytokinins including urea derivatives are known CKO inhibitors but structural data explaining enzyme-inhibitor interactions are lacking. Thus, an inhibitory study with numerous urea derivatives was undertaken using the maize enzyme (ZmCKO1) and the crystal structure of ZmCKO1 in a complex with N-(2-chloro-pyridin-4-yl)-N'-phenylurea (CPPU) was solved. CPPU binds in a planar conformation and competes for the same binding site with natural substrates like N(6)-(2-isopentenyl)adenine (iP) and zeatin (Z). Nitrogens at the urea backbone are hydrogen bonded to the putative active site base Asp169. Subsequently, site-directed mutagenesis of L492 and E381 residues involved in the inhibitor binding was performed. The crystal structures of L492A mutant in a complex with CPPU and N-(2-chloro-pyridin-4-yl)-N'-benzylurea (CPBU) were solved and confirm the importance of a stacking interaction between the 2-chloro-4-pyridinyl ring of the inhibitor and the isoalloxazine ring of the FAD cofactor. Amino derivatives like N-(2-amino-pyridin-4-yl)-N'-phenylurea (APPU) inhibited ZmCKO1 more efficiently than CPPU, as opposed to the inhibition of E381A/S mutants, emphasizing the importance of this residue for inhibitor binding. As highly specific CKO inhibitors without undesired side effects are of major interest for physiological studies, all studied compounds were further analyzed for cytokinin activity in the Amaranthus bioassay and for binding to the Arabidopsis cytokinin receptors AHK3 and AHK4. By contrast to CPPU itself, APPU and several benzylureas bind only negligibly to the receptors and exhibit weak cytokinin activity. Copyright 2010 Elsevier Masson SAS. All rights reserved.
Structure and mechanism of the phage T4 recombination mediator protein UvsY
Gajewski, Stefan; Waddell, Michael Brett; Vaithiyalingam, Sivaraja; ...
2016-03-07
The UvsY recombination mediator protein is critical for efficient homologous recombination in bacteriophage T4 and is the functional analog of the eukaryotic Rad52 protein. During T4 homologous recombination, the UvsX recombinase has to compete with the prebound gp32 single-stranded binding protein for DNA-binding sites and UvsY stimulates this filament nucleation event. We report here the crystal structure of UvsY in four similar open-barrel heptameric assemblies and provide structural and biophysical insights into its function. The UvsY heptamer was confirmed in solution by centrifugation and light scattering, and thermodynamic analyses revealed that the UvsY–ssDNA interaction occurs within the assembly via twomore » distinct binding modes. Using surface plasmon resonance, we also examined the binding of UvsY to both ssDNA and the ssDNA–gp32 complex. These analyses confirmed that ssDNA can bind UvsY and gp32 independently and also as a ternary complex. They also showed that residues located on the rim of the heptamer are required for optimal binding to ssDNA, thus identifying the putative ssDNA-binding surface. We propose a model in which UvsY promotes a helical ssDNA conformation that disfavors the binding of gp32 and initiates the assembly of the ssDNA–UvsX filament.« less
Tien, Jason; Peters, Christian J; Wong, Xiu Ming; Cheng, Tong; Jan, Yuh Nung; Jan, Lily Yeh; Yang, Huanghe
2014-01-01
TMEM16A forms calcium-activated chloride channels (CaCCs) that regulate physiological processes such as the secretions of airway epithelia and exocrine glands, the contraction of smooth muscles, and the excitability of neurons. Notwithstanding intense interest in the mechanism behind TMEM16A-CaCC calcium-dependent gating, comprehensive surveys to identify and characterize potential calcium sensors of this channel are still lacking. By aligning distantly related calcium-activated ion channels in the TMEM16 family and conducting systematic mutagenesis of all conserved acidic residues thought to be exposed to the cytoplasm, we identify four acidic amino acids as putative calcium-binding residues. Alterations of the charge, polarity, and size of amino acid side chains at these sites alter the ability of different divalent cations to activate the channel. Furthermore, TMEM16A mutant channels containing double cysteine substitutions at these residues are sensitive to the redox potential of the internal solution, providing evidence for their physical proximity and solvent accessibility. DOI: http://dx.doi.org/10.7554/eLife.02772.001 PMID:24980701
Permuth-Wey, Jennifer; Lawrenson, Kate; Shen, Howard C.; Velkova, Aneliya; Tyrer, Jonathan P.; Chen, Zhihua; Lin, Hui-Yi; Chen, Y. Ann; Tsai, Ya-Yu; Qu, Xiaotao; Ramus, Susan J.; Karevan, Rod; Lee, Janet; Lee, Nathan; Larson, Melissa C.; Aben, Katja K.; Anton-Culver, Hoda; Antonenkova, Natalia; Antoniou, Antonis; Armasu, Sebastian M.; Bacot, François; Baglietto, Laura; Bandera, Elisa V.; Barnholtz-Sloan, Jill; Beckmann, Matthias W.; Birrer, Michael J.; Bloom, Greg; Bogdanova, Natalia; Brinton, Louise A.; Brooks-Wilson, Angela; Brown, Robert; Butzow, Ralf; Cai, Qiuyin; Campbell, Ian; Chang-Claude, Jenny; Chanock, Stephen; Chenevix-Trench, Georgia; Cheng, Jin Q.; Cicek, Mine S.; Coetzee, Gerhard A.; Cook, Linda S.; Couch, Fergus J.; Cramer, Daniel W.; Cunningham, Julie M.; Dansonka-Mieszkowska, Agnieszka; Despierre, Evelyn; Doherty, Jennifer A; Dörk, Thilo; du Bois, Andreas; Dürst, Matthias; Easton, Douglas F; Eccles, Diana; Edwards, Robert; Ekici, Arif B.; Fasching, Peter A.; Fenstermacher, David A.; Flanagan, James M.; Garcia-Closas, Montserrat; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind M.; Gonzalez-Bosquet, Jesus; Goodman, Marc T.; Gore, Martin; Górski, Bohdan; Gronwald, Jacek; Hall, Per; Halle, Mari K.; Harter, Philipp; Heitz, Florian; Hillemanns, Peter; Hoatlin, Maureen; Høgdall, Claus K.; Høgdall, Estrid; Hosono, Satoyo; Jakubowska, Anna; Jensen, Allan; Jim, Heather; Kalli, Kimberly R.; Karlan, Beth Y.; Kaye, Stanley B.; Kelemen, Linda E.; Kiemeney, Lambertus A.; Kikkawa, Fumitaka; Konecny, Gottfried E.; Krakstad, Camilla; Kjaer, Susanne Krüger; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Lancaster, Johnathan M.; Le, Nhu D.; Leminen, Arto; Levine, Douglas A.; Liang, Dong; Lim, Boon Kiong; Lin, Jie; Lissowska, Jolanta; Lu, Karen H.; Lubiński, Jan; Lurie, Galina; Massuger, Leon F.A.G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B.; Nakanishi, Toru; Narod, Steven A.; Nedergaard, Lotte; Ness, Roberta B.; Nevanlinna, Heli; Nickels, Stefan; Noushmehr, Houtan; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Paul, James; Pearce, Celeste L; Pejovic, Tanja; Pelttari, Liisa M.; Pike, Malcolm C.; Poole, Elizabeth M.; Raska, Paola; Renner, Stefan P.; Risch, Harvey A.; Rodriguez-Rodriguez, Lorna; Rossing, Mary Anne; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schwaab, Ira; Severi, Gianluca; Shridhar, Vijayalakshmi; Shu, Xiao-Ou; Shvetsov, Yurii B.; Sieh, Weiva; Song, Honglin; Southey, Melissa C.; Spiewankiewicz, Beata; Stram, Daniel; Sutphen, Rebecca; Teo, Soo-Hwang; Terry, Kathryn L.; Tessier, Daniel C.; Thompson, Pamela J.; Tworoger, Shelley S.; van Altena, Anne M.; Vergote, Ignace; Vierkant, Robert A.; Vincent, Daniel; Vitonis, Allison F.; Wang-Gohrke, Shan; Weber, Rachel Palmieri; Wentzensen, Nicolas; Whittemore, Alice S.; Wik, Elisabeth; Wilkens, Lynne R.; Winterhoff, Boris; Woo, Yin Ling; Wu, Anna H.; Xiang, Yong-Bing; Yang, Hannah P.; Zheng, Wei; Ziogas, Argyrios; Zulkifli, Famida; Phelan, Catherine M.; Iversen, Edwin; Schildkraut, Joellen M.; Berchuck, Andrew; Fridley, Brooke L.; Goode, Ellen L.; Pharoah, Paul D. P.; Monteiro, Alvaro N.A.; Sellers, Thomas A.; Gayther, Simon A.
2013-01-01
Epithelial ovarian cancer (EOC) has a heritable component that remains to be fully characterized. Most identified common susceptibility variants lie in non-protein-coding sequences. We hypothesized that variants in the 3′ untranslated region at putative microRNA (miRNA) binding sites represent functional targets that influence EOC susceptibility. Here, we evaluate the association between 767 miRNA binding site single nucleotide polymorphisms (miRSNPs) and EOC risk in 18,174 EOC cases and 26,134 controls from 43 studies genotyped through the Collaborative Oncological Gene-environment Study. We identify several miRSNPs associated with invasive serous EOC risk (OR=1.12, P=10−8) mapping to an inversion polymorphism at 17q21.31. Additional genotyping of non-miRSNPs at 17q21.31 reveals stronger signals outside the inversion (P=10−10). Variation at 17q21.31 associates with neurological diseases, and our collaboration is the first to report an association with EOC susceptibility. An integrated molecular analysis in this region provides evidence for ARHGAP27 and PLEKHM1 as candidate EOC susceptibility genes. PMID:23535648
Malhotra, Sony; Sowdhamini, Ramanathan
2013-08-01
The interaction of proteins with their respective DNA targets is known to control many high-fidelity cellular processes. Performing a comprehensive survey of the sequenced genomes for DNA-binding proteins (DBPs) will help in understanding their distribution and the associated functions in a particular genome. Availability of fully sequenced genome of Arabidopsis thaliana enables the review of distribution of DBPs in this model plant genome. We used profiles of both structure and sequence-based DNA-binding families, derived from PDB and PFam databases, to perform the survey. This resulted in 4471 proteins, identified as DNA-binding in Arabidopsis genome, which are distributed across 300 different PFam families. Apart from several plant-specific DNA-binding families, certain RING fingers and leucine zippers also had high representation. Our search protocol helped to assign DNA-binding property to several proteins that were previously marked as unknown, putative or hypothetical in function. The distribution of Arabidopsis genes having a role in plant DNA repair were particularly studied and noted for their functional mapping. The functions observed to be overrepresented in the plant genome harbour DNA-3-methyladenine glycosylase activity, alkylbase DNA N-glycosylase activity and DNA-(apurinic or apyrimidinic site) lyase activity, suggesting their role in specialized functions such as gene regulation and DNA repair.
Massive Gene Transfer and Extensive RNA Editing of a Symbiotic Dinoflagellate Plastid Genome
Mungpakdee, Sutada; Shinzato, Chuya; Takeuchi, Takeshi; Kawashima, Takeshi; Koyanagi, Ryo; Hisata, Kanako; Tanaka, Makiko; Goto, Hiroki; Fujie, Manabu; Lin, Senjie; Satoh, Nori; Shoguchi, Eiichi
2014-01-01
Genome sequencing of Symbiodinium minutum revealed that 95 of 109 plastid-associated genes have been transferred to the nuclear genome and subsequently expanded by gene duplication. Only 14 genes remain in plastids and occur as DNA minicircles. Each minicircle (1.8–3.3 kb) contains one gene and a conserved noncoding region containing putative promoters and RNA-binding sites. Nine types of RNA editing, including a novel G/U type, were discovered in minicircle transcripts but not in genes transferred to the nucleus. In contrast to DNA editing sites in dinoflagellate mitochondria, which tend to be highly conserved across all taxa, editing sites employed in DNA minicircles are highly variable from species to species. Editing is crucial for core photosystem protein function. It restores evolutionarily conserved amino acids and increases peptidyl hydropathy. It also increases protein plasticity necessary to initiate photosystem complex assembly. PMID:24881086
Walsh, Ann W.; Langley, David R.; Colonno, Richard J.; Tenney, Daniel J.
2010-01-01
Background Entecavir (ETV) is a deoxyguanosine analog competitive inhibitor of hepatitis B virus (HBV) polymerase that exhibits delayed chain termination of HBV DNA. A high barrier to entecavir-resistance (ETVr) is observed clinically, likely due to its potency and a requirement for multiple resistance changes to overcome suppression. Changes in the HBV polymerase reverse-transcriptase (RT) domain involve lamivudine-resistance (LVDr) substitutions in the conserved YMDD motif (M204V/I ± L180M), plus an additional ETV-specific change at residues T184, S202 or M250. These substitutions surround the putative dNTP binding site or primer grip regions of the HBV RT. Methods/Principal Findings To determine the mechanistic basis for ETVr, wildtype, lamivudine-resistant (M204V, L180M) and ETVr HBVs were studied using in vitro RT enzyme and cell culture assays, as well as molecular modeling. Resistance substitutions significantly reduced ETV incorporation and chain termination in HBV DNA and increased the ETV-TP inhibition constant (Ki) for HBV RT. Resistant HBVs exhibited impaired replication in culture and reduced enzyme activity (kcat) in vitro. Molecular modeling of the HBV RT suggested that ETVr residue T184 was adjacent to and stabilized S202 within the LVDr YMDD loop. ETVr arose through steric changes at T184 or S202 or by disruption of hydrogen-bonding between the two, both of which repositioned the loop and reduced the ETV-triphosphate (ETV-TP) binding pocket. In contrast to T184 and S202 changes, ETVr at primer grip residue M250 was observed during RNA-directed DNA synthesis only. Experimentally, M250 changes also impacted the dNTP-binding site. Modeling suggested a novel mechanism for M250 resistance, whereby repositioning of the primer-template component of the dNTP-binding site shifted the ETV-TP binding pocket. No structural data are available to confirm the HBV RT modeling, however, results were consistent with phenotypic analysis of comprehensive substitutions of each ETVr position. Conclusions Altogether, ETVr occurred through exclusion of ETV-TP from the dNTP-binding site, through different, novel mechanisms that involved lamivudine-resistance, ETV-specific substitutions, and the primer-template. PMID:20169198
Walsh, Ann W; Langley, David R; Colonno, Richard J; Tenney, Daniel J
2010-02-12
Entecavir (ETV) is a deoxyguanosine analog competitive inhibitor of hepatitis B virus (HBV) polymerase that exhibits delayed chain termination of HBV DNA. A high barrier to entecavir-resistance (ETVr) is observed clinically, likely due to its potency and a requirement for multiple resistance changes to overcome suppression. Changes in the HBV polymerase reverse-transcriptase (RT) domain involve lamivudine-resistance (LVDr) substitutions in the conserved YMDD motif (M204V/I +/- L180M), plus an additional ETV-specific change at residues T184, S202 or M250. These substitutions surround the putative dNTP binding site or primer grip regions of the HBV RT. To determine the mechanistic basis for ETVr, wildtype, lamivudine-resistant (M204V, L180M) and ETVr HBVs were studied using in vitro RT enzyme and cell culture assays, as well as molecular modeling. Resistance substitutions significantly reduced ETV incorporation and chain termination in HBV DNA and increased the ETV-TP inhibition constant (K(i)) for HBV RT. Resistant HBVs exhibited impaired replication in culture and reduced enzyme activity (k(cat)) in vitro. Molecular modeling of the HBV RT suggested that ETVr residue T184 was adjacent to and stabilized S202 within the LVDr YMDD loop. ETVr arose through steric changes at T184 or S202 or by disruption of hydrogen-bonding between the two, both of which repositioned the loop and reduced the ETV-triphosphate (ETV-TP) binding pocket. In contrast to T184 and S202 changes, ETVr at primer grip residue M250 was observed during RNA-directed DNA synthesis only. Experimentally, M250 changes also impacted the dNTP-binding site. Modeling suggested a novel mechanism for M250 resistance, whereby repositioning of the primer-template component of the dNTP-binding site shifted the ETV-TP binding pocket. No structural data are available to confirm the HBV RT modeling, however, results were consistent with phenotypic analysis of comprehensive substitutions of each ETVr position. Altogether, ETVr occurred through exclusion of ETV-TP from the dNTP-binding site, through different, novel mechanisms that involved lamivudine-resistance, ETV-specific substitutions, and the primer-template.
A site-directed mutagenesis analysis of tNOX functional domains
NASA Technical Reports Server (NTRS)
Chueh, Pin-Ju; Morre, Dorothy M.; Morre, D. James
2002-01-01
Constitutive NADH oxidase proteins of the mammalian cell surface exhibit two different activities, oxidation of hydroquinones (or NADH) and protein disulfide-thiol interchange which alternate to yield oscillatory patterns with period lengths of 24 min. A drug-responsive tNOX (tumor-associated NADH oxidase) has a period length of about 22 min. The tNOX cDNA has been cloned and expressed. These two proteins are representative of cycling oxidase proteins of the plant and animal cell surface. In this report, we describe a series of eight amino acid replacements in tNOX which, when expressed in Escherichia coli, were analyzed for enzymatic activity, drug response and period length. Replacement sites selected include six cysteines that lie within the processed plasma membrane (34 kDa) form of the protein, and amino acids located in putative drug and adenine nucleotide (NADH) binding domains. The latter, plus two of the cysteine replacements, resulted in a loss of enzymatic activity. The recombinant tNOX with the modified drug binding site retained activity but the activity was no longer drug-responsive. The four remaining cysteine replacements were of interest in that both activity and drug response were retained but the period length for both NADH oxidation and protein disulfide-thiol interchange was increased from 22 min to 36 or 42 min. The findings confirm the correctness of the drug and adenine nucleotide binding motifs within the tNOX protein and imply a potential critical role of cysteine residues in determining the period length.
X-Ray crystal structure of GarR—tartronate semialdehyde reductase from Salmonella typhimurium
Osipiuk, J.; Zhou, M.; Moy, S.; Collart, F.
2009-01-01
Tartronate semialdehyde reductases (TSRs), also known as 2-hydroxy-3-oxopropionate reductases, catalyze the reduction of tartronate semialdehyde using NAD as cofactor in the final stage of D-glycerate biosynthesis. These enzymes belong to family of structurally and mechanically related β-hydroxyacid dehydrogenases which differ in substrate specificity and catalyze reactions in specific metabolic pathways. Here, we present the crystal structure of GarR a TSR from Salmonella typhimurium determined by the single-wavelength anomalous diffraction method and refined to 1.65 Å resolution. The active site of the enzyme contains L-tartrate which most likely mimics a position of a glycerate which is a product of the enzyme reaction. The analysis of the TSR structure shows also a putative NADPH binding site in the enzyme. PMID:19184529
X-ray crystal structure of GarR-tartronate semialdehyde reductase from Salmonella typhimurium.
Osipiuk, J; Zhou, M; Moy, S; Collart, F; Joachimiak, A
2009-09-01
Tartronate semialdehyde reductases (TSRs), also known as 2-hydroxy-3-oxopropionate reductases, catalyze the reduction of tartronate semialdehyde using NAD as cofactor in the final stage of D-glycerate biosynthesis. These enzymes belong to family of structurally and mechanically related beta-hydroxyacid dehydrogenases which differ in substrate specificity and catalyze reactions in specific metabolic pathways. Here, we present the crystal structure of GarR a TSR from Salmonella typhimurium determined by the single-wavelength anomalous diffraction method and refined to 1.65 A resolution. The active site of the enzyme contains L-tartrate which most likely mimics a position of a glycerate which is a product of the enzyme reaction. The analysis of the TSR structure shows also a putative NADPH binding site in the enzyme.
Frouco, Gonçalo; Freitas, Ferdinando B; Coelho, João; Leitão, Alexandre; Martins, Carlos; Ferreira, Fernando
2017-06-15
African swine fever virus (ASFV) codes for a putative histone-like protein (pA104R) with extensive sequence homology to bacterial proteins that are implicated in genome replication and packaging. Functional characterization of purified recombinant pA104R revealed that it binds to single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) over a wide range of temperatures, pH values, and salt concentrations and in an ATP-independent manner, with an estimated binding site size of about 14 to 16 nucleotides. Using site-directed mutagenesis, the arginine located in pA104R's DNA-binding domain, at position 69, was found to be relevant for efficient DNA-binding activity. Together, pA104R and ASFV topoisomerase II (pP1192R) display DNA-supercoiling activity, although none of the proteins by themselves do, indicating that the two cooperate in this process. In ASFV-infected cells, A104R transcripts were detected from 2 h postinfection (hpi) onward, reaching a maximum concentration around 16 hpi. pA104R was detected from 12 hpi onward, localizing with viral DNA replication sites and being found exclusively in the Triton-insoluble fraction. Small interfering RNA (siRNA) knockdown experiments revealed that pA104R plays a critical role in viral DNA replication and gene expression, with transfected cells showing lower viral progeny numbers (up to a reduction of 82.0%), lower copy numbers of viral genomes (-78.3%), and reduced transcription of a late viral gene (-47.6%). Taken together, our results strongly suggest that pA104R participates in the modulation of viral DNA topology, probably being involved in viral DNA replication, transcription, and packaging, emphasizing that ASFV mutants lacking the A104R gene could be used as a strategy to develop a vaccine against ASFV. IMPORTANCE Recently reintroduced in Europe, African swine fever virus (ASFV) causes a fatal disease in domestic pigs, causing high economic losses in affected countries, as no vaccine or treatment is currently available. Remarkably, ASFV is the only known mammalian virus that putatively codes for a histone-like protein (pA104R) that shares extensive sequence homology with bacterial histone-like proteins. In this study, we characterized the DNA-binding properties of pA104R, analyzed the functional importance of two conserved residues, and showed that pA104R and ASFV topoisomerase II cooperate and display DNA-supercoiling activity. Moreover, pA104R is expressed during the late phase of infection and accumulates in viral DNA replication sites, and its downregulation revealed that pA104R is required for viral DNA replication and transcription. These results suggest that pA104R participates in the modulation of viral DNA topology and genome packaging, indicating that A104R deletion mutants may be a good strategy for vaccine development against ASFV. Copyright © 2017 American Society for Microbiology.
Cattaruzza, Sabrina; Nicolosi, Pier Andrea; Braghetta, Paola; Pazzaglia, Laura; Benassi, Maria Serena; Picci, Piero; Lacrima, Katia; Zanocco, Daniela; Rizzo, Erika; Stallcup, William B; Colombatti, Alfonso; Perris, Roberto
2013-06-01
In soft-tissue sarcoma patients, enhanced expression of NG2/CSPG4 proteoglycan in pre-surgical primary tumours predicts post-surgical metastasis formation and thereby stratifies patients into disease-free survivors and patients destined to succumb to the disease. Both primary and secondary sarcoma lesions also up-regulate collagen type VI, a putative extracellular matrix ligand of NG2, and this matrix alteration potentiates the prognostic impact of NG2. Enhanced constitutive levels of the proteoglycan in isolated sarcoma cells closely correlate with a superior engraftment capability and local growth in xenogenic settings. This apparent NG2-associated malignancy was also corroborated by the diverse tumorigenic behaviour in vitro and in vivo of immunoselected NG2-expressing and NG2-deficient cell subsets, by RNAi-mediated knock down of endogenous NG2, and by ectopic transduction of full-length or deletion constructs of NG2. Cells with modified expression of NG2 diverged in their interaction with purified Col VI, matrices supplemented with Col VI, and cell-free matrices isolated from wild-type and Col VI null fibroblasts. The combined use of dominant-negative NG2 mutant cells and purified domain fragments of the collagen allowed us to pinpoint the reciprocal binding sites within the two molecules and to assert the importance of this molecular interaction in the control of sarcoma cell adhesion and motility. The NG2-mediated binding to Col VI triggered activation of convergent cell survival- and cell adhesion/migration-promoting signal transduction pathways, implicating PI-3K as a common denominator. Thus, the findings point to an NG2-Col VI interplay as putatively involved in the regulation of the cancer cell-host microenvironment interactions sustaining sarcoma progression.
Koebnik, Ralf; Krüger, Antje; Thieme, Frank; Urban, Alexander; Bonas, Ulla
2006-11-01
The pathogenicity of the plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria depends on a type III secretion system which is encoded by the 23-kb hrp (hypersensitive response and pathogenicity) gene cluster. Expression of the hrp operons is strongly induced in planta and in a special minimal medium and depends on two regulatory proteins, HrpG and HrpX. In this study, DNA affinity enrichment was used to demonstrate that the AraC-type transcriptional activator HrpX binds to a conserved cis-regulatory element, the plant-inducible promoter (PIP) box (TTCGC-N(15)-TTCGC), present in the promoter regions of four hrp operons. No binding of HrpX was observed when DNA fragments lacking a PIP box were used. HrpX also bound to a DNA fragment containing an imperfect PIP box (TTCGC-N(8)-TTCGT). Dinucleotide replacements in each half-site of the PIP box strongly decreased binding of HrpX, while simultaneous dinucleotide replacements in both half-sites completely abolished binding. Based on the complete genome sequence of Xanthomonas campestris pv. vesicatoria, putative plant-inducible promoters consisting of a PIP box and a -10 promoter motif were identified in the promoter regions of almost all HrpX-activated genes. Bioinformatic analyses and reverse transcription-PCR experiments revealed novel HrpX-dependent genes, among them a NUDIX hydrolase gene and several genes with a predicted role in the degradation of the plant cell wall. We conclude that HrpX is the most downstream component of the hrp regulatory cascade, which is proposed to directly activate most genes of the hrpX regulon via binding to corresponding PIP boxes.
Basu, Koli; Wasserman, Samantha S; Jeronimo, Paul S; Graham, Laurie A; Davies, Peter L
2016-04-01
An antifreeze protein (AFP) from a midge (Chironomidae) was recently discovered and modelled as a tightly wound disulfide-braced solenoid with a surface-exposed rank of stacked tyrosines. New isoforms of the midge AFP have been identified from RT-PCR and are fully consistent with the model. Although they differ in the number of 10-residue coils, the row of tyrosines that form the putative ice-binding site is conserved. Recombinant midge AFP has been produced, and the properly folded form purified by ice affinity. This monomeric AFP has a distinct circular dichroism spectrum, a melting temperature between 35 and 50 °C and is fully renaturable on cooling. Mutagenesis of the middle tyrosine in the rank of seven eliminates antifreeze activity, whereas mutation of a tyrosine off this predicted ice-binding face had no such effect. This AFP has unusual properties compared to other known AFPs. First, its freezing-point depression activity is intermediate between that of the hyperactive and moderately active AFPs. As with hyperactive AFPs, when midge AFP-bound ice crystals exceed their freezing-point depression, ice grows explosively perpendicular to the c-axis. However, midge AFP does not bind to the basal plane of ice as do hyperactive AFPs, but rather to a pyramidal plane that is at a shallower angle relative to the basal plane than binding planes of moderate AFPs. These properties distinguish midge AFP from all other ice-binding proteins and the intermediate activity level fits well to the modest challenge of protecting newly emerged adult insects from late spring frosts. Nucleotide sequences of new midge AFP isoforms are available in the GenBank database under accession numbers KU094814-8. Sequences will be released after publication. © 2016 Federation of European Biochemical Societies.
