Lijun Liu; Trevor Ramsay; Matthew S. Zinkgraf; David Sundell; Nathaniel Robert Street; Vladimir Filkov; Andrew Groover
2015-01-01
Identifying transcription factor target genes is essential for modeling the transcriptional networks underlying developmental processes. Here we report a chromatin immunoprecipitation sequencing (ChIP-seq) resource consisting of genome-wide binding regions and associated putative target genes for four Populus homeodomain transcription factors...
Krishnamurthi, Revathy; Ghosh, Swagatha; Khedkar, Supriya; Seshasayee, Aswin Sai Narain
2017-01-01
Horizontal gene transfer is a major driving force behind the genomic diversity seen in prokaryotes. The cryptic rac prophage in Escherichia coli K-12 carries the gene for a putative transcription factor RacR, whose deletion is lethal. We have shown that the essentiality of racR in E. coli K-12 is attributed to its role in transcriptionally repressing toxin gene(s) called ydaS and ydaT , which are adjacent to and coded divergently to racR . IMPORTANCE Transcription factors in the bacterium E. coli are rarely essential, and when they are essential, they are largely toxin-antitoxin systems. While studying transcription factors encoded in horizontally acquired regions in E. coli , we realized that the protein RacR, a putative transcription factor encoded by a gene on the rac prophage, is an essential protein. Here, using genetics, biochemistry, and bioinformatics, we show that its essentiality derives from its role as a transcriptional repressor of the ydaS and ydaT genes, whose products are toxic to the cell. Unlike type II toxin-antitoxin systems in which transcriptional regulation involves complexes of the toxin and antitoxin, repression by RacR is sufficient to keep ydaS transcriptionally silent.
Identification of Streptococcus mitis321A vaccine antigens based on reverse vaccinology
Zhang, Qiao; Lin, Kexiong; Wang, Changzheng; Xu, Zhi; Yang, Li; Ma, Qianli
2018-01-01
Streptococcus mitis (S. mitis) may transform into highly pathogenic bacteria. The aim of the present study was to identify potential antigen targets for designing an effective vaccine against the pathogenic S. mitis321A. The genome of S. mitis321A was sequenced using an Illumina Hiseq2000 instrument. Subsequently, Glimmer 3.02 and Tandem Repeat Finder (TRF) 4.04 were used to predict genes and tandem repeats, respectively, with DNA sequence function analysis using the Basic Local Alignment Search Tool (BLAST) in the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Cluster of Orthologous Groups of proteins (COG) databases. Putative gene antigen candidates were screened with BLAST ahead of phylogenetic tree analysis. The DNA sequence assembly size was 2,110,680 bp with 40.12% GC, 6 scaffolds and 9 contig. Consequently, 1,944 genes were predicted, and 119 TRF, 56 microsatellite DNA, 10 minisatellite DNA and 154 transposons were acquired. The predicted genes were associated with various pathways and functions concerning membrane transport and energy metabolism. Multiple putative genes encoding surface proteins, secreted proteins and virulence factors, as well as essential genes were determined. The majority of essential genes belonged to a phylogenetic lineage, while 321AGL000129 and 321AGL000299 were on the same branch. The current study provided useful information regarding the biological function of the S. mitis321A genome and recommends putative antigen candidates for developing a potent vaccine against S. mitis. PMID:29620181
USDA-ARS?s Scientific Manuscript database
Analysis of gene polymorphisms and disease association is essential for assessing putative candidate genes affecting susceptibility or resistance to disease. In this paper, we report the results of an association analysis between SNPs in common carp innate immune response genes and resistance to Cy...
Pradeepkiran, Jangampalli Adi; Sainath, Sri Bhashyam; Kumar, Konidala Kranthi; Bhaskar, Matcha
2015-01-01
Brucella melitensis 16M is a Gram-negative coccobacillus that infects both animals and humans. It causes a disease known as brucellosis, which is characterized by acute febrile illness in humans and causes abortions in livestock. To prevent and control brucellosis, identification of putative drug targets is crucial. The present study aimed to identify drug targets in B. melitensis 16M by using a subtractive genomic approach. We used available database repositories (Database of Essential Genes, Kyoto Encyclopedia of Genes and Genomes Automatic Annotation Server, and Kyoto Encyclopedia of Genes and Genomes) to identify putative genes that are nonhomologous to humans and essential for pathogen B. melitensis 16M. The results revealed that among 3 Mb genome size of pathogen, 53 putative characterized and 13 uncharacterized hypothetical genes were identified; further, from Basic Local Alignment Search Tool protein analysis, one hypothetical protein showed a close resemblance (50%) to Silicibacter pomeroyi DUF1285 family protein (2RE3). A further homology model of the target was constructed using MODELLER 9.12 and optimized through variable target function method by molecular dynamics optimization with simulating annealing. The stereochemical quality of the restrained model was evaluated by PROCHECK, VERIFY-3D, ERRAT, and WHATIF servers. Furthermore, structure-based virtual screening was carried out against the predicted active site of the respective protein using the glycerol structural analogs from the PubChem database. We identified five best inhibitors with strong affinities, stable interactions, and also with reliable drug-like properties. Hence, these leads might be used as the most effective inhibitors of modeled protein. The outcome of the present work of virtual screening of putative gene targets might facilitate design of potential drugs for better treatment against brucellosis. PMID:25834405
The Goddard and Saturn Genes Are Essential for Drosophila Male Fertility and May Have Arisen De Novo
Gubala, Anna M.; Schmitz, Jonathan F.; Kearns, Michael J.; Vinh, Tery T.; Bornberg-Bauer, Erich; Wolfner, Mariana F.
2017-01-01
New genes arise through a variety of mechanisms, including the duplication of existing genes and the de novo birth of genes from noncoding DNA sequences. While there are numerous examples of duplicated genes with important functional roles, the functions of de novo genes remain largely unexplored. Many newly evolved genes are expressed in the male reproductive tract, suggesting that these evolutionary innovations may provide advantages to males experiencing sexual selection. Using testis-specific RNA interference, we screened 11 putative de novo genes in Drosophila melanogaster for effects on male fertility and identified two, goddard and saturn, that are essential for spermatogenesis and sperm function. Goddard knockdown (KD) males fail to produce mature sperm, while saturn KD males produce few sperm, and these function inefficiently once transferred to females. Consistent with a de novo origin, both genes are identifiable only in Drosophila and are predicted to encode proteins with no sequence similarity to any annotated protein. However, since high levels of divergence prevented the unambiguous identification of the noncoding sequences from which each gene arose, we consider goddard and saturn to be putative de novo genes. Within Drosophila, both genes have been lost in certain lineages, but show conserved, male-specific patterns of expression in the species in which they are found. Goddard is consistently found in single-copy and evolves under purifying selection. In contrast, saturn has diversified through gene duplication and positive selection. These data suggest that de novo genes can acquire essential roles in male reproduction. PMID:28104747
Gubala, Anna M; Schmitz, Jonathan F; Kearns, Michael J; Vinh, Tery T; Bornberg-Bauer, Erich; Wolfner, Mariana F; Findlay, Geoffrey D
2017-05-01
New genes arise through a variety of mechanisms, including the duplication of existing genes and the de novo birth of genes from noncoding DNA sequences. While there are numerous examples of duplicated genes with important functional roles, the functions of de novo genes remain largely unexplored. Many newly evolved genes are expressed in the male reproductive tract, suggesting that these evolutionary innovations may provide advantages to males experiencing sexual selection. Using testis-specific RNA interference, we screened 11 putative de novo genes in Drosophila melanogaster for effects on male fertility and identified two, goddard and saturn, that are essential for spermatogenesis and sperm function. Goddard knockdown (KD) males fail to produce mature sperm, while saturn KD males produce few sperm, and these function inefficiently once transferred to females. Consistent with a de novo origin, both genes are identifiable only in Drosophila and are predicted to encode proteins with no sequence similarity to any annotated protein. However, since high levels of divergence prevented the unambiguous identification of the noncoding sequences from which each gene arose, we consider goddard and saturn to be putative de novo genes. Within Drosophila, both genes have been lost in certain lineages, but show conserved, male-specific patterns of expression in the species in which they are found. Goddard is consistently found in single-copy and evolves under purifying selection. In contrast, saturn has diversified through gene duplication and positive selection. These data suggest that de novo genes can acquire essential roles in male reproduction. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The adnAB Locus, Encoding a Putative Helicase-Nuclease Activity, Is Essential in Streptomyces
Zhang, Lingli; Nguyen, Hoang Chuong; Chipot, Ludovic; Piotrowski, Emilie; Bertrand, Claire
2014-01-01
Homologous recombination is a crucial mechanism that repairs a wide range of DNA lesions, including the most deleterious ones, double-strand breaks (DSBs). This multistep process is initiated by the resection of the broken DNA ends by a multisubunit helicase-nuclease complex exemplified by Escherichia coli RecBCD, Bacillus subtilis AddAB, and newly discovered Mycobacterium tuberculosis AdnAB. Here we show that in Streptomyces, neither recBCD nor addAB homologues could be detected. The only putative helicase-nuclease-encoding genes identified were homologous to M. tuberculosis adnAB genes. These genes are conserved as a single copy in all sequenced genomes of Streptomyces. The disruption of adnAB in Streptomyces ambofaciens and Streptomyces coelicolor could not be achieved unless an ectopic copy was provided, indicating that adnAB is essential for growth. Both adnA and adnB genes were shown to be inducible in response to DNA damage (mitomycin C) and to be independently transcribed. Introduction of S. ambofaciens adnAB genes in an E. coli recB mutant restored viability and resistance to UV light, suggesting that Streptomyces AdnAB could be a functional homologue of RecBCD and be involved in DNA damage resistance. PMID:24837284
Liu, Lijun; Ramsay, Trevor; Zinkgraf, Matthew; Sundell, David; Street, Nathaniel Robert; Filkov, Vladimir; Groover, Andrew
2015-06-01
Identifying transcription factor target genes is essential for modeling the transcriptional networks underlying developmental processes. Here we report a chromatin immunoprecipitation sequencing (ChIP-seq) resource consisting of genome-wide binding regions and associated putative target genes for four Populus homeodomain transcription factors expressed during secondary growth and wood formation. Software code (programs and scripts) for processing the Populus ChIP-seq data are provided within a publically available iPlant image, including tools for ChIP-seq data quality control and evaluation adapted from the human Encyclopedia of DNA Elements (ENCODE) project. Basic information for each transcription factor (including members of Class I KNOX, Class III HD ZIP, BEL1-like families) binding are summarized, including the number and location of binding regions, distribution of binding regions relative to gene features, associated putative target genes, and enriched functional categories of putative target genes. These ChIP-seq data have been integrated within the Populus Genome Integrative Explorer (PopGenIE) where they can be analyzed using a variety of web-based tools. We present an example analysis that shows preferential binding of transcription factor ARBORKNOX1 to the nearest neighbor genes in a pre-calculated co-expression network module, and enrichment for meristem-related genes within this module including multiple orthologs of Arabidopsis KNOTTED-like Arabidopsis 2/6. © 2015 Society for Experimental Biology and John Wiley & Sons Ltd This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Azuaje, Francisco; Zheng, Huiru; Camargo, Anyela; Wang, Haiying
2011-08-01
The discovery of novel disease biomarkers is a crucial challenge for translational bioinformatics. Demonstration of both their classification power and reproducibility across independent datasets are essential requirements to assess their potential clinical relevance. Small datasets and multiplicity of putative biomarker sets may explain lack of predictive reproducibility. Studies based on pathway-driven discovery approaches have suggested that, despite such discrepancies, the resulting putative biomarkers tend to be implicated in common biological processes. Investigations of this problem have been mainly focused on datasets derived from cancer research. We investigated the predictive and functional concordance of five methods for discovering putative biomarkers in four independently-generated datasets from the cardiovascular disease domain. A diversity of biosignatures was identified by the different methods. However, we found strong biological process concordance between them, especially in the case of methods based on gene set analysis. With a few exceptions, we observed lack of classification reproducibility using independent datasets. Partial overlaps between our putative sets of biomarkers and the primary studies exist. Despite the observed limitations, pathway-driven or gene set analysis can predict potentially novel biomarkers and can jointly point to biomedically-relevant underlying molecular mechanisms. Copyright © 2011 Elsevier Inc. All rights reserved.
Combining functional and structural genomics to sample the essential Burkholderia structome.
Baugh, Loren; Gallagher, Larry A; Patrapuvich, Rapatbhorn; Clifton, Matthew C; Gardberg, Anna S; Edwards, Thomas E; Armour, Brianna; Begley, Darren W; Dieterich, Shellie H; Dranow, David M; Abendroth, Jan; Fairman, James W; Fox, David; Staker, Bart L; Phan, Isabelle; Gillespie, Angela; Choi, Ryan; Nakazawa-Hewitt, Steve; Nguyen, Mary Trang; Napuli, Alberto; Barrett, Lynn; Buchko, Garry W; Stacy, Robin; Myler, Peter J; Stewart, Lance J; Manoil, Colin; Van Voorhis, Wesley C
2013-01-01
The genus Burkholderia includes pathogenic gram-negative bacteria that cause melioidosis, glanders, and pulmonary infections of patients with cancer and cystic fibrosis. Drug resistance has made development of new antimicrobials critical. Many approaches to discovering new antimicrobials, such as structure-based drug design and whole cell phenotypic screens followed by lead refinement, require high-resolution structures of proteins essential to the parasite. We experimentally identified 406 putative essential genes in B. thailandensis, a low-virulence species phylogenetically similar to B. pseudomallei, the causative agent of melioidosis, using saturation-level transposon mutagenesis and next-generation sequencing (Tn-seq). We selected 315 protein products of these genes based on structure-determination criteria, such as excluding very large and/or integral membrane proteins, and entered them into the Seattle Structural Genomics Center for Infection Disease (SSGCID) structure determination pipeline. To maximize structural coverage of these targets, we applied an "ortholog rescue" strategy for those producing insoluble or difficult to crystallize proteins, resulting in the addition of 387 orthologs (or paralogs) from seven other Burkholderia species into the SSGCID pipeline. This structural genomics approach yielded structures from 31 putative essential targets from B. thailandensis, and 25 orthologs from other Burkholderia species, yielding an overall structural coverage for 49 of the 406 essential gene families, with a total of 88 depositions into the Protein Data Bank. Of these, 25 proteins have properties of a potential antimicrobial drug target i.e., no close human homolog, part of an essential metabolic pathway, and a deep binding pocket. We describe the structures of several potential drug targets in detail. This collection of structures, solubility and experimental essentiality data provides a resource for development of drugs against infections and diseases caused by Burkholderia. All expression clones and proteins created in this study are freely available by request.
Subramanian, Devika; Natarajan, Jeyakumar
2015-12-10
Staphylococcus aureus is a major human pathogen and ramoplanin is an antimicrobial attributed for effective treatment. The goal of this study was to examine the transcriptomic profiles of ramoplanin sensitive and resistant S. aureus to identify putative modules responsible for virulence and resistance-mechanisms and its characteristic novel genes. The dysregulated genes were used to reconstruct protein functional association networks for virulence-factors and resistance-mechanisms individually. Strong link between metabolic-pathways and development of virulence/resistance is suggested. We identified 15 putative modules of virulence factors. Six hypothetical genes were annotated with novel virulence activity among which SACOL0281 was discovered to be an essential virulence factor EsaD. The roles of MazEF toxin-antitoxin system, SACOL0202/SACOL0201 two-component system and that of amino-sugar and nucleotide-sugar metabolism in virulence are also suggested. In addition, 14 putative modules of resistance mechanisms including modules of ribosomal protein-coding genes and metabolic pathways such as biotin-synthesis, TCA-cycle, riboflavin-biosynthesis, peptidoglycan-biosynthesis etc. are also indicated. Copyright © 2015 Elsevier B.V. All rights reserved.
The putative protein methyltransferase LAE1 controls cellulase gene expression in Trichoderma reesei
Seiboth, Bernhard; Karimi, Razieh Aghcheh; Phatale, Pallavi A; Linke, Rita; Hartl, Lukas; Sauer, Dominik G; Smith, Kristina M; Baker, Scott E; Freitag, Michael; Kubicek, Christian P
2012-01-01
Summary Trichoderma reesei is an industrial producer of enzymes that degrade lignocellulosic polysaccharides to soluble monomers, which can be fermented to biofuels. Here we show that the expression of genes for lignocellulose degradation are controlled by the orthologous T. reesei protein methyltransferase LAE1. In a lae1 deletion mutant we observed a complete loss of expression of all seven cellulases, auxiliary factors for cellulose degradation, β-glucosidases and xylanases were no longer expressed. Conversely, enhanced expression of lae1 resulted in significantly increased cellulase gene transcription. Lae1-modulated cellulase gene expression was dependent on the function of the general cellulase regulator XYR1, but also xyr1 expression was LAE1-dependent. LAE1 was also essential for conidiation of T. reesei. Chromatin immunoprecipitation followed by high-throughput sequencing (‘ChIP-seq’) showed that lae1 expression was not obviously correlated with H3K4 di- or trimethylation (indicative of active transcription) or H3K9 trimethylation (typical for heterochromatin regions) in CAZyme coding regions, suggesting that LAE1 does not affect CAZyme gene expression by directly modulating H3K4 or H3K9 methylation. Our data demonstrate that the putative protein methyltransferase LAE1 is essential for cellulase gene expression in T. reesei through mechanisms that remain to be identified. PMID:22554051
USDA-ARS?s Scientific Manuscript database
Technical Abstract: Intercellular signaling is essential for the coordination of growth and development in higher plants. Although hundreds of putative receptors have been identified in Arabidopsis (Arabidopsis thaliana), only a few families of extracellular signaling molecules have been discovered...
NASA Astrophysics Data System (ADS)
Bartell, Jennifer A.; Blazier, Anna S.; Yen, Phillip; Thøgersen, Juliane C.; Jelsbak, Lars; Goldberg, Joanna B.; Papin, Jason A.
2017-03-01
Virulence-linked pathways in opportunistic pathogens are putative therapeutic targets that may be associated with less potential for resistance than targets in growth-essential pathways. However, efficacy of virulence-linked targets may be affected by the contribution of virulence-related genes to metabolism. We evaluate the complex interrelationships between growth and virulence-linked pathways using a genome-scale metabolic network reconstruction of Pseudomonas aeruginosa strain PA14 and an updated, expanded reconstruction of P. aeruginosa strain PAO1. The PA14 reconstruction accounts for the activity of 112 virulence-linked genes and virulence factor synthesis pathways that produce 17 unique compounds. We integrate eight published genome-scale mutant screens to validate gene essentiality predictions in rich media, contextualize intra-screen discrepancies and evaluate virulence-linked gene distribution across essentiality datasets. Computational screening further elucidates interconnectivity between inhibition of virulence factor synthesis and growth. Successful validation of selected gene perturbations using PA14 transposon mutants demonstrates the utility of model-driven screening of therapeutic targets.
The Essential Genome of Escherichia coli K-12.
Goodall, Emily C A; Robinson, Ashley; Johnston, Iain G; Jabbari, Sara; Turner, Keith A; Cunningham, Adam F; Lund, Peter A; Cole, Jeffrey A; Henderson, Ian R
2018-02-20
Transposon-directed insertion site sequencing (TraDIS) is a high-throughput method coupling transposon mutagenesis with short-fragment DNA sequencing. It is commonly used to identify essential genes. Single gene deletion libraries are considered the gold standard for identifying essential genes. Currently, the TraDIS method has not been benchmarked against such libraries, and therefore, it remains unclear whether the two methodologies are comparable. To address this, a high-density transposon library was constructed in Escherichia coli K-12. Essential genes predicted from sequencing of this library were compared to existing essential gene databases. To decrease false-positive identification of essential genes, statistical data analysis included corrections for both gene length and genome length. Through this analysis, new essential genes and genes previously incorrectly designated essential were identified. We show that manual analysis of TraDIS data reveals novel features that would not have been detected by statistical analysis alone. Examples include short essential regions within genes, orientation-dependent effects, and fine-resolution identification of genome and protein features. Recognition of these insertion profiles in transposon mutagenesis data sets will assist genome annotation of less well characterized genomes and provides new insights into bacterial physiology and biochemistry. IMPORTANCE Incentives to define lists of genes that are essential for bacterial survival include the identification of potential targets for antibacterial drug development, genes required for rapid growth for exploitation in biotechnology, and discovery of new biochemical pathways. To identify essential genes in Escherichia coli , we constructed a transposon mutant library of unprecedented density. Initial automated analysis of the resulting data revealed many discrepancies compared to the literature. We now report more extensive statistical analysis supported by both literature searches and detailed inspection of high-density TraDIS sequencing data for each putative essential gene for the E. coli model laboratory organism. This paper is important because it provides a better understanding of the essential genes of E. coli , reveals the limitations of relying on automated analysis alone, and provides a new standard for the analysis of TraDIS data. Copyright © 2018 Goodall et al.
USDA-ARS?s Scientific Manuscript database
Intercellular signaling is essential for the coordination of growth and development in higher plants. Although hundreds of putative receptors have been identified in Arabidopsis thaliana, only a few families of extracellular signaling molecules have been discovered and their biological roles are lar...
Han, Rongchun; Takahashi, Hiroki; Nakamura, Michimi; Bunsupa, Somnuk; Yoshimoto, Naoko; Yamamoto, Hirobumi; Suzuki, Hideyuki; Shibata, Daisuke; Yamazaki, Mami; Saito, Kazuki
2015-01-01
Sophora flavescens AITON (kurara) has long been used to treat various diseases. Although several research findings revealed the biosynthetic pathways of its characteristic chemical components as represented by matrine, insufficient analysis of transcriptome data hampered in-depth analysis of the underlying putative genes responsible for the biosynthesis of pharmaceutical chemical components. In this study, more than 200 million fastq format reads were generated by Illumina's next-generation sequencing approach using nine types of tissue from S. flavescens, followed by CLC de novo assembly, ultimately yielding 83,325 contigs in total. By mapping the reads back to the contigs, reads per kilobase of the transcript per million mapped reads values were calculated to demonstrate gene expression levels, and overrepresented gene ontology terms were evaluated using Fisher's exact test. In search of the putative genes relevant to essential metabolic pathways, all 1350 unique enzyme commission numbers were used to map pathways against the Kyoto Encyclopedia of Genes and Genomes. By analyzing expression patterns, we proposed some candidate genes involved in the biosynthesis of isoflavonoids and quinolizidine alkaloids. Adopting RNA-Seq analysis, we obtained substantially credible contigs for downstream work. The preferential expression of the gene for putative lysine/ornithine decarboxylase committed in the initial step of matrine biosynthesis in leaves and stems was confirmed in semi-quantitative polymerase chain reaction (PCR) analysis. The findings in this report may serve as a stepping-stone for further research into this promising medicinal plant.
Iverson, Eric A.; Goodman, David A.; Gorchels, Madeline E.
2017-01-01
ABSTRACT Viruses infecting the Archaea harbor a tremendous amount of genetic diversity. This is especially true for the spindle-shaped viruses of the family Fuselloviridae, where >90% of the viral genes do not have detectable homologs in public databases. This significantly limits our ability to elucidate the role of viral proteins in the infection cycle. To address this, we have developed genetic techniques to study the well-characterized fusellovirus Sulfolobus spindle-shaped virus 1 (SSV1), which infects Sulfolobus solfataricus in volcanic hot springs at 80°C and pH 3. Here, we present a new comparative genome analysis and a thorough genetic analysis of SSV1 using both specific and random mutagenesis and thereby generate mutations in all open reading frames. We demonstrate that almost half of the SSV1 genes are not essential for infectivity, and the requirement for a particular gene correlates well with its degree of conservation within the Fuselloviridae. The major capsid gene vp1 is essential for SSV1 infectivity. However, the universally conserved minor capsid gene vp3 could be deleted without a loss in infectivity and results in virions with abnormal morphology. IMPORTANCE Most of the putative genes in the spindle-shaped archaeal hyperthermophile fuselloviruses have no sequences that are clearly similar to characterized genes. In order to determine which of these SSV genes are important for function, we disrupted all of the putative genes in the prototypical fusellovirus, SSV1. Surprisingly, about half of the genes could be disrupted without destroying virus function. Even deletions of one of the known structural protein genes that is present in all known fuselloviruses, vp3, allows the production of infectious viruses. However, viruses lacking vp3 have abnormal shapes, indicating that the vp3 gene is important for virus structure. Identification of essential genes will allow focused research on minimal SSV genomes and further understanding of the structure of these unique, ubiquitous, and extremely stable archaeal viruses. PMID:28148789
Iverson, Eric A; Goodman, David A; Gorchels, Madeline E; Stedman, Kenneth M
2017-05-15
Viruses infecting the Archaea harbor a tremendous amount of genetic diversity. This is especially true for the spindle-shaped viruses of the family Fuselloviridae , where >90% of the viral genes do not have detectable homologs in public databases. This significantly limits our ability to elucidate the role of viral proteins in the infection cycle. To address this, we have developed genetic techniques to study the well-characterized fusellovirus Sulfolobus spindle-shaped virus 1 (SSV1), which infects Sulfolobus solfataricus in volcanic hot springs at 80°C and pH 3. Here, we present a new comparative genome analysis and a thorough genetic analysis of SSV1 using both specific and random mutagenesis and thereby generate mutations in all open reading frames. We demonstrate that almost half of the SSV1 genes are not essential for infectivity, and the requirement for a particular gene correlates well with its degree of conservation within the Fuselloviridae The major capsid gene vp1 is essential for SSV1 infectivity. However, the universally conserved minor capsid gene vp3 could be deleted without a loss in infectivity and results in virions with abnormal morphology. IMPORTANCE Most of the putative genes in the spindle-shaped archaeal hyperthermophile fuselloviruses have no sequences that are clearly similar to characterized genes. In order to determine which of these SSV genes are important for function, we disrupted all of the putative genes in the prototypical fusellovirus, SSV1. Surprisingly, about half of the genes could be disrupted without destroying virus function. Even deletions of one of the known structural protein genes that is present in all known fuselloviruses, vp3 , allows the production of infectious viruses. However, viruses lacking vp3 have abnormal shapes, indicating that the vp3 gene is important for virus structure. Identification of essential genes will allow focused research on minimal SSV genomes and further understanding of the structure of these unique, ubiquitous, and extremely stable archaeal viruses. Copyright © 2017 American Society for Microbiology.
Distribution and Genetic Diversity of Bacteriocin Gene Clusters in Rumen Microbial Genomes.
Azevedo, Analice C; Bento, Cláudia B P; Ruiz, Jeronimo C; Queiroz, Marisa V; Mantovani, Hilário C
2015-10-01
Some species of ruminal bacteria are known to produce antimicrobial peptides, but the screening procedures have mostly been based on in vitro assays using standardized methods. Recent sequencing efforts have made available the genome sequences of hundreds of ruminal microorganisms. In this work, we performed genome mining of the complete and partial genome sequences of 224 ruminal bacteria and 5 ruminal archaea to determine the distribution and diversity of bacteriocin gene clusters. A total of 46 bacteriocin gene clusters were identified in 33 strains of ruminal bacteria. Twenty gene clusters were related to lanthipeptide biosynthesis, while 11 gene clusters were associated with sactipeptide production, 7 gene clusters were associated with class II bacteriocin production, and 8 gene clusters were associated with class III bacteriocin production. The frequency of strains whose genomes encode putative antimicrobial peptide precursors was 14.4%. Clusters related to the production of sactipeptides were identified for the first time among ruminal bacteria. BLAST analysis indicated that the majority of the gene clusters (88%) encoding putative lanthipeptides contained all the essential genes required for lanthipeptide biosynthesis. Most strains of Streptococcus (66.6%) harbored complete lanthipeptide gene clusters, in addition to an open reading frame encoding a putative class II bacteriocin. Albusin B-like proteins were found in 100% of the Ruminococcus albus strains screened in this study. The in silico analysis provided evidence of novel biosynthetic gene clusters in bacterial species not previously related to bacteriocin production, suggesting that the rumen microbiota represents an underexplored source of antimicrobial peptides. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Combining Functional and Structural Genomics to Sample the Essential Burkholderia Structome
Baugh, Loren; Gallagher, Larry A.; Patrapuvich, Rapatbhorn; Clifton, Matthew C.; Gardberg, Anna S.; Edwards, Thomas E.; Armour, Brianna; Begley, Darren W.; Dieterich, Shellie H.; Dranow, David M.; Abendroth, Jan; Fairman, James W.; Fox, David; Staker, Bart L.; Phan, Isabelle; Gillespie, Angela; Choi, Ryan; Nakazawa-Hewitt, Steve; Nguyen, Mary Trang; Napuli, Alberto; Barrett, Lynn; Buchko, Garry W.; Stacy, Robin; Myler, Peter J.; Stewart, Lance J.; Manoil, Colin; Van Voorhis, Wesley C.
2013-01-01
Background The genus Burkholderia includes pathogenic gram-negative bacteria that cause melioidosis, glanders, and pulmonary infections of patients with cancer and cystic fibrosis. Drug resistance has made development of new antimicrobials critical. Many approaches to discovering new antimicrobials, such as structure-based drug design and whole cell phenotypic screens followed by lead refinement, require high-resolution structures of proteins essential to the parasite. Methodology/Principal Findings We experimentally identified 406 putative essential genes in B. thailandensis, a low-virulence species phylogenetically similar to B. pseudomallei, the causative agent of melioidosis, using saturation-level transposon mutagenesis and next-generation sequencing (Tn-seq). We selected 315 protein products of these genes based on structure-determination criteria, such as excluding very large and/or integral membrane proteins, and entered them into the Seattle Structural Genomics Center for Infection Disease (SSGCID) structure determination pipeline. To maximize structural coverage of these targets, we applied an “ortholog rescue” strategy for those producing insoluble or difficult to crystallize proteins, resulting in the addition of 387 orthologs (or paralogs) from seven other Burkholderia species into the SSGCID pipeline. This structural genomics approach yielded structures from 31 putative essential targets from B. thailandensis, and 25 orthologs from other Burkholderia species, yielding an overall structural coverage for 49 of the 406 essential gene families, with a total of 88 depositions into the Protein Data Bank. Of these, 25 proteins have properties of a potential antimicrobial drug target i.e., no close human homolog, part of an essential metabolic pathway, and a deep binding pocket. We describe the structures of several potential drug targets in detail. Conclusions/Significance This collection of structures, solubility and experimental essentiality data provides a resource for development of drugs against infections and diseases caused by Burkholderia. All expression clones and proteins created in this study are freely available by request. PMID:23382856
Derivation and evaluation of putative adverse outcome ...
Cyclooxygenase (COX) inhibition is of concern in fish because COX inhibitors (e.g., ibuprofen) are ubiquitous in aquatic systems/fish tissues, and can disrupt synthesis of prostaglandins that modulate a variety of essential biological functions including reproduction. High content (transcriptomic) empirical data and publicly available high throughput toxicity data (actor.epa.gov) were utilized to develop putative adverse outcome pathways (AOPs) for molecular initiating event (MIE) of COX inhibition. Effects of a waterborne, 96h exposure to indomethacin (IN; 100 µg/L), ibuprofen (IB; 200 µg/L) and celecoxib (CX; 20 µg/L) on liver metabolome and ovarian gene expression (using oligonucleotide microarrays) in sexually mature fathead minnows (n=8) were examined. Metabolomic profiles of IN, IB and CX were not significantly different from control or one another. Exposure to IB and CX resulted in differential expression of comparable numbers of genes (IB = 433, CX= 545). In contrast, 2558 genes were differentially expressed in IN-treated fish. Functional analyses (canonical pathway and gene set enrichment) indicated extensive effects of IN on prostaglandin synthesis pathway, oocyte meiosis and several other processes consistent with physiological roles of prostaglandins. Transcriptomic data was congruent with apical endpoint data - IN reduced plasma prostaglandin F2 alpha concentrations, and ovarian COX activity, whereas IB and CX did not. Putative AOPs pathways for
Kowalewski-Nimmerfall, Elisabeth; Schähs, Philipp; Maresch, Daniel; Rendic, Dubravko; Krämer, Helmut; Mach, Lukas
2014-01-01
Mammalian cellular repressor of E1A-stimulated genes is a lysosomal glycoprotein implicated in cellular growth and differentiation. The genome of the fruit fly Drosophila melanogaster encodes a putative orthologue (dCREG), suggesting evolutionarily conserved physiological functions of this protein. In D. melanogaster S2 cells, dCREG was found to localize in lysosomes. Further studies revealed that intracellular dCREG is subject of proteolytic maturation. Processing and turnover could be substantially reduced by RNAi-mediated silencing of cathepsin L. In contrast to mammalian cells, lysosomal delivery of dCREG does not depend on its carbohydrate moiety. Furthermore, depletion of the putative D. melanogaster lysosomal sorting receptor lysosomal enzyme receptor protein did not compromise cellular retention of dCREG. We also investigated the developmental consequences of dCREG ablation in whole D. melanogaster flies. Ubiquitous depletion of dCREG proved lethal at the late pupal stage once a knock-down efficiency of > 95% was achieved. These results demonstrate that dCREG is essential for proper completion of fly development. PMID:25173815
Kowalewski-Nimmerfall, Elisabeth; Schähs, Philipp; Maresch, Daniel; Rendic, Dubravko; Krämer, Helmut; Mach, Lukas
2014-12-01
Mammalian cellular repressor of E1A-stimulated genes is a lysosomal glycoprotein implicated in cellular growth and differentiation. The genome of the fruit fly Drosophila melanogaster encodes a putative orthologue (dCREG), suggesting evolutionarily conserved physiological functions of this protein. In D. melanogaster S2 cells, dCREG was found to localize in lysosomes. Further studies revealed that intracellular dCREG is subject of proteolytic maturation. Processing and turnover could be substantially reduced by RNAi-mediated silencing of cathepsin L. In contrast to mammalian cells, lysosomal delivery of dCREG does not depend on its carbohydrate moiety. Furthermore, depletion of the putative D. melanogaster lysosomal sorting receptor lysosomal enzyme receptor protein did not compromise cellular retention of dCREG. We also investigated the developmental consequences of dCREG ablation in whole D. melanogaster flies. Ubiquitous depletion of dCREG proved lethal at the late pupal stage once a knock-down efficiency of >95% was achieved. These results demonstrate that dCREG is essential for proper completion of fly development. Copyright © 2014. Published by Elsevier B.V.
1991-01-01
We recently described the identification of BOS1 (Newman, A., J. Shim, and S. Ferro-Novick. 1990. Mol. Cell. Biol. 10:3405-3414.). BOS1 is a gene that in multiple copy suppresses the growth and secretion defect of bet1 and sec22, two mutants that disrupt transport from the ER to the Golgi complex in yeast. The ability of BOS1 to specifically suppress mutants blocked at a particular stage of the secretory pathway suggested that this gene encodes a protein that functions in this process. The experiments presented in this study support this hypothesis. Specifically, the BOS1 gene was found to be essential for cellular growth. Furthermore, cells depleted of the Bos1 protein fail to transport pro-alpha-factor and carboxypeptidase Y (CPY) to the Golgi apparatus. This defect in export leads to the accumulation of an extensive network of ER and small vesicles. DNA sequence analysis predicts that Bos1 is a 27-kD protein containing a putative membrane- spanning domain. This prediction is supported by differential centrifugation experiments. Thus, Bos1 appears to be a membrane protein that functions in conjunction with Bet1 and Sec22 to facilitate the transport of proteins at a step subsequent to translocation into the ER but before entry into the Golgi apparatus. PMID:2007627
Identification of regulatory targets for the bacterial Nus factor complex.
Baniulyte, Gabriele; Singh, Navjot; Benoit, Courtney; Johnson, Richard; Ferguson, Robert; Paramo, Mauricio; Stringer, Anne M; Scott, Ashley; Lapierre, Pascal; Wade, Joseph T
2017-12-11
Nus factors are broadly conserved across bacterial species, and are often essential for viability. A complex of five Nus factors (NusB, NusE, NusA, NusG and SuhB) is considered to be a dedicated regulator of ribosomal RNA folding, and has been shown to prevent Rho-dependent transcription termination. Here, we identify an additional cellular function for the Nus factor complex in Escherichia coli: repression of the Nus factor-encoding gene, suhB. This repression occurs primarily by translation inhibition, followed by Rho-dependent transcription termination. Thus, the Nus factor complex can prevent or promote Rho activity depending on the gene context. Conservation of putative NusB/E binding sites upstream of Nus factor genes suggests that Nus factor autoregulation occurs in many bacterial species. Additionally, many putative NusB/E binding sites are also found upstream of other genes in diverse species, and we demonstrate Nus factor regulation of one such gene in Citrobacter koseri. We conclude that Nus factors have an evolutionarily widespread regulatory function beyond ribosomal RNA, and that they are often autoregulatory.
Ridge, Justin P; Lin, Marianne; Larsen, Eloise I; Fegan, Mark; McEwan, Alastair G; Sly, Lindsay I
2007-04-01
Pedomicrobium sp. ACM 3067 is a budding-hyphal bacterium belonging to the alpha-Proteobacteria which is able to oxidize soluble Mn2+ to insoluble manganese oxide. A cosmid, from a whole-genome library, containing the putative genes responsible for manganese oxidation was identified and a primer-walking approach yielded 4350 bp of novel sequence. Analysis of this sequence showed the presence of a predicted three-gene operon, moxCBA. The moxA gene product showed homology to multicopper oxidases (MCOs) and contained the characteristic four copper-binding motifs (A, B, C and D) common to MCOs. An insertion mutation of moxA showed that this gene was essential for both manganese oxidation and laccase-like activity. The moxB gene product showed homology to a family of outer membrane proteins which are essential for Type I secretion in Gram-negative bacteria. moxBA has not been observed in other manganese-oxidizing bacteria but homologues were identified in the genomes of several bacteria including Sinorhizobium meliloti 1021 and Agrobacterium tumefaciens C58. These results suggest that moxBA and its homologues constitute a family of genes encoding an MCO and a predicted component of the Type I secretion system.
Ismail, Tariq; Fatima, Nighat; Muhammad, Syed Aun; Zaidi, Syed Saoud; Rehman, Nisar; Hussain, Izhar; Tariq, Najam Us Sahr; Amirzada, Imran; Mannan, Abdul
2018-01-01
Candida albicans (Candida albicans) is one of the major sources of nosocomial infections in humans which may prove fatal in 30% of cases. The hospital acquired infection is very difficult to treat affectively due to the presence of drug resistant pathogenic strains, therefore there is a need to find alternative drug targets to cure this infection. In silico and computational level frame work was used to prioritize and establish antifungal drug targets of Candida albicans. The identification of putative drug targets was based on acquiring 5090 completely annotated genes of Candida albicans from available databases which were categorized into essential and non-essential genes. The result indicated that 9% of proteins were essential and could become potential candidates for intervention which might result in pathogen eradication. We studied cluster of orthologs and the subtractive genomic analysis of these essential proteins against human genome was made as a reference to minimize the side effects. It was seen that 14% of Candida albicans proteins were evolutionary related to the human proteins while 86% are non-human homologs. In the next step of compatible drug target selections, the non-human homologs were sequentially compared to the human microbiome data to minimize the potential effects against gut flora which accumulated to 38% of the essential genome. The sub-cellular localization of these candidate proteins in fungal cellular systems indicated that 80% of them are cytoplasmic, 10% are mitochondrial and the remaining 10% are associated with the cell wall. The role of these non-human and non-gut flora putative target proteins in Candida albicans biological pathways was studied. Due to their integrated and critical role in Candida albicans replication cycle, four proteins were selected for molecular modeling. For drug designing and development, four high quality and reliable protein models with more than 70% sequence identity were constructed. These proteins are used for the docking studies of the known and new ligands (unpublished data). Our study will be an effective framework for drug target identifications of pathogenic microbial strains and development of new therapies against the infections they cause.
Dynamic gene expression changes precede dioxin-induced liver pathogenesis in medaka fish.
Volz, David C; Hinton, David E; Law, J McHugh; Kullman, Seth W
2006-02-01
A major challenge for environmental genomics is linking gene expression to cellular toxicity and morphological alteration. Herein, we address complexities related to hepatic gene expression responses after a single injection of the aryl hydrocarbon receptor (AHR) agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) and illustrate an initial stress response followed by cytologic and adaptive changes in the teleost fish medaka. Using a custom 175-gene array, we find that overall hepatic gene expression and histological changes are strongly dependent on dose and time. The most pronounced dioxin-induced gene expression changes occurred early and preceded morphologic alteration in the liver. Following a systematic search for putative Ah response elements (AHREs) (5'-CACGCA-3') within 2000 bp upstream of the predicted transcriptional start site, the majority (87%) of genes screened in this study did not contain an AHRE, suggesting that gene expression was not solely dependent on AHRE-mediated transcription. Moreover, in the highest dosage, we observed gene expression changes associated with adaptation that persisted for almost two weeks, including induction of a gene putatively identified as ependymin that may function in hepatic injury repair. These data suggest that the cellular response to dioxin involves both AHRE- and non-AHRE-mediated transcription, and that coupling gene expression profiling with analysis of morphologic pathogenesis is essential for establishing temporal relationships between transcriptional changes, toxicity, and adaptation to hepatic injury.
Genome-wide analysis of putative peroxiredoxin in unicellular and filamentous cyanobacteria.
Cui, Hongli; Wang, Yipeng; Wang, Yinchu; Qin, Song
2012-11-16
Cyanobacteria are photoautotrophic prokaryotes with wide variations in genome sizes and ecological habitats. Peroxiredoxin (PRX) is an important protein that plays essential roles in protecting own cells against reactive oxygen species (ROS). PRXs have been identified from mammals, fungi and higher plants. However, knowledge on cyanobacterial PRXs still remains obscure. With the availability of 37 sequenced cyanobacterial genomes, we performed a comprehensive comparative analysis of PRXs and explored their diversity, distribution, domain structure and evolution. Overall 244 putative prx genes were identified, which were abundant in filamentous diazotrophic cyanobacteria, Acaryochloris marina MBIC 11017, and unicellular cyanobacteria inhabiting freshwater and hot-springs, while poor in all Prochlorococcus and marine Synechococcus strains. Among these putative genes, 25 open reading frames (ORFs) encoding hypothetical proteins were identified as prx gene family members and the others were already annotated as prx genes. All 244 putative PRXs were classified into five major subfamilies (1-Cys, 2-Cys, BCP, PRX5_like, and PRX-like) according to their domain structures. The catalytic motifs of the cyanobacterial PRXs were similar to those of eukaryotic PRXs and highly conserved in all but the PRX-like subfamily. Classical motif (CXXC) of thioredoxin was detected in protein sequences from the PRX-like subfamily. Phylogenetic tree constructed of catalytic domains coincided well with the domain structures of PRXs and the phylogenies based on 16s rRNA. The distribution of genes encoding PRXs in different unicellular and filamentous cyanobacteria especially those sub-families like PRX-like or 1-Cys PRX correlate with the genome size, eco-physiology, and physiological properties of the organisms. Cyanobacterial and eukaryotic PRXs share similar conserved motifs, indicating that cyanobacteria adopt similar catalytic mechanisms as eukaryotes. All cyanobacterial PRX proteins share highly similar structures, implying that these genes may originate from a common ancestor. In this study, a general framework of the sequence-structure-function connections of the PRXs was revealed, which may facilitate functional investigations of PRXs in various organisms.
Genome-wide analysis of putative peroxiredoxin in unicellular and filamentous cyanobacteria
2012-01-01
Background Cyanobacteria are photoautotrophic prokaryotes with wide variations in genome sizes and ecological habitats. Peroxiredoxin (PRX) is an important protein that plays essential roles in protecting own cells against reactive oxygen species (ROS). PRXs have been identified from mammals, fungi and higher plants. However, knowledge on cyanobacterial PRXs still remains obscure. With the availability of 37 sequenced cyanobacterial genomes, we performed a comprehensive comparative analysis of PRXs and explored their diversity, distribution, domain structure and evolution. Results Overall 244 putative prx genes were identified, which were abundant in filamentous diazotrophic cyanobacteria, Acaryochloris marina MBIC 11017, and unicellular cyanobacteria inhabiting freshwater and hot-springs, while poor in all Prochlorococcus and marine Synechococcus strains. Among these putative genes, 25 open reading frames (ORFs) encoding hypothetical proteins were identified as prx gene family members and the others were already annotated as prx genes. All 244 putative PRXs were classified into five major subfamilies (1-Cys, 2-Cys, BCP, PRX5_like, and PRX-like) according to their domain structures. The catalytic motifs of the cyanobacterial PRXs were similar to those of eukaryotic PRXs and highly conserved in all but the PRX-like subfamily. Classical motif (CXXC) of thioredoxin was detected in protein sequences from the PRX-like subfamily. Phylogenetic tree constructed of catalytic domains coincided well with the domain structures of PRXs and the phylogenies based on 16s rRNA. Conclusions The distribution of genes encoding PRXs in different unicellular and filamentous cyanobacteria especially those sub-families like PRX-like or 1-Cys PRX correlate with the genome size, eco-physiology, and physiological properties of the organisms. Cyanobacterial and eukaryotic PRXs share similar conserved motifs, indicating that cyanobacteria adopt similar catalytic mechanisms as eukaryotes. All cyanobacterial PRX proteins share highly similar structures, implying that these genes may originate from a common ancestor. In this study, a general framework of the sequence-structure-function connections of the PRXs was revealed, which may facilitate functional investigations of PRXs in various organisms. PMID:23157370
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lei; Zhang, Qing; Yang, Yu
Highlights: • RNA recognition motif domains of RBM5 are essential for cell proliferation inhibition. • RNA recognition motif domains of RBM5 are essential for apoptosis induction. • RNA recognition motif domains of RBM5 are essential for RNA binding. • RNA recognition motif domains of RBM5 are essential for caspase-2 alternative splicing. - Abstract: RBM5 is a known putative tumor suppressor gene that has been shown to function in cell growth inhibition by modulating apoptosis. RBM5 also plays a critical role in alternative splicing as an RNA binding protein. However, it is still unclear which domains of RBM5 are required formore » RNA binding and related functional activities. We hypothesized the two putative RNA recognition motif (RRM) domains of RBM5 spanning from amino acids 98–178 and 231–315 are essential for RBM5-mediated cell growth inhibition, apoptosis regulation, and RNA binding. To investigate this hypothesis, we evaluated the activities of the wide-type and mutant RBM5 gene transfer in low-RBM5 expressing A549 cells. We found that, unlike wild-type RBM5 (RBM5-wt), a RBM5 mutant lacking the two RRM domains (RBM5-ΔRRM), is unable to bind RNA, has compromised caspase-2 alternative splicing activity, lacks cell proliferation inhibition and apoptosis induction function in A549 cells. These data provide direct evidence that the two RRM domains of RBM5 are required for RNA binding and the RNA binding activity of RBM5 contributes to its function on apoptosis induction and cell growth inhibition.« less
The Zur regulon of Corynebacterium glutamicum ATCC 13032
2010-01-01
Background Zinc is considered as an essential element for all living organisms, but it can be toxic at large concentrations. Bacteria therefore tightly regulate zinc metabolism. The Cg2502 protein of Corynebacterium glutamicum was a candidate to control zinc metabolism in this species, since it was classified as metalloregulator of the zinc uptake regulator (Zur) subgroup of the ferric uptake regulator (Fur) family of DNA-binding transcription regulators. Results The cg2502 (zur) gene was deleted in the chromosome of C. glutamicum ATCC 13032 by an allelic exchange procedure to generate the zur-deficient mutant C. glutamicum JS2502. Whole-genome DNA microarray hybridizations and real-time RT-PCR assays comparing the gene expression in C. glutamicum JS2502 with that of the wild-type strain detected 18 genes with enhanced expression in the zur mutant. The expression data were combined with results from cross-genome comparisons of shared regulatory sites, revealing the presence of candidate Zur-binding sites in the mapped promoter regions of five transcription units encoding components of potential zinc ABC-type transporters (cg0041-cg0042/cg0043; cg2911-cg2912-cg2913), a putative secreted protein (cg0040), a putative oxidoreductase (cg0795), and a putative P-loop GTPase of the COG0523 protein family (cg0794). Enhanced transcript levels of the respective genes in C. glutamicum JS2502 were verified by real-time RT-PCR, and complementation of the mutant with a wild-type zur gene reversed the effect of differential gene expression. The zinc-dependent expression of the putative cg0042 and cg2911 operons was detected in vivo with a gfp reporter system. Moreover, the zinc-dependent binding of purified Zur protein to double-stranded 40-mer oligonucleotides containing candidate Zur-binding sites was demonstrated in vitro by DNA band shift assays. Conclusion Whole-genome expression profiling and DNA band shift assays demonstrated that Zur directly represses in a zinc-dependent manner the expression of nine genes organized in five transcription units. Accordingly, the Zur (Cg2502) protein is the key transcription regulator for genes involved in zinc homeostasis in C. glutamicum. PMID:20055984
Galidevara, Sandhya; Reineke, Annette; Koduru, Uma Devi
2016-05-01
The entomopathogenic fungus Beauveria bassiana (Bals.) Vuillemin is commercially available as a bio insecticide. The expression of three genes previously identified to have a role in pathogenicity in in vitro studies was validated in vivo in three lepidopteran insects infected with B. bassiana. Expression of all three genes was observed in all the tested insects starting from 48 or 72h to 10d post infection corroborating their role in pathogenicity. We suggest that it is essential to test the expression of putative pathogenicity genes both in vitro and in vivo to understand their role in different insect species. Copyright © 2016 Elsevier Inc. All rights reserved.
2012-01-01
Background Natrialba magadii is an aerobic chemoorganotrophic member of the Euryarchaeota and is a dual extremophile requiring alkaline conditions and hypersalinity for optimal growth. The genome sequence of Nab. magadii type strain ATCC 43099 was deciphered to obtain a comprehensive insight into the genetic content of this haloarchaeon and to understand the basis of some of the cellular functions necessary for its survival. Results The genome of Nab. magadii consists of four replicons with a total sequence of 4,443,643 bp and encodes 4,212 putative proteins, some of which contain peptide repeats of various lengths. Comparative genome analyses facilitated the identification of genes encoding putative proteins involved in adaptation to hypersalinity, stress response, glycosylation, and polysaccharide biosynthesis. A proton-driven ATP synthase and a variety of putative cytochromes and other proteins supporting aerobic respiration and electron transfer were encoded by one or more of Nab. magadii replicons. The genome encodes a number of putative proteases/peptidases as well as protein secretion functions. Genes encoding putative transcriptional regulators, basal transcription factors, signal perception/transduction proteins, and chemotaxis/phototaxis proteins were abundant in the genome. Pathways for the biosynthesis of thiamine, riboflavin, heme, cobalamin, coenzyme F420 and other essential co-factors were deduced by in depth sequence analyses. However, approximately 36% of Nab. magadii protein coding genes could not be assigned a function based on Blast analysis and have been annotated as encoding hypothetical or conserved hypothetical proteins. Furthermore, despite extensive comparative genomic analyses, genes necessary for survival in alkaline conditions could not be identified in Nab. magadii. Conclusions Based on genomic analyses, Nab. magadii is predicted to be metabolically versatile and it could use different carbon and energy sources to sustain growth. Nab. magadii has the genetic potential to adapt to its milieu by intracellular accumulation of inorganic cations and/or neutral organic compounds. The identification of Nab. magadii genes involved in coenzyme biosynthesis is a necessary step toward further reconstruction of the metabolic pathways in halophilic archaea and other extremophiles. The knowledge gained from the genome sequence of this haloalkaliphilic archaeon is highly valuable in advancing the applications of extremophiles and their enzymes. PMID:22559199
Najafova, Zeynab; Tirado-Magallanes, Roberto; Subramaniam, Malayannan; Hossan, Tareq; Schmidt, Geske; Nagarajan, Sankari; Baumgart, Simon J.; Mishra, Vivek Kumar; Bedi, Upasana; Hesse, Eric; Knapp, Stefan; Hawse, John R.; Johnsen, Steven A.
2017-01-01
Proper temporal epigenetic regulation of gene expression is essential for cell fate determination and tissue development. The Bromodomain-containing Protein-4 (BRD4) was previously shown to control the transcription of defined subsets of genes in various cell systems. In this study we examined the role of BRD4 in promoting lineage-specific gene expression and show that BRD4 is essential for osteoblast differentiation. Genome-wide analyses demonstrate that BRD4 is recruited to the transcriptional start site of differentiation-induced genes. Unexpectedly, while promoter-proximal BRD4 occupancy correlated with gene expression, genes which displayed moderate expression and promoter-proximal BRD4 occupancy were most highly regulated and sensitive to BRD4 inhibition. Therefore, we examined distal BRD4 occupancy and uncovered a specific co-localization of BRD4 with the transcription factors C/EBPb, TEAD1, FOSL2 and JUND at putative osteoblast-specific enhancers. These findings reveal the intricacies of lineage specification and provide new insight into the context-dependent functions of BRD4. PMID:27651452
Najafova, Zeynab; Tirado-Magallanes, Roberto; Subramaniam, Malayannan; Hossan, Tareq; Schmidt, Geske; Nagarajan, Sankari; Baumgart, Simon J; Mishra, Vivek Kumar; Bedi, Upasana; Hesse, Eric; Knapp, Stefan; Hawse, John R; Johnsen, Steven A
2017-01-09
Proper temporal epigenetic regulation of gene expression is essential for cell fate determination and tissue development. The Bromodomain-containing Protein-4 (BRD4) was previously shown to control the transcription of defined subsets of genes in various cell systems. In this study we examined the role of BRD4 in promoting lineage-specific gene expression and show that BRD4 is essential for osteoblast differentiation. Genome-wide analyses demonstrate that BRD4 is recruited to the transcriptional start site of differentiation-induced genes. Unexpectedly, while promoter-proximal BRD4 occupancy correlated with gene expression, genes which displayed moderate expression and promoter-proximal BRD4 occupancy were most highly regulated and sensitive to BRD4 inhibition. Therefore, we examined distal BRD4 occupancy and uncovered a specific co-localization of BRD4 with the transcription factors C/EBPb, TEAD1, FOSL2 and JUND at putative osteoblast-specific enhancers. These findings reveal the intricacies of lineage specification and provide new insight into the context-dependent functions of BRD4. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Wang, Xiuna; Zhang, Xiaoling; Liu, Ling; Xiang, Meichun; Wang, Wenzhao; Sun, Xiang; Che, Yongsheng; Guo, Liangdong; Liu, Gang; Guo, Liyun; Wang, Chengshu; Yin, Wen-Bing; Stadler, Marc; Zhang, Xinyu; Liu, Xingzhong
2015-01-27
In recent years, the genus Pestalotiopsis is receiving increasing attention, not only because of its economic impact as a plant pathogen but also as a commonly isolated endophyte which is an important source of bioactive natural products. Pestalotiopsis fici Steyaert W106-1/CGMCC3.15140 as an endophyte of tea produces numerous novel secondary metabolites, including chloropupukeananin, a derivative of chlorinated pupukeanane that is first discovered in fungi. Some of them might be important as the drug leads for future pharmaceutics. Here, we report the genome sequence of the endophytic fungus of tea Pestalotiopsis fici W106-1/CGMCC3.15140. The abundant carbohydrate-active enzymes especially significantly expanding pectinases allow the fungus to utilize the limited intercellular nutrients within the host plants, suggesting adaptation of the fungus to endophytic lifestyle. The P. fici genome encodes a rich set of secondary metabolite synthesis genes, including 27 polyketide synthases (PKSs), 12 non-ribosomal peptide synthases (NRPSs), five dimethylallyl tryptophan synthases, four putative PKS-like enzymes, 15 putative NRPS-like enzymes, 15 terpenoid synthases, seven terpenoid cyclases, seven fatty-acid synthases, and five hybrids of PKS-NRPS. The majority of these core enzymes distributed into 74 secondary metabolite clusters. The putative Diels-Alderase genes have undergone expansion. The significant expansion of pectinase encoding genes provides essential insight in the life strategy of endophytes, and richness of gene clusters for secondary metabolites reveals high potential of natural products of endophytic fungi.
Jiang, Chunyan; Wang, Hougen; Kang, Qianjin; Liu, Jing
2012-01-01
Salinomycin is widely used in animal husbandry as a food additive due to its antibacterial and anticoccidial activities. However, its biosynthesis had only been studied by feeding experiments with isotope-labeled precursors. A strategy with degenerate primers based on the polyether-specific epoxidase sequences was successfully developed to clone the salinomycin gene cluster. Using this strategy, a putative epoxidase gene, slnC, was cloned from the salinomycin producer Streptomyces albus XM211. The targeted replacement of slnC and subsequent trans-complementation proved its involvement in salinomycin biosynthesis. A 127-kb DNA region containing slnC was sequenced, including genes for polyketide assembly and release, oxidative cyclization, modification, export, and regulation. In order to gain insight into the salinomycin biosynthesis mechanism, 13 gene replacements and deletions were conducted. Including slnC, 7 genes were identified as essential for salinomycin biosynthesis and putatively responsible for polyketide chain release, oxidative cyclization, modification, and regulation. Moreover, 6 genes were found to be relevant to salinomycin biosynthesis and possibly involved in precursor supply, removal of aberrant extender units, and regulation. Sequence analysis and a series of gene replacements suggest a proposed pathway for the biosynthesis of salinomycin. The information presented here expands the understanding of polyether biosynthesis mechanisms and paves the way for targeted engineering of salinomycin activity and productivity. PMID:22156425
Production of Androgenetic Zebrafish (Danio Rerio)
Corley-Smith, G. E.; Lim, C. J.; Brandhorst, B. P.
1996-01-01
To help investigate the evolutionary origin of the imprinting (parent-of-origin mono-allelic expression) of paternal genes observed in mammals, we constructed haploid and diploid androgenetic zebrafish (Danio rerio). Haploid androgenotes were produced by fertilizing eggs that had been X-ray irradiated to eliminate the maternal genome. Subsequent inhibition of the first mitotic division of haploid androgenotes by heat shock produced diploid androgenotes. The lack of inheritance of maternal-specific DNA markers (RAPD and SSR) by putative diploid and haploid androgenotes confirmed the androgenetic origin of their genomes. Marker analysis was performed on 18 putative androgenotes (five diploids and 13 haploids) from six families. None of 157 maternal-specific RAPD markers analyzed, some of which were apparently homozygous, were passed on to any of these putative androgenotes. A mean of 7.7 maternal-specific markers were assessed per family. The survival of androgenetic zebrafish suggests that if paternal imprinting occurs in zebrafish, it does not result in essential genes being inactivated when their expression is required for development. Production of haploid androgenotes can be used to determine the meiotic recombination rate in male zebrafish. Androgenesis may also provide useful information about the mechanism of sex determination in zebrafish. PMID:8846903
Hespeels, Boris; Li, Xiang; Flot, Jean-François; Pigneur, Lise-Marie; Malaisse, Jeremy; Da Silva, Corinne; Van Doninck, Karine
2015-01-01
The disaccharide sugar trehalose is essential for desiccation resistance in most metazoans that survive dryness; however, neither trehalose nor the enzymes involved in its metabolism have ever been detected in bdelloid rotifers despite their extreme resistance to desiccation. Here we screened the genome of the bdelloid rotifer Adineta vaga for genes involved in trehalose metabolism. We discovered a total of four putative trehalose-6-phosphate synthase (TPS) and seven putative trehalase (TRE) gene copies in the genome of this ameiotic organism; however, no trehalose-6-phosphate phosphatase (TPP) gene or domain was detected. The four TPS copies of A. vaga appear more closely related to plant and fungi proteins, as well as to some protists, whereas the seven TRE copies fall in bacterial clades. Therefore, A. vaga likely acquired its trehalose biosynthesis and hydrolysis genes by horizontal gene transfers. Nearly all residues important for substrate binding in the predicted TPS domains are highly conserved, supporting the hypothesis that several copies of the genes might be functional. Besides, RNAseq library screening showed that trehalase genes were highly expressed compared to TPS genes, explaining probably why trehalose had not been detected in previous studies of bdelloids. A strong overexpression of their TPS genes was observed when bdelloids enter desiccation, suggesting a possible signaling role of trehalose-6-phosphate or trehalose in this process. PMID:26161530
Prediction of C. elegans Longevity Genes by Human and Worm Longevity Networks
de Magalhães, João Pedro; Ruvkun, Gary; Fraifeld, Vadim E.; Curran, Sean P.
2012-01-01
Intricate and interconnected pathways modulate longevity, but screens to identify the components of these pathways have not been saturating. Because biological processes are often executed by protein complexes and fine-tuned by regulatory factors, the first-order protein-protein interactors of known longevity genes are likely to participate in the regulation of longevity. Data-rich maps of protein interactions have been established for many cardinal organisms such as yeast, worms, and humans. We propose that these interaction maps could be mined for the identification of new putative regulators of longevity. For this purpose, we have constructed longevity networks in both humans and worms. We reasoned that the essential first-order interactors of known longevity-associated genes in these networks are more likely to have longevity phenotypes than randomly chosen genes. We have used C. elegans to determine whether post-developmental inactivation of these essential genes modulates lifespan. Our results suggest that the worm and human longevity networks are functionally relevant and possess a high predictive power for identifying new longevity regulators. PMID:23144747
Genes under positive selection in a model plant pathogenic fungus, Botrytis.
Aguileta, Gabriela; Lengelle, Juliette; Chiapello, Hélène; Giraud, Tatiana; Viaud, Muriel; Fournier, Elisabeth; Rodolphe, François; Marthey, Sylvain; Ducasse, Aurélie; Gendrault, Annie; Poulain, Julie; Wincker, Patrick; Gout, Lilian
2012-07-01
The rapid evolution of particular genes is essential for the adaptation of pathogens to new hosts and new environments. Powerful methods have been developed for detecting targets of selection in the genome. Here we used divergence data to compare genes among four closely related fungal pathogens adapted to different hosts to elucidate the functions putatively involved in adaptive processes. For this goal, ESTs were sequenced in the specialist fungal pathogens Botrytis tulipae and Botrytis ficariarum, and compared with genome sequences of Botrytis cinerea and Sclerotinia sclerotiorum, responsible for diseases on over 200 plant species. A maximum likelihood-based analysis of 642 predicted orthologs detected 21 genes showing footprints of positive selection. These results were validated by resequencing nine of these genes in additional Botrytis species, showing they have also been rapidly evolving in other related species. Twenty of the 21 genes had not previously been identified as pathogenicity factors in B. cinerea, but some had functions related to plant-fungus interactions. The putative functions were involved in respiratory and energy metabolism, protein and RNA metabolism, signal transduction or virulence, similarly to what was detected in previous studies using the same approach in other pathogens. Mutants of B. cinerea were generated for four of these genes as a first attempt to elucidate their functions. Copyright © 2012 Elsevier B.V. All rights reserved.
Wang, Wei; Liu, Ji-Hong
2015-01-25
Polyamine oxidases (PAOs) are FAD-dependent enzymes associated with polyamine catabolism. In plants, increasing evidences support that PAO genes play essential roles in abiotic and biotic stresses response. In this study, six putative PAO genes (CsPAO1-CsPAO6) were unraveled in sweet orange (Citrus sinensis) using the released citrus genome sequences. A total of 203 putative cis-regulatory elements involved in hormone and stress response were predicted in 1.5-kb promoter regions at the upstream of CsPAOs. The CsPAOs can be divided into four major groups, with similar organizations with their counterparts of Arabidopsis thaliana. Transcripts of CsPAOs were detected in leaf, stem, cotyledon, and root, with the highest levels detected in the roots. The CsPAOs displayed various responses to exogenous treatments with polyamines and ABA and were differentially altered by abiotic stresses, including cold, salt, and mannitol. Overexpression of CsPAO3 in tobacco demonstrated that spermidine and spermine were decreased in the transgenic line, while putrescine was significantly enhanced, implying a potential role of this gene in polyamine back conversion. These data provide valuable knowledge for understanding the roles of the PAO genes in the future. Copyright © 2014 Elsevier B.V. All rights reserved.
Wu, Feng; Yang, Zhenle; Kuang, Tingyun
2006-01-01
Phosphatidylglycerol (PG) is a ubiquitous phospholipid in thylakoid membranes of cyanobacteria and chloroplasts and plays an important role in the structure and function of photosynthetic membranes. The last step of the PG biosynthesis is dephosphorylation of phosphatidylglycerophosphate (PGP) catalyzed by PGP phosphatase. However, the gene-encoding PGP phosphatase has not been identified and cloned from cyanobacteria or higher plants. In this study, we constructed a PG-deficient mutant from cyanobacterium Anabaena sp. PCC7120 with a disrupted gene (alr1715, a gene for Alr1715 protein, GenBank accession no. BAB78081) encoding a putative PGP phosphatase. The obtained mutant showed an approximately 30% reduction in the cellular content of PG. Following the reduction in the PG content, the photoautotrophical growth of the mutant was restrained, and the cellular content of chlorophyll was decreased. The decreases in net photosynthetic and photosystem II (PSII) activities on a cell basis also occurred in this mutant. Simultaneously, the photochemical efficiency of PSII was considerably declined, and less excitation energy was transferred toward PSII. These findings demonstrate that the alr1715 gene of Anabaena sp. PCC7120 is involved in the biosynthesis of PG and essential for photosynthesis. PMID:16815953
Functional Study of Genes Essential for Autogamy and Nuclear Reorganization in Paramecium▿§
Nowak, Jacek K.; Gromadka, Robert; Juszczuk, Marek; Jerka-Dziadosz, Maria; Maliszewska, Kamila; Mucchielli, Marie-Hélène; Gout, Jean-François; Arnaiz, Olivier; Agier, Nicolas; Tang, Thomas; Aggerbeck, Lawrence P.; Cohen, Jean; Delacroix, Hervé; Sperling, Linda; Herbert, Christopher J.; Zagulski, Marek; Bétermier, Mireille
2011-01-01
Like all ciliates, Paramecium tetraurelia is a unicellular eukaryote that harbors two kinds of nuclei within its cytoplasm. At each sexual cycle, a new somatic macronucleus (MAC) develops from the germ line micronucleus (MIC) through a sequence of complex events, which includes meiosis, karyogamy, and assembly of the MAC genome from MIC sequences. The latter process involves developmentally programmed genome rearrangements controlled by noncoding RNAs and a specialized RNA interference machinery. We describe our first attempts to identify genes and biological processes that contribute to the progression of the sexual cycle. Given the high percentage of unknown genes annotated in the P. tetraurelia genome, we applied a global strategy to monitor gene expression profiles during autogamy, a self-fertilization process. We focused this pilot study on the genes carried by the largest somatic chromosome and designed dedicated DNA arrays covering 484 genes from this chromosome (1.2% of all genes annotated in the genome). Transcriptome analysis revealed four major patterns of gene expression, including two successive waves of gene induction. Functional analysis of 15 upregulated genes revealed four that are essential for vegetative growth, one of which is involved in the maintenance of MAC integrity and another in cell division or membrane trafficking. Two additional genes, encoding a MIC-specific protein and a putative RNA helicase localizing to the old and then to the new MAC, are specifically required during sexual processes. Our work provides a proof of principle that genes essential for meiosis and nuclear reorganization can be uncovered following genome-wide transcriptome analysis. PMID:21257794
Jiang, Feng; Liu, Qing; Wang, Yanli; Zhang, Jie; Wang, Huimin; Song, Tianqi; Yang, Meiling; Wang, Xianhui; Kang, Le
2017-06-01
The SET domain is an evolutionarily conserved motif present in histone lysine methyltransferases, which are important in the regulation of chromatin and gene expression in animals. In this study, we searched for SET domain-containing genes (SET genes) in all of the 147 arthropod genomes sequenced at the time of carrying out this experiment to understand the evolutionary history by which SET domains have evolved in insects. Phylogenetic and ancestral state reconstruction analysis revealed an arthropod-specific SET gene family, named SmydA, that is ancestral to arthropod animals and specifically diversified during insect evolution. Considering that pseudogenization is the most probable fate of the new emerging gene copies, we provided experimental and evolutionary evidence to demonstrate their essential functions. Fluorescence in situ hybridization analysis and in vitro methyltransferase activity assays showed that the SmydA-2 gene was transcriptionally active and retained the original histone methylation activity. Expression knockdown by RNA interference significantly increased mortality, implying that the SmydA genes may be essential for insect survival. We further showed predominantly strong purifying selection on the SmydA gene family and a potential association between the regulation of gene expression and insect phenotypic plasticity by transcriptome analysis. Overall, these data suggest that the SmydA gene family retains essential functions that may possibly define novel regulatory pathways in insects. This work provides insights into the roles of lineage-specific domain duplication in insect evolution. © The Authors 2017. Published by Oxford University Press.
Jiang, Feng; Liu, Qing; Wang, Yanli; Zhang, Jie; Wang, Huimin; Song, Tianqi; Yang, Meiling
2017-01-01
Abstract The SET domain is an evolutionarily conserved motif present in histone lysine methyltransferases, which are important in the regulation of chromatin and gene expression in animals. In this study, we searched for SET domain–containing genes (SET genes) in all of the 147 arthropod genomes sequenced at the time of carrying out this experiment to understand the evolutionary history by which SET domains have evolved in insects. Phylogenetic and ancestral state reconstruction analysis revealed an arthropod-specific SET gene family, named SmydA, that is ancestral to arthropod animals and specifically diversified during insect evolution. Considering that pseudogenization is the most probable fate of the new emerging gene copies, we provided experimental and evolutionary evidence to demonstrate their essential functions. Fluorescence in situ hybridization analysis and in vitro methyltransferase activity assays showed that the SmydA-2 gene was transcriptionally active and retained the original histone methylation activity. Expression knockdown by RNA interference significantly increased mortality, implying that the SmydA genes may be essential for insect survival. We further showed predominantly strong purifying selection on the SmydA gene family and a potential association between the regulation of gene expression and insect phenotypic plasticity by transcriptome analysis. Overall, these data suggest that the SmydA gene family retains essential functions that may possibly define novel regulatory pathways in insects. This work provides insights into the roles of lineage-specific domain duplication in insect evolution. PMID:28444351
Ewulonu, U K; Snyder, L; Silver, L M; Schimenti, J C
1996-03-01
Transgenic mice were generated to localize essential promoter elements in the mouse testis-expressed Tcp-10 genes. These genes are expressed exclusively in male germ cells, and exhibit a diffuse range of transcriptional start sites, possibly due to the absence of a TATA box. A series of transgene constructs containing different amounts of 5' flanking DNA revealed that all sequences necessary for appropriate temporal and tissue-specific transcription of Tcp-10 reside between positions -1 to -973. All transgenic animals containing these sequences expressed a chimeric transgene at high levels, in a pattern that paralleled the endogenous genes. These experiments further defined a 227 bp fragment from -746 to -973 that was absolutely essential for expression. In a gel-shift assay, this 227-bp fragment bound nuclear protein from testis, but not other tissues, to yield two retarded bands. Sequence analysis of this fragment revealed a half-site for the AP-2 transcription factor recognition sequence. Gel shift assays using native or mutant oligonucleotides demonstrated that the putative AP-2 recognition sequence was essential for generating the retarded bands. Since the binding activity is testis-specific, but AP-2 expression is not exclusive to male germ cells, it is possible that transcription of Tcp-10 requires interaction between AP-2 and a germ cell-specific transcription factor.
Osato, Naoki
2018-01-19
Transcriptional target genes show functional enrichment of genes. However, how many and how significantly transcriptional target genes include functional enrichments are still unclear. To address these issues, I predicted human transcriptional target genes using open chromatin regions, ChIP-seq data and DNA binding sequences of transcription factors in databases, and examined functional enrichment and gene expression level of putative transcriptional target genes. Gene Ontology annotations showed four times larger numbers of functional enrichments in putative transcriptional target genes than gene expression information alone, independent of transcriptional target genes. To compare the number of functional enrichments of putative transcriptional target genes between cells or search conditions, I normalized the number of functional enrichment by calculating its ratios in the total number of transcriptional target genes. With this analysis, native putative transcriptional target genes showed the largest normalized number of functional enrichments, compared with target genes including 5-60% of randomly selected genes. The normalized number of functional enrichments was changed according to the criteria of enhancer-promoter interactions such as distance from transcriptional start sites and orientation of CTCF-binding sites. Forward-reverse orientation of CTCF-binding sites showed significantly higher normalized number of functional enrichments than the other orientations. Journal papers showed that the top five frequent functional enrichments were related to the cellular functions in the three cell types. The median expression level of transcriptional target genes changed according to the criteria of enhancer-promoter assignments (i.e. interactions) and was correlated with the changes of the normalized number of functional enrichments of transcriptional target genes. Human putative transcriptional target genes showed significant functional enrichments. Functional enrichments were related to the cellular functions. The normalized number of functional enrichments of human putative transcriptional target genes changed according to the criteria of enhancer-promoter assignments and correlated with the median expression level of the target genes. These analyses and characters of human putative transcriptional target genes would be useful to examine the criteria of enhancer-promoter assignments and to predict the novel mechanisms and factors such as DNA binding proteins and DNA sequences of enhancer-promoter interactions.
Stamm, Irmela; Lottspeich, Friedrich; Plaga, Wulf
2005-06-01
Myxospore formation of the myxobacterium Stigmatella aurantiaca can be uncoupled from the cooperative development i.e. fruiting body formation, by low concentrations of indole. Two putative indole receptor proteins were isolated by their capacity to bind indole and identified as pyruvate kinase (PK) and aldehyde dehydrogenase. The PK activity of Stigmatella crude extracts was stimulated by indole. Cloning of the PK gene (pykA) and the construction of a pykA disruption mutant strikingly revealed that PK is essential for multicellular development: Fruiting body formation was abolished in the mutant strain and indole-induced spore formation was delayed. The developmental defects could be complemented by insertion of the pykA gene at the mtaB locus of the Stigmatella genome excluding any polar effects of the pykA disruption.
Class I KNOX genes are associated with organogenesis during bulbil formation in Agave tequilana.
Abraham-Juárez, María Jazmín; Martínez-Hernández, Aída; Leyva-González, Marco Antonio; Herrera-Estrella, Luis; Simpson, June
2010-09-01
Bulbil formation in Agave tequilana was analysed with the objective of understanding this phenomenon at the molecular and cellular levels. Bulbils formed 14-45 d after induction and were associated with rearrangements in tissue structure and accelerated cell multiplication. Changes at the cellular level during bulbil development were documented by histological analysis. In addition, several cDNA libraries produced from different stages of bulbil development were generated and partially sequenced. Sequence analysis led to the identification of candidate genes potentially involved in the initiation and development of bulbils in Agave, including two putative class I KNOX genes. Real-time reverse transcription-PCR and in situ hybridization revealed that expression of the putative Agave KNOXI genes occurs at bulbil initiation and specifically in tissue where meristems will develop. Functional analysis of Agave KNOXI genes in Arabidopsis thaliana showed the characteristic lobed phenotype of KNOXI ectopic expression in leaves, although a slightly different phenotype was observed for each of the two Agave genes. An Arabidopsis KNOXI (knat1) mutant line (CS30) was successfully complemented with one of the Agave KNOX genes and partially complemented by the other. Analysis of the expression of the endogenous Arabidopsis genes KNAT1, KNAT6, and AS1 in the transformed lines ectopically expressing or complemented by the Agave KNOX genes again showed different regulatory patterns for each Agave gene. These results show that Agave KNOX genes are functionally similar to class I KNOX genes and suggest that spatial and temporal control of their expression is essential during bulbil formation in A. tequilana.
Fu, Yi-Ping; Yu, Jyh-Cherng; Cheng, Ting-Chih; Lou, M Ann; Hsu, Giu-Cheng; Wu, Chia-Yun; Chen, Sou-Tong; Wu, Hurng-Sheng; Wu, Pei-Ei; Shen, Chen-Yang
2003-05-15
The role of the familial breast cancer susceptibility genes, BRCA1 and BRCA2, in the homologous recombination pathway for DNA double-strand break (DSB) repair suggests that the mechanisms involved in DNA DSB repair are of particular etiological importance during breast tumorigenesis. However, there is currently no evidence for an association between breast cancer and the other DSB repair pathway, the nonhomologous end-joining (NHEJ) pathway. It is possible that, because this DNA repair pathway is so crucial for mammalian cells to maintain genomic stability, any severe defects in it would result in serious outcomes, such as genomic instability and cell death, and block subsequent cell outgrowth and tumor formation. Thus, only subtle defects arising from low-penetrance alleles would escape lethality accumulating essential genetic changes and be associated with cancer formation, and the tumorigenic contribution of these alleles would become more obvious if individual putative high-risk genotypes of each NHEJ gene act jointly. Furthermore, this joint effect might be modified by specific environmental factors, and we hypothesized that estrogen exposure might be one such factor because estrogen is suggested to cause DNA DSBs, triggering breast tumorigenesis. Because single nucleotide polymorphisms (SNPs) are the most subtle genetic variation in the genome, to examine these hypotheses, we have genotyped 30 SNPs in all five NHEJ genes (Ku70, Ku80, DNA-PKcs, Ligase IV, and XRCC4) in 254 primary breast cancer patients and 379 healthy controls. Support for these hypotheses came from the observations that (a) two SNPs in Ku70 and XRCC4 were associated with breast cancer risk (P < 0.05); (b) a trend toward increased risk of developing breast cancer was found in women harboring a greater number of putative high-risk genotypes of NHEJ genes (an adjusted odds ratio of 1.46 for having one additional putative high-risk genotype; 95% confidence interval, 1.19-1.80); (c) this association between risk and the number of putative high-risk genotypes was stronger and more significant in women thought to be more susceptible to estrogen, i.e., those with no history of full-term pregnancy; and (d) the protective effect conferred by a history of full-term pregnancy was only significant in women with a lower number of putative high-risk genotypes of NHEJ genes. Based on comprehensive NHEJ gene profiles, this study provides new insights to suggest the role of the NHEJ pathway in breast cancer development and supports the possibility that breast cancer is initiated by estrogen exposure, which causes DNA DSBs.
Łochowska, Anna; Iwanicka-Nowicka, Roksana; Zielak, Agata; Modelewska, Anna; Thomas, Mark S.; Hryniewicz, Monika M.
2011-01-01
The genome of Burkholderia cenocepacia contains two genes encoding closely related LysR-type transcriptional regulators, CysB and SsuR, involved in control of sulfur assimilation processes. In this study we show that the function of SsuR is essential for the utilization of a number of organic sulfur sources of either environmental or human origin. Among the genes upregulated by SsuR identified here are the tauABC operon encoding a predicted taurine transporter, three tauD-type genes encoding putative taurine dioxygenases, and atsA encoding a putative arylsulfatase. The role of SsuR in expression of these genes/operons was characterized through (i) construction of transcriptional reporter fusions to candidate promoter regions and analysis of their expression in the presence/absence of SsuR and (ii) testing the ability of SsuR to bind SsuR-responsive promoter regions. We also demonstrate that expression of SsuR-activated genes is not repressed in the presence of inorganic sulfate. A more detailed analysis of four SsuR-responsive promoter regions indicated that ∼44 bp of the DNA sequence preceding and/or overlapping the predicted −35 element of such promoters is sufficient for SsuR binding. The DNA sequence homology among SsuR “recognition motifs” at different responsive promoters appears to be limited. PMID:21317335
Kumar, Gulshan; Arya, Preeti; Gupta, Khushboo; Randhawa, Vinay; Acharya, Vishal; Singh, Anil Kumar
2016-01-01
The MADS-box transcription factors play essential roles in various processes of plant growth and development. In the present study, phylogenetic analysis of 142 apple MADS-box proteins with that of other dicotyledonous species identified six putative Dormancy-Associated MADS-box (DAM) and four putative Flowering Locus C-like (FLC-like) proteins. In order to study the expression of apple MADS-box genes, RNA-seq analysis of 3 apical and 5 spur bud stages during dormancy, 6 flower stages and 7 fruit development stages was performed. The dramatic reduction in expression of two MdDAMs, MdMADS063 and MdMADS125 and two MdFLC-like genes, MdMADS135 and MdMADS136 during dormancy release suggests their role as flowering-repressors in apple. Apple orthologs of Arabidopsis genes, FLOWERING LOCUS T, FRIGIDA, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 and LEAFY exhibit similar expression patterns as reported in Arabidopsis, suggesting functional conservation in floral signal integration and meristem determination pathways. Gene ontology enrichment analysis of predicted targets of DAM revealed their involvement in regulation of reproductive processes and meristematic activities, indicating functional conservation of SVP orthologs (DAM) in apple. This study provides valuable insights into the functions of MADS-box proteins during apple phenology, which may help in devising strategies to improve important traits in apple. PMID:26856238
Kumar, Gulshan; Arya, Preeti; Gupta, Khushboo; Randhawa, Vinay; Acharya, Vishal; Singh, Anil Kumar
2016-02-09
The MADS-box transcription factors play essential roles in various processes of plant growth and development. In the present study, phylogenetic analysis of 142 apple MADS-box proteins with that of other dicotyledonous species identified six putative Dormancy-Associated MADS-box (DAM) and four putative Flowering Locus C-like (FLC-like) proteins. In order to study the expression of apple MADS-box genes, RNA-seq analysis of 3 apical and 5 spur bud stages during dormancy, 6 flower stages and 7 fruit development stages was performed. The dramatic reduction in expression of two MdDAMs, MdMADS063 and MdMADS125 and two MdFLC-like genes, MdMADS135 and MdMADS136 during dormancy release suggests their role as flowering-repressors in apple. Apple orthologs of Arabidopsis genes, FLOWERING LOCUS T, FRIGIDA, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 and LEAFY exhibit similar expression patterns as reported in Arabidopsis, suggesting functional conservation in floral signal integration and meristem determination pathways. Gene ontology enrichment analysis of predicted targets of DAM revealed their involvement in regulation of reproductive processes and meristematic activities, indicating functional conservation of SVP orthologs (DAM) in apple. This study provides valuable insights into the functions of MADS-box proteins during apple phenology, which may help in devising strategies to improve important traits in apple.
Chen, Qiaoli; Li, Danlei; Zhang, Ruizhi; Ling, Yaming
2017-01-01
ABSTRACT Some organisms can survive extreme desiccation caused by hypertonic osmotic pressure by entering a state of suspended animation known as osmobiosis. The free-living mycophagous nematode Aphelenchoides besseyi can be induced to enter osmobiosis by soaking in osmolytes. It is assumed that sugars (in particular trehalose) are instrumental for survival under environmental stress. In A. besseyi, two putative trehalose-6-phosphate synthase genes (TPS) encoding enzymes catalyzing trehalose synthesis, and a putative trehalase gene (TRE) encoding enzymes that catalyze hydrolysis of trehalose were identified and then characterized based on their transcriptome. RT-qPCR analyses showed that each of these genes is expressed as mRNA when A. besseyi is entering in, during and recovering from osmobiosis, but only for certain periods. The changes of TRE activity were consistent with the transcript level changes of the TRE gene, and the trehalose level declined at certain periods when the nematodes were in, as well as recovering from, osmobiosis; this suggested that the hydrolysis of threhalose is essential. The feeding method of RNA interference (RNAi) was used to temporarily knock down the expression of each of the TPS and TRE genes. No obviously different phenotype was observed from any of the genes silenced individually or simultaneously, but the survival under hypertonic osmotic pressure reduced significantly and the recovery was delayed. These results indicated that trehalose metabolism genes should play a role in osmobiosis regulation and function within a restricted time frame. PMID:28396490
USDA-ARS?s Scientific Manuscript database
The concept of utilizing putative and unique gene sequences for the design of species specific probes was tested. The abundance profile of assigned functions within the Lactobacillus plantarum genome was used for the identification of the putative and unique gene sequence, csh. The targeted gene (cs...
The P450 Monooxygenase BcABA1 Is Essential for Abscisic Acid Biosynthesis in Botrytis cinerea
Siewers, Verena; Smedsgaard, Jørn; Tudzynski, Paul
2004-01-01
The phytopathogenic ascomycete Botrytis cinerea is known to produce abscisic acid (ABA), which is thought to be involved in host-pathogen interaction. Biochemical analyses had previously shown that, in contrast to higher plants, the fungal ABA biosynthesis probably does not proceed via carotenoids but involves direct cyclization of farnesyl diphosphate and subsequent oxidation steps. We present here evidence that this “direct” pathway is indeed the only one used by an ABA-overproducing strain of B. cinerea. Targeted inactivation of the gene bccpr1 encoding a cytochrome P450 oxidoreductase reduced the ABA production significantly, proving the involvement of P450 monooxygenases in the pathway. Expression analysis of 28 different putative P450 monooxygenase genes revealed two that were induced under ABA biosynthesis conditions. Targeted inactivation showed that one of these, bcaba1, is essential for ABA biosynthesis: ΔBcaba1 mutants contained no residual ABA. Thus, bcaba1 represents the first identified fungal ABA biosynthetic gene. PMID:15240257
Pooma, W; Petty, I T
1996-08-01
Tomato golden mosaic virus (TGMV) is a bipartite geminivirus with six well-characterized genes. An additional open reading frame (ORF), AL4, lies within the essential AL1 gene. Recent studies of monopartite, dicot-infecting geminiviruses have revealed that mutations in their analogous C4 ORFs have host-specific effects on infectivity, symptomatology, virus movement and/or viral DNA accumulation. We have investigated whether TGMV has a similar host-specific requirement for AL4. The phenotypes of three TGMV al4 mutants were determined in a range of hosts, which included species that revealed c4 mutant phenotypes for monopartite geminiviruses. Each TGMV al4 mutant was indistinguishable from wild-type TGMV in all hosts tested. Additional analyses of double mutants revealed no evidence for functional redundancy between AL4 and the AL3, or AR1 genes. In contrast to the putative C4 proteins of monpartite geminiviruses, TGMV AL4, if it is expressed, is either non-functional, or functionally redundant with an essential TGMV gene product.
Zhang, Peng; Wang, Xiuna; Fan, Aili; Zheng, Yanjing; Liu, Xingzhong; Wang, Shihua; Zou, Huixi; Oakley, Berl R; Keller, Nancy P; Yin, Wen-Bing
2017-08-01
Spore pigmentation is very common in the fungal kingdom. The best studied pigment in fungi is melanin which coats the surface of single cell spores. What and how pigments function in a fungal species with multiple cell conidia is poorly understood. Here, we identified and deleted a polyketide synthase (PKS) gene PfmaE and showed that it is essential for multicellular conidial pigmentation and development in a plant endophytic fungus, Pestalotiopsis fici. To further characterize the melanin pathway, we utilized an advanced Aspergillus nidulans heterologous system for the expression of the PKS PfmaE and the Pfma gene cluster. By structural elucidation of the pathway metabolite scytalone in A. nidulans, we provided chemical evidence that the Pfma cluster synthesizes DHN melanin. Combining genetic deletion and combinatorial gene expression of Pfma cluster genes, we determined that the putative reductase PfmaG and the PKS are sufficient for the synthesis of scytalone. Feeding scytalone back to the P. fici ΔPfmaE mutant restored pigmentation and multicellular adherence of the conidia. These results cement a growing understanding that pigments are essential not simply for protection of spores from biotic and abiotic stresses but also for spore structural development. © 2017 John Wiley & Sons Ltd.
Chandrapala, Dilini; Kim, Kyumson; Choi, Younho; Senevirathne, Amal; Kang, Dong-Hyun; Ryu, Sangryeol
2014-01-01
Cronobacter sakazakii is an opportunistic pathogen that causes neonatal meningitis and necrotizing enterocolitis. Its interaction with intestinal epithelium is important in the pathogenesis of enteric infections. In this study, we investigated the involvement of the inv gene in the virulence of C. sakazakii ATCC 29544 in vitro and in vivo. Sequence analysis of C. sakazakii ATCC 29544 inv revealed that it is different from other C. sakazakii isolates. In various cell culture models, an Δinv deletion mutant showed significantly lowered invasion efficiency, which was restored upon genetic complementation. Studying invasion potentials using tight-junction-disrupted Caco-2 cells suggested that the inv gene product mediates basolateral invasion of C. sakazakii ATCC 29544. In addition, comparison of invasion potentials of double mutant (ΔompA Δinv) and single mutants (ΔompA and Δinv) provided evidence for an additive effect of the two putative outer membrane proteins. Finally, the importance of inv and the additive effect of putative Inv and OmpA were also proven in an in vivo rat pup model. This report is the first to demonstrate two proteins working synergistically in vitro, as well as in vivo in C. sakazakii pathogenesis. PMID:24549330
Chandrapala, Dilini; Kim, Kyumson; Choi, Younho; Senevirathne, Amal; Kang, Dong-Hyun; Ryu, Sangryeol; Kim, Kwang-Pyo
2014-05-01
Cronobacter sakazakii is an opportunistic pathogen that causes neonatal meningitis and necrotizing enterocolitis. Its interaction with intestinal epithelium is important in the pathogenesis of enteric infections. In this study, we investigated the involvement of the inv gene in the virulence of C. sakazakii ATCC 29544 in vitro and in vivo. Sequence analysis of C. sakazakii ATCC 29544 inv revealed that it is different from other C. sakazakii isolates. In various cell culture models, an Δinv deletion mutant showed significantly lowered invasion efficiency, which was restored upon genetic complementation. Studying invasion potentials using tight-junction-disrupted Caco-2 cells suggested that the inv gene product mediates basolateral invasion of C. sakazakii ATCC 29544. In addition, comparison of invasion potentials of double mutant (ΔompA Δinv) and single mutants (ΔompA and Δinv) provided evidence for an additive effect of the two putative outer membrane proteins. Finally, the importance of inv and the additive effect of putative Inv and OmpA were also proven in an in vivo rat pup model. This report is the first to demonstrate two proteins working synergistically in vitro, as well as in vivo in C. sakazakii pathogenesis.
