Sample records for putative indicator bacterium

  1. Cadherin Domains in the Polysaccharide-Degrading Marine Bacterium Saccharophagus degradans 2-40 Are Carbohydrate-Binding Modules▿

    PubMed Central

    Fraiberg, Milana; Borovok, Ilya; Bayer, Edward A.; Weiner, Ronald M.; Lamed, Raphael

    2011-01-01

    The complex polysaccharide-degrading marine bacterium Saccharophagus degradans strain 2-40 produces putative proteins that contain numerous cadherin and cadherin-like domains involved in intercellular contact interactions. The current study reveals that both domain types exhibit reversible calcium-dependent binding to different complex polysaccharides which serve as growth substrates for the bacterium. PMID:21036994

  2. Thermodynamic characterization of a tetrahaem cytochrome isolated from a facultative aerobic bacterium, Shewanella frigidimarina: a putative redox model for flavocytochrome c3.

    PubMed Central

    Pessanha, Miguel; Louro, Ricardo O; Correia, Ilídio J; Rothery, Emma L; Pankhurst, Kate L; Reid, Graeme A; Chapman, Stephen K; Turner, David L; Salgueiro, Carlos A

    2003-01-01

    The facultative aerobic bacterium Shewanella frigidimarina produces a small c-type tetrahaem cytochrome (86 residues) under anaerobic growth conditions. This protein is involved in the respiration of iron and shares 42% sequence identity with the N-terminal domain of a soluble flavocytochrome, isolated from the periplasm of the same bacterium, which also contains four c -type haem groups. The thermodynamic properties of the redox centres and of an ionizable centre in the tetrahaem cytochrome were determined using NMR and visible spectroscopy techniques. This is the first detailed thermodynamic study performed on a tetrahaem cytochrome isolated from a facultative aerobic bacterium and reveals that this protein presents unique features. The redox centres have negative and different redox potentials, which are modulated by redox interactions between the four haems (covering a range of 8-56 mV) and by redox-Bohr interactions between the haems and an ionizable centre (-4 to -36 mV) located in close proximity to haem III. All of the interactions between the five centres are clearly dominated by electrostatic effects and the microscopic reduction potential of haem III is the one most affected by the oxidation of the other haems and by the protonation state of the molecule. Altogether, this study indicates that the tetrahaem cytochrome isolated from S. frigidimarina (Sfc) has the thermodynamic properties to work as an electron wire between its redox partners. Considering the high degree of sequence identity between Sfc and the cytochrome domain of flavocytochrome c(3), the structural similarities of the haem core, and that the macroscopic potentials are also identical, the results obtained in this work are rationalized in order to put forward a putative redox model for flavocytochrome c(3). PMID:12413396

  3. Recombinant expression of a putative prophage amidase cloned from the genome of Listeria monocytogenes that lyses the bacterium and its biofilm

    USDA-ARS?s Scientific Manuscript database

    Listeria monocytogenes is a Gram-positive, non-sporeforming, catalase-positive rod that is a major bacterial food-borne disease agent, causing listeriosis. Listeria can be associated with uncooked meats including poultry, uncooked vegetables, soft cheeses and unpasteurized milk. The bacterium can be...

  4. Expression of a Clostridium perfringens genome-encoded putative N-acetylmuramoyl-L-alanine amidase as a potential antimicrobial to control the bacterium

    USDA-ARS?s Scientific Manuscript database

    Clostridium perfringens is a Gram-positive, spore-forming anaerobic bacterium that plays a substantial role in non-foodborne human, animal and avian diseases as well as human foodborne disease. Previously discovered C. perfringens bacteriophage lytic enzyme amino acid sequences were utilized to iden...

  5. The genome sequence of the plant pathogen Xylella fastidiosa. The Xylella fastidiosa Consortium of the Organization for Nucleotide Sequencing and Analysis.

    PubMed

    Simpson, A J; Reinach, F C; Arruda, P; Abreu, F A; Acencio, M; Alvarenga, R; Alves, L M; Araya, J E; Baia, G S; Baptista, C S; Barros, M H; Bonaccorsi, E D; Bordin, S; Bové, J M; Briones, M R; Bueno, M R; Camargo, A A; Camargo, L E; Carraro, D M; Carrer, H; Colauto, N B; Colombo, C; Costa, F F; Costa, M C; Costa-Neto, C M; Coutinho, L L; Cristofani, M; Dias-Neto, E; Docena, C; El-Dorry, H; Facincani, A P; Ferreira, A J; Ferreira, V C; Ferro, J A; Fraga, J S; França, S C; Franco, M C; Frohme, M; Furlan, L R; Garnier, M; Goldman, G H; Goldman, M H; Gomes, S L; Gruber, A; Ho, P L; Hoheisel, J D; Junqueira, M L; Kemper, E L; Kitajima, J P; Krieger, J E; Kuramae, E E; Laigret, F; Lambais, M R; Leite, L C; Lemos, E G; Lemos, M V; Lopes, S A; Lopes, C R; Machado, J A; Machado, M A; Madeira, A M; Madeira, H M; Marino, C L; Marques, M V; Martins, E A; Martins, E M; Matsukuma, A Y; Menck, C F; Miracca, E C; Miyaki, C Y; Monteriro-Vitorello, C B; Moon, D H; Nagai, M A; Nascimento, A L; Netto, L E; Nhani, A; Nobrega, F G; Nunes, L R; Oliveira, M A; de Oliveira, M C; de Oliveira, R C; Palmieri, D A; Paris, A; Peixoto, B R; Pereira, G A; Pereira, H A; Pesquero, J B; Quaggio, R B; Roberto, P G; Rodrigues, V; de M Rosa, A J; de Rosa, V E; de Sá, R G; Santelli, R V; Sawasaki, H E; da Silva, A C; da Silva, A M; da Silva, F R; da Silva, W A; da Silveira, J F; Silvestri, M L; Siqueira, W J; de Souza, A A; de Souza, A P; Terenzi, M F; Truffi, D; Tsai, S M; Tsuhako, M H; Vallada, H; Van Sluys, M A; Verjovski-Almeida, S; Vettore, A L; Zago, M A; Zatz, M; Meidanis, J; Setubal, J C

    2000-07-13

    Xylella fastidiosa is a fastidious, xylem-limited bacterium that causes a range of economically important plant diseases. Here we report the complete genome sequence of X. fastidiosa clone 9a5c, which causes citrus variegated chlorosis--a serious disease of orange trees. The genome comprises a 52.7% GC-rich 2,679,305-base-pair (bp) circular chromosome and two plasmids of 51,158 bp and 1,285 bp. We can assign putative functions to 47% of the 2,904 predicted coding regions. Efficient metabolic functions are predicted, with sugars as the principal energy and carbon source, supporting existence in the nutrient-poor xylem sap. The mechanisms associated with pathogenicity and virulence involve toxins, antibiotics and ion sequestration systems, as well as bacterium-bacterium and bacterium-host interactions mediated by a range of proteins. Orthologues of some of these proteins have only been identified in animal and human pathogens; their presence in X. fastidiosa indicates that the molecular basis for bacterial pathogenicity is both conserved and independent of host. At least 83 genes are bacteriophage-derived and include virulence-associated genes from other bacteria, providing direct evidence of phage-mediated horizontal gene transfer.

  6. Chromatin organization and radio resistance in the bacterium Gemmata obscuriglobus.

    PubMed

    Lieber, Arnon; Leis, Andrew; Kushmaro, Ariel; Minsky, Abraham; Medalia, Ohad

    2009-03-01

    The organization of chromatin has a major impact on cellular activities, such as gene expression. For bacteria, it was suggested that the spatial organization of the genetic material correlates with transcriptional levels, implying a specific architecture of the chromosome within the cytoplasm. Accordingly, recent technological advances have emphasized the organization of the genetic material within nucleoid structures. Gemmata obscuriglobus, a member of the phylum Planctomycetes, exhibits a distinctive nucleoid structure in which chromatin is encapsulated within a discrete membrane-bound compartment. Here, we show that this soil and freshwater bacterium tolerates high doses of UV and ionizing radiation. Cryoelectron tomography of frozen hydrated sections and electron microscopy of freeze-substituted cells have indicated a more highly ordered condensed-chromatin organization in actively dividing and stationary-phase G. obscuriglobus cells. These three-dimensional analyses revealed a complex network of double membranes that engulf the condensed DNA. Bioinformatics analysis has revealed the existence of a putative component involved in nonhomologous DNA end joining that presumably plays a role in maintaining chromatin integrity within the bacterium. Thus, our observations further support the notion that packed chromatin organization enhances radiation tolerance.

  7. EmbRS a new two-component system that inhibits biofilm formation and saves Rubrivivax gelatinosus from sinking.

    PubMed

    Steunou, Anne Soisig; Liotenberg, Sylviane; Soler, Marie-Noêlle; Briandet, Romain; Barbe, Valérie; Astier, Chantal; Ouchane, Soufian

    2013-06-01

    Photosynthetic bacteria can switch from planktonic lifestyle to phototrophic biofilm in mats in response to environmental changes. The mechanisms of phototrophic biofilm formation are, however, not characterized. Herein, we report a two-component system EmbRS that controls the biofilm formation in a photosynthetic member of the Burkholderiales order, the purple bacterium Rubrivivax gelatinosus. EmbRS inactivation results in cells that form conspicuous bacterial veils and fast-sinking aggregates in liquid. Biofilm analyses indicated that EmbRS represses the production of an extracellular matrix and biofilm formation. Mapping of transposon mutants that partially or completely restore the wild-type (WT) phenotype allowed the identification of two gene clusters involved in polysaccharide synthesis, one fully conserved only in Thauera sp., a floc-forming wastewater bacterium. A second two-component system BmfRS and a putative diguanylate cyclase BdcA were also identified in this screen suggesting their involvement in biofilm formation in this bacterium. The role of polysaccharides in sinking of microorganisms and organic matter, as well as the importance and the evolution of such regulatory system in phototrophic microorganisms are discussed. © 2013 The Authors. Microbiology Open published by John Wiley & Sons Ltd.

  8. Porphyromonas loveana sp. nov., isolated from the oral cavity of Australian marsupials.

    PubMed

    Bird, Philip S; Trott, Darren J; Mikkelsen, Deirdre; Milinovich, Gabriel J; Hillman, Kristine M; Burrell, Paul C; Blackall, Linda L

    2016-10-01

    An obligatory anaerobic, Gram-stain-negative coccobacillus with black-pigmented colonies was isolated from the oral cavity of selected Australian marsupial species. Phenotypic and molecular criteria showed that this bacterium was a distinct species within the genus Porphyromonas, and was closely related to Porphyromonas gingivalis and Porphyromonas gulae. This putative novel species and P. gulae could be differentiated from P. gingivalis by catalase activity. Further characterization by multi-locus enzyme electrophoresis of glutamate dehydrogenase and malate dehydrogenase enzyme mobility and matrix-assisted laser desorption ionization time-of-flight MS showed that this putative novel species could be differentiated phenotypically from P. gingivalis and P. gulae. Definitive identification by 16S rRNA gene sequencing showed that this bacterium belonged to a unique monophyletic lineage, phylogenetically distinct from P. gingivalis (94.9 % similarity) and P. gulae (95.5 %). This also was supported by 16S-23S rRNA intergenic spacer region and glutamate dehydrogenase gene sequencing. A new species epithet, Porphyromonas loveana sp. nov., is proposed for this bacterium, with DSM 28520T (=NCTC 13658T=UQD444T=MRK101T), isolated from a musky rat kangaroo, as the type strain.

  9. Conserved enzymes mediate the early reactions of carotenoid biosynthesis in nonphotosynthetic and photosynthetic prokaryotes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, G.A.; Hearst, J.E.; Alberti, M.

    1990-12-01

    Carotenoids comprise one of the most widespread classes of pigments found in nature. The first reactions of C{sub 40} carotenoid biosynthesis proceed through common intermediates in all organisms, suggesting the evolutionary conservation of early enzymes from this pathway. The authors report here the nucleotide sequence of three genes from the carotenoid biosynthesis gene cluster of Erwinia herbicola, a nonphotosynthetic epiphytic bacterium, which encode homologs of the CrtB, CrtE, and CrtI proteins of Rhodobacter capsulatus, a purple nonsulfur photosynthetic bacterium. CrtB (prephytoene pyrophosphate synthase), CrtE (phytoene synthase), and CrtI (phytoene dehydrogenase) are required for the first three reactions specific to themore » carotenoid branch of general isoprenoid metabolism. All three dehydrogenases possess a hydrophobic N-terminal domain containing a putative ADP-binding {beta}{alpha}{beta} fold characteristic of enzymes known to bind FAD or NAD(P) cofactors. These data indicate the structural conservation of early carotenoid biosynthesis enzymes in evolutionary diverse organisms.« less

  10. 77 FR 52333 - International Workshop on Alternatives to the Murine Histamine Sensitization Test (HIST) for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-29

    ... caused by the bacterium Bordetella pertussis. Pertussis was one of the most common childhood diseases of... putative protective antigens of B. pertussis bacteria (e.g., inactivated pertussis toxin [PTx/d], pertactin...

  11. The Chromosomal Arsenic Resistance Genes of Thiobacillus ferrooxidans Have an Unusual Arrangement and Confer Increased Arsenic and Antimony Resistance to Escherichia coli

    PubMed Central

    Butcher, Bronwyn G.; Deane, Shelly M.; Rawlings, Douglas E.

    2000-01-01

    The chromosomal arsenic resistance genes of the acidophilic, chemolithoautotrophic, biomining bacterium Thiobacillus ferrooxidans were cloned and sequenced. Homologues of four arsenic resistance genes, arsB, arsC, arsH, and a putative arsR gene, were identified. The T. ferrooxidans arsB (arsenite export) and arsC (arsenate reductase) gene products were functional when they were cloned in an Escherichia coli ars deletion mutant and conferred increased resistance to arsenite, arsenate, and antimony. Therefore, despite the fact that the ars genes originated from an obligately acidophilic bacterium, they were functional in E. coli. Although T. ferrooxidans is gram negative, its ArsC was more closely related to the ArsC molecules of gram-positive bacteria. Furthermore, a functional trxA (thioredoxin) gene was required for ArsC-mediated arsenate resistance in E. coli; this finding confirmed the gram-positive ArsC-like status of this resistance and indicated that the division of ArsC molecules based on Gram staining results is artificial. Although arsH was expressed in an E. coli-derived in vitro transcription-translation system, ArsH was not required for and did not enhance arsenic resistance in E. coli. The T. ferrooxidans ars genes were arranged in an unusual manner, and the putative arsR and arsC genes and the arsBH genes were translated in opposite directions. This divergent orientation was conserved in the four T. ferrooxidans strains investigated. PMID:10788346

  12. Biotransformation of Momordica charantia fresh juice by Lactobacillus plantarum BET003 and its putative anti-diabetic potential.

    PubMed

    Mazlan, Farhaneen Afzal; Annuar, M Suffian M; Sharifuddin, Yusrizam

    2015-01-01

    Lactobacillus plantarum BET003 isolated from Momordica charantia fruit was used to ferment its juice. Momordica charantia fresh juice was able to support good growth of the lactic acid bacterium. High growth rate and cell viability were obtained without further nutrient supplementation. In stirred tank reactor batch fermentation, agitation rate showed significant effect on specific growth rate of the bacterium in the fruit juice. After the fermentation, initially abundant momordicoside 23-O-β-Allopyranosyle-cucurbita-5,24-dien-7α,3β,22(R),23(S)-tetraol-3-O-β-allopyranoside was transformed into its corresponding aglycone in addition to the emergence of new metabolites. The fermented M. charantia juice consistently reduced glucose production by 27.2%, 14.5%, 17.1% and 19.2% at 15-minute intervals respectively, when compared against the negative control. This putative anti-diabetic activity can be attributed to the increase in availability and concentration of aglycones as well as other phenolic compounds resulting from degradation of glycosidic momordicoside. Biotransformation of M. charantia fruit juice via lactic acid bacterium fermentation reduced its bitterness, reduced its sugar content, produced aglycones and other metabolites as well as improved its inhibition of α-glucosidase activity compared with the fresh, non-fermented juice.

  13. A putative siderophore-interacting protein from the marine bacterium Shewanella frigidimarina NCIMB 400: cloning, expression, purification, crystallization and X-ray diffraction analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trindade, Inês B.; Fonseca, Bruno M.; Matias, Pedro M.

    The gene encoding a putative siderophore-interacting protein from the marine bacterium S. frigidimarina was successfully cloned, followed by expression and purification of the gene product. Optimized crystals diffracted to 1.35 Å resolution and preliminary crystallographic analysis is promising with respect to structure determination and increased insight into the poorly understood molecular mechanisms underlying iron acquisition. Siderophore-binding proteins (SIPs) perform a key role in iron acquisition in multiple organisms. In the genome of the marine bacterium Shewanella frigidimarina NCIMB 400, the gene tagged as SFRI-RS12295 encodes a protein from this family. Here, the cloning, expression, purification and crystallization of this proteinmore » are reported, together with its preliminary X-ray crystallographic analysis to 1.35 Å resolution. The SIP crystals belonged to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 48.04, b = 78.31, c = 67.71 Å, α = 90, β = 99.94, γ = 90°, and are predicted to contain two molecules per asymmetric unit. Structure determination by molecular replacement and the use of previously determined ∼2 Å resolution SIP structures with ∼30% sequence identity as templates are ongoing.« less

  14. Biotransformation of Momordica charantia fresh juice by Lactobacillus plantarum BET003 and its putative anti-diabetic potential

    PubMed Central

    Mazlan, Farhaneen Afzal; Annuar, M. Suffian M.

    2015-01-01

    Lactobacillus plantarum BET003 isolated from Momordica charantia fruit was used to ferment its juice. Momordica charantia fresh juice was able to support good growth of the lactic acid bacterium. High growth rate and cell viability were obtained without further nutrient supplementation. In stirred tank reactor batch fermentation, agitation rate showed significant effect on specific growth rate of the bacterium in the fruit juice. After the fermentation, initially abundant momordicoside 23-O-β-Allopyranosyle-cucurbita-5,24-dien-7α,3β,22(R),23(S)-tetraol-3-O-β-allopyranoside was transformed into its corresponding aglycone in addition to the emergence of new metabolites. The fermented M. charantia juice consistently reduced glucose production by 27.2%, 14.5%, 17.1% and 19.2% at 15-minute intervals respectively, when compared against the negative control. This putative anti-diabetic activity can be attributed to the increase in availability and concentration of aglycones as well as other phenolic compounds resulting from degradation of glycosidic momordicoside. Biotransformation of M. charantia fruit juice via lactic acid bacterium fermentation reduced its bitterness, reduced its sugar content, produced aglycones and other metabolites as well as improved its inhibition of α-glucosidase activity compared with the fresh, non-fermented juice. PMID:26539336

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Köberl, Martina; White, Richard A.; Erschen, Sabine

    Streptomyces sp. strain Wb2n-11, isolated from native desert soil, exhibited broad-spectrum antagonism against plant pathogenic fungi, bacteria and nematodes. The 8.2 Mb draft genome reveals genes putatively responsible for its promising biocontrol activity and genes which enable the soil bacterium to directly interact beneficially with plants.

  16. Expression and characterization of Coprothermobacter proteolyticus alkaline serine protease

    USDA-ARS?s Scientific Manuscript database

    TECHNICAL ABSTRACT A putative protease gene (aprE) from the thermophilic bacterium Coprothermobacter proteolyticus was cloned and expressed in Bacillus subtilis. The enzyme was determined to be a serine protease based on inhibition by PMSF. Biochemical characterization demonstrated the enzyme had...

  17. Mitigating citrus huanglongbing via effective application of antimicrobial compounds and thermotherapy

    USDA-ARS?s Scientific Manuscript database

    Huanglongbing (HLB) is a serious citrus disease that threatens the citrus industry worldwide. HLB is a systemic, infectious disease and the putative causal bacterium Candidatus Liberibacter asiaticus (Las) resides in citrus phloem. In this study, the effects of heat treatment, chemical formulations,...

  18. Behavioral assay on Asian citrus psyllid attraction to orange jasmine

    USDA-ARS?s Scientific Manuscript database

    The Asian citrus psyllid (ACP) is an important pest because it transmits a bacterium putatively responsible for huanglongbing, a devastating citrus disease. Research on ACP chemical ecology is of interest with respect to identifying attractants and repellents for managing the psyllid. We report on a...

  19. Microbial culturomics to isolate halophilic bacteria from table salt: genome sequence and description of the moderately halophilic bacterium Bacillus salis sp. nov.

    PubMed

    Seck, E H; Diop, A; Armstrong, N; Delerce, J; Fournier, P-E; Raoult, D; Khelaifia, S

    2018-05-01

    Bacillus salis strain ES3 T (= CSUR P1478 = DSM 100598) is the type strain of B. salis sp. nov. It is an aerobic, Gram-positive, moderately halophilic, motile and spore-forming bacterium. It was isolated from commercial table salt as part of a broad culturomics study aiming to maximize the culture conditions for the in-depth exploration of halophilic bacteria in salty food. Here we describe the phenotypic characteristics of this isolate, its complete genome sequence and annotation, together with a comparison with closely related bacteria. Phylogenetic analysis based on 16S rRNA gene sequences indicated 97.5% similarity with Bacillus aquimaris, the closest species. The 8 329 771 bp long genome (one chromosome, no plasmids) exhibits a G+C content of 39.19%. It is composed of 18 scaffolds with 29 contigs. Of the 8303 predicted genes, 8109 were protein-coding genes and 194 were RNAs. A total of 5778 genes (71.25%) were assigned a putative function.

  20. Cloning, sequencing and characterization of lipase from a polyhydroxyalkanoate- (PHA-) synthesizing Pseudomonas resinovorans

    USDA-ARS?s Scientific Manuscript database

    Lipase gene (lip) of a biodegradable polyhydroxyalkanoate- (PHA-) synthesizing bacterium P. resinovorans NRRL B-2649 was cloned, sequenced and characterized by using consensus primers and PCR-based genome walking method. The ORF of the putative Lip (314 amino acids) and its active site (Ser111, Asp...

  1. Host plant resistance associated with Poncirus trifoliata influences oviposition, development and adult emergence of Diaphorina citri (Hemiptera: Liviidae)

    USDA-ARS?s Scientific Manuscript database

    The Asian citrus psyllid, Diaphorina citri Kuwayama, is the primary vector of the phloem-inhabiting bacterium Candidatus Liberibacter asiaticus putatively responsible for citrus greening (huanglongbing), a devastating citrus disease. Infestations of Diaphorina citri frequently develop on Citrus and ...

  2. Using thermal inactivation kinetics to calculate the probability of extreme spore longevity: implications for paleomicrobiology and lithopanspermia.

    PubMed

    Nicholson, Wayne L

    2003-12-01

    Thermal inactivation kinetics with extrapolation were used to model the survival probabilities of spores of various Bacillus species over time periods of millions of years at the historical ambient temperatures (25-40 degrees C) encountered within the 250 million-year-old Salado formation, from which the putative ancient spore-forming bacterium Salibacillus marismortui strain 2-9-3 was recovered. The model indicated extremely low-to-moderate survival probabilities for spores of mesophiles. but surprisingly high survival probabilities for thermophilic spores. The significance of the results are discussed in terms of the survival probabilities of (i) terrestrial spores in ancient geologic samples and (ii) spores transported between planets within impact ejecta.

  3. Using Thermal Inactivation Kinetics to Calculate the Probability of Extreme Spore Longevity: Implications for Paleomicrobiology and Lithopanspermia

    NASA Astrophysics Data System (ADS)

    Nicholson, Wayne L.

    2003-12-01

    Thermal inactivation kinetics with extrapolation were used to model the survival probabilities of spores of various Bacillus species over time periods of millions of years at the historical ambient temperatures (25-40 °) encountered within the 250 million-year-old Salado formation, from which the putative ancient spore-forming bacterium Salibacillus marismortui strain 2-9-3 was recovered. The model indicated extremely low-to-moderate survival probabilities for spores of mesophiles, but surprisingly high survival probabilities for thermophilic spores. The significance of the results are discussed in terms of the survival probabilities of (i) terrestrial spores in ancient geologic samples and (ii) spores transported between planets within impact ejecta.

  4. Raman spectroscopy-based identification of nosocomial outbreaks of the clonal bacterium Escherichia coli.

    PubMed

    Kusters, J G; van Leeuwen, W B; Maquelin, K; Blok, H E M; Willemse, H F M; de Graaf-Miltenburg, L A M; Fluit, A C; Troelstra, A

    2016-01-01

    DNA-based techniques are frequently used to confirm the relatedness of putative outbreak isolates. These techniques often lack the discriminatory power when analyzing closely related microbes such as E. coli. Here the value of Raman spectroscopy as a typing tool for E. coli in a clinical setting was retrospectively evaluated.

  5. H NMR analyses of Citrus macrophylla subjected to Asian citrus psyllid (Diaphorina citri Kuwayama) feeding

    USDA-ARS?s Scientific Manuscript database

    The Asian citrus psyllid (ACP) is a phloem feeding insect that can host and transmit the bacterium Candidatus Liberibacter asiaticus (CLas), which is the putative causative agent of the economically important citrus disease, Huanglongbing (HLB). ACP are widespread in Florida, and are spreading in Ca...

  6. Orchard and nursery dynamics of the effect of interplanting citrus with guava for Huanglongbing, vector, and disease management

    USDA-ARS?s Scientific Manuscript database

    The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Liviidae), is an important pest of citrus in the United States of America primarily because it vectors ‘Candidatus Liberibacter asiaticus’, the bacterium putatively responsible for Asiatic huanglongbing (HLB). Asiatic HLB is con...

  7. Transcriptomic analysis on the formation of the viable putative non-culturable state of beer-spoilage Lactobacillus acetotolerans

    PubMed Central

    Liu, Junyan; Deng, Yang; Peters, Brian M.; Li, Lin; Li, Bing; Chen, Lequn; Xu, Zhenbo; Shirtliff, Mark E.

    2016-01-01

    Lactic acid bacteria (LAB) are the most common beer-spoilage bacteria regardless of beer type, and thus pose significant problems for the brewery industry. The aim of this study was to investigate the genetic mechanisms involved in the ability of the hard-to-culture beer-spoilage bacterium Lactobacillus acetotolerans to enter into the viable putative non-culturable (VPNC) state. A genome-wide transcriptional analysis of beer-spoilage L. acetotolerans strains BM-LA14526, BM-LA14527, and BM-LA14528 under normal, mid-term and VPNC states were performed using RNA-sequencing (RNA-seq) and further bioinformatics analyses. GO function, COG category, and KEGG pathway enrichment analysis were conducted to investigate functional and related metabolic pathways of the differentially expressed genes. Functional and pathway enrichment analysis indicated that heightened stress response and reduction in genes associated with transport, metabolic process, and enzyme activity might play important roles in the formation of the VPNC state. This is the first transcriptomic analysis on the formation of the VPNC state of beer spoilage L. acetotolerans. PMID:27819317

  8. Transcriptomic analysis on the formation of the viable putative non-culturable state of beer-spoilage Lactobacillus acetotolerans.

    PubMed

    Liu, Junyan; Deng, Yang; Peters, Brian M; Li, Lin; Li, Bing; Chen, Lequn; Xu, Zhenbo; Shirtliff, Mark E

    2016-11-07

    Lactic acid bacteria (LAB) are the most common beer-spoilage bacteria regardless of beer type, and thus pose significant problems for the brewery industry. The aim of this study was to investigate the genetic mechanisms involved in the ability of the hard-to-culture beer-spoilage bacterium Lactobacillus acetotolerans to enter into the viable putative non-culturable (VPNC) state. A genome-wide transcriptional analysis of beer-spoilage L. acetotolerans strains BM-LA14526, BM-LA14527, and BM-LA14528 under normal, mid-term and VPNC states were performed using RNA-sequencing (RNA-seq) and further bioinformatics analyses. GO function, COG category, and KEGG pathway enrichment analysis were conducted to investigate functional and related metabolic pathways of the differentially expressed genes. Functional and pathway enrichment analysis indicated that heightened stress response and reduction in genes associated with transport, metabolic process, and enzyme activity might play important roles in the formation of the VPNC state. This is the first transcriptomic analysis on the formation of the VPNC state of beer spoilage L. acetotolerans.

  9. Directional RNA-seq reveals highly complex condition-dependent transcriptomes in E. coli K12 through accurate full-length transcripts assembling.

    PubMed

    Li, Shan; Dong, Xia; Su, Zhengchang

    2013-07-30

    Although prokaryotic gene transcription has been studied over decades, many aspects of the process remain poorly understood. Particularly, recent studies have revealed that transcriptomes in many prokaryotes are far more complex than previously thought. Genes in an operon are often alternatively and dynamically transcribed under different conditions, and a large portion of genes and intergenic regions have antisense RNA (asRNA) and non-coding RNA (ncRNA) transcripts, respectively. Ironically, similar studies have not been conducted in the model bacterium E coli K12, thus it is unknown whether or not the bacterium possesses similar complex transcriptomes. Furthermore, although RNA-seq becomes the major method for analyzing the complexity of prokaryotic transcriptome, it is still a challenging task to accurately assemble full length transcripts using short RNA-seq reads. To fill these gaps, we have profiled the transcriptomes of E. coli K12 under different culture conditions and growth phases using a highly specific directional RNA-seq technique that can capture various types of transcripts in the bacterial cells, combined with a highly accurate and robust algorithm and tool TruHMM (http://bioinfolab.uncc.edu/TruHmm_package/) for assembling full length transcripts. We found that 46.9 ~ 63.4% of expressed operons were utilized in their putative alternative forms, 72.23 ~ 89.54% genes had putative asRNA transcripts and 51.37 ~ 72.74% intergenic regions had putative ncRNA transcripts under different culture conditions and growth phases. As has been demonstrated in many other prokaryotes, E. coli K12 also has a highly complex and dynamic transcriptomes under different culture conditions and growth phases. Such complex and dynamic transcriptomes might play important roles in the physiology of the bacterium. TruHMM is a highly accurate and robust algorithm for assembling full-length transcripts in prokaryotes using directional RNA-seq short reads.

  10. Directional RNA-seq reveals highly complex condition-dependent transcriptomes in E. coli K12 through accurate full-length transcripts assembling

    PubMed Central

    2013-01-01

    Background Although prokaryotic gene transcription has been studied over decades, many aspects of the process remain poorly understood. Particularly, recent studies have revealed that transcriptomes in many prokaryotes are far more complex than previously thought. Genes in an operon are often alternatively and dynamically transcribed under different conditions, and a large portion of genes and intergenic regions have antisense RNA (asRNA) and non-coding RNA (ncRNA) transcripts, respectively. Ironically, similar studies have not been conducted in the model bacterium E coli K12, thus it is unknown whether or not the bacterium possesses similar complex transcriptomes. Furthermore, although RNA-seq becomes the major method for analyzing the complexity of prokaryotic transcriptome, it is still a challenging task to accurately assemble full length transcripts using short RNA-seq reads. Results To fill these gaps, we have profiled the transcriptomes of E. coli K12 under different culture conditions and growth phases using a highly specific directional RNA-seq technique that can capture various types of transcripts in the bacterial cells, combined with a highly accurate and robust algorithm and tool TruHMM (http://bioinfolab.uncc.edu/TruHmm_package/) for assembling full length transcripts. We found that 46.9 ~ 63.4% of expressed operons were utilized in their putative alternative forms, 72.23 ~ 89.54% genes had putative asRNA transcripts and 51.37 ~ 72.74% intergenic regions had putative ncRNA transcripts under different culture conditions and growth phases. Conclusions As has been demonstrated in many other prokaryotes, E. coli K12 also has a highly complex and dynamic transcriptomes under different culture conditions and growth phases. Such complex and dynamic transcriptomes might play important roles in the physiology of the bacterium. TruHMM is a highly accurate and robust algorithm for assembling full-length transcripts in prokaryotes using directional RNA-seq short reads. PMID:23899370

  11. Melanin from the Nitrogen-Fixing Bacterium Azotobacter chroococcum: A Spectroscopic Characterization

    PubMed Central

    Banerjee, Raja

    2014-01-01

    Melanins, the ubiquitous hetero-polymer pigments found widely dispersed among various life forms, are usually dark brown/black in colour. Although melanins have variety of biological functions, including protection against ultraviolet radiation of sunlight and are used in medicine, cosmetics, extraction of melanin from the animal and plant kingdoms is not an easy task. Using complementary physicochemical techniques (i.e. MALDI-TOF, FTIR absorption and cross-polarization magic angle spinning solid-state 13C NMR), we report here the characterization of melanins extracted from the nitrogen-fixing non-virulent bacterium Azotobacter chroococcum, a safe viable source. Moreover, considering dihydroxyindole moiety as the main constituent, an effort is made to propose the putative molecular structure of the melanin hetero-polymer extracted from the bacterium. Characterization of the melanin obtained from Azotobacter chroococcum would provide an inspiration in extending research activities on these hetero-polymers and their use as protective agent against UV radiation. PMID:24416247

  12. Enzymes involved in the anaerobic degradation of ortho-phthalate by the nitrate-reducing bacterium Azoarcus sp. strain PA01.

    PubMed

    Junghare, Madan; Spiteller, Dieter; Schink, Bernhard

    2016-09-01

    The pathway of anaerobic degradation of o-phthalate was studied in the nitrate-reducing bacterium Azoarcus sp. strain PA01. Differential two-dimensional protein gel profiling allowed the identification of specifically induced proteins in o-phthalate-grown compared to benzoate-grown cells. The genes encoding o-phthalate-induced proteins were found in a 9.9 kb gene cluster in the genome of Azoarcus sp. strain PA01. The o-phthalate-induced gene cluster codes for proteins homologous to a dicarboxylic acid transporter, putative CoA-transferases and a UbiD-like decarboxylase that were assigned to be specifically involved in the initial steps of anaerobic o-phthalate degradation. We propose that o-phthalate is first activated to o-phthalyl-CoA by a putative succinyl-CoA-dependent succinyl-CoA:o-phthalate CoA-transferase, and o-phthalyl-CoA is subsequently decarboxylated to benzoyl-CoA by a putative o-phthalyl-CoA decarboxylase. Results from in vitro enzyme assays with cell-free extracts of o-phthalate-grown cells demonstrated the formation of o-phthalyl-CoA from o-phthalate and succinyl-CoA as CoA donor, and its subsequent decarboxylation to benzoyl-CoA. The putative succinyl-CoA:o-phthalate CoA-transferase showed high substrate specificity for o-phthalate and did not accept isophthalate, terephthalate or 3-fluoro-o-phthalate whereas the putative o-phthalyl-CoA decarboxylase converted fluoro-o-phthalyl-CoA to fluoro-benzoyl-CoA. No decarboxylase activity was observed with isophthalyl-CoA or terephthalyl-CoA. Both enzyme activities were oxygen-insensitive and inducible only after growth with o-phthalate. Further degradation of benzoyl-CoA proceeds analogous to the well-established anaerobic benzoyl-CoA degradation pathway of nitrate-reducing bacteria. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Characterization of a recombinant Cathepsin B-Like cysteine peptidase from Diaphorina citri Kuwayama (Hemiptera: Liviidae): A putative target control of citrus huanglongbing

    USDA-ARS?s Scientific Manuscript database

    Huanglongbing (HLB) is one of the most destructive disease affecting citrus plants. The causal agent is associated with the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas) spread by the Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae). Among the control strategies for H...

  14. Characterization and correlation of EPG waveforms of Bactericera cockerelli (Hemiptera: Triozidae): variability in waveform appearance in relation to applied signal

    USDA-ARS?s Scientific Manuscript database

    The potato psyllid, Bactericera cockerelli, was recently shown to be a vector of “Candidatus Liberibacter solanacearum” (Lso), a phloem-limited bacterium that is the putative causal agent of “Zebra Chip” in potato and unnamed diseases in other solanaceous species. Despite its importance, very little...

  15. Exogenous application of the plant signalers methyl jasmonate & salicylic acid induces changes in volatile emissions from citrus foliage & influences the aggregation behavior of ACP (Diaphorina citri), vector of Huanglongbing

    USDA-ARS?s Scientific Manuscript database

    Huanglongbing or citrus greening is a destructive disease that threatens citrus production worldwide; it is putatively caused by the phloem-limited bacterium Candidatus Liberibacter asiaticus (Las). Currently the disease is untreatable and control efforts focus on intensive insecticide use to contro...

  16. Specificity and putative mode of action of a mosquito larvicidal toxin from the bacterium Xenorhabdus innexi.

    PubMed

    Kim, Il-Hwan; Ensign, Jerald; Kim, Do-Young; Jung, Hoe-Yune; Kim, Na-Ri; Choi, Bo-Hwa; Park, Sun-Min; Lan, Que; Goodman, Walter G

    2017-10-01

    Reduction of mosquito-borne diseases relies, in part, on the use of synthetic pesticides to control pest mosquitoes. This reliance has led to genetic resistance, environmental contamination and the nondiscriminatory elimination of both pest and non-pest species. To expand our options for control, we screened entomopathogenic bacteria for potential larvicidal activity. A lipopeptide from the bacterium, Xenorhabdus innexi, was discovered that displayed potent larvicidal activity. The LC 50 s of the lipopeptide towards Aedes aegypti, Culex pipiens and Anopheles gambiae larvae were 1.81, 1.25 and 1.86 parts-per-million, respectively. No mortality was observed in other insect species tested. The putative mode of action of the lipopeptide suggested that after orally ingestion, it bound to the apical membrane of anterior midgut cells and created pores in the cellular membranes. The rapid neutralization of midgut pH suggested the pores disabled the H + -V-ATPase on the basal membrane and led to epithelial cell death. Specificity and toxicity towards mosquito larvae and the unique mode of action makes this lipopeptide a potentially attractive bacterial insecticide for control of mosquitoes. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Proteogenomic Characterization of Monocyclic Aromatic Hydrocarbon Degradation Pathways in the Aniline-Degrading Bacterium Burkholderia sp. K24.

    PubMed

    Lee, Sang-Yeop; Kim, Gun-Hwa; Yun, Sung Ho; Choi, Chi-Won; Yi, Yoon-Sun; Kim, Jonghyun; Chung, Young-Ho; Park, Edmond Changkyun; Kim, Seung Il

    2016-01-01

    Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs), including benzene, toluene, and xylene (BTX), as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX.

  18. Proteogenomic Characterization of Monocyclic Aromatic Hydrocarbon Degradation Pathways in the Aniline-Degrading Bacterium Burkholderia sp. K24

    PubMed Central

    Yun, Sung Ho; Choi, Chi-Won; Yi, Yoon-Sun; Kim, Jonghyun; Chung, Young-Ho; Park, Edmond Changkyun; Kim, Seung Il

    2016-01-01

    Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs), including benzene, toluene, and xylene (BTX), as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX. PMID:27124467

  19. Draft Genome Sequence of Streptomyces sp. Strain Wb2n-11, a Desert Isolate with Broad-Spectrum Antagonism against Soilborne Phytopathogens

    DOE PAGES

    Köberl, Martina; White, Richard A.; Erschen, Sabine; ...

    2015-08-06

    Streptomyces sp. strain Wb2n-11, isolated from native desert soil, exhibited broad-spectrum antagonism against plant pathogenic fungi, bacteria, and nematodes. The 8.2-Mb draft genome reveals genes putatively responsible for its promising biocontrol activity and genes which enable the soil bacterium to directly interact beneficially with plants.