Forsberg, Zarah; Nelson, Cassandra E.; Dalhus, Bjørn; Mekasha, Sophanit; Loose, Jennifer S. M.; Crouch, Lucy I.; Røhr, Åsmund K.; Gardner, Jeffrey G.; Eijsink, Vincent G. H.; Vaaje-Kolstad, Gustav
2016-01-01
Cellvibrio japonicus is a Gram-negative soil bacterium that is primarily known for its ability to degrade plant cell wall polysaccharides through utilization of an extensive repertoire of carbohydrate-active enzymes. Several putative chitin-degrading enzymes are also found among these carbohydrate-active enzymes, such as chitinases, chitobiases, and lytic polysaccharide monooxygenases (LPMOs). In this study, we have characterized the chitin-active LPMO, CjLPMO10A, a tri-modular enzyme containing a catalytic family AA10 LPMO module, a family 5 chitin-binding module, and a C-terminal unclassified module of unknown function. Characterization of the latter module revealed tight and specific binding to chitin, thereby unraveling a new family of chitin-binding modules (classified as CBM73). X-ray crystallographic elucidation of the CjLPMO10A catalytic module revealed that the active site of the enzyme combines structural features previously only observed in either cellulose or chitin-active LPMO10s. Analysis of the copper-binding site by EPR showed a signal signature more similar to those observed for cellulose-cleaving LPMOs. The full-length LPMO shows no activity toward cellulose but is able to bind and cleave both α- and β-chitin. Removal of the chitin-binding modules reduced LPMO activity toward α-chitin compared with the full-length enzyme. Interestingly, the full-length enzyme and the individual catalytic LPMO module boosted the activity of an endochitinase equally well, also yielding similar amounts of oxidized products. Finally, gene deletion studies show that CjLPMO10A is needed by C. japonicus to obtain efficient growth on both purified chitin and crab shell particles. PMID:26858252
Forsberg, Zarah; Nelson, Cassandra E; Dalhus, Bjørn; Mekasha, Sophanit; Loose, Jennifer S M; Crouch, Lucy I; Røhr, Åsmund K; Gardner, Jeffrey G; Eijsink, Vincent G H; Vaaje-Kolstad, Gustav
2016-04-01
Cellvibrio japonicusis a Gram-negative soil bacterium that is primarily known for its ability to degrade plant cell wall polysaccharides through utilization of an extensive repertoire of carbohydrate-active enzymes. Several putative chitin-degrading enzymes are also found among these carbohydrate-active enzymes, such as chitinases, chitobiases, and lytic polysaccharide monooxygenases (LPMOs). In this study, we have characterized the chitin-active LPMO,CjLPMO10A, a tri-modular enzyme containing a catalytic family AA10 LPMO module, a family 5 chitin-binding module, and a C-terminal unclassified module of unknown function. Characterization of the latter module revealed tight and specific binding to chitin, thereby unraveling a new family of chitin-binding modules (classified as CBM73). X-ray crystallographic elucidation of theCjLPMO10A catalytic module revealed that the active site of the enzyme combines structural features previously only observed in either cellulose or chitin-active LPMO10s. Analysis of the copper-binding site by EPR showed a signal signature more similar to those observed for cellulose-cleaving LPMOs. The full-length LPMO shows no activity toward cellulose but is able to bind and cleave both α- and β-chitin. Removal of the chitin-binding modules reduced LPMO activity toward α-chitin compared with the full-length enzyme. Interestingly, the full-length enzyme and the individual catalytic LPMO module boosted the activity of an endochitinase equally well, also yielding similar amounts of oxidized products. Finally, gene deletion studies show thatCjLPMO10A is needed byC. japonicusto obtain efficient growth on both purified chitin and crab shell particles. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Mbanefo, Evaristus Chibunna; Kikuchi, Mihoko; Huy, Nguyen Tien; Shuaibu, Mohammed Nasir; Cherif, Mahamoud Sama; Yu, Chuanxin; Wakao, Masahiro; Suda, Yasuo; Hirayama, Kenji
2014-01-01
Background We previously identified a novel gene family dispersed in the genome of Schistosoma japonicum by retrotransposon-mediated gene duplication mechanism. Although many transcripts were identified, no homolog was readily identifiable from sequence information. Methodology/Principal Findings Here, we utilized structural homology modeling and biochemical methods to identify remote homologs, and characterized the gene products as SEA (sea-urchin sperm protein, enterokinase and agrin)-domain containing proteins. A common extracellular domain in this family was structurally similar to SEA-domain. SEA-domain is primarily a structural domain, known to assist or regulate binding to glycans. Recombinant proteins from three members of this gene family specifically interacted with glycosaminoglycans with high affinity, with potential implication in ligand acquisition and immune evasion. Similar approach was used to identify a heme-binding site on the SEA-domain. The heme-binding mode showed heme molecule inserted into a hydrophobic pocket, with heme iron putatively coordinated to two histidine axial ligands. Heme-binding properties were confirmed using biochemical assays and UV-visible absorption spectroscopy, which showed high affinity heme-binding (K D = 1.605×10−6 M) and cognate spectroscopic attributes of hexa-coordinated heme iron. The native proteins were oligomers, antigenic, and are localized on adult worm teguments and gastrodermis; major host-parasite interfaces and site for heme detoxification and acquisition. Conclusions The results suggest potential role, at least in the nucleation step of heme crystallization (hemozoin formation), and as receptors for heme uptake. Survival strategies exploited by parasites, including heme homeostasis mechanism in hemoparasites, are paramount for successful parasitism. Thus, assessing prospects for application in disease intervention is warranted. PMID:24416467
MiR-145 regulates PAK4 via the MAPK pathway and exhibits an antitumor effect in human colon cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhigang; Zhang, Xiaoping; Yang, Zhili
2012-10-26
Highlights: Black-Right-Pointing-Pointer MiR-145 targets a putative binding site in the 3 Prime UTR of PAK4. Black-Right-Pointing-Pointer MiR-145 played an important role in inhibiting cell growth by directly targeting PAK4. Black-Right-Pointing-Pointer MiR-145 may function as tumor suppressors. -- Abstract: MicroRNAs (miRNAs) are regulators of numerous cellular events; accumulating evidence indicates that miRNAs play a key role in a wide range of biological functions, such as cellular proliferation, differentiation, and apoptosis in cancer. Down-regulated expression of miR-145 has been reported in colon cancer tissues and cell lines. The molecular mechanisms underlying miR-145 and the regulation of colon carcinogenesis remain unclear. In thismore » study, we investigated the levels of miR-145 in human colon cancer cells using qRT-PCR and found markedly decreased levels compared to normal epithelial cells. We identified PAK4 as a novel target of miR-145 using informatics screening. Additionally, we demonstrated that miR-145 targets a putative binding site in the 3 Prime UTR of PAK4 and that its abundance is inversely associated with miR-145 expression in colon cancer cells; we confirmed this relationship using the luciferase reporter assay. Furthermore, restoration of miR-145 by mimics in SW620 cells significantly attenuated cell growth in vitro, in accordance with the inhibitory effects induced by siRNA mediated knockdown of PAK4. Taken together, these findings demonstrate that miR-145 downregulates P-ERK expression by targeting PAK4 and leads to inhibition of tumor growth.« less
The LIM-homeodomain transcription factor LMX1B regulates expression of NF-kappa B target genes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rascle, Anne; Neumann, Tanja; Raschta, Anne-Sarah
2009-01-01
LMX1B is a LIM-homeodomain transcription factor essential for development. Putative LMX1B target genes have been identified through mouse gene targeting studies, but their identity as direct LMX1B targets remains hypothetical. We describe here the first molecular characterization of LMX1B target gene regulation. Microarray analysis using a tetracycline-inducible LMX1B expression system in HeLa cells revealed that a subset of NF-{kappa}B target genes, including IL-6 and IL-8, are upregulated in LMX1B-expressing cells. Inhibition of NF-{kappa}B activity by short interfering RNA-mediated knock-down of p65 impairs, while activation of NF-{kappa}B activity by TNF-{alpha} synergizes induction of NF-{kappa}B target genes by LMX1B. Chromatin immunoprecipitation demonstratedmore » that LMX1B binds to the proximal promoter of IL-6 and IL-8 in vivo, in the vicinity of the characterized {kappa}B site, and that LMX1B recruitment correlates with increased NF-{kappa}B DNA association. IL-6 promoter-reporter assays showed that the {kappa}B site and an adjacent putative LMX1B binding motif are both involved in LMX1B-mediated transcription. Expression of NF-{kappa}B target genes is affected in the kidney of Lmx1b{sup -/-} knock-out mice, thus supporting the biological relevance of our findings. Together, these data demonstrate for the first time that LMX1B directly regulates transcription of a subset of NF-{kappa}B target genes in cooperation with nuclear p50/p65 NF-{kappa}B.« less
Direct interplay between two candidate genes in FSHD muscular dystrophy
Ferri, Giulia; Huichalaf, Claudia H.; Caccia, Roberta; Gabellini, Davide
2015-01-01
Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common neuromuscular disorders. The major form of the disease (FSHD1) is linked to decrease in copy number of a 3.3-kb tandem repeated macrosatellite (D4Z4), located on chromosome 4q35. D4Z4 deletion alters chromatin structure of the locus leading to aberrant expression of nearby 4q35 genes. Given the high variability in disease onset and progression, multiple factors could contribute to the pathogenesis of FSHD. Among the FSHD candidate genes are double homeobox 4 (DUX4), encoded by the most telomeric D4Z4 unit, and FSHD region gene 1 (FRG1). DUX4 is a sequence-specific transcription factor. Here, we located putative DUX4 binding sites in the human FRG1 genomic area and we show specific DUX4 association to these regions. We found also that ectopically expressed DUX4 up-regulates the endogenous human FRG1 gene in healthy muscle cells, while DUX4 knockdown leads to a decrease in FRG1 expression in FSHD muscle cells. Moreover, DUX4 binds directly and specifically to its binding site located in the human FRG1 gene and transactivates constructs containing FRG1 genomic regions. Intriguingly, the mouse Frg1 genomic area lacks DUX4 binding sites and DUX4 is unable to activate the endogenous mouse Frg1 gene providing a possible explanation for the lack of muscle phenotype in DUX4 transgenic mice. Altogether, our results demonstrate that FRG1 is a direct DUX4 transcriptional target uncovering a novel regulatory circuit contributing to FSHD. PMID:25326393
Garcia, Fernando; Lopez, Francisco J; Cano, Carlos; Blanco, Armando
2009-01-01
Background Regulatory motifs describe sets of related transcription factor binding sites (TFBSs) and can be represented as position frequency matrices (PFMs). De novo identification of TFBSs is a crucial problem in computational biology which includes the issue of comparing putative motifs with one another and with motifs that are already known. The relative importance of each nucleotide within a given position in the PFMs should be considered in order to compute PFM similarities. Furthermore, biological data are inherently noisy and imprecise. Fuzzy set theory is particularly suitable for modeling imprecise data, whereas fuzzy integrals are highly appropriate for representing the interaction among different information sources. Results We propose FISim, a new similarity measure between PFMs, based on the fuzzy integral of the distance of the nucleotides with respect to the information content of the positions. Unlike existing methods, FISim is designed to consider the higher contribution of better conserved positions to the binding affinity. FISim provides excellent results when dealing with sets of randomly generated motifs, and outperforms the remaining methods when handling real datasets of related motifs. Furthermore, we propose a new cluster methodology based on kernel theory together with FISim to obtain groups of related motifs potentially bound by the same TFs, providing more robust results than existing approaches. Conclusion FISim corrects a design flaw of the most popular methods, whose measures favour similarity of low information content positions. We use our measure to successfully identify motifs that describe binding sites for the same TF and to solve real-life problems. In this study the reliability of fuzzy technology for motif comparison tasks is proven. PMID:19615102
Yamasu, K; Wilt, F H
1999-02-01
The SM30a gene encodes a protein in the embryonic endoskeleton of the sea urchin Strongylocentrotus purpuratus, and is specifically expressed in the skeletogenic primary mesenchyme cell lineage. To clarify the mechanism for the differentiation of this cell lineage, which proceeds rather autonomously in the embryo, regulation of the SM30alpha gene was investigated previously and it was shown that the distal DNA region upstream of this gene from - 1.6 to - 1.0 kb contained numerous negative regulatory elements that suppressed the ectopic expression of the gene in the gut. Here we study the influence of the proximal region from - 303 to + 104 bp. Analysis of the expression of reporter constructs indicated that a strong positive enhancer element existed in the region from -142 to -105bp. This element worked both in forward and reverse orientations and additively when placed tandemly upstream to the reporter gene. In addition, other weaker positive and negative regulatory sites were also detected throughout the proximal region. Electrophoretic gel mobility shift analyses showed that multiple nuclear proteins were bound to the putative strong enhancer region. One of the proteins binding to this region was present in ear y blastulae, a time when the SM30 gene was still silent, but it was not in prism embryos actively expressing the gene. The binding region for this blastula-specific protein was narrowed down to the region from - 132 to -122 bp, which included the consensus binding site for the mammalian proto-oncogene product, Ets. Two possible SpGCF1 binding sites were identified in the vicinity of the enhancer region. This information was used to make a comparison of the general regulatory architecture of genes that contribute to the formation of the skeletal spicule.
Varmanen, P; Rantanen, T; Palva, A
1996-12-01
A proline iminopeptidase gene (pepI) of an industrial Lactobacillus helveticus strain was cloned and found to be organized in an operon-like structure of three open reading frames (ORF1, ORF2 and ORF3). ORF1 was preceded by a typical prokaryotic promoter region, and a putative transcription terminator was found downstream of ORF3, identified as the pepI gene. Using primer-extension analyses, only one transcription start site, upstream of ORF1, was identifiable in the predicted operon. Although the size of mRNA could not be judged by Northern analysis either with ORF1-, ORF2- or pepI-specific probes, reverse transcription-PCR analyses further supported the operon structure of the three genes. ORF1, ORF2 and ORF3 had coding capacities for 50.7, 24.5 and 33.8 kDa proteins, respectively. The ORF3-encoded PepI protein showed 65% identity with the PepI proteins from Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus delbrueckii subsp. lactis. The ORF1-encoded protein had significant homology with several members of the ABC transporter family but, with two distinct putative ATP-binding sites, it would represent an unusual type among the bacterial ABC transporters. ORF2 encoded a putative integral membrane protein also characteristic of the ABC transporter family. The pepI gene was overexpressed in Escherichia coli. Purified PepI hydrolysed only di and tripeptides with proline in the first position. Optimum PepI activity was observed at pH 7.5 and 40 degrees C. A gel filtration analysis indicated that PepI is a dimer of M(r) 53,000. PepI was shown to be a metal-independent serine peptidase having thiol groups at or near the active site. Kinetic studies with proline-p-nitroanilide as substrate revealed Km and Vmax values of 0.8 mM and 350 mmol min-1 mg-1, respectively, and a very high turnover number of 135,000 s-1.
USDA-ARS?s Scientific Manuscript database
Chitin-binding proteins (CBPs) existed in various species and involved in different biology processes. In the present study, we cloned a full length cDNA of chitin-binding protein-like (PpCBP-like) from Pteromalus puparum, a pupal endoparasitoid of Pieris rapae. PpCBP-like encoded a 96 putative amin...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Tingting; Chang, Chin -Yuan; Lohman, Jeremy R.
Comparative analysis of the enediyne biosynthetic gene clusters revealed sets of conserved genes serving as outstanding candidates for the enediyne core. Here we report the crystal structures of SgcJ and its homologue NCS-Orf16, together with gene inactivation and site-directed mutagenesis studies, to gain insight into enediyne core biosynthesis. Gene inactivation in vivo establishes that SgcJ is required for C-1027 production in Streptomyces globisporus. SgcJ and NCS-Orf16 share a common structure with the nuclear transport factor 2-like superfamily of proteins, featuring a putative substrate binding or catalytic active site. Site-directed mutagenesis of the conserved residues lining this site allowed us tomore » propose that SgcJ and its homologues may play a catalytic role in transforming the linear polyene intermediate, along with other enediyne polyketide synthase-associated enzymes, into an enzyme-sequestered enediyne core intermediate. In conclusion, these findings will help formulate hypotheses and design experiments to ascertain the function of SgcJ and its homologues in nine-membered enediyne core biosynthesis.« less
Rajesh, P S; Rai, V Ravishankar
2014-01-03
The aiiA homologous gene known to encode AHL- lactonase enzyme which hydrolyze the N-acylhomoserine lactone (AHL) quorum sensing signaling molecules produced by Gram negative bacteria. In this study, the degradation of AHL molecules was determined by cell-free lysate of endophytic Enterobacter species. The percentage of quorum quenching was confirmed and quantified by HPLC method (p<0.0001). Amplification and sequence BLAST analysis showed the presence of aiiA homologous gene in endophytic Enterobacter asburiae VT65, Enterobacter aerogenes VT66 and Enterobacter ludwigii VT70 strains. Sequence alignment analysis revealed the presence of two zinc binding sites, "HXHXDH" motif as well as tyrosine residue at the position 194. Based on known template available at Swiss-Model, putative tertiary structure of AHL-lactonase was constructed. The result showed that novel endophytic strains of Enterobacter genera encode the novel aiiA homologous gene and its structural importance for future study. Copyright © 2013 Elsevier Inc. All rights reserved.
Triazoles inhibit cholesterol export from lysosomes by binding to NPC1.
Trinh, Michael N; Lu, Feiran; Li, Xiaochun; Das, Akash; Liang, Qiren; De Brabander, Jef K; Brown, Michael S; Goldstein, Joseph L
2017-01-03
Niemann-Pick C1 (NPC1), a membrane protein of lysosomes, is required for the export of cholesterol derived from receptor-mediated endocytosis of LDL. Lysosomal cholesterol export is reportedly inhibited by itraconazole, a triazole that is used as an antifungal drug [Xu et al. (2010) Proc Natl Acad Sci USA 107:4764-4769]. Here we show that posaconazole, another triazole, also blocks cholesterol export from lysosomes. We prepared P-X, a photoactivatable cross-linking derivative of posaconazole. P-X cross-linked to NPC1 when added to intact cells. Cross-linking was inhibited by itraconazole but not by ketoconazole, an imidazole that does not block cholesterol export. Cross-linking of P-X was also blocked by U18666A, a compound that has been shown to bind to NPC1 and inhibit cholesterol export. P-X also cross-linked to purified NPC1 that was incorporated into lipid bilayer nanodiscs. In this in vitro system, cross-linking of P-X was inhibited by itraconazole, but not by U18666A. P-X cross-linking was not prevented by deletion of the N-terminal domain of NPC1, which contains the initial binding site for cholesterol. In contrast, P-X cross-linking was reduced when NPC1 contained a point mutation (P691S) in its putative sterol-sensing domain. We hypothesize that the sterol-sensing domain has a binding site that can accommodate structurally different ligands.
Crystal Structure of VC0702 at 2.0 angstrom: A Conserved Hypothetical Protein from Vibrio Cholerae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ni, Shuisong; Forouhar, Farhad; Bussiere, Dirksen E.
2006-06-01
VC0702, a conserved hypothetical protein of unknown function from Vibrio cholerae, resides in a putative three-gene operon containing the MbaA gene, which is involved in regulating formation of the extracellular matrix of biofilms in Vibrio cholerae. The VC0702 crystal structure has been determined at 2.0? and refined to Rwork=22.8% and Rfree=26.3%. VC0702 crystallized in an orthorhombic crystal lattice in the C2221 space group with dimensions of a=66.61 ?, b=88.118 ?, and c=118.35 ? with a homodimer in the asymmetric unit. VC0702 belongs to the Pfam DUF84 and COG1986 family of proteins. Sequence conservation within the DUF84 and COG1986 families wasmore » used to identify a conserved patch of surface residues that define a cleft and potential substrate-binding site in VC0702. The three-dimensional structure of VC0702 is similar to that of Mj0226 from Methanococcus janeshii, which has been identified as a novel NTPase. The NTP-binding site in Mj0226 is similarly located in comparison to the conserved patch of surface residues in VC0702. Furthermore, the NTP binds to MJ0226 in a cleft and deep cavity, features that are present in the VC0702 structure as well, suggesting that VC0702 may have a biochemical function involving NTP binding that is associated with a cellular function of regulating biofilm formation in Vibrio cholerae.« less
Sandbaken, M. G.; Culbertson, M. R.
1988-01-01
A mutational analysis of the eukaryotic elongation factor EF-1α indicates that this protein functions to limit the frequency of errors during genetic code translation. We found that both amino acid misincorporation and reading frame errors are controlled by EF-1α. In order to examine the function of this protein, the TEF2 gene, which encodes EF-1α in Saccharomyces cerevisiae, was mutagenized in vitro with hydroxylamine. Sixteen independent TEF2 alleles were isolated by their ability to suppress frameshift mutations. DNA sequence analysis identified eight different sites in the EF-1α protein that elevate the frequency of mistranslation when mutated. These sites are located in two different regions of the protein. Amino acid substitutions located in or near the GTP-binding and hydrolysis domain of the protein cause suppression of frameshift and nonsense mutations. These mutations may effect mistranslation by altering the binding or hydrolysis of GTP. Amino acid substitutions located adjacent to a putative aminoacyl-tRNA binding region also suppress frameshift and nonsense mutations. These mutations may alter the binding of aminoacyl-tRNA by EF-1α. The identification of frameshift and nonsense suppressor mutations in EF-1α indicates a role for this protein in limiting amino acid misincorporation and reading frame errors. We suggest that these types of errors are controlled by a common mechanism or closely related mechanisms. PMID:3066688
Flies expand the repertoire of protein structures that bind ice.
Basu, Koli; Graham, Laurie A; Campbell, Robert L; Davies, Peter L
2015-01-20
An antifreeze protein (AFP) with no known homologs has been identified in Lake Ontario midges (Chironomidae). The midge AFP is expressed as a family of isoforms at low levels in adults, which emerge from fresh water in spring before the threat of freezing temperatures has passed. The 9.1-kDa major isoform derived from a preproprotein precursor is glycosylated and has a 10-residue tandem repeating sequence xxCxGxYCxG, with regularly spaced cysteines, glycines, and tyrosines comprising one-half its 79 residues. Modeling and molecular dynamics predict a tightly wound left-handed solenoid fold in which the cysteines form a disulfide core to brace each of the eight 10-residue coils. The solenoid is reinforced by intrachain hydrogen bonds, side-chain salt bridges, and a row of seven stacked tyrosines on the hydrophobic side that forms the putative ice-binding site. A disulfide core is also a feature of the similar-sized beetle AFP that is a β-helix with seven 12-residue coils and a comparable circular dichroism spectrum. The midge and beetle AFPs are not homologous and their ice-binding sites are radically different, with the latter comprising two parallel arrays of outward-pointing threonines. However, their structural similarities is an amazing example of convergent evolution in different orders of insects to cope with change to a colder climate and provide confirmation about the physical features needed for a protein to bind ice.
Characterization of carotenoid hydroxylase gene promoter in Haematococcus pluvialis.
Meng, C X; Wei, W; Su, Z- L; Qin, S
2006-10-01
Astaxanthin, a high-value ketocarotenoid is mainly used in fish aquaculture. It also has potential in human health due to its higher antioxidant capacity than beta-carotene and vitamin E. The unicellular green alga Haematococcus pluvialis is known to accumulate astaxanthin in response to environmental stresses, such as high light intensity and salt stress. Carotenoid hydroxylase plays a key role in astaxanthin biosynthesis in H. pluvialis. In this paper, we report the characterization of a promoter-like region (-378 to -22 bp) of carotenoid hydroxylase gene by cloning, sequence analysis and functional verification of its 919 bp 5'-flanking region in H. pluvialis. The 5'-flanking region was characterized using micro-particle bombardment method and transient expression of LacZ reporter gene. Results of sequence analysis showed that the 5'-flanking region might have putative cis-acting elements, such as ABA (abscisic acid)-responsive element (ABRE), C-repeat/dehydration responsive element (C-repeat/DRE), ethylene-responsive element (ERE), heat-shock element (HSE), wound-responsive element (WUN-motif), gibberellin-responsive element (P-box), MYB-binding site (MBS) etc., except for typical TATA and CCAAT boxes. Results of 5' deletions construct and beta-galactosidase assays revealed that a highest promoter-like region might exist from -378 to -22 bp and some negative regulatory elements might lie in the region from -919 to -378 bp. Results of site-directed mutagenesis of a putative C-repeat/DRE and an ABRE-like motif in the promoter-like region (-378 to -22 bp) indicated that the putative C-repeat/DRE and ABRE-like motif might be important for expression of carotenoid hydroxylase gene.
Martinez, Lorena; Arnaud, Ophélie; Henin, Emilie; Tao, Houchao; Chaptal, Vincent; Doshi, Rupak; Andrieu, Thibaud; Dussurgey, Sébastien; Tod, Michel; Di Pietro, Attilio; Zhang, Qinghai; Chang, Geoffrey; Falson, Pierre
2015-01-01
Human P-glycoprotein (P-gp) controls drugs bioavailability by pumping out of the cells many structurally-unrelated drugs. The x-ray structure of the mouse P-gp ortholog was solved with two SSS- and one RRR-enantiomers of the selenohexapeptide inhibitor QZ59, found within the putative drug-binding pocket of the membrane domain outer leaflet. This offered the first opportunity to localize the well-known H- and R- drug-substrate sites in light of QZ59 inhibition mechanisms that were characterized here in cellulo and modelled towards Hoechst 33342 and daunorubicin transport. We found that QZ59-SSS competes efficiently with both substrates, displaying KI,app values of 0.15 and 0.3 μM, respectively 13 and 2 times lower than corresponding Km,app. In contrast, QZ59-RRR non-competitively inhibited daunorubicin transport with moderate efficacy (KI,app = 1.9 μM) and displayed a mixed-type inhibition towards Hoechst 33342 transport, resulting from a mainly non-competitive (Ki2,app = 1.6 μM) and a poor but significant competitive tendency (Ki1,app = 5 μM). These results suppose a positional overlap of QZ59 – drug-transport sites, total for the SSS enantiomer and partial for the RRR one. Crystal structures analysis suggests that the H site overlaps both QZ59-SSS locations while the R-site overlaps the most embedded one. PMID:24219411
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisone, G.; Wu, C.F.; Consolo, S.
1987-10-01
A high density of galanin binding sites was found by using /sup 125/I-labeled galanin, iodinated by chloramine-T, followed by autoradiography in the ventral, but not in the dorsal, hippocampus of the rat. Lesions of the fimbria and of the septum caused disappearance of a major population of these binding sites, suggesting that a large proportion of them is localized on cholinergic nerve terminals of septal afferents. As a functional correlate to these putative galanin receptor sites, it was shown, both in vivo and in vitro, that galanin, in a concentration-dependent manner, inhibited the evoked release of acetylcholine in the ventral,more » but not in the dorsal, hippocampus. Intracerebroventricularly applied galanin fully inhibited the scopolamine stimulated release of acetylcholine in the ventral, but not in the dorsal, hippocampus, as measured by the microdialysis technique. In vitro, galanin inhibited the 25 mM K/sup +/-evoked release of (/sup 3/H)acetylcholine from slices of the ventral hippocampus, with an IC/sub 50/ value of approx. = 50 nM. These results are discussed with respect to the colocalization of galanin- and choline acetyltransferase-like immunoreactivity in septal somata projecting to the hippocampus.« less
Engineering synthetic TAL effectors with orthogonal target sites
Garg, Abhishek; Lohmueller, Jason J.; Silver, Pamela A.; Armel, Thomas Z.
2012-01-01
The ability to engineer biological circuits that process and respond to complex cellular signals has the potential to impact many areas of biology and medicine. Transcriptional activator-like effectors (TALEs) have emerged as an attractive component for engineering these circuits, as TALEs can be designed de novo to target a given DNA sequence. Currently, however, the use of TALEs is limited by degeneracy in the site-specific manner by which they recognize DNA. Here, we propose an algorithm to computationally address this problem. We apply our algorithm to design 180 TALEs targeting 20 bp cognate binding sites that are at least 3 nt mismatches away from all 20 bp sequences in putative 2 kb human promoter regions. We generated eight of these synthetic TALE activators and showed that each is able to activate transcription from a targeted reporter. Importantly, we show that these proteins do not activate synthetic reporters containing mismatches similar to those present in the genome nor a set of endogenous genes predicted to be the most likely targets in vivo. Finally, we generated and characterized TALE repressors comprised of our orthogonal DNA binding domains and further combined them with shRNAs to accomplish near complete repression of target gene expression. PMID:22581776
Structure of a putative acetyltransferase (PA1377) from Pseudomonas aeruginosa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, Anna M.; Tata, Renée; Chauviac, François-Xavier
2008-05-01
The crystal structure of an acetyltransferase encoded by the gene PA1377 from Pseudomonas aeruginosa has been determined at 2.25 Å resolution. Comparison with a related acetyltransferase revealed a structural difference in the active site that was taken to reflect a difference in substrate binding and/or specificity between the two enzymes. Gene PA1377 from Pseudomonas aeruginosa encodes a 177-amino-acid conserved hypothetical protein of unknown function. The structure of this protein (termed pitax) has been solved in space group I222 to 2.25 Å resolution. Pitax belongs to the GCN5-related N-acetyltransferase family and contains all four sequence motifs conserved among family members. Themore » β-strand structure in one of these motifs (motif A) is disrupted, which is believed to affect binding of the substrate that accepts the acetyl group from acetyl-CoA.« less
Structural Basis for the Interaction of Mutasome Assembly Factor REV1 with Ubiquitin.
Cui, Gaofeng; Botuyan, Maria Victoria; Mer, Georges
2018-05-18
REV1 is an evolutionarily conserved translesion synthesis (TLS) DNA polymerase and an assembly factor key for the recruitment of other TLS polymerases to DNA damage sites. REV1-mediated recognition of ubiquitin in the proliferative cell nuclear antigen is thought to be the trigger for TLS activation. Here we report the solution NMR structure of a 108-residue fragment of human REV1 encompassing the two putative ubiquitin-binding motifs UBM1 and UBM2 in complex with ubiquitin. While in mammals UBM1 and UBM2 are both required for optimal association of REV1 with replication factories after DNA damage, we show that only REV1 UBM2 binds ubiquitin. Structure-guided mutagenesis in Saccharomyces cerevisiae further highlights the importance of UBM2 for REV1-mediated mutagenesis and DNA damage tolerance. Copyright © 2018 Elsevier Ltd. All rights reserved.
Clostridium perfringens epsilon toxin H149A mutant as a platform for receptor binding studies.
Bokori-Brown, Monika; Kokkinidou, Maria C; Savva, Christos G; Fernandes da Costa, Sérgio; Naylor, Claire E; Cole, Ambrose R; Moss, David S; Basak, Ajit K; Titball, Richard W
2013-05-01
Clostridium perfringens epsilon toxin (Etx) is a pore-forming toxin responsible for a severe and rapidly fatal enterotoxemia of ruminants. The toxin is classified as a category B bioterrorism agent by the U.S. Government Centres for Disease Control and Prevention (CDC), making work with recombinant toxin difficult. To reduce the hazard posed by work with recombinant Etx, we have used a variant of Etx that contains a H149A mutation (Etx-H149A), previously reported to have reduced, but not abolished, toxicity. The three-dimensional structure of H149A prototoxin shows that the H149A mutation in domain III does not affect organisation of the putative receptor binding loops in domain I of the toxin. Surface exposed tyrosine residues in domain I of Etx-H149A (Y16, Y20, Y29, Y30, Y36 and Y196) were mutated to alanine and mutants Y30A and Y196A showed significantly reduced binding to MDCK.2 cells relative to Etx-H149A that correlated with their reduced cytotoxic activity. Thus, our study confirms the role of surface exposed tyrosine residues in domain I of Etx in binding to MDCK cells and the suitability of Etx-H149A for further receptor binding studies. In contrast, binding of all of the tyrosine mutants to ACHN cells was similar to that of Etx-H149A, suggesting that Etx can recognise different cell surface receptors. In support of this, the crystal structure of Etx-H149A identified a glycan (β-octyl-glucoside) binding site in domain III of Etx-H149A, which may be a second receptor binding site. These findings have important implications for developing strategies designed to neutralise toxin activity. Copyright © 2013 The Protein Society.