Hempel, Niels; Görisch, Helmut; Mern, Demissew S
2013-09-01
Several two-component regulatory systems are known to be involved in the signal transduction pathway of the ethanol oxidation system in Pseudomonas aeruginosa ATCC 17933. These sensor kinases and response regulators are organized in a hierarchical manner. In addition, a cytoplasmic putative iron-containing alcohol dehydrogenase (Fe-ADH) encoded by ercA (PA1991) has been identified to play an essential role in this regulatory network. The gene ercA (PA1991) is located next to ercS, which encodes a sensor kinase. Inactivation of ercA (PA1991) by insertion of a kanamycin resistance cassette created mutant NH1. NH1 showed poor growth on various alcohols. On ethanol, NH1 grew only with an extremely extended lag phase. During the induction period on ethanol, transcription of structural genes exa and pqqABCDEH, encoding components of initial ethanol oxidation in P. aeruginosa, was drastically reduced in NH1, which indicates the regulatory function of ercA (PA1991). However, transcription in the extremely delayed logarithmic growth phase was comparable to that in the wild type. To date, the involvement of an Fe-ADH in signal transduction processes has not been reported.
Hempel, Niels; Görisch, Helmut
2013-01-01
Several two-component regulatory systems are known to be involved in the signal transduction pathway of the ethanol oxidation system in Pseudomonas aeruginosa ATCC 17933. These sensor kinases and response regulators are organized in a hierarchical manner. In addition, a cytoplasmic putative iron-containing alcohol dehydrogenase (Fe-ADH) encoded by ercA (PA1991) has been identified to play an essential role in this regulatory network. The gene ercA (PA1991) is located next to ercS, which encodes a sensor kinase. Inactivation of ercA (PA1991) by insertion of a kanamycin resistance cassette created mutant NH1. NH1 showed poor growth on various alcohols. On ethanol, NH1 grew only with an extremely extended lag phase. During the induction period on ethanol, transcription of structural genes exa and pqqABCDEH, encoding components of initial ethanol oxidation in P. aeruginosa, was drastically reduced in NH1, which indicates the regulatory function of ercA (PA1991). However, transcription in the extremely delayed logarithmic growth phase was comparable to that in the wild type. To date, the involvement of an Fe-ADH in signal transduction processes has not been reported. PMID:23813731
Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits.
Wu, Yang; Zeng, Jian; Zhang, Futao; Zhu, Zhihong; Qi, Ting; Zheng, Zhili; Lloyd-Jones, Luke R; Marioni, Riccardo E; Martin, Nicholas G; Montgomery, Grant W; Deary, Ian J; Wray, Naomi R; Visscher, Peter M; McRae, Allan F; Yang, Jian
2018-03-02
The identification of genes and regulatory elements underlying the associations discovered by GWAS is essential to understanding the aetiology of complex traits (including diseases). Here, we demonstrate an analytical paradigm of prioritizing genes and regulatory elements at GWAS loci for follow-up functional studies. We perform an integrative analysis that uses summary-level SNP data from multi-omics studies to detect DNA methylation (DNAm) sites associated with gene expression and phenotype through shared genetic effects (i.e., pleiotropy). We identify pleiotropic associations between 7858 DNAm sites and 2733 genes. These DNAm sites are enriched in enhancers and promoters, and >40% of them are mapped to distal genes. Further pleiotropic association analyses, which link both the methylome and transcriptome to 12 complex traits, identify 149 DNAm sites and 66 genes, indicating a plausible mechanism whereby the effect of a genetic variant on phenotype is mediated by genetic regulation of transcription through DNAm.
Chen, Guoqing; Liu, Xiaohong; Zhang, Lilin; Cao, Huijuan; Lu, Jianping; Lin, Fucheng
2013-01-01
Many functions of vacuole depend on the activity of vacuolar ATPase which is essential to maintain an acidic lumen and create the driving forces for massive fluxes of ions and metabolites through vacuolar membrane. In filamentous fungus Magnaporthe oryzae , subcellular colocalization and quinacrine staining suggested that the V1V0 domains of V-ATPase were fully assembled and the vacuoles were kept acidic during infection-related developments. Targeted gene disruption of MoVMA11 gene, encoding the putative c’ subunit of V-ATPase, impaired vacuolar acidification and mimicked the phenotypes of yeast V-ATPase mutants in the poor colony morphology, abolished asexual and sexual reproductions, selective carbon source utilization, and increased calcium and heavy metals sensitivities, however, not in the typical pH conditional lethality. Strikingly, aerial hyphae of the MoVMA11 null mutant intertwined with each other to form extremely thick filamentous structures. The results also implicated that MoVMA11 was involved in cell wall integrity and appressorium formation. Abundant non-melanized swollen structures and rare, small appressoria without penetration ability were produced at the hyphal tips of the ΔMovma11 mutant on onion epidermal cells. Finally, the MoVMA11 null mutant lost pathogenicity on both intact and wounded host leaves. Overall, our data indicated that MoVMA11, like other fungal VMA genes, is associated with numerous cellular functions and highlighted that V-ATPase is essential for infection-related morphogenesis and pathogenesis in M . oryzae . PMID:23826342
Filip'echeva, Yulia A; Shelud'ko, Andrei V; Prilipov, Alexei G; Burygin, Gennady L; Telesheva, Elizaveta M; Yevstigneyeva, Stella S; Chernyshova, Marina P; Petrova, Lilia P; Katsy, Elena I
2018-02-01
Azospirillum brasilense can swim and swarm owing to the activity of a constitutive polar flagellum (Fla) and inducible lateral flagella (Laf), respectively. Experimental data on the regulation of the Fla and Laf assembly in azospirilla are scarce. Here, the coding sequence (CDS) AZOBR_p1160043 (fabG1) for a putative 3-oxoacyl-[acyl-carrier protein (ACP)] reductase was found essential for the construction of both types of flagella. In an immotile leaky Fla - Laf - fabG1::Omegon-Km mutant, Sp245.1610, defects in flagellation and motility were fully complemented by expressing the CDS AZOBR_p1160043 from plasmid pRK415. When pRK415 with the cloned CDS AZOBR_p1160045 (fliC) for a putative 65.2 kDa Sp245 Fla flagellin was transferred into the Sp245.1610 cells, the bacteria also became able to assemble a motile single flagellum. Some cells, however, had unusual swimming behavior, probably because of the side location of the organelle. Although the assembly of Laf was not restored in Sp245.1610 (pRK415-p1160045), this strain was somewhat capable of swarming motility. We propose that the putative 3-oxoacyl-[ACP] reductase encoded by the CDS AZOBR_p1160043 plays a role in correct flagellar location in the cell envelope and (or) in flagellar modification(s), which are also required for the inducible construction of Laf and for proper swimming and swarming motility of A. brasilense Sp245.
Genome-wide identification and expression profiling of the SnRK2 gene family in Malus prunifolia.
Shao, Yun; Qin, Yuan; Zou, Yangjun; Ma, Fengwang
2014-11-15
Sucrose non-fermenting-1-related protein kinase 2 (SnRK2) constitutes a small plant-specific serine/threonine kinase family with essential roles in the abscisic acid (ABA) signal pathway and in responses to osmotic stress. Although a genome-wide analysis of this family has been conducted in some species, little is known about SnRK2 genes in apple (Malus domestica). We identified 14 putative sequences encoding 12 deduced SnRK2 proteins within the apple genome. Gene chromosomal location and synteny analysis of the apple SnRK2 genes indicated that tandem and segmental duplications have likely contributed to the expansion and evolution of these genes. All 12 full-length coding sequences were confirmed by cloning from Malus prunifolia. The gene structure and motif compositions of the apple SnRK2 genes were analyzed. Phylogenetic analysis showed that MpSnRK2s could be classified into four groups. Profiling of these genes presented differential patterns of expression in various tissues. Under stress conditions, transcript levels for some family members were up-regulated in the leaves in response to drought, salinity, or ABA treatments. This suggested their possible roles in plant response to abiotic stress. Our findings provide essential information about SnRK2 genes in apple and will contribute to further functional dissection of this gene family. Copyright © 2014 Elsevier B.V. All rights reserved.
Detecting false positive sequence homology: a machine learning approach.
Fujimoto, M Stanley; Suvorov, Anton; Jensen, Nicholas O; Clement, Mark J; Bybee, Seth M
2016-02-24
Accurate detection of homologous relationships of biological sequences (DNA or amino acid) amongst organisms is an important and often difficult task that is essential to various evolutionary studies, ranging from building phylogenies to predicting functional gene annotations. There are many existing heuristic tools, most commonly based on bidirectional BLAST searches that are used to identify homologous genes and combine them into two fundamentally distinct classes: orthologs and paralogs. Due to only using heuristic filtering based on significance score cutoffs and having no cluster post-processing tools available, these methods can often produce multiple clusters constituting unrelated (non-homologous) sequences. Therefore sequencing data extracted from incomplete genome/transcriptome assemblies originated from low coverage sequencing or produced by de novo processes without a reference genome are susceptible to high false positive rates of homology detection. In this paper we develop biologically informative features that can be extracted from multiple sequence alignments of putative homologous genes (orthologs and paralogs) and further utilized in context of guided experimentation to verify false positive outcomes. We demonstrate that our machine learning method trained on both known homology clusters obtained from OrthoDB and randomly generated sequence alignments (non-homologs), successfully determines apparent false positives inferred by heuristic algorithms especially among proteomes recovered from low-coverage RNA-seq data. Almost ~42 % and ~25 % of predicted putative homologies by InParanoid and HaMStR respectively were classified as false positives on experimental data set. Our process increases the quality of output from other clustering algorithms by providing a novel post-processing method that is both fast and efficient at removing low quality clusters of putative homologous genes recovered by heuristic-based approaches.
King, Amy M; Bartpho, Thanatchaporn; Sermswan, Rasana W; Bulach, Dieter M; Eshghi, Azad; Picardeau, Mathieu; Adler, Ben; Murray, Gerald L
2013-08-01
Leptospirosis is a worldwide zoonosis caused by pathogenic Leptospira spp., but knowledge of leptospiral pathogenesis remains limited. However, the development of mutagenesis systems has allowed the investigation of putative virulence factors and their involvement in leptospirosis. LipL41 is the third most abundant lipoprotein found in the outer membranes of pathogenic leptospires and has been considered a putative virulence factor. LipL41 is encoded on the large chromosome 28 bp upstream of a small open reading frame encoding a hypothetical protein of unknown function. This gene was named lep, for LipL41 expression partner. In this study, lipL41 was found to be cotranscribed with lep. Two transposon mutants were characterized: a lipL41 mutant and a lep mutant. In the lep mutant, LipL41 protein levels were reduced by approximately 90%. Lep was shown through cross-linking and coexpression experiments to bind to LipL41. Lep is proposed to be a molecular chaperone essential for the stable expression of LipL41. The roles of LipL41 and Lep in the pathogenesis of Leptospira interrogans were investigated; surprisingly, neither of these two unique proteins was essential for acute leptospirosis.
Zhu, Mingku; Chen, Guoping; Dong, Tingting; Wang, Lingling; Zhang, Jianling; Zhao, Zhiping; Hu, Zongli
2015-01-01
The DEAD-box RNA helicases are involved in almost every aspect of RNA metabolism, associated with diverse cellular functions including plant growth and development, and their importance in response to biotic and abiotic stresses is only beginning to emerge. However, none of DEAD-box genes was well characterized in tomato so far. In this study, we reported on the identification and characterization of two putative DEAD-box RNA helicase genes, SlDEAD30 and SlDEAD31 from tomato, which were classified into stress-related DEAD-box proteins by phylogenetic analysis. Expression analysis indicated that SlDEAD30 was highly expressed in roots and mature leaves, while SlDEAD31 was constantly expressed in various tissues. Furthermore, the expression of both genes was induced mainly in roots under NaCl stress, and SlDEAD31 mRNA was also increased by heat, cold, and dehydration. In stress assays, transgenic tomato plants overexpressing SlDEAD31 exhibited dramatically enhanced salt tolerance and slightly improved drought resistance, which were simultaneously demonstrated by significantly enhanced expression of multiple biotic and abiotic stress-related genes, higher survival rate, relative water content (RWC) and chlorophyll content, and lower water loss rate and malondialdehyde (MDA) production compared to wild-type plants. Collectively, these results provide a preliminary characterization of SlDEAD30 and SlDEAD31 genes in tomato, and suggest that stress-responsive SlDEAD31 is essential for salt and drought tolerance and stress-related gene regulation in plants.
A putative homologue of CDC20/CDH1 in the malaria parasite is essential for male gamete development.
Guttery, David S; Ferguson, David J P; Poulin, Benoit; Xu, Zhengyao; Straschil, Ursula; Klop, Onny; Solyakov, Lev; Sandrini, Sara M; Brady, Declan; Nieduszynski, Conrad A; Janse, Chris J; Holder, Anthony A; Tobin, Andrew B; Tewari, Rita
2012-02-01
Cell-cycle progression is governed by a series of essential regulatory proteins. Two major regulators are cell-division cycle protein 20 (CDC20) and its homologue, CDC20 homologue 1 (CDH1), which activate the anaphase-promoting complex/cyclosome (APC/C) in mitosis, and facilitate degradation of mitotic APC/C substrates. The malaria parasite, Plasmodium, is a haploid organism which, during its life-cycle undergoes two stages of mitosis; one associated with asexual multiplication and the other with male gametogenesis. Cell-cycle regulation and DNA replication in Plasmodium was recently shown to be dependent on the activity of a number of protein kinases. However, the function of cell division cycle proteins that are also involved in this process, such as CDC20 and CDH1 is totally unknown. Here we examine the role of a putative CDC20/CDH1 in the rodent malaria Plasmodium berghei (Pb) using reverse genetics. Phylogenetic analysis identified a single putative Plasmodium CDC20/CDH1 homologue (termed CDC20 for simplicity) suggesting that Plasmodium APC/C has only one regulator. In our genetic approach to delete the endogenous cdc20 gene of P. berghei, we demonstrate that PbCDC20 plays a vital role in male gametogenesis, but is not essential for mitosis in the asexual blood stage. Furthermore, qRT-PCR analysis in parasite lines with deletions of two kinase genes involved in male sexual development (map2 and cdpk4), showed a significant increase in cdc20 transcription in activated gametocytes. DNA replication and ultra structural analyses of cdc20 and map2 mutants showed similar blockage of nuclear division at the nuclear spindle/kinetochore stage. CDC20 was phosphorylated in asexual and sexual stages, but the level of modification was higher in activated gametocytes and ookinetes. Changes in global protein phosphorylation patterns in the Δcdc20 mutant parasites were largely different from those observed in the Δmap2 mutant. This suggests that CDC20 and MAP2 are both likely to play independent but vital roles in male gametogenesis.
A Putative Homologue of CDC20/CDH1 in the Malaria Parasite Is Essential for Male Gamete Development
Guttery, David S.; Ferguson, David J. P.; Poulin, Benoit; Xu, Zhengyao; Straschil, Ursula; Klop, Onny; Solyakov, Lev; Sandrini, Sara M.; Brady, Declan; Nieduszynski, Conrad A.; Janse, Chris J.; Holder, Anthony A.; Tobin, Andrew B.; Tewari, Rita
2012-01-01
Cell-cycle progression is governed by a series of essential regulatory proteins. Two major regulators are cell-division cycle protein 20 (CDC20) and its homologue, CDC20 homologue 1 (CDH1), which activate the anaphase-promoting complex/cyclosome (APC/C) in mitosis, and facilitate degradation of mitotic APC/C substrates. The malaria parasite, Plasmodium, is a haploid organism which, during its life-cycle undergoes two stages of mitosis; one associated with asexual multiplication and the other with male gametogenesis. Cell-cycle regulation and DNA replication in Plasmodium was recently shown to be dependent on the activity of a number of protein kinases. However, the function of cell division cycle proteins that are also involved in this process, such as CDC20 and CDH1 is totally unknown. Here we examine the role of a putative CDC20/CDH1 in the rodent malaria Plasmodium berghei (Pb) using reverse genetics. Phylogenetic analysis identified a single putative Plasmodium CDC20/CDH1 homologue (termed CDC20 for simplicity) suggesting that Plasmodium APC/C has only one regulator. In our genetic approach to delete the endogenous cdc20 gene of P. berghei, we demonstrate that PbCDC20 plays a vital role in male gametogenesis, but is not essential for mitosis in the asexual blood stage. Furthermore, qRT-PCR analysis in parasite lines with deletions of two kinase genes involved in male sexual development (map2 and cdpk4), showed a significant increase in cdc20 transcription in activated gametocytes. DNA replication and ultra structural analyses of cdc20 and map2 mutants showed similar blockage of nuclear division at the nuclear spindle/kinetochore stage. CDC20 was phosphorylated in asexual and sexual stages, but the level of modification was higher in activated gametocytes and ookinetes. Changes in global protein phosphorylation patterns in the Δcdc20 mutant parasites were largely different from those observed in the Δmap2 mutant. This suggests that CDC20 and MAP2 are both likely to play independent but vital roles in male gametogenesis. PMID:22383885
Cloning and characterization of the gene encoding IMP dehydrogenase from Arabidopsis thaliana.
Collart, F R; Osipiuk, J; Trent, J; Olsen, G J; Huberman, E
1996-10-03
We have cloned and characterized the gene encoding inosine monophosphate dehydrogenase (IMPDH) from Arabidopsis thaliana (At). The transcription unit of the At gene spans approximately 1900 bp and specifies a protein of 503 amino acids with a calculated relative molecular mass (M(r)) of 54,190. The gene is comprised of a minimum of four introns and five exons with all donor and acceptor splice sequences conforming to previously proposed consensus sequences. The deduced IMPDH amino-acid sequence from At shows a remarkable similarity to other eukaryotic IMPDH sequences, with a 48% identity to human Type II enzyme. Allowing for conservative substitutions, the enzyme is 69% similar to human Type II IMPDH. The putative active-site sequence of At IMPDH conforms to the IMP dehydrogenase/guanosine monophosphate reductase motif and contains an essential active-site cysteine residue.
Pinto-Santini, Delia M.; Salama, Nina R.
2009-01-01
Helicobacter pylori strains harboring the cag pathogenicity island (PAI) have been associated with more severe gastric disease in infected humans. The cag PAI encodes a type IV secretion (T4S) system required for CagA translocation into host cells as well as induction of proinflammatory cytokines, such as interleukin-8 (IL-8). cag PAI genes sharing sequence similarity with T4S components from other bacteria are essential for Cag T4S function. Other cag PAI-encoded genes are also essential for Cag T4S, but lack of sequence-based or structural similarity with genes in existing databases has precluded a functional assignment for the encoded proteins. We have studied the role of one such protein, Cag3 (HP0522), in Cag T4S and determined Cag3 subcellular localization and protein interactions. Cag3 is membrane associated and copurifies with predicted inner and outer membrane Cag T4S components that are essential for Cag T4S as well as putative accessory factors. Coimmunoprecipitation and cross-linking experiments revealed specific interactions with HpVirB7 and CagM, suggesting Cag3 is a new component of the Cag T4S outer membrane subcomplex. Finally, lack of Cag3 lowers HpVirB7 steady-state levels, further indicating Cag3 makes a subcomplex with this protein. PMID:19801411
Cheng, Feixiong; Murray, James L; Zhao, Junfei; Sheng, Jinsong; Zhao, Zhongming; Rubin, Donald H
2016-09-01
Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap) host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase). Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B) identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline) that may be potential for antiviral indication (e.g. anti-Ebola). In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics.
Fault tolerance in protein interaction networks: stable bipartite subgraphs and redundant pathways.
Brady, Arthur; Maxwell, Kyle; Daniels, Noah; Cowen, Lenore J
2009-01-01
As increasing amounts of high-throughput data for the yeast interactome become available, more system-wide properties are uncovered. One interesting question concerns the fault tolerance of protein interaction networks: whether there exist alternative pathways that can perform some required function if a gene essential to the main mechanism is defective, absent or suppressed. A signature pattern for redundant pathways is the BPM (between-pathway model) motif, introduced by Kelley and Ideker. Past methods proposed to search the yeast interactome for BPM motifs have had several important limitations. First, they have been driven heuristically by local greedy searches, which can lead to the inclusion of extra genes that may not belong in the motif; second, they have been validated solely by functional coherence of the putative pathways using GO enrichment, making it difficult to evaluate putative BPMs in the absence of already known biological annotation. We introduce stable bipartite subgraphs, and show they form a clean and efficient way of generating meaningful BPMs which naturally discard extra genes included by local greedy methods. We show by GO enrichment measures that our BPM set outperforms previous work, covering more known complexes and functional pathways. Perhaps most importantly, since our BPMs are initially generated by examining the genetic-interaction network only, the location of edges in the protein-protein physical interaction network can then be used to statistically validate each candidate BPM, even with sparse GO annotation (or none at all). We uncover some interesting biological examples of previously unknown putative redundant pathways in such areas as vesicle-mediated transport and DNA repair.
Fault Tolerance in Protein Interaction Networks: Stable Bipartite Subgraphs and Redundant Pathways
Brady, Arthur; Maxwell, Kyle; Daniels, Noah; Cowen, Lenore J.
2009-01-01
As increasing amounts of high-throughput data for the yeast interactome become available, more system-wide properties are uncovered. One interesting question concerns the fault tolerance of protein interaction networks: whether there exist alternative pathways that can perform some required function if a gene essential to the main mechanism is defective, absent or suppressed. A signature pattern for redundant pathways is the BPM (between-pathway model) motif, introduced by Kelley and Ideker. Past methods proposed to search the yeast interactome for BPM motifs have had several important limitations. First, they have been driven heuristically by local greedy searches, which can lead to the inclusion of extra genes that may not belong in the motif; second, they have been validated solely by functional coherence of the putative pathways using GO enrichment, making it difficult to evaluate putative BPMs in the absence of already known biological annotation. We introduce stable bipartite subgraphs, and show they form a clean and efficient way of generating meaningful BPMs which naturally discard extra genes included by local greedy methods. We show by GO enrichment measures that our BPM set outperforms previous work, covering more known complexes and functional pathways. Perhaps most importantly, since our BPMs are initially generated by examining the genetic-interaction network only, the location of edges in the protein-protein physical interaction network can then be used to statistically validate each candidate BPM, even with sparse GO annotation (or none at all). We uncover some interesting biological examples of previously unknown putative redundant pathways in such areas as vesicle-mediated transport and DNA repair. PMID:19399174
De Sousa-D'Auria, Célia; Kacem, Raoudha; Puech, Virginie; Tropis, Marielle; Leblon, Gérard; Houssin, Christine; Daffé, Mamadou
2003-07-15
Mycolic acids, the major lipid constituents of Corynebacterineae, play an essential role in maintaining the integrity of the bacterial cell envelope. We have previously characterized a corynebacterial mycoloyltransferase (PS1) homologous in its N-terminal part to the three known mycobacterial mycoloyltransferases, the so-called fibronectin-binding proteins A, B and C. The genomes of Corynebacterium glutamicum (ATCC13032 and CGL2005) and Corynebacterium diphtheriae were explored for the occurrence of other putative corynebacterial mycoloyltransferase-encoding genes (cmyt). In addition to csp1 (renamed cmytA), five new cmyt genes (cmytB-F) were identified in the two strains of C. glutamicum and three cmyt genes in C. diphtheriae. In silico analysis showed that each of the putative cMyts contains the esterase domain, including the three key amino acids necessary for the catalysis. In C. glutamicum CGL2005 cmytE is a pseudogene. The four new cmyt genes were disrupted in this strain and overexpressed in the inactivated strains. Quantitative analyses of the mycolate content of all these mutants demonstrated that each of the new cMyt-defective strains, except cMytC, accumulated trehalose monocorynomycolate and exhibited a lower content of covalently bound corynomycolate than did the parent strain. For each mutant, the mycolate content was fully restored by complementation with the corresponding wild-type gene. Finally, complementation of the cmytA-inactivated mutant by the individual new cmyt genes established the existence of two classes of mycoloyltransferases in corynebacteria.
Genome-Wide Search for Genes Required for Bifidobacterial Growth under Iron-Limitation
Lanigan, Noreen; Bottacini, Francesca; Casey, Pat G.; O'Connell Motherway, Mary; van Sinderen, Douwe
2017-01-01
Bacteria evolved over millennia in the presence of the vital micronutrient iron. Iron is involved in numerous processes within the cell and is essential for nearly all living organisms. The importance of iron to the survival of bacteria is obvious from the large variety of mechanisms by which iron may be acquired from the environment. Random mutagenesis and global gene expression profiling led to the identification of a number of genes, which are essential for Bifidobacterium breve UCC2003 survival under iron-restrictive conditions. These genes encode, among others, Fe-S cluster-associated proteins, a possible ferric iron reductase, a number of cell wall-associated proteins, and various DNA replication and repair proteins. In addition, our study identified several presumed iron uptake systems which were shown to be essential for B. breve UCC2003 growth under conditions of either ferric and/or ferrous iron chelation. Of these, two gene clusters encoding putative iron-uptake systems, bfeUO and sifABCDE, were further characterised, indicating that sifABCDE is involved in ferrous iron transport, while the bfeUO-encoded transport system imports both ferrous and ferric iron. Transcription studies showed that bfeUO and sifABCDE constitute two separate transcriptional units that are induced upon dipyridyl-mediated iron limitation. In the anaerobic gastrointestinal environment ferrous iron is presumed to be of most relevance, though a mutation in the sifABCDE cluster does not affect B. breve UCC2003's ability to colonise the gut of a murine model. PMID:28620359
Pomerantz, Aaron F; Hoy, Marjorie A
2015-01-01
Characterization and expression analyses are essential to gain insight into sex-determination pathways in members of the Acari. Little is known about sex determination at the molecular level in the western orchard predatory mite Metaseiulus occidentalis (Arthropoda: Chelicerata: Arachnida: Acari: Phytoseiidae), a parahaploid species. In this study, eight genes previously identified as putative homologs to genes involved in the sex-determination pathway in Drosophila melanogaster were evaluated for sex-specific alternative splicing and sex-biased expression using reverse-transcriptase PCR and quantitative real-time PCR techniques, respectively. The homologs evaluated in M. occidentalis included two doublesex-like genes (Moccdsx1 and Moccdsx2), transformer-2 (Mocctra-2), intersex (Moccix), two fruitless-like genes (MoccBTB1 and MoccBTB2), as well as two vitellogenin-like genes (Moccvg1 and Moccvg2). Single transcripts of equal size were detected in males and females for Moccdsx1, Moccdsx2, Mocctra-2, Moccix, and MoccBTB2, suggesting that their pre-mRNAs do not undergo alternative splicing in a sex-specific manner. Three genes, Moccdsx1, Moccdsx2 and MoccBTB2, displayed male-biased expression relative to females. One gene, Moccix, displayed female-biased expression relative to males. Two genes, Mocctra-2 and MoccBTB1, did not display detectable differences in transcript abundance in males and females. Expression of Moccvg1 and Moccvg2 were detected in females only, and transcript levels were up-regulated in mated females relative to unmated females. To our knowledge, this represents the first attempt to elucidate expression patterns of putative sex-determination genes in an acarine. This study is an initial step towards understanding the sex-determination pathway in the parahaploid M. occidentalis.
Zhu, Yu-Cheng; Specht, Charles A; Dittmer, Neal T; Muthukrishnan, Subbaratnam; Kanost, Michael R; Kramer, Karl J
2002-11-01
Glycosyltransferases are enzymes that synthesize oligosaccharides, polysaccharides and glycoconjugates. One type of glycosyltransferase is chitin synthase, a very important enzyme in biology, which is utilized by insects, fungi, and other invertebrates to produce chitin, a polysaccharide of beta-1,4-linked N-acetylglucosamine. Chitin is an important component of the insect's exoskeletal cuticle and gut lining. To identify and characterize a chitin synthase gene of the tobacco hornworm, Manduca sexta, degenerate primers were designed from two highly conserved regions in fungal and nematode chitin synthase protein sequences and then used to amplify a similar region from Manduca cDNA. A full-length cDNA of 5152 nucleotides was assembled for the putative Manduca chitin synthase gene, MsCHS1, and sequencing of genomic DNA verified the contiguity of the sequence. The MsCHS1 cDNA has an ORF of 4692 nucleotides that encodes a transmembrane protein of 1564 amino acid residues with a mass of approximately 179 kDa (GenBank no. AY062175). It is most similar, over its entire length of protein sequence, to putative chitin synthases from other insects and nematodes, with 68% identity to enzymes from both the blow fly, Lucilia cuprina, and the fruit fly, Drosophila melanogaster. The similarity with fungal chitin synthases is restricted to the putative catalytic domain, and the MsCHS1 protein has, at equivalent positions, several amino acids that are essential for activity as revealed by mutagenesis of the fungal enzymes. A 5.3-kb transcript of MsCHS1 was identified by northern blot hybridization of RNA from larval epidermis, suggesting that the enzyme functions to make chitin deposited in the cuticle. Further examination by RT-PCR showed that MsCHS1 expression is regulated in the epidermis, with the amount of transcript increasing during phases of cuticle deposition.
van der Geize, R.; de Jong, W.; Hessels, G. I.; Grommen, A. W. F.; Jacobs, A. A. C.; Dijkhuizen, L.
2008-01-01
A novel method to efficiently generate unmarked in-frame gene deletions in Rhodococcus equi was developed, exploiting the cytotoxic effect of 5-fluorocytosine (5-FC) by the action of cytosine deaminase (CD) and uracil phosphoribosyltransferase (UPRT) enzymes. The opportunistic, intracellular pathogen R. equi is resistant to high concentrations of 5-FC. Introduction of Escherichia coli genes encoding CD and UPRT conferred conditional lethality to R. equi cells incubated with 5-FC. To exemplify the use of the codA::upp cassette as counter-selectable marker, an unmarked in-frame gene deletion mutant of R. equi was constructed. The supA and supB genes, part of a putative cholesterol catabolic gene cluster, were efficiently deleted from the R. equi wild-type genome. Phenotypic analysis of the generated ΔsupAB mutant confirmed that supAB are essential for growth of R. equi on cholesterol. Macrophage survival assays revealed that the ΔsupAB mutant is able to survive and proliferate in macrophages comparable to wild type. Thus, cholesterol metabolism does not appear to be essential for macrophage survival of R. equi. The CD-UPRT based 5-FC counter-selection may become a useful asset in the generation of unmarked in-frame gene deletions in other actinobacteria as well, as actinobacteria generally appear to be 5-FC resistant and 5-FU sensitive. PMID:18984616
The PhytoClust tool for metabolic gene clusters discovery in plant genomes
Fuchs, Lisa-Maria
2017-01-01
Abstract The existence of Metabolic Gene Clusters (MGCs) in plant genomes has recently raised increased interest. Thus far, MGCs were commonly identified for pathways of specialized metabolism, mostly those associated with terpene type products. For efficient identification of novel MGCs, computational approaches are essential. Here, we present PhytoClust; a tool for the detection of candidate MGCs in plant genomes. The algorithm employs a collection of enzyme families related to plant specialized metabolism, translated into hidden Markov models, to mine given genome sequences for physically co-localized metabolic enzymes. Our tool accurately identifies previously characterized plant MGCs. An exhaustive search of 31 plant genomes detected 1232 and 5531 putative gene cluster types and candidates, respectively. Clustering analysis of putative MGCs types by species reflected plant taxonomy. Furthermore, enrichment analysis revealed taxa- and species-specific enrichment of certain enzyme families in MGCs. When operating through our web-interface, PhytoClust users can mine a genome either based on a list of known cluster types or by defining new cluster rules. Moreover, for selected plant species, the output can be complemented by co-expression analysis. Altogether, we envisage PhytoClust to enhance novel MGCs discovery which will in turn impact the exploration of plant metabolism. PMID:28486689
The PhytoClust tool for metabolic gene clusters discovery in plant genomes.
Töpfer, Nadine; Fuchs, Lisa-Maria; Aharoni, Asaph
2017-07-07
The existence of Metabolic Gene Clusters (MGCs) in plant genomes has recently raised increased interest. Thus far, MGCs were commonly identified for pathways of specialized metabolism, mostly those associated with terpene type products. For efficient identification of novel MGCs, computational approaches are essential. Here, we present PhytoClust; a tool for the detection of candidate MGCs in plant genomes. The algorithm employs a collection of enzyme families related to plant specialized metabolism, translated into hidden Markov models, to mine given genome sequences for physically co-localized metabolic enzymes. Our tool accurately identifies previously characterized plant MGCs. An exhaustive search of 31 plant genomes detected 1232 and 5531 putative gene cluster types and candidates, respectively. Clustering analysis of putative MGCs types by species reflected plant taxonomy. Furthermore, enrichment analysis revealed taxa- and species-specific enrichment of certain enzyme families in MGCs. When operating through our web-interface, PhytoClust users can mine a genome either based on a list of known cluster types or by defining new cluster rules. Moreover, for selected plant species, the output can be complemented by co-expression analysis. Altogether, we envisage PhytoClust to enhance novel MGCs discovery which will in turn impact the exploration of plant metabolism. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Functional characterization of putative cilia genes by high-content analysis
Lai, Cary K.; Gupta, Nidhi; Wen, Xiaohui; Rangell, Linda; Chih, Ben; Peterson, Andrew S.; Bazan, J. Fernando; Li, Li; Scales, Suzie J.
2011-01-01
Cilia are microtubule-based protrusions from the cell surface that are involved in a number of essential signaling pathways, yet little is known about many of the proteins that regulate their structure and function. A number of putative cilia genes have been identified by proteomics and comparative sequence analyses, but functional data are lacking for the vast majority. We therefore monitored the effects in three cell lines of small interfering RNA (siRNA) knockdown of 40 of these genes by high-content analysis. We assayed cilia number, length, and transport of two different cargoes (membranous serotonin receptor 6-green fluorescent protein [HTR6-GFP] and the endogenous Hedgehog [Hh] pathway transcription factor Gli3) by immunofluorescence microscopy; and cilia function using a Gli-luciferase Hh signaling assay. Hh signaling was most sensitive to perturbations, with or without visible structural cilia defects. Validated hits include Ssa2 and mC21orf2 with ciliation defects; Ift46 with short cilia; Ptpdc1 and Iqub with elongated cilia; and Arl3, Nme7, and Ssna1 with distinct ciliary transport but not length defects. Our data confirm various ciliary roles for several ciliome proteins and show it is possible to uncouple ciliary cargo transport from cilia formation in vertebrates. PMID:21289087
The LIM-homeodomain transcription factor LMX1B regulates expression of NF-kappa B target genes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rascle, Anne; Neumann, Tanja; Raschta, Anne-Sarah
2009-01-01
LMX1B is a LIM-homeodomain transcription factor essential for development. Putative LMX1B target genes have been identified through mouse gene targeting studies, but their identity as direct LMX1B targets remains hypothetical. We describe here the first molecular characterization of LMX1B target gene regulation. Microarray analysis using a tetracycline-inducible LMX1B expression system in HeLa cells revealed that a subset of NF-{kappa}B target genes, including IL-6 and IL-8, are upregulated in LMX1B-expressing cells. Inhibition of NF-{kappa}B activity by short interfering RNA-mediated knock-down of p65 impairs, while activation of NF-{kappa}B activity by TNF-{alpha} synergizes induction of NF-{kappa}B target genes by LMX1B. Chromatin immunoprecipitation demonstratedmore » that LMX1B binds to the proximal promoter of IL-6 and IL-8 in vivo, in the vicinity of the characterized {kappa}B site, and that LMX1B recruitment correlates with increased NF-{kappa}B DNA association. IL-6 promoter-reporter assays showed that the {kappa}B site and an adjacent putative LMX1B binding motif are both involved in LMX1B-mediated transcription. Expression of NF-{kappa}B target genes is affected in the kidney of Lmx1b{sup -/-} knock-out mice, thus supporting the biological relevance of our findings. Together, these data demonstrate for the first time that LMX1B directly regulates transcription of a subset of NF-{kappa}B target genes in cooperation with nuclear p50/p65 NF-{kappa}B.« less
Gallardo, Carmina; Sánchez, Elena G; Pérez-Núñez, Daniel; Nogal, Marisa; de León, Patricia; Carrascosa, Ángel L; Nieto, Raquel; Soler, Alejandro; Arias, María Luisa; Revilla, Yolanda
2018-05-03
The risk of spread of African swine fever virus (ASFV) from Russia and Caucasian areas to several EU countries has recently emerged, making it imperative to improve our knowledge and defensive tools against this important pathogen. The ASFV genome encodes many genes which are not essential for virus replication but are known to control host immune evasion, such as NFκB and the NFAT regulator A238L, the apoptosis inhibitor A224L, the MHC-I antigen presenting modulator EP153R, and the A276R gene, involved in modulating type I IFN. These genes are hypothesized to be involved in virulence of the genotype I parental ASFV NH/P68. We here describe the generation of putative live attenuated vaccines (LAV) prototypes by constructing recombinant NH/P68 viruses lacking these specific genes and containing specific markers. Copyright © 2018 Elsevier Ltd. All rights reserved.
New gene functions in megakaryopoiesis and platelet formation
Gieger, Christian; Radhakrishnan, Aparna; Cvejic, Ana; Tang, Weihong; Porcu, Eleonora; Pistis, Giorgio; Serbanovic-Canic, Jovana; Elling, Ulrich; Goodall, Alison H.; Labrune, Yann; Lopez, Lorna M.; Mägi, Reedik; Meacham, Stuart; Okada, Yukinori; Pirastu, Nicola; Sorice, Rossella; Teumer, Alexander; Voss, Katrin; Zhang, Weihua; Ramirez-Solis, Ramiro; Bis, Joshua C.; Ellinghaus, David; Gögele, Martin; Hottenga, Jouke-Jan; Langenberg, Claudia; Kovacs, Peter; O’Reilly, Paul F.; Shin, So-Youn; Esko, Tõnu; Hartiala, Jaana; Kanoni, Stavroula; Murgia, Federico; Parsa, Afshin; Stephens, Jonathan; van der Harst, Pim; van der Schoot, C. Ellen; Allayee, Hooman; Attwood, Antony; Balkau, Beverley; Bastardot, François; Basu, Saonli; Baumeister, Sebastian E.; Biino, Ginevra; Bomba, Lorenzo; Bonnefond, Amélie; Cambien, François; Chambers, John C.; Cucca, Francesco; D’Adamo, Pio; Davies, Gail; de Boer, Rudolf A.; de Geus, Eco J. C.; Döring, Angela; Elliott, Paul; Erdmann, Jeanette; Evans, David M.; Falchi, Mario; Feng, Wei; Folsom, Aaron R.; Frazer, Ian H.; Gibson, Quince D.; Glazer, Nicole L.; Hammond, Chris; Hartikainen, Anna-Liisa; Heckbert, Susan R.; Hengstenberg, Christian; Hersch, Micha; Illig, Thomas; Loos, Ruth J. F.; Jolley, Jennifer; Khaw, Kay Tee; Kühnel, Brigitte; Kyrtsonis, Marie-Christine; Lagou, Vasiliki; Lloyd-Jones, Heather; Lumley, Thomas; Mangino, Massimo; Maschio, Andrea; Leach, Irene Mateo; McKnight, Barbara; Memari, Yasin; Mitchell, Braxton D.; Montgomery, Grant W.; Nakamura, Yusuke; Nauck, Matthias; Navis, Gerjan; Nöthlings, Ute; Nolte, Ilja M.; Porteous, David J.; Pouta, Anneli; Pramstaller, Peter P.; Pullat, Janne; Ring, Susan M.; Rotter, Jerome I.; Ruggiero, Daniela; Ruokonen, Aimo; Sala, Cinzia; Samani, Nilesh J.; Sambrook, Jennifer; Schlessinger, David; Schreiber, Stefan; Schunkert, Heribert; Scott, James; Smith, Nicholas L.; Snieder, Harold; Starr, John M.; Stumvoll, Michael; Takahashi, Atsushi; Tang, W. H. Wilson; Taylor, Kent; Tenesa, Albert; Thein, Swee Lay; Tönjes, Anke; Uda, Manuela; Ulivi, Sheila; van Veldhuisen, Dirk J.; Visscher, Peter M.; Völker, Uwe; Wichmann, H.-Erich; Wiggins, Kerri L.; Willemsen, Gonneke; Yang, Tsun-Po; Zhao, Jing Hua; Zitting, Paavo; Bradley, John R.; Dedoussis, George V.; Gasparini, Paolo; Hazen, Stanley L.; Metspalu, Andres; Pirastu, Mario; Shuldiner, Alan R.; van Pelt, L. Joost; Zwaginga, Jaap-Jan; Boomsma, Dorret I.; Deary, Ian J.; Franke, Andre; Froguel, Philippe; Ganesh, Santhi K.; Jarvelin, Marjo-Riitta; Martin, Nicholas G.; Meisinger, Christa; Psaty, Bruce M.; Spector, Timothy D.; Wareham, Nicholas J.; Akkerman, Jan-Willem N.; Ciullo, Marina; Deloukas, Panos; Greinacher, Andreas; Jupe, Steve; Kamatani, Naoyuki; Khadake, Jyoti; Kooner, Jaspal S.; Penninger, Josef; Prokopenko, Inga; Stemple, Derek; Toniolo, Daniela; Wernisch, Lorenz; Sanna, Serena; Hicks, Andrew A.; Rendon, Augusto; Ferreira, Manuel A.; Ouwehand, Willem H.; Soranzo, Nicole
2012-01-01
Platelets are the second most abundant cell type in blood and are essential for maintaining haemostasis. Their count and volume are tightly controlled within narrow physiological ranges, but there is only limited understanding of the molecular processes controlling both traits. Here we carried out a high-powered meta-analysis of genome-wide association studies (GWAS) in up to 66,867 individuals of European ancestry, followed by extensive biological and functional assessment. We identified 68 genomic loci reliably associated with platelet count and volume mapping to established and putative novel regulators of megakaryopoiesis and platelet formation. These genes show megakaryocyte-specific gene expression patterns and extensive network connectivity. Using gene silencing in Danio rerio and Drosophila melanogaster, we identified 11 of the genes as novel regulators of blood cell formation. Taken together, our findings advance understanding of novel gene functions controlling fate-determining events during megakaryopoiesis and platelet formation, providing a new example of successful translation of GWAS to function. PMID:22139419
Functional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coradetti, Samuel T.; Pinel, Dominic; Geiselman, Gina M.
The basidiomycete yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) accumulates high concentrations of lipids and carotenoids from diverse carbon sources. It has great potential as a model for the cellular biology of lipid droplets and for sustainable chemical production. We developed a method for high-throughput genetics (RB-TDNAseq), using sequence-barcoded Agrobacterium tumefaciens T-DNA insertions. We identified 1,337 putative essential genes with low T-DNA insertion rates. We functionally profiled genes required for fatty acid catabolism and lipid accumulation, validating results with 35 targeted deletion strains. We identified a high-confidence set of 150 genes affecting lipid accumulation, including genes with predicted functionmore » in signaling cascades, gene expression, protein modification and vesicular trafficking, autophagy, amino acid synthesis and tRNA modification, and genes of unknown function. Lastly, these results greatly advance our understanding of lipid metabolism in this oleaginous species and demonstrate a general approach for barcoded mutagenesis that should enable functional genomics in diverse fungi.« less
Functional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides
Geiselman, Gina M; Ito, Masakazu; Mondo, Stephen J; Reilly, Morgann C; Cheng, Ya-Fang; Bauer, Stefan; Grigoriev, Igor V; Gladden, John M; Simmons, Blake A; Brem, Rachel B
2018-01-01
The basidiomycete yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) accumulates high concentrations of lipids and carotenoids from diverse carbon sources. It has great potential as a model for the cellular biology of lipid droplets and for sustainable chemical production. We developed a method for high-throughput genetics (RB-TDNAseq), using sequence-barcoded Agrobacterium tumefaciens T-DNA insertions. We identified 1,337 putative essential genes with low T-DNA insertion rates. We functionally profiled genes required for fatty acid catabolism and lipid accumulation, validating results with 35 targeted deletion strains. We identified a high-confidence set of 150 genes affecting lipid accumulation, including genes with predicted function in signaling cascades, gene expression, protein modification and vesicular trafficking, autophagy, amino acid synthesis and tRNA modification, and genes of unknown function. These results greatly advance our understanding of lipid metabolism in this oleaginous species and demonstrate a general approach for barcoded mutagenesis that should enable functional genomics in diverse fungi. PMID:29521624
Functional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides
Coradetti, Samuel T.; Pinel, Dominic; Geiselman, Gina M.; ...
2018-03-09
The basidiomycete yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) accumulates high concentrations of lipids and carotenoids from diverse carbon sources. It has great potential as a model for the cellular biology of lipid droplets and for sustainable chemical production. We developed a method for high-throughput genetics (RB-TDNAseq), using sequence-barcoded Agrobacterium tumefaciens T-DNA insertions. We identified 1,337 putative essential genes with low T-DNA insertion rates. We functionally profiled genes required for fatty acid catabolism and lipid accumulation, validating results with 35 targeted deletion strains. We identified a high-confidence set of 150 genes affecting lipid accumulation, including genes with predicted functionmore » in signaling cascades, gene expression, protein modification and vesicular trafficking, autophagy, amino acid synthesis and tRNA modification, and genes of unknown function. Lastly, these results greatly advance our understanding of lipid metabolism in this oleaginous species and demonstrate a general approach for barcoded mutagenesis that should enable functional genomics in diverse fungi.« less
Liu, Tingting; Yao, Ruolan; Zhao, Yucheng; Xu, Sheng; Huang, Chuanlong; Luo, Jun; Kong, Lingyi
2017-01-01
Coumarins are the main bioactive compounds in Peucedanum praeruptorum Dunn, a common Chinese herbal medicine. Nevertheless, the genes involved in the biosynthesis of core structure of coumarin in P. praeruptorum have not been identified yet. 4-Coumarate: CoA ligase (4CL) catalyzes the formation of hydroxycinnamates CoA esters, and plays an essential role at the divergence point from general phenylpropanoid metabolism to major branch pathway of coumarin. Here, three novel putative 4CL genes (Pp4CL1, Pp4CL7, and Pp4CL10) were isolated from P. praeruptorum. Biochemical characterization of the recombinant proteins revealed that Pp4CL1 utilized p-coumaric and ferulic acids as its two main substrates for coumarin biosynthesis in P. praeruptorum. Furthermore, Pp4CL1 also exhibited activity toward caffeic, cinnamic, isoferulic, and o-coumaric acids and represented a bona fide 4CL. Pp4CL7 and Pp4CL10 had no catalytic activity toward hydroxycinnamic acid compounds. But they had close phylogenetic relationship to true 4CLs and were defined as 4CL-like genes. Among all putative 4CLs, Pp4CL1 was the most highly expressed gene in roots, and its expression level was significantly up-regulated in mature roots compared with seedlings. Subcellular localization studies showed that Pp4CL1 and Pp4CL10 proteins were localized in the cytosol. In addition, site-directed mutagenesis of Pp4CL1 demonstrated that amino acids of Tyr-239, Ala-243, Met-306, Ala-309, Gly-334, Lys-441, Gln-446, and Lys-526 were essential for substrate binding or catalytic activities. The characterization and site-directed mutagenesis studies of Pp4CL1 lays a solid foundation for elucidating the biosynthetic mechanisms of coumarins in P. praeruptorum and provides further insights in understanding the structure–function relationships of this important family of proteins. PMID:28144249
PRGdb: a bioinformatics platform for plant resistance gene analysis
Sanseverino, Walter; Roma, Guglielmo; De Simone, Marco; Faino, Luigi; Melito, Sara; Stupka, Elia; Frusciante, Luigi; Ercolano, Maria Raffaella
2010-01-01
PRGdb is a web accessible open-source (http://www.prgdb.org) database that represents the first bioinformatic resource providing a comprehensive overview of resistance genes (R-genes) in plants. PRGdb holds more than 16 000 known and putative R-genes belonging to 192 plant species challenged by 115 different pathogens and linked with useful biological information. The complete database includes a set of 73 manually curated reference R-genes, 6308 putative R-genes collected from NCBI and 10463 computationally predicted putative R-genes. Thanks to a user-friendly interface, data can be examined using different query tools. A home-made prediction pipeline called Disease Resistance Analysis and Gene Orthology (DRAGO), based on reference R-gene sequence data, was developed to search for plant resistance genes in public datasets such as Unigene and Genbank. New putative R-gene classes containing unknown domain combinations were discovered and characterized. The development of the PRG platform represents an important starting point to conduct various experimental tasks. The inferred cross-link between genomic and phenotypic information allows access to a large body of information to find answers to several biological questions. The database structure also permits easy integration with other data types and opens up prospects for future implementations. PMID:19906694
Bormann, Jörg; Tudzynski, Paul
2009-12-01
The putative Claviceps purpurea homologue of the Saccharomyces cerevisiae stretch-activated calcium ion channel Mid1 was investigated for its role in vegetative growth, differentiation and pathogenicity on rye (Secale cereale). Gene replacement mutants of Cl. purpurea mid1 were not affected in polar growth and branching in axenic culture but showed a significantly reduced growth rate. The growth defect could not be complemented by Ca(2+) supplementation, in contrast to mid1 mutants in yeast, but the altered sensitivity of the mutants to changes in external and internal Ca(2+) concentrations indicates some role of Mid1 in Ca(2+) homeostasis. The major effect of mid1 deletion, however, was the complete loss of virulence: infected rye plants showed no disease symptoms at all. Detailed analyses of in vitro-infected rye ovaries demonstrated that the Deltamid1 mutants had multiple apical branches and were unable to infect the host tissue, suggesting that Mid1 is essential for generating the necessary mechanical force for penetration. This is believed to be the first report of an essential role for a Mid1 homologue in the virulence of a plant-pathogenic fungus.
2013-01-01
Background Polycomb Repressive Complex 2 (PRC2) is an essential regulator of gene expression that maintains genes in a repressed state by marking chromatin with trimethylated Histone H3 lysine 27 (H3K27me3). In Arabidopsis, loss of PRC2 function leads to pleiotropic effects on growth and development thought to be due to ectopic expression of seed and embryo-specific genes. While there is some understanding of the mechanisms by which specific genes are targeted by PRC2 in animal systems, it is still not clear how PRC2 is recruited to specific regions of plant genomes. Results We used ChIP-seq to determine the genome-wide distribution of hemagglutinin (HA)-tagged FERTLIZATION INDEPENDENT ENDOSPERM (FIE-HA), the Extra Sex Combs homolog protein present in all Arabidopsis PRC2 complexes. We found that the FIE-HA binding sites co-locate with a subset of the H3K27me3 sites in the genome and that the associated genes were more likely to be de-repressed in mutants of PRC2 components. The FIE-HA binding sites are enriched for three sequence motifs including a putative GAGA factor binding site that is also found in Drosophila Polycomb Response Elements (PREs). Conclusions Our results suggest that PRC2 binding sites in plant genomes share some sequence features with Drosophila PREs. However, unlike Drosophila PREs which are located in promoters and devoid of H3K27me3, Arabidopsis FIE binding sites tend to be in gene coding regions and co-localize with H3K27me3. PMID:24001316
Data-Driven Asthma Endotypes Defined from Blood Biomarker and Gene Expression Data
George, Barbara Jane; Reif, David M.; Gallagher, Jane E.; Williams-DeVane, ClarLynda R.; Heidenfelder, Brooke L.; Hudgens, Edward E.; Jones, Wendell; Neas, Lucas; Hubal, Elaine A. Cohen; Edwards, Stephen W.
2015-01-01
The diagnosis and treatment of childhood asthma is complicated by its mechanistically distinct subtypes (endotypes) driven by genetic susceptibility and modulating environmental factors. Clinical biomarkers and blood gene expression were collected from a stratified, cross-sectional study of asthmatic and non-asthmatic children from Detroit, MI. This study describes four distinct asthma endotypes identified via a purely data-driven method. Our method was specifically designed to integrate blood gene expression and clinical biomarkers in a way that provides new mechanistic insights regarding the different asthma endotypes. For example, we describe metabolic syndrome-induced systemic inflammation as an associated factor in three of the four asthma endotypes. Context provided by the clinical biomarker data was essential in interpreting gene expression patterns and identifying putative endotypes, which emphasizes the importance of integrated approaches when studying complex disease etiologies. These synthesized patterns of gene expression and clinical markers from our research may lead to development of novel serum-based biomarker panels. PMID:25643280
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, E.; Prakash, L.; Guzder, S.N.
1992-12-01
Xeroderma pigmentosum (XP) patients are extremely sensitive to ultraviolet (UV) light and suffer from a high incidence of skin cancers, due to a defect in nucleotide excision repair. The disease is genetically heterogeneous, and seven complementation groups, A-G, have been identified. Homologs of human excision repair genes ERCC1, XPDC/ERCC2, and XPAC have been identified in the yeast Saccharomyces cerevisiae. Since no homolog of human XPBC/ERCC3 existed among the known yeast genes, we cloned the yeast homolog by using XPBC cDNA as a hybridization probe. The yeast homolog, RAD25 (SSL2), encodes a protein of 843 amino acids (M[sub r] 95,356). Themore » RAD25 (SSL2)- and XPCX-encoded proteins share 55% identical and 72% conserved amino acid residues, and the two proteins resemble one another in containing the conserved DNA helicase sequence motifs. A nonsense mutation at codon 799 that deletes the 45 C-terminal amino acid residues in RAD25 (SSL2) confers UV sensitivity. This mutation shows epistasis with genes in the excision repair group, whereas a synergistic increase in UN sensitivity occurs when it is combined with mutations in genes in other DNA repair pathways, indicating that RAD25 (SSL2) functions in excision repair but not in other repair pathways. We also show that RAD25 (SSL2) is an essential gene. A mutation of the Lys[sup 392] residue to arginine in the conserved Walker type A nucleotide-binding motif is lethal, suggesting an essential role of the putative RAD 25 (SSL2) ATPase/DNA helicase activity in viability. 40 refs., 3 figs., 1 tab.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Biaoyang; Nasir, J.; Kalchman, M.A.
1995-02-10
We have previously cloned and characterized the murine homologue of the Huntington disease (HD) gene and shown that it maps to mouse chromosome 5 within a region of conserved synteny with human chromosome 4p16.3. Here we present a detailed comparison of the sequence of the putative promoter and the organization of the 5{prime} genomic region of the murine (Hdh) and human HD genes encompassing the first five exons. We show that in this region these two genes share identical exon boundaries, but have different-size introns. Two dinucleotide (CT) and one trinucleotide intronic polymorphism in Hdh and an intronic CA polymorphismmore » in the HD gene were identified. Comparison of 940-bp sequence 5{prime} to the putative translation start site reveals a highly conserved region (78.8% nucleotide identity) between Hdh and the HD gene from nucleotide -56 to -206 (of Hdh). Neither Hdh nor the HD gene have typical TATA or CCAAT elements, but both show one putative AP2 binding site and numerous potential Sp1 binding sites. The high sequence identity between Hdh and the HD gene for approximately 200 bp 5{prime} to the putative translation start site indicates that these sequences may play a role in regulating expression of the Huntington disease gene. 30 refs., 4 figs., 2 tabs.« less
Mesak, Lili R; Mesak, Felix M; Dahl, Michael K
2004-01-01
Background The Bacillus subtilis glucokinase operon was predicted to be comprised of the genes, yqgP (now named gluP), yqgQ, and glcK. We have previously established a role for glcK in glucose metabolism. In the absence of enzymes that phosphorylate glucose, such as GlcK and/or enzyme IIGlc, accumulated cytoplasmic glucose can be transported out of the cell. Genes within the glucokinase operon were not previously known to play a role in glucose transport. Here we describe the expression of gluP and its function in glucose transport. Results We found that transcription of the glucokinase operon was regulated, putatively, by two promoters: σA and σH. Putative σA and σH-recognition sites were located upstream of and within gluP, respectively. Transcriptional glucokinase operon – lacZ fusions and Northern blotting were used to analyze the expression of gluP. GluP was predicted to be an integral membrane protein. Moreover, the prediction of GluP structure revealed interesting signatures: a rhomboid domain and two tetracopeptide repeat (TPR) motifs. Microscopic analysis showed that GluP minus cells were unable to divide completely, resulting in a filamentous phenotype. The cells were grown in either rich or minimal medium. We found GluP may be involved in glucose transport. [14C]-glucose uptake by the GluP minus strain was slightly less than in the wild type. On the other hand, trehalose-derived glucose in the growth medium of the GluP minus strain was detected in very low amounts. Experimental controls comprised of single or multiple genes mutations within the glucose transporting phosphotransferase system. Conclusions gluP seems to be regulated only by a putative σA-dependent promoter. The glucose uptake and export assays suggest that GluP is important for glucose export and may act as an exporter. This also supports the role of the glucokinase operon in glucose utilization. PMID:15050034
Transgenic analysis of the medaka mesp-b enhancer in somitogenesis.
Terasaki, Harumi; Murakami, Ryohei; Yasuhiko, Yukuto; Shin-I, Tadasu; Kohara, Yuji; Saga, Yumiko; Takeda, Hiroyuki
2006-04-01
Somitogenesis is a critical step during the formation of metameric structures in vertebrates. Recent studies in mouse, chick, zebrafish and Xenopus have revealed that several factors, such as T-box genes, Notch/Delta, Wnt, retinoic acid and FGF signaling, are involved in the specification of nascent somites. By interacting with these pathways, the Mesp2-like bHLH transcription factors are transiently expressed in the anterior presomitic mesoderm and play a crucial role in somite formation. The regulatory mechanisms of Mesp2 and its related genes during somitogenesis have been studied in mouse and Xenopus. However, the precise mechanism that regulates the transcriptional activity of Mesp2 has yet to be determined. In our current report, we identify the essential enhancer element of medaka mesp-b, an orthologue of mouse Mesp2, using transgenic techniques and embryo manipulation. Our results demonstrate that a region of approximately 2.8 kb, upstream of the mesp-b gene, is responsible for both the initiation and anterior localization of mesp-b transcription within a somite primordium. Furthermore, putative motifs for both T-box transcription factors and Notch/Delta signaling are present in this enhancer region and are essential for activity.
Mun, Seulgi; Noh, Mi Young; Osanai-Futahashi, Mizuko; Muthukrishnan, Subbaratnam; Kramer, Karl J; Arakane, Yasuyuki
2014-06-01
Insect cuticle pigmentation and sclerotization (tanning) are vital physiological processes for insect growth, development and survival. We have previously identified several colorless precursor molecules as well as enzymes involved in their biosynthesis and processing to yield the mature intensely colored body cuticle pigments. A recent study indicated that the Bombyx mori (silkmoth) gene, BmMucK, which encodes a protein orthologous to a Culex pipiens quiquefasciatus (Southern house mosquito) cis,cis, muconate transporter, is a member of the "Major Facilitator Superfamily" (MFS) of transporter proteins and is associated with the appearance of pigmented body segments of naturally occurring body color mutants of B. mori. While RNA interference of the BmMucK gene failed to result in any observable phenotype, RNAi using a dsRNA for an orthologous gene from the red flour beetle, Tribolium castaneum, was reported to result in molting defects and darkening of the cuticle and some body parts, leading to the suggestion that orthologs of MucK genes may differ in their functions among insects. To verify the role and essentiality of the ortholog of this gene in development and body pigmentation function in T. castaneum we obtained cDNAs for the orthologous gene (TcMucK) from RNA isolated from the GA-1 wild-type strain of T. castaneum. The sequence of a 1524 nucleotides-long cDNA for TcMucK which encodes the putatively full-length protein, was assembled from two overlapping RT-PCR fragments and the expression profile of this gene during development was analyzed by real-time PCR. This cDNA encodes a 55.8 kDa protein consisting of 507 amino acid residues and includes 11 putative transmembrane segments. Transcripts of TcMucK were detected throughout all of the developmental stages analyzed. The function of this gene was explored by injection of two different double-stranded RNAs targeting different regions of the TcMucK gene (dsTcMucKs) into young larvae to down-regulate transcripts during subsequent stages of insect development until the adult stage. RNA interference of TcMucK had no observable effects on larval, pupal or adult pigmentation. In addition, it did not affect larval-larval, larval-pupal and pupal-adult molting or survival. Thus, in contrast to the results of Zhao et al. (2012), our study demonstrates that TcMucK is not essential for growth, development or cuticle pigmentation of T. castaneum. Copyright © 2014 Elsevier Ltd. All rights reserved.
Coelho, Carla P; Minow, Mark A A; Chalfun-Júnior, Antonio; Colasanti, Joseph
2014-01-01
Agriculturally important grasses such as rice, maize, and sugarcane are evolutionarily distant from Arabidopsis, yet some components of the floral induction process are highly conserved. Flowering in sugarcane is an important factor that negatively affects cane yield and reduces sugar/ethanol production from this important perennial bioenergy crop. Comparative studies have facilitated the identification and characterization of putative orthologs of key flowering time genes in sugarcane, a complex polyploid plant whose genome has yet to be sequenced completely. Using this approach we identified phosphatidylethanolamine-binding protein (PEBP) gene family members in sugarcane that are similar to the archetypical FT and TFL1 genes of Arabidopsis that play an essential role in controlling the transition from vegetative to reproductive growth. Expression analysis of ScTFL1, which falls into the TFL1-clade of floral repressors, showed transcripts in developing leaves surrounding the shoot apex but not at the apex itself. ScFT1 was detected in immature leaves and apical regions of vegetatively growing plants and, after the floral transition, expression also occurred in mature leaves. Ectopic over-expression of ScTFL1 in Arabidopsis caused delayed flowering in Arabidopsis, as might be expected for a gene related to TFL1. In addition, lines with the latest flowering phenotype exhibited aerial rosette formation. Unexpectedly, over-expression of ScFT1, which has greatest similarity to the florigen-encoding FT, also caused a delay in flowering. This preliminary analysis of divergent sugarcane FT and TFL1 gene family members from Saccharum spp. suggests that their expression patterns and roles in the floral transition has diverged from the predicted role of similar PEBP family members.
Hamilton, Natasha A; Tammen, Imke; Raadsma, Herman W
2013-01-01
Angiotensin converting enzyme (ACE) is essential for control of blood pressure. The human ACE gene contains an intronic Alu indel (I/D) polymorphism that has been associated with variation in serum enzyme levels, although the functional mechanism has not been identified. The polymorphism has also been associated with cardiovascular disease, type II diabetes, renal disease and elite athleticism. We have characterized the ACE gene in horses of breeds selected for differing physical abilities. The equine gene has a similar structure to that of all known mammalian ACE genes. Nine common single nucleotide polymorphisms (SNPs) discovered in pooled DNA were found to be inherited in nine haplotypes. Three of these SNPs were located in intron 16, homologous to that containing the Alu polymorphism in the human. A highly conserved 18 bp sequence, also within that intron, was identified as being a potential binding site for the transcription factors Oct-1, HFH-1 and HNF-3β, and lies within a larger area of higher than normal homology. This putative regulatory element may contribute to regulation of the documented inter-individual variation in human circulating enzyme levels, for which a functional mechanism is yet to be defined. Two equine SNPs occurred within the conserved area in intron 16, although neither of them disrupted the putative binding site. We propose a possible regulatory mechanism of the ACE gene in mammalian species which was previously unknown. This advance will allow further analysis leading to a better understanding of the mechanisms underpinning the associations seen between the human Alu polymorphism and enzyme levels, cardiovascular disease states and elite athleticism.
Hamilton, Natasha A.; Tammen, Imke; Raadsma, Herman W.
2013-01-01
Angiotensin converting enzyme (ACE) is essential for control of blood pressure. The human ACE gene contains an intronic Alu indel (I/D) polymorphism that has been associated with variation in serum enzyme levels, although the functional mechanism has not been identified. The polymorphism has also been associated with cardiovascular disease, type II diabetes, renal disease and elite athleticism. We have characterized the ACE gene in horses of breeds selected for differing physical abilities. The equine gene has a similar structure to that of all known mammalian ACE genes. Nine common single nucleotide polymorphisms (SNPs) discovered in pooled DNA were found to be inherited in nine haplotypes. Three of these SNPs were located in intron 16, homologous to that containing the Alu polymorphism in the human. A highly conserved 18 bp sequence, also within that intron, was identified as being a potential binding site for the transcription factors Oct-1, HFH-1 and HNF-3β, and lies within a larger area of higher than normal homology. This putative regulatory element may contribute to regulation of the documented inter-individual variation in human circulating enzyme levels, for which a functional mechanism is yet to be defined. Two equine SNPs occurred within the conserved area in intron 16, although neither of them disrupted the putative binding site. We propose a possible regulatory mechanism of the ACE gene in mammalian species which was previously unknown. This advance will allow further analysis leading to a better understanding of the mechanisms underpinning the associations seen between the human Alu polymorphism and enzyme levels, cardiovascular disease states and elite athleticism. PMID:23408978
Chen, Wenqing; Huang, Tingting; He, Xinyi; Meng, Qingqing; You, Delin; Bai, Linquan; Li, Jialiang; Wu, Mingxuan; Li, Rui; Xie, Zhoujie; Zhou, Huchen; Zhou, Xiufen; Tan, Huarong; Deng, Zixin
2009-01-01
A gene cluster (pol) essential for the biosynthesis of polyoxin, a nucleoside antibiotic widely used for the control of phytopathogenic fungi, was cloned from Streptomyces cacaoi. A 46,066-bp region was sequenced, and 20 of 39 of the putative open reading frames were defined as necessary for polyoxin biosynthesis as evidenced by its production in a heterologous host, Streptomyces lividans TK24. The role of PolO and PolA in polyoxin synthesis was demonstrated by in vivo experiments, and their functions were unambiguously characterized as O-carbamoyltransferase and UMP-enolpyruvyltransferase, respectively, by in vitro experiments, which enabled the production of a modified compound differing slightly from that proposed earlier. These studies should provide a solid foundation for the elucidation of the molecular mechanisms for polyoxin biosynthesis, and set the stage for combinatorial biosynthesis using genes encoding different pathways for nucleoside antibiotics. PMID:19233844
Complete nucleotide sequence and annotation of the temperate corynephage ϕ16 genome.
Lobanova, Juliya S; Gak, Evgueni R; Andreeva, Irina G; Rybak, Konstantin V; Krylov, Alexander A; Mashko, Sergey V
2017-08-01
The complete genome of ϕ16, a temperate corynephage from Corynebacterium glutamicum ATCC 21792, was sequenced and annotated (GenBank: KY250482). The electron microscopy study of ϕ16 virion confirmed that it belongs to the family Siphoviridae. The ϕ16 genome consists of a linear double-stranded DNA molecule of 58,200 bp (G+C = 52.2%) with protruding cohesive 3'-ends of 14 nt. Four major structural proteins were separated by SDS-PAGE and identified by peptide mass fingerprinting technique. Using bioinformatics analysis, 101 putative ORFs and 5 tRNA genes were predicted. Only 27 putative gene products could be assigned to known biological functions. The ϕ16 genome was divided into functional modules. Seven putative promoters and eight putative unidirectional intrinsic terminators were predicted. One site of putative «-1» programmed ribosomal frameshifting was proposed in the phage tail assembly genome region. C. glutamicum genetic tools could be broadened by exploiting the known integrase gene (gp33) and the newly identified excisionase gene (gp47), participating in site-specific recombination between ϕ16-attP/attB.
Intrinsic and extrinsic approaches for detecting genes in a bacterial genome.
Borodovsky, M; Rudd, K E; Koonin, E V
1994-01-01
The unannotated regions of the Escherichia coli genome DNA sequence from the EcoSeq6 database, totaling 1,278 'intergenic' sequences of the combined length of 359,279 basepairs, were analyzed using computer-assisted methods with the aim of identifying putative unknown genes. The proposed strategy for finding new genes includes two key elements: i) prediction of expressed open reading frames (ORFs) using the GeneMark method based on Markov chain models for coding and non-coding regions of Escherichia coli DNA, and ii) search for protein sequence similarities using programs based on the BLAST algorithm and programs for motif identification. A total of 354 putative expressed ORFs were predicted by GeneMark. Using the BLASTX and TBLASTN programs, it was shown that 208 ORFs located in the unannotated regions of the E. coli chromosome are significantly similar to other protein sequences. Identification of 182 ORFs as probable genes was supported by GeneMark and BLAST, comprising 51.4% of the GeneMark 'hits' and 87.5% of the BLAST 'hits'. 73 putative new genes, comprising 20.6% of the GeneMark predictions, belong to ancient conserved protein families that include both eubacterial and eukaryotic members. This value is close to the overall proportion of highly conserved sequences among eubacterial proteins, indicating that the majority of the putative expressed ORFs that are predicted by GeneMark, but have no significant BLAST hits, nevertheless are likely to be real genes. The majority of the putative genes identified by BLAST search have been described since the release of the EcoSeq6 database, but about 70 genes have not been detected so far. Among these new identifications are genes encoding proteins with a variety of predicted functions including dehydrogenases, kinases, several other metabolic enzymes, ATPases, rRNA methyltransferases, membrane proteins, and different types of regulatory proteins. Images PMID:7984428
Khani, Afsaneh; Popp, Nicole; Kreikemeyer, Bernd; Patenge, Nadja
2018-01-01
Regulatory RNAs play important roles in the control of bacterial gene expression. In this study, we investigated gene expression regulation by a putative glycine riboswitch located in the 5'-untranslated region of a sodium:alanine symporter family (SAF) protein gene in the group A Streptococcus pyogenes serotype M49 strain 591. Glycine-dependent gene expression mediated by riboswitch activity was studied using a luciferase reporter gene system. Maximal reporter gene expression was observed in the absence of glycine and in the presence of low glycine concentrations. Differences in glycine-dependent gene expression were not based on differential promoter activity. Expression of the SAF protein gene and the downstream putative cation efflux protein gene was investigated in wild-type bacteria by RT-qPCR transcript analyses. During growth in the presence of glycine (≥1 mM), expression of the genes were downregulated. Northern blot analyses revealed premature transcription termination in the presence of high glycine concentrations. Growth in the presence of 0.1 mM glycine led to the production of a full-length transcript. Furthermore, stability of the SAF protein gene transcript was drastically reduced in the presence of glycine. We conclude that the putative glycine riboswitch in S. pyogenes serotype M49 strain 591 represses expression of the SAF protein gene and the downstream putative cation efflux protein gene in the presence of high glycine concentrations. Sequence and secondary structure comparisons indicated that the streptococcal riboswitch belongs to the class of tandem aptamer glycine riboswitches.
Vojvodic, Svjetlana; Johnson, Brian R; Harpur, Brock A; Kent, Clement F; Zayed, Amro; Anderson, Kirk E; Linksvayer, Timothy A
2015-11-01
The caste fate of developing female honey bee larvae is strictly socially regulated by adult nurse workers. As a result of this social regulation, nurse-expressed genes as well as larval-expressed genes may affect caste expression and evolution. We used a novel transcriptomic approach to identify genes with putative direct and indirect effects on honey bee caste development, and we subsequently studied the relative rates of molecular evolution at these caste-associated genes. We experimentally induced the production of new queens by removing the current colony queen, and we used RNA sequencing to study the gene expression profiles of both developing larvae and their caregiving nurses before and after queen removal. By comparing the gene expression profiles of queen-destined versus worker-destined larvae as well as nurses observed feeding these two types of larvae, we identified larval and nurse genes associated with caste development. Of 950 differentially expressed genes associated with caste, 82% were expressed in larvae with putative direct effects on larval caste, and 18% were expressed in nurses with putative indirect effects on caste. Estimated selection coefficients suggest that both nurse and larval genes putatively associated with caste are rapidly evolving, especially those genes associated with worker development. Altogether, our results suggest that indirect effect genes play important roles in both the expression and evolution of socially influenced traits such as caste.
Ku, Hye-Jin; Park, Myeong Soo; Lee, Ju-Hoon
2015-01-01
A 2.1-kb plasmid was previously isolated from Weissella cibaria KLC140 in kimchi and cloned into pUC19 along with the slpA and gfp genes, resulting in an 8.6-kb pKWCSLGFP construct for use as a novel surface display vector. To reduce the size of the vector, the minimal replicon of pKW2124 was determined. The pKW2124 plasmid contains a putative origin of replication (ori), a potential ribosomal binding site (RBS), and the repA gene encoding a plasmid replication protein. To conduct the minimal replicon experiment, four different PCR products (MR1, ori+RBS+repA; MR2, RBS+repA; MR2’, repA; MR3, fragment of repA) were obtained and cloned into pUC19 (pKUCm1, pKUCm2, pKUCm2’, and pKUCm3, respectively) containing the chloramphenicol acetyltransferase (CAT) gene. These constructed vectors were electroporated into W. confusa ATCC 10881 with different transformation efficiencies of 1.5 × 105 CFU/μg, 1.3 × 101 CFU/μg, and no transformation, respectively, suggesting that the putative ori, RBS, and repA gene are essential for optimum plasmid replication. Subsequent segregational plasmid stability testing of pKUCm1 and pKUCm2 showed that the vector pKUCm1 is highly stable up to 100 generations but pKUCm2 was completely lost after 60 generations, suggesting that the putative ori may be important for plasmid stability in the host strain. In addition, a host range test of pKUCm1 revealed that it has a broad host range spectrum including Weissella, Lactococcus, Leuconostoc, and even Lactobacillus. To verify the application of pKUCm1, the β-galactosidase gene and its promoter region from W. cibaria KSD1 were cloned in the vector, resulting in pKUGal. Expression of the β-galactosidase gene was confirmed using blue-white screening after IPTG induction. The small and stable pKUGal vector will be useful for gene transfer, expression, and manipulation in the Weissella genome and in other lactic acid bacteria. PMID:25691882
Evolution of UCP1 Transcriptional Regulatory Elements Across the Mammalian Phylogeny
Gaudry, Michael J.; Campbell, Kevin L.
2017-01-01
Uncoupling protein 1 (UCP1) permits non-shivering thermogenesis (NST) when highly expressed in brown adipose tissue (BAT) mitochondria. Exclusive to placental mammals, BAT has commonly been regarded to be advantageous for thermoregulation in hibernators, small-bodied species, and the neonates of larger species. While numerous regulatory control motifs associated with UCP1 transcription have been proposed for murid rodents, it remains unclear whether these are conserved across the eutherian mammal phylogeny and hence essential for UCP1 expression. To address this shortcoming, we conducted a broad comparative survey of putative UCP1 transcriptional regulatory elements in 139 mammals (135 eutherians). We find no evidence for presence of a UCP1 enhancer in monotremes and marsupials, supporting the hypothesis that this control region evolved in a stem eutherian ancestor. We additionally reveal that several putative promoter elements (e.g., CRE-4, CCAAT) identified in murid rodents are not conserved among BAT-expressing eutherians, and together with the putative regulatory region (PRR) and CpG island do not appear to be crucial for UCP1 expression. The specificity and importance of the upTRE, dnTRE, URE1, CRE-2, RARE-2, NBRE, BRE-1, and BRE-2 enhancer elements first described from rats and mice are moreover uncertain as these motifs differ substantially—but generally remain highly conserved—in other BAT-expressing eutherians. Other UCP1 enhancer motifs (CRE-3, PPRE, and RARE-3) as well as the TATA box are also highly conserved in nearly all eutherian lineages with an intact UCP1. While these transcriptional regulatory motifs are generally also maintained in species where this gene is pseudogenized, the loss or degeneration of key basal promoter (e.g., TATA box) and enhancer elements in other UCP1-lacking lineages make it unlikely that the enhancer region is pleiotropic (i.e., co-regulates additional genes). Importantly, differential losses of (or mutations within) putative regulatory elements among the eutherian lineages with an intact UCP1 suggests that the transcriptional control of gene expression is not highly conserved in this mammalian clade. PMID:28979209
Reduction of Aspergillus niger Virulence in Apple Fruits by Deletion of the Catalase Gene cpeB.
Zhang, Meng-Ke; Tang, Jun; Huang, Zhong-Qin; Hu, Kang-Di; Li, Yan-Hong; Han, Zhuo; Chen, Xiao-Yan; Hu, Lan-Ying; Yao, Gai-Fang; Zhang, Hua
2018-05-30
Aspergillus niger, a common saprophytic fungus, causes rot in many fruits. We studied the role of a putative catalase-peroxidase-encoding gene, cpeB, in oxidative stress and virulence in fruit. The cpeB gene was deleted in A. niger by homologous recombination, and the Δ cpeB mutant showed decreased CAT activity compared with that of the wild type. The cpeB gene deletion caused increased sensitivity to H 2 O 2 stress, and spore germination was significantly reduced; in addition, the reactive-oxygen-species (ROS) metabolites superoxide anions (·O 2 - ), hydrogen peroxide (H 2 O 2 ), and malondialdehyde (MDA) accumulated in the Δ cpeB mutant during H 2 O 2 stress. Furthermore, ROS metabolism in A. niger infected apples was determined, and our results showed that the Δ cpeB mutant induced an attenuated response in apple fruit during the fruit-pathogen interaction; the cpeB gene deletion significantly reduced the development of lesions, suggesting that the cpeB gene in A. niger is essential for full virulence in apples.
Wyatt, Lindsay E; Strickler, Susan R; Mueller, Lukas A; Mazourek, Michael
2016-01-01
Both the fruit mesocarp and the seeds of winter squash can be used for consumption, although the focus of breeding efforts varies by cultivar. Cultivars bred for fruit consumption are selected for fruit mesocarp quality traits such as carotenoid content, percent dry matter, and percent soluble solids, while these traits are essentially ignored in oilseed pumpkins. To compare fruit development in these two types of squash, we sequenced the fruit transcriptome of two cultivars bred for different purposes: an acorn squash, ‘Sweet REBA’, and an oilseed pumpkin, ‘Lady Godiva’. Putative metabolic pathways were developed for carotenoid, starch, and sucrose synthesis in winter squash fruit and squash homologs were identified for each of the structural genes in the pathways. Gene expression, especially of known rate-limiting and branch point genes, corresponded with metabolite accumulation both across development and between the two cultivars. Thus, developmental regulation of metabolite genes is an important factor in winter squash fruit quality. PMID:27688889
Gut Microbiome and Putative Resistome of Inca and Italian Nobility Mummies
Santiago-Rodriguez, Tasha M.; Luciani, Stefania; Toranzos, Gary A.; Marota, Isolina; Giuffra, Valentina; Cano, Raul J.
2017-01-01
Little is still known about the microbiome resulting from the process of mummification of the human gut. In the present study, the gut microbiota, genes associated with metabolism, and putative resistome of Inca and Italian nobility mummies were characterized by using high-throughput sequencing. The Italian nobility mummies exhibited a higher bacterial diversity as compared to the Inca mummies when using 16S ribosomal (rRNA) gene amplicon sequencing, but both groups showed bacterial and fungal taxa when using shotgun metagenomic sequencing that may resemble both the thanatomicrobiome and extant human gut microbiomes. Identification of sequences associated with plants, animals, and carbohydrate-active enzymes (CAZymes) may provide further insights into the dietary habits of Inca and Italian nobility mummies. Putative antibiotic-resistance genes in the Inca and Italian nobility mummies support a human gut resistome prior to the antibiotic therapy era. The higher proportion of putative antibiotic-resistance genes in the Inca compared to Italian nobility mummies may support the hypotheses that a greater exposure to the environment may result in a greater acquisition of antibiotic-resistance genes. The present study adds knowledge of the microbiome resulting from the process of mummification of the human gut, insights of ancient dietary habits, and the preserved putative human gut resistome prior the antibiotic therapy era. PMID:29112136
Gut Microbiome and Putative Resistome of Inca and Italian Nobility Mummies.
Santiago-Rodriguez, Tasha M; Fornaciari, Gino; Luciani, Stefania; Toranzos, Gary A; Marota, Isolina; Giuffra, Valentina; Cano, Raul J
2017-11-07
Little is still known about the microbiome resulting from the process of mummification of the human gut. In the present study, the gut microbiota, genes associated with metabolism, and putative resistome of Inca and Italian nobility mummies were characterized by using high-throughput sequencing. The Italian nobility mummies exhibited a higher bacterial diversity as compared to the Inca mummies when using 16S ribosomal (rRNA) gene amplicon sequencing, but both groups showed bacterial and fungal taxa when using shotgun metagenomic sequencing that may resemble both the thanatomicrobiome and extant human gut microbiomes. Identification of sequences associated with plants, animals, and carbohydrate-active enzymes (CAZymes) may provide further insights into the dietary habits of Inca and Italian nobility mummies. Putative antibiotic-resistance genes in the Inca and Italian nobility mummies support a human gut resistome prior to the antibiotic therapy era. The higher proportion of putative antibiotic-resistance genes in the Inca compared to Italian nobility mummies may support the hypotheses that a greater exposure to the environment may result in a greater acquisition of antibiotic-resistance genes. The present study adds knowledge of the microbiome resulting from the process of mummification of the human gut, insights of ancient dietary habits, and the preserved putative human gut resistome prior the antibiotic therapy era.
Bröker, Daniel; Arenskötter, Matthias; Legatzki, Antje; Nies, Dietrich H.; Steinbüchel, Alexander
2004-01-01
The complete sequence of the circular 101,016-bp megaplasmid pKB1 from the cis-1,4-polyisoprene-degrading bacterium Gordonia westfalica Kb1, which represents the first described extrachromosomal DNA of a member of this genus, was determined. Plasmid pKB1 harbors 105 open reading frames. The predicted products of 46 of these are significantly related to proteins of known function. Plasmid pKB1 is organized into three functional regions that are flanked by insertion sequence (IS) elements: (i) a replication and putative partitioning region, (ii) a putative metabolic region, and (iii) a large putative conjugative transfer region, which is interrupted by an additional IS element. Southern hybridization experiments revealed the presence of another copy of this conjugational transfer region on the bacterial chromosome. The origin of replication (oriV) of pKB1 was identified and used for construction of Escherichia coli-Gordonia shuttle vectors, which was also suitable for several other Gordonia species and related genera. The metabolic region included the heavy-metal resistance gene cadA, encoding a P-type ATPase. Expression of cadA in E. coli mediated resistance to cadmium, but not to zinc, and decreased the cellular content of cadmium in this host. When G. westfalica strain Kb1 was cured of plasmid pKB1, the resulting derivative strains exhibited slightly decreased cadmium resistance. Furthermore, they had lost the ability to use isoprene rubber as a sole source of carbon and energy, suggesting that genes essential for rubber degradation are encoded by pKB1. PMID:14679241
Feki, Kaouthar; Kamoun, Yosra; Ben Mahmoud, Rihem; Farhat-Khemakhem, Ameny; Gargouri, Ali; Brini, Faiçal
2015-12-01
Catalases are reactive oxygen species scavenging enzymes involved in response to abiotic and biotic stresses. In this study, we described the isolation and functional characterization of a novel catalase from durum wheat, designed TdCAT1. Molecular Phylogeny analyses showed that wheat TdCAT1 exhibited high amino acids sequence identity to other plant catalases. Sequence homology analysis showed that TdCAT1 protein contained the putative calmodulin binding domain and a putative conserved internal peroxisomal targeting signal PTS1 motif around its C-terminus. Predicted three-dimensional structural model revealed the presence of four putative distinct structural regions which are the N-terminal arm, the β-barrel, the wrapping and the α-helical domains. TdCAT1 protein had the heme pocket that was composed by five essential residues. TdCAT1 gene expression analysis showed that this gene was induced by various abiotic stresses in durum wheat. The expression of TdCAT1 in yeast cells and Arabidopsis plants conferred tolerance to several abiotic stresses. Compared with the non-transformed plants, the transgenic lines maintained their growth and accumulated more proline under stress treatments. Furthermore, the amount of H2O2 was lower in transgenic lines, which was due to the high CAT and POD activities. Taken together, these data provide the evidence for the involvement of durum wheat catalase TdCAT1 in tolerance to multiple abiotic stresses in crop plants. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Report on the development of putative functional SSR and SNP markers in passion fruits.
da Costa, Zirlane Portugal; Munhoz, Carla de Freitas; Vieira, Maria Lucia Carneiro
2017-09-06
Passionflowers Passiflora edulis and Passiflora alata are diploid, outcrossing and understudied fruit bearing species. In Brazil, passion fruit cultivation began relatively recently and has earned the country an outstanding position as the world's top producer of passion fruit. The fruit's main economic value lies in the production of juice, an essential exotic ingredient in juice blends. Currently, crop improvement strategies, including those for underexploited tropical species, tend to incorporate molecular genetic approaches. In this study, we examined a set of P. edulis transcripts expressed in response to infection by Xanthomonas axonopodis, (the passion fruit's main bacterial pathogen that attacks the vines), aiming at the development of putative functional markers, i.e. SSRs (simple sequence repeats) and SNPs (single nucleotide polymorphisms). A total of 210 microsatellites were found in 998 sequences, and trinucleotide repeats were found to be the most frequent (31.4%). Of the sequences selected for designing primers, 80.9% could be used to develop SSR markers, and 60.6% SNP markers for P. alata. SNPs were all biallelic and found within 15 gene fragments of P. alata. Overall, gene fragments generated 10,003 bp. SNP frequency was estimated as one SNP every 294 bp. Polymorphism rates revealed by SSR and SNP loci were 29.4 and 53.6%, respectively. Passiflora edulis transcripts were useful for the development of putative functional markers for P. alata, suggesting a certain level of sequence conservation between these cultivated species. The markers developed herein could be used for genetic mapping purposes and also in diversity studies.
Ewing sarcoma gene EWS is essential for meiosis and B lymphocyte development
Li, Hongjie; Watford, Wendy; Li, Cuiling; Parmelee, Alissa; Bryant, Mark A.; Deng, Chuxia; O’Shea, John; Lee, Sean Bong
2007-01-01
Ewing sarcoma gene EWS encodes a putative RNA-binding protein with proposed roles in transcription and splicing, but its physiological role in vivo remains undefined. Here, we have generated Ews-deficient mice and demonstrated that EWS is required for the completion of B cell development and meiosis. Analysis of Ews–/– lymphocytes revealed a cell-autonomous defect in precursor B lymphocyte (pre–B lymphocyte) development. During meiosis, Ews-null spermatocytes were deficient in XY bivalent formation and showed reduced meiotic recombination, resulting in massive apoptosis and complete arrest in gamete maturation. Inactivation of Ews in mouse embryonic fibroblasts resulted in premature cellular senescence, and the mutant animals showed hypersensitivity to ionizing radiation. Finally, we showed that EWS interacts with lamin A/C and that loss of EWS results in a reduced lamin A/C expression. Our findings reveal essential functions for EWS in pre–B cell development and meiosis, with proposed roles in DNA pairing and recombination/repair mechanisms. Furthermore, we demonstrate a novel role of EWS in cellular senescence, possibly through its interaction and modulation of lamin A/C. PMID:17415412
Chiniquy, Dawn; Varanasi, Patanjali; Oh, Taeyun; Harholt, Jesper; Katnelson, Jacob; Singh, Seema; Auer, Manfred; Simmons, Blake; Adams, Paul D.; Scheller, Henrik V.; Ronald, Pamela C.