  20. Draft genome sequence of Therminicola potens strain JR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrne-Bailey, K.G.; Wrighton, K.C.; Melnyk, R.A.

    'Thermincola potens' strain JR is one of the first Gram-positive dissimilatory metal-reducing bacteria (DMRB) for which there is a complete genome sequence. Consistent with the physiology of this organism, preliminary annotation revealed an abundance of multiheme c-type cytochromes that are putatively associated with the periplasm and cell surface in a Gram-positive bacterium. Here we report the complete genome sequence of strain JR.

  1. Characterization of the 101-Kilobase-Pair Megaplasmid pKB1, Isolated from the Rubber-Degrading Bacterium Gordonia westfalica Kb1

    PubMed Central

    Bröker, Daniel; Arenskötter, Matthias; Legatzki, Antje; Nies, Dietrich H.; Steinbüchel, Alexander

    2004-01-01

    The complete sequence of the circular 101,016-bp megaplasmid pKB1 from the cis-1,4-polyisoprene-degrading bacterium Gordonia westfalica Kb1, which represents the first described extrachromosomal DNA of a member of this genus, was determined. Plasmid pKB1 harbors 105 open reading frames. The predicted products of 46 of these are significantly related to proteins of known function. Plasmid pKB1 is organized into three functional regions that are flanked by insertion sequence (IS) elements: (i) a replication and putative partitioning region, (ii) a putative metabolic region, and (iii) a large putative conjugative transfer region, which is interrupted by an additional IS element. Southern hybridization experiments revealed the presence of another copy of this conjugational transfer region on the bacterial chromosome. The origin of replication (oriV) of pKB1 was identified and used for construction of Escherichia coli-Gordonia shuttle vectors, which was also suitable for several other Gordonia species and related genera. The metabolic region included the heavy-metal resistance gene cadA, encoding a P-type ATPase. Expression of cadA in E. coli mediated resistance to cadmium, but not to zinc, and decreased the cellular content of cadmium in this host. When G. westfalica strain Kb1 was cured of plasmid pKB1, the resulting derivative strains exhibited slightly decreased cadmium resistance. Furthermore, they had lost the ability to use isoprene rubber as a sole source of carbon and energy, suggesting that genes essential for rubber degradation are encoded by pKB1. PMID:14679241

  2. Multiple plasmid-borne virulence genes of Clavibacter michiganensis ssp. capsici critical for disease development in pepper.

    PubMed

    Hwang, In Sun; Oh, Eom-Ji; Kim, Donghyuk; Oh, Chang-Sik

    2018-02-01

    Clavibacter michiganensis ssp. capsici is a Gram-positive plant-pathogenic bacterium causing bacterial canker disease in pepper. Virulence genes and mechanisms of C. michiganensis ssp. capsici in pepper have not yet been studied. To identify virulence genes of C. michiganensis ssp. capsici, comparative genome analyses with C. michiganensis ssp. capsici and its related C. michiganensis subspecies, and functional analysis of its putative virulence genes during infection were performed. The C. michiganensis ssp. capsici type strain PF008 carries one chromosome (3.056 Mb) and two plasmids (39 kb pCM1 Cmc and 145 kb pCM2 Cmc ). The genome analyses showed that this bacterium lacks a chromosomal pathogenicity island and celA gene that are important for disease development by C. michiganensis ssp. michiganensis in tomato, but carries most putative virulence genes in both plasmids. Virulence of pCM1 Cmc -cured C. michiganensis ssp. capsici was greatly reduced compared with the wild-type strain in pepper. The complementation analysis with pCM1 Cmc -located putative virulence genes showed that at least five genes, chpE, chpG, ppaA1, ppaB1 and pelA1, encoding serine proteases or pectate lyase contribute to disease development in pepper. In conclusion, C. michiganensis ssp. capsici has a unique genome structure, and its multiple plasmid-borne genes play critical roles in virulence in pepper, either separately or together. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  3. l-lysine production by Bacillus methanolicus: Genome-based mutational analysis and l-lysine secretion engineering.

    PubMed

    Nærdal, Ingemar; Netzer, Roman; Irla, Marta; Krog, Anne; Heggeset, Tonje Marita Bjerkan; Wendisch, Volker F; Brautaset, Trygve

    2017-02-20

    Bacillus methanolicus is a methylotrophic bacterium with an increasing interest in academic research and for biotechnological applications. This bacterium was previously applied for methanol-based production of l-glutamate, l-lysine and the five-carbon diamine cadaverine by wild type, classical mutant and recombinant strains. The genomes of two different l-lysine secreting B. methanolicus classical mutant strains, NOA2#13A52-8A66 and M168-20, were sequenced. We focused on mutational mapping in genes present in l-lysine and other relevant amino acid biosynthetic pathways, as well as in the primary cell metabolism important for precursor supply. In addition to mutations in the aspartate pathway genes dapG, lysA and hom-1, new mutational target genes like alr, proA, proB1, leuC, odhA and pdhD were identified. Surprisingly, no mutations were found in the putative l-lysine transporter gene lysE MGA3 . Inspection of the wild type B. methanolicus strain PB1 genome sequence identified two homologous putative l-lysine transporter genes, lysE PB1 and lysE2 PB1 . The biological role of these putative l-lysine transporter genes, together with the heterologous l-lysine exporter gene lysE Cg from Corynebacterium glutamicum, were therefore investigated. Our results demonstrated that the titer of secreted l-lysine in B. methanolicus was significantly increased by overexpression of lysE Cg while overexpression of lysE MGA3 , lysE PB1 and lysE2 PB1 had no measurable effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Complete Genome Sequence of the Symbiotic Strain Bradyrhizobium icense LMTR 13T, Isolated from Lima Bean (Phaseolus lunatus) in Peru

    PubMed Central

    Rogel, Marco A.; Zúñiga-Dávila, Doris; Martínez-Romero, Esperanza

    2018-01-01

    ABSTRACT The complete genome sequence of Bradyrhizobium icense LMTR 13T, a root nodule bacterium isolated from the legume Phaseolus lunatus, is reported here. The genome consists of a circular 8,322,773-bp chromosome which codes for a large and novel symbiotic island as well as genes putatively involved in soil and root colonization. PMID:29519840

  5. Acclimatization of a mixed-animal manure inoculum to the anaerobic digestion of Axonopus compressus reveals the putative importance of Mesotoga infera and Methanosaeta concilii as elucidated by DGGE and Illumina MiSeq.

    PubMed

    Lee, Jonathan T E; He, Jianzhong; Tong, Yen Wah

    2017-12-01

    In this study, a multifarious microbial mix from different sources is acclimatized over a period of three months to digesting cowgrass, and the changes in the community structure are examined with both a traditional denaturing gradient gel electrophoresis method as well as a next generation sequencing MiSeq method. It is shown that the much more in depth analysis by Illumina gives more information about the relative abundance and thus putative importance of the role of various microbes, in particular the bacterium Mesotoga infera and the archaeon Methanosaeta concilii. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Transcription analysis of pilS and xpsEL genes from Xylella fastidiosa.

    PubMed

    Coltri, Patricia P; Rosato, Yoko B

    2005-04-01

    Xylella fastidiosa is a xylem-limited phytopathogen responsible for diseases in several plants such as citrus and coffee. Analysis of the bacterial genome revealed some putative pathogenicity-related genes that could help to elucidate the molecular mechanisms of plant-pathogen interactions. In the present work, the transcription of three genes of the bacterium, grown in defined and rich media and also in media containing host plant extracts (sweet orange, 'ponkan' and coffee) was analyzed by RT-PCR. The pilS gene, which encodes a sensor histidine kinase responsible for the biosynthesis of fimbriae, was transcribed when the bacterium was grown in more complex media such as PW and in medium containing plant extracts. The xps genes (xpsL and xpsE) which are related to the type II secretion system were also detected when the bacterium was grown in rich media and media with 'ponkan' and coffee extracts. It was thus observed that pilS and xpsEL genes of X. fastidiosa can be modulated by environmental factors and their expression is dependent on the nutritional status of the growth medium.

  7. Crystallization and preliminary X-ray diffraction analysis of the phosphate-binding protein PhoX from Xanthomonas citri

    PubMed Central

    Pegos, Vanessa R.; Medrano, Francisco Javier; Balan, Andrea

    2014-01-01

    Xanthomonas axonopodis pv. citri (X. citri) is an important bacterium that causes citrus canker disease in plants in Brazil and around the world, leading to significant economic losses. Determination of the physiology and mechanisms of pathogenesis of this bacterium is an important step in the development of strategies for its containment. Phosphate is an essential ion in all microrganisms owing its importance during the synthesis of macromolecules and in gene and protein regulation. Interestingly, X. citri has been identified to present two periplasmic binding proteins that have not been further characterized: PstS, from an ATP-binding cassette for high-affinity uptake and transport of phosphate, and PhoX, which is encoded by an operon that also contains a putative porin for the transport of phosphate. Here, the expression, purification and crystallization of the phosphate-binding protein PhoX and X-ray data collection at 3.0 Å resolution are described. Biochemical, biophysical and structural data for this protein will be helpful in the elucidation of its function in phosphate uptake and the physiology of the bacterium. PMID:25484207

  8. Characterization of a nitrilase and a nitrile hydratase from Pseudomonas sp. strain UW4 that converts indole-3-acetonitrile to indole-3-acetic acid.

    PubMed

    Duca, Daiana; Rose, David R; Glick, Bernard R

    2014-08-01

    Indole-3-acetic acid (IAA) is a fundamental phytohormone with the ability to control many aspects of plant growth and development. Pseudomonas sp. strain UW4 is a rhizospheric plant growth-promoting bacterium that produces and secretes IAA. While several putative IAA biosynthetic genes have been reported in this bacterium, the pathways leading to the production of IAA in strain UW4 are unclear. Here, the presence of the indole-3-acetamide (IAM) and indole-3-acetaldoxime/indole-3-acetonitrile (IAOx/IAN) pathways of IAA biosynthesis is described, and the specific role of two of the enzymes (nitrilase and nitrile hydratase) that mediate these pathways is assessed. The genes encoding these two enzymes were expressed in Escherichia coli, and the enzymes were isolated and characterized. Substrate-feeding assays indicate that the nitrilase produces both IAM and IAA from the IAN substrate, while the nitrile hydratase only produces IAM. The two nitrile-hydrolyzing enzymes have very different temperature and pH optimums. Nitrilase prefers a temperature of 50°C and a pH of 6, while nitrile hydratase prefers 4°C and a pH of 7.5. Based on multiple sequence alignments and motif analyses, physicochemical properties and enzyme assays, it is concluded that the UW4 nitrilase has an aromatic substrate specificity. The nitrile hydratase is identified as an iron-type metalloenzyme that does not require the help of a P47K activator protein to be active. These data are interpreted in terms of a preliminary model for the biosynthesis of IAA in this bacterium.

  9. Draft Genome Sequence of Janthinobacterium sp. Strain ROICE36, a Putative Secondary Metabolite-Synthesizing Bacterium Isolated from Antarctic Snow

    PubMed Central

    Chiriac, Cecilia; Baricz, Andreea

    2018-01-01

    ABSTRACT The draft genome assembly of Janthinobacterium sp. strain ROICE36 has 207 contigs, with a total genome size of 5,977,006 bp and a G+C content of 62%. Preliminary genome analysis identified 5,363 protein-coding genes and a total of 7 secondary metabolic gene clusters (encoding bacteriocins, nonribosomal peptide-synthetase [NRPS], terpene, hserlactone, and other ketide synthases). PMID:29650588

  10. Complete Genome Sequence of the Electricity-Producing “Thermincola potens” Strain JR▿

    PubMed Central

    Byrne-Bailey, Kathryne G.; Wrighton, Kelly C.; Melnyk, Ryan A.; Agbo, Peter; Hazen, Terry C.; Coates, John D.

    2010-01-01

    “Thermincola potens” strain JR is one of the first Gram-positive dissimilatory metal-reducing bacteria (DMRB) for which there is a complete genome sequence. Consistent with the physiology of this organism, preliminary annotation revealed an abundance of multiheme c-type cytochromes that are putatively associated with the periplasm and cell surface in a Gram-positive bacterium. Here we report the complete genome sequence of strain JR. PMID:20525829

  11. Complete Genome Sequence of the Symbiotic Strain Bradyrhizobium icense LMTR 13T, Isolated from Lima Bean (Phaseolus lunatus) in Peru.

    PubMed

    Ormeño-Orrillo, Ernesto; Rogel, Marco A; Zúñiga-Dávila, Doris; Martínez-Romero, Esperanza

    2018-03-08

    The complete genome sequence of Bradyrhizobium icense LMTR 13 T , a root nodule bacterium isolated from the legume Phaseolus lunatus , is reported here. The genome consists of a circular 8,322,773-bp chromosome which codes for a large and novel symbiotic island as well as genes putatively involved in soil and root colonization. Copyright © 2018 Ormeño-Orrillo et al.

  12. Genomic diversity of bacteriophages infecting the fish pathogen Flavobacterium psychrophilum.

    PubMed

    Castillo, Daniel; Middelboe, Mathias

    2016-12-01

    Bacteriophages infecting the fish pathogen Flavobacterium psychrophilum can potentially be used to prevent and control outbreaks of this bacterium in salmonid aquaculture. However, the application of bacteriophages in disease control requires detailed knowledge on their genetic composition. To explore the diversity of F. pyschrophilum bacteriophages, we have analyzed the complete genome sequences of 17 phages isolated from two distant geographic areas (Denmark and Chile), including the previously characterized temperate bacteriophage 6H. Phage genome size ranged from 39 302 to 89 010 bp with a G+C content of 27%-32%. None of the bacteriophages isolated in Denmark contained genes associated with lysogeny, whereas the Chilean isolates were all putative temperate phages and similar to bacteriophage 6H. Comparative genome analysis showed that phages grouped in three different genetic clusters based on genetic composition and gene content, indicating a limited genetic diversity of F. psychrophilum-specific bacteriophages. However, amino acid sequence dissimilarity (25%) was found in putative structural proteins, which could be related to the host specificity determinants. This study represents the first analysis of genomic diversity and composition among bacteriophages infecting the fish pathogen F. psychrophilum and discusses the implications for the application of phages in disease control. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. A single type of cadherin is involved in Bacillus thuringiensis toxicity in Plutella xylostella.

    PubMed

    Park, Y; Herrero, S; Kim, Y

    2015-12-01

    Cadherins have been described as one the main functional receptors for the toxins of the entomopathogenic bacterium, Bacillus thuringiensis (Bt). With the availability of the whole genome of Plutella xylostella, different types of cadherins have been annotated. In this study we focused on determining those members of the cadherin-related proteins that potentially play a role in the mode of action of Bt toxins. For this, we mined the genome of P. xylostella to identify these putative cadherins. The genome screening revealed 52 genes that were annotated as cadherin or cadherin-like genes. Further analysis revealed that six of these putative cadherins had three motifs common to all Bt-related cadherins: a signal peptide, cadherin repeats and a transmembrane domain. From the six selected cadherins, only P. xylostella cadherin 1 (PxCad1) was expressed in the larval midgut and only the silencing of this gene by RNA interference (double-stranded RNA feeding) reduce toxicity and binding to the midgut of the Cry1Ac type toxin from Bt. These results indicate that from the whole set of cadherin-related genes identified in P. xylostella, only PxCad1 is associated with the Cry1Ac mode of action. © 2015 The Royal Entomological Society.

  14. Proteolysin, a Novel Highly Thermostable and Cosolvent-Compatible Protease from the Thermophilic Bacterium Coprothermobacter proteolyticus

    PubMed Central

    Toplak, Ana; Wu, Bian; Fusetti, Fabrizia; Quaedflieg, Peter J. L. M.

    2013-01-01

    Through genome mining, we identified a gene encoding a putative serine protease of the thermitase subgroup of subtilases (EC 3.4.21.66) in the thermophilic bacterium Coprothermobacter proteolyticus. The gene was functionally expressed in Escherichia coli, and the enzyme, which we called proteolysin, was purified to near homogeneity from crude cell lysate by a single heat treatment step. Proteolysin has a broad pH tolerance and is active at temperatures of up to 80°C. In addition, the enzyme shows good activity and stability in the presence of organic solvents, detergents, and dithiothreitol, and it remains active in 6 M guanidinium hydrochloride. Based on its stability and activity profile, proteolysin can be an excellent candidate for applications where resistance to harsh process conditions is required. PMID:23851086

  15. Proteolysis in hyperthermophilic microorganisms

    DOE PAGES

    Ward, Donald E.; Shockley, Keith R.; Chang, Lara S.; ...

    2002-01-01

    Proteases are found in every cell, where they recognize and break down unneeded or abnormal polypeptides or peptide-based nutrients within or outside the cell. Genome sequence data can be used to compare proteolytic enzyme inventories of different organisms as they relate to physiological needs for protein modification and hydrolysis. In this review, we exploit genome sequence data to compare hyperthermophilic microorganisms from the euryarchaeotal genus Pyrococcus , the crenarchaeote Sulfolobus solfataricus , and the bacterium Thermotoga maritima . An overview of the proteases in these organisms is given based on those proteases that have been characterized and on putative proteasesmore » that have been identified from genomic sequences, but have yet to be characterized. The analysis revealed both similarities and differences in the mechanisms utilized for proteolysis by each of these hyperthermophiles and indicated how these mechanisms relate to proteolysis in less thermophilic cells and organisms.« less

  16. Scarabaecin, a novel cysteine-containing antifungal peptide from the rhinoceros beetle, Oryctes rhinoceros.

    PubMed

    Tomie, Tetsuya; Ishibashi, Jun; Furukawa, Seiichi; Kobayashi, Satoe; Sawahata, Ryoko; Asaoka, Ai; Tagawa, Michito; Yamakawa, Minoru

    2003-07-25

    A novel antifungal peptide, scarabaecin (4080Da), was isolated from the coconut rhinoceros beetle, Oryctes rhinoceros. Scarabaecin cDNA was cloned by reverse transcriptase-polymerase chain reactions (RT-PCR) using a primer based on the N-terminal amino acid sequence. The amino acid sequence deduced from scarabaecin cDNA showed no significant similarity to those of reported proteins. Chemically synthesized scarabaecin indicated antifungal activity against phytopathogenic fungi such as Pyricularia oryzae, Rhizoctonia solani, and Botrytis cinerea, but not against phytopathogenic bacteria. It showed weak activity against Bauberia bassiana, an insect pathogenic fungus, and Staphylococcus aureus, a pathogenic bacterium. Scarabaecin showed chitin binding property and its K(d) was 1.315 microM. A comparison of putative chitin-binding domains among scarabaecin, invertebrate, and plant chitin-binding proteins suggests that scarabaecin is a new member of chitin-binding antimicrobial proteins.

  17. Arsenic(III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California

    USGS Publications Warehouse

    Kulp, T.R.; Hoeft, S.E.; Asao, M.; Madigan, M.T.; Hollibaugh, J.T.; Fisher, J.C.; Stolz, J.F.; Culbertson, C.W.; Miller, L.G.; Oremland, R.S.

    2008-01-01

    Phylogenetic analysis indicates that microbial arsenic metabolism is ancient and probably extends back to the primordial Earth. In microbial biofilms growing on the rock surfaces of anoxic brine pools fed by hot springs containing arsenite and sulfide at high concentrations, we discovered light-dependent oxidation of arsenite [As(III)] to arsenate [As(V)] occurring under anoxic conditions. The communities were composed primarily of Ectothiorhodospira-like purple bacteria or Oscillatoria-like cyanobacteria. A pure culture of a photosynthetic bacterium grew as a photoautotroph when As(III) was used as the sole photosynthetic electron donor. The strain contained genes encoding a putative As(V) reductase but no detectable homologs of the As(III) oxidase genes of aerobic chemolithotrophs, suggesting a reverse functionality for the reductase. Production of As(V) by anoxygenic photosynthesis probably opened niches for primordial Earth's first As(V)-respiring prokaryotes.

  18. Respiratory arsenate reductase as a bidirectional enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richey, Christine; Chovanec, Peter; Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282

    2009-05-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function asmore » a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe-S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.« less

  19. Respiratory arsenate reductase as a bidirectional enzyme

    USGS Publications Warehouse

    Richey, C.; Chovanec, P.; Hoeft, S.E.; Oremland, R.S.; Basu, P.; Stolz, J.F.

    2009-01-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe–S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  20. A whole genome analysis reveals the presence of a plant PR1 sequence in the potato pathogen Streptomyces scabies and other Streptomyces species.

    PubMed

    Armijos-Jaramillo, Vinicio; Santander-Gordón, Daniela; Soria, Rosa; Pazmiño-Betancourth, Mauro; Echeverría, María Cristina

    2017-09-01

    Streptomyces scabies is a common soil bacterium that causes scab symptoms in potatoes. Strong evidence indicates horizontal gene transfer (HGT) among bacteria has influenced the evolution of this plant pathogen and other Streptomyces spp. To extend the study of the HGT to the Streptomyces genus, we explored the effects of the inter-domain HGT in the S. scabies genome. We employed a semi-automatic pipeline based on BLASTp searches and phylogenetic reconstruction. The data show low impact of inter-domain HGT in the S. scabies genome; however, we found a putative plant pathogenesis related 1 (PR1) sequence in the genome of S. scabies and other species of the genus. It is possible that this gene could be used by S. scabies to out-compete other soil organisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. The genome sequence of the metal-mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides insights into bioleaching-associated metabolism.

    PubMed

    Auernik, Kathryne S; Maezato, Yukari; Blum, Paul H; Kelly, Robert M

    2008-02-01

    Despite their taxonomic description, not all members of the order Sulfolobales are capable of oxidizing reduced sulfur species, which, in addition to iron oxidation, is a desirable trait of biomining microorganisms. However, the complete genome sequence of the extremely thermoacidophilic archaeon Metallosphaera sedula DSM 5348 (2.2 Mb, approximately 2,300 open reading frames [ORFs]) provides insights into biologically catalyzed metal sulfide oxidation. Comparative genomics was used to identify pathways and proteins involved (directly or indirectly) with bioleaching. As expected, the M. sedula genome contains genes related to autotrophic carbon fixation, metal tolerance, and adhesion. Also, terminal oxidase cluster organization indicates the presence of hybrid quinol-cytochrome oxidase complexes. Comparisons with the mesophilic biomining bacterium Acidithiobacillus ferrooxidans ATCC 23270 indicate that the M. sedula genome encodes at least one putative rusticyanin, involved in iron oxidation, and a putative tetrathionate hydrolase, implicated in sulfur oxidation. The fox gene cluster, involved in iron oxidation in the thermoacidophilic archaeon Sulfolobus metallicus, was also identified. These iron- and sulfur-oxidizing components are missing from genomes of nonleaching members of the Sulfolobales, such as Sulfolobus solfataricus P2 and Sulfolobus acidocaldarius DSM 639. Whole-genome transcriptional response analysis showed that 88 ORFs were up-regulated twofold or more in M. sedula upon addition of ferrous sulfate to yeast extract-based medium; these included genes for components of terminal oxidase clusters predicted to be involved with iron oxidation, as well as genes predicted to be involved with sulfur metabolism. Many hypothetical proteins were also differentially transcribed, indicating that aspects of the iron and sulfur metabolism of M. sedula remain to be identified and characterized.

  2. The Genome Sequence of the Metal-Mobilizing, Extremely Thermoacidophilic Archaeon Metallosphaera sedula Provides Insights into Bioleaching-Associated Metabolism▿ †

    PubMed Central

    Auernik, Kathryne S.; Maezato, Yukari; Blum, Paul H.; Kelly, Robert M.

    2008-01-01

    Despite their taxonomic description, not all members of the order Sulfolobales are capable of oxidizing reduced sulfur species, which, in addition to iron oxidation, is a desirable trait of biomining microorganisms. However, the complete genome sequence of the extremely thermoacidophilic archaeon Metallosphaera sedula DSM 5348 (2.2 Mb, ∼2,300 open reading frames [ORFs]) provides insights into biologically catalyzed metal sulfide oxidation. Comparative genomics was used to identify pathways and proteins involved (directly or indirectly) with bioleaching. As expected, the M. sedula genome contains genes related to autotrophic carbon fixation, metal tolerance, and adhesion. Also, terminal oxidase cluster organization indicates the presence of hybrid quinol-cytochrome oxidase complexes. Comparisons with the mesophilic biomining bacterium Acidithiobacillus ferrooxidans ATCC 23270 indicate that the M. sedula genome encodes at least one putative rusticyanin, involved in iron oxidation, and a putative tetrathionate hydrolase, implicated in sulfur oxidation. The fox gene cluster, involved in iron oxidation in the thermoacidophilic archaeon Sulfolobus metallicus, was also identified. These iron- and sulfur-oxidizing components are missing from genomes of nonleaching members of the Sulfolobales, such as Sulfolobus solfataricus P2 and Sulfolobus acidocaldarius DSM 639. Whole-genome transcriptional response analysis showed that 88 ORFs were up-regulated twofold or more in M. sedula upon addition of ferrous sulfate to yeast extract-based medium; these included genes for components of terminal oxidase clusters predicted to be involved with iron oxidation, as well as genes predicted to be involved with sulfur metabolism. Many hypothetical proteins were also differentially transcribed, indicating that aspects of the iron and sulfur metabolism of M. sedula remain to be identified and characterized. PMID:18083856

  3. A putative siderophore-interacting protein from the marine bacterium Shewanella frigidimarina NCIMB 400: cloning, expression, purification, crystallization and X-ray diffraction analysis

    PubMed Central

    Trindade, Inês B.; Fonseca, Bruno M.; Matias, Pedro M.; Louro, Ricardo O.; Moe, Elin

    2016-01-01

    Siderophore-binding proteins (SIPs) perform a key role in iron acquisition in multiple organisms. In the genome of the marine bacterium Shewanella frigidimarina NCIMB 400, the gene tagged as SFRI_RS12295 encodes a protein from this family. Here, the cloning, expression, purification and crystallization of this protein are reported, together with its preliminary X-ray crystallographic analysis to 1.35 Å resolution. The SIP crystals belonged to the monoclinic space group P21, with unit-cell parameters a = 48.04, b = 78.31, c = 67.71 Å, α = 90, β = 99.94, γ = 90°, and are predicted to contain two molecules per asymmetric unit. Structure determination by molecular replacement and the use of previously determined ∼2 Å resolution SIP structures with ∼30% sequence identity as templates are ongoing. PMID:27599855

  4. Proteus mirabilis interkingdom swarming signals attract blow flies

    PubMed Central

    Ma, Qun; Fonseca, Alicia; Liu, Wenqi; Fields, Andrew T; Pimsler, Meaghan L; Spindola, Aline F; Tarone, Aaron M; Crippen, Tawni L; Tomberlin, Jeffery K; Wood, Thomas K

    2012-01-01

    Flies transport specific bacteria with their larvae that provide a wider range of nutrients for those bacteria. Our hypothesis was that this symbiotic interaction may depend on interkingdom signaling. We obtained Proteus mirabilis from the salivary glands of the blow fly Lucilia sericata; this strain swarmed significantly and produced a strong odor that attracts blow flies. To identify the putative interkingdom signals for the bacterium and flies, we reasoned that as swarming is used by this bacterium to cover the food resource and requires bacterial signaling, the same bacterial signals used for swarming may be used to communicate with blow flies. Using transposon mutagenesis, we identified six novel genes for swarming (ureR, fis, hybG, zapB, fadE and PROSTU_03490), then, confirming our hypothesis, we discovered that fly attractants, lactic acid, phenol, NaOH, KOH and ammonia, restore swarming for cells with the swarming mutations. Hence, compounds produced by the bacterium that attract flies also are utilized for swarming. In addition, bacteria with the swarming mutation rfaL attracted fewer blow flies and reduced the number of eggs laid by the flies. Therefore, we have identified several interkingdom signals between P. mirabilis and blow flies. PMID:22237540

  5. Anaerobic mineralization of quaternary carbon atoms: isolation of denitrifying bacteria on pivalic acid (2,2-dimethylpropionic acid).

    PubMed

    Probian, Christina; Wülfing, Annika; Harder, Jens

    2003-03-01

    The degradability of pivalic acid was established by the isolation of several facultative denitrifying strains belonging to Zoogloea resiniphila, to Thauera and Herbaspirillum, and to Comamonadaceae, related to [Aquaspirillum] and Acidovorax, and of a nitrate-reducing bacterium affiliated with Moraxella osloensis. Pivalic acid was completely mineralized to carbon dioxide. The catabolic pathways may involve an oxidation to dimethylmalonate or a carbon skeleton rearrangement, a putative 2,2-dimethylpropionyl coenzyme A mutase.

  6. Regulatory RNAs in Bacillus subtilis: a Gram-Positive Perspective on Bacterial RNA-Mediated Regulation of Gene Expression.

    PubMed

    Mars, Ruben A T; Nicolas, Pierre; Denham, Emma L; van Dijl, Jan Maarten

    2016-12-01

    Bacteria can employ widely diverse RNA molecules to regulate their gene expression. Such molecules include trans-acting small regulatory RNAs, antisense RNAs, and a variety of transcriptional attenuation mechanisms in the 5' untranslated region. Thus far, most regulatory RNA research has focused on Gram-negative bacteria, such as Escherichia coli and Salmonella. Hence, there is uncertainty about whether the resulting insights can be extrapolated directly to other bacteria, such as the Gram-positive soil bacterium Bacillus subtilis. A recent study identified 1,583 putative regulatory RNAs in B. subtilis, whose expression was assessed across 104 conditions. Here, we review the current understanding of RNA-based regulation in B. subtilis, and we categorize the newly identified putative regulatory RNAs on the basis of their conservation in other bacilli and the stability of their predicted secondary structures. Our present evaluation of the publicly available data indicates that RNA-mediated gene regulation in B. subtilis mostly involves elements at the 5' ends of mRNA molecules. These can include 5' secondary structure elements and metabolite-, tRNA-, or protein-binding sites. Importantly, sense-independent segments are identified as the most conserved and structured potential regulatory RNAs in B. subtilis. Altogether, the present survey provides many leads for the identification of new regulatory RNA functions in B. subtilis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Regulatory RNAs in Bacillus subtilis: a Gram-Positive Perspective on Bacterial RNA-Mediated Regulation of Gene Expression

    PubMed Central

    Mars, Ruben A. T.; Nicolas, Pierre; Denham, Emma L.

    2016-01-01

    SUMMARY Bacteria can employ widely diverse RNA molecules to regulate their gene expression. Such molecules include trans-acting small regulatory RNAs, antisense RNAs, and a variety of transcriptional attenuation mechanisms in the 5′ untranslated region. Thus far, most regulatory RNA research has focused on Gram-negative bacteria, such as Escherichia coli and Salmonella. Hence, there is uncertainty about whether the resulting insights can be extrapolated directly to other bacteria, such as the Gram-positive soil bacterium Bacillus subtilis. A recent study identified 1,583 putative regulatory RNAs in B. subtilis, whose expression was assessed across 104 conditions. Here, we review the current understanding of RNA-based regulation in B. subtilis, and we categorize the newly identified putative regulatory RNAs on the basis of their conservation in other bacilli and the stability of their predicted secondary structures. Our present evaluation of the publicly available data indicates that RNA-mediated gene regulation in B. subtilis mostly involves elements at the 5′ ends of mRNA molecules. These can include 5′ secondary structure elements and metabolite-, tRNA-, or protein-binding sites. Importantly, sense-independent segments are identified as the most conserved and structured potential regulatory RNAs in B. subtilis. Altogether, the present survey provides many leads for the identification of new regulatory RNA functions in B. subtilis. PMID:27784798

  8. Type IV Pili in Francisella tularensis: Roles of pilF and pilT in Fiber Assembly, Host Cell Adherence, and Virulence ▿

    PubMed Central

    Chakraborty, Subhra; Monfett, Michael; Maier, Tamara M.; Benach, Jorge L.; Frank, Dara W.; Thanassi, David G.

    2008-01-01

    Francisella tularensis, a highly virulent facultative intracellular bacterium, is the causative agent of tularemia. Genome sequencing of all F. tularensis subspecies revealed the presence of genes that could encode type IV pili (Tfp). The live vaccine strain (LVS) expresses surface fibers resembling Tfp, but it was not established whether these fibers were indeed Tfp encoded by the pil genes. We show here that deletion of the pilF putative Tfp assembly ATPase in the LVS resulted in a complete loss of surface fibers. Disruption of the pilT putative disassembly ATPase also caused a complete loss of pili, indicating that pilT functions differently in F. tularensis than in model Tfp systems such as those found in Pseudomonas aeruginosa and Neisseria spp. The LVS pilF and pilT mutants were attenuated for virulence in a mouse model of tularemia by the intradermal route. Furthermore, although absence of pili had no effect on the ability of the LVS to replicate intracellularly, the pilF and pilT mutants were defective for adherence to macrophages, pneumocytes, and hepatocytes. This work confirms that the surface fibers expressed by the LVS are encoded by the pil genes and provides evidence that the Francisella pili contribute to host cell adhesion and virulence. PMID:18426883

  9. The glnAntrBC operon of Herbaspirillum seropedicae is transcribed by two oppositely regulated promoters upstream of glnA.

    PubMed

    Schwab, Stefan; Souza, Emanuel M; Yates, Marshall G; Persuhn, Darlene C; Steffens, M Berenice R; Chubatsu, Leda S; Pedrosa, Fábio O; Rigo, Liu U

    2007-01-01

    Herbaspirillum seropedicae is an endophytic bacterium that fixes nitrogen under microaerophilic conditions. The putative promoter sequences glnAp1 (sigma70-dependent) and glnAp2 (sigma54), and two NtrC-binding sites were identified upstream from the glnA, ntrB and ntrC genes of this microorganism. To study their transcriptional regulation, we used lacZ fusions to the H. seropedicae glnA gene, and the glnA-ntrB and ntrB-ntrC intergenic regions. Expression of glnA was up-regulated under low ammonium, but no transcription activity was detected from the intergenic regions under any condition tested, suggesting that glnA, ntrB and ntrC are co-transcribed from the promoters upstream of glnA. Ammonium regulation was lost in the ntrC mutant strain. A point mutation was introduced in the conserved -25/-24 dinucleotide (GG-->TT) of the putative sigma54-dependent promoter (glnAp2). Contrary to the wild-type promoter, glnA expression with the mutant glnAp2 promoter was repressed in the wild-type strain under low ammonium levels, but this repression was abolished in an ntrC background. Together our results indicate that the H. seropedicae glnAntrBC operon is regulated from two functional promoters upstream from glnA, which are oppositely regulated by the NtrC protein.

  10. Glucose Metabolism in Legionella pneumophila: Dependence on the Entner-Doudoroff Pathway and Connection with Intracellular Bacterial Growth† ▿

    PubMed Central

    Harada, Eiji; Iida, Ken-Ichiro; Shiota, Susumu; Nakayama, Hiroaki; Yoshida, Shin-Ichi

    2010-01-01

    Glucose metabolism in Legionella pneumophila was studied by focusing on the Entner-Doudoroff (ED) pathway with a combined genetic and biochemical approach. The bacterium utilized exogenous glucose for synthesis of acid-insoluble cell components but manifested no discernible increase in the growth rate. Assays with permeabilized cell preparations revealed the activities of three enzymes involved in the pathway, i.e., glucokinase, phosphogluconate dehydratase, and 2-dehydro-3-deoxy-phosphogluconate aldolase, presumed to be encoded by the glk, edd, and eda genes, respectively. Gene-disrupted mutants for the three genes and the ywtG gene encoding a putative sugar transporter were devoid of the ability to metabolize exogenous glucose, indicating that the pathway is almost exclusively responsible for glucose metabolism and that the ywtG gene product is the glucose transporter. It was also established that these four genes formed part of an operon in which the gene order was edd-glk-eda-ywtG, as predicted by genomic information. Intriguingly, while the mutants exhibited no appreciable change in growth characteristics in vitro, they were defective in multiplication within eukaryotic cells, strongly indicating that the ED pathway must be functional for the intracellular growth of the bacterium to occur. Curiously, while the deficient glucose metabolism of the ywtG mutant was successfully complemented by the ywtG+ gene supplied in trans via plasmid, its defect in intracellular growth was not. However, the latter defect was also manifested in wild-type cells when a plasmid carrying the mutant ywtG gene was introduced. This phenomenon, resembling so-called dominant negativity, awaits further investigation. PMID:20363943

  11. Bioinformatic prediction of gene functions regulated by quorum sensing in the bioleaching bacterium Acidithiobacillus ferrooxidans.

    PubMed

    Banderas, Alvaro; Guiliani, Nicolas

    2013-08-16

    The biomining bacterium Acidithiobacillus ferrooxidans oxidizes sulfide ores and promotes metal solubilization. The efficiency of this process depends on the attachment of cells to surfaces, a process regulated by quorum sensing (QS) cell-to-cell signalling in many Gram-negative bacteria. At. ferrooxidans has a functional QS system and the presence of AHLs enhances its attachment to pyrite. However, direct targets of the QS transcription factor AfeR remain unknown. In this study, a bioinformatic approach was used to infer possible AfeR direct targets based on the particular palindromic features of the AfeR binding site. A set of Hidden Markov Models designed to maintain palindromic regions and vary non-palindromic regions was used to screen for putative binding sites. By annotating the context of each predicted binding site (PBS), we classified them according to their positional coherence relative to other putative genomic structures such as start codons, RNA polymerase promoter elements and intergenic regions. We further used the Multiple EM for Motif Elicitation algorithm (MEME) to further filter out low homology PBSs. In summary, 75 target-genes were identified, 34 of which have a higher confidence level. Among the identified genes, we found afeR itself, zwf, genes encoding glycosyltransferase activities, metallo-beta lactamases, and active transport-related proteins. Glycosyltransferases and Zwf (Glucose 6-phosphate-1-dehydrogenase) might be directly involved in polysaccharide biosynthesis and attachment to minerals by At. ferrooxidans cells during the bioleaching process.