Structural studies of viperin, an antiviral radical SAM enzyme.
Fenwick, Michael K; Li, Yue; Cresswell, Peter; Modis, Yorgo; Ealick, Steven E
2017-06-27
Viperin is an IFN-inducible radical S -adenosylmethionine (SAM) enzyme that inhibits viral replication. We determined crystal structures of an anaerobically prepared fragment of mouse viperin (residues 45-362) complexed with S -adenosylhomocysteine (SAH) or 5'-deoxyadenosine (5'-dAdo) and l-methionine (l-Met). Viperin contains a partial (βα) 6 -barrel fold with a disordered N-terminal extension (residues 45-74) and a partially ordered C-terminal extension (residues 285-362) that bridges the partial barrel to form an overall closed barrel structure. Cys84, Cys88, and Cys91 located after the first β-strand bind a [4Fe-4S] cluster. The active site architecture of viperin with bound SAH (a SAM analog) or 5'-dAdo and l-Met (SAM cleavage products) is consistent with the canonical mechanism of 5'-deoxyadenosyl radical generation. The viperin structure, together with sequence alignments, suggests that vertebrate viperins are highly conserved and that fungi contain a viperin-like ortholog. Many bacteria and archaebacteria also express viperin-like enzymes with conserved active site residues. Structural alignments show that viperin is similar to several other radical SAM enzymes, including the molybdenum cofactor biosynthetic enzyme MoaA and the RNA methyltransferase RlmN, which methylates specific nucleotides in rRNA and tRNA. The viperin putative active site contains several conserved positively charged residues, and a portion of the active site shows structural similarity to the GTP-binding site of MoaA, suggesting that the viperin substrate may be a nucleoside triphosphate of some type.
Shelburne, Samuel A.; Keith, David B.; Davenport, Michael T.; Beres, Stephen B.; Carroll, Ronan K.; Musser, James M.
2010-01-01
α-glucans such as starch and glycogen are abundant in the human oropharynx, the main site of group A Streptococcus (GAS) infection. However, the role in pathogenesis of GAS extracellular α-glucan binding and degrading enzymes is unknown. The serotype M1 GAS genome encodes two extracellular proteins putatively involved in α-glucan binding and degradation; pulA encodes a cell-wall anchored pullulanase and amyA encodes a freely secreted putative cyclomaltodextrin α-glucanotransferase. Genetic inactivation of amyA, but not pulA, abolished GAS α-glucan degradation. The ΔamyA strain had a slower rate of translocation across human pharyngeal epithelial cells. Consistent with this finding, the ΔamyA strain was less virulent following mouse mucosal challenge. Recombinant AmyA degraded α-glucans into β-cyclomaltodextrins that reduced pharyngeal cell transepithelial resistance, providing a physiologic explanation for the observed transepithelial migration phenotype. Higher amyA transcript levels were present in serotype M1 GAS strains causing invasive infection compared to strains causing pharyngitis. GAS proliferation in a defined α-glucan-containing medium was dependent on the presence of human salivary α-amylase. These data delineate the molecular mechanisms by which α-glucan degradation contributes to GAS host-pathogen interaction including how GAS employs human salivary α-amylase for its own metabolic benefit. PMID:19735442
Shorrosh, B S; Roesler, K R; Shintani, D; van de Loo, F J; Ohlrogge, J B
1995-06-01
Acetyl-coenzyme A carboxylase (ACCase, EC 6.4.1.2) catalyzes the synthesis of malonyl-coenzyme A, which is utilized in the plastid for de novo fatty acid synthesis and outside the plastid for a variety of reactions, including the synthesis of very long chain fatty acids and flavonoids. Recent evidence for both multifunctional and multisubunit ACCase isozymes in dicot plants has been obtained. We describe here the isolation of a tobacco (Nicotiana tabacum L. cv bright yellow 2 [NT1]) cDNA clone (E3) that encodes a 58.4-kD protein that shares 80% sequence similarity and 65% identity with the Anabaena biotin carboxylase subunit of ACCase. Similar to other biotin carboxylase subunits of acetyl-CoA carboxylase, the E3-encoded protein contains a putative ATP-binding motif but lacks a biotin-binding site (methionine-lysine-methionine or methionine-lysine-leucine). The deduced protein sequence contains a putative transit peptide whose function was confirmed by its ability to direct in vitro chloroplast uptake. The subcellular localization of this biotin carboxylase has also been confirmed to be plastidial by western blot analysis of pea (Pisum sativum), alfalfa (Medicago sativa L.), and castor (Ricinus communis L.) plastid preparations. Northern blot analysis indicates that the plastid biotin carboxylase transcripts are expressed at severalfold higher levels in castor seeds than in leaves.
Shorrosh, B S; Roesler, K R; Shintani, D; van de Loo, F J; Ohlrogge, J B
1995-01-01
Acetyl-coenzyme A carboxylase (ACCase, EC 6.4.1.2) catalyzes the synthesis of malonyl-coenzyme A, which is utilized in the plastid for de novo fatty acid synthesis and outside the plastid for a variety of reactions, including the synthesis of very long chain fatty acids and flavonoids. Recent evidence for both multifunctional and multisubunit ACCase isozymes in dicot plants has been obtained. We describe here the isolation of a tobacco (Nicotiana tabacum L. cv bright yellow 2 [NT1]) cDNA clone (E3) that encodes a 58.4-kD protein that shares 80% sequence similarity and 65% identity with the Anabaena biotin carboxylase subunit of ACCase. Similar to other biotin carboxylase subunits of acetyl-CoA carboxylase, the E3-encoded protein contains a putative ATP-binding motif but lacks a biotin-binding site (methionine-lysine-methionine or methionine-lysine-leucine). The deduced protein sequence contains a putative transit peptide whose function was confirmed by its ability to direct in vitro chloroplast uptake. The subcellular localization of this biotin carboxylase has also been confirmed to be plastidial by western blot analysis of pea (Pisum sativum), alfalfa (Medicago sativa L.), and castor (Ricinus communis L.) plastid preparations. Northern blot analysis indicates that the plastid biotin carboxylase transcripts are expressed at severalfold higher levels in castor seeds than in leaves. PMID:7610168
Liu, Q; Astell, C R
1996-10-01
During replication of the minute virus of mice (MVM) genome, a dimer replicative form (RF) intermediate is resolved into two monomer RF molecules in such a way as to retain a unique sequence within the left hand hairpin terminus of the viral genome. Although the proposed mechanism for resolution of the dimer RF remains uncertain, it likely involves site-specific nicking of the dimer bridge. The RF contains two double-stranded copies of the viral genome joined by the extended 3' hairpin. Minor sequence asymmetries within the 3' hairpin allow the two halves of the dimer bridge to be distinguished. The A half contains the sequence [sequence: see text], whereas the B half contains the sequence [sequence: see text]. Using an in vitro assay, we show that only the B half of the MVM dimer bridge is nicked site-specifically when incubated with crude NS-1 protein (expressed in insect cells) and mouse LA9 cellular extract. When highly purified NS-1, the major nonstructural protein of MVM, is used in this nicking reaction, there is an absolute requirement for the LA9 cellular extract, suggesting a cellular factor (or factors) is (are) required. A series of mutations were created in the putative host factor binding region (HFBR) on the B half of the MVM dimer bridge adjacent to the NS-1 binding site. Nicking assays of these B half mutants showed that two CG motifs displaced by 10 nucleotides are important for nicking. Gel mobility shift assays demonstrated that a host factor(s) can bind to the HFBR of the B half of the dimer bridge and efficient binding depends on the presence of both CG motifs. Competitor DNA containing the wild-type HFBR sequence is able to specifically inhibit nicking of the B half, indicating that the host factor(s) bound to the HFBR is(are) essential for site-specific nicking to occur.
Oldham, William M.; Van Eps, Ned; Preininger, Anita M.; Hubbell, Wayne L.; Hamm, Heidi E.
2007-01-01
Heterotrimeric G proteins function as molecular relays that mediate signal transduction from heptahelical receptors in the cell membrane to intracellular effector proteins. Crystallographic studies have demonstrated that guanine nucleotide exchange on the Gα subunit causes specific conformational changes in three key “switch” regions of the protein, which regulate binding to Gβγ subunits, receptors, and effector proteins. In the present study, nitroxide side chains were introduced at sites within the switch I region of Gαi to explore the structure and dynamics of this region throughout the G protein cycle. EPR spectra obtained for each of the Gα(GDP), Gα(GDP)βγ heterotrimer and Gα(GTPγS) conformations are consistent with the local environment observed in the corresponding crystal structures. Binding of the heterotrimer to activated rhodopsin to form the nucleotide-free (empty) complex, for which there is no crystal structure, causes prominent changes relative to the heterotrimer in the structure of switch I and contiguous sequences. The data identify a putative pathway of allosteric changes triggered by receptor binding and, together with previously published data, suggest elements of a mechanism for receptor-catalyzed nucleotide exchange. PMID:17463080
[Divergence of paralogous growth-hormone-encoding genes and their promoters in Salmonidae].
Kamenskaya, D N; Pankova, M V; Atopkin, D M; Brykov, V A
2017-01-01
In many fish species, including salmonids, the growth-hormone is encoded by two duplicated paralogous genes, gh1 and gh2. Both genes were already in place at the time of divergence of species in this group. A comparison of the entire sequence of these genes of salmonids has shown that their conserved regions are associated with exons, while their most variable regions correspond to introns. Introns C and D include putative regulatory elements (sites Pit-1, CRE, and ERE), that are also conserved. In chars, the degree of polymorphism of gh2 gene is 2-3 times as large as that in gh1 gene. However, a comparison across all Salmonidae species would not extent this observation to other species. In both these chars' genes, the promoters are conserved mainly because they correspond to putative regulatory sequences (TATA box, binding sites for the pituitary transcription factor Pit-1 (F1-F4), CRE, GRE and RAR/RXR elements). The promoter of gh2 gene has a greater degree of polymorphism compared with gh1 gene promoter in all investigated species of salmonids. The observed differences in the rates of accumulation of changes in growth hormone encoding paralogs could be explained by differences in the intensity of selection.
Nuclear transport of the Neurospora crassa NIT-2 transcription factor is mediated by importin-α.
Bernardes, Natália E; Takeda, Agnes A S; Dreyer, Thiago R; Cupertino, Fernanda B; Virgilio, Stela; Pante, Nelly; Bertolini, Maria Célia; Fontes, Marcos R M
2017-12-06
The Neurospora crassa NIT-2 transcription factor belongs to the GATA transcription factor family and plays a fundamental role in the regulation of nitrogen metabolism. Because NIT-2 acts by accessing DNA inside the nucleus, understanding the nuclear import process of NIT-2 is necessary to characterize its function. Thus, in the present study, NIT-2 nuclear transport was investigated using a combination of biochemical, cellular, and biophysical methods. A complemented strain that produced an sfGFP-NIT-2 fusion protein was constructed, and nuclear localization assessments were made under conditions that favored protein translocation to the nucleus. Nuclear translocation was also investigated using HeLa cells, which showed that the putative NIT-2 nuclear localization sequence (NLS; 915 TISSKRQRRHSKS 927 ) was recognized by importin-α and that subsequent transport occurred via the classical import pathway. The interaction between the N. crassa importin-α (NcImpα) and the NIT-2 NLS was quantified with calorimetric assays, leading to the observation that the peptide bound to two sites with different affinities, which is typical of a monopartite NLS sequence. The crystal structure of the NcImpα/NIT-2 NLS complex was solved and revealed that the NIT-2 peptide binds to NcImpα with the major NLS-binding site playing a primary role. This result contrasts other recent studies that suggested a major role for the minor NLS-binding site in importin-α from the α2 family, indicating that both sites can be used for different cargo proteins according to specific metabolic requirements. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Structure and Activity of the Flagellar Rotor Protein FliY
Sircar, Ria; Greenswag, Anna R.; Bilwes, Alexandrine M.; Gonzalez-Bonet, Gabriela; Crane, Brian R.
2013-01-01
Rotating flagella propel bacteria toward favorable environments. Sense of rotation is determined by the intracellular response regulator CheY, which when phosphorylated (CheY-P) interacts directly with the flagellar motor. In many different types of bacteria, the CheC/CheX/FliY (CXY) family of phosphatases terminates the CheY-P signal. Unlike CheC and CheX, FliY is localized in the flagellar switch complex, which also contains the stator-coupling protein FliG and the target of CheY-P, FliM. The 2.5 Å resolution crystal structure of the FliY catalytic domain from Thermotoga maritima bears strong resemblance to the middle domain of FliM. Regions of FliM that mediate contacts within the rotor compose the phosphatase active sites in FliY. Despite the similarity between FliY and FliM, FliY does not bind FliG and thus is unlikely to be a substitute for FliM in the center of the switch complex. Solution studies indicate that FliY dimerizes through its C-terminal domains, which resemble the Escherichia coli switch complex component FliN. FliY differs topologically from the E. coli chemotaxis phosphatase CheZ but appears to utilize similar structural motifs for CheY dephosphorylation in close analogy to CheX. Recognition properties and phosphatase activities of site-directed mutants identify two pseudosymmetric active sites in FliY (Glu35/Asn38 and Glu132/Asn135), with the second site (Glu132/Asn135) being more active. A putative N-terminal CheY binding domain conserved with FliM is not required for binding CheY-P or phosphatase activity. PMID:23532838
Analysis of RNA binding by the dengue virus NS5 RNA capping enzyme.
Henderson, Brittney R; Saeedi, Bejan J; Campagnola, Grace; Geiss, Brian J
2011-01-01
Flaviviruses are small, capped positive sense RNA viruses that replicate in the cytoplasm of infected cells. Dengue virus and other related flaviviruses have evolved RNA capping enzymes to form the viral RNA cap structure that protects the viral genome and directs efficient viral polyprotein translation. The N-terminal domain of NS5 possesses the methyltransferase and guanylyltransferase activities necessary for forming mature RNA cap structures. The mechanism for flavivirus guanylyltransferase activity is currently unknown, and how the capping enzyme binds its diphosphorylated RNA substrate is important for deciphering how the flavivirus guanylyltransferase functions. In this report we examine how flavivirus NS5 N-terminal capping enzymes bind to the 5' end of the viral RNA using a fluorescence polarization-based RNA binding assay. We observed that the K(D) for RNA binding is approximately 200 nM Dengue, Yellow Fever, and West Nile virus capping enzymes. Removal of one or both of the 5' phosphates reduces binding affinity, indicating that the terminal phosphates contribute significantly to binding. RNA binding affinity is negatively affected by the presence of GTP or ATP and positively affected by S-adensyl methoninine (SAM). Structural superpositioning of the dengue virus capping enzyme with the Vaccinia virus VP39 protein bound to RNA suggests how the flavivirus capping enzyme may bind RNA, and mutagenesis analysis of residues in the putative RNA binding site demonstrate that several basic residues are critical for RNA binding. Several mutants show differential binding to 5' di-, mono-, and un-phosphorylated RNAs. The mode of RNA binding appears similar to that found with other methyltransferase enzymes, and a discussion of diphosphorylated RNA binding is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Jason W.; Coussens, Nathan P.; Allen, Simon
Nontypeable Haemophilus influenzae is an opportunistic human pathogen causing otitis media in children and chronic bronchitis and pneumonia in patients with chronic obstructive pulmonary disease. The outer membrane of nontypeable H. influenzae is dominated by lipooligosaccharides (LOS), many of which incorporate sialic acid as a terminal nonreducing sugar. Sialic acid has been demonstrated to be an important factor in the survival of the bacteria within the host environment. H. influenzae is incapable of synthesizing sialic acid and is dependent on scavenging free sialic acid from the host environment. To achieve this, H. influenzae utilizes a tripartite ATP-independent periplasmic transporter. Inmore » this study, we characterize the binding site of the extracytoplasmic solute receptor (SiaP) from nontypeable H. influenzae strain 2019. A crystal structure of N-acetyl-5-neuraminic acid (Neu5Ac)-bound SiaP was determined to 1.4 {angstrom} resolution. Thermodynamic characterization of Neu5Ac binding shows this interaction is enthalpically driven with a substantial unfavorable contribution from entropy. This is expected because the binding of SiaP to Neu5Ac is mediated by numerous hydrogen bonds and has several buried water molecules. Point mutations targeting specific amino acids were introduced in the putative binding site. Complementation with the mutated siaP constructs resulted either in full, partial, or no complementation, depending on the role of specific residues. Mass spectrometry analysis of the O-deacylated LOS of the R127K point mutation confirmed the observation of reduced incorporation of Neu5Ac into the LOS. The decreased ability of H. influenzae to import sialic acid had negative effects on resistance to complement-mediated killing and viability of biofilms in vitro, confirming the importance of sialic acid transport to the bacterium.« less
Genet, R; Lederer, F
1990-01-01
Although nitroethane does not bind to the active site of flavocytochrome b2, its anion, ethane nitronate, behaves as a competitive inhibitor, with a Ki of 2.2 mM. No electron transfer can be detected between the nitronate and the enzyme, in contrast with the observations of other workers on D-amino acid oxidase. Propionate is a competitive inhibitor, with a Ki of 28 mM. The significance of these results with respect to the proposed carbanion mechanism and the putative existence of a covalent enzyme-substrate intermediate is discussed. PMID:2178603
Faehnle, Christopher R.; Liu, Xuying; Pavlovsky, Alexander; Viola, Ronald E.
2006-01-01
The activation of the β-carboxyl group of aspartate catalyzed by aspartokinase is the commitment step to amino-acid biosynthesis in the aspartate pathway. The first structure of a microbial aspartokinase, that from Methanococcus jannaschii, has been determined in the presence of the amino-acid substrate l-aspartic acid and the nucleotide product MgADP. The enzyme assembles into a dimer of dimers, with the interfaces mediated by both the N- and C-terminal domains. The active-site functional groups responsible for substrate binding and specificity have been identified and roles have been proposed for putative catalytic functional groups. PMID:17012784
Heterogeneous RNA-binding protein M4 is a receptor for carcinoembryonic antigen in Kupffer cells.
Bajenova, O V; Zimmer, R; Stolper, E; Salisbury-Rowswell, J; Nanji, A; Thomas, P
2001-08-17
Here we report the isolation of the recombinant cDNA clone from rat macrophages, Kupffer cells (KC) that encodes a protein interacting with carcinoembryonic antigen (CEA). To isolate and identify the CEA receptor gene we used two approaches: screening of a KC cDNA library with a specific antibody and the yeast two-hybrid system for protein interaction using as a bait the N-terminal part of the CEA encoding the binding site. Both techniques resulted in the identification of the rat heterogeneous RNA-binding protein (hnRNP) M4 gene. The rat ortholog cDNA sequence has not been previously described. The open reading frame for this gene contains a 2351-base pair sequence with the polyadenylation signal AATAAA and a termination poly(A) tail. The mRNA shows ubiquitous tissue expression as a 2.4-kilobase transcript. The deduced amino acid sequence comprised a 78-kDa membrane protein with 3 putative RNA-binding domains, arginine/methionine/glutamine-rich C terminus and 3 potential membrane spanning regions. When hnRNP M4 protein is expressed in pGEX4T-3 vector system in Escherichia coli it binds (125)I-labeled CEA in a Ca(2+)-dependent fashion. Transfection of rat hnRNP M4 cDNA into a non-CEA binding mouse macrophage cell line p388D1 resulted in CEA binding. These data provide evidence for a new function of hnRNP M4 protein as a CEA-binding protein in Kupffer cells.
Evaluation of the In Vivo and Ex Vivo Binding of Novel BC1 Cannabinoid Receptor Radiotracers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, A.; Gatley, J.; Gifford, A.
The primary active ingredient of marijuana, 9-tetrahydrocannabinol, exerts its psychoactive effects by binding to cannabinoid CB1 receptors. These receptors are found throughout the brain with high concentrations in the hippocampus and cerebellum. The current study was conducted to evaluate the binding of a newly developed putative cannabinoid antagonist, AM630, and a classical cannabinoid 8-tetrahydrocannabinol as potential PET and/or SPECT imaging agents for brain CB1 receptors. For both of these ligands in vivo and ex vivo studies in mice were conducted. AM630 showed good overall brain uptake (as measure by %IA/g) and a moderately rapid clearance from the brain with amore » half-clearance time of approximately 30 minutes. However, AM630 did not show selective binding to CB1 cannabinoid receptors. Ex vivo autoradiography supported the lack of selective binding seen in the in vivo study. Similar to AM630, 8-tetrahydrocanibol also failed to show selective binding to CB1 receptor rich brain areas. The 8-tetrahydrocanibol showed moderate overall brain uptake and relatively slow brain clearance as compared to AM630. Further studies were done with AM2233, a cannabinoid ligand with a similar structure as AM630. These studies were done to develop an ex vivo binding assay to quantify the displacement of [131I]AM2233 binding by other ligands in Swiss-Webster and CB1 receptor knockout mice. By developing this assay we hoped to determine the identity of an unknown binding site for AM2233 present in the hippocampus of CB1 knockout mice. Using an approach based on incubation of brain slices prepared from mice given intravenous [131I]AM2233 in either the presence or absence of AM2233 (unlabelled) it was possible to demonstrate a significant AM2233-displacable binding in the Swiss-Webster mice. Future studies will determine if this assay is appropriate for identifying the unknown binding site for AM2233 in the CB1 knockout mice.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoetzel, Isidro; Cheevers, William P.
2005-09-01
The caprine arthritis-encephalitis (CAEV) and ovine maedi-visna (MVV) viruses are resistant to antibody neutralization, a feature shared with all other lentiviruses. Whether the CAEV gp135 receptor binding site(s) (RBS) in the functional surface envelope glycoprotein (Env) is protected from antibody binding, allowing the virus to resist neutralization, is not known. Two CAEV gp135 regions were identified by extrapolating a gp135 structural model that could affect binding of antibodies to the RBS: the V1 region and a short sequence analogous in position to the human immunodeficiency virus type 1 gp120 loop B postulated to be located between two major domains ofmore » CAEV gp135. Mutation of isoleucine-166 to alanine in the putative loop B of gp135 increased the affinity of soluble gp135 for the CAEV receptor(s) and goat monoclonal antibody (Mab) F7-299 which recognizes an epitope overlapping the gp135 RBS. The I166A mutation also stabilized or exposed the F7-299 epitope in anionic detergent buffers, indicating that the I166A mutation induces conformational changes and stabilizes the RBS of soluble gp135 and enhances Mab F7-299 binding. In contrast, the affinity of a V1 deletion mutant of gp135 for the receptor and Mab F7-299 and its structural stability did not differ from that of the wild-type gp135. However, both the I166A mutation and the V1 deletion of gp135 increased cell-to-cell fusion activity and binding of Mab F7-299 to the oligomeric Env. Therefore, the CAEV gp135 RBS is protected from antibody binding by mechanisms both dependent and independent of Env oligomerization which are disrupted by the V1 deletion and the I166A mutation, respectively. In addition, we found a correlation between side-chain {beta}-branching at amino acid position 166 and binding of Mab F7-299 to oligomeric Env and cell-to-cell fusion, suggesting local secondary structure constraints in the region around isoleucine-166 as one determinant of gp135 RBS exposure and antibody binding.« less
Aloise, P; Kagawa, Y; Coleman, P S
1991-06-05
Three F1 preparations, the beef heart (MF1) and thermophilic bacterium (TF1) holoenzymes, and the alpha 3 beta 3 "core" complex of TF1 reconstituted from individually expressed alpha and beta subunits, were compared as to their kinetic and binding stoichiometric responses to covalent photoaffinity labeling with BzATP and BzADP (+/- Mg2+). Each enzyme displayed an enhanced pseudo-first order rate of photoinhibition and one-third of the sites covalent binding to a catalytic site for full inhibition, plus, but not minus Mg2+. Titration of near stoichiometric [MgBzADP]/[F1] ratios during photolysis disclosed two sequential covalent binding patterns for each enzyme; a high affinity binding corresponding to unistoichiometric covalent association concomitant with enzyme inhibition, followed by a low affinity multisite-saturating covalent association. Thus, in the absence of the structural asymmetry inducing gamma delta epsilon subunits of the holoenzyme, the sequential binding of nucleotide at putative catalytic sites on the alpha 3 beta 3 complex of any F1 appears sufficient to effect binding affinity changes. With MF1, final covalent saturation of BzADP-accessible sites was achieved with 2 mol of BzADP/mol of enzyme, but with TF1 or its alpha 3 beta 3 complex, saturation required 3 mol of BzADP/mol of enzyme. Such differential final labeling stoichiometries could arise because of the endogenous presence of 1 nucleotide already bound to one of the 3 potential catalytic sites on normally prepared MF1, whereas TF1, possessing no endogenous nucleotide, has 3 vacant BzADP-accessible sites. Kinetics measurements revealed that regardless of the incremental extent of inhibition of the TF1 holoenzyme by BzADP during photolysis, the two higher apparent Km values (approximately 1.5 x 10(-4) and approximately 10(-3) M, respectively) of the progressively inactivated incubation are unchanged relative to fully unmodified enzyme. As reported for BzATP (or BzADP) and MF1 (Ackerman, S.H., Grubmeyer, C., and Coleman, P.S. (1987) J. Biol. Chem. 262, 13765-13772), this supports the fact that the photocovalent inhibition of F1 is a one-hit one-kill phenomenon. Isoelectric focusing gels revealed that [3H]BzADP covalently modifies both TF1 and MF1 exclusively on the beta subunit, whether or not Mg2+ is present. A single 19-residue [3H]BzADP-labeled peptide was resolved from a tryptic digest of MF1, and this peptide corresponded with the one believed to contain at least a portion of the beta subunit catalytic site domain (i.e. beta Ala-338----beta Arg-356).
Exploiting protein flexibility to predict the location of allosteric sites
2012-01-01
Background Allostery is one of the most powerful and common ways of regulation of protein activity. However, for most allosteric proteins identified to date the mechanistic details of allosteric modulation are not yet well understood. Uncovering common mechanistic patterns underlying allostery would allow not only a better academic understanding of the phenomena, but it would also streamline the design of novel therapeutic solutions. This relatively unexplored therapeutic potential and the putative advantages of allosteric drugs over classical active-site inhibitors fuel the attention allosteric-drug research is receiving at present. A first step to harness the regulatory potential and versatility of allosteric sites, in the context of drug-discovery and design, would be to detect or predict their presence and location. In this article, we describe a simple computational approach, based on the effect allosteric ligands exert on protein flexibility upon binding, to predict the existence and position of allosteric sites on a given protein structure. Results By querying the literature and a recently available database of allosteric sites, we gathered 213 allosteric proteins with structural information that we further filtered into a non-redundant set of 91 proteins. We performed normal-mode analysis and observed significant changes in protein flexibility upon allosteric-ligand binding in 70% of the cases. These results agree with the current view that allosteric mechanisms are in many cases governed by changes in protein dynamics caused by ligand binding. Furthermore, we implemented an approach that achieves 65% positive predictive value in identifying allosteric sites within the set of predicted cavities of a protein (stricter parameters set, 0.22 sensitivity), by combining the current analysis on dynamics with previous results on structural conservation of allosteric sites. We also analyzed four biological examples in detail, revealing that this simple coarse-grained methodology is able to capture the effects triggered by allosteric ligands already described in the literature. Conclusions We introduce a simple computational approach to predict the presence and position of allosteric sites in a protein based on the analysis of changes in protein normal modes upon the binding of a coarse-grained ligand at predicted cavities. Its performance has been demonstrated using a newly curated non-redundant set of 91 proteins with reported allosteric properties. The software developed in this work is available upon request from the authors. PMID:23095452
Exploiting protein flexibility to predict the location of allosteric sites.