2013-01-01
Xylan is the second most abundant polysaccharide on Earth, and represents a major component of both dicot wood and the cell walls of grasses. Much knowledge has been gained from studies of xylan biosynthesis in the model plant, Arabidopsis. In particular, the irregular xylem (irx) mutants, named for their collapsed xylem cells, have been essential in gaining a greater understanding of the genes involved in xylan biosynthesis. In contrast, xylan biosynthesis in grass cell walls is poorly understood. We identified three rice genes Os07g49370 (OsIRX9), Os01g48440 (OsIRX9L), and Os06g47340 (OsIRX14), from glycosyltransferase family 43 as putative orthologs to the putative β-1,4-xylan backbone elongating Arabidopsis IRX9, IRX9L, and IRX14 genes, respectively. We demonstrate that the over-expression of the closely related rice genes, in full or partly complement the two well-characterized Arabidopsis irregular xylem (irx) mutants: irx9 and irx14. Complementation was assessed by measuring dwarfed phenotypes, irregular xylem cells in stem cross sections, xylose content of stems, xylosyltransferase (XylT) activity of stems, and stem strength. The expression of OsIRX9 in the irx9 mutant resulted in XylT activity of stems that was over double that of wild type plants, and the stem strength of this line increased to 124% above that of wild type. Taken together, our results suggest that OsIRX9/OsIRX9L, and OsIRX14, have similar functions to the Arabidopsis IRX9 and IRX14 genes, respectively. Furthermore, our expression data indicate that OsIRX9 and OsIRX9L may function in building the xylan backbone in the secondary and primary cell walls, respectively. Our results provide insight into xylan biosynthesis in rice and how expression of a xylan synthesis gene may be modified to increase stem strength. PMID:23596448
Fukumori, F; Saint, C P
1997-01-01
A 9,233-bp HindIII fragment of the aromatic amine catabolic plasmid pTDN1, isolated from a derivative of Pseudomonas putida mt-2 (UCC22), confers the ability to degrade aniline on P. putida KT2442. The fragment encodes six open reading frames which are arranged in the same direction. Their 5' upstream region is part of the direct-repeat sequence of pTDN1. Nucleotide sequence of 1.8 kb of the repeat sequence revealed only a single base pair change compared to the known sequence of IS1071 which is involved in the transposition of the chlorobenzoate genes (C. Nakatsu, J. Ng, R. Singh, N. Straus, and C. Wyndham, Proc. Natl. Acad. Sci. USA 88:8312-8316, 1991). Four open reading frames encode proteins with considerable homology to proteins found in other aromatic-compound degradation pathways. On the basis of sequence similarity, these genes are proposed to encode the large and small subunits of aniline oxygenase (tdnA1 and tdnA2, respectively), a reductase (tdnB), and a LysR-type regulatory gene (tdnR). The putative large subunit has a conserved [2Fe-2S]R Rieske-type ligand center. Two genes, tdnQ and tdnT, which may be involved in amino group transfer, are localized upstream of the putative oxygenase genes. The tdnQ gene product shares about 30% similarity with glutamine synthetases; however, a pUC-based plasmid carrying tdnQ did not support the growth of an Escherichia coli glnA strain in the absence of glutamine. TdnT possesses domains that are conserved among amidotransferases. The tdnQ, tdnA1, tdnA2, tdnB, and tdnR genes are essential for the conversion of aniline to catechol. PMID:8990291
Souza, André L F; Invitti, Adriana L; Rego, Fabiane G M; Monteiro, Rose A; Klassen, Giseli; Souza, Emanuel M; Chubatsu, Leda S; Pedrosa, Fábio O; Rigo, Liu U
2010-02-01
The pathway of electron transport to nitrogenase in the endophytic beta-Proteobacterium Herbaspirillum seropedicae has not been characterized. We have generated mutants in two nif-associated genes encoding putative ferredoxins, fdxA and fdxN. The fdxA gene is part of the operon nifHDKENXorf1orf2fdxAnifQmodABC and is transcribed from the nifH promoter, as revealed by lacZ gene fusion. The fdxN gene is probably cotranscribed with the nifB gene. Mutational analysis suggests that the FdxA protein is essential for maximum nitrogenase activity, since the nitrogenase activity of the fdxA mutant strain was reduced to about 30% of that of the wild-type strain. In addition, the fdxA mutation had no effect on the nitrogenase switch-off in response to ammonium. Nitrogenase activity of a mutant strain lacking the fdxN gene was completely abolished. This phenotype was reverted by complementation with fdxN expressed under lacZ promoter control. The results suggest that the products of both the fdxA and fdxN genes are probably involved in electron transfer during nitrogen fixation.
miRNA regulation in the early development of barley seed
2012-01-01
Background During the early stages of seed development many genes are under dynamic regulation to ensure the proper differentiation and establishment of the tissue that will constitute the mature grain. To investigate how miRNA regulation contributes to this process in barley, a combination of small RNA and mRNA degradome analyses were used to identify miRNAs and their targets. Results Our analysis identified 84 known miRNAs and 7 new miRNAs together with 96 putative miRNA target genes regulated through a slicing mechanism in grain tissues during the first 15 days post anthesis. We also identified many potential miRNAs including several belonging to known miRNA families. Our data gave us evidence for an increase in miRNA-mediated regulation during the transition between pre-storage and storage phases. Potential miRNA targets were found in various signalling pathways including components of four phytohormone pathways (ABA, GA, auxin, ethylene) and the defence response to powdery mildew infection. Among the putative miRNA targets we identified were two essential genes controlling the GA response, a GA3oxidase1 and a homolog of the receptor GID1, and a homolog of the ACC oxidase which catalyses the last step of ethylene biosynthesis. We found that two MLA genes are potentially miRNA regulated, establishing a direct link between miRNAs and the R gene response. Conclusion Our dataset provides a useful source of information on miRNA regulation during the early development of cereal grains and our analysis suggests that miRNAs contribute to the control of development of the cereal grain, notably through the regulation of phytohormone response pathways. PMID:22838835
Edgren, Tomas; Nordlund, Stefan
2004-04-01
In our efforts to identify the components participating in electron transport to nitrogenase in Rhodospirillum rubrum, we used mini-Tn5 mutagenesis followed by metronidazole selection. One of the mutants isolated, SNT-1, exhibited a decreased growth rate and about 25% of the in vivo nitrogenase activity compared to the wild-type values. The in vitro nitrogenase activity was essentially wild type, indicating that the mutation affects electron transport to nitrogenase. Sequencing showed that the Tn5 insertion is located in a region with a high level of similarity to fixC, and extended sequencing revealed additional putative fix genes, in the order fixABCX. Complementation of SNT-1 with the whole fix gene cluster in trans restored wild-type nitrogenase activity and growth. Using Western blotting, we demonstrated that expression of fixA and fixB occurs only under conditions under which nitrogenase also is expressed. SNT-1 was further shown to produce larger amounts of both ribulose 1,5-bisphosphate carboxylase/oxygenase and polyhydroxy alkanoates than the wild type, indicating that the redox status is affected in this mutant. Using Western blotting, we found that FixA and FixB are soluble proteins, whereas FixC most likely is a transmembrane protein. We propose that the fixABCX genes encode a membrane protein complex that plays a central role in electron transfer to nitrogenase in R. rubrum. Furthermore, we suggest that FixC is the link between nitrogen fixation and the proton motive force generated in the photosynthetic reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mangelsen, Elke; Kilian, Joachim; Berendzen, Kenneth W.
2008-02-01
WRKY proteins belong to the WRKY-GCM1 superfamily of zinc finger transcription factors that have been subject to a large plant-specific diversification. For the cereal crop barley (Hordeum vulgare), three different WRKY proteins have been characterized so far, as regulators in sucrose signaling, in pathogen defense, and in response to cold and drought, respectively. However, their phylogenetic relationship remained unresolved. In this study, we used the available sequence information to identify a minimum number of 45 barley WRKY transcription factor (HvWRKY) genes. According to their structural features the HvWRKY factors were classified into the previously defined polyphyletic WRKY subgroups 1 tomore » 3. Furthermore, we could assign putative orthologs of the HvWRKY proteins in Arabidopsis and rice. While in most cases clades of orthologous proteins were formed within each group or subgroup, other clades were composed of paralogous proteins for the grasses and Arabidopsis only, which is indicative of specific gene radiation events. To gain insight into their putative functions, we examined expression profiles of WRKY genes from publicly available microarray data resources and found group specific expression patterns. While putative orthologs of the HvWRKY transcription factors have been inferred from phylogenetic sequence analysis, we performed a comparative expression analysis of WRKY genes in Arabidopsis and barley. Indeed, highly correlative expression profiles were found between some of the putative orthologs. HvWRKY genes have not only undergone radiation in monocot or dicot species, but exhibit evolutionary traits specific to grasses. HvWRKY proteins exhibited not only sequence similarities between orthologs with Arabidopsis, but also relatedness in their expression patterns. This correlative expression is indicative for a putative conserved function of related WRKY proteins in mono- and dicot species.« less
DLEU2 encodes an antisense RNA for the putative bicistronic RFP2/LEU5 gene in humans and mouse.
Corcoran, Martin M; Hammarsund, Marianne; Zhu, Chaoyong; Lerner, Mikael; Kapanadze, Bagrat; Wilson, Bill; Larsson, Catharina; Forsberg, Lars; Ibbotson, Rachel E; Einhorn, Stefan; Oscier, David G; Grandér, Dan; Sangfelt, Olle
2004-08-01
Our group previously identified two novel genes, RFP2/LEU5 and DLEU2, within a 13q14.3 genomic region of loss seen in various malignancies. However, no specific inactivating mutations were found in these or other genes in the vicinity of the deletion, suggesting that a nonclassical tumor-suppressor mechanism may be involved. Here, we present data showing that the DLEU2 gene encodes a putative noncoding antisense RNA, with one exon directly overlapping the first exon of the RFP2/LEU5 gene in the opposite orientation. In addition, the RFP2/LEU5 transcript can be alternatively spliced to produce either several monocistronic transcripts or a putative bicistronic transcript encoding two separate open-reading frames, adding to the complexity of the locus. The finding that these gene structures are conserved in the mouse, including the putative bicistronic RFP2/LEU5 transcript as well as the antisense relationship with DLEU2, further underlines the significance of this unusual organization and suggests a biological function for DLEU2 in the regulation of RFP2/LEU5. Copyright 2004 Wiley-Liss, Inc.
Famiglietti, Amber L.; Wei, Zheng; Beres, Thomas M.; Milac, Adina L.; Tran, Duy T.; Patel, Divya; Angerer, Robert C.; Angerer, Lynne M.
2017-01-01
Mucin-type O-glycosylation is a ubiquitous posttranslational modification in which N-Acetylgalactosamine (GalNAc) is added to the hydroxyl group of select serine or threonine residues of a protein by the family of UDP-GalNAc:Polypeptide N-Acetylgalactosaminyltransferases (GalNAc-Ts; EC 2.4.1.41). Previous studies demonstrate that O-glycosylation plays essential roles in protein function, cell-cell interactions, cell polarity and differentiation in developing mouse and Drosophila embryos. Although this type of protein modification is highly conserved among higher eukaryotes, little is known about this family of enzymes in echinoderms, basal deuterostome relatives of the chordates. To investigate the potential role of GalNAc-Ts in echinoderms, we have begun the characterization of this enzyme family in the purple sea urchin, S. purpuratus. We have fully or partially cloned a total of 13 genes (SpGalnts) encoding putative sea urchin SpGalNAc-Ts, and have confirmed enzymatic activity of five recombinant proteins. Amino acid alignments revealed high sequence similarity among sea urchin and mammalian glycosyltransferases, suggesting the presence of putative orthologues. Structural models underscored these similarities and helped reconcile some of the substrate preferences observed. Temporal and spatial expression of SpGalnt transcripts, was studied by whole-mount in situ hybridization. We found that many of these genes are transcribed early in developing embryos, often with restricted expression to the endomesodermal region. Multicolor fluorescent in situ hybridization (FISH) demonstrated that transcripts encoding SpGalnt7-2 co-localized with both Endo16 (a gene expressed in the endoderm), and Gcm (a gene expressed in secondary mesenchyme cells) at the early blastula stage, 20 hours post fertilization (hpf). At late blastula stage (28 hpf), SpGalnt7-2 message co-expresses with Gcm, suggesting that it may play a role in secondary mesenchyme development. We also discovered that morpholino-mediated knockdown of SpGalnt13 transcripts, results in a deficiency of embryonic skeleton and neurons, suggesting that mucin-type O-glycans play essential roles during embryonic development in S. purpuratus. PMID:28448610
A Rac Homolog Is Required for Induction of Hyphal Growth in the Dimorphic Yeast Yarrowia lipolytica
Hurtado, Cleofe A. R.; Beckerich, Jean-Marie; Gaillardin, Claude; Rachubinski, Richard A.
2000-01-01
Dimorphism in fungi is believed to constitute a mechanism of response to adverse conditions and represents an important attribute for the development of virulence by a number of pathogenic fungal species. We have isolated YlRAC1, a gene encoding a 192-amino-acid protein that is essential for hyphal growth in the dimorphic yeast Yarrowia lipolytica and which represents the first Rac homolog described for fungi. YlRAC1 is not an essential gene, and its deletion does not affect the ability to mate or impair actin polarization in Y. lipolytica. However, strains lacking functional YlRAC1 show alterations in cell morphology, suggesting that the function of YlRAC1 may be related to some aspect of the polarization of cell growth. Northern blot analysis showed that transcription of YlRAC1 increases steadily during the yeast-to-hypha transition, while Southern blot analysis of genomic DNA suggested the presence of several RAC family members in Y. lipolytica. Interestingly, strains lacking functional YlRAC1 are still able to grow as the pseudohyphal form and to invade agar, thus pointing to a function for YlRAC1 downstream of MHY1, a previously isolated gene encoding a C2H2-type zinc finger protein with the ability to bind putative stress response elements and whose activity is essential for both hyphal and pseudohyphal growth in Y. lipolytica. PMID:10762235
de-Couet, H. G.; Fong, KSK.; Weeds, A. G.; McLaughlin, P. J.; Miklos, GLG.
1995-01-01
The flightless locus of Drosophila melanogaster has been analyzed at the genetic, molecular, ultrastructural and comparative crystallographic levels. The gene encodes a single transcript encoding a protein consisting of a leucine-rich amino terminal half and a carboxyterminal half with high sequence similarity to gelsolin. We determined the genomic sequence of the flightless landscape, the breakpoints of four chromosomal rearrangements, and the molecular lesions in two lethal and two viable alleles of the gene. The two alleles that lead to flight muscle abnormalities encode mutant proteins exhibiting amino acid replacements within the S1-like domain of their gelsolin-like region. Furthermore, the deduced intronexon structure of the D. melanogaster gene has been compared with that of the Caenorhabditis elegans homologue. Furthermore, the sequence similarities of the flightless protein with gelsolin allow it to be evaluated in the context of the published crystallographic structure of the S1 domain of gelsolin. Amino acids considered essential for the structural integrity of the core are found to be highly conserved in the predicted flightless protein. Some of the residues considered essential for actin and calcium binding in gelsolin S1 and villin V1 are also well conserved. These data are discussed in light of the phenotypic characteristics of the mutants and the putative functions of the protein. PMID:8582612
humpty dumpty is required for developmental DNA amplification and cell proliferation in Drosophila.
Bandura, Jennifer L; Beall, Eileen L; Bell, Maren; Silver, Hannah R; Botchan, Michael R; Calvi, Brian R
2005-04-26
The full complement of proteins required for the proper regulation of genome duplication are yet to be described. We employ a genetic DNA-replication model system based on developmental amplification of Drosophila eggshell (chorion) genes [1]. Hypomorphic mutations in essential DNA replication genes result in a distinct thin-eggshell phenotype owing to reduced amplification [2]. Here, we molecularly identify the gene, which we have named humpty dumpty (hd), corresponding to the thin-eggshell mutant fs(3)272-9 [3]. We confirm that hd is essential for DNA amplification in the ovary and show that it also is required for cell proliferation during development. Mosaic analysis of hd mutant cells during development and RNAi in Kc cells reveal that depletion of Hd protein results in severe defects in genomic replication and DNA damage. Most Hd protein is found in nuclear foci, and some may traverse the nuclear envelope. Consistent with a role in DNA replication, expression of Hd protein peaks during late G1 and S phase, and it responds to the E2F1/Dp transcription factor. Hd protein sequence is conserved from plants to humans, and published microarrays indicate that expression of its putative human ortholog also peaks at G1/S [4]. Our data suggest that hd defines a new gene family likely required for cell proliferation in all multicellular eukaryotes.
The OGCleaner: filtering false-positive homology clusters.
Fujimoto, M Stanley; Suvorov, Anton; Jensen, Nicholas O; Clement, Mark J; Snell, Quinn; Bybee, Seth M
2017-01-01
Detecting homologous sequences in organisms is an essential step in protein structure and function prediction, gene annotation and phylogenetic tree construction. Heuristic methods are often employed for quality control of putative homology clusters. These heuristics, however, usually only apply to pairwise sequence comparison and do not examine clusters as a whole. We present the Orthology Group Cleaner (the OGCleaner), a tool designed for filtering putative orthology groups as homology or non-homology clusters by considering all sequences in a cluster. The OGCleaner relies on high-quality orthologous groups identified in OrthoDB to train machine learning algorithms that are able to distinguish between true-positive and false-positive homology groups. This package aims to improve the quality of phylogenetic tree construction especially in instances of lower-quality transcriptome assemblies. https://github.com/byucsl/ogcleaner CONTACT: sfujimoto@gmail.comSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Öztürk, Burcu Emine Tefon
2017-04-01
Whooping cough also known as pertussis is a contagious acute upper respiratory disease primarily caused by Bordetella pertussis. It is known that this disease may be fatal especially in infants and recently, the number of pertussis cases has been increased. Despite the fact that there are numbers of acellular vaccines on the market, the current acellular vaccine compositions are inadequate for providing sustainable immunity and avoiding subclinical disease cases. Hence, exploring novel proteins with high immune protective capacities is essential to enhance the clinical efficacy of current vaccines. In this study, genes of selected immunogenic proteins via -omics studies, namely Putative outer protein D (BopD) and Leucin/Isoleucine/Valin Binding Protein (LivJ) were first cloned into pGEM-T Easy vector and transformed to into E. coli DH5α cells and then cloned into the expression vector pET-28a(+) and transformed into E. coli BL21 (DE3) cells to express the proteins.
Transcriptional regulation of dimethyl sulfoxide respiration in a haloarchaeon, Haloferax volcanii.
Qi, Qiuzi; Ito, Yoshiyasu; Yoshimatsu, Katsuhiko; Fujiwara, Taketomo
2016-01-01
The halophilic euryarchaeon Haloferax volcanii can grow anaerobically by DMSO respiration. DMSO reductase was induced by DMSO respiration not only under anaerobic growth conditions but also in denitrifying cells of H. volcanii. Deletion of the dmsR gene, encoding a putative regulator for the DMSO reductase, resulted in the loss of anaerobic growth by DMSO respiration. Reporter experiments revealed that only the anaerobic condition was essential for transcription of the dmsEABCD genes encoding DMSO reductase and that transcription was enhanced threefold by supplementation of DMSO. In the ∆dmsR mutant, transcription of the dmsEABCD genes induced by the anaerobic condition was not enhanced by DMSO, suggesting that DmsR is a DMSO-responsive regulator. Transcriptions of the dmsR and mgd genes for Mo-bisMGD biosynthesis were regulated in the same manner as the dmsEABCD genes. These results suggest that the genetic regulation of DMSO respiration in H. volcanii is controlled by at least two systems: one is the DMSO-responsive DmsR, and the other is an unknown anaerobic regulator.
Sitthithaworn, W; Kojima, N; Viroonchatapan, E; Suh, D Y; Iwanami, N; Hayashi, T; Noji, M; Saito, K; Niwa, Y; Sankawa, U
2001-02-01
cDNAs encoding geranylgeranyl diphosphate synthase (GGPPS) of two diterpene-producing plants, Scoparia dulcis and Croton sublyratus, have been isolated using the homology-based polymerase chain reaction (PCR) method. Both clones contained highly conserved aspartate-rich motifs (DDXX(XX)D) and their N-terminal residues exhibited the characteristics of chloroplast targeting sequence. When expressed in Escherichia coli, both the full-length and truncated proteins in which the putative targeting sequence was deleted catalyzed the condensation of farnesyl diphosphate and isopentenyl diphosphate to produce geranylgeranyl diphosphate (GGPP). The structural factors determining the product length in plant GGPPSs were investigated by constructing S. dulcis GGPPS mutants on the basis of sequence comparison with the first aspartate-rich motif (FARM) of plant farnesyl diphosphate synthase. The result indicated that in plant GGPPSs small amino acids, Met and Ser, at the fourth and fifth positions before FARM and Pro and Cys insertion in FARM play essential roles in determination of product length. Further, when a chimeric gene comprised of the putative transit peptide of the S. dulcis GGPPS gene and a green fluorescent protein was introduced into Arabidopsis leaves by particle gun bombardment, the chimeric protein was localized in chloroplasts, indicating that the cloned S. dulcis GGPPS is a chloroplast protein.
Plant twitter: ligands under 140 amino acids enforcing stomatal patterning.
Rychel, Amanda L; Peterson, Kylee M; Torii, Keiko U
2010-05-01
Stomata are an essential land plant innovation whose patterning and density are under genetic and environmental control. Recently, several putative ligands have been discovered that influence stomatal density, and they all belong to the epidermal patterning factor-like family of secreted cysteine-rich peptides. Two of these putative ligands, EPF1 and EPF2, are expressed exclusively in the stomatal lineage cells and negatively regulate stomatal density. A third, EPFL6 or CHALLAH, is also a negative regulator of density, but is expressed subepidermally in the hypocotyl. A fourth, EPFL9 or STOMAGEN, is expressed in the mesophyll tissues and is a positive regulator of density. Genetic evidence suggests that these ligands may compete for the same receptor complex. Proper stomatal patterning is likely to be an intricate process involving ligand competition, regional specificity, and communication between tissue layers. EPFL-family genes exist in the moss Physcomitrella patens, the lycophyte Selaginella moellendorffii, and rice, Oryza sativa, and their sequence analysis yields several genes some of which are related to EPF1, EPF2, EPFL6, and EPFL9. Presence of these EPFL family members in the basal land plants suggests an exciting hypothesis that the genetic components for stomatal patterning originated early in land plant evolution.
Nowrousian, Minou
2009-04-01
During fungal fruiting body development, hyphae aggregate to form multicellular structures that protect and disperse the sexual spores. Analysis of microarray data revealed a gene cluster strongly upregulated during fruiting body development in the ascomycete Sordaria macrospora. Real time PCR analysis showed that the genes from the orthologous cluster in Neurospora crassa are also upregulated during development. The cluster encodes putative polyketide biosynthesis enzymes, including a reducing polyketide synthase. Analysis of knockout strains of a predicted dehydrogenase gene from the cluster showed that mutants in N. crassa and S. macrospora are delayed in fruiting body formation. In addition to the upregulated cluster, the N. crassa genome comprises another cluster containing a polyketide synthase gene, and five additional reducing polyketide synthase (rpks) genes that are not part of clusters. To study the role of these genes in sexual development, expression of the predicted rpks genes in S. macrospora (five genes) and N. crassa (six genes) was analyzed; all but one are upregulated during sexual development. Analysis of knockout strains for the N. crassa rpks genes showed that one of them is essential for fruiting body formation. These data indicate that polyketides produced by RPKSs are involved in sexual development in filamentous ascomycetes.
Left-right axis asymmetry determining human Cryptic gene is transcriptionally repressed by Snail.
Gupta, Kartik; Pilli, Vijaya Satish Sekhar; Aradhyam, Gopala Krishna
2016-10-28
Establishment of the left-right axis is important for positioning organs asymmetrically in the developing vertebrate-embryo. A number of factors like maternally deposited molecules have emerged essential in initiating the specification of the axis; the downstream events, however, are regulated by signal-transduction and gene-expression changes identifying which remains a crucial challenge. The EGF-CFC family member Cryptic, that functions as a co-receptor for some TGF-beta ligands, is developmentally expressed in higher mammals and mutations in the gene cause loss or change in left-right axis asymmetry. Despite the strong phenotype, no transcriptional-regulator of this gene is known till date. Using promoter-analyses tools, we found strong evidence that the developmentally essential transcription factor Snail binds to the human Cryptic-promoter. We cloned the promoter-region of human Cryptic in a reporter gene and observed decreased Cryptic-promoter activation upon increasing Snail expression. Further, the expression of Cryptic is down-regulated upon exogenous Snail expression, validating the reporter assays and the previously identified role of Snail as a transcriptional repressor. Finally, we demonstrate using gel-shift assay that Snail in nuclear extract of PANC1 cells interacts with the promoter-construct bearing putative Snail binding sites and confirm this finding using chromatin immunoprecipitation assay. Snail represses the expression of human Cryptic and therefore, might affect the signaling via Nodal that has previously been demonstrated to specify the left-right axis using the EGF-CFC co-receptors.
Hoyt, M A; He, L; Totis, L; Saunders, W S
1993-09-01
The kinesin-related products of the CIN8 and KIP1 genes of Saccharomyces cerevisiae redundantly perform an essential function in mitosis. The action of either gene-product is required for an outwardly directed force that acts upon the spindle poles. We have selected mutations that suppress the temperature-sensitivity of a cin8-temperature-sensitive kip1-delta strain. The extragenic suppressors analyzed were all found to be alleles of the KAR3 gene. KAR3 encodes a distinct kinesin-related protein whose action antagonizes Cin8p/Kip1p function. All seven alleles analyzed were altered within the region of KAR3 that encodes the putative force-generating (or "motor") domain. These mutations also suppressed the inviability associated with the cin8-delta kip1-delta genotype, a property not shared by a deletion of KAR3. Other properties of the suppressing alleles revealed that they were not null for function. Six of the seven were unaffected for the essential karyogamy and meiosis properties of KAR3 and the seventh was dominant for the suppressing trait. Our findings suggest that despite an antagonistic relationship between Cin8p/Kip1p and Kar3p, aspects of their mitotic roles may be similar.
Xuxia, Wang; Jie, Chen; Bo, Wang; Lijun, Liu; Hui, Jiang; Diluo, Tang; Dingxiang, Peng
2012-01-01
For the purpose of screening putative anthracnose resistance-related genes of ramie ( Boehmeria nivea L. Gaud), a cDNA library was constructed by suppression subtractive hybridization using anthracnose-resistant cultivar Huazhu no. 4. The cDNAs from Huazhu no. 4, which were infected with Colletotrichum gloeosporioides , were used as the tester and cDNAs from uninfected Huazhu no. 4 as the driver. Sequencing analysis and homology searching showed that these clones represented 132 single genes, which were assigned to functional categories, including 14 putative cellular functions, according to categories established for Arabidopsis . These 132 genes included 35 disease resistance and stress tolerance-related genes including putative heat-shock protein 90, metallothionein, PR-1.2 protein, catalase gene, WRKY family genes, and proteinase inhibitor-like protein. Partial disease-related genes were further analyzed by reverse transcription PCR and RNA gel blot. These expressed sequence tags are the first anthracnose resistance-related expressed sequence tags reported in ramie.
Molecular cloning and functional analysis of two FAD2 genes from American grape (Vitis labrusca L.).
Lee, Kyeong-Ryeol; Kim, Sun Hee; Go, Young-Sam; Jung, Sung Min; Roh, Kyung Hee; Kim, Jong-Bum; Suh, Mi-Chung; Lee, Sukchan; Kim, Hyun Uk
2012-11-10
The synthesis of polyunsaturated fatty acids (PUFAs), the most abundant fatty acids in plants, begins with a reaction catalyzed by fatty acid desaturase 2 (FAD2; EC 1.3.1.35), also called microsomal oleate Δ12-desaturase. Since the FAD2 gene was first identified in Arabidopsis thaliana, FAD2 research has gained wide interest as the essential enzyme for synthesizing PUFA. Grapes are one of the most frequently cultivated fruits in the world, with most commercial growers cultivating Vitis vinifera and V. labrusca. Grapeseed oil contains a high proportion, 60-70% of linoleic acid (18:2). We cloned two putative FAD2 genes from V. labrusca cv. Campbell Early based on V. vinifera genome sequences. Deduced amino acid sequences of two putative genes showed that VlFAD2s show high similarity to Arabidopsis FAD2 and commonly contain six transmembrane domain, three histidine boxes and endoplasmic reticulum (ER) retrieval motif representing the characteristics of fatty acid desaturase. Phylogenetic analyses of various plant FAD2s showed that VlFAD2-1 and VlFAD2-2 are separately grouped with constitutive and seed-type FAD2s, respectively. Southern blot showed that one or two bands are found in each lane. Because Campbell Early is a hybrid cultivar, FAD2-1 and FAD2-2 genes may exist as one copy in V. labrusca. Expression analysis in different tissues indicated that VlFAD2-1 is a constitutive gene but VlFAD2-2 is a seed-type gene. Complementation experiments of fad2-1 mutant Arabidopsis with VlFAD2-1 or VlFAD2-2 demonstrated that VlFAD2-1 and VlFAD2-2 can restore low PUFA proportion of fad2 to normal PUFA proportion. Copyright © 2012 Elsevier B.V. All rights reserved.
"PINK1"-Linked Parkinsonism Is Associated with Lewy Body Pathology
ERIC Educational Resources Information Center
Samaranch, Lluis; Lorenzo-Betancor, Oswaldo; Arbelo, Jose M.; Ferrer, Isidre; Lorenzo, Elena; Irigoyen, Jaione; Pastor, Maria A.; Marrero, Carmen; Isla, Concepcion; Herrera-Henriquez, Joanna; Pastor, Pau
2010-01-01
Phosphatase and tensin homolog-induced putative kinase 1 gene mutations have been associated with autosomal recessive early-onset Parkinson's disease. To date, no neuropathological reports have been published from patients with Parkinson's disease with both phosphatase and tensin homolog-induced putative kinase 1 gene copies mutated. We analysed…
Cloning and characterization of prunus serotina AGAMOUS, a putative flower homeotic gene
Xiaomei Liu; Joseph Anderson; Paula Pijut
2010-01-01
Members of the AGAMOUS subfamily of MADS-box transcription factors play an important role in regulating the development of reproductive organs in flowering plants. To help understand the mechanism of floral development in black cherry (Prunus serotina), PsAG (a putative flower homeotic identity gene) was isolated...
Differentially expressed regulatory genes in honey bee caste development
NASA Astrophysics Data System (ADS)
Hepperle, C.; Hartfelder, K.
2001-03-01
In the honey bee, an eminently fertile queen with up to 200 ovarioles per ovary monopolizes colony level reproduction. In contrast, worker bees have only few ovarioles and are essentially sterile. This phenotype divergence is a result of caste-specifically modulated juvenile hormone and ecdysteroid titers in larval development. In this study we employed a differential-display reverse transcription (DDRT)-PCR protocol to detect ecdysteroid-regulated gene expression during a critical phase of caste development. We identified a Ftz-F1 homolog and a Cut-like transcript. Ftz-F1 could be a putative element of the metamorphic ecdysone response cascade of bees, whereas Cut-like proteins are described as transcription factors involved in maintaining cellular differentiation states. The downregulation of both factors can be interpreted as steps in the metamorphic degradation of ovarioles in worker-bee ovaries.
Cellulose as an extracellular matrix component present in Enterobacter sakazakii biofilms.
Grimm, Maya; Stephan, Roger; Iversen, Carol; Manzardo, Giuseppe G G; Rattei, Thomas; Riedel, Kathrin; Ruepp, Andreas; Frishman, Dmitrij; Lehner, Angelika
2008-01-01
Cellulose was identified and characterized as an extracellular matrix component present in the biofilm of an Enterobacter sakazakii clinical isolate grown in nutrient-deficient (M9) medium. Using a bacterial artificial cloning approach in Escherichia coli and subsequent screening of transformants for fluorescence on calcofluor plates, nine genes organized in two operons were identified as putatively responsible for the biosynthesis of cellulose. In addition to the genes already described for cellulose production, two more genes were identified, putatively transcribed together with the genes from the first operon. Putative cellulose in E. sakazakii ES5 biofilm grown on glass coverslips was visualized by calcofluor staining and confocal fluorescence laser scanning microscopy. For the first time, the presence of cellulose in biofilms produced by E. sakazakii was confirmed by methylation analysis.
Molecular Diagnosis of Putative Stargardt Disease by Capture Next Generation Sequencing
Shi, Wei; Huang, Ping; Min, Qingjie; Li, Minghan; Yu, Xinping; Wu, Yaming; Zhao, Guangyu; Tong, Yi; Jin, Zi-Bing; Qu, Jia; Gu, Feng
2014-01-01
Stargardt Disease (STGD) is the commonest genetic form of juvenile or early adult onset macular degeneration, which is a genetically heterogeneous disease. Molecular diagnosis of STGD remains a challenge in a significant proportion of cases. To address this, seven patients from five putative STGD families were recruited. We performed capture next generation sequencing (CNGS) of the probands and searched for potentially disease-causing genetic variants in previously identified retinal or macular dystrophy genes. Seven disease-causing mutations in ABCA4 and two in PROM1 were identified by CNGS, which provides a confident genetic diagnosis in these five families. We also provided a genetic basis to explain the differences among putative STGD due to various mutations in different genes. Meanwhile, we show for the first time that compound heterozygous mutations in PROM1 gene could cause cone-rod dystrophy. Our findings support the enormous potential of CNGS in putative STGD molecular diagnosis. PMID:24763286
Behl, Jyotsna Dhingra; Mishra, Priyanka; Verma, N K; Niranjan, S K; Dangi, P S; Sharma, Rekha; Behl, Rahul
2016-03-15
The present study was undertaken to characterize the genetic variation present in lymphoxin A gene (LTA gene) encoding for the lymphotoxin A protein also known as tumor necrosis factor beta, a cytokine produced by lymphocytes, known to be cytotoxic for a wide range of tumor cells both in vitro and in vivo, and, which is essential for normal immunological development; in 40 animals of 5 diverse Bos indicus Indian zebu cattle breeds. These breeds survive under the harsh and tough tropical climatic conditions of various parts of the Indian subcontinent. The LTA gene in the present study was observed to contain 33 SNPs and 3 small insertion/deletion polymorphisms. Four SNPs occurred in the coding regions of the gene viz. g.1327A>G and g.1400C>T in exon 2 and g.1840C>T and g.1942C>T in exon 3, of which the SNP g.1327A>G in exon 2 resulted in a non-synonymous amino acid change G38D. This amino acid change was however predicted not be affecting the protein function in any manner. The gene contained putative transcription factor binding sites for the c-Re1 and for Pax-4 transcription factors. A putative promoter region was also predicted on the reverse DNA strand from position 894 to 644. Several repeat elements and microsatellite repeats were detected to be occurring across the 3.2kb LTA gene sequence. The study showed the occurrence of 40 genotypes and 48 most probable haplotypes. The genotypes at the observed SNP positions in the LTA gene were in near Hardy-Weinberg equilibrium. A negative Tajima's D value that was not significant statistically at P>0.10 indicated that the neutral mutation hypothesis could not be excluded. The genetic variations observed in the LTA gene in the present study have not been reported earlier and these could possibly be used as molecular markers for further studies involving association of the gene variability with disease resistance/tolerance traits. Copyright © 2015 Elsevier B.V. All rights reserved.
A curated catalog of canine and equine keratin genes
Pujar, Shashikant; McGarvey, Kelly M.; Welle, Monika; Galichet, Arnaud; Müller, Eliane J.; Pruitt, Kim D.; Leeb, Tosso
2017-01-01
Keratins represent a large protein family with essential structural and functional roles in epithelial cells of skin, hair follicles, and other organs. During evolution the genes encoding keratins have undergone multiple rounds of duplication and humans have two clusters with a total of 55 functional keratin genes in their genomes. Due to the high similarity between different keratin paralogs and species-specific differences in gene content, the currently available keratin gene annotation in species with draft genome assemblies such as dog and horse is still imperfect. We compared the National Center for Biotechnology Information (NCBI) (dog annotation release 103, horse annotation release 101) and Ensembl (release 87) gene predictions for the canine and equine keratin gene clusters to RNA-seq data that were generated from adult skin of five dogs and two horses and from adult hair follicle tissue of one dog. Taking into consideration the knowledge on the conserved exon/intron structure of keratin genes, we annotated 61 putatively functional keratin genes in both the dog and horse, respectively. Subsequently, curators in the RefSeq group at NCBI reviewed their annotation of keratin genes in the dog and horse genomes (Annotation Release 104 and Annotation Release 102, respectively) and updated annotation and gene nomenclature of several keratin genes. The updates are now available in the NCBI Gene database (https://www.ncbi.nlm.nih.gov/gene). PMID:28846680
Pöggeler, S
2000-06-01
In order to analyze the involvement of pheromones in cell recognition and mating in a homothallic fungus, two putative pheromone precursor genes, named ppg1 and ppg2, were isolated from a genomic library of Sordaria macrospora. The ppg1 gene is predicted to encode a precursor pheromone that is processed by a Kex2-like protease to yield a pheromone that is structurally similar to the alpha-factor of the yeast Saccharomyces cerevisiae. The ppg2 gene encodes a 24-amino-acid polypeptide that contains a putative farnesylated and carboxy methylated C-terminal cysteine residue. The sequences of the predicted pheromones display strong structural similarity to those encoded by putative pheromones of heterothallic filamentous ascomycetes. Both genes are expressed during the life cycle of S. macrospora. This is the first description of pheromone precursor genes encoded by a homothallic fungus. Southern-hybridization experiments indicated that ppg1 and ppg2 homologues are also present in other homothallic ascomycetes.
Moyano, Enriqueta; Portero-Robles, Ignacio; Medina-Escobar, Nieves; Valpuesta, Victoriano; Muñoz-Blanco, Juan; Luis Caballero, José
1998-01-01
A cDNA clone encoding a putative dihydroflavonol 4-reductase gene has been isolated from a strawberry (Fragaria × ananassa cv Chandler) DNA subtractive library. Northern analysis showed that the corresponding gene is predominantly expressed in fruit, where it is first detected during elongation (green stages) and then declines and sharply increases when the initial fruit ripening events occur, at the time of initiation of anthocyanin accumulation. The transcript can be induced in unripe green fruit by removing the achenes, and this induction can be partially inhibited by treatment of de-achened fruit with naphthylacetic acid, indicating that the expression of this gene is under hormonal control. We propose that the putative dihydroflavonol 4-reductase gene in strawberry plays a main role in the biosynthesis of anthocyanin during color development at the late stages of fruit ripening; during the first stages the expression of this gene could be related to the accumulation of condensed tannins. PMID:9625725
Kamalakaran, Sitharthan; Radhakrishnan, Senthil K; Beck, William T
2005-06-03
We developed a pipeline to identify novel genes regulated by the steroid hormone-dependent transcription factor, estrogen receptor, through a systematic analysis of upstream regions of all human and mouse genes. We built a data base of putative promoter regions for 23,077 human and 19,984 mouse transcripts from National Center for Biotechnology Information annotation and 8793 human and 6785 mouse promoters from the Data Base of Transcriptional Start Sites. We used this data base of putative promoters to identify potential targets of estrogen receptor by identifying estrogen response elements (EREs) in their promoters. Our program correctly identified EREs in genes known to be regulated by estrogen in addition to several new genes whose putative promoters contained EREs. We validated six genes (KIAA1243, NRIP1, MADH9, NME3, TPD52L, and ABCG2) to be estrogen-responsive in MCF7 cells using reverse transcription PCR. To allow for extensibility of our program in identifying targets of other transcription factors, we have built a Web interface to access our data base and programs. Our Web-based program for Promoter Analysis of Genome, PAGen@UIC, allows a user to identify putative target genes for vertebrate transcription factors through the analysis of their upstream sequences. The interface allows the user to search the human and mouse promoter data bases for potential target genes containing one or more listed transcription factor binding sites (TFBSs) in their upstream elements, using either regular expression-based consensus or position weight matrices. The data base can also be searched for promoters harboring user-defined TFBSs given as a consensus or a position weight matrix. Furthermore, the user can retrieve putative promoter sequences for any given gene together with identified TFBSs located on its promoter. Orthologous promoters are also analyzed to determine conserved elements.
USDA-ARS?s Scientific Manuscript database
A bioinformatic study was conducted to identify the putative genes in the biocontrol agent Trichoderma virens that encode for non-ribosomal peptide synthetases (NRPS). Gene expression analysis of 22 putative NRPSs and 4 NRPS/PKS (polyketide synthase) hybrid enzymes was conducted in the presence and...
Yang, Ping; Tanaka, Hiromasa; Kuwano, Eiichi; Suzuki, Koichi
2008-03-01
A new cytochrome P450 gene, CYP4G25, was identified as a differentially expressed gene between the diapausing and post-diapausing pharate first instar larvae of the wild silkmoth Antheraea yamamai, using subtractive cDNA hybridization. The cDNA sequence of CYP4G25 has an open reading frame of 1674 nucleotides encoding 557 amino acid residues. Sequence analysis of the putative CYP4G25 protein disclosed the motif FXXGXRXCXG that is essential for heme binding in P450 cytochromes. Hybridization in situ demonstrated predominant expression of CYP4G25 in the integument of pharate first instar larvae. Northern blotting analysis showed an intensive signal after the initiation of diapause and no or weak expression throughout the periods of pre-diapause and post-diapause, including larval development. These results indicate that CYP4G25 is strongly associated with diapause in pharate first instar larvae.
The recX gene product is involved in the SOS response in Herbaspirillum seropedicae.
Galvão, Carolina W; Pedrosa, Fábio O; Souza, Emanuel M; Yates, M Geoffrey; Chubatsu, Leda S; Steffens, Maria Berenice R
2003-02-01
The recA and the recX genes of Herbaspirillum seropedicae were sequenced. The recX is located 359 bp downstream from recA. Sequence analysis indicated the presence of a putative operator site overlapping a probable sigma70-dependent promoter upstream of recA and a transcription terminator downstream from recX, with no apparent promoter sequence in the intergenic region. Transcriptional analysis using lacZ promoter fusions indicated that recA expression increased three- to fourfold in the presence of methyl methanesulfonate (MMS). The roles of recA and recX genes in the SOS response were determined from studies of chromosomal mutants. The recA mutant showed the highest sensitivity to MMS and UV, and the recX mutant had an intermediate sensitivity, compared with the wild type (SMR1), confirming the essential role of the RecA protein in cell viability in the presence of mutagenic agents and also indicating a role for RecX in the SOS response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouyge-Moreau, I.; Rondeau, G.; Andre, M.T.
A putative tumor suppressor gene involved in B cell chronic lymphocytic leukemia (B-CLL) was mapped to human chromosome 13q14.3 close to the genetic markers D13S25 and D13S319. We constructed a 780-kb-long contig composed of cosmids, bacterial artificial chromosomes, and bacteriophage PI-derived artificial chromosomes that provides essential information and tools for the positional cloning of this gene. The contig contains both flanking markers as well as several additional genetic markers, three ESTs, and one potential CpG island. In addition, using one B-CLL patient, we characterized a small internal deleted region of 550 kb. Comparing this deletion with other recently published deletionsmore » narrows the minimally deleted area to less than 100 kb in our physical map. This deletion core region should contain all or part of the disrupted in B cell malignancies tumor suppressor gene. 27 refs., 3 figs.« less
Putative Porin of Bradyrhizobium sp. (Lupinus) Bacteroids Induced by Glyphosate▿
de María, Nuria; Guevara, Ángeles; Serra, M. Teresa; García-Luque, Isabel; González-Sama, Alfonso; de Lacoba, Mario García; de Felipe, M. Rosario; Fernández-Pascual, Mercedes
2007-01-01
Application of glyphosate (N-[phosphonomethyl] glycine) to Bradyrhizobium sp. (Lupinus)-nodulated lupin plants caused modifications in the protein pattern of bacteroids. The most significant change was the presence of a 44-kDa polypeptide in bacteroids from plants treated with the higher doses of glyphosate employed (5 and 10 mM). The polypeptide has been characterized by the amino acid sequencing of its N terminus and the isolation and nucleic acid sequencing of its encoding gene. It is putatively encoded by a single gene, and the protein has been identified as a putative porin. Protein modeling revealed the existence of several domains sharing similarity to different porins, such as a transmembrane beta-barrel. The protein has been designated BLpp, for Bradyrhizobium sp. (Lupinus) putative porin, and would be the first porin described in Bradyrhizobium sp. (Lupinus). In addition, a putative conserved domain of porins has been identified which consists of 87 amino acids, located in the BLpp sequence 30 amino acids downstream of the N-terminal region. In bacteroids, mRNA of the BLpp gene shows a basal constitutive expression that increases under glyphosate treatment, and the expression of the gene is seemingly regulated at the transcriptional level. By contrast, in free-living bacteria glyphosate treatment leads to an inhibition of BLpp mRNA accumulation, indicating a different effect of glyphosate on BLpp gene expression in bacteroids and free-living bacteria. The possible role of BLpp in a metabolite interchange between Bradyrhizobium and lupin is discussed. PMID:17557843
Tran, Ngoc Tuan; Liu, Han; Jakovlić, Ivan; Wang, Wei-Min
2015-01-01
MyD88 and TRAF6 play an essential role in the innate immune response in most animals. This study reports the full-length MaMyD88 and MaTRAF6 genes identified from the blunt snout bream (Megalobrama amblycephala) transcriptome profile. MaMyD88 is 2501 base pairs (bp) long, encoding a putative protein of 284 amino acids (aa), including the N-terminal DEATH domain of 78 aa and the C-terminal TIR domain of 138 aa. MaTRAF6 is 2252 bp long, encoding a putative protein of 542 aa, including the N-terminal low-complexity region, RING domain (40 aa), a coiled-coil region (64 aa) and C-terminal MATH domain (147 aa). Coding regions of MaMyD88 and MaTRAF6 genomic sequences consisted of five and six exons, respectively. Physicochemical and functional characteristics of the proteins were analysed. Alpha helices were dominant in the secondary structure of the proteins. Homology models of the MaMyD88 and MaTRAF6 domains were constructed applying the comparative modelling method. RT-qPCR was used to analyse the expression of MaMyD88 and MaTRAF6 mRNA transcripts in response to Aeromonas hydrophila challenge. Both genes were highly upregulated in the liver, spleen and kidney during the first 24 h after the challenge. While MyD88 and TRAF6 have been reported in various aquatic species, this is the first report and characterisation of these genes in blunt snout bream. This research also provides evidence of the important roles of these two genes in the blunt snout bream innate immune system. PMID:25830478
Ogembo, Javier Gordon; Caoili, Barbara L; Shikata, Masamitsu; Chaeychomsri, Sudawan; Kobayashi, Michihiro; Ikeda, Motoko
2009-10-01
A newly cloned Helicoverpa armigera nucleopolyhedrovirus (HearNPV) from Kenya, HearNPV-NNg1, has a higher insecticidal activity than HearNPV-G4, which also exhibits lower insecticidal activity than HearNPV-C1. In the search for genes and/or nucleotide sequences that might be involved in the observed virulence differences among Helicoverpa spp. NPVs, the entire genome of NNg1 was sequenced and compared with previously sequenced genomes of G4, C1 and Helicoverpa zea single-nucleocapsid NPV (Hz). The NNg1 genome was 132,425 bp in length, with a total of 143 putative open reading frames (ORFs), and shared high levels of overall amino acid and nucleotide sequence identities with G4, C1 and Hz. Three NNg1 ORFs, ORF5, ORF100 and ORF124, which were shared with C1, were absent in G4 and Hz, while NNg1 and C1 were missing a homologue of G4/Hz ORF5. Another three ORFs, ORF60 (bro-b), ORF119 and ORF120, and one direct repeat sequence (dr) were unique to NNg1. Relative to the overall nucleotide sequence identity, lower sequence identities were observed between NNg1 hrs and the homologous hrs in the other three Helicoverpa spp. NPVs, despite containing the same number of hrs located at essentially the same positions on the genomes. Differences were also observed between NNg1 and each of the other three Helicoverpa spp. NPVs in the diversity of bro genes encoded on the genomes. These results indicate several putative genes and nucleotide sequences that may be responsible for the virulence differences observed among Helicoverpa spp., yet the specific genes and/or nucleotide sequences responsible have not been identified.
Barendt, Skye M.; Sham, Lok-To; Winkler, Malcolm E.
2011-01-01
Peptidoglycan (PG) hydrolases play critical roles in the remodeling of bacterial cell walls during division. PG hydrolases have been studied extensively in several bacillus species, such as Escherichia coli and Bacillus subtilis, but remain relatively uncharacterized in ovococcus species, such as Streptococcus pneumoniae (pneumococcus). In this work, we identified genes that encode proteins with putative PG hydrolytic domains in the genome of S. pneumoniae strain D39. Knockout mutations in these genes were constructed, and the resulting mutants were characterized in comparison with the parent strain for growth, cell morphology, PG peptide incorporation, and in some cases, PG peptide composition. In addition, we characterized deletion mutations in nonessential genes of unknown function in the WalRKSpn two-component system regulon, which also contains the essential pcsB cell division gene. Several mutants did not show overt phenotypes, which is perhaps indicative of redundancy. In contrast, two new mutants showed distinct defects in PG biosynthesis. One mutation was in a gene designated dacB (spd_0549), which we showed encodes an l,d-carboxypeptidase involved in PG maturation. Notably, dacB mutants, similar to dacA (d,d-carboxypeptidase) mutants, exhibited defects in cell shape and septation, consistent with the idea that the availability of PG peptide precursors is important for proper PG biosynthesis. Epistasis analysis indicated that DacA functions before DacB in d-Ala removal, and immunofluorescence microscopy showed that DacA and DacB are located over the entire surface of pneumococcal cells. The other mutation was in WalRKSpn regulon gene spd_0703, which encodes a putative membrane protein that may function as a type of conserved streptococcal shape, elongation, division, and sporulation (SEDS) protein. PMID:21378199
Identification of druggable cancer driver genes amplified across TCGA datasets.
Chen, Ying; McGee, Jeremy; Chen, Xianming; Doman, Thompson N; Gong, Xueqian; Zhang, Youyan; Hamm, Nicole; Ma, Xiwen; Higgs, Richard E; Bhagwat, Shripad V; Buchanan, Sean; Peng, Sheng-Bin; Staschke, Kirk A; Yadav, Vipin; Yue, Yong; Kouros-Mehr, Hosein
2014-01-01
The Cancer Genome Atlas (TCGA) projects have advanced our understanding of the driver mutations, genetic backgrounds, and key pathways activated across cancer types. Analysis of TCGA datasets have mostly focused on somatic mutations and translocations, with less emphasis placed on gene amplifications. Here we describe a bioinformatics screening strategy to identify putative cancer driver genes amplified across TCGA datasets. We carried out GISTIC2 analysis of TCGA datasets spanning 16 cancer subtypes and identified 486 genes that were amplified in two or more datasets. The list was narrowed to 75 cancer-associated genes with potential "druggable" properties. The majority of the genes were localized to 14 amplicons spread across the genome. To identify potential cancer driver genes, we analyzed gene copy number and mRNA expression data from individual patient samples and identified 42 putative cancer driver genes linked to diverse oncogenic processes. Oncogenic activity was further validated by siRNA/shRNA knockdown and by referencing the Project Achilles datasets. The amplified genes represented a number of gene families, including epigenetic regulators, cell cycle-associated genes, DNA damage response/repair genes, metabolic regulators, and genes linked to the Wnt, Notch, Hedgehog, JAK/STAT, NF-KB and MAPK signaling pathways. Among the 42 putative driver genes were known driver genes, such as EGFR, ERBB2 and PIK3CA. Wild-type KRAS was amplified in several cancer types, and KRAS-amplified cancer cell lines were most sensitive to KRAS shRNA, suggesting that KRAS amplification was an independent oncogenic event. A number of MAP kinase adapters were co-amplified with their receptor tyrosine kinases, such as the FGFR adapter FRS2 and the EGFR family adapters GRB2 and GRB7. The ubiquitin-like ligase DCUN1D1 and the histone methyltransferase NSD3 were also identified as novel putative cancer driver genes. We discuss the patient tailoring implications for existing cancer drug targets and we further discuss potential novel opportunities for drug discovery efforts.
Identification of Druggable Cancer Driver Genes Amplified across TCGA Datasets
Chen, Ying; McGee, Jeremy; Chen, Xianming; Doman, Thompson N.; Gong, Xueqian; Zhang, Youyan; Hamm, Nicole; Ma, Xiwen; Higgs, Richard E.; Bhagwat, Shripad V.; Buchanan, Sean; Peng, Sheng-Bin; Staschke, Kirk A.; Yadav, Vipin; Yue, Yong; Kouros-Mehr, Hosein
2014-01-01
The Cancer Genome Atlas (TCGA) projects have advanced our understanding of the driver mutations, genetic backgrounds, and key pathways activated across cancer types. Analysis of TCGA datasets have mostly focused on somatic mutations and translocations, with less emphasis placed on gene amplifications. Here we describe a bioinformatics screening strategy to identify putative cancer driver genes amplified across TCGA datasets. We carried out GISTIC2 analysis of TCGA datasets spanning 14 cancer subtypes and identified 461 genes that were amplified in two or more datasets. The list was narrowed to 73 cancer-associated genes with potential “druggable” properties. The majority of the genes were localized to 14 amplicons spread across the genome. To identify potential cancer driver genes, we analyzed gene copy number and mRNA expression data from individual patient samples and identified 40 putative cancer driver genes linked to diverse oncogenic processes. Oncogenic activity was further validated by siRNA/shRNA knockdown and by referencing the Project Achilles datasets. The amplified genes represented a number of gene families, including epigenetic regulators, cell cycle-associated genes, DNA damage response/repair genes, metabolic regulators, and genes linked to the Wnt, Notch, Hedgehog, JAK/STAT, NF-KB and MAPK signaling pathways. Among the 40 putative driver genes were known driver genes, such as EGFR, ERBB2 and PIK3CA. Wild-type KRAS was amplified in several cancer types, and KRAS-amplified cancer cell lines were most sensitive to KRAS shRNA, suggesting that KRAS amplification was an independent oncogenic event. A number of MAP kinase adapters were co-amplified with their receptor tyrosine kinases, such as the FGFR adapter FRS2 and the EGFR family adapter GRB7. The ubiquitin-like ligase DCUN1D1 and the histone methyltransferase NSD3 were also identified as novel putative cancer driver genes. We discuss the patient tailoring implications for existing cancer drug targets and we further discuss potential novel opportunities for drug discovery efforts. PMID:24874471
Modular architecture of the T4 phage superfamily: A conserved core genome and a plastic periphery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comeau, Andre M.; Bertrand, Claire; Letarov, Andrei
2007-06-05
Among the most numerous objects in the biosphere, phages show enormous diversity in morphology and genetic content. We have sequenced 7 T4-like phages and compared their genome architecture. All seven phages share a core genome with T4 that is interrupted by several hyperplastic regions (HPRs) where most of their divergence occurs. The core primarily includes homologues of essential T4 genes, such as the virion structure and DNA replication genes. In contrast, the HPRs contain mostly novel genes of unknown function and origin. A few of the HPR genes that can be assigned putative functions, such as a series of novelmore » Internal Proteins, are implicated in phage adaptation to the host. Thus, the T4-like genome appears to be partitioned into discrete segments that fulfil different functions and behave differently in evolution. Such partitioning may be critical for these large and complex phages to maintain their flexibility, while simultaneously allowing them to conserve their highly successful virion design and mode of replication.« less
Xie, Qi; Liu, Xue; Zhang, Yinbing; Tang, Jinfu; Yin, Dedong; Fan, Bo; Zhu, Lihuang; Han, Liebao; Song, Guilong; Li, Dayong
2017-01-01
Due to its high biomass yield, low environmental impact, and widespread adaptability to poor soils and harsh conditions, switchgrass ( Panicum virgatum L.), a warm-region perennial herbaceous plant, has attracted much attention in recent years. However, little is known about microRNAs (miRNAs) and their functions in this bioenergy grass. Here, we identified and characterized a miRNA gene, Pvi-MIR319a , encoding microRNA319a in switchgrass. Transgenic rice lines generated by overexpressing the Pvi-MIR319a precursor gene exhibited broader leaves and delayed flowering compared with the control. Gene expression analysis indicated at least four putative target genes were downregulated. Additionally, we cloned a putative target gene ( PvPCF5 ) of Pvi-MIR319a from switchgrass. PvPCF5, a TCP transcription factor, is a nuclear-localized protein with transactivation activity and control the development of leaf. Our results suggest that Pvi-MIR319a and its target genes may be used as potential genetic regulators for future switchgrass genetic improvement.
Argimón, Silvia; Wishart, Jill A.; Leng, Roger; Macaskill, Susan; Mavor, Abigail; Alexandris, Thomas; Nicholls, Susan; Knight, Andrew W.; Enjalbert, Brice; Walmsley, Richard; Odds, Frank C.; Gow, Neil A. R.; Brown, Alistair J. P.
2007-01-01
Candida albicans expresses specific virulence traits that promote disease establishment and progression. These traits include morphological transitions between yeast and hyphal growth forms that are thought to contribute to dissemination and invasion and cell surface adhesins that promote attachment to the host. Here, we describe the regulation of the adhesin gene ALS3, which is expressed specifically during hyphal development in C. albicans. Using a combination of reporter constructs and regulatory mutants, we show that this regulation is mediated by multiple factors at the transcriptional level. The analysis of ALS3 promoter deletions revealed that this promoter contains two activation regions: one is essential for activation during hyphal development, while the second increases the amplitude of this activation. Further deletion analyses using the Renilla reniformis luciferase reporter delineate the essential activation region between positions −471 and −321 of the promoter. Further 5′ or 3′ deletions block activation. ALS3 transcription is repressed mainly by Nrg1 and Tup1, but Rfg1 contributes to this repression. Efg1, Tec1, and Bcr1 are essential for the transcriptional activation of ALS3, with Tec1 mediating its effects indirectly through Bcr1 rather than through the putative Tec1 sites in the ALS3 promoter. ALS3 transcription is not affected by Cph2, but Cph1 contributes to full ALS3 activation. The data suggest that multiple morphogenetic signaling pathways operate through the promoter of this adhesin gene to mediate its developmental regulation in this major fungal pathogen. PMID:17277173
Genome-wide screen uncovers novel pathways for tRNA processing and nuclear-cytoplasmic dynamics.
Wu, Jingyan; Bao, Alicia; Chatterjee, Kunal; Wan, Yao; Hopper, Anita K
2015-12-15
Transfer ribonucleic acids (tRNAs) are essential for protein synthesis. However, key gene products involved in tRNA biogenesis and subcellular movement remain to be discovered. We conducted the first comprehensive unbiased analysis of the role of nearly an entire proteome in tRNA biology and describe 162 novel and 12 previously known Saccharomyces cerevisiae gene products that function in tRNA processing, turnover, and subcellular movement. tRNA nuclear export is of particular interest because it is essential, but the known tRNA exporters (Los1 [exportin-t] and Msn5 [exportin-5]) are unessential. We report that mutations of CRM1 (Exportin-1), MEX67/MTR2 (TAP/p15), and five nucleoporins cause accumulation of unspliced tRNA, a hallmark of defective tRNA nuclear export. CRM1 mutation genetically interacts with los1Δ and causes altered tRNA nuclear-cytoplasmic distribution. The data implicate roles for the protein and mRNA nuclear export machineries in tRNA nuclear export. Mutations of genes encoding actin cytoskeleton components and mitochondrial outer membrane proteins also cause accumulation of unspliced tRNA, likely due to defective splicing on mitochondria. Additional gene products, such as chromatin modification enzymes, have unanticipated effects on pre-tRNA end processing. Thus, this genome-wide screen uncovered putative novel pathways for tRNA nuclear export and extensive links between tRNA biology and other aspects of cell physiology. © 2015 Wu et al.; Published by Cold Spring Harbor Laboratory Press.
Genome-wide screen uncovers novel pathways for tRNA processing and nuclear–cytoplasmic dynamics
Wu, Jingyan; Bao, Alicia; Chatterjee, Kunal; Wan, Yao; Hopper, Anita K.
2015-01-01
Transfer ribonucleic acids (tRNAs) are essential for protein synthesis. However, key gene products involved in tRNA biogenesis and subcellular movement remain to be discovered. We conducted the first comprehensive unbiased analysis of the role of nearly an entire proteome in tRNA biology and describe 162 novel and 12 previously known Saccharomyces cerevisiae gene products that function in tRNA processing, turnover, and subcellular movement. tRNA nuclear export is of particular interest because it is essential, but the known tRNA exporters (Los1 [exportin-t] and Msn5 [exportin-5]) are unessential. We report that mutations of CRM1 (Exportin-1), MEX67/MTR2 (TAP/p15), and five nucleoporins cause accumulation of unspliced tRNA, a hallmark of defective tRNA nuclear export. CRM1 mutation genetically interacts with los1Δ and causes altered tRNA nuclear–cytoplasmic distribution. The data implicate roles for the protein and mRNA nuclear export machineries in tRNA nuclear export. Mutations of genes encoding actin cytoskeleton components and mitochondrial outer membrane proteins also cause accumulation of unspliced tRNA, likely due to defective splicing on mitochondria. Additional gene products, such as chromatin modification enzymes, have unanticipated effects on pre-tRNA end processing. Thus, this genome-wide screen uncovered putative novel pathways for tRNA nuclear export and extensive links between tRNA biology and other aspects of cell physiology. PMID:26680305
Degnan, Patrick H; Yu, Yeisoo; Sisneros, Nicholas; Wing, Rod A; Moran, Nancy A
2009-06-02
Eukaryotes engage in a multitude of beneficial and deleterious interactions with bacteria. Hamiltonella defensa, an endosymbiont of aphids and other sap-feeding insects, protects its aphid host from attack by parasitoid wasps. Thus H. defensa is only conditionally beneficial to hosts, unlike ancient nutritional symbionts, such as Buchnera, that are obligate. Similar to pathogenic bacteria, H. defensa is able to invade naive hosts and circumvent host immune responses. We have sequenced the genome of H. defensa to identify possible mechanisms that underlie its persistence in healthy aphids and protection from parasitoids. The 2.1-Mb genome has undergone significant reduction in size relative to its closest free-living relatives, which include Yersinia and Serratia species (4.6-5.4 Mb). Auxotrophic for 8 of the 10 essential amino acids, H. defensa is reliant upon the essential amino acids produced by Buchnera. Despite these losses, the H. defensa genome retains more genes and pathways for a variety of cell structures and processes than do obligate symbionts, such as Buchnera. Furthermore, putative pathogenicity loci, encoding type-3 secretion systems, and toxin homologs, which are absent in obligate symbionts, are abundant in the H. defensa genome, as are regulatory genes that likely control the timing of their expression. The genome is also littered with mobile DNA, including phage-derived genes, plasmids, and insertion-sequence elements, highlighting its dynamic nature and the continued role horizontal gene transfer plays in shaping it.
Bénit, Paule; Steffann, Julie; Lebon, Sophie; Chretien, Dominique; Kadhom, Noman; de Lonlay, Pascale; Goldenberg, Alice; Dumez, Yves; Dommergues, Marc; Rustin, Pierre; Munnich, Arnold; Rötig, Agnès
2003-05-01
Complex I deficiency, the most common cause of mitochondrial disorders, accounts for a variety of clinical symptoms and its genetic heterogeneity makes identification of the disease genes particularly tedious. Indeed, most of the 43 complex I subunits are encoded by nuclear genes, only seven of them being mitochondrially encoded. In order to offer urgent prenatal diagnosis, we have studied an inbred/multiplex family with complex I deficiency by using microsatellite DNA markers flanking the putative disease loci. Microsatellite DNA markers have allowed us to exclude the NDUFS7, NDUFS8, NDUFV1 and NDUFS1 genes and to find homozygosity at the NDUFS4 locus. Direct sequencing has led to identification of a homozygous splice acceptor site mutation in intron 1 of the NDUFS4 gene (IVS1nt -1, G-->A); this was not found in chorion villi of the ongoing pregnancy. We suggest that genotyping microsatellite DNA markers at putative disease loci in inbred/multiplex families helps to identify the disease-causing mutation. More generally, we suggest giving consideration to a more systematic microsatellite analysis of putative disease loci for identification of disease genes in inbred/multiplex families affected with genetically heterogeneous conditions.
Huang, Lin; Li, Guiyang; Mo, Zhaolan; Xiao, Peng; Li, Jie; Huang, Jie
2015-01-01
Background Japanese flounder (Paralichthys olivaceus) is an economically important marine fish in Asia and has suffered from disease outbreaks caused by various pathogens, which requires more information for immune relevant genes on genome background. However, genomic and transcriptomic data for Japanese flounder remain scarce, which limits studies on the immune system of this species. In this study, we characterized the Japanese flounder spleen transcriptome using an Illumina paired-end sequencing platform to identify putative genes involved in immunity. Methodology/Principal Findings A cDNA library from the spleen of P. olivaceus was constructed and randomly sequenced using an Illumina technique. The removal of low quality reads generated 12,196,968 trimmed reads, which assembled into 96,627 unigenes. A total of 21,391 unigenes (22.14%) were annotated in the NCBI Nr database, and only 1.1% of the BLASTx top-hits matched P. olivaceus protein sequences. Approximately 12,503 (58.45%) unigenes were categorized into three Gene Ontology groups, 19,547 (91.38%) were classified into 26 Cluster of Orthologous Groups, and 10,649 (49.78%) were assigned to six Kyoto Encyclopedia of Genes and Genomes pathways. Furthermore, 40,928 putative simple sequence repeats and 47, 362 putative single nucleotide polymorphisms were identified. Importantly, we identified 1,563 putative immune-associated unigenes that mapped to 15 immune signaling pathways. Conclusions/Significance The P. olivaceus transciptome data provides a rich source to discover and identify new genes, and the immune-relevant sequences identified here will facilitate our understanding of the mechanisms involved in the immune response. Furthermore, the plentiful potential SSRs and SNPs found in this study are important resources with respect to future development of a linkage map or marker assisted breeding programs for the flounder. PMID:25723398
The De Novo Transcriptome and Its Functional Annotation in the Seed Beetle Callosobruchus maculatus.
Sayadi, Ahmed; Immonen, Elina; Bayram, Helen; Arnqvist, Göran
2016-01-01
Despite their unparalleled biodiversity, the genomic resources available for beetles (Coleoptera) remain relatively scarce. We present an integrative and high quality annotated transcriptome of the beetle Callosobruchus maculatus, an important and cosmopolitan agricultural pest as well as an emerging model species in ecology and evolutionary biology. Using Illumina sequencing technology, we sequenced 492 million read pairs generated from 51 samples of different developmental stages (larvae, pupae and adults) of C. maculatus. Reads were de novo assembled using the Trinity software, into a single combined assembly as well as into three separate assemblies based on data from the different developmental stages. The combined assembly generated 218,192 transcripts and 145,883 putative genes. Putative genes were annotated with the Blast2GO software and the Trinotate pipeline. In total, 33,216 putative genes were successfully annotated using Blastx against the Nr (non-redundant) database and 13,382 were assigned to 34,100 Gene Ontology (GO) terms. We classified 5,475 putative genes into Clusters of Orthologous Groups (COG) and 116 metabolic pathways maps were predicted based on the annotation. Our analyses suggested that the transcriptional specificity increases with ontogeny. For example, out of 33,216 annotated putative genes, 51 were only expressed in larvae, 63 only in pupae and 171 only in adults. Our study illustrates the importance of including samples from several developmental stages when the aim is to provide an integrative and high quality annotated transcriptome. Our results will represent an invaluable resource for those working with the ecology, evolution and pest control of C. maculatus, as well for comparative studies of the transcriptomics and genomics of beetles more generally.
The De Novo Transcriptome and Its Functional Annotation in the Seed Beetle Callosobruchus maculatus
Sayadi, Ahmed; Immonen, Elina; Bayram, Helen
2016-01-01
Despite their unparalleled biodiversity, the genomic resources available for beetles (Coleoptera) remain relatively scarce. We present an integrative and high quality annotated transcriptome of the beetle Callosobruchus maculatus, an important and cosmopolitan agricultural pest as well as an emerging model species in ecology and evolutionary biology. Using Illumina sequencing technology, we sequenced 492 million read pairs generated from 51 samples of different developmental stages (larvae, pupae and adults) of C. maculatus. Reads were de novo assembled using the Trinity software, into a single combined assembly as well as into three separate assemblies based on data from the different developmental stages. The combined assembly generated 218,192 transcripts and 145,883 putative genes. Putative genes were annotated with the Blast2GO software and the Trinotate pipeline. In total, 33,216 putative genes were successfully annotated using Blastx against the Nr (non-redundant) database and 13,382 were assigned to 34,100 Gene Ontology (GO) terms. We classified 5,475 putative genes into Clusters of Orthologous Groups (COG) and 116 metabolic pathways maps were predicted based on the annotation. Our analyses suggested that the transcriptional specificity increases with ontogeny. For example, out of 33,216 annotated putative genes, 51 were only expressed in larvae, 63 only in pupae and 171 only in adults. Our study illustrates the importance of including samples from several developmental stages when the aim is to provide an integrative and high quality annotated transcriptome. Our results will represent an invaluable resource for those working with the ecology, evolution and pest control of C. maculatus, as well for comparative studies of the transcriptomics and genomics of beetles more generally. PMID:27442123
Åvall-Jääskeläinen, Silja; Paulin, Lars; Blom, Jochen
2018-01-01
Non-aureus staphylococci (NAS) are most commonly isolated from subclinical mastitis. Different NAS species may, however, have diverse effects on the inflammatory response in the udder. We determined the genome sequences of 20 staphylococcal isolates from clinical or subclinical bovine mastitis, belonging to the NAS species Staphylococcus agnetis, S. chromogenes, and S. simulans, and focused on the putative virulence factor genes present in the genomes. For comparison we used our previously published genome sequences of four S. aureus isolates from bovine mastitis. The pan-genome and core genomes of the non-aureus isolates were characterized. After that, putative virulence factor orthologues were searched in silico. We compared the presence of putative virulence factors in the NAS species and S. aureus and evaluated the potential association between bacterial genotype and type of mastitis (clinical vs. subclinical). The NAS isolates had much less virulence gene orthologues than the S. aureus isolates. One third of the virulence genes were detected only in S. aureus. About 100 virulence genes were present in all S. aureus isolates, compared to about 40 to 50 in each NAS isolate. S. simulans differed the most. Several of the virulence genes detected among NAS were harbored only by S. simulans, but it also lacked a number of genes present both in S. agnetis and S. chromogenes. The type of mastitis was not associated with any specific virulence gene profile. It seems that the virulence gene profiles or cumulative number of different virulence genes are not directly associated with the type of mastitis (clinical or subclinical), indicating that host derived factors such as the immune status play a pivotal role in the manifestation of mastitis. PMID:29610707
Chen, Minjie; Li, Yanjun; Zhang, Li; Wang, Jianying; Zheng, Chunli; Zhang, Xuefeng
2015-02-01
Acidithiobacillus ferrooxidans plays a critical role in metal solubilization in the biomining industry, and occupies an ecological niche characterized by high acidity and high concentrations of toxic heavy metal ions. In order to investigate the possible metal resistance mechanism, the cellular distribution of cadmium was tested. The result indicated that Cd(2+) entered the cells upon initial exposure resulting in increased intracellular concentrations, followed by its excretion from the cells during subsequent growth and adaptation. Sequence homology analyses were used to identify 10 genes predicted to participate in heavy metal homeostasis, and the expression of these genes was investigated in cells cultured in the presence of increasing concentrations of toxic divalent cadmium (Cd(2+)). The results suggested that one gene (cmtR A.f ) encoded a putative Cd(2+)/Pb(2+)-responsive transcriptional regulator; four genes (czcA1 A.f , czcA2 A.f , czcB1 A.f ; and czcC1 A.f ) encoded heavy metal efflux proteins for Cd(2+); two genes (cadA1 A.f and cadB1 A.f ) encoded putative cation channel proteins related to the transport of Cd(2+). No significant enhancement of gene expression was observed at low concentrations of Cd(2+) (5 mM) and most of the putative metal resistance genes were up-regulated except cmtR A.f , cadB3 A.f ; and czcB1 A.f at higher concentrations (15 and 30 mM) according to real-time polymerase chain reaction. A model was developed for the mechanism of resistance to cadmium ions based on homology analyses of the predicted genes, the transcription of putative Cd(2+) resistance genes, and previous work.
van der Ploeg, Jan R.
2005-01-01
In Streptococcus mutans, competence for genetic transformation and biofilm formation are dependent on the two-component signal transduction system ComDE together with the inducer peptide pheromone competence-stimulating peptide (CSP) (encoded by comC). Here, it is shown that the same system is also required for expression of the nlmAB genes, which encode a two-peptide nonlantibiotic bacteriocin. Expression from a transcriptional nlmAB′-lacZ fusion was highest at high cell density and was increased up to 60-fold following addition of CSP, but it was abolished when the comDE genes were interrupted. Two more genes, encoding another putative bacteriocin and a putative bacteriocin immunity protein, were also regulated by this system. The regions upstream of these genes and of two further putative bacteriocin-encoding genes and a gene encoding a putative bacteriocin immunity protein contained a conserved 9-bp repeat element just upstream of the transcription start, which suggests that expression of these genes is also dependent on the ComCDE regulatory system. Mutations in the repeat element of the nlmAB promoter region led to a decrease in CSP-dependent expression of nlmAB′-lacZ. In agreement with these results, a comDE mutant and mutants unable to synthesize or export CSP did not produce bacteriocins. It is speculated that, at high cell density, bacteriocin production is induced to liberate DNA from competing streptococci. PMID:15937160
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swenson, Joel M.; Colmenares, Serafin U.; Strom, Amy R.
Heterochromatin is enriched for specific epigenetic factors including Heterochromatin Protein 1a (HP1a), and is essential for many organismal functions. To elucidate heterochromatin organization and regulation, we purified Drosophila melanogaster HP1a interactors, and performed a genome-wide RNAi screen to identify genes that impact HP1a levels or localization. The majority of the over four hundred putative HP1a interactors and regulators identified were previously unknown. We found that 13 of 16 tested candidates (83%) are required for gene silencing, providing a substantial increase in the number of identified components that impact heterochromatin properties. Surprisingly, image analysis revealed that although some HP1a interactors andmore » regulators are broadly distributed within the heterochromatin domain, most localize to discrete subdomains that display dynamic localization patterns during the cell cycle. We conclude that heterochromatin composition and architecture is more spatially complex and dynamic than previously suggested, and propose that a network of subdomains regulates diverse heterochromatin functions.« less
Genetic toxicology of putative nongenotoxic carcinogens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, M.A.; Stack, H.F.; Waters, M.D.
1993-01-01
The report examines a group of putative nongenotoxic carcinogens that have been cited in the published literature. Using short-term test data from the US Environmental Protection Agency/International Agency for Research on Cancer genetic activity profile (EPA/IARC GAP) database, these agents are classified on the basis of their mutagenicity emphasizing three genetic endpoints: gene mutation, chromosomal aberration and aneuploidy. On the basis of results of short-term tests for these effects, criteria was defined for evidence of mutagenicity (and nonmutagenicity) these criteria were applied in classifying the group of putative nongenotoxic carcinogens. The results from this evaluation based on the EPA/IARC GAPmore » database are presented along with a summary of the short-term test data for each chemical and the relevant carcinogenicity results from the NTP, Gene-Tox and IARC databases. The data clearly demonstrate that many of the putative nongenotoxic carcinogens that have been adequately tested in short-term bioassays induce gene or chromosomal mutations or aneuploidy.« less
Influence of putative exopolysaccharide genes on Pseudomonas putida KT2440 biofilm stability.
Nilsson, Martin; Chiang, Wen-Chi; Fazli, Mustafa; Gjermansen, Morten; Givskov, Michael; Tolker-Nielsen, Tim
2011-05-01
We report a study of the role of putative exopolysaccharide gene clusters in the formation and stability of Pseudomonas putida KT2440 biofilm. Two novel putative exopolysaccharide gene clusters, pea and peb, were identified, and evidence is provided that they encode products that stabilize P. putida KT2440 biofilm. The gene clusters alg and bcs, which code for proteins mediating alginate and cellulose biosynthesis, were found to play minor roles in P. putida KT2440 biofilm formation and stability under the conditions tested. A P. putida KT2440 derivative devoid of any identifiable exopolysaccharide genes was found to form biofilm with a structure similar to wild-type biofilm, but with a stability lower than that of wild-type biofilm. Based on our data, we suggest that the formation of structured P. putida KT2440 biofilm can occur in the absence of exopolysaccharides; however, exopolysaccharides play a role as structural stabilizers. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
Syn, Genevieve; Blackwell, Jenefer M; Jamieson, Sarra E; Francis, Richard W
2018-01-01
Toxoplasma gondii uses epigenetic mechanisms to regulate both endogenous and host cell gene expression. To identify genes with putative epigenetic functions, we developed an in silico pipeline to interrogate the T. gondii proteome of 8313 proteins. Step 1 employs PredictNLS and NucPred to identify genes predicted to target eukaryotic nuclei. Step 2 uses GOLink to identify proteins of epigenetic function based on Gene Ontology terms. This resulted in 611 putative nuclear localised proteins with predicted epigenetic functions. Step 3 filtered for secretory proteins using SignalP, SecretomeP, and experimental data. This identified 57 of the 611 putative epigenetic proteins as likely to be secreted. The pipeline is freely available online, uses open access tools and software with user-friendly Perl scripts to automate and manage the results, and is readily adaptable to undertake any such in silico search for genes contributing to particular functions.
Ciok, Anna; Adamczuk, Marcin; Bartosik, Dariusz; Dziewit, Lukasz
2016-11-28
Pseudomonas strains isolated from the heavily contaminated Lubin copper mine and Zelazny Most post-flotation waste reservoir in Poland were screened for the presence of integrons. This analysis revealed that two strains carried homologous DNA regions composed of a gene encoding a DNA_BRE_C domain-containing tyrosine recombinase (with no significant sequence similarity to other integrases of integrons) plus a three-component array of putative integron gene cassettes. The predicted gene cassettes encode three putative polypeptides with homology to (i) transmembrane proteins, (ii) GCN5 family acetyltransferases, and (iii) hypothetical proteins of unknown function (homologous proteins are encoded by the gene cassettes of several class 1 integrons). Comparative sequence analyses identified three structural variants of these novel integron-like elements within the sequenced bacterial genomes. Analysis of their distribution revealed that they are found exclusively in strains of the genus Pseudomonas .
Age-associated microbiome shows the giant panda lives on hemicelluloses, not on cellulose.
Zhang, Wenping; Liu, Wenbin; Hou, Rong; Zhang, Liang; Schmitz-Esser, Stephan; Sun, Huaibo; Xie, Junjin; Zhang, Yunfei; Wang, Chengdong; Li, Lifeng; Yue, Bisong; Huang, He; Wang, Hairui; Shen, Fujun; Zhang, Zhihe
2018-05-01
The giant panda feeds almost exclusively on bamboo, a diet highly enriched in lignin and cellulose, but is characterized by a digestive tract similar to carnivores. It is still large unknown if and how the giant panda gut microbiota contributes to lignin and cellulose degradation. Here we show the giant pandas' gut microbiota does not significantly contribute to cellulose and lignin degradation. We found that no operational taxonomic unit had a nearest neighbor identified as a cellulolytic species or strain with a significant higher abundance in juvenile than cubs, a very low abundance of putative lignin and cellulose genes existed in part of analyzing samples but a significant higher abundance of genes involved in starch and hemicellulose degradation in juveniles than cubs. Moreover, a significant lower abundance of putative cellulolytic genes and a significant higher abundance of putative α-amylase and hemicellulase gene families were present in giant pandas than in omnivores or herbivores.
2012-01-01
Background Fusarium head blight (FHB) caused by Fusarium species like F. graminearum is a devastating disease of wheat (Triticum aestivum) worldwide. Mycotoxins such as deoxynivalenol produced by the fungus affect plant and animal health, and cause significant reductions of grain yield and quality. Resistant varieties are the only effective way to control this disease, but the molecular events leading to FHB resistance are still poorly understood. Transcriptional profiling was conducted for the winter wheat cultivars Dream (moderately resistant) and Lynx (susceptible). The gene expressions at 32 and 72 h after inoculation with Fusarium were used to trace possible defence mechanisms and associated genes. A comparative qPCR was carried out for selected genes to analyse the respective expression patterns in the resistant cultivars Dream and Sumai 3 (Chinese spring wheat). Results Among 2,169 differentially expressed genes, two putative main defence mechanisms were found in the FHB-resistant Dream cultivar. Both are defined base on their specific mode of resistance. A non-specific mechanism was based on several defence genes probably induced by jasmonate and ethylene signalling, including lipid-transfer protein, thionin, defensin and GDSL-like lipase genes. Additionally, defence-related genes encoding jasmonate-regulated proteins were up-regulated in response to FHB. Another mechanism based on the targeted suppression of essential Fusarium virulence factors comprising proteases and mycotoxins was found to be an essential, induced defence of general relevance in wheat. Moreover, similar inductions upon fungal infection were frequently observed among FHB-responsive genes of both mechanisms in the cultivars Dream and Sumai 3. Conclusions Especially ABC transporter, UDP-glucosyltransferase, protease and protease inhibitor genes associated with the defence mechanism against fungal virulence factors are apparently active in different resistant genetic backgrounds, according to reports on other wheat cultivars and barley. This was further supported in our qPCR experiments on seven genes originating from this mechanism which revealed similar activities in the resistant cultivars Dream and Sumai 3. Finally, the combination of early-stage and steady-state induction was associated with resistance, while transcript induction generally occurred later and temporarily in the susceptible cultivars. The respective mechanisms are attractive for advanced studies aiming at new resistance and toxin management strategies. PMID:22857656
Das, Ravi; Bhattacharjee, Shatabdi; Patel, Atit A; Harris, Jenna M; Bhattacharya, Surajit; Letcher, Jamin M; Clark, Sarah G; Nanda, Sumit; Iyer, Eswar Prasad R; Ascoli, Giorgio A; Cox, Daniel N
2017-12-01
Transcription factors (TFs) have emerged as essential cell autonomous mediators of subtype specific dendritogenesis; however, the downstream effectors of these TFs remain largely unknown, as are the cellular events that TFs control to direct morphological change. As dendritic morphology is largely dictated by the organization of the actin and microtubule (MT) cytoskeletons, elucidating TF-mediated cytoskeletal regulatory programs is key to understanding molecular control of diverse dendritic morphologies. Previous studies in Drosophila melanogaster have demonstrated that the conserved TFs Cut and Knot exert combinatorial control over aspects of dendritic cytoskeleton development, promoting actin and MT-based arbor morphology, respectively. To investigate transcriptional targets of Cut and/or Knot regulation, we conducted systematic neurogenomic studies, coupled with in vivo genetic screens utilizing multi-fluor cytoskeletal and membrane marker reporters. These analyses identified a host of putative Cut and/or Knot effector molecules, and a subset of these putative TF targets converge on modulating dendritic cytoskeletal architecture, which are grouped into three major phenotypic categories, based upon neuromorphometric analyses: complexity enhancer, complexity shifter, and complexity suppressor. Complexity enhancer genes normally function to promote higher order dendritic growth and branching with variable effects on MT stabilization and F-actin organization, whereas complexity shifter and complexity suppressor genes normally function in regulating proximal-distal branching distribution or in restricting higher order branching complexity, respectively, with spatially restricted impacts on the dendritic cytoskeleton. Collectively, we implicate novel genes and cellular programs by which TFs distinctly and combinatorially govern dendritogenesis via cytoskeletal modulation. Copyright © 2017 by the Genetics Society of America.
Guermonprez, Hélène; Smertenko, Andrei; Crosnier, Marie-Thérèse; Durandet, Monique; Vrielynck, Nathalie; Guerche, Philippe; Hussey, Patrick J; Satiat-Jeunemaitre, Béatrice; Bonhomme, Sandrine
2008-01-01
The organization and dynamics of the plant endomembrane system require both universal and plant-specific molecules and compartments. The latter, despite the growing wealth of information, remains poorly understood. From the study of an Arabidopsis thaliana male gametophytic mutant, it was possible to isolate a gene named POKY POLLEN TUBE (POK) essential for pollen tube tip growth. The similarity between the predicted POK protein sequence and yeast Vps52p, a subunit from the GARP/VFT complex which is involved in the docking of vesicles from the prevacuolar compartment to the Golgi apparatus, suggested that the POK protein plays a role in plant membrane trafficking. Genetic analysis of Arabidopsis mutants affecting AtVPS53 or AtVPS54 genes which encode putative POK partners shows a transmission defect through the male gametophyte for all lines, which is similar to the pok mutant. Using a combination of biochemical approaches and specific antiserum it has been demonstrated that the POK protein is present in phylogenetically divergent plant species, associated with membranes and belongs to a high molecular weight complex. Combination of immunolocalization studies and pharmacological approaches in different plant cells revealed that the POK protein associates with Golgi and post-Golgi compartments. The role of POK in post-Golgi endomembrane trafficking and as a member of a putative plant GARP/VFT complex is discussed.
A role for Lin28 in primordial germ cell development and germ cell malignancy
West, Jason A.; Viswanathan, Srinivas R.; Yabuuchi, Akiko; Cunniff, Kerianne; Takeuchi, Ayumu; Park, In-Hyun; Sero, Julia E.; Zhu, Hao; Perez-Atayde, Antonio; Frazier, A. Lindsay; Surani, M. Azim; Daley, George Q.
2009-01-01
The rarity and inaccessibility of the earliest primordial germ cells (PGCs) in the mouse embryo thwarts efforts to investigate molecular mechanisms of germ cell specification. Stella marks the minute founder population of the germ lineage1,2. Here we differentiate mouse embryonic stem cells (ESCs) carrying a Stella transgenic reporter into putative PGCs in vitro. The Stella+ cells possess a transcriptional profile similar to embryo-derived PGCs, and like their counterparts in vivo, lose imprints in a time-dependent manner. Using inhibitory RNAs to screen candidate genes for effects on the development of Stella+ cells in vitro, we discovered that Lin28, a negative regulator of let-7 microRNA processing3-6, is essential for proper PGC development. We further show that Blimp1, a let-7 target and a master regulator of PGC specification7-9, can rescue the effect of Lin28-deficiency during PGC development, thereby establishing a mechanism of action for Lin28 during PGC specification. Over-expression of Lin28 promotes formation of Stella+ cells in vitro and PGCs in chimeric embryos, and is associated with human germ cell tumours. The differentiation of putative PGCs from ESCs in vitro recapitulates the early stages of gamete development in vivo, and provides an accessible system for discovering novel genes involved in germ cell development and malignancy. PMID:19578360
PPARγ regulates exocrine pancreas lipase.
Danino, Hila; Naor, Ronny Peri-; Fogel, Chen; Ben-Harosh, Yael; Kadir, Rotem; Salem, Hagit; Birk, Ruth
2016-12-01
Pancreatic lipase (triacylglycerol lipase EC 3.1.1.3) is an essential enzyme in hydrolysis of dietary fat. Dietary fat, especially polyunsaturated fatty acids (PUFA), regulate pancreatic lipase (PNLIP); however, the molecular mechanism underlying this regulation is mostly unknown. As PUFA are known to regulate expression of proliferator-activated receptor gamma (PPARγ), and as we identified in-silico putative PPARγ binding sites within the putative PNLIP promoter sequence, we hypothesized that PUFA regulation of PNLIP might be mediated by PPARγ. We used in silico bioinformatics tools, reporter luciferase assay, PPARγ agonists and antagonists, PPARγ overexpression in exocrine pancreas AR42J and primary cells to study PPARγ regulation of PNLIP. Using in silico bioinformatics tools we mapped PPARγ binding sites (PPRE) to the putative promoter region of PNLIP. Reporter luciferase assay in AR42J rat exocrine pancreas acinar cells transfected with various constructs of the putative PNLIP promoter showed that PNLIP transcription is significantly enhanced by PPARγ dose-dependently, reaching maximal levels with multi PPRE sites. This effect was significantly augmented in the presence of PPARγ agonists and reduced by PPARγ antagonists or mutagenesis abrogating PPRE sites. Over-expression of PPARγ significantly elevated PNLIP transcript and protein levels in AR42J cells and in primary pancreas cells. Moreover, PNLIP expression was up-regulated by PPARγ agonists (pioglitazone and 15dPGJ2) and significantly down-regulated by PPARγ antagonists in non-transfected rat exocrine pancreas AR42J cell line cells. PPARγ transcriptionally regulates PNLIP gene expression. This transcript regulation resolves part of the missing link between dietary PUFA direct regulation of PNLIP. Copyright © 2016 Elsevier B.V. All rights reserved.
Liu, Ake; Wang, Yong; Zhang, Debao; Wang, Xuhua; Song, Huifang; Dang, Chunwang; Yao, Qin; Chen, Keping
2013-08-01
Helix-loop-helix (bHLH) proteins play essential regulatory roles in a variety of biological processes. These highly conserved proteins form a large transcription factor superfamily, and are commonly identified in large numbers within animal, plant, and fungal genomes. The bHLH domain has been well studied in many animal species, but has not yet been characterized in non-avian reptiles. In this study, we identified 102 putative bHLH genes in the genome of the green anole lizard, Anolis carolinensis. Based on phylogenetic analysis, these genes were classified into 43 families, with 43, 24, 16, 3, 10, and 3 members assigned into groups A, B, C, D, E, and F, respectively, and 3 members categorized as "orphans". Within-group evolutionary relationships inferred from the phylogenetic analysis were consistent with highly conserved patterns observed for introns and additional domains. Results from phylogenetic analysis of the H/E(spl) family suggest that genome and tandem gene duplications have contributed to this family's expansion. Our classification and evolutionary analysis has provided insights into the evolutionary diversification of animal bHLH genes, and should aid future studies on bHLH protein regulation of key growth and developmental processes.
Zheng, Desen; Burr, Thomas J
2013-07-01
An Sfp-type phosphopantetheinyl transferase (PPTase) encoding gene F-avi5813 in Agrobacterium vitis F2/5 was found to be required for the induction of a tobacco hypersensitive response (HR) and grape necrosis. Sfp-type PPTases are post-translation modification enzymes that activate acyl-carry protein (ACP) domains in polyketide synthases (PKS) and peptidyl-carrier protein (PCP) domains of nonribosomal peptide synthases (NRPS). Mutagenesis of PKS and NRPS genes in A. vitis led to the identification of a PKS gene (F-avi4330) and NRPS gene (F-avi3342) that are both required for HR and necrosis. The gene immediately downstream of F-avi4330 (F-avi4329) encoding a predicted aminotransferase was also found to be required for HR and necrosis. Regulation of F-avi4330 and F-avi3342 by quorum-sensing genes avhR, aviR, and avsR and by a lysR-type regulator, lhnR, was investigated. It was determined that F-avi4330 expression is positively regulated by avhR, aviR, and lhnR and negatively regulated by avsR. F-avi3342 was found to be positively regulated by avhR, aviR, and avsR and negatively regulated by lhnR. Our results suggest that a putative hybrid peptide-polyketide metabolite synthesized by F-avi4330 and F-avi3342 is associated with induction of tobacco HR and grape necrosis. This is the first report that demonstrates that NRPS and PKS play essential roles in conferring the unique ability of A. vitis to elicit a non-host-specific HR and host-specific necrosis.
Chai, Wenbo; Si, Weina; Ji, Wei; Qin, Qianqian; Zhao, Manli; Jiang, Haiyang
2018-01-01
HD-Zip proteins represent the major transcription factors in higher plants, playing essential roles in plant development and stress responses. Foxtail millet is a crop to investigate the systems biology of millet and biofuel grasses and the HD-Zip gene family has not been studied in foxtail millet. For further investigation of the expression profile of the HD-Zip gene family in foxtail millet, a comprehensive genome-wide expression analysis was conducted in this study. We found 47 protein-encoding genes in foxtail millet using BLAST search tools; the putative proteins were classified into four subfamilies, namely, subfamilies I, II, III, and IV. Gene structure and motif analysis indicate that the genes in one subfamily were conserved. Promotor analysis showed that HD-Zip gene was involved in abiotic stress. Duplication analysis revealed that 8 (~17%) hdz genes were tandemly duplicated and 28 (58%) were segmentally duplicated; purifying duplication plays important roles in gene expansion. Microsynteny analysis revealed the maximum relationship in foxtail millet-sorghum and foxtail millet-rice. Expression profiling upon the abiotic stresses of drought and high salinity and the biotic stress of ABA revealed that some genes regulated responses to drought and salinity stresses via an ABA-dependent process, especially sihdz29 and sihdz45. Our study provides new insight into evolutionary and functional analyses of HD-Zip genes involved in environmental stress responses in foxtail millet.