  12. Proteomic Characterization of Plasmid pLA1 for Biodegradation of Polycyclic Aromatic Hydrocarbons in the Marine Bacterium, Novosphingobium pentaromativorans US6-1

    PubMed Central

    Yun, Sung Ho; Choi, Chi-Won; Lee, Sang-Yeop; Lee, Yeol Gyun; Kwon, Joseph; Leem, Sun Hee; Chung, Young Ho; Kahng, Hyung-Yeel; Kim, Sang Jin; Kwon, Kae Kyoung; Kim, Seung Il

    2014-01-01

    Novosphingobium pentaromativorans US6-1 is a halophilic marine bacterium able to degrade polycyclic aromatic hydrocarbons (PAHs). Genome sequence analysis revealed that the large plasmid pLA1 present in N. pentaromativorans US6-1 consists of 199 ORFs and possess putative biodegradation genes that may be involved in PAH degradation. 1-DE/LC-MS/MS analysis of N. pentaromativorans US6-1 cultured in the presence of different PAHs and monocyclic aromatic hydrocarbons (MAHs) identified approximately 1,000 and 1,400 proteins, respectively. Up-regulated biodegradation enzymes, including those belonging to pLA1, were quantitatively compared. Among the PAHs, phenanthrene induced the strongest up-regulation of extradiol cleavage pathway enzymes such as ring-hydroxylating dioxygenase, putative biphenyl-2,3-diol 1,2-dioxygenase, and catechol 2,3-dioxygenase in pLA1. These enzymes lead the initial step of the lower catabolic pathway of aromatic hydrocarbons through the extradiol cleavage pathway and participate in the attack of PAH ring cleavage, respectively. However, N. pentaromativorans US6-1 cultured with p-hydroxybenzoate induced activation of another extradiol cleavage pathway, the protocatechuate 4,5-dioxygenase pathway, that originated from chromosomal genes. These results suggest that N. pentaromativorans US6-1 utilizes two different extradiol pathways and plasmid pLA1 might play a key role in the biodegradation of PAH in N. pentaromativorans US6-1. PMID:24608660

  13. Bioinformatic Prediction of Gene Functions Regulated by Quorum Sensing in the Bioleaching Bacterium Acidithiobacillus ferrooxidans

    PubMed Central

    Banderas, Alvaro; Guiliani, Nicolas

    2013-01-01

    The biomining bacterium Acidithiobacillus ferrooxidans oxidizes sulfide ores and promotes metal solubilization. The efficiency of this process depends on the attachment of cells to surfaces, a process regulated by quorum sensing (QS) cell-to-cell signalling in many Gram-negative bacteria. At. ferrooxidans has a functional QS system and the presence of AHLs enhances its attachment to pyrite. However, direct targets of the QS transcription factor AfeR remain unknown. In this study, a bioinformatic approach was used to infer possible AfeR direct targets based on the particular palindromic features of the AfeR binding site. A set of Hidden Markov Models designed to maintain palindromic regions and vary non-palindromic regions was used to screen for putative binding sites. By annotating the context of each predicted binding site (PBS), we classified them according to their positional coherence relative to other putative genomic structures such as start codons, RNA polymerase promoter elements and intergenic regions. We further used the Multiple EM for Motif Elicitation algorithm (MEME) to further filter out low homology PBSs. In summary, 75 target-genes were identified, 34 of which have a higher confidence level. Among the identified genes, we found afeR itself, zwf, genes encoding glycosyltransferase activities, metallo-beta lactamases, and active transport-related proteins. Glycosyltransferases and Zwf (Glucose 6-phosphate-1-dehydrogenase) might be directly involved in polysaccharide biosynthesis and attachment to minerals by At. ferrooxidans cells during the bioleaching process. PMID:23959118

  14. Identification, Purification, and Characterization of a Novel Amino Acid Racemase, Isoleucine 2-Epimerase, from Lactobacillus Species

    PubMed Central

    Mutaguchi, Yuta; Ohmori, Taketo; Wakamatsu, Taisuke; Doi, Katsumi

    2013-01-01

    Accumulation of d-leucine, d-allo-isoleucine, and d-valine was observed in the growth medium of a lactic acid bacterium, Lactobacillus otakiensis JCM 15040, and the racemase responsible was purified from the cells and identified. The N-terminal amino acid sequence of the purified enzyme was GKLDKASKLI, which is consistent with that of a putative γ-aminobutyrate aminotransferase from Lactobacillus buchneri. The putative γ-aminobutyrate aminotransferase gene from L. buchneri JCM 1115 was expressed in recombinant Escherichia coli and then purified to homogeneity. The enzyme catalyzed the racemization of a broad spectrum of nonpolar amino acids. In particular, it catalyzed at high rates the epimerization of l-isoleucine to d-allo-isoleucine and d-allo-isoleucine to l-isoleucine. In contrast, the enzyme showed no γ-aminobutyrate aminotransferase activity. The relative molecular masses of the subunit and native enzyme were estimated to be about 49 kDa and 200 kDa, respectively, indicating that the enzyme was composed of four subunits of equal molecular masses. The Km and Vmax values of the enzyme for l-isoleucine were 5.00 mM and 153 μmol·min−1·mg−1, respectively, and those for d-allo-isoleucine were 13.2 mM and 286 μmol·min−1·mg−1, respectively. Hydroxylamine and other inhibitors of pyridoxal 5′-phosphate-dependent enzymes completely blocked the enzyme activity, indicating the enzyme requires pyridoxal 5′-phosphate as a coenzyme. This is the first evidence of an amino acid racemase that specifically catalyzes racemization of nonpolar amino acids at the C-2 position. PMID:24039265

  15. Selection and validation of reliable housekeeping genes to evaluate Piscirickettsia salmonis gene expression.

    PubMed

    Flores-Herrera, Patricio; Arredondo-Zelada, Oscar; Marshall, Sergio H; Gómez, Fernando A

    2018-06-01

    Piscirickettsia salmonis is a highly aggressive facultative intracellular bacterium that challenges the sustainability of Chilean salmon production. Due to the limited knowledge of its biology, there is a need to identify key molecular markers that could help define the pathogenic potential of this bacterium. We think a model system should be implemented that efficiently evaluates the expression of putative bacterial markers by using validated, stable, and highly specific housekeeping genes to properly select target genes, which could lead to identifying those responsible for infection and disease induction in naturally infected fish. Here, we selected a set of validated reference or housekeeping genes for RT-qPCR expression analyses of P. salmonis under different growth and stress conditions, including an in vitro infection kinetic. After a thorough screening, we selected sdhA as the most reliable housekeeping gene able to represent stable and highly specific host reference genes for RT-qPCR-driven P. salmonis analysis. Copyright © 2018. Published by Elsevier B.V.

  16. Structure determination of a sugar-binding protein from the phytopathogenic bacterium Xanthomonas citri

    PubMed Central

    Medrano, Francisco Javier; de Souza, Cristiane Santos; Romero, Antonio; Balan, Andrea

    2014-01-01

    The uptake of maltose and related sugars in Gram-negative bacteria is mediated by an ABC transporter encompassing a periplasmic component (the maltose-binding protein or MalE), a pore-forming membrane protein (MalF and MalG) and a membrane-associated ATPase (MalK). In the present study, the structure determination of the apo form of the putative maltose/trehalose-binding protein (Xac-MalE) from the citrus pathogen Xanthomonas citri in space group P6522 is described. The crystals contained two protein molecules in the asymmetric unit and diffracted to 2.8 Å resolution. Xac-MalE conserves the structural and functional features of sugar-binding proteins and a ligand-binding pocket with similar characteristics to eight different orthologues, including the residues for maltose and trehalose interaction. This is the first structure of a sugar-binding protein from a phytopathogenic bacterium, which is highly conserved in all species from the Xanthomonas genus. PMID:24817711

  17. A Mobile Element in mutS Drives Hypermutation in a Marine Vibrio

    PubMed Central

    Chu, Nathaniel D.; Clarke, Sean A.; Timberlake, Sonia; Polz, Martin F.; Grossman, Alan D.

    2017-01-01

    ABSTRACT Bacteria face a trade-off between genetic fidelity, which reduces deleterious mistakes in the genome, and genetic innovation, which allows organisms to adapt. Evidence suggests that many bacteria balance this trade-off by modulating their mutation rates, but few mechanisms have been described for such modulation. Following experimental evolution and whole-genome resequencing of the marine bacterium Vibrio splendidus 12B01, we discovered one such mechanism, which allows this bacterium to switch to an elevated mutation rate. This switch is driven by the excision of a mobile element residing in mutS, which encodes a DNA mismatch repair protein. When integrated within the bacterial genome, the mobile element provides independent promoter and translation start sequences for mutS—different from the bacterium’s original mutS promoter region—which allow the bacterium to make a functional mutS gene product. Excision of this mobile element rejoins the mutS gene with host promoter and translation start sequences but leaves a 2-bp deletion in the mutS sequence, resulting in a frameshift and a hypermutator phenotype. We further identified hundreds of clinical and environmental bacteria across Betaproteobacteria and Gammaproteobacteria that possess putative mobile elements within the same amino acid motif in mutS. In a subset of these bacteria, we detected excision of the element but not a frameshift mutation; the mobile elements leave an intact mutS coding sequence after excision. Our findings reveal a novel mechanism by which one bacterium alters its mutation rate and hint at a possible evolutionary role for mobile elements within mutS in other bacteria. PMID:28174306

  18. Global Microarray Analysis of Carbohydrate Use in Alkaliphilic Hemicellulolytic Bacterium Bacillus sp. N16-5

    PubMed Central

    Song, Yajian; Xue, Yanfen; Ma, Yanhe

    2013-01-01

    The alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5 has a broad substrate spectrum and exhibits the capacity to utilize complex carbohydrates such as galactomannan, xylan, and pectin. In the monosaccharide mixture, sequential utilization by Bacillus sp. N16-5 was observed. Glucose appeared to be its preferential monosaccharide, followed by fructose, mannose, arabinose, xylose, and galactose. Global transcription profiles of the strain were determined separately for growth on six monosaccharides (glucose, fructose, mannose, galactose, arabinose, and xylose) and four polysaccharides (galactomannan, xylan, pectin, and sodium carboxymethylcellulose) using one-color microarrays. Numerous genes potentially related to polysaccharide degradation, sugar transport, and monosaccharide metabolism were found to respond to a specific substrate. Putative gene clusters for different carbohydrates were identified according to transcriptional patterns and genome annotation. Identification and analysis of these gene clusters contributed to pathway reconstruction for carbohydrate utilization in Bacillus sp. N16-5. Several genes encoding putative sugar transporters were highly expressed during growth on specific sugars, suggesting their functional roles. Two phosphoenolpyruvate-dependent phosphotransferase systems were identified as candidate transporters for mannose and fructose, and a major facilitator superfamily transporter was identified as a candidate transporter for arabinose and xylose. Five carbohydrate uptake transporter 1 family ATP-binding cassette transporters were predicted to participate in the uptake of hemicellulose and pectin degradation products. Collectively, microarray data improved the pathway reconstruction involved in carbohydrate utilization of Bacillus sp. N16-5 and revealed that the organism precisely regulates gene transcription in response to fluctuations in energy resources. PMID:23326578

  19. Identification and characterization of PhbF: a DNA binding protein with regulatory role in the PHB metabolism of Herbaspirillum seropedicae SmR1.

    PubMed

    Kadowaki, Marco A S; Müller-Santos, Marcelo; Rego, Fabiane G M; Souza, Emanuel M; Yates, Marshall G; Monteiro, Rose A; Pedrosa, Fabio O; Chubatsu, Leda S; Steffens, Maria B R

    2011-10-14

    Herbaspirillum seropedicae SmR1 is a nitrogen fixing endophyte associated with important agricultural crops. It produces polyhydroxybutyrate (PHB) which is stored intracellularly as granules. However, PHB metabolism and regulatory control is not yet well studied in this organism. In this work we describe the characterization of the PhbF protein from H. seropedicae SmR1 which was purified and characterized after expression in E. coli. The purified PhbF protein was able to bind to eleven putative promoters of genes involved in PHB metabolism in H. seropedicae SmR1. In silico analyses indicated a probable DNA-binding sequence which was shown to be protected in DNA footprinting assays using purified PhbF. Analyses using lacZ fusions showed that PhbF can act as a repressor protein controlling the expression of PHB metabolism-related genes. Our results indicate that H. seropedicae SmR1 PhbF regulates expression of phb-related genes by acting as a transcriptional repressor. The knowledge of the PHB metabolism of this plant-associated bacterium may contribute to the understanding of the plant-colonizing process and the organism's resistance and survival in planta.

  20. Reduction and restoration of culturability of beer-stressed and low-temperature-stressed Lactobacillus acetotolerans strain 2011-8.

    PubMed

    Deng, Yang; Liu, Junyan; Li, Lin; Fang, Huijing; Tu, Jingxia; Li, Bing; Liu, Jing; Li, Huiping; Xu, Zhenbo

    2015-08-03

    Lactic acid bacteria (LAB) are the most common beer-spoilage bacteria, regardless of beer type, and therefore pose significant problems for the brewing industry. The aim of this study was to investigate the viable, but putatively non-culturable (VPNC) state of the hard-to-culture beer-spoilage species, Lactobacillus acetotolerans. Upon prolonged contact with degassed beer, L. acetotolerans was found to show decreased culturability. After 17 subcultures in beer, 100-μL aliquots of the culture were no longer culturable on MRS agar until 14 days of incubation despite the presence of 10(5) viable cells, indicating that a large population of cells entered into a VPNC state. Furthermore, a significant reduction or even putative loss of culturability, but maintenance of viability, of L. acetotolerans could also be induced by storing the strain at 0 °C for 105 days. Adding catalase at a concentration of 1000 U/plate enabled the VPNC cells, both induced by beer subculture treatment and cold treatment, to regain culturability with a resuscitation time of 4 days and 3 days, respectively. Scanning electron microscopy results demonstrated that cells decreased in size and gradually changed morphology from short rods to coccoids when they entered the VPNC state. It was concluded that the difficulty in culturing the spoilage bacterium from brewery environments could be partly attributed the hard-to-culture or the viable, but non-culturable characteristic of this organism. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Revival and Identification of Bacterial Spores in 25- to 40-Million-Year-Old Dominican Amber

    NASA Astrophysics Data System (ADS)

    Cano, Raul J.; Borucki, Monica K.

    1995-05-01

    A bacterial spore was revived, cultured, and identified from the abdominal contents of extinct bees preserved for 25 to 40 million years in buried Dominican amber. Rigorous surface decontamination of the amber and aseptic procedures were used during the recovery of the bacterium. Several lines of evidence indicated that the isolated bacterium was of ancient origin and not an extant contaminant. The characteristic enzymatic, biochemical, and 16S ribosomal DNA profiles indicated that the ancient bacterium is most closely related to extant Bacillus sphaericus.

  2. Vector potential of houseflies for the bacterium Aeromonas caviae.

    PubMed

    Nayduch, D; Noblet, G Pittman; Stutzenberger, F J

    2002-06-01

    Houseflies, Musca domestica Linnaeus (Diptera: Muscidae), have been implicated as vectors or transporters of numerous gastrointestinal pathogens encountered during feeding and ovipositing on faeces. The putative enteropathogen Aeromonas caviae (Proteobacteria: Aeromonadaceae) may be present in faeces of humans and livestock. Recently A. caviae was detected in houseflies by PCR and isolated by culture methods. In this study, we assessed the vector potential of houseflies for A. caviae relative to multiplication and persistence of the bacterium in the fly and to contamination of other flies and food materials. In experimentally fed houseflies, the number of bacteria increased up to 2 days post-ingestion (d PI) and then decreased significantly 3 d PI. A large number of bacteria was detected in the vomitus and faeces of infected flies at 2-3 d PI. The bacteria persisted in flies for up to 8 d PI, but numbers were low. Experimentally infected flies transmitted A. caviae to chicken meat, and transmissibility was directly correlated with exposure time. Flies contaminated the meat for up to 7 d PI; however, a significant decrease in contamination was observed 2-3 d PI. In the fly-to-fly transmission experiments, the transmission of A. caviae was observed and was apparently mediated by flies sharing food. These results support houseflies as potential vectors for A. caviae because the bacterium multiplied, persisted in flies for up to 8 d PI, and could be transmitted to human food items.

  3. Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725

    PubMed Central

    Dam, Phuongan; Kataeva, Irina; Yang, Sung-Jae; Zhou, Fengfeng; Yin, Yanbin; Chou, Wenchi; Poole, Farris L.; Westpheling, Janet; Hettich, Robert; Giannone, Richard; Lewis, Derrick L.; Kelly, Robert; Gilbert, Harry J.; Henrissat, Bernard; Xu, Ying; Adams, Michael W. W.

    2011-01-01

    Caldicellulosiruptor bescii DSM 6725 utilizes various polysaccharides and grows efficiently on untreated high-lignin grasses and hardwood at an optimum temperature of ∼80°C. It is a promising anaerobic bacterium for studying high-temperature biomass conversion. Its genome contains 2666 protein-coding sequences organized into 1209 operons. Expression of 2196 genes (83%) was confirmed experimentally. At least 322 genes appear to have been obtained by lateral gene transfer (LGT). Putative functions were assigned to 364 conserved/hypothetical protein (C/HP) genes. The genome contains 171 and 88 genes related to carbohydrate transport and utilization, respectively. Growth on cellulose led to the up-regulation of 32 carbohydrate-active (CAZy), 61 sugar transport, 25 transcription factor and 234 C/HP genes. Some C/HPs were overproduced on cellulose or xylan, suggesting their involvement in polysaccharide conversion. A unique feature of the genome is enrichment with genes encoding multi-modular, multi-functional CAZy proteins organized into one large cluster, the products of which are proposed to act synergistically on different components of plant cell walls and to aid the ability of C. bescii to convert plant biomass. The high duplication of CAZy domains coupled with the ability to acquire foreign genes by LGT may have allowed the bacterium to rapidly adapt to changing plant biomass-rich environments. PMID:21227922

  4. Cloning and characterization of a novel chondroitin sulfate/dermatan sulfate 4-O-endosulfatase from a marine bacterium.

    PubMed

    Wang, Wenshuang; Han, Wenjun; Cai, Xingya; Zheng, Xiaoyu; Sugahara, Kazuyuki; Li, Fuchuan

    2015-03-20

    Sulfatases are potentially useful tools for structure-function studies of glycosaminoglycans (GAGs). To date, various GAG exosulfatases have been identified in eukaryotes and prokaryotes. However, endosulfatases that act on GAGs have rarely been reported. Recently, a novel HA and CS lyase (HCLase) was identified for the first time from a marine bacterium (Han, W., Wang, W., Zhao, M., Sugahara, K., and Li, F. (2014) J. Biol. Chem. 289, 27886-27898). In this study, a putative sulfatase gene, closely linked to the hclase gene in the genome, was recombinantly expressed and characterized in detail. The recombinant protein showed a specific N-acetylgalactosamine-4-O-sulfatase activity that removes 4-O-sulfate from both disaccharides and polysaccharides of chondroitin sulfate (CS)/dermatan sulfate (DS), suggesting that this sulfatase represents a novel endosulfatase. The novel endosulfatase exhibited maximal reaction rate in a phosphate buffer (pH 8.0) at 30 °C and effectively removed 17-65% of 4-O-sulfates from various CS and DS and thus significantly inhibited the interactions of CS and DS with a positively supercharged fluorescent protein. Moreover, this endosulfatase significantly promoted the digestion of CS by HCLase, suggesting that it enhances the digestion of CS/DS by the bacterium. Therefore, this endosulfatase is a potential tool for use in CS/DS-related studies and applications. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Isolation, cloning and characterization of an azoreductase from the halophilic bacterium Halomonas elongata.

    PubMed

    Eslami, Maryam; Amoozegar, Mohammad Ali; Asad, Sedigheh

    2016-04-01

    Azo dyes are a major class of colorants used in various industries including textile, paper and food. These dyes are regarded as pollutant since they are not readily reduced under aerobic conditions. Halomonas elongata, a halophilic bacterium, has the ability to decolorize different mono and di-azo dyes in anoxic conditions. In this study the putative azoreductase gene of H. elongata, formerly annotated as acp, was isolated, heterologously expressed in Escherichia coli, purified and characterized. The gene product, AzoH, was found to have a molecular mass of 22 kDa. The enzyme requires NADH, as an electron donor for its activity. The apparent Km was 63 μM for NADH and 12 μM for methyl red as a mono-azo dye substrate. The specific activity for methyl red was 0.27 μmol min(-1)mg(-1). The optimum enzyme activity was achieved in 50mM sodium phosphate buffer at pH 6. Although increased salinity resulted in reduced activity, AzoH could decolorize azo dye at NaCl concentrations up to 15% (w/v). The enzyme was also shown to be able to decolorize remazol black B as a representative of di-azo dyes. This is the first report describing the sequence and activity of an azo-reducing enzyme from a halophilic bacterium. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A mobile element in mutS drives hypermutation in a marine Vibrio

    DOE PAGES

    Chu, Nathaniel D.; Clarke, Sean A.; Timberlake, Sonia; ...

    2017-02-07

    Bacteria face a trade-off between genetic fidelity, which reduces deleterious mistakes in the genome, and genetic innovation, which allows organisms to adapt. Evidence suggests that many bacteria balance this trade-off by modulating their mutation rates, but few mechanisms have been described for such modulation. Following experimental evolution and whole-genome resequencing of the marine bacterium Vibrio splendidus 12B01, we discovered one such mechanism, which allows this bacterium to switch to an elevated mutation rate. This switch is driven by the excision of a mobile element residing in mutS, which encodes a DNA mismatch repair protein. When integrated within the bacterial genome,more » the mobile element provides independent promoter and translation start sequences for mutS—different from the bacterium’s original mutS promoter region—which allow the bacterium to make a functional mutS gene product. Excision of this mobile element rejoins the mutS gene with host promoter and translation start sequences but leaves a 2-bp deletion in the mutS sequence, resulting in a frameshift and a hypermutator phenotype. We further identified hundreds of clinical and environmental bacteria across Betaproteobacteria and Gammaproteobacteria that possess putative mobile elements within the same amino acid motif in mutS. In a subset of these bacteria, we detected excision of the element but not a frameshift mutation; the mobile elements leave an intact mutS coding sequence after excision. Finally, our findings reveal a novel mechanism by which one bacterium alters its mutation rate and hint at a possible evolutionary role for mobile elements within mutS in other bacteria.« less

  7. A mobile element in mutS drives hypermutation in a marine Vibrio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Nathaniel D.; Clarke, Sean A.; Timberlake, Sonia

    Bacteria face a trade-off between genetic fidelity, which reduces deleterious mistakes in the genome, and genetic innovation, which allows organisms to adapt. Evidence suggests that many bacteria balance this trade-off by modulating their mutation rates, but few mechanisms have been described for such modulation. Following experimental evolution and whole-genome resequencing of the marine bacterium Vibrio splendidus 12B01, we discovered one such mechanism, which allows this bacterium to switch to an elevated mutation rate. This switch is driven by the excision of a mobile element residing in mutS, which encodes a DNA mismatch repair protein. When integrated within the bacterial genome,more » the mobile element provides independent promoter and translation start sequences for mutS—different from the bacterium’s original mutS promoter region—which allow the bacterium to make a functional mutS gene product. Excision of this mobile element rejoins the mutS gene with host promoter and translation start sequences but leaves a 2-bp deletion in the mutS sequence, resulting in a frameshift and a hypermutator phenotype. We further identified hundreds of clinical and environmental bacteria across Betaproteobacteria and Gammaproteobacteria that possess putative mobile elements within the same amino acid motif in mutS. In a subset of these bacteria, we detected excision of the element but not a frameshift mutation; the mobile elements leave an intact mutS coding sequence after excision. Finally, our findings reveal a novel mechanism by which one bacterium alters its mutation rate and hint at a possible evolutionary role for mobile elements within mutS in other bacteria.« less

  8. Antimicrobial polyketide furanoterpenoids from seaweed-associated heterotrophic bacterium Bacillus subtilis MTCC 10403.

    PubMed

    Chakraborty, Kajal; Thilakan, Bini; Raola, Vamshi Krishna

    2017-10-01

    Brown seaweed Anthophycus longifolius (Turner) Kützing (family Sargassaceae) associated heterotrophic bacterium Bacillus subtilis MTCC 10403 was found to be a potent isolate with broad range of antibacterial activity against important perceptive food pathogens Vibrio parahaemolyticus, V. vulnificus, and Aeromonas hydrophila. This bacterium was positive for polyketide synthetase gene (KC589397), and therefore, was selected to bioprospect specialized metabolites bearing polyketide backbone. Bioactivity-guided chromatographic fractionation of the ethyl acetate extract of the seaweed-associated bacterium segregated four homologous polyketide furanoterpenoids with potential antibacterial activities against clinically important pathogens. The minimum inhibitory concentration (MIC) assay showed that the referral antibiotics tetracycline and ampicillin were active at 25 μg/mL against the test pathogens, whereas the previously undescribed (4E)-methyl 13-((16-(furan-2-yl) ethyl)-octahydro-7-hydroxy-4-((E)-23-methylbut-21-enyl)-2H-chromen-6-yl)-4-methylpent-4-enoate (compound 1) and methyl 3-(hexahydro-9-((E)-3-methylpent-1-enyl)-4H-furo[3,2-g]isochromen-6-yl) propanoate (compound 3) displayed antibacterial activities against the test pathogens at a lesser concentration (MIC < 7 μg/mL). The title compounds were characterized by comprehensive nuclear magnetic resonance and mass spectroscopic experiments. Polyketide synthase catalyzed putative biosynthetic mechanism additionally corroborated the structural ascriptions of the hitherto undescribed furanoterpenoids from seaweed-associated bacterial symbiont. The electronic and hydrophobic parameters appeared to hold a conspicuous part in directing the antibacterial properties of the compounds. Seaweed-associated B. subtilis MTCC 10403 demonstrated to represent a potential source of antimicrobial polyketides for pharmaceutical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Characterization of a Spontaneous Nonmagnetic Mutant of Magnetospirillum gryphiswaldense Reveals a Large Deletion Comprising a Putative Magnetosome Island

    PubMed Central

    Schübbe, Sabrina; Kube, Michael; Scheffel, André; Wawer, Cathrin; Heyen, Udo; Meyerdierks, Anke; Madkour, Mohamed H.; Mayer, Frank; Reinhardt, Richard; Schüler, Dirk

    2003-01-01

    Frequent spontaneous loss of the magnetic phenotype was observed in stationary-phase cultures of the magnetotactic bacterium Magnetospirillum gryphiswaldense MSR-1. A nonmagnetic mutant, designated strain MSR-1B, was isolated and characterized. The mutant lacked any structures resembling magnetosome crystals as well as internal membrane vesicles. The growth of strain MSR-1B was impaired under all growth conditions tested, and the uptake and accumulation of iron were drastically reduced under iron-replete conditions. A large chromosomal deletion of approximately 80 kb was identified in strain MSR-1B, which comprised both the entire mamAB and mamDC clusters as well as further putative operons encoding a number of magnetosome-associated proteins. A bacterial artificial chromosome clone partially covering the deleted region was isolated from the genomic library of wild-type M. gryphiswaldense. Sequence analysis of this fragment revealed that all previously identified mam genes were closely linked with genes encoding other magnetosome-associated proteins within less than 35 kb. In addition, this region was remarkably rich in insertion elements and harbored a considerable number of unknown gene families which appeared to be specific for magnetotactic bacteria. Overall, these findings suggest the existence of a putative large magnetosome island in M. gryphiswaldense and other magnetotactic bacteria. PMID:13129949

  10. Prevalence of Flp Pili-Encoding Plasmids in Cutibacterium acnes Isolates Obtained from Prostatic Tissue

    PubMed Central

    Davidsson, Sabina; Carlsson, Jessica; Mölling, Paula; Gashi, Natyra; Andrén, Ove; Andersson, Swen-Olof; Brzuszkiewicz, Elzbieta; Poehlein, Anja; Al-Zeer, Munir A.; Brinkmann, Volker; Scavenius, Carsten; Nazipi, Seven; Söderquist, Bo; Brüggemann, Holger

    2017-01-01

    Inflammation is one of the hallmarks of prostate cancer. The origin of inflammation is unknown, but microbial infections are suspected to play a role. In previous studies, the Gram-positive, low virulent bacterium Cutibacterium (formerly Propionibacterium) acnes was frequently isolated from prostatic tissue. It is unclear if the presence of the bacterium represents a true infection or a contamination. Here we investigated Cutibacterium acnes type II, also called subspecies defendens, which is the most prevalent type among prostatic C. acnes isolates. Genome sequencing of type II isolates identified large plasmids in several genomes. The plasmids are highly similar to previously identified linear plasmids of type I C. acnes strains associated with acne vulgaris. A PCR-based analysis revealed that 28.4% (21 out of 74) of all type II strains isolated from cancerous prostates carry a plasmid. The plasmid shows signatures for conjugative transfer. In addition, it contains a gene locus for tight adherence (tad) that is predicted to encode adhesive Flp (fimbrial low-molecular weight protein) pili. In subsequent experiments a tad locus-encoded putative pilin subunit was identified in the surface-exposed protein fraction of plasmid-positive C. acnes type II strains by mass spectrometry, indicating that the tad locus is functional. Additional plasmid-encoded proteins were detected in the secreted protein fraction, including two signal peptide-harboring proteins; the corresponding genes are specific for type II C. acnes, thus lacking from plasmid-positive type I C. acnes strains. Further support for the presence of Flp pili in C. acnes type II was provided by electron microscopy, revealing cell appendages in tad locus-positive strains. Our study provides new insight in the most prevalent prostatic subspecies of C. acnes, subsp. defendens, and indicates the existence of Flp pili in plasmid-positive strains. Such pili may support colonization and persistent infection of human prostates by C. acnes. PMID:29201018

  11. Structure of the cobalamin-binding protein of a putative O-demethylase from Desulfitobacterium hafniense DCB-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjuts, Hanno; Dunstan, Mark S.; Fisher, Karl

    2013-08-01

    The first crystal structure of the vitamin B12-binding protein from a three-component O-demethylase enzyme system is reported. During O-demethylation methyl groups are transferred from phenyl methyl ethers to tetrahydrofolate via methyl-B12 intermediates. This study describes the identification and the structural and spectroscopic analysis of a cobalamin-binding protein (termed CobDH) implicated in O-demethylation by the organohalide-respiring bacterium Desulfitobacterium hafniense DCB-2. The 1.5 Å resolution crystal structure of CobDH is presented in the cobalamin-bound state and reveals that the protein is composed of an N-terminal helix-bundle domain and a C-terminal Rossmann-fold domain, with the cobalamin coordinated in the base-off/His-on conformation similar tomore » other cobalamin-binding domains that catalyse methyl-transfer reactions. EPR spectroscopy of CobDH confirms cobalamin binding and reveals the presence of a cob(III)alamin superoxide, indicating binding of oxygen to the fully oxidized cofactor. These data provide the first structural insights into the methyltransferase reactions that occur during O-demethylation by D. hafniense.« less

  12. Clavibacter michiganensis subsp. michiganensis: first steps in the understanding of virulence of a Gram-positive phytopathogenic bacterium.

    PubMed

    Gartemann, Karl-Heinz; Kirchner, Oliver; Engemann, Jutta; Gräfen, Ines; Eichenlaub, Rudolf; Burger, Annette

    2003-12-19

    Clavibacter michiganensis subsp. michiganensis is a plant-pathogenic actinomycete. It infects tomato, spreads through the xylem and causes bacterial wilt and canker. The wild-type strain NCPPB382 carries two plasmids, pCM1 and pCM2. The cured plasmid-free derivative CMM100 is still able to colonize tomato, but no disease symptoms develop indicating that all genes required for successful infection, establishment and growth in the plant reside on the chromosome. Both plasmids carry one virulence factor, a gene encoding a cellulase, CelA in case of pCM1 and a putative serine protease Pat-1 on pCM2. These genes can independently convert the non-virulent strain CMM100 into a pathogen causing wilt on tomatoes. Currently, genome projects for Cmm and the closely related potato-pathogen C. michiganensis subsp. sepedonicus have been initiated. The data from the genome project shall give clues on further genes involved in plant-microbe interaction that can be tested experimentally. Especially, identification of genes related to host-specificity through genome comparison of the two subspecies might be possible.

  13. Identification of Streptococcus sanguinis Genes Required for Biofilm Formation and Examination of Their Role in Endocarditis Virulence▿

    PubMed Central

    Ge, Xiuchun; Kitten, Todd; Chen, Zhenming; Lee, Sehmi P.; Munro, Cindy L.; Xu, Ping

    2008-01-01

    Streptococcus sanguinis is one of the pioneers in the bacterial colonization of teeth and is one of the most abundant species in the oral biofilm called dental plaque. S. sanguinis is also the most common viridans group streptococcal species implicated in infective endocarditis. To investigate the association of biofilm and endocarditis, we established a biofilm assay and examined biofilm formation with a signature-tagged mutagenesis library of S. sanguinis. Four genes that have not previously been associated with biofilm formation in any other bacterium, purB, purL, thrB, and pyrE, were putatively identified as contributing to in vitro biofilm formation in S. sanguinis. By examining 800 mutants for attenuation in the rabbit endocarditis model and for reduction in biofilm formation in vitro, we found some mutants that were both biofilm defective and attenuated for endocarditis. However, we also identified mutants with only reduced biofilm formation or with only attenuation in the endocarditis model. This result indicates that the ability to form biofilms in vitro is not associated with endocarditis virulence in vivo in S. sanguinis. PMID:18390999

  14. Identification of Streptococcus sanguinis genes required for biofilm formation and examination of their role in endocarditis virulence.

    PubMed

    Ge, Xiuchun; Kitten, Todd; Chen, Zhenming; Lee, Sehmi P; Munro, Cindy L; Xu, Ping

    2008-06-01

    Streptococcus sanguinis is one of the pioneers in the bacterial colonization of teeth and is one of the most abundant species in the oral biofilm called dental plaque. S. sanguinis is also the most common viridans group streptococcal species implicated in infective endocarditis. To investigate the association of biofilm and endocarditis, we established a biofilm assay and examined biofilm formation with a signature-tagged mutagenesis library of S. sanguinis. Four genes that have not previously been associated with biofilm formation in any other bacterium, purB, purL, thrB, and pyrE, were putatively identified as contributing to in vitro biofilm formation in S. sanguinis. By examining 800 mutants for attenuation in the rabbit endocarditis model and for reduction in biofilm formation in vitro, we found some mutants that were both biofilm defective and attenuated for endocarditis. However, we also identified mutants with only reduced biofilm formation or with only attenuation in the endocarditis model. This result indicates that the ability to form biofilms in vitro is not associated with endocarditis virulence in vivo in S. sanguinis.

  15. Epidemiology of Helicobacter pylori infection in Malaysia--observations in a multiracial Asian population.

    PubMed

    Goh, K L

    2009-09-01

    Observations of racial differences in the prevalence of Helicobacter pylori in Malaysia have been intriguing. The Indians and Chinese consistently have a higher prevalence compared to the Malays. The racial cohort theory has been proposed to explain these differences where transmission and perpetuation of infection takes place within a racial group rather than between races, races being separate owing to the low rate of interracial marriages. Studies have demonstrated distinctive bacterial strains between races. Phylogenetic studies have shown that H. pylori isolates amongst Chinese and Indians are distinctive while Malays have Indian and other strains suggesting a more recent acquisition of the bacterium from Indians. H. pylori is recognized as the major causative factor in peptic ulcer disease and gastric cancer. Despite the high prevalence of H. pylori, Indians have a relatively low prevalence of peptic ulcer disease and a low incidence of gastric cancer. This paradox with regards to gastric cancer has been termed the "Indian enigma". Bacterial strain differences between races may be putative but this observation may also indicate gastroprotective environmental factors or a lower genetic susceptibility to develop cancer in the Indians.

  16. Gene Expression Patterns during the Early Stages of Chemically Induced Larval Metamorphosis and Settlement of the Coral Acropora millepora

    PubMed Central

    Siboni, Nachshon; Abrego, David; Motti, Cherie A.; Tebben, Jan; Harder, Tilmann

    2014-01-01

    The morphogenetic transition of motile coral larvae into sessile primary polyps is triggered and genetically programmed upon exposure to environmental biomaterials, such as crustose coralline algae (CCA) and bacterial biofilms. Although the specific chemical cues that trigger coral larval morphogenesis are poorly understood there is much more information available on the genes that play a role in this early life phase. Putative chemical cues from natural biomaterials yielded defined chemical samples that triggered different morphogenetic outcomes: an extract derived from a CCA-associated Pseudoalteromonas bacterium that induced metamorphosis, characterized by non-attached metamorphosed juveniles; and two fractions of the CCA Hydrolithon onkodes (Heydrich) that induced settlement, characterized by attached metamorphosed juveniles. In an effort to distinguish the genes involved in these two morphogenetic transitions, competent larvae of the coral Acropora millepora were exposed to these predictable cues and the expression profiles of 47 coral genes of interest (GOI) were investigated after only 1 hour of exposure using multiplex RT–qPCR. Thirty-two GOI were differentially expressed, indicating a putative role during the early regulation of morphogenesis. The most striking differences were observed for immunity-related genes, hypothesized to be involved in cell recognition and adhesion, and for fluorescent protein genes. Principal component analysis of gene expression profiles resulted in separation between the different morphogenetic cues and exposure times, and not only identified those genes involved in the early response but also those which influenced downstream biological changes leading to larval metamorphosis or settlement. PMID:24632854

  17. Global gene expression analysis of the heat shock response in the phytopathogen Xylella fastidiosa.

    PubMed

    Koide, Tie; Vêncio, Ricardo Z N; Gomes, Suely L

    2006-08-01

    Xylella fastidiosa is a phytopathogenic bacterium that is responsible for diseases in many economically important crops. Although different strains have been studied, little is known about X. fastidiosa stress responses. One of the better characterized stress responses in bacteria is the heat shock response, which induces the expression of specific genes to prevent protein misfolding and aggregation and to promote degradation of the irreversibly denatured polypeptides. To investigate X. fastidiosa genes involved in the heat shock response, we performed a whole-genome microarray analysis in a time course experiment. Globally, 261 genes were induced (9.7%) and 222 genes were repressed (8.3%). The expression profiles of the differentially expressed genes were grouped, and their expression patterns were validated by quantitative reverse transcription-PCR experiments. We determined the transcription start sites of six heat shock-inducible genes and analyzed their promoter regions, which allowed us to propose a putative consensus for sigma(32) promoters in Xylella and to suggest additional genes as putative members of this regulon. Besides the induction of classical heat shock protein genes, we observed the up-regulation of virulence-associated genes such as vapD and of genes for hemagglutinins, hemolysin, and xylan-degrading enzymes, which may indicate the importance of heat stress to bacterial pathogenesis. In addition, we observed the repression of genes related to fimbriae, aerobic respiration, and protein biosynthesis and the induction of genes related to the extracytoplasmic stress response and some phage-related genes, revealing the complex network of genes that work together in response to heat shock.

  18. RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria

    PubMed Central

    Vogel, Jörg; Bartels, Verena; Tang, Thean Hock; Churakov, Gennady; Slagter-Jäger, Jacoba G.; Hüttenhofer, Alexander; Wagner, E. Gerhart H.

    2003-01-01

    Recent bioinformatics-aided searches have identified many new small RNAs (sRNAs) in the intergenic regions of the bacterium Escherichia coli. Here, a shot-gun cloning approach (RNomics) was used to generate cDNA libraries of small sized RNAs. Besides many of the known sRNAs, we found new species that were not predicted previously. The present work brings the number of sRNAs in E.coli to 62. Experimental transcription start site mapping showed that some sRNAs were encoded from independent genes, while others were processed from mRNA leaders or trailers, indicative of a parallel transcriptional output generating sRNAs co-expressed with mRNAs. Two of these RNAs (SroA and SroG) consist of known (THI and RFN) riboswitch elements. We also show that two recently identified sRNAs (RyeB and SraC/RyeA) interact, resulting in RNase III-dependent cleavage. To the best of our knowledge, this represents the first case of two non-coding RNAs interacting by a putative antisense mechanism. In addition, intracellular metabolic stabilities of sRNAs were determined, including ones from previous screens. The wide range of half-lives (<2 to >32 min) indicates that sRNAs cannot generally be assumed to be metabolically stable. The experimental characterization of sRNAs analyzed here suggests that the definition of an sRNA is more complex than previously assumed. PMID:14602901

  19. Purification, biochemical characterization, and genetic cloning of the phytase produced by Burkholderia sp. strain a13.