Panjkovich, Alejandro; Daura, Xavier
2012-10-25
Allostery is one of the most powerful and common ways of regulation of protein activity. However, for most allosteric proteins identified to date the mechanistic details of allosteric modulation are not yet well understood. Uncovering common mechanistic patterns underlying allostery would allow not only a better academic understanding of the phenomena, but it would also streamline the design of novel therapeutic solutions. This relatively unexplored therapeutic potential and the putative advantages of allosteric drugs over classical active-site inhibitors fuel the attention allosteric-drug research is receiving at present. A first step to harness the regulatory potential and versatility of allosteric sites, in the context of drug-discovery and design, would be to detect or predict their presence and location. In this article, we describe a simple computational approach, based on the effect allosteric ligands exert on protein flexibility upon binding, to predict the existence and position of allosteric sites on a given protein structure. By querying the literature and a recently available database of allosteric sites, we gathered 213 allosteric proteins with structural information that we further filtered into a non-redundant set of 91 proteins. We performed normal-mode analysis and observed significant changes in protein flexibility upon allosteric-ligand binding in 70% of the cases. These results agree with the current view that allosteric mechanisms are in many cases governed by changes in protein dynamics caused by ligand binding. Furthermore, we implemented an approach that achieves 65% positive predictive value in identifying allosteric sites within the set of predicted cavities of a protein (stricter parameters set, 0.22 sensitivity), by combining the current analysis on dynamics with previous results on structural conservation of allosteric sites. We also analyzed four biological examples in detail, revealing that this simple coarse-grained methodology is able to capture the effects triggered by allosteric ligands already described in the literature. We introduce a simple computational approach to predict the presence and position of allosteric sites in a protein based on the analysis of changes in protein normal modes upon the binding of a coarse-grained ligand at predicted cavities. Its performance has been demonstrated using a newly curated non-redundant set of 91 proteins with reported allosteric properties. The software developed in this work is available upon request from the authors.
Structure of the novel monomeric glyoxalase I from Zea mays
Turra, Gino L.; Agostini, Romina B.; Fauguel, Carolina M.; Presello, Daniel A.; Andreo, Carlos S.; González, Javier M.; Campos-Bermudez, Valeria A.
2015-01-01
The glyoxalase system is ubiquitous among all forms of life owing to its central role in relieving the cell from the accumulation of methylglyoxal, a toxic metabolic byproduct. In higher plants, this system is upregulated under diverse metabolic stress conditions, such as in the defence response to infection by pathogenic microorganisms. Despite their proven fundamental role in metabolic stresses, plant glyoxalases have been poorly studied. In this work, glyoxalase I from Zea mays has been characterized both biochemically and structurally, thus reporting the first atomic model of a glyoxalase I available from plants. The results indicate that this enzyme comprises a single polypeptide with two structurally similar domains, giving rise to two lateral concavities, one of which harbours a functional nickel(II)-binding active site. The putative function of the remaining cryptic active site remains to be determined. PMID:26457425
Structure of the novel monomeric glyoxalase I from Zea mays.
Turra, Gino L; Agostini, Romina B; Fauguel, Carolina M; Presello, Daniel A; Andreo, Carlos S; González, Javier M; Campos-Bermudez, Valeria A
2015-10-01
The glyoxalase system is ubiquitous among all forms of life owing to its central role in relieving the cell from the accumulation of methylglyoxal, a toxic metabolic byproduct. In higher plants, this system is upregulated under diverse metabolic stress conditions, such as in the defence response to infection by pathogenic microorganisms. Despite their proven fundamental role in metabolic stresses, plant glyoxalases have been poorly studied. In this work, glyoxalase I from Zea mays has been characterized both biochemically and structurally, thus reporting the first atomic model of a glyoxalase I available from plants. The results indicate that this enzyme comprises a single polypeptide with two structurally similar domains, giving rise to two lateral concavities, one of which harbours a functional nickel(II)-binding active site. The putative function of the remaining cryptic active site remains to be determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo, Raymond; Celius, Trine; Forgacs, Agnes L.
2011-11-15
Genome-wide, promoter-focused ChIP-chip analysis of hepatic aryl hydrocarbon receptor (AHR) binding sites was conducted in 8-week old female C57BL/6 treated with 30 {mu}g/kg/body weight 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for 2 h and 24 h. These studies identified 1642 and 508 AHR-bound regions at 2 h and 24 h, respectively. A total of 430 AHR-bound regions were common between the two time points, corresponding to 403 unique genes. Comparison with previous AHR ChIP-chip studies in mouse hepatoma cells revealed that only 62 of the putative target genes overlapped with the 2 h AHR-bound regions in vivo. Transcription factor binding site analysis revealed anmore » over-representation of aryl hydrocarbon response elements (AHREs) in AHR-bound regions with 53% (2 h) and 68% (24 h) of them containing at least one AHRE. In addition to AHREs, E2f-Myc activator motifs previously implicated in AHR function, as well as a number of other motifs, including Sp1, nuclear receptor subfamily 2 factor, and early growth response factor motifs were also identified. Expression microarray studies identified 133 unique genes differentially regulated after 4 h treatment with TCDD. Of which, 39 were identified as AHR-bound genes at 2 h. Ingenuity Pathway Analysis on the 39 AHR-bound TCDD responsive genes identified potential perturbation in biological processes such as lipid metabolism, drug metabolism, and endocrine system development as a result of TCDD-mediated AHR activation. Our findings identify direct AHR target genes in vivo, highlight in vitro and in vivo differences in AHR signaling and show that AHR recruitment does not necessarily result in changes in target gene expression. -- Highlights: Black-Right-Pointing-Pointer ChIP-chip analysis of hepatic AHR binding after 2 h and 24 h of TCDD. Black-Right-Pointing-Pointer We identified 1642 and 508 AHR-bound regions at 2 h and 24 h. Black-Right-Pointing-Pointer 430 regions were common to both time points and highly enriched with AHREs. Black-Right-Pointing-Pointer Only 62 putative target regions overlapped AHR-bound regions in hepatoma cells. Black-Right-Pointing-Pointer Microarrays identified 133 TCDD-regulated genes; of which 39 were also bound by AHR.« less
Identification of YTH Domain-Containing Proteins as the Readers for N1-Methyladenosine in RNA.
Dai, Xiaoxia; Wang, Tianlu; Gonzalez, Gwendolyn; Wang, Yinsheng
2018-06-05
N1-methyladenosine (m 1 A) is an important post-transcriptional modification in RNA; however, the exact biological role of m 1 A remains to be determined. By employing a quantitative proteomics method, we identified multiple putative protein readers of m 1 A in RNA, including several YTH domain family proteins. We showed that YTHDF1-3 and YTHDC1, but not YTHDC2, could bind directly to m 1 A in RNA. We also found that Trp 432 in YTHDF2, a conserved residue in the hydrophobic pocket of the YTH domain that is necessary for its binding to N 6 -methyladenosine (m 6 A), is required for its recognition of m 1 A. An analysis of previously published data revealed transcriptome-wide colocalization of YTH domain-containing proteins and m 1 A sites in HeLa cells, suggesting that YTH domain-containing proteins can bind to m 1 A in cells. Together, our results uncovered YTH domain-containing proteins as readers for m 1 A in RNA and provided new insight into the functions of m 1 A in RNA biology.
Mxi1 is a repressor of the c-Myc promoter and reverses activation by USF.
Lee, T C; Ziff, E B
1999-01-08
The basic region/helix-loop-helix/leucine zipper (B-HLH-LZ) oncoprotein c-Myc is abundant in proliferating cells and forms heterodimers with Max protein that bind to E-box sites in DNA and stimulate genes required for proliferation. A second B-HLH-LZ protein, Mxi1, is induced during terminal differentiation, and forms heterodimers with Max that also bind E-boxes but tether the mSin3 transcriptional repressor protein along with histone deacetylase thereby antagonizing Myc-dependent activation. We show that Mxi1 also antagonizes Myc by a second pathway, repression of transcription from the major c-myc promoter, P2. Repression was independent of Mxi1 binding to mSin3 but dependent on the Mxi1 LZ and COOH-terminal sequences, including putative casein kinase II phosphorylation sites. Repression targeted elements of the myc P2 promoter core (-35/+10), where it reversed transactivation by the constitutive transcription factor, USF. We show that Zn2+ induction of a stably transfected, metallothionein promoter-regulated mxi1 gene blocked the ability of serum to induce transcription of the endogenous c-myc gene and cell entry into S phase. Thus, induction of Mxi1 in terminally differentiating cells may block Myc function by repressing the c-myc gene P2 promoter, as well as by antagonizing Myc-dependent transactivation through E-boxes.
Davlieva, Milya; Shi, Yiwen; Leonard, Paul G.; ...
2015-04-19
LiaR is a ‘master regulator’ of the cell envelope stress response in enterococci and many other Gram-positive organisms. Mutations to liaR can lead to antibiotic resistance to a variety of antibiotics including the cyclic lipopeptide daptomycin. LiaR is phosphorylated in response to membrane stress to regulate downstream target operons. Using DNA footprinting of the regions upstream of the liaXYZ and liaFSR operons we show that LiaR binds an extended stretch of DNA that extends beyond the proposed canonical consensus sequence suggesting a more complex level of regulatory control of target operons. We go on to determine the biochemical and structuralmore » basis for increased resistance to daptomycin by the adaptive mutation to LiaR (D191N) first identified from the pathogen Enterococcus faecalis S613. LiaR D191N increases oligomerization of LiaR to form a constitutively activated tetramer that has high affinity for DNA even in the absence of phosphorylation leading to increased resistance. The crystal structures of the LiaR DNA binding domain complexed to the putative consensus sequence as well as an adjoining secondary sequence show that upon binding, LiaR induces DNA bending that is consistent with increased recruitment of RNA polymerase to the transcription start site and upregulation of target operons.« less
Structure-based design of Aurora A & B inhibitors
NASA Astrophysics Data System (ADS)
Poulsen, Anders; William, Anthony; Lee, Angeline; Blanchard, Stéphanie; Teo, Eeling; Deng, Weiping; Tu, Noah; Tan, Evelyn; Sun, Eric; Goh, Kay Lin; Ong, Wai Chung; Ng, Chee Pang; Goh, Kee Chuan; Bonday, Zahid
2008-12-01
The Aurora family of serine/threonine kinases are mitotic regulators involved in centrosome duplication, formation of the bipolar mitotic spindle and the alignment of the chromosomes along the spindle. These proteins are frequently overexpressed in tumor cells as compared to normal cells and are therefore potential therapeutic oncology targets. An Aurora A high throughput screen revealed a promising sub-micromolar indazole-benzimidazole lead. Modification of the benzimidazole portion of the lead to a C2 linker with a phenyl ring was proposed to achieve novelty. Docking revealed that a conjugated linker was optimal and the resulting compounds were equipotent with the lead. Further structure-guided optimization of substituents on the 5 & 6 position of the indazole led to single digit nanomolar potency. The homology between the Aurora A & Aurora B kinase domains is 71% but their binding sites only differ at residues 212 & 217 (Aurora A numbering). However interactions with only the latter residue may be used for obtaining selectivity. An analysis of published Aurora A and Aurora B X-ray structures reveals subtle differences in the shape of the binding sites. This was exploited by introduction of appropriately sized substituents in the 4 & 6 position of the indazole leading to Aurora B selective inhibitors. Finally we calculate the conformational energy penalty of the putative bioactive conformation of our inhibitors and show that this property correlates well with the Aurora A binding affinity.
Rattanaporn, Onnicha; Utarabhand, Prapaporn
2011-02-01
A diverse class of pattern-recognition proteins called lectins play important roles in shrimp innate immunity. A novel C-type lectin gene (FmLC) was cloned from the hepatopancreas of banana shrimp Fenneropenaeus merguiensis by means of PCR and 5' and 3' rapid amplification of cDNA ends (RACE). The full-length cDNA consists of 1118 bp with one 1002 bp open reading frame, encoding 333 amino acids. Its deduced amino acid sequence contains a putative signal peptide of 20 amino acids. FmLC contains two carbohydrate recognition domains, CRD1 and CRD2, that share only 30% identity with each other. The first CRD comprises a QPD motif with specificity for binding galactose and a single Ca(2+) binding site, while the second CRD consists of an EPN motif for a mannose-specific binding site. FmLC had a close evolutionary relationship to other dual-CRD lectins of penaeid shrimp. Expression results showed that transcripts of FmLC were detected only in the hepatopancreas, none was found in other tissues. After challenging either whole shrimp or hepatopancreas tissue fragments with Vibrioharveyi, the expression of FmLC was up-regulated. This indicates that FmLC is inducible and may be involved in a shrimp immune response to recognize potential bacterial pathogens. Copyright © 2010 Elsevier Inc. All rights reserved.
Characterization of a native hammerhead ribozyme derived from schistosomes
OSBORNE, EDITH M.; SCHAAK, JANELL E.; DEROSE, VICTORIA J.
2005-01-01
A recent re-examination of the role of the helices surrounding the conserved core of the hammerhead ribozyme has identified putative loop–loop interactions between stems I and II in native hammerhead sequences. These extended hammerhead sequences are more active at low concentrations of divalent cations than are minimal hammerheads. The loop–loop interactions are proposed to stabilize a more active conformation of the conserved core. Here, a kinetic and thermodynamic characterization of an extended hammerhead sequence derived from Schistosoma mansoni is performed. Biphasic kinetics are observed, suggesting the presence of at least two conformers, one cleaving with a fast rate and the other with a slow rate. Replacing loop II with a poly(U) sequence designed to eliminate the interaction between the two loops results in greatly diminished activity, suggesting that the loop–loop interactions do aid in forming a more active conformation. Previous studies with minimal hammerheads have shown deleterious effects of Rp-phosphorothioate substitutions at the cleavage site and 5′ to A9, both of which could be rescued with Cd2+. Here, phosphorothioate modifications at the cleavage site and 5′ to A9 were made in the schistosome-derived sequence. In Mg2+, both phosphorothioate substitutions decreased the overall fraction cleaved without significantly affecting the observed rate of cleavage. The addition of Cd2+ rescued cleavage in both cases, suggesting that these are still putative metal binding sites in this native sequence. PMID:15659358
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geissler, M.A.; Yocca, F.D.
1990-02-26
The putative interrelationship between the noradrenergic and serotonergic systems has been supported by numerous studies. Recently, Dudley et al. (1989) demonstrated significant down regulation of cortical {beta}-adrenergic receptors by co-administration of desipramine (DMI), a norepinephrine uptake inhibitor, and the full 5-HT{sub 1A} agonist 8-OH-DPAT. To this end, the effects of acute and chronic (4 and 14 day) administration of DMI, gepirone, a selective 5-HT{sub 1A} post-synaptic partial agonist, as well as a combination of the two, on cortical ({plus minus})-propranolol sensitive ({sup 3}H)-DHA binding sites were examined in rats. Down regulation was apparent after 4 and 14 day treatment withmore » DMI. However, this was not the case with gepirone. Of particular importance is the demonstration of a greater magnitude of down regulation with co-administration of a greater magnitude of down regulation with co-administration of DMI and gepirone. These results suggests that alteration in rat cortical ({plus minus})-propranolol sensitive ({sup 3}H)-DHA binding sites by noradrenergic uptake inhibitors can be further modulated by selective partial agonist activity at central 5-HT{sub 1A} postsynaptic receptors. Further data on the co-administration of DMI and BMY 7378 (7,9-dioxo-8-(2-(4-{und o}-methoxyphenylpiperazinyl)ethyl)-8-azaspiro(4,5)decane dihydrochloride), a weak partial agonist at postsynaptic 5-HT{sub 1A} receptors, are also presented.« less
Regulation of neural macroRNAs by the transcriptional repressor REST
Johnson, Rory; Teh, Christina Hui-Leng; Jia, Hui; Vanisri, Ravi Raj; Pandey, Tridansh; Lu, Zhong-Hao; Buckley, Noel J.; Stanton, Lawrence W.; Lipovich, Leonard
2009-01-01
The essential transcriptional repressor REST (repressor element 1-silencing transcription factor) plays central roles in development and human disease by regulating a large cohort of neural genes. These have conventionally fallen into the class of known, protein-coding genes; recently, however, several noncoding microRNA genes were identified as REST targets. Given the widespread transcription of messenger RNA-like, noncoding RNAs (“macroRNAs”), some of which are functional and implicated in disease in mammalian genomes, we sought to determine whether this class of noncoding RNAs can also be regulated by REST. By applying a new, unbiased target gene annotation pipeline to computationally discovered REST binding sites, we find that 23% of mammalian REST genomic binding sites are within 10 kb of a macroRNA gene. These putative target genes were overlooked by previous studies. Focusing on a set of 18 candidate macroRNA targets from mouse, we experimentally demonstrate that two are regulated by REST in neural stem cells. Flanking protein-coding genes are, at most, weakly repressed, suggesting specific targeting of the macroRNAs by REST. Similar to the majority of known REST target genes, both of these macroRNAs are induced during nervous system development and have neurally restricted expression profiles in adult mouse. We observe a similar phenomenon in human: the DiGeorge syndrome-associated noncoding RNA, DGCR5, is repressed by REST through a proximal upstream binding site. Therefore neural macroRNAs represent an additional component of the REST regulatory network. These macroRNAs are new candidates for understanding the role of REST in neuronal development, neurodegeneration, and cancer. PMID:19050060
Regulation of neural macroRNAs by the transcriptional repressor REST.
Johnson, Rory; Teh, Christina Hui-Leng; Jia, Hui; Vanisri, Ravi Raj; Pandey, Tridansh; Lu, Zhong-Hao; Buckley, Noel J; Stanton, Lawrence W; Lipovich, Leonard
2009-01-01
The essential transcriptional repressor REST (repressor element 1-silencing transcription factor) plays central roles in development and human disease by regulating a large cohort of neural genes. These have conventionally fallen into the class of known, protein-coding genes; recently, however, several noncoding microRNA genes were identified as REST targets. Given the widespread transcription of messenger RNA-like, noncoding RNAs ("macroRNAs"), some of which are functional and implicated in disease in mammalian genomes, we sought to determine whether this class of noncoding RNAs can also be regulated by REST. By applying a new, unbiased target gene annotation pipeline to computationally discovered REST binding sites, we find that 23% of mammalian REST genomic binding sites are within 10 kb of a macroRNA gene. These putative target genes were overlooked by previous studies. Focusing on a set of 18 candidate macroRNA targets from mouse, we experimentally demonstrate that two are regulated by REST in neural stem cells. Flanking protein-coding genes are, at most, weakly repressed, suggesting specific targeting of the macroRNAs by REST. Similar to the majority of known REST target genes, both of these macroRNAs are induced during nervous system development and have neurally restricted expression profiles in adult mouse. We observe a similar phenomenon in human: the DiGeorge syndrome-associated noncoding RNA, DGCR5, is repressed by REST through a proximal upstream binding site. Therefore neural macroRNAs represent an additional component of the REST regulatory network. These macroRNAs are new candidates for understanding the role of REST in neuronal development, neurodegeneration, and cancer.
Heisig, Julia; Weber, David; Englberger, Eva; Winkler, Anja; Kneitz, Susanne; Sung, Wing-Kin; Wolf, Elmar; Eilers, Martin; Wei, Chia-Lin; Gessler, Manfred
2012-01-01
HEY bHLH transcription factors have been shown to regulate multiple key steps in cardiovascular development. They can be induced by activated NOTCH receptors, but other upstream stimuli mediated by TGFß and BMP receptors may elicit a similar response. While the basic and helix-loop-helix domains exhibit strong similarity, large parts of the proteins are still unique and may serve divergent functions. The striking overlap of cardiac defects in HEY2 and combined HEY1/HEYL knockout mice suggested that all three HEY genes fulfill overlapping function in target cells. We therefore sought to identify target genes for HEY proteins by microarray expression and ChIPseq analyses in HEK293 cells, cardiomyocytes, and murine hearts. HEY proteins were found to modulate expression of their target gene to a rather limited extent, but with striking functional interchangeability between HEY factors. Chromatin immunoprecipitation revealed a much greater number of potential binding sites that again largely overlap between HEY factors. Binding sites are clustered in the proximal promoter region especially of transcriptional regulators or developmental control genes. Multiple lines of evidence suggest that HEY proteins primarily act as direct transcriptional repressors, while gene activation seems to be due to secondary or indirect effects. Mutagenesis of putative DNA binding residues supports the notion of direct DNA binding. While class B E-box sequences (CACGYG) clearly represent preferred target sequences, there must be additional and more loosely defined modes of DNA binding since many of the target promoters that are efficiently bound by HEY proteins do not contain an E-box motif. These data clearly establish the three HEY bHLH factors as highly redundant transcriptional repressors in vitro and in vivo, which explains the combinatorial action observed in different tissues with overlapping expression.
Englberger, Eva; Winkler, Anja; Kneitz, Susanne; Sung, Wing-Kin; Wolf, Elmar; Eilers, Martin; Wei, Chia-Lin; Gessler, Manfred
2012-01-01
HEY bHLH transcription factors have been shown to regulate multiple key steps in cardiovascular development. They can be induced by activated NOTCH receptors, but other upstream stimuli mediated by TGFß and BMP receptors may elicit a similar response. While the basic and helix-loop-helix domains exhibit strong similarity, large parts of the proteins are still unique and may serve divergent functions. The striking overlap of cardiac defects in HEY2 and combined HEY1/HEYL knockout mice suggested that all three HEY genes fulfill overlapping function in target cells. We therefore sought to identify target genes for HEY proteins by microarray expression and ChIPseq analyses in HEK293 cells, cardiomyocytes, and murine hearts. HEY proteins were found to modulate expression of their target gene to a rather limited extent, but with striking functional interchangeability between HEY factors. Chromatin immunoprecipitation revealed a much greater number of potential binding sites that again largely overlap between HEY factors. Binding sites are clustered in the proximal promoter region especially of transcriptional regulators or developmental control genes. Multiple lines of evidence suggest that HEY proteins primarily act as direct transcriptional repressors, while gene activation seems to be due to secondary or indirect effects. Mutagenesis of putative DNA binding residues supports the notion of direct DNA binding. While class B E-box sequences (CACGYG) clearly represent preferred target sequences, there must be additional and more loosely defined modes of DNA binding since many of the target promoters that are efficiently bound by HEY proteins do not contain an E-box motif. These data clearly establish the three HEY bHLH factors as highly redundant transcriptional repressors in vitro and in vivo, which explains the combinatorial action observed in different tissues with overlapping expression. PMID:22615585
Bowden, Thomas A.; Crispin, Max; Harvey, David J.; Jones, E. Yvonne; Stuart, David I.
2010-01-01
Hendra virus is a negative-sense single-stranded RNA virus within the Paramyxoviridae family which, together with Nipah virus, forms the Henipavirus genus. Infection with bat-borne Hendra virus leads to a disease with high mortality rates in humans. We determined the crystal structure of the unliganded six-bladed β-propeller domain and compared it to the previously reported structure of Hendra virus attachment glycoprotein (HeV-G) in complex with its cellular receptor, ephrin-B2. As observed for the related unliganded Nipah virus structure, there is plasticity in the Glu579-Pro590 and Lys236-Ala245 ephrin-binding loops prior to receptor engagement. These data reveal that henipaviral attachment glycoproteins undergo common structural transitions upon receptor binding and further define the structural template for antihenipaviral drug design. Our analysis also provides experimental evidence for a dimeric arrangement of HeV-G that exhibits striking similarity to those observed in crystal structures of related paramyxovirus receptor-binding glycoproteins. The biological relevance of this dimer is further supported by the positional analysis of glycosylation sites from across the paramyxoviruses. In HeV-G, the sites lie away from the putative dimer interface and remain accessible to α-mannosidase processing on oligomerization. We therefore propose that the overall mode of dimer assembly is conserved for all paramyxoviruses; however, while the geometry of dimerization is rather closely similar for those viruses that bind flexible glycan receptors, significant (up to 60°) and different reconfigurations of the subunit packing (associated with a significant decrease in the size of the dimer interface) have accompanied the independent switching to high-affinity protein receptor binding in Hendra and measles viruses. PMID:20375167
Bansal, Ankita; Kar, Debasish; Murugan, Rajagopal A; Mallick, Sathi; Dutta, Mouparna; Pandey, Satya Deo; Chowdhury, Chiranjit; Ghosh, Anindya S
2015-05-01
DD-carboxypeptidases (DD-CPases) are low-molecular-mass (LMM) penicillin-binding proteins (PBPs) that are mainly involved in peptidoglycan remodelling, but little is known about the dd-CPases of mycobacteria. In this study, a putative DD-CPase of Mycobacterium smegmatis, MSMEG_2433 is characterized. The gene for the membrane-bound form of MSMEG_2433 was cloned and expressed in Escherichia coli in its active form, as revealed by its ability to bind to the Bocillin-FL (fluorescent penicillin). Interestingly, in vivo expression of MSMEG_2433 could restore the cell shape oddities of the septuple PBP mutant of E. coli, which was a prominent physiological characteristic of DD-CPases. Moreover, expression of MSMEG_2433 in trans elevated beta-lactam resistance in PBP deletion mutants (ΔdacAdacC) of E. coli, strengthening its physiology as a dd-CPase. To confirm the biochemical reason behind such physiological behaviours, a soluble form of MSMEG_2433 (sMSMEG_2433) was created, expressed and purified. In agreement with the observed physiological phenomena, sMSMEG_2433 exhibited DD-CPase activity against artificial and peptidoglycan-mimetic DD-CPase substrates. To our surprise, enzymic analyses of MSMEG_2433 revealed efficient deacylation for beta-lactam substrates at physiological pH, which is a unique characteristic of beta-lactamases. In addition to the MSMEG_2433 active site that favours dd-CPase activity, in silico analyses also predicted the presence of an omega-loop-like region in MSMEG_2433, which is an important determinant of its beta-lactamase activity. Based on the in vitro, in vivo and in silico studies, we conclude that MSMEG_2433 is a dual enzyme, possessing both DD-CPase and beta-lactamase activities. © 2015 The Authors.
Brouard, Jean-Simon; Turmel, Monique; Otis, Christian; Lemieux, Claude
2016-01-01
The chloroplast genome sustained extensive changes in architecture during the evolution of the Chlorophyceae, a morphologically and ecologically diverse class of green algae belonging to the Chlorophyta; however, the forces driving these changes are poorly understood. The five orders recognized in the Chlorophyceae form two major clades: the CS clade consisting of the Chlamydomonadales and Sphaeropleales, and the OCC clade consisting of the Oedogoniales, Chaetophorales, and Chaetopeltidales. In the OCC clade, considerable variations in chloroplast DNA (cpDNA) structure, size, gene order, and intron content have been observed. The large inverted repeat (IR), an ancestral feature characteristic of most green plants, is present in Oedogonium cardiacum (Oedogoniales) but is lacking in the examined members of the Chaetophorales and Chaetopeltidales. Remarkably, the Oedogonium 35.5-kb IR houses genes that were putatively acquired through horizontal DNA transfer. To better understand the dynamics of chloroplast genome evolution in the Oedogoniales, we analyzed the cpDNA of a second representative of this order, Oedocladium carolinianum . The Oedocladium cpDNA was sequenced and annotated. The evolutionary distances separating Oedocladium and Oedogonium cpDNAs and two other pairs of chlorophycean cpDNAs were estimated using a 61-gene data set. Phylogenetic analysis of an alignment of group IIA introns from members of the OCC clade was performed. Secondary structures and insertion sites of oedogonialean group IIA introns were analyzed. The 204,438-bp Oedocladium genome is 7.9 kb larger than the Oedogonium genome, but its repertoire of conserved genes is remarkably similar and gene order differs by only one reversal. Although the 23.7-kb IR is missing the putative foreign genes found in Oedogonium , it contains sequences coding for a putative phage or bacterial DNA primase and a hypothetical protein. Intergenic sequences are 1.5-fold longer and dispersed repeats are more abundant, but a smaller fraction of the Oedocladium genome is occupied by introns. Six additional group II introns are present, five of which lack ORFs and carry highly similar sequences to that of the ORF-less IIA intron shared with Oedogonium . Secondary structure analysis of the group IIA introns disclosed marked differences in the exon-binding sites; however, each intron showed perfect or nearly perfect base pairing interactions with its target site. Our results suggest that chloroplast genes rearrange more slowly in the Oedogoniales than in the Chaetophorales and raise questions as to what was the nature of the foreign coding sequences in the IR of the common ancestor of the Oedogoniales. They provide the first evidence for intragenomic proliferation of group IIA introns in the Viridiplantae, revealing that intron spread in the Oedocladium lineage likely occurred by retrohoming after sequence divergence of the exon-binding sites.
Lee, Joanna; Daniels, Veronique; Sands, Zara A.; Lebon, Florence; Shi, Jiye; Biggin, Philip C.