Hewald, Sandra; Linne, Uwe; Scherer, Mario; Marahiel, Mohamed A.; Kämper, Jörg; Bölker, Michael
2006-01-01
Many microorganisms produce surface-active substances that enhance the availability of water-insoluble substrates. Although many of these biosurfactants have interesting potential applications, very little is known about their biosynthesis. The basidiomycetous fungus Ustilago maydis secretes large amounts of mannosylerythritol lipids (MELs) under conditions of nitrogen starvation. We recently described a putative glycosyltransferase, Emt1, which is essential for MEL biosynthesis and whose expression is strongly induced by nitrogen limitation. We used DNA microarray analysis to identify additional genes involved in MEL biosynthesis. Here we show that emt1 is part of a gene cluster which comprises five open reading frames. Three of the newly identified proteins, Mac1, Mac2, and Mat1, contain short sequence motifs characteristic for acyl- and acetyltransferases. Mutational analysis revealed that Mac1 and Mac2 are essential for MEL production, which suggests that they are involved in the acylation of mannosylerythritol. Deletion of mat1 resulted in the secretion of completely deacetylated MELs, as determined by mass spectrometry. We overexpressed Mat1 in Escherichia coli and demonstrated that this enzyme acts as an acetyl coenzyme A-dependent acetyltransferase. Remarkably, Mat1 displays relaxed regioselectivity and is able to acetylate mannosylerythritol at both the C-4 and C-6 hydroxyl groups. Based on these results, we propose a biosynthesis pathway for the generation of mannosylerythritol lipids in U. maydis. PMID:16885300
Popowska, Magdalena; Osińska, Magdalena; Rzeczkowska, Magdalena
2012-04-01
The main aim of our study was to determine the physiological function of NagA enzyme in the Listeria monocytogenes cell. The primary structure of the murein of L. monocytogenes is very similar to that of Escherichia coli, the main differences being amidation of diaminopimelic acid and partial de-N-acetylation of glucosamine residues. NagA is needed for the deacetylation of N-acetyl-glucosamine-6 phosphate to glucosamine-6 phosphate and acetate. Analysis of the L. monocytogenes genome reveals the presence of two proteins with NagA domain, Lmo0956 and Lmo2108, which are cytoplasmic putative proteins. We introduced independent mutations into the structural genes for the two proteins. In-depth characterization of one of these mutants, MN1, deficient in protein Lmo0956 revealed strikingly altered cell morphology, strongly reduced cell wall murein content and decreased sensitivity to cell wall hydrolase, mutanolysin and peptide antibiotic, colistin. The gene products of operon 150, consisting of three genes: lmo0956, lmo0957, and lmo0958, are necessary for the cytosolic steps of the amino-sugar-recycling pathway. The cytoplasmic de-N-acetylase Lmo0956 of L. monocytogenes is required for cell wall peptidoglycan and teichoic acid biosynthesis and is also essential for bacterial cell growth, cell division, and sensitivity to cell wall hydrolases and peptide antibiotics.
Van Dien, Stephen J.; Marx, Christopher J.; O'Brien, Brooke N.; Lidstrom, Mary E.
2003-01-01
Genomic searches were used to reconstruct the putative carotenoid biosynthesis pathway in the pink-pigmented facultative methylotroph Methylobacterium extorquens AM1. Four genes for putative phytoene desaturases were identified. A colorless mutant was obtained by transposon mutagenesis, and the insertion was shown to be in one of the putative phytoene desaturase genes. Mutations in the other three did not affect color. The tetracycline marker was removed from the original transposon mutant, resulting in a pigment-free strain with wild-type growth properties useful as a tool for future experiments. PMID:14660416
Van Dien, Stephen J; Marx, Christopher J; O'Brien, Brooke N; Lidstrom, Mary E
2003-12-01
Genomic searches were used to reconstruct the putative carotenoid biosynthesis pathway in the pink-pigmented facultative methylotroph Methylobacterium extorquens AM1. Four genes for putative phytoene desaturases were identified. A colorless mutant was obtained by transposon mutagenesis, and the insertion was shown to be in one of the putative phytoene desaturase genes. Mutations in the other three did not affect color. The tetracycline marker was removed from the original transposon mutant, resulting in a pigment-free strain with wild-type growth properties useful as a tool for future experiments.
Baby, Vincent; Lachance, Jean-Christophe; Gagnon, Jules; Lucier, Jean-François; Matteau, Dominick; Knight, Tom; Rodrigue, Sébastien
2018-01-01
The creation and comparison of minimal genomes will help better define the most fundamental mechanisms supporting life. Mesoplasma florum is a near-minimal, fast-growing, nonpathogenic bacterium potentially amenable to genome reduction efforts. In a comparative genomic study of 13 M. florum strains, including 11 newly sequenced genomes, we have identified the core genome and open pangenome of this species. Our results show that all of the strains have approximately 80% of their gene content in common. Of the remaining 20%, 17% of the genes were found in multiple strains and 3% were unique to any given strain. On the basis of random transposon mutagenesis, we also estimated that ~290 out of 720 genes are essential for M. florum L1 in rich medium. We next evaluated different genome reduction scenarios for M. florum L1 by using gene conservation and essentiality data, as well as comparisons with the first working approximation of a minimal organism, Mycoplasma mycoides JCVI-syn3.0. Our results suggest that 409 of the 473 M. mycoides JCVI-syn3.0 genes have orthologs in M. florum L1. Conversely, 57 putatively essential M. florum L1 genes have no homolog in M. mycoides JCVI-syn3.0. This suggests differences in minimal genome compositions, even for these evolutionarily closely related bacteria. IMPORTANCE The last years have witnessed the development of whole-genome cloning and transplantation methods and the complete synthesis of entire chromosomes. Recently, the first minimal cell, Mycoplasma mycoides JCVI-syn3.0, was created. Despite these milestone achievements, several questions remain to be answered. For example, is the composition of minimal genomes virtually identical in phylogenetically related species? On the basis of comparative genomics and transposon mutagenesis, we investigated this question by using an alternative model, Mesoplasma florum, that is also amenable to genome reduction efforts. Our results suggest that the creation of additional minimal genomes could help reveal different gene compositions and strategies that can support life, even within closely related species.
ORF157 from the Archaeal Virus Acidianus Filamentous Virus 1 Defines a New Class of Nuclease▿
Goulet, Adeline; Pina, Mery; Redder, Peter; Prangishvili, David; Vera, Laura; Lichière, Julie; Leulliot, Nicolas; van Tilbeurgh, Herman; Ortiz-Lombardia, Miguel; Campanacci, Valérie; Cambillau, Christian
2010-01-01
Acidianus filamentous virus 1 (AFV1) (Lipothrixviridae) is an enveloped filamentous virus that was characterized from a crenarchaeal host. It infects Acidianus species that thrive in the acidic hot springs (>85°C and pH <3) of Yellowstone National Park, WY. The AFV1 20.8-kb, linear, double-stranded DNA genome encodes 40 putative open reading frames whose sequences generally show little similarity to other genes in the sequence databases. Because three-dimensional structures are more conserved than sequences and hence are more effective at revealing function, we set out to determine protein structures from putative AFV1 open reading frames (ORF). The crystal structure of ORF157 reveals an α+β protein with a novel fold that remotely resembles the nucleotidyltransferase topology. In vitro, AFV1-157 displays a nuclease activity on linear double-stranded DNA. Alanine substitution mutations demonstrated that E86 is essential to catalysis. AFV1-157 represents a novel class of nuclease, but its exact role in vivo remains to be determined. PMID:20200253
Lai, Liying; Dai, Jiao; Tang, Huanyu; Zhang, Shouming; Wu, Chunyan; Qiu, Wancen; Lu, Chengping; Yao, Huochun; Fan, Hongjie; Wu, Zongfu
2017-06-01
Streptococcus suis (SS), an important pathogen for pigs, is not only considered as a zoonotic agent for humans, but is also recognized as a major reservoir of antimicrobial resistance contributing to the spread of resistance genes to other pathogenic Streptococcus species. In addition to serotype 2 (SS2), serotype 9 (SS9) is another prevalent serotype isolated from diseased pigs. Although many SS strains have been sequenced, the complete genome of a non-SS2 virulent strain has been unavailable to date. Here, we report the complete genome of GZ0565, a virulent strain of SS9, isolated from a pig with meningitis. Comparative genomic analysis revealed five new putative virulence or antimicrobial resistance-associated genes in strain GZ0565 but not in SS2 virulent strains. These five genes encode a putative triacylglycerol lipase, a TipAS antibiotic-recognition domain protein, a putative TetR family transcriptional repressor, a protein containing a LPXTG domain and a G5 domain, and a type VII secretion system (T7SS) putative substrate (EsxA), respectively. Western blot analysis showed that strain GZ0565 can secrete EsxA. We generated an esxA deletion mutant and showed that EsxA contributes to SS virulence in a mouse infection model. Additionally, the antibiotic resistance gene vanZ SS was identified and expression of vanZ SS conferred resistance to teicoplanin and dalbavancin in Streptococcus agalactiae. We believe this is the first experimental demonstration of the existence of the T7SS putative substrate EsxA and its contribution to bacterial virulence in SS. Together, our results contribute to further understanding of the virulence and antimicrobial resistance characteristics of SS. Copyright © 2017 Elsevier B.V. All rights reserved.
Kwon, Jun Tae; Ham, Sera; Jeon, Suyeon; Kim, Youil; Oh, Seungmin; Cho, Chunghee
2017-01-01
The identification and characterization of germ cell-specific genes are essential if we hope to comprehensively understand the mechanisms of spermatogenesis and fertilization. Here, we searched the mouse UniGene databases and identified 13 novel genes as being putatively testis-specific or -predominant. Our in silico and in vitro analyses revealed that the expressions of these genes are testis- and germ cell-specific, and that they are regulated in a stage-specific manner during spermatogenesis. We generated antibodies against the proteins encoded by seven of the genes to facilitate their characterization in male germ cells. Immunoblotting and immunofluorescence analyses revealed that one of these proteins was expressed only in testicular germ cells, three were expressed in both testicular germ cells and testicular sperm, and the remaining three were expressed in sperm of the testicular stages and in mature sperm from the epididymis. Further analysis of the latter three proteins showed that they were all associated with cytoskeletal structures in the sperm flagellum. Among them, MORN5, which is predicted to contain three MORN motifs, is conserved between mouse and human sperm. In conclusion, we herein identify 13 authentic genes with male germ cell-specific expression, and provide comprehensive information about these genes and their encoded products. Our finding will facilitate future investigations into the functional roles of these novel genes in spermatogenesis and sperm functions.
SNP discovery by high-throughput sequencing in soybean
2010-01-01
Background With the advance of new massively parallel genotyping technologies, quantitative trait loci (QTL) fine mapping and map-based cloning become more achievable in identifying genes for important and complex traits. Development of high-density genetic markers in the QTL regions of specific mapping populations is essential for fine-mapping and map-based cloning of economically important genes. Single nucleotide polymorphisms (SNPs) are the most abundant form of genetic variation existing between any diverse genotypes that are usually used for QTL mapping studies. The massively parallel sequencing technologies (Roche GS/454, Illumina GA/Solexa, and ABI/SOLiD), have been widely applied to identify genome-wide sequence variations. However, it is still remains unclear whether sequence data at a low sequencing depth are enough to detect the variations existing in any QTL regions of interest in a crop genome, and how to prepare sequencing samples for a complex genome such as soybean. Therefore, with the aims of identifying SNP markers in a cost effective way for fine-mapping several QTL regions, and testing the validation rate of the putative SNPs predicted with Solexa short sequence reads at a low sequencing depth, we evaluated a pooled DNA fragment reduced representation library and SNP detection methods applied to short read sequences generated by Solexa high-throughput sequencing technology. Results A total of 39,022 putative SNPs were identified by the Illumina/Solexa sequencing system using a reduced representation DNA library of two parental lines of a mapping population. The validation rates of these putative SNPs predicted with low and high stringency were 72% and 85%, respectively. One hundred sixty four SNP markers resulted from the validation of putative SNPs and have been selectively chosen to target a known QTL, thereby increasing the marker density of the targeted region to one marker per 42 K bp. Conclusions We have demonstrated how to quickly identify large numbers of SNPs for fine mapping of QTL regions by applying massively parallel sequencing combined with genome complexity reduction techniques. This SNP discovery approach is more efficient for targeting multiple QTL regions in a same genetic population, which can be applied to other crops. PMID:20701770
Johnson, Timothy J; Siek, Kylie E; Johnson, Sara J; Nolan, Lisa K
2006-01-01
ColV plasmids have long been associated with the virulence of Escherichia coli, despite the fact that their namesake trait, ColV production, does not appear to contribute to virulence. Such plasmids or their associated sequences appear to be quite common among avian pathogenic E. coli (APEC) and are strongly linked to the virulence of these organisms. In the present study, a 180-kb ColV plasmid was sequenced and analyzed. This plasmid, pAPEC-O2-ColV, possesses a 93-kb region containing several putative virulence traits, including iss, tsh, and four putative iron acquisition and transport systems. The iron acquisition and transport systems include those encoding aerobactin and salmochelin, the sit ABC iron transport system, and a putative iron transport system novel to APEC, eit. In order to determine the prevalence of the virulence-associated genes within this region among avian E. coli strains, 595 APEC and 199 avian commensal E. coli isolates were examined for genes of this region using PCR. Results indicate that genes contained within a portion of this putative virulence region are highly conserved among APEC and that the genes of this region occur significantly more often in APEC than in avian commensal E. coli. The region of pAPEC-O2-ColV containing genes that are highly prevalent among APEC appears to be a distinguishing trait of APEC strains.
Johnson, Timothy J.; Siek, Kylie E.; Johnson, Sara J.; Nolan, Lisa K.
2006-01-01
ColV plasmids have long been associated with the virulence of Escherichia coli, despite the fact that their namesake trait, ColV production, does not appear to contribute to virulence. Such plasmids or their associated sequences appear to be quite common among avian pathogenic E. coli (APEC) and are strongly linked to the virulence of these organisms. In the present study, a 180-kb ColV plasmid was sequenced and analyzed. This plasmid, pAPEC-O2-ColV, possesses a 93-kb region containing several putative virulence traits, including iss, tsh, and four putative iron acquisition and transport systems. The iron acquisition and transport systems include those encoding aerobactin and salmochelin, the sit ABC iron transport system, and a putative iron transport system novel to APEC, eit. In order to determine the prevalence of the virulence-associated genes within this region among avian E. coli strains, 595 APEC and 199 avian commensal E. coli isolates were examined for genes of this region using PCR. Results indicate that genes contained within a portion of this putative virulence region are highly conserved among APEC and that the genes of this region occur significantly more often in APEC than in avian commensal E. coli. The region of pAPEC-O2-ColV containing genes that are highly prevalent among APEC appears to be a distinguishing trait of APEC strains. PMID:16385064
Horizontal gene transfer in an acid mine drainage microbial community.
Guo, Jiangtao; Wang, Qi; Wang, Xiaoqi; Wang, Fumeng; Yao, Jinxian; Zhu, Huaiqiu
2015-07-04
Horizontal gene transfer (HGT) has been widely identified in complete prokaryotic genomes. However, the roles of HGT among members of a microbial community and in evolution remain largely unknown. With the emergence of metagenomics, it is nontrivial to investigate such horizontal flow of genetic materials among members in a microbial community from the natural environment. Because of the lack of suitable methods for metagenomics gene transfer detection, microorganisms from a low-complexity community acid mine drainage (AMD) with near-complete genomes were used to detect possible gene transfer events and suggest the biological significance. Using the annotation of coding regions by the current tools, a phylogenetic approach, and an approximately unbiased test, we found that HGTs in AMD organisms are not rare, and we predicted 119 putative transferred genes. Among them, 14 HGT events were determined to be transfer events among the AMD members. Further analysis of the 14 transferred genes revealed that the HGT events affected the functional evolution of archaea or bacteria in AMD, and it probably shaped the community structure, such as the dominance of G-plasma in archaea in AMD through HGT. Our study provides a novel insight into HGT events among microorganisms in natural communities. The interconnectedness between HGT and community evolution is essential to understand microbial community formation and development.
Zhao, Lihua; He, Jiangman; Cai, Hanyang; Lin, Haiyan; Li, Yanqiang; Liu, Renyi; Yang, Zhenbiao; Qin, Yuan
2014-11-01
Megasporogenesis is essential for female fertility, and requires the accomplishment of meiosis and the formation of functional megaspores. The inaccessibility and low abundance of female meiocytes make it particularly difficult to elucidate the molecular basis underlying megasporogenesis. We used high-throughput tag-sequencing analysis to identify genes expressed in female meiocytes (FMs) by comparing gene expression profiles from wild-type ovules undergoing megasporogenesis with those from the spl mutant ovules, which lack megasporogenesis. A total of 862 genes were identified as FMs, with levels that are consistently reduced in spl ovules in two biological replicates. Fluorescence-assisted cell sorting followed by RNA-seq analysis of DMC1:GFP-labeled female meiocytes confirmed that 90% of the FMs are indeed detected in the female meiocyte protoplast profiling. We performed reverse genetic analysis of 120 candidate genes and identified four FM genes with a function in female meiosis progression in Arabidopsis. We further revealed that KLU, a putative cytochrome P450 monooxygenase, is involved in chromosome pairing during female meiosis, most likely by affecting the normal expression pattern of DMC1 in ovules during female meiosis. Our studies provide valuable information for functional genomic analyses of plant germline development as well as insights into meiosis. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Fabrizio, Paola; Hoon, Shawn; Shamalnasab, Mehrnaz; Galbani, Abdulaye; Wei, Min; Giaever, Guri; Nislow, Corey; Longo, Valter D
2010-07-15
The study of the chronological life span of Saccharomyces cerevisiae, which measures the survival of populations of non-dividing yeast, has resulted in the identification of homologous genes and pathways that promote aging in organisms ranging from yeast to mammals. Using a competitive genome-wide approach, we performed a screen of a complete set of approximately 4,800 viable deletion mutants to identify genes that either increase or decrease chronological life span. Half of the putative short-/long-lived mutants retested from the primary screen were confirmed, demonstrating the utility of our approach. Deletion of genes involved in vacuolar protein sorting, autophagy, and mitochondrial function shortened life span, confirming that respiration and degradation processes are essential for long-term survival. Among the genes whose deletion significantly extended life span are ACB1, CKA2, and TRM9, implicated in fatty acid transport and biosynthesis, cell signaling, and tRNA methylation, respectively. Deletion of these genes conferred heat-shock resistance, supporting the link between life span extension and cellular protection observed in several model organisms. The high degree of conservation of these novel yeast longevity determinants in other species raises the possibility that their role in senescence might be conserved.
Characterization of putative toxin/antitoxin systems in Vibrio parahaemolyticus.
Hino, M; Zhang, J; Takagi, H; Miyoshi, T; Uchiumi, T; Nakashima, T; Kakuta, Y; Kimura, M
2014-07-01
To obtain more information about the toxin/antitoxin (TA) systems in the Vibrio genus and also to examine their involvement in the induction of a viable but nonculturable (VBNC) state, we searched homologues of the Escherichia coli TA systems in the Vibrio parahaemolyticus genome. We found that a gene cluster, vp1842/vp1843, in the V. parahaemolyticus genome database has homology to that encoding the E. coli TA proteins, DinJ/YafQ. Expression of the putative toxin gene vp1843 in E. coli cells strongly inhibited the cell growth, while coexpression with the putative antitoxin gene vp1842 neutralized this effect. Mutational analysis identified Lys37 and Pro45 in the gene product VP1843 of vp1843 as crucial residues for the growth retardation of E. coli cells. VP1843, unlike the E. coli toxin YafQ, has no protein synthesis inhibitory activity, and that instead the expression of vp1843 in E. coli caused morphological change of the cells. The gene cluster vp1842/vp1843 encodes the V. parahaemolyticus TA system; VP1843 inhibits cell growth, whereas VP1842 serves as an antitoxin by forming a stable complex with VP1843. The putative toxin, VP1843, may be involved in the induction of the VBNC state in V. parahaemolyticus by inhibiting cell division. © 2014 The Society for Applied Microbiology.
Li, Haifeng; Liang, Wanqi; Hu, Yun; Zhu, Lu; Yin, Changsong; Xu, Jie; Dreni, Ludovico; Kater, Martin M.; Zhang, Dabing
2011-01-01
AGAMOUS-LIKE6 (AGL6) genes play essential roles in flower development, but whether and how they work with floral organ identity genes remain less understood. Here, we describe interactions of the rice (Oryza sativa) AGL6 gene MADS6 with other rice floral homeotic genes in flower development. Genetic analyses revealed that MADS6 specifies the identity of the three inner whorls and floral meristem determinacy redundantly with SUPERWOMAN1/MADS16 (B-gene) or MADS3 (C-gene). MADS6 was shown to define carpel/ovule development and floral determinacy by interacting with MADS13 (D-gene) and control the palea and floral meristem identities together with the YABBY gene DROOPING LEAF. Expression analyses revealed that the transcript levels of six B-, C-, and E-class genes were reduced in mads6-1 at the early flower developmental stage, suggesting that MADS6 is a key regulator of early flower development. Moreover, MADS6 can directly bind to a putative regulatory motif on MADS58 (C-gene), and mads6-1 mads58 displayed phenotypes similar to that of mads6-1. These results suggest that MADS6 is a key player in specifying flower development via interacting with other floral homeotic genes in rice, thus providing new insights into the mechanism by which flower development is controlled. PMID:21784949
Search for Partner Proteins of A. thaliana Immunophilins Involved in the Control of Plant Immunity.
Abdeeva, Inna A; Pogorelko, Gennady V; Maloshenok, Liliya G; Mokrykova, Maria V; Fursova, Oksana V; Bruskin, Sergey A
2018-04-19
The involvement of plant immunophilins in multiple essential processes such as development, various ways of adapting to biotic and abiotic stresses, and photosynthesis has already been established. Previously, research has demonstrated the involvement of three immunophilin genes ( AtCYP19-1/ROC3 , AtFKBP65/ROF2 , and AtCYP57 ) in the control of plant response to invasion by various pathogens. Current research attempts to identify host target proteins for each of the selected immunophilins. As a result, candidate interactors have been determined and confirmed using a yeast 2-hybrid (Y2H) system for protein⁻protein interaction assays. The generation of mutant isoforms of ROC3 and AtCYP57 harboring substituted amino acids in the in silico-predicted active sites became essential to achieving significant binding to its target partners. This data shows that ROF2 targets calcium-dependent lipid-binding domain-containing protein (At1g70790; AT1) and putative protein phosphatase (At2g30020; АТ2), whereas ROC3 interacts with GTP-binding protein (At1g30580; ENGD-1) and RmlC-like cupin (At5g39120). The immunophilin AtCYP57 binds to putative pyruvate decarboxylase-1 (Pdc1) and clathrin adaptor complex-related protein (At5g05010). Identified interactors confirm our previous findings that immunophilins ROC3 , ROF2 , and AtCYP57 are directly involved with stress response control. Further, these findings extend our understanding of the molecular functional pathways of these immunophilins.
Banks, Isaac R.; Specht, Charles A.; Donlin, Maureen J.; Gerik, Kimberly J.; Levitz, Stuart M.; Lodge, Jennifer K.
2005-01-01
Chitin is an essential component of the cell wall of many fungi. Chitin also can be enzymatically deacetylated to chitosan, a more flexible and soluble polymer. Cryptococcus neoformans is a fungal pathogen that causes cryptococcal meningoencephalitis, particularly in immunocompromised patients. In this work, we show that both chitin and chitosan are present in the cell wall of vegetatively growing C. neoformans yeast cells and that the levels of both rise dramatically as cells grow to higher density in liquid culture. C. neoformans has eight putative chitin synthases, and strains with any one chitin synthase deleted are viable at 30°C. In addition, C. neoformans genes encode three putative regulator proteins, which are homologs of Saccharomyces cerevisiae Skt5p. None of these three is essential for viability. However, one of the chitin synthases (Chs3) and one of the regulators (Csr2) are important for growth. Cells with deletions in either CHS3 or CSR2 have several shared phenotypes, including sensitivity to growth at 37°C. The similarity of their phenotypes also suggests that Csr2 specifically regulates chitin synthesis by Chs3. Lastly, both chs3Δ and the csr2Δ mutants are defective in chitosan production, predicting that Chs3-Csr2 complex with chitin deacetylases for conversion of chitin to chitosan. These data suggest that chitin synthesis could be an excellent antifungal target. PMID:16278457
Banks, Isaac R; Specht, Charles A; Donlin, Maureen J; Gerik, Kimberly J; Levitz, Stuart M; Lodge, Jennifer K
2005-11-01
Chitin is an essential component of the cell wall of many fungi. Chitin also can be enzymatically deacetylated to chitosan, a more flexible and soluble polymer. Cryptococcus neoformans is a fungal pathogen that causes cryptococcal meningoencephalitis, particularly in immunocompromised patients. In this work, we show that both chitin and chitosan are present in the cell wall of vegetatively growing C. neoformans yeast cells and that the levels of both rise dramatically as cells grow to higher density in liquid culture. C. neoformans has eight putative chitin synthases, and strains with any one chitin synthase deleted are viable at 30 degrees C. In addition, C. neoformans genes encode three putative regulator proteins, which are homologs of Saccharomyces cerevisiae Skt5p. None of these three is essential for viability. However, one of the chitin synthases (Chs3) and one of the regulators (Csr2) are important for growth. Cells with deletions in either CHS3 or CSR2 have several shared phenotypes, including sensitivity to growth at 37 degrees C. The similarity of their phenotypes also suggests that Csr2 specifically regulates chitin synthesis by Chs3. Lastly, both chs3Delta and the csr2Delta mutants are defective in chitosan production, predicting that Chs3-Csr2 complex with chitin deacetylases for conversion of chitin to chitosan. These data suggest that chitin synthesis could be an excellent antifungal target.
Identifying novel genes and chemicals related to nasopharyngeal cancer in a heterogeneous network.
Li, Zhandong; An, Lifeng; Li, Hao; Wang, ShaoPeng; Zhou, You; Yuan, Fei; Li, Lin
2016-05-05
Nasopharyngeal cancer or nasopharyngeal carcinoma (NPC) is the most common cancer originating in the nasopharynx. The factors that induce nasopharyngeal cancer are still not clear. Additional information about the chemicals or genes related to nasopharyngeal cancer will promote a better understanding of the pathogenesis of this cancer and the factors that induce it. Thus, a computational method NPC-RGCP was proposed in this study to identify the possible relevant chemicals and genes based on the presently known chemicals and genes related to nasopharyngeal cancer. To extensively utilize the functional associations between proteins and chemicals, a heterogeneous network was constructed based on interactions of proteins and chemicals. The NPC-RGCP included two stages: the searching stage and the screening stage. The former stage is for finding new possible genes and chemicals in the heterogeneous network, while the latter stage is for screening and removing false discoveries and selecting the core genes and chemicals. As a result, five putative genes, CXCR3, IRF1, CDK1, GSTP1, and CDH2, and seven putative chemicals, iron, propionic acid, dimethyl sulfoxide, isopropanol, erythrose 4-phosphate, β-D-Fructose 6-phosphate, and flavin adenine dinucleotide, were identified by NPC-RGCP. Extensive analyses provided confirmation that the putative genes and chemicals have significant associations with nasopharyngeal cancer.
Identifying novel genes and chemicals related to nasopharyngeal cancer in a heterogeneous network
Li, Zhandong; An, Lifeng; Li, Hao; Wang, ShaoPeng; Zhou, You; Yuan, Fei; Li, Lin
2016-01-01
Nasopharyngeal cancer or nasopharyngeal carcinoma (NPC) is the most common cancer originating in the nasopharynx. The factors that induce nasopharyngeal cancer are still not clear. Additional information about the chemicals or genes related to nasopharyngeal cancer will promote a better understanding of the pathogenesis of this cancer and the factors that induce it. Thus, a computational method NPC-RGCP was proposed in this study to identify the possible relevant chemicals and genes based on the presently known chemicals and genes related to nasopharyngeal cancer. To extensively utilize the functional associations between proteins and chemicals, a heterogeneous network was constructed based on interactions of proteins and chemicals. The NPC-RGCP included two stages: the searching stage and the screening stage. The former stage is for finding new possible genes and chemicals in the heterogeneous network, while the latter stage is for screening and removing false discoveries and selecting the core genes and chemicals. As a result, five putative genes, CXCR3, IRF1, CDK1, GSTP1, and CDH2, and seven putative chemicals, iron, propionic acid, dimethyl sulfoxide, isopropanol, erythrose 4-phosphate, β-D-Fructose 6-phosphate, and flavin adenine dinucleotide, were identified by NPC-RGCP. Extensive analyses provided confirmation that the putative genes and chemicals have significant associations with nasopharyngeal cancer. PMID:27149165
Comparative analyses of putative toxin gene homologs from an Old World viper, Daboia russelii
Krishnan, Neeraja M.
2017-01-01
Availability of snake genome sequences has opened up exciting areas of research on comparative genomics and gene diversity. One of the challenges in studying snake genomes is the acquisition of biological material from live animals, especially from the venomous ones, making the process cumbersome and time-consuming. Here, we report comparative sequence analyses of putative toxin gene homologs from Russell’s viper (Daboia russelii) using whole-genome sequencing data obtained from shed skin. When compared with the major venom proteins in Russell’s viper studied previously, we found 45–100% sequence similarity between the venom proteins and their putative homologs in the skin. Additionally, comparative analyses of 20 putative toxin gene family homologs provided evidence of unique sequence motifs in nerve growth factor (NGF), platelet derived growth factor (PDGF), Kunitz/Bovine pancreatic trypsin inhibitor (Kunitz BPTI), cysteine-rich secretory proteins, antigen 5, andpathogenesis-related1 proteins (CAP) and cysteine-rich secretory protein (CRISP). In those derived proteins, we identified V11 and T35 in the NGF domain; F23 and A29 in the PDGF domain; N69, K2 and A5 in the CAP domain; and Q17 in the CRISP domain to be responsible for differences in the largest pockets across the protein domain structures in crotalines, viperines and elapids from the in silico structure-based analysis. Similarly, residues F10, Y11 and E20 appear to play an important role in the protein structures across the kunitz protein domain of viperids and elapids. Our study highlights the usefulness of shed skin in obtaining good quality high-molecular weight DNA for comparative genomic studies, and provides evidence towards the unique features and evolution of putative venom gene homologs in vipers. PMID:29230357
Khayatan, Behzad; Bains, Divleen K; Cheng, Monica H; Cho, Ye Won; Huynh, Jessica; Kim, Rachelle; Omoruyi, Osagie H; Pantoja, Adriana P; Park, Jun Sang; Peng, Julia K; Splitt, Samantha D; Tian, Mason Y; Risser, Douglas D
2017-05-01
Most species of filamentous cyanobacteria are capable of gliding motility, likely via a conserved type IV pilus-like system that may also secrete a motility-associated polysaccharide. In a subset of these organisms, motility is achieved only after the transient differentiation of hormogonia, which are specialized filaments that enter a nongrowth state dedicated to motility. Despite the fundamental importance of hormogonia to the life cycles of many filamentous cyanobacteria, the molecular regulation of hormogonium development is largely undefined. To systematically identify genes essential for hormogonium development and motility in the model heterocyst-forming filamentous cyanobacterium Nostoc punctiforme , a forward genetic screen was employed. The first gene identified using this screen, designated ogtA , encodes a putative O-linked β- N -acetylglucosamine transferase (OGT). The deletion of ogtA abolished motility, while ectopic expression of ogtA induced hormogonium development even under hormogonium-repressing conditions. Transcription of ogtA is rapidly upregulated (1 h) following hormogonium induction, and an OgtA-GFPuv fusion protein localized to the cytoplasm. In developing hormogonia, accumulation of PilA but not HmpD is dependent on ogtA Reverse transcription-quantitative PCR (RT-qPCR) analysis indicated equivalent levels of pilA transcript in the wild-type and Δ ogtA mutant strains, while a reporter construct consisting of the intergenic region in the 5' direction of pilA fused to gfp produced lower levels of fluorescence in the Δ ogtA mutant strain than in the wild type. The production of hormogonium polysaccharide in the Δ ogtA mutant strain is reduced compared to that in the wild type but comparable to that in a pilA deletion strain. Collectively, these results imply that O -GlcNAc protein modification regulates the accumulation of PilA via a posttranscriptional mechanism in developing hormogonia. IMPORTANCE Filamentous cyanobacteria are among the most developmentally complex prokaryotes. Species such as Nostoc punctiforme develop an array of cell types, including nitrogen-fixing heterocysts, spore-like akinetes, and motile hormogonia, that function in dispersal as well as the establishment of nitrogen-fixing symbioses with plants and fungi. These symbioses are major contributors to global nitrogen fixation. Despite the fundamental importance of hormogonia to the life cycle of filamentous cyanobacteria and the establishment of symbioses, the molecular regulation of hormogonium development is largely undefined. We employed a genetic screen to identify genes essential for hormogonium development and motility in Nostoc punctiforme The first gene identified using this screen encodes a eukaryotic-like O-linked β- N -acetylglucosamine transferase that is required for accumulation of PilA in hormogonia. Copyright © 2017 American Society for Microbiology.
Yuan, Xiao-Lian; Roubos, Johannes A; van den Hondel, Cees A M J J; Ram, Arthur F J
2008-01-01
The expression of inulinolytic genes in Aspergillus niger is co-regulated and induced by inulin and sucrose. We have identified a positive acting transcription factor InuR, which is required for the induced expression of inulinolytic genes. InuR is a member of the fungal specific class of transcription factors of the Zn(II)2Cys6 type. Involvement of InuR in inulin and sucrose metabolism was suspected because of the clustering of inuR gene with sucB, which encodes an intracellular invertase with transfructosylation activity and a putative sugar transporter encoding gene (An15g00310). Deletion of the inuR gene resulted in a strain displaying a severe reduction in growth on inulin and sucrose medium. Northern analysis revealed that expression of inulinolytic and sucrolytic genes, e.g., inuE, inuA, sucA, as well as the putative sugar transporter gene (An15g00310) is dependent on InuR. Genome-wide expression analysis revealed, three additional putative sugar transporters encoding genes (An15g04060, An15g03940 and An17g01710), which were strongly induced by sucrose in an InuR dependent way. In silico analysis of the promoter sequences of strongly InuR regulated genes suggests that InuR might bind as dimer to two CGG triplets, which are separated by eight nucleotides.
Ares, Miguel A; Rios-Sarabia, Nora; De la Cruz, Miguel A; Rivera-Gutiérrez, Sandra; García-Morales, Lázaro; León-Solís, Lizbel; Espitia, Clara; Pacheco, Sabino; Cerna-Cortés, Jorge F; Helguera-Repetto, Cecilia A; García, María Jesús; González-Y-Merchand, Jorge A
2017-07-01
This work examined the expression of the septum site determining gene (ssd) of Mycobacterium tuberculosis CDC1551 and its ∆sigD mutant under different growing conditions. The results showed an up-regulation of ssd during stationary phase and starvation conditions, but not during in vitro dormancy, suggesting a putative role for SigD in the control of ssd expression mainly under lack-of-nutrients environments. Furthermore, we elucidated a putative link between ssd expression and cell elongation of bacilli at stationary phase. In addition, a -35 sigD consensus sequence was found for the ssd promoter region, reinforcing the putative regulation of ssd by SigD, and in turn, supporting this protein role during the adaptation of M. tuberculosis to some stressful environments.
Kemperman, Robèr; Jonker, Marnix; Nauta, Arjen; Kuipers, Oscar P.; Kok, Jan
2003-01-01
A region of 12 kb flanking the structural gene of the cyclic antibacterial peptide circularin A of Clostridium beijerinckii ATCC 25752 was sequenced, and the putative proteins involved in the production and secretion of circularin A were identified. The genes are tightly organized in overlapping open reading frames. Heterologous expression of circularin A in Enterococcus faecalis was achieved, and five genes were identified as minimally required for bacteriocin production and secretion. Two of the putative proteins, CirB and CirC, are predicted to contain membrane-spanning domains, while CirD contains a highly conserved ATP-binding domain. Together with CirB and CirC, this ATP-binding protein is involved in the production of circularin A. The fifth gene, cirE, confers immunity towards circularin A when expressed in either Lactococcus lactis or E. faecalis and is needed in order to allow the bacteria to produce bacteriocin. Additional resistance against circularin A is conferred by the activity of the putative transporter consisting of CirB and CirD. PMID:14532033
Copper Resistance of the Emerging Pathogen Acinetobacter baumannii
Williams, Caitlin L.; Neu, Heather M.; Gilbreath, Jeremy J.; Michel, Sarah L. J.; Zurawski, Daniel V.
2016-01-01
ABSTRACT Acinetobacter baumannii is an important emerging pathogen that is capable of causing many types of severe infection, especially in immunocompromised hosts. Since A. baumannii can rapidly acquire antibiotic resistance genes, many infections are on the verge of being untreatable, and novel therapies are desperately needed. To investigate the potential utility of copper-based antibacterial strategies against Acinetobacter infections, we characterized copper resistance in a panel of recent clinical A. baumannii isolates. Exposure to increasing concentrations of copper in liquid culture and on solid surfaces resulted in dose-dependent and strain-dependent effects; levels of copper resistance varied broadly across isolates, possibly resulting from identified genotypic variation among strains. Examination of the growth-phase-dependent effect of copper on A. baumannii revealed that resistance to copper increased dramatically in stationary phase. Moreover, A. baumannii biofilms were more resistant to copper than planktonic cells but were still susceptible to copper toxicity. Exposure of bacteria to subinhibitory concentrations of copper allowed them to better adapt to and grow in high concentrations of copper; this copper tolerance response is likely achieved via increased expression of copper resistance mechanisms. Indeed, genomic analysis revealed numerous putative copper resistance proteins that share amino acid homology to known proteins in Escherichia coli and Pseudomonas aeruginosa. Transcriptional analysis revealed significant upregulation of these putative copper resistance genes following brief copper exposure. Future characterization of copper resistance mechanisms may aid in the search for novel antibiotics against Acinetobacter and other highly antibiotic-resistant pathogens. IMPORTANCE Acinetobacter baumannii causes many types of severe nosocomial infections; unfortunately, some isolates have acquired resistance to almost every available antibiotic, and treatment options are incredibly limited. Copper is an essential nutrient but becomes toxic at high concentrations. The inherent antimicrobial properties of copper give it potential for use in novel therapeutics against drug-resistant pathogens. We show that A. baumannii clinical isolates are sensitive to copper in vitro, both in liquid and on solid metal surfaces. Since bacterial resistance to copper is mediated though mechanisms of efflux and detoxification, we identified genes encoding putative copper-related proteins in A. baumannii and showed that expression of some of these genes is regulated by the copper concentration. We propose that the antimicrobial effects of copper may be beneficial in the development of future therapeutics that target multidrug-resistant bacteria. PMID:27520808
Collart, F R; Osipiuk, J; Trent, J; Olsen, G J; Huberman, E
1996-10-03
We have cloned and characterized the gene encoding inosine monophosphate dehydrogenase (IMPDH) from Pyrococcus furiosus (Pf), a hyperthermophillic archeon. Sequence analysis of the Pf gene indicated an open reading frame specifying a protein of 485 amino acids (aa) with a calculated M(r) of 52900. Canonical Archaea promoter elements, Box A and Box B, are located -49 and -17 nucleotides (nt), respectively, upstream of the putative start codon. The sequence of the putative active-site region conforms to the IMPDH signature motif and contains a putative active-site cysteine. Phylogenetic relationships derived by using all available IMPDH sequences are consistent with trees developed for other molecules; they do not precisely resolve the history of Pf IMPDH but indicate a close similarity to bacterial IMPDH proteins. The phylogenetic analysis indicates that a gene duplication occurred prior to the division between rodents and humans, accounting for the Type I and II isoforms identified in mice and humans.
Sialic acid catabolism and transport gene clusters are lineage specific in Vibrio vulnificus.
Lubin, Jean-Bernard; Kingston, Joseph J; Chowdhury, Nityananda; Boyd, E Fidelma
2012-05-01
Sialic or nonulosonic acids are nine-carbon alpha ketosugars that are present in all vertebrate mucous membranes. Among bacteria, the ability to catabolize sialic acid as a carbon source is present mainly in pathogenic and commensal species of animals. Previously, it was shown that several Vibrio species carry homologues of the genes required for sialic acid transport and catabolism, which are genetically linked. In Vibrio cholerae on chromosome I, these genes are carried on the Vibrio pathogenicity island-2 region, which is confined to pathogenic isolates. We found that among the three sequenced Vibrio vulnificus clinical strains, these genes are present on chromosome II and are not associated with a pathogenicity island. To determine whether the sialic acid transport (SAT) and catabolism (SAC) region is universally present within V. vulnificus, we examined 67 natural isolates whose phylogenetic relationships are known. We found that the region was present predominantly among lineage I of V. vulnificus, which is comprised mainly of clinical isolates. We demonstrate that the isolates that contain this region can catabolize sialic acid as a sole carbon source. Two putative transporters are genetically linked to the region in V. vulnificus, the tripartite ATP-independent periplasmic (TRAP) transporter SiaPQM and a component of an ATP-binding cassette (ABC) transporter. We constructed an in-frame deletion mutation in siaM, a component of the TRAP transporter, and demonstrate that this transporter is essential for sialic acid uptake in this species. Expression analysis of the SAT and SAC genes indicates that sialic acid is an inducer of expression. Overall, our study demonstrates that the ability to catabolize and transport sialic acid is predominately lineage specific in V. vulnificus and that the TRAP transporter is essential for sialic acid uptake.
Suzuki, Nobuhiro; Geletka, Lynn M.; Nuss, Donald L.
2000-01-01
We have investigated whether hypoviruses, viral agents responsible for virulence attenuation (hypovirulence) of the chestnut blight fungus Cryphonectria parasitica, could serve as gene expression vectors. The infectious cDNA clone of the prototypic hypovirus CHV1-EP713 was modified to generate 20 different vector candidates. Although transient expression was achieved for a subset of vectors that contained the green fluorescent protein gene from Aequorea victoria, long-term expression (past day 8) was not observed for any vector construct. Analysis of viral RNAs recovered from transfected fungal colonies revealed that the foreign genes were readily deleted from the replicating virus, although small portions of foreign sequences were retained by some vectors after months of replication. However, the results of vector viability and progeny characterization provided unexpected new insights into essential and dispensable elements of hypovirus replication. The N-terminal portion (codons 1 to 24) of the 5′-proximal open reading frame (ORF), ORF A, was found to be required for virus replication, while the remaining 598 codons of this ORF were completely dispensable. Substantial alterations were tolerated in the pentanucleotide UAAUG that contains the ORF A termination codon and the overlapping putative initiation codon of the second of the two hypovirus ORFs, ORF B. Replication competence was maintained following either a frameshift mutation that caused a two-codon extension of ORF A or a modification that produced a single-ORF genomic organization. These results are discussed in terms of determinants of hypovirus replication, the potential utility of hypoviruses as gene expression vectors, and possible mechanisms by which hypoviruses recognize and delete foreign sequences. PMID:10906211
Zhong, Huaming; Shang, Shuai; Wu, Xiaoyang; Chen, Jun; Zhu, Wanchao; Yan, Jiakuo; Li, Haotian
2017-01-01
As nontraditional model organisms with extreme physiological and morphological phenotypes, snakes are believed to possess an inferior taste system. However, the bitter taste sensation is essential to distinguish the nutritious and poisonous food resources and the genomic evidence of bitter taste in snakes is largely scarce. To explore the genetic basis of the bitter taste of snakes and characterize the evolution of bitter taste receptor genes (Tas2rs) in reptiles, we identified Tas2r genes in 19 genomes (species) corresponding to three orders of non-avian reptiles. Our results indicated contractions of Tas2r gene repertoires in snakes, however dramatic gene expansions have occurred in lizards. Phylogenetic analysis of the Tas2rs with NJ and BI methods revealed that Tas2r genes of snake species formed two clades, whereas in lizards the Tas2r genes clustered into two monophyletic clades and four large clades. Evolutionary changes (birth and death) of intact Tas2r genes in reptiles were determined by reconciliation analysis. Additionally, the taste signaling pathway calcium homeostasis modulator 1 (Calhm1) gene of snakes was putatively functional, suggesting that snakes still possess bitter taste sensation. Furthermore, Phylogenetically Independent Contrasts (PIC) analyses reviewed a significant correlation between the number of Tas2r genes and the amount of potential toxins in reptilian diets, suggesting that insectivores such as some lizards may require more Tas2rs genes than omnivorous and carnivorous reptiles. PMID:28828281
Veses, Verónica; Casanova, Manuel; Murgui, Amelia; Domínguez, Ángel; Gow, Neil A. R.; Martínez, José P.
2005-01-01
Immunoscreening of a Candida albicans expression library resulted in the isolation of a novel gene encoding a 32.9-kDa polypeptide (288 amino acids), with 27.7% homology to the product of Saccharomyces cerevisiae YGR106c, a putative vacuolar protein. Heterozygous mutants in this gene displayed an altered budding growth pattern, characterized by the formation of chains of buds, decreasingly in size towards the apex, without separation of the daughter buds. Consequently, this gene was designated ABG1. A conditional mutant for ABG1 with the remaining allele under the control of the MET3 promoter did not grow in the presence of methionine and cysteine, demonstrating that ABG1 was essential for viability. Western analysis revealed the presence of a major 32.9-kDa band, mainly in a particulate fraction (P40) enriched in vacuoles, and tagging with green fluorescent protein confirmed that Abg1p localized to the vacuole. Vacuole inheritance has been linked to the regulation of branching frequency in C. albicans. Under repressing conditions, the conditional mutant had an increased frequency of branching under hyphal inducing conditions and an altered sensitivity to substances that interfered with cell wall assembly. Repression of ABG1 in the conditional mutant strain caused disturbance of normal size and number of vacuoles both in yeast and mycelial cells and also in the asymmetric vacuole inheritance associated with the characteristic pattern of germ tubes and branching in C. albicans. These observations indicate that ABG1 plays a key role in vacuole biogenesis, cytokinesis, and hyphal branching. PMID:15947201
Veses, Verónica; Casanova, Manuel; Murgui, Amelia; Domínguez, Angel; Gow, Neil A R; Martínez, José P
2005-06-01
Immunoscreening of a Candida albicans expression library resulted in the isolation of a novel gene encoding a 32.9-kDa polypeptide (288 amino acids), with 27.7% homology to the product of Saccharomyces cerevisiae YGR106c, a putative vacuolar protein. Heterozygous mutants in this gene displayed an altered budding growth pattern, characterized by the formation of chains of buds, decreasingly in size towards the apex, without separation of the daughter buds. Consequently, this gene was designated ABG1. A conditional mutant for ABG1 with the remaining allele under the control of the MET3 promoter did not grow in the presence of methionine and cysteine, demonstrating that ABG1 was essential for viability. Western analysis revealed the presence of a major 32.9-kDa band, mainly in a particulate fraction (P40) enriched in vacuoles, and tagging with green fluorescent protein confirmed that Abg1p localized to the vacuole. Vacuole inheritance has been linked to the regulation of branching frequency in C. albicans. Under repressing conditions, the conditional mutant had an increased frequency of branching under hyphal inducing conditions and an altered sensitivity to substances that interfered with cell wall assembly. Repression of ABG1 in the conditional mutant strain caused disturbance of normal size and number of vacuoles both in yeast and mycelial cells and also in the asymmetric vacuole inheritance associated with the characteristic pattern of germ tubes and branching in C. albicans. These observations indicate that ABG1 plays a key role in vacuole biogenesis, cytokinesis, and hyphal branching.
Regulation of CYBB Gene Expression in Human Phagocytes by a Distant Upstream NF-κB Binding Site.
Frazão, Josias B; Thain, Alison; Zhu, Zhiqing; Luengo, Marcos; Condino-Neto, Antonio; Newburger, Peter E
2015-09-01
The human CYBB gene encodes the gp91-phox component of the phagocyte oxidase enzyme complex, which is responsible for generating superoxide and other downstream reactive oxygen species essential to microbial killing. In the present study, we have identified by sequence analysis a putative NF-κB binding site in a DNase I hypersensitive site, termed HS-II, located in the distant 5' flanking region of the CYBB gene. Electrophoretic mobility assays showed binding of the sequence element by recombinant NF-κB protein p50 and by proteins in nuclear extract from the HL-60 myeloid leukemia cell line corresponding to p50 and to p50/p65 heterodimers. Chromatin immunoprecipitation demonstrated NF-κB binding to the site in intact HL-60 cells. Chromosome conformation capture (3C) assays demonstrated physical interaction between the NF-κB binding site and the CYBB promoter region. Inhibition of NF-κB activity by salicylate reduced CYBB expression in peripheral blood neutrophils and differentiated U937 monocytic leukemia cells. U937 cells transfected with a mutant inhibitor of κB "super-repressor" showed markedly diminished CYBB expression. Luciferase reporter analysis of the NF-κB site linked to the CYBB 5' flanking promoter region revealed enhanced expression, augmented by treatment with interferon-γ. These studies indicate a role for this distant, 15 kb upstream, binding site in NF-κB regulation of the CYBB gene, an essential component of phagocyte-mediated host defense. © 2015 Wiley Periodicals, Inc.
Integrated Post-GWAS Analysis Sheds New Light on the Disease Mechanisms of Schizophrenia
Lin, Jhih-Rong; Cai, Ying; Zhang, Quanwei; Zhang, Wen; Nogales-Cadenas, Rubén; Zhang, Zhengdong D.
2016-01-01
Schizophrenia is a severe mental disorder with a large genetic component. Recent genome-wide association studies (GWAS) have identified many schizophrenia-associated common variants. For most of the reported associations, however, the underlying biological mechanisms are not clear. The critical first step for their elucidation is to identify the most likely disease genes as the source of the association signals. Here, we describe a general computational framework of post-GWAS analysis for complex disease gene prioritization. We identify 132 putative schizophrenia risk genes in 76 risk regions spanning 120 schizophrenia-associated common variants, 78 of which have not been recognized as schizophrenia disease genes by previous GWAS. Even more significantly, 29 of them are outside the risk regions, likely under regulation of transcriptional regulatory elements contained therein. These putative schizophrenia risk genes are transcriptionally active in both brain and the immune system, and highly enriched among cellular pathways, consistent with leading pathophysiological hypotheses about the pathogenesis of schizophrenia. With their involvement in distinct biological processes, these putative schizophrenia risk genes, with different association strengths, show distinctive temporal expression patterns, and play specific biological roles during brain development. PMID:27754856
2013-01-01
Background Olive cDNA libraries to isolate candidate genes that can help enlightening the molecular mechanism of periodicity and / or fruit production were constructed and analyzed. For this purpose, cDNA libraries from the leaves of trees in “on year” and in “off year” in July (when fruits start to appear) and in November (harvest time) were constructed. Randomly selected 100 positive clones from each library were analyzed with respect to sequence and size. A fruit-flesh cDNA library was also constructed and characterized to confirm the reliability of each library’s temporal and spatial properties. Results Quantitative real-time RT-PCR (qRT-PCR) analyses of the cDNA libraries confirmed cDNA molecules that are associated with different developmental stages (e. g. “on year” leaves in July, “off year” leaves in July, leaves in November) and fruits. Hence, a number of candidate cDNAs associated with “on year” and “off year” were isolated. Comparison of the detected cDNAs to the current EST database of GenBank along with other non - redundant databases of NCBI revealed homologs of previously described genes along with several unknown cDNAs. Of around 500 screened cDNAs, 48 cDNA elements were obtained after eliminating ribosomal RNA sequences. These independent transcripts were analyzed using BLAST searches (cutoff E-value of 1.0E-5) against the KEGG and GenBank nucleotide databases and 37 putative transcripts corresponding to known gene functions were annotated with gene names and Gene Ontology (GO) terms. Transcripts in the biological process were found to be related with metabolic process (27%), cellular process (23%), response to stimulus (17%), localization process (8.5%), multicellular organismal process (6.25%), developmental process (6.25%) and reproduction (4.2%). Conclusions A putative P450 monooxigenase expressed fivefold more in the “on year” than that of “off year” leaves in July. Two putative dehydrins expressed significantly more in “on year” leaves than that of “off year” leaves in November. Homologs of UDP – glucose epimerase, acyl - CoA binding protein, triose phosphate isomerase and a putative nuclear core anchor protein were significant in fruits only, while a homolog of an embryo binding protein / small GTPase regulator was detected in “on year” leaves only. One of the two unknown cDNAs was specific to leaves in July while the other was detected in all of the libraries except fruits. KEGG pathway analyses for the obtained sequences correlated with essential metabolisms such as galactose metabolism, amino sugar and nucleotide sugar metabolisms and photosynthesis. Detailed analysis of the results presents candidate cDNAs that can be used to dissect further the genetic basis of fruit production and / or alternate bearing which causes significant economical loss for olive growers. PMID:23552171
Elk3 is essential for the progression from progenitor to definitive neural crest cell
Rogers, Crystal D.; Phillips, Jacquelyn L.; Bronner, Marianne E.
2013-01-01
Elk3/Net/Sap2 (here referred to as Elk3) is an Ets ternary complex transcriptional repressor known for its involvement in angiogenesis during embryonic development. Although Elk3 is expressed in various tissues, additional roles for the protein outside of vasculature development have yet to be reported. Here, we characterize the early spatiotemporal expression pattern of Elk3 in the avian embryo using whole mount in situ hybridization and quantitative RT-PCR and examine the effects of its loss of function on neural crest development. At early stages, Elk3 is expressed in the head folds, head mesenchyme, intersomitic vessels, and migratory cranial neural crest (NC) cells. Loss of the Elk3 protein results in the retention of Pax7+ precursors in the dorsal neural tube that fail to upregulate neural crest specifier genes, FoxD3, Sox10 and Snail2, resulting in embryos with severe migration defects. The results putatively place Elk3 downstream of neural plate border genes, but upstream of neural crest specifier genes in the neural crest gene regulatory network (NC-GRN), suggesting that it is critical for the progression from progenitor to definitive neural crest cell. PMID:23266330
Domestication of Lambda Phage Genes into a Putative Third Type of Replicative Helicase Matchmaker
Brézellec, Pierre; Petit, Marie-Agnès; Pasek, Sophie; Vallet-Gely, Isabelle; Possoz, Christophe
2017-01-01
Abstract At the onset of the initiation of chromosome replication, bacterial replicative helicases are recruited and loaded on the DnaA-oriC nucleoprotein platform, assisted by proteins like DnaC/DnaI or DciA. Two orders of bacteria appear, however, to lack either of these factors, raising the question of the essentiality of these factors in bacteria. Through a phylogenomic approach, we identified a pair of genes that could have substituted for dciA. The two domesticated genes are specific of the dnaC/dnaI- and dciA-lacking organisms and apparently domesticated from lambdoid phage genes. They derive from λO and λP and were renamed dopC and dopE, respectively. DopE is expected to bring the replicative helicase to the bacterial origin of replication, while DopC might assist DopE in this function. The confirmation of the implication of DopCE in the handling of the replicative helicase at the onset of replication in these organisms would generalize to all bacteria and therefore to all living organisms the need for specific factors dedicated to this function. PMID:28854626
Svrbicka, Alexandra; Toth Hervay, Nora; Gbelska, Yvetta
2016-03-01
Boron is an essential micronutrient for living cells, yet its excess causes toxicity. To date, the mechanisms of boron toxicity are poorly understood. Recently, the ScATR1 gene has been identified encoding the main boron efflux pump in Saccharomyces cerevisiae. In this study, we analyzed the ScATR1 ortholog in Kluyveromyces lactis--the KNQ1 gene, to understand whether it participates in boron stress tolerance. We found that the KNQ1 gene, encoding a permease belonging to the major facilitator superfamily, is required for K. lactis boron tolerance. Deletion of the KNQ1 gene led to boron sensitivity and its overexpression increased K. lactis boron tolerance. The KNQ1 expression was induced by boron and the intracellular boron concentration was controlled by Knq1p. The KNQ1 promoter contains two putative binding motifs for the AP-1-like transcription factor KlYap1p playing a central role in oxidative stress defense. Our results indicate that the induction of the KNQ1 expression requires the presence of KlYap1p and that Knq1p like its ortholog ScAtr1p in S. cerevisiae functions as a boron efflux pump providing boron resistance in K. lactis.
Reinhardt, Josephine A.; Wanjiru, Betty M.; Brant, Alicia T.; Saelao, Perot; Begun, David J.; Jones, Corbin D.
2013-01-01
How non-coding DNA gives rise to new protein-coding genes (de novo genes) is not well understood. Recent work has revealed the origins and functions of a few de novo genes, but common principles governing the evolution or biological roles of these genes are unknown. To better define these principles, we performed a parallel analysis of the evolution and function of six putatively protein-coding de novo genes described in Drosophila melanogaster. Reconstruction of the transcriptional history of de novo genes shows that two de novo genes emerged from novel long non-coding RNAs that arose at least 5 MY prior to evolution of an open reading frame. In contrast, four other de novo genes evolved a translated open reading frame and transcription within the same evolutionary interval suggesting that nascent open reading frames (proto-ORFs), while not required, can contribute to the emergence of a new de novo gene. However, none of the genes arose from proto-ORFs that existed long before expression evolved. Sequence and structural evolution of de novo genes was rapid compared to nearby genes and the structural complexity of de novo genes steadily increases over evolutionary time. Despite the fact that these genes are transcribed at a higher level in males than females, and are most strongly expressed in testes, RNAi experiments show that most of these genes are essential in both sexes during metamorphosis. This lethality suggests that protein coding de novo genes in Drosophila quickly become functionally important. PMID:24146629
Identification and Characterization of Switchgrass Histone H3 and CENH3 Genes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Jiamin; Frazier, Taylor; Huang, Linkai
Switchgrass is one of the most promising energy crops and only recently has been employed for biofuel production. The draft genome of switchgrass was recently released; however, relatively few switchgrass genes have been functionally characterized. CENH3, the major histone protein found in centromeres, along with canonical H3 and other histones, plays an important role in maintaining genome stability and integrity. Despite their importance, the histone H3 genes of switchgrass have remained largely uninvestigated. In this study, we identified 17 putative switchgrass histone H3 genes in silico. Of these genes, 15 showed strong homology to histone H3 genes including six H3.1more » genes, three H3.3 genes, four H3.3-like genes and two H3.1-like genes. The remaining two genes were found to be homologous to CENH3. RNA-seq data derived from lowland cultivar Alamo and upland cultivar Dacotah allowed us to identify SNPs in the histone H3 genes and compare their differential gene expression. Interestingly, we also found that overexpression of switchgrass histone H3 and CENH3 genes in N. benthamiana could trigger cell death of the transformed plant cells. Localization and deletion analyses of the histone H3 and CENH3 genes revealed that nuclear localization of the N-terminal tail is essential and sufficient for triggering the cell death phenotype. Lastly, our results deliver insight into the mechanisms underlying the histone-triggered cell death phenotype and provide a foundation for further studying the variations of the histone H3 and CENH3 genes in switchgrass.« less
Identification and Characterization of Switchgrass Histone H3 and CENH3 Genes
Miao, Jiamin; Frazier, Taylor; Huang, Linkai; ...
2016-07-12
Switchgrass is one of the most promising energy crops and only recently has been employed for biofuel production. The draft genome of switchgrass was recently released; however, relatively few switchgrass genes have been functionally characterized. CENH3, the major histone protein found in centromeres, along with canonical H3 and other histones, plays an important role in maintaining genome stability and integrity. Despite their importance, the histone H3 genes of switchgrass have remained largely uninvestigated. In this study, we identified 17 putative switchgrass histone H3 genes in silico. Of these genes, 15 showed strong homology to histone H3 genes including six H3.1more » genes, three H3.3 genes, four H3.3-like genes and two H3.1-like genes. The remaining two genes were found to be homologous to CENH3. RNA-seq data derived from lowland cultivar Alamo and upland cultivar Dacotah allowed us to identify SNPs in the histone H3 genes and compare their differential gene expression. Interestingly, we also found that overexpression of switchgrass histone H3 and CENH3 genes in N. benthamiana could trigger cell death of the transformed plant cells. Localization and deletion analyses of the histone H3 and CENH3 genes revealed that nuclear localization of the N-terminal tail is essential and sufficient for triggering the cell death phenotype. Lastly, our results deliver insight into the mechanisms underlying the histone-triggered cell death phenotype and provide a foundation for further studying the variations of the histone H3 and CENH3 genes in switchgrass.« less
Zhu, Jianjian; Kwan, Kin Ming; Mackem, Susan
2016-04-05
The transcription factor Brachyury (T) gene is expressed throughout primary mesoderm (primitive streak and notochord) during early embryonic development and has been strongly implicated in the genesis of chordoma, a sarcoma of notochord cell origin. Additionally, T expression has been found in and proposed to play a role in promoting epithelial-mesenchymal transition (EMT) in various other types of human tumors. However, the role of T in normal mammalian notochord development and function is still not well-understood. We have generated an inducible knockdown model to efficiently and selectively deplete T from notochord in mouse embryos. In combination with genetic lineage tracing, we show that T function is essential for maintaining notochord cell fate and function. Progenitors adopt predominantly a neural fate in the absence of T, consistent with an origin from a common chordoneural progenitor. However, T function is dispensable for progenitor cell survival, proliferation, and EMT, which has implications for the therapeutic targeting of T in chordoma and other cancers.
Zhu, Jianjian; Kwan, Kin Ming; Mackem, Susan
2016-01-01
The transcription factor Brachyury (T) gene is expressed throughout primary mesoderm (primitive streak and notochord) during early embryonic development and has been strongly implicated in the genesis of chordoma, a sarcoma of notochord cell origin. Additionally, T expression has been found in and proposed to play a role in promoting epithelial–mesenchymal transition (EMT) in various other types of human tumors. However, the role of T in normal mammalian notochord development and function is still not well-understood. We have generated an inducible knockdown model to efficiently and selectively deplete T from notochord in mouse embryos. In combination with genetic lineage tracing, we show that T function is essential for maintaining notochord cell fate and function. Progenitors adopt predominantly a neural fate in the absence of T, consistent with an origin from a common chordoneural progenitor. However, T function is dispensable for progenitor cell survival, proliferation, and EMT, which has implications for the therapeutic targeting of T in chordoma and other cancers. PMID:27006501
Gawriluk, Thomas R; Ko, CheMyong; Hong, Xiaoman; Christenson, Lane K; Rucker, Edmund B
2014-10-07
Autophagy is an important cellular process that serves as a companion pathway to the ubiquitin-proteasome system to degrade long-lived proteins and organelles to maintain cell homeostasis. Although initially characterized in yeast, autophagy is being realized as an important regulator of development and disease in mammals. Beclin1 (Becn1) is a putative tumor suppressor gene that has been shown to undergo a loss of heterozygosity in 40-75% of human breast, ovarian, and prostate cancers. Because Becn1 is a key regulator of autophagy, we sought to investigate its role in female reproduction by using a conditional knockout approach in mice. We find that pregnant females lacking Becn1 in the ovarian granulosa cell population have a defect in progesterone production and a subsequent preterm labor phenotype. Luteal cells in this model exhibit defective autophagy and a failure to accumulate lipid droplets needed for steroidogenesis. Collectively, we show that Becn1 provides essential functions in the ovary that are essential for mammalian reproduction.
Hafemeister, Christoph; Nicotra, Adrienne B.; Jagadish, S.V. Krishna; Bonneau, Richard; Purugganan, Michael
2016-01-01
Environmental gene regulatory influence networks (EGRINs) coordinate the timing and rate of gene expression in response to environmental signals. EGRINs encompass many layers of regulation, which culminate in changes in accumulated transcript levels. Here, we inferred EGRINs for the response of five tropical Asian rice (Oryza sativa) cultivars to high temperatures, water deficit, and agricultural field conditions by systematically integrating time-series transcriptome data, patterns of nucleosome-free chromatin, and the occurrence of known cis-regulatory elements. First, we identified 5447 putative target genes for 445 transcription factors (TFs) by connecting TFs with genes harboring known cis-regulatory motifs in nucleosome-free regions proximal to their transcriptional start sites. We then used network component analysis to estimate the regulatory activity for each TF based on the expression of its putative target genes. Finally, we inferred an EGRIN using the estimated transcription factor activity (TFA) as the regulator. The EGRINs include regulatory interactions between 4052 target genes regulated by 113 TFs. We resolved distinct regulatory roles for members of the heat shock factor family, including a putative regulatory connection between abiotic stress and the circadian clock. TFA estimation using network component analysis is an effective way of incorporating multiple genome-scale measurements into network inference. PMID:27655842
Niskanen, Einari A; Hytönen, Vesa P; Grapputo, Alessandro; Nordlund, Henri R; Kulomaa, Markku S; Laitinen, Olli H
2005-01-01
Background A chicken egg contains several biotin-binding proteins (BBPs), whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Results Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. Conclusion We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins. PMID:15777476
Sekhar, M Soma; Tumati, S R; Chinnam, B K; Kothapalli, V S; Sharif, N Mohammad
2017-06-01
This study aimed to detect putative virulence genes in Arcobacter species of animal and human origin. A total of 41 Arcobacter isolates (16 Arcobacter butzleri , 13 Arcobacter cryaerophilus , and 12 Arcobacter skirrowii ) isolated from diverse sources such as fecal swabs of livestock (21), raw foods of animal origin (13), and human stool samples (7) were subjected to a set of six uniplex polymerase chain reaction assays targeting Arcobacter putative virulence genes ( ciaB , pldA , tlyA , mviN , cadF , and cj1349 ). All the six virulence genes were detected among all the 16 A. butzleri isolates. Among the 13 A. cryaerophilus isolates, cadF, ciaB , cj1349, mviN , pldA , and tlyA genes were detected in 61.5, 84.6, 76.9, 76.9, 61.5, and 61.5% of isolates, respectively. Among the 12 A. skirrowii isolates, cadF, ciaB , cj1349, mviN , pldA , and tlyA genes were detected in 50.0, 91.6, 83.3, 66.6, 50, and 50% of isolates, respectively. Putative virulence genes were detected in majority of the Arcobacter isolates examined. The results signify the potential of Arcobacter species as an emerging foodborne pathogen.
Rodríguez-Celma, Jorge; Lin, Wen-Dar; Fu, Guin-Mau; Abadía, Javier; López-Millán, Ana-Flor; Schmidt, Wolfgang
2013-01-01
The generally low bioavailability of iron in aerobic soil systems forced plants to evolve sophisticated genetic strategies to improve the acquisition of iron from sparingly soluble and immobile iron pools. To distinguish between conserved and species-dependent components of such strategies, we analyzed iron deficiency-induced changes in the transcriptome of two model species, Arabidopsis (Arabidopsis thaliana) and Medicago truncatula. Transcriptional profiling by RNA sequencing revealed a massive up-regulation of genes coding for enzymes involved in riboflavin biosynthesis in M. truncatula and phenylpropanoid synthesis in Arabidopsis upon iron deficiency. Coexpression and promoter analysis indicated that the synthesis of flavins and phenylpropanoids is tightly linked to and putatively coregulated with other genes encoding proteins involved in iron uptake. We further provide evidence that the production and secretion of phenolic compounds is critical for the uptake of iron from sources with low bioavailability but dispensable under conditions where iron is readily available. In Arabidopsis, homozygous mutations in the Fe(II)- and 2-oxoglutarate-dependent dioxygenase family gene F6′H1 and defects in the expression of PLEIOTROPIC DRUG RESISTANCE9, encoding a putative efflux transporter for products from the phenylpropanoid pathway, compromised iron uptake from an iron source of low bioavailability. Both mutants were partially rescued when grown alongside wild-type Arabidopsis or M. truncatula seedlings, presumably by secreted phenolics and flavins. We concluded that production and secretion of compounds that facilitate the uptake of iron is an essential but poorly understood aspect of the reduction-based iron acquisition strategy, which is likely to contribute substantially to the efficiency of iron uptake in natural conditions. PMID:23735511
A cysteine protease encoded by the baculovirus Bombyx mori nuclear polyhedrosis virus.
Ohkawa, T; Majima, K; Maeda, S
1994-01-01
Sequence analysis of the BamHI F fragment of the genome of Bombyx mori nuclear polyhedrosis virus (BmNPV) revealed an open reading frame whose deduced amino acid sequence had homology to those of cysteine proteases of the papain superfamily. The putative cysteine protease sequence (BmNPV-CP) was 323 amino acids long and showed 35% identity to a cysteine proteinase precursor from Trypanosoma brucei. Of 36 residues conserved among cathepsins B, H, L, and S and papain, 31 were identical in BmNPV-CP. In order to determine the activity and function of the putative cysteine protease, a BmNPV mutant (BmCysPD) was constructed by homologous recombination of the protease gene with a beta-galactosidase gene cassette. BmCysPD-infected BmN cell extracts were significantly reduced in acid protease activity compared with wild-type virus-infected cell extracts. The cysteine protease inhibitor E-64 [trans-epoxysuccinylleucylamido-(4-guanidino)butane] inhibited wild-type virus-expressed protease activity. Deletion of the cysteine protease gene had no significant effect on viral growth or polyhedron production in BmN cells, indicating that the cysteine protease was not essential for viral replication in vitro. However, B. mori larvae infected with BmCysPD showed symptoms different from those of wild-type BmNPV-infected larvae, e.g., less degradation of the body, including fat body cells, white body surface color due presumably to undegraded epidermal cells, and an increase in the number of polyhedra released into the hemolymph. This is the first report of (i) a virus-encoded protease with activity on general substrates and (ii) evidence that a virus-encoded protease may play a role in degradation of infected larvae to facilitate horizontal transmission of the virus. Images PMID:8083997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kyoung-Dong; Chung, Woo-Hyun; Kim, Hyo-Jin
2010-02-12
Mitochondrial monothiol glutaredoxins that bind Fe-S cluster are known to participate in Fe-S cluster assembly. However, their precise role has not been well understood. Among three monothiol glutaredoxins (Grx3, 4, and 5) in Schizosaccharomyces pombe only Grx5 resides in mitochondria. The {Delta}grx5 mutant requires cysteine on minimal media, and does not grow on non-fermentable carbon source such as glycerol. We found that the mutant is low in the activity of Fe-S enzymes in mitochondria as well as in the cytoplasm. Screening of multi-copy suppressor of growth defects of the mutant identified isa1{sup +} gene encoding a putative A-type Fe-S scaffold,more » in addition to mas5{sup +} and hsc1{sup +} genes encoding putative chaperones for Fe-S assembly process. Examination of other scaffold and chaperone genes revealed that isa2{sup +}, but not isu1{sup +} and ssc1{sup +}, complemented the growth phenotype of {Delta}grx5 mutant as isa1{sup +} did, partly through restoration of Fe-S enzyme activities. The mutant also showed a significant decrease in the amount of mitochondrial DNA. We demonstrated that Grx5 interacts in vivo with Isa1 and Isa2 proteins in mitochondria by observing bimolecular fluorescence complementation. These results indicate that Grx5 plays a central role in Fe-S assembly process through interaction with A-type Fe-S scaffold proteins Isa1 and Isa2, each of which is an essential protein in S. pombe, and supports mitochondrial genome integrity as well as Fe-S assembly.« less
Biodegradation of the Organic Disulfide 4,4′-Dithiodibutyric Acid by Rhodococcus spp.
Khairy, Heba; Wübbeler, Jan Hendrik
2015-01-01
Four Rhodococcus spp. exhibited the ability to use 4,4′-dithiodibutyric acid (DTDB) as a sole carbon source for growth. The most important step for the production of a novel polythioester (PTE) using DTDB as a precursor substrate is the initial cleavage of DTDB. Thus, identification of the enzyme responsible for this step was mandatory. Because Rhodococcus erythropolis strain MI2 serves as a model organism for elucidation of the biodegradation of DTDB, it was used to identify the genes encoding the enzymes involved in DTDB utilization. To identify these genes, transposon mutagenesis of R. erythropolis MI2 was carried out using transposon pTNR-TA. Among 3,261 mutants screened, 8 showed no growth with DTDB as the sole carbon source. In five mutants, the insertion locus was mapped either within a gene coding for a polysaccharide deacetyltransferase, a putative ATPase, or an acetyl coenzyme A transferase, 1 bp upstream of a gene coding for a putative methylase, or 176 bp downstream of a gene coding for a putative kinase. In another mutant, the insertion was localized between genes encoding a putative transcriptional regulator of the TetR family (noxR) and an NADH:flavin oxidoreductase (nox). Moreover, in two other mutants, the insertion loci were mapped within a gene encoding a hypothetical protein in the vicinity of noxR and nox. The interruption mutant generated, R. erythropolis MI2 noxΩtsr, was unable to grow with DTDB as the sole carbon source. Subsequently, nox was overexpressed and purified, and its activity with DTDB was measured. The specific enzyme activity of Nox amounted to 1.2 ± 0.15 U/mg. Therefore, we propose that Nox is responsible for the initial cleavage of DTDB into 2 molecules of 4-mercaptobutyric acid (4MB). PMID:26407888
Swathy, Babu; Banerjee, Moinak
2017-01-01
Haloperidol has been extensively used in various psychiatric conditions. It has also been reported to induce severe side effects. We aimed to evaluate whether haloperidol can influence host methylome, and if so what are the possible mechanisms for it in neuronal cells. Impact on host methylome and miRNAs can have wide spread alterations in gene expression, which might possibly help in understanding how haloperidol may impact treatment response or induce side effects. SK-N-SH, a neuroblasoma cell line was treated with haloperidol at 10μm concentration for 24 hours and global DNA methylation was evaluated. Methylation at global level is maintained by methylation maintenance machinery and certain miRNAs. Therefore, the expression of methylation maintenance genes and their putative miRNA expression profiles were assessed. These global methylation alterations could result in gene expression changes. Therefore genes expressions for neurotransmitter receptors, regulators, ion channels and transporters were determined. Subsequently, we were also keen to identify a strong candidate miRNA based on biological and in-silico approach which can reflect on the pharmacoepigenetic trait of haloperidol and can also target the altered neuroscience panel of genes used in the study. Haloperidol induced increase in global DNA methylation which was found to be associated with corresponding increase in expression of various epigenetic modifiers that include DNMT1, DNMT3A, DNMT3B and MBD2. The expression of miR-29b that is known to putatively regulate the global methylation by modulating the expression of epigenetic modifiers was observed to be down regulated by haloperidol. In addition to miR-29b, miR-22 was also found to be downregulated by haloperidol treatment. Both these miRNA are known to putatively target several genes associated with various epigenetic modifiers, pharmacogenes and neurotransmission. Interestingly some of these putative target genes involved in neurotransmission were observed to be upregulated while CHRM2 gene expression was down regulated. Haloperidol can influence methylation traits thereby inducing a pharmacoepigenomic response, which seems to be regulated by DNMTs and their putative miRNA expression. Increased methylation seems to influence CHRM2 gene expression while microRNA could influence neurotransmission, pharmacogene expression and methylation events. Altered expression of various therapeutically relevant genes and miRNA expression, could account for their role in therapeutic response or side effects.
Swathy, Babu
2017-01-01
Introduction Haloperidol has been extensively used in various psychiatric conditions. It has also been reported to induce severe side effects. We aimed to evaluate whether haloperidol can influence host methylome, and if so what are the possible mechanisms for it in neuronal cells. Impact on host methylome and miRNAs can have wide spread alterations in gene expression, which might possibly help in understanding how haloperidol may impact treatment response or induce side effects. Methods SK-N-SH, a neuroblasoma cell line was treated with haloperidol at 10μm concentration for 24 hours and global DNA methylation was evaluated. Methylation at global level is maintained by methylation maintenance machinery and certain miRNAs. Therefore, the expression of methylation maintenance genes and their putative miRNA expression profiles were assessed. These global methylation alterations could result in gene expression changes. Therefore genes expressions for neurotransmitter receptors, regulators, ion channels and transporters were determined. Subsequently, we were also keen to identify a strong candidate miRNA based on biological and in-silico approach which can reflect on the pharmacoepigenetic trait of haloperidol and can also target the altered neuroscience panel of genes used in the study. Results Haloperidol induced increase in global DNA methylation which was found to be associated with corresponding increase in expression of various epigenetic modifiers that include DNMT1, DNMT3A, DNMT3B and MBD2. The expression of miR-29b that is known to putatively regulate the global methylation by modulating the expression of epigenetic modifiers was observed to be down regulated by haloperidol. In addition to miR-29b, miR-22 was also found to be downregulated by haloperidol treatment. Both these miRNA are known to putatively target several genes associated with various epigenetic modifiers, pharmacogenes and neurotransmission. Interestingly some of these putative target genes involved in neurotransmission were observed to be upregulated while CHRM2 gene expression was down regulated. Conclusions Haloperidol can influence methylation traits thereby inducing a pharmacoepigenomic response, which seems to be regulated by DNMTs and their putative miRNA expression. Increased methylation seems to influence CHRM2 gene expression while microRNA could influence neurotransmission, pharmacogene expression and methylation events. Altered expression of various therapeutically relevant genes and miRNA expression, could account for their role in therapeutic response or side effects. PMID:28886082
Ma, Keyi; Liao, Minghui; Liu, Feng; Ye, Baoqing; Sun, Fei; Yue, Gen Hua
2016-01-01
Zinc finger AN1-type domain 3 (ZFAND3) is essential for spermatogenesis in mice. However, its function in teleosts remains unclear. In this study, we characterized the ZFAND3 gene (termed as OsZFAND3) in an important food fish, tilapia. The OsZFAND3 cDNA sequence is 1,050 bp in length, containing an ORF of 615 bp, which encodes a putative peptide of 204 amino acid residues. Quantitative real-time PCR revealed that the OsZFAND3 transcripts were exclusively expressed in the testis and ovary. In situ hybridization showed that the high expression of OsZFAND3 transcripts was predominantly localized in the spermatocyte and spermatid. These results suggest that OsZFAND3 is involved in male germ cell maturation. Three single nucleotide polymorphisms (SNPs) were detected in the introns of OsZFAND3. The OsZFAND3 gene was mapped in the sex-determining locus on linkage group 1 (LG1). The three SNPs in the OsZFAND3 gene were strictly associated with sex phenotype, suggesting that the OsZFAND3 gene is tightly linked to the sex-determining locus. Our study provides new insights into the functions of the OsZFAND3 gene in tilapia and a foundation for further detailed analysis of the OsZFAND3 gene in sex determination and differentiation. PMID:27137111
Structure, Regulation, and Putative Function of the Arginine Deiminase System of Streptococcus suis
Gruening, Petra; Fulde, Marcus; Valentin-Weigand, Peter; Goethe, Ralph
2006-01-01
Streptococcus suis is an important cause of infectious diseases in young pigs. Little is known about the virulence factors or protective antigens of S. suis. Recently, we have identified two proteins of the arginine deiminase system (ADS) of S. suis, which were temperature induced and expressed on the streptococcal surface (N. Winterhoff, R. Goethe, P. Gruening, M. Rohde, H. Kalisz, H. E. Smith, and P. Valentin-Weigand, J. Bacteriol. 184:6768-6776, 2002). In the present study, we analyzed the complete ADS of S. suis. Due to their homologies to the recently published S. gordonii ADS genes, the genes for arginine deiminase, ornithine carbamoyl-transferase, and carbamate kinase, which were previously designated adiS, octS, and ckS, respectively, were renamed arcA, arcB, and arcC, respectively. Our data revealed that arcA, arcB, and arcC of the S. suis ADS are transcribed from an operon (arcABC operon). Additionally, putative ADS-associated genes were cloned and sequenced which, however, did not belong to the arcABC operon. These were the flpS gene upstream of the arcABC operon with homology to the flp transcription regulator of S. gordonii and the arcD, arcT, arcH, and argR genes downstream of the arcABC operon with high homologies to a putative arginine-ornithine antiporter, a putative dipeptidase of S. gordonii, a putative β-N-acetylhexosaminidase of S. pneumoniae, and a putative arginine repressor of S. gordonii, respectively. The transcriptional start point of the arcABC operon was determined, and promoter analysis provided evidence that multiple factors contribute to the regulation of the ADS. Thus, a putative binding site for a transcription regulator of the Crp/Fnr family, an ArgR-binding site, and two cis-acting catabolite response elements were identified in the promoter-operator region of the operon. Consistent with this, we could demonstrate that the ADS of S. suis is inducible by arginine and reduced O2 tension and subject to carbon catabolite repression. Furthermore, comparing an arcA knockout mutant in which expression of the three operon-encoded proteins was abolished with the parental wild-type strain showed that the arcABC operon of S. suis contributes to survival under acidic conditions. PMID:16385025
Structure, regulation, and putative function of the arginine deiminase system of Streptococcus suis.
Gruening, Petra; Fulde, Marcus; Valentin-Weigand, Peter; Goethe, Ralph
2006-01-01
Streptococcus suis is an important cause of infectious diseases in young pigs. Little is known about the virulence factors or protective antigens of S. suis. Recently, we have identified two proteins of the arginine deiminase system (ADS) of S. suis, which were temperature induced and expressed on the streptococcal surface (N. Winterhoff, R. Goethe, P. Gruening, M. Rohde, H. Kalisz, H. E. Smith, and P. Valentin-Weigand, J. Bacteriol. 184:6768-6776, 2002). In the present study, we analyzed the complete ADS of S. suis. Due to their homologies to the recently published S. gordonii ADS genes, the genes for arginine deiminase, ornithine carbamoyl-transferase, and carbamate kinase, which were previously designated adiS, octS, and ckS, respectively, were renamed arcA, arcB, and arcC, respectively. Our data revealed that arcA, arcB, and arcC of the S. suis ADS are transcribed from an operon (arcABC operon). Additionally, putative ADS-associated genes were cloned and sequenced which, however, did not belong to the arcABC operon. These were the flpS gene upstream of the arcABC operon with homology to the flp transcription regulator of S. gordonii and the arcD, arcT, arcH, and argR genes downstream of the arcABC operon with high homologies to a putative arginine-ornithine antiporter, a putative dipeptidase of S. gordonii, a putative beta-N-acetylhexosaminidase of S. pneumoniae, and a putative arginine repressor of S. gordonii, respectively. The transcriptional start point of the arcABC operon was determined, and promoter analysis provided evidence that multiple factors contribute to the regulation of the ADS. Thus, a putative binding site for a transcription regulator of the Crp/Fnr family, an ArgR-binding site, and two cis-acting catabolite response elements were identified in the promoter-operator region of the operon. Consistent with this, we could demonstrate that the ADS of S. suis is inducible by arginine and reduced O2 tension and subject to carbon catabolite repression. Furthermore, comparing an arcA knockout mutant in which expression of the three operon-encoded proteins was abolished with the parental wild-type strain showed that the arcABC operon of S. suis contributes to survival under acidic conditions.
The MB2 gene family of Plasmodium species has a unique combination of S1 and GTP-binding domains
Romero, Lisa C; Nguyen, Thanh V; Deville, Benoit; Ogunjumo, Oluwasanmi; James, Anthony A
2004-01-01
Background Identification and characterization of novel Plasmodium gene families is necessary for developing new anti-malarial therapeutics. The products of the Plasmodium falciparum gene, MB2, were shown previously to have a stage-specific pattern of subcellular localization and proteolytic processing. Results Genes homologous to MB2 were identified in five additional parasite species, P. knowlesi, P. gallinaceum, P. berghei, P. yoelii, and P. chabaudi. Sequence comparisons among the MB2 gene products reveal amino acid conservation of structural features, including putative S1 and GTP-binding domains, and putative signal peptides and nuclear localization signals. Conclusions The combination of domains is unique to this gene family and indicates that MB2 genes comprise a novel family and therefore may be a good target for drug development. PMID:15222903
Perkins, J B; Bower, S; Howitt, C L; Yocum, R R; Pero, J
1996-01-01
Northern (RNA) blot analysis of the Bacillus subtilis biotin operon, bioWAFDBIorf2, detected at least two steady-state polycistronic transcripts initiated from a putative vegetative (Pbio) promoter that precedes the operon, i.e., a full-length 7.2-kb transcript covering the entire operon and a more abundant 5.1-kb transcript covering just the first five genes of the operon. Biotin and the B. subtilis birA gene product regulated synthesis of the transcripts. Moreover, replacing the putative Pbio promoter and regulatory sequence with a constitutive SP01 phage promoter resulted in higher-level constitutive synthesis. Removal of a rho-independent terminator-like sequence located between the fifth (bioB) and sixth (bioI) genes prevented accumulation of the 5.1-kb transcript, suggesting that the putative terminator functions to limit expression of bioI, which is thought to be involved in an early step in biotin synthesis. PMID:8892842
Perkins, J B; Bower, S; Howitt, C L; Yocum, R R; Pero, J
1996-11-01
Northern (RNA) blot analysis of the Bacillus subtilis biotin operon, bioWAFDBIorf2, detected at least two steady-state polycistronic transcripts initiated from a putative vegetative (Pbio) promoter that precedes the operon, i.e., a full-length 7.2-kb transcript covering the entire operon and a more abundant 5.1-kb transcript covering just the first five genes of the operon. Biotin and the B. subtilis birA gene product regulated synthesis of the transcripts. Moreover, replacing the putative Pbio promoter and regulatory sequence with a constitutive SP01 phage promoter resulted in higher-level constitutive synthesis. Removal of a rho-independent terminator-like sequence located between the fifth (bioB) and sixth (bioI) genes prevented accumulation of the 5.1-kb transcript, suggesting that the putative terminator functions to limit expression of bioI, which is thought to be involved in an early step in biotin synthesis.
Petrova, L P; Prilipov, A G; Katsy, E I
2017-01-01
It is known that in Azospirillum brasilense strains Sp245 and SR75 included in serogroup I, the repeat units of their O-polysaccharides consist of five residues of D-rhamnose, and in strain SR15, of four; and the heteropolymeric O-polysaccharide of A. brasilense type strain Sp7 from serogroup II contains not less than five types of repeat units. In the present work, a complex of nondegenerate primers to the genes of A. brasilense Sp245 plasmids AZOBR_p6, AZOBR_p3, and AZOBR_p2, which encode putative enzymes for the biosynthesis of core oligosaccharide and O-polysaccharide of lipopolysaccharide, capsular polysaccharides, and exopolysaccharides, was proposed. By using the designed primers, products of the expected sizes were synthesized in polymerase chain reactions on genomic DNA of A. brasilense Sp245, SR75, SR15, and Sp7 in 36, 29, 23, and 12 cases, respectively. As a result of sequencing of a number of amplicons, a high (86–99%) level of identity of the corresponding putative polysaccharide biosynthesis genes in three A. brasilense strains from serogroup I was detected. In a blotting-hybridization reaction with the biotin-labeled DNA of the A. brasilense gene AZOBR_p60122 coding for putative permease of the ABC transporter of polysaccharides, localization of the homologous gene in ~120-MDa plasmids of the bacteria A. brasilense SR15 and SR75 was revealed.
Rao, Guodong; Zeng, Yanfei; He, Caiyun; Zhang, Jianguo
2016-01-01
Microtubules, which are composed of heterodimers of α-tubulin (TUA) and β-tubulin (TUB) proteins, are closely associated with cellulose microfibril deposition and play pivotal roles in plant secondary cell wall development. In the present study, we identified eight TUA and twenty TUB genes in willow (Salix arbutifolia). Quantitative real-time PCR analysis showed that the small number of TUA gene family members relative to that of TUBs was complemented by a higher transcript copy number for each TUA gene, which is essential to the maintenance of the tubulin 1:1 heterodimer assembly. In Salix, five of eight TUAs were determined to be unusual because these contained a C-terminal methionine acid, leucine acid, glutamic acid, and glutamine acid, instead of the more typical tyrosine residue, which in turn generated the hypothesis of post-translational modifications (PTMs) that included deleucylation, demethiolation, deglutamynation, and deaspartylation. These PTMs are responsible for the removal of additional amino acid residues from TUAs prior to detyrosination, which is the first step of C-terminal PTMs. The additional PTMs of the TUA gene family might be responsible for the formation of different tubulin heterodimers that may have diverse functions for the adaptation of the woody perennial growth for Salix. PMID:26753794
Molecular events of apical bud formation in white spruce, Picea glauca.
El Kayal, Walid; Allen, Carmen C G; Ju, Chelsea J-T; Adams, Eri; King-Jones, Susanne; Zaharia, L Irina; Abrams, Suzanne R; Cooke, Janice E K
2011-03-01
Bud formation is an adaptive trait that temperate forest trees have acquired to facilitate seasonal synchronization. We have characterized transcriptome-level changes that occur during bud formation of white spruce [Picea glauca (Moench) Voss], a primarily determinate species in which preformed stem units contained within the apical bud constitute most of next season's growth. Microarray analysis identified 4460 differentially expressed sequences in shoot tips during short day-induced bud formation. Cluster analysis revealed distinct temporal patterns of expression, and functional classification of genes in these clusters implied molecular processes that coincide with anatomical changes occurring in the developing bud. Comparing expression profiles in developing buds under long day and short day conditions identified possible photoperiod-responsive genes that may not be essential for bud development. Several genes putatively associated with hormone signalling were identified, and hormone quantification revealed distinct profiles for abscisic acid (ABA), cytokinins, auxin and their metabolites that can be related to morphological changes to the bud. Comparison of gene expression profiles during bud formation in different tissues revealed 108 genes that are differentially expressed only in developing buds and show greater transcript abundance in developing buds than other tissues. These findings provide a temporal roadmap of bud formation in white spruce. © 2011 Blackwell Publishing Ltd.
EpsA is an essential gene in exopolysaccharide production in Lactobacillus johnsonii FI9785.