    PubMed

    Graminho, Eduardo Rezende; Takaya, Naoki; Nakamura, Akira; Hoshino, Takayuki

    2015-01-01

    A phytase-producing bacterium, Burkholderia sp. a13 (JCM 30421), was isolated from Lake Kasumigaura by enrichment cultivation using minimum medium containing phytic acid as the sole phosphorus source. The phytase production by strain a13 was induced by the presence of phytic acid and repressed by the addition of glucose. The purified enzyme had a molecular weight of 44 kDa and a phytase activity of 174 μmol min(-1) mg(-1). The enzyme showed broad substrate specificity, but the highest activity was observed with phytic acid. The enzyme activity was strongly inhibited by Cu(2+), Zn(2+), Hg(2+), and iodoacetic acid, indicating the requirement of a thiol group for the activity. Genetic cloning reveals that the mature portion of this enzyme consists of 428 amino acids with a calculated molecular weight of 46 kDa. The amino acid sequence showed the highest similarity to the phytase produced by Hafnia alvei with 48% identity; it also contained histidine acid phosphatase (HAP) motifs (RHGXRXP and HD), indicating the classification of this enzyme in the HAP phytase family. We have successfully expressed the cloned gene in Escherichia coli from its putative initiation codon, showing that the gene actually encodes the phytase.

  20. Identification and characterization of PhbF: A DNA binding protein with regulatory role in the PHB metabolism of Herbaspirillum seropedicae SmR1

    PubMed Central

    2011-01-01

    Background Herbaspirillum seropedicae SmR1 is a nitrogen fixing endophyte associated with important agricultural crops. It produces polyhydroxybutyrate (PHB) which is stored intracellularly as granules. However, PHB metabolism and regulatory control is not yet well studied in this organism. Results In this work we describe the characterization of the PhbF protein from H. seropedicae SmR1 which was purified and characterized after expression in E. coli. The purified PhbF protein was able to bind to eleven putative promoters of genes involved in PHB metabolism in H. seropedicae SmR1. In silico analyses indicated a probable DNA-binding sequence which was shown to be protected in DNA footprinting assays using purified PhbF. Analyses using lacZ fusions showed that PhbF can act as a repressor protein controlling the expression of PHB metabolism-related genes. Conclusions Our results indicate that H. seropedicae SmR1 PhbF regulates expression of phb-related genes by acting as a transcriptional repressor. The knowledge of the PHB metabolism of this plant-associated bacterium may contribute to the understanding of the plant-colonizing process and the organism's resistance and survival in planta. PMID:21999748

  1. CO 2-fixing one-carbon metabolism in a cellulose-degrading bacterium Clostridium thermocellum

    DOE PAGES

    Xiong, Wei; Lin, Paul P.; Magnusson, Lauren; ...

    2016-10-28

    Clostridium thermocellum can ferment cellulosic biomass to formate and other end products, including CO 2. This organism lacks formate dehydrogenase (Fdh), which catalyzes the reduction of CO 2 to formate. However, feeding the bacterium 13C-bicarbonate and cellobiose followed by NMR analysis showed the production of 13C-formate in C. thermocellum culture, indicating the presence of an uncharacterized pathway capable of converting CO 2 to formate. Combining genomic and experimental data, we demonstrated that the conversion of CO 2 to formate serves as a CO 2 entry point into the reductive one-carbon (C1) metabolism, and internalizes CO 2 via two biochemical reactions:more » the reversed pyruvate:ferredoxin oxidoreductase (rPFOR), which incorporates CO 2 using acetyl-CoA as a substrate and generates pyruvate, and pyruvate-formate lyase (PFL) converting pyruvate to formate and acetyl-CoA. We analyzed the labeling patterns of proteinogenic amino acids in individual deletions of all five putative PFOR mutants and in a PFL deletion mutant. We identified two enzymes acting as rPFOR, confirmed the dual activities of rPFOR and PFL crucial for CO 2 uptake, and provided physical evidence of a distinct in vivo 'rPFOR-PFL shunt' to reduce CO 2 to formate while circumventing the lack of Fdh. Such a pathway precedes CO 2 fixation via the reductive C1 metabolic pathway in C. thermocellum. Lastly, these findings demonstrated the metabolic versatility of C. thermocellum, which is thought of as primarily a cellulosic heterotroph but is shown here to be endowed with the ability to fix CO 2 as well.« less

  2. Sequencing of chondroitin sulfate oligosaccharides using a novel exolyase from a marine bacterium that degrades hyaluronan and chondroitin sulfate/dermatan sulfate.

    PubMed

    Wang, Wenshuang; Cai, Xiaojuan; Han, Naihan; Han, Wenjun; Sugahara, Kazuyuki; Li, Fuchuan

    2017-11-09

    Glycosaminoglycans (GAGs) are a family of chemically heterogeneous polysaccharides that play important roles in physiological and pathological processes. Owing to the structural complexity of GAGs, their sophisticated chemical structures and biological functions have not been extensively studied. Lyases that cleave GAGs are important tools for structural analysis. Although various GAG lyases have been identified, exolytic lyases with unique enzymatic property are urgently needed for GAG sequencing. In the present study, a putative exolytic GAG lyase from a marine bacterium was recombinantly expressed and characterized in detail. Since it showed exolytic lyase activity toward hyaluronan (HA), chondroitin sulfate (CS), and dermatan sulfate (DS), it was designated as HCDLase. This novel exolyase exhibited the highest activity in Tris-HCl buffer (pH 7.0) at 30°C. Especially, it showed a specific activity that released 2-aminobenzamide (2-AB)-labeled disaccharides from the reducing end of 2-AB-labeled CS oligosaccharides, which suggest that HCDLase is not only a novel exolytic lyase that can split disaccharide residues from the reducing termini of sugar chains but also a useful tool for the sequencing of CS chains. Notably, HCDLase could not digest 2-AB-labeled oligosaccharides from HA, DS, or unsulfated chondroitin, which indicated that sulfates and bond types affect the catalytic activity of HCDLase. Finally, this enzyme combined with CSase ABC was successfully applied for the sequencing of several CS hexa- and octasaccharides with complex structures. The identification of HCDLase provides a useful tool for CS-related research and applications. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  3. CO 2-fixing one-carbon metabolism in a cellulose-degrading bacterium Clostridium thermocellum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Wei; Lin, Paul P.; Magnusson, Lauren

    Clostridium thermocellum can ferment cellulosic biomass to formate and other end products, including CO 2. This organism lacks formate dehydrogenase (Fdh), which catalyzes the reduction of CO 2 to formate. However, feeding the bacterium 13C-bicarbonate and cellobiose followed by NMR analysis showed the production of 13C-formate in C. thermocellum culture, indicating the presence of an uncharacterized pathway capable of converting CO 2 to formate. Combining genomic and experimental data, we demonstrated that the conversion of CO 2 to formate serves as a CO 2 entry point into the reductive one-carbon (C1) metabolism, and internalizes CO 2 via two biochemical reactions:more » the reversed pyruvate:ferredoxin oxidoreductase (rPFOR), which incorporates CO 2 using acetyl-CoA as a substrate and generates pyruvate, and pyruvate-formate lyase (PFL) converting pyruvate to formate and acetyl-CoA. We analyzed the labeling patterns of proteinogenic amino acids in individual deletions of all five putative PFOR mutants and in a PFL deletion mutant. We identified two enzymes acting as rPFOR, confirmed the dual activities of rPFOR and PFL crucial for CO 2 uptake, and provided physical evidence of a distinct in vivo 'rPFOR-PFL shunt' to reduce CO 2 to formate while circumventing the lack of Fdh. Such a pathway precedes CO 2 fixation via the reductive C1 metabolic pathway in C. thermocellum. Lastly, these findings demonstrated the metabolic versatility of C. thermocellum, which is thought of as primarily a cellulosic heterotroph but is shown here to be endowed with the ability to fix CO 2 as well.« less

  4. Biosynthesis and uptake of glycine betaine as cold-stress response to low temperature in fish pathogen Vibrio anguillarum.

    PubMed

    Ma, Yue; Wang, Qiyao; Gao, Xiating; Zhang, Yuanxing

    2017-01-01

    Fish pathogen Vibrio anguillarum, a mesophile bacterium, is usually found in estuarine and marine coastal ecosystems worldwide that pose a constant stress to local organism by its fluctuation in salinity as well as notable temperature change. Though V. anguillarum is able to proliferate while maintain its pathogenicity under low temperature (5-18°C), so far, coldadaption molecular mechanism of the bacteria is unknown. In this study, V. anguillarum was found possessing a putative glycine betaine synthesis system, which is encoded by betABI and synthesizes glycine betaine from its precursor choline. Furthermore, significant up-regulation of the bet gene at the transcriptional level was noted in log phase in response to cold-stress. Moreover, the accumulation of betaine glycine was only found appearing at low growth temperatures, suggesting that response regulation of both synthesis system and transporter system are cold-dependent. Furthermore, in-frame deletion mutation in the two putative ABC transporters and three putative BCCT family transporters associated with glycine betaine uptake could not block cellular accumulation of betaine glycine in V. anguillarum under coldstress, suggesting the redundant feature in V. anguillarum betaine transporter system. These findings confirmed that glycine betaine serves as an effective cold stress protectant and highlighted an underappreciated facet of the acclimatization of V. anguillarum to cold environments.

  5. A Gene Transfer Agent and a Dynamic Repertoire of Secretion Systems Hold the Keys to the Explosive Radiation of the Emerging Pathogen Bartonella

    PubMed Central

    Guy, Lionel; Nystedt, Björn; Toft, Christina; Zaremba-Niedzwiedzka, Katarzyna; Berglund, Eva C.; Granberg, Fredrik; Näslund, Kristina; Eriksson, Ann-Sofie; Andersson, Siv G. E.

    2013-01-01

    Gene transfer agents (GTAs) randomly transfer short fragments of a bacterial genome. A novel putative GTA was recently discovered in the mouse-infecting bacterium Bartonella grahamii. Although GTAs are widespread in phylogenetically diverse bacteria, their role in evolution is largely unknown. Here, we present a comparative analysis of 16 Bartonella genomes ranging from 1.4 to 2.6 Mb in size, including six novel genomes from Bartonella isolated from a cow, two moose, two dogs, and a kangaroo. A phylogenetic tree inferred from 428 orthologous core genes indicates that the deadly human pathogen B. bacilliformis is related to the ruminant-adapted clade, rather than being the earliest diverging species in the genus as previously thought. A gene flux analysis identified 12 genes for a GTA and a phage-derived origin of replication as the most conserved innovations. These are located in a region of a few hundred kb that also contains 8 insertions of gene clusters for type III, IV, and V secretion systems, and genes for putatively secreted molecules such as cholera-like toxins. The phylogenies indicate a recent transfer of seven genes in the virB gene cluster for a type IV secretion system from a cat-adapted B. henselae to a dog-adapted B. vinsonii strain. We show that the B. henselae GTA is functional and can transfer genes in vitro. We suggest that the maintenance of the GTA is driven by selection to increase the likelihood of horizontal gene transfer and argue that this process is beneficial at the population level, by facilitating adaptive evolution of the host-adaptation systems and thereby expansion of the host range size. The process counters gene loss and forces all cells to contribute to the production of the GTA and the secreted molecules. The results advance our understanding of the role that GTAs play for the evolution of bacterial genomes. PMID:23555299

  6. A gene transfer agent and a dynamic repertoire of secretion systems hold the keys to the explosive radiation of the emerging pathogen Bartonella.

    PubMed

    Guy, Lionel; Nystedt, Björn; Toft, Christina; Zaremba-Niedzwiedzka, Katarzyna; Berglund, Eva C; Granberg, Fredrik; Näslund, Kristina; Eriksson, Ann-Sofie; Andersson, Siv G E

    2013-03-01

    Gene transfer agents (GTAs) randomly transfer short fragments of a bacterial genome. A novel putative GTA was recently discovered in the mouse-infecting bacterium Bartonella grahamii. Although GTAs are widespread in phylogenetically diverse bacteria, their role in evolution is largely unknown. Here, we present a comparative analysis of 16 Bartonella genomes ranging from 1.4 to 2.6 Mb in size, including six novel genomes from Bartonella isolated from a cow, two moose, two dogs, and a kangaroo. A phylogenetic tree inferred from 428 orthologous core genes indicates that the deadly human pathogen B. bacilliformis is related to the ruminant-adapted clade, rather than being the earliest diverging species in the genus as previously thought. A gene flux analysis identified 12 genes for a GTA and a phage-derived origin of replication as the most conserved innovations. These are located in a region of a few hundred kb that also contains 8 insertions of gene clusters for type III, IV, and V secretion systems, and genes for putatively secreted molecules such as cholera-like toxins. The phylogenies indicate a recent transfer of seven genes in the virB gene cluster for a type IV secretion system from a cat-adapted B. henselae to a dog-adapted B. vinsonii strain. We show that the B. henselae GTA is functional and can transfer genes in vitro. We suggest that the maintenance of the GTA is driven by selection to increase the likelihood of horizontal gene transfer and argue that this process is beneficial at the population level, by facilitating adaptive evolution of the host-adaptation systems and thereby expansion of the host range size. The process counters gene loss and forces all cells to contribute to the production of the GTA and the secreted molecules. The results advance our understanding of the role that GTAs play for the evolution of bacterial genomes.

  7. Structural Analysis of a Putative Aminoglycoside N-Acetyltransferase from Bacillus anthracis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimecka, Maria M.; Chruszcz, Maksymilian; Font, Jose

    2012-02-15

    For the last decade, worldwide efforts for the treatment of anthrax infection have focused on developing effective vaccines. Patients that are already infected are still treated traditionally using different types of standard antimicrobial agents. The most popular are antibiotics such as tetracyclines and fluoroquinolones. While aminoglycosides appear to be less effective antimicrobial agents than other antibiotics, synthetic aminoglycosides have been shown to act as potent inhibitors of anthrax lethal factor and may have potential application as antitoxins. Here, we present a structural analysis of the BA2930 protein, a putative aminoglycoside acetyltransferase, which may be a component of the bacterium's aminoglycosidemore » resistance mechanism. The determined structures revealed details of a fold characteristic only for one other protein structure in the Protein Data Bank, namely, YokD from Bacillus subtilis. Both BA2930 and YokD are members of the Antibiotic-NAT superfamily (PF02522). Sequential and structural analyses showed that residues conserved throughout the Antibiotic-NAT superfamily are responsible for the binding of the cofactor acetyl coenzyme A. The interaction of BA2930 with cofactors was characterized by both crystallographic and binding studies.« less

  8. Development of a microplate-based fluorescence immunoassay using quantum dot streptavidin conjugates for enumeration of putative marine bacteria, Alteromonas sp., associated with a benthic harpacticoid copepod.

    PubMed

    Beckman, Erin M; Kawaguchi, Tomohiro; Chandler, G Thomas; Decho, Alan W

    2008-12-01

    Attached bacteria inhabit the surfaces of many marine animals--a process that may play important roles in the survival and transport through aquatic systems. However, efficient detection of these bacteria has been problematic, especially small aquatic animals such as benthic harpacticoid copepod. Quantum dots (QD) have recently emerged as a significant tool in immunofluorescence detection because of their unique properties compared to other fluorescent probes. In the present study, a polyclonal antibody was raised against the Gram-negative marine bacterium, Alteromonas sp. A microplate-based immunofluorescence bioassay using QD strepavidin conjugates was developed for quantifying putative Alteromonas sp. cells located on the surfaces of a marine harpacticoid copepod, Microarthridion littorale. The number of attached Alteromonas sp. was estimated to be 10(2)+/-8 CFU using this method. The QD approach, coupled to a microplate assay can potentially provide an efficient and accurate method for rapidly detecting multiple bacteria species attached to small invertebrate animals because of their unique excitation and emission characteristics.

  9. Carotenoid biosynthesis in bacteria: In vitro studies of a crt/bch transcription factor from Rhodobacter capsulatus and carotenoid enzymes from Erwinia herbicola

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, D.A.

    1992-11-01

    A putative transcription factor in Rhodobactor capsulatus which binds upstream of the crt and bch pigment biosynthesis operons and appears to play a role in the adaptation of the organism from the aerobic to the anaerobic-photosynthetic growth mode was characterized. Chapter 2 describes the identification of this factor through an in vitro mobility shift assay, as well as the determination of its binding properties and sequence specificity. Chapter 3 focuses on the isolation of this factor. Biochemistry of later carotenoid biosynthesis enzymes derived from the non-photosynthetic bacterium, Erwinia herbicola. Chapter 4 describes the separate overexpression and in vitro analysis ofmore » two enzymes involved in the main sequence of the carotenoid biosynthesis pathway, lycopene cyclase and 5-carotene hydroxylase. Chapter 5 examines the overexpression and enzymology of functionally active zeaxanthin glucosyltransferase, an enzyme which carries out a more unusual transformation, converting a carotenoid into its more hydrophilic mono- and diglucoside derivatives. In addition, amino acid homology with other glucosyltransferases suggests a putative binding site for the UDP-activated glucose substrate.« less

  10. Pseudomonas pseudoalcaligenes CECT5344, a cyanide-degrading bacterium with by-product (polyhydroxyalkanoates) formation capacity.

    PubMed

    Manso Cobos, Isabel; Ibáñez García, María Isabel; de la Peña Moreno, Fernando; Sáez Melero, Lara Paloma; Luque-Almagro, Víctor Manuel; Castillo Rodríguez, Francisco; Roldán Ruiz, María Dolores; Prieto Jiménez, María Auxiliadora; Moreno Vivián, Conrado

    2015-06-10

    Cyanide is one of the most toxic chemicals produced by anthropogenic activities like mining and jewelry industries, which generate wastewater residues with high concentrations of this compound. Pseudomonas pseudoalcaligenes CECT5344 is a model microorganism to be used in detoxification of industrial wastewaters containing not only free cyanide (CN(-)) but also cyano-derivatives, such as cyanate, nitriles and metal-cyanide complexes. Previous in silico analyses suggested the existence of genes putatively involved in metabolism of short chain length (scl-) and medium chain length (mcl-) polyhydroxyalkanoates (PHAs) located in three different clusters in the genome of this bacterium. PHAs are polyesters considered as an alternative of petroleum-based plastics. Strategies to optimize the bioremediation process in terms of reducing the cost of the production medium are required. In this work, a biological treatment of the jewelry industry cyanide-rich wastewater coupled to PHAs production as by-product has been considered. The functionality of the pha genes from P. pseudoalcaligenes CECT5344 has been demonstrated. Mutant strains defective in each proposed PHA synthases coding genes (Mpha(-), deleted in putative mcl-PHA synthases; Spha(-), deleted in the putative scl-PHA synthase) were generated. The accumulation and monomer composition of scl- or mcl-PHAs in wild type and mutant strains were confirmed by gas chromatography-mass spectrometry (GC-MS). The production of PHAs as by-product while degrading cyanide from the jewelry industry wastewater was analyzed in batch reactor in each strain. The wild type and the mutant strains grew at similar rates when using octanoate as the carbon source and cyanide as the sole nitrogen source. When cyanide was depleted from the medium, both scl-PHAs and mcl-PHAs were detected in the wild-type strain, whereas scl-PHAs or mcl-PHAs were accumulated in Mpha(-) and Spha(-), respectively. The scl-PHAs were identified as homopolymers of 3-hydroxybutyrate and the mcl-PHAs were composed of 3-hydroxyoctanoate and 3-hydroxyhexanoate monomers. These results demonstrated, as proof of concept, that talented strains such as P. pseudoalcaligenes might be applied in bioremediation of industrial residues containing cyanide, while concomitantly generate by-products like polyhydroxyalkanoates. A customized optimization of the target bioremediation process is required to gain benefits of this type of approaches.

  11. Transport genes and chemotaxis in Laribacter hongkongensis: a genome-wide analysis

    PubMed Central

    2011-01-01

    Background Laribacter hongkongensis is a Gram-negative, sea gull-shaped rod associated with community-acquired gastroenteritis. The bacterium has been found in diverse freshwater environments including fish, frogs and drinking water reservoirs. Using the complete genome sequence data of L. hongkongensis, we performed a comprehensive analysis of putative transport-related genes and genes related to chemotaxis, motility and quorum sensing, which may help the bacterium adapt to the changing environments and combat harmful substances. Results A genome-wide analysis using Transport Classification Database TCDB, similarity and keyword searches revealed the presence of a large diversity of transporters (n = 457) and genes related to chemotaxis (n = 52) and flagellar biosynthesis (n = 40) in the L. hongkongensis genome. The transporters included those from all seven major transporter categories, which may allow the uptake of essential nutrients or ions, and extrusion of metabolic end products and hazardous substances. L. hongkongensis is unique among closely related members of Neisseriaceae family in possessing higher number of proteins related to transport of ammonium, urea and dicarboxylate, which may reflect the importance of nitrogen and dicarboxylate metabolism in this assacharolytic bacterium. Structural modeling of two C4-dicarboxylate transporters showed that they possessed similar structures to the determined structures of other DctP-TRAP transporters, with one having an unusual disulfide bond. Diverse mechanisms for iron transport, including hemin transporters for iron acquisition from host proteins, were also identified. In addition to the chemotaxis and flagella-related genes, the L. hongkongensis genome also contained two copies of qseB/qseC homologues of the AI-3 quorum sensing system. Conclusions The large number of diverse transporters and genes involved in chemotaxis, motility and quorum sensing suggested that the bacterium may utilize a complex system to adapt to different environments. Structural modeling will provide useful insights on the transporters in L. hongkongensis. PMID:21849034

  12. Metabolic flexibility revealed in the genome of the cyst-forming α-1 proteobacterium Rhodospirillum centenum

    PubMed Central

    2010-01-01

    Background Rhodospirillum centenum is a photosynthetic non-sulfur purple bacterium that favors growth in an anoxygenic, photosynthetic N2-fixing environment. It is emerging as a genetically amenable model organism for molecular genetic analysis of cyst formation, photosynthesis, phototaxis, and cellular development. Here, we present an analysis of the genome of this bacterium. Results R. centenum contains a singular circular chromosome of 4,355,548 base pairs in size harboring 4,105 genes. It has an intact Calvin cycle with two forms of Rubisco, as well as a gene encoding phosphoenolpyruvate carboxylase (PEPC) for mixotrophic CO2 fixation. This dual carbon-fixation system may be required for regulating internal carbon flux to facilitate bacterial nitrogen assimilation. Enzymatic reactions associated with arsenate and mercuric detoxification are rare or unique compared to other purple bacteria. Among numerous newly identified signal transduction proteins, of particular interest is a putative bacteriophytochrome that is phylogenetically distinct from a previously characterized R. centenum phytochrome, Ppr. Genes encoding proteins involved in chemotaxis as well as a sophisticated dual flagellar system have also been mapped. Conclusions Remarkable metabolic versatility and a superior capability for photoautotrophic carbon assimilation is evident in R. centenum. PMID:20500872

  13. Legionella pneumophila prevents proliferation of its natural host Acanthamoeba castellanii

    PubMed Central

    Mengue, Luce; Régnacq, Matthieu; Aucher, Willy; Portier, Emilie; Héchard, Yann; Samba-Louaka, Ascel

    2016-01-01

    Legionella pneumophila is a ubiquitous, pathogenic, Gram-negative bacterium responsible for legionellosis. Like many other amoeba-resistant microorganisms, L. pneumophila resists host clearance and multiplies inside the cell. Through its Dot/Icm type IV secretion system, the bacterium injects more than three hundred effectors that modulate host cell physiology in order to promote its own intracellular replication. Here we report that L. pneumophila prevents proliferation of its natural host Acanthamoeba castellanii. Infected amoebae could not undergo DNA replication and no cell division was observed. The Dot/Icm secretion system was necessary for L. pneumophila to prevent the eukaryotic proliferation. The absence of proliferation was associated with altered amoebal morphology and with a decrease of mRNA transcript levels of CDC2b, a putative regulator of the A. castellanii cell cycle. Complementation of CDC28-deficient Saccharomyces cerevisiae by the CDC2b cDNA was sufficient to restore proliferation of CDC28-deficient S. cerevisiae and suggests for the first time that CDC2b from A. castellanii could be functional and a bona fide cyclin-dependent kinase. Hence, our results reveal that L. pneumophila impairs proliferation of A. castellanii and this effect could involve the cell cycle protein CDC2b. PMID:27805070

  14. Spontaneous mutation reveals influence of exopolysaccharide on Lactobacillus johnsonii surface characteristics.

    PubMed

    Horn, Nikki; Wegmann, Udo; Dertli, Enes; Mulholland, Francis; Collins, Samuel R A; Waldron, Keith W; Bongaerts, Roy J; Mayer, Melinda J; Narbad, Arjan

    2013-01-01

    As a competitive exclusion agent, Lactobacillus johnsonii FI9785 has been shown to prevent the colonization of selected pathogenic bacteria from the chicken gastrointestinal tract. During growth of the bacterium a rare but consistent emergence of an altered phenotype was noted, generating smooth colonies in contrast to the wild type rough form. A smooth colony variant was isolated and two-dimensional gel analysis of both strains revealed a protein spot with different migration properties in the two phenotypes. The spot in both gels was identified as a putative tyrosine kinase (EpsC), associated with a predicted exopolysaccharide gene cluster. Sequencing of the epsC gene from the smooth mutant revealed a single substitution (G to A) in the coding strand, resulting in the amino acid change D88N in the corresponding gene product. A native plasmid of L. johnsonii was engineered to produce a novel vector for constitutive expression and this was used to demonstrate that expression of the wild type epsC gene in the smooth mutant produced a reversion to the rough colony phenotype. Both the mutant and epsC complemented strains had increased levels of exopolysaccharides compared to the wild type strain, indicating that the rough phenotype is not solely associated with the quantity of exopolysaccharide. Another gene in the cluster, epsE, that encoded a putative undecaprenyl-phosphate galactosephosphotransferase, was deleted in order to investigate its role in exopolysaccharide biosynthesis. The ΔepsE strain exhibited a large increase in cell aggregation and a reduction in exopolysaccharide content, while plasmid complementation of epsE restored the wild type phenotype. Flow cytometry showed that the wild type and derivative strains exhibited clear differences in their adhesive ability to HT29 monolayers in tissue culture, demonstrating an impact of EPS on surface properties and bacteria-host interactions.

  15. Oligo(cis-1,4-isoprene) aldehyde-oxidizing dehydrogenases of the rubber-degrading bacterium Gordonia polyisoprenivorans VH2.

    PubMed

    Vivod, Robin; Oetermann, Sylvia; Hiessl, Sebastian; Gutsche, Stefanie; Remmers, Naomi; Meinert, Christina; Voigt, Birgit; Riedel, Katharina; Steinbüchel, Alexander

    2017-11-01

    The actinomycete Gordonia polyisoprenivorans strain VH2 is well-known for its ability to efficiently degrade and catabolize natural rubber [poly(cis-1,4-isoprene)]. Recently, a pathway for the catabolism of rubber by strain VH2 was postulated based on genomic data and the analysis of mutants (Hiessl et al. in Appl Environ Microbiol 78:2874-2887, 2012). To further elucidate the degradation pathway of poly(cis-1,4-isoprene), 2-dimensional-polyacrylamide gel electrophoresis was performed. The analysis of the identified protein spots by matrix-assisted laser desorption/ionization-time of flight tandem mass spectrometry confirmed the postulated intracellular pathway suggesting a degradation of rubber via β-oxidation. In addition, other valuable information on rubber catabolism of G. polyisoprenivorans strain VH2 (e.g. oxidative stress response) was provided. Identified proteins, which were more abundant in cells grown with rubber than in cells grown with propionate, implied a putative long-chain acyl-CoA-dehydrogenase, a 3-ketoacyl-CoA-thiolase, and an aldehyde dehydrogenase. The amino acid sequence of the latter showed a high similarity towards geranial dehydrogenases. The expression of the corresponding gene was upregulated > 10-fold under poly(cis-1,4-isoprene)-degrading conditions. The putative geranial dehydrogenase and a homolog were purified and used for enzyme assays. Deletion mutants for five aldehyde dehydrogenases were generated, and growth with poly(cis-1,4-isoprene) was investigated. While none of the mutants had an altered phenotype regarding growth with poly(cis-1,4-isoprene) as sole carbon and energy source, purified aldehyde dehydrogenases were able to catalyze the oxidation of oligoisoprene aldehydes indicating an involvement in rubber degradation.

  16. Transcription activation mediated by a cyclic AMP receptor protein from Thermus thermophilus HB8.

    PubMed

    Shinkai, Akeo; Kira, Satoshi; Nakagawa, Noriko; Kashihara, Aiko; Kuramitsu, Seiki; Yokoyama, Shigeyuki

    2007-05-01

    The extremely thermophilic bacterium Thermus thermophilus HB8, which belongs to the phylum Deinococcus-Thermus, has an open reading frame encoding a protein belonging to the cyclic AMP (cAMP) receptor protein (CRP) family present in many bacteria. The protein named T. thermophilus CRP is highly homologous to the CRP family proteins from the phyla Firmicutes, Actinobacteria, and Cyanobacteria, and it forms a homodimer and interacts with cAMP. CRP mRNA and intracellular cAMP were detected in this strain, which did not drastically fluctuate during cultivation in a rich medium. The expression of several genes was altered upon disruption of the T. thermophilus CRP gene. We found six CRP-cAMP-dependent promoters in in vitro transcription assays involving DNA fragments containing the upstream regions of the genes exhibiting decreased expression in the CRP disruptant, indicating that the CRP is a transcriptional activator. The consensus T. thermophilus CRP-binding site predicted upon nucleotide sequence alignment is 5'-(C/T)NNG(G/T)(G/T)C(A/C)N(A/T)NNTCACAN(G/C)(G/C)-3'. This sequence is unique compared with the known consensus binding sequences of CRP family proteins. A putative -10 hexamer sequence resides at 18 to 19 bp downstream of the predicted T. thermophilus CRP-binding site. The CRP-regulated genes found in this study comprise clustered regularly interspaced short palindromic repeat (CRISPR)-associated (cas) ones, and the genes of a putative transcriptional regulator, a protein containing the exonuclease III-like domain of DNA polymerase, a GCN5-related acetyltransferase homolog, and T. thermophilus-specific proteins of unknown function. These results suggest a role for cAMP signal transduction in T. thermophilus and imply the T. thermophilus CRP is a cAMP-responsive regulator.

  17. The Oenococcus oeni clpX Homologue Is a Heat Shock Gene Preferentially Expressed in Exponential Growth Phase

    PubMed Central

    Jobin, Michel-Philippe; Garmyn, Dominique; Diviès, Charles; Guzzo, Jean

    1999-01-01

    Using degenerated primers from conserved regions of previously studied clpX gene products, we cloned the clpX gene of the malolactic bacterium Oenococcus oeni. The clpX gene was sequenced, and the deduced protein of 413 amino acids (predicted molecular mass of 45,650 Da) was highly similar to previously analyzed clpX gene products from other organisms. An open reading frame located upstream of the clpX gene was identified as the tig gene by similarity of its predicted product to other bacterial trigger factors. ClpX was purified by using a maltose binding protein fusion system and was shown to possess an ATPase activity. Northern analyses indicated the presence of two independent 1.6-kb monocistronic clpX and tig mRNAs and also showed an increase in clpX mRNA amount after a temperature shift from 30 to 42°C. The clpX transcript is abundant in the early exponential growth phase and progressively declines to undetectable levels in the stationary phase. Thus, unlike hsp18, the gene encoding one of the major small heat shock proteins of Oenococcus oeni, clpX expression is related to the exponential growth phase and requires de novo protein synthesis. Primer extension analysis identified the 5′ end of clpX mRNA which is located 408 nucleotides upstream of a putative AUA start codon. The putative transcription start site allowed identification of a predicted promoter sequence with a high similarity to the consensus sequence found in the housekeeping gene promoter of gram-positive bacteria as well as Escherichia coli. PMID:10542163

  18. Isolation and characterisation of new putative probiotic bacteria from human colonic flora.

    PubMed

    Raz, Irit; Gollop, Natan; Polak-Charcon, Sylvie; Schwartz, Betty

    2007-04-01

    The present study describes a novel bacterial isolate exhibiting high ability to synthesise and secrete butyrate. The novel isolated bacterium was obtained from human faeces and grown in selective liquid intestinal microflora medium containing rumen fluid under microaerobic conditions. Its probiotic properties were demonstrated by the ability of the isolate to survive high acidity and medium containing bile acids and the ability to adhere to colon cancer cells (Caco-2) in vitro. Phylogenetic identity to Enterococcus durans was established using specific primers for 16S rRNA (99% probability). PCR analyses with primers to the bacterial gene encoding butyrate kinase, present in the butyrogenic bacteria Clostridium, showed that this gene is present in E. durans. The in vivo immunoprotective and anti-inflammatory effects of E. durans were assessed in dextran sodium sulfate (DSS)-induced colitis in Balb/c mice. Administration of E. durans ameliorated histological, clinical and biochemical scores directly related to intestinal inflammation whereas the lactic acid bacterium Lactobacillus delbrueckii was ineffective in this regard. Colonic cDNA concentrations of IL-1beta and TNF-alpha were significantly down regulated in DSS-treated E. durans-fed mice but not in control or DSS-treated L. delbrueckii- fed mice. Fluorescent in situ hybridisation analyses of colonic tissue from mice fed E. durans, using a butyrate kinase probe, demonstrated that E. durans significantly adheres to the colonic tissue. The novel isolated bacterium described in the present paper, upon further characterisation, can be developed into a useful probiotic aimed at the treatment of patients suffering from ulcerative colitis.

  19. Bacillus subtilis Fur represses one of two paralogous haem-degrading monooxygenases

    PubMed Central

    Gaballa, Ahmed

    2011-01-01

    Identification of genes regulated by the ferric uptake regulator (Fur) protein has provided insights into the diverse mechanisms of adaptation to iron limitation. In the soil bacterium Bacillus subtilis, Fur senses iron sufficiency and represses genes that enable iron uptake, including biosynthetic and transport genes for the siderophore bacillibactin and uptake systems for siderophores produced by other organisms. We here demonstrate that Fur regulates hmoA (formerly yetG), which encodes a haem monooxygenase. HmoA is the first characterized member of a divergent group of putative monooxygenases that cluster separately from the well-characterized IsdG family. B. subtilis also encodes an IsdG family protein designated HmoB (formerly YhgC). Unlike hmoA, hmoB is constitutively expressed and not under Fur control. HmoA and HmoB both bind haemin in vitro with approximately 1 : 1 stoichiometry and degrade haemin in the presence of an electron donor. Mutational and spectroscopic analyses indicate that HmoA and HmoB have distinct active site architectures and interact differently with haem. We further show that B. subtilis can use haem as an iron source, but that this ability is independent of HmoA and HmoB. PMID:21873409

  20. Structural characterization of the cell division cycle in Strigomonas culicis, an endosymbiont-bearing trypanosomatid.

    PubMed

    Brum, Felipe Lopes; Catta-Preta, Carolina Moura Costa; de Souza, Wanderley; Schenkman, Sergio; Elias, Maria Carolina; Motta, Maria Cristina Machado

    2014-02-01

    Strigomonas culicis (previously referred to as Blastocrithidia culicis) is a monoxenic trypanosomatid harboring a symbiotic bacterium, which maintains an obligatory relationship with the host protozoan. Investigations of the cell cycle in symbiont harboring trypanosomatids suggest that the bacterium divides in coordination with other host cell structures, particularly the nucleus. In this study we used light and electron microscopy followed by three-dimensional reconstruction to characterize the symbiont division during the cell cycle of S. culicis. We observed that during this process, the symbiotic bacterium presents different forms and is found at different positions in relationship to the host cell structures. At the G1/S phase of the protozoan cell cycle, the endosymbiont exhibits a constricted form that appears to elongate, resulting in the bacterium division, which occurs before kinetoplast and nucleus segregation. During cytokinesis, the symbionts are positioned close to each nucleus to ensure that each daughter cell will inherit a single copy of the bacterium. These observations indicated that the association of the bacterium with the protozoan nucleus coordinates the cell cycle in both organisms.

  1. Proteomic investigation of the secretome of Cellvibrio japonicus during growth on chitin.

    PubMed

    Tuveng, Tina Rise; Arntzen, Magnus Øverlie; Bengtsson, Oskar; Gardner, Jeffrey G; Vaaje-Kolstad, Gustav; Eijsink, Vincent G H

    2016-07-01

    Studies of the secretomes of microbes grown on insoluble substrates are important for the discovery of novel proteins involved in biomass conversion. However, data in literature and this study indicate that secretome samples tend to be contaminated with cytoplasmic proteins. We have examined the secretome of the Gram-negative soil bacterium Cellvibrio japonicus using a simple plate-based culturing technique that yields samples with high fractions (60-75%) of proteins that are predicted to be secreted. By combining this approach with label-free quantification using the MaxLFQ algorithm, we have mapped and quantified proteins secreted by C. japonicus during growth on α- and β-chitin. Hierarchical clustering of the detected protein quantities revealed groups of up-regulated proteins that include all five putative C. japonicus chitinases as well as a chitin-specific lytic polysaccharide monooxygenase (CjLPMO10A). A small set of secreted proteins were co-regulated with known chitin-specific enzymes, including several with unknown catalytic functions. These proteins provide interesting targets for further studies aimed at unraveling the enzymatic machineries used by C. japonicus for recalcitrant polysaccharide degradation. Studies of chitin degradation indicated that C. japonicus indeed produces an efficient chitinolytic enzyme cocktail. All MS data have been deposited in the ProteomeXchange with the dataset identifier PXD002843 (http://proteomecentral.proteomexchange.org/dataset/PXD002843). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Genome editing of Ralstonia eutropha using an electroporation-based CRISPR-Cas9 technique.

    PubMed

    Xiong, Bin; Li, Zhongkang; Liu, Li; Zhao, Dongdong; Zhang, Xueli; Bi, Changhao

    2018-01-01

    Ralstonia eutropha is an important bacterium for the study of polyhydroxyalkanoates (PHAs) synthesis and CO 2 fixation, which makes it a potential strain for industrial PHA production and attractive host for CO 2 conversion. Although the bacterium is not recalcitrant to genetic manipulation, current methods for genome editing based on group II introns or single crossover integration of a suicide plasmid are inefficient and time-consuming, which limits the genetic engineering of this organism. Thus, developing an efficient and convenient method for R. eutropha genome editing is imperative. An efficient genome editing method for R. eutropha was developed using an electroporation-based CRISPR-Cas9 technique. In our study, the electroporation efficiency of R. eutropha was found to be limited by its restriction-modification (RM) systems. By searching the putative RM systems in R. eutropha H16 using REBASE database and comparing with that in E. coli MG1655, five putative restriction endonuclease genes which are related to the RM systems in R. eutropha were predicated and disrupted. It was found that deletion of H16_A0006 and H16_A0008 - 9 increased the electroporation efficiency 1658 and 4 times, respectively. Fructose was found to reduce the leaky expression of the arabinose-inducible pBAD promoter, which was used to optimize the expression of cas9 , enabling genome editing via homologous recombination based on CRISPR-Cas9 in R. eutropha . A total of five genes were edited with efficiencies ranging from 78.3 to 100%. The CRISPR-Cpf1 system and the non-homologous end joining mechanism were also investigated, but failed to yield edited strains. We present the first genome editing method for R. eutropha using an electroporation-based CRISPR-Cas9 approach, which significantly increased the efficiency and decreased time to manipulate this facultative chemolithoautotrophic microbe. The novel technique will facilitate more advanced researches and applications of R. eutropha for PHA production and CO 2 conversion.