2015-01-01
The putative Major Facilitator Superfamily (MFS) transporter, SV2A, is the target for levetiracetam (LEV), which is a successful anti-epileptic drug. Furthermore, SV2A knock out mice display a severe seizure phenotype and die after a few weeks. Despite this, the mode of action of LEV is not known at the molecular level. It would be extremely desirable to understand this more fully in order to aid the design of improved anti-epileptic compounds. Since there is no structure for SV2A, homology modelling can provide insight into the ligand-binding site. However, it is not a trivial process to build such models, since SV2A has low sequence identity to those MFS transporters whose structures are known. A further level of complexity is added by the fact that it is not known which conformational state of the receptor LEV binds to, as multiple conformational states have been inferred by tomography and ligand binding assays or indeed, if binding is exclusive to a single state. Here, we explore models of both the inward and outward facing conformational states of SV2A (according to the alternating access mechanism for MFS transporters). We use a sequence conservation analysis to help guide the homology modelling process and generate the models, which we assess further with Molecular Dynamics (MD). By comparing the MD results in conjunction with docking and simulation of a LEV-analogue used in radioligand binding assays, we were able to suggest further residues that line the binding pocket. These were confirmed experimentally. In particular, mutation of D670 leads to a complete loss of binding. The results shed light on the way LEV analogues may interact with SV2A and may help with the on-going design of improved anti-epileptic compounds. PMID:25692762
Hamada, K; Gleason, S L; Levi, B Z; Hirschfeld, S; Appella, E; Ozato, K
1989-11-01
Transcription of major histocompatibility complex (MHC) class I genes is regulated by the conserved MHC class I regulatory element (CRE). The CRE has two factor-binding sites, region I and region II, both of which elicit enhancer function. By screening a mouse lambda gt 11 library with the CRE as a probe, we isolated a cDNA clone that encodes a protein capable of binding to region II of the CRE. This protein, H-2RIIBP (H-2 region II binding protein), bound to the native region II sequence, but not to other MHC cis-acting sequences or to mutant region II sequences, similar to the naturally occurring region II factor in mouse cells. The deduced amino acid sequence of H-2RIIBP revealed two putative zinc fingers homologous to the DNA-binding domain of steroid/thyroid hormone receptors. Although sequence similarity in other regions was minimal, H-2RIIBP has apparent modular domains characteristic of the nuclear hormone receptors. Further analyses showed that both H-2RIIBP and the natural region II factor bind to the estrogen response element (ERE) of the vitellogenin A2 gene. The ERE is composed of a palindrome, and half of this palindrome resembles the region II binding site of the MHC CRE. These results indicate that H-2RIIBP (i) is a member of the superfamily of nuclear hormone receptors and (ii) may regulate not only MHC class I genes but also genes containing the ERE and related sequences. Sequences homologous to the H-2RIIBP gene are widely conserved in the animal kingdom. H-2RIIBP mRNA is expressed in many mouse tissues, in agreement with the distribution of the natural region II factor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, X.; Shao, C; Zhang, X
2009-01-01
Cleavage of phosphatidylinositol (PI) to inositol 1,2-(cyclic)-phosphate (cIP) and cIP hydrolysis to inositol 1-phosphate by Bacillus thuringiensis phosphatidylinositol-specific phospholipase C are activated by the enzyme binding to phosphatidylcholine (PC) surfaces. Part of this reflects improved binding of the protein to interfaces. However, crystallographic analysis of an interfacially impaired phosphatidylinositol-specific phospholipase (W47A/W242A) suggested protein dimerization might occur on the membrane. In the W47A/W242A dimer, four tyrosine residues from one monomer interact with the same tyrosine cluster of the other, forming a tight dimer interface close to the membrane binding regions. We have constructed mutant proteins in which two or more ofmore » these tyrosine residues have been replaced with serine. Phospholipid binding and enzymatic activity of these mutants have been examined to assess the importance of these residues to enzyme function. Replacing two tyrosines had small effects on enzyme activity. However, removal of three or four tyrosine residues weakened PC binding and reduced PI cleavage by the enzyme as well as PC activation of cIP hydrolysis. Crystal structures of Y247S/Y251S in the absence and presence of myo-inositol as well as Y246S/Y247S/Y248S/Y251S indicate that both mutant proteins crystallized as monomers, were very similar to one another, and had no change in the active site region. Kinetic assays, lipid binding, and structural results indicate that either (i) a specific PC binding site, critical for vesicle activities and cIP activation, has been impaired, or (ii) the reduced dimerization potential for Y246S/Y247S/Y248S and Y246S/Y247S/Y248S/Y251S is responsible for their reduced catalytic activity in all assay systems.« less
Dearborn, Altaira D.; Wall, Joseph S.; Cheng, Naiqian; ...
2015-12-07
Parkinson disease and other progressive neurodegenerative conditions are characterized by the intracerebral presence of Lewy bodies, containing amyloid fibrils of α-synuclein. We used cryo-electron microscopy and scanning transmission electron microscopy (STEM) to study in vitro-assembled fibrils. These fibrils are highly polymorphic. Focusing on twisting fibrils with an inter-crossover spacing of 77 nm, our reconstructions showed them to consist of paired protofibrils. STEM mass per length data gave one subunit per 0.47 nm axial rise per protofibril, consistent with a superpleated β-structure. The STEM images show two thread-like densities running along each of these fibrils, which we interpret as ladders ofmore » metal ions. These threads confirmed the two-protofibril architecture of the 77-nm twisting fibrils and allowed us to identify this morphotype in STEM micrographs. Some other, but not all, fibril morphotypes also exhibit dense threads, implying that they also present a putative metal binding site. As a result, we propose a molecular model for the protofibril and suggest that polymorphic variant fibrils have different numbers of protofibrils that are associated differently.« less
Chang, Tao-Hsin; Hsieh, Fu-Lien; Zebisch, Matthias; Harlos, Karl; Elegheert, Jonathan; Jones, E Yvonne
2015-01-01
Wnt signalling regulates multiple processes including angiogenesis, inflammation, and tumorigenesis. Norrin (Norrie Disease Protein) is a cystine-knot like growth factor. Although unrelated to Wnt, Norrin activates the Wnt/β-catenin pathway. Signal complex formation involves Frizzled4 (Fz4), low-density lipoprotein receptor related protein 5/6 (Lrp5/6), Tetraspanin-12 and glycosaminoglycans (GAGs). Here, we report crystallographic and small-angle X-ray scattering analyses of Norrin in complex with Fz4 cysteine-rich domain (Fz4CRD), of this complex bound with GAG analogues, and of unliganded Norrin and Fz4CRD. Our structural, biophysical and cellular data, map Fz4 and putative Lrp5/6 binding sites to distinct patches on Norrin, and reveal a GAG binding site spanning Norrin and Fz4CRD. These results explain numerous disease-associated mutations. Comparison with the Xenopus Wnt8–mouse Fz8CRD complex reveals Norrin mimics Wnt for Frizzled recognition. The production and characterization of wild-type and mutant Norrins reported here open new avenues for the development of therapeutics to combat abnormal Norrin/Wnt signalling. DOI: http://dx.doi.org/10.7554/eLife.06554.001 PMID:26158506
Itoh, S; Yanagimoto, T; Tagawa, S; Hashimoto, H; Kitamura, R; Nakajima, Y; Okochi, T; Fujimoto, S; Uchino, J; Kamataki, T
1992-03-24
P-450IIIA7 is a form of cytochrome P-450 which was isolated from human fetal livers and termed P-450HFLa. This form has been clarified to be expressed during fetal life specifically (Komori, M., Nishio, K., Kitada, M., Shiramatsu, K., Muroya, K., Soma, M., Nagashima, K. and Kamataki, T. (1990) Biochemistry 29, 4430-4433). In the present study, we isolated five independent clones which probably corresponded to the human P-450IIIA7 gene. These clones were completely sequenced, all exons, exon-intron junctions and the 5' flanking region from the cap site to-869. Although the sequences in the coding region were completely identical to P-450IIIA7, it is possible that genomic fragments sequenced in this study encode portions of other P-450IIIA7-related genes since we could not obtain a complete overlapping set of genomic clones. Within its 5' flanking sequence, the putative binding sites of several transcriptional regulatory factors existed. Among them, it was shown that a basic transcription element binding factor (BTEB) actually interacted with the 5' flanking region of this gene.
Fuller, Jonathan C.; Jackson, Richard M.; Edwards, Thomas A.; Wilson, Andrew J.; Shirts, Michael R.
2012-01-01
The design of novel α-helix mimetic inhibitors of protein-protein interactions is of interest to pharmaceuticals and chemical genetics researchers as these inhibitors provide a chemical scaffold presenting side chains in the same geometry as an α-helix. This conformational arrangement allows the design of high affinity inhibitors mimicking known peptide sequences binding specific protein substrates. We show that GAFF and AutoDock potentials do not properly capture the conformational preferences of α-helix mimetics based on arylamide oligomers and identify alternate parameters matching solution NMR data and suitable for molecular dynamics simulation of arylamide compounds. Results from both docking and molecular dynamics simulations are consistent with the arylamides binding in the p53 peptide binding pocket. Simulations of arylamides in the p53 binding pocket of hDM2 are consistent with binding, exhibiting similar structural dynamics in the pocket as simulations of known hDM2 binders Nutlin-2 and a benzodiazepinedione compound. Arylamide conformations converge towards the same region of the binding pocket on the 20 ns time scale, and most, though not all dihedrals in the binding pocket are well sampled on this timescale. We show that there are two putative classes of binding modes for arylamide compounds supported equally by the modeling evidence. In the first, the arylamide compound lies parallel to the observed p53 helix. In the second class, not previously identified or proposed, the arylamide compound lies anti-parallel to the p53 helix. PMID:22916232
Xu, Meixiang; Cross, Courtney E; Speidel, Jordan T; Abdel-Rahman, Sherif Z
2016-10-01
The O 6 -methylguanine-DNA methyltransferase (MGMT) protein removes O 6 -alkyl-guanine adducts from DNA. MGMT expression can thus alter the sensitivity of cells and tissues to environmental and chemotherapeutic alkylating agents. Previously, we defined the haplotype structure encompassing single nucleotide polymorphisms (SNPs) in the MGMT promoter/enhancer (P/E) region and found that haplotypes, rather than individual SNPs, alter MGMT promoter activity. The exact mechanism(s) by which these haplotypes exert their effect on MGMT promoter activity is currently unknown, but we noted that many of the SNPs comprising the MGMT P/E haplotypes are located within or in close proximity to putative transcription factor binding sites. Thus, these haplotypes could potentially affect transcription factor binding and, subsequently, alter MGMT promoter activity. In this study, we test the hypothesis that MGMT P/E haplotypes affect MGMT promoter activity by altering transcription factor (TF) binding to the P/E region. We used a promoter binding TF profiling array and a reporter assay to evaluate the effect of different P/E haplotypes on TF binding and MGMT expression, respectively. Our data revealed a significant difference in TF binding profiles between the different haplotypes evaluated. We identified TFs that consistently showed significant haplotype-dependent binding alterations (p ≤ 0.01) and revealed their role in regulating MGMT expression using siRNAs and a dual-luciferase reporter assay system. The data generated support our hypothesis that promoter haplotypes alter the binding of TFs to the MGMT P/E and, subsequently, affect their regulatory function on MGMT promoter activity and expression level.
The genetic and functional basis of isolated 17,20-lyase deficiency.
Geller, D H; Auchus, R J; Mendonça, B B; Miller, W L
1997-10-01
Human male sexual differentiation requires production of fetal testicular testosterone, whose biosynthesis requires steroid 17,20-lyase activity. Patients with putative isolated 17,20-lyase deficiency have been reported. The existence of true isolated 17,20-lyase deficiency, however, has been questioned because 17 alpha-hydroxylase and 17,20-lyase activities are catalyzed by a single enzyme, microsomal cytochrome P450c17, and because the index case of apparent isolated 17,20-lyase deficiency had combined deficiencies of both activities. We studied two patients with clinical and hormonal findings suggestive of isolated 17,20-lyase deficiency. We found two patients homozygous for substitution mutations in CYP17, the gene encoding P450c17. When expressed in COS-1 cells, the mutants retained 17 alpha-hydroxylase activity but had minimal 17,20-lyase activity. Substrate competition experiments suggested that the mutations did not alter the enzyme's substrate-binding capacity, but co-transfection of cells with P450 oxidoreductase, the electron donor used by P450c17, indicated that the mutants had a diminished ability to interact with redox partners. Computer-graphic modelling of P450c17 suggests that both mutations lie in or near the redox-partner binding site, on the opposite side of the haem from the substrate-binding pocket. These mutations alter electrostatic charge distribution in the redox-partner binding site, so that electron transfer for the 17,20-lyase reaction is selectively lost or diverted to uncoupling reactions. These are the first proven cases of isolated 17,20-lyase deficiency, and they demonstrate a novel mechanism for loss of enzymatic activity.
Identification of a putative binding site critical for general anesthetic activation of TRPA1.
Ton, Hoai T; Phan, Thieu X; Abramyan, Ara M; Shi, Lei; Ahern, Gerard P
2017-04-04
General anesthetics suppress CNS activity by modulating the function of membrane ion channels, in particular, by enhancing activity of GABA A receptors. In contrast, several volatile (isoflurane, desflurane) and i.v. (propofol) general anesthetics excite peripheral sensory nerves to cause pain and irritation upon administration. These noxious anesthetics activate transient receptor potential ankyrin repeat 1 (TRPA1), a major nociceptive ion channel, but the underlying mechanisms and site of action are unknown. Here we exploit the observation that pungent anesthetics activate mammalian but not Drosophila TRPA1. Analysis of chimeric Drosophila and mouse TRPA1 channels reveal a critical role for the fifth transmembrane domain (S5) in sensing anesthetics. Interestingly, we show that anesthetics share with the antagonist A-967079 a potential binding pocket lined by residues in the S5, S6, and the first pore helix; isoflurane competitively disrupts A-967079 antagonism, and introducing these mammalian TRPA1 residues into dTRPA1 recapitulates anesthetic agonism. Furthermore, molecular modeling predicts that isoflurane and propofol bind to this pocket by forming H-bond and halogen-bond interactions with Ser-876, Met-915, and Met-956. Mutagenizing Met-915 or Met-956 selectively abolishes activation by isoflurane and propofol without affecting actions of A-967079 or the agonist, menthol. Thus, our combined experimental and computational results reveal the potential binding mode of noxious general anesthetics at TRPA1. These data may provide a structural basis for designing drugs to counter the noxious and vasorelaxant properties of general anesthetics and may prove useful in understanding effects of anesthetics on related ion channels.
Niu, Qian; Ybe, Joel A.
2008-01-01
Summary Huntington’s disease is a genetic neurological disorder that is triggered by the dissociation of the huntingtin protein (htt) from its obligate interaction partner Huntingtin-interacting protein 1 (HIP1). The release of htt permits HIP-protein interactor (HIPPI) to bind to its recognition site on HIP1 to form a HIPPI/HIP1 complex that recruits Procaspase-8 to begin the process of apoptosis. The interaction module between HIPPI and HIP1 was predicted to resemble a death-effector domain (DED). Our 2.8 Å crystal structure of the HIP1 371-481 sub-fragment that includes F432 and K474 important for HIPPI binding is not a DED, but is a partially opened coiled-coil. The HIP1 371-481 model reveals a basic surface we hypothesize is suitable for binding HIPPI. There is an opened region next to the putative HIPPI site that is highly negatively charged. The acidic residues in this region are highly conserved in HIP1 and a related protein, HIP1R from different organisms, but are not conserved in the yeast homolog of HIP1, sla2p. We have modeled ∼85% of the coiled-coil domain by joining our new HIP1 371-481 structure to the HIP1 482-586 model (PDB code: 2NO2). Finally, the middle of this coiled-coil domain may be intrinsically flexible and suggests a new interaction model where HIPPI binds to a “U” shaped HIP1 molecule. PMID:18155047
Massive gene transfer and extensive RNA editing of a symbiotic dinoflagellate plastid genome.
Mungpakdee, Sutada; Shinzato, Chuya; Takeuchi, Takeshi; Kawashima, Takeshi; Koyanagi, Ryo; Hisata, Kanako; Tanaka, Makiko; Goto, Hiroki; Fujie, Manabu; Lin, Senjie; Satoh, Nori; Shoguchi, Eiichi
2014-05-31
Genome sequencing of Symbiodinium minutum revealed that 95 of 109 plastid-associated genes have been transferred to the nuclear genome and subsequently expanded by gene duplication. Only 14 genes remain in plastids and occur as DNA minicircles. Each minicircle (1.8-3.3 kb) contains one gene and a conserved noncoding region containing putative promoters and RNA-binding sites. Nine types of RNA editing, including a novel G/U type, were discovered in minicircle transcripts but not in genes transferred to the nucleus. In contrast to DNA editing sites in dinoflagellate mitochondria, which tend to be highly conserved across all taxa, editing sites employed in DNA minicircles are highly variable from species to species. Editing is crucial for core photosystem protein function. It restores evolutionarily conserved amino acids and increases peptidyl hydropathy. It also increases protein plasticity necessary to initiate photosystem complex assembly. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Barbaglia, Allison M.; Tamot, Banita; Greve, Veronica; ...
2016-04-28
Global climate changes inversely affect our ability to grow the food required for an increasing world population. To combat future crop loss due to abiotic stress, we need to understand the signals responsible for changes in plant development and the resulting adaptations, especially the signaling molecules traveling long-distance through the plant phloem. Using a proteomics approach, we had identified several putative lipid-binding proteins in the phloem exudates. Simultaneously, we identified several complex lipids as well as jasmonates. These findings prompted us to propose that phloem (phospho-) lipids could act as long-distance developmental signals in response to abiotic stress, and thatmore » they are released, sensed, and moved by phloem lipid-binding proteins (Benning et al., 2012). Indeed, the proteins we identified include lipases that could release a signaling lipid into the phloem, putative receptor components, and proteins that could mediate lipid-movement. To test this possible protein-based lipid-signaling pathway, three of the proteins, which could potentially act in a relay, are characterized here: (I) a putative GDSL-motif lipase (II) a PIG-P-like protein, with a possible receptor-like function; (III) and PLAFP (phloem lipid-associated family protein), a predicted lipid-binding protein of unknown function. Here we show that all three proteins bind lipids, in particular phosphatidic acid (PtdOH), which is known to participate in intracellular stress signaling. Genes encoding these proteins are expressed in the vasculature, a prerequisite for phloem transport. Cellular localization studies show that the proteins are not retained in the endoplasmic reticulum but surround the cell in a spotted pattern that has been previously observed with receptors and plasmodesmatal proteins. Abiotic signals that induce the production of PtdOH also regulate the expression of GDSL-lipase and PLAFP, albeit in opposite patterns. Our findings suggest that while all three proteins are indeed lipid-binding and act in the vasculature possibly in a function related to long-distance signaling, the three proteins do not act in the same but rather in distinct pathways. Furthermore, it points toward PLAFP as a prime candidate to investigate long-distance lipid signaling in the plant drought response.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbaglia, Allison M.; Tamot, Banita; Greve, Veronica
Global climate changes inversely affect our ability to grow the food required for an increasing world population. To combat future crop loss due to abiotic stress, we need to understand the signals responsible for changes in plant development and the resulting adaptations, especially the signaling molecules traveling long-distance through the plant phloem. Using a proteomics approach, we had identified several putative lipid-binding proteins in the phloem exudates. Simultaneously, we identified several complex lipids as well as jasmonates. These findings prompted us to propose that phloem (phospho-) lipids could act as long-distance developmental signals in response to abiotic stress, and thatmore » they are released, sensed, and moved by phloem lipid-binding proteins (Benning et al., 2012). Indeed, the proteins we identified include lipases that could release a signaling lipid into the phloem, putative receptor components, and proteins that could mediate lipid-movement. To test this possible protein-based lipid-signaling pathway, three of the proteins, which could potentially act in a relay, are characterized here: (I) a putative GDSL-motif lipase (II) a PIG-P-like protein, with a possible receptor-like function; (III) and PLAFP (phloem lipid-associated family protein), a predicted lipid-binding protein of unknown function. Here we show that all three proteins bind lipids, in particular phosphatidic acid (PtdOH), which is known to participate in intracellular stress signaling. Genes encoding these proteins are expressed in the vasculature, a prerequisite for phloem transport. Cellular localization studies show that the proteins are not retained in the endoplasmic reticulum but surround the cell in a spotted pattern that has been previously observed with receptors and plasmodesmatal proteins. Abiotic signals that induce the production of PtdOH also regulate the expression of GDSL-lipase and PLAFP, albeit in opposite patterns. Our findings suggest that while all three proteins are indeed lipid-binding and act in the vasculature possibly in a function related to long-distance signaling, the three proteins do not act in the same but rather in distinct pathways. Furthermore, it points toward PLAFP as a prime candidate to investigate long-distance lipid signaling in the plant drought response.« less
Woo, Jongchan; Howell, Matthew H; von Arnim, Albrecht G
2008-04-01
Renilla luciferase (RLUC) is a versatile tool for gene expression assays and in vivo biosensor applications, but its catalytic mechanism remains to be elucidated. RLUC is evolutionarily related to the alpha/beta hydrolase family. Its closest known homologs are bacterial dehalogenases, raising the question of how a protein with a hydrolase fold can function as a decarboxylating oxygenase. Molecular docking simulations with the coelenterazine substrate against an RLUC homology model as well as a recently determined RLUC crystal structure were used to build hypotheses to identify functionally important residues, which were subsequently tested by site-directed mutagenesis, heterologous expression, and bioluminescence emission spectroscopy. The data highlighted two triads of residues that are critical for catalysis. The putative catalytic triad residues D120, E144, and H285 bear only limited resemblance to those found in the active site of aequorin, a coelenterazine-utilizing photoprotein, suggesting that the reaction scheme employed by RLUC differs substantially from the one established for aequorin. The role of H285 in catalysis was further supported by inhibition using diethylpyrocarbonate. Multiple substitutions of N53, W121, and P220--three other residues implicated in product binding in the homologous dehalogenase Sphingomonas LinB--also supported their involvement in catalysis. Together with luminescence spectra, our data lead us to propose that the conserved catalytic triad of RLUC is directly involved in the decarboxylation reaction of coelenterazine to produce bioluminescence, while the other active-site residues are used for binding of the substrate.
Tanaka, H; Sagisaka, A; Suzuki, N; Yamakawa, M
2016-10-01
E26 transformation-specific (Ets) family transcription factors are known to play roles in various biological phenomena, including immunity, in vertebrates. However, the mechanisms by which Ets proteins contribute to immunity in invertebrates remain poorly understood. In this study, we identified a cDNA encoding BmEts2, which is a putative orthologue of Drosophila Yan and human translocation-ets-leukemia/Ets-variant gene 6, from the silkworm Bombyx mori. Expression of the BmEts2 gene was significantly increased in the fat bodies of silkworm larvae in response to injection with Escherichia coli and Staphylococcus aureus. BmEts2 overexpression dramatically repressed B. mori Rels (BmRels)-mediated promoter activation of antimicrobial peptide genes in silkworm cells. Conversely, gene knockdown of BmEts2 significantly enhanced BmRels activity. In addition, two κB sites located on the 5' upstream region of cecropin B1 were found to be involved in the repression of BmRels-mediated promoter activation. Protein-competition analysis further demonstrated that BmEts2 competitively inhibited binding of BmRels to κB sites. Overall, BmEts2 acts as a repressor of BmRels-mediated transactivation of antimicrobial protein genes by inhibiting the binding of BmRels to κB sites. © 2016 The Royal Entomological Society.
Sarsero, Doreen; Molenaar, Peter; Kaumann, Alberto J; Freestone, Nicholas S
1999-01-01
We identified putative β4-adrenoceptors by radioligand binding, measured increases in ventricular contractile force by (−)-CGP 12177 and (±)-cyanopindolol and demonstrated increased Ca2+ transients by (−)-CGP 12177 in rat cardiomyocytes.(−)-[3H]-CGP 12177 labelled 13–22 fmol mg−1 protein ventricular β1, β2-adrenoceptors (pKD ∼9.0) and 50–90 fmol mg−1 protein putative β4-adrenoceptors (pKD ∼7.3). The affinity values (pKi) for (β1,β2-) and putative β4-adrenoceptors, estimated from binding inhibition, were (−)-propranolol 8.4, 5.7; (−)-bupranolol 9.7, 5.8; (±)-cyanopindolol 10.0,7.4.In left ventricular papillary muscle, in the presence of 30 μM 3-isobutyl-1-methylxanthine, (−)-CGP 12177 and (±)-cyanopindolol caused positive inotropic effects, (pEC50, (−)-CGP 12177, 7.6; (±)-cyanopindolol, 7.0) which were antagonized by (−)-bupranolol (pKB 6.7–7.0) and (−)-CGP 20712A (pKB 6.3–6.6). The cardiostimulant effects of (−)-CGP 12177 in papillary muscle, left and right atrium were antagonized by (±)-cyanopindolol (pKP 7.0–7.4).(−)-CGP 12177 (1 μM) in the presence of 200 nM (−)-propranolol increased Ca2+ transient amplitude by 56% in atrial myocytes, but only caused a marginal increase in ventricular myocytes. In the presence of 1 μM 3-isobutyl-1-methylxanthine and 200 nM (−)-propranolol, 1 μM (−)-CGP 12177 caused a 73% increase in Ca2+ transient amplitude in ventricular myocytes. (−)-CGP 12177 elicited arrhythmic transients in some atrial and ventricular myocytes.Probably by preventing cyclic AMP hydrolysis, 3-isobutyl-1-methylxanthine facilitates the inotropic function of ventricular putative β4-adrenoceptors, suggesting coupling to Gs protein-adenylyl cyclase. The receptor-mediated increases in contractile force are related to increases of Ca2+ in atrial and ventricular myocytes. The agreement of binding affinities of agonists with cardiostimulant potencies is consistent with mediation through putative β4-adrenoceptors labelled with (−)-[3H]-CGP 12177. PMID:10602323
Huang, Tingting; Chang, Chin -Yuan; Lohman, Jeremy R.; ...
2016-10-01
Comparative analysis of the enediyne biosynthetic gene clusters revealed sets of conserved genes serving as outstanding candidates for the enediyne core. Here we report the crystal structures of SgcJ and its homologue NCS-Orf16, together with gene inactivation and site-directed mutagenesis studies, to gain insight into enediyne core biosynthesis. Gene inactivation in vivo establishes that SgcJ is required for C-1027 production in Streptomyces globisporus. SgcJ and NCS-Orf16 share a common structure with the nuclear transport factor 2-like superfamily of proteins, featuring a putative substrate binding or catalytic active site. Site-directed mutagenesis of the conserved residues lining this site allowed us tomore » propose that SgcJ and its homologues may play a catalytic role in transforming the linear polyene intermediate, along with other enediyne polyketide synthase-associated enzymes, into an enzyme-sequestered enediyne core intermediate. In conclusion, these findings will help formulate hypotheses and design experiments to ascertain the function of SgcJ and its homologues in nine-membered enediyne core biosynthesis.« less
Maugeri, Pearson T; Griese, Julia J; Branca, Rui M; Miller, Effie K; Smith, Zachary R; Eirich, Jürgen; Högbom, Martin; Shafaat, Hannah S
2018-01-31
The heterobimetallic R2lox protein binds both manganese and iron ions in a site-selective fashion and activates oxygen, ultimately performing C-H bond oxidation to generate a tyrosine-valine cross-link near the active site. In this work, we demonstrate that, following assembly, R2lox undergoes photoinduced changes to the active site geometry and metal coordination motif. Through spectroscopic, structural, and mass spectrometric characterization, the photoconverted species is found to consist of a tyrosinate-bound iron center following light-induced decarboxylation of a coordinating glutamate residue and cleavage of the tyrosine-valine cross-link. This process occurs with high quantum efficiencies (Φ = 3%) using violet and near-ultraviolet light, suggesting that the photodecarboxylation is initiated via ligand-to-metal charge transfer excitation. Site-directed mutagenesis and structural analysis suggest that the cross-linked tyrosine-162 is the coordinating residue. One primary product is observed following irradiation, indicating potential use of this class of proteins, which contains a putative substrate channel, for controlled photoinduced decarboxylation processes, with relevance for in vivo functionality of R2lox as well as application in environmental remediation.
A novel site-specific recombination system derived from bacteriophage phiMR11.
Rashel, Mohammad; Uchiyama, Jumpei; Ujihara, Takako; Takemura, Iyo; Hoshiba, Hiroshi; Matsuzaki, Shigenobu
2008-04-04
We report identification of a novel site-specific DNA recombination system that functions in both in vivo and in vitro, derived from lysogenic Staphylococcus aureus phage phiMR11. In silico analysis of the phiMR11 genome indicated orf1 as a putative integrase gene. Phage and bacterial attachment sites (attP and attB, respectively) and attachment junctions were determined and their nucleotide sequences decoded. Sequences of attP and attB were mostly different to each other except for a two bp common core that was the crossover point. We found several inverted repeats adjacent to the core sequence of attP as potential protein binding sites. The precise and efficient integration properties of phiMR11 integrase were shown on attP and attB in Escherichia coli and the minimum size of attP was found to be 34bp. In in vitro assays using crude or purified integrase, only buffer and substrate DNAs were required for the recombination reaction, indicating that other bacterially encoded factors are not essential for activity.