Dertli, Enes; Mayer, Melinda J; Colquhoun, Ian J; Narbad, Arjan
2016-07-01
Lactobacillus johnsonii FI9785 has an eps gene cluster which is required for the biosynthesis of homopolymeric exopolysaccharides (EPS)-1 and heteropolymeric EPS-2 as a capsular layer. The first gene of the cluster, epsA, is the putative transcriptional regulator. In this study we showed the crucial role of epsA in EPS biosynthesis by demonstrating that deletion of epsA resulted in complete loss of both EPS-1 and EPS-2 on the cell surface. Plasmid complementation of the epsA gene fully restored EPS production, as confirmed by transmission electron microscopy and nuclear magnetic resonance (NMR) analysis. Furthermore, this complementation resulted in a twofold increase in the expression levels of this gene, which almost doubled amounts of EPS production in comparison with the wild-type strain. Analysis of EPS by NMR showed an increased ratio of the heteropolysaccharide to homopolysaccharide in the complemented strain and allowed identification of the acetylated residue in EPS-2 as the (1,4)-linked βGlcp unit, with the acetyl group located at O-6. These findings indicate that epsA is a positive regulator of EPS production and that EPS production can be manipulated by altering its expression. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Kucejová, B; Foury, F
2003-01-01
RIM1 is a nuclear gene of the yeast Saccharomyces cerevisiae coding for a protein with single-stranded DNA-binding activity that is essential for mitochondrial genome maintenance. No protein partners of Rim1p have been described so far in yeast. To better understand the role of this protein in mitochondrial DNA replication and recombination, a search for protein interactors by the yeast two-hybrid system was performed. This approach led to the identification of several candidates, including a putative transcription factor, Azf1p, and Mph1p, a protein with an RNA helicase domain which is known to influence the mutation rate of nuclear and mitochondrial genomes.
Ogawa, Mikihiro; Kay, Pippa; Wilson, Sarah; Swain, Stephen M.
2009-01-01
Cell separation is thought to involve degradation of pectin by several hydrolytic enzymes, particularly polygalacturonase (PG). Here, we characterize an activation tagging line with reduced growth and male sterility caused by increased expression of a PG encoded by QUARTET2 (QRT2). QRT2 is essential for pollen grain separation and is part of a small family of three closely related endo-PGs in the Arabidopsis thaliana proteome, including ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1) and ADPG2. Functional assays and complementation experiments confirm that ADPG1, ADPG2, and QRT2 are PGs. Genetic analysis demonstrates that ADPG1 and ADPG2 are essential for silique dehiscence. In addition, ADPG2 and QRT2 contribute to floral organ abscission, while all three genes contribute to anther dehiscence. Expression analysis is consistent with the observed mutant phenotypes. INDEHISCENT (IND) encodes a putative basic helix-loop-helix required for silique dehiscence, and we demonstrate that the closely related HECATE3 (HEC3) gene is required for normal seed abscission and show that IND and HEC3 are required for normal expression of ADPG1 in the silique dehiscence zone and seed abscission zone, respectively. We also show that jasmonic acid and ethylene act together with abscisic acid to regulate floral organ abscission, in part by promoting QRT2 expression. These results demonstrate that multiple cell separation events, including both abscission and dehiscence, require closely related PG genes. PMID:19168715
Steinmann, Michael E; González-Salgado, Amaia; Bütikofer, Peter; Mäser, Pascal; Sigel, Erwin
2015-08-01
Discovery of novel drug targets may lead to improved treatment of trypanosomiasis. We characterize here 2 gene products of Trypanosoma brucei that are essential for the growth of bloodstream form (BSF) parasites, as shown by RNA interference (RNAi)-mediated down-regulation of the individual mRNAs. The primary sequences of the 2 proteins--protein encoded by gene Tb927.1.4450 (TbK1) and protein encoded by gene Tb927.9.4820 (TbK2)--indicate that both belong to the family of putative, Ca(2+)-activated potassium channels. The proteins were expressed in Xenopus laevis oocytes and their functions investigated by use of electrophysiological techniques. Only combined expression of TbK1 and TbK2 results in the formation of sizeable currents, indicating that these proteins probably assemble into a heteromeric ion channel. The current mediated by this channel shows little time and voltage dependence and displays a permeability ratio of K(+)/Na(+) of >20. The known potassium channel blocker barium inhibits this channel with a half-maximal inhibitory concentration (IC50) of 98 ± 15 μM. The membrane potential of trypanosomes was measured with a fluorescent dye. Individual RNAi-mediated down-regulation of TbK1 or TbK2 eliminates a potassium conductance in the plasma membrane of BSF. Thus, this heteromeric potassium channel is involved in the modulation of the plasma membrane potential and represents a novel drug target in T. brucei. © FASEB.
Wei, Dan-Dan; Chen, Er-Hu; Ding, Tian-Bo; Chen, Shi-Chun; Dou, Wei; Wang, Jin-Jun
2013-01-01
Background As a major stored-product pest insect, Liposcelis entomophila has developed high levels of resistance to various insecticides in grain storage systems. However, the molecular mechanisms underlying resistance and environmental stress have not been characterized. To date, there is a lack of genomic information for this species. Therefore, studies aimed at profiling the L. entomophila transcriptome would provide a better understanding of the biological functions at the molecular levels. Methodology/Principal Findings We applied Illumina sequencing technology to sequence the transcriptome of L. entomophila. A total of 54,406,328 clean reads were obtained and that de novo assembled into 54,220 unigenes, with an average length of 571 bp. Through a similarity search, 33,404 (61.61%) unigenes were matched to known proteins in the NCBI non-redundant (Nr) protein database. These unigenes were further functionally annotated with gene ontology (GO), cluster of orthologous groups of proteins (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. A large number of genes potentially involved in insecticide resistance were manually curated, including 68 putative cytochrome P450 genes, 37 putative glutathione S-transferase (GST) genes, 19 putative carboxyl/cholinesterase (CCE) genes, and other 126 transcripts to contain target site sequences or encoding detoxification genes representing eight types of resistance enzymes. Furthermore, to gain insight into the molecular basis of the L. entomophila toward thermal stresses, 25 heat shock protein (Hsp) genes were identified. In addition, 1,100 SSRs and 57,757 SNPs were detected and 231 pairs of SSR primes were designed for investigating the genetic diversity in future. Conclusions/Significance We developed a comprehensive transcriptomic database for L. entomophila. These sequences and putative molecular markers would further promote our understanding of the molecular mechanisms underlying insecticide resistance or environmental stress, and will facilitate studies on population genetics for psocids, as well as providing useful information for functional genomic research in the future. PMID:24244605
Gene Duplicability of Core Genes Is Highly Consistent across All Angiosperms[OPEN
Li, Zhen; Van de Peer, Yves; De Smet, Riet
2016-01-01
Gene duplication is an important mechanism for adding to genomic novelty. Hence, which genes undergo duplication and are preserved following duplication is an important question. It has been observed that gene duplicability, or the ability of genes to be retained following duplication, is a nonrandom process, with certain genes being more amenable to survive duplication events than others. Primarily, gene essentiality and the type of duplication (small-scale versus large-scale) have been shown in different species to influence the (long-term) survival of novel genes. However, an overarching view of “gene duplicability” is lacking, mainly due to the fact that previous studies usually focused on individual species and did not account for the influence of genomic context and the time of duplication. Here, we present a large-scale study in which we investigated duplicate retention for 9178 gene families shared between 37 flowering plant species, referred to as angiosperm core gene families. For most gene families, we observe a strikingly consistent pattern of gene duplicability across species, with gene families being either primarily single-copy or multicopy in all species. An intermediate class contains gene families that are often retained in duplicate for periods extending to tens of millions of years after whole-genome duplication, but ultimately appear to be largely restored to singleton status, suggesting that these genes may be dosage balance sensitive. The distinction between single-copy and multicopy gene families is reflected in their functional annotation, with single-copy genes being mainly involved in the maintenance of genome stability and organelle function and multicopy genes in signaling, transport, and metabolism. The intermediate class was overrepresented in regulatory genes, further suggesting that these represent putative dosage-balance-sensitive genes. PMID:26744215
Gene Duplicability of Core Genes Is Highly Consistent across All Angiosperms.
Li, Zhen; Defoort, Jonas; Tasdighian, Setareh; Maere, Steven; Van de Peer, Yves; De Smet, Riet
2016-02-01
Gene duplication is an important mechanism for adding to genomic novelty. Hence, which genes undergo duplication and are preserved following duplication is an important question. It has been observed that gene duplicability, or the ability of genes to be retained following duplication, is a nonrandom process, with certain genes being more amenable to survive duplication events than others. Primarily, gene essentiality and the type of duplication (small-scale versus large-scale) have been shown in different species to influence the (long-term) survival of novel genes. However, an overarching view of "gene duplicability" is lacking, mainly due to the fact that previous studies usually focused on individual species and did not account for the influence of genomic context and the time of duplication. Here, we present a large-scale study in which we investigated duplicate retention for 9178 gene families shared between 37 flowering plant species, referred to as angiosperm core gene families. For most gene families, we observe a strikingly consistent pattern of gene duplicability across species, with gene families being either primarily single-copy or multicopy in all species. An intermediate class contains gene families that are often retained in duplicate for periods extending to tens of millions of years after whole-genome duplication, but ultimately appear to be largely restored to singleton status, suggesting that these genes may be dosage balance sensitive. The distinction between single-copy and multicopy gene families is reflected in their functional annotation, with single-copy genes being mainly involved in the maintenance of genome stability and organelle function and multicopy genes in signaling, transport, and metabolism. The intermediate class was overrepresented in regulatory genes, further suggesting that these represent putative dosage-balance-sensitive genes. © 2016 American Society of Plant Biologists. All rights reserved.
Isolation of pheromone precursor genes of Magnaporthe grisea.
Shen, W C; Bobrowicz, P; Ebbole, D J
1999-01-01
In heterothallic ascomycetes one mating partner serves as the source of female tissue and is fertilized with spermatia from a partner of the opposite mating type. The role of pheromone signaling in mating is thought to involve recognition of cells of the opposite mating type. We have isolated two putative pheromone precursor genes of Magnaporthe grisea. The genes are present in both mating types of the fungus but they are expressed in a mating type-specific manner. The MF1-1 gene, expressed in Mat1-1 strains, is predicted to encode a 26-amino-acid polypeptide that is processed to produce a lipopeptide pheromone. The MF2-1 gene, expressed in Mat1-2 strains, is predicted to encode a precursor polypeptide that is processed by a Kex2-like protease to yield a pheromone with striking similarity to the predicted pheromone sequence of a close relative, Cryphonectria parasitica. Expression of the M. grisea putative pheromone precursor genes was observed under defined nutritional conditions and in field isolates. This suggests that the requirement for complex media for mating and the poor fertility of field isolates may not be due to limitation of pheromone precursor gene expression. Detection of putative pheromone precursor gene mRNA in conidia suggests that pheromones may be important for the fertility of conidia acting as spermatia. Copyright 1999 Academic Press.
Zhang, Jin-Ju; Montgomery, Benjamin R.; Huang, Shuang-Quan
2016-01-01
Interspecific hybridization is widespread among plants; nevertheless, pre- and post-zygotic isolating mechanisms may maintain species integrity for interfertile species in sympatry despite some gene flow. Interspecific hybridization and potential isolating barriers were evaluated between co-flowering Silene asclepiadea and Silene yunnanensis in an alpine community in southwest China. We investigated morphological and molecular (nuclear microsatellites and chloroplast gene sequence) variation in sympatric populations of S. asclepiadea and S. yunnanensis. Additionally, we analyzed pollinator behaviour and compared reproductive success between the putative hybrids and their parental species. Both the molecular and morphological data indicate that there were putative natural hybrids in the field, with S. asclepiadae the ovule parent and S. yunnanensis the pollen parent. Bumblebees were the primary visitors to S. asclepiadae and putative hybrids, while butterflies were the primary visitors to S. yunnanensis. Pollen production and viability were significantly lower in putative hybrids than the parental species. The direction of hybridization is quite asymmetric from S. yunnanensis to S. asclepiadea. Protandry combined with later peak flowering of S. yunnanensis, and pollinator preference may have contributed to the asymmetric pattern of hybridization, but putative hybrids were rare. Our results thus suggest that despite gene flow, S. asclepiadea and S. yunnanensis can maintain species boundaries, perhaps as a result of floral isolation and low fecundity of the hybrids. PMID:27178066
Zhang, Jin-Ju; Montgomery, Benjamin R; Huang, Shuang-Quan
2016-01-01
Interspecific hybridization is widespread among plants; nevertheless, pre- and post-zygotic isolating mechanisms may maintain species integrity for interfertile species in sympatry despite some gene flow. Interspecific hybridization and potential isolating barriers were evaluated between co-flowering Silene asclepiadea and Silene yunnanensis in an alpine community in southwest China. We investigated morphological and molecular (nuclear microsatellites and chloroplast gene sequence) variation in sympatric populations of S. asclepiadea and S. yunnanensis. Additionally, we analyzed pollinator behaviour and compared reproductive success between the putative hybrids and their parental species. Both the molecular and morphological data indicate that there were putative natural hybrids in the field, with S. asclepiadae the ovule parent and S. yunnanensis the pollen parent. Bumblebees were the primary visitors to S. asclepiadae and putative hybrids, while butterflies were the primary visitors to S. yunnanensis Pollen production and viability were significantly lower in putative hybrids than the parental species. The direction of hybridization is quite asymmetric from S. yunnanensis to S. asclepiadea Protandry combined with later peak flowering of S. yunnanensis, and pollinator preference may have contributed to the asymmetric pattern of hybridization, but putative hybrids were rare. Our results thus suggest that despite gene flow, S. asclepiadea and S. yunnanensis can maintain species boundaries, perhaps as a result of floral isolation and low fecundity of the hybrids. Published by Oxford University Press on behalf of the Annals of Botany Company.
Chouhy, Diego; Gorosito, Mario; Sánchez, Adriana; Serra, Esteban C; Bergero, Adriana; Bussy, Ramón Fernandez; Giri, Adriana A
2009-01-01
We explored the cutaneotropic HPV genetic diversity in 71 subjects from Argentina. New generic primers (CUT) targeting 88 mucosal/cutaneous HPV were designed and compared to FAP primers. Overall, 69 different HPV types/putative types were identified, being 17 of them novel putative types. Phylogenetic analysis of partial L1 sequences grouped 2 novel putative types in the Beta-PV, 14 in the Gamma-PV and 1 in the Mu-PV genera. CUT primers showed broader capacity than FAP primers in detecting different genera/species and novel putative types (p<0.01). Using overlapping PCR, the full-length genome of a Beta-PV putative type was amplified and cloned. The new virus, designated HPV 115, encodes 5 early genes and 2 late genes. Phylogenetic analysis indicated HPV 115 as the most divergent type within the genus Beta-PV species 3. This report is the first providing data on cutaneous HPVs circulating in South America and expands our knowledge of the Papillomaviridae family. PMID:19948351
Haussuehl, Kirsten; Huesgen, Pitter F; Meier, Marc; Dessi, Patrick; Glaser, Elzbieta; Adamski, Jerzy; Adamska, Iwona
2009-10-12
GCPs (glycoproteases) are members of the HSP70 (heat-shock protein 70)/actin ATPase superfamily that are highly conserved in taxonomically diverse species from bacteria to man, suggesting an essential physiological role. Although originally identified and annotated as putative endopeptidases, a proteolytic activity could not be confirmed for these proteins. Our survey of genome databases revealed that all eukaryotic organisms contain two GCP genes [called GCP1 and GCP2/Kae1 (kinase-associated endopeptidase 1)], whereas prokaryotes have only one, either of the GCP1- (Bacteria) or the GCP2/Kae1- (Archaea) type. GCP2/Kae1 is essential for telomere elongation and transcription of essential genes, although little is known about the localization, expression and physiological role of GCP1. In the present study on GCP1-type proteins from eukaryotic organisms we demonstrated that GCP1 is a mitochondrial protein in Homo sapiens [called here GCP1/OSGEPL1 (O-sialoglycoprotein endopeptidase)] and Arabidopsis thaliana, which is located/anchored to the mitochondrial inner membrane. Analysis of mRNA and protein levels revealed that the expression of GCP1/OSGEPL1 in A. thaliana and H. sapiens is tissue- and organ-specific and depends on the developmental stage, suggesting a more specialized function for this protein. We showed that homozygous A. thaliana GCP1 T-DNA (transferred DNA) insertion lines were embryonic lethal. Embryos in homozygous seeds were arrested at the globular stage and failed to undergo the transition into the heart stage. On the basis of these data we propose that the mitochondrial GCP1 is essential for embryonic development in plants.
Gene Cluster Encoding Cholate Catabolism in Rhodococcus spp.
Wilbrink, Maarten H.; Casabon, Israël; Stewart, Gordon R.; Liu, Jie; van der Geize, Robert; Eltis, Lindsay D.
2012-01-01
Bile acids are highly abundant steroids with important functions in vertebrate digestion. Their catabolism by bacteria is an important component of the carbon cycle, contributes to gut ecology, and has potential commercial applications. We found that Rhodococcus jostii RHA1 grows well on cholate, as well as on its conjugates, taurocholate and glycocholate. The transcriptome of RHA1 growing on cholate revealed 39 genes upregulated on cholate, occurring in a single gene cluster. Reverse transcriptase quantitative PCR confirmed that selected genes in the cluster were upregulated 10-fold on cholate versus on cholesterol. One of these genes, kshA3, encoding a putative 3-ketosteroid-9α-hydroxylase, was deleted and found essential for growth on cholate. Two coenzyme A (CoA) synthetases encoded in the cluster, CasG and CasI, were heterologously expressed. CasG was shown to transform cholate to cholyl-CoA, thus initiating side chain degradation. CasI was shown to form CoA derivatives of steroids with isopropanoyl side chains, likely occurring as degradation intermediates. Orthologous gene clusters were identified in all available Rhodococcus genomes, as well as that of Thermomonospora curvata. Moreover, Rhodococcus equi 103S, Rhodococcus ruber Chol-4 and Rhodococcus erythropolis SQ1 each grew on cholate. In contrast, several mycolic acid bacteria lacking the gene cluster were unable to grow on cholate. Our results demonstrate that the above-mentioned gene cluster encodes cholate catabolism and is distinct from a more widely occurring gene cluster encoding cholesterol catabolism. PMID:23024343
Hall, R L; Moyer, R W
1991-01-01
Entomopoxvirus virions are frequently contained within crystalline occlusion bodies, which are composed of primarily a single protein, spheroidin, which is analogous to the polyhedrin protein of baculovirus. The spheroidin gene of Amsacta moorei entomopoxvirus was identified following the microsequencing of polypeptides generated from cyanogen bromide treatment of spheroidin and the subsequent synthesis of oligonucleotide hybridization probes. DNA sequencing of a 6.8-kb region of DNA containing the spheroidin gene showed that the spheroidin protein is derived from a 3.0-kb open reading frame potentially encoding a protein of 115 kDa. Three copies of the heptanucleotide, TTTTTNT, a sequence associated with early gene transcription in the vertebrate poxviruses, and four in-frame translational termination signals were found within 60 bp upstream of the putative spheroidin gene promoter (TAAATG). The spheroidin gene promoter region contains the sequence TAAATG, which is found in many late promoters of the vertebrate poxviruses and which serves as the site of transcriptional initiation, as shown by primer extension. Primer extension experiments also showed that spheroidin gene transcripts contain 5' poly(A) sequences typical of vertebrate poxvirus late transcripts. The 92 bases upstream of the initiating TAAATG are unusually A + T rich and contain only 7 G or C residues. An analysis of open reading frames around the spheroidin gene suggests that the colinear core of "essential genes" typical of the vertebrate poxviruses is absent in A. moorei entomopoxvirus. Images PMID:1942245
Bujold, Adina R; MacInnes, Janet I
2015-11-14
Actinobacillus suis disease has been reported in a wide range of vertebrate species, but is most commonly found in swine. A. suis is a commensal of the tonsils of the soft palate of swine, but in the presence of unknown stimuli it can invade the bloodstream, causing septicaemia and sequelae such as meningitis, arthritis, and death. It is genotypically and phenotypically similar to A. pleuropneumoniae, the causative agent of pleuropneumonia, and to other members of the family Pasteurellaceae that colonise tonsils. At present, very little is known about the genes involved in attachment, colonisation, and invasion by A. suis (or related members of the tonsil microbiota). Bioinformatic analyses of the A. suis H91-0380 genome were done using BASys and blastx in GenBank. Forty-seven putative adhesin-associated genes predicted to encode 24 putative adhesins were discovered. Among these are 6 autotransporters, 25 fimbriae-associated genes (encoding 3 adhesins), 12 outer membrane proteins, and 4 additional genes (encoding 3 adhesins). With the exception of 2 autotransporter-encoding genes (aidA and ycgV), both with described roles in virulence in other species, all of the putative adhesin-associated genes had homologues in A. pleuropneumoniae. However, the majority of the closest homologues of the A. suis adhesins are found in A. ureae and A. capsulatus--species not known to infect swine, but both of which can cause systemic infections. A. suis and A. pleuropneumoniae share many of the same putative adhesins, suggesting that the different diseases, tissue tropism, and host range of these pathogens are due to subtle genetic differences, or perhaps differential expression of virulence factors during infection. However, many of the putative adhesins of A. suis share even greater homology with those of other pathogens within the family Pasteurellaceae. Similar to A. suis, these pathogens (A. capsulatus and A. ureae) cause systemic infections and it is tempting to speculate that they employ similar strategies to invade the host, but more work is needed before that assertion can be made. This work begins to examine adhesin-associated factors that allow some members of the family Pasteurellaceae to invade the bloodstream while others cause a more localised infection.
Casieri, Leonardo; Gallardo, Karine; Wipf, Daniel
2012-06-01
Sulphur is an essential macronutrient for plant growth, development and response to various abiotic and biotic stresses due to its key role in the biosynthesis of many S-containing compounds. Sulphate represents a very small portion of soil S pull and it is the only form that plant roots can uptake and mobilize through H(+)-dependent co-transport processes implying sulphate transporters. Unlike the other organically bound forms of S, sulphate is normally leached from soils due to its solubility in water, thus reducing its availability to plants. Although our knowledge of plant sulphate transporters has been growing significantly in the past decades, little is still known about the effect of the arbuscular mycorrhiza interaction on sulphur uptake. Carbon, nitrogen and sulphur measurements in plant parts and expression analysis of genes encoding putative Medicago sulphate transporters (MtSULTRs) were performed to better understand the beneficial effects of mycorrhizal interaction on Medicago truncatula plants colonized by Glomus intraradices at different sulphate concentrations. Mycorrhization significantly promoted plant growth and sulphur content, suggesting increased sulphate absorption. In silico analyses allowed identifying eight putative MtSULTRs phylogenetically distributed over the four sulphate transporter groups. Some putative MtSULTRs were transcribed differentially in roots and leaves and affected by sulphate concentration, while others were more constitutively transcribed. Mycorrhizal-inducible and -repressed MtSULTRs transcripts were identified allowing to shed light on the role of mycorrhizal interaction in sulphate uptake.
The putative drug efflux systems of the Bacillus cereus group
Elbourne, Liam D. H.; Vörös, Aniko; Kroeger, Jasmin K.; Simm, Roger; Tourasse, Nicolas J.; Finke, Sarah; Henderson, Peter J. F.; Økstad, Ole Andreas; Paulsen, Ian T.; Kolstø, Anne-Brit
2017-01-01
The Bacillus cereus group of bacteria includes seven closely related species, three of which, B. anthracis, B. cereus and B. thuringiensis, are pathogens of humans, animals and/or insects. Preliminary investigations into the transport capabilities of different bacterial lineages suggested that genes encoding putative efflux systems were unusually abundant in the B. cereus group compared to other bacteria. To explore the drug efflux potential of the B. cereus group all putative efflux systems were identified in the genomes of prototypical strains of B. cereus, B. anthracis and B. thuringiensis using our Transporter Automated Annotation Pipeline. More than 90 putative drug efflux systems were found within each of these strains, accounting for up to 2.7% of their protein coding potential. Comparative analyses demonstrated that the efflux systems are highly conserved between these species; 70–80% of the putative efflux pumps were shared between all three strains studied. Furthermore, 82% of the putative efflux system proteins encoded by the prototypical B. cereus strain ATCC 14579 (type strain) were found to be conserved in at least 80% of 169 B. cereus group strains that have high quality genome sequences available. However, only a handful of these efflux pumps have been functionally characterized. Deletion of individual efflux pump genes from B. cereus typically had little impact to drug resistance phenotypes or the general fitness of the strains, possibly because of the large numbers of alternative efflux systems that may have overlapping substrate specificities. Therefore, to gain insight into the possible transport functions of efflux systems in B. cereus, we undertook large-scale qRT-PCR analyses of efflux pump gene expression following drug shocks and other stress treatments. Clustering of gene expression changes identified several groups of similarly regulated systems that may have overlapping drug resistance functions. In this article we review current knowledge of the small molecule efflux pumps encoded by the B. cereus group and suggest the likely functions of numerous uncharacterised pumps. PMID:28472044
Ren, J; Youssoufian, H
2001-01-01
Fanconi anemia (FA) is an autosomal recessive disorder manifested by chromosomal breakage, birth defects, and susceptibility to bone marrow failure and cancer. At least seven complementation groups have been identified, and the genes defective in four groups have been cloned. The most common subtype is complementation group A. Although the normal functions of the gene products defective in FA cells are not completely understood, a clue to the function of the FA group A gene product (FANCA) was provided by the detection of limited homology in the amino terminal region to a class of heme peroxidases. We evaluated this hypothesis by mutagenesis and functional complementation studies. We substituted alanine residues for the most conserved FANCA residues in the putative peroxidase domain and tested their effects on known biochemical and cellular functions of FANCA. While the substitution mutants were comparable to wild-type FANCA with regard to their stability, subcellular localization, and interaction with FANCG, only the Trp(183)-to-Ala substitution (W183A) abolished the ability of FANCA to complement the sensitivity of FA group A cells to mitomycin C. By contrast, TUNEL assays for apoptosis after exposure to H2O2 showed no differences between parental FA group A cells, cells complemented with wild-type FANCA, and cells complemented with the W183A of FANCA. Moreover, semiquantitative RT-PCR analysis for the expression of the peroxide-sensitive heme oxygenase gene showed appropriate induction after H2O2 exposure. Thus, W183A appears to be essential for the in vivo activity of FANCA in a manner independent of its interaction with FANCG. Moreover, neither wild-type FANCA nor the W183A mutation appears to alter the peroxide-induced apoptosisor peroxide-sensing ability of FA group A cells. Copyright 2001 Academic Press.
Shu, Benshui; Zhang, Jingjing; Sethuraman, Veeran; Cui, Gaofeng; Yi, Xin; Zhong, Guohua
2017-10-16
As an important botanical pesticide, azadirachtin demonstrates broad insecticidal activity against many agricultural pests. The results of a previous study indicated the toxicity and apoptosis induction of azadirachtin in Spodoptera frugiperda Sf9 cells. However, the lack of genomic data has hindered a deeper investigation of apoptosis in Sf9 cells at a molecular level. In the present study, the complete transcriptome data for Sf9 cell line was accomplished using Illumina sequencing technology, and 97 putative apoptosis-related genes were identified through BLAST and KEGG orthologue annotations. Fragments of potential candidate apoptosis-related genes were cloned, and the mRNA expression patterns of ten identified genes regulated by azadirachtin were examined using qRT-PCR. Furthermore, Western blot analysis showed that six putative apoptosis-related proteins were upregulated after being treated with azadirachtin while the protein Bcl-2 were downregulated. These data suggested that both intrinsic and extrinsic apoptotic signal pathways comprising the identified potential apoptosis-related genes were potentially active in S. frugiperda. In addition, the preliminary results revealed that caspase-dependent or caspase-independent apoptotic pathways could function in azadirachtin-induced apoptosis in Sf9 cells.
He, Peng; Zhang, Yun-Fei; Hong, Duan-Yang; Wang, Jun; Wang, Xing-Liang; Zuo, Ling-Hua; Tang, Xian-Fu; Xu, Wei-Ming; He, Ming
2017-03-01
Female moths synthesize species-specific sex pheromone components and release them to attract male moths, which depend on precise sex pheromone chemosensory system to locate females. Two types of genes involved in the sex pheromone biosynthesis and degradation pathways play essential roles in this important moth behavior. To understand the function of genes in the sex pheromone pathway, this study investigated the genome-wide and digital gene expression of sex pheromone biosynthesis and degradation genes in various adult tissues in the diamondback moth (DBM), Plutella xylostella, which is a notorious vegetable pest worldwide. A massive transcriptome data (at least 39.04 Gb) was generated by sequencing 6 adult tissues including male antennae, female antennae, heads, legs, abdomen and female pheromone glands from DBM by using Illumina 4000 next-generation sequencing and mapping to a published DBM genome. Bioinformatics analysis yielded a total of 89,332 unigenes among which 87 transcripts were putatively related to seven gene families in the sex pheromone biosynthesis pathway. Among these, seven [two desaturases (DES), three fatty acyl-CoA reductases (FAR) one acetyltransferase (ACT) and one alcohol dehydrogenase (AD)] were mainly expressed in the pheromone glands with likely function in the three essential sex pheromone biosynthesis steps: desaturation, reduction, and esterification. We also identified 210 odorant-degradation related genes (including sex pheromone-degradation related genes) from seven major enzyme groups. Among these genes, 100 genes are new identified and two aldehyde oxidases (AOXs), one aldehyde dehydrogenase (ALDH), five carboxyl/cholinesterases (CCEs), five UDP-glycosyltransferases (UGTs), eight cytochrome P450 (CYP) and three glutathione S-transferases (GSTs) displayed more robust expression in the antennae, and thus are proposed to participate in the degradation of sex pheromone components and plant volatiles. To date, this is the most comprehensive gene data set of sex pheromone biosynthesis and degradation enzyme related genes in DBM created by genome- and transcriptome-wide identification, characterization and expression profiling. Our findings provide a basis to better understand the function of genes with tissue enriched expression. The results also provide information on the genes involved in sex pheromone biosynthesis and degradation, and may be useful to identify potential gene targets for pest control strategies by disrupting the insect-insect communication using pheromone-based behavioral antagonists.
Isolation of temperature-sensitive mutations in murC of Staphylococcus aureus.
Ishibashi, Mihoko; Kurokawa, Kenji; Nishida, Satoshi; Ueno, Kohji; Matsuo, Miki; Sekimizu, Kazuhisa
2007-09-01
Enzymes in the bacterial peptidoglycan biosynthesis pathway are important targets for novel antibiotics. Of 750 temperature-sensitive (TS) mutants of Gram-positive Staphylococcus aureus, six were complemented by the murC gene, which encodes the UDP-N-acetylmuramic acid:l-alanine ligase. Each mutation resulted in a single amino acid substitution and, in all cases, the TS phenotype was suppressed by high osmotic stress. In mutant strains with the G222E substitution, a decrease in the viable cell number immediately after shift to the restrictive temperature was observed. These results suggest that S. aureus MurC protein is essential for cell growth. The MurC H343Y mutation is located in the putative alanine recognition pocket. Consistent with this, allele-specific suppression was observed of the H343Y mutation by multiple copies of the aapA gene, which encodes an alanine transporter. The results suggest an in vivo role for the H343 residue of S. aureus MurC protein in high-affinity binding to L-alanine.
The composition and organization of Drosophila heterochromatin are heterogeneous and dynamic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swenson, Joel M.; Colmenares, Serafin U.; Strom, Amy R.
Heterochromatin is enriched for specific epigenetic factors including Heterochromatin Protein 1a (HP1a), and is essential for many organismal functions. To elucidate heterochromatin organization and regulation, we purified Drosophila melanogaster HP1a interactors, and performed a genome-wide RNAi screen to identify genes that impact HP1a levels or localization. The majority of the over four hundred putative HP1a interactors and regulators identified were previously unknown. We found that 13 of 16 tested candidates (83%) are required for gene silencing, providing a substantial increase in the number of identified components that impact heterochromatin properties. Surprisingly, image analysis revealed that although some HP1a interactors andmore » regulators are broadly distributed within the heterochromatin domain, most localize to discrete subdomains that display dynamic localization patterns during the cell cycle. We conclude that heterochromatin composition and architecture is more spatially complex and dynamic than previously suggested, and propose that a network of subdomains regulates diverse heterochromatin functions.« less
The composition and organization of Drosophila heterochromatin are heterogeneous and dynamic
Swenson, Joel M.; Colmenares, Serafin U.; Strom, Amy R.; ...
2016-08-11
Heterochromatin is enriched for specific epigenetic factors including Heterochromatin Protein 1a (HP1a), and is essential for many organismal functions. To elucidate heterochromatin organization and regulation, we purified Drosophila melanogaster HP1a interactors, and performed a genome-wide RNAi screen to identify genes that impact HP1a levels or localization. The majority of the over four hundred putative HP1a interactors and regulators identified were previously unknown. We found that 13 of 16 tested candidates (83%) are required for gene silencing, providing a substantial increase in the number of identified components that impact heterochromatin properties. Surprisingly, image analysis revealed that although some HP1a interactors andmore » regulators are broadly distributed within the heterochromatin domain, most localize to discrete subdomains that display dynamic localization patterns during the cell cycle. We conclude that heterochromatin composition and architecture is more spatially complex and dynamic than previously suggested, and propose that a network of subdomains regulates diverse heterochromatin functions.« less
Subramanian, Abhishek; Sarkar, Ram Rup
2015-10-01
Understanding the variations in gene organization and its effect on the phenotype across different Leishmania species, and to study differential clinical manifestations of parasite within the host, we performed large scale analysis of codon usage patterns between Leishmania and other known Trypanosomatid species. We present the causes and consequences of codon usage bias in Leishmania genomes with respect to mutational pressure, translational selection and amino acid composition bias. We establish GC bias at wobble position that governs codon usage bias across Leishmania species, rather than amino acid composition bias. We found that, within Leishmania, homogenous codon context coding for less frequent amino acid pairs and codons avoiding formation of folding structures in mRNA are essentially chosen. We predicted putative differences in global expression between genes belonging to specific pathways across Leishmania. This explains the role of evolution in shaping the otherwise conserved genome to demonstrate species-specific function-level differences for efficient survival. Copyright © 2015 Elsevier Inc. All rights reserved.
Deeg, Christoph M; Chow, Cheryl-Emiliane T
2018-01-01
Giant viruses are ecologically important players in aquatic ecosystems that have challenged concepts of what constitutes a virus. Herein, we present the giant Bodo saltans virus (BsV), the first characterized representative of the most abundant group of giant viruses in ocean metagenomes, and the first isolate of a klosneuvirus, a subgroup of the Mimiviridae proposed from metagenomic data. BsV infects an ecologically important microzooplankton, the kinetoplastid Bodo saltans. Its 1.39 Mb genome encodes 1227 predicted ORFs, including a complex replication machinery. Yet, much of its translational apparatus has been lost, including all tRNAs. Essential genes are invaded by homing endonuclease-encoding self-splicing introns that may defend against competing viruses. Putative anti-host factors show extensive gene duplication via a genomic accordion indicating an ongoing evolutionary arms race and highlighting the rapid evolution and genomic plasticity that has led to genome gigantism and the enigma that is giant viruses. PMID:29582753
Sogi, Kimberly M; Holsclaw, Cynthia M; Fragiadakis, Gabriela K; Nomura, Daniel K; Leary, Julie A; Bertozzi, Carolyn R
2016-11-11
Sulfomenaquinone (SMK) is a recently identified metabolite that is unique to the Mycobacterium tuberculosis (M. tuberculosis) complex and is shown to modulate its virulence. Here, we report the identification of the SMK biosynthetic operon that, in addition to a previously identified sulfotransferase stf3, includes a putative cytochrome P450 gene (cyp128) and a gene of unknown function, rv2269c. We demonstrate that cyp128 and stf3 are sufficient for the biosynthesis of SMK from menaquinone and rv2269c exhibits promoter activity in M. tuberculosis. Loss of Stf3 expression, but not that of Cyp128, is correlated with elevated levels of menaquinone-9, an essential component in the electron-transport chain in M. tuberculosis. Finally, we showed in a mouse model of infection that the loss of cyp128 exhibits a hypervirulent phenotype similar to that in previous studies of the stf3 mutant. These findings provide a platform for defining the molecular basis of SMK's role in M. tuberculosis pathogenesis.
Kao, L R; Megraw, T L; Chae, C B
1993-06-15
The yeast mitochondrial histone protein HM is required for maintenance of the mitochondrial genome, and disruption of the gene encoding HM (HIM1/ABF2) results in formation of a respiration-deficient petite mutant phenotype. HM contains two homologous regions, which share sequence similarity with the eukaryotic nuclear nonhistone protein, HMG-1. Experiments with various deletion mutants of HM show that a single HMG domain of HM is functional and can restore respiration competency to cells that lack HM protein (him1 mutant cells). The gene encoding the putative yeast nuclear HMG-1 homolog, the NHP6A protein, can functionally complement the him1 mutation. These results suggest that the HMG domain is the basic unit for the function of HM in mitochondria and that the function of HMG-1 proteins in the nucleus and HM in the mitochondrion may be equivalent.
Lee, Younghee; Han, Seonggyun; Kim, Dongwook; Kim, Dokyoon; Horgousluoglu, Emrin; Risacher, Shannon L; Saykin, Andrew J; Nho, Kwangsik
2018-01-01
Genetic variation in cis-regulatory elements related to splicing machinery and splicing regulatory elements (SREs) results in exon skipping and undesired protein products. We developed a splicing decision model to identify actionable loci among common SNPs for gene regulation. The splicing decision model identified SNPs affecting exon skipping by analyzing sequence-driven alternative splicing (AS) models and by scanning the genome for the regions with putative SRE motifs. We used non-Hispanic Caucasians with neuroimaging, and fluid biomarkers for Alzheimer's disease (AD) and identified 17,088 common exonic SNPs affecting exon skipping. GWAS identified one SNP (rs1140317) in HLA-DQB1 as significantly associated with entorhinal cortical thickness, AD neuroimaging biomarker, after controlling for multiple testing. Further analysis revealed that rs1140317 was significantly associated with brain amyloid-f deposition (PET and CSF). HLA-DQB1 is an essential immune gene and may regulate AS, thereby contributing to AD pathology. SRE may hold potential as novel therapeutic targets for AD.
Tsuzuki, Syusaku; Handa, Yoshihiro; Takeda, Naoya; Kawaguchi, Masayoshi
2016-04-01
Arbuscular mycorrhizal (AM) symbiosis is the most widespread association between plants and fungi. To provide novel insights into the molecular mechanisms of AM symbiosis, we screened and investigated genes of the AM fungus Rhizophagus irregularis that contribute to the infection of host plants. R. irregularis genes involved in the infection were explored by RNA-sequencing (RNA-seq) analysis. One of the identified genes was then characterized by a reverse genetic approach using host-induced gene silencing (HIGS), which causes RNA interference in the fungus via the host plant. The RNA-seq analysis revealed that 19 genes are up-regulated by both treatment with strigolactone (SL) (a plant symbiotic signal) and symbiosis. Eleven of the 19 genes were predicted to encode secreted proteins and, of these, SL-induced putative secreted protein 1 (SIS1) showed the largest induction under both conditions. In hairy roots of Medicago truncatula, SIS1 expression is knocked down by HIGS, resulting in significant suppression of colonization and formation of stunted arbuscules. These results suggest that SIS1 is a putative secreted protein that is induced in a wide spatiotemporal range including both the presymbiotic and symbiotic stages and that SIS1 positively regulates colonization of host plants by R. irregularis.
Cortés-Romero, Celso; Martínez-Hernández, Aída; Mellado-Mojica, Erika; López, Mercedes G; Simpson, June
2012-01-01
Fructans are the main storage polysaccharides found in Agave species. The synthesis of these complex carbohydrates relies on the activities of specific fructosyltransferase enzymes closely related to the hydrolytic invertases. Analysis of Agave tequilana transcriptome data led to the identification of ESTs encoding putative fructosyltransferases and invertases. Based on sequence alignments and structure/function relationships, two different genes were predicted to encode 1-SST and 6G-FFT type fructosyltransferases, in addition, 4 genes encoding putative cell wall invertases and 4 genes encoding putative vacuolar invertases were also identified. Probable functions for each gene, were assigned based on conserved amino acid sequences and confirmed for 2 fructosyltransferases and one invertase by analyzing the enzymatic activity of recombinant Agave protein s expressed and purified from Pichia pastoris. The genome organization of the fructosyltransferase/invertase genes, for which the corresponding cDNA contained the complete open reading frame, was found to be well conserved since all genes were shown to carry a 9 bp mini-exon and all showed a similar structure of 8 exons/7 introns with the exception of a cell wall invertase gene which has 7 exons and 6 introns. Fructosyltransferase genes were strongly expressed in the storage organs of the plants, especially in vegetative stages of development and to lower levels in photosynthetic tissues, in contrast to the invertase genes where higher levels of expression were observed in leaf tissues and in mature plants.
Cortés-Romero, Celso; Martínez-Hernández, Aída; Mellado-Mojica, Erika; López, Mercedes G.; Simpson, June
2012-01-01
Fructans are the main storage polysaccharides found in Agave species. The synthesis of these complex carbohydrates relies on the activities of specific fructosyltransferase enzymes closely related to the hydrolytic invertases. Analysis of Agave tequilana transcriptome data led to the identification of ESTs encoding putative fructosyltransferases and invertases. Based on sequence alignments and structure/function relationships, two different genes were predicted to encode 1-SST and 6G-FFT type fructosyltransferases, in addition, 4 genes encoding putative cell wall invertases and 4 genes encoding putative vacuolar invertases were also identified. Probable functions for each gene, were assigned based on conserved amino acid sequences and confirmed for 2 fructosyltransferases and one invertase by analyzing the enzymatic activity of recombinant Agave protein s expressed and purified from Pichia pastoris. The genome organization of the fructosyltransferase/invertase genes, for which the corresponding cDNA contained the complete open reading frame, was found to be well conserved since all genes were shown to carry a 9 bp mini-exon and all showed a similar structure of 8 exons/7 introns with the exception of a cell wall invertase gene which has 7 exons and 6 introns. Fructosyltransferase genes were strongly expressed in the storage organs of the plants, especially in vegetative stages of development and to lower levels in photosynthetic tissues, in contrast to the invertase genes where higher levels of expression were observed in leaf tissues and in mature plants. PMID:22558253
Satheesh, Viswanathan; Jagannadham, P Tej Kumar; Chidambaranathan, Parameswaran; Jain, P K; Srinivasan, R
2014-12-01
The NAC (NAM, ATAF and CUC) proteins are plant-specific transcription factors implicated in development and stress responses. In the present study 88 pigeonpea NAC genes were identified from the recently published draft genome of pigeonpea by using homology based and de novo prediction programmes. These sequences were further subjected to phylogenetic, motif and promoter analyses. In motif analysis, highly conserved motifs were identified in the NAC domain and also in the C-terminal region of the NAC proteins. A phylogenetic reconstruction using pigeonpea, Arabidopsis and soybean NAC genes revealed 33 putative stress-responsive pigeonpea NAC genes. Several stress-responsive cis-elements were identified through in silico analysis of the promoters of these putative stress-responsive genes. This analysis is the first report of NAC gene family in pigeonpea and will be useful for the identification and selection of candidate genes associated with stress tolerance.
Kudo, Fumitaka; Matsuura, Yasunori; Hayashi, Takaaki; Fukushima, Masayuki; Eguchi, Tadashi
2016-07-01
Sordarin is a glycoside antibiotic with a unique tetracyclic diterpene aglycone structure called sordaricin. To understand its intriguing biosynthetic pathway that may include a Diels-Alder-type [4+2]cycloaddition, genome mining of the gene cluster from the draft genome sequence of the producer strain, Sordaria araneosa Cain ATCC 36386, was carried out. A contiguous 67 kb gene cluster consisting of 20 open reading frames encoding a putative diterpene cyclase, a glycosyltransferase, a type I polyketide synthase, and six cytochrome P450 monooxygenases were identified. In vitro enzymatic analysis of the putative diterpene cyclase SdnA showed that it catalyzes the transformation of geranylgeranyl diphosphate to cycloaraneosene, a known biosynthetic intermediate of sordarin. Furthermore, a putative glycosyltransferase SdnJ was found to catalyze the glycosylation of sordaricin in the presence of GDP-6-deoxy-d-altrose to give 4'-O-demethylsordarin. These results suggest that the identified sdn gene cluster is responsible for the biosynthesis of sordarin. Based on the isolated potential biosynthetic intermediates and bioinformatics analysis, a plausible biosynthetic pathway for sordarin is proposed.
Adamczuk, Marcin; Dziewit, Lukasz
2017-01-01
The draft genome of multidrug-resistant Aeromonas sp. ARM81 isolated from a wastewater treatment plant in Warsaw (Poland) was obtained. Sequence analysis revealed multiple genes conferring resistance to aminoglycosides, β-lactams or tetracycline. Three different β-lactamase genes were identified, including an extended-spectrum β-lactamase gene bla PER-1 . The antibiotic susceptibility was experimentally tested. Genome sequencing also allowed us to investigate the plasmidome and transposable mobilome of ARM81. Four plasmids, of which two carry phenotypic modules (i.e., genes encoding a zinc transporter ZitB and a putative glucosyltransferase), and 28 putative transposase genes were identified. The mobility of three insertion sequences (isoforms of previously identified elements ISAs12, ISKpn9 and ISAs26) was confirmed using trap plasmids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu Dehua; Fan, Wufang; Liu, Guohong
2006-04-01
HeLaHF is a non-transformed revertant of HeLa cells, likely resulting from the activation of a putative tumor suppressor(s). p53 protein was stabilized in this revertant and reactivated for certain transactivation functions. Although p53 stabilization has not conclusively been linked to the reversion, it is clear that the genes in p53 pathway are involved. The present study confirms the direct role of p53 in HeLaHF reversion by demonstrating that RNAi-mediated p53 silencing partially restores anchorage-independent growth potential of the revertant through the suppression of anoikis. In addition, we identified a novel gene, named PHTS, with putative tumor suppressor properties, and showedmore » that this gene is also involved in HeLaHF reversion independently of the p53 pathway. Expression profiling revealed that PHTS is one of the genes that is up-regulated in HeLaHF but not in HeLa. It encodes a putative protein with CD59-like domains. RNAi-mediated PHTS silencing resulted in the partial restoration of transformation (anchorage-independent growth) in HeLaHF cells, similar to that of p53 gene silencing, implying its tumor suppressor effect. However, the observed increased transformation potential by PHTS silencing appears to be due to an increased anchorage-independent proliferation rate rather than suppression of anoikis, unlike the effect of p53 silencing. p53 silencing did not affect PHTS gene expression, and vice versa, suggesting PHTS may function in a new and p53-independent tumor suppressor pathway. Furthermore, over-expression of PHTS in different cancer cell lines, in addition to HeLa, reduces cell growth likely via induced apoptosis, confirming the broad PHTS tumor suppressor properties.« less
Whitney, LeAnn P.; Lins, Jeremy J.; Hughes, Margaret P.; Wells, Mark L.; Chappell, P. Dreux; Jenkins, Bethany D.
2011-01-01
Iron (Fe) availability restricts diatom growth and primary production in large areas of the oceans. It is a challenge to assess the bulk Fe nutritional health of natural diatom populations, since species can differ in their physiological and molecular responses to Fe limitation. We assayed expression of selected genes in diatoms from the Thalassiosira genus to assess their potential utility as species-specific molecular markers to indicate Fe status in natural diatom assemblages. In this study, we compared the expression of the photosynthetic genes encoding ferredoxin (a Fe-requiring protein) and flavodoxin (a Fe-free protein) in culture experiments with Fe replete and Fe stressed Thalassiosira pseudonana (CCMP 1335) isolated from coastal waters and Thalassiosira weissflogii (CCMP 1010) isolated from the open ocean. In T. pseudonana, expression of flavodoxin and ferredoxin genes were not sensitive to Fe status but were found to display diel periodicities. In T. weissflogii, expression of flavodoxin was highly responsive to iron levels and was only detectable when cultures were Fe limited. Flavodoxin genes have been duplicated in most diatoms with available genome data and we show that T. pseudonana has lost its copy related to the Fe-responsive copy in T. weissflogii. We also examined the expression of genes for a putative high affinity, copper (Cu)-dependent Fe uptake system in T. pseudonana. Our results indicate that genes encoding putative Cu transporters, a multi-Cu oxidase, and a Fe reductase are not linked to Fe status. The expression of a second putative Fe reductase increased in Fe limited cultures, but this gene was also highly expressed in Fe replete cultures, indicating it may not be a useful marker in the field. Our findings highlight that Fe metabolism may differ among diatoms even within a genus and show a need to validate responses in different species as part of the development pipeline for genetic markers of Fe status in field populations. PMID:22275908
Fouhy, Fiona; O’Connell Motherway, Mary; Fitzgerald, Gerald F.; Ross, R. Paul; Stanton, Catherine; van Sinderen, Douwe; Cotter, Paul D.
2013-01-01
Bifidobacteria have received significant attention due to their contribution to human gut health and the use of specific strains as probiotics. It is thus not surprising that there has also been significant interest with respect to their antibiotic resistance profile. Numerous culture-based studies have demonstrated that bifidobacteria are resistant to the majority of aminoglycosides, but are sensitive to β-lactams. However, limited research exists with respect to the genetic basis for the resistance of bifidobacteria to aminoglycosides. Here we performed an in-depth in silico analysis of putative Bifidobacterium-encoded aminoglycoside resistance proteins and β-lactamases and assess the contribution of these proteins to antibiotic resistance. The in silico-based screen detected putative aminoglycoside and β-lactam resistance proteins across the Bifidobacterium genus. Laboratory-based investigations of a number of representative bifidobacteria strains confirmed that despite containing putative β-lactamases, these strains were sensitive to β-lactams. In contrast, all strains were resistant to the aminoglycosides tested. To assess the contribution of genes encoding putative aminoglycoside resistance proteins in Bifidobacterium sp. two genes, namely Bbr_0651 and Bbr_1586, were targeted for insertional inactivation in B. breve UCC2003. As compared to the wild-type, the UCC2003 insertion mutant strains exhibited decreased resistance to gentamycin, kanamycin and streptomycin. This study highlights the associated risks of relying on the in silico assignment of gene function. Although several putative β-lactam resistance proteins are located in bifidobacteria, their presence does not coincide with resistance to these antibiotics. In contrast however, this approach has resulted in the identification of two loci that contribute to the aminoglycoside resistance of B. breve UCC2003 and, potentially, many other bifidobacteria. PMID:24324818
Identifying biologically relevant putative mechanisms in a given phenotype comparison
Hanoudi, Samer; Donato, Michele; Draghici, Sorin
2017-01-01
A major challenge in life science research is understanding the mechanism involved in a given phenotype. The ability to identify the correct mechanisms is needed in order to understand fundamental and very important phenomena such as mechanisms of disease, immune systems responses to various challenges, and mechanisms of drug action. The current data analysis methods focus on the identification of the differentially expressed (DE) genes using their fold change and/or p-values. Major shortcomings of this approach are that: i) it does not consider the interactions between genes; ii) its results are sensitive to the selection of the threshold(s) used, and iii) the set of genes produced by this approach is not always conducive to formulating mechanistic hypotheses. Here we present a method that can construct networks of genes that can be considered putative mechanisms. The putative mechanisms constructed by this approach are not limited to the set of DE genes, but also considers all known and relevant gene-gene interactions. We analyzed three real datasets for which both the causes of the phenotype, as well as the true mechanisms were known. We show that the method identified the correct mechanisms when applied on microarray datasets from mouse. We compared the results of our method with the results of the classical approach, showing that our method produces more meaningful biological insights. PMID:28486531
Hashimoto, Syougo; Okizaki, Kouhei; Kanesaki, Yu; Yoshikawa, Hirofumi; Yamakawa, Takeo
2015-01-01
The nodulation of Bradyrhizobium japonicum Is-34 is restricted by Rj4 genotype soybeans (Glycine max). To identify the genes responsible for this incompatibility, Tn5 mutants of B. japonicum Is-34 that were able to overcome this nodulation restriction were obtained. Analysis of the Tn5 mutants revealed that Tn5 was inserted into a region containing the MA20_12780 gene. In addition, direct disruption of this gene using marker exchange overcame the nodulation restriction by Rj4 genotype soybeans. The MA20_12780 gene has a tts box motif in its upstream region, indicating a possibility that this gene encodes a type III secretion system (T3SS) effector protein. Bioinformatic characterization revealed that the MA20_12780 protein contains the small ubiquitin-like modifier (SUMO) protease domain of the C48 peptidase (ubiquitin-like protease 1 [Ulp1]) family. The results of the present study indicate that a putative T3SS effector encoded by the MA20_12780 gene causes the incompatibility with Rj4 genotype soybeans, and they suggest the possibility that the nodulation restriction of B. japonicum Is-34 may be due to Rj4 genotype soybeans recognizing the putative T3SS effector (MA20_12780 protein) as a virulence factor. PMID:26092458
Tsurumaru, Hirohito; Hashimoto, Syougo; Okizaki, Kouhei; Kanesaki, Yu; Yoshikawa, Hirofumi; Yamakawa, Takeo
2015-09-01
The nodulation of Bradyrhizobium japonicum Is-34 is restricted by Rj4 genotype soybeans (Glycine max). To identify the genes responsible for this incompatibility, Tn5 mutants of B. japonicum Is-34 that were able to overcome this nodulation restriction were obtained. Analysis of the Tn5 mutants revealed that Tn5 was inserted into a region containing the MA20_12780 gene. In addition, direct disruption of this gene using marker exchange overcame the nodulation restriction by Rj4 genotype soybeans. The MA20_12780 gene has a tts box motif in its upstream region, indicating a possibility that this gene encodes a type III secretion system (T3SS) effector protein. Bioinformatic characterization revealed that the MA20_12780 protein contains the small ubiquitin-like modifier (SUMO) protease domain of the C48 peptidase (ubiquitin-like protease 1 [Ulp1]) family. The results of the present study indicate that a putative T3SS effector encoded by the MA20_12780 gene causes the incompatibility with Rj4 genotype soybeans, and they suggest the possibility that the nodulation restriction of B. japonicum Is-34 may be due to Rj4 genotype soybeans recognizing the putative T3SS effector (MA20_12780 protein) as a virulence factor. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Oliveira, Letícia de C.; Silveira, Aline M. M.; Monteiro, Andréa de S.; dos Santos, Vera L.; Nicoli, Jacques R.; Azevedo, Vasco A. de C.; Soares, Siomar de C.; Dias-Souza, Marcus V.; Nardi, Regina M. D.
2017-01-01
A bacteriocinogenic Lactobacillus rhamnosus L156.4 strain isolated from the feces of NIH mice was identified by 16S rRNA gene sequencing and MALDI-TOF mass spectrometry. The entire genome was sequenced using Illumina, annotated in the PGAAP, and RAST servers, and deposited. Conserved genes associated with bacteriocin synthesis were predicted using BAGEL3, leading to the identification of an open reading frame (ORF) that shows homology with the L. rhamnosus GG (ATCC 53103) prebacteriocin gene. The encoded protein contains a conserved protein motif associated a structural gene of the Enterocin A superfamily. We found ORFs related to the prebacteriocin, immunity protein, ABC transporter proteins, and regulatory genes with 100% identity to those of L. rhamnosus HN001. In this study, we provide evidence of a putative bacteriocin produced by L. rhamnosus L156.4 that was further confirmed by in vitro assays. The antibacterial activity of the substances produced by this strain was evaluated using the deferred agar-spot and spot-on-the lawn assays, and a wide antimicrobial activity spectrum against human and foodborne pathogens was observed. The physicochemical characterization of the putative bacteriocin indicated that it was sensitive to proteolytic enzymes, heat stable and maintained its antibacterial activity in a pH ranging from 3 to 9. The activity against Lactobacillus fermentum, which was used as an indicator strain, was detected during bacterial logarithmic growth phase, and a positive correlation was confirmed between bacterial growth and production of the putative bacteriocin. After a partial purification from cell-free supernatant by salt precipitation, the putative bacteriocin migrated as a diffuse band of approximately 1.0–3.0 kDa by SDS-PAGE. Additional studies are being conducted to explore its use in the food industry for controlling bacterial growth and for probiotic applications. PMID:28579977
Pacheco, A R; Proença-Módena, J L; Sales, A I L; Fukuhara, Y; da Silveira, W D; Pimenta-Módena, J L; de Oliveira, R B; Brocchi, M
2008-11-01
Infection by Helicobacter pylori is associated with the development of several gastroduodenal diseases, including gastritis, peptic ulcer disease (gastric ulcers and duodenal ulcers), and gastric adenocarcinoma. Although a number of putative virulence factors have been reported for H. pylori, there are conflicting results regarding their association with specific H. pylori-related diseases. In this work, we investigated the presence of virB11 and cagT, located in the left half of the cag pathogenicity island (cagPAI), and the jhp917-jhp918 sequences, components of the dupA gene located in the plasticity zone of H. pylori, in Brazilian isolates of H. pylori. We also examined the association between these genes and H. pylori-related gastritis, peptic ulcer disease, and gastric and duodenal ulcers in an attempt to identify a gene marker for clinical outcomes related to infection by H. pylori. The cagT gene was associated with peptic ulcer disease and gastric ulcers, whereas the virB11 gene was detected in nearly all of the samples. The dupA gene was not associated with duodenal ulcers or any gastroduodenal disease here analyzed. These results suggest that cagT could be a useful prognostic marker for the development of peptic ulcer disease in the state of São Paulo, Brazil. They also indicate that cagT is associated with greater virulence and peptic ulceration, and that this gene is an essential component of the type IV secretion system of H. pylori.
Identification of olfactory receptor genes in the Japanese grenadier anchovy Coilia nasus.
Zhu, Guoli; Wang, Liangjiang; Tang, Wenqiao; Wang, Xiaomei; Wang, Cong
2017-01-01
Olfaction is essential for fish to detect odorant elements in the environment and plays a critical role in navigating, locating food and detecting predators. Olfactory function is produced by the olfactory transduction pathway and is activated by olfactory receptors (ORs) through the binding of odorant elements. Recently, four types of olfactory receptors have been identified in vertebrate olfactory epithelium, including main odorant receptors (MORs), vomeronasal type receptors (VRs), trace-amine associated receptors (TAARs) and formyl peptide receptors (FPRs). It has been hypothesized that migratory fish, which have the ability to perform spawning migration, use olfactory cues to return to natal rivers. Therefore, obtaining OR genes from migratory fish will provide a resource for the study of molecular mechanisms that underlie fish spawning migration behaviors. Previous studies of OR genes have mainly focused on genomic data, however little information has been gained at the transcript level. In this study, we identified the OR genes of an economically important commercial fish Coilia nasus through searching for olfactory epithelium transcriptomes. A total of 142 candidate MOR, 52 V2R/OlfC, 32 TAAR and two FPR putative genes were identified. In addition, through genomic analysis we identified several MOR genes containing introns, which is unusual for vertebrate MOR genes. The transcriptome-scale mining strategy proved to be fruitful in identifying large sets of OR genes from species whose genome information is unavailable. Our findings lay the foundation for further research into the possible molecular mechanisms underlying the spawning migration behavior in C. nasus .
Praz, Coraline R; Menardo, Fabrizio; Robinson, Mark D; Müller, Marion C; Wicker, Thomas; Bourras, Salim; Keller, Beat
2018-01-01
Powdery mildew is an important disease of cereals. It is caused by one species, Blumeria graminis , which is divided into formae speciales each of which is highly specialized to one host. Recently, a new form capable of growing on triticale ( B.g. triticale ) has emerged through hybridization between wheat and rye mildews ( B.g. tritici and B.g. secalis , respectively). In this work, we used RNA sequencing to study the molecular basis of host adaptation in B.g. triticale . We analyzed gene expression in three B.g. tritici isolates, two B.g. secalis isolates and two B.g. triticale isolates and identified a core set of putative effector genes that are highly expressed in all formae speciales . We also found that the genes differentially expressed between isolates of the same form as well as between different formae speciales were enriched in putative effectors. Their coding genes belong to several families including some which contain known members of mildew avirulence ( Avr ) and suppressor ( Svr ) genes. Based on these findings we propose that effectors play an important role in host adaptation that is mechanistically based on Avr-Resistance gene-Svr interactions. We also found that gene expression in the B.g. triticale hybrid is mostly conserved with the parent-of-origin, but some genes inherited from B.g. tritici showed a B.g. secalis -like expression. Finally, we identified 11 unambiguous cases of putative effector genes with hybrid-specific, non-parent of origin gene expression, and we propose that they are possible determinants of host specialization in triticale mildew. These data suggest that altered expression of multiple effector genes, in particular Avr and Svr related factors, might play a role in mildew host adaptation based on hybridization.
PUTATIVE GENE PROMOTER SEQUENCES IN THE CHLORELLA VIRUSES
Fitzgerald, Lisa A.; Boucher, Philip T.; Yanai-Balser, Giane; Suhre, Karsten; Graves, Michael V.; Van Etten, James L.
2008-01-01
Three short (7 to 9 nucleotides) highly conserved nucleotide sequences were identified in the putative promoter regions (150 bp upstream and 50 bp downstream of the ATG translation start site) of three members of the genus Chlorovirus, family Phycodnaviridae. Most of these sequences occurred in similar locations within the defined promoter regions. The sequence and location of the motifs were often conserved among homologous ORFs within the Chlorovirus family. One of these conserved sequences (AATGACA) is predominately associated with genes expressed early in virus replication. PMID:18768195
Slavic, Ksenija; Straschil, Ursula; Reininger, Luc; Doerig, Christian; Morin, Christophe; Tewari, Rita; Krishna, Sanjeev
2010-01-01
A Plasmodium falciparumhexose transporter (PfHT) has previously been shown to be a facilitative glucose and fructose transporter. Its expression in Xenopus laevisoocytes and the use of a glucose analogue inhibitor permitted chemical validation of PfHT as a novel drug target. Following recent re-annotations of the P. falciparum genome, other putative sugar transporters have been identified. To investigate further if PfHT is the key supplier of hexose to P. falciparum and to extend studies to different stages of Plasmodium spp., we functionally analysed the hexose transporters of both the human parasite P. falciparum and the rodent parasite Plasmodium berghei using gene targeting strategies. We show here the essential function of pfht for the erythrocytic parasite growth as it was not possible to knockout pfht unless the gene was complemented by an episomal construct. Also, we show that parasites are rescued from the toxic effect of a glucose analogue inhibitor when pfht is overexpressed in these transfectants. We found that the rodent malaria parasite orthologue, P. berghei hexose transporter (PbHT) gene, was similarly refractory to knockout attempts. However, using a single cross-over transfection strategy, we generated transgenic P. berghei parasites expressing a PbHT–GFP fusion protein suggesting that locus is amenable for gene targeting. Analysis of pbht-gfp transgenic parasites showed that PbHT is constitutively expressed through all the stages in the mosquito host in addition to asexual stages. These results provide genetic support for prioritizing PfHT as a target for novel antimalarials that can inhibit glucose uptake and kill parasites, as well as unveiling the expression of this hexose transporter in mosquito stages of the parasite, where it is also likely to be critical for survival. PMID:20132450
Slavic, Ksenija; Straschil, Ursula; Reininger, Luc; Doerig, Christian; Morin, Christophe; Tewari, Rita; Krishna, Sanjeev
2010-03-01
A Plasmodium falciparum hexose transporter (PfHT) has previously been shown to be a facilitative glucose and fructose transporter. Its expression in Xenopus laevis oocytes and the use of a glucose analogue inhibitor permitted chemical validation of PfHT as a novel drug target. Following recent re-annotations of the P. falciparum genome, other putative sugar transporters have been identified. To investigate further if PfHT is the key supplier of hexose to P. falciparum and to extend studies to different stages of Plasmodium spp., we functionally analysed the hexose transporters of both the human parasite P. falciparum and the rodent parasite Plasmodium berghei using gene targeting strategies. We show here the essential function of pfht for the erythrocytic parasite growth as it was not possible to knockout pfht unless the gene was complemented by an episomal construct. Also, we show that parasites are rescued from the toxic effect of a glucose analogue inhibitor when pfht is overexpressed in these transfectants. We found that the rodent malaria parasite orthologue, P. berghei hexose transporter (PbHT) gene, was similarly refractory to knockout attempts. However, using a single cross-over transfection strategy, we generated transgenic P. berghei parasites expressing a PbHT-GFP fusion protein suggesting that locus is amenable for gene targeting. Analysis of pbht-gfp transgenic parasites showed that PbHT is constitutively expressed through all the stages in the mosquito host in addition to asexual stages. These results provide genetic support for prioritizing PfHT as a target for novel antimalarials that can inhibit glucose uptake and kill parasites, as well as unveiling the expression of this hexose transporter in mosquito stages of the parasite, where it is also likely to be critical for survival.
He, Hongjuan; Xiu, Youcheng; Guo, Jing; Liu, Hui; Liu, Qi; Zeng, Tiebo; Chen, Yan; Zhang, Yan; Wu, Qiong
2013-01-01
Long non-coding RNAs (lncRNAs) as a key group of non-coding RNAs have gained widely attention. Though lncRNAs have been functionally annotated and systematic explored in higher mammals, few are under systematical identification and annotation. Owing to the expression specificity, known lncRNAs expressed in embryonic brain tissues remain still limited. Considering a large number of lncRNAs are only transcribed in brain tissues, studies of lncRNAs in developmental brain are therefore of special interest. Here, publicly available RNA-sequencing (RNA-seq) data in embryonic brain are integrated to identify thousands of embryonic brain lncRNAs by a customized pipeline. A significant proportion of novel transcripts have not been annotated by available genomic resources. The putative embryonic brain lncRNAs are shorter in length, less spliced and show less conservation than known genes. The expression of putative lncRNAs is in one tenth on average of known coding genes, while comparable with known lncRNAs. From chromatin data, putative embryonic brain lncRNAs are associated with active chromatin marks, comparable with known lncRNAs. Embryonic brain expressed lncRNAs are also indicated to have expression though not evident in adult brain. Gene Ontology analysis of putative embryonic brain lncRNAs suggests that they are associated with brain development. The putative lncRNAs are shown to be related to possible cis-regulatory roles in imprinting even themselves are deemed to be imprinted lncRNAs. Re-analysis of one knockdown data suggests that four regulators are associated with lncRNAs. Taken together, the identification and systematic analysis of putative lncRNAs would provide novel insights into uncharacterized mouse non-coding regions and the relationships with mammalian embryonic brain development. PMID:23967161
Patterns of population differentiation of candidate genes for cardiovascular disease.
Kullo, Iftikhar J; Ding, Keyue
2007-07-12
The basis for ethnic differences in cardiovascular disease (CVD) susceptibility is not fully understood. We investigated patterns of population differentiation (FST) of a set of genes in etiologic pathways of CVD among 3 ethnic groups: Yoruba in Nigeria (YRI), Utah residents with European ancestry (CEU), and Han Chinese (CHB) + Japanese (JPT). We identified 37 pathways implicated in CVD based on the PANTHER classification and 416 genes in these pathways were further studied; these genes belonged to 6 biological processes (apoptosis, blood circulation and gas exchange, blood clotting, homeostasis, immune response, and lipoprotein metabolism). Genotype data were obtained from the HapMap database. We calculated FST for 15,559 common SNPs (minor allele frequency > or = 0.10 in at least one population) in genes that co-segregated among the populations, as well as an average-weighted FST for each gene. SNPs were classified as putatively functional (non-synonymous and untranslated regions) or non-functional (intronic and synonymous sites). Mean FST values for common putatively functional variants were significantly higher than FST values for nonfunctional variants. A significant variation in FST was also seen based on biological processes; the processes of 'apoptosis' and 'lipoprotein metabolism' showed an excess of genes with high FST. Thus, putative functional SNPs in genes in etiologic pathways for CVD show greater population differentiation than non-functional SNPs and a significant variance of FST values was noted among pairwise population comparisons for different biological processes. These results suggest a possible basis for varying susceptibility to CVD among ethnic groups.
Campbell, Elsie L; Hagen, Kari D; Chen, Rui; Risser, Douglas D; Ferreira, Daniela P; Meeks, John C
2015-02-15
In cyanobacterial Nostoc species, substratum-dependent gliding motility is confined to specialized nongrowing filaments called hormogonia, which differentiate from vegetative filaments as part of a conditional life cycle and function as dispersal units. Here we confirm that Nostoc punctiforme hormogonia are positively phototactic to white light over a wide range of intensities. N. punctiforme contains two gene clusters (clusters 2 and 2i), each of which encodes modular cyanobacteriochrome-methyl-accepting chemotaxis proteins (MCPs) and other proteins that putatively constitute a basic chemotaxis-like signal transduction complex. Transcriptional analysis established that all genes in clusters 2 and 2i, plus two additional clusters (clusters 1 and 3) with genes encoding MCPs lacking cyanobacteriochrome sensory domains, are upregulated during the differentiation of hormogonia. Mutational analysis determined that only genes in cluster 2i are essential for positive phototaxis in N. punctiforme hormogonia; here these genes are designated ptx (for phototaxis) genes. The cluster is unusual in containing complete or partial duplicates of genes encoding proteins homologous to the well-described chemotaxis elements CheY, CheW, MCP, and CheA. The cyanobacteriochrome-MCP gene (ptxD) lacks transmembrane domains and has 7 potential binding sites for bilins. The transcriptional start site of the ptx genes does not resemble a sigma 70 consensus recognition sequence; moreover, it is upstream of two genes encoding gas vesicle proteins (gvpA and gvpC), which also are expressed only in the hormogonium filaments of N. punctiforme. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Haarmann, Thomas; Machado, Caroline; Lübbe, Yvonne; Correia, Telmo; Schardl, Christopher L; Panaccione, Daniel G; Tudzynski, Paul
2005-06-01
The genomic region of Claviceps purpurea strain P1 containing the ergot alkaloid gene cluster [Tudzynski, P., Hölter, K., Correia, T., Arntz, C., Grammel, N., Keller, U., 1999. Evidence for an ergot alkaloid gene cluster in Claviceps purpurea. Mol. Gen. Genet. 261, 133-141] was explored by chromosome walking, and additional genes probably involved in the ergot alkaloid biosynthesis have been identified. The putative cluster sequence (extending over 68.5kb) contains 4 different nonribosomal peptide synthetase (NRPS) genes and several putative oxidases. Northern analysis showed that most of the genes were co-regulated (repressed by high phosphate), and identified probable flanking genes by lack of co-regulation. Comparison of the cluster sequences of strain P1, an ergotamine producer, with that of strain ECC93, an ergocristine producer, showed high conservation of most of the cluster genes, but significant variation in the NRPS modules, strongly suggesting that evolution of these chemical races of C. purpurea is determined by evolution of NRPS module specificity.
Li, Fu-Gui; Chen, Jie; Jiang, Xia-Yun; Zou, Shu-Ming
2015-01-01
The blunt snout bream (Megalobrama amblycephala) is an important freshwater aquaculture species, but it is sensitive to hypoxia. No transcriptome data related to growth and hypoxia response are available for this species. In this study, we performed de novo transcriptome sequencing for the liver and gills of the fast-growth family and slow-growth family derived from ‘Pujiang No.1’ F10 blunt snout bream that were under hypoxic stress and normoxia, respectively. The fish were divided into the following 4 groups: fast-growth family under hypoxic stress, FH; slow-growth family under hypoxic stress, SH; fast-growth family under normoxia, FN; and slow-growth family under normoxia, SN. A total of 185 million high-quality reads were obtained from the normalized cDNA of the pooled samples, which were assembled into 465,582 contigs and 237,172 transcripts. A total of 31,338 transcripts from the same locus (unigenes) were annotated and assigned to 104 functional groups, and 23,103 unigenes were classified into seven main categories, including 45 secondary KEGG pathways. A total of 22,255 (71%) known putative unigenes were found to be shared across the genomes of five model fish species and mammals, and a substantial number (9.4%) of potentially novel genes were identified. When 6,639 unigenes were used in the analysis of differential expression (DE) genes, the number of putative DE genes related to growth pathways in FH, SH, SN and FN was 159, 118, 92 and 65 in both the liver and gills, respectively, and the number of DE genes related to hypoxic response was 57, 33, 23 and 21 in FH, FN, SH and SN, respectively. Our results suggest that growth performance of the fast-growth family should be due to complex mutual gene regulatory mechanisms of these putative DE genes between growth and hypoxia. PMID:26554582
Biodegradation of the organic disulfide 4,4'-dithiodibutyric acid by Rhodococcus spp.
Khairy, Heba; Wübbeler, Jan Hendrik; Steinbüchel, Alexander
2015-12-01
Four Rhodococcus spp. exhibited the ability to use 4,4'-dithiodibutyric acid (DTDB) as a sole carbon source for growth. The most important step for the production of a novel polythioester (PTE) using DTDB as a precursor substrate is the initial cleavage of DTDB. Thus, identification of the enzyme responsible for this step was mandatory. Because Rhodococcus erythropolis strain MI2 serves as a model organism for elucidation of the biodegradation of DTDB, it was used to identify the genes encoding the enzymes involved in DTDB utilization. To identify these genes, transposon mutagenesis of R. erythropolis MI2 was carried out using transposon pTNR-TA. Among 3,261 mutants screened, 8 showed no growth with DTDB as the sole carbon source. In five mutants, the insertion locus was mapped either within a gene coding for a polysaccharide deacetyltransferase, a putative ATPase, or an acetyl coenzyme A transferase, 1 bp upstream of a gene coding for a putative methylase, or 176 bp downstream of a gene coding for a putative kinase. In another mutant, the insertion was localized between genes encoding a putative transcriptional regulator of the TetR family (noxR) and an NADH:flavin oxidoreductase (nox). Moreover, in two other mutants, the insertion loci were mapped within a gene encoding a hypothetical protein in the vicinity of noxR and nox. The interruption mutant generated, R. erythropolis MI2 noxΩtsr, was unable to grow with DTDB as the sole carbon source. Subsequently, nox was overexpressed and purified, and its activity with DTDB was measured. The specific enzyme activity of Nox amounted to 1.2 ± 0.15 U/mg. Therefore, we propose that Nox is responsible for the initial cleavage of DTDB into 2 molecules of 4-mercaptobutyric acid (4MB). Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Hwang, In Sun; Oh, Eom-Ji; Kim, Donghyuk; Oh, Chang-Sik
2018-02-01
Clavibacter michiganensis ssp. capsici is a Gram-positive plant-pathogenic bacterium causing bacterial canker disease in pepper. Virulence genes and mechanisms of C. michiganensis ssp. capsici in pepper have not yet been studied. To identify virulence genes of C. michiganensis ssp. capsici, comparative genome analyses with C. michiganensis ssp. capsici and its related C. michiganensis subspecies, and functional analysis of its putative virulence genes during infection were performed. The C. michiganensis ssp. capsici type strain PF008 carries one chromosome (3.056 Mb) and two plasmids (39 kb pCM1 Cmc and 145 kb pCM2 Cmc ). The genome analyses showed that this bacterium lacks a chromosomal pathogenicity island and celA gene that are important for disease development by C. michiganensis ssp. michiganensis in tomato, but carries most putative virulence genes in both plasmids. Virulence of pCM1 Cmc -cured C. michiganensis ssp. capsici was greatly reduced compared with the wild-type strain in pepper. The complementation analysis with pCM1 Cmc -located putative virulence genes showed that at least five genes, chpE, chpG, ppaA1, ppaB1 and pelA1, encoding serine proteases or pectate lyase contribute to disease development in pepper. In conclusion, C. michiganensis ssp. capsici has a unique genome structure, and its multiple plasmid-borne genes play critical roles in virulence in pepper, either separately or together. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gault, J.; Zonana, J.; Zeltinger, J.
A conserved mouse genomic clone was used to identify a homologous human genomic clone (the DXS732E locus), which was subsequently employed to isolate cDNAs from a human fetal brain library. Nine unique overlapping cDNAs were isolated, and sequences analysis of 3.9 kb identified a putative 1 kb ORF. GRAIL analysis of the sequence supported the hypothesis that the putative ORF was coding sequence, and Prosite analysis of the putative ORF identified potential glycosylation and phosphorylation sites. The 5{prime} end of the gene maps within a CpG island, and comparison of cDNA sequences indicate the gene is alternatively spliced at itsmore » 3{prime} end. Northern analysis and RT-PCR indicate that two different sized messages appear to be expressed with the gene expressed in human fetal kidney, intestine, brain, and muscle. The gene is expressed in 77 day human skin, a time when hair follicle formation occurs. Anhidrotic ectodermal dysplasia (EDA) results in the abnormal morphogenesis of hair, teeth and eccrine sweat glands. A positional cloning strategy towards cloning the EDA gene had been used, and deletion and X-autosome translocation patients have been useful in further delimiting the EDA region. The present gene at the DXS732E locus is partially deleted in one EDA patient who does not have other apparent abnormalities. No rearrangements of the gene have been detected in two female X-autosome translocation EDA patients, nor in four additional male patients with submicroscopic molecular deletions.« less
The RPG gene of Medicago truncatula controls Rhizobium-directed polar growth during infection
Arrighi, Jean-François; Godfroy, Olivier; de Billy, Françoise; Saurat, Olivier; Jauneau, Alain; Gough, Clare
2008-01-01
Rhizobia can infect roots of host legume plants and induce new organs called nodules, in which they fix atmospheric nitrogen. Infection generally starts with root hair curling, then proceeds inside newly formed, intracellular tubular structures called infection threads. A successful symbiotic interaction relies on infection threads advancing rapidly at their tips by polar growth through successive cell layers of the root toward developing nodule primordia. To identify a plant component that controls this tip growth process, we characterized a symbiotic mutant of Medicago truncatula, called rpg for rhizobium-directed polar growth. In this mutant, nitrogen-fixing nodules were rarely formed due to abnormally thick and slowly progressing infection threads. Root hair curling was also abnormal, indicating that the RPG gene fulfils an essential function in the process whereby rhizobia manage to dominate the process of induced tip growth for root hair infection. Map-based cloning of RPG revealed a member of a previously unknown plant-specific gene family encoding putative long coiled-coil proteins we have called RRPs (RPG-related proteins) and characterized by an “RRP domain” specific to this family. RPG expression was strongly associated with rhizobial infection, and the RPG protein showed a nuclear localization, indicating that this symbiotic gene constitutes an important component of symbiotic signaling. PMID:18621693
The RPG gene of Medicago truncatula controls Rhizobium-directed polar growth during infection.
Arrighi, Jean-François; Godfroy, Olivier; de Billy, Françoise; Saurat, Olivier; Jauneau, Alain; Gough, Clare
2008-07-15
Rhizobia can infect roots of host legume plants and induce new organs called nodules, in which they fix atmospheric nitrogen. Infection generally starts with root hair curling, then proceeds inside newly formed, intracellular tubular structures called infection threads. A successful symbiotic interaction relies on infection threads advancing rapidly at their tips by polar growth through successive cell layers of the root toward developing nodule primordia. To identify a plant component that controls this tip growth process, we characterized a symbiotic mutant of Medicago truncatula, called rpg for rhizobium-directed polar growth. In this mutant, nitrogen-fixing nodules were rarely formed due to abnormally thick and slowly progressing infection threads. Root hair curling was also abnormal, indicating that the RPG gene fulfils an essential function in the process whereby rhizobia manage to dominate the process of induced tip growth for root hair infection. Map-based cloning of RPG revealed a member of a previously unknown plant-specific gene family encoding putative long coiled-coil proteins we have called RRPs (RPG-related proteins) and characterized by an "RRP domain" specific to this family. RPG expression was strongly associated with rhizobial infection, and the RPG protein showed a nuclear localization, indicating that this symbiotic gene constitutes an important component of symbiotic signaling.
Trombik, Tomasz; Jasinski, Michal; Crouzet, Jérome; Boutry, Marc
2008-01-01
ATP-binding cassette transporters of the pleiotropic drug resistance (PDR) subfamily are composed of five clusters. We have cloned a gene, NpPDR2, belonging to the still uncharacterized cluster IV from Nicotiana plumbaginifolia. NpPDR2 transcripts were found in the roots and mature flowers. In the latter, NpPDR2 expression was restricted to the style and only after pollination. A 1.5-kb genomic sequence containing the putative NpPDR2 transcription promoter was fused to the beta-glucuronidase reporter gene. The GUS expression pattern confirmed the RT-PCR results that NpPDR2 was expressed in roots and the flower style and showed that it was localized around the conductive tissues. Unlike other PDR genes, NpPDR2 expression was not induced in leaf tissues by none of the hormones typically involved in biotic and abiotic stress response. Moreover, unlike NpPDR1 known to be involved in biotic stress response, NpPDR2 expression was not induced in the style upon Botrytis cinerea infection. In N. plumbaginifolia plants in which NpPDR2 expression was prevented by RNA interference, no unusual phenotype was observed, including at the flowering stage, which suggests that NpPDR2 is not essential in the reproductive process under the tested conditions.
Fang, Wei; Si, Yaqing; Douglass, Stephen; Casero, David; Merchant, Sabeeha S.; Pellegrini, Matteo; Ladunga, Istvan; Liu, Peng; Spalding, Martin H.
2012-01-01
We used RNA sequencing to query the Chlamydomonas reinhardtii transcriptome for regulation by CO2 and by the transcription regulator CIA5 (CCM1). Both CO2 and CIA5 are known to play roles in acclimation to low CO2 and in induction of an essential CO2-concentrating mechanism (CCM), but less is known about their interaction and impact on the whole transcriptome. Our comparison of the transcriptome of a wild type versus a cia5 mutant strain under three different CO2 conditions, high CO2 (5%), low CO2 (0.03 to 0.05%), and very low CO2 (<0.02%), provided an entry into global changes in the gene expression patterns occurring in response to the interaction between CO2 and CIA5. We observed a massive impact of CIA5 and CO2 on the transcriptome, affecting almost 25% of all Chlamydomonas genes, and we discovered an array of gene clusters with distinctive expression patterns that provide insight into the regulatory interaction between CIA5 and CO2. Several individual clusters respond primarily to either CIA5 or CO2, providing access to genes regulated by one factor but decoupled from the other. Three distinct clusters clearly associated with CCM-related genes may represent a rich source of candidates for new CCM components, including a small cluster of genes encoding putative inorganic carbon transporters. PMID:22634760
Nies, D H
1992-01-01
The czcR gene, one of the two control genes responsible for induction of resistance to Co2+, Zn2+, and Cd2+ (czc system) in the Alcaligenes eutrophus plasmid pMOL30, was cloned and characterized. The 1,376-bp sequence upstream of the czcCBAD structural genes encodes a 41.4-kDa protein, the czcR gene product, transcribed in the opposite direction of that of the czcCBAD genes. The putative CzcR polypeptide (355 amino acid residues) contains 11 cysteine and 14 histidine residues which might form metal cation-binding sites. A czcC::lacZ reporter gene translational fusion was constructed, inserted into plasmid pMOL30 in A. eutrophus, and expressed under the control of CzcR. Zn2+, Co2+, and Cd2+, as well as Ni2+, Cu2+, Hg2+, and Mn2+ and even Al3+, served as inducers of beta-galactosidase activity. Besides the CzcR protein, the membrane-bound CzcD protein was essential for induction of czc. The CzcR and CzcD proteins display no sequence similarity to two-component regulatory systems of a sensor and a response activator type; however, CzcD has 34% identity with the ZRC-1 protein, which mediates zinc resistance in Saccharomyces cerevisiae (A. Kamizomo, M. Nishizawa, Y. Teranishi, K. Murata, and A. Kimura, Mol. Gen. Genet. 219:161-167, 1989). Images PMID:1459958
Argimón, Silvia; Caufield, Page W.
2011-01-01
Streptococcus mutans, a member of the human oral flora, is a widely recognized etiological agent of dental caries. The cariogenic potential of S. mutans is related to its ability to metabolize a wide variety of sugars, form a robust biofilm, produce copious amounts of lactic acid, and thrive in the acid environment that it generates. The remarkable genetic variability present within the species is reflected at the phenotypic level, notably in the differences in the cariogenic potential between strains. However, the genetic basis of these differences is yet to be elucidated. In this study, we surveyed by PCR and DNA hybridization the distribution of putative virulence genes, genomic islands, and insertion sequences across a collection of 33 strains isolated from either children with severe early childhood caries (S-ECC) or those who were caries free (CF). We found this genetically diverse group of isolates to be remarkably homogeneous with regard to the distribution of the putative virulence genes and genetic elements analyzed. Our findings point to the role of other factors in the pathogenesis of S-ECC, such as uncharacterized virulence genes, differences in gene expression and/or enzymatic activity, cooperation between S. mutans strains or with other members of the oral biota, and host factors. PMID:21209168
Vasina, Daria V.; Moiseenko, Konstantin V.; Fedorova, Tatiana V.; Tyazhelova, Tatiana V.
2017-01-01
Ligninolytic heme peroxidases comprise an extensive family of enzymes, which production is characteristic for white-rot Basidiomycota. The majority of fungal heme peroxidases are encoded by multigene families that differentially express closely related proteins. Currently, there were very few attempts to characterize the complete multigene family of heme peroxidases in a single fungus. Here we are focusing on identification and characterization of peroxidase genes, which are transcribed and secreted by basidiomycete Trametes hirsuta 072, an efficient lignin degrader. The T. hirsuta genome contains 18 ligninolytic peroxidase genes encoding 9 putative lignin peroxidases (LiP), 7 putative short manganese peroxidases (MnP) and 2 putative versatile peroxidases (VP). Using ddPCR method we have quantified the absolute expression of the 18 peroxidase genes under different culture conditions and on different growth stages of basidiomycete. It was shown that only two genes (one MnP and one VP) were prevalently expressed as well as secreted into cultural broth under all conditions investigated. However their transcriptome and protein profiles differed in time depending on the effector used. The expression of other peroxidase genes revealed a significant variability, so one can propose the specific roles of these enzymes in fungal development and lifestyle. PMID:28301519
Sequence evaluation of four specific cDNA libraries for developmental genomics of sunflower.
Tamborindeguy, C; Ben, C; Liboz, T; Gentzbittel, L
2004-04-01
Four different cDNA libraries were constructed from sunflower protoplasts growing under embryogenic and non-embryogenic conditions: one standard library from each condition and two subtractive libraries in opposite sense. A total of 22,876 cDNA clones were obtained and 4800 ESTs were sequenced, giving rise to 2479 high quality ESTs representing an unigene set of 1502 sequences. This set was compared with ESTs represented in public databases using the programs BLASTN and BLASTX, and its members were classified according to putative function using the catalog in the Kyoto Encyclopedia of Genes and Genomes (KEGG). Some 33% of sequences failed to align with existing plant ESTs and therefore represent putative novel genes. The libraries show a low level of redundancy and, on average, 50% of the present ESTs have not been previously reported for sunflower. Several potentially interesting genes were identified, based on their homology with genes involved in animal zygotic division or plant embryogenesis. We also identified two ESTs that show significantly different levels of expression under embryogenic and non-embryogenic conditions. The libraries described here represent an original and valuable resource for the discovery of yet unknown genes putatively involved in dicot embryogenesis and improving our knowledge of the mechanisms involved in polarity acquisition by plant embryos.
Frasson, Amanda Piccoli; Dos Santos, Odelta; Meirelles, Lúcia Collares; Macedo, Alexandre José; Tasca, Tiana
2016-01-01
Trichomonas vaginalis is a protozoan that parasitizes the human urogenital tract causing trichomoniasis, the most common non-viral sexually transmitted disease. The parasite has unique genomic characteristics such as a large genome size and expanded gene families. Ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) is an enzyme responsible for hydrolyzing nucleoside tri- and diphosphates and has already been biochemically characterized in T. vaginalis. Considering the important role of this enzyme in the production of extracellular adenosine for parasite uptake, we evaluated the gene expression of five putative NTPDases in T. vaginalis. We showed that all five putative TvNTPDase genes (TvNTPDase1-5) were expressed by both fresh clinical and long-term grown isolates. The amino acid alignment predicted the presence of the five crucial apyrase conserved regions, transmembrane domains, signal peptides, phosphorylation and catalytic sites. Moreover, a phylogenetic analysis showed that TvNTPDase sequences make up a clade with NTPDases intracellularly located. Biochemical NTPDase activity (ATP and ADP hydrolysis) is responsive to the serum-restrictive conditions and the gene expression of TvNTPDases was mostly increased, mainly TvNTPDase2 and TvNTPDase4, although there was not a clear pattern of expression among them. In summary, the present report demonstrates the gene expression patterns of predicted NTPDases in T. vaginalis. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Govindaraj, Lekha; Gupta, Tania; Esvaran, Vijaya Gowri; Awasthi, Arvind Kumar; Ponnuvel, Kangayam M
2016-04-01
Sugar transporters play an essential role in controlling carbohydrate transport and are responsible for mediating the movement of sugars into cells. These genes exist as large multigene families within the insect genome. In insects, sugar transporters not only have a role in sugar transport, but may also act as receptors for virus entry. Genome-wide annotation of silkworm Bombyx mori (B. mori) revealed 100 putative sugar transporter (BmST) genes exists as a large multigene family and were classified into 11 sub families, through phylogenetic analysis. Chromosomes 27, 26 and 20 were found to possess the highest number of BmST paralogous genes, harboring 22, 7 and 6 genes, respectively. These genes occurred in clusters exhibiting the phenomenon of tandem gene duplication. The ovary, silk gland, hemocytes, midgut and malphigian tubules were the different tissues/cells enriched with BmST gene expression. The BmST gene BGIBMGA001498 had maximum EST transcripts of 134 and expressed exclusively in the malphigian tubule. The expression of EST transcripts of the BmST clustered genes on chromosome 27 was distributed in various tissues like testis, ovary, silk gland, malphigian tubule, maxillary galea, prothoracic gland, epidermis, fat body and midgut. Three sugar transporter genes (BmST) were constitutively expressed in the susceptible race and were down regulated upon BmNPV infection at 12h post infection (hpi). The expression pattern of these three genes was validated through real-time PCR in the midgut tissues at different time intervals from 0 to 30hpi. In the susceptible B. mori race, expression of sugar transporter genes was constitutively expressed making the host succumb to viral infection. Copyright © 2015 Elsevier B.V. All rights reserved.