  3. Ultrastructure and Viral Metagenome of Bacteriophages from an Anaerobic Methane Oxidizing Methylomirabilis Bioreactor Enrichment Culture

    PubMed Central

    Gambelli, Lavinia; Cremers, Geert; Mesman, Rob; Guerrero, Simon; Dutilh, Bas E.; Jetten, Mike S. M.; Op den Camp, Huub J. M.; van Niftrik, Laura

    2016-01-01

    With its capacity for anaerobic methane oxidation and denitrification, the bacterium Methylomirabilis oxyfera plays an important role in natural ecosystems. Its unique physiology can be exploited for more sustainable wastewater treatment technologies. However, operational stability of full-scale bioreactors can experience setbacks due to, for example, bacteriophage blooms. By shaping microbial communities through mortality, horizontal gene transfer, and metabolic reprogramming, bacteriophages are important players in most ecosystems. Here, we analyzed an infected Methylomirabilis sp. bioreactor enrichment culture using (advanced) electron microscopy, viral metagenomics and bioinformatics. Electron micrographs revealed four different viral morphotypes, one of which was observed to infect Methylomirabilis cells. The infected cells contained densely packed ~55 nm icosahedral bacteriophage particles with a putative internal membrane. Various stages of virion assembly were observed. Moreover, during the bacteriophage replication, the host cytoplasmic membrane appeared extremely patchy, which suggests that the bacteriophages may use host bacterial lipids to build their own putative internal membrane. The viral metagenome contained 1.87 million base pairs of assembled viral sequences, from which five putative complete viral genomes were assembled and manually annotated. Using bioinformatics analyses, we could not identify which viral genome belonged to the Methylomirabilis- infecting bacteriophage, in part because the obtained viral genome sequences were novel and unique to this reactor system. Taken together these results show that new bacteriophages can be detected in anaerobic cultivation systems and that the effect of bacteriophages on the microbial community in these systems is a topic for further study. PMID:27877158

  4. Functional Analysis of an S-Layer-Associated Fibronectin-Binding Protein in Lactobacillus acidophilus NCFM

    PubMed Central

    Hymes, Jeffrey P.; Johnson, Brant R.; Barrangou, Rodolphe

    2016-01-01

    Bacterial surface layers (S-layers) are crystalline arrays of self-assembling proteinaceous subunits called S-layer proteins (Slps) that comprise the outermost layer of the cell envelope. Many additional proteins that are associated with or embedded within the S-layer have been identified in Lactobacillus acidophilus NCFM, an S-layer-forming bacterium that is widely used in fermented dairy products and probiotic supplements. One putative S-layer-associated protein (SLAP), LBA0191, was predicted to mediate adhesion to fibronectin based on the in silico detection of a fibronectin-binding domain. Fibronectin is a major component of the extracellular matrix (ECM) of intestinal epithelial cells. Adhesion to intestinal epithelial cells is considered an important trait for probiotic microorganisms during transit and potential association with the intestinal mucosa. To investigate the functional role of LBA0191 (designated FbpB) in L. acidophilus NCFM, an fbpB-deficient strain was constructed. The L. acidophilus mutant with a deletion of fbpB lost the ability to adhere to mucin and fibronectin in vitro. Homologues of fbpB were identified in five additional putative S-layer-forming species, but no homologues were detected in species outside the L. acidophilus homology group. PMID:26921419

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baig, M.; Brown, A.; Eswaramoorthy, S.

    Klebsiella pneumoniae, a gram-negative enteric bacterium, is found in nosocomial infections which are acquired during hospital stays for about 10% of hospital patients in the United States. The crystal structure of a putative oxidoreductase from K. pneumoniae has been determined. The structural information of this K. pneumoniae protein was used to understand its function. Crystals of the putative oxidoreductase enzyme were obtained by the sitting drop vapor diffusion method using Polyethylene glycol (PEG) 3350, Bis-Tris buffer, pH 5.5 as precipitant. These crystals were used to collect X-ray data at beam line X12C of the National Synchrotron Light Source (NSLS) atmore » Brookhaven National Laboratory (BNL). The crystal structure was determined using the SHELX program and refi ned with CNS 1.1. This protein, which is involved in the catalysis of an oxidation-reduction (redox) reaction, has an alpha/beta structure. It utilizes nicotinamide adenine dinucleotide phosphate (NADP) or nicotine adenine dinucleotide (NAD) to perform its function. This structure could be used to determine the active and co-factor binding sites of the protein, information that could help pharmaceutical companies in drug design and in determining the protein’s relationship to disease treatment such as that for pneumonia and other related pathologies.« less

  6. A Novel Tenebrio molitor Cadherin Is a Functional Receptor for Bacillus thuringiensis Cry3Aa Toxin*

    PubMed Central

    Fabrick, Jeff; Oppert, Cris; Lorenzen, Marcé D.; Morris, Kaley; Oppert, Brenda; Jurat-Fuentes, Juan Luis

    2009-01-01

    Cry toxins produced by the bacterium Bacillus thuringiensis are effective biological insecticides. Cadherin-like proteins have been reported as functional Cry1A toxin receptors in Lepidoptera. Here we present data that demonstrate that a coleopteran cadherin is a functional Cry3Aa toxin receptor. The Cry3Aa receptor cadherin was cloned from Tenebrio molitor larval midgut mRNA, and the predicted protein, TmCad1, has domain structure and a putative toxin binding region similar to those in lepidopteran cadherin B. thuringiensis receptors. A peptide containing the putative toxin binding region from TmCad1 bound specifically to Cry3Aa and promoted the formation of Cry3Aa toxin oligomers, proposed to be mediators of toxicity in lepidopterans. Injection of TmCad1-specific double-stranded RNA into T. molitor larvae resulted in knockdown of the TmCad1 transcript and conferred resistance to Cry3Aa toxicity. These data demonstrate the functional role of TmCad1 as a Cry3Aa receptor in T. molitor and reveal similarities between the mode of action of Cry toxins in Lepidoptera and Coleoptera. PMID:19416969

  7. Characterization of the promising poly(3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila.

    PubMed

    Kucera, Dan; Pernicová, Iva; Kovalcik, Adriana; Koller, Martin; Mullerova, Lucie; Sedlacek, Petr; Mravec, Filip; Nebesarova, Jana; Kalina, Michal; Marova, Ivana; Krzyzanek, Vladislav; Obruca, Stanislav

    2018-05-01

    This work explores molecular, morphological as well as biotechnological features of the highly promising polyhydroxyalkanoates (PHA) producer Halomonas halophila. Unlike many other halophiles, this bacterium does not require expensive complex media components and it is capable to accumulate high intracellular poly(3-hydroxybutyrate) (PHB) fractions up to 82% of cell dry mass. Most remarkably, regulating the concentration of NaCl apart from PHB yields influences also the polymer's molecular mass and polydispersity. The bacterium metabolizes various carbohydrates including sugars predominant in lignocelluloses and other inexpensive substrates. Therefore, the bacterium was employed for PHB production on hydrolysates of cheese whey, spent coffee grounds, sawdust and corn stover, which were hydrolyzed by HCl; required salinity of cultivation media was set up during neutralization by NaOH. The bacterium was capable to use all the tested hydrolysates as well as sugar beet molasses for PHB biosynthesis, indicating its potential for industrial PHB production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Extracellular nucleic acids of the marine bacterium Rhodovulum sulfidophilum and recombinant RNA production technology using bacteria.

    PubMed

    Kikuchi, Yo; Umekage, So

    2018-02-01

    Extracellular nucleic acids of high molecular weight are detected ubiquitously in seawater. Recent studies have indicated that these nucleic acids are, at least in part, derived from active production by some bacteria. The marine bacterium Rhodovulum sulfidophilum is one of those bacteria. Rhodovulumsulfidophilum is a non-sulfur phototrophic marine bacterium that is known to form structured communities of cells called flocs, and to produce extracellular nucleic acids in culture media. Recently, it has been revealed that this bacterium produces gene transfer agent-like particles and that this particle production may be related to the extracellular nucleic acid production mechanism. This review provides a summary of recent physiological and genetic studies of these phenomena and also introduces a new method for extracellular production of artificial and biologically functional RNAs using this bacterium. In addition, artificial RNA production using Escherichia coli, which is related to this topic, will also be described. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Draft genome sequence and annotation of Lactobacillus acetotolerans BM-LA14527, a beer-spoilage bacteria.

    PubMed

    Liu, Junyan; Li, Lin; Peters, Brian M; Li, Bing; Deng, Yang; Xu, Zhenbo; Shirtliff, Mark E

    2016-09-01

    Lactobacillus acetotolerans is a hard-to-culture beer-spoilage bacterium capable of entering into the viable putative nonculturable (VPNC) state. As part of an initial strategy to investigate the phenotypic behavior of L. acetotolerans, draft genome sequencing was performed. Results demonstrated a total of 1824 predicted annotated genes, with several potential VPNC- and beer-spoilage-associated genes identified. Importantly, this is the first genome sequence of L. acetotolerans as beer-spoilage bacteria and it may aid in further analysis of L. acetotolerans and other beer-spoilage bacteria, with direct implications for food safety control in the beer brewing industry. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Carbohydrate utilization patterns for the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus reveal broad growth substrate preferences.

    PubMed

    Vanfossen, Amy L; Verhaart, Marcel R A; Kengen, Servé M W; Kelly, Robert M

    2009-12-01

    Coutilization of hexoses and pentoses derived from lignocellulose is an attractive trait in microorganisms considered for consolidated biomass processing to biofuels. This issue was examined for the H(2)-producing, extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus growing on individual monosaccharides (arabinose, fructose, galactose, glucose, mannose, and xylose), mixtures of these sugars, as well as on xylan and xylogluco-oligosacchrides. C. saccharolyticus grew at approximately the same rate (t(d), approximately 95 min) and to the same final cell density (1 x 10(8) to 3 x 10(8) cells/ml) on all sugars and sugar mixtures tested. In the monosaccharide mixture, although simultaneous consumption of all monosaccharides was observed, not all were utilized to the same extent (fructose > xylose/arabinose > mannose/glucose/galactose). Transcriptome contrasts for monosaccharide growth revealed minimal changes in some cases (e.g., 32 open reading frames [ORFs] changed >/=2-fold for glucose versus galactose), while substantial changes occurred for cases involving mannose (e.g., 353 ORFs changed >/=2-fold for glucose versus mannose). Evidence for catabolite repression was not noted for either growth on multisugar mixtures or the corresponding transcriptomes. Based on the whole-genome transcriptional response analysis and comparative genomics, carbohydrate specificities for transport systems could be proposed for most of the 24 putative carbohydrate ATP-binding cassette transporters and single phosphotransferase system identified in C. saccharolyticus. Although most transporter genes responded to individual monosaccharides and polysaccharides, the genes Csac_0692 to Csac_0694 were upregulated only in the monosaccharide mixture. The results presented here affirm the broad growth substrate preferences of C. saccharolyticus on carbohydrates representative of lignocellulosic biomass and suggest that this bacterium holds promise for biofuel applications.

  11. Putative type II toxin-antitoxin systems in Listeria monocytogenes isolated from clinical, food, and animal samples in Iran.

    PubMed

    Kalani, Behrooz Sadeghi; Irajian, Gholamreza; Lotfollahi, Lida; Abdollahzadeh, Esmail; Razavi, Shabnam

    2018-06-04

    Listeria monocytogenes is known as a major food-borne pathogen causing a severe life-threatening disease, listeriosis, in susceptible patients. This bacterium has special features that facilitate its survival in different conditions and cause resistance to antibacterial agents and biocides. Toxin-antitoxin (TA) system has a potential to be introduced as an antibacterial target because of its participation in cell physiology, including stress response, antiphage activity, biofilm formation, and resistance to antibiotics. In this study, after the identification of 6 genes of 3 TA pairs (lM/E-lM/F, lM/S-lM/B and ydc/D-ydc/E) via existing databases, the presence and expression level of these genes were investigated by PCR and q-PCR techniques, respectively. The result of RT-qPCR revealed that identified genes were expressed in different strains and ydc (maz) increased under thermal stress. It seems that the products of these genes play an important role in the physiology and survival of the bacterium especially in heat stress. Presence of 6 detected TA genes in all of the tested isolates demonstrated that TA system could be an antibacterial target in L. monocytogenes; however, more research is needed to explain the actual role of these genes. Copyright © 2018. Published by Elsevier Ltd.

  12. New Findings on Aromatic Compounds' Degradation and Their Metabolic Pathways, the Biosurfactant Production and Motility of the Halophilic Bacterium Halomonas sp. KHS3.

    PubMed

    Corti Monzón, Georgina; Nisenbaum, Melina; Herrera Seitz, M Karina; Murialdo, Silvia E

    2018-04-24

    The study of the aromatic compounds' degrading ability by halophilic bacteria became an interesting research topic, because of the increasing use of halophiles in bioremediation of saline habitats and effluents. In this work, we focused on the study of aromatic compounds' degradation potential of Halomonas sp. KHS3, a moderately halophilic bacterium isolated from hydrocarbon-contaminated seawater of the Mar del Plata harbour. We demonstrated that H. sp. KHS3 is able to grow using different monoaromatic (salicylic acid, benzoic acid, 4-hydroxybenzoic acid, phthalate) and polyaromatic (naphthalene, fluorene, and phenanthrene) substrates. The ability to degrade benzoic acid and 4-hydroxybenzoic acid was analytically corroborated, and Monod kinetic parameters and yield coefficients for degradation were estimated. Strategies that may enhance substrate bioavailability such as surfactant production and chemotactic responses toward aromatic compounds were confirmed. Genomic sequence analysis of this strain allowed us to identify several genes putatively related to the metabolism of aromatic compounds, being the catechol and protocatechuate branches of β-ketoadipate pathway completely represented. These features suggest that the broad-spectrum xenobiotic degrader H. sp. KHS3 could be employed as a useful biotechnological tool for the cleanup of aromatic compounds-polluted saline habitats or effluents.

  13. High-quality-draft genome sequence of the fermenting bacterium Anaerobium acetethylicum type strain GluBS11T (DSM 29698)

    DOE PAGES

    Patil, Yogita; Müller, Nicolai; Schink, Bernhard; ...

    2017-02-20

    Anaerobium acetethylicum strain GluBS11 T belongs to the family Lachnospiraceae within the order Clostridiales. It is a Gram-positive, non-motile and strictly anaerobic bacterium isolated from biogas slurry that was originally enriched with gluconate as carbon source (Patil, et al., Int J Syst Evol Microbiol 65:3289-3296, 2015). Here we describe the draft genome sequence of strain GluBS11 T and provide a detailed insight into its physiological and metabolic features. The draft genome sequence generated 4,609,043 bp, distributed among 105 scaffolds assembled using the SPAdes genome assembler method. It comprises in total 4,132 genes, of which 4,008 were predicted to be proteinmore » coding genes, 124 RNA genes and 867 pseudogenes. The content was 43.51 mol %. The annotated genome of strain GluBS11 T contains putative genes coding for the pentose phosphate pathway, the Embden-Meyerhoff-Parnas pathway, the Entner-Doudoroff pathway and the tricarboxylic acid cycle. The genome revealed the presence of most of the necessary genes required for the fermentation of glucose and gluconate to acetate, ethanol, and hydrogen gas. However, a candidate gene for production of formate was not identified.« less

  14. High-quality-draft genome sequence of the fermenting bacterium Anaerobium acetethylicum type strain GluBS11T (DSM 29698)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, Yogita; Müller, Nicolai; Schink, Bernhard

    Anaerobium acetethylicum strain GluBS11 T belongs to the family Lachnospiraceae within the order Clostridiales. It is a Gram-positive, non-motile and strictly anaerobic bacterium isolated from biogas slurry that was originally enriched with gluconate as carbon source (Patil, et al., Int J Syst Evol Microbiol 65:3289-3296, 2015). Here we describe the draft genome sequence of strain GluBS11 T and provide a detailed insight into its physiological and metabolic features. The draft genome sequence generated 4,609,043 bp, distributed among 105 scaffolds assembled using the SPAdes genome assembler method. It comprises in total 4,132 genes, of which 4,008 were predicted to be proteinmore » coding genes, 124 RNA genes and 867 pseudogenes. The content was 43.51 mol %. The annotated genome of strain GluBS11 T contains putative genes coding for the pentose phosphate pathway, the Embden-Meyerhoff-Parnas pathway, the Entner-Doudoroff pathway and the tricarboxylic acid cycle. The genome revealed the presence of most of the necessary genes required for the fermentation of glucose and gluconate to acetate, ethanol, and hydrogen gas. However, a candidate gene for production of formate was not identified.« less

  15. Expression of arsenic resistance genes in the obligate anaerobe Bacteroides vulgatus ATCC 8482, a gut microbiome bacterium

    PubMed Central

    Li, Jiaojiao; Mandal, Goutam; Rosen, Barry P.

    2016-01-01

    The response of the obligate anaerobe Bacteroides vulgatus ATCC 8482, a common human gut microbiota, to arsenic was determined. B. vulgatus ATCC 8482 is highly resistant to pentavalent As(V) and methylarsenate (MAs(V)). It is somewhat more sensitive to trivalent inorganic As(III) but 100-fold more sensitive to methylarsenite (MAs(III)) than to As(III). B. vulgatus ATCC 8482 has eight continuous genes in its genome that we demonstrate form an arsenical-inducible transcriptional unit. The first gene of this ars operon, arsR, encodes a putative ArsR As(III)-responsive transcriptional repressor. The next three genes encode proteins of unknown function. The remaining genes, arsDABC, have well-characterized roles in detoxification of inorganic arsenic, but there are no known genes for MAs(III) resistance. Expression of each gene after exposure to trivalent and pentavalent inorganic and methylarsenicals was analyzed. MAs(III) was the most effective inducer. The arsD gene was the most highly expressed of the ars operon genes. These results demonstrate that this anaerobic microbiome bacterium has arsenic-responsive genes that confer resistance to inorganic arsenic and may be responsible for the organism's ability to maintain its prevalence in the gut following dietary exposure to inorganic arsenic. PMID:27040269

  16. Unexpected diversity in the mobilome of a Pseudomonas aeruginosa strain isolated from a dental unit waterline revealed by SMRT Sequencing.

    PubMed

    Vincent, Antony T; Charette, Steve J; Barbeau, Jean

    2018-05-01

    The Gram-negative bacterium Pseudomonas aeruginosa is found in several habitats, both natural and human-made, and is particularly known for its recurrent presence as a pathogen in the lungs of patients suffering from cystic fibrosis, a genetic disease. Given its clinical importance, several major studies have investigated the genomic adaptation of P. aeruginosa in lungs and its transition as acute infections become chronic. However, our knowledge about the diversity and adaptation of the P. aeruginosa genome to non-clinical environments is still fragmentary, in part due to the lack of accurate reference genomes of strains from the numerous environments colonized by the bacterium. Here, we used PacBio long-read technology to sequence the genome of PPF-1, a strain of P. aeruginosa isolated from a dental unit waterline. Generating this closed genome was an opportunity to investigate genomic features that are difficult to accurately study in a draft genome (contigs state). It was possible to shed light on putative genomic islands, some shared with other reference genomes, new prophages, and the complete content of insertion sequences. In addition, four different group II introns were also found, including two characterized here and not listed in the specialized group II intron database.

  17. Metabolomics evaluation of the impact of smokeless tobacco exposure on the oral bacterium Capnocytophaga sputigena

    PubMed Central

    Sun, Jinchun; Jin, Jinshan; Beger, Richard D.; Cerniglia, Carl E.; Yang, Maocheng; Chen, Huizhong

    2017-01-01

    The association between exposure to smokeless tobacco products (STP) and oral diseases is partially due to the physiological and pathological changes in the composition of the oral microbiome and its metabolic profile. However, it is not clear how STPs affect the physiology and ecology of oral microbiota. A UPLC/QTof-MS-based metabolomics study was employed to analyze metabolic alterations in oral bacterium, Capnocytophaga sputigena as a result of smokeless tobacco exposure and to assess the capability of the bacterium to metabolize nicotine. Pathway analysis of the metabolome profiles indicated that smokeless tobacco extracts caused oxidative stress in the bacterium. The metabolomics data also showed that the argininenitric oxide pathway was perturbed by the smokeless tobacco treatment. Results also showed that LC/MS was useful in identifying STP constituents and additives, including caffeine and many flavoring compounds. No significant changes in levels of nicotine and its major metabolites were found when C. sputigena was cultured in a nutrient rich medium, although hydroxylnicotine and cotinine N-oxide were detected in the bacterial metabolites suggesting that nicotine metabolism might be present as a minor degradation pathway in the bacterium. Study results provide new insights regarding the physiological and toxicological effects of smokeless tobacco on oral bacterium C. sputigena and associated oral health as well as measuring the ability of the oral bacterium to metabolize nicotine. PMID:27480511

  18. Metabolomics evaluation of the impact of smokeless tobacco exposure on the oral bacterium Capnocytophaga sputigena.

    PubMed

    Sun, Jinchun; Jin, Jinshan; Beger, Richard D; Cerniglia, Carl E; Yang, Maocheng; Chen, Huizhong

    2016-10-01

    The association between exposure to smokeless tobacco products (STP) and oral diseases is partially due to the physiological and pathological changes in the composition of the oral microbiome and its metabolic profile. However, it is not clear how STPs affect the physiology and ecology of oral microbiota. A UPLC/QTof-MS-based metabolomics study was employed to analyze metabolic alterations in oral bacterium, Capnocytophaga sputigena as a result of smokeless tobacco exposure and to assess the capability of the bacterium to metabolize nicotine. Pathway analysis of the metabolome profiles indicated that smokeless tobacco extracts caused oxidative stress in the bacterium. The metabolomics data also showed that the arginine-nitric oxide pathway was perturbed by the smokeless tobacco treatment. Results also showed that LC/MS was useful in identifying STP constituents and additives, including caffeine and many flavoring compounds. No significant changes in levels of nicotine and its major metabolites were found when C. sputigena was cultured in a nutrient rich medium, although hydroxylnicotine and cotinine N-oxide were detected in the bacterial metabolites suggesting that nicotine metabolism might be present as a minor degradation pathway in the bacterium. Study results provide new insights regarding the physiological and toxicological effects of smokeless tobacco on oral bacterium C. sputigena and associated oral health as well as measuring the ability of the oral bacterium to metabolize nicotine. Published by Elsevier Ltd.

  19. The S-layer homology domain-containing protein SlhA from Paenibacillus alvei CCM 2051(T) is important for swarming and biofilm formation.

    PubMed

    Janesch, Bettina; Koerdt, Andrea; Messner, Paul; Schäffer, Christina

    2013-01-01

    Swarming and biofilm formation have been studied for a variety of bacteria. While this is well investigated for Gram-negative bacteria, less is known about Gram-positive bacteria, including Paenibacillus alvei, a secondary invader of diseased honeybee colonies infected with Melissococcus pluton, the causative agent of European foulbrood (EFB). Paenibacillus alvei CCM 2051(T) is a Gram-positive bacterium which was recently shown to employ S-layer homology (SLH) domains as cell wall targeting modules to display proteins on its cell surface. This study deals with the newly identified 1335-amino acid protein SlhA from P. alvei which carries at the C‑terminus three consecutive SLH-motifs containing the predicted binding sequences SRGE, VRQD, and LRGD instead of the common TRAE motif. Based on the proof of cell surface location of SlhA by fluorescence microscopy using a SlhA-GFP chimera, the binding mechanism was investigated in an in vitro assay. To unravel a putative function of the SlhA protein, a knockout mutant was constructed. Experimental data indicated that one SLH domain is sufficient for anchoring of SlhA to the cell surface, and the SLH domains of SlhA recognize both the peptidoglycan and the secondary cell wall polymer in vitro. This is in agreement with previous data from the S-layer protein SpaA, pinpointing a wider utilization of that mechanism for cell surface display of proteins in P. alvei. Compared to the wild-type bacterium ΔslhA revealed changed colony morphology, loss of swarming motility and impaired biofilm formation. The phenotype was similar to that of the flagella knockout Δhag, possibly due to reduced EPS production influencing the functionality of the flagella of ΔslhA. This study demonstrates the involvement of the SLH domain-containing protein SlhA in swarming and biofilm formation of P. alvei CCM 2051(T).

  20. Exploring the symbiotic pangenome of the nitrogen-fixing bacterium Sinorhizobium meliloti

    PubMed Central

    2011-01-01

    Background Sinorhizobium meliloti is a model system for the studies of symbiotic nitrogen fixation. An extensive polymorphism at the genetic and phenotypic level is present in natural populations of this species, especially in relation with symbiotic promotion of plant growth. AK83 and BL225C are two nodule-isolated strains with diverse symbiotic phenotypes; BL225C is more efficient in promoting growth of the Medicago sativa plants than strain AK83. In order to investigate the genetic determinants of the phenotypic diversification of S. meliloti strains AK83 and BL225C, we sequenced the complete genomes for these two strains. Results With sizes of 7.14 Mbp and 6.97 Mbp, respectively, the genomes of AK83 and BL225C are larger than the laboratory strain Rm1021. The core genome of Rm1021, AK83, BL225C strains included 5124 orthologous groups, while the accessory genome was composed by 2700 orthologous groups. While Rm1021 and BL225C have only three replicons (Chromosome, pSymA and pSymB), AK83 has also two plasmids, 260 and 70 Kbp long. We found 65 interesting orthologous groups of genes that were present only in the accessory genome, consequently responsible for phenotypic diversity and putatively involved in plant-bacterium interaction. Notably, the symbiosis inefficient AK83 lacked several genes required for microaerophilic growth inside nodules, while several genes for accessory functions related to competition, plant invasion and bacteroid tropism were identified only in AK83 and BL225C strains. Presence and extent of polymorphism in regulons of transcription factors involved in symbiotic interaction were also analyzed. Our results indicate that regulons are flexible, with a large number of accessory genes, suggesting that regulons polymorphism could also be a key determinant in the variability of symbiotic performances among the analyzed strains. Conclusions In conclusions, the extended comparative genomics approach revealed a variable subset of genes and regulons that may contribute to the symbiotic diversity. PMID:21569405

  1. Exploring the symbiotic pangenome of the nitrogen-fixing bacterium Sinorhizobium meliloti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galardini, Marco; Mengoni, Alessio; Brilli, Matteo

    Background: Sinorhizobium meliloti is a model system for the studies of symbiotic nitrogen fixation. An extensive polymorphism at the genetic and phenotypic level is present in natural populations of this species, especially in relation with symbiotic promotion of plant growth. AK83 and BL225C are two nodule-isolated strains with diverse symbiotic phenotypes; BL225C is more efficient in promoting growth of the Medicago sativa plants than strain AK83. In order to investigate the genetic determinants of the phenotypic diversification of S. meliloti strains AK83 and BL225C, we sequenced the complete genomes for these two strains. Results: With sizes of 7.14 Mbp andmore » 6.97 Mbp, respectively, the genomes of AK83 and BL225C are larger than the laboratory strain Rm1021. The core genome of Rm1021, AK83, BL225C strains included 5124 orthologous groups, while the accessory genome was composed by 2700 orthologous groups. While Rm1021 and BL225C have only three replicons (Chromosome, pSymA and pSymB), AK83 has also two plasmids, 260 and 70 Kbp long. We found 65 interesting orthologous groups of genes that were present only in the accessory genome, consequently responsible for phenotypic diversity and putatively involved in plant-bacterium interaction. Notably, the symbiosis inefficient AK83 lacked several genes required for microaerophilic growth inside nodules, while several genes for accessory functions related to competition, plant invasion and bacteroid tropism were identified only in AK83 and BL225C strains. Presence and extent of polymorphism in regulons of transcription factors involved in symbiotic interaction were also analyzed. Our results indicate that regulons are flexible, with a large number of accessory genes, suggesting that regulons polymorphism could also be a key determinant in the variability of symbiotic performances among the analyzed strains.« less

  2. Enhancement of oil degradation by co-culture of hydrocarbon degrading and biosurfactant producing bacteria.

    PubMed

    Kumar, Manoj; Leon, Vladimir; Materano, Angela De Sisto; Ilzins, Olaf A

    2006-01-01

    In this study the biodegradation of oil by hydrocarbon degrading Pseudomonas putida in the presence of a biosurfactant-producing bacterium was investigated. The co-culture of test organisms exhibited improved degradation capacities, in a reproducible fashion, in aqueous and soil matrix in comparison to the individual bacterium culture. Results indicate that the in situ biosurfactant production not only resulted in increased emulsification of the oil but also change the adhesion of the hydrocarbon to cell surface of other bacterium. The understanding of interactions beetwen microbes may provide opportunities to further enhancement of contaminants biodegradation by making a suitable blend for bioaugmentation.

  3. Serratia marcescens Cyclic AMP Receptor Protein Controls Transcription of EepR, a Novel Regulator of Antimicrobial Secondary Metabolites.

    PubMed

    Stella, Nicholas A; Lahr, Roni M; Brothers, Kimberly M; Kalivoda, Eric J; Hunt, Kristin M; Kwak, Daniel H; Liu, Xinyu; Shanks, Robert M Q

    2015-08-01

    Serratia marcescens generates secondary metabolites and secreted enzymes, and it causes hospital infections and community-acquired ocular infections. Previous studies identified cyclic AMP (cAMP) receptor protein (CRP) as an indirect inhibitor of antimicrobial secondary metabolites. Here, we identified a putative two-component regulator that suppressed crp mutant phenotypes. Evidence supports that the putative response regulator eepR was directly transcriptionally inhibited by cAMP-CRP. EepR and the putative sensor kinase EepS were necessary for the biosynthesis of secondary metabolites, including prodigiosin- and serratamolide-dependent phenotypes, swarming motility, and hemolysis. Recombinant EepR bound to the prodigiosin and serratamolide promoters in vitro. Together, these data introduce a novel regulator of secondary metabolites that directly connects the broadly conserved metabolism regulator CRP with biosynthetic genes that may contribute to competition with other microbes. This study identifies a new transcription factor that is directly controlled by a broadly conserved transcription factor, CRP. CRP is well studied in its role to help bacteria respond to the amount of nutrients in their environment. The new transcription factor EepR is essential for the bacterium Serratia marcescens to produce two biologically active compounds, prodigiosin and serratamolide. These two compounds are antimicrobial and may allow S. marcescens to compete for limited nutrients with other microorganisms. Results from this study tie together the CRP environmental nutrient sensor with a new regulator of antimicrobial compounds. Beyond microbial ecology, prodigiosin and serratamolide have therapeutic potential; therefore, understanding their regulation is important for both applied and basic science. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Catalytic Biomineralization of Fluorescent Calcite by the Thermophilic Bacterium Geobacillus thermoglucosidasius▿

    PubMed Central

    Yoshida, Naoto; Higashimura, Eiji; Saeki, Yuichi

    2010-01-01

    The thermophilic Geobacillus bacterium catalyzed the formation of 100-μm hexagonal crystals at 60°C in a hydrogel containing sodium acetate, calcium chloride, and magnesium sulfate. Under fluorescence microscopy, crystals fluoresced upon excitation at 365 ± 5, 480 ± 20, or 545 ± 15 nm. X-ray diffraction indicated that the crystals were magnesium-calcite in calcite-type calcium carbonate. PMID:20851984

  5. Identification and characterization of a cyclosporin binding cyclophilin from Staphylococcus aureus Newman

    PubMed Central

    Polley, Soumitra; Seal, Soham; Mahapa, Avisek; Jana, Biswanath; Biswas, Anindya; Mandal, Sukhendu; Sinha, Debabrata; Sau, Keya; Sau, Subrata

    2017-01-01

    Cyclophilins, a class of peptidyl-prolyl cis-trans isomerase (PPIase) enzymes, are inhibited by cyclosporin A (CsA), an immunosuppressive drug. Staphylococcus aureus Newman, a pathogenic bacterium, carries a gene for encoding a putative cyclophilin (SaCyp). SaCyp shows significant homology with other cyclophilins at the sequence level. A three-dimensional model structure of SaCyp harbors a binding site for CsA. To verify whether SaCyp possesses both the PPIase activity and the CsA binding ability, we have purified and investigated a recombinant SaCyp (rCyp) using various in vitro tools. Our RNase T1 refolding assay indicates that rCyp has a substantial extent of PPIase activity. rCyp that exists as a monomer in the aqueous solution is truly a cyclophilin as its catalytic activity specifically shows sensitivity to CsA. rCyp appears to bind CsA with a reasonably high affinity. Additional investigations reveal that binding of CsA to rCyp alters its structure and shape to some extent. Both rCyp and rCyp-CsA are unfolded via the formation of at least one intermediate in the presence of guanidine hydrochloride. Unfolding study also indicates that there is substantial extent of thermodynamic stabilization of rCyp in the presence of CsA as well. The data suggest that rCyp may be exploited to screen the new antimicrobial agents in the future. PMID:28584448

  6. Crystal structure and functional characterization of SF216 from Shigella flexneri.

    PubMed

    Kim, Ha-Neul; Seok, Seung-Hyeon; Lee, Yoo-Sup; Won, Hyung-Sik; Seo, Min-Duk

    2017-11-01

    Shigella flexneri is a Gram-negative anaerobic bacterium that causes highly infectious bacterial dysentery in humans. Here, we solved the crystal structure of SF216, a hypothetical protein from the S. flexneri 5a strain M90T, at 1.7 Å resolution. The crystal structure of SF216 represents a homotrimer stabilized by intersubunit interactions and ion-mediated electrostatic interactions. Each subunit consists of three β-strands and five α-helices with the β-β-β-α-α-α-α-α topology. Based on the structural information, we also demonstrate that SF216 shows weak ribonuclease activity by a fluorescence quenching assay. Furthermore, we identify potential druggable pockets (putative hot spots) on the surface of the SF216 structure by computational mapping. © 2017 Federation of European Biochemical Societies.

  7. A novel strategy for acetonitrile wastewater treatment by using a recombinant bacterium with biofilm-forming and nitrile-degrading capability.

    PubMed

    Li, Chunyan; Yue, Zhenlei; Feng, Fengzhao; Xi, Chuanwu; Zang, Hailian; An, Xuejiao; Liu, Keran

    2016-10-01

    There is a great need for efficient acetonitrile removal technology in wastewater treatment to reduce the discharge of this pollutant in untreated wastewater. In this study, a nitrilase gene (nit) isolated from a nitrile-degrading bacterium (Rhodococcus rhodochrous BX2) was cloned and transformed into a biofilm-forming bacterium (Bacillus subtilis N4) that expressed the recombinant protein upon isopropylthio-β-galactoside (IPTG) induction. The recombinant bacterium (B. subtilis N4-pHT01-nit) formed strong biofilms and had nitrile-degrading capability. Further testing demonstrated that biofilms formed by B. subtilis N4-pHT01-nit were highly resistant to loading shock from acetonitrile and almost completely degraded the initial concentration of acetonitrile (800 mg L(-1)) within 24 h in a moving bed biofilm reactor (MBBR) after operation for 35 d. The bacterial composition of the biofilm, identified by high-throughput sequencing, in a reactor in which the B. subtilis N4-pHT01-nit bacterium was introduced indicated that the engineered bacterium was successfully immobilized in the reactor and became dominant genus. This work demonstrates that an engineered bacterium with nitrile-degrading and biofilm-forming capacity can improve the degradation of contaminants in wastewater. This approach offers a novel strategy for enhancing the biological oxidation of toxic pollutants in wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Analysis of the grape (Vitis vinifera L.) thaumatin-like protein (TLP) gene family and demonstration that TLP29 contributes to disease resistance.

    PubMed

    Yan, Xiaoxiao; Qiao, Hengbo; Zhang, Xiuming; Guo, Chunlei; Wang, Mengnan; Wang, Yuejin; Wang, Xiping

    2017-06-27

    Thaumatin-like protein (TLP) is present as a large family in plants, and individual members play different roles in various responses to biotic and abiotic stresses. Here we studied the role of 33 putative grape (Vitis vinifera L.) TLP genes (VvTLP) in grape disease resistance. Heat maps analysis compared the expression profiles of 33 genes in disease resistant and susceptible grape species infected with anthracnose (Elsinoe ampelina), powdery mildew (Erysiphe necator) or Botrytis cinerea. Among these 33 genes, the expression level of TLP29 increased following the three pathogens inoculations, and its homolog from the disease resistant Chinese wild grape V. quinquangularis cv. 'Shang-24', was focused for functional studies. Over-expression of TLP29 from grape 'Shang-24' (VqTLP29) in Arabidopsis thaliana enhanced its resistance to powdery mildew and the bacterium Pseudomonas syringae pv. tomato DC3000, but decreased resistance to B. cinerea. Moreover, the stomatal closure immunity response to pathogen associated molecular patterns was strengthened in the transgenic lines. A comparison of the expression profiles of various resistance-related genes after infection with different pathogens indicated that VqTLP29 may be involved in the salicylic acid and jasmonic acid/ethylene signaling pathways.

  9. Assessing the functionality and genetic diversity of lactococcal prophages.

    PubMed

    Kelleher, Philip; Mahony, Jennifer; Schweinlin, Katharina; Neve, Horst; Franz, Charles M; van Sinderen, Douwe

    2018-05-02

    Lactococcus lactis is a lactic acid bacterium that is intensively and globally exploited in commercial dairy food fermentations. Though the presence of prophages in lactococcal genomes is widely reported, only limited studies pertaining to the stability of prophages in lactococcal genomes have been performed. The current study reports on the complete genome exploration of thirty lactococcal strains for the presence of potentially intact prophages, so as to assess their genomic diversity and the associated risk or benefit of harbouring such prophages. Genomic predictions partnered with mitomycin C inductions and flow cytometric analysis of the induced cell lysates confirmed that only four strains consistently produced intact phage particles, thus indicating a relatively low risk associated with prophage induction in the fermentation setting. Our analysis revealed the widespread presence of putative phage-resistance systems encoded by lactococcal prophages, thus highlighting the potential benefits for host fitness. Many of the identified lactococcal prophages belong to the so-called P335 phage group, while a large group of phage remnants bear similarity to members of the 936 phage group. The P335 phage group was recently shown to encompass four distinct genetic lineages. Our study identified an additional lineage, thus expanding the diversity of this industrially significant phage group. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. The genome sequence of Dyella jiangningensis FCAV SCS01 from a lignocellulose-decomposing microbial consortium metagenome reveals potential for biotechnological applications.

    PubMed

    Desiderato, Joana G; Alvarenga, Danillo O; Constancio, Milena T L; Alves, Lucia M C; Varani, Alessandro M

    2018-05-14

    Cellulose and its associated polymers are structural components of the plant cell wall, constituting one of the major sources of carbon and energy in nature. The carbon cycle is dependent on cellulose- and lignin-decomposing microbial communities and their enzymatic systems acting as consortia. These microbial consortia are under constant exploration for their potential biotechnological use. Herein, we describe the characterization of the genome of Dyella jiangningensis FCAV SCS01, recovered from the metagenome of a lignocellulose-degrading microbial consortium, which was isolated from a sugarcane crop soil under mechanical harvesting and covered by decomposing straw. The 4.7 Mbp genome encodes 4,194 proteins, including 36 glycoside hydrolases (GH), supporting the hypothesis that this bacterium may contribute to lignocellulose decomposition. Comparative analysis among fully sequenced Dyella species indicate that the genome synteny is not conserved, and that D. jiangningensis FCAV SCS01 carries 372 unique genes, including an alpha-glucosidase and maltodextrin glucosidase coding genes, and other potential biomass degradation related genes. Additional genomic features, such as prophage-like, genomic islands and putative new biosynthetic clusters were also uncovered. Overall, D. jiangningensis FCAV SCS01 represents the first South American Dyella genome sequenced and shows an exclusive feature among its genus, related to biomass degradation.

  11. Prevalence and potential pathogenicity of Vibrio parahaemolyticus in Chinese mitten crabs (Eriocheir sinensis) harvested from the River Thames estuary, England.