Wang, Juan; Xue, Dong-Xiu; Zhang, Bai-Dong; Li, Yu-Long; Liu, Bing-Jian; Liu, Jin-Xian
2016-01-01
Next-generation sequencing and the collection of genome-wide single-nucleotide polymorphisms (SNPs) allow identifying fine-scale population genetic structure and genomic regions under selection. The spotted sea bass (Lateolabrax maculatus) is a non-model species of ecological and commercial importance and widely distributed in northwestern Pacific. A total of 22 648 SNPs was discovered across the genome of L. maculatus by paired-end sequencing of restriction-site associated DNA (RAD-PE) for 30 individuals from two populations. The nucleotide diversity (π) for each population was 0.0028±0.0001 in Dandong and 0.0018±0.0001 in Beihai, respectively. Shallow but significant genetic differentiation was detected between the two populations analyzed by using both the whole data set (FST = 0.0550, P < 0.001) and the putatively neutral SNPs (FST = 0.0347, P < 0.001). However, the two populations were highly differentiated based on the putatively adaptive SNPs (FST = 0.6929, P < 0.001). Moreover, a total of 356 SNPs representing 298 unique loci were detected as outliers putatively under divergent selection by FST-based outlier tests as implemented in BAYESCAN and LOSITAN. Functional annotation of the contigs containing putatively adaptive SNPs yielded hits for 22 of 55 (40%) significant BLASTX matches. Candidate genes for local selection constituted a wide array of functions, including binding, catalytic and metabolic activities, etc. The analyses with the SNPs developed in the present study highlighted the importance of genome-wide genetic variation for inference of population structure and local adaptation in L. maculatus. PMID:27336696
Wang, Juan; Xue, Dong-Xiu; Zhang, Bai-Dong; Li, Yu-Long; Liu, Bing-Jian; Liu, Jin-Xian
2016-01-01
Next-generation sequencing and the collection of genome-wide single-nucleotide polymorphisms (SNPs) allow identifying fine-scale population genetic structure and genomic regions under selection. The spotted sea bass (Lateolabrax maculatus) is a non-model species of ecological and commercial importance and widely distributed in northwestern Pacific. A total of 22 648 SNPs was discovered across the genome of L. maculatus by paired-end sequencing of restriction-site associated DNA (RAD-PE) for 30 individuals from two populations. The nucleotide diversity (π) for each population was 0.0028±0.0001 in Dandong and 0.0018±0.0001 in Beihai, respectively. Shallow but significant genetic differentiation was detected between the two populations analyzed by using both the whole data set (FST = 0.0550, P < 0.001) and the putatively neutral SNPs (FST = 0.0347, P < 0.001). However, the two populations were highly differentiated based on the putatively adaptive SNPs (FST = 0.6929, P < 0.001). Moreover, a total of 356 SNPs representing 298 unique loci were detected as outliers putatively under divergent selection by FST-based outlier tests as implemented in BAYESCAN and LOSITAN. Functional annotation of the contigs containing putatively adaptive SNPs yielded hits for 22 of 55 (40%) significant BLASTX matches. Candidate genes for local selection constituted a wide array of functions, including binding, catalytic and metabolic activities, etc. The analyses with the SNPs developed in the present study highlighted the importance of genome-wide genetic variation for inference of population structure and local adaptation in L. maculatus.
Urano, Y; Kominami, R; Mishima, Y; Muramatsu, M
1980-01-01
Approximately one kilobase pairs surrounding and upstream the transcription initiation site of a cloned ribosomal DNA (rDNA) of the mouse were sequenced. The putative transcription initiation site was determined by two independent methods: one nuclease S1 protection and the other reverse transcriptase elongation mapping using isolated 45S ribosomal RNA precursor (45S RNA) and appropriate restriction fragments of rDNA. Both methods gave an identical result; 45S RNA had a structure starting from ACTCTTAG---. Characteristically, mouse rDNA had many T clusters (greater than or equal to 5) upstream the initiation site, the longest being 21 consecutive T's. A pentadecanucleotide, TGCCTCCCGAGTGCA, appeared twice within 260 nucleotides upstream the putative initiation site. No such characteristic sequences were found downstream this site. Little similarity was found in the upstream of the transcription initiation site between the mouse, Xenopus laevis and Saccharomyces cerevisiae rDNA. Images PMID:6162156
Orth, Peter; Xiao, Li; Hernandez, Lorraine D; Reichert, Paul; Sheth, Payal R; Beaumont, Maribel; Yang, Xiaoyu; Murgolo, Nicholas; Ermakov, Grigori; DiNunzio, Edward; Racine, Fred; Karczewski, Jerzy; Secore, Susan; Ingram, Richard N; Mayhood, Todd; Strickland, Corey; Therien, Alex G
2014-06-27
The symptoms of Clostridium difficile infections are caused by two exotoxins, TcdA and TcdB, which target host colonocytes by binding to unknown cell surface receptors, at least in part via their combined repetitive oligopeptide (CROP) domains. A combination of the anti-TcdA antibody actoxumab and the anti-TcdB antibody bezlotoxumab is currently under development for the prevention of recurrent C. difficile infections. We demonstrate here through various biophysical approaches that bezlotoxumab binds to specific regions within the N-terminal half of the TcdB CROP domain. Based on this information, we solved the x-ray structure of the N-terminal half of the TcdB CROP domain bound to Fab fragments of bezlotoxumab. The structure reveals that the TcdB CROP domain adopts a β-solenoid fold consisting of long and short repeats and that bezlotoxumab binds to two homologous sites within the CROP domain, partially occluding two of the four putative carbohydrate binding pockets located in TcdB. We also show that bezlotoxumab neutralizes TcdB by blocking binding of TcdB to mammalian cells. Overall, our data are consistent with a model wherein a single molecule of bezlotoxumab neutralizes TcdB by binding via its two Fab regions to two epitopes within the N-terminal half of the TcdB CROP domain, partially blocking the carbohydrate binding pockets of the toxin and preventing toxin binding to host cells. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Genomic dissection of conserved transcriptional regulation in intestinal epithelial cells
Camp, J. Gray; Weiser, Matthew; Cocchiaro, Jordan L.; Kingsley, David M.; Furey, Terrence S.; Sheikh, Shehzad Z.; Rawls, John F.
2017-01-01
The intestinal epithelium serves critical physiologic functions that are shared among all vertebrates. However, it is unknown how the transcriptional regulatory mechanisms underlying these functions have changed over the course of vertebrate evolution. We generated genome-wide mRNA and accessible chromatin data from adult intestinal epithelial cells (IECs) in zebrafish, stickleback, mouse, and human species to determine if conserved IEC functions are achieved through common transcriptional regulation. We found evidence for substantial common regulation and conservation of gene expression regionally along the length of the intestine from fish to mammals and identified a core set of genes comprising a vertebrate IEC signature. We also identified transcriptional start sites and other putative regulatory regions that are differentially accessible in IECs in all 4 species. Although these sites rarely showed sequence conservation from fish to mammals, surprisingly, they drove highly conserved IEC expression in a zebrafish reporter assay. Common putative transcription factor binding sites (TFBS) found at these sites in multiple species indicate that sequence conservation alone is insufficient to identify much of the functionally conserved IEC regulatory information. Among the rare, highly sequence-conserved, IEC-specific regulatory regions, we discovered an ancient enhancer upstream from her6/HES1 that is active in a distinct population of Notch-positive cells in the intestinal epithelium. Together, these results show how combining accessible chromatin and mRNA datasets with TFBS prediction and in vivo reporter assays can reveal tissue-specific regulatory information conserved across 420 million years of vertebrate evolution. We define an IEC transcriptional regulatory network that is shared between fish and mammals and establish an experimental platform for studying how evolutionarily distilled regulatory information commonly controls IEC development and physiology. PMID:28850571
Structure and polymorphism of the mouse myelin/oligodendrocyte glycoprotein gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daubas, P.; Pham-Dinh, D.; Dautigny, A.
1994-09-01
The authors have isolated and characterized genomic clones containing the mouse myelin/oligodendrocyte glycoprotein (MOG) gene. It spans a region of 12.5 kb and consists of eight exons. Its exon-intron structure differs from that of classical MHC-class I genes, with which it is linked in the mouse genome. Nucleotide sequencing of the 5{prime} flanking region revelas that it contains several putative protein-binding sites, some of them in common with other myelin gene promoters. One intragenic polymorphism has been identified: it consists of a GA repeat, defining at least three alleles in mouse inbred strains, and is easily detectable using the polymerasemore » chain reaction method.« less
Brown, Eric L; Nishiyama, Yasuhiro; Dunkle, Jesse W; Aggarwal, Shreya; Planque, Stephanie; Watanabe, Kenji; Csencsits-Smith, Keri; Bowden, M Gabriela; Kaplan, Sheldon L; Paul, Sudhir
2012-03-23
Antibodies that recognize microbial B lymphocyte superantigenic epitopes are produced constitutively with no requirement for adaptive immune maturation. We report cleavage of the Staphylococcus aureus virulence factor extracellular fibrinogen-binding protein (Efb) by catalytic antibodies produced with no exposure to the bacterium and reduction of the catalytic antibody activity following infection. IgG catalytic antibodies that specifically hydrolyzed Efb via a nucleophilic catalytic mechanism were found in the blood of healthy humans and aseptic mice free of S. aureus infection. IgG hydrolyzed peptide bonds on the C-terminal side of basic amino acids, including a bond located within the C3b-binding domain of Efb. Efb digested with the IgG lost its ability to bind C3b and inhibit complement-dependent antibody-mediated red blood cell lysis. In addition to catalysis, the IgG expressed saturable Efb binding activity. IgG from S. aureus-infected mice displayed reduced Efb cleaving activity and increased Efb binding activity compared with uninfected controls, suggesting differing effects of the infection on the antibody subsets responsible for the two activities. IgG from children hospitalized for S. aureus infection also displayed reduced Efb cleavage compared with healthy children. These data suggest a potential defense function for constitutively produced catalytic antibodies to a putative superantigenic site of Efb, but an adaptive catalytic response appears to be proscribed.
NASA Astrophysics Data System (ADS)
Zhang, Ying; Wecksler, Aaron T.; Molina, Patricia; Deperalta, Galahad; Gross, Michael L.
2017-05-01
We previously analyzed the Fab-1:VEGF (vascular endothelial growth factor) system described in this work, with both native top-down mass spectrometry and bottom-up mass spectrometry (carboxyl-group or GEE footprinting) techniques. This work continues bottom-up mass spectrometry analysis using a fast photochemical oxidation of proteins (FPOP) platform to map the solution binding interface of VEGF and a fragment antigen binding region of an antibody (Fab-1). In this study, we use FPOP to compare the changes in solvent accessibility by quantitating the extent of oxidative modification in the unbound versus bound states. Determining the changes in solvent accessibility enables the inference of the protein binding sites (epitope and paratopes) and a comparison to the previously published Fab-1:VEGF crystal structure, adding to the top-down and bottom-up data. Using this method, we investigated peptide-level and residue-level changes in solvent accessibility between the unbound proteins and bound complex. Mapping these data onto the Fab-1:VEGF crystal structure enabled successful characterization of both the binding region and regions of remote conformation changes. These data, coupled with our previous higher order structure (HOS) studies, demonstrate the value of a comprehensive toolbox of methods for identifying the putative epitopes and paratopes for biotherapeutic antibodies.
Activated protein kinase C binds to intracellular receptors in rat hepatocytes.
Robles-Flores, M; García-Sáinz, J A
1993-12-01
The aim of this study was to identify in rat hepatocytes cellular polypeptides that bind protein kinase C (PKC) and may influence its activity and its compartmentation. At least seven proteins, with apparent M(r) values between 12,000 and 36,000, that behave like Receptors for Activated C-Kinase (RACKs) were found in the Triton-X-100-insoluble fraction of these cells; i.e. PKC bound to these polypeptides when it was in its active form. RACKS seem to be PKC substrates. Studies using isotype-specific PKC antibodies suggested some selectivity of RACKs, i.e. RACKs in the M(r) approximately 28,000-36,000 region bound PKC-alpha and PKC-beta in the presence of phosphatidylserine, diolein and Ca2+, whereas those of M(r) approximately 12,000-14,000 bound all isoforms studied, and, in contrast with the other RACKs, they did this even in the absence of Ca2+. Peptide I (KGDYEKILVALCGGN), which has a sequence suggested to be involved in the PKC-RACKs interaction [Mochly-Rosen, Khaner, Lopez and Smith (1991) J. Biol. Chem. 266, 14866-14868], inhibited PKC activity. Preincubation of RACKs with antisera directed against peptide I prevented PKC binding to them. The data suggest that peptide I blocks PKC binding to RACKs by two mechanisms: inhibition of PKC activity and competition with a putative binding site.
Opposite Stereoselectivities of Dirigent Proteins in Arabidopsis and Schizandra Species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kye-Won; Moinuddin, Syed G. A.; Atwell, Kathleen M.
2012-08-01
How stereoselective monolignol-derived phenoxy radical-radical coupling reactions are differentially biochemically orchestrated in planta, whereby for example they afford (+)- and (-)-pinoresinols, respectively, is both a fascinating mechanistic and evolutionary question. In earlier work, biochemical control of (+)-pinoresinol formation had been established to be engendered by a (+)-pinoresinol-forming dirigent protein in Forsythia intermedia, whereas the presence of a (-)-pinoresinol-forming dirigent protein was indirectly deduced based on the enantiospecificity of downstream pinoresinol reductases (AtPrRs) in Arabidopsis thaliana root tissue. In this study of 16 putative dirigent protein homologs in Arabidopsis, AtDIR6, AtDIR10, and AtDIR13 were established to be root-specific using a β-glucuronidasemore » reporter gene strategy. Of these three, in vitro analyses established that only recombinant AtDIR6 was a (-)-pinoresinol-forming dirigent protein, whose physiological role was further confirmed using overexpression and RNAi strategies in vivo. Interestingly, its closest homolog, AtDIR5, was also established to be a (-)-pinoresinol-forming dirigent protein based on in vitro biochemical analyses. Both of these were compared in terms of properties with a (+)-pinoresinol-forming dirigent protein from Schizandra chinensis. In this context, sequence analyses, site-directed mutagenesis, and region swapping resulted in identification of putative substrate binding sites/regions and candidate residues controlling distinct stereoselectivities of coupling modes.« less
Regulation of TNF-Related Apoptosis-Inducing Ligand Signaling by Glycosylation
2018-01-01
Tumor necrosis-factor related apoptosis-inducing ligand, also known as TRAIL or APO2L (Apo-2 ligand), is a cytokine of the TNF superfamily acknowledged for its ability to trigger selective apoptosis in tumor cells while being relatively safe towards normal cells. Its binding to its cognate agonist receptors, namely death receptor 4 (DR4) and/or DR5, can induce the formation of a membrane-bound macromolecular complex, coined DISC (death-signaling inducing complex), necessary and sufficient to engage the apoptotic machinery. At the very proximal level, TRAIL DISC formation and activation of apoptosis is regulated both by antagonist receptors and by glycosylation. Remarkably, though, despite the fact that all membrane-bound TRAIL receptors harbor putative glycosylation sites, only pro-apoptotic signaling through DR4 and DR5 has, so far, been found to be regulated by N- and O-glycosylation, respectively. Because putative N-glycosylation sequons and O-glycosylation sites are also found and conserved in all these receptors throughout all animal species (in which these receptors have been identified), glycosylation is likely to play a more prominent role than anticipated in regulating receptor/receptor interactions or trafficking, ultimately defining cell fate through TRAIL stimulation. This review aims to present and discuss these emerging concepts, the comprehension of which is likely to lead to innovative anticancer therapies. PMID:29498673
Roy, Soumitra; Dey, Kuntal; Hershfinkel, Michal; Ohana, Ehud; Sekler, Israel
2017-06-01
The Na + /Ca 2+ /Li + exchanger (NCLX) is a member of the Na + /Ca 2+ exchanger family. NCLX is unique in its capacity to transport both Na + and Li + , unlike other members, which are Na + selective. The major aim of this study was twofold, i.e., to identify NCLX residues that confer Li + or Na + selective Ca 2+ transport and map their putative location on NCLX cation transport site. We combined molecular modeling to map transport site of NCLX with euryarchaeal H + /Ca 2+ exchanger, CAX_Af, and fluorescence analysis to monitor Li + versus Na + dependent mitochondrial Ca 2+ efflux of transport site mutants of NCLX in permeabilized cells. Mutation of Asn149, Pro152, Asp153, Gly176, Asn467, Ser468, Gly494 and Asn498 partially or strongly abolished mitochondrial Ca 2+ exchange activity in intact cells. In permeabilized cells, N149A, P152A, D153A, N467Q, S468T and G494S demonstrated normal Li + /Ca 2+ exchange activity but a reduced Na + /Ca 2+ exchange activity. On the other hand, D471A showed dramatically reduced Li + /Ca 2+ exchange, but Na + /Ca 2+ exchange activity was unaffected. Finally, simultaneous mutation of four putative Ca 2+ binding residues was required to completely abolish both Na + /Ca 2+ and Li + /Ca 2+ exchange activities. We identified distinct Na + and Li + selective residues in the NCLX transport site. We propose that functional segregation in Li + and Na + sites reflects the functional properties of NCLX required for Ca 2+ exchange under the unique membrane potential and ion gradient across the inner mitochondrial membrane. The results of this study provide functional insights into the unique Li + and Na + selectivity of the mitochondrial exchanger. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech. Copyright © 2017 Elsevier B.V. All rights reserved.
Daspute, Abhijit Arun; Kobayashi, Yuriko; Panda, Sanjib Kumar; Fakrudin, Bashasab; Kobayashi, Yasufumi; Tokizawa, Mutsutomo; Iuchi, Satoshi; Choudhary, Arbind Kumar; Yamamoto, Yoshiharu Y; Koyama, Hiroyuki
2018-01-01
Al-responsive citrate-transporting CcMATE1 function and its regulation by CcSTOP1 were analyzed using NtSTOP1 -KD tobacco- and pigeonpea hairy roots, respectively, CcSTOP1 binding sequence of CcMATE1 showed similarity with AtALMT1 promoter. The molecular mechanisms of Aluminum (Al) tolerance in pigeonpea (Cajanus cajan) were characterized to provide information for molecular breeding. Al-inducible citrate excretion was associated with the expression of MULTIDRUGS AND TOXIC COMPOUNDS EXCLUSION (CcMATE1), which encodes a citrate transporter. Ectopic expression of CcMATE1-conferred Al tolerance to hairy roots of transgenic tobacco with the STOP1 regulation system knocked down. This gain-of-function approach clearly showed CcMATE1 was involved in Al detoxification. The expression of CcMATE1 and another Al-tolerance gene, ALUMINUM SENSITIVE 3 (CcALS3), was regulated by SENSITIVE TO PROTON RHIZOTOXICITY1 (CcSTOP1) according to loss-of-function analysis of pigeonpea hairy roots in which CcSTOP1 was suppressed. An in vitro binding assay showed that the Al-responsive CcMATE1 promoter contained the GGNVS consensus bound by CcSTOP1. Mutation of GGNVS inactivated the Al-inducible expression of CcMATE1 in pigeonpea hairy roots. This indicated that CcSTOP1 binding to the promoter is critical for CcMATE1 expression. The STOP1 binding sites of both the CcMATE1 and AtALMT1 promoters contained GGNVS and a flanking 3' sequence. The GGNVS region was identical in both CcMATE1 and AtALMT1. By contrast, the 3' flanking sequence with binding affinity to STOP1 did not show similarity. Putative STOP1 binding sites with similar structures were also found in Al-inducible MATE and ALMT1 promoters in other plant species. The characterized Al-responsive CcSTOP1 and CcMATE1 genes will help in pigeonpea breeding in acid soil tolerance.
Site specific modification of the human plasma proteome by methylglyoxal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimzey, Michael J.; Kinsky, Owen R.; Yassine, Hussein N.
Increasing evidence identifies dicarbonyl stress from reactive glucose metabolites, such as methylglyoxal (MG), as a major pathogenic link between hyperglycemia and complications of diabetes. MG covalently modifies arginine residues, yet the site specificity of this modification has not been thoroughly investigated. Sites of MG adduction in the plasma proteome were identified using LC–MS/MS analysis in vitro following incubation of plasma proteins with MG. Treatment of plasma proteins with MG yielded 14 putative MG hotspots from five plasma proteins (albumin [nine hotspots], serotransferrin, haptoglobin [2 hotspots], hemopexin, and Ig lambda-2 chain C regions). The search results revealed two versions of MG-argininemore » modification, dihydroxyimidazolidine (R + 72) and hydroimidazolone (R + 54) adducts. One of the sites identified was R257 in human serum albumin, which is a critical residue located in drug binding site I. This site was validated as a target for MG modification by a fluorescent probe displacement assay, which revealed significant drug dissociation at 300 μM MG from a prodan–HSA complex (75 μM). Moreover, twelve human plasma samples (six male, six female, with two type 2 diabetic subjects from both genders) were analyzed using multiple reaction monitoring (MRM) tandem mass spectrometry and revealed the presence of the MG-modified albumin R257 peptide. These data provide insights into the nature of the site-specificity of MG modification of arginine, which may be useful for therapeutic treatments that aim to prevent MG-mediated adverse responses in patients. - Highlights: • Methylglyoxal (MG) selectively modifies arginine sites in human plasma proteome. • Dihydroxyimidazolidine and hydroimidazolone adducts on serum albumin identified • MG modification on albumin R257 associated with loss of drug site I binding capacity • MRM-tandem mass spectrometry enables sensitive detection of albumin MG-R257. • Site-specific MG modification may represent a useful monitor of effective therapy of T2DM.« less
Rosenberg, Jonathan; Müller, Peter; Lentes, Sabine; Thiele, Martin J; Zeigler, Daniel R; Tödter, Dominik; Paulus, Henry; Brantl, Sabine; Stülke, Jörg; Commichau, Fabian M
2016-09-01
The threonine dehydratase IlvA is part of the isoleucine biosynthesis pathway in the Gram-positive model bacterium Bacillus subtilis. Consequently, deletion of ilvA causes isoleucine auxotrophy. It has been reported that ilvA pseudo-revertants having a derepressed hom-thrCB operon appear in the presence of threonine. Here we have characterized two classes of ilvA pseudo-revertants. In the first class the hom-thrCB operon was derepressed unmasking the threonine dehydratase activity of the threonine synthase ThrC. In the second class of mutants, threonine biosynthesis was more broadly affected. The first class of ilvA pseudo-revertants had a mutation in the Phom promoter (P*hom ), resulting in constitutive expression of the hom-thrCB operon. In the second class of ilvA pseudo-revertants, the thrR gene encoding a putative DNA-binding protein was inactivated, also resulting in constitutive expression of the hom-thrCB operon. Here we demonstrate that ThrR is indeed a DNA-binding transcription factor that regulates the hom-thrCB operon and the thrD aspartokinase gene. DNA binding assays uncovered the DNA-binding site of ThrR and revealed that the repressor competes with the RNA polymerase for DNA binding. This study also revealed that ThrR orthologs are ubiquitous in genomes from the Gram-positive phylum Firmicutes and in some Gram-negative bacteria. © 2016 John Wiley & Sons Ltd.
Mishra, Dipti Ranjan; Chaudhary, Sanjib; Krishna, B Madhu; Mishra, Sandip K
2015-01-01
Cytosolic inorganic pyrophosphatase plays an important role in the cellular metabolism by hydrolyzing inorganic pyrophosphate (PPi) formed as a by-product of various metabolic reactions. Inorganic pyrophosphatases are known to be associated with important functions related to the growth and development of various organisms. In humans, the expression of inorganic pyrophosphatase (PPA1) is deregulated in different types of cancer and is involved in the migration and invasion of gastric cancer cells and proliferation of ovarian cancer cells. However, the transcriptional regulation of the gene encoding PPA1 is poorly understood. To gain insights into PPA1 gene regulation, a 1217 bp of its 5'-flanking region was cloned and analyzed. The 5'-deletion analysis of the promoter revealed a 266 bp proximal promoter region exhibit most of the transcriptional activity and upon sequence analysis, three putative Sp1 binding sites were found to be present in this region. Binding of Sp1 to the PPA1 promoter was confirmed by Electrophoretic mobility shift assay (EMSA) and Chromatin immunoprecipitation (ChIP) assay. Importance of these binding sites was verified by site-directed mutagenesis and overexpression of Sp1 transactivates PPA1 promoter activity, upregulates protein expression and increases chromatin accessibility. p300 binds to the PPA1 promoter and stimulates Sp1 induced promoter activity. Trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor induces PPA1 promoter activity and protein expression and HAT activity of p300 was important in regulation of PPA1 expression. These results demonstrated that PPA1 is positively regulated by Sp1 and p300 coactivates Sp1 induced PPA1 promoter activity and histone acetylation/deacetylation may contribute to a local chromatin remodeling across the PPA1 promoter. Further, knockdown of PPA1 decreased colony formation and viability of MCF7 cells.
Kondhare, Kirtikumar R; Kumar, Amit; Hannapel, David J; Banerjee, Anjan K
2018-02-07
Polypyrimidine-tract binding proteins (PTBs) are ubiquitous RNA-binding proteins in plants and animals that play diverse role in RNA metabolic processes. PTB proteins bind to target RNAs through motifs rich in cytosine/uracil residues to fine-tune transcript metabolism. Among tuber and root crops, potato has been widely studied to understand the mobile signals that activate tuber development. Potato PTBs, designated as StPTB1 and StPTB6, function in a long-distance transport system by binding to specific mRNAs (StBEL5 and POTH1) to stabilize them and facilitate their movement from leaf to stolon, the site of tuber induction, where they activate tuber and root growth. Storage tubers and root crops are important sustenance food crops grown throughout the world. Despite the availability of genome sequence for sweet potato, cassava, carrot and sugar beet, the molecular mechanism of root-derived storage organ development remains completely unexplored. Considering the pivotal role of PTBs and their target RNAs in potato storage organ development, we propose that a similar mechanism may be prevalent in storage root crops as well. Through a bioinformatics survey utilizing available genome databases, we identify the orthologues of potato PTB proteins and two phloem-mobile RNAs, StBEL5 and POTH1, in five storage root crops - sweet potato, cassava, carrot, radish and sugar beet. Like potato, PTB1/6 type proteins from these storage root crops contain four conserved RNA Recognition Motifs (characteristic of RNA-binding PTBs) in their protein sequences. Further, 3´ UTR (untranslated region) analysis of BEL5 and POTH1 orthologues revealed the presence of several cytosine/uracil motifs, similar to those present in potato StBEL5 and POTH1 RNAs. Using RT-qPCR assays, we verified the presence of these related transcripts in leaf and root tissues of these five storage root crops. Similar to potato, BEL5-, PTB1/6- and POTH1-like orthologue RNAs from the aforementioned storage root crops exhibited differential accumulation patterns in leaf and storage root tissues. Our results suggest that the PTB1/6-like orthologues and their putative targets, BEL5- and POTH1-like mRNAs, from storage root crops could interact physically, similar to that in potato, and potentially, could function as key molecular signals controlling storage organ development in root crops.
Richards, Neil; Parker, David S.; Johnson, Lisa A.; Allen, Benjamin L.; Barolo, Scott; Gumucio, Deborah L.
2015-01-01
The Hedgehog (Hh) signaling pathway directs a multitude of cellular responses during embryogenesis and adult tissue homeostasis. Stimulation of the pathway results in activation of Hh target genes by the transcription factor Ci/Gli, which binds to specific motifs in genomic enhancers. In Drosophila, only a few enhancers (patched, decapentaplegic, wingless, stripe, knot, hairy, orthodenticle) have been shown by in vivo functional assays to depend on direct Ci/Gli regulation. All but one (orthodenticle) contain more than one Ci/Gli site, prompting us to directly test whether homotypic clustering of Ci/Gli binding sites is sufficient to define a Hh-regulated enhancer. We therefore developed a computational algorithm to identify Ci/Gli clusters that are enriched over random expectation, within a given region of the genome. Candidate genomic regions containing Ci/Gli clusters were functionally tested in chicken neural tube electroporation assays and in transgenic flies. Of the 22 Ci/Gli clusters tested, seven novel enhancers (and the previously known patched enhancer) were identified as Hh-responsive and Ci/Gli-dependent in one or both of these assays, including: Cuticular protein 100A (Cpr100A); invected (inv), which encodes an engrailed-related transcription factor expressed at the anterior/posterior wing disc boundary; roadkill (rdx), the fly homolog of vertebrate Spop; the segment polarity gene gooseberry (gsb); and two previously untested regions of the Hh receptor-encoding patched (ptc) gene. We conclude that homotypic Ci/Gli clustering is not sufficient information to ensure Hh-responsiveness; however, it can provide a clue for enhancer recognition within putative Hedgehog target gene loci. PMID:26710299
Hariprasad, Gururao; Kaur, Punit; Srinivasan, Alagiri; Singh, Tej Pal; Kumar, Manoj
2012-07-01
Hepatic fibrosis is a common complication of the infection by the parasite, Clonorchis sinensis. There is a high incidence of this disease in the Asian countries with an increased risk of conversion to cancer. A secretory phospholipase A(2) (PLA(2)) enzyme from the parasite is implicated in the pathology. This is an attractive drug target in the light of extensive structural characterization of this class of enzyme. In this study, the structure of the enzyme was modeled based on its sequence homology to the group III bee venom PLA(2). On analysis, the overall structure essentially is comprised of three helices, two sets of β-wings and an elongated C-terminal extension. The structure is stabilized by four disulfide bonds. The structure is comprised of a calcium binding loop, active site and a substrate binding hydrophobic channel. The active site of the enzyme shows the classical features of PLA(2) with the participation of the three residues: histidine-aspartic acid-tyrosine in hydrogen bond formation. This is an interesting variation from the house keeping group III PLA(2) enzyme of human which has a histidine-aspartic acid and phenylalanine arrangement at the active site. This difference is therefore an important structural parameter that can be exploited to design specific inhibitor molecules against the pathogen PLA(2). Likewise, there are certain unique structural features in the hydrophobic channel and the putative membrane binding surface of the PLA(2) from Clonorchis sinensis that not only help understand the mechanism of action but also provide knowledge for a targeted therapy of liver fibrosis caused by the parasite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rangarajan,E.; Nadeau, G.; Li, Y.