Comparing the Dictyostelium and Entamoeba Genomes Reveals an Ancient Split in the Conosa Lineage
Song, Jie; Xu, Qikai; Olsen, Rolf; Loomis, William F; Shaulsky, Gad; Kuspa, Adam; Sucgang, Richard
2005-01-01
The Amoebozoa are a sister clade to the fungi and the animals, but are poorly sampled for completely sequenced genomes. The social amoeba Dictyostelium discoideum and amitochondriate pathogen Entamoeba histolytica are the first Amoebozoa with genomes completely sequenced. Both organisms are classified under the Conosa subphylum. To identify Amoebozoa-specific genomic elements, we compared these two genomes to each other and to other eukaryotic genomes. An expanded phylogenetic tree built from the complete predicted proteomes of 23 eukaryotes places the two amoebae in the same lineage, although the divergence is estimated to be greater than that between animals and fungi, and probably happened shortly after the Amoebozoa split from the opisthokont lineage. Most of the 1,500 orthologous gene families shared between the two amoebae are also shared with plant, animal, and fungal genomes. We found that only 42 gene families are distinct to the amoeba lineage; among these are a large number of proteins that contain repeats of the FNIP domain, and a putative transcription factor essential for proper cell type differentiation in D. discoideum. These Amoebozoa-specific genes may be useful in the design of novel diagnostics and therapies for amoebal pathologies. PMID:16362072
Kondoh, Tatsunari; Manzoor, Rashid; Nao, Naganori; Maruyama, Junki; Furuyama, Wakako; Miyamoto, Hiroko; Shigeno, Asako; Kuroda, Makoto; Matsuno, Keita; Fujikura, Daisuke; Kajihara, Masahiro; Yoshida, Reiko; Igarashi, Manabu
2017-01-01
It has been proposed that some non-retroviral RNA virus genes are integrated into vertebrate genomes. Endogenous filovirus-like elements (EFLs) have been discovered in some mammalian genomes. However, their potential roles in ebolavirus infection are unclear. A filovirus VP35-like element (mlEFL35) is found in the little brown bat (Myotis lucifugus) genome. Putative mlEFL35-derived protein (mlEFL35p) contains nearly full-length amino acid sequences corresponding to ebolavirus VP35. Ebola virus VP35 has been shown to bind double-stranded RNA, leading to inhibition of type I interferon (IFN) production, and is also known as a viral polymerase cofactor that is essential for viral RNA transcription/replication. In this study, we transiently expressed mlEFL35p in human kidney cells and investigated its biological functions. We first found that mlEFL35p was coimmunoprecipitated with itself and ebolavirus VP35s but not with the viral nucleoprotein. Then the biological functions of mlEFL35p were analyzed by comparing it to ebolavirus VP35s. We found that the expression of mlEFL35p significantly inhibited human IFN-β promoter activity as well as VP35s. By contrast, expression of mlEFL35p did not support viral RNA transcription/replication and indeed slightly decrease the reporter gene expression in a minigenome assay. These results suggest that mlEFL35p potentially acts as an IFN antagonist but not a polymerase cofactor. PMID:29040311
Kondoh, Tatsunari; Manzoor, Rashid; Nao, Naganori; Maruyama, Junki; Furuyama, Wakako; Miyamoto, Hiroko; Shigeno, Asako; Kuroda, Makoto; Matsuno, Keita; Fujikura, Daisuke; Kajihara, Masahiro; Yoshida, Reiko; Igarashi, Manabu; Takada, Ayato
2017-01-01
It has been proposed that some non-retroviral RNA virus genes are integrated into vertebrate genomes. Endogenous filovirus-like elements (EFLs) have been discovered in some mammalian genomes. However, their potential roles in ebolavirus infection are unclear. A filovirus VP35-like element (mlEFL35) is found in the little brown bat (Myotis lucifugus) genome. Putative mlEFL35-derived protein (mlEFL35p) contains nearly full-length amino acid sequences corresponding to ebolavirus VP35. Ebola virus VP35 has been shown to bind double-stranded RNA, leading to inhibition of type I interferon (IFN) production, and is also known as a viral polymerase cofactor that is essential for viral RNA transcription/replication. In this study, we transiently expressed mlEFL35p in human kidney cells and investigated its biological functions. We first found that mlEFL35p was coimmunoprecipitated with itself and ebolavirus VP35s but not with the viral nucleoprotein. Then the biological functions of mlEFL35p were analyzed by comparing it to ebolavirus VP35s. We found that the expression of mlEFL35p significantly inhibited human IFN-β promoter activity as well as VP35s. By contrast, expression of mlEFL35p did not support viral RNA transcription/replication and indeed slightly decrease the reporter gene expression in a minigenome assay. These results suggest that mlEFL35p potentially acts as an IFN antagonist but not a polymerase cofactor.
Tanaka, Hirokazu; Watanabe, Masaru; Watanabe, Daisuke; Tanaka, Toshihiro; Machida, Chiyoko; Machida, Yasunori
2002-04-01
The surfaces of higher plants are characterized by epidermis, which usually consists of a single layer of cells. The epidermis is derived from the outer cell layer of the embryo or protoderm, which arises as a result of periclinal cell division. After seed germination, most of the epidermal cells of the aerial parts of plants are derived from the outer cell layer of the shoot apical meristem (the L1 layer). Thus, knowledge of how the protoderm and/or L1 layer is established is fundamental to understanding the morphogenesis of higher plants. Here, we report the isolation of a gene encoding an Arabidopsis homologue (ACR4) of the maize putative receptor kinase CRINKLY4 (CR4), which is involved in epidermal differentiation. The domain organization of the predicted amino acid sequence of ACR4 is essentially identical to that of CR4. ACR4-GFP fusion protein localized to the cell surface when expressed in tobacco cell (BY-2) culture. ACR4 transcripts were detected in all the organs of the Arabidopsis plant. In developing embryos and shoot apices, ACR4 transcripts accumulated in protoderm and epidermis at relatively higher levels than in the inner tissues. Over-expression of antisense ACR4 in Arabidopsis plants resulted in malformation of embryos to varying degrees. These results suggest that ACR4 is, at a minimum, involved in the normal morphogenesis of embryos, most likely through properly differentiating protoderm cells.
Gotoh, Hiroki; Zinna, Robert A; Warren, Ian; DeNieu, Michael; Niimi, Teruyuki; Dworkin, Ian; Emlen, Douglas J; Miura, Toru; Lavine, Laura C
2016-03-22
Genes in the sex determination pathway are important regulators of sexually dimorphic animal traits, including the elaborate and exaggerated male ornaments and weapons of sexual selection. In this study, we identified and functionally analyzed members of the sex determination gene family in the golden metallic stag beetle Cyclommatus metallifer, which exhibits extreme differences in mandible size between males and females. We constructed a C. metallifer transcriptomic database from larval and prepupal developmental stages and tissues of both males and females. Using Roche 454 pyrosequencing, we generated a de novo assembled database from a total of 1,223,516 raw reads, which resulted in 14,565 isotigs (putative transcript isoforms) contained in 10,794 isogroups (putative identified genes). We queried this database for C. metallifer conserved sex determination genes and identified 14 candidate sex determination pathway genes. We then characterized the roles of several of these genes in development of extreme sexual dimorphic traits in this species. We performed molecular expression analyses with RT-PCR and functional analyses using RNAi on three C. metallifer candidate genes--Sex-lethal (CmSxl), transformer-2 (Cmtra2), and intersex (Cmix). No differences in expression pattern were found between the sexes for any of these three genes. In the RNAi gene-knockdown experiments, we found that only the Cmix had any effect on sexually dimorphic morphology, and these mimicked the effects of Cmdsx knockdown in females. Knockdown of CmSxl had no measurable effects on stag beetle phenotype, while knockdown of Cmtra2 resulted in complete lethality at the prepupal period. These results indicate that the roles of CmSxl and Cmtra2 in the sex determination cascade are likely to have diverged in stag beetles when compared to Drosophila. Our results also suggest that Cmix has a conserved role in this pathway. In addition to those three genes, we also performed a more complete functional analysis of the C. metallifer dsx gene (Cmdsx) to identify the isoforms that regulate dimorphism more fully using exon-specific RNAi. We identified a total of 16 alternative splice variants of the Cmdsx gene that code for up to 14 separate exons. Despite the variation in RNA splice products of the Cmdsx gene, only four protein isoforms are predicted. The results of our exon-specific RNAi indicated that the essential CmDsx isoform for postembryonic male differentiation is CmDsxB, whereas postembryonic female specific differentiation is mainly regulated by CmDsxD. Taken together, our results highlight the importance of studying the function of highly conserved sex determination pathways in numerous insect species, especially those with dramatic and exaggerated sexual dimorphism, because conservation in protein structure does not always translate into conservation in downstream function.
Filip'echeva, Yulia; Shelud'ko, Andrei; Prilipov, Alexei; Telesheva, Elizaveta; Mokeev, Dmitry; Burov, Andrei; Petrova, Lilia; Katsy, Elena
2018-03-01
Azospirillum brasilense has the ability of swimming and swarming motility owing to the work of a constitutive polar flagellum and inducible lateral flagella, respectively. The interplay between these flagellar systems is poorly understood. One of the key elements of the flagellar export apparatus is the protein FlhB. Two predicted flhB genes are present in the genome of A. brasilense Sp245 (accession nos. HE577327-HE577333). Experimental evidence obtained here indicates that the chromosomal coding sequence (CDS) AZOBR_150177 (flhB1) of Sp245 is essential for the production of both types of flagella. In an flhB1:: Omegon-Km mutant, Sp245.1063, defects in polar and lateral flagellar assembly and motility were complemented by expressing the wild-type flhB1 gene from plasmid pRK415. It was found that Sp245.1063 lost the capacity for slight but statistically significant decrease in mean cell length in response to transfer from solid to liquid media, and vice versa; in the complemented mutant, this capacity was restored. It was also shown that after the acquisition of the pRK415-harbored downstream CDS AZOBR_150176, cells of Sp245 and Sp245.1063 ceased to elongate on solid media. These initial data suggest that the AZOBR_150176-encoded putative multisensory hybrid sensor histidine kinase-response regulator, in concert with FlhB1, plays a role in morphological response of azospirilla to changes in the hardness of a milieu.
Chen, Ying-Jiun C.; Wang, Huei-Jing
2016-01-01
In eukaryotic cells, ribosomal RNAs (rRNAs) are transcribed, processed, and assembled with ribosomal proteins in the nucleolus. Regulatory mechanisms of rRNA gene (rDNA) transcription and processing remain elusive in plants, especially their connection to nucleolar organization. We performed an in silico screen for essential genes of unknown function in Arabidopsis thaliana and identified Thallo (THAL) encoding a SAS10/C1D family protein. THAL disruption caused enlarged nucleoli in arrested embryos, aberrant processing of precursor rRNAs at the 5’ External Transcribed Spacer, and repression of the major rDNA variant (VAR1). THAL overexpression lines showed de-repression of VAR1 and overall reversed effects on rRNA processing sites. Strikingly, THAL overexpression also induced formation of multiple nucleoli per nucleus phenotypic of mutants of heterochromatin factors. THAL physically associated with histone chaperone Nucleolin 1 (NUC1), histone-binding NUC2, and histone demethylase Jumonji 14 (JMJ14) in bimolecular fluorescence complementation assay, suggesting that it participates in chromatin regulation. Furthermore, investigation of truncated THAL proteins revealed that the SAS10 C-terminal domain is likely important for its function in chromatin configuration. THAL also interacted with putative Small Subunit processome components, including previously unreported Arabidopsis homologue of yeast M Phase Phosphoprotein 10 (MPP10). Our results uncovering the dual role of THAL in transcription and processing events critical for proper rRNA biogenesis and nucleolar organization during reproduction are the first to define the function of SAS10/C1D family members in plants. PMID:27792779
Millikan, Deborah S.; Ruby, Edward G.
2003-01-01
Flagellum-mediated motility of Vibrio fischeri is an essential factor in the bacterium's ability to colonize its host, the Hawaiian squid Euprymna scolopes. To begin characterizing the nature of the flagellar regulon, we have cloned a gene, designated flrA, from V. fischeri that encodes a putative σ54-dependent transcriptional activator. Genetic arrangement of the flrA locus in V. fischeri is similar to motility master-regulator operons of Vibrio cholerae and Vibrio parahaemolyticus. In addition, examination of regulatory regions of a number of flagellar operons in V. fischeri revealed apparent σ54 recognition motifs, suggesting that the flagellar regulatory hierarchy is controlled by a similar mechanism to that described in V. cholerae. However, in contrast to its closest known relatives, flrA mutant strains of V. fischeri ES114 were completely abolished in swimming capability. Although flrA provided in trans restored motility to the flrA mutant, the complemented strain was unable to reach wild-type levels of symbiotic colonization in juvenile squid, suggesting a possible role for the proper expression of FlrA in regulating symbiotic colonization factors in addition to those required for motility. Comparative RNA arbitrarily primed PCR analysis of the flrA mutant and its wild-type parent revealed several differentially expressed transcripts. These results define a regulon that includes both flagellar structural genes and other genes apparently not involved in flagellum elaboration or function. Thus, the transcriptional activator FlrA plays an essential role in regulating motility, and apparently in modulating other symbiotic functions, in V. fischeri. PMID:12775692
Kimura, L; Angeli, C B; Auricchio, M T B M; Fernandes, G R; Pereira, A C; Vicente, J P; Pereira, T V; Mingroni-Netto, R C
2012-01-01
Background. It has been widely suggested that analyses considering multilocus effects would be crucial to characterize the relationship between gene variability and essential hypertension (EH). Objective. To test for the presence of multilocus effects between/among seven polymorphisms (six genes) on blood pressure-related traits in African-derived semi-isolated Brazilian populations (quilombos). Methods. Analyses were carried out using a family-based design in a sample of 652 participants (97 families). Seven variants were investigated: ACE (rs1799752), AGT (rs669), ADD2 (rs3755351), NOS3 (rs1799983), GNB3 (rs5441 and rs5443), and GRK4 (rs1801058). Sensitivity analyses were further performed under a case-control design with unrelated participants only. Results. None of the investigated variants were associated individually with both systolic and diastolic BP levels (SBP and DBP, respectively) or EH (as a binary outcome). Multifactor dimensionality reduction-based techniques revealed a marginal association of the combined effect of both GNB3 variants on DBP levels in a family-based design (P = 0.040), whereas a putative NOS3-GRK4 interaction also in relation to DBP levels was observed in the case-control design only (P = 0.004). Conclusion. Our results provide limited support for the hypothesis of multilocus effects between/among the studied variants on blood pressure in quilombos. Further larger studies are needed to validate our findings.
Qiao, Panpan; Liu, Shen; Zhang, Li; He, Penghui; Zhang, Xiaoyan; Wang, Yannan; Min, Weiping
2013-01-01
Caspase-3, the essential effector caspase, plays a pivotal role during caspase-dependent apoptosis. In this study, we isolated and characterized caspase-3A gene from common carp. The common carp caspase-3A comprising 273 amino acids showed 71.8% sequence similarity and 59.3% sequence identity to human caspase-3. It exhibited an evolutionarily conserved structure of mammalian caspase-3 genes, including a pro-domain, a large subunit, a small subunit and other motifs such as the pentapeptide active-site motif (QACRG) and the putative cleavage sites at the aspartic acids. Phylogenetic analysis demonstrated that common carp caspase-3A formed a clade with cyprinid fish caspase-3. To assess whether caspase-3A is involved in cadmium (Cd)-induced cell apoptosis in common carp, a Cd exposure experiment was performed. TUNEL analysis showed that Cd triggered liver cell apoptosis; caspase-3A activity was markedly increased; its proenzyme level was significantly decreased, and the levels of its cleaved forms were markedly increased. However, real-time quantitative PCR analysis revealed that the mRNA transcript level of caspase-3A was not significantly elevated. Immunoreactivities were observed in the cytoplasm of hepatocytes by immunohistochemical detection. The findings indicates that Cd can trigger liver cell apoptosis through the activation of caspase-3A. Caspase-3A may play an essential role in Cd-induced apoptosis. PMID:24349509
Horiuchi, Takayuki; Taoka, Masato; Isobe, Toshiaki; Komano, Teruya; Inouye, Sumiko
2002-07-26
Two genes, fruA and csgA, encoding a putative transcription factor and C-factor, respectively, are essential for fruiting body formation of Myxococcus xanthus. To investigate the role of fruA and csgA genes in developmental gene expression, developing cells as well as vegetative cells of M. xanthus wild-type, fruA::Tc, and csgA731 strains were pulse-labeled with [(35)S]methionine, and the whole cell proteins were analyzed using two-dimensional immobilized pH gradient/SDS-PAGE. Differences in protein synthesis patterns among more than 700 protein spots were detected during development of the three strains. Fourteen proteins showing distinctly different expression patterns in mutant cells were analyzed in more detail. Five of the 14 proteins were identified as elongation factor Tu (EF-Tu), Dru, DofA, FruA, and protein S by immunoblot analysis and mass spectroscopy. A gene encoding DofA was cloned and sequenced. Although both fruA and csgA genes regulate early development of M. xanthus, they were found to differently regulate expression of several developmental genes. The production of six proteins, including DofA and protein S, was dependent on fruA, whereas the production of two proteins was dependent on csgA, and one protein was dependent on both fruA and csgA. To explain the present findings, a new model was presented in which different levels of FruA phosphorylation may distinctively regulate the expression of two groups of developmental genes.
Gillot, Guillaume; Jany, Jean-Luc; Dominguez-Santos, Rebeca; Poirier, Elisabeth; Debaets, Stella; Hidalgo, Pedro I; Ullán, Ricardo V; Coton, Emmanuel; Coton, Monika
2017-04-01
Mycophenolic acid (MPA) is a secondary metabolite produced by various Penicillium species including Penicillium roqueforti. The MPA biosynthetic pathway was recently described in Penicillium brevicompactum. In this study, an in silico analysis of the P. roqueforti FM164 genome sequence localized a 23.5-kb putative MPA gene cluster. The cluster contains seven genes putatively coding seven proteins (MpaA, MpaB, MpaC, MpaDE, MpaF, MpaG, MpaH) and is highly similar (i.e. gene synteny, sequence homology) to the P. brevicompactum cluster. To confirm the involvement of this gene cluster in MPA biosynthesis, gene silencing using RNA interference targeting mpaC, encoding a putative polyketide synthase, was performed in a high MPA-producing P. roqueforti strain (F43-1). In the obtained transformants, decreased MPA production (measured by LC-Q-TOF/MS) was correlated to reduced mpaC gene expression by Q-RT-PCR. In parallel, mycotoxin quantification on multiple P. roqueforti strains suggested strain-dependent MPA-production. Thus, the entire MPA cluster was sequenced for P. roqueforti strains with contrasted MPA production and a 174bp deletion in mpaC was observed in low MPA-producers. PCRs directed towards the deleted region among 55 strains showed an excellent correlation with MPA quantification. Our results indicated the clear involvement of mpaC gene as well as surrounding cluster in P. roqueforti MPA biosynthesis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jiang, Yiwei
2013-01-01
Drought is a major environmental stress limiting growth of perennial grasses in temperate regions. Plant drought tolerance is a complex trait that is controlled by multiple genes. Candidate gene association mapping provides a powerful tool for dissection of complex traits. Candidate gene association mapping of drought tolerance traits was conducted in 192 diverse perennial ryegrass (Lolium perenne L.) accessions from 43 countries. The panel showed significant variations in leaf wilting, leaf water content, canopy and air temperature difference, and chlorophyll fluorescence under well-watered and drought conditions across six environments. Analysis of 109 simple sequence repeat markers revealed five population structures in the mapping panel. A total of 2520 expression-based sequence readings were obtained for a set of candidate genes involved in antioxidant metabolism, dehydration, water movement across membranes, and signal transduction, from which 346 single nucleotide polymorphisms were identified. Significant associations were identified between a putative LpLEA3 encoding late embryogenesis abundant group 3 protein and a putative LpFeSOD encoding iron superoxide dismutase and leaf water content, as well as between a putative LpCyt Cu-ZnSOD encoding cytosolic copper-zinc superoxide dismutase and chlorophyll fluorescence under drought conditions. Four of these identified significantly associated single nucleotide polymorphisms from these three genes were also translated to amino acid substitutions in different genotypes. These results indicate that allelic variation in these genes may affect whole-plant response to drought stress in perennial ryegrass. PMID:23386684
Zhao, Yinhe; Wang, Guoying; Zhang, Jinpeng; Yang, Junbo; Peng, Shang; Gao, Lianming; Li, Chengyun; Hu, Jinyong; Li, Dezhu; Gao, Lizhi
2006-07-01
Asarum caudigerum (Aristolochiaceae) is an important species of paleoherb in relation to understanding the origin and evolution of angiosperm flowers, due to its basal position in the angiosperms. The aim of this study was to isolate floral-related genes from A. caudigerum, and to infer evolutionary relationships among florally expression-related genes, to further illustrate the origin and diversification of flowers in angiosperms. A subtracted floral cDNA library was constructed from floral buds using suppression subtractive hybridization (SSH). The cDNA of floral buds and leaves at the seedling stage were used as a tester and a driver, respectively. To further identify the function of putative MADS-box transcription factors, phylogenetic trees were reconstructed in order to infer evolutionary relationships within the MADS-box gene family. In the forward-subtracted floral cDNA library, 1920 clones were randomly sequenced, from which 567 unique expressed sequence tags (ESTs) were obtained. Among them, 127 genes failed to show significant similarity to any published sequences in GenBank and thus are putatively novel genes. Phylogenetic analysis indicated that a total of 29 MADS-box transcription factors were members of the APETALA3(AP3) subfamily, while nine others were putative MADS-box transcription factors that formed a cluster with MADS-box genes isolated from Amborella, the basal-most angiosperm, and those from the gymnosperms. This suggests that the origin of A. caudigerum is intermediate between the angiosperms and gymnosperms.
Bayne, Christopher J.; Camara, Mark D.; Cunningham, Charles; Jenny, Matthew J.; Langdon, Christopher J.
2010-01-01
Sessile inhabitants of marine intertidal environments commonly face heat stress, an important component of summer mortality syndrome in the Pacific oyster Crassostrea gigas. Marker-aided selection programs would be useful for developing oyster strains that resist summer mortality; however, there is currently a need to identify candidate genes associated with stress tolerance and to develop molecular markers associated with those genes. To identify candidate genes for further study, we used cDNA microarrays to test the hypothesis that oyster families that had high (>64%) or low (<29%) survival of heat shock (43°C, 1 h) differ in their transcriptional responses to stress. Based upon data generated by the microarray and by real-time quantitative PCR, we found that transcription after heat shock increased for genes putatively encoding heat shock proteins and genes for proteins that synthesize lipids, protect against bacterial infection, and regulate spawning, whereas transcription decreased for genes for proteins that mobilize lipids and detoxify reactive oxygen species. RNAs putatively identified as heat shock protein 27, collagen, peroxinectin, S-crystallin, and two genes with no match in Genbank had higher transcript concentrations in low-surviving families than in high-surviving families, whereas concentration of putative cystatin B mRNA was greater in high-surviving families. These ESTs should be studied further for use in marker-aided selection programs. Low survival of heat shock could result from a complex interaction of cell damage, opportunistic infection, and metabolic exhaustion. PMID:19205802
Song, Aiping; Li, Peiling; Xin, Jingjing; Chen, Sumei; Zhao, Kunkun; Wu, Dan; Fan, Qingqing; Gao, Tianwei; Chen, Fadi; Guan, Zhiyong
2016-01-01
The homeodomain-leucine zipper (HD-Zip) transcription factor family is a key transcription factor family and unique to the plant kingdom. It consists of a homeodomain and a leucine zipper that serve in combination as a dimerization motif. The family can be classified into four subfamilies, and these subfamilies participate in the development of hormones and mediation of hormone action and are involved in plant responses to environmental conditions. However, limited information on this gene family is available for the important chrysanthemum ornamental species (Chrysanthemum morifolium). Here, we characterized 17 chrysanthemum HD-Zip genes based on transcriptome sequences. Phylogenetic analyses revealed that 17 CmHB genes were distributed in the HD-Zip subfamilies I and II and identified two pairs of putative orthologous proteins in Arabidopsis and chrysanthemum and four pairs of paralogous proteins in chrysanthemum. The software MEME was used to identify 7 putative motifs with E values less than 1e-3 in the chrysanthemum HD-Zip factors, and they can be clearly classified into two groups based on the composition of the motifs. A bioinformatics analysis predicted that 8 CmHB genes could be targeted by 10 miRNA families, and the expression of these 17 genes in response to phytohormone treatments and abiotic stresses was characterized. The results presented here will promote research on the various functions of the HD-Zip gene family members in plant hormones and stress responses. PMID:27196930
Duplications and losses in gene families of rust pathogens highlight putative effectors.
Pendleton, Amanda L; Smith, Katherine E; Feau, Nicolas; Martin, Francis M; Grigoriev, Igor V; Hamelin, Richard; Nelson, C Dana; Burleigh, J Gordon; Davis, John M
2014-01-01
Rust fungi are a group of fungal pathogens that cause some of the world's most destructive diseases of trees and crops. A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen genomes. The establishment of disease by biotrophic pathogens is reliant upon effector proteins that are encoded in the fungal genome and secreted from the pathogen into the host's cell apoplast or within the cells. This study uses a comparative genomic approach to elucidate putative effectors and determine their evolutionary histories. We used OrthoMCL to identify nearly 20,000 gene families in proteomes of 16 diverse fungal species, which include 15 basidiomycetes and one ascomycete. We inferred patterns of duplication and loss for each gene family and identified families with distinctive patterns of expansion/contraction associated with the evolution of rust fungal genomes. To recognize potential contributors for the unique features of rust pathogens, we identified families harboring secreted proteins that: (i) arose or expanded in rust pathogens relative to other fungi, or (ii) contracted or were lost in rust fungal genomes. While the origin of rust fungi appears to be associated with considerable gene loss, there are many gene duplications associated with each sampled rust fungal genome. We also highlight two putative effector gene families that have expanded in Cqf that we hypothesize have roles in pathogenicity.
Zhong, Y D; Sun, X Y; Liu, E Y; Li, Y Q; Gao, Z; Yu, F X
2016-06-24
Liriodendron hybrids (Liriodendron chinense x L. tulipifera) are important landscaping and afforestation hardwood trees. To date, little genomic research on adventitious rooting has been reported in these hybrids, as well as in the genus Liriodendron. In the present study, we used adventitious roots to construct the first cDNA library for Liriodendron hybrids. A total of 5176 expressed sequence tags (ESTs) were generated and clustered into 2921 unigenes. Among these unigenes, 2547 had significant homology to the non-redundant protein database representing a wide variety of putative functions. Homologs of these genes regulated many aspects of adventitious rooting, including those for auxin signal transduction and root hair development. Results of quantitative real-time polymerase chain reaction showed that AUX1, IRE, and FB1 were highly expressed in adventitious roots and the expression of AUX1, ARF1, NAC1, RHD1, and IRE increased during the development of adventitious roots. Additionally, 181 simple sequence repeats were identified from 166 ESTs and more than 91.16% of these were dinucleotide and trinucleotide repeats. To the best of our knowledge, the present study reports the identification of the genes associated with adventitious rooting in the genus Liriodendron for the first time and provides a valuable resource for future genomic studies. Expression analysis of selected genes could allow us to identify regulatory genes that may be essential for adventitious rooting.
Grabowska, Dorota; Chelstowska, Anna
2003-04-18
Reducing equivalents in the form of NADPH are essential for many enzymatic steps involved in the biosynthesis of cellular macromolecules. An adequate level of NADPH is also required to protect cells against oxidative stress. The major enzymatic source of NADPH in the cell is the reaction catalyzed by glucose-6-phosphate dehydrogenase, the first enzyme in the pentose phosphate pathway. Disruption of the ZWF1 gene, encoding glucose-6-phosphate dehydrogenase in the yeast Saccharomyces cerevisiae, results in methionine auxotrophy and increased sensitivity to oxidizing agents. It is assumed that both phenotypes are due to an NADPH deficiency in the zwf1Delta strain. We used a Met(-) phenotype displayed by the zwf1Delta strain to look for multicopy suppressors of this deletion. We found that overexpression of the ALD6 gene coding for cytosolic acetaldehyde dehydrogenase, which utilizes NADP(+) as its cofactor, restores the Met(+) phenotype of the zwf1Delta strain. Another multicopy suppressor identified in our screen, the ZMS1 gene encoding a putative transcription factor, regulates the level of ALD6 expression. A strain bearing a double ZWF1 ALD6 gene disruption is not viable. Thus, our results indicate the reaction catalyzed by Ald6p as an important source of reducing equivalents in the yeast cells.
Identification of DNA gyrase inhibitor (GyrI) in Escherichia coli.
Nakanishi, A; Oshida, T; Matsushita, T; Imajoh-Ohmi, S; Ohnuki, T
1998-01-23
DNA gyrase is an essential enzyme in DNA replication in Escherichia coli. It mediates the introduction of negative supercoils near oriC, removal of positive supercoils ahead of the growing DNA fork, and separation of the two daughter duplexes. In the course of purifying DNA gyrase from E. coli KL16, we found an 18-kDa protein that inhibited the supercoiling activity of DNA gyrase, and we coined it DNA gyrase inhibitory protein (GyrI). Its NH2-terminal amino acid sequence of 16 residues was determined to be identical to that of a putative gene product (a polypeptide of 157 amino acids) encoded by yeeB (EMBL accession no. U00009) and sbmC (Baquero, M. R., Bouzon, M., Varea, J., and Moreno, F. (1995) Mol. Microbiol. 18, 301-311) of E. coli. Assuming the identity of the gene (gyrI) encoding GyrI with the previously reported genes yeeB and sbmC, we cloned the gene after amplification by polymerase chain reaction and purified the 18-kDa protein from an E. coli strain overexpressing it. The purified 18-kDa protein was confirmed to inhibit the supercoiling activity of DNA gyrase in vitro. In vivo, both overexpression and antisense expression of the gyrI gene induced filamentous growth of cells and suppressed cell proliferation. GyrI protein is the first identified chromosomally nucleoid-encoded regulatory factor of DNA gyrase in E. coli.
A bacterial aromatic aldehyde dehydrogenase critical for the efficient catabolism of syringaldehyde.
Kamimura, Naofumi; Goto, Takayuki; Takahashi, Kenji; Kasai, Daisuke; Otsuka, Yuichiro; Nakamura, Masaya; Katayama, Yoshihiro; Fukuda, Masao; Masai, Eiji
2017-03-15
Vanillin and syringaldehyde obtained from lignin are essential intermediates for the production of basic chemicals using microbial cell factories. However, in contrast to vanillin, the microbial conversion of syringaldehyde is poorly understood. Here, we identified an aromatic aldehyde dehydrogenase (ALDH) gene responsible for syringaldehyde catabolism from 20 putative ALDH genes of Sphingobium sp. strain SYK-6. All these genes were expressed in Escherichia coli, and nine gene products, including previously characterized BzaA, BzaB, and vanillin dehydrogenase (LigV), exhibited oxidation activities for syringaldehyde to produce syringate. Among these genes, SLG_28320 (desV) and ligV were most highly and constitutively transcribed in the SYK-6 cells. Disruption of desV in SYK-6 resulted in a significant reduction in growth on syringaldehyde and in syringaldehyde oxidation activity. Furthermore, a desV ligV double mutant almost completely lost its ability to grow on syringaldehyde. Purified DesV showed similar k cat /K m values for syringaldehyde (2100 s -1 ·mM -1 ) and vanillin (1700 s -1 ·mM -1 ), whereas LigV substantially preferred vanillin (8800 s -1 ·mM -1 ) over syringaldehyde (1.4 s -1 ·mM -1 ). These results clearly demonstrate that desV plays a major role in syringaldehyde catabolism. Phylogenetic analyses showed that DesV-like ALDHs formed a distinct phylogenetic cluster separated from the vanillin dehydrogenase cluster.
A bacterial aromatic aldehyde dehydrogenase critical for the efficient catabolism of syringaldehyde
Kamimura, Naofumi; Goto, Takayuki; Takahashi, Kenji; Kasai, Daisuke; Otsuka, Yuichiro; Nakamura, Masaya; Katayama, Yoshihiro; Fukuda, Masao; Masai, Eiji
2017-01-01
Vanillin and syringaldehyde obtained from lignin are essential intermediates for the production of basic chemicals using microbial cell factories. However, in contrast to vanillin, the microbial conversion of syringaldehyde is poorly understood. Here, we identified an aromatic aldehyde dehydrogenase (ALDH) gene responsible for syringaldehyde catabolism from 20 putative ALDH genes of Sphingobium sp. strain SYK-6. All these genes were expressed in Escherichia coli, and nine gene products, including previously characterized BzaA, BzaB, and vanillin dehydrogenase (LigV), exhibited oxidation activities for syringaldehyde to produce syringate. Among these genes, SLG_28320 (desV) and ligV were most highly and constitutively transcribed in the SYK-6 cells. Disruption of desV in SYK-6 resulted in a significant reduction in growth on syringaldehyde and in syringaldehyde oxidation activity. Furthermore, a desV ligV double mutant almost completely lost its ability to grow on syringaldehyde. Purified DesV showed similar kcat/Km values for syringaldehyde (2100 s−1·mM−1) and vanillin (1700 s−1·mM−1), whereas LigV substantially preferred vanillin (8800 s−1·mM−1) over syringaldehyde (1.4 s−1·mM−1). These results clearly demonstrate that desV plays a major role in syringaldehyde catabolism. Phylogenetic analyses showed that DesV-like ALDHs formed a distinct phylogenetic cluster separated from the vanillin dehydrogenase cluster. PMID:28294121
NASA Astrophysics Data System (ADS)
Kvitt, Hagit; Rosenfeld, Hanna; Tchernov, Dan
2016-07-01
Recent studies suggest that controlled apoptotic response provides an essential mechanism, enabling corals to respond to global warming and ocean acidification. However, the molecules involved and their functions are still unclear. To better characterize the apoptotic response in basal metazoans, we studied the expression profiles of selected genes that encode for putative pro- and anti-apoptotic mediators in the coral Stylophora pistillata under thermal stress and bleaching conditions. Upon thermal stress, as attested by the elevation of the heat-shock protein gene HSP70’s mRNA levels, the expression of all studied genes, including caspase, Bcl-2, Bax, APAF-1 and BI-1, peaked at 6-24 h of thermal stress (hts) and declined at 72 hts. Adversely, the expression levels of the survivin gene showed a shifted pattern, with elevation at 48-72 hts and a return to basal levels at 168 hts. Overall, we show the quantitative anti-apoptotic traits of the coral Bcl-2 protein, which resemble those of its mammalian counterpart. Altogether, our results highlight the similarities between apoptotic networks operating in simple metazoans and in higher animals and clearly demonstrate the activation of pro-cell survival regulators at early stages of the apoptotic response, contributing to the decline of apoptosis and the acclimation to chronic stress.
Singh, Vikas K; Khan, Aamir W; Saxena, Rachit K; Sinha, Pallavi; Kale, Sandip M; Parupalli, Swathi; Kumar, Vinay; Chitikineni, Annapurna; Vechalapu, Suryanarayana; Sameer Kumar, Chanda Venkata; Sharma, Mamta; Ghanta, Anuradha; Yamini, Kalinati Narasimhan; Muniswamy, Sonnappa; Varshney, Rajeev K
2017-07-01
Identification of candidate genomic regions associated with target traits using conventional mapping methods is challenging and time-consuming. In recent years, a number of single nucleotide polymorphism (SNP)-based mapping approaches have been developed and used for identification of candidate/putative genomic regions. However, in the majority of these studies, insertion-deletion (Indel) were largely ignored. For efficient use of Indels in mapping target traits, we propose Indel-seq approach, which is a combination of whole-genome resequencing (WGRS) and bulked segregant analysis (BSA) and relies on the Indel frequencies in extreme bulks. Deployment of Indel-seq approach for identification of candidate genomic regions associated with fusarium wilt (FW) and sterility mosaic disease (SMD) resistance in pigeonpea has identified 16 Indels affecting 26 putative candidate genes. Of these 26 affected putative candidate genes, 24 genes showed effect in the upstream/downstream of the genic region and two genes showed effect in the genes. Validation of these 16 candidate Indels in other FW- and SMD-resistant and FW- and SMD-susceptible genotypes revealed a significant association of five Indels (three for FW and two for SMD resistance). Comparative analysis of Indel-seq with other genetic mapping approaches highlighted the importance of the approach in identification of significant genomic regions associated with target traits. Therefore, the Indel-seq approach can be used for quick and precise identification of candidate genomic regions for any target traits in any crop species. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Takakura, Y; Ito, T; Saito, H; Inoue, T; Komari, T; Kuwata, S
2000-04-01
A flower-predominant cDNA for a gene, termed OsChia 1;175, was isolated from a cDNA library of rice pistils. Northern blot and RT-PCR analyses revealed that the OsChia 1;175 gene is highly expressed in floral organs (pistils, stamens and lodicules at the heading stage) but not or at an extremely low level in vegetative organs. OsChia 1;175 encodes a protein that consists of 340 amino acid residues, and the putative mature protein shows 52% to 63% amino acid identity to class I chitinases of rice or other plants. The phylogenetic tree shows that the OsChia 1;175 protein is a new type of plant class I chitinase in rice. The expression of OsChia 1;175 in vegetative organs is not induced by several chemicals, UV, and wounding. The soluble putative mature OsChia 1;175 protein expressed in Escherichia coli exhibited chitinase activity in the assay with colloidal chitin as a substrate. Genomic Southern analysis revealed that the OsChia 1;175 gene was organized as a low-copy gene family. The rice genomic library was screened and a genome clone corresponding to OsChia 1;175 was isolated. The transcription start sites of the OsChia 1;175 gene were mapped by primer extension analysis. The 1.2 kb putative promoter region of the OsChia 1;175 gene was fused to the GUS (beta-glucuronidase) gene, and this chimeric gene was introduced to rice by Agrobacterium-mediated transformation. The flower-predominant gene expression was identified also in the transgenic rice plants. The high promoter activity was detected in the stigmas, styles, stamens and lodicules in transgenic plants. The possible functions of OsChia 1;175 are discussed.
Sharma, Akanksha; Sharma, Niharika; Bhalla, Prem; Singh, Mohan
2017-01-01
Comparative genomics have facilitated the mining of biological information from a genome sequence, through the detection of similarities and differences with genomes of closely or more distantly related species. By using such comparative approaches, knowledge can be transferred from the model to non-model organisms and insights can be gained in the structural and evolutionary patterns of specific genes. In the absence of sequenced genomes for allergenic grasses, this study was aimed at understanding the structure, organisation and expression profiles of grass pollen allergens using the genomic data from Brachypodium distachyon as it is phylogenetically related to the allergenic grasses. Combining genomic data with the anther RNA-Seq dataset revealed 24 pollen allergen genes belonging to eight allergen groups mapping on the five chromosomes in B. distachyon. High levels of anther-specific expression profiles were observed for the 24 identified putative allergen-encoding genes in Brachypodium. The genomic evidence suggests that gene encoding the group 5 allergen, the most potent trigger of hay fever and allergic asthma originated as a pollen specific orphan gene in a common grass ancestor of Brachypodium and Triticiae clades. Gene structure analysis showed that the putative allergen-encoding genes in Brachypodium either lack or contain reduced number of introns. Promoter analysis of the identified Brachypodium genes revealed the presence of specific cis-regulatory sequences likely responsible for high anther/pollen-specific expression. With the identification of putative allergen-encoding genes in Brachypodium, this study has also described some important plant gene families (e.g. expansin superfamily, EF-Hand family, profilins etc) for the first time in the model plant Brachypodium. Altogether, the present study provides new insights into structural characterization and evolution of pollen allergens and will further serve as a base for their functional characterization in related grass species.
Tao, Peng; Guo, Weiling; Li, Biyuan; Wang, Wuhong; Yue, Zhichen; Lei, Juanli; Zhao, Yanting; Zhong, Xinmin
2016-06-01
NADP-dependent malic enzymes (NADP-MEs) play essential roles in both normal development and stress responses in plants. Here, genome-wide analysis was performed to identify 65 putative NADP-ME genes from 12 crucifer species. These NADP-ME genes were grouped into five categories of syntenic orthologous genes and were divided into three clades of a phylogenic tree. Promoter motif analysis showed that NADP-ME1 genes in Group IV were more conserved with each other than the other NADP-ME genes in Groups I and II. A nucleotide motif involved in ABA responses, desiccation and seed development was found in the promoters of most NADP-ME1 genes. Generally, the NADP-ME genes of Brassica rapa, B. oleracea and B. napus had less introns than their corresponding Arabidopsis orthologs. In these three Brassica species, the NADP-ME genes derived from the least fractionated subgenome have lost less introns than those from the medium fractionated and most fractionated subgenomes. BrNADP-ME1 showed the highest expression in petals and mature embryos. Two paralogous NADP-ME2 genes (BrNADP-ME2a and BrNADP-ME2b) shared similar expression profiles and differential expression levels. BrNADP-ME3 showed down-regulation during embryogenesis and reached its lowest expression in early cotyledonary embryos. BrNADP-ME4 was expressed widely in multiple organs and showed high expression during the whole embryogenesis process. Different NADP-ME genes of B. rapa showed differential gene expression profiles in young leaves after ABA treatment or cold stress. Our genome-wide identification and characterization of NADP-ME genes extend our understanding of the evolution or function of this family in Brassicaceae.
Kinase activity of OsBRI1 is essential for brassinosteroids to regulate rice growth and development.
Zhao, Jinfeng; Wu, Chenxi; Yuan, Shoujiang; Yin, Liang; Sun, Wei; Zhao, Qinglei; Zhao, Baohua; Li, Xueyong
2013-02-01
Brassinosteroids (BRs) are steroid hormones that participate in multiple biological processes. In this paper, we characterized a classic rice mutant Fn189 (dwarf54, d54) showing semi-dwarf stature and erect leaves. The coleoptile elongation and root growth was less affected in Fn189 than wild-type plant by the exogenous application of eBL, the most active form of BRs. Lamina joint inclination assay and morphological analysis in darkness further showed that Fn189 mutant plant was insensitive to exogenous eBL. Through map-based cloning, Fn189 was found to be a novel allelic mutant of the DWARF 61 (D61) gene, which encodes the putative BRs receptor OsBRI1. A single base mutation caused the I834F substitution in the OsBRI1 kinase domain. Consequently, kinase activity of OsBRI1 was found to decrease dramatically. Taken together, the kinase activity of OsBRI1 is essential for brassinosteroids to regulate normal plant growth and development in rice. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Gawriluk, Thomas R.; Ko, CheMyong; Hong, Xiaoman; Christenson, Lane K.; Rucker, Edmund B.
2014-01-01
Autophagy is an important cellular process that serves as a companion pathway to the ubiquitin-proteasome system to degrade long-lived proteins and organelles to maintain cell homeostasis. Although initially characterized in yeast, autophagy is being realized as an important regulator of development and disease in mammals. Beclin1 (Becn1) is a putative tumor suppressor gene that has been shown to undergo a loss of heterozygosity in 40–75% of human breast, ovarian, and prostate cancers. Because Becn1 is a key regulator of autophagy, we sought to investigate its role in female reproduction by using a conditional knockout approach in mice. We find that pregnant females lacking Becn1 in the ovarian granulosa cell population have a defect in progesterone production and a subsequent preterm labor phenotype. Luteal cells in this model exhibit defective autophagy and a failure to accumulate lipid droplets needed for steroidogenesis. Collectively, we show that Becn1 provides essential functions in the ovary that are essential for mammalian reproduction. PMID:25246579
Stella, Nicholas A; Lahr, Roni M; Brothers, Kimberly M; Kalivoda, Eric J; Hunt, Kristin M; Kwak, Daniel H; Liu, Xinyu; Shanks, Robert M Q
2015-08-01
Serratia marcescens generates secondary metabolites and secreted enzymes, and it causes hospital infections and community-acquired ocular infections. Previous studies identified cyclic AMP (cAMP) receptor protein (CRP) as an indirect inhibitor of antimicrobial secondary metabolites. Here, we identified a putative two-component regulator that suppressed crp mutant phenotypes. Evidence supports that the putative response regulator eepR was directly transcriptionally inhibited by cAMP-CRP. EepR and the putative sensor kinase EepS were necessary for the biosynthesis of secondary metabolites, including prodigiosin- and serratamolide-dependent phenotypes, swarming motility, and hemolysis. Recombinant EepR bound to the prodigiosin and serratamolide promoters in vitro. Together, these data introduce a novel regulator of secondary metabolites that directly connects the broadly conserved metabolism regulator CRP with biosynthetic genes that may contribute to competition with other microbes. This study identifies a new transcription factor that is directly controlled by a broadly conserved transcription factor, CRP. CRP is well studied in its role to help bacteria respond to the amount of nutrients in their environment. The new transcription factor EepR is essential for the bacterium Serratia marcescens to produce two biologically active compounds, prodigiosin and serratamolide. These two compounds are antimicrobial and may allow S. marcescens to compete for limited nutrients with other microorganisms. Results from this study tie together the CRP environmental nutrient sensor with a new regulator of antimicrobial compounds. Beyond microbial ecology, prodigiosin and serratamolide have therapeutic potential; therefore, understanding their regulation is important for both applied and basic science. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Komatsu, Ken; Hirata, Hisae; Fukagawa, Takako; Yamaji, Yasuyuki; Okano, Yukari; Ishikawa, Kazuya; Adachi, Tatsushi; Maejima, Kensaku; Hashimoto, Masayoshi; Namba, Shigetou
2012-07-01
The first open-reading frame (ORF) of apple stem grooving virus (ASGV), of the genus Capillovirus, encodes an apparently chimeric polyprotein containing conserved regions for replicase (Rep) and coat protein (CP). However, our previous study revealed that ASGV mutants with distinct and discontinuous Rep- and CP-coding regions successfully infect plants, indicating that CP expressed via a subgenomic RNA (sgRNA) is sufficient for viability of the virus. Here we identified a transcription start site of the CP sgRNA and revealed that CP translated from the sgRNA is essential for ASGV infection. We mapped the transcription start sites of both the CP and the movement protein (MP) sgRNAs of ASGV and found a hexanucleotide motif, UUAGGU, conserved upstream from both sgRNA transcription start sites. Mutational analysis of the putative CP initiation codon and of the UUAGGU sequence upstream from the transcription start site of CP sgRNA demonstrated their importance for ASGV accumulation. Our results also demonstrated that potato virus T (PVT), an unassigned species closely related to ASGV, produces two sgRNAs putatively deployed for the CP and MP expression and that the same hexanucleotide motif as found in ASGV is located upstream from the transcription start sites of both sgRNAs. This motif, which constituted putative core elements of the sgRNA promoter, is broadly conserved among viruses in the families Alphaflexiviridae and Betaflexiviridae, suggesting that the gene expression strategy of the viruses in both families has been conserved throughout evolution. Copyright © 2012 Elsevier B.V. All rights reserved.
Kirm, Benjamin; Magdevska, Vasilka; Tome, Miha; Horvat, Marinka; Karničar, Katarina; Petek, Marko; Vidmar, Robert; Baebler, Spela; Jamnik, Polona; Fujs, Štefan; Horvat, Jaka; Fonovič, Marko; Turk, Boris; Gruden, Kristina; Petković, Hrvoje; Kosec, Gregor
2013-12-17
Erythromycin is a medically important antibiotic, biosynthesized by the actinomycete Saccharopolyspora erythraea. Genes encoding erythromycin biosynthesis are organized in a gene cluster, spanning over 60 kbp of DNA. Most often, gene clusters encoding biosynthesis of secondary metabolites contain regulatory genes. In contrast, the erythromycin gene cluster does not contain regulatory genes and regulation of its biosynthesis has therefore remained poorly understood, which has for a long time limited genetic engineering approaches for erythromycin yield improvement. We used a comparative proteomic approach to screen for potential regulatory proteins involved in erythromycin biosynthesis. We have identified a putative regulatory protein SACE_5599 which shows significantly higher levels of expression in an erythromycin high-producing strain, compared to the wild type S. erythraea strain. SACE_5599 is a member of an uncharacterized family of putative regulatory genes, located in several actinomycete biosynthetic gene clusters. Importantly, increased expression of SACE_5599 was observed in the complex fermentation medium and at controlled bioprocess conditions, simulating a high-yield industrial fermentation process in the bioreactor. Inactivation of SACE_5599 in the high-producing strain significantly reduced erythromycin yield, in addition to drastically decreasing sporulation intensity of the SACE_5599-inactivated strains when cultivated on ABSM4 agar medium. In contrast, constitutive overexpression of SACE_5599 in the wild type NRRL23338 strain resulted in an increase of erythromycin yield by 32%. Similar yield increase was also observed when we overexpressed the bldD gene, a previously identified regulator of erythromycin biosynthesis, thereby for the first time revealing its potential for improving erythromycin biosynthesis. SACE_5599 is the second putative regulatory gene to be identified in S. erythraea which has positive influence on erythromycin yield. Like bldD, SACE_5599 is involved in morphological development of S. erythraea, suggesting a very close relationship between secondary metabolite biosynthesis and morphological differentiation in this organism. While the mode of action of SACE_5599 remains to be elucidated, the manipulation of this gene clearly shows potential for improvement of erythromycin production in S. erythraea in industrial setting. We have also demonstrated the applicability of the comparative proteomics approach for identifying new regulatory elements involved in biosynthesis of secondary metabolites in industrial conditions.
2013-01-01
Background Erythromycin is a medically important antibiotic, biosynthesized by the actinomycete Saccharopolyspora erythraea. Genes encoding erythromycin biosynthesis are organized in a gene cluster, spanning over 60 kbp of DNA. Most often, gene clusters encoding biosynthesis of secondary metabolites contain regulatory genes. In contrast, the erythromycin gene cluster does not contain regulatory genes and regulation of its biosynthesis has therefore remained poorly understood, which has for a long time limited genetic engineering approaches for erythromycin yield improvement. Results We used a comparative proteomic approach to screen for potential regulatory proteins involved in erythromycin biosynthesis. We have identified a putative regulatory protein SACE_5599 which shows significantly higher levels of expression in an erythromycin high-producing strain, compared to the wild type S. erythraea strain. SACE_5599 is a member of an uncharacterized family of putative regulatory genes, located in several actinomycete biosynthetic gene clusters. Importantly, increased expression of SACE_5599 was observed in the complex fermentation medium and at controlled bioprocess conditions, simulating a high-yield industrial fermentation process in the bioreactor. Inactivation of SACE_5599 in the high-producing strain significantly reduced erythromycin yield, in addition to drastically decreasing sporulation intensity of the SACE_5599-inactivated strains when cultivated on ABSM4 agar medium. In contrast, constitutive overexpression of SACE_5599 in the wild type NRRL23338 strain resulted in an increase of erythromycin yield by 32%. Similar yield increase was also observed when we overexpressed the bldD gene, a previously identified regulator of erythromycin biosynthesis, thereby for the first time revealing its potential for improving erythromycin biosynthesis. Conclusions SACE_5599 is the second putative regulatory gene to be identified in S. erythraea which has positive influence on erythromycin yield. Like bldD, SACE_5599 is involved in morphological development of S. erythraea, suggesting a very close relationship between secondary metabolite biosynthesis and morphological differentiation in this organism. While the mode of action of SACE_5599 remains to be elucidated, the manipulation of this gene clearly shows potential for improvement of erythromycin production in S. erythraea in industrial setting. We have also demonstrated the applicability of the comparative proteomics approach for identifying new regulatory elements involved in biosynthesis of secondary metabolites in industrial conditions. PMID:24341557
Increased taxon sampling reveals thousands of hidden orthologs in flatworms
2017-01-01
Gains and losses shape the gene complement of animal lineages and are a fundamental aspect of genomic evolution. Acquiring a comprehensive view of the evolution of gene repertoires is limited by the intrinsic limitations of common sequence similarity searches and available databases. Thus, a subset of the gene complement of an organism consists of hidden orthologs, i.e., those with no apparent homology to sequenced animal lineages—mistakenly considered new genes—but actually representing rapidly evolving orthologs or undetected paralogs. Here, we describe Leapfrog, a simple automated BLAST pipeline that leverages increased taxon sampling to overcome long evolutionary distances and identify putative hidden orthologs in large transcriptomic databases by transitive homology. As a case study, we used 35 transcriptomes of 29 flatworm lineages to recover 3427 putative hidden orthologs, some unidentified by OrthoFinder and HaMStR, two common orthogroup inference algorithms. Unexpectedly, we do not observe a correlation between the number of putative hidden orthologs in a lineage and its “average” evolutionary rate. Hidden orthologs do not show unusual sequence composition biases that might account for systematic errors in sequence similarity searches. Instead, gene duplication with divergence of one paralog and weak positive selection appear to underlie hidden orthology in Platyhelminthes. By using Leapfrog, we identify key centrosome-related genes and homeodomain classes previously reported as absent in free-living flatworms, e.g., planarians. Altogether, our findings demonstrate that hidden orthologs comprise a significant proportion of the gene repertoire in flatworms, qualifying the impact of gene losses and gains in gene complement evolution. PMID:28400424
Patterns of population differentiation of candidate genes for cardiovascular disease
Kullo, Iftikhar J; Ding, Keyue
2007-01-01
Background The basis for ethnic differences in cardiovascular disease (CVD) susceptibility is not fully understood. We investigated patterns of population differentiation (FST) of a set of genes in etiologic pathways of CVD among 3 ethnic groups: Yoruba in Nigeria (YRI), Utah residents with European ancestry (CEU), and Han Chinese (CHB) + Japanese (JPT). We identified 37 pathways implicated in CVD based on the PANTHER classification and 416 genes in these pathways were further studied; these genes belonged to 6 biological processes (apoptosis, blood circulation and gas exchange, blood clotting, homeostasis, immune response, and lipoprotein metabolism). Genotype data were obtained from the HapMap database. Results We calculated FST for 15,559 common SNPs (minor allele frequency ≥ 0.10 in at least one population) in genes that co-segregated among the populations, as well as an average-weighted FST for each gene. SNPs were classified as putatively functional (non-synonymous and untranslated regions) or non-functional (intronic and synonymous sites). Mean FST values for common putatively functional variants were significantly higher than FST values for nonfunctional variants. A significant variation in FST was also seen based on biological processes; the processes of 'apoptosis' and 'lipoprotein metabolism' showed an excess of genes with high FST. Thus, putative functional SNPs in genes in etiologic pathways for CVD show greater population differentiation than non-functional SNPs and a significant variance of FST values was noted among pairwise population comparisons for different biological processes. Conclusion These results suggest a possible basis for varying susceptibility to CVD among ethnic groups. PMID:17626638
Fujimi, T J; Nakajyo, T; Nishimura, E; Ogura, E; Tsuchiya, T; Tamiya, T
2003-08-14
The genes encoding erabutoxin (short chain neurotoxin) isoforms (Ea, Eb, and Ec), LsIII (long chain neurotoxin) and a novel long chain neurotoxin pseudogene were cloned from a Laticauda semifasciata genomic library. Short and long chain neurotoxin genes were also cloned from the genome of Laticauda laticaudata, a closely related species of L. semifasciata, by PCR. A putative matrix attached region (MAR) sequence was found in the intron I of the LsIII gene. Comparative analysis of 11 structurally relevant snake toxin genes (three-finger-structure toxins) revealed the molecular evolution of these toxins. Three-finger-structure toxin genes diverged from a common ancestor through two types of evolutionary pathways (long and short types), early in the course of evolution. At a later stage of evolution in each gene, the accumulation of mutations in the exons, especially exon II, by accelerated evolution may have caused the increased diversification in their functions. It was also revealed that the putative MAR sequence found in the LsIII gene was integrated into the gene after the species-level divergence.
te Biesebeke, Rob; Levasseur, Anthony; Boussier, Amandine; Record, Eric; van den Hondel, Cees A M J J; Punt, Peter J
2010-01-01
The fhbA genes encoding putative flavohemoglobins (FHb) from Aspergillus niger and Aspergillus oryzae were isolated. Comparison of the deduced amino acid sequence of the A. niger fhbA gene and other putative filamentous fungal FHb-encoding genes to that of Ralstonia eutropha shows an overall conserved gene structure and completely conserved catalytic amino acids. Several yeasts and filamentous fungi, including both Aspergillus species have been found to contain a small FHb gene family mostly consisting of two family members. Based on these sequences the evolutionary history of the fungal FHb family was reconstructed. The isolated fhbA genes from A. oryzae and A. niger belong to a phylogenetic group, which exclusively contains Aspergillus genes. Different experimental approaches show that fhbA transcript levels appear during active hyphal growth. Moreover, in a pclA-disrupted strain with a hyperbranching growth phenotype, the transcript levels of the fhbA gene were 2–5 times higher compared to the wild-type. These results suggest that FHb from filamentous fungi have a function that is correlated to the hyphal growth phenotype.
Lis, Maciej; Kuramitsu, Howard K.
2003-01-01
We analyzed a previously constructed stress-sensitive Streptococcus mutans mutant Tn-1 strain resulting from disruption by transposon Tn916 of a gene encoding a protein exhibiting amino acid sequence similarity to the Escherichia coli diacylglycerol kinase. It was confirmed that the mutation led to significantly reduced lipid kinase activity, while expression of the intact gene on a plasmid restored both kinase activity and the wild-type phenotype. Further analysis revealed that the product of the dgk gene in S. mutans predominantly recognizes a lipid substrate other than diacylglycerol, most likely undecaprenol, as demonstrated by its efficient phosphorylation and the resistance of the product of the reaction to saponification. The physiological role of the product of the dgk gene as a putative undecaprenol kinase was further supported by a significantly higher sensitivity of the mutant to bacitracin compared with that of the parental strain. PMID:12654811
Nowrousian, Minou; Cebula, Patricia
2005-11-03
The filamentous fungus Sordaria macrospora forms complex three-dimensional fruiting bodies called perithecia that protect the developing ascospores and ensure their proper discharge. In previous microarray analyses, several genes have been identified that are downregulated in sterile mutants compared to the wild type. Among these genes was tap1 (transcript associated with perithecial development), a gene encoding a putative lectin homolog. Analysis of tap1 transcript levels in the wild type under conditions allowing only vegetative growth compared to conditions that lead to fruiting body development showed that tap1 is not only downregulated in developmental mutants but is also upregulated in the wild type during fruiting body development. We have cloned and sequenced a 3.2 kb fragment of genomic DNA containing the tap1 open reading frame and adjoining sequences. The genomic region comprising tap1 is syntenic to its homologous region in the closely related filamentous fungus Neurospora crassa. To determine whether tap1 is involved in fruiting body development in S. macrospora, a knockout construct was generated in which the tap1 open reading frame was replaced by the hygromycin B resistance gene hph under the control of fungal regulatory regions. Transformation of the S. macrospora wild type with this construct resulted in a tap1 deletion strain where tap1 had been replaced by the hph cassette. The knockout strain displayed no phenotypic differences under conditions of vegetative growth and sexual development when compared to the wild type. Double mutants carrying the Deltatap1 allele in several developmental mutant backgrounds were phenotypically similar to the corresponding developmental mutant strains. The tap1 transcript is strongly upregulated during sexual development in S. macrospora; however, analysis of a tap1 knockout strain shows that tap1 is not essential for fruiting body formation in S. macrospora.
Nowrousian, Minou; Cebula, Patricia
2005-01-01
Background The filamentous fungus Sordaria macrospora forms complex three-dimensional fruiting bodies called perithecia that protect the developing ascospores and ensure their proper discharge. In previous microarray analyses, several genes have been identified that are downregulated in sterile mutants compared to the wild type. Among these genes was tap1 (transcript associated with perithecial development), a gene encoding a putative lectin homolog. Results Analysis of tap1 transcript levels in the wild type under conditions allowing only vegetative growth compared to conditions that lead to fruiting body development showed that tap1 is not only downregulated in developmental mutants but is also upregulated in the wild type during fruiting body development. We have cloned and sequenced a 3.2 kb fragment of genomic DNA containing the tap1 open reading frame and adjoining sequences. The genomic region comprising tap1 is syntenic to its homologous region in the closely related filamentous fungus Neurospora crassa. To determine whether tap1 is involved in fruiting body development in S. macrospora, a knockout construct was generated in which the tap1 open reading frame was replaced by the hygromycin B resistance gene hph under the control of fungal regulatory regions. Transformation of the S. macrospora wild type with this construct resulted in a tap1 deletion strain where tap1 had been replaced by the hph cassette. The knockout strain displayed no phenotypic differences under conditions of vegetative growth and sexual development when compared to the wild type. Double mutants carrying the Δtap1 allele in several developmental mutant backgrounds were phenotypically similar to the corresponding developmental mutant strains. Conclusion The tap1 transcript is strongly upregulated during sexual development in S. macrospora; however, analysis of a tap1 knockout strain shows that tap1 is not essential for fruiting body formation in S. macrospora. PMID:16266439
Bulley, Sean M; Rassam, Maysoon; Hoser, Dana; Otto, Wolfgang; Schünemann, Nicole; Wright, Michele; MacRae, Elspeth; Gleave, Andrew; Laing, William
2009-01-01
Vitamin C (L-ascorbic acid, AsA) is an essential metabolite for plants and animals. Kiwifruit (Actinidia spp.) are a rich dietary source of AsA for humans. To understand AsA biosynthesis in kiwifruit, AsA levels and the relative expression of genes putatively involved in AsA biosynthesis, regeneration, and transport were correlated by quantitative polymerase chain reaction in leaves and during fruit development in four kiwifruit genotypes (three species; A. eriantha, A. chinensis, and A. deliciosa). During fruit development, fruit AsA concentration peaked between 4 and 6 weeks after anthesis with A. eriantha having 3-16-fold higher AsA than other genotypes. The rise in AsA concentration typically occurred close to the peak in expression of the L-galactose pathway biosynthetic genes, particularly the GDP-L-galactose guanyltransferase gene. The high concentration of AsA found in the fruit of A. eriantha is probably due to higher expression of the GDP-mannose-3',5'-epimerase and GDP-L-galactose guanyltransferase genes. Over-expression of the kiwifruit GDP-L-galactose guanyltransferase gene in Arabidopsis resulted in up to a 4-fold increase in AsA, while up to a 7-fold increase in AsA was observed in transient expression studies where both GDP-L-galactose guanyltransferase and GDP-mannose-3',5'-epimerase genes were co-expressed. These studies show the importance of GDP-L-galactose guanyltransferase as a rate-limiting step to AsA, and demonstrate how AsA can be significantly increased in plants.
The Transcription Factors Islet and Lim3 Combinatorially Regulate Ion Channel Gene Expression
Wolfram, Verena; Southall, Tony D.; Günay, Cengiz; Prinz, Astrid A.; Brand, Andrea H.
2014-01-01
Expression of appropriate ion channels is essential to allow developing neurons to form functional networks. Our previous studies have identified LIM-homeodomain (HD) transcription factors (TFs), expressed by developing neurons, that are specifically able to regulate ion channel gene expression. In this study, we use the technique of DNA adenine methyltransferase identification (DamID) to identify putative gene targets of four such TFs that are differentially expressed in Drosophila motoneurons. Analysis of targets for Islet (Isl), Lim3, Hb9, and Even-skipped (Eve) identifies both ion channel genes and genes predicted to regulate aspects of dendritic and axonal morphology. Significantly, some ion channel genes are bound by more than one TF, consistent with the possibility of combinatorial regulation. One such gene is Shaker (Sh), which encodes a voltage-dependent fast K+ channel (Kv1.1). DamID reveals that Sh is bound by both Isl and Lim3. We used body wall muscle as a test tissue because in conditions of low Ca2+, the fast K+ current is carried solely by Sh channels (unlike neurons in which a second fast K+ current, Shal, also contributes). Ectopic expression of isl, but not Lim3, is sufficient to reduce both Sh transcript and Sh current level. By contrast, coexpression of both TFs is additive, resulting in a significantly greater reduction in both Sh transcript and current compared with isl expression alone. These observations provide evidence for combinatorial activity of Isl and Lim3 in regulating ion channel gene expression. PMID:24523544
Regulation of neural macroRNAs by the transcriptional repressor REST
Johnson, Rory; Teh, Christina Hui-Leng; Jia, Hui; Vanisri, Ravi Raj; Pandey, Tridansh; Lu, Zhong-Hao; Buckley, Noel J.; Stanton, Lawrence W.; Lipovich, Leonard
2009-01-01
The essential transcriptional repressor REST (repressor element 1-silencing transcription factor) plays central roles in development and human disease by regulating a large cohort of neural genes. These have conventionally fallen into the class of known, protein-coding genes; recently, however, several noncoding microRNA genes were identified as REST targets. Given the widespread transcription of messenger RNA-like, noncoding RNAs (“macroRNAs”), some of which are functional and implicated in disease in mammalian genomes, we sought to determine whether this class of noncoding RNAs can also be regulated by REST. By applying a new, unbiased target gene annotation pipeline to computationally discovered REST binding sites, we find that 23% of mammalian REST genomic binding sites are within 10 kb of a macroRNA gene. These putative target genes were overlooked by previous studies. Focusing on a set of 18 candidate macroRNA targets from mouse, we experimentally demonstrate that two are regulated by REST in neural stem cells. Flanking protein-coding genes are, at most, weakly repressed, suggesting specific targeting of the macroRNAs by REST. Similar to the majority of known REST target genes, both of these macroRNAs are induced during nervous system development and have neurally restricted expression profiles in adult mouse. We observe a similar phenomenon in human: the DiGeorge syndrome-associated noncoding RNA, DGCR5, is repressed by REST through a proximal upstream binding site. Therefore neural macroRNAs represent an additional component of the REST regulatory network. These macroRNAs are new candidates for understanding the role of REST in neuronal development, neurodegeneration, and cancer. PMID:19050060
Regulation of neural macroRNAs by the transcriptional repressor REST.
Johnson, Rory; Teh, Christina Hui-Leng; Jia, Hui; Vanisri, Ravi Raj; Pandey, Tridansh; Lu, Zhong-Hao; Buckley, Noel J; Stanton, Lawrence W; Lipovich, Leonard
2009-01-01
The essential transcriptional repressor REST (repressor element 1-silencing transcription factor) plays central roles in development and human disease by regulating a large cohort of neural genes. These have conventionally fallen into the class of known, protein-coding genes; recently, however, several noncoding microRNA genes were identified as REST targets. Given the widespread transcription of messenger RNA-like, noncoding RNAs ("macroRNAs"), some of which are functional and implicated in disease in mammalian genomes, we sought to determine whether this class of noncoding RNAs can also be regulated by REST. By applying a new, unbiased target gene annotation pipeline to computationally discovered REST binding sites, we find that 23% of mammalian REST genomic binding sites are within 10 kb of a macroRNA gene. These putative target genes were overlooked by previous studies. Focusing on a set of 18 candidate macroRNA targets from mouse, we experimentally demonstrate that two are regulated by REST in neural stem cells. Flanking protein-coding genes are, at most, weakly repressed, suggesting specific targeting of the macroRNAs by REST. Similar to the majority of known REST target genes, both of these macroRNAs are induced during nervous system development and have neurally restricted expression profiles in adult mouse. We observe a similar phenomenon in human: the DiGeorge syndrome-associated noncoding RNA, DGCR5, is repressed by REST through a proximal upstream binding site. Therefore neural macroRNAs represent an additional component of the REST regulatory network. These macroRNAs are new candidates for understanding the role of REST in neuronal development, neurodegeneration, and cancer.
Zhang, Shuwei; Ding, Feng; He, Xinhua; Luo, Cong; Huang, Guixiang; Hu, Ying
2015-02-01
Seedlessness is a desirable character in lemons and other citrus species. Seedless fruit can be induced in many ways, including through self-incompatibility (SI). SI is widely used as an intraspecific reproductive barrier that prevents self-fertilization in flowering plants. Although there have been many studies on SI, its mechanism remains unclear. The 'Xiangshui' lemon is an important seedless cultivar whose seedlessness has been caused by SI. It is essential to identify genes involved in SI in 'Xiangshui' lemon to clarify its molecular mechanism. In this study, candidate genes associated with SI were identified using high-throughput Illumina RNA sequencing (RNA-seq). A total of 61,224 unigenes were obtained (average, 948 bp; N50 of 1,457 bp), among which 47,260 unigenes were annotated by comparison to six public databases (Nr, Nt, Swiss-Prot, KEGG, COG, and GO). Differentially expressed genes were identified by comparing the transcriptomes of no-, self-, and cross-pollinated stigmas with styles of the 'Xiangshui' lemon. Several differentially expressed genes that might be associated with SI were identified, such as those involved in pollen tube growth, programmed cell death, signal transduction, and transcription. NADPH oxidase genes associated with apoptosis were highly upregulated in the self-pollinated transcriptome. The expression pattern of 12 genes was analyzed by quantitative real-time polymerase chain reaction. A putative S-RNase gene was identified that had not been previously associated with self-pollen rejection in lemon or citrus. This study provided a transcriptome dataset for further studies of SI and seedless lemon breeding.
Kantyka, Tomasz; Rawlings, Neil D.; Potempa, Jan
2010-01-01
In metazoan organisms protein inhibitors of peptidases are important factors essential for regulation of proteolytic activity. In vertebrates genes encoding peptidase inhibitors constitute up to 1% of genes reflecting a need for tight and specific control of proteolysis especially in extracellular body fluids. In stark contrast unicellular organisms, both prokaryotic and eukaryotic consistently contain only few, if any, genes coding for putative peptidase inhibitors. This may seem perplexing in the light of the fact that these organisms produce large numbers of proteases of different catalytic classes with the genes constituting up to 6% of the total gene count with the average being about 3%. Apparently, however, a unicellular life-style is fully compatible with other mechanisms of regulation of proteolysis and does not require protein inhibitors to control their intracellular and extracellular proteolytic activity. So in prokaryotes occurrence of genes encoding different types of peptidase inhibitors is infrequent and often scattered among phylogenetically distinct orders or even phyla of microbiota. Genes encoding proteins homologous to alpha-2-macroglobulin (family I39), serine carboxypeptidase Y inhibitor (family I51), alpha-1-peptidase inhibitor (family I4) and ecotin (family I11) are the most frequently represented in Bacteria. Although several of these gene products were shown to possess inhibitory activity, with an exception of ecotin and staphostatins, the biological function of microbial inhibitors is unclear. In this review we present distribution of protein inhibitors from different families among prokaryotes, describe their mode of action and hypothesize on their role in microbial physiology and interactions with hosts and environment. PMID:20558234
Two rapidly evolving genes contribute to male fitness in Drosophila
Reinhardt, Josephine A; Jones, Corbin D
2013-01-01
Purifying selection often results in conservation of gene sequence and function. The most functionally conserved genes are also thought to be among the most biologically essential. These observations have led to the use of sequence conservation as a proxy for functional conservation. Here we describe two genes that are exceptions to this pattern. We show that lack of sequence conservation among orthologs of CG15460 and CG15323 – herein named jean-baptiste (jb) and karr respectively – does not necessarily predict lack of functional conservation. These two Drosophila melanogaster genes are among the most rapidly evolving protein-coding genes in this species, being nearly as diverged from their D. yakuba orthologs as random sequences are. jb and karr are both expressed at an elevated level in larval males and adult testes, but they are not accessory gland proteins and their loss does not affect male fertility. Instead, knockdown of these genes in D. melanogaster via RNA interference caused male-biased viability defects. These viability effects occur prior to the third instar for jb and during late pupation for karr. We show that putative orthologs to jb and karr are also expressed strongly in the testes of other Drosophila species and have similar gene structure across species despite low levels of sequence conservation. While standard molecular evolution tests could not reject neutrality, other data hint at a role for natural selection. Together these data provide a clear case where a lack of sequence conservation does not imply a lack of conservation of expression or function. PMID:24221639
A Cell-surface Phylome for African Trypanosomes
Jackson, Andrew P.; Allison, Harriet C.; Barry, J. David; Field, Mark C.; Hertz-Fowler, Christiane; Berriman, Matthew
2013-01-01
The cell surface of Trypanosoma brucei, like many protistan blood parasites, is crucial for mediating host-parasite interactions and is instrumental to the initiation, maintenance and severity of infection. Previous comparisons with the related trypanosomatid parasites T. cruzi and Leishmania major suggest that the cell-surface proteome of T. brucei is largely taxon-specific. Here we compare genes predicted to encode cell surface proteins of T. brucei with those from two related African trypanosomes, T. congolense and T. vivax. We created a cell surface phylome (CSP) by estimating phylogenies for 79 gene families with putative surface functions to understand the more recent evolution of African trypanosome surface architecture. Our findings demonstrate that the transferrin receptor genes essential for bloodstream survival in T. brucei are conserved in T. congolense but absent from T. vivax and include an expanded gene family of insect stage-specific surface glycoproteins that includes many currently uncharacterized genes. We also identify species-specific features and innovations and confirm that these include most expression site-associated genes (ESAGs) in T. brucei, which are absent from T. congolense and T. vivax. The CSP presents the first global picture of the origins and dynamics of cell surface architecture in African trypanosomes, representing the principal differences in genomic repertoire between African trypanosome species and provides a basis from which to explore the developmental and pathological differences in surface architectures. All data can be accessed at: http://www.genedb.org/Page/trypanosoma_surface_phylome. PMID:23556014
Complexity in the cattle CD94/NKG2 gene families.
Birch, James; Ellis, Shirley A
2007-04-01
Natural killer cell responses are controlled to a large extent by the interaction of an array of inhibitory and activating receptors with their ligands. The mostly nonpolymorphic CD94/NKG2 receptors in both humans and mice were shown to recognize a single nonclassical MHC class I molecule in each case. In this paper, we describe the CD94/NKG2 gene family in cattle. NKG2 and CD94 sequences were amplified from cDNA derived from four animals. Four CD94 sequences, ten NKG2A, and three NKG2C sequences were identified in total. In contrast to human, we show that cattle have multiple distinct NKG2A genes, some of which show minor allelic variation. All of the sequences designated NKG2A have two tyrosine-based inhibitory motifs in the cytoplasmic domain and one putative gene has, in addition, a charged residue in the transmembrane domain. NKG2C appears to be essentially monomorphic in cattle. All of the NKG2A sequences are similar apart from NKG2A-01, which, in contrast, shares the majority of its carbohydrate recognition domain with NKG2-C. Most of the genes appear to generate multiple alternatively spliced forms. These findings suggest that the CD94/NKG2A heterodimers in cattle, in contrast to other species, are binding several different ligands. Because NKG2C is not polymorphic, this raises questions as to the combined functional capacity of the CD94/NKG2 gene families in cattle.
Regulation of human heme oxygenase-1 gene expression under thermal stress.
Okinaga, S; Takahashi, K; Takeda, K; Yoshizawa, M; Fujita, H; Sasaki, H; Shibahara, S
1996-06-15
Heme oxygenase-1 is an essential enzyme in heme catabolism, and its human gene promoter contains a putative heat shock element (HHO-HSE). This study was designed to analyze the regulation of human heme oxygenase-1 gene expression under thermal stress. The amounts of heme oxygenase-1 protein were not increased by heat shock (incubation at 42 degrees C) in human alveolar macrophages and in a human erythroblastic cell line, YN-1-0-A, whereas heat shock protein 70 (HSP70) was noticeably induced. However, heat shock factor does bind in vitro to HHO-HSE and the synthetic HHO-HSE by itself is sufficient to confer the increase in the transient expression of a reporter gene upon heat shock. The deletion of the sequence, located downstream from HHO-HSE, resulted in the activation of a reporter gene by heat shock. These results suggest that HHO-HSE is potentially functional but is repressed in vivo. Interestingly, heat shock abolished the remarkable increase in the levels of heme oxygenase-1 mRNA in YN-1-0-A cells treated with hemin or cadmium, in which HSP70 mRNA was noticeably induced. Furthermore, transient expression assays showed that heat shock inhibits the cadmium-mediated activation of the heme oxygenase-1 promoter, whereas the HSP70 gene promoter was activated upon heat shock. Such regulation of heme oxygenase-1 under thermal stress may be of physiologic significance in erythroid cells.
Ballester, Patricia; Navarrete-Gómez, Marisa; Carbonero, Pilar; Oñate-Sánchez, Luis; Ferrándiz, Cristina
2015-09-01
The NGATHA (NGA) clade of transcription factors (TFs) forms a small subfamily of four members in Arabidopsis thaliana. NGA genes act redundantly to direct the development of apical tissues in the gynoecium, where they have been shown to be essential for style and stigma specification. In addition, NGA genes have a more general role in controlling lateral organ growth. The four NGA genes in Arabidopsis are expressed in very similar domains, although little is known about the nature of their putative regulators. Here, we have identified a conserved region within the four NGA promoters that we have used as a bait to screen a yeast library, aiming to identify such NGA regulators. Three members of the TCP family of TFs, named after the founding factors TEOSINTE BRANCHED 1, CYCLOIDEA and PROLIFERATING CELL FACTOR 1 AND 2), were recovered from this screening, of which two [TCP2 and TCP3, members of the CINCINNATA (CIN) family of TCP genes (CIN-TCP) subclade] were shown to activate the NGA3 promoter in planta. We provide evidence that support that CIN-TCP genes are true regulators of NGA gene expression, and that part of the CIN-TCP role in leaf development is mediated by NGA upregulation. Moreover, we have found that this TCP-NGA regulatory interaction is likely conserved in angiosperms, including important crop species, for which the regulation of leaf development is a target for biotechnological improvement. © 2015 Scandinavian Plant Physiology Society.
Venieraki, Anastasia; Dimou, Maria; Vezyri, Eleni; Vamvakas, Alexandros; Katinaki, Pagona-Artemis; Chatzipavlidis, Iordanis; Tampakaki, Anastasia; Katinakis, Panagiotis
2014-01-01
The presence of nitrogen fixers within the genus Pseudomonas has been established and so far most isolated strains are phylogenetically affiliated to Pseudomonas stutzeri. A gene ortholog neighborhood analysis of the nitrogen fixation island (NFI) in four diazotrophic P. stutzeri strains and Pseudomonas azotifigens revealed that all are flanked by genes coding for cobalamin synthase (cobS) and glutathione peroxidise (gshP). The putative NFIs lack all the features characterizing a mobilizable genomic island. Nevertheless, bioinformatic analysis P. stutzeri DSM 4166 NFI demonstrated the presence of short inverted and/or direct repeats within both flanking regions. The other P. stutzeri strains carry only one set of repeats. The genetic diversity of eleven diazotrophic Pseudomonas isolates was also investigated. Multilocus sequence typing grouped nine isolates along with P. stutzeri and two isolates are grouped in a separate clade. A Rep-PCR fingerprinting analysis grouped the eleven isolates into four distinct genotypes. We also provided evidence that the putative NFI in our diazotrophic Pseudomonas isolates is flanked by cobS and gshP genes. Furthermore, we demonstrated that the putative NFI of Pseudomonas sp. Gr65 is flanked by inverted repeats identical to those found in P. stutzeri DSM 4166 and while the other P. stutzeri isolates harbor the repeats located in the intergenic region between cobS and glutaredoxin genes as in the case of P. stutzeri A1501. Taken together these data suggest that all putative NFIs of diazotrophic Pseudomonas isolates are anchored in an intergenic region between cobS and gshP genes and their flanking regions are designated by distinct repeats patterns. Moreover, the presence of almost identical NFIs in diazotrophic Pseudomonas strains isolated from distal geographical locations around the world suggested that this horizontal gene transfer event may have taken place early in the evolution. PMID:25251496
Venieraki, Anastasia; Dimou, Maria; Vezyri, Eleni; Vamvakas, Alexandros; Katinaki, Pagona-Artemis; Chatzipavlidis, Iordanis; Tampakaki, Anastasia; Katinakis, Panagiotis
2014-01-01
The presence of nitrogen fixers within the genus Pseudomonas has been established and so far most isolated strains are phylogenetically affiliated to Pseudomonas stutzeri. A gene ortholog neighborhood analysis of the nitrogen fixation island (NFI) in four diazotrophic P. stutzeri strains and Pseudomonas azotifigens revealed that all are flanked by genes coding for cobalamin synthase (cobS) and glutathione peroxidise (gshP). The putative NFIs lack all the features characterizing a mobilizable genomic island. Nevertheless, bioinformatic analysis P. stutzeri DSM 4166 NFI demonstrated the presence of short inverted and/or direct repeats within both flanking regions. The other P. stutzeri strains carry only one set of repeats. The genetic diversity of eleven diazotrophic Pseudomonas isolates was also investigated. Multilocus sequence typing grouped nine isolates along with P. stutzeri and two isolates are grouped in a separate clade. A Rep-PCR fingerprinting analysis grouped the eleven isolates into four distinct genotypes. We also provided evidence that the putative NFI in our diazotrophic Pseudomonas isolates is flanked by cobS and gshP genes. Furthermore, we demonstrated that the putative NFI of Pseudomonas sp. Gr65 is flanked by inverted repeats identical to those found in P. stutzeri DSM 4166 and while the other P. stutzeri isolates harbor the repeats located in the intergenic region between cobS and glutaredoxin genes as in the case of P. stutzeri A1501. Taken together these data suggest that all putative NFIs of diazotrophic Pseudomonas isolates are anchored in an intergenic region between cobS and gshP genes and their flanking regions are designated by distinct repeats patterns. Moreover, the presence of almost identical NFIs in diazotrophic Pseudomonas strains isolated from distal geographical locations around the world suggested that this horizontal gene transfer event may have taken place early in the evolution.
Praz, Coraline R.; Menardo, Fabrizio; Robinson, Mark D.; Müller, Marion C.; Wicker, Thomas; Bourras, Salim; Keller, Beat
2018-01-01
Powdery mildew is an important disease of cereals. It is caused by one species, Blumeria graminis, which is divided into formae speciales each of which is highly specialized to one host. Recently, a new form capable of growing on triticale (B.g. triticale) has emerged through hybridization between wheat and rye mildews (B.g. tritici and B.g. secalis, respectively). In this work, we used RNA sequencing to study the molecular basis of host adaptation in B.g. triticale. We analyzed gene expression in three B.g. tritici isolates, two B.g. secalis isolates and two B.g. triticale isolates and identified a core set of putative effector genes that are highly expressed in all formae speciales. We also found that the genes differentially expressed between isolates of the same form as well as between different formae speciales were enriched in putative effectors. Their coding genes belong to several families including some which contain known members of mildew avirulence (Avr) and suppressor (Svr) genes. Based on these findings we propose that effectors play an important role in host adaptation that is mechanistically based on Avr-Resistance gene-Svr interactions. We also found that gene expression in the B.g. triticale hybrid is mostly conserved with the parent-of-origin, but some genes inherited from B.g. tritici showed a B.g. secalis-like expression. Finally, we identified 11 unambiguous cases of putative effector genes with hybrid-specific, non-parent of origin gene expression, and we propose that they are possible determinants of host specialization in triticale mildew. These data suggest that altered expression of multiple effector genes, in particular Avr and Svr related factors, might play a role in mildew host adaptation based on hybridization. PMID:29441081
Mihali, Troco K; Kellmann, Ralf; Neilan, Brett A
2009-03-30
Saxitoxin and its analogues collectively known as the paralytic shellfish toxins (PSTs) are neurotoxic alkaloids and are the cause of the syndrome named paralytic shellfish poisoning. PSTs are produced by a unique biosynthetic pathway, which involves reactions that are rare in microbial metabolic pathways. Nevertheless, distantly related organisms such as dinoflagellates and cyanobacteria appear to produce these toxins using the same pathway. Hypothesised explanations for such an unusual phylogenetic distribution of this shared uncommon metabolic pathway, include a polyphyletic origin, an involvement of symbiotic bacteria, and horizontal gene transfer. We describe the identification, annotation and bioinformatic characterisation of the putative paralytic shellfish toxin biosynthesis clusters in an Australian isolate of Anabaena circinalis and an American isolate of Aphanizomenon sp., both members of the Nostocales. These putative PST gene clusters span approximately 28 kb and contain genes coding for the biosynthesis and export of the toxin. A putative insertion/excision site in the Australian Anabaena circinalis AWQC131C was identified, and the organization and evolution of the gene clusters are discussed. A biosynthetic pathway leading to the formation of saxitoxin and its analogues in these organisms is proposed. The PST biosynthesis gene cluster presents a mosaic structure, whereby genes have apparently transposed in segments of varying size, resulting in different gene arrangements in all three sxt clusters sequenced so far. The gene cluster organizational structure and sequence similarity seems to reflect the phylogeny of the producer organisms, indicating that the gene clusters have an ancient origin, or that their lateral transfer was also an ancient event. The knowledge we gain from the characterisation of the PST biosynthesis gene clusters, including the identity and sequence of the genes involved in the biosynthesis, may also afford the identification of these gene clusters in dinoflagellates, the cause of human mortalities and significant financial loss to the tourism and shellfish industries.
Mihali, Troco K; Kellmann, Ralf; Neilan, Brett A
2009-01-01
Background Saxitoxin and its analogues collectively known as the paralytic shellfish toxins (PSTs) are neurotoxic alkaloids and are the cause of the syndrome named paralytic shellfish poisoning. PSTs are produced by a unique biosynthetic pathway, which involves reactions that are rare in microbial metabolic pathways. Nevertheless, distantly related organisms such as dinoflagellates and cyanobacteria appear to produce these toxins using the same pathway. Hypothesised explanations for such an unusual phylogenetic distribution of this shared uncommon metabolic pathway, include a polyphyletic origin, an involvement of symbiotic bacteria, and horizontal gene transfer. Results We describe the identification, annotation and bioinformatic characterisation of the putative paralytic shellfish toxin biosynthesis clusters in an Australian isolate of Anabaena circinalis and an American isolate of Aphanizomenon sp., both members of the Nostocales. These putative PST gene clusters span approximately 28 kb and contain genes coding for the biosynthesis and export of the toxin. A putative insertion/excision site in the Australian Anabaena circinalis AWQC131C was identified, and the organization and evolution of the gene clusters are discussed. A biosynthetic pathway leading to the formation of saxitoxin and its analogues in these organisms is proposed. Conclusion The PST biosynthesis gene cluster presents a mosaic structure, whereby genes have apparently transposed in segments of varying size, resulting in different gene arrangements in all three sxt clusters sequenced so far. The gene cluster organizational structure and sequence similarity seems to reflect the phylogeny of the producer organisms, indicating that the gene clusters have an ancient origin, or that their lateral transfer was also an ancient event. The knowledge we gain from the characterisation of the PST biosynthesis gene clusters, including the identity and sequence of the genes involved in the biosynthesis, may also afford the identification of these gene clusters in dinoflagellates, the cause of human mortalities and significant financial loss to the tourism and shellfish industries. PMID:19331657
Cui, Z; Hui, M; Liu, Y; Song, C; Li, X; Li, Y; Liu, L; Shi, G; Wang, S; Li, F; Zhang, X; Liu, C; Xiang, J; Chu, K H
2015-01-01
The sex determination system in crabs is believed to be XY-XX from karyotypy, but centromeres could not be identified in some chromosomes and their morphology is not completely clear. Using quantitative trait locus mapping of the gender phenotype, we revealed a ZW-ZZ sex determination system in Eriocheir sinensis and presented a high-density linkage map covering ~98.5% of the genome, with 73 linkage groups corresponding to the haploid chromosome number. All sex-linked markers in the family we used were located on a single linkage group, LG60, and sex linkage was confirmed by genome-wide association studies (GWAS). Forty-six markers detected by GWAS were heterozygous and segregated only in the female parent. The female LG60 was thus the putative W chromosome, with the homologous male LG60 as the Z chromosome. The putative Z and W sex chromosomes were identical in size and carried many homologous loci. Sex ratio (5:1) skewing towards females in induced triploids using unrelated animals also supported a ZW-ZZ system. Transcriptome data were used to search for candidate sex-determining loci, but only one LG60 gene was identified as an ankyrin-2 gene. Double sex- and mab3-related transcription factor 1 (Dmrt1), a Z-linked gene in birds, was located on a putative autosome. With complete genome sequencing and transcriptomic data, more genes on putative sex chromosomes will be characterised, thus leading towards a comprehensive understanding of the sex determination and differentiation mechanisms of E. sinensis, and decapod crustaceans in general. PMID:25873149
Regulation of the aceI multidrug efflux pump gene in Acinetobacter baumannii.
Liu, Qi; Hassan, Karl A; Ashwood, Heather E; Gamage, Hasinika K A H; Li, Liping; Mabbutt, Bridget C; Paulsen, Ian T
2018-06-01
To investigate the function of AceR, a putative transcriptional regulator of the chlorhexidine efflux pump gene aceI in Acinetobacter baumannii. Chlorhexidine susceptibility and chlorhexidine induction of aceI gene expression were determined by MIC and quantitative real-time PCR, respectively, in A. baumannii WT and ΔaceR mutant strains. Recombinant AceR was prepared as both a full-length protein and as a truncated protein, AceR (86-299), i.e. AceRt, which has the DNA-binding domain deleted. The binding interaction of the purified AceR protein and its putative operator region was investigated by electrophoretic mobility shift assays and DNase I footprinting assays. The binding of AceRt with its putative ligand chlorhexidine was examined using surface plasmon resonance and tryptophan fluorescence quenching assays. MIC determination assays indicated that the ΔaceI and ΔaceR mutant strains both showed lower resistance to chlorhexidine than the parental strain. Chlorhexidine-induced expression of aceI was abolished in a ΔaceR background. Electrophoretic mobility shift assays and DNase I footprinting assays demonstrated chlorhexidine-stimulated binding of AceR with two sites upstream of the putative aceI promoter. Surface plasmon resonance and tryptophan fluorescence quenching assays suggested that the purified ligand-binding domain of the AceR protein was able to bind with chlorhexidine with high affinity. This study provides strong evidence that AceR is an activator of aceI gene expression when challenged with chlorhexidine. This study is the first characterization, to our knowledge, of a regulator controlling expression of a PACE family multidrug efflux pump.