    PubMed

    Wagley, Sariqa; Koofhethile, Kegakilwe; Rangdale, Rachel

    2009-01-01

    Chinese mitten crabs (Eriocheir sinensis) have been described as an alien invasive species in the River Thames, United Kingdom, and elsewhere in Europe. The crabs can cause considerable physical damage to the riverbeds and threaten native ecosystems. Trapping has been considered an option, but such attempts to control mitten crab populations in Germany in the 1930s failed. In the United Kingdom, it has been suggested that commercial exploitation of the species could be employed as a control option. This study was conducted as part of a larger program to assess the suitability of a commercial Chinese mitten crab fishery in the River Thames. Crabs and water samples from the River Thames between 2003 and 2006 were examined for the human pathogenic bacterium Vibrio parahaemolyticus. All samples throughout this testing period were positive for V. parahaemolyticus. The putative pathogenicity markers, thermostable direct hemolysin and thermostable direct-related hemolysin, were detected in one sample, indicating that the crabs possessed the potential to cause V. parahaemolyticus-associated illness if consumed without further processing. Levels of V. parahaemolyticus were higher during the summer than in the winter. This is the first study of V. parahaemolyticus prevalence in European-adapted Chinese mitten crabs.

  12. Exploring the roles of DNA methylation in the metal-reducing bacterium Shewanella oneidensis MR-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bendall, Matthew L.; Luong, Khai; Wetmore, Kelly M.

    2013-08-30

    We performed whole genome analyses of DNA methylation in Shewanella 17 oneidensis MR-1 to examine its possible role in regulating gene expression and 18 other cellular processes. Single-Molecule Real Time (SMRT) sequencing 19 revealed extensive methylation of adenine (N6mA) throughout the 20 genome. These methylated bases were located in five sequence motifs, 21 including three novel targets for Type I restriction/modification enzymes. The 22 sequence motifs targeted by putative methyltranferases were determined via 23 SMRT sequencing of gene knockout mutants. In addition, we found S. 24 oneidensis MR-1 cultures grown under various culture conditions displayed 25 different DNA methylation patterns.more » However, the small number of differentially 26 methylated sites could not be directly linked to the much larger number of 27 differentially expressed genes in these conditions, suggesting DNA methylation is 28 not a major regulator of gene expression in S. oneidensis MR-1. The enrichment 29 of methylated GATC motifs in the origin of replication indicate DNA methylation 30 may regulate genome replication in a manner similar to that seen in Escherichia 31 coli. Furthermore, comparative analyses suggest that many 32 Gammaproteobacteria, including all members of the Shewanellaceae family, may 33 also utilize DNA methylation to regulate genome replication.« less

  13. Campylobacter jejuni Colonization in Wild Birds: Results from an Infection Experiment

    PubMed Central

    Waldenström, Jonas; Axelsson-Olsson, Diana; Olsen, Björn; Hasselquist, Dennis; Griekspoor, Petra; Jansson, Lena; Teneberg, Susann; Svensson, Lovisa; Ellström, Patrik

    2010-01-01

    Campylobacter jejuni is a common cause of bacterial gastroenteritis in most parts of the world. The bacterium has a broad host range and has been isolated from many animals and environments. To investigate shedding patterns and putative effects on an avian host, we developed a colonization model in which a wild bird species, the European Robin Erithacus rubecula, was inoculated orally with C. jejuni from either a human patient or from another wild bird species, the Song Thrush Turdus philomelos. These two isolates were genetically distinct from each other and provoked very different host responses. The Song Thrush isolate colonized all challenged birds and colonization lasted 6.8 days on average. Birds infected with this isolate also showed a transient but significant decrease in body mass. The human isolate did not colonize the birds and could be detected only in the feces of the birds shortly after inoculation. European Robins infected with the wild bird isolate generated a specific antibody response to C. jejuni membrane proteins from the avian isolate, which also was cross-reactive to membrane proteins of the human isolate. In contrast, European Robins infected with the human isolate did not mount a significant response to bacterial membrane proteins from either of the two isolates. The difference in colonization ability could indicate host adaptations. PMID:20140204

  14. Repression of YdaS Toxin Is Mediated by Transcriptional Repressor RacR in the Cryptic rac Prophage of Escherichia coli K-12.

    PubMed

    Krishnamurthi, Revathy; Ghosh, Swagatha; Khedkar, Supriya; Seshasayee, Aswin Sai Narain

    2017-01-01

    Horizontal gene transfer is a major driving force behind the genomic diversity seen in prokaryotes. The cryptic rac prophage in Escherichia coli K-12 carries the gene for a putative transcription factor RacR, whose deletion is lethal. We have shown that the essentiality of racR in E. coli K-12 is attributed to its role in transcriptionally repressing toxin gene(s) called ydaS and ydaT , which are adjacent to and coded divergently to racR . IMPORTANCE Transcription factors in the bacterium E. coli are rarely essential, and when they are essential, they are largely toxin-antitoxin systems. While studying transcription factors encoded in horizontally acquired regions in E. coli , we realized that the protein RacR, a putative transcription factor encoded by a gene on the rac prophage, is an essential protein. Here, using genetics, biochemistry, and bioinformatics, we show that its essentiality derives from its role as a transcriptional repressor of the ydaS and ydaT genes, whose products are toxic to the cell. Unlike type II toxin-antitoxin systems in which transcriptional regulation involves complexes of the toxin and antitoxin, repression by RacR is sufficient to keep ydaS transcriptionally silent.

  15. Chancroid: from clinical practice to basic science.

    PubMed

    Lewis, D A

    2000-01-01

    Chancroid is a sexually transmitted disease caused by the bacterium Haemophilus ducreyi. It usually presents as a genital ulcer and may be associated with regional lymphadenopathy and bubo formation. H. ducreyi infection is predominantly seen in tropical resource-poor regions of the world where it is frequently the most common etiological cause of genital ulceration. Genital ulcer disease has been shown to be an extremely important co-factor in HIV transmission. With the advent of the AIDS epidemic, there has been increased research effort to elucidate those factors involved in the pathogenesis of chancroid. Several putative virulence factors have now been identified and isogenic H. ducreyi mutants constructed by mutagenesis of their encoding genes. This approach has facilitated investigations into the role each of these putative virulence factors may play in H. ducreyi pathogenesis through the use of in vitro and in vivo model systems. One major goal of current chancroid research is to identify antigens which are immunogenic and could form the basis of a vaccine against H. ducreyi infection. Such a vaccine, if shown to be effective in decreasing the prevalence of chancroid, could have the added benefit of slowing down the HIV incidence rates in those populations where chancroid is a major co-factor for HIV transmission.

  16. Functional Analysis of an S-Layer-Associated Fibronectin-Binding Protein in Lactobacillus acidophilus NCFM.

    PubMed

    Hymes, Jeffrey P; Johnson, Brant R; Barrangou, Rodolphe; Klaenhammer, Todd R

    2016-05-01

    Bacterial surface layers (S-layers) are crystalline arrays of self-assembling proteinaceous subunits called S-layer proteins (Slps) that comprise the outermost layer of the cell envelope. Many additional proteins that are associated with or embedded within the S-layer have been identified in Lactobacillus acidophilus NCFM, an S-layer-forming bacterium that is widely used in fermented dairy products and probiotic supplements. One putative S-layer-associated protein (SLAP), LBA0191, was predicted to mediate adhesion to fibronectin based on the in silico detection of a fibronectin-binding domain. Fibronectin is a major component of the extracellular matrix (ECM) of intestinal epithelial cells. Adhesion to intestinal epithelial cells is considered an important trait for probiotic microorganisms during transit and potential association with the intestinal mucosa. To investigate the functional role of LBA0191 (designated FbpB) in L. acidophilus NCFM, an fbpB-deficient strain was constructed. The L. acidophilus mutant with a deletion off bpB lost the ability to adhere to mucin and fibronectin in vitro Homologues off bpB were identified in five additional putative S-layer-forming species, but no homologues were detected in species outside theL. acidophilus homology group. Copyright © 2016 Hymes et al.

  17. A Novel Algicide: Evidence of the Effect of a Fatty Acid Compound from the Marine Bacterium, Vibrio sp. BS02 on the Harmful Dinoflagellate, Alexandrium tamarense

    PubMed Central

    Fu, Lijun; An, Xinli; Zhang, Bangzhou; Li, Yi; Chen, Zhangran; Zheng, Wei; Yi, Lin; Zheng, Tianling

    2014-01-01

    Alexandrium tamarense is a notorious bloom-forming dinoflagellate, which adversely impacts water quality and human health. In this study we present a new algicide against A. tamarense, which was isolated from the marine bacterium Vibrio sp. BS02. MALDI-TOF-MS, NMR and algicidal activity analysis reveal that this compound corresponds to palmitoleic acid, which shows algicidal activity against A. tamarense with an EC50 of 40 μg/mL. The effects of palmitoleic acid on the growth of other algal species were also studied. The results indicate that palmitoleic acid has potential for selective control of the Harmful algal blooms (HABs). Over extended periods of contact, transmission electron microscopy shows severe ultrastructural damage to the algae at 40 μg/mL concentrations of palmitoleic acid. All of these results indicate potential for controlling HABs by using the special algicidal bacterium and its active agent. PMID:24626054

  18. Identification of Putative Cytoskeletal Protein Homologues in the Protozoan Host Hartmannella vermiformis as Substrates for Induced Tyrosine Phosphatase Activity upon Attachment to the Legionnaires' Disease Bacterium, Legionella pneumophila

    PubMed Central

    Venkataraman, Chandrasekar; Gao, Lian-Yong; Bondada, Subbarao; Kwaik, Yousef Abu

    1998-01-01

    The Legionnaires' disease bacterium, Legionella pneumophila, is a facultative intracellular pathogen that invades and replicates within two evolutionarily distant hosts, free living protozoa and mammalian cells. Invasion and intracellular replication within protozoa are thought to be major factors in the transmission of Legionnaires' disease. We have recently reported the identification of a galactose/N-acetyl-d-galactosamine (Gal/GalNAc) lectin in the protozoan host Hartmannella vermiformis as a receptor for attachment and invasion by L. pneumophila (Venkataraman, C., B.J. Haack, S. Bondada, and Y.A. Kwaik. 1997. J. Exp. Med. 186:537–547). In this report, we extended our studies to the effects of bacterial attachment and invasion on the cytoskeletal proteins of H. vermiformis. We first identified the presence of many protozoan cytoskeletal proteins that were putative homologues to their mammalian counterparts, including actin, pp125FAK, paxillin, and vinculin, all of which were basally tyrosine phosphorylated in resting H. vermiformis. In addition to L. pneumophila–induced tyrosine dephosphorylation of the lectin, bacterial attachment and invasion was associated with tyrosine dephosphorylation of paxillin, pp125FAK, and vinculin, whereas actin was minimally affected. Inhibition of bacterial attachment to H. vermiformis by Gal or GalNAc monomers blocked bacteria-induced tyrosine dephosphorylation of detergent-insoluble proteins. In contrast, inhibition of bacterial invasion but not attachment failed to block bacteria-induced tyrosine dephosphorylation of H. vermiformis proteins. This was further supported by the observation that 10 mutants of L. pneumophila that were defective in invasion of H. vermiformis were capable of inducing tyrosine dephosphorylation of H. vermiformis proteins. Entry of L. pneumophila into H. vermiformis was predominantly mediated by noncoated receptor-mediated endocytosis (93%) but coiling phagocytosis was infrequently observed (7%). We conclude that attachment but not invasion by L. pneumophila into H. vermiformis was sufficient and essential to induce protein tyrosine dephosphorylation in H. vermiformis. These manipulations of host cell processes were associated with, or followed by, entry of the bacteria by a noncoated receptor-mediated endocytosis. A model for attachment and entry of L. pneumophila into H. vermiformis is proposed. PMID:9687528

  19. Spontaneous Mutation Reveals Influence of Exopolysaccharide on Lactobacillus johnsonii Surface Characteristics

    PubMed Central

    Horn, Nikki; Wegmann, Udo; Dertli, Enes; Mulholland, Francis; Collins, Samuel R. A.; Waldron, Keith W.; Bongaerts, Roy J.; Mayer, Melinda J.; Narbad, Arjan

    2013-01-01

    As a competitive exclusion agent, Lactobacillus johnsonii FI9785 has been shown to prevent the colonization of selected pathogenic bacteria from the chicken gastrointestinal tract. During growth of the bacterium a rare but consistent emergence of an altered phenotype was noted, generating smooth colonies in contrast to the wild type rough form. A smooth colony variant was isolated and two-dimensional gel analysis of both strains revealed a protein spot with different migration properties in the two phenotypes. The spot in both gels was identified as a putative tyrosine kinase (EpsC), associated with a predicted exopolysaccharide gene cluster. Sequencing of the epsC gene from the smooth mutant revealed a single substitution (G to A) in the coding strand, resulting in the amino acid change D88N in the corresponding gene product. A native plasmid of L. johnsonii was engineered to produce a novel vector for constitutive expression and this was used to demonstrate that expression of the wild type epsC gene in the smooth mutant produced a reversion to the rough colony phenotype. Both the mutant and epsC complemented strains had increased levels of exopolysaccharides compared to the wild type strain, indicating that the rough phenotype is not solely associated with the quantity of exopolysaccharide. Another gene in the cluster, epsE, that encoded a putative undecaprenyl-phosphate galactosephosphotransferase, was deleted in order to investigate its role in exopolysaccharide biosynthesis. The ΔepsE strain exhibited a large increase in cell aggregation and a reduction in exopolysaccharide content, while plasmid complementation of epsE restored the wild type phenotype. Flow cytometry showed that the wild type and derivative strains exhibited clear differences in their adhesive ability to HT29 monolayers in tissue culture, demonstrating an impact of EPS on surface properties and bacteria-host interactions. PMID:23544114

  20. [Partial biological characteristics and algicidal activity of an algicidal bacterium].

    PubMed

    Li, San-Hua; Zhang, Qi-Ya

    2013-02-01

    An algicidal bacterium was isolated from freshwater (Lake Donghu in Wuhan) and coded as A01. The morphology of the algicidal bacterium was observed using optical microscope and electron microscopes, the results showed that A01 was rod-shaped, approximately 1.5 microm in length and 0.45 microm in width and with no flagella structure. A01 was Gram-negative and belongs to the family Acinetobacter sp. though identification by Gram's staining and 16S rDNA gene analysis. A01 exhibited strong algicidal activity on the bloom-forming cyanobacterium Anabaena eucompacta under laboratory conditions. The removal rate of chlorophyll a after 7-day incubation with the culture supernatant of A01 and thalli were 77% and 61%, respectively. Microscopic observation showed that almost all cyanobacterial cells were destroyed within 3 d of co-incubation with the supernatant of algicidal bacterium, but a mass of the cyanobacterial cell lysis was observed only after 5 d of co-incubation with the thalli of algicidal bacterium. These results indicated that the main algicidal component of A01 was in its culture supernatant. In other words, the strain A01 could secrete algicidal component against Anabaena eucompacta.

  1. Characterization of two Listeria innocua chitinases of different sizes that were expressed in Escherichia coli.

    PubMed

    Honda, Shotaro; Wakita, Satoshi; Sugahara, Yasusato; Kawakita, Masao; Oyama, Fumitaka; Sakaguchi, Masayoshi

    2016-09-01

    Two putative chitinase genes, lin0153 and lin1996, from the nonpathogenic bacterium Listeria innocua were expressed in Escherichia coli, and the gene products were characterized. The genes were close homologs of chitinases from the pathogenic bacterium Listeria monocytogenes, in which chitinases and chitin-binding proteins play important roles in pathogenesis in mice-infection models. The purified recombinant enzymes that are different in size, LinChi78 (lin0153 product) and LinChi35 (lin1996 product)-with molecular masses of 82 and 38 kDa, including vector-derived additional sequences, respectively-exhibited optimum catalytic activity under neutral and acidic conditions at 50 °C, respectively, and were stable over broad pH (4-11) and temperature (4-40 °C) ranges. LinChi35 displayed higher k cat and K M values for 4-nitrophenyl N,N-diacetyl-β-D-chitobioside [4NP-(GlcNAc)2] than LinChi78. Both enzymes produced primarily dimers from colloidal chitin as a substrate. However, LinChi78 and LinChi35 could hydrolyze oligomeric substrates in a processive exo- and nonprocessive endo-manner, respectively, and showed different reactivity toward oligomeric substrates. Both enzymes could bind chitin beads but were different in their binding ability toward crystalline α-chitin and cellulose. The structure-function relationships of these chitinases are discussed in reference to other bacterial chitinases.

  2. The Complete Genome Sequence of the Plant Growth-Promoting Bacterium Pseudomonas sp. UW4

    PubMed Central

    Duan, Jin; Jiang, Wei; Cheng, Zhenyu; Heikkila, John J.; Glick, Bernard R.

    2013-01-01

    The plant growth-promoting bacterium (PGPB) Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs) were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated “housekeeping” genes (16S rRNA, gyrB, rpoB and rpoD) of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup. PMID:23516524

  3. Degradation of phenol via phenylphosphate and carboxylation to 4-hydroxybenzoate by a newly isolated strain of the sulfate-reducing bacterium Desulfobacterium anilini.

    PubMed

    Ahn, Young-Beom; Chae, Jong-Chan; Zylstra, Gerben J; Häggblom, Max M

    2009-07-01

    A sulfate-reducing phenol-degrading bacterium, strain AK1, was isolated from a 2-bromophenol-utilizing sulfidogenic estuarine sediment enrichment culture. On the basis of phylogenetic analysis of the 16S rRNA gene and DNA homology, strain AK1 is most closely related to Desulfobacterium anilini strain Ani1 (= DSM 4660(T)). In addition to phenol, this organism degrades a variety of other aromatic compounds, including benzoate, 2-hydroxybenzoate, 4-hydroxybenzoate, 4-hydroxyphenylacetate, 2-aminobenzoate, 2-fluorophenol, and 2-fluorobenzoate, but it does not degrade aniline, 3-hydroxybenzoate, 4-cyanophenol, 2,4-dihydroxybenzoate, monohalogenated phenols, or monohalogenated benzoates. Growth with sulfate as an electron acceptor occurred with acetate and pyruvate but not with citrate, propionate, butyrate, lactate, glucose, or succinate. Strain AK1 is able to use sulfate, sulfite, and thiosulfate as electron acceptors. A putative phenylphosphate synthase gene responsible for anaerobic phenol degradation was identified in strain AK1. In phenol-grown cultures inducible expression of the ppsA gene was verified by reverse transcriptase PCR, and 4-hydroxybenzoate was detected as an intermediate. These results suggest that the pathway for anaerobic degradation of phenol in D. anilini strain AK1 proceeds via phosphorylation of phenol to phenylphosphate, followed by carboxylation to 4-hydroxybenzoate. The details concerning such reaction pathways in sulfidogenic bacteria have not been characterized previously.

  4. Inheritance of the lysozyme inhibitor Ivy was an important evolutionary step by Yersinia pestis to avoid the host innate immune response.

    PubMed

    Derbise, Anne; Pierre, François; Merchez, Maud; Pradel, Elizabeth; Laouami, Sabrina; Ricard, Isabelle; Sirard, Jean-Claude; Fritz, Jill; Lemaître, Nadine; Akinbi, Henry; Boneca, Ivo G; Sebbane, Florent

    2013-05-15

    Yersinia pestis (the plague bacillus) and its ancestor, Yersinia pseudotuberculosis (which causes self-limited bowel disease), encode putative homologues of the periplasmic lysozyme inhibitor Ivy and the membrane-bound lysozyme inhibitor MliC. The involvement of both inhibitors in virulence remains subject to debate. Mutants lacking ivy and/or mliC were generated. We evaluated the mutants' ability to counter lysozyme, grow in serum, and/or counter leukocytes; to produce disease in wild-type, neutropenic, or lysozyme-deficient rodents; and to induce host inflammation. MliC was not required for lysozyme resistance and the development of plague. Deletion of ivy decreased Y. pestis' ability to counter lysozyme and polymorphonuclear neutrophils, but it did not affect the bacterium's ability to grow in serum or resist macrophages. Y. pestis lacking Ivy had attenuated virulence, unless animals were neutropenic or lysozyme deficient. The Ivy mutant induced inflammation to a degree similar to that of the parental strain. Last, Y. pseudotuberculosis did not require Ivy to counter lysozyme and for virulence. Ivy is required to counter lysozyme during infection, but its role as a virulence factor is species dependent. Our study also shows that a gene that is not necessary for the virulence of an ancestral bacterium may become essential in the emergence of a new pathogen.

  5. Pathogenicity of Moraxella osloensis, a Bacterium Associated with the Nematode Phasmarhabditis hermaphrodita, to the Slug Deroceras reticulatum

    PubMed Central

    Tan, Li; Grewal, Parwinder S.

    2001-01-01

    Moraxella osloensis, a gram-negative bacterium, is associated with Phasmarhabditis hermaphrodita, a nematode parasite of slugs. This bacterium-feeding nematode has potential for the biological control of slugs, especially the grey garden slug, Deroceras reticulatum. Infective juveniles of P. hermaphrodita invade the shell cavity of the slug, develop into self-fertilizing hermaphrodites, and produce progeny, resulting in host death. However, the role of the associated bacterium in the pathogenicity of the nematode to the slug is unknown. We discovered that M. osloensis alone is pathogenic to D. reticulatum after injection into the shell cavity or hemocoel of the slug. The bacteria from 60-h cultures were more pathogenic than the bacteria from 40-h cultures, as indicated by the higher and more rapid mortality of the slugs injected with the former. Coinjection of penicillin and streptomycin with the 60-h bacterial culture reduced its pathogenicity to the slug. Further work suggested that the reduction and loss of pathogenicity of the aged infective juveniles of P. hermaphrodita to D. reticulatum result from the loss of M. osloensis from the aged nematodes. Also, axenic J1/J2 nematodes were nonpathogenic after injection into the shell cavity. Therefore, we conclude that the bacterium is the sole killing agent of D. reticulatum in the nematode-bacterium complex and that P. hermaphrodita acts only as a vector to transport the bacterium into the shell cavity of the slug. The identification of the toxic metabolites produced by M. osloensis is being pursued. PMID:11679319

  6. Pathogenicity of Moraxella osloensis, a bacterium associated with the nematode Phasmarhabditis hermaphrodita, to the slug Deroceras reticulatum.

    PubMed

    Tan, L; Grewal, P S

    2001-11-01

    Moraxella osloensis, a gram-negative bacterium, is associated with Phasmarhabditis hermaphrodita, a nematode parasite of slugs. This bacterium-feeding nematode has potential for the biological control of slugs, especially the grey garden slug, Deroceras reticulatum. Infective juveniles of P. hermaphrodita invade the shell cavity of the slug, develop into self-fertilizing hermaphrodites, and produce progeny, resulting in host death. However, the role of the associated bacterium in the pathogenicity of the nematode to the slug is unknown. We discovered that M. osloensis alone is pathogenic to D. reticulatum after injection into the shell cavity or hemocoel of the slug. The bacteria from 60-h cultures were more pathogenic than the bacteria from 40-h cultures, as indicated by the higher and more rapid mortality of the slugs injected with the former. Coinjection of penicillin and streptomycin with the 60-h bacterial culture reduced its pathogenicity to the slug. Further work suggested that the reduction and loss of pathogenicity of the aged infective juveniles of P. hermaphrodita to D. reticulatum result from the loss of M. osloensis from the aged nematodes. Also, axenic J1/J2 nematodes were nonpathogenic after injection into the shell cavity. Therefore, we conclude that the bacterium is the sole killing agent of D. reticulatum in the nematode-bacterium complex and that P. hermaphrodita acts only as a vector to transport the bacterium into the shell cavity of the slug. The identification of the toxic metabolites produced by M. osloensis is being pursued.

  7. Effect of arsenite-oxidizing bacterium B. laterosporus on arsenite toxicity and arsenic translocation in rice seedlings.

    PubMed

    Yang, Gui-Di; Xie, Wan-Ying; Zhu, Xi; Huang, Yi; Yang, Xiao-Jun; Qiu, Zong-Qing; Lv, Zhen-Mao; Wang, Wen-Na; Lin, Wen-Xiong

    2015-10-01

    Arsenite [As (III)] oxidation can be accelerated by bacterial catalysis, but the effects of the accelerated oxidation on arsenic toxicity and translocation in rice plants are poorly understood. Herein we investigated how an arsenite-oxidizing bacterium, namely Brevibacillus laterosporus, influences As (III) toxicity and translocation in rice plants. Rice seedlings of four cultivars, namely Guangyou Ming 118 (GM), Teyou Hang II (TH), Shanyou 63 (SY) and Minghui 63 (MH), inoculated with or without the bacterium were grown hydroponically with As (III) to investigate its effects on arsenic toxicity and translocation in the plants. Percentages of As (III) oxidation in the solutions with the bacterium (100%) were all significantly higher than those without (30-72%). The addition of the bacterium significantly decreased As (III) concentrations in SY root, GM root and shoot, while increased the As (III) concentrations in the shoot of SY, MH and TH and in the root of MH. Furthermore, the As (III) concentrations in the root and shoot of SY were both the lowest among the treatments with the bacterium. On the other hand, its addition significantly alleviated the As (III) toxicity on four rice cultivars. Among the treatments amended with B. laterosporus, the bacterium showed the best remediation on SY seedlings, with respect to the subdued As (III) toxicity and decreased As (III) concentration in its roots. These results indicated that As (III) oxidation accelerated by B. laterosporus could be an effective method to alleviate As (III) toxicity on rice seedlings. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Expression and Characterization of a Bifidobacterium adolescentis Beta-Mannanase Carrying Mannan-Binding and Cell Association Motifs

    PubMed Central

    Kulcinskaja, Evelina; Rosengren, Anna; Ibrahim, Romany; Kolenová, Katarína

    2013-01-01

    The gene encoding β-mannanase (EC 3.2.1.78) BaMan26A from the bacterium Bifidobacterium adolescentis (living in the human gut) was cloned and the gene product characterized. The enzyme was found to be modular and to contain a putative signal peptide. It possesses a catalytic module of the glycoside hydrolase family 26, a predicted immunoglobulin-like module, and two putative carbohydrate-binding modules (CBMs) of family 23. The enzyme is likely cell attached either by the sortase mechanism (LPXTG motif) or via a C-terminal transmembrane helix. The gene was expressed in Escherichia coli without the native signal peptide or the cell anchor. Two variants were made: one containing all four modules, designated BaMan26A-101K, and one truncated before the CBMs, designated BaMan26A-53K. BaMan26A-101K, which contains the CBMs, showed an affinity to carob galactomannan having a dissociation constant of 0.34 μM (8.8 mg/liter), whereas BaMan26A-53K did not bind, showing that at least one of the putative CBMs of family 23 is mannan binding. For BaMan26A-53K, kcat was determined to be 444 s−1 and Km 21.3 g/liter using carob galactomannan as the substrate at the optimal pH of 5.3. Both of the enzyme variants hydrolyzed konjac glucomannan, as well as carob and guar gum galactomannans to a mixture of oligosaccharides. The dominant product from ivory nut mannan was found to be mannotriose. Mannobiose and mannotetraose were produced to a lesser extent, as shown by high-performance anion-exchange chromatography. Mannobiose was not hydrolyzed, and mannotriose was hydrolyzed at a significantly lower rate than the longer oligosaccharides. PMID:23064345

  9. Characterization of Actinomyces Isolates from Infected Root Canals of Teeth: Description of Actinomyces radicidentis sp. nov.

    PubMed Central

    Collins, Matthew D.; Hoyles, Lesley; Kalfas, Sotos; Sundquist, Goran; Monsen, Tor; Nikolaitchouk, Natalia; Falsen, Enevold

    2000-01-01

    Two strains of a previously undescribed Actinomyces-like bacterium were recovered in pure culture from infected root canals of teeth. Analysis by biochemical testing and polyacrylamide gel electrophoresis of whole-cell proteins indicated that the strains closely resembled each other phenotypically but were distinct from previously described Actinomyces and Arcanobacterium species. Comparative 16S rRNA gene-sequencing studies showed the bacterium to be a hitherto unknown subline within a group of Actinomyces species which includes Actinomyces bovis, the type species of the genus. Based on phylogenetic and phenotypic evidence, we propose that the unknown bacterium isolated from human clinical specimens be classified as Actinomyces radicidentis sp. nov. The type strain of Actinomyces radicidentis is CCUG 36733. PMID:10970390

  10. Phosphate enhances levan production in the endophytic bacterium Gluconacetobacter diazotrophicus Pal5

    PubMed Central

    Idogawa, Nao; Amamoto, Ryuta; Murata, Kousaku; Kawai, Shigeyuki

    2014-01-01

    Gluconacetobacter diazotrophicus is a gram-negative and endophytic nitrogen-fixing bacterium that has several beneficial effects in host plants; thus, utilization of this bacterium as a biofertilizer in agriculture may be possible. G. diazotrophicus synthesizes levan, a D-fructofuranosyl polymer with β-(2→6) linkages, as an exopolysaccharide and the synthesized levan improves the stress tolerance of the bacterium. In this study, we found that phosphate enhances levan production by G. diazotrophicus Pal5, a wild type strain that showed a stronger mucous phenotype on solid medium containing 28 mM phosphate than on solid medium containing 7 mM phosphate. A G. diazotrophicus Pal5 levansucrase disruptant showed only a weak mucous phenotype regardless of the phosphate concentration, indicating that the mucous phenotype observed on 28 mM phosphate medium was caused by levan. To our knowledge, this is the first report of the effect of a high concentration of phosphate on exopolysaccharide production. PMID:24717418

  11. Megaplasmids encode differing combinations of lantibiotics in Streptococcus salivarius.

    PubMed

    Wescombe, Philip A; Burton, Jeremy P; Cadieux, Peter A; Klesse, Nikolai A; Hyink, Otto; Heng, Nicholas C K; Chilcott, Chris N; Reid, Gregor; Tagg, John R

    2006-10-01

    Streptococcus salivarius strains commonly produce bacteriocins as putative anti-competitor or signalling molecules. Here we report that bacteriocin production by the oral probiotic strain S. salivarius K12 is encoded by a large (ca. 190 kb) plasmid. Oral cavity transmission of the plasmid from strain K12 to a plasmid-negative variant of this bacterium was demonstrated in two subjects. Tests of additional S. salivarius strains showed large (up to ca. 220 kb) plasmids present in bacteriocin-producing isolates. Various combinations (up to 3 per plasmid) of loci encoding the known streptococcal lantibiotics salivaricin A, salivaricin B, streptin and SA-FF22 were localised to these plasmids. Since all bacteriocin-producing strains of S. salivarius tested to date appear to harbour plasmids, it appears that they may function as mobile repositories for bacteriocin loci, especially those of the lantibiotic class.

  12. Neutron and Atomic Resolution X-ray Structures of a Lytic Polysaccharide Monooxygenase Reveal Copper-Mediated Dioxygen Binding and Evidence for N-Terminal Deprotonation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacik, John-Paul; Mekasha, Sophanit; Forsberg, Zarah

    A 1.1 Å resolution, room-temperature X-ray structure and a 2.1 Å resolution neutron structure of a chitin-degrading lytic polysaccharide monooxygenase domain from the bacterium Jonesia denitrificans (JdLPMO10A) show a putative dioxygen species equatorially bound to the active site copper. We found that both structures show an elongated density for the dioxygen, most consistent with a Cu(II)-bound peroxide. The coordination environment is consistent with Cu(II). Furthermore, in the neutron and X-ray structures, difference maps reveal the N-terminal amino group, involved in copper coordination, is present as a mixed ND 2 and ND –, suggesting a role for the copper ion inmore » shifting the pK a of the amino terminus.« less

  13. Complete genome sequence of the chromate-reducing bacterium Thermoanaerobacter thermohydrosulfuricus strain BSB-33

    DOE PAGES

    Bhattacharya, Pamela; Barnebey, Adam; Zemla, Marcin; ...

    2015-10-05

    Thermoanaerobacter thermohydrosulfuricus BSB-33 is a thermophilic gram positive obligate anaerobe isolated from a hot spring in West Bengal, India. Unlike other T. thermohydrosulfuricus strains, BSB-33 is able to anaerobically reduce Fe(III) and Cr(VI) optimally at 60 °C. BSB-33 is the first Cr(VI) reducing T. thermohydrosulfuricus genome sequenced and of particular interest for bioremediation of environmental chromium contaminations. Here we discuss features of T. thermohydrosulfuricus BSB-33 and the unique genetic elements that may account for the peculiar metal reducing properties of this organism. The T. thermohydrosulfuricus BSB-33 genome comprises 2597606 bp encoding 2581 protein genes, 12 rRNA, 193 pseudogenes and hasmore » a G + C content of 34.20 %. Lastly, putative chromate reductases were identified by comparative analyses with other Thermoanaerobacter and chromate-reducing bacteria.« less

  14. A novel carbohydrate-binding surface layer protein from the hyperthermophilic archaeon Pyrococcus horikoshii.

    PubMed

    Goda, Shuichiro; Koga, Tomoyuki; Yamashita, Kenichiro; Kuriura, Ryo; Ueda, Toshifumi

    2018-04-08

    In Archaea and Bacteria, surface layer (S-layer) proteins form the cell envelope and are involved in cell protection. In the present study, a putative S-layer protein was purified from the crude extract of Pyrococcus horikoshii using affinity chromatography. The S-layer gene was cloned and expressed in Escherichia coli. Isothermal titration calorimetry analyses showed that the S-layer protein bound N-acetylglucosamine and induced agglutination of the gram-positive bacterium Micrococcus lysodeikticus. The protein comprised a 21-mer structure, with a molecular mass of 1,340 kDa, as determined using small-angle X-ray scattering. This protein showed high thermal stability, with a midpoint of thermal denaturation of 79 °C in dynamic light scattering experiments. This is the first description of the carbohydrate-binding archaeal S-layer protein and its characteristics.

  15. Neutron and Atomic Resolution X-ray Structures of a Lytic Polysaccharide Monooxygenase Reveal Copper-Mediated Dioxygen Binding and Evidence for N-Terminal Deprotonation

    DOE PAGES

    Bacik, John-Paul; Mekasha, Sophanit; Forsberg, Zarah; ...

    2017-05-08

    A 1.1 Å resolution, room-temperature X-ray structure and a 2.1 Å resolution neutron structure of a chitin-degrading lytic polysaccharide monooxygenase domain from the bacterium Jonesia denitrificans (JdLPMO10A) show a putative dioxygen species equatorially bound to the active site copper. We found that both structures show an elongated density for the dioxygen, most consistent with a Cu(II)-bound peroxide. The coordination environment is consistent with Cu(II). Furthermore, in the neutron and X-ray structures, difference maps reveal the N-terminal amino group, involved in copper coordination, is present as a mixed ND 2 and ND –, suggesting a role for the copper ion inmore » shifting the pK a of the amino terminus.« less

  16. A putative marker for human pathogenic strains of Anaplasma phagocytophilum correlates with geography and host, but not human tropism.

    PubMed

    Foley, Janet; Stephenson, Nicole; Cubilla, Michelle Pires; Qurollo, Barbara; Breitschwerdt, Edward B

    2016-03-01

    Anaplasma phagocytophilum is an Ixodes species tick-transmitted bacterium that is capable of infecting a variety of host species, although there is a diversity of bacterial strains with differing host tropism. Recent analysis of A. phagocytophilum strains suggested that "drhm", a gene locus designated "distantly related to human marker" (drhm), which was predicted to be an integral membrane protein with possible transporter functions was not present in available canine and human isolates. By assessing 117 strains from 14 host species from across the US, we extended this analysis. Phylogenetic clades were associated with geography, but not host species. Additionally, a virulent clade that lacks drhm and infects dogs, horses, and humans in northeastern US was identified. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Complete genome of Pseudomonas sp. strain L10.10, a psychrotolerant biofertilizer that could promote plant growth.

    PubMed

    See-Too, Wah Seng; Lim, Yan-Lue; Ee, Robson; Convey, Peter; Pearce, David A; Yin, Wai-Fong; Chan, Kok Gan

    2016-03-20

    Pseudomonas sp. strain L10.10 (=DSM 101070) is a psychrotolerant bacterium which was isolated from Lagoon Island, Antarctica. Analysis of its complete genome sequence indicates its possible role as a plant-growth promoting bacterium, including nitrogen-fixing ability and indole acetic acid (IAA)-producing trait, with additional suggestion of plant disease prevention attributes via hydrogen cyanide production. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Complete Genome Sequence of a New Ruminococcaceae Bacterium Isolated from Anaerobic Biomass Hydrolysis.

    PubMed

    Hahnke, Sarah; Abendroth, Christian; Langer, Thomas; Codoñer, Francisco M; Ramm, Patrice; Porcar, Manuel; Luschnig, Olaf; Klocke, Michael

    2018-04-05

    A new Ruminococcaceae bacterium, strain HV4-5-B5C, participating in the anaerobic digestion of grass, was isolated from a mesophilic two-stage laboratory-scale leach bed biogas system. The draft annotated genome sequence presented in this study and 16S rRNA gene sequence analysis indicated the affiliation of HV4-5-B5C with the family Ruminococcaceae outside recently described genera. Copyright © 2018 Hahnke et al.

  19. TM0416, a Hyperthermophilic Promiscuous Nonphosphorylated Sugar Isomerase, Catalyzes Various C5 and C6 Epimerization Reactions

    PubMed Central

    Shin, Sun-Mi; Cao, Thinh-Phat; Choi, Jin Myung; Kim, Seong-Bo; Lee, Sang-Jae

    2017-01-01

    ABSTRACT There is currently little information on nonphosphorylated sugar epimerases, which are of potential interest for producing rare sugars. We found a gene (the TM0416 gene) encoding a putative d-tagatose-3-epimerase-related protein from the hyperthermophilic bacterium Thermotoga maritima. We overexpressed the TM0416 gene in Escherichia coli and purified the resulting recombinant protein for detailed characterization. Amino acid sequence alignment and a structural similarity search revealed that TM0416 is a putative nonphosphorylated sugar epimerase. The recombinant enzyme exhibited maximal C-3 epimerization of l-ribulose to l-xylulose at ∼80°C and pH 7 in the presence of 1 mM Mn2+. In addition, this enzyme showed unusually high activity for the epimerization of d-tagatose to d-sorbose, with a conversion yield of 20% after 6 h at 80°C. Remarkably, the enzyme catalyzed the isomerization of d-erythrose or d-threose to d-erythrulose significantly, with conversion yields of 71% and 54.5%, respectively, after 6 h at 80°C at pH 7. To further investigate the substrate specificity of TM0416, we determined its crystal structures in complex with divalent metal ions and l-erythrulose at resolutions of 1.5 and 1.6 Å. Detailed inspection of the structural features and biochemical data clearly demonstrated that this metalloenzyme, with a freely accessible substrate-binding site and neighboring hydrophobic residues, exhibits different and promiscuous substrate preferences, compared with its mesophilic counterparts. Therefore, this study suggests that TM0416 can be functionally classified as a novel type of l-ribulose 3-epimerase (R3E) with d-erythrose isomerase activity. IMPORTANCE Rare sugars, which occur naturally in small amounts, have attracted considerable attention in the food and drug industries. However, there is little information on nonphosphorylated sugar epimerases, which might potentially be applied for the production of rare sugars. This study describes the characterization and functional annotation of a putative nonphosphorylated sugar 3-epimerase from a hyperthermophilic bacterium. Furthermore, we determined its crystal structures in complex with divalent metal ions and l-erythrulose, highlighting its metal-dependent, bifunctional, sugar-isomerizing activity. This hyperthermophilic R3E exhibited d-erythrose/d-threose isomerase activity, with structural features near the substrate-binding site distinct from those of its mesophilic counterparts. Moreover, this metalloenzyme showed unusually high activity for the epimerization of d-tagatose to d-sorbose at 70°C. Therefore, TM0416 can be functionally classified as a novel type of promiscuous R3E with a potential for the production of rare sugars for the food and pharmaceutical industries. PMID:28258150

  20. TM0416, a Hyperthermophilic Promiscuous Nonphosphorylated Sugar Isomerase, Catalyzes Various C5 and C6 Epimerization Reactions.