2006-01-01
Polyphosphate (polyP) is a linear polymer consisting of tens to hundreds of phosphate molecules joined together by high-energy anhydride bonds. These polymers are found in virtually all prokaryotic and eukaryotic cells and perform many functions; prominent among them are the responses to many stresses. Polyphosphate is synthesized by polyP kinase (PPK), using the terminal phosphate of ATP as the substrate, and degraded to inorganic phosphate by both endo- and exopolyphosphatases. Here we report the crystal structure and analysis of the polyphosphate phosphatase PPX from Escherichia coli O157:H7 refined at 2.2 Angstroms resolution. PPX is made of four domains. Domains Imore » and II display structural similarity with one another and share the ribonuclease-H-like fold. Domain III bears structural similarity to the N-terminal, HD domain of SpoT. Domain IV, the smallest domain, has structural counterparts in cold-shock associated RNA-binding proteins but is of unknown function in PPX. The putative PPX active site is located at the interface between domains I and II. In the crystal structure of PPX these two domains are close together and represent the 'closed' state. Comparison with the crystal structure of PPX/GPPA from Aquifex aeolicus reveals close structural similarity between domains I and II of the two enzymes, with the PPX/GPPA representing an 'open' state. A striking feature of the dimer is a deep S-shaped canyon extending along the dimer interface and lined with positively charged residues. The active site region opens to this canyon. We postulate that this is a likely site of polyP binding.« less
Chan, Chien-Yi; Huang, Shih-Yi; Sheu, Jim Jinn-Chyuan; Roth, Mendel M; Chou, I-Tai; Lien, Chia-Hsien; Lee, Ming-Fen; Huang, Chun-Yin
2017-02-28
Either FOXO1 or HBP1 transcription factor is a downstream effector of the PI3K/Akt pathway and associated with tumorigenesis. However, the relationship between FOXO1 and HBP1 in oral cancer remains unclear. Analysis of 30 oral tumor specimens revealed that mean mRNA levels of both FOXO1 and HBP1 in non-invasive and invasive oral tumors were found to be significantly lower than that of the control tissues, and the status of low FOXO1 and HBP1 (< 0.3 fold of the control) was associated with invasiveness of oral tumors. To investigate if HBP1 is a direct transcription target of FOXO1, we searched potential FOXO1 binding sites in the HBP1 promoter using the MAPPER Search Engine, and two putative FOXO1 binding sites located in the HBP1 promoter -132 to -125 bp and -343 to -336 bp were predicted. These binding sites were then confirmed by both reporter gene assays and the in cellulo ChIP assay. In addition, Akt activity manipulated by PI3K inhibitor LY294002 or Akt mutants was shown to negatively affect FOXO1-mediated HBP1 promoter activation and gene expression. Last, the biological significance of the FOXO1-HBP1 axis in oral cancer malignancy was evaluated in cell growth, colony formation, and invasiveness. The results indicated that HBP1 knockdown potently promoted malignant phenotypes of oral cancer and the suppressive effect of FOXO1 on cell growth, colony formation, and invasion was alleviated upon HBP1 knockdown in invasive oral cancer cells. Taken together, our data provide evidence for HBP1 as a direct downstream target of FOXO1 in oral cancer malignancy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosserman, Mary A.; Downey, Theresa; Noinaj, Nicholas
Baeyer–Villiger monooxygenases (BVMOs) have been shown to play key roles for the biosynthesis of important natural products. MtmOIV, a homodimeric FAD- and NADPH-dependent BVMO, catalyzes the key frame-modifying steps of the mithramycin biosynthetic pathway, including an oxidative C–C bond cleavage, by converting its natural substrate premithramycin B into mithramycin DK, the immediate precursor of mithramycin. The drastically improved protein structure of MtmOIV along with the high-resolution structure of MtmOIV in complex with its natural substrate premithramycin B are reported here, revealing previously undetected key residues that are important for substrate recognition and catalysis. Kinetic analyses of selected mutants allowed usmore » to probe the substrate binding pocket of MtmOIV and also to discover the putative NADPH binding site. This is the first substrate-bound structure of MtmOIV providing new insights into substrate recognition and catalysis, which paves the way for the future design of a tailored enzyme for the chemo-enzymatic preparation of novel mithramycin analogues.« less
Functional domains of the poliovirus receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koike, Satoshi; Ise, Iku; Nomoto, Akio
1991-05-15
A number of mutant cDNAs of the human poliovirus receptor were constructed to identify essential regions of the molecule as the receptor. All mutant cDNAs carrying the sequence coding for the entire N-terminal immunoglobulin-like domain (domain I) confer permissiveness for poliovirus to mouse L cells, but a mutant cDNA lacking the sequence for domain I does not. The transformants permissive for poliovirus were able to bind the virus and were also recognized by monoclonal antibody D171, which competes with poliovirus for the cellular receptor. These results strongly suggest that the poliovirus binding site resides in domain I of the receptor.more » Mutant cDNAs for the sequence encoding the intracellular peptide were also constructed and expressed in mouse L cells. Susceptibility of these cells to poliovirus revealed that the entire putative cytoplasmic domain is not essential for virus infection. Thus, the cytoplasmic domain of the molecule appears not to play a role in the penetration of poliovirus.« less
Di Bartolomeo, Francesca; Doan, Kim Nguyen; Athenstaedt, Karin; Becker, Thomas; Daum, Günther
2017-07-01
In the yeast Saccharomyces cerevisiae, the mitochondrial phosphatidylserine decarboxylase 1 (Psd1p) produces the largest amount of cellular phosphatidylethanolamine (PE). Psd1p is synthesized as a larger precursor on cytosolic ribosomes and then imported into mitochondria in a three-step processing event leading to the formation of an α-subunit and a β-subunit. The α-subunit harbors a highly conserved motif, which was proposed to be involved in phosphatidylserine (PS) binding. Here, we present a molecular analysis of this consensus motif for the function of Psd1p by using Psd1p variants bearing either deletions or point mutations in this region. Our data show that mutations in this motif affect processing and stability of Psd1p, and consequently the enzyme's activity. Thus, we conclude that this consensus motif is essential for structural integrity and processing of Psd1p. Copyright © 2017 Elsevier B.V. All rights reserved.
Radiolabeled probes for imaging Alzheimer’s plaques
NASA Astrophysics Data System (ADS)
Kulkarni, P. V.; Arora, V.; Roney, A. C.; White, C.; Bennett, M.; Antich, P. P.; Bonte, F. J.
2005-12-01
Alzheimer's disease (AD) is a debilitating disease characterized by the presence of extra-cellular plaques and intra-cellular neurofibrillary tangles (NFTs) in the brain. The major protein component of these plaques is beta amyloid peptide (Aβ), a 40-42 amino acid peptide cleaved from amyloid precursor protein (APP) by β-secretase and a putative γ-secretase. We radioiodinated quinoline derivatives (clioquinol and oxine) and evaluated them as potential amyloid imaging agents based on their ability to cross the blood brain barrier (BBB) and on their selectivity to metal binding sites on amyloid plaques. The uptake of theses tracers in the brains of normal swiss-webster mice was rapid and so was the clearance. Selectivity was demonstrated by higher binding to AD brain homogenates compared to normal brain. Autoradiographic studies demonstrated the localization of the tracers in the plaque regions of the AD brain sections as well as in liver tissue with amyloidosis. Further optimization and evaluations would likely lead to development of these molecules as AD plaque imaging agents.
Modulation of intracellular protein degradation by SSB1-SIS1 chaperon system in yeast S. cerevisiae.
Ohba, M
1997-06-09
In prokaryotes, DnaK-DnaJ chaperon is involved in the protein degradation catalyzed by proteases La and ClpA/B complex as shown in E. coli. To extend this into eukaryotic cells, we examined the effects of hsp70 genes, SSA1 and SSB1, and DnaJ genes, SIS1 and YDJ1, on the growth of proteasome subunit mutants of the yeast S. cerevisiae. The results identified SSB1 and SIS1 as a pair of chaperon genes specifically involved in efficient protein turnover in the yeast, whose overexpression suppressed the growth defects caused by the proteasome mutations. Moreover, a single amino acid substitution in the putative peptide-binding site of SSB1 protein profoundly enhanced the suppression activity, indicating that the activity is mediated by the peptide-binding activity of this chaperon. Thus SSB1, with its partner DnaJ, SIS1, modulates the efficiency of protein turnover through its chaperon activity.
Brown, Dean G; Brown, Giles A; Centrella, Paolo; Certel, Kaan; Cooke, Robert M; Cuozzo, John W; Dekker, Niek; Dumelin, Christoph E; Ferguson, Andrew; Fiez-Vandal, Cédric; Geschwindner, Stefan; Guié, Marie-Aude; Habeshian, Sevan; Keefe, Anthony D; Schlenker, Oliver; Sigel, Eric A; Snijder, Arjan; Soutter, Holly T; Sundström, Linda; Troast, Dawn M; Wiggin, Giselle; Zhang, Jing; Zhang, Ying; Clark, Matthew A
2018-06-01
The discovery of ligands via affinity-mediated selection of DNA-encoded chemical libraries is driven by the quality and concentration of the protein target. G-protein-coupled receptors (GPCRs) and other membrane-bound targets can be difficult to isolate in their functional state and at high concentrations, and therefore have been challenging for affinity-mediated selection. Here, we report a successful selection campaign against protease-activated receptor 2 (PAR2). Using a thermo-stabilized mutant of PAR2, we conducted affinity selection using our >100-billion-compound DNA-encoded library. We observed a number of putative ligands enriched upon selection, and subsequent cellular profiling revealed these ligands to comprise both agonists and antagonists. The agonist series shared structural similarity with known agonists. The antagonists were shown to bind in a novel allosteric binding site on the PAR2 protein. This report serves to demonstrate that cell-free affinity selection against GPCRs can be achieved with mutant stabilized protein targets.
New Phosphospecific Antibody Reveals Isoform-Specific Phosphorylation of CPEB3 Protein
Sehgal, Kapil; Sylvester, Marc; Skubal, Magdalena; Josten, Michele; Steinhäuser, Christian; De Koninck, Paul; Theis, Martin
2016-01-01
Cytoplasmic Polyadenylation Element Binding proteins (CPEBs) are a family of polyadenylation factors interacting with 3’UTRs of mRNA and thereby regulating gene expression. Various functions of CPEBs in development, synaptic plasticity, and cellular senescence have been reported. Four CPEB family members of partially overlapping functions have been described to date, each containing a distinct alternatively spliced region. This region is highly conserved between CPEBs-2-4 and contains a putative phosphorylation consensus, overlapping with the exon seven of CPEB3. We previously found CPEBs-2-4 splice isoforms containing exon seven to be predominantly present in neurons, and the isoform expression pattern to be cell type-specific. Here, focusing on the alternatively spliced region of CPEB3, we determined that putative neuronal isoforms of CPEB3 are phosphorylated. Using a new phosphospecific antibody directed to the phosphorylation consensus we found Protein Kinase A and Calcium/Calmodulin-dependent Protein Kinase II to robustly phosphorylate CPEB3 in vitro and in primary hippocampal neurons. Interestingly, status epilepticus induced by systemic kainate injection in mice led to specific upregulation of the CPEB3 isoforms containing exon seven. Extensive analysis of CPEB3 phosphorylation in vitro revealed two other phosphorylation sites. In addition, we found plethora of potential kinases that might be targeting the alternatively spliced kinase consensus site of CPEB3. As this site is highly conserved between the CPEB family members, we suggest the existence of a splicing-based regulatory mechanism of CPEB function, and describe a robust phosphospecific antibody to study it in future. PMID:26915047
Fournier, Jean-Baptiste; Rebuffet, Etienne; Delage, Ludovic; Grijol, Romain; Meslet-Cladière, Laurence; Rzonca, Justyna; Potin, Philippe; Michel, Gurvan; Czjzek, Mirjam
2014-01-01
Vanadium haloperoxidases (VHPO) are key enzymes that oxidize halides and are involved in the biosynthesis of organo-halogens. Until now, only chloroperoxidases (VCPO) and bromoperoxidases (VBPO) have been characterized structurally, mainly from eukaryotic species. Three putative VHPO genes were predicted in the genome of the flavobacterium Zobellia galactanivorans, a marine bacterium associated with macroalgae. In a phylogenetic analysis, these putative bacterial VHPO were closely related to other VHPO from diverse bacterial phyla but clustered independently from eukaryotic algal VBPO and fungal VCPO. Two of these bacterial VHPO, heterogeneously produced in Escherichia coli, were found to be strictly specific for iodide oxidation. The crystal structure of one of these vanadium-dependent iodoperoxidases, Zg-VIPO1, was solved by multiwavelength anomalous diffraction at 1.8 Å, revealing a monomeric structure mainly folded into α-helices. This three-dimensional structure is relatively similar to those of VCPO of the fungus Curvularia inaequalis and of Streptomyces sp. and is superimposable onto the dimeric structure of algal VBPO. Surprisingly, the vanadate binding site of Zg-VIPO1 is strictly conserved with the fungal VCPO active site. Using site-directed mutagenesis, we showed that specific amino acids and the associated hydrogen bonding network around the vanadate center are essential for the catalytic properties and also the iodide specificity of Zg-VIPO1. Altogether, phylogeny and structure-function data support the finding that iodoperoxidase activities evolved independently in bacterial and algal lineages, and this sheds light on the evolution of the VHPO enzyme family. PMID:25261522
Characterization of a Thioredoxin-1 Gene from Taenia solium and Its Encoding Product
Jiménez, Lucía; Rodríguez-Lima, Oscar; Ochoa-Sánchez, Alicia; Landa, Abraham
2015-01-01
Taenia solium thioredoxin-1 gene (TsTrx-1) has a length of 771 bp with three exons and two introns. The core promoter gene presents two putative stress transcription factor binding sites, one putative TATA box, and a transcription start site (TSS). TsTrx-1 mRNA is expressed higher in larvae than in adult. This gene encodes a protein of 107 amino acids that presents the Trx active site (CGPC), the classical secondary structure of the thioredoxin fold, and the highest degree of identity with the Echinococcus granulosus Trx. A recombinant TsTrx-1 (rTsTrx-1) was produced in Escherichia coli with redox activity. Optimal activity for rTsTrx-1 was at pH 6.5 in the range of 15 to 25°C. The enzyme conserved activity for 3 h and lost it in 24 h at 37°C. rTsTrx-1 lost 50% activity after 1 h and lost activity completely in 24 h at temperatures higher than 55°C. Best storage temperature for rTsTrx-1 was at −70°C. It was inhibited by high concentrations of H2O2 and methylglyoxal (MG), but it was inhibited neither by NaCl nor by anti-rTsTrx-1 rabbit antibodies that strongly recognized a ~12 kDa band in extracts from several parasites. These TsTrx-1 properties open the opportunity to study its role in relationship T. solium-hosts. PMID:26090410
Calmodulin is a phospholipase C-beta interacting protein.
McCullar, Jennifer S; Larsen, Shana A; Millimaki, Ryan A; Filtz, Theresa M
2003-09-05
Phospholipase C-beta 3 (PLC beta 3) is an important effector enzyme in G protein-coupled signaling pathways. Activation of PLC beta 3 by G alpha and G beta gamma subunits has been fairly well characterized, but little is known about other protein interactions that may also regulate PLC beta 3 function. A yeast two-hybrid screen of a mouse brain cDNA library with the amino terminus of PLC beta 3 has yielded potential PLC beta 3 interacting proteins including calmodulin (CaM). Physical interaction between CaM and PLC beta 3 is supported by a positive secondary screen in yeast and the identification of a CaM binding site in the amino terminus of PLC beta 3. Co-precipitation of in vitro translated and transcribed amino- and carboxyl-terminal PLC beta 3 revealed CaM binding at a putative amino-terminal binding site. Direct physical interaction of PLC beta 3 and PLC beta 1 isoforms with CaM is supported by pull-down of both isoenzymes with CaM-Sepharose beads from 1321N1 cell lysates. CaM inhibitors reduced M1-muscarinic receptor stimulation of inositol phospholipid hydrolysis in 1321N1 astrocytoma cells consistent with a physiologic role for CaM in modulation of PLC beta activity. There was no effect of CaM kinase II inhibitors, KN-93 and KN-62, on M1-muscarinic receptor stimulation of inositol phosphate hydrolysis, consistent with a direct interaction between PLC beta isoforms and CaM.
Hörnig, Christina; Albert, Dana; Fischer, Lutz; Hörnig, Michael; Rådmark, Olof; Steinhilber, Dieter; Werz, Oliver
2005-07-22
5-Lipoxygenase (5-LO) catalysis is positively regulated by Ca2+ ions and phospholipids that both act via the N-terminal C2-like domain of 5-LO. Previously, we have shown that 1-oleoyl-2-acetylglycerol (OAG) functions as an agonist for human polymorphonuclear leukocytes (PMNL) in stimulating 5-LO product formation. Here we have demonstrated that OAG directly stimulates 5-LO catalysis in vitro. In the absence of Ca2+ (chelated using EDTA), OAG strongly and concentration-dependently stimulated crude 5-LO in 100,000 x g supernatants as well as purified 5-LO enzyme from PMNL. Also, the monoglyceride 1-O-oleyl-rac-glycerol and 1,2-dioctanoyl-sn-glycerol were effective, whereas various phospholipids did not stimulate 5-LO. However, in the presence of Ca2+, OAG caused no stimulation of 5-LO. Also, phospholipids or cellular membranes abolished the effects of OAG. As found previously for Ca2+, OAG renders 5-LO activity resistant against inhibition by glutathione peroxidase activity, and this effect of OAG is reversed by phospholipids. Intriguingly, a 5-LO mutant lacking tryptophan residues (Trp-13, -75, and -102) important for the binding of the 5-LO C2-like domain to phospholipids was not stimulated by OAG. We conclude that OAG directly stimulates 5-LO by acting at a phospholipid binding site located within the C2-like domain.
Piolot, Tristan; Tramier, Marc; Coppey, Maité; Nicolas, Jean-Claude; Marechal, Vincent
2001-01-01
Human herpesvirus 8 is associated with all forms of Kaposi's sarcoma, AIDS-associated body cavity-based lymphomas, and some forms of multicentric Castleman's disease. Herpesvirus 8, like other gammaherpesviruses, can establish a latent infection in which viral genomes are stably maintained as multiple episomes. The latent nuclear antigen (LANA or LNAI) may play an essential role in the stable maintenance of latent episomes, notably by interacting concomitantly with the viral genomes and the metaphase chromosomes, thus ensuring an efficient transmission of the neoduplicated episomes to the daughter cells. To identify the regions responsible for its nuclear and subnuclear localization in interphase and mitotic cells, LNAI and various truncated forms were fused to a variant of green fluorescent protein. This enabled their localization and chromosome binding activity to be studied by low-light-level fluorescence microscopy in living HeLa cells. The results demonstrate that nuclear localization of LNAI is due to a unique signal, which maps between amino acids 24 and 30. Interestingly, this nuclear localization signal closely resembles those identified in EBNA1 from Epstein-Barr virus and herpesvirus papio. A region encompassing amino acids 5 to 22 was further proved to mediate the specific interaction of LNA1 with chromatin during interphase and the chromosomes during mitosis. The presence of putative phosphorylation sites in the chromosome binding sites of LNA1 and EBNA1 suggests that their activity may be regulated by specific cellular kinases. PMID:11264383
Walia, Rasna R; Xue, Li C; Wilkins, Katherine; El-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant
2014-01-01
Protein-RNA interactions are central to essential cellular processes such as protein synthesis and regulation of gene expression and play roles in human infectious and genetic diseases. Reliable identification of protein-RNA interfaces is critical for understanding the structural bases and functional implications of such interactions and for developing effective approaches to rational drug design. Sequence-based computational methods offer a viable, cost-effective way to identify putative RNA-binding residues in RNA-binding proteins. Here we report two novel approaches: (i) HomPRIP, a sequence homology-based method for predicting RNA-binding sites in proteins; (ii) RNABindRPlus, a new method that combines predictions from HomPRIP with those from an optimized Support Vector Machine (SVM) classifier trained on a benchmark dataset of 198 RNA-binding proteins. Although highly reliable, HomPRIP cannot make predictions for the unaligned parts of query proteins and its coverage is limited by the availability of close sequence homologs of the query protein with experimentally determined RNA-binding sites. RNABindRPlus overcomes these limitations. We compared the performance of HomPRIP and RNABindRPlus with that of several state-of-the-art predictors on two test sets, RB44 and RB111. On a subset of proteins for which homologs with experimentally determined interfaces could be reliably identified, HomPRIP outperformed all other methods achieving an MCC of 0.63 on RB44 and 0.83 on RB111. RNABindRPlus was able to predict RNA-binding residues of all proteins in both test sets, achieving an MCC of 0.55 and 0.37, respectively, and outperforming all other methods, including those that make use of structure-derived features of proteins. More importantly, RNABindRPlus outperforms all other methods for any choice of tradeoff between precision and recall. An important advantage of both HomPRIP and RNABindRPlus is that they rely on readily available sequence and sequence-derived features of RNA-binding proteins. A webserver implementation of both methods is freely available at http://einstein.cs.iastate.edu/RNABindRPlus/.
Whole-Genome Survey of the Putative ATP-Binding Cassette Transporter Family Genes in Vitis vinifera
Çakır, Birsen; Kılıçkaya, Ozan
2013-01-01
The ATP-binding cassette (ABC) protein superfamily constitutes one of the largest protein families known in plants. In this report, we performed a complete inventory of ABC protein genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with ABC protein members of Arabidopsis thaliana, we identified 135 putative ABC proteins with 1 or 2 NBDs in V. vinifera. Of these, 120 encode intrinsic membrane proteins, and 15 encode proteins missing TMDs. V. vinifera ABC proteins can be divided into 13 subfamilies with 79 “full-size,” 41 “half-size,” and 15 “soluble” putative ABC proteins. The main feature of the Vitis ABC superfamily is the presence of 2 large subfamilies, ABCG (pleiotropic drug resistance and white-brown complex homolog) and ABCC (multidrug resistance-associated protein). We identified orthologs of V. vinifera putative ABC transporters in different species. This work represents the first complete inventory of ABC transporters in V. vinifera. The identification of Vitis ABC transporters and their comparative analysis with the Arabidopsis counterparts revealed a strong conservation between the 2 species. This inventory could help elucidate the biological and physiological functions of these transporters in V. vinifera. PMID:24244377
List, K; Høyer-Hansen, G; Rønne, E; Danø, K; Behrendt, N
1999-01-01
Certain monoclonal antibodies are capable of inhibiting the biological binding reactions of their target proteins. At the molecular level, this type of effect may be brought about by completely different mechanisms, such as competition for common binding determinants, steric hindrance or interference with conformational properties of the receptor critical for ligand binding. This distinction is central when employing the antibodies as tools in the elucidation of the structure-function relationship of the protein in question. We have studied the effect of monoclonal antibodies against the urokinase plasminogen activator receptor (uPAR), a protein located on the surface of various types of malignant and normal cells which is involved in the direction of proteolytic degradation reactions in the extracellular matrix. We show that surface plasmon resonance/biomolecular interaction analysis (BIA) can be employed as a highly useful tool to characterize the inhibitory mechanism of specific antagonist antibodies. Two inhibitory antibodies against uPAR, mAb R3 and mAb R5, were shown to exhibit competitive and non-competitive inhibition, respectively, of ligand binding to the receptor. The former antibody efficiently blocked the receptor against subsequent ligand binding but was unable to promote the dissociation of a preformed receptor-ligand complex. The latter antibody was capable of binding the preformed complex, forming a transient trimolecular assembly, and promoting the dissociation of the uPA/uPAR complex. The continuous recording of binding and dissociation, obtained in BIA, is central in characterizing these phenomena. The identification of a non-competitive inhibitory mechanism against this receptor reveals the presence of a determinant which influences the binding properties of a remote site in the molecular structure and which could be an important target for a putative synthetic antagonist.
Degl'Innocenti, Andrea; Parrilla, Marta; Harr, Bettina; Teschke, Meike
2016-01-01
In vertebrates, several anatomical regions located within the nasal cavity mediate olfaction. Among these, the main olfactory epithelium detects most conventional odorants. Olfactory sensory neurons, provided with cilia exposed to the air, detect volatile chemicals via an extremely large family of seven-transmembrane chemoreceptors named odorant receptors. Their genes are expressed in a monogenic and monoallelic fashion: a single allele of a single odorant receptor gene is transcribed in a given mature neuron, through a still uncharacterized molecular mechanism known as odorant receptor gene choice. Odorant receptor genes are typically arranged in genomic clusters, but a few are isolated (we call them solitary) from the others within a region broader than 1 Mb upstream and downstream with respect to their transcript's coordinates. The study of clustered genes is problematic, because of redundancy and ambiguities in their regulatory elements: we propose to use the solitary genes as simplified models to understand odorant receptor gene choice. Here we define number and identity of the solitary genes in the mouse genome (C57BL/6J), and assess the conservation of the solitary status in some mammalian orthologs. Furthermore, we locate their putative promoters, predict their homeodomain binding sites (commonly present in the promoters of odorant receptor genes) and compare candidate promoter sequences with those of wild-caught mice. We also provide expression data from histological sections. In the mouse genome there are eight intact solitary genes: Olfr19 (M12), Olfr49, Olfr266, Olfr267, Olfr370, Olfr371, Olfr466, Olfr1402; five are conserved as solitary in rat. These genes are all expressed in the main olfactory epithelium of three-day-old mice. The C57BL/6J candidate promoter of Olfr370 has considerably varied compared to its wild-type counterpart. Within the putative promoter for Olfr266 a homeodomain binding site is predicted. As a whole, our findings favor Olfr266 as a model gene to investigate odorant receptor gene choice.
Jing, Yaling; Wang, Tao; Chen, Zuyi; Ding, Xianping; Xu, Jianju; Mu, Xuemei; Cao, Man; Chen, Honghan
2018-01-01
Globally, human papillomavirus (HPV)-56 accounts for a small proportion of all high-risk HPV types; however, HPV-56 is detected at a higher rate in Asia, particularly in southwest China. The present study analyzed polymorphisms, intratypic variants, and genetic variability in the long control regions (LCR), E6, E7, and L1 of HPV-56 (n=75). The LCRs, E6, E7 and L1 were sequenced using a polymerase chain reaction and the sequences were submitted to GenBank. Maximum-likelihood trees were constructed using Kimura's two-parameter model, followed by secondary structure analysis and protein damaging prediction. Additionally, in order to assess the effect of variations in the LCR on putative binding sites for cellular proteins, MATCH server was used. Finally, the selection pressures of the E6-E7 and L1 genes were estimated. A total of 18 point substitutions, a 42-bp deletion and a 19-bp deletion of LCR were identified. Some of those mutations are embedded in the putative binding sites for transcription factors. 18 single nucleotide changes occurred in the E6-E7 sequence, 11/18 were non-synonymous substitutions and 7/18 were synonymous mutations. A total 24 single nucleotide changes were identified in the L1 sequence, 6/24 being non-synonymous mutations and 18/24 synonymous mutations. Selective pressure analysis predicted that the majority of mutations of HPV-56 E6, E7 and L1 were of positive selection. The phylogenetic tree demonstrated that the isolates distributed in two lineages. Data on the prevalence and genetic variation of HPV-56 types in southwest China may aid future studies on viral molecular mechanisms and contribute to future investigations of diagnostic probes and therapeutic vaccines. PMID:29568922
Ahmad, Sajjad; Raza, Saad; Uddin, Reaz; Azam, Syed Sikander
2017-10-01
MurF ligase catalyzes the final cytoplasmic step of bacterial peptidoglycan biosynthesis and, as such, is a validated target for therapeutic intervention. Herein, we performed molecular docking to identify putative inhibitors of Acinetobacter baumannii MurF (AbMurF). Based on comparative docking analysis, compound 114 (ethyl pyridine substituted 3-cyanothiophene) was predicted to potentially be the most active ligand. Computational pharmacokinetic characterization of drug-likeness of the compound showed it to fulfil all the parameters of Muegge and the MDDR rule. A molecular dynamic simulation of 114 indicated the complex to be stable on the basis of an average root mean square deviation (RMSD) value of 2.09Å for the ligand. The stability of the complex was further supported by root mean square fluctuation (RMSF), beta factor and radius of gyration values. Analyzing the complex using radial distribution function (RDF) and a novel analytical tool termed the axial frequency distribution (AFD) illustrated that after simulation the ligand is positioned in close vicinity of the protein active site where Thr42 and Asp43 participate in hydrogen bonding and stabilization of the complex. Binding free energy calculations based on the Poisson-Boltzmann or Generalized-Born Surface Area Continuum Solvation (MM(PB/GB)SA) method indicated the van der Waals contribution to the overall binding energy of the complex to be dominant along with electrostatic contributions involving the hot spot amino acids from the protein active site. The present results indicate that the screened compound 114 may act as a parent structure for designing potent derivatives against AbMurF in specific and MurF of other bacterial pathogens in general. Copyright © 2017 Elsevier Inc. All rights reserved.