Bai, Wen L; Zhao, Su J; Wang, Ze Y; Zhu, Yu B; Dang, Yun L; Cong, Yu Y; Xue, Hui L; Wang, Wei; Deng, Liang; Guo, Dan; Wang, Shi Q; Zhu, Yan X; Yin, Rong H
2018-07-03
Long noncoding RNAs (lncRNAs) are a novel class of eukaryotic transcripts. They are thought to act as a critical regulator of protein-coding gene expression. Herein, we identified and characterized 13 putative lncRNAs from the expressed sequence tags from secondary hair follicle of Cashmere goat. Furthermore, we investigated their transcriptional pattern in secondary hair follicle of Liaoning Cashmere goat during telogen and anagen phases. Also, we generated intracellular regulatory networks of upregulated lncRNAs at anagen in Wnt signaling pathway based on bioinformatics analysis. The relative expression of six putative lncRNAs (lncRNA-599618, -599556, -599554, -599547, -599531, and -599509) at the anagen phase is significantly higher than that at telogen. Compared with anagen, the relative expression of four putative lncRNAs (lncRNA-599528, -599518, -599511, and -599497) was found to be significantly upregulated at telogen phase. The network generated showed that a rich and complex regulatory relationship of the putative lncRNAs and related miRNAs with their target genes in Wnt signaling pathway. Our results from the present study provided a foundation for further elucidating the functional and regulatory mechanisms of these putative lncRNAs in the development of secondary hair follicle and cashmere fiber growth of Cashmere goat.
Ferro, Ana Margarida; Ramos, Patrícia; Guerra, Ângela; Parreira, Paula; Brás, Teresa; Guerreiro, Olinda; Jerónimo, Eliana; Capel, Carmen; Capel, Juan; Yuste-Lisbona, Fernando J; Duarte, Maria F; Lozano, Rafael; Oliveira, M Margarida; Gonçalves, Sónia
2018-04-01
Cynara cardunculus: L. represents a natural source of terpenic compounds, with the predominant molecule being cynaropicrin. Cynaropicrin is gaining interest since it has been correlated to anti-hyperlipidaemia, antispasmodic and cytotoxicity activity against leukocyte cancer cells. The objective of this work was to screen a collection of C. cardunculus, from different origins, for new allelic variants in germacrene A synthase (GAS) gene involved in the cynaropicrin biosynthesis and correlate them with improved cynaropicrin content and biological activities. Using high-resolution melting, nine haplotypes were identified. The putative impact of the identified allelic variants in GAS protein was evaluated by bioinformatic tools and polymorphisms that putatively lead to protein conformational changes were described. Additionally, cynaropicrin and main pentacyclic triterpenes contents, and antithrombin, antimicrobial and antiproliferative activities were also determined in C. cardunculus leaf lipophilic-derived extracts. In this work we identified allelic variants with putative impact on GAS protein, which are significantly associated with cynaropicrin content and antiproliferative activity. The results obtained suggest that the identified polymorphisms should be explored as putative genetic markers correlated with biological properties in Cynara cardunculus.
Ishikawa, Akira
2017-11-27
Large numbers of quantitative trait loci (QTL) affecting complex diseases and other quantitative traits have been reported in humans and model animals. However, the genetic architecture of these traits remains elusive due to the difficulty in identifying causal quantitative trait genes (QTGs) for common QTL with relatively small phenotypic effects. A traditional strategy based on techniques such as positional cloning does not always enable identification of a single candidate gene for a QTL of interest because it is difficult to narrow down a target genomic interval of the QTL to a very small interval harboring only one gene. A combination of gene expression analysis and statistical causal analysis can greatly reduce the number of candidate genes. This integrated approach provides causal evidence that one of the candidate genes is a putative QTG for the QTL. Using this approach, I have recently succeeded in identifying a single putative QTG for resistance to obesity in mice. Here, I outline the integration approach and discuss its usefulness using my studies as an example.
Kanneganti, Vydehi; Gupta, Aditya Kumar
2009-04-01
Pectin Methyl Esterases (PMEs) play an essential role during plant development by affecting the mechanical properties of the plant cell walls. Recent studies indicated that PMEs play important role in pollen tube development. In this study, we isolated a 1.3 kb cDNA clone from rice panicle cDNA library. It contained a 1038 bp of open reading frame (ORF) encoding for a putative pectin methyl esterase of 345 aminoacids with a 20 aminoacid signal peptide and was hence designated as OsPME1 (Oryza sativaPectin Methyl Esterase 1). It contained the structural arrangement GXYXE and GXXDFIF, found in the active groups of all PMEs. OsPME1 gene product shared varying identities, ranging from 52 % to 33 % with PMEs from other plant species belonging to Brassicaceae, Fabaceae, Amaranthaceae and Funariaceae. Southern blot analysis indicated that PME1 exists as a single copy in the rice genome. Expression pattern analysis revealed that OsPME1 is expressed only in pollen grains, during the later stages of their development and was also regulated by various abiotic stress treatments and phytohormones. Functional characterization of this pollen specific PME from rice would enable us to understand its role in pollen development.
Maldonado-Aguayo, W; Gallardo-Escárate, C
2014-06-01
Serine protease inhibitors, or serpins, target serine proteases, and are important regulators of intra- and extracellular proteolysis. For parasite survival, parasite-derived protease inhibitors have been suggested to play essential roles in evading the host's immune system and protecting against exogenous host proteases. The aim of this work was to identify serpins via high throughput transcriptome sequencing and elucidate their potential functions during the lifecycle of the salmon louse Caligus rogercresseyi. Eleven putative, partial serpin sequences in the C. rogercresseyi transcriptome were identified and denoted as Cr-serpins 1 to 11. Comparative analysis of the deduced serpin-like amino acid sequences revealed a highly conserved reactive center loop region. Interestingly, P1 residues suggest putative functions involved with the trypsin/subtilisin, elastase, or subtilisin inhibitors, which evidenced increasing gene expression profiles from the copepodid to adult stage in C. rogercresseyi. Concerning this, Cr-serpin 10 was mainly expressed in the copepodid stage, while Cr-serpins 3, 4, 5, and 11 were mostly expressed in chalimus and adult stages. These results suggest that serpins could be involved in evading the immune response of the host fish. The identification of these serpins furthers the understanding of the immune system in this important ectoparasite species. Copyright © 2014 Elsevier B.V. All rights reserved.
Physiological and Molecular Responses to Excess Boron in Citrus macrophylla W.
Martínez-Cuenca, Mary-Rus; Martínez-Alcántara, Belén; Quiñones, Ana; Ruiz, Marta; Iglesias, Domingo J; Primo-Millo, Eduardo; Forner-Giner, M Ángeles
2015-01-01
This work provides insight into several mechanisms involved in boron (B) regulation pathway in response to high B conditions in Citrus. The study was carried out in Citrus macrophylla W. (Cm) seedlings cultured "in vitro" in media with 50 or 400 μM H3BO3 (control, Ct, and B-excess, +B, plants, respectively). Growth parameters, B concentration, leaf chlorophyll (Chl) concentration, the expression of the main putative genes involved in B transport and distribution, and leaf and root proline and malonaldehyde (MDA) concentrations, were assessed. Excess B led to high B concentration in +B plants (3.8- and 1.4-fold in leaves and roots, respectively) when compared with Ct ones. However, a minor effect was recorded in the plant (incipient visual symptoms, less than 27% reduction in root growth and 26% decrease in Chl b concentration). B toxicity down-regulated by half the expression level of putative B transporter genes NIP5 and PIP1. CmBOR1 gene was not repressed in +B plants and B accumulated in the shoots. High B level increased the transcripts of putative gene TIP5, involved in B transport across the tonoplast, by 3.3- and 2.4-fold in leaves and roots, respectively. The activity of V-PPiase proton pump, related with the electrochemical gradient in the vacuole, was also enhanced in +B organs. B toxicity up-regulated putative BOR4 gene (2.1- and 2.7-fold in roots and leaves, respectively), which codifies for an active efflux B transporter. Accordingly, B was located in +B plants preferently in an insoluble form on cell walls. Finally, excess B caused a significant rise in proline concentration (51% and 34% in roots and leaves, respectively), while the MDA level did not exceed 20%. In conclusion, Cm tolerance to a high B level is likely based on the synergism of several specific mechanisms against B toxicity, including: 1/ down-regulation of NIP5 and PIP1 boron transporters; 2/ activation of B efflux from cells due to the up-regulation of putative BOR4 gene; 3/ compartmentation of B in the vacuole through TIP5 transporter activation and the acidification of the organelle; 4/ insolubilisation of B and deposition in cell walls preventing from cytoplasm damage; and, 5/ induction of an efficient antioxidant system through proline accumulation.
Physiological and Molecular Responses to Excess Boron in Citrus macrophylla W
Martínez-Cuenca, Mary-Rus; Martínez-Alcántara, Belén; Quiñones, Ana; Ruiz, Marta; Iglesias, Domingo J.; Primo-Millo, Eduardo; Forner-Giner, M. Ángeles
2015-01-01
This work provides insight into several mechanisms involved in boron (B) regulation pathway in response to high B conditions in Citrus. The study was carried out in Citrus macrophylla W. (Cm) seedlings cultured “in vitro” in media with 50 or 400 μM H3BO3 (control, Ct, and B-excess, +B, plants, respectively). Growth parameters, B concentration, leaf chlorophyll (Chl) concentration, the expression of the main putative genes involved in B transport and distribution, and leaf and root proline and malonaldehyde (MDA) concentrations, were assessed. Excess B led to high B concentration in +B plants (3.8- and 1.4-fold in leaves and roots, respectively) when compared with Ct ones. However, a minor effect was recorded in the plant (incipient visual symptoms, less than 27% reduction in root growth and 26% decrease in Chl b concentration). B toxicity down-regulated by half the expression level of putative B transporter genes NIP5 and PIP1. CmBOR1 gene was not repressed in +B plants and B accumulated in the shoots. High B level increased the transcripts of putative gene TIP5, involved in B transport across the tonoplast, by 3.3- and 2.4-fold in leaves and roots, respectively. The activity of V-PPiase proton pump, related with the electrochemical gradient in the vacuole, was also enhanced in +B organs. B toxicity up-regulated putative BOR4 gene (2.1- and 2.7-fold in roots and leaves, respectively), which codifies for an active efflux B transporter. Accordingly, B was located in +B plants preferently in an insoluble form on cell walls. Finally, excess B caused a significant rise in proline concentration (51% and 34% in roots and leaves, respectively), while the MDA level did not exceed 20%. In conclusion, Cm tolerance to a high B level is likely based on the synergism of several specific mechanisms against B toxicity, including: 1/ down-regulation of NIP5 and PIP1 boron transporters; 2/ activation of B efflux from cells due to the up-regulation of putative BOR4 gene; 3/ compartmentation of B in the vacuole through TIP5 transporter activation and the acidification of the organelle; 4/ insolubilisation of B and deposition in cell walls preventing from cytoplasm damage; and, 5/ induction of an efficient antioxidant system through proline accumulation. PMID:26225859
Putative cross-kingdom horizontal gene transfer in sponge (Porifera) mitochondria.
Rot, Chagai; Goldfarb, Itay; Ilan, Micha; Huchon, Dorothée
2006-09-14
The mitochondrial genome of Metazoa is usually a compact molecule without introns. Exceptions to this rule have been reported only in corals and sea anemones (Cnidaria), in which group I introns have been discovered in the cox1 and nad5 genes. Here we show several lines of evidence demonstrating that introns can also be found in the mitochondria of sponges (Porifera). A 2,349 bp fragment of the mitochondrial cox1 gene was sequenced from the sponge Tetilla sp. (Spirophorida). This fragment suggests the presence of a 1143 bp intron. Similar to all the cnidarian mitochondrial introns, the putative intron has group I intron characteristics. The intron is present in the cox1 gene and encodes a putative homing endonuclease. In order to establish the distribution of this intron in sponges, the cox1 gene was sequenced from several representatives of the demosponge diversity. The intron was found only in the sponge order Spirophorida. A phylogenetic analysis of the COI protein sequence and of the intron open reading frame suggests that the intron may have been transmitted horizontally from a fungus donor. Little is known about sponge-associated fungi, although in the last few years the latter have been frequently isolated from sponges. We suggest that the horizontal gene transfer of a mitochondrial intron was facilitated by a symbiotic relationship between fungus and sponge. Ecological relationships are known to have implications at the genomic level. Here, an ecological relationship between sponge and fungus is suggested based on the genomic analysis.
Genome sequence of Plasmopara viticola and insight into the pathogenic mechanism
Yin, Ling; An, Yunhe; Qu, Junjie; Li, Xinlong; Zhang, Yali; Dry, Ian; Wu, Huijuan; Lu, Jiang
2017-01-01
Plasmopara viticola causes downy mildew disease of grapevine which is one of the most devastating diseases of viticulture worldwide. Here we report a 101.3 Mb whole genome sequence of P. viticola isolate ‘JL-7-2’ obtained by a combination of Illumina and PacBio sequencing technologies. The P. viticola genome contains 17,014 putative protein-coding genes and has ~26% repetitive sequences. A total of 1,301 putative secreted proteins, including 100 putative RXLR effectors and 90 CRN effectors were identified in this genome. In the secretome, 261 potential pathogenicity genes and 95 carbohydrate-active enzymes were predicted. Transcriptional analysis revealed that most of the RXLR effectors, pathogenicity genes and carbohydrate-active enzymes were significantly up-regulated during infection. Comparative genomic analysis revealed that P. viticola evolved independently from the Arabidopsis downy mildew pathogen Hyaloperonospora arabidopsidis. The availability of the P. viticola genome provides a valuable resource not only for comparative genomic analysis and evolutionary studies among oomycetes, but also enhance our knowledge on the mechanism of interactions between this biotrophic pathogen and its host. PMID:28417959
Alpert, Carl-Alfred; Crutz-Le Coq, Anne-Marie; Malleret, Christine; Zagorec, Monique
2003-01-01
The complete nucleotide sequence of the 13-kb plasmid pRV500, isolated from Lactobacillus sakei RV332, was determined. Sequence analysis enabled the identification of genes coding for a putative type I restriction-modification system, two genes coding for putative recombinases of the integrase family, and a region likely involved in replication. The structural features of this region, comprising a putative ori segment containing 11- and 22-bp repeats and a repA gene coding for a putative initiator protein, indicated that pRV500 belongs to the pUCL287 subfamily of theta-type replicons. A 3.7-kb fragment encompassing this region was fused to an Escherichia coli replicon to produce the shuttle vector pRV566 and was observed to be functional in L. sakei for plasmid replication. The L. sakei replicon alone could not support replication in E. coli. Plasmid pRV500 and its derivative pRV566 were determined to be at very low copy numbers in L. sakei. pRV566 was maintained at a reasonable rate over 20 generations in several lactobacilli, such as Lactobacillus curvatus, Lactobacillus casei, and Lactobacillus plantarum, in addition to L. sakei, making it an interesting basis for developing vectors. Sequence relationships with other plasmids are described and discussed. PMID:12957947
Lo, Miranda; Murray, Gerald L; Khoo, Chen Ai; Haake, David A; Zuerner, Richard L; Adler, Ben
2010-11-01
Leptospirosis is a globally significant zoonosis caused by Leptospira spp. Iron is essential for growth of most bacterial species. Since iron availability is low in the host, pathogens have evolved complex iron acquisition mechanisms to survive and establish infection. In many bacteria, expression of iron uptake and storage proteins is regulated by Fur. L. interrogans encodes four predicted Fur homologs; we have constructed a mutation in one of these, la1857. We conducted microarray analysis to identify iron-responsive genes and to study the effects of la1857 mutation on gene expression. Under iron-limiting conditions, 43 genes were upregulated and 49 genes were downregulated in the wild type. Genes encoding proteins with predicted involvement in inorganic ion transport and metabolism (including TonB-dependent proteins and outer membrane transport proteins) were overrepresented in the upregulated list, while 54% of differentially expressed genes had no known function. There were 16 upregulated genes of unknown function which are absent from the saprophyte L. biflexa and which therefore may encode virulence-associated factors. Expression of iron-responsive genes was not significantly affected by mutagenesis of la1857, indicating that LA1857 is not a global regulator of iron homeostasis. Upregulation of heme biosynthetic genes and a putative catalase in the mutant suggested that LA1857 is more similar to PerR, a regulator of the oxidative stress response. Indeed, the la1857 mutant was more resistant to peroxide stress than the wild type. Our results provide insights into the role of iron in leptospiral metabolism and regulation of the oxidative stress response, including genes likely to be important for virulence.
Furuya, Toshiki; Hirose, Satomi; Osanai, Hisashi; Semba, Hisashi; Kino, Kuniki
2011-01-01
Mycobacterium goodii strain 12523 is an actinomycete that is able to oxidize phenol regioselectively at the para position to produce hydroquinone. In this study, we investigated the genes responsible for this unique regioselective oxidation. On the basis of the fact that the oxidation activity of M. goodii strain 12523 toward phenol is induced in the presence of acetone, we first identified acetone-induced proteins in this microorganism by two-dimensional electrophoretic analysis. The N-terminal amino acid sequence of one of these acetone-induced proteins shares 100% identity with that of the protein encoded by the open reading frame Msmeg_1971 in Mycobacterium smegmatis strain mc2155, whose genome sequence has been determined. Since Msmeg_1971, Msmeg_1972, Msmeg_1973, and Msmeg_1974 constitute a putative binuclear iron monooxygenase gene cluster, we cloned this gene cluster of M. smegmatis strain mc2155 and its homologous gene cluster found in M. goodii strain 12523. Sequence analysis of these binuclear iron monooxygenase gene clusters revealed the presence of four genes designated mimABCD, which encode an oxygenase large subunit, a reductase, an oxygenase small subunit, and a coupling protein, respectively. When the mimA gene (Msmeg_1971) of M. smegmatis strain mc2155, which was also found to be able to oxidize phenol to hydroquinone, was deleted, this mutant lost the oxidation ability. This ability was restored by introduction of the mimA gene of M. smegmatis strain mc2155 or of M. goodii strain 12523 into this mutant. Interestingly, we found that these gene clusters also play essential roles in propane and acetone metabolism in these mycobacteria. PMID:21183637
Jordão, Rita; Campos, Bruno; Lemos, Marco F L; Soares, Amadeu M V M; Tauler, Romà; Barata, Carlos
2016-06-01
Multixenobiotic resistance mechanisms (MXR) were recently identified in Daphnia magna. Previous results characterized gene transcripts of genes encoding and efflux activities of four putative ABCB1 and ABCC transporters that were chemically induced but showed low specificity against model transporter substrates and inhibitors, thus preventing us from distinguishing between activities of different efflux transporter types. In this study we report on the specificity of induction of ABC transporters and of the stress protein hsp70 in clones selected to be genetically resistant to ABCB1 chemical substrates. Clones resistant to mitoxantrone, ivermectin and pentachlorophenol showed distinctive transcriptional responses of transporter protein coding genes and of putative transporter dye activities. Expression of hsp70 proteins also varied across resistant clones. Clones resistant to mitoxantrone and pentachlorophenol showed high constitutive levels of hsp70. Transcriptional levels of the abcb1 gene transporter and of putative dye transporter activity were also induced to a greater extent in the pentachlorophenol resistant clone. Observed higher dye transporter activities in individuals from clones resistant to mitoxantrone and ivermectin were unrelated with transcriptional levels of the studied four abcc and abcb1 transporter genes. These findings suggest that Abcb1 induction in D. magna may be a part of a general cellular stress response. Copyright © 2016 Elsevier B.V. All rights reserved.
Sekeli, Rogayah; Abdullah, Janna Ong; Namasivayam, Parameswari; Muda, Pauziah; Abu Bakar, Umi Kalsom; Yeong, Wee Chien; Pillai, Vilasini
2014-06-19
The purpose of this study was to evaluate the effectiveness of using RNA interference in down regulating the expression of 1-aminocyclopropane-1-carboxylic acid oxidase gene in Eksotika papaya. One-month old embryogenic calli were separately transformed with Agrobacterium strain LBA 4404 harbouring the three different RNAi pOpOff2 constructs bearing the 1-aminocyclopropane-1-carboxylic acid oxidase gene. A total of 176 putative transformed lines were produced from 15,000 calli transformed, selected, then regenerated on medium supplemented with kanamycin. Integration and expression of the targeted gene in putatively transformed lines were verified by PCR and real-time RT-PCR. Confined field evaluation of a total of 31 putative transgenic lines planted showed a knockdown expression of the targeted ACO1 and ACO2 genes in 13 lines, which required more than 8 days to achieve the full yellow colour (Index 6). Fruits harvested from lines pRNAiACO2 L2-9 and pRNAiACO1 L2 exhibited about 20 and 14 days extended post-harvest shelf life to reach Index 6, respectively. The total soluble solids contents of the fruits ranged from 11 to 14° Brix, a range similar to fruits from non-transformed, wild type seed-derived plants.
Bu, Huajie; Narisu, Narisu; Schlick, Bettina; Rainer, Johannes; Manke, Thomas; Schäfer, Georg; Pasqualini, Lorenza; Chines, Peter; Schweiger, Michal R.; Fuchsberger, Christian
2015-01-01
ABSTRACT Genome‐wide association studies have identified genomic loci, whose single‐nucleotide polymorphisms (SNPs) predispose to prostate cancer (PCa). However, the mechanisms of most of these variants are largely unknown. We integrated chromatin‐immunoprecipitation‐coupled sequencing and microarray expression profiling in TMPRSS2‐ERG gene rearrangement positive DUCaP cells with the GWAS PCa risk SNPs catalog to identify disease susceptibility SNPs localized within functional androgen receptor‐binding sites (ARBSs). Among the 48 GWAS index risk SNPs and 3,917 linked SNPs, 80 were found located in ARBSs. Of these, rs11891426:T>G in an intron of the melanophilin gene (MLPH) was within a novel putative auxiliary AR‐binding motif, which is enriched in the neighborhood of canonical androgen‐responsive elements. T→G exchange attenuated the transcriptional activity of the ARBS in an AR reporter gene assay. The expression of MLPH in primary prostate tumors was significantly lower in those with the G compared with the T allele and correlated significantly with AR protein. Higher melanophilin level in prostate tissue of patients with a favorable PCa risk profile points out a tumor‐suppressive effect. These results unravel a hidden link between AR and a functional putative PCa risk SNP, whose allele alteration affects androgen regulation of its host gene MLPH. PMID:26411452
Lin, Sue; Huang, Li; Yu, Xiaolin; Xiong, Xingpeng; Yue, Xiaoyan; Liu, Tingting; Liang, Ying; Lv, Meiling; Cao, Jiashu
2017-02-01
Two homologous genes, Brassica campestris Male Fertility 23a (BcMF23a) and Brassica campestris Male Fertility 23b (BcMF23b), encoding putative pectin methylesterases (PMEs) were isolated from Brassica campestris ssp. chinensis (syn. Brassica rapa ssp. chinensis). These two genes sharing high sequence identity with each other were highly expressed in the fertile flower buds but silenced in the sterile ones of genic male sterile line system ('Bcajh97-01A/B'). Results of RT-PCR and in situ hybridization suggested that BcMF23a and BcMF23b were pollen-expressed genes, whose transcripts were first detected at the binucleate pollen and maintained throughout to the mature pollen grains. Western blot indicated that both of the putative BcMF23a and BcMF23b proteins are approximately 40 kDa, which exhibited extracellular localization revealed by transient expression analysis in the onion epidermal cells. The promoter of BcMF23a was active specifically in pollen during the late pollen developmental stages, while, in addition to the pollen, BcMF23b promoter drove an extra gene expression in the valve margins, abscission layer at the base of the first true leaves, taproot and lateral roots in seedlings.
Allen, S P; Polazzi, J O; Gierse, J K; Easton, A M
1992-01-01
In Escherichia coli high-level production of some heterologous proteins (specifically, human prorenin, renin, and bovine insulin-like growth factor 2) resulted in the induction of two new E. coli heat shock proteins, both of which have molecular masses of 16 kDa and are tightly associated with inclusion bodies formed during heterologous protein production. We named these inclusion body-associated proteins IbpA and IbpB. The coding sequences for IbpA and IbpB were identified and isolated from the Kohara E. coli gene bank. The genes for these proteins (ibpA and ibpB) are located at 82.5 min on the chromosome. Nucleotide sequencing of the two genes revealed that they are transcribed in the same direction and are separated by 110 bp. Putative Shine-Dalgarno sequences are located upstream from the initiation codons of both genes. A putative heat shock promoter is located upstream from ibpA, and a putative transcription terminator is located downstream from ibpB. A temperature upshift experiment in which we used a wild-type E. coli strain and an isogenic rpoH mutant strain indicated that a sigma 32-containing RNA polymerase is involved in the regulation of expression of these genes. There is 57.5% identity between the genes at the nucleotide level and 52.2% identity at the amino acid level. A search of the protein data bases showed that both of these 16-kDa proteins exhibit low levels of homology to low-molecular-weight heat shock proteins from eukaryotic species. Images PMID:1356969
Nærdal, Ingemar; Netzer, Roman; Irla, Marta; Krog, Anne; Heggeset, Tonje Marita Bjerkan; Wendisch, Volker F; Brautaset, Trygve
2017-02-20
Bacillus methanolicus is a methylotrophic bacterium with an increasing interest in academic research and for biotechnological applications. This bacterium was previously applied for methanol-based production of l-glutamate, l-lysine and the five-carbon diamine cadaverine by wild type, classical mutant and recombinant strains. The genomes of two different l-lysine secreting B. methanolicus classical mutant strains, NOA2#13A52-8A66 and M168-20, were sequenced. We focused on mutational mapping in genes present in l-lysine and other relevant amino acid biosynthetic pathways, as well as in the primary cell metabolism important for precursor supply. In addition to mutations in the aspartate pathway genes dapG, lysA and hom-1, new mutational target genes like alr, proA, proB1, leuC, odhA and pdhD were identified. Surprisingly, no mutations were found in the putative l-lysine transporter gene lysE MGA3 . Inspection of the wild type B. methanolicus strain PB1 genome sequence identified two homologous putative l-lysine transporter genes, lysE PB1 and lysE2 PB1 . The biological role of these putative l-lysine transporter genes, together with the heterologous l-lysine exporter gene lysE Cg from Corynebacterium glutamicum, were therefore investigated. Our results demonstrated that the titer of secreted l-lysine in B. methanolicus was significantly increased by overexpression of lysE Cg while overexpression of lysE MGA3 , lysE PB1 and lysE2 PB1 had no measurable effect. Copyright © 2017 Elsevier B.V. All rights reserved.
Lowry, Rebecca C; Parker, Jennifer L; Kumbhar, Ramhari; Mesnage, Stephane; Shaw, Jonathan G; Stafford, Graham P
2015-01-01
Aeromonas caviae is motile via a polar flagellum in liquid culture, with a lateral flagella system used for swarming on solid surfaces. The polar flagellum also has a role in cellular adherence and biofilm formation. The two subunits of the polar flagellum, FlaA and FlaB, are posttranslationally modified by O-linked glycosylation with pseudaminic acid on 6–8 serine and threonine residues within the central region of these proteins. This modification is essential for the formation of the flagellum. Aeromonas caviae possesses the simplest set of genes required for bacterial glycosylation currently known, with the putative glycosyltransferase, Maf1, being described recently. Here, we investigated the role of the AHA0618 gene, which shares homology (37% at the amino acid level) with the central region of a putative deglycosylation enzyme (HP0518) from the human pathogen Helicobacter pylori, which also glycosylates its flagellin and is proposed to be part of a flagellin deglycosylation pathway. Phenotypic analysis of an AHA0618 A. caviae mutant revealed increased swimming and swarming motility compared to the wild-type strain but without any detectable effects on the glycosylation status of the polar flagellins when analyzed by western blot analysis or mass spectroscopy. Bioinformatic analysis of the protein AHA0618, demonstrated homology to a family of l,d-transpeptidases involved in cell wall biology and peptidoglycan cross-linking (YkuD-like). Scanning electron microscopy (SEM) and fluorescence microscopy analysis of the wild-type and AHA0618-mutant A. caviae strains revealed the mutant to be subtly but significantly shorter than wild-type cells; a phenomenon that could be recovered when either AHA0618 or H. pylori HP0518 were introduced. We can therefore conclude that AHA0618 does not affect A. caviae behavior by altering polar flagellin glycosylation levels but is likely to have a role in peptidoglycan processing at the bacterial cell wall, consequently altering cell length and hence influencing motility. PMID:25515520
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todd, S.; Bolin, R.; Drabkin, H.A.
1995-01-01
Somatic deletions of chromosome 3p occur at high frequencies in cancers of kidney, breast, cervix, head and neck, nasopharynx, and lung. The frequency of 3p deletion in lung cancer approaches 100% among small cell lesions and 70 to 80% in non-small cell lesions. This evidence strongly implies that one or more tumor suppressor genes of potentially widespread significance reside within the deleted region(s). Precise definition of the deleted target region(s) has been difficult due to the extensive area(s) lost and use of markers with low informativeness. However, improved definition remains essential to permit isolation of putative tumor suppressor genes frommore » 3p. The identification of several small, homozygous 3p deletions in lung cancer cell lines has provided a critical resource that will assist this search. The U2020 cell line contains a small homozygous deletion that maps to a very proximal region of 3p and includes the marker D3S3. We previously identified a subset of DNA markers located within the deleted region and determined their relative order by pulsed-field gel mapping studies. In the present report, we describe the development of YAC contigs that span the majority of the deleted region and link up to flanking markers on both sides. The centromere proximal portion of the contig crosses the breakpoint from an X;3 translocation located within 3p12 providing both location and orientation to the map. PCR-based (CA){sub n} microsatellite polymorphisms have been localized within and flanking the deletion region. These markers should greatly facilitate loss-of-heterozygosity studies of this region in human cancer. The contig provides a direct means for isolation of putative tumor suppressor genes from this segment of 3p. 51 refs., 3 figs., 3 tabs.« less
2011-01-01
Background Acid stress impacts the persistence of lactobacilli in industrial sourdough fermentations, and in intestinal ecosystems. However, the contribution of glutamate to acid resistance in lactobacilli has not been demonstrated experimentally, and evidence for the contribution of acid resistance to the competitiveness of lactobacilli in sourdough is lacking. It was therefore the aim of this study to investigate the ecological role of glutamate decarboxylase in L. reuteri. Results A gene coding for a putative glutamate decarboxylase, gadB, was identified in the genome of L. reuteri 100-23. Different from the organization of genetic loci coding for glutamate decarboxylase in other lactic acid bacteria, gadB was located adjacent to a putative glutaminase gene, gls3. An isogenic deletion mutant, L. reuteri ∆gadB, was generated by a double crossover method. L. reuteri 100-23 but not L. reuteri ∆gadB converted glutamate to γ-aminobutyrate (GABA) in phosphate butter (pH 2.5). In sourdough, both strains converted glutamine to glutamate but only L. reuteri 100-23 accumulated GABA. Glutamate addition to phosphate buffer, pH 2.5, improved survival of L. reuteri 100-23 100-fold. However, survival of L. reuteri ∆gadB remained essentially unchanged. The disruption of gadB did not affect growth of L. reuteri in mMRS or in sourdough. However, the wild type strain L. reuteri 100-23 displaced L. reuteri ∆gadB after 5 cycles of fermentation in back-slopped sourdough fermentations. Conclusions The conversion of glutamate to GABA by L. reuteri 100-23 contributes to acid resistance and to competitiveness in industrial sourdough fermentations. The organization of the gene cluster for glutamate conversion, and the availability of amino acids in cereals imply that glutamine rather than glutamate functions as the substrate for GABA formation. The exceptional coupling of glutamine deamidation to glutamate decarboxylation in L. reuteri likely reflects adaptation to cereal substrates. PMID:21995488
BASH, a novel signaling molecule preferentially expressed in B cells of the bursa of Fabricius.
Goitsuka, R; Fujimura, Y; Mamada, H; Umeda, A; Morimura, T; Uetsuka, K; Doi, K; Tsuji, S; Kitamura, D
1998-12-01
The bursa of Fabricius is a gut-associated lymphoid organ that is essential for the generation of a diversified B cell repertoire in the chicken. We describe here a novel gene preferentially expressed in bursal B cells. The gene encodes an 85-kDa protein, designated BASH (B cell adaptor containing SH2 domain), that contains N-terminal acidic domains with SH2 domain-binding phosphotyrosine-based motifs, a proline-rich domain, and a C-terminal SH2 domain. BASH shows a substantial sequence similarity to SLP-76, an adaptor protein functioning in TCR-signal transduction. BASH becomes tyrosine-phosphorylated with the B cell Ag receptor (BCR) cross-link or by coexpression with Syk and Lyn and associates with signaling molecules including Syk and a putative chicken Shc homologue. Overexpression of BASH results in suppression of the NF-AT activation induced by BCR-cross-linking. These findings suggest that BASH is involved in BCR-mediated signal transduction and could play a critical role in B cell development in the bursa.
Cytokinin-dependent secondary growth determines root biomass in radish (Raphanus sativus L.)
Jang, Geupil; Lee, Jung-Hun; Rastogi, Khushboo; Park, Suhyoung; Oh, Sang-Hun; Lee, Ji-Young
2015-01-01
The root serves as an essential organ in plant growth by taking up nutrients and water from the soil and supporting the rest of the plant body. Some plant species utilize roots as storage organs. Sweet potatoes (Ipomoea batatas), cassava (Manihot esculenta), and radish (Raphanus sativus), for example, are important root crops. However, how their root growth is regulated remains unknown. In this study, we characterized the relationship between cambium and radial root growth in radish. Through a comparative analysis with Arabidopsis root expression data, we identified putative cambium-enriched transcription factors in radish and analysed their expression in representative inbred lines featuring distinctive radial growth. We found that cell proliferation activities in the cambium positively correlated with radial growth and final yields of radish roots. Expression analysis of candidate transcription factor genes revealed that some genes are differentially expressed between inbred lines and that the difference is due to the distinct cytokinin response. Taken together, we have demonstrated for the first time, to the best of our knowledge, that cytokinin-dependent radial growth plays a key role in the yields of root crops. PMID:25979997
Kakinuma, Makoto; Nakamoto, Chika; Kishi, Kazuki; Coury, Daniel A; Amano, Hideomi
2017-07-01
Ammonium and nitrate are the primary nitrogen sources in natural environments, and are essential for growth and development in photosynthetic eukaryotes. In this study, we report on the isolation and characterization of an ammonium transporter gene (PyAMT1) which performs a key function in nitrogen (N) metabolism of Pyropia yezoensis thalli. The predicted length of PyAMT1 was 483 amino acids (AAs). The AA sequence included 11 putative transmembrane domains and showed approximately 33-44% identity to algal and plant AMT1 AA sequences. Functional complementation in an AMT-defective yeast mutant indicated that PyAMT1 mediated ammonium transport across the plasma membrane. Expression analysis showed that the PyAMT1 mRNA level was strongly induced by N-deficiency, and was more highly suppressed by resupply of inorganic-N than organic-N. These results suggest that PyAMT1 plays important roles in the ammonium transport system, and is highly regulated in response to external/internal N-status. Copyright © 2016 Elsevier Ltd. All rights reserved.
De novo mutations in regulatory elements in neurodevelopmental disorders
Short, Patrick J.; McRae, Jeremy F.; Gallone, Giuseppe; Sifrim, Alejandro; Won, Hyejung; Geschwind, Daniel H.; Wright, Caroline F.; Firth, Helen V; FitzPatrick, David R.; Barrett, Jeffrey C.; Hurles, Matthew E.
2018-01-01
We previously estimated that 42% of patients with severe developmental disorders carry pathogenic de novo mutations in coding sequences. The role of de novo mutations in regulatory elements affecting genes associated with developmental disorders, or other genes, has been essentially unexplored. We identified de novo mutations in three classes of putative regulatory elements in almost 8,000 patients with developmental disorders. Here we show that de novo mutations in highly evolutionarily conserved fetal brain-active elements are significantly and specifically enriched in neurodevelopmental disorders. We identified a significant twofold enrichment of recurrently mutated elements. We estimate that, genome-wide, 1-3% of patients without a diagnostic coding variant carry pathogenic de novo mutations in fetal brain-active regulatory elements and that only 0.15% of all possible mutations within highly conserved fetal brain-active elements cause neurodevelopmental disorders with a dominant mechanism. Our findings represent a robust estimate of the contribution of de novo mutations in regulatory elements to this genetically heterogeneous set of disorders, and emphasize the importance of combining functional and evolutionary evidence to identify regulatory causes of genetic disorders. PMID:29562236
Fulde, Marcus; Willenborg, Joerg; de Greeff, Astrid; Benga, Laurentiu; Smith, Hilde E; Valentin-Weigand, Peter; Goethe, Ralph
2011-02-01
Streptococcus suis is one of the most important pathogens in pigs and can also cause severe infections in humans. Despite its clinical relevance, very little is known about the factors that contribute to its virulence. Recently, we identified a new putative virulence factor in S. suis, the arginine deiminase system (ADS), an arginine catabolic enzyme system encoded by the arcABC operon, which enables S. suis to survive in an acidic environment. In this study, we focused on ArgR, an ADS-associated regulator belonging to the ArgR/AhrC arginine repressor family. Using an argR knockout strain we were able to show that ArgR is essential for arcABC operon expression and necessary for the biological fitness of S. suis. By cDNA expression microarray analyses and quantitative real-time RT-PCR we found that the arcABC operon is the only gene cluster regulated by ArgR, which is in contrast to the situation in many other bacteria. Reporter gene analysis with gfp under the control of the arcABC promoter demonstrated that ArgR is able to activate the arcABC promoter. Electrophoretic mobility shift assays with fragments of the arcABC promoter and recombinant ArgR, and chromatin immunoprecipitation with antibodies directed against ArgR, revealed that ArgR interacts with the arcABC promoter in vitro and in vivo by binding to a region from -147 to -72 bp upstream of the transcriptional start point. Overall, our results show that in S. suis, ArgR is an essential, system-specific transcriptional regulator of the ADS that interacts directly with the arcABC promoter in vivo.
Smith, Steven D.; Bridou, Romain; Johs, Alexander; ...
2015-02-27
Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential formore » mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. Ultimately, this study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin.« less
USDA-ARS?s Scientific Manuscript database
Lipase (lip) and lipase-specific foldase (lif) genes of a biodegradable polyhydroxyalkanoate- (PHA-) synthesizing Pseudomonas resinovorans NRRL B-2649 were cloned using primers based on consensus sequences, followed by PCR-based genome walking. Sequence analyses showed a putative Lip gene-product (...
Chen, Wei-Hua; Lu, Guanting; Chen, Xiao; Zhao, Xing-Ming; Bork, Peer
2017-01-04
OGEE is an Online GEne Essentiality database. To enhance our understanding of the essentiality of genes, in OGEE we collected experimentally tested essential and non-essential genes, as well as associated gene properties known to contribute to gene essentiality. We focus on large-scale experiments, and complement our data with text-mining results. We organized tested genes into data sets according to their sources, and tagged those with variable essentiality statuses across data sets as conditionally essential genes, intending to highlight the complex interplay between gene functions and environments/experimental perturbations. Developments since the last public release include increased numbers of species and gene essentiality data sets, inclusion of non-coding essential sequences and genes with intermediate essentiality statuses. In addition, we included 16 essentiality data sets from cancer cell lines, corresponding to 9 human cancers; with OGEE, users can easily explore the shared and differentially essential genes within and between cancer types. These genes, especially those derived from cell lines that are similar to tumor samples, could reveal the oncogenic drivers, paralogous gene expression pattern and chromosomal structure of the corresponding cancer types, and can be further screened to identify targets for cancer therapy and/or new drug development. OGEE is freely available at http://ogee.medgenius.info. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Gu, Xiao-Cui; Zhang, Ya-Nan; Kang, Ke; Dong, Shuang-Lin; Zhang, Long-Wa
2015-01-01
The red turpentine beetle (RTB), Dendroctonus valens LeConte (Coleoptera: Curculionidae, Scolytinae), is a destructive invasive pest of conifers which has become the second most important forest pest nationwide in China. Dendroctonus valens is known to use host odors and aggregation pheromones, as well as non-host volatiles, in host location and mass-attack modulation, and thus antennal olfaction is of the utmost importance for the beetles' survival and fitness. However, information on the genes underlying olfaction has been lacking in D. valens. Here, we report the antennal transcriptome of D. valens from next-generation sequencing, with the goal of identifying the olfaction gene repertoire that is involved in D. valens odor-processing. We obtained 51 million reads that were assembled into 61,889 genes, including 39,831 contigs and 22,058 unigenes. In total, we identified 68 novel putative odorant reception genes, including 21 transcripts encoding for putative odorant binding proteins (OBP), six chemosensory proteins (CSP), four sensory neuron membrane proteins (SNMP), 22 odorant receptors (OR), four gustatory receptors (GR), three ionotropic receptors (IR), and eight ionotropic glutamate receptors. We also identified 155 odorant/xenobiotic degradation enzymes from the antennal transcriptome, putatively identified to be involved in olfaction processes including cytochrome P450s, glutathione-S-transferases, and aldehyde dehydrogenase. Predicted protein sequences were compared with counterparts in Tribolium castaneum, Megacyllene caryae, Ips typographus, Dendroctonus ponderosae, and Agrilus planipennis. The antennal transcriptome described here represents the first study of the repertoire of odor processing genes in D. valens. The genes reported here provide a significant addition to the pool of identified olfactory genes in Coleoptera, which might represent novel targets for insect management. The results from our study also will assist with evolutionary analyses of coleopteran olfaction.
Dong, Shuang-Lin; Zhang, Long-Wa
2015-01-01
Background The red turpentine beetle (RTB), Dendroctonus valens LeConte (Coleoptera: Curculionidae, Scolytinae), is a destructive invasive pest of conifers which has become the second most important forest pest nationwide in China. Dendroctonus valens is known to use host odors and aggregation pheromones, as well as non-host volatiles, in host location and mass-attack modulation, and thus antennal olfaction is of the utmost importance for the beetles’ survival and fitness. However, information on the genes underlying olfaction has been lacking in D. valens. Here, we report the antennal transcriptome of D. valens from next-generation sequencing, with the goal of identifying the olfaction gene repertoire that is involved in D. valens odor-processing. Results We obtained 51 million reads that were assembled into 61,889 genes, including 39,831 contigs and 22,058 unigenes. In total, we identified 68 novel putative odorant reception genes, including 21 transcripts encoding for putative odorant binding proteins (OBP), six chemosensory proteins (CSP), four sensory neuron membrane proteins (SNMP), 22 odorant receptors (OR), four gustatory receptors (GR), three ionotropic receptors (IR), and eight ionotropic glutamate receptors. We also identified 155 odorant/xenobiotic degradation enzymes from the antennal transcriptome, putatively identified to be involved in olfaction processes including cytochrome P450s, glutathione-S-transferases, and aldehyde dehydrogenase. Predicted protein sequences were compared with counterparts in Tribolium castaneum, Megacyllene caryae, Ips typographus, Dendroctonus ponderosae, and Agrilus planipennis. Conclusion The antennal transcriptome described here represents the first study of the repertoire of odor processing genes in D. valens. The genes reported here provide a significant addition to the pool of identified olfactory genes in Coleoptera, which might represent novel targets for insect management. The results from our study also will assist with evolutionary analyses of coleopteran olfaction. PMID:25938508
Genome-wide identification and expression analysis of MAPK and MAPKK gene family in Malus domestica.
Zhang, Shizhong; Xu, Ruirui; Luo, Xiaocui; Jiang, Zesheng; Shu, Huairui
2013-12-01
MAPK signal transduction modules play crucial roles in regulating many biological processes in plants, which are composed of three classes of hierarchically organized protein kinases, namely MAPKKKs, MAPKKs, and MAPKs. Although genome-wide analysis of this family has been carried out in some species, little is known about MAPK and MAPKK genes in apple (Malus domestica). In this study, a total of 26 putative apple MAPK genes (MdMPKs) and 9 putative apple MAPKK genes (MdMKKs) have been identified and located within the apple genome. Phylogenetic analysis revealed that MdMAPKs and MdMAPKKs could be divided into 4 subfamilies (groups A, B, C and D), respectively. The predicted MdMAPKs and MdMAPKKs were distributed across 13 out of 17 chromosomes with different densities. In addition, analysis of exon-intron junctions and of intron phase inside the predicted coding region of each candidate gene has revealed high levels of conservation within and between phylogenetic groups. According to the microarray and expressed sequence tag (EST) analysis, the different expression patterns indicate that they may play different roles during fruit development and rootstock-scion interaction process. Moreover, MAPK and MAPKK genes were performed expression profile analyses in different tissues (root, stem, leaf, flower and fruit), and all of the selected genes were expressed in at least one of the tissues tested, indicating that the MAPKs and MAPKKs are involved in various aspects of physiological and developmental processes of apple. To our knowledge, this is the first report of a genome-wide analysis of the apple MAPK and MAPKK gene family. This study provides valuable information for understanding the classification and putative functions of the MAPK signal in apple. © 2013.
Jribi, Hela; Sellami, Hanen; Hassena, Amal Ben; Gdoura, Radhouane
2017-10-01
Campylobacter and Arcobacter spp. are common causes of gastroenteritis in humans; these infections are commonly due to undercooked poultry. However, their virulence mechanism is still poorly understood. The aim of this study was to evaluate the presence of genotypic virulence markers in Campylobacter and Arcobacter species using PCR. The prevalence of virulence and cytolethal distending toxin (CDT) genes was estimated in 71 Campylobacteraceae isolates. PCR was used to detect the presence of virulence genes (iam, cadF, virB1, flaA, cdtA, cdtB, and cdtC) using specific primers for a total of 45 Campylobacter isolates, including 37 C. jejuni and 8 C. coli. All the Campylobacter isolates were positive for the cadF gene. The plasmid gene virB11 was not detected in any strain. The invasion associated marker was not detected in C. jejuni. Lower detection rates were observed for flaA, cdtA, cdtB, and cdtC. The presence of nine putative Arcobacter virulence genes (cadF, ciaB, cj1349, mviN, pldA, tlyA, irgA, hecA, and hecB) was checked in a set of 22 Arcobacter butzleri and 4 Arcobacter cryaerophilus isolates. The pldA and mviN genes were predominant (88.64%). Lower detection rates were observed for tlyA (84.76%), ciaB (84.61%), cadF and cj1349 (76.92%), IrgA and hecA (61.53%), and hecB (57.69%). The findings revealed that a majority of the Campylobacteraceae strains have these putative virulence genes that may lead to pathogenic effects in humans.
Lery, Letícia M S; Bitar, Mainá; Costa, Mauricio G S; Rössle, Shaila C S; Bisch, Paulo M
2010-12-22
G. diazotrophicus and A. vinelandii are aerobic nitrogen-fixing bacteria. Although oxygen is essential for the survival of these organisms, it irreversibly inhibits nitrogenase, the complex responsible for nitrogen fixation. Both microorganisms deal with this paradox through compensatory mechanisms. In A. vinelandii a conformational protection mechanism occurs through the interaction between the nitrogenase complex and the FeSII protein. Previous studies suggested the existence of a similar system in G. diazotrophicus, but the putative protein involved was not yet described. This study intends to identify the protein coding gene in the recently sequenced genome of G. diazotrophicus and also provide detailed structural information of nitrogenase conformational protection in both organisms. Genomic analysis of G. diazotrophicus sequences revealed a protein coding ORF (Gdia0615) enclosing a conserved "fer2" domain, typical of the ferredoxin family and found in A. vinelandii FeSII. Comparative models of both FeSII and Gdia0615 disclosed a conserved beta-grasp fold. Cysteine residues that coordinate the 2[Fe-S] cluster are in conserved positions towards the metallocluster. Analysis of solvent accessible residues and electrostatic surfaces unveiled an hydrophobic dimerization interface. Dimers assembled by molecular docking presented a stable behaviour and a proper accommodation of regions possibly involved in binding of FeSII to nitrogenase throughout molecular dynamics simulations in aqueous solution. Molecular modeling of the nitrogenase complex of G. diazotrophicus was performed and models were compared to the crystal structure of A. vinelandii nitrogenase. Docking experiments of FeSII and Gdia0615 with its corresponding nitrogenase complex pointed out in both systems a putative binding site presenting shape and charge complementarities at the Fe-protein/MoFe-protein complex interface. The identification of the putative FeSII coding gene in G. diazotrophicus genome represents a large step towards the understanding of the conformational protection mechanism of nitrogenase against oxygen. In addition, this is the first study regarding the structural complementarities of FeSII-nitrogenase interactions in diazotrophic bacteria. The combination of bioinformatic tools for genome analysis, comparative protein modeling, docking calculations and molecular dynamics provided a powerful strategy for the elucidation of molecular mechanisms and structural features of FeSII-nitrogenase interaction.
Bunet, Robert; Riclea, Ramona; Laureti, Luisa; Hôtel, Laurence; Paris, Cédric; Girardet, Jean-Michel; Spiteller, Dieter; Dickschat, Jeroen S.; Leblond, Pierre; Aigle, Bertrand
2014-01-01
The phosphopantetheinyl transferases (PPTases) are responsible for the activation of the carrier protein domains of the polyketide synthases (PKS), non ribosomal peptide synthases (NRPS) and fatty acid synthases (FAS). The analysis of the Streptomyces ambofaciens ATCC23877 genome has revealed the presence of four putative PPTase encoding genes. One of these genes appears to be essential and is likely involved in fatty acid biosynthesis. Two other PPTase genes, samT0172 (alpN) and samL0372, are located within a type II PKS gene cluster responsible for the kinamycin production and an hybrid NRPS-PKS cluster involved in antimycin production, respectively, and their products were shown to be specifically involved in the biosynthesis of these secondary metabolites. Surprisingly, the fourth PPTase gene, which is not located within a secondary metabolite gene cluster, appears to play a pleiotropic role. Its product is likely involved in the activation of the acyl- and peptidyl-carrier protein domains within all the other PKS and NRPS complexes encoded by S. ambofaciens. Indeed, the deletion of this gene affects the production of the spiramycin and stambomycin macrolide antibiotics and of the grey spore pigment, all three being PKS-derived metabolites, as well as the production of the nonribosomally produced compounds, the hydroxamate siderophore coelichelin and the pyrrolamide antibiotic congocidine. In addition, this PPTase seems to act in concert with the product of samL0372 to activate the ACP and/or PCP domains of the antimycin biosynthesis cluster which is also responsible for the production of volatile lactones. PMID:24498152
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kido, Tatsuo; Lau, Yun-Fai Chris, E-mail: Chris.Lau@UCSF.edu
2014-03-28
Highlights: • Y-encoded proto-oncoprotein TSPY amplifies its expression level via a positive feedback loop. • TSPY binds to the chromatin/DNA at exon 1 of TSPY gene. • TSPY enhances the gene expression in a TSPY exon 1 sequence dependent manner. • The conserved SET/NAP-domain is essential for TSPY transactivation. • Insights on probable mechanisms on TSPY exacerbation on cancer development in men. - Abstract: The testis-specific protein Y-encoded (TSPY) is a repetitive gene located on the gonadoblastoma region of the Y chromosome, and has been considered to be the putative gene for this oncogenic locus on the male-only chromosome. Itmore » is expressed in spermatogonial cells and spermatocytes in normal human testis, but abundantly in gonadoblastoma, testicular germ cell tumors and a variety of somatic cancers, including melanoma, hepatocellular carcinoma and prostate cancer. Various studies suggest that TSPY accelerates cell proliferation and growth, and promotes tumorigenesis. In this report, we show that TSPY could bind directly to the chromatin/DNA at exon 1 of its own gene, and greatly enhance the transcriptional activities of the endogenous gene in the LNCaP prostate cancer cells. Domain mapping analyses of TSPY have localized the critical and sufficient domain to the SET/NAP-domain. These results suggest that TSPY could efficiently amplify its expression and oncogenic functions through a positive feedback loop, and contribute to the overall tumorigenic processes when it is expressed in various human cancers.« less
Sun, Tingting; Li, Mingjun; Shao, Yun; Yu, Lingyan; Ma, Fengwang
2017-01-01
Elemental phosphorus (Pi) is essential to plant growth and development. The family of phosphate transporters (PHTs) mediates the uptake and translocation of Pi inside the plants. Members include five sub-cellular phosphate transporters that play different roles in Pi uptake and transport. We searched the Genome Database for Rosaceae and identified five clusters of phosphate transporters in apple (Malus domestica), including 37 putative genes. The MdPHT1 family contains 14 genes while MdPHT2 has two, MdPHT3 has seven, MdPHT4 has 11, and MdPHT5 has three. Our overview of this gene family focused on structure, chromosomal distribution and localization, phylogenies, and motifs. These genes displayed differential expression patterns in various tissues. For example, expression was high for MdPHT1;12, MdPHT3;6, and MdPHT3;7 in the roots, and was also increased in response to low-phosphorus conditions. In contrast, MdPHT4;1, MdPHT4;4, and MdPHT4;10 were expressed only in the leaves while transcript levels of MdPHT1;4, MdPHT1;12, and MdPHT5;3 were highest in flowers. In general, these 37 genes were regulated significantly in either roots or leaves in response to the imposition of phosphorus and/or drought stress. The results suggest that members of the PHT family function in plant adaptations to adverse growing environments. Our study will lay a foundation for better understanding the PHT family evolution and exploring genes of interest for genetic improvement in apple. PMID:28424713
Comparative analysis of programmed cell death pathways in filamentous fungi.
Fedorova, Natalie D; Badger, Jonathan H; Robson, Geoff D; Wortman, Jennifer R; Nierman, William C
2005-12-08
Fungi can undergo autophagic- or apoptotic-type programmed cell death (PCD) on exposure to antifungal agents, developmental signals, and stress factors. Filamentous fungi can also exhibit a form of cell death called heterokaryon incompatibility (HI) triggered by fusion between two genetically incompatible individuals. With the availability of recently sequenced genomes of Aspergillus fumigatus and several related species, we were able to define putative components of fungi-specific death pathways and the ancestral core apoptotic machinery shared by all fungi and metazoa. Phylogenetic profiling of HI-associated proteins from four Aspergilli and seven other fungal species revealed lineage-specific protein families, orphan genes, and core genes conserved across all fungi and metazoa. The Aspergilli-specific domain architectures include NACHT family NTPases, which may function as key integrators of stress and nutrient availability signals. They are often found fused to putative effector domains such as Pfs, SesB/LipA, and a newly identified domain, HET-s/LopB. Many putative HI inducers and mediators are specific to filamentous fungi and not found in unicellular yeasts. In addition to their role in HI, several of them appear to be involved in regulation of cell cycle, development and sexual differentiation. Finally, the Aspergilli possess many putative downstream components of the mammalian apoptotic machinery including several proteins not found in the model yeast, Saccharomyces cerevisiae. Our analysis identified more than 100 putative PCD associated genes in the Aspergilli, which may help expand the range of currently available treatments for aspergillosis and other invasive fungal diseases. The list includes species-specific protein families as well as conserved core components of the ancestral PCD machinery shared by fungi and metazoa.
Yeoh, Keat-Ai; Othman, Abrizah; Meon, Sariah; Abdullah, Faridah; Ho, Chai-Ling
2012-10-15
Glucanases are enzymes that hydrolyze a variety β-d-glucosidic linkages. Plant β-1,3-glucanases are able to degrade fungal cell walls; and promote the release of cell-wall derived fungal elicitors. In this study, three full-length cDNA sequences encoding oil palm (Elaeis guineensis) glucanases were analyzed. Sequence analyses of the cDNA sequences suggested that EgGlc1-1 is a putative β-d-glucan exohydolase belonging to glycosyl hydrolase (GH) family 3 while EgGlc5-1 and EgGlc5-2 are putative glucan endo-1,3-β-glucosidases belonging to GH family 17. The transcript abundance of these genes in the roots and leaves of oil palm seedlings treated with Ganoderma boninense and Trichoderma harzianum was profiled to investigate the involvement of these glucanases in oil palm during fungal infection. The gene expression of EgGlc1-1 in the root of oil palm seedlings was increased by T. harzianum but suppressed by G. boninense; while the gene expression of both EgGlc5-1 and EgGlc5-2 in the roots of oil palm seedlings was suppressed by G. boninense or/and T. harzianum. Copyright © 2012 Elsevier GmbH. All rights reserved.
Pacheco-Arjona, Jose Ramon; Ramirez-Prado, Jorge Humberto
2014-01-01
The cell wall is a protective and versatile structure distributed in all fungi. The component responsible for its rigidity is chitin, a product of chitin synthase (Chsp) enzymes. There are seven classes of chitin synthase genes (CHS) and the amount and type encoded in fungal genomes varies considerably from one species to another. Previous Chsp sequence analyses focused on their study as individual units, regardless of genomic context. The identification of blocks of conserved genes between genomes can provide important clues about the interactions and localization of chitin synthases. On the present study, we carried out an in silico search of all putative Chsp encoded in 54 full fungal genomes, encompassing 21 orders from five phyla. Phylogenetic studies of these Chsp were able to confidently classify 347 out of the 369 Chsp identified (94%). Patterns in the distribution of Chsp related to taxonomy were identified, the most prominent being related to the type of fungal growth. More importantly, a synteny analysis for genomic blocks centered on class IV Chsp (the most abundant and widely distributed Chsp class) identified a putative cell wall metabolism gene cluster in members of the genus Aspergillus, the first such association reported for any fungal genome. PMID:25148134
Wiese, A; Syldatk, C; Mattes, R; Altenbuchner, J
2001-09-01
Arthrobacter aurescens DSM 3747 hydrolyzes stereospecifically 5'-monosubstituted hydantoins to alpha-amino acids. The genes involved in hydantoin utilization (hyu) were isolated on an 8.7-kb DNA fragment, and by DNA sequence analysis eight ORFs were identified. The hyu gene cluster includes four genes: hyuP encoding a putative transport protein, the hydantoin racemase gene hyuA, the hydantoinase gene hyuH, and the carbamoylase gene hyuC. The four genes are transcribed in the same direction. Upstream of hyuP and in opposite orientation to the hyu genes, three ORFs were found showing similarities to cytochrome P450 monooxygenase (ORF1, incomplete), to membrane proteins (ORF2), and to ferredoxin (ORF3). ORF8 was found downstream of hyuC and again in opposite orientation to the hyu genes. The gene product of ORF8 displayed similarities to the LacI/GalR family of transcriptional regulators. Reverse transcriptase PCR experiments and Northern blot analysis revealed that the genes hyuPAHC are coexpressed in A. aurescens after induction with 3-N-CH3-IMH. The expression of the hyu operon was not regulated by the putative regulator ORF8 as shown by gene disruption and mobility-shift experiments.
Xu, Shou Ling; Shen, Si Shi; Xu, Zhi Hong; Xue, Hong Wei
2002-12-01
Abscisic acid (ABA) was critical in plant seed development and response to environmental factors such as stress situations. To study the possible ABA related signaling transduction pathways, we tried to isolate the ABA-regulated genes through fluorescent differential display PCR (FDD-PCR) technology using rice seedling as materials (treated with ABA for 2, 4, 8 and 12h). In the 17 fragments isolated, 14 and 3 clones were up-and down-regulated respectively. Sequence analyses revealed that the encoded proteins were involved in photosynthesis (7 fragments), signal transduction (1 fragments), transcription (2 fragments), metabolism and resistance (6 fragments), and unknown protein (1 fragments). 3 clones, encoding putative alpha/beta hydrolase fold, putative vacuolar H+ -ATPase B subunit, putative tyrosine phosphatase, were confirmed to be regulated under ABA treatment by RT-PCR and northern blot analysis. FDD-PCR and possible functional mechanisms of ABA were discussed.
Doszpoly, Andor; Papp, Melitta; Deákné, Petra P; Glávits, Róbert; Ursu, Krisztina; Dán, Ádám
2015-05-01
In the early summer of 2014, mass mortality of sichel (Pelecus cultratus) was observed in Lake Balaton, Hungary. Histological examination revealed degenerative changes within the tubular epithelium, mainly in the distal tubules and collecting ducts in the kidneys and multifocal vacuolisation in the brain stem and cerebellum. Routine molecular investigations showed the presence of the DNA of an unknown alloherpesvirus in some specimens. Subsequently, three genes of the putative herpesviral genome (DNA polymerase, terminase, and helicase) were amplified and partially sequenced. A phylogenetic tree reconstruction based on the concatenated sequence of these three conserved genes implied that the virus belongs to the genus Cyprinivirus within the family Alloherpesviridae. The sequences of the sichel herpesvirus differ markedly from those of the cypriniviruses CyHV-1, CyHV-2 and CyHV-3, putatively representing a fifth species in the genus.
Ramamoorthy, Vellaisamy; Dhingra, Sourabh; Kincaid, Alexander; Shantappa, Sourabha; Feng, Xuehuan; Calvo, Ana M.
2013-01-01
Secondary metabolism in the model fungus Aspergillus nidulans is controlled by the conserved global regulator VeA, which also governs morphological differentiation. Among the secondary metabolites regulated by VeA is the mycotoxin sterigmatocystin (ST). The presence of VeA is necessary for the biosynthesis of this carcinogenic compound. We identified a revertant mutant able to synthesize ST intermediates in the absence of VeA. The point mutation occurred at the coding region of a gene encoding a novel putative C2H2 zinc finger domain transcription factor that we denominated mtfA. The A. nidulans mtfA gene product localizes at nuclei independently of the illumination regime. Deletion of the mtfA gene restores mycotoxin biosynthesis in the absence of veA, but drastically reduced mycotoxin production when mtfA gene expression was altered, by deletion or overexpression, in A. nidulans strains with a veA wild-type allele. Our study revealed that mtfA regulates ST production by affecting the expression of the specific ST gene cluster activator aflR. Importantly, mtfA is also a regulator of other secondary metabolism gene clusters, such as genes responsible for the synthesis of terrequinone and penicillin. As in the case of ST, deletion or overexpression of mtfA was also detrimental for the expression of terrequinone genes. Deletion of mtfA also decreased the expression of the genes in the penicillin gene cluster, reducing penicillin production. However, in this case, over-expression of mtfA enhanced the transcription of penicillin genes, increasing penicillin production more than 5 fold with respect to the control. Importantly, in addition to its effect on secondary metabolism, mtfA also affects asexual and sexual development in A. nidulans. Deletion of mtfA results in a reduction of conidiation and sexual stage. We found mtfA putative orthologs conserved in other fungal species. PMID:24066102
Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri.
Cornish, Adam J; Green, Robin; Gärtner, Katrin; Mason, Saundra; Hegg, Eric L
2015-01-01
Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate under anaerobic conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes.
Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri
Cornish, Adam J.; Green, Robin; Gärtner, Katrin; Mason, Saundra; Hegg, Eric L.
2015-01-01
Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate under anaerobic conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes. PMID:25927230
Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri
Cornish, Adam J.; Green, Robin; Gärtner, Katrin; ...
2015-04-30
Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H 2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate undermore » anaerobic conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes.« less
James M. Slavicek; Nancy Hayes-Plazolles
1991-01-01
Viral immediate early gene products are usually regulatory proteins that control expression of other viral genes at the transcriptional level or are proteins that are part of the viral DNA replication complex. The identification and functional characterization of the immediate early gene products of Lymantria dispar nuclear polyhedrosis virus (LdNPV...
Uncovering the Lactobacillus plantarum WCFS1 Gallate Decarboxylase Involved in Tannin Degradation
Jiménez, Natalia; Curiel, José Antonio; Reverón, Inés; de las Rivas, Blanca
2013-01-01
Lactobacillus plantarum is a lactic acid bacterium able to degrade tannins by the subsequent action of tannase and gallate decarboxylase enzymes. The gene encoding tannase had previously been identified, whereas the gene encoding gallate decarboxylase is unknown. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of gallic-acid induced L. plantarum extracts showed a 54-kDa protein which was absent in the uninduced cells. This protein was identified as Lp_2945, putatively annotated UbiD. Homology searches identified ubiD-like genes located within three-gene operons which encoded the three subunits of nonoxidative aromatic acid decarboxylases. L. plantarum is the only bacterium in which the lpdC (lp_2945) gene and the lpdB and lpdD (lp_0271 and lp_0272) genes are separated in the chromosome. Combination of extracts from recombinant Escherichia coli cells expressing the lpdB, lpdC, and lpdC genes demonstrated that LpdC is the only protein required to yield gallate decarboxylase activity. However, the disruption of these genes in L. plantarum revealed that the lpdB and lpdC gene products are essential for gallate decarboxylase activity. Similar to L. plantarum tannase, which exhibited activity only in esters derived from gallic and protocatechuic acids, purified His6-LpdC protein from E. coli showed decarboxylase activity against gallic and protocatechuic acids. In contrast to the tannase activity, gallate decarboxylase activity is widely present among lactic acid bacteria. This study constitutes the first genetic characterization of a gallate decarboxylase enzyme and provides new insights into the role of the different subunits of bacterial nonoxidative aromatic acid decarboxylases. PMID:23645198
Functional comparison of three transformer gene introns regulating conditional female lethality
USDA-ARS?s Scientific Manuscript database
The trasformer gene plays a critical role in the sex determination pathways of many insects. We cloned two transformer gene introns from Anastrepha suspensa, the Caribbean fruit fly. These introns have sequences that putatively have a role in sex-specific splicing patterns that affect sex determinat...
Brunner, Kurt; Omann, Markus; Pucher, Marion E; Delic, Marizela; Lehner, Sylvia M; Domnanich, Patrick; Kratochwill, Klaus; Druzhinina, Irina; Denk, Dagmar; Zeilinger, Susanne
2008-12-01
Galpha subunits act to regulate vegetative growth, conidiation, and the mycoparasitic response in Trichoderma atroviride. To extend our knowledge on G protein signalling, we analysed G protein-coupled receptors (GPCRs). As the genome sequence of T. atroviride is not publicly available yet, we carried out an in silico exploration of the genome database of the close relative T. reesei. Twenty genes encoding putative GPCRs distributed over eight classes and additional 35 proteins similar to the Magnaporthe grisea PTH11 receptor were identified. Subsequently, four T. atroviride GPCR-encoding genes were isolated and affiliated to the cAMP receptor-like family by phylogenetic and topological analyses. All four genes showed lowest expression on glycerol and highest mRNA levels upon carbon starvation. Transcription of gpr3 and gpr4 responded to exogenously added cAMP and the shift from liquid to solid media. gpr3 mRNA levels also responded to the presence of fungal hyphae or cellulose membranes. Further characterisation of mutants bearing a gpr1-silencing construct revealed that Gpr1 is essential for vegetative growth, conidiation and conidial germination. Four genes encoding the first GPCRs described in Trichoderma were isolated and their expression characterized. At least one of these GPCRs is important for several cellular processes, supporting the fundamental role of G protein signalling in this fungus.
Wang, Zhen-Yu; Xiong, Liming; Li, Wenbo; Zhu, Jian-Kang; Zhu, Jianhua
2011-01-01
Osmotic stress activates the biosynthesis of abscisic acid (ABA). One major step in ABA biosynthesis is the carotenoid cleavage catalyzed by a 9-cis epoxycarotenoid dioxygenase (NCED). To understand the mechanism for osmotic stress activation of ABA biosynthesis, we screened for Arabidopsis thaliana mutants that failed to induce the NCED3 gene expression in response to osmotic stress treatments. The ced1 (for 9-cis epoxycarotenoid dioxygenase defective 1) mutant isolated in this study showed markedly reduced expression of NCED3 in response to osmotic stress (polyethylene glycol) treatments compared with the wild type. Other ABA biosynthesis genes are also greatly reduced in ced1 under osmotic stress. ced1 mutant plants are very sensitive to even mild osmotic stress. Map-based cloning revealed unexpectedly that CED1 encodes a putative α/β hydrolase domain-containing protein and is allelic to the BODYGUARD gene that was recently shown to be essential for cuticle biogenesis. Further studies discovered that other cutin biosynthesis mutants are also impaired in osmotic stress induction of ABA biosynthesis genes and are sensitive to osmotic stress. Our work demonstrates that the cuticle functions not merely as a physical barrier to minimize water loss but also mediates osmotic stress signaling and tolerance by regulating ABA biosynthesis and signaling. PMID:21610183
Wallace, Simon; Chater, Caspar C; Kamisugi, Yasuko; Cuming, Andrew C; Wellman, Charles H; Beerling, David J; Fleming, Andrew J
2015-01-01
The early evolution of plants required the acquisition of a number of key adaptations to overcome physiological difficulties associated with survival on land. One of these was a tough sporopollenin wall that enclosed reproductive propagules and provided protection from desiccation and UV-B radiation. All land plants possess such walled spores (or their derived homologue, pollen). We took a reverse genetics approach, consisting of knock-out and complementation experiments to test the functional conservation of the sporopollenin-associated gene MALE STERILTY 2 (which is essential for pollen wall development in Arabidopsis thaliana) in the bryophyte Physcomitrella patens. Knock-outs of a putative moss homologue of the A. thaliana MS2 gene, which is highly expressed in the moss sporophyte, led to spores with highly defective walls comparable to that observed in the A. thaliana ms2 mutant, and extremely compromised germination. Conversely, the moss MS2 gene could not rescue the A. thaliana ms2 phenotype. The results presented here suggest that a core component of the biochemical and developmental pathway required for angiosperm pollen wall development was recruited early in land plant evolution but the continued increase in pollen wall complexity observed in angiosperms has been accompanied by divergence in MS2 gene function. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Cyclic nucleotide gated channels 7 and 8 are essential for male reproductive fertility.
Tunc-Ozdemir, Meral; Rato, Claudia; Brown, Elizabeth; Rogers, Stephanie; Mooneyham, Amanda; Frietsch, Sabine; Myers, Candace T; Poulsen, Lisbeth Rosager; Malhó, Rui; Harper, Jeffrey F
2013-01-01
The Arabidopsis thaliana genome contains 20 CNGCs, which are proposed to encode cyclic nucleotide gated, non-selective, Ca²⁺-permeable ion channels. CNGC7 and CNGC8 are the two most similar with 74% protein sequence identity, and both genes are preferentially expressed in pollen. Two independent loss-of-function T-DNA insertions were identified for both genes and used to generate plant lines in which only one of the two alleles was segregating (e.g., cngc7-1+/-/cngc8-2-/- and cngc7-3-/-/cngc8-1+/-). While normal pollen transmission was observed for single gene mutations, pollen harboring mutations in both cngc7 and 8 were found to be male sterile (transmission efficiency reduced by more than 3000-fold). Pollen grains harboring T-DNA disruptions of both cngc7 and 8 displayed a high frequency of bursting when germinated in vitro. The male sterile defect could be rescued through pollen expression of a CNGC7 or 8 transgene including a CNGC7 with an N-terminal GFP-tag. However, rescue efficiencies were reduced ∼10-fold when the CNGC7 or 8 included an F to W substitution (F589W and F624W, respectively) at the junction between the putative cyclic nucleotide binding-site and the calmodulin binding-site, identifying this junction as important for proper functioning of a plant CNGC. Using confocal microscopy, GFP-CNGC7 was found to preferentially localize to the plasma membrane at the flanks of the growing tip. Together these results indicate that CNGC7 and 8 are at least partially redundant and provide an essential function at the initiation of pollen tube tip growth.
Bearden, Scott W.; Staggs, Teanna M.; Perry, Robert D.
1998-01-01
The acquisition of iron is an essential component in the pathogenesis of Yersinia pestis, the agent of bubonic and pneumonic plague. A cosmid library derived from the genomic DNA of Y. pestis KIM6+ was used for transduction of an Escherichia coli mutant (SAB11) defective in the biosynthesis of the siderophore enterobactin. Recombinant plasmids which had a common 13-kb BamHI fragment were isolated from SAB11 transductants in which growth but not enterobactin synthesis was restored on media containing the iron chelator EDDA [ethylenediamine-di(o-hydroxyphenyl acetic acid)]. Subcloning and transposon mutagenesis revealed a 5.6-kb region, designated yfe, essential for SAB11 growth stimulation. In vitro transcription-translation analysis identified polypeptides of 18, 29.5, 32, and 33 kDa encoded by the yfe locus. Sequence analysis shows this locus to be comprised of five genes in two separate operons which have potential Fur-binding sequences in both promoters. A putative polycistronic operon, yfeABCD, is Fur regulated and responds to iron and manganese. A functional Fur protein is required for the observed manganese repression of this operon. This operon encodes polypeptides which have strong similarity to the ATP-binding cassette (ABC) family of transporters and include a periplasmic binding protein (YfeA), an ATP-binding protein (YfeB), and two integral membrane proteins (YfeC and -D), which likely function in the acquisition of inorganic iron and possibly other ions. The ∼21-kDa protein encoded by the separately transcribed yfeE gene may be located in the cell envelope, since a yfeE::TnphoA fusion is PhoA+. Mutations in this gene abrogate growth of SAB11 on iron-chelated media. PMID:9495751
Bearden, S W; Staggs, T M; Perry, R D
1998-03-01
The acquisition of iron is an essential component in the pathogenesis of Yersinia pestis, the agent of bubonic and pneumonic plague. A cosmid library derived from the genomic DNA of Y. pestis KIM6+ was used for transduction of an Escherichia coli mutant (SAB11) defective in the biosynthesis of the siderophore enterobactin. Recombinant plasmids which had a common 13-kb BamHI fragment were isolated from SAB11 transductants in which growth but not enterobactin synthesis was restored on media containing the iron chelator EDDA [ethylenediamine-di(o-hydroxyphenyl acetic acid)]. Subcloning and transposon mutagenesis revealed a 5.6-kb region, designated yfe, essential for SAB11 growth stimulation. In vitro transcription-translation analysis identified polypeptides of 18, 29.5, 32, and 33 kDa encoded by the yfe locus. Sequence analysis shows this locus to be comprised of five genes in two separate operons which have potential Fur-binding sequences in both promoters. A putative polycistronic operon, yfeABCD, is Fur regulated and responds to iron and manganese. A functional Fur protein is required for the observed manganese repression of this operon. This operon encodes polypeptides which have strong similarity to the ATP-binding cassette (ABC) family of transporters and include a periplasmic binding protein (YfeA), an ATP-binding protein (YfeB), and two integral membrane proteins (YfeC and -D), which likely function in the acquisition of inorganic iron and possibly other ions. The approximately 21-kDa protein encoded by the separately transcribed yfeE gene may be located in the cell envelope, since a yfeE::TnphoA fusion is PhoA+. Mutations in this gene abrogate growth of SAB11 on iron-chelated media.
Honey Bee Gut Microbiome Is Altered by In-Hive Pesticide Exposures.
Kakumanu, Madhavi L; Reeves, Alison M; Anderson, Troy D; Rodrigues, Richard R; Williams, Mark A
2016-01-01
Honey bees (Apis mellifera) are the primary pollinators of major horticultural crops. Over the last few decades, a substantial decline in honey bees and their colonies have been reported. While a plethora of factors could contribute to the putative decline, pathogens, and pesticides are common concerns that draw attention. In addition to potential direct effects on honey bees, indirect pesticide effects could include alteration of essential gut microbial communities and symbionts that are important to honey bee health (e.g., immune system). The primary objective of this study was to determine the microbiome associated with honey bees exposed to commonly used in-hive pesticides: coumaphos, tau-fluvalinate, and chlorothalonil. Treatments were replicated at three independent locations near Blacksburg Virginia, and included a no-pesticide amended control at each location. The microbiome was characterized through pyrosequencing of V2-V3 regions of the bacterial 16S rRNA gene and fungal ITS region. Pesticide exposure significantly affected the structure of bacterial but not fungal communities. The bee bacteriome, similar to other studies, was dominated by sequences derived from Bacilli, Actinobacteria, α-, β-, γ-proteobacteria. The fungal community sequences were dominated by Ascomycetes and Basidiomycetes. The Multi-response permutation procedures (MRPP) and subsequent Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated that chlorothalonil caused significant change to the structure and functional potential of the honey bee gut bacterial community relative to control. Putative genes for oxidative phosphorylation, for example, increased while sugar metabolism and peptidase potential declined in the microbiome of chlorothalonil exposed bees. The results of this field-based study suggest the potential for pesticide induced changes to the honey bee gut microbiome that warrant further investigation.
Honey Bee Gut Microbiome Is Altered by In-Hive Pesticide Exposures
Kakumanu, Madhavi L.; Reeves, Alison M.; Anderson, Troy D.; Rodrigues, Richard R.; Williams, Mark A.
2016-01-01
Honey bees (Apis mellifera) are the primary pollinators of major horticultural crops. Over the last few decades, a substantial decline in honey bees and their colonies have been reported. While a plethora of factors could contribute to the putative decline, pathogens, and pesticides are common concerns that draw attention. In addition to potential direct effects on honey bees, indirect pesticide effects could include alteration of essential gut microbial communities and symbionts that are important to honey bee health (e.g., immune system). The primary objective of this study was to determine the microbiome associated with honey bees exposed to commonly used in-hive pesticides: coumaphos, tau-fluvalinate, and chlorothalonil. Treatments were replicated at three independent locations near Blacksburg Virginia, and included a no-pesticide amended control at each location. The microbiome was characterized through pyrosequencing of V2–V3 regions of the bacterial 16S rRNA gene and fungal ITS region. Pesticide exposure significantly affected the structure of bacterial but not fungal communities. The bee bacteriome, similar to other studies, was dominated by sequences derived from Bacilli, Actinobacteria, α-, β-, γ-proteobacteria. The fungal community sequences were dominated by Ascomycetes and Basidiomycetes. The Multi-response permutation procedures (MRPP) and subsequent Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated that chlorothalonil caused significant change to the structure and functional potential of the honey bee gut bacterial community relative to control. Putative genes for oxidative phosphorylation, for example, increased while sugar metabolism and peptidase potential declined in the microbiome of chlorothalonil exposed bees. The results of this field-based study suggest the potential for pesticide induced changes to the honey bee gut microbiome that warrant further investigation. PMID:27579024
Mapping of aldose reductase gene sequences to human chromosomes 1, 3, 7, 9, 11, and 13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bateman, J.B.; Kojis, T.; Heinzmann, C.
1993-09-01
Aldose reductase (alditol:NAD(P)+ 1-oxidoreductase; EC 1.1.1.21) (AR) catalyzes the reduction of several aldehydes, including that of glucose, to the corresponding sugar alcohol. Using a complementary DNA clone encoding human AR, the authors mapped the gene sequences to human chromosomes 1, 3, 7, 9, 11, 13, 14, and 18 by somatic cell hybridization. By in situ hybridization analysis, sequences were localized to human chromosomes 1q32-q43, 3p12, 7q31-q35, 9q22, 11p14-p15, and 13q14-q21. As a putative functional AR gene has been mapped to chromosome 7 and a putative pseudogene to chromosome 3, the sequences on the other seven chromosomes may represent other activemore » genes, non-aldose reductase homologous sequences, or pseudogenes. 24 refs., 3 figs., 2 tabs.« less
Futagami, Taiki; Kadooka, Chihiro; Ando, Yoshinori; Okutsu, Kayu; Yoshizaki, Yumiko; Setoguchi, Shinji; Takamine, Kazunori; Kawai, Mikihiko; Tamaki, Hisanori
2017-10-01
Shochu is a traditional Japanese distilled spirit. The formation of the distinguishing flavour of shochu produced in individual distilleries is attributed to putative indigenous yeast strains. In this study, we performed the first (to our knowledge) phylogenetic classification of shochu strains based on nucleotide gene sequences. We performed phylogenetic classification of 21 putative indigenous shochu yeast strains isolated from 11 distilleries. All of these strains were shown or confirmed to be Saccharomyces cerevisiae, sharing species identification with 34 known S. cerevisiae strains (including commonly used shochu, sake, ale, whisky, bakery, bioethanol and laboratory yeast strains and clinical isolate) that were tested in parallel. Our analysis used five genes that reflect genome-level phylogeny for the strain-level classification. In a first step, we demonstrated that partial regions of the ZAP1, THI7, PXL1, YRR1 and GLG1 genes were sufficient to reproduce previous sub-species classifications. In a second step, these five analysed regions from each of 25 strains (four commonly used shochu strains and the 21 putative indigenous shochu strains) were concatenated and used to generate a phylogenetic tree. Further analysis revealed that the putative indigenous shochu yeast strains form a monophyletic group that includes both the shochu yeasts and a subset of the sake group strains; this cluster is a sister group to other sake yeast strains, together comprising a sake-shochu group. Differences among shochu strains were small, suggesting that it may be possible to correlate subtle phenotypic differences among shochu flavours with specific differences in genome sequences. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Oliveira, Patrícia; Sanges, Remo; Huntsman, David; Stupka, Elia; Oliveira, Carla
2012-01-01
Cadherins are cell–cell adhesion proteins essential for the maintenance of tissue architecture and integrity, and their impairment is often associated with human cancer. Knowledge regarding regulatory mechanisms associated with cadherin misexpression in cancer is scarce. Specific features of the intronic-structure and intronic-based regulatory mechanisms in the cadherin superfamily are unidentified. This study aims at systematically characterizing the intronic portion of cadherin superfamily members and the identification of intronic regions constituting putative targets/triggers of regulation, using a bioinformatic approach and biological data mining. Our study demonstrates that the cadherin superfamily genes harbour specific characteristics in comparison to all non-cadherin genes, both from the genomic and transcriptional standpoints. Cadherin superfamily genes display higher average total intron number and significantly longer introns than other genes and across the entire vertebrate lineage. Moreover, in the human genome, we observed an uncommon high frequency of MIR (mammalian-wide interspersed repeats) and MaLR (mammalian-wide interspersed repeats, a subtype of LTR) regulatory-associated repetitive elements at 5′-located introns, concomitantly with increased de novo intronic transcription. Using this approach, we identified cadherin intronic-specific sites that may constitute novel targets/triggers of cadherin superfamily expression regulation. These findings pinpoint the need to identify mechanisms affecting particularly MIR and MaLR elements located in introns 2 and 3 of human cadherin genes, possibly important in the expression modulation of this superfamily in homeostasis and cancer. PMID:22317972
Rossi, Ciro César; da Silva Dias, Ingrid; Muniz, Igor Mansur; Lilenbaum, Walter; Giambiagi-deMarval, Marcia
2017-03-01
This study aimed to characterize the species, antimicrobial resistance and dispersion of CRISPR systems in staphylococci isolated from the oropharynx of domestic cats in Brazil. Staphylococcus strains (n=75) were identified by MALDI-TOF and sequencing of rpoB and tuf genes. Antimicrobial susceptibility was assessed by disk diffusion method and PCR to investigate the presence of antimicrobial-resistance genes usually present in mobile genetic elements (plasmids), in addition to plasmid extraction. CRISPR - genetic arrangements that give the bacteria the ability to resist the entry of exogenous DNA - were investigated by the presence of the essential protein Cas1 gene. A great diversity of Staphylococcus species (n=13) was identified. The presence of understudied species, like S. nepalensis and S. pettenkoferi reveals that more than one identification method may be necessary to achieve conclusive results. At least 56% of the strains contain plamids, being 99% resistant to at least one of the eight tested antimicrobials and 12% multidrug resistant. CRISPR were rare among the studied strains, consistent with their putative role as gene reservoirs. Moreover, herein we describe for the first time their existence in Staphylococcus lentus, to which the system must confer additional adaptive advantage. Prevalence of resistance among staphylococci against antimicrobials used in veterinary and human clinical practice and the zoonotic risk highlight the need of better antimicrobial management practices, as staphylococci may transfer resistance genes among themselves, including to virulent species, like S. aureus. Copyright © 2017 Elsevier B.V. All rights reserved.
Yan, Dankan; Tang, Yunxia; Xue, Xiaofeng; Wang, Minghua; Liu, Fengquan; Fan, Jiaqin
2012-09-10
To investigate the features of the control region (CR) and the gene rearrangement in the mitochondrial (mt) genome of Thysanoptera insects, we sequenced the whole mt genome of the western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae). The mt genome is a circular molecule with 14,889 nucleotides and an A+T content of 76.6%, and it has triplicate putative CRs. We propose that tandem duplication and deletion account for the evolution of the CR and the gene translocations. Intramitochondrial recombination is a plausible model for the gene inversions. We discuss the excessive duplicate CR sequences and the transcription of the rRNA genes, which are distant from one another and from the CR. Finally, we address the significance of the complicated mt genomes in Thysanoptera for the evolution of the CR and the gene arrangement of the mt genome. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Wei, Yunxie; Liu, Wen; Hu, Wei; Liu, Guoyin; Wu, Chunjie; Liu, Wei; Zeng, Hongqiu; He, Chaozu; Shi, Haitao
2017-08-01
MaATG8s play important roles in hypersensitive-like cell death and immune response, and autophagy is essential for disease resistance against Foc in banana. Autophagy is responsible for the degradation of damaged cytoplasmic constituents in the lysosomes or vacuoles. Although the effects of autophagy have been extensively revealed in model plants, the possible roles of autophagy-related gene in banana remain unknown. In this study, 32 MaATGs were identified in the draft genome, and the profiles of several MaATGs in response to fungal pathogen Fusarium oxysporum f. sp. cubense (Foc) were also revealled. We found that seven MaATG8s were commonly regulated by Foc. Through transient expression in Nicotiana benthamiana leaves, we highlight the novel roles of MaATG8s in conferring hypersensitive-like cell death, and MaATG8s-mediated hypersensitive response-like cell death is dependent on autophagy. Notablly, autophagy inhibitor 3-methyladenine (3-MA) treatment resulted in decreased disease resistance in response to Foc4, and the effect of 3-MA treatment could be rescued by exogenous salicylic acid, jasmonic acid and ethylene, indicating the involvement of autophagy-mediated plant hormones in banana resistance to Fusarium wilt. Taken together, this study may extend our understanding the putative role of MaATG8s in hypersensitive-like cell death and the essential role of autophagy in immune response against Foc in banana.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugimoto, Tomoko; Mori, Chihiro; Takanami, Takako
2008-01-01
DNA polymerase {gamma} and mtSSB are key components of the mtDNA replication machinery. To study the biological influences of defects in mtDNA replication, we used RNAi to deplete the gene for a putative mtSSB, par2.1, in Caenorhabditis elegans. In previous systematic RNAi screens, downregulation of this gene has not caused any clearly defective phenotypes. Here, we continuously fed a dsRNA targeting par2.1 to C. elegans over generations. Seventy-nine percent of F1 progeny produced 60-72 h after feeding grew to adulthood but were completely sterile, with an arrest of germline cell proliferation. Analyses of mtDNA copy number and cell cytology indicatedmore » that the sterile hermaphrodites had fewer mitochondria. These results indicated that par2.1 essentially functions for germline cell proliferation through mtDNA replication; we therefore termed it mtssb-1. Comprehensive transcriptional alterations including hypoxia response induction dependent on and independent of hif-1 function, occurred by RNAi depletion of mtssb-1. Treatment with ethidium bromide, which impairs mtDNA replication and transcription, caused similar transcriptional alterations. In addition, the frequency of apoptosis in the germline cells was reduced in fertile progeny with a partial RNAi effect. These suggest that RNAi depletion of C. elegans mtssb-1 is useful as a model system of mitochondrial dysfunction.« less
Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways.
Chen, Lei; Zhang, Yu-Hang; Wang, ShaoPeng; Zhang, YunHua; Huang, Tao; Cai, Yu-Dong
2017-01-01
Identifying essential genes in a given organism is important for research on their fundamental roles in organism survival. Furthermore, if possible, uncovering the links between core functions or pathways with these essential genes will further help us obtain deep insight into the key roles of these genes. In this study, we investigated the essential and non-essential genes reported in a previous study and extracted gene ontology (GO) terms and biological pathways that are important for the determination of essential genes. Through the enrichment theory of GO and KEGG pathways, we encoded each essential/non-essential gene into a vector in which each component represented the relationship between the gene and one GO term or KEGG pathway. To analyze these relationships, the maximum relevance minimum redundancy (mRMR) was adopted. Then, the incremental feature selection (IFS) and support vector machine (SVM) were employed to extract important GO terms and KEGG pathways. A prediction model was built simultaneously using the extracted GO terms and KEGG pathways, which yielded nearly perfect performance, with a Matthews correlation coefficient of 0.951, for distinguishing essential and non-essential genes. To fully investigate the key factors influencing the fundamental roles of essential genes, the 21 most important GO terms and three KEGG pathways were analyzed in detail. In addition, several genes was provided in this study, which were predicted to be essential genes by our prediction model. We suggest that this study provides more functional and pathway information on the essential genes and provides a new way to investigate related problems.