    PubMed

    Shin, Sun-Mi; Cao, Thinh-Phat; Choi, Jin Myung; Kim, Seong-Bo; Lee, Sang-Jae; Lee, Sung Haeng; Lee, Dong-Woo

    2017-05-15

    There is currently little information on nonphosphorylated sugar epimerases, which are of potential interest for producing rare sugars. We found a gene (the TM0416 gene) encoding a putative d-tagatose-3-epimerase-related protein from the hyperthermophilic bacterium Thermotoga maritima We overexpressed the TM0416 gene in Escherichia coli and purified the resulting recombinant protein for detailed characterization. Amino acid sequence alignment and a structural similarity search revealed that TM0416 is a putative nonphosphorylated sugar epimerase. The recombinant enzyme exhibited maximal C-3 epimerization of l-ribulose to l-xylulose at ∼80°C and pH 7 in the presence of 1 mM Mn 2+ In addition, this enzyme showed unusually high activity for the epimerization of d-tagatose to d-sorbose, with a conversion yield of 20% after 6 h at 80°C. Remarkably, the enzyme catalyzed the isomerization of d-erythrose or d-threose to d-erythrulose significantly, with conversion yields of 71% and 54.5%, respectively, after 6 h at 80°C at pH 7. To further investigate the substrate specificity of TM0416, we determined its crystal structures in complex with divalent metal ions and l-erythrulose at resolutions of 1.5 and 1.6 Å. Detailed inspection of the structural features and biochemical data clearly demonstrated that this metalloenzyme, with a freely accessible substrate-binding site and neighboring hydrophobic residues, exhibits different and promiscuous substrate preferences, compared with its mesophilic counterparts. Therefore, this study suggests that TM0416 can be functionally classified as a novel type of l-ribulose 3-epimerase (R3E) with d-erythrose isomerase activity. IMPORTANCE Rare sugars, which occur naturally in small amounts, have attracted considerable attention in the food and drug industries. However, there is little information on nonphosphorylated sugar epimerases, which might potentially be applied for the production of rare sugars. This study describes the characterization and functional annotation of a putative nonphosphorylated sugar 3-epimerase from a hyperthermophilic bacterium. Furthermore, we determined its crystal structures in complex with divalent metal ions and l-erythrulose, highlighting its metal-dependent, bifunctional, sugar-isomerizing activity. This hyperthermophilic R3E exhibited d-erythrose/d-threose isomerase activity, with structural features near the substrate-binding site distinct from those of its mesophilic counterparts. Moreover, this metalloenzyme showed unusually high activity for the epimerization of d-tagatose to d-sorbose at 70°C. Therefore, TM0416 can be functionally classified as a novel type of promiscuous R3E with a potential for the production of rare sugars for the food and pharmaceutical industries. Copyright © 2017 American Society for Microbiology.

  1. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638

    PubMed Central

    Taghavi, Safiyh; van der Lelie, Daniel; Hoffman, Adam; Zhang, Yian-Biao; Walla, Michael D.; Vangronsveld, Jaco; Newman, Lee; Monchy, Sébastien

    2010-01-01

    Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpa×deltoides cv. H11-11), a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1). Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plant roots), root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis), colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase), plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol), and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT–PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further exploited to improve establishment and sustainable production of poplar as an energy feedstock on marginal, non-agricultural soils using endophytic bacteria as growth promoting agents. PMID:20485560

  2. Characterization of a Recombinant Cathepsin B-Like Cysteine Peptidase from Diaphorina citri Kuwayama (Hemiptera: Liviidae): A Putative Target for Control of Citrus Huanglongbing.

    PubMed

    Ferrara, Taíse Fernanda da Silva; Schneider, Vanessa Karine; Kishi, Luciano Takeshi; Carmona, Adriana Karaoglanovic; Alves, Marcio Fernando Madureira; Belasque-Júnior, Jose; Rosa, José César; Hunter, Wayne Brian; Henrique-Silva, Flávio; Soares-Costa, Andrea

    2015-01-01

    Huanglonbing (HLB) is one of the most destructive disease affecting citrus plants. The causal agent is associated with the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas) and the psyllid Diaphorina citri, vector of disease, that transmits the bacterium associated with HLB. The control of disease can be achieved by suppressing either the bacterium or the vector. Among the control strategies for HLB disease, one of the widely used consists in controlling the enzymes of the disease vector, Diaphorina citri. The insect Diaphorina citri belongs to the order Hemiptera, which frequently have cysteine peptidases in the gut. The importance of this class of enzymes led us to search for enzymes in the D. citri transcriptome for the establishment of alternatives strategies for HLB control. In this study, we reported the identification and characterization of a cathepsin B-like cysteine peptidase from D. citri (DCcathB). DCcathB was recombinantly expressed in Pichia pastoris, presenting a molecular mass of approximately 50 kDa. The enzyme hydrolyzed the fluorogenic substrate Z-F-R-AMC (Km = 23.5 μM) and the selective substrate for cathepsin B, Z-R-R-AMC (Km = 6.13 μM). The recombinant enzyme was inhibited by the cysteine protease inhibitors E64 (IC50 = 0.014 μM) and CaneCPI-4 (Ki = 0.05 nM) and by the selective cathepsin B inhibitor CA-074 (IC50 = 0.095 nM). RT-qPCR analysis revealed that the expression of the DCcathB in nymph and adult was approximately 9-fold greater than in egg. Moreover, the expression of this enzyme in the gut was 175-fold and 3333-fold higher than in the remaining tissues and in the head, respectively, suggesting that DCcathB can be a target for HLB control.

  3. Characterization of a Recombinant Cathepsin B-Like Cysteine Peptidase from Diaphorina citri Kuwayama (Hemiptera: Liviidae): A Putative Target for Control of Citrus Huanglongbing

    PubMed Central

    Kishi, Luciano Takeshi; Carmona, Adriana Karaoglanovic; Alves, Marcio Fernando Madureira; Belasque-Júnior, Jose; Rosa, José César; Hunter, Wayne Brian; Henrique-Silva, Flávio; Soares-Costa, Andrea

    2015-01-01

    Huanglonbing (HLB) is one of the most destructive disease affecting citrus plants. The causal agent is associated with the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas) and the psyllid Diaphorina citri, vector of disease, that transmits the bacterium associated with HLB. The control of disease can be achieved by suppressing either the bacterium or the vector. Among the control strategies for HLB disease, one of the widely used consists in controlling the enzymes of the disease vector, Diaphorina citri. The insect Diaphorina citri belongs to the order Hemiptera, which frequently have cysteine peptidases in the gut. The importance of this class of enzymes led us to search for enzymes in the D. citri transcriptome for the establishment of alternatives strategies for HLB control. In this study, we reported the identification and characterization of a cathepsin B-like cysteine peptidase from D. citri (DCcathB). DCcathB was recombinantly expressed in Pichia pastoris, presenting a molecular mass of approximately 50 kDa. The enzyme hydrolyzed the fluorogenic substrate Z-F-R-AMC (K m = 23.5 μM) and the selective substrate for cathepsin B, Z-R-R-AMC (K m = 6.13 μM). The recombinant enzyme was inhibited by the cysteine protease inhibitors E64 (IC50 = 0.014 μM) and CaneCPI-4 (Ki = 0.05 nM) and by the selective cathepsin B inhibitor CA-074 (IC50 = 0.095 nM). RT-qPCR analysis revealed that the expression of the DCcathB in nymph and adult was approximately 9-fold greater than in egg. Moreover, the expression of this enzyme in the gut was 175-fold and 3333-fold higher than in the remaining tissues and in the head, respectively, suggesting that DCcathB can be a target for HLB control. PMID:26717484

  4. Molecular stress responses to nano-sized zero-valent iron (nZVI) particles in the soil bacterium Pseudomonas stutzeri.

    PubMed

    Saccà, Maria Ludovica; Fajardo, Carmen; Martinez-Gomariz, Montserrat; Costa, Gonzalo; Nande, Mar; Martin, Margarita

    2014-01-01

    Nanotoxicological studies were performed in vitro using the common soil bacterium Pseudomonas stutzeri to assess the potentially toxic impact of commercial nano-sized zero-valent iron (nZVI) particles, which are currently used for environmental remediation projects. The phenotypic response of P. stutzeri to nZVI toxicity includes an initial insult to the cell wall, as evidenced by TEM micrographs. Transcriptional analyses using genes of particular relevance in cellular activity revealed that no significant changes occurred among the relative expression ratios of narG, nirS, pykA or gyrA following nZVI exposure; however, a significant increase in katB expression was indicative of nZVI-induced oxidative stress in P. stutzeri. A proteomic approach identified two major defence mechanisms that occurred in response to nZVI exposure: a downregulation of membrane proteins and an upregulation of proteins involved in reducing intracellular oxidative stress. These biomarkers served as early indicators of nZVI response in this soil bacterium, and may provide relevant information for environmental hazard assessment.

  5. Molecular Stress Responses to Nano-Sized Zero-Valent Iron (nZVI) Particles in the Soil Bacterium Pseudomonas stutzeri

    PubMed Central

    Saccà, Maria Ludovica; Fajardo, Carmen; Martinez-Gomariz, Montserrat; Costa, Gonzalo; Nande, Mar; Martin, Margarita

    2014-01-01

    Nanotoxicological studies were performed in vitro using the common soil bacterium Pseudomonas stutzeri to assess the potentially toxic impact of commercial nano-sized zero-valent iron (nZVI) particles, which are currently used for environmental remediation projects. The phenotypic response of P. stutzeri to nZVI toxicity includes an initial insult to the cell wall, as evidenced by TEM micrographs. Transcriptional analyses using genes of particular relevance in cellular activity revealed that no significant changes occurred among the relative expression ratios of narG, nirS, pykA or gyrA following nZVI exposure; however, a significant increase in katB expression was indicative of nZVI-induced oxidative stress in P. stutzeri. A proteomic approach identified two major defence mechanisms that occurred in response to nZVI exposure: a downregulation of membrane proteins and an upregulation of proteins involved in reducing intracellular oxidative stress. These biomarkers served as early indicators of nZVI response in this soil bacterium, and may provide relevant information for environmental hazard assessment. PMID:24586957

  6. Lytic and Chemotactic Features of the Plaque-Forming Bacterium KD531 on Phaeodactylum tricornutum

    PubMed Central

    Chen, Zhangran; Zheng, Wei; Yang, Luxi; Boughner, Lisa A.; Tian, Yun; Zheng, Tianling; Xu, Hong

    2017-01-01

    Phaeodactylum tricornutum is a dominant bloom forming species and potential biofuel feedstock. To control P. tricornutum bloom or to release lipids from P. tricornutum, we previously screened and identified the lytic bacterium Labrenzia sp. KD531 toward P. tricornutum. In the present study, we evaluated the lytic activity of Labrenzia sp. KD531 on microalgae and investigated its lytic mechanism. The results indicated that the lytic activity of KD531 was temperature- and pH-dependent, but light-independent. In addition to P. tricornutum, KD531 also showed lytic activity against other algal species, especially green algae. A quantitative analysis of algal cellular protein, carbohydrate and lipid content together with measurements of dry weight after exposure to bacteria-infected algal lysate indicated that the bacterium KD531 influenced the algal biomass by disrupting the algal cells. Both chemotactic analysis and microscopic observations of subsamples from different regions of formed plaques showed that KD531 could move toward and then directly contact algal cells. Direct contact between P. tricornutum and KD531 cells was essential for the lytic process. PMID:29312256

  7. The clc Element of Pseudomonas sp. Strain B13, a Genomic Island with Various Catabolic Properties

    PubMed Central

    Gaillard, Muriel; Vallaeys, Tatiana; Vorhölter, Frank Jörg; Minoia, Marco; Werlen, Christoph; Sentchilo, Vladimir; Pühler, Alfred; van der Meer, Jan Roelof

    2006-01-01

    Pseudomonas sp. strain B13 is a bacterium known to degrade chloroaromatic compounds. The properties to use 3- and 4-chlorocatechol are determined by a self-transferable DNA element, the clc element, which normally resides at two locations in the cell's chromosome. Here we report the complete nucleotide sequence of the clc element, demonstrating the unique catabolic properties while showing its relatedness to genomic islands and integrative and conjugative elements rather than to other known catabolic plasmids. As far as catabolic functions, the clc element harbored, in addition to the genes for chlorocatechol degradation, a complete functional operon for 2-aminophenol degradation and genes for a putative aromatic compound transport protein and for a multicomponent aromatic ring dioxygenase similar to anthranilate hydroxylase. The genes for catabolic functions were inducible under various conditions, suggesting a network of catabolic pathway induction. For about half of the open reading frames (ORFs) on the clc element, no clear functional prediction could be given, although some indications were found for functions that were similar to plasmid conjugation. The region in which these ORFs were situated displayed a high overall conservation of nucleotide sequence and gene order to genomic regions in other recently completed bacterial genomes or to other genomic islands. Most notably, except for two discrete regions, the clc element was almost 100% identical over the whole length to a chromosomal region in Burkholderia xenovorans LB400. This indicates the dynamic evolution of this type of element and the continued transition between elements with a more pathogenic character and those with catabolic properties. PMID:16484212

  8. Fine-scale landscape genomics helps explain the slow spatial spread of Wolbachia through the Aedes aegypti population in Cairns, Australia.

    PubMed

    Schmidt, Thomas L; Filipović, Igor; Hoffmann, Ary A; Rašić, Gordana

    2018-05-01

    The endosymbiotic bacterium Wolbachia suppresses the capacity for arbovirus transmission in the mosquito Aedes aegypti, and can spread spatially through wild mosquito populations following local introductions. Recent introductions in Cairns, Australia have demonstrated slower than expected spatial spread. Potential reasons for this include: (i) barriers to Ae. aegypti dispersal; (ii) higher incidence of long-range dispersal; and (iii) intergenerational loss of Wolbachia. We investigated these three potential factors using genome-wide single-nucleotide polymorphisms (SNPs) and an assay for the Wolbachia infection wMel in 161 Ae. aegypti collected from Cairns in 2015. We detected a small but significant barrier effect of Cairns highways on Ae. aegypti dispersal using distance-based redundancy analysis and patch-based simulation analysis. We detected a pair of putative full-siblings in ovitraps 1312 m apart, indicating long-distance female movement likely mediated by human transport. We also found a pair of full-siblings of different infection status, indicating intergenerational loss of Wolbachia in the field. These three factors are all expected to contribute to the slow spread of Wolbachia through Ae. aegypti populations, though from our results it is unclear whether Wolbachia loss and long-distance movement are sufficiently common to reduce the speed of spatial spread appreciably. Our findings inform the strategic deployment of Wolbachia-infected mosquitoes during releases, and show how parameter estimates from laboratory studies may differ from those estimated using field data. Our landscape genomics approach can be extended to other host/symbiont systems that are being considered for biocontrol.

  9. Brevibacillus laterosporus strain BPM3, a potential biocontrol agent isolated from a natural hot water spring of Assam, India.

    PubMed

    Saikia, R; Gogoi, D K; Mazumder, S; Yadav, A; Sarma, R K; Bora, T C; Gogoi, B K

    2011-03-20

    A bacterial strain designated as BPM3 isolated from mud of a natural hot water spring of Nambar Wild Life Sanctuary, Assam, India, strongly inhibited growth of phytopathogenic fungi (Fusarium oxysporum f. sp. ciceri, F. semitectum, Magnaporthe grisea and Rhizoctonia oryzae) and gram-positive bacterium (Staphylococcus aureus). The maximum growth and antagonistic activity was recorded at 30°C, pH 8.5 when starch and peptone were amended as carbon and nitrogen sources, respectively. In greenhouse experiment, this bacterium (BPM3) suppressed blast disease of rice by 30-67% and protected the weight loss by 35-56.5%. The maximum disease protection (67%) and weight loss protection (56.5%) were recorded when the bacterium was applied before 2 days of the pathogen inoculation. Antifungal and antibacterial compounds were isolated from the bacterium which also inhibited the growth of these targeted pathogens. The compounds were purified and on spectroscopic analysis of a purified fraction having R(f) 0.22 which showed strong antifungal and antibacterial activity indicated the presence of C-H, carbonyl group, dimethyl group, -CH(2) and methyl group. The bacterium was characterized by morphological, biochemical and molecular approaches and confirmed that the strain BPM3 is Brevibacillus laterosporus. Copyright © 2010 Elsevier GmbH. All rights reserved.

  10. Isolation and survey of novel fluoroacetate-degrading bacteria belonging to the phylum Synergistetes.

    PubMed

    Davis, Carl K; Webb, Richard I; Sly, Lindsay I; Denman, Stuart E; McSweeney, Chris S

    2012-06-01

    Microbial dehalogenation of chlorinated compounds in anaerobic environments is well known, but the degradation of fluorinated compounds under similar conditions has rarely been described. Here, we report on the isolation of a bovine rumen bacterium that metabolizes fluoroacetate under anaerobic conditions, the mode of degradation and its presence in gut ecosystems. The bacterium was identified using 16S rRNA gene sequence analysis as belonging to the phylum Synergistetes and was designated strain MFA1. Growth was stimulated by amino acids with greater quantities of amino acids metabolized in the presence of fluoroacetate, but sugars were not fermented. Acetate, formate, propionate, isobutryate, isovalerate, ornithine and H(2) were end products of amino acid metabolism. Acetate was the primary end product of fluoroacetate dehalogenation, and the amount produced correlated with the stoichiometric release of fluoride which was confirmed using fluorine nuclear magnetic resonance ((19) F NMR) spectroscopy. Hydrogen and formate produced in situ were consumed during dehalogenation. The growth characteristics of strain MFA1 indicated that the bacterium may gain energy via reductive dehalogenation. This is the first study to identify a bacterium that can anaerobically dehalogenate fluoroacetate. Nested 16S rRNA gene-specific PCR assays detected the bacterium at low numbers in the gut of several herbivore species. © 2012 Commonwealth of Australia.

  11. Expression of putative pathogenicity-related genes in Xylella fastidiosa grown at low and high cell density conditions in vitro.

    PubMed

    Scarpari, Leandra M; Lambais, Marcio R; Silva, Denise S; Carraro, Dirce M; Carrer, Helaine

    2003-05-16

    Xylella fastidiosa is the causal agent of economically important plant diseases, including citrus variegated chlorosis and Pierce's disease. Hitherto, there has been no information on the molecular mechanisms controlling X. fastidiosa-plant interactions. To determine whether predicted open reading frames (ORFs) encoding putative pathogenicity-related factors were expressed by X. fastidiosa 9a5c cells grown at low (LCD) and high cell density (HCD) conditions in liquid modified PW medium, reverse Northern blot hybridization and reverse transcription-polymerase chain reaction (RT-PCR) experiments were performed. Our results indicated that ORFs XF2344, XF2369, XF1851 and XF0125, encoding putative Fur, GumC, a serine-protease and RsmA, respectively, were significantly suppressed at HCD conditions. In contrast, ORF XF1115, encoding putative RpfF, was significantly induced at HCD conditions. Expressions of ORFs XF2367, XF2362 and XF0290, encoding putative GumD, GumJ and RpfA, respectively, were detected only at HCD conditions, whereas expression of ORF XF0287, encoding putative RpfB was detected only at LCD conditions. Bioassays with an Agrobacterium traG::lacZ reporter system indicated that X. fastidiosa does not synthesize N-acyl-homoserine lactones, whereas bioassays with a diffusible signal factor (DSF)-responsive Xanthomonas campestris pv. campestris mutant indicate that X. fastidiosa synthesizes a molecule similar to DSF in modified PW medium. Our data also suggest that the synthesis of the DSF-like molecule and fastidian gum by X. fastidiosa is affected by cell density in vitro.

  12. The nucleotide sequence of Beneckea harveyi 5S rRNA. [bioluminescent marine bacterium

    NASA Technical Reports Server (NTRS)

    Luehrsen, K. R.; Fox, G. E.

    1981-01-01

    The primary sequence of the 5S ribosomal RNA isolated from the free-living bioluminescent marine bacterium Beneckea harveyi is reported and discussed in regard to indications of phylogenetic relationships with the bacteria Escherichia coli and Photobacterium phosphoreum. Sequences were determined for oligonucleotide products generated by digestion with ribonuclease T1, pancreatic ribonuclease and ribonuclease T2. The presence of heterogeneity is indicated for two sites. The B. harveyi sequence can be arranged into the same four helix secondary structures as E. coli and other prokaryotic 5S rRNAs. Examination of the 5S-RNS sequences of the three bacteria indicates that B. harveyi and P. phosphoreum are specifically related and share a common ancestor which diverged from an ancestor of E. coli at a somewhat earlier time, consistent with previous studies.

  13. In sílico identification and characterization of putative Dot/Icm secreted virulence effectors in the fish pathogen Piscirickettsia salmonis.

    PubMed

    Labra, Álvaro; Arredondo-Zelada, Oscar; Flores-Herrera, Patricio; Marshall, Sergio H; Gómez, Fernando A

    2016-03-01

    Piscirickettsia salmonis seriously affects the Chilean salmon industry. The bacterium is phylogenetically related to Legionella pneumophila and Coxiella burnetii, sharing a Dot/Icm secretion system with them. Although it is well documented that L. pneumophila and C. burnetii secrete different virulence effectors via this Dot/Icm system in order to attenuate host cell responses, to date there have been no reported virulence effectors secreted by the Dot/Icm system of P. salmonis. Using several annotations of P. salmonis genome, here we report an in silico analyses of 4 putative Dot/Icm effectors. Three of them contain ankyrin repeat domains and the typical conserved 3D structures of this protein family. The fourth one is highly similar to one of the Dot/Icm-dependent effectors of L. pneumophila. Additionally, all the potential P. salmonis effectors contain a classical Dot/Icm secretion signal in their C-terminus, consisting of: an E-Block, a hydrophobic residue in -3 or -4 and an electronegative charge. Finally, qPCR analysis demonstrated that these proteins are overexpressed early in infection, perhaps contributing to the generation of a replicative vacuole, a key step in the neutralizing strategy proposed for the Dot/Icm system. In summary, this report identifies four Dot/Icm-dependent effectors in P. salmonis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Structure of the two-domain hexameric APS kinase from Thiobacillus denitrificans: structural basis for the absence of ATP sulfurylase activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gay, Sean C.; Segel, Irwin H.; Fisher, Andrew J., E-mail: fisher@chem.ucdavis.edu

    2009-10-01

    APS kinase from Thiobacillus denitrificans contains an inactive N-terminal ATP sulfurylase domain. The structure presented unveils the first hexameric assembly for an APS kinase, and reveals that structural changes in the N-terminal domain disrupt the ATP sulfurylase active site thus prohibiting activity. The Tbd-0210 gene of the chemolithotrophic bacterium Thiobacillus denitrificans is annotated to encode a 60.5 kDa bifunctional enzyme with ATP sulfurylase and APS kinase activity. This putative bifunctional enzyme was cloned, expressed and structurally characterized. The 2.95 Å resolution X-ray crystal structure reported here revealed a hexameric assembly with D{sub 3} symmetry. Each subunit contains a large N-terminalmore » sulfurylase-like domain and a C-terminal APS kinase domain reminiscent of the two-domain fungal ATP sulfurylases of Penicillium chrysogenum and Saccharomyces cerevisiae, which also exhibit a hexameric assembly. However, the T. denitrificans enzyme exhibits numerous structural and sequence differences in the N-terminal domain that render it inactive with respect to ATP sulfurylase activity. Surprisingly, the C-terminal domain does indeed display APS kinase activity, indicating that this gene product is a true APS kinase. Therefore, these results provide the first structural insights into a unique hexameric APS kinase that contains a nonfunctional ATP sulfurylase-like domain of unknown function.« less

  15. Concurrent Host-Pathogen Transcriptional Responses in a Clostridium perfringens Murine Myonecrosis Infection

    PubMed Central

    2018-01-01

    ABSTRACT To obtain an insight into host-pathogen interactions in clostridial myonecrosis, we carried out comparative transcriptome analysis of both the bacterium and the host in a murine Clostridium perfringens infection model, which is the first time that such an investigation has been conducted. Analysis of the host transcriptome from infected muscle tissues indicated that many genes were upregulated compared to the results seen with mock-infected mice. These genes were enriched for host defense pathways, including Toll-like receptor (TLR) and Nod-like receptor (NLR) signaling components. Real-time PCR confirmed that host TLR2 and NLRP3 inflammasome genes were induced in response to C. perfringens infection. Comparison of the transcriptome of C. perfringens cells from the infected tissues with that from broth cultures showed that host selective pressure induced a global change in C. perfringens gene expression. A total of 33% (923) of C. perfringens genes were differentially regulated, including 10 potential virulence genes that were upregulated relative to their expression in vitro. These genes encoded putative proteins that may be involved in the synthesis of cell wall-associated macromolecules, in adhesion to host cells, or in protection from host cationic antimicrobial peptides. This report presents the first successful expression profiling of coregulated transcriptomes of bacterial and host genes during a clostridial myonecrosis infection and provides new insights into disease pathogenesis and host-pathogen interactions. PMID:29588405

  16. The genome, transcriptome, and proteome of the nematode Steinernema carpocapsae: evolutionary signatures of a pathogenic lifestyle

    PubMed Central

    Rougon-Cardoso, Alejandra; Flores-Ponce, Mitzi; Ramos-Aboites, Hilda Eréndira; Martínez-Guerrero, Christian Eduardo; Hao, You-Jin; Cunha, Luis; Rodríguez-Martínez, Jonathan Alejandro; Ovando-Vázquez, Cesaré; Bermúdez-Barrientos, José Roberto; Abreu-Goodger, Cei; Chavarría-Hernández, Norberto; Simões, Nelson; Montiel, Rafael

    2016-01-01

    The entomopathogenic nematode Steinernema carpocapsae has been widely used for the biological control of insect pests. It shares a symbiotic relationship with the bacterium Xenorhabdus nematophila, and is emerging as a genetic model to study symbiosis and pathogenesis. We obtained a high-quality draft of the nematode’s genome comprising 84,613,633 bp in 347 scaffolds, with an N50 of 1.24 Mb. To improve annotation, we sequenced both short and long RNA and conducted shotgun proteomic analyses. S. carpocapsae shares orthologous genes with other parasitic nematodes that are absent in the free-living nematode C. elegans, it has ncRNA families that are enriched in parasites, and expresses proteins putatively associated with parasitism and pathogenesis, suggesting an active role for the nematode during the pathogenic process. Host and parasites might engage in a co-evolutionary arms-race dynamic with genes participating in their interaction showing signatures of positive selection. Our analyses indicate that the consequence of this arms race is better characterized by positive selection altering specific functions instead of just increasing the number of positively selected genes, adding a new perspective to these co-evolutionary theories. We identified a protein, ATAD-3, that suggests a relevant role for mitochondrial function in the evolution and mechanisms of nematode parasitism. PMID:27876851

  17. Production and characterization of biodiesel from carbon dioxide concentrating chemolithotrophic bacteria, Serratia sp. ISTD04.

    PubMed

    Bharti, Randhir K; Srivastava, Shaili; Thakur, Indu Shekhar

    2014-02-01

    A chemolithotrophic bacterium, Serratia sp. ISTD04, enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was evaluated for potential of carbon dioxide (CO2) sequestration and biofuel production. CO2 sequestration efficiency of the bacterium was determined by enzymatic activity of carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Further, Western blot analysis confirmed presence of RuBisCO. The bacterium produced 0.487 and 0.647mgmg(-1) per unit cell dry weight of hydrocarbons and lipids respectively. The hydrocarbons were within the range of C13-C24 making it equivalent to light oil. GC-MS analysis of lipids produced by the bacterium indicated presence of C15-C20 organic compounds that made it potential source of biodiesel after transesterification. GC-MS, FTIR and NMR spectroscopic characterization of the fatty acid methyl esters revealed the presence of 55% and 45% of unsaturated and saturated organic compounds respectively, thus making it a balanced biodiesel composition. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Effects of Calcium Ions on the Thermostability and Spectroscopic Properties of the LH1-RC Complex from a New Thermophilic Purple Bacterium Allochromatium tepidum.

    PubMed

    Kimura, Yukihiro; Lyu, Shuwen; Okoshi, Akira; Okazaki, Koudai; Nakamura, Natsuki; Ohashi, Akira; Ohno, Takashi; Kobayashi, Manami; Imanishi, Michie; Takaichi, Shinichi; Madigan, Michael T; Wang-Otomo, Zheng-Yu

    2017-05-18

    The light harvesting-reaction center (LH1-RC) complex from a new thermophilic purple sulfur bacterium Allochromatium (Alc.) tepidum was isolated and characterized by spectroscopic and thermodynamic analyses. The purified Alc. tepidum LH1-RC complex showed a high thermostability comparable to that of another thermophilic purple sulfur bacterium Thermochromatium tepidum, and spectroscopic characteristics similar to those of a mesophilic bacterium Alc. vinosum. Approximately 4-5 Ca 2+ per LH1-RC were detected by inductively coupled plasma atomic emission spectroscopy and isothermal titration calorimetry. Upon removal of Ca 2+ , the denaturing temperature of the Alc. tepidum LH1-RC complex dropped accompanied by a blue-shift of the LH1 Q y absorption band. The effect of Ca 2+ was also observed in the resonance Raman shift of the C3-acetyl νC═O band of bacteriochlorophyll-a, indicating changes in the hydrogen-bonding interactions between the pigment and LH1 polypeptides. Thermodynamic parameters for the Ca 2+ -binding to the Alc. tepidum LH1-RC complex indicated that this reaction is predominantly driven by the largely favorable electrostatic interactions that counteract the unfavorable negative entropy change. Our data support a hypothesis that Alc. tepidum may be a transitional organism between mesophilic and thermophilic purple bacteria and that Ca 2+ is one of the major keys to the thermostability of LH1-RC complexes in purple bacteria.

  19. FnrL and Three Dnr Regulators Are Used for the Metabolic Adaptation to Low Oxygen Tension in Dinoroseobacter shibae

    PubMed Central

    Ebert, Matthias; Laaß, Sebastian; Thürmer, Andrea; Roselius, Louisa; Eckweiler, Denitsa; Daniel, Rolf; Härtig, Elisabeth; Jahn, Dieter

    2017-01-01

    The heterotrophic marine bacterium Dinoroseobacter shibae utilizes aerobic respiration and anaerobic denitrification supplemented with aerobic anoxygenic photosynthesis for energy generation. The aerobic to anaerobic transition is controlled by four Fnr/Crp family regulators in a unique cascade-type regulatory network. FnrL is utilizing an oxygen-sensitive Fe-S cluster for oxygen sensing. Active FnrL is inducing most operons encoding the denitrification machinery and the corresponding heme biosynthesis. Activation of gene expression of the high oxygen affinity cbb3-type and repression of the low affinity aa3-type cytochrome c oxidase is mediated by FnrL. Five regulator genes including dnrE and dnrF are directly controlled by FnrL. Multiple genes of the universal stress protein (USP) and cold shock response are further FnrL targets. DnrD, most likely sensing NO via a heme cofactor, co-induces genes of denitrification, heme biosynthesis, and the regulator genes dnrE and dnrF. DnrE is controlling genes for a putative Na+/H+ antiporter, indicating a potential role of a Na+ gradient under anaerobic conditions. The formation of the electron donating primary dehydrogenases is coordinated by FnrL and DnrE. Many plasmid encoded genes were DnrE regulated. DnrF is controlling directly two regulator genes including the Fe-S cluster biosynthesis regulator iscR, genes of the electron transport chain and the glutathione metabolism. The genes for nitrate reductase and CO dehydrogenase are repressed by DnrD and DnrF. Both regulators in concert with FnrL are inducing the photosynthesis genes. One of the major denitrification operon control regions, the intergenic region between nirS and nosR2, contains one Fnr/Dnr binding site. Using regulator gene mutant strains, lacZ-reporter gene fusions in combination with promoter mutagenesis, the function of the single Fnr/Dnr binding site for FnrL-, DnrD-, and partly DnrF-dependent nirS and nosR2 transcriptional activation was shown. Overall, the unique regulatory network of the marine bacterium D. shibae for the transition from aerobic to anaerobic growth composed of four Crp/Fnr family regulators was elucidated. PMID:28473807

  20. Thermus thermophilus as a Source of Thermostable Lipolytic Enzymes

    PubMed Central

    López-López, Olalla; Cerdán, María-Esperanza; González-Siso, María-Isabel

    2015-01-01

    Lipolytic enzymes, esterases (EC 3.1.1.1) and lipases (EC 3.1.1.3), catalyze the hydrolysis of ester bonds between alcohols and carboxylic acids, and its formation in organic media. At present, they represent about 20% of commercialized enzymes for industrial use. Lipolytic enzymes from thermophilic microorganisms are preferred for industrial use to their mesophilic counterparts, mainly due to higher thermostability and resistance to several denaturing agents. However, the production at an industrial scale from the native organisms is technically complicated and expensive. The thermophilic bacterium Thermus thermophilus (T. thermophilus) has high levels of lipolytic activity, and its whole genome has been sequenced. One esterase from the T. thermophilus strain HB27 has been widely characterized, both in its native form and in recombinant forms, being expressed in mesophilic microorganisms. Other putative lipases/esterases annotated in the T. thermophilus genome have been explored and will also be reviewed in this paper. PMID:27682117

  1. Cloning and sequencing of the Thermoanaerobacterium saccharolyticum B6A-RI apu gene and purification and characterization of the amylopullulanase from Escherichia coli.

    PubMed

    Ramesh, M V; Podkovyrov, S M; Lowe, S E; Zeikus, J G

    1994-01-01

    The amylopullulanase gene (apu) of the thermophilic anaerobic bacterium Thermoanaerobacterium saccharolyticum B6A-RI was cloned into Escherichia coli. The complete nucleotide sequence of the gene was determined. It encoded a protein consisting of 1,288 amino acids with a signal peptide of 35 amino acids. The enzyme purified from E. coli was a monomer with an M(r) of 142,000 +/- 2,000 and had same the catalytic and thermal characteristics as the native glycoprotein from T. saccharolyticum B6A. Linear alignment and the hydrophobic cluster analysis were used to compare this amylopullulanase with other amylolytic enzymes. Both methods revealed strictly conserved amino acid residues among these enzymes, and it is proposed that Asp-594, Asp-700, and Glu-623 are a putative catalytic triad of the T. saccharolyticum B6A-RI amylopullulanase.

  2. Cloning and sequencing of the Thermoanaerobacterium saccharolyticum B6A-RI apu gene and purification and characterization of the amylopullulanase from Escherichia coli.

    PubMed Central

    Ramesh, M V; Podkovyrov, S M; Lowe, S E; Zeikus, J G

    1994-01-01

    The amylopullulanase gene (apu) of the thermophilic anaerobic bacterium Thermoanaerobacterium saccharolyticum B6A-RI was cloned into Escherichia coli. The complete nucleotide sequence of the gene was determined. It encoded a protein consisting of 1,288 amino acids with a signal peptide of 35 amino acids. The enzyme purified from E. coli was a monomer with an M(r) of 142,000 +/- 2,000 and had same the catalytic and thermal characteristics as the native glycoprotein from T. saccharolyticum B6A. Linear alignment and the hydrophobic cluster analysis were used to compare this amylopullulanase with other amylolytic enzymes. Both methods revealed strictly conserved amino acid residues among these enzymes, and it is proposed that Asp-594, Asp-700, and Glu-623 are a putative catalytic triad of the T. saccharolyticum B6A-RI amylopullulanase. Images PMID:8117096

  3. [Insertional mutation in the AZOBR_p60120 gene is accompanied by defects in the synthesis of lipopolysaccharide and calcofluor-binding polysaccharides in the bacterium Azospirillum brasilense Sp245].

    PubMed

    Katsy, E I; Prilipov, A G

    2015-03-01

    In the bacterium Azospirillum brasilense Sp245, extracellular calcofluor-binding polysaccharides (Cal+ phenotype) and two types of lipopolysaccharides, LPSI and LPSII, were previously identified. These lipopolysaccharides share the same repeating O-polysaccharide unit but have different antigenic structures and different charges of their O-polysaccharides and/or core oligosaccharides. Several dozens of predicted genes involved in the biosynthesis of polysaccharides have been localized in the AZOBR_p6 plasmid of strain Sp245 (GenBank accession no. HE577333). In the present work, it was demonstrated that an artificial transposon Omegon-Km had inserted into the central region of the AZOBR_p60120 gene in the A. brasilense Sp245 LPSI- Cal- KM252 mutant. In A. brasilense strain Sp245, this plasmid gene encodes a putative glycosyltransferase containing conserved domains characteristic of the enzymes participating in the synthesis of O-polysaccharides and capsular polysaccharides (accession no. YP004987664). In mutant KM252, a respective predicted protein is expected to be completely inactivated. As a result of the analysis of the EcoRI fragment of the AZOBR_p6 plasmid, encompassing the AZOBR_p60120 gene and a number of other loci, novel data on the structure of AZOBR_p6 were obtained: an approximately 5-kb gap (GenBank accession no. KM189439) was closed in the nucleotide sequence of this plasmid.

  4. Effect of wheat roots infected with the pathogenic fungus Gaeumannomyces graminis var. tritici on gene expression of the biocontrol bacterium Pseudomonas fluorescens Pf29Arp.

    PubMed

    Barret, Matthieu; Frey-Klett, Pascale; Guillerm-Erckelboudt, Anne-Yvonne; Boutin, Morgane; Guernec, Gregory; Sarniguet, Alain

    2009-12-01

    Traits contributing to the competence of biocontrol bacteria to colonize plant roots are often induced in the rhizosphere in response to plant components. These interactions have been studied using the two partners in gnotobiotic systems. However, in nature, beneficial or pathogenic fungi often colonize roots. Influence of these plant-fungus interactions on bacterial behavior remains to be investigated. Here, we have examined the influence of colonization of wheat roots by the take-all fungus Gaeumannomyces graminis var. tritici on gene expression of the biocontrol bacterium Pseudomonas fluorescens Pf29Arp. Bacteria were inoculated onto healthy, early G. graminis var. tritici-colonized and necrotic roots and transcriptomes were compared by shotgun DNA microarray. Pf29Arp decreased disease severity when inoculated before the onset of necrosis. Necrotic roots exerted a broader effect on gene expression compared with early G. graminis var. tritici-colonized and healthy roots. A gene encoding a putative type VI secretion system effector was only induced in necrotic conditions. A common pool of Pf29Arp genes differentially expressed on G. graminis var. tritici-colonized roots was related to carbon metabolism and oxidative stress, with a highest fold-change with necrosis. Overall, the data showed that the association of the pathogenic fungus with the roots strongly altered Pf29Arp adaptation with differences between early and late G. graminis var. tritici infection steps.

  5. Structure and Absolute Configuration of Jurassic Polyketide-Derived Spiroborate Pigments Obtained from Microgram Quantities.