Bhattacharya, Anusri; Jindal, Bhavya; Singh, Parminder; Datta, Anindya; Panda, Dulal
2013-09-01
The assembly of FtsZ plays a central role in construction of the cytokinetic Z-ring that orchestrates bacterial cell division. A naturally occurring naphthoquinone, plumbagin, is known to exhibit antibacterial properties against several types of bacteria. In this study, plumbagin was found to perturb formation of the Z-ring in Bacillus subtilis 168 cells and to cause elongation of these cells without an apparent effect on nucleoid segregation, indicating that it may inhibit FtsZ assembly. Furthermore, it bound to purified B. subtilis FtsZ (BsFtsZ) with a dissociation constant of 20.7 ± 5.6 μM, and inhibited the assembly and GTPase activity of BsFtsZ in vitro. Interestingly, plumbagin did not inhibit either the assembly or GTPase activity of Escherichia coli FtsZ (EcFtsZ) in vitro. Using docking analysis, a putative plumbagin-binding site on BsFtsZ was identified, and the analysis indicated that hydrophobic interactions and hydrogen bonds predominate. Based on the in silico analysis, two variants of BsFtsZ, namely D199A and V307R, were constructed to explore the binding interaction of plumbagin and BsFtsZ. The effects of plumbagin on the assembly and GTPase activity of the variant BsFtsZ proteins in vitro indicated that the residues D199 and V307 may be involved in the binding of plumbagin to BsFtsZ. The results suggest that plumbagin inhibits bacterial proliferation by inhibiting the assembly of FtsZ, and provide insight into the binding site of plumbagin on BsFtsZ, which may help in the design of potent FtsZ-targeted antibacterial agents. © 2013 FEBS.
Bartoccioni, Paola; del Rio, César; Ratera, Merce; Kowalczyk, Lukasz; Baldwin, Jocelyn M.; Zorzano, Antonio; Quick, Matthias; Baldwin, Stephen A.; Vázquez-Ibar, José Luis; Palacín, Manuel
2010-01-01
System l-amino acid transporters (LAT) belong to the amino acid, polyamine, and organic cation superfamily of transporters and include the light subunits of heteromeric amino acid transporters and prokaryotic homologues. Cysteine reactivity of SteT (serine/threonine antiporter) has been used here to study the substrate-binding site of LAT transporters. Residue Cys-291, in transmembrane domain 8 (TM8), is inactivated by thiol reagents in a substrate protectable manner. Surprisingly, DTT activated the transporter by reducing residue Cys-291. Cysteine-scanning mutagenesis of TM8 showed DTT activation in the single-cysteine mutants S287C, G294C, and S298C, lining the same α-helical face. S-Thiolation in Escherichia coli cells resulted in complete inactivation of the single-cysteine mutant G294C. l-Serine blocked DTT activation with an EC50 similar to the apparent KM of this mutant. Thus, S-thiolation abolished substrate translocation but not substrate binding. Mutation of Lys-295, to Cys (K295C) broadened the profile of inhibitors and the spectrum of substrates with the exception of imino acids. A structural model of SteT based on the structural homologue AdiC (arginine/agmatine antiporter) positions residues Cys-291 and Lys-295 in the putative substrate binding pocket. All this suggests that Lys-295 is a main determinant in the recognition of the side chain of SteT substrates. In contrast, Gly-294 is not facing the surface, suggesting conformational changes involving TM8 during the transport cycle. Our results suggest that TM8 sculpts the substrate-binding site and undergoes conformational changes during the transport cycle of SteT. PMID:20610400
Wang, Yuying; Brittain, Joel M.; Jarecki, Brian W.; Park, Ki Duk; Wilson, Sarah M.; Wang, Bo; Hale, Rachel; Meroueh, Samy O.; Cummins, Theodore R.; Khanna, Rajesh
2010-01-01
The anti-epileptic drug (R)-lacosamide ((2R)-2-(acetylamino)-N-benzyl-3-methoxypropanamide (LCM)) modulates voltage-gated sodium channels (VGSCs) by preferentially interacting with slow inactivated sodium channels, but the observation that LCM binds to collapsin response mediator protein 2 (CRMP-2) suggests additional mechanisms of action for LCM. We postulated that CRMP-2 levels affects the actions of LCM on VGSCs. CRMP-2 labeling by LCM analogs was competitively displaced by excess LCM in rat brain lysates. Manipulation of CRMP-2 levels in the neuronal model system CAD cells affected slow inactivation of VGSCs without any effects on other voltage-dependent properties. In silico docking was performed to identify putative binding sites in CRMP-2 that may modulate the effects of LCM on VGSCs. These studies identified five cavities in CRMP-2 that can accommodate LCM. CRMP-2 alanine mutants of key residues within these cavities were functionally similar to wild-type CRMP-2 as assessed by similar levels of enhancement in dendritic complexity of cortical neurons. Next, we examined the effects of expression of wild-type and mutant CRMP-2 constructs on voltage-sensitive properties of VGSCs in CAD cells: 1) steady-state voltage-dependent activation and fast-inactivation properties were not affected by LCM, 2) CRMP-2 single alanine mutants reduced the LCM-mediated effects on the ability of endogenous Na+ channels to transition to a slow inactivated state, and 3) a quintuplicate CRMP-2 alanine mutant further decreased this slow inactivated fraction. Collectively, these results identify key CRMP-2 residues that can coordinate LCM binding thus making it more effective on its primary clinical target. PMID:20538611
Bond, C; LaForge, K S; Tian, M; Melia, D; Zhang, S; Borg, L; Gong, J; Schluger, J; Strong, J A; Leal, S M; Tischfield, J A; Kreek, M J; Yu, L
1998-08-04
Opioid drugs play important roles in the clinical management of pain, as well as in the development and treatment of drug abuse. The mu opioid receptor is the primary site of action for the most commonly used opioids, including morphine, heroin, fentanyl, and methadone. By sequencing DNA from 113 former heroin addicts in methadone maintenance and 39 individuals with no history of drug or alcohol abuse or dependence, we have identified five different single-nucleotide polymorphisms (SNPs) in the coding region of the mu opioid receptor gene. The most prevalent SNP is a nucleotide substitution at position 118 (A118G), predicting an amino acid change at a putative N-glycosylation site. This SNP displays an allelic frequency of approximately 10% in our study population. Significant differences in allele distribution were observed among ethnic groups studied. The variant receptor resulting from the A118G SNP did not show altered binding affinities for most opioid peptides and alkaloids tested. However, the A118G variant receptor binds beta-endorphin, an endogenous opioid that activates the mu opioid receptor, approximately three times more tightly than the most common allelic form of the receptor. Furthermore, beta-endorphin is approximately three times more potent at the A118G variant receptor than at the most common allelic form in agonist-induced activation of G protein-coupled potassium channels. These results show that SNPs in the mu opioid receptor gene can alter binding and signal transduction in the resulting receptor and may have implications for normal physiology, therapeutics, and vulnerability to develop or protection from diverse diseases including the addictive diseases.
Niu, Qian; Ybe, Joel A
2008-02-01
Huntington's disease is a genetic neurological disorder that is triggered by the dissociation of the huntingtin protein (htt) from its obligate interaction partner Huntingtin-interacting protein 1 (HIP1). The release of the huntingtin protein permits HIP1 protein interactor (HIPPI) to bind to its recognition site on HIP1 to form a HIPPI/HIP1 complex that recruits procaspase-8 to begin the process of apoptosis. The interaction module between HIPPI and HIP1 was predicted to resemble a death-effector domain. Our 2.8-A crystal structure of the HIP1 371-481 subfragment that includes F432 and K474, which is important for HIPPI binding, is not a death-effector domain but is a partially opened coiled coil. The HIP1 371-481 model reveals a basic surface that we hypothesize to be suitable for binding HIPPI. There is an opened region next to the putative HIPPI site that is highly negatively charged. The acidic residues in this region are highly conserved in HIP1 and a related protein, HIP1R, from different organisms but are not conserved in the yeast homologue of HIP1, sla2p. We have modeled approximately 85% of the coiled-coil domain by joining our new HIP1 371-481 structure to the HIP1 482-586 model (Protein Data Bank code: 2NO2). Finally, the middle of this coiled-coil domain may be intrinsically flexible and suggests a new interaction model where HIPPI binds to a U-shaped HIP1 molecule.
Yang, Chi Ming
2011-03-28
Metal-site Trp/His interactions are crucial to diverse metalloprotein functions. This paper presents a study using metal-motif mimicry to capture and dissect the static and transient components of physicochemical properties underlying the Trp/His aromatic side-chain noncovalent interactions across the first- and second-coordination spheres of biometal ions. Modular biomimetic constructs, EDTA-(L-Trp, L-His) or EWH and DTPA-(L-Trp, L-His) or DWH, featuring a function-significant Trp/His pair, enabled extracting the putative hydrophobic/hydrophilic aromatic interactions surrounding metal centers. Fluorescence, circular dichroism (CD) spectroscopic titrations and ESI mass spectrometry demonstrated that both the constructs stoichiometrically bind to Ca(2+), Co(2+), Cu(2+), Ni(2+), Mn(2+), Zn(2+), Cd(2+), and Fe(2+), and such binding was strongly coupled to stereospecific side-chain structure reorientations of the Trp indole and His imidazole rings. A mechanistic dichotomy corresponding to the participation of the indole unit in the binding event was revealed by a scaffold-platform correlation of steady-state fluorescence-response landscape, illuminating that secondary-coordination-sphere ligand cation-π interactions were immediately followed by subsequent transient physicochemical processes including through-space energy transfer, charge transfer and/or electron transfer, depending on the type of metals. The fluorescence quenching of Trp side chain by 3d metal ions can be ascribed to through-space d-π interactions. While the fluorescence titration was capable of illuminating a two-component energetic model, clean isosbestic/isodichroic points in the CD titration spectra indicated that the metallo-constructs, such as Cu(2+)-EWH complex, fold thermodynamically by means of a two-state equilibrium. Further, the metal-ion dependence of Trp conformational variation in the modular architecture of metal-bound scaffolds was evidenced unambiguously by the CD spectra and supported by MMFF calculations; both were capable of distinguishing between the coordination geometry and the preference for metal binding mode. The study thus helps understand how aromatic rings around metal-sites have unique capabilities through the control of the spatiotemporal distribution of noncovalent interaction elements to achieve diverse chemical functionality.
Wang, Xun; Ji, Sang Chun; Jeon, Heung Jin; Lee, Yonho; Lim, Heon M.
2015-01-01
The Escherichia coli gal operon has the structure Pgal-galE-galT-galK-galM. During early log growth, a gradient in gene expression, named type 2 polarity, is established, as follows: galE > galT > galK > galM. However, during late-log growth, type 1 polarity is established in which galK is greater than galT, as follows: galE > galK > galT > galM. We found that type 2 polarity occurs as a result of the down-regulation of galK, which is caused by two different molecular mechanisms: Spot 42-mediated degradation of the galK-specific mRNA, mK2, and Spot 42-mediated Rho-dependent transcription termination at the end of galT. Because the concentration of Spot 42 drops during the transition period of the polarity type switch, these results demonstrate that type 1 polarity is the result of alleviation of Spot 42-mediated galK down-regulation. Because the Spot 42-binding site overlaps with a putative Rho-binding site, a molecular mechanism is proposed to explain how Spot 42, possibly with Hfq, enhances Rho-mediated transcription termination at the end of galT. PMID:26045496
Kanzleiter, Timo; Jähnert, Markus; Schulze, Gunnar; Selbig, Joachim; Hallahan, Nicole; Schwenk, Robert Wolfgang; Schürmann, Annette
2015-05-15
The adaptive response of skeletal muscle to exercise training is tightly controlled and therefore requires transcriptional regulation. DNA methylation is an epigenetic mechanism known to modulate gene expression, but its contribution to exercise-induced adaptations in skeletal muscle is not well studied. Here, we describe a genome-wide analysis of DNA methylation in muscle of trained mice (n = 3). Compared with sedentary controls, 2,762 genes exhibited differentially methylated CpGs (P < 0.05, meth diff >5%, coverage >10) in their putative promoter regions. Alignment with gene expression data (n = 6) revealed 200 genes with a negative correlation between methylation and expression changes in response to exercise training. The majority of these genes were related to muscle growth and differentiation, and a minor fraction involved in metabolic regulation. Among the candidates were genes that regulate the expression of myogenic regulatory factors (Plexin A2) as well as genes that participate in muscle hypertrophy (Igfbp4) and motor neuron innervation (Dok7). Interestingly, a transcription factor binding site enrichment study discovered significantly enriched occurrence of CpG methylation in the binding sites of the myogenic regulatory factors MyoD and myogenin. These findings suggest that DNA methylation is involved in the regulation of muscle adaptation to regular exercise training. Copyright © 2015 the American Physiological Society.
Ca2+ Induces Spontaneous Dephosphorylation of a Novel P5A-type ATPase
Sørensen, Danny Mollerup; Møller, Annette B.; Jakobsen, Mia K.; Jensen, Michael K.; Vangheluwe, Peter; Buch-Pedersen, Morten J.; Palmgren, Michael G.
2012-01-01
P5 ATPases constitute the least studied group of P-type ATPases, an essential family of ion pumps in all kingdoms of life. Although P5 ATPases are present in every eukaryotic genome analyzed so far, they have remained orphan pumps, and their biochemical function is obscure. We show that a P5A ATPase from barley, HvP5A1, locates to the endoplasmic reticulum and is able to rescue knock-out mutants of P5A genes in both Arabidopsis thaliana and Saccharomyces cerevisiae. HvP5A1 spontaneously forms a phosphorylated reaction cycle intermediate at the catalytic residue Asp-488, whereas, among all plant nutrients tested, only Ca2+ triggers dephosphorylation. Remarkably, Ca2+-induced dephosphorylation occurs at high apparent [Ca2+] (Ki = 0.25 mm) and is independent of the phosphatase motif of the pump and the putative binding site for transported ligands located in M4. Taken together, our results rule out that Ca2+ is a transported substrate but indicate the presence of a cytosolic low affinity Ca2+-binding site, which is conserved among P-type pumps and could be involved in pump regulation. Our work constitutes the first characterization of a P5 ATPase phosphoenzyme and points to Ca2+ as a modifier of its function. PMID:22730321
The multi-zinc finger protein ZNF217 contacts DNA through a two-finger domain.
Nunez, Noelia; Clifton, Molly M K; Funnell, Alister P W; Artuz, Crisbel; Hallal, Samantha; Quinlan, Kate G R; Font, Josep; Vandevenne, Marylène; Setiyaputra, Surya; Pearson, Richard C M; Mackay, Joel P; Crossley, Merlin
2011-11-04
Classical C2H2 zinc finger proteins are among the most abundant transcription factors found in eukaryotes, and the mechanisms through which they recognize their target genes have been extensively investigated. In general, a tandem array of three fingers separated by characteristic TGERP links is required for sequence-specific DNA recognition. Nevertheless, a significant number of zinc finger proteins do not contain a hallmark three-finger array of this type, raising the question of whether and how they contact DNA. We have examined the multi-finger protein ZNF217, which contains eight classical zinc fingers. ZNF217 is implicated as an oncogene and in repressing the E-cadherin gene. We show that two of its zinc fingers, 6 and 7, can mediate contacts with DNA. We examine its putative recognition site in the E-cadherin promoter and demonstrate that this is a suboptimal site. NMR analysis and mutagenesis is used to define the DNA binding surface of ZNF217, and we examine the specificity of the DNA binding activity using fluorescence anisotropy titrations. Finally, sequence analysis reveals that a variety of multi-finger proteins also contain two-finger units, and our data support the idea that these may constitute a distinct subclass of DNA recognition motif.
The Multi-zinc Finger Protein ZNF217 Contacts DNA through a Two-finger Domain*
Nunez, Noelia; Clifton, Molly M. K.; Funnell, Alister P. W.; Artuz, Crisbel; Hallal, Samantha; Quinlan, Kate G. R.; Font, Josep; Vandevenne, Marylène; Setiyaputra, Surya; Pearson, Richard C. M.; Mackay, Joel P.; Crossley, Merlin
2011-01-01
Classical C2H2 zinc finger proteins are among the most abundant transcription factors found in eukaryotes, and the mechanisms through which they recognize their target genes have been extensively investigated. In general, a tandem array of three fingers separated by characteristic TGERP links is required for sequence-specific DNA recognition. Nevertheless, a significant number of zinc finger proteins do not contain a hallmark three-finger array of this type, raising the question of whether and how they contact DNA. We have examined the multi-finger protein ZNF217, which contains eight classical zinc fingers. ZNF217 is implicated as an oncogene and in repressing the E-cadherin gene. We show that two of its zinc fingers, 6 and 7, can mediate contacts with DNA. We examine its putative recognition site in the E-cadherin promoter and demonstrate that this is a suboptimal site. NMR analysis and mutagenesis is used to define the DNA binding surface of ZNF217, and we examine the specificity of the DNA binding activity using fluorescence anisotropy titrations. Finally, sequence analysis reveals that a variety of multi-finger proteins also contain two-finger units, and our data support the idea that these may constitute a distinct subclass of DNA recognition motif. PMID:21908891
TNF induction of jagged-1 in endothelial cells is NFκB-dependent
Johnston, Douglas A.; Dong, Bamboo; Hughes, Christopher C.W.
2009-01-01
TNF-α is a potent proinflammatory cytokine that induces endothelial cell (EC) adhesion molecules. In addition, TNF promotes angiogenesis by inducing an EC tip cell phenotype and the expression of jagged-1, a ligand for the notch pathway. Notch signaling is critical for vascular patterning and helps to restrict the proliferation of tip cells. Here we demonstrate that TNF induction of jagged-1 in human EC is rapid and dependent upon signaling through TNFR1, but not TNFR2. A luciferase reporter construct carrying 3.7 kb of 5′ promoter sequence from the human gene was responsive to both TNF and overexpression of NFκB pathway components. TNF-induced promoter activation was blocked by treatment with an NFκB inhibitor or co-expression of dominant-negative IKKβ. Mutations in a putative NFκB-binding site at −3.0 kb, which is conserved across multiple species, resulted in a loss of responsiveness to TNF and NFκB. Electromobility shift and chromatin immunoprecipitation assays revealed binding of both p50 and p65 to the promoter in response to TNF treatment. Full promoter activity also depends on an AP-1 site at −2.0 kb. These results indicate that canonical NFκB signaling is required for TNF induction of the notch ligand jagged-1 in EC. PMID:19393188
SOX2 as a New Regulator of HPV16 Transcription.
Martínez-Ramírez, Imelda; Del-Castillo-Falconi, Víctor; Mitre-Aguilar, Irma B; Amador-Molina, Alfredo; Carrillo-García, Adela; Langley, Elizabeth; Zentella-Dehesa, Alejandro; Soto-Reyes, Ernesto; García-Carrancá, Alejandro; Herrera, Luis A; Lizano, Marcela
2017-07-05
Persistent infections with high-risk human papillomavirus (HPV) constitute the main risk factor for cervical cancer development. HPV16 is the most frequent type associated to squamous cell carcinomas (SCC), followed by HPV18. The long control region (LCR) in the HPV genome contains the replication origin and sequences recognized by cellular transcription factors (TFs) controlling viral transcription. Altered expression of E6 and E7 viral oncogenes, modulated by the LCR, causes modifications in cellular pathways such as proliferation, leading to malignant transformation. The aim of this study was to identify specific TFs that could contribute to the modulation of high-risk HPV transcriptional activity, related to the cellular histological origin. We identified sex determining region Y (SRY)-box 2 (SOX2) response elements present in HPV16-LCR. SOX2 binding to the LCR was demonstrated by in vivo and in vitro assays. The overexpression of this TF repressed HPV16-LCR transcriptional activity, as shown through reporter plasmid assays and by the down-regulation of endogenous HPV oncogenes. Site-directed mutagenesis revealed that three putative SOX2 binding sites are involved in the repression of the LCR activity. We propose that SOX2 acts as a transcriptional repressor of HPV16-LCR, decreasing the expression of E6 and E7 oncogenes in a SCC context.
Casbarra, Annarita; Birolo, Leila; Infusini, Giuseppe; Dal Piaz, Fabrizio; Svensson, Malin; Pucci, Piero; Svanborg, Catharina; Marino, Gennaro
2004-05-01
A combination of hydrogen/deuterium (H/D) exchange and limited proteolysis experiments coupled to mass spectrometry analysis was used to depict the conformation in solution of HAMLET, the folding variant of human alpha-lactalbumin, complexed to oleic acid, that induces apoptosis in tumor and immature cells. Although near- and far-UV CD and fluorescence spectroscopy were not able to discriminate between HAMLET and apo-alpha-lactalbumin, H/D exchange experiments clearly showed that they correspond to two distinct conformational states, with HAMLET incorporating a greater number of deuterium atoms than the apo and holo forms. Complementary proteolysis experiments revealed that HAMLET and apo are both accessible to proteases in the beta-domain but showed substantial differences in accessibility to proteases at specific sites. The overall results indicated that the conformational changes associated with the release of Ca2+ are not sufficient to induce the HAMLET conformation. Metal depletion might represent the first event to produce a partial unfolding in the beta-domain of alpha-lactalbumin, but some more unfolding is needed to generate the active conformation HAMLET, very likely allowing the protein to bind the C18:1 fatty acid moiety. On the basis of these data, a putative binding site of the oleic acid, which stabilizes the HAMLET conformation, is proposed.
Structure of the choline-binding domain of Spr1274 in Streptococcus pneumoniae.
Zhang, Zhenyi; Li, Wenzhe; Frolet, Cecile; Bao, Rui; di Guilmi, Anne Marie; Vernet, Thierry; Chen, Yuxing
2009-08-01
Spr1274 is a putative choline-binding protein that is bound to the cell wall of Streptococcus pneumoniae through noncovalent interactions with the choline moieties of teichoic and lipoteichoic acids. Its function is still unknown. The crystal structure of the choline-binding domain of Spr1274 (residues 44-129) was solved at 2.38 A resolution with three molecules in the asymmetric unit. It may provide a structural basis for functional analysis of choline-binding proteins.
Ruckenstuhl, Christoph; Lang, Silvia; Poschenel, Andrea; Eidenberger, Armin; Baral, Pravas Kumar; Kohút, Peter; Hapala, Ivan; Gruber, Karl; Turnowsky, Friederike
2007-01-01
Squalene epoxidase (SE) is the target of terbinafine, which specifically inhibits the fungal enzyme in a noncompetitive manner. On the basis of functional homologies to p-hydroxybenzoate hydroxylase (PHBH) from Pseudomonas fluorescens, the Erg1 protein contains two flavin adenine dinucleotide (FAD) domains and one nucleotide binding (NB) site. By in vitro mutagenesis of the ERG1 gene, which codes for the Saccharomyces cerevisiae SE, we isolated erg1 alleles that conferred increased terbinafine sensitivity or that showed a lethal phenotype when they were expressed in erg1-knockout strain KLN1. All but one of the amino acid substitutions affected conserved FAD/nucleotide binding sites. The G25S, D335X (W, F, P), and G210A substitutions in the FADI, FADII, and NB sites, respectively, rendered the SE variants nonfunctional. The G30S and L37P variants exhibited decreased enzymatic activity, accompanied by a sevenfold increase in erg1 mRNA levels and an altered sterol composition, and rendered KLN1 more sensitive not only to allylamines (10 to 25 times) but also to other ergosterol biosynthesis inhibitors. The R269G variant exhibited moderately reduced SE activity and a 5- to 10-fold increase in allylamine sensitivity but no cross-sensitivity to the other ergosterol biosynthesis inhibitors. To further elucidate the roles of specific amino acids in SE function and inhibitor interaction, a homology model of Erg1p was built on the basis of the crystal structure of PHBH. All experimental data obtained with the sensitive Erg1 variants support this model. In addition, the amino acids responsible for terbinafine resistance, although they are distributed along the sequence of Erg1p, cluster on the surface of the Erg1p model, giving rise to a putative binding site for allylamines. PMID:17043127
Transcriptional regulation of podoplanin expression by Prox1 in lymphatic endothelial cells.
Pan, Yanfang; Wang, Wen-di; Yago, Tadayuki
2014-07-01
Transcription factor prospero homeobox 1 (Prox-1) and podoplanin (PDPN), mucin-type transmembane protein, are both constantly expressed in lymphatic endothelial cells (LECs) and appear to function in an LEC-autonomous manner. Mice globally lacking PDPN (Pdpn(-/-)) develop abnormal and blood-filled lymphatic vessels that highly resemble those in inducible mice lacking Prox-1 (Prox1(-/-)). Prox1 has also been reported to induce PDPN expression in cultured ECs. Thus, we hypothesize that PDPN functions downstream of Prox1 and that its expression is regulated by Prox1 in LECs at the transcriptional level. We first identified four putative binding elements for Prox1 in the 5' upstream regulatory region of Pdpn gene and found that Prox1 directly binds to the 5' regulatory sequence of Pdpn gene in LECs by chromatin immunoprecipitation assay. DNA pull down assay confirmed that Prox1 binds to the putative binding element. In addition, luciferase reporter assay indicated that Prox1 binding to the 5' regulatory sequence of Pdpn regulates Pdpn gene expression. We are therefore the first to experimentally demonstrate that Prox1 regulates PDPN expression at the transcriptional level in the lymphatic vascular system. Copyright © 2014 Elsevier Inc. All rights reserved.
Niskanen, Einari A; Hytönen, Vesa P; Grapputo, Alessandro; Nordlund, Henri R; Kulomaa, Markku S; Laitinen, Olli H
2005-01-01
Background A chicken egg contains several biotin-binding proteins (BBPs), whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Results Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. Conclusion We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins. PMID:15777476
Lietzan, Adam D.; Menefee, Ann L.; Zeczycki, Tonya N.; Kumar, Sudhanshu; Attwood, Paul V.; Wallace, John C.; Cleland, W. Wallace; Maurice, Martin St.
2011-01-01
Pyruvate carboxylase (PC) catalyzes the ATP-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in mammalian tissues. To effect catalysis, the tethered biotin of PC must gain access to active sites in both the biotin carboxylase domain and the carboxyl transferase domain. Previous studies have demonstrated that a mutation of threonine 882 to alanine in PC from Rhizobium etli renders the carboxyl transferase domain inactive and favors the positioning of biotin in the biotin carboxylase domain. We report the 2.4 Å resolution X-ray crystal structure of the Rhizobium etli PC T882A mutant which reveals the first high-resolution description of the domain interaction between the biotin carboxyl carrier protein domain and the biotin carboxylase domain. The overall quaternary arrangement of Rhizobium etli PC remains highly asymmetrical and is independent of the presence of allosteric activator. While biotin is observed in the biotin carboxylase domain, its access to the active site is precluded by the interaction between Arg353 and Glu248, revealing a mechanism for regulating carboxybiotin access to the BC domain active site. The binding location for the biotin carboxyl carrier protein domain demonstrates that tethered biotin cannot bind in the biotin carboxylase domain active site in the same orientation as free biotin, helping to explain the difference in catalysis observed between tethered biotin and free biotin substrates in biotin carboxylase enzymes. Electron density located in the biotin carboxylase domain active site is assigned to phosphonoacetate, offering a probable location for the putative carboxyphosphate intermediate formed during biotin carboxylation. The insights gained from the T882A Rhizobium etli PC crystal structure provide a new series of catalytic snapshots in PC and offer a revised perspective on catalysis in the biotin-dependent enzyme family. PMID:21958016
Fritz, Timothy A; Liu, Lu; Finer-Moore, Janet S; Stroud, Robert M
2002-06-04
Mutant forms of thymidylate synthase (TS) with substitutions at the conserved active site residue, Trp 80, are deficient in the hydride transfer step of the TS reaction. These mutants produce a beta-mercaptoethanol (beta-ME) adduct of the 2'-deoxyuridine-5'-monophosphate (dUMP) exocyclic methylene intermediate. Trp 80 has been proposed to assist hydride transfer by stabilizing a 5,6,7,8-tetrahydrofolate (THF) radical cation intermediate [Barrett, J. E., Lucero, C. M., and Schultz, P. G. (1999) J. Am. Chem. Soc. 121, 7965-7966.] formed after THF changes its binding from the cofactor pocket to a putative alternate site. To understand the molecular basis of hydride transfer deficiency in a mutant in which Trp 80 was changed to Gly, we determined the X-ray structures of this mutant Escherichia coli TS complexed with dUMP and the folate analogue 10-propargyl-5,8-dideazafolate (CB3717) and of the wild-type enzyme complexed with dUMP and THF. The mutant enzyme has a cavity in the active site continuous with bulk solvent. This cavity, sealed from bulk solvent in wild-type TS by Leu 143, would allow nucleophilic attack of beta-ME on the dUMP C5 exocyclic methylene. The structure of the wild-type enzyme/dUMP/THF complex shows that THF is bound in the cofactor binding pocket and is well positioned to transfer hydride to the dUMP exocyclic methylene. Together, these results suggest that THF does not reorient during hydride transfer and indicate that the role of Trp 80 may be to orient Leu 143 to shield the active site from bulk solvent and to optimally position the cofactor for hydride transfer.
Johnson, Ryan C; Hu, Heidi Q; Merrell, D Scott; Maroney, Michael J
2015-04-01
Helicobacter pylori requires urease activity in order to survive in the acid environment of the human stomach. Urease is regulated in part by nickelation, a process that requires the HypA protein, which is a putative nickel metallochaperone that is generally associated with hydrogenase maturation. However, in H. pylori, HypA plays a dual role. In addition to an N-terminal nickel binding site, HypA proteins also contain a structural zinc site that is coordinated by two rigorously conserved CXXC sequences, which in H. pylori are flanked by His residues. These structural Zn sites are known to be dynamic, converting from Zn(Cys)4 centers at pH 7.2 to Zn(Cys)2(His)2 centers at pH 6.3 in the presence of Ni(ii) ions. In this study, mutant strains of H. pylori that express zinc site variants of the HypA protein are used to show that the structural changes in the zinc site are important for the acid viability of the bacterium, and that a reduction in acid viability in these variants can be traced in large measure to deficient urease activity. This in turn leads to a model that connects the Zn(Cys)4 coordination to urease maturation.