Li, Huiying; Hu, Tao; Amombo, Erick; Fu, Jinmin
2017-06-01
MicroRNAs (miRNAs) play vital roles in the adaptive response of plants to various abiotic and biotic stresses. Tall fescue (Festuca arundinacea Schreb.) is a major cool-season forage and turf grass species which is severely influenced by heat stress. To unravel possible heat stress-responsive miRNAs, high-throughput sequencing was employed for heat-tolerant PI578718 and heat-sensitive PI234881 genotypes growing in presence and absence of heat stress (40°C for 36h). By searching against the miRBase database, among 1421 reference monocotyledon miRNAs, more than 850 were identified in all samples. Among these miRNAs, 1.46% and 2.29% were differentially expressed in PI234881 and PI578718 under heat stress, respectively, and most of them were down-regulated. In addition, a total of 170 novel miRNAs belonging to 145 miRNA families were identified. Furthermore, putative targets of differentially expressed miRNAs were predicted. The regulation of selected miRNAs by heat stress was revalidated through quantitative reverse transcription PCR (qRT-PCR) analysis. Most of these miRNAs shared similar expression patterns; however, some showed distinct expression patterns under heat stress, with their putative targets displaying different transcription levels. This is the first genome-wide miRNA identification in tall fescue. miRNAs specific to PI578718, or those that exhibited differential expression profiles between the two genotypes under high temperature, were probably associated with the variation in thermotolerance of tall fescue. The differentially expressed miRNAs between these two tall fescue genotypes and their putative targeted genes will provide essential information for further study on miRNAs mediating heat response and facilitate to improve turf grass breeding. Copyright © 2017. Published by Elsevier GmbH.
Sharma, Akanksha; Sharma, Niharika; Bhalla, Prem; Singh, Mohan
2017-01-01
Comparative genomics have facilitated the mining of biological information from a genome sequence, through the detection of similarities and differences with genomes of closely or more distantly related species. By using such comparative approaches, knowledge can be transferred from the model to non-model organisms and insights can be gained in the structural and evolutionary patterns of specific genes. In the absence of sequenced genomes for allergenic grasses, this study was aimed at understanding the structure, organisation and expression profiles of grass pollen allergens using the genomic data from Brachypodium distachyon as it is phylogenetically related to the allergenic grasses. Combining genomic data with the anther RNA-Seq dataset revealed 24 pollen allergen genes belonging to eight allergen groups mapping on the five chromosomes in B. distachyon. High levels of anther-specific expression profiles were observed for the 24 identified putative allergen-encoding genes in Brachypodium. The genomic evidence suggests that gene encoding the group 5 allergen, the most potent trigger of hay fever and allergic asthma originated as a pollen specific orphan gene in a common grass ancestor of Brachypodium and Triticiae clades. Gene structure analysis showed that the putative allergen-encoding genes in Brachypodium either lack or contain reduced number of introns. Promoter analysis of the identified Brachypodium genes revealed the presence of specific cis-regulatory sequences likely responsible for high anther/pollen-specific expression. With the identification of putative allergen-encoding genes in Brachypodium, this study has also described some important plant gene families (e.g. expansin superfamily, EF-Hand family, profilins etc) for the first time in the model plant Brachypodium. Altogether, the present study provides new insights into structural characterization and evolution of pollen allergens and will further serve as a base for their functional characterization in related grass species. PMID:28103252
Abdul Kayum, Md.; Nath, Ujjal Kumar; Park, Jong-In; Choi, Eung Kyoo; Song, Jae-Young; Kim, Hoy-Taek; Nou, Ill-Sup
2018-01-01
Plant growth and development can be adversely affected by cold stress, limiting productivity. The glutathione S-transferase (GST) family comprises important detoxifying enzymes, which play major roles in biotic and abiotic stress responses by reducing the oxidative damage caused by reactive oxygen species. Pumpkins (Cucurbita maxima) are widely grown, economically important, and nutritious; however, their yield can be severely affected by cold stress. The identification of putative candidate genes responsible for cold-stress tolerance, including the GST family genes, is therefore vital. For the first time, we identified 32 C. maxima GST (CmaGST) genes using a combination of bioinformatics approaches and characterized them by expression profiling. These CmaGST genes represent seven of the 14 known classes of plant GSTs, with 18 CmaGSTs categorized into the tau class. The CmaGSTs were distributed across 13 of pumpkin’s 20 chromosomes, with the highest numbers found on chromosomes 4 and 6. The large number of CmaGST genes resulted from gene duplication; 11 and 5 pairs of CmaGST genes were segmental- and tandem-duplicated, respectively. In addition, all CmaGST genes showed organ-specific expression. The expression of the putative GST genes in pumpkin was examined under cold stress in two lines with contrasting cold tolerance: cold-tolerant CP-1 (C. maxima) and cold-susceptible EP-1 (Cucurbita moschata). Seven genes (CmaGSTU3, CmaGSTU7, CmaGSTU8, CmaGSTU9, CmaGSTU11, CmaGSTU12, and CmaGSTU14) were highly expressed in the cold-tolerant line and are putative candidates for use in breeding cold-tolerant crop varieties. These results increase our understanding of the cold-stress-related functions of the GST family, as well as potentially enhancing pumpkin breeding programs. PMID:29439434
Hu, Ruibo; Yu, Changjiang; Wang, Xiaoyu; Jia, Chunlin; Pei, Shengqiang; He, Kang; He, Guo; Kong, Yingzhen; Zhou, Gongke
2017-01-01
HIGHLIGHT De novo transcriptome profiling of five tissues reveals candidate genes putatively involved in rhizome development in M. lutarioriparius. Miscanthus lutarioriparius is a promising lignocellulosic feedstock for second-generation bioethanol production. However, the genomic resource for this species is relatively limited thus hampers our understanding of the molecular mechanisms underlying many important biological processes. In this study, we performed the first de novo transcriptome analysis of five tissues (leaf, stem, root, lateral bud and rhizome bud) of M. lutarioriparius with an emphasis to identify putative genes involved in rhizome development. Approximately 66 gigabase (GB) paired-end clean reads were obtained and assembled into 169,064 unigenes with an average length of 759 bp. Among these unigenes, 103,899 (61.5%) were annotated in seven public protein databases. Differential gene expression profiling analysis revealed that 4,609, 3,188, 1,679, 1,218, and 1,077 genes were predominantly expressed in root, leaf, stem, lateral bud, and rhizome bud, respectively. Their expression patterns were further classified into 12 distinct clusters. Pathway enrichment analysis revealed that genes predominantly expressed in rhizome bud were mainly involved in primary metabolism and hormone signaling and transduction pathways. Noteworthy, 19 transcription factors (TFs) and 16 hormone signaling pathway-related genes were identified to be predominantly expressed in rhizome bud compared with the other tissues, suggesting putative roles in rhizome formation and development. In addition, a predictive regulatory network was constructed between four TFs and six auxin and abscisic acid (ABA) -related genes. Furthermore, the expression of 24 rhizome-specific genes was further validated by quantitative real-time RT-PCR (qRT-PCR) analysis. Taken together, this study provide a global portrait of gene expression across five different tissues and reveal preliminary insights into rhizome growth and development. The data presented will contribute to our understanding of the molecular mechanisms underlying rhizome development in M. lutarioriparius and remarkably enrich the genomic resources of Miscanthus. PMID:28446913
Rocha-Martins, Maurício; Njaine, Brian; Silveira, Mariana S
2012-01-01
Housekeeping genes have been commonly used as reference to normalize gene expression and protein content data because of its presumed constitutive expression. In this paper, we challenge the consensual idea that housekeeping genes are reliable controls for expression studies in the retina through the investigation of a panel of reference genes potentially suitable for analysis of different stages of retinal development. We applied statistical tools on combinations of retinal developmental stages to assess the most stable internal controls for quantitative RT-PCR (qRT-PCR). The stability of expression of seven putative reference genes (Actb, B2m, Gapdh, Hprt1, Mapk1, Ppia and Rn18s) was analyzed using geNorm, BestKeeper and Normfinder software. In addition, several housekeeping genes were tested as loading controls for Western blot in the same sample panel, using Image J. Overall, for qRT-PCR the combination of Gapdh and Mapk1 showed the highest stability for most experimental sets. Actb was downregulated in more mature stages, while Rn18s and Hprt1 showed the highest variability. We normalized the expression of cyclin D1 using various reference genes and demonstrated that spurious results may result from blind selection of internal controls. For Western blot significant variation could be seen among four putative internal controls (β-actin, cyclophilin b, α-tubulin and lamin A/C), while MAPK1 was stably expressed. Putative housekeeping genes exhibit significant variation in both mRNA and protein content during retinal development. Our results showed that distinct combinations of internal controls fit for each experimental set in the case of qRT-PCR and that MAPK1 is a reliable loading control for Western blot. The results indicate that biased study outcomes may follow the use of reference genes without prior validation for qRT-PCR and Western blot.
Cna'ani, Alon; Spitzer-Rimon, Ben; Ravid, Jasmin; Farhi, Moran; Masci, Tania; Aravena-Calvo, Javiera; Ovadis, Marianna; Vainstein, Alexander
2015-11-01
The mechanism underlying the emission of phenylpropanoid volatiles is poorly understood. Here, we reveal the involvement of PH4, a petunia MYB-R2R3 transcription factor previously studied for its role in vacuolar acidification, in floral volatile emission. We used the virus-induced gene silencing (VIGS) approach to knock down PH4 expression in petunia, measured volatile emission and internal pool sizes by GC-MS, and analyzed transcript abundances of scent-related phenylpropanoid genes in flowers. Silencing of PH4 resulted in a marked decrease in floral phenylpropanoid volatile emission, with a concurrent increase in internal pool levels. Expression of scent-related phenylpropanoid genes was not affected. To identify putative scent-related targets of PH4, we silenced PH5, a tonoplast-localized H(+) -ATPase that maintains vacuolar pH homeostasis. Suppression of PH5 did not yield the reduced-emission phenotype, suggesting that PH4 does not operate in the context of floral scent through regulation of vacuolar pH. We conclude that PH4 is a key floral regulator that integrates volatile production and emission processes and interconnects two essential floral traits - color and scent. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Wang, Xu-Hua; Wang, Yong; Liu, A-Ke; Liu, Xiao-Ting; Zhou, Yang; Yao, Qin; Chen, Ke-Ping
2015-04-01
The basic helix-loop-helix (bHLH) domain is a highly conserved amino acid motif that defines a group of DNA-binding transcription factors. bHLH proteins play essential regulatory roles in a variety of biological processes in animal, plant, and fungus. The domestic dog, Canis lupus familiaris, is a good model organism for genetic, physiological, and behavioral studies. In this study, we identified 115 putative bHLH genes in the dog genome. Based on a phylogenetic analysis, 51, 26, 14, 4, 12, and 4 dog bHLH genes were assigned to six separate groups (A-F); four bHLH genes were categorized as ''orphans''. Within-group evolutionary relationships inferred from the phylogenetic analysis were consistent with positional conservation, other conserved domains flanking the bHLH motif, and highly conserved intron/exon patterns in other vertebrates. Our analytical results confirmed the GenBank annotations of 89 dog bHLH proteins and provided information that could be used to update the annotations of the remaining 26 dog bHLH proteins. These data will provide good references for further studies on the structures and regulatory functions of bHLH proteins in the growth and development of dogs, which may help in understanding the mechanisms that underlie the physical and behavioral differences between dogs and wolves.
Zhang, Lei; Davies, Laura J; Elling, Axel A
2015-01-01
Root-knot nematodes are sedentary biotrophic endoparasites that maintain a complex interaction with their host plants. Nematode effector proteins are synthesized in the oesophageal glands of nematodes and secreted into plant tissue through a needle-like stylet. Effectors characterized to date have been shown to mediate processes essential for nematode pathogenesis. To gain an insight into their site of action and putative function, the subcellular localization of 13 previously isolated Meloidogyne incognita effectors was determined. Translational fusions were created between effectors and EGFP-GUS (enhanced green fluorescent protein-β-glucuronidase) reporter genes, which were transiently expressed in tobacco leaf cells. The majority of effectors localized to the cytoplasm, with one effector, 7H08, imported into the nuclei of plant cells. Deletion analysis revealed that the nuclear localization of 7H08 was mediated by two novel independent nuclear localization domains. As a result of the nuclear localization of the effector, 7H08 was tested for the ability to activate gene transcription. 7H08 was found to activate the expression of reporter genes in both yeast and plant systems. This is the first report of a plant-parasitic nematode effector with transcriptional activation activity. © 2014 BSPP AND JOHN WILEY & SONS LTD.
Lazzari, Barbara; Caprera, Andrea; Cestaro, Alessandro; Merelli, Ivan; Del Corvo, Marcello; Fontana, Paolo; Milanesi, Luciano; Velasco, Riccardo; Stella, Alessandra
2009-06-29
Two complete genome sequences are available for Vitis vinifera Pinot noir. Based on the sequence and gene predictions produced by the IASMA, we performed an in silico detection of putative microRNA genes and of their targets, and collected the most reliable microRNA predictions in a web database. The application is available at http://www.itb.cnr.it/ptp/grapemirna/. The program FindMiRNA was used to detect putative microRNA genes in the grape genome. A very high number of predictions was retrieved, calling for validation. Nine parameters were calculated and, based on the grape microRNAs dataset available at miRBase, thresholds were defined and applied to FindMiRNA predictions having targets in gene exons. In the resulting subset, predictions were ranked according to precursor positions and sequence similarity, and to target identity. To further validate FindMiRNA predictions, comparisons to the Arabidopsis genome, to the grape Genoscope genome, and to the grape EST collection were performed. Results were stored in a MySQL database and a web interface was prepared to query the database and retrieve predictions of interest. The GrapeMiRNA database encompasses 5,778 microRNA predictions spanning the whole grape genome. Predictions are integrated with information that can be of use in selection procedures. Tools added in the web interface also allow to inspect predictions according to gene ontology classes and metabolic pathways of targets. The GrapeMiRNA database can be of help in selecting candidate microRNA genes to be validated.
Putative cross-kingdom horizontal gene transfer in sponge (Porifera) mitochondria
Rot, Chagai; Goldfarb, Itay; Ilan, Micha; Huchon, Dorothée
2006-01-01
Background The mitochondrial genome of Metazoa is usually a compact molecule without introns. Exceptions to this rule have been reported only in corals and sea anemones (Cnidaria), in which group I introns have been discovered in the cox1 and nad5 genes. Here we show several lines of evidence demonstrating that introns can also be found in the mitochondria of sponges (Porifera). Results A 2,349 bp fragment of the mitochondrial cox1 gene was sequenced from the sponge Tetilla sp. (Spirophorida). This fragment suggests the presence of a 1143 bp intron. Similar to all the cnidarian mitochondrial introns, the putative intron has group I intron characteristics. The intron is present in the cox1 gene and encodes a putative homing endonuclease. In order to establish the distribution of this intron in sponges, the cox1 gene was sequenced from several representatives of the demosponge diversity. The intron was found only in the sponge order Spirophorida. A phylogenetic analysis of the COI protein sequence and of the intron open reading frame suggests that the intron may have been transmitted horizontally from a fungus donor. Conclusion Little is known about sponge-associated fungi, although in the last few years the latter have been frequently isolated from sponges. We suggest that the horizontal gene transfer of a mitochondrial intron was facilitated by a symbiotic relationship between fungus and sponge. Ecological relationships are known to have implications at the genomic level. Here, an ecological relationship between sponge and fungus is suggested based on the genomic analysis. PMID:16972986
Freed, Nikki E; Bumann, Dirk; Silander, Olin K
2016-09-06
Gene essentiality - whether or not a gene is necessary for cell growth - is a fundamental component of gene function. It is not well established how quickly gene essentiality can change, as few studies have compared empirical measures of essentiality between closely related organisms. Here we present the results of a Tn-seq experiment designed to detect essential protein coding genes in the bacterial pathogen Shigella flexneri 2a 2457T on a genome-wide scale. Superficial analysis of this data suggested that 481 protein-coding genes in this Shigella strain are critical for robust cellular growth on rich media. Comparison of this set of genes with a gold-standard data set of essential genes in the closely related Escherichia coli K12 BW25113 revealed that an excessive number of genes appeared essential in Shigella but non-essential in E. coli. Importantly, and in converse to this comparison, we found no genes that were essential in E. coli and non-essential in Shigella, implying that many genes were artefactually inferred as essential in Shigella. Controlling for such artefacts resulted in a much smaller set of discrepant genes. Among these, we identified three sets of functionally related genes, two of which have previously been implicated as critical for Shigella growth, but which are dispensable for E. coli growth. The data presented here highlight the small number of protein coding genes for which we have strong evidence that their essentiality status differs between the closely related bacterial taxa E. coli and Shigella. A set of genes involved in acetate utilization provides a canonical example. These results leave open the possibility of developing strain-specific antibiotic treatments targeting such differentially essential genes, but suggest that such opportunities may be rare in closely related bacteria.
Piva, S; Gariano, G R; Bonilauri, P; Giacometti, F; Decastelli, L; Florio, D; Massella, E; Serraino, A
2017-04-01
This comparative study investigated the occurrence of cadF, cj1349, ciaB, pldA, tlyA, hecA, hecB, mviN, irgA and IroE genes in 212 Arcobacter butzleri isolated from three different environmental sites linked to the dairy chain (farms, industrial and artisanal dairy plants) located in three Italian regions (Lombardy, Emilia-Romagna and Calabria). According to the presence of these genes, different pathotypes (P-types) were determined. The main genes detected were ciaB, mviN, tlyA, cj1349, pldA and cadF, while the least common genes were iroE, hecA, hecB and irgA. TlyA, irgA, hecA, hecB and iroE, which were significantly more frequent in isolates recovered in industrial dairy plants. Twelve P-types were detected. The occurrence of the most frequently detected P-types (P-types 1, 2, 3 and 5) differed significantly (P < 0·001) in relation to both the environmental site and geographical area of isolation. The highest diversity in P-types was observed in industrial dairy plants and in the Calabria region. The results of this study show a correlation between the occurrence of putative virulence genes and virulence genotype variability depending on the environmental site and geographical origin of the isolates. The present study provides insights into the similar distribution of putative virulence genes in a dairy chain and other sources' isolates and also into a geographical distribution of some P-types. We have shown that industrial dairy plants may represent an environmental site favouring a selection of the isolates with a higher pathogenetic pattern. © 2017 The Society for Applied Microbiology.
2012-01-01
Background Epinotia aporema (Lepidoptera: Tortricidae) is an important pest of legume crops in South America. Epinotia aporema granulovirus (EpapGV) is a baculovirus that causes a polyorganotropic infection in the host larva. Its high pathogenicity and host specificity make EpapGV an excellent candidate to be used as a biological control agent. Results The genome of Epinotia aporema granulovirus (EpapGV) was sequenced and analyzed. Its circular double-stranded DNA genome is 119,082 bp in length and codes for 133 putative genes. It contains the 31 baculovirus core genes and a set of 19 genes that are GV exclusive. Seventeen ORFs were unique to EpapGV in comparison with other baculoviruses. Of these, 16 found no homologues in GenBank, and one encoded a thymidylate kinase. Analysis of nucleotide sequence repeats revealed the presence of 16 homologous regions (hrs) interspersed throughout the genome. Each hr was characterized by the presence of 1 to 3 clustered imperfect palindromes which are similar to previously described palindromes of tortricid-specific GVs. Also, one of the hrs (hr4) has flanking sequences suggestive of a putative non-hr ori. Interestingly, two more complex hrs were found in opposite loci, dividing the circular dsDNA genome in two halves. Gene synteny maps showed the great colinearity of sequenced GVs, being EpapGV the most dissimilar as it has a 20 kb-long gene block inversion. Phylogenetic study performed with 31 core genes of 58 baculoviral genomes suggests that EpapGV is the baculovirus isolate closest to the putative common ancestor of tortricid specific betabaculoviruses. Conclusions This study, along with previous characterization of EpapGV infection, is useful for the better understanding of the pathology caused by this virus and its potential utilization as a bioinsecticide. PMID:23051685
DArT Markers Effectively Target Gene Space in the Rye Genome
Gawroński, Piotr; Pawełkowicz, Magdalena; Tofil, Katarzyna; Uszyński, Grzegorz; Sharifova, Saida; Ahluwalia, Shivaksh; Tyrka, Mirosław; Wędzony, Maria; Kilian, Andrzej; Bolibok-Brągoszewska, Hanna
2016-01-01
Large genome size and complexity hamper considerably the genomics research in relevant species. Rye (Secale cereale L.) has one of the largest genomes among cereal crops and repetitive sequences account for over 90% of its length. Diversity Arrays Technology is a high-throughput genotyping method, in which a preferential sampling of gene-rich regions is achieved through the use of methylation sensitive restriction enzymes. We obtained sequences of 6,177 rye DArT markers and following a redundancy analysis assembled them into 3,737 non-redundant sequences, which were then used in homology searches against five Pooideae sequence sets. In total 515 DArT sequences could be incorporated into publicly available rye genome zippers providing a starting point for the integration of DArT- and transcript-based genomics resources in rye. Using Blast2Go pipeline we attributed putative gene functions to 1101 (29.4%) of the non-redundant DArT marker sequences, including 132 sequences with putative disease resistance-related functions, which were found to be preferentially located in the 4RL and 6RL chromosomes. Comparative analysis based on the DArT sequences revealed obvious inconsistencies between two recently published high density consensus maps of rye. Furthermore we demonstrated that DArT marker sequences can be a source of SSR polymorphisms. Obtained data demonstrate that DArT markers effectively target gene space in the large, complex, and repetitive rye genome. Through the annotation of putative gene functions and the alignment of DArT sequences relative to reference genomes we obtained information, that will complement the results of the studies, where DArT genotyping was deployed, by simplifying the gene ontology and microcolinearity based identification of candidate genes. PMID:27833625
DArT Markers Effectively Target Gene Space in the Rye Genome.
Gawroński, Piotr; Pawełkowicz, Magdalena; Tofil, Katarzyna; Uszyński, Grzegorz; Sharifova, Saida; Ahluwalia, Shivaksh; Tyrka, Mirosław; Wędzony, Maria; Kilian, Andrzej; Bolibok-Brągoszewska, Hanna
2016-01-01
Large genome size and complexity hamper considerably the genomics research in relevant species. Rye ( Secale cereale L.) has one of the largest genomes among cereal crops and repetitive sequences account for over 90% of its length. Diversity Arrays Technology is a high-throughput genotyping method, in which a preferential sampling of gene-rich regions is achieved through the use of methylation sensitive restriction enzymes. We obtained sequences of 6,177 rye DArT markers and following a redundancy analysis assembled them into 3,737 non-redundant sequences, which were then used in homology searches against five Pooideae sequence sets. In total 515 DArT sequences could be incorporated into publicly available rye genome zippers providing a starting point for the integration of DArT- and transcript-based genomics resources in rye. Using Blast2Go pipeline we attributed putative gene functions to 1101 (29.4%) of the non-redundant DArT marker sequences, including 132 sequences with putative disease resistance-related functions, which were found to be preferentially located in the 4RL and 6RL chromosomes. Comparative analysis based on the DArT sequences revealed obvious inconsistencies between two recently published high density consensus maps of rye. Furthermore we demonstrated that DArT marker sequences can be a source of SSR polymorphisms. Obtained data demonstrate that DArT markers effectively target gene space in the large, complex, and repetitive rye genome. Through the annotation of putative gene functions and the alignment of DArT sequences relative to reference genomes we obtained information, that will complement the results of the studies, where DArT genotyping was deployed, by simplifying the gene ontology and microcolinearity based identification of candidate genes.
Wang, Hao; Liu, Ning; Xi, Lijun; Rong, Xiaoying; Ruan, Jisheng; Huang, Ying
2011-01-01
Polyether ionophores are a unique class of polyketides with broad-spectrum activity and outstanding potency for the control of drug-resistant bacteria and parasites, and they are produced exclusively by actinomycetes. A special epoxidase gene encoding a critical tailoring enzyme involved in the biosynthesis of these compounds has been found in all five of the complete gene clusters of polyether ionophores published so far. To detect potential producer strains of these antibiotics, a pair of degenerate primers was designed according to the conserved regions of the five known polyether epoxidases. A total of 44 putative polyether epoxidase gene-positive strains were obtained by the PCR-based screening of 1,068 actinomycetes isolated from eight different habitats and 236 reference strains encompassing eight major families of Actinomycetales. The isolates spanned a wide taxonomic diversity based on 16S rRNA gene analysis, and actinomycetes isolated from acidic soils seemed to be a promising source of polyether ionophores. Four genera were detected to contain putative polyether epoxidases, including Micromonospora, which has not previously been reported to produce polyether ionophores. The designed primers also detected putative epoxidase genes from diverse known producer strains that produce polyether ionophores unrelated to the five published gene clusters. Moreover, phylogenetic and chemical analyses showed a strong correlation between the sequence of polyether epoxidases and the structure of encoded polyethers. Thirteen positive isolates were proven to be polyether ionophore producers as expected, and two new analogues were found. These results demonstrate the feasibility of using this epoxidase gene screening strategy to aid the rapid identification of known products and the discovery of unknown polyethers in actinomycetes. PMID:21421776
Wang, Hao; Liu, Ning; Xi, Lijun; Rong, Xiaoying; Ruan, Jisheng; Huang, Ying
2011-05-01
Polyether ionophores are a unique class of polyketides with broad-spectrum activity and outstanding potency for the control of drug-resistant bacteria and parasites, and they are produced exclusively by actinomycetes. A special epoxidase gene encoding a critical tailoring enzyme involved in the biosynthesis of these compounds has been found in all five of the complete gene clusters of polyether ionophores published so far. To detect potential producer strains of these antibiotics, a pair of degenerate primers was designed according to the conserved regions of the five known polyether epoxidases. A total of 44 putative polyether epoxidase gene-positive strains were obtained by the PCR-based screening of 1,068 actinomycetes isolated from eight different habitats and 236 reference strains encompassing eight major families of Actinomycetales. The isolates spanned a wide taxonomic diversity based on 16S rRNA gene analysis, and actinomycetes isolated from acidic soils seemed to be a promising source of polyether ionophores. Four genera were detected to contain putative polyether epoxidases, including Micromonospora, which has not previously been reported to produce polyether ionophores. The designed primers also detected putative epoxidase genes from diverse known producer strains that produce polyether ionophores unrelated to the five published gene clusters. Moreover, phylogenetic and chemical analyses showed a strong correlation between the sequence of polyether epoxidases and the structure of encoded polyethers. Thirteen positive isolates were proven to be polyether ionophore producers as expected, and two new analogues were found. These results demonstrate the feasibility of using this epoxidase gene screening strategy to aid the rapid identification of known products and the discovery of unknown polyethers in actinomycetes.
Diallinas, G; Gorfinkiel, L; Arst, H N; Cecchetto, G; Scazzocchio, C
1995-04-14
In Aspergillus nidulans, loss-of-function mutations in the uapA and azgA genes, encoding the major uric acid-xanthine and hypoxanthine-adenine-guanine permeases, respectively, result in impaired utilization of these purines as sole nitrogen sources. The residual growth of the mutant strains is due to the activity of a broad specificity purine permease. We have identified uapC, the gene coding for this third permease through the isolation of both gain-of-function and loss-of-function mutations. Uptake studies with wild-type and mutant strains confirmed the genetic analysis and showed that the UapC protein contributes 30% and 8-10% to uric acid and hypoxanthine transport rates, respectively. The uapC gene was cloned, its expression studied, its sequence and transcript map established, and the sequence of its putative product analyzed. uapC message accumulation is: (i) weakly induced by 2-thiouric acid; (ii) repressed by ammonium; (iii) dependent on functional uaY and areA regulatory gene products (mediating uric acid induction and nitrogen metabolite repression, respectively); (iv) increased by uapC gain-of-function mutations which specifically, but partially, suppress a leucine to valine mutation in the zinc finger of the protein coded by the areA gene. The putative uapC gene product is a highly hydrophobic protein of 580 amino acids (M(r) = 61,251) including 12-14 putative transmembrane segments. The UapC protein is highly similar (58% identity) to the UapA permease and significantly similar (23-34% identity) to a number of bacterial transporters. Comparisons of the sequences and hydropathy profiles of members of this novel family of transporters yield insights into their structure, functionally important residues, and possible evolutionary relationships.
Eves-van den Akker, Sebastian; Laetsch, Dominik R; Thorpe, Peter; Lilley, Catherine J; Danchin, Etienne G J; Da Rocha, Martine; Rancurel, Corinne; Holroyd, Nancy E; Cotton, James A; Szitenberg, Amir; Grenier, Eric; Montarry, Josselin; Mimee, Benjamin; Duceppe, Marc-Olivier; Boyes, Ian; Marvin, Jessica M C; Jones, Laura M; Yusup, Hazijah B; Lafond-Lapalme, Joël; Esquibet, Magali; Sabeh, Michael; Rott, Michael; Overmars, Hein; Finkers-Tomczak, Anna; Smant, Geert; Koutsovoulos, Georgios; Blok, Vivian; Mantelin, Sophie; Cock, Peter J A; Phillips, Wendy; Henrissat, Bernard; Urwin, Peter E; Blaxter, Mark; Jones, John T
2016-06-10
The yellow potato cyst nematode, Globodera rostochiensis, is a devastating plant pathogen of global economic importance. This biotrophic parasite secretes effectors from pharyngeal glands, some of which were acquired by horizontal gene transfer, to manipulate host processes and promote parasitism. G. rostochiensis is classified into pathotypes with different plant resistance-breaking phenotypes. We generate a high quality genome assembly for G. rostochiensis pathotype Ro1, identify putative effectors and horizontal gene transfer events, map gene expression through the life cycle focusing on key parasitic transitions and sequence the genomes of eight populations including four additional pathotypes to identify variation. Horizontal gene transfer contributes 3.5 % of the predicted genes, of which approximately 8.5 % are deployed as effectors. Over one-third of all effector genes are clustered in 21 putative 'effector islands' in the genome. We identify a dorsal gland promoter element motif (termed DOG Box) present upstream in representatives from 26 out of 28 dorsal gland effector families, and predict a putative effector superset associated with this motif. We validate gland cell expression in two novel genes by in situ hybridisation and catalogue dorsal gland promoter element-containing effectors from available cyst nematode genomes. Comparison of effector diversity between pathotypes highlights correlation with plant resistance-breaking. These G. rostochiensis genome resources will facilitate major advances in understanding nematode plant-parasitism. Dorsal gland promoter element-containing effectors are at the front line of the evolutionary arms race between plant and parasite and the ability to predict gland cell expression a priori promises rapid advances in understanding their roles and mechanisms of action.
Regulation of the alpha-glucuronidase-encoding gene ( aguA) from Aspergillus niger.
de Vries, R P; van de Vondervoort, P J I; Hendriks, L; van de Belt, M; Visser, J
2002-09-01
The alpha-glucuronidase gene aguA from Aspergillus niger was cloned and characterised. Analysis of the promoter region of aguA revealed the presence of four putative binding sites for the major carbon catabolite repressor protein CREA and one putative binding site for the transcriptional activator XLNR. In addition, a sequence motif was detected which differed only in the last nucleotide from the XLNR consensus site. A construct in which part of the aguA coding region was deleted still resulted in production of a stable mRNA upon transformation of A. niger. The putative XLNR binding sites and two of the putative CREA binding sites were mutated individually in this construct and the effects on expression were examined in A. niger transformants. Northern analysis of the transformants revealed that the consensus XLNR site is not actually functional in the aguA promoter, whereas the sequence that diverges from the consensus at a single position is functional. This indicates that XLNR is also able to bind to the sequence GGCTAG, and the XLNR binding site consensus should therefore be changed to GGCTAR. Both CREA sites are functional, indicating that CREA has a strong influence on aguA expression. A detailed expression analysis of aguA in four genetic backgrounds revealed a second regulatory system involved in activation of aguA gene expression. This system responds to the presence of glucuronic and galacturonic acids, and is not dependent on XLNR.
Bulley, Sean M.; Rassam, Maysoon; Hoser, Dana; Otto, Wolfgang; Schünemann, Nicole; Wright, Michele; MacRae, Elspeth; Gleave, Andrew; Laing, William
2009-01-01
Vitamin C (L-ascorbic acid, AsA) is an essential metabolite for plants and animals. Kiwifruit (Actinidia spp.) are a rich dietary source of AsA for humans. To understand AsA biosynthesis in kiwifruit, AsA levels and the relative expression of genes putatively involved in AsA biosynthesis, regeneration, and transport were correlated by quantitative polymerase chain reaction in leaves and during fruit development in four kiwifruit genotypes (three species; A. eriantha, A. chinensis, and A. deliciosa). During fruit development, fruit AsA concentration peaked between 4 and 6 weeks after anthesis with A. eriantha having 3–16-fold higher AsA than other genotypes. The rise in AsA concentration typically occurred close to the peak in expression of the L-galactose pathway biosynthetic genes, particularly the GDP-L-galactose guanyltransferase gene. The high concentration of AsA found in the fruit of A. eriantha is probably due to higher expression of the GDP-mannose-3′,5′-epimerase and GDP-L-galactose guanyltransferase genes. Over-expression of the kiwifruit GDP-L-galactose guanyltransferase gene in Arabidopsis resulted in up to a 4-fold increase in AsA, while up to a 7-fold increase in AsA was observed in transient expression studies where both GDP-L-galactose guanyltransferase and GDP-mannose-3′,5′-epimerase genes were co-expressed. These studies show the importance of GDP-L-galactose guanyltransferase as a rate-limiting step to AsA, and demonstrate how AsA can be significantly increased in plants. PMID:19129165
Efflux Pump Gene Expression in Multidrug-Resistant Mycobacterium tuberculosis Clinical Isolates
Jiang, Yi; Wei, Jianhao; Zhao, Li-li; Zhao, Xiuqin; Lu, Jianxin; Wan, Kanglin
2015-01-01
Isoniazid (INH) and rifampicin (RIF) are the two most effective drugs in tuberculosis therapy. Understanding the molecular mechanisms of resistance to these two drugs is essential to quickly diagnose multidrug-resistant (MDR) tuberculosis and extensive drug-resistant tuberculosis. Nine clinical Mycobacterium tuberculosis isolates resistant to only INH and RIF and 10 clinical pan-sensitive isolates were included to evaluate the expression of 20 putative drug efflux pump genes and sequence mutations in rpoB (RIF), katG (INH), the inhA promoter (INH), and oxyR-ahpC (INH). Nine and three MDR isolates were induced to overexpress efflux pump genes by INH and RIF, respectively. Eight and two efflux pump genes were induced to overexpress by INH and RIF in MDR isolates, respectively. drrA, drrB, efpA, jefA (Rv2459), mmr, Rv0849, Rv1634, and Rv1250 were overexpressed under INH or RIF stress. Most efflux pump genes were overexpressed under INH stress in a MDR isolates that carried the wild-type katG, inhA, and oxyR-ahpC associated with INH resistance than in those that carried mutations. The expression levels of 11 genes (efpA, Rv0849, Rv1250, P55 (Rv1410c), Rv1634, Rv2994, stp, Rv2459, pstB, drrA, and drrB) without drug inducement were significantly higher (P < 0.05) in nine MDR isolates than in 10 pan-sensitive isolates. In conclusion, efflux pumps may play an important role in INH acquired resistance in MDR M. tuberculosis, especially in those strains having no mutations in genes associated with INH resistance; basal expression levels of some efflux pump genes are higher in MDR isolates than in pan-sensitive isolates and the basal expressional differences may be helpful to diagnose and treat resistant tuberculosis. PMID:25695504
Santos-Garcia, Diego; Rollat-Farnier, Pierre-Antoine; Beitia, Francisco; Zchori-Fein, Einat; Vavre, Fabrice; Mouton, Laurence; Moya, Andrés; Latorre, Amparo; Silva, Francisco J.
2014-01-01
Many insects harbor inherited bacterial endosymbionts. Although some of them are not strictly essential and are considered facultative, they can be a key to host survival under specific environmental conditions, such as parasitoid attacks, climate changes, or insecticide pressures. The whitefly Bemisia tabaci is at the top of the list of organisms inflicting agricultural damage and outbreaks, and changes in its distribution may be associated to global warming. In this work, we have sequenced and analyzed the genome of Cardinium cBtQ1, a facultative bacterial endosymbiont of B. tabaci and propose that it belongs to a new taxonomic family, which also includes Candidatus Amoebophilus asiaticus and Cardinium cEper1, endosymbionts of amoeba and wasps, respectively. Reconstruction of their last common ancestors’ gene contents revealed an initial massive gene loss from the free-living ancestor. This was followed in Cardinium by smaller losses, associated with settlement in arthropods. Some of these losses, affecting cofactor and amino acid biosynthetic encoding genes, took place in Cardinium cBtQ1 after its divergence from the Cardinium cEper1 lineage and were related to its settlement in the whitefly and its endosymbionts. Furthermore, the Cardinium cBtQ1 genome displays a large proportion of transposable elements, which have recently inactivated genes and produced chromosomal rearrangements. The genome also contains a chromosomal duplication and a multicopy plasmid, which harbors several genes putatively associated with gliding motility, as well as two other genes encoding proteins with potential insecticidal activity. As gene amplification is very rare in endosymbionts, an important function of these genes cannot be ruled out. PMID:24723729
Kiranmai, Kurnool; Lokanadha Rao, Gunupuru; Pandurangaiah, Merum; Nareshkumar, Ambekar; Amaranatha Reddy, Vennapusa; Lokesh, Uppala; Venkatesh, Boya; Anthony Johnson, A M; Sudhakar, Chinta
2018-01-01
Drought stress has adverse effects on growth, water relations, photosynthesis and yield of groundnut. WRKY transcription factors (TFs) are the plant-specific TFs which regulate several down-stream stress-responsive genes and play an essential role in plant biotic and abiotic stress responses. We found that WRKY3 gene is highly up-regulated under drought stress conditions and therefore isolated a new WRKY3TF gene from a drought-adapted horsegram ( Macrotyloma uniflorum Lam. Verdc.). Conserved domain studies revealed that protein encoded by this gene contains highly conserved regions of two WRKY domains and two C2H2 zinc-finger motifs. The fusion protein localization studies of transient MuWRKY 3-YFP revealed its nuclear localization. Overexpression of MuWRKY3 TF gene in groundnut ( Arachis hypogaea L.) showed increased tolerance to drought stress compared to wild-type (WT) plants. MuWRKY3 groundnut transgenics displayed lesser and delayed wilting symptoms than WT plants after 10-days of drought stress imposition. The transgenic groundnut plants expressing MuWRKY3 showed less accumulation of malondialdehyde, hydrogen peroxide (H 2 O 2 ), and superoxide anion (O 2 ∙- ), accompanied by more free proline, total soluble sugar content, and activities of antioxidant enzymes than WT plants under drought stress. Moreover, a series of stress-related LEA, HSP, MIPS, APX, SOD , and CAT genes found up-regulated in the transgenic groundnut plants. The study demonstrates that nuclear-localized MuWRKY3 TF regulates the expression of stress-responsive genes and the activity of ROS scavenging enzymes which results in improved drought tolerance in groundnut. We conclude that MuWRKY3 may serve as a new putative candidate gene for the improvement of stress resistance in plants.
Kiranmai, Kurnool; Lokanadha Rao, Gunupuru; Pandurangaiah, Merum; Nareshkumar, Ambekar; Amaranatha Reddy, Vennapusa; Lokesh, Uppala; Venkatesh, Boya; Anthony Johnson, A. M.; Sudhakar, Chinta
2018-01-01
Drought stress has adverse effects on growth, water relations, photosynthesis and yield of groundnut. WRKY transcription factors (TFs) are the plant-specific TFs which regulate several down-stream stress-responsive genes and play an essential role in plant biotic and abiotic stress responses. We found that WRKY3 gene is highly up-regulated under drought stress conditions and therefore isolated a new WRKY3TF gene from a drought-adapted horsegram (Macrotyloma uniflorum Lam. Verdc.). Conserved domain studies revealed that protein encoded by this gene contains highly conserved regions of two WRKY domains and two C2H2 zinc-finger motifs. The fusion protein localization studies of transient MuWRKY3-YFP revealed its nuclear localization. Overexpression of MuWRKY3 TF gene in groundnut (Arachis hypogaea L.) showed increased tolerance to drought stress compared to wild-type (WT) plants. MuWRKY3 groundnut transgenics displayed lesser and delayed wilting symptoms than WT plants after 10-days of drought stress imposition. The transgenic groundnut plants expressing MuWRKY3 showed less accumulation of malondialdehyde, hydrogen peroxide (H2O2), and superoxide anion (O2∙-), accompanied by more free proline, total soluble sugar content, and activities of antioxidant enzymes than WT plants under drought stress. Moreover, a series of stress-related LEA, HSP, MIPS, APX, SOD, and CAT genes found up-regulated in the transgenic groundnut plants. The study demonstrates that nuclear-localized MuWRKY3 TF regulates the expression of stress-responsive genes and the activity of ROS scavenging enzymes which results in improved drought tolerance in groundnut. We conclude that MuWRKY3 may serve as a new putative candidate gene for the improvement of stress resistance in plants. PMID:29616059
Kalmykova, Alla I.; Shevelyov, Yury Y.; Dobritsa, Anna A.; Gvozdev, Vladimir A.
1997-01-01
The acquisition of autosomal fertility genes has been proposed to be an important process in human Y chromosome evolution. For example, the Y-linked fertility factor DAZ (Deleted in Azoospermia) appears to have arisen after the transposition and tandem amplification of the autosomal DAZH gene. The Drosophila melanogaster Y chromosome contains tandemly repeated Su(Ste) units that are thought to affect male fertility as suppressors of the homologous X-linked Stellate repeats. Here we report the detection of a testis-expressed autosomal gene, SSL [Su(Ste)-like], that appears to be an ancestor of the Y-linked Su(Ste) units. SSL encodes a casein kinase 2 (CK2) β-subunit-like protein. Its putative ORF shares extensive (45%) homology with the genuine β-subunit of CK2 and retains the conserved C-terminal and Glu/Asp-rich domains that are essential for CK2 holoenzyme regulation. SSL maps within region 60D1–2 of D. melanogaster and D. simulans polytene chromosomes. We present evidence that SSL was derived from the genuine βCK2 gene by reverse transcription. This event resulted in the loss of the first three introns in the coding region of the SSL ancestor gene. Evolutionary analysis indicates that SSL has evolved under selective pressure at the translational level. Its sequence, especially in the 3′ region, is much closer to the Y-linked Su(Ste) tandem repeats than to the βCK2 gene. These results suggest that the acquisition of testis-specific autosomal genes may be important for the evolution of Drosophila as well as human Y chromosomes. PMID:9177211
Hoyerová, Klára; Perry, Lucie; Hand, Paul; Laňková, Martina; Kocábek, Tomáš; May, Sean; Kottová, Jana; Pačes, Jan; Napier, Richard; Zažímalová, Eva
2008-01-01
We have isolated the cDNA of the gene PaLAX1 from a wild cherry tree (Prunus avium). The gene and its product are highly similar in sequences to both the cDNAs and the corresponding protein products of AUX/LAX-type genes, coding for putative auxin influx carriers. We have prepared and characterized transformed Nicotiana tabacum and Arabidopsis thaliana plants carrying the gene PaLAX1. We have proved that constitutive overexpression of PaLAX1 is accompanied by changes in the content and distribution of free indole-3-acetic acid, the major endogenous auxin. The increase in free indole-3-acetic acid content in transgenic plants resulted in various phenotype changes, typical for the auxin-overproducing plants. The uptake of synthetic auxin, 2,4-dichlorophenoxyacetic acid, was 3 times higher in transgenic lines compared to the wild-type lines and the treatment with the auxin uptake inhibitor 1-naphthoxyacetic acid reverted the changes caused by the expression of PaLAX1. Moreover, the agravitropic response could be restored by expression of PaLAX1 in the mutant aux1 plants, which are deficient in auxin influx carrier activity. Based on our data, we have concluded that the product of the gene PaLAX1 promotes the uptake of auxin into cells, and, as a putative auxin influx carrier, it affects the content and distribution of free endogenous auxin in transgenic plants. PMID:18184737
Li, Yuanjun; Gou, Junbo; Chen, Fangfang; Li, Changfu; Zhang, Yansheng
2016-01-01
Xanthium strumarium L. is a traditional Chinese herb belonging to the Asteraceae family. The major bioactive components of this plant are sesquiterpene lactones (STLs), which include the xanthanolides. To date, the biogenesis of xanthanolides, especially their downstream pathway, remains largely unknown. In X. strumarium, xanthanolides primarily accumulate in its glandular trichomes. To identify putative gene candidates involved in the biosynthesis of xanthanolides, three X. strumarium transcriptomes, which were derived from the young leaves of two different cultivars and the purified glandular trichomes from one of the cultivars, were constructed in this study. In total, 157 million clean reads were generated and assembled into 91,861 unigenes, of which 59,858 unigenes were successfully annotated. All the genes coding for known enzymes in the upstream pathway to the biosynthesis of xanthanolides were present in the X. strumarium transcriptomes. From a comparative analysis of the X. strumarium transcriptomes, this study identified a number of gene candidates that are putatively involved in the downstream pathway to the synthesis of xanthanolides, such as four unigenes encoding CYP71 P450s, 50 unigenes for dehydrogenases, and 27 genes for acetyltransferases. The possible functions of these four CYP71 candidates are extensively discussed. In addition, 116 transcription factors that are highly expressed in X. strumarium glandular trichomes were also identified. Their possible regulatory roles in the biosynthesis of STLs are discussed. The global transcriptomic data for X. strumarium should provide a valuable resource for further research into the biosynthesis of xanthanolides.
Antonini, S R; N'Diaye, N; Baldacchino, V; Hamet, P; Tremblay, J; Lacroix, A
2004-07-01
Gastric inhibitory polypeptide (GIP)-dependent Cushing's syndrome (CS) results from the ectopic expression of non-mutated GIP receptor (hGIPR) in the adrenal cortex. We evaluated whether mutations or polymorphisms in the regulatory region of the GIPR gene could lead to this aberrant expression. We studied 9.0kb upstream and 1.3kb downstream of the GIPR gene putative promoter (pProm) by sequencing leukocyte DNA from controls and from adrenal tissues of GIP- and non-GIP-dependent CS patients. The putative proximal promoter region (800 bp) and the first exon and intron of the hGIPR gene were sequenced on adrenal DNA from nine GIP-dependent CS, as well as on leukocyte DNA of nine normal controls. Three variations found in this region were found in all patients and controls; at position -4/-5, an insertion of a T was seen in four out of nine patients and in five out of nine controls. Transient transfection studies conducted in rat GC and mouse Y1 cells showed that the TT allele confers loss of 40% in the promoter activity. The analysis of the 8-kb distal pProm region revealed eight distal single nucleotide polymorphisms (SNPs) without probable association with the disease, since frequencies in patients and controls were very similar. In conclusion, mutations or SNPs in the regulatory region of the GIPR gene are unlikely to underlie GIP-dependent CS. Copyright 2004 Elsevier Ltd.
Qin, L; Overmars, H; Helder, J; Popeijus, H; van der Voort, J R; Groenink, W; van Koert, P; Schots, A; Bakker, J; Smant, G
2000-08-01
A new strategy has been designed to identify putative pathogenicity factors from the dorsal or subventral esophageal glands of the potato cyst nematode Globodera rostochiensis. Three independent criteria were used for selection. First, genes of interest should predominantly be expressed in infective second-stage juveniles, and not, or to a far lesser extent, in younger developmental stages. For this, gene expression profiles from five different developmental stages were generated with cDNA-AFLP (amplified fragment length polymorphism). Secondly, the mRNA corresponding to such a putative pathogenicity factor should predominantly be present in the esophageal glands of pre-parasitic juveniles. This was checked by in situ hybridization. As a third criterion, these proteinaceous factors should be preceded by a signal peptide for secretion. Expression profiles of more than 4,000 genes were generated and three up-regulated, dorsal gland-specific proteins preceded by signal peptide for secretion were identified. No dorsal gland genes have been cloned before from plant-parasitic nematodes. The partial sequence of these three factors, A4, A18, and A41, showed no significant homology to any known gene. Their presence in the dorsal glands of infective juveniles suggests that these proteins could be involved in feeding cell initiation, and not in migration in the plant root or in protection against plant defense responses. Finally, the applicability of this new strategy in other plant-microbe interactions is discussed.
Jakubowska, Agata K; Peters, Sander A; Ziemnicka, Jadwiga; Vlak, Just M; van Oers, Monique M
2006-03-01
The genome sequence of a Polish isolate of Agrotis segetum nucleopolyhedrovirus (AgseNPV-A) was determined and analysed. The circular genome is composed of 147,544 bp and has a G+C content of 45.7 mol%. It contains 153 putative, non-overlapping open reading frames (ORFs) encoding predicted proteins of more than 50 aa, together making up 89.8 % of the genome. The remaining 10.2 % of the DNA constitutes non-coding regions and homologous-repeat regions. One hundred and forty-three AgseNPV-A ORFs are homologues of previously reported baculovirus gene sequences. There are ten unique ORFs and they account for 3 % of the genome in total. All 62 lepidopteran baculovirus genes, including the 29 core baculovirus genes, were found in the AgseNPV-A genome. The gene content and gene order of AgseNPV-A are most similar to those of Spodoptera exigua (Se) multiple NPV and their shared homologous genes are 100 % collinear. Three putative enhancin genes were identified in the AgseNPV-A genome. In phylogenetic analysis, the AgseNPV-A enhancins form a cluster separated from enhancins of the Mamestra species NPVs.
Whole-Genome Survey of the Putative ATP-Binding Cassette Transporter Family Genes in Vitis vinifera
Çakır, Birsen; Kılıçkaya, Ozan
2013-01-01
The ATP-binding cassette (ABC) protein superfamily constitutes one of the largest protein families known in plants. In this report, we performed a complete inventory of ABC protein genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with ABC protein members of Arabidopsis thaliana, we identified 135 putative ABC proteins with 1 or 2 NBDs in V. vinifera. Of these, 120 encode intrinsic membrane proteins, and 15 encode proteins missing TMDs. V. vinifera ABC proteins can be divided into 13 subfamilies with 79 “full-size,” 41 “half-size,” and 15 “soluble” putative ABC proteins. The main feature of the Vitis ABC superfamily is the presence of 2 large subfamilies, ABCG (pleiotropic drug resistance and white-brown complex homolog) and ABCC (multidrug resistance-associated protein). We identified orthologs of V. vinifera putative ABC transporters in different species. This work represents the first complete inventory of ABC transporters in V. vinifera. The identification of Vitis ABC transporters and their comparative analysis with the Arabidopsis counterparts revealed a strong conservation between the 2 species. This inventory could help elucidate the biological and physiological functions of these transporters in V. vinifera. PMID:24244377
On the putative essential discreteness of q-generalized entropies
NASA Astrophysics Data System (ADS)
Plastino, A.; Rocca, M. C.
2017-12-01
It has been argued in Abe (2010), entitled Essential discreteness in generalized thermostatistics with non-logarithmic entropy, that ;continuous Hamiltonian systems with long-range interactions and the so-called q-Gaussian momentum distributions are seen to be outside the scope of non-extensive statistical mechanics;. The arguments are clever and appealing. We show here that, however, some mathematical subtleties render them unconvincing.
Venturini, Carola; Hassan, Karl A; Roy Chowdhury, Piklu; Paulsen, Ian T; Walker, Mark J; Djordjevic, Steven P
2013-01-01
Enterohemorrhagic Escherichia coli (EHEC) and atypical enteropathogenic E. coli (aEPEC) are important zoonotic pathogens that increasingly are becoming resistant to multiple antibiotics. Here we describe two plasmids, pO26-CRL125 (125 kb) from a human O26:H- EHEC, and pO111-CRL115 (115kb) from a bovine O111 aEPEC, that impart resistance to ampicillin, kanamycin, neomycin, streptomycin, sulfathiazole, trimethoprim and tetracycline and both contain atypical class 1 integrons with an identical IS26-mediated deletion in their 3´-conserved segment. Complete sequence analysis showed that pO26-CRL125 and pO111-CRL115 are essentially identical except for a 9.7 kb fragment, present in the backbone of pO26-CRL125 but absent in pO111-CRL115, and several indels. The 9.7 kb fragment encodes IncI-associated genes involved in plasmid stability during conjugation, a putative transposase gene and three imperfect repeats. Contiguous sequence identical to regions within these pO26-CRL125 imperfect repeats was identified in pO111-CRL115 precisely where the 9.7 kb fragment is missing, suggesting it may be mobile. Sequences shared between the plasmids include a complete IncZ replicon, a unique toxin/antitoxin system, IncI stability and maintenance genes, a novel putative serine protease autotransporter, and an IncI1 transfer system including a unique shufflon. Both plasmids carry a derivate Tn21 transposon with an atypical class 1 integron comprising a dfrA5 gene cassette encoding resistance to trimethoprim, and 24 bp of the 3´-conserved segment followed by Tn6026, which encodes resistance to ampicillin, kanymycin, neomycin, streptomycin and sulfathiazole. The Tn21-derivative transposon is linked to a truncated Tn1721, encoding resistance to tetracycline, via a region containing the IncP-1α oriV. Absence of the 5 bp direct repeats flanking Tn3-family transposons, indicates that homologous recombination events played a key role in the formation of this complex antibiotic resistance gene locus. Comparative sequence analysis of these closely related plasmids reveals aspects of plasmid evolution in pathogenic E. coli from different hosts.
Mandaokar, Ajin; Kumar, V Dinesh; Amway, Matt; Browse, John
2003-07-01
Jasmonate (JA) is a signaling compound essential for anther development and pollen fertility in Arabidopsis. Mutations that block the pathway of JA synthesis result into male sterility. To understand the processes of anther and pollen maturation, we used microarray and differential display approaches to compare gene expression pattern in anthers of wild-type Arabidopsis and the male-sterile mutant, opr3. Microarray experiment revealed 25 genes that were up-regulated more than 1.8-fold in wild-type anthers as compared to mutant anthers. Experiments based on differential display identified 13 additional genes up-regulated in wild-type anthers compared to opr3 for a total of 38 differentially expressed genes. Searches of the Arabidopsis and non-redundant databases disclosed known or likely functions for 28 of the 38 genes identified, while 10 genes encode proteins of unknown function. Northern blot analysis of eight representative clones as probes confirmed low expression in opr3 anthers compared with wild-type anthers. JA responsiveness of these same genes was also investigated by northern blot analysis of anther RNA isolated from wild-type and opr3 plants, In these experiments, four genes were induced in opr3 anthers within 0.5-1 h of JA treatment while the remaining genes were up-regulated only 1-8 h after JA application. None of these genes was induced by JA in anthers of the coil mutant that is deficient in JA responsiveness. The four early-induced genes in opr3 encode lipoxygenase, a putative bHLH transcription factor, epithiospecifier protein and an unknown protein. We propose that these and other early components may be involved in JA signaling and in the initiation of developmental processes. The four late genes encode an extensin-like protein, a peptide transporter and two unknown proteins, which may represent components required later in anther and pollen maturation. Transcript profiling has provided a successful approach to identify genes involved in anther and pollen maturation in Arabidopsis.
Das, Suresh Chandra; Ramamurthy, Thandavanaryanalu; Ghosh, Santanu; Pazhani, Gururaja Perumal; Sen, Tista; Singh, Raghubir
2017-01-01
Background & objectives: Shigatoxic Escherichia coli (STEC) recovered from dairy animals of Kolkata, India, harboured the putative virulence genes; however, the animals did not exhibit clinical symptoms. Similarly, human isolates in this locality also showed variations in degree of symptoms. Hence, this study was designed to know the presence of recognized gene(s) in the locus of enterocyte effacement (LEE) pathogenicity island in these STEC isolates and functional status of the cardinal gene (eae) related to pathogenicity. Methods: Genes were characterized using polymerase chain reaction (PCR) assays, and functional status of cardinal gene (eae) was evaluated by fluorescent actin staining (FAS) assay. Variation in eae gene was determined by intimin PCR. Results: Cattle STEC isolates carried 22 genes in LEE pathogenicity island in different frequencies ranging from 5.63 to 47.88 per cent of the isolates. In human isolates, the genes namely ler, escRSTU, orf2, escC, escV, orf3 and tir that are associated with secretory function, were found to be absent and rest of the genes were present in lower frequency. Further, the cardinal gene (eae) responsible for initiation of pathogenesis was in a very low frequency in human (n=2; 10.5%) and cattle (n=11; 15.5%) isolates. None of these eae+ STEC isolates from human and cattle revealed positivity in FAS assay. Interpretation & conclusions: Majority of human STEC isolates lacked the cardinal virulence gene (eae), and genes for secretory function that are essential for facilitating pathogenesis. This may partially be attributed to low occurrence of STEC in human clinical diarrhoea in this area. Although a few isolates (11 of 71) from cattle had eae gene, they did not express phenotypically. This could be one of the reasons for not appearing of clinical symptoms in the hosts. PMID:29205193
A novel essential domain perspective for exploring gene essentiality.
Lu, Yao; Lu, Yulan; Deng, Jingyuan; Peng, Hai; Lu, Hui; Lu, Long Jason
2015-09-15
Genes with indispensable functions are identified as essential; however, the traditional gene-level studies of essentiality have several limitations. In this study, we characterized gene essentiality from a new perspective of protein domains, the independent structural or functional units of a polypeptide chain. To identify such essential domains, we have developed an Expectation-Maximization (EM) algorithm-based Essential Domain Prediction (EDP) Model. With simulated datasets, the model provided convergent results given different initial values and offered accurate predictions even with noise. We then applied the EDP model to six microbial species and predicted 1879 domains to be essential in at least one species, ranging 10-23% in each species. The predicted essential domains were more conserved than either non-essential domains or essential genes. Comparing essential domains in prokaryotes and eukaryotes revealed an evolutionary distance consistent with that inferred from ribosomal RNA. When utilizing these essential domains to reproduce the annotation of essential genes, we received accurate results that suggest protein domains are more basic units for the essentiality of genes. Furthermore, we presented several examples to illustrate how the combination of essential and non-essential domains can lead to genes with divergent essentiality. In summary, we have described the first systematic analysis on gene essentiality on the level of domains. huilu.bioinfo@gmail.com or Long.Lu@cchmc.org Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
USDA-ARS?s Scientific Manuscript database
Large-scale screens of the maize genome identified 48 genes that show the putative signature of artificial selection during maize domestication or improvement. These selection-candidate genes may act as quantitative trait loci (QTL) that control the phenotypic differences between maize and its proge...
[Cloning and characterization of Caveolin-1 gene in pigeon, Columba livia domestica].
Zhang, Ying; Yu, Jian-Feng; Yang, Li; Wang, Xing-Guo; Gu, Zhi-Liang
2010-10-01
Caveolins, a class of principal proteins forming the structure of caveolae in plasmalemma, were encoded by caveolins gene family. Caveolin-1 gene is a member of caveolins gene family. In the present study, a full-length of 2605 bp caveolin-1 cDNA sequence in Columba livia domestica, which included a 537 bp complete ORF encoding a 178 amino acids long putative peptide, were obtained by using RT-PCR and RACE technique. The Columba livia domestica caveolin-1 CDS shared 80.1% - 93.4% homology with Bos taurus, Canis lupus familiaris, Gallus gallus and Rattus norvegicus. Meanwhile, the putative amino acid sequence of Columba livia domestica caveolin-1 shared 85.4% - 97.2% homology with the above species. The semi-quantity RT-PCR revealed that Caveolin-1 expressions were detectable in all the Columba livia domestica tissues and the expressional level of caveolin-1 gene was high in adipose, medium in various muscles, low in liver. These results demonstrated that Caveolin-1 gene was potentially involved in some metabolic pathways in adipose and muscle.
LOD score exclusion analyses for candidate QTLs using random population samples.
Deng, Hong-Wen
2003-11-01
While extensive analyses have been conducted to test for, no formal analyses have been conducted to test against, the importance of candidate genes as putative QTLs using random population samples. Previously, we developed an LOD score exclusion mapping approach for candidate genes for complex diseases. Here, we extend this LOD score approach for exclusion analyses of candidate genes for quantitative traits. Under this approach, specific genetic effects (as reflected by heritability) and inheritance models at candidate QTLs can be analyzed and if an LOD score is < or = -2.0, the locus can be excluded from having a heritability larger than that specified. Simulations show that this approach has high power to exclude a candidate gene from having moderate genetic effects if it is not a QTL and is robust to population admixture. Our exclusion analysis complements association analysis for candidate genes as putative QTLs in random population samples. The approach is applied to test the importance of Vitamin D receptor (VDR) gene as a potential QTL underlying the variation of bone mass, an important determinant of osteoporosis.
Pedra, Joao H F; Brandt, Amanda; Li, Hong-Mei; Westerman, Rick; Romero-Severson, Jeanne; Pollack, Richard J; Murdock, Larry L; Pittendrigh, Barry R
2003-11-01
Genomics information relating to human body lice is surprisingly scarce, and this has constrained studies of their physiology, immunology and vector biology. To identify novel body louse genes, we used engorged adult lice to generate a cDNA library. Initially, 1152 clones were screened for inserts, edited for removal of vector sequences and base pairs of poor quality, and viewed for splicing variations, gene families and polymorphism. Computational methods identified 506 inferred open reading frames including the first predicted louse defensin. The inferred defensin aligns well with other insect defensins and has highly conserved cysteine residues, as are known for other defensin sequences. Two cysteine and five serine proteinases were categorized according to their inferred catalytic sites. We also discovered seven putative ubiquitin-pathway genes and four iron metabolizing deduced enzymes. Finally, glutathione-S-transferases and cytochrome P450 genes were among the detoxification enzymes found. Results from this first systematic effort to discover human body louse genes should promote further studies in Phthiraptera and lice.
Park, Hyun-Eui; Shin, Min-Kyoung; Park, Hong-Tae; Jung, Myunghwan; Cho, Yong Il; Yoo, Han Sang
2016-06-01
This study was conducted to analyze the gene expression of prognostic potential biomarker candidates using the whole blood of cattle naturally infected with ITALIC! Mycobacterium aviumsubsp. ITALIC! paratuberculosis(MAP). We conducted real-time PCR to evaluate 23 potential biomarker candidates. Experimental animals were divided into four groups based on fecal MAP PCR and serum ELISA. Seven ( ITALIC! KLRB1, ITALIC! HGF, ITALIC! MPO, ITALIC! LTF, ITALIC! SERPINE1, ITALIC! S100A8and ITALIC! S100A9) genes were up-regulated in fecal MAP-positive cattle and three ( ITALIC! KLRB1, ITALIC! MPOand ITALIC! S100A9) were up-regulated in MAP-seropositive cattle relative to uninfected cattle. In subclinically infected animals, 17 genes ( ITALIC! TFRC, ITALIC! S100A8, ITALIC! S100A9, ITALIC! MPO, ITALIC! GBP6, ITALIC! LTF, ITALIC! KLRB1, ITALIC! SERPINE1, ITALIC! PIGR, ITALIC! IL-10, ITALIC! CXCR3, ITALIC! CD14, ITALIC! MMP9, ITALIC! ELANE, ITALIC! CHI3L1, ITALIC! HPand ITALIC! HGF) were up-regulated compared with the control group. Moreover, six genes ( ITALIC! CXCR3, ITALIC! HP, ITALIC! HGF, ITALIC! LTF, ITALIC! TFRCand ITALIC! GBP6) showed significant differences between experimental groups. Taken together, our data suggest that six genes ( ITALIC! LTF, ITALIC! HGF, ITALIC! HP, ITALIC! CXCR3, ITALIC! GBP6and ITALIC! TFRC) played essential roles in the immune response to MAP during the subclinical stage and therefore might be useful as prognostic biomarkers. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
A Novel (S)-6-Hydroxynicotine Oxidase Gene from Shinella sp. Strain HZN7
Qiu, Jiguo; Wei, Yin; Ma, Yun; Wen, Rongti; Wen, Yuezhong
2014-01-01
Nicotine is an important environmental toxicant in tobacco waste. Shinella sp. strain HZN7 can metabolize nicotine into nontoxic compounds via variations of the pyridine and pyrrolidine pathways. However, the catabolic mechanism of this variant pathway at the gene or enzyme level is still unknown. In this study, two 6-hydroxynicotine degradation-deficient mutants, N7-M9 and N7-W3, were generated by transposon mutagenesis. The corresponding mutant genes, designated nctB and tnp2, were cloned and analyzed. The nctB gene encodes a novel flavin adenine dinucleotide-containing (S)-6-hydroxynicotine oxidase that converts (S)-6-hydroxynicotine into 6-hydroxy-N-methylmyosmine and then spontaneously hydrolyzes into 6-hydroxypseudooxynicotine. The deletion and complementation of the nctB gene showed that this enzyme is essential for nicotine or (S)-6-hydroxynicotine degradation. Purified NctB could also convert (S)-nicotine into N-methylmyosmine, which spontaneously hydrolyzed into pseudooxynicotine. The kinetic constants of NctB toward (S)-6-hydroxynicotine (Km = 0.019 mM, kcat = 7.3 s−1) and nicotine (Km = 2.03 mM, kcat = 0.396 s−1) indicated that (S)-6-hydroxynicotine is the preferred substrate in vivo. NctB showed no activities toward the R enantiomer of nicotine or 6-hydroxynicotine. Strain HZN7 could degrade (R)-nicotine into (R)-6-hydroxynicotine without any further degradation. The tnp2 gene from mutant N7-W3 encodes a putative transposase, and its deletion did not abolish the nicotine degradation activity. This study advances the understanding of the microbial diversity of nicotine biodegradation. PMID:25002425
Makarova, Kira S.; Wolf, Yuri I.; Koonin, Eugene V.
2015-01-01
With the continuously accelerating genome sequencing from diverse groups of archaea and bacteria, accurate identification of gene orthology and availability of readily expandable clusters of orthologous genes are essential for the functional annotation of new genomes. We report an update of the collection of archaeal Clusters of Orthologous Genes (arCOGs) to cover, on average, 91% of the protein-coding genes in 168 archaeal genomes. The new arCOGs were constructed using refined algorithms for orthology identification combined with extensive manual curation, including incorporation of the results of several completed and ongoing research projects in archaeal genomics. A new level of classification is introduced, superclusters that unit two or more arCOGs and more completely reflect gene family evolution than individual, disconnected arCOGs. Assessment of the current archaeal genome annotation in public databases indicates that consistent use of arCOGs can significantly improve the annotation quality. In addition to their utility for genome annotation, arCOGs also are a platform for phylogenomic analysis. We explore this aspect of arCOGs by performing a phylogenomic study of the Thermococci that are traditionally viewed as the basal branch of the Euryarchaeota. The results of phylogenomic analysis that involved both comparison of multiple phylogenetic trees and a search for putative derived shared characters by using phyletic patterns extracted from the arCOGs reveal a likely evolutionary relationship between the Thermococci, Methanococci, and Methanobacteria. The arCOGs are expected to be instrumental for a comprehensive phylogenomic study of the archaea. PMID:25764277
Coenzyme Q biosynthesis in health and disease.
Acosta, Manuel Jesús; Vazquez Fonseca, Luis; Desbats, Maria Andrea; Cerqua, Cristina; Zordan, Roberta; Trevisson, Eva; Salviati, Leonardo
2016-08-01
Coenzyme Q (CoQ, or ubiquinone) is a remarkable lipid that plays an essential role in mitochondria as an electron shuttle between complexes I and II of the respiratory chain, and complex III. It is also a cofactor of other dehydrogenases, a modulator of the permeability transition pore and an essential antioxidant. CoQ is synthesized in mitochondria by a set of at least 12 proteins that form a multiprotein complex. The exact composition of this complex is still unclear. Most of the genes involved in CoQ biosynthesis (COQ genes) have been studied in yeast and have mammalian orthologues. Some of them encode enzymes involved in the modification of the quinone ring of CoQ, but for others the precise function is unknown. Two genes appear to have a regulatory role: COQ8 (and its human counterparts ADCK3 and ADCK4) encodes a putative kinase, while PTC7 encodes a phosphatase required for the activation of Coq7. Mutations in human COQ genes cause primary CoQ(10) deficiency, a clinically heterogeneous mitochondrial disorder with onset from birth to the seventh decade, and with clinical manifestation ranging from fatal multisystem disorders, to isolated encephalopathy or nephropathy. The pathogenesis of CoQ(10) deficiency involves deficient ATP production and excessive ROS formation, but possibly other aspects of CoQ(10) function are implicated. CoQ(10) deficiency is unique among mitochondrial disorders since an effective treatment is available. Many patients respond to oral CoQ(10) supplementation. Nevertheless, treatment is still problematic because of the low bioavailability of the compound, and novel pharmacological approaches are currently being investigated. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. Copyright © 2016. Published by Elsevier B.V.
Sequence variability of Campylobacter temperate bacteriophages
Clark, Clifford G; Ng, Lai-King
2008-01-01
Background Prophages integrated within the chromosomes of Campylobacter jejuni isolates have been demonstrated very recently. Prior work with Campylobacter temperate bacteriophages, as well as evidence from prophages in other enteric bacteria, suggests these prophages might have a role in the biology and virulence of the organism. However, very little is known about the genetic variability of Campylobacter prophages which, if present, could lead to differential phenotypes in isolates carrying the phages versus those that do not. As a first step in the characterization of C. jejuni prophages, we investigated the distribution of prophage DNA within a C. jejuni population assessed the DNA and protein sequence variability within a subset of the putative prophages found. Results Southern blotting of C. jejuni DNA using probes from genes within the three putative prophages of the C. jejuni sequenced strain RM 1221 demonstrated the presence of at least one prophage gene in a large proportion (27/35) of isolates tested. Of these, 15 were positive for 5 or more of the 7 Campylobacter Mu-like phage 1 (CMLP 1, also designated Campylobacter jejuni integrated element 1, or CJIE 1) genes tested. Twelve of these putative prophages were chosen for further analysis. DNA sequencing of a 9,000 to 11,000 nucleotide region of each prophage demonstrated a close homology with CMLP 1 in both gene order and nucleotide sequence. Structural and sequence variability, including short insertions, deletions, and allele replacements, were found within the prophage genomes, some of which would alter the protein products of the ORFs involved. No insertions of novel genes were detected within the sequenced regions. The 12 prophages and RM 1221 had a % G+C very similar to C. jejuni sequenced strains, as well as promoter regions characteristic of C. jejuni. None of the putative prophages were successfully induced and propagated, so it is not known if they were functional or if they represented remnant prophage DNA in the bacterial chromosomes. Conclusion These putative prophages form a family of phages with conserved sequences, and appear to be adapted to Campylobacter. There was evidence for recombination among groups of prophages, suggesting that the prophages had a mosaic structure. In many of these properties, the Mu-like CMLP 1 homologs characterized in this study resemble temperate bacteriophages of enteric bacteria that are responsible for contributions to virulence and host adaptation. PMID:18366706
Tumour suppressor protein p53 regulates the stress activated bilirubin oxidase cytochrome P450 2A6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Hao, E-mail: hao.hu1@uqconnect.edu.au; Yu, Ting, E-mail: t.yu2@uq.edu.au; Arpiainen, Satu, E-mail: Satu.Juhila@orion.fi
2015-11-15
Human cytochrome P450 (CYP) 2A6 enzyme has been proposed to play a role in cellular defence against chemical-induced oxidative stress. The encoding gene is regulated by various stress activated transcription factors. This paper demonstrates that p53 is a novel transcriptional regulator of the gene. Sequence analysis of the CYP2A6 promoter revealed six putative p53 binding sites in a 3 kb proximate promoter region. The site closest to transcription start site (TSS) is highly homologous with the p53 consensus sequence. Transfection with various stepwise deletions of CYP2A6-5′-Luc constructs – down to − 160 bp from the TSS – showed p53 responsivenessmore » in p53 overexpressed C3A cells. However, a further deletion from − 160 to − 74 bp, including the putative p53 binding site, totally abolished the p53 responsiveness. Electrophoretic mobility shift assay with a probe containing the putative binding site showed specific binding of p53. A point mutation at the binding site abolished both the binding and responsiveness of the recombinant gene to p53. Up-regulation of the endogenous p53 with benzo[α]pyrene – a well-known p53 activator – increased the expression of the p53 responsive positive control and the CYP2A6-5′-Luc construct containing the intact p53 binding site but not the mutated CYP2A6-5′-Luc construct. Finally, inducibility of the native CYP2A6 gene by benzo[α]pyrene was demonstrated by dose-dependent increases in CYP2A6 mRNA and protein levels along with increased p53 levels in the nucleus. Collectively, the results indicate that p53 protein is a regulator of the CYP2A6 gene in C3A cells and further support the putative cytoprotective role of CYP2A6. - Highlights: • CYP2A6 is an immediate target gene of p53. • Six putative p53REs located on 3 kb proximate CYP2A6 promoter region. • The region − 160 bp from TSS is highly homologous with the p53 consensus sequence. • P53 specifically bind to the p53RE on the − 160 bp region. • HNF4α may interact with p53 in regulating CYP2A6 expression.« less
Defining the Role of Essential Genes in Human Disease
Robertson, David L.; Hentges, Kathryn E.
2011-01-01
A greater understanding of the causes of human disease can come from identifying characteristics that are specific to disease genes. However, a full understanding of the contribution of essential genes to human disease is lacking, due to the premise that these genes tend to cause developmental abnormalities rather than adult disease. We tested the hypothesis that human orthologs of mouse essential genes are associated with a variety of human diseases, rather than only those related to miscarriage and birth defects. We segregated human disease genes according to whether the knockout phenotype of their mouse ortholog was lethal or viable, defining those with orthologs producing lethal knockouts as essential disease genes. We show that the human orthologs of mouse essential genes are associated with a wide spectrum of diseases affecting diverse physiological systems. Notably, human disease genes with essential mouse orthologs are over-represented among disease genes associated with cancer, suggesting links between adult cellular abnormalities and developmental functions. The proteins encoded by essential genes are highly connected in protein-protein interaction networks, which we find correlates with an over-representation of nuclear proteins amongst essential disease genes. Disease genes associated with essential orthologs also are more likely than those with non-essential orthologs to contribute to disease through an autosomal dominant inheritance pattern, suggesting that these diseases may actually result from semi-dominant mutant alleles. Overall, we have described attributes found in disease genes according to the essentiality status of their mouse orthologs. These findings demonstrate that disease genes do occupy highly connected positions in protein-protein interaction networks, and that due to the complexity of disease-associated alleles, essential genes cannot be ignored as candidates for causing diverse human diseases. PMID:22096564
Varmanen, P; Rantanen, T; Palva, A
1996-12-01
A proline iminopeptidase gene (pepI) of an industrial Lactobacillus helveticus strain was cloned and found to be organized in an operon-like structure of three open reading frames (ORF1, ORF2 and ORF3). ORF1 was preceded by a typical prokaryotic promoter region, and a putative transcription terminator was found downstream of ORF3, identified as the pepI gene. Using primer-extension analyses, only one transcription start site, upstream of ORF1, was identifiable in the predicted operon. Although the size of mRNA could not be judged by Northern analysis either with ORF1-, ORF2- or pepI-specific probes, reverse transcription-PCR analyses further supported the operon structure of the three genes. ORF1, ORF2 and ORF3 had coding capacities for 50.7, 24.5 and 33.8 kDa proteins, respectively. The ORF3-encoded PepI protein showed 65% identity with the PepI proteins from Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus delbrueckii subsp. lactis. The ORF1-encoded protein had significant homology with several members of the ABC transporter family but, with two distinct putative ATP-binding sites, it would represent an unusual type among the bacterial ABC transporters. ORF2 encoded a putative integral membrane protein also characteristic of the ABC transporter family. The pepI gene was overexpressed in Escherichia coli. Purified PepI hydrolysed only di and tripeptides with proline in the first position. Optimum PepI activity was observed at pH 7.5 and 40 degrees C. A gel filtration analysis indicated that PepI is a dimer of M(r) 53,000. PepI was shown to be a metal-independent serine peptidase having thiol groups at or near the active site. Kinetic studies with proline-p-nitroanilide as substrate revealed Km and Vmax values of 0.8 mM and 350 mmol min-1 mg-1, respectively, and a very high turnover number of 135,000 s-1.
Molin, William T; Wright, Alice A; Lawton-Rauh, Amy; Saski, Christopher A
2017-01-17
The expanding number and global distributions of herbicide resistant weedy species threaten food, fuel, fiber and bioproduct sustainability and agroecosystem longevity. Amongst the most competitive weeds, Amaranthus palmeri S. Wats has rapidly evolved resistance to glyphosate primarily through massive amplification and insertion of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene across the genome. Increased EPSPS gene copy numbers results in higher titers of the EPSPS enzyme, the target of glyphosate, and confers resistance to glyphosate treatment. To understand the genomic unit and mechanism of EPSPS gene copy number proliferation, we developed and used a bacterial artificial chromosome (BAC) library from a highly resistant biotype to sequence the local genomic landscape flanking the EPSPS gene. By sequencing overlapping BACs, a 297 kb sequence was generated, hereafter referred to as the "EPSPS cassette." This region included several putative genes, dense clusters of tandem and inverted repeats, putative helitron and autonomous replication sequences, and regulatory elements. Whole genome shotgun sequencing (WGS) of two biotypes exhibiting high and no resistance to glyphosate was performed to compare genomic representation across the EPSPS cassette. Mapping of sequences for both biotypes to the reference EPSPS cassette revealed significant differences in upstream and downstream sequences relative to EPSPS with regard to both repetitive units and coding content between these biotypes. The differences in sequence may have resulted from a compounded-building mechanism such as repetitive transpositional events. The association of putative helitron sequences with the cassette suggests a possible amplification and distribution mechanism. Flow cytometry revealed that the EPSPS cassette added measurable genomic content. The adoption of glyphosate resistant cropping systems in major crops such as corn, soybean, cotton and canola coupled with excessive use of glyphosate herbicide has led to evolved glyphosate resistance in several important weeds. In Amaranthus palmeri, the amplification of the EPSPS cassette, characterized by a complex array of repetitive elements and putative helitron sequences, suggests an adaptive structural genomic mechanism that drives amplification and distribution around the genome. The added genomic content not found in glyphosate sensitive plants may be driving evolution through genome expansion.
Yang, Huaan; Tao, Ye; Zheng, Zequn; Shao, Di; Li, Zhenzhong; Sweetingham, Mark W; Buirchell, Bevan J; Li, Chengdao
2013-02-01
Selection for phomopsis stem blight disease (PSB) resistance is one of the key objectives in lupin (Lupinus angustifolius L.) breeding programs. A cross was made between cultivar Tanjil (resistant to PSB) and Unicrop (susceptible). The progeny was advanced into F(8) recombinant inbred lines (RILs). The RIL population was phenotyped for PSB disease resistance. Twenty plants from the RIL population representing disease resistance and susceptibility was subjected to next-generation sequencing (NGS)-based restriction site-associated DNA sequencing on the NGS platform Solexa HiSeq2000, which generated 7,241 single nucleotide polymorphisms (SNPs). Thirty-three SNP markers showed the correlation between the marker genotypes and the PSB disease phenotype on the 20 representative plants, which were considered as candidate markers linked to a putative R gene for PSB resistance. Seven candidate markers were converted into sequence-specific PCR markers, which were designated as PhtjM1, PhtjM2, PhtjM3, PhtjM4, PhtjM5, PhtjM6 and PhtjM7. Linkage analysis of the disease phenotyping data and marker genotyping data on a F(8) population containing 187 RILs confirmed that all the seven converted markers were associated with the putative R gene within the genetic distance of 2.1 CentiMorgan (cM). One of the PCR markers, PhtjM3, co-segregated with the R gene. The seven established PCR markers were tested in the 26 historical and current commercial cultivars released in Australia. The numbers of "false positives" (showing the resistance marker allele band but lack of the putative R gene) for each of the seven PCR markers ranged from nil to eight. Markers PhtjM4 and PhtjM7 are recommended in marker-assisted selection for PSB resistance in the Australian national lupin breeding program due to its wide applicability on breeding germplasm and close linkage to the putative R gene. The results demonstrated that application of NGS technology is a rapid and cost-effective approach in development of markers for molecular plant breeding.
An Integrated workflow for phenazine biosynthetic gene cluster discovery and characterization
USDA-ARS?s Scientific Manuscript database
Increasing availability of new genomes and putative biosynthetic gene clusters (BGCs) has extended the opportunity to access novel chemical diversity for agriculture, medicine, environmental and industrial purposes. However, functional characterization of BGCs through heterologous expression is limi...
Hashimi, Hassan; Zíková, Alena; Panigrahi, Aswini K.; Stuart, Kenneth D.; Lukeš, Julius
2008-01-01
The uridine insertion/deletion RNA editing of kinetoplastid mitochondrial transcripts is performed by complex machinery involving a number of proteins and multiple protein complexes. Here we describe the effect of silencing of TbRGG1 gene by RNA interference on RNA editing in procyclic stage of Trypanosoma brucei. TbRGG1 is an essential protein for cell growth, the absence of which results in an overall decline of edited mRNAs, while the levels of never-edited RNAs remain unaltered. Repression of TbRGG1 expression has no effect on the 20S editosome and MRP1/2 complex. TAP-tag purification of TbRGG1 coisolated a novel multiprotein complex, and its association was further verified by TAP-tag analyses of two other components of the complex. TbRGG1 interaction with this complex appears to be mediated by RNA. Our results suggest that the TbRGG1 protein functions in stabilizing edited RNAs or editing efficiency and that the associated novel complex may have a role in mitochondrial RNA metabolism. We provisionally name it putative mitochondrial RNA-binding complex 1 (put-MRB complex 1). PMID:18369185
Jacob, Francis; Guertler, Rea; Naim, Stephanie; Nixdorf, Sheri; Fedier, André; Hacker, Neville F.; Heinzelmann-Schwarz, Viola
2013-01-01
Reverse Transcription - quantitative Polymerase Chain Reaction (RT-qPCR) is a standard technique in most laboratories. The selection of reference genes is essential for data normalization and the selection of suitable reference genes remains critical. Our aim was to 1) review the literature since implementation of the MIQE guidelines in order to identify the degree of acceptance; 2) compare various algorithms in their expression stability; 3) identify a set of suitable and most reliable reference genes for a variety of human cancer cell lines. A PubMed database review was performed and publications since 2009 were selected. Twelve putative reference genes were profiled in normal and various cancer cell lines (n = 25) using 2-step RT-qPCR. Investigated reference genes were ranked according to their expression stability by five algorithms (geNorm, Normfinder, BestKeeper, comparative ΔCt, and RefFinder). Our review revealed 37 publications, with two thirds patient samples and one third cell lines. qPCR efficiency was given in 68.4% of all publications, but only 28.9% of all studies provided RNA/cDNA amount and standard curves. GeNorm and Normfinder algorithms were used in 60.5% in combination. In our selection of 25 cancer cell lines, we identified HSPCB, RRN18S, and RPS13 as the most stable expressed reference genes. In the subset of ovarian cancer cell lines, the reference genes were PPIA, RPS13 and SDHA, clearly demonstrating the necessity to select genes depending on the research focus. Moreover, a cohort of at least three suitable reference genes needs to be established in advance to the experiments, according to the guidelines. For establishing a set of reference genes for gene normalization we recommend the use of ideally three reference genes selected by at least three stability algorithms. The unfortunate lack of compliance to the MIQE guidelines reflects that these need to be further established in the research community. PMID:23554992
Erpen, L; Tavano, E C R; Harakava, R; Dutt, M; Grosser, J W; Piedade, S M S; Mendes, B M J; Mourão Filho, F A A
2018-05-23
Regulatory sequences from the citrus constitutive genes cyclophilin (CsCYP), glyceraldehyde-3-phosphate dehydrogenase C2 (CsGAPC2), and elongation factor 1-alpha (CsEF1) were isolated, fused to the uidA gene, and qualitatively and quantitatively evaluated in transgenic sweet orange plants. The 5' upstream region of a gene (the promoter) is the most important component for the initiation and regulation of gene transcription of both native genes and transgenes in plants. The isolation and characterization of gene regulatory sequences are essential to the development of intragenic or cisgenic genetic manipulation strategies, which imply the use of genetic material from the same species or from closely related species. We describe herein the isolation and evaluation of the promoter sequence from three constitutively expressed citrus genes: cyclophilin (CsCYP), glyceraldehyde-3-phosphate dehydrogenase C2 (CsGAPC2), and elongation factor 1-alpha (CsEF1). The functionality of the promoters was confirmed by a histochemical GUS assay in leaves, stems, and roots of stably transformed citrus plants expressing the promoter-uidA construct. Lower uidA mRNA levels were detected when the transgene was under the control of citrus promoters as compared to the expression under the control of the CaMV35S promoter. The association of the uidA gene with the citrus-derived promoters resulted in mRNA levels of up to 60-41.8% of the value obtained with the construct containing CaMV35S driving the uidA gene. Moreover, a lower inter-individual variability in transgene expression was observed amongst the different transgenic lines, where gene constructs containing citrus-derived promoters were used. In silico analysis of the citrus-derived promoter sequences revealed that their activity may be controlled by several putative cis-regulatory elements. These citrus promoters will expand the availability of regulatory sequences for driving gene expression in citrus gene-modification programs.
Yakovlev, Igor A; Fossdal, Carl G
2017-01-01
Epigenetic memory in Norway spruce affects the timing of bud burst and bud set, vitally important adaptive traits for this long-lived forest species. Epigenetic memory is established in response to the temperature conditions during embryogenesis. Somatic embryogenesis at different epitype inducing (EpI) temperatures closely mimics the natural processes of epigenetic memory formation in seeds, giving rise to epigenetically different clonal plants in a reproducible and predictable manner, with respect to altered bud phenology. MicroRNAs (miRNAs) and other small non-coding RNAs (sRNAs) play an essential role in the regulation of plant gene expression and may affect this epigenetic mechanism. We used NGS sequencing and computational in silico methods to identify and profile conserved and novel miRNAs among small RNAs in embryogenic tissues of Norway spruce at three EpI temperatures (18, 23 and 28°C). We detected three predominant classes of sRNAs related to a length of 24 nt, followed by a 21-22 nt class and a third 31 nt class of sRNAs. More than 2100 different miRNAs within the prevailing length 21-22 nt were identified. Profiling these putative miRNAs allowed identification of 1053 highly expressed miRNAs, including 523 conserved and 530 novels. 654 of these miRNAs were found to be differentially expressed (DEM) depending on EpI temperature. For most DEMs, we defined their putative mRNA targets. The targets represented mostly by transcripts of multiple-repeats proteins, like TIR, NBS-LRR, PPR and TPR repeat, Clathrin/VPS proteins, Myb-like, AP2, etc. Notably, 124 DE miRNAs targeted 203 differentially expressed epigenetic regulators. Developing Norway spruce embryos possess a more complex sRNA structure than that reported for somatic tissues. A variety of the predicted miRNAs showed distinct EpI temperature dependent expression patterns. These putative EpI miRNAs target spruce genes with a wide range of functions, including genes known to be involved in epigenetic regulation, which in turn could provide a feedback process leading to the formation of epigenetic marks. We suggest that TIR, NBS and LRR domain containing proteins could fulfill more general functions for signal transduction from external environmental stimuli and conversion them into molecular response. Fine-tuning of the miRNA production likely participates in both developmental regulation and epigenetic memory formation in Norway spruce.
Tafolla-Arellano, Julio C.; Zheng, Yi; Sun, Honghe; Jiao, Chen; Ruiz-May, Eliel; Hernández-Oñate, Miguel A.; González-León, Alberto; Báez-Sañudo, Reginaldo; Fei, Zhangjun; Domozych, David; Rose, Jocelyn K. C.; Tiznado-Hernández, Martín E.
2017-01-01
Mango fruit (Mangifera indica L.) are highly perishable and have a limited shelf life, due to postharvest desiccation and senescence, which limits their global distribution. Recent studies of tomato fruit suggest that these traits are influenced by the expression of genes that are associated with cuticle metabolism. However, studies of these phenomena in mango fruit are limited by the lack of genome-scale data. In order to gain insight into the mango cuticle biogenesis and identify putative cuticle-associated genes, we analyzed the transcriptomes of peels from ripe and overripe mango fruit using RNA-Seq. Approximately 400 million reads were generated and de novo assembled into 107,744 unigenes, with a mean length of 1,717 bp and with this information an online Mango RNA-Seq Database (http://bioinfo.bti.cornell.edu/cgi-bin/mango/index.cgi) which is a valuable genomic resource for molecular research into the biology of mango fruit was created. RNA-Seq analysis suggested that the pathway leading to biosynthesis of the cuticle component, cutin, is up-regulated during overripening. This data was supported by analysis of the expression of several putative cuticle-associated genes and by gravimetric and microscopic studies of cuticle deposition, revealing a complex continuous pattern of cuticle deposition during fruit development and involving substantial accumulation during ripening/overripening. PMID:28425468
Tafolla-Arellano, Julio C; Zheng, Yi; Sun, Honghe; Jiao, Chen; Ruiz-May, Eliel; Hernández-Oñate, Miguel A; González-León, Alberto; Báez-Sañudo, Reginaldo; Fei, Zhangjun; Domozych, David; Rose, Jocelyn K C; Tiznado-Hernández, Martín E
2017-04-20
Mango fruit (Mangifera indica L.) are highly perishable and have a limited shelf life, due to postharvest desiccation and senescence, which limits their global distribution. Recent studies of tomato fruit suggest that these traits are influenced by the expression of genes that are associated with cuticle metabolism. However, studies of these phenomena in mango fruit are limited by the lack of genome-scale data. In order to gain insight into the mango cuticle biogenesis and identify putative cuticle-associated genes, we analyzed the transcriptomes of peels from ripe and overripe mango fruit using RNA-Seq. Approximately 400 million reads were generated and de novo assembled into 107,744 unigenes, with a mean length of 1,717 bp and with this information an online Mango RNA-Seq Database (http://bioinfo.bti.cornell.edu/cgi-bin/mango/index.cgi) which is a valuable genomic resource for molecular research into the biology of mango fruit was created. RNA-Seq analysis suggested that the pathway leading to biosynthesis of the cuticle component, cutin, is up-regulated during overripening. This data was supported by analysis of the expression of several putative cuticle-associated genes and by gravimetric and microscopic studies of cuticle deposition, revealing a complex continuous pattern of cuticle deposition during fruit development and involving substantial accumulation during ripening/overripening.