    PubMed

    Wolkenstein, Klaus; Sun, Han; Falk, Heinz; Griesinger, Christian

    2015-10-28

    Complete structural elucidation of natural products is often challenging due to structural complexity and limited availability. This is true for present-day secondary metabolites, but even more for exceptionally preserved secondary metabolites of ancient organisms that potentially provide insights into the evolutionary history of natural products. Here, we report the full structure and absolute configuration of the borolithochromes, enigmatic boron-containing pigments from a Jurassic putative red alga, from samples of less than 50 μg using microcryoprobe NMR, circular dichroism spectroscopy, and density functional theory calculations and reveal their polyketide origin. The pigments are identified as spiroborates with two pentacyclic sec-butyl-trihydroxy-methyl-benzo[gh]tetraphen-one ligands and less-substituted derivatives. The configuration of the sec-butyl group is found to be (S). Because the exceptional benzo[gh]tetraphene scaffold is otherwise only observed in the recently discovered polyketide clostrubin from a present-day Clostridium bacterium, the Jurassic borolithochromes now can be unambiguously linked to the modern polyketide, providing evidence that the fossil pigments are almost originally preserved secondary metabolites and suggesting that the pigments in fact may have been produced by an ancient bacterium. The borolithochromes differ fundamentally from previously described boronated polyketides and represent the first boronated aromatic polyketides found so far. Our results demonstrate the potential of microcryoprobe NMR in the analysis of previously little-explored secondary metabolites from ancient organisms and reveal the evolutionary significance of clostrubin-type polyketides.

  6. Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norton, Jeanette M.; Klotz, Martin G; Stein, Lisa Y

    2008-01-01

    The complete genome of the ammonia-oxidizing bacterium, Nitrosospira multiformis (ATCC 25196T), consists of a circular chromosome and three small plasmids totaling 3,234,309 bp and encoding 2827 putative proteins. Of these, 2026 proteins have predicted functions and 801 are without conserved functional domains, yet 747 of these have similarity to other predicted proteins in databases. Gene homologs from Nitrosomonas europaea and N. eutropha were the best match for 42% of the predicted genes in N. multiformis. The genome contains three nearly identical copies of amo and hao gene clusters as large repeats. Distinguishing features compared to N. europaea include: the presencemore » of gene clusters encoding urease and hydrogenase, a RuBisCO-encoding operon of distinctive structure and phylogeny, and a relatively small complement of genes related to Fe acquisition. Systems for synthesis of a pyoverdine-like siderophore and for acyl-homoserine lactone were unique to N. multiformis among the sequenced AOB genomes. Gene clusters encoding proteins associated with outer membrane and cell envelope functions including transporters, porins, exopolysaccharide synthesis, capsule formation and protein sorting/export were abundant. Numerous sensory transduction and response regulator gene systems directed towards sensing of the extracellular environment are described. Gene clusters for glycogen, polyphosphate and cyanophycin storage and utilization were identified providing mechanisms for meeting energy requirements under substrate-limited conditions. The genome of N. multiformis encodes the core pathways for chemolithoautotrophy along with adaptations for surface growth and survival in soil environments.« less

  7. Rhodobase, a meta-analytical tool for reconstructing gene regulatory networks in a model photosynthetic bacterium.

    PubMed

    Moskvin, Oleg V; Bolotin, Dmitry; Wang, Andrew; Ivanov, Pavel S; Gomelsky, Mark

    2011-02-01

    We present Rhodobase, a web-based meta-analytical tool for analysis of transcriptional regulation in a model anoxygenic photosynthetic bacterium, Rhodobacter sphaeroides. The gene association meta-analysis is based on the pooled data from 100 of R. sphaeroides whole-genome DNA microarrays. Gene-centric regulatory networks were visualized using the StarNet approach (Jupiter, D.C., VanBuren, V., 2008. A visual data mining tool that facilitates reconstruction of transcription regulatory networks. PLoS ONE 3, e1717) with several modifications. We developed a means to identify and visualize operons and superoperons. We designed a framework for the cross-genome search for transcription factor binding sites that takes into account high GC-content and oligonucleotide usage profile characteristic of the R. sphaeroides genome. To facilitate reconstruction of directional relationships between co-regulated genes, we screened upstream sequences (-400 to +20bp from start codons) of all genes for putative binding sites of bacterial transcription factors using a self-optimizing search method developed here. To test performance of the meta-analysis tools and transcription factor site predictions, we reconstructed selected nodes of the R. sphaeroides transcription factor-centric regulatory matrix. The test revealed regulatory relationships that correlate well with the experimentally derived data. The database of transcriptional profile correlations, the network visualization engine and the optimized search engine for transcription factor binding sites analysis are available at http://rhodobase.org. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Gene cloning and characterization of a cold-adapted β-glucosidase belonging to glycosyl hydrolase family 1 from a psychrotolerant bacterium Micrococcus antarcticus.

    PubMed

    Fan, Hong-Xia; Miao, Li-Li; Liu, Ying; Liu, Hong-Can; Liu, Zhi-Pei

    2011-06-10

    The gene bglU encoding a cold-adapted β-glucosidase (BglU) was cloned from Micrococcus antarcticus. Sequence analysis revealed that the bglU contained an open reading frame of 1419 bp and encoded a protein of 472 amino acid residues. Based on its putative catalytic domains, BglU was classified as a member of the glycosyl hydrolase family 1 (GH1). BglU possessed lower arginine content and Arg/(Arg+Lys) ratio than mesophilic GH1 β-glucosidases. Recombinant BglU was purified with Ni2+ affinity chromatography and subjected to enzymatic characterization. SDS-PAGE and native staining showed that it was a monomeric protein with an apparent molecular mass of 48 kDa. BglU was particularly thermolabile since its half-life time was only 30 min at 30°C and it exhibited maximal activity at 25°C and pH 6.5. Recombinant BglU could hydrolyze a wide range of aryl-β-glucosides and β-linked oligosaccharides with highest activity towards cellobiose and then p-nitrophenyl-β-d-glucopyranoside (pNPG). Under the optimal conditions with pNPG as substrate, the K(m) and k(cat) were 7 mmol/L and 7.85 × 103/s, respectively. This is the first report of cloning and characterization of a cold-adapted β-glucosidase belonging to GH1 from a psychrotolerant bacterium. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Unexpected Diversity and High Abundance of Putative Nitric Oxide Dismutase (Nod) Genes in Contaminated Aquifers and Wastewater Treatment Systems

    PubMed Central

    Bradford, Lauren; Huang, Sichao; Szalay, Anna; Leix, Carmen; Weissbach, Max; Táncsics, András; Drewes, Jörg E.

    2016-01-01

    ABSTRACT It has recently been suggested that oxygenic dismutation of NO into N2 and O2 may occur in the anaerobic methanotrophic “Candidatus Methylomirabilis oxyfera” and the alkane-oxidizing gammaproteobacterium HdN1. It may represent a new pathway in microbial nitrogen cycling catalyzed by a putative NO dismutase (Nod). The formed O2 enables microbes to employ aerobic catabolic pathways in anoxic habitats, suggesting an ecophysiological niche space of substantial appeal for bioremediation and water treatment. However, it is still unknown whether this physiology is limited to “Ca. Methylomirabilis oxyfera” and HdN1 and whether it can be coupled to the oxidation of electron donors other than alkanes. Here, we report insights into an unexpected diversity and remarkable abundance of nod genes in natural and engineered water systems. Phylogenetically diverse nod genes were recovered from a range of contaminated aquifers and N-removing wastewater treatment systems. Together with nod genes from “Ca. Methylomirabilis oxyfera” and HdN1, the novel environmental nod sequences formed no fewer than 6 well-supported phylogenetic clusters, clearly distinct from canonical NO reductase (quinol-dependent NO reductase [qNor] and cytochrome c-dependent NO reductase [cNor]) genes. The abundance of nod genes in the investigated samples ranged from 1.6 × 107 to 5.2 × 1010 copies · g−1 (wet weight) of sediment or sludge biomass, accounting for up to 10% of total bacterial 16S rRNA gene counts. In essence, NO dismutation could be a much more widespread physiology than currently perceived. Understanding the controls of this emergent microbial capacity could offer new routes for nitrogen elimination or pollutant remediation in natural and engineered water systems. IMPORTANCE NO dismutation into N2 and O2 is a novel process catalyzed by putative NO dismutase (Nod). To date, only two bacteria, the anaerobic methane-oxidizing bacterium “Ca. Methylomirabilis oxyfera” and the alkane-oxidizing gammaproteobacterium HdN1, are known to harbor nod genes. In this study, we report efficient molecular tools that can detect and quantify a wide diversity of nod genes in environmental samples. A surprisingly high diversity and abundance of nod genes were found in contaminated aquifers as well as wastewater treatment systems. This evidence indicates that NO dismutation may be a much more widespread physiology in natural and man-made environments than currently perceived. The molecular tools presented here will facilitate further studies on these enigmatic microbes in the future. PMID:27986721

  10. Unexpected Diversity and High Abundance of Putative Nitric Oxide Dismutase (Nod) Genes in Contaminated Aquifers and Wastewater Treatment Systems.

    PubMed

    Zhu, Baoli; Bradford, Lauren; Huang, Sichao; Szalay, Anna; Leix, Carmen; Weissbach, Max; Táncsics, András; Drewes, Jörg E; Lueders, Tillmann

    2017-02-15

    It has recently been suggested that oxygenic dismutation of NO into N 2 and O 2 may occur in the anaerobic methanotrophic "Candidatus Methylomirabilis oxyfera" and the alkane-oxidizing gammaproteobacterium HdN1. It may represent a new pathway in microbial nitrogen cycling catalyzed by a putative NO dismutase (Nod). The formed O 2 enables microbes to employ aerobic catabolic pathways in anoxic habitats, suggesting an ecophysiological niche space of substantial appeal for bioremediation and water treatment. However, it is still unknown whether this physiology is limited to "Ca Methylomirabilis oxyfera" and HdN1 and whether it can be coupled to the oxidation of electron donors other than alkanes. Here, we report insights into an unexpected diversity and remarkable abundance of nod genes in natural and engineered water systems. Phylogenetically diverse nod genes were recovered from a range of contaminated aquifers and N-removing wastewater treatment systems. Together with nod genes from "Ca Methylomirabilis oxyfera" and HdN1, the novel environmental nod sequences formed no fewer than 6 well-supported phylogenetic clusters, clearly distinct from canonical NO reductase (quinol-dependent NO reductase [qNor] and cytochrome c-dependent NO reductase [cNor]) genes. The abundance of nod genes in the investigated samples ranged from 1.6 × 10 7 to 5.2 × 10 10 copies · g -1 (wet weight) of sediment or sludge biomass, accounting for up to 10% of total bacterial 16S rRNA gene counts. In essence, NO dismutation could be a much more widespread physiology than currently perceived. Understanding the controls of this emergent microbial capacity could offer new routes for nitrogen elimination or pollutant remediation in natural and engineered water systems. NO dismutation into N 2 and O 2 is a novel process catalyzed by putative NO dismutase (Nod). To date, only two bacteria, the anaerobic methane-oxidizing bacterium "Ca Methylomirabilis oxyfera" and the alkane-oxidizing gammaproteobacterium HdN1, are known to harbor nod genes. In this study, we report efficient molecular tools that can detect and quantify a wide diversity of nod genes in environmental samples. A surprisingly high diversity and abundance of nod genes were found in contaminated aquifers as well as wastewater treatment systems. This evidence indicates that NO dismutation may be a much more widespread physiology in natural and man-made environments than currently perceived. The molecular tools presented here will facilitate further studies on these enigmatic microbes in the future. Copyright © 2017 American Society for Microbiology.

  11. Transcriptome analysis of the rhizosphere bacterium Azospirillum brasilense reveals an extensive auxin response.

    PubMed

    Van Puyvelde, Sandra; Cloots, Lore; Engelen, Kristof; Das, Frederik; Marchal, Kathleen; Vanderleyden, Jos; Spaepen, Stijn

    2011-05-01

    The rhizosphere bacterium Azospirillum brasilense produces the auxin indole-3-acetic acid (IAA) through the indole-3-pyruvate pathway. As we previously demonstrated that transcription of the indole-3-pyruvate decarboxylase (ipdC) gene is positively regulated by IAA, produced by A. brasilense itself or added exogenously, we performed a microarray analysis to study the overall effects of IAA on the transcriptome of A. brasilense. The transcriptomes of A. brasilense wild-type and the ipdC knockout mutant, both cultured in the absence and presence of exogenously added IAA, were compared.Interfering with the IAA biosynthesis/homeostasis in A. brasilense through inactivation of the ipdC gene or IAA addition results in much broader transcriptional changes than anticipated. Based on the multitude of changes observed by comparing the different transcriptomes, we can conclude that IAA is a signaling molecule in A. brasilense. It appears that the bacterium, when exposed to IAA, adapts itself to the plant rhizosphere, by changing its arsenal of transport proteins and cell surface proteins. A striking example of adaptation to IAA exposure, as happens in the rhizosphere, is the upregulation of a type VI secretion system (T6SS) in the presence of IAA. The T6SS is described as specifically involved in bacterium-eukaryotic host interactions. Additionally, many transcription factors show an altered regulation as well, indicating that the regulatory machinery of the bacterium is changing.

  12. New Pseudomonad Utilizing Methanol for Growth

    PubMed Central

    Chalfan, Y.; Mateles, R. I.

    1972-01-01

    A bacterium capable of rapid growth on methanol as sole carbon source was isolated and classified as a new pseudomonad. Its doubling time was about 100 min at 32 to 37 C, and it grew well at methanol concentrations up to 2%. The organism was sensitive to phosphate, but reasonable cell densities could be obtained by using pH control. Cell yields of about 31%, based on methanol consumed, were obtained. The amino acid pattern of the protein indicated that the bacterium holds promise as a source of single-cell protein. Images PMID:4110421

  13. Stress of algicidal substances from a bacterium Exiguobacterium sp. h10 on Microcystis aeruginosa.

    PubMed

    Li, Y; Liu, L; Xu, Y; Li, P; Zhang, K; Jiang, X; Zheng, T; Wang, H

    2017-01-01

    Microcystis aeruginosa is a cyanobacterial bloom-causing species and is considered a serious threat to human health and biological safety. In this study, the algicidal bacterium h10 showed high algicidal effects on M. aeruginosa 7820, and strain h10 was confirmed to belong to the genus Exiguobacterium, for which the name Exiguobacterium sp. h10 is proposed. Algicidal activity and mode analysis revealed that the supernatant, rather than the bacterial cells, was responsible for the algicidal activity, indicating that the algicidal mode of strain h10 is by indirect attack through the production of algicidal substances. Analysis of the algicidal substance characteristics showed a molecular weight of <1000 Da and that algicidal substances exhibit high thermal stability and pH instability, and the characteristic functional groups of the algicidal substance mainly included carbonyl, amino and hydroxyl groups. Under the effects of the algicidal substance, the cellular pigment content was significantly decreased, and the algal cell structure and morphology were seriously damaged. The results indicate that the algicidal bacterium Exiguobacterium sp. h10 could be a potential bio-agent for controlling cyanobacterial blooms of M. aeruginosa. In this study, the effects of algicidal substances from an algicidal bacterium Exiguobacterium sp. h10 on the toxic cyanobacterium, Microcystis aeruginosa 7820, were first investigated. The algicidal mode of action was confirmed as an indirect attack through the production of algicidal substances. The characteristics of the algicidal substance were determined, especially the functional groups analysis that confirmed the algicidal substances were glycolipid mixtures. With the stress of algicidal substances, the algal chlorophyll a synthesis, cell structure and morphology were seriously damaged. This study proved that algicidal bacteria are promising sources of potential cyanobacterial bloom-control, and provided good procedures for the identification and analysis of an algicidal bacterium and substances. Letters in Applied Microbiology © 2016 The Society for Applied Microbiology.

  14. Environmental Escherichia coli: Ecology and public health implications - A review

    USGS Publications Warehouse

    Jang, Jeonghwan; Hur, Hor-Gil; Sadowsky, Michael J.; Byappanahalli, Muruleedhara; Yan, Tao; Ishii, Satoshi

    2017-01-01

    Escherichia coli is classified as a rod-shaped, Gram-negative bacterium in the family Enterobacteriaceae. The bacterium mainly inhabits the lower intestinal tract of warm-blooded animals, including humans, and is often discharged into the environment through feces or wastewater effluent. The presence of E. coli in environmental waters has long been considered as an indicator of recent fecal pollution. However, numerous recent studies have reported that some specific strains of E. coli can survive for long periods of time, and potentially reproduce, in extra-intestinal environments. This indicates that E. coli can be integrated into indigenous microbial communities in the environment. This naturalization phenomenon calls into question the reliability of E. coli as a fecal indicator bacterium (FIB). Recently, many studies reported that E. coli populations in the environment are affected by ambient environmental conditions affecting their long-term survival. Large-scale studies of population genetics provide the diversity and complexity of E. coli strains in various environments, affected by multiple environmental factors. This review examines the current knowledge on the ecology of E. coli strains in various environments in regards to its role as a FIB and as a naturalized member of indigenous microbial communities. Special emphasis is given on the growth of pathogenic E. coli in the environment, and the population genetics of environmental members of the genus Escherichia. The impact of environmental E. coli on water quality and public health is also discussed.

  15. Comprehensive molecular, genomic and phenotypic analysis of a major clone of Enterococcus faecalis MLST ST40.

    PubMed

    Zischka, Melanie; Künne, Carsten T; Blom, Jochen; Wobser, Dominique; Sakιnç, Türkân; Schmidt-Hohagen, Kerstin; Dabrowski, P Wojtek; Nitsche, Andreas; Hübner, Johannes; Hain, Torsten; Chakraborty, Trinad; Linke, Burkhard; Goesmann, Alexander; Voget, Sonja; Daniel, Rolf; Schomburg, Dietmar; Hauck, Rüdiger; Hafez, Hafez M; Tielen, Petra; Jahn, Dieter; Solheim, Margrete; Sadowy, Ewa; Larsen, Jesper; Jensen, Lars B; Ruiz-Garbajosa, Patricia; Quiñones Pérez, Dianelys; Mikalsen, Theresa; Bender, Jennifer; Steglich, Matthias; Nübel, Ulrich; Witte, Wolfgang; Werner, Guido

    2015-03-12

    Enterococcus faecalis is a multifaceted microorganism known to act as a beneficial intestinal commensal bacterium. It is also a dreaded nosocomial pathogen causing life-threatening infections in hospitalised patients. Isolates of a distinct MLST type ST40 represent the most frequent strain type of this species, distributed worldwide and originating from various sources (animal, human, environmental) and different conditions (colonisation/infection). Since enterococci are known to be highly recombinogenic we determined to analyse the microevolution and niche adaptation of this highly distributed clonal type. We compared a set of 42 ST40 isolates by assessing key molecular determinants, performing whole genome sequencing (WGS) and a number of phenotypic assays including resistance profiling, formation of biofilm and utilisation of carbon sources. We generated the first circular closed reference genome of an E. faecalis isolate D32 of animal origin and compared it with the genomes of other reference strains. D32 was used as a template for detailed WGS comparisons of high-quality draft genomes of 14 ST40 isolates. Genomic and phylogenetic analyses suggest a high level of similarity regarding the core genome, also demonstrated by similar carbon utilisation patterns. Distribution of known and putative virulence-associated genes did not differentiate between ST40 strains from a commensal and clinical background or an animal or human source. Further analyses of mobile genetic elements (MGE) revealed genomic diversity owed to: (1) a modularly structured pathogenicity island; (2) a site-specifically integrated and previously unknown genomic island of 138 kb in two strains putatively involved in exopolysaccharide synthesis; and (3) isolate-specific plasmid and phage patterns. Moreover, we used different cell-biological and animal experiments to compare the isolate D32 with a closely related ST40 endocarditis isolate whose draft genome sequence was also generated. D32 generally showed a greater capacity of adherence to human cell lines and an increased pathogenic potential in various animal models in combination with an even faster growth in vivo (not in vitro). Molecular, genomic and phenotypic analysis of representative isolates of a major clone of E. faecalis MLST ST40 revealed new insights into the microbiology of a commensal bacterium which can turn into a conditional pathogen.

  16. Environmental reservoirs and mechanisms of persistence of Vibrio cholerae

    PubMed Central

    Lutz, Carla; Erken, Martina; Noorian, Parisa; Sun, Shuyang; McDougald, Diane

    2013-01-01

    It is now well accepted that Vibrio cholerae, the causative agent of the water-borne disease cholera, is acquired from environmental sources where it persists between outbreaks of the disease. Recent advances in molecular technology have demonstrated that this bacterium can be detected in areas where it has not previously been isolated, indicating a much broader, global distribution of this bacterium outside of endemic regions. The environmental persistence of V. cholerae in the aquatic environment can be attributed to multiple intra- and interspecific strategies such as responsive gene regulation and biofilm formation on biotic and abiotic surfaces, as well as interactions with a multitude of other organisms. This review will discuss some of the mechanisms that enable the persistence of this bacterium in the environment. In particular, we will discuss how V. cholerae can survive stressors such as starvation, temperature, and salinity fluctuations as well as how the organism persists under constant predation by heterotrophic protists. PMID:24379807

  17. Effects of Orange II and Sudan III azo dyes and their metabolites on Staphylococcus aureus

    PubMed Central

    Pan, Hongmiao; Feng, Jinhui; Cerniglia, Carl E.

    2018-01-01

    Azo dyes are widely used in the plastic, paper, cosmetics, food, and pharmaceutical industries. Some metabolites of these dyes are potentially genotoxic. The toxic effects of azo dyes and their potential reduction metabolites on Staphylococcus aureus ATCC BAA 1556 were studied. When the cultures were incubated with 6, 18, and 36 μg/ml of Orange II and Sudan III for 48 h, 76.3, 68.5, and 61.7% of Orange II and 97.8, 93.9, and 75.8% of Sudan III were reduced by the bacterium, respectively. In the presence of 36 μg/ml Sudan III, the cell viability of the bacterium decreased to 61.9% after 48 h of incubation, whereas the cell viability of the control culture without the dye was 71.5%. Moreover, the optical density of the bacterial cultures at 10 h decreased from 0.74 to 0.55, indicating that Sudan III is able to inhibit growth of the bacterium. However, Orange II had no significant effects on either cell growth or cell viability of the bacterium at the tested concentrations. 1-Amino-2-naphthol, a metabolite common to Orange II and Sudan III, was capable of inhibiting cell growth of the bacterium at 1 μg/ml and completely stopped bacterial cell growth at 24–48 μg/ml. On the other hand, the other metabolites of Orange II and Sudan III, namely sulfanilic acid, p-phenylenediamine, and aniline, showed no significant effects on cell growth. p-Phenylenediamine exhibited a synergistic effect with 1-amino-2-naphthol on cell growth inhibition. All of the dye metabolites had no significant effects on cell viability of the bacterium. PMID:21451978

  18. Molecular Analysis, Biochemical Characterization, Antimicrobial Activity, and Immunological Analysis of Proteus mirabilis Isolated from Broilers.

    PubMed

    Yeh, Hung-Yueh; Line, John E; Hinton, Arthur

    2018-03-01

    Proteus mirabilis, a Gram-negative bacterium, is ubiquitous in the environment and is considered as the normal microflora in the human gastrointestinal tract. However, this bacterium is an opportunistic pathogen in humans, often causing urinary tract infections. Moreover, Proteus has been frequently isolated from food animals, including poultry. Whether this bacterium contributes to the foodborne illness in humans is unclear. In this report, P. mirabilis isolates recovered from broilers during housing in the units were characterized, their antimicrobial activity was assayed, and broiler immune response to the soluble proteins was determined. Cecal contents and fecal droppings were treated according to the standard protocol for isolation. Speciation based on biochemical reactions and the antimicrobial activity of the isolates were carried out using commercial kits. Immunoblot was assayed to determine immune status of broilers against P. mirabilis. A total of 10 isolates of P. mirabilis were selected for further characterization. These isolates could grow in pH 6.0 and 1% NaCl conditions. They were resistant to sodium lactate, troleandomycin, rifamycin SV, vancomycin, but sensitive to nalidixic acid, cefotaxime and novobiocin. Moreover, the CTX, ACC, CMY-1, BIC, NDM, VEB, qnrB and qnrD genes were detected by PCR amplification in all isolates. Sera from broilers harboring this bacterium reacted to the P. mirabilis soluble proteins, but not from litter- and age-matched P. mirabilis negative and SPF chickens, indicating that this bacterium infected chickens that could have humoral immune response against P. mirabilis. This study provides a rationale for further monitoring P. mirabilis during poultry production to determine whether this bacterium poses potential threats to public health. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  19. Combination of a recombinant bacterium with organonitrile-degrading and biofilm-forming capability and a positively charged carrier for organonitriles removal.

    PubMed

    Li, Chunyan; Sun, Yueling; Yue, Zhenlei; Huang, Mingyan; Wang, Jinming; Chen, Xi; An, Xuejiao; Zang, Hailian; Li, Dapeng; Hou, Ning

    2018-04-10

    The immobilization of organonitrile-degrading bacteria via the addition of biofilm-forming bacteria represents a promising technology for the treatment of organonitrile-containing wastewater, but biofilm-forming bacteria simply mixed with degrading bacteria may reduce the biodegradation efficiency. Nitrile hydratase and amidase genes, which play critical roles in organonitriles degradation, were cloned and transformed into the biofilm-forming bacterium Bacillus subtilis N4 to construct a recombinant bacterium B. subtilis N4/pHTnha-ami. Modified polyethylene carriers with positive charge was applied to promote bacterial adherence and biofilm formation. The immobilized B. subtilis N4/pHTnha-ami was resistant to organonitriles loading shocks and could remove organic cyanide ion with a initial concentration of 392.6 mg/L for 24 h in a moving bed biofilm reactor. The imputed quorum-sensing signal and the high-throughput sequencing analysis of the biofilm indicated that B. subtilis N4/pHTnha-ami was successfully immobilized and became dominant. The successful application of the immobilized recombinant bacterium offers a novel strategy for the biodegradation of recalcitrant compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. The interaction of ammonia and xenon with the imidazole glycerol phosphate synthase from Thermotoga maritima as detected by NMR spectroscopy

    PubMed Central

    Liebold, Christoph; List, Felix; Kalbitzer, Hans Robert; Sterner, Reinhard; Brunner, Eike

    2010-01-01

    The imidazole glycerol phosphate (ImGP) synthase from the hyperthermophilic bacterium Thermotoga maritima is a 1:1 complex of the glutaminase subunit HisH and the cyclase subunit HisF. It has been proposed that ammonia generated by HisH is transported through a channel to the active site of HisF, which generates intermediates of histidine (ImGP) and de novo biosynthesis of 5-aminoimidazole-4-carboxamideribotide. Solution NMR spectroscopy of ammonium chloride-titrated samples was used to study the interaction of NH3 with amino acids inside this channel. Although numerous residues showed 15N chemical shift changes, most of these changes were caused by nonspecific ionic strength effects. However, several interactions appeared to be specific. Remarkably, the amino acid residue Thr 78—which is located in the central channel—shows a large chemical shift change upon titration with ammonium chloride. This result and the reduced catalytic activity of the Thr78Met mutant indicate a special role of this residue in ammonia channeling. To detect and further characterize internal cavities in HisF, which might for example contribute to ammonia channeling, the interaction of HisF with the noble gas xenon was analyzed by solution NMR spectroscopy using 1H-15N HSQC experiments. The results indicate that HisF contains three distinct internal cavities, which could be identified by xenon-induced chemical shift changes of the neighboring amino acid residues. Two of these cavities are located at the active site at opposite ends of the substrate N′-[(5′-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) binding groove. The third cavity is located in the interior of the central β-barrel of HisF and overlaps with the putative ammonia transport channel. PMID:20665694

  1. Homologous functional expression of cryptic phaG from Pseudomonas oleovorans establishes the transacylase-mediated polyhydroxyalkanoate biosynthetic pathway.

    PubMed

    Hoffmann, N; Steinbüchel, A; Rehm, B H

    2000-11-01

    Various pseudomonads are capable of the synthesis of polyhydroxyalkanoate (PHA), composed of medium chain length (MCL) 3-hydroxy fatty acids (C6-C14), when grown on simple carbon sources such as, for example, gluconate or acetate. In Pseudomonas putida, the fatty acid de novo synthesis and PHA synthesis are linked by the transacylase PhaG. Southern hybridization experiments with digoxigenin-labeled phaG(Pp) from P. putida and genomic DNA from various pseudomonads indicate that phaG homologues are present in various other pseudomonads. Although P. oleovorans does not accumulate PHA(MCL) from non-related carbon sources, its genomic DNA reveals a strong hybridization signal. We employed PCR to amplify this phaG homologue. The respective PCR product comprising the coding region of phaG(Po) was cloned into pBBR1MCS-2, resulting in plasmid pBHR84. DNA sequencing revealed that putative PhaG(Po) from P. oleovorans exhibited about 95% amino acid sequence identity to PhaG(Pp) from P. putida. Reverse transcriptase-PCR analysis demonstrated that phaG(Po) was not transcribed even tinder inducing conditions, i.e. in the presence of gluconate as carbon source, whereas induction of phaG(Pp) transcription was obtained in P. putida. When octanoate was used as sole carbon source, only low levels of phaG mRNA were detected in P. putida. Plasmid pBHR84 complemented the phaG-negative mutant PhaG(N)-21 from P. putida. Interestingly, reintroduction of phaG(Po) under lac promoter control into the natural host P. oleovorans established PHA(MCL) synthesis from non-related carbon sources in this bacterium. These data indicated that phaG(Po) in P. oleovorans is not functionally expressed and does not exert its original function.

  2. Horizontally Acquired Biosynthesis Genes Boost Coxiella burnetii's Physiology.

    PubMed

    Moses, Abraham S; Millar, Jess A; Bonazzi, Matteo; Beare, Paul A; Raghavan, Rahul

    2017-01-01

    Coxiella burnetii , the etiologic agent of acute Q fever and chronic endocarditis, has a unique biphasic life cycle, which includes a metabolically active intracellular form that occupies a large lysosome-derived acidic vacuole. C. burnetii is the only bacterium known to thrive within such an hostile intracellular niche, and this ability is fundamental to its pathogenicity; however, very little is known about genes that facilitate Coxiella 's intracellular growth. Recent studies indicate that C. burnetii evolved from a tick-associated ancestor and that the metabolic capabilities of C. burnetii are different from that of Coxiella -like bacteria found in ticks. Horizontally acquired genes that allow C. burnetii to infect and grow within mammalian cells likely facilitated the host shift; however, because of its obligate intracellular replication, C. burnetii would have lost most genes that have been rendered redundant due to the availability of metabolites within the host cell. Based on these observations, we reasoned that horizontally derived biosynthetic genes that have been retained in the reduced genome of C. burnetii are ideal candidates to begin to uncover its intracellular metabolic requirements. Our analyses identified a large number of putative foreign-origin genes in C. burnetii , including tRNA Glu 2 that is potentially required for heme biosynthesis, and genes involved in the production of lipopolysaccharide-a virulence factor, and of critical metabolites such as fatty acids and biotin. In comparison to wild-type C. burnetii , a strain that lacks tRNA Glu 2 exhibited reduced growth, indicating its importance to Coxiella 's physiology. Additionally, by using chemical agents that block heme and biotin biosyntheses, we show that these pathways are promising targets for the development of new anti- Coxiella therapies.

  3. Genome sequence of the Drosophila melanogaster male-killing Spiroplasma strain MSRO endosymbiont.

    PubMed

    Paredes, Juan C; Herren, Jeremy K; Schüpfer, Fanny; Marin, Ray; Claverol, Stéphane; Kuo, Chih-Horng; Lemaitre, Bruno; Béven, Laure

    2015-03-31

    Spiroplasmas are helical and motile members of a cell wall-less eubacterial group called Mollicutes. Although all spiroplasmas are associated with arthropods, they exhibit great diversity with respect to both their modes of transmission and their effects on their hosts; ranging from horizontally transmitted pathogens and commensals to endosymbionts that are transmitted transovarially (i.e., from mother to offspring). Here we provide the first genome sequence, along with proteomic validation, of an endosymbiotic inherited Spiroplasma bacterium, the Spiroplasma poulsonii MSRO strain harbored by Drosophila melanogaster. Comparison of the genome content of S. poulsonii with that of horizontally transmitted spiroplasmas indicates that S. poulsonii has lost many metabolic pathways and transporters, demonstrating a high level of interdependence with its insect host. Consistent with genome analysis, experimental studies showed that S. poulsonii metabolizes glucose but not trehalose. Notably, trehalose is more abundant than glucose in Drosophila hemolymph, and the inability to metabolize trehalose may prevent S. poulsonii from overproliferating. Our study identifies putative virulence genes, notably, those for a chitinase, the H2O2-producing glycerol-3-phosphate oxidase, and enzymes involved in the synthesis of the eukaryote-toxic lipid cardiolipin. S. poulsonii also expresses on the cell membrane one functional adhesion-related protein and two divergent spiralin proteins that have been implicated in insect cell invasion in other spiroplasmas. These lipoproteins may be involved in the colonization of the Drosophila germ line, ensuring S. poulsonii vertical transmission. The S. poulsonii genome is a valuable resource to explore the mechanisms of male killing and symbiont-mediated protection, two cardinal features of many facultative endosymbionts. Most insect species, including important disease vectors and crop pests, harbor vertically transmitted endosymbiotic bacteria. These endosymbionts play key roles in their hosts' fitness, including protecting them against natural enemies and manipulating their reproduction in ways that increase the frequency of symbiont infection. Little is known about the molecular mechanisms that underlie these processes. Here, we provide the first genome draft of a vertically transmitted male-killing Spiroplasma bacterium, the S. poulsonii MSRO strain harbored by D. melanogaster. Analysis of the S. poulsonii genome was complemented by proteomics and ex vivo metabolic experiments. Our results indicate that S. poulsonii has reduced metabolic capabilities and expresses divergent membrane lipoproteins and potential virulence factors that likely participate in Spiroplasma-host interactions. This work fills a gap in our knowledge of insect endosymbionts and provides tools with which to decipher the interaction between Spiroplasma bacteria and their well-characterized host D. melanogaster, which is emerging as a model of endosymbiosis. Copyright © 2015 Paredes et al.

  4. E. coli transport from bottom sediments to the stream water column in base flow conditions

    USDA-ARS?s Scientific Manuscript database

    E. coli as an indicator bacterium is commonly used to characterize microbiological water quality, to evaluate surface water sources for microbiological impairment, and to assess management practices that lead to the decrease of pathogens and indicator influx in surface water sources for recreation a...

  5. Identification of extracellular surface-layer associated proteins in Lactobacillus acidophilus NCFM

    PubMed Central

    Johnson, Brant; Selle, Kurt; O’Flaherty, Sarah; Goh, Yong Jun

    2013-01-01

    Bacterial surface (S-) layers are crystalline arrays of self-assembling, proteinaceous subunits called S-layer proteins (Slps), with molecular masses ranging from 40 to 200 kDa. The S-layer-forming bacterium Lactobacillus acidophilus NCFM expresses three major Slps: SlpA (46 kDa), SlpB (47 kDa) and SlpX (51 kDa). SlpA has a demonstrated role in adhesion to Caco-2 intestinal epithelial cells in vitro, and has been shown to modulate dendritic cell (DC) and T-cell functionalities with murine DCs. In this study, a modification of a standard lithium chloride S-layer extraction revealed 37 proteins were solubilized from the S-layer wash fraction. Of these, 30 have predicted cleavage sites for secretion, 24 are predicted to be extracellular, six are lipid-anchored, three have N-terminal hydrophobic membrane spanning regions and four are intracellular, potentially moonlighting proteins. Some of these proteins, designated S-layer associated proteins (SLAPs), may be loosely associated with or embedded within the bacterial S-layer complex. Lba-1029, a putative SLAP gene, was deleted from the chromosome of L. acidophilus. Phenotypic characterization of the deletion mutant demonstrated that the SLAP LBA1029 contributes to a pro-inflammatory TNF-α response from murine DCs. This study identified extracellular proteins and putative SLAPs of L. acidophilus NCFM using LC-MS/MS. SLAPs appear to impart important surface display features and immunological properties to microbes that are coated by S-layers. PMID:24002751

  6. A 2,4-dichlorophenoxyacetic acid degradation plasmid pM7012 discloses distribution of an unclassified megaplasmid group across bacterial species.

    PubMed

    Sakai, Yoriko; Ogawa, Naoto; Shimomura, Yumi; Fujii, Takeshi

    2014-03-01

    Analysis of the complete nucleotide sequence of plasmid pM7012 from 2,4-dichlorophenoxyacetic-acid (2,4-D)-degrading bacterium Burkholderia sp. M701 revealed that the plasmid had 582 142 bp, with 541 putative protein-coding sequences and 39 putative tRNA genes for the transport of the standard 20 aa. pM7012 contains sequences homologous to the regions involved in conjugal transfer and plasmid maintenance found in plasmids byi_2p from Burkholderia sp. YI23 and pBVIE01 from Burkholderia sp. G4. No relaxase gene was found in any of these plasmids, although genes for a type IV secretion system and type IV coupling proteins were identified. Plasmids with no relaxase gene have been classified as non-mobile plasmids. However, nucleotide sequences with a high level of similarity to the genes for plasmid transfer, plasmid maintenance, 2,4-D degradation and arsenic resistance contained on pM7012 were also detected in eight other megaplasmids (~600 or 900 kb) found in seven Burkholderia strains and a strain of Cupriavidus, which were isolated as 2,4-D-degrading bacteria in Japan and the United States. These results suggested that the 2,4-D degradation megaplasmids related to pM7012 are mobile and distributed across various bacterial species worldwide, and that the plasmid group could be distinguished from known mobile plasmid groups.

  7. Cloning, characterization and sequence comparison of the gene coding for IMP dehydrogenase from Pyrococcus furiosus.

    PubMed

    Collart, F R; Osipiuk, J; Trent, J; Olsen, G J; Huberman, E

    1996-10-03

    We have cloned and characterized the gene encoding inosine monophosphate dehydrogenase (IMPDH) from Pyrococcus furiosus (Pf), a hyperthermophillic archeon. Sequence analysis of the Pf gene indicated an open reading frame specifying a protein of 485 amino acids (aa) with a calculated M(r) of 52900. Canonical Archaea promoter elements, Box A and Box B, are located -49 and -17 nucleotides (nt), respectively, upstream of the putative start codon. The sequence of the putative active-site region conforms to the IMPDH signature motif and contains a putative active-site cysteine. Phylogenetic relationships derived by using all available IMPDH sequences are consistent with trees developed for other molecules; they do not precisely resolve the history of Pf IMPDH but indicate a close similarity to bacterial IMPDH proteins. The phylogenetic analysis indicates that a gene duplication occurred prior to the division between rodents and humans, accounting for the Type I and II isoforms identified in mice and humans.

  8. Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from retail shrimps in Malaysia.

    PubMed

    Letchumanan, Vengadesh; Yin, Wai-Fong; Lee, Learn-Han; Chan, Kok-Gan

    2015-01-01

    Vibrio parahaemolyticus is a marine and estuarine bacterium that has been the leading cause of foodborne outbreaks which leads to a significant threat to human health worldwide. Consumption of seafood contaminated with V. parahaemolyticus causes acute gastroenteritis in individuals. The bacterium poses two main virulence factor including the thermostable direct hemolysin (tdh) which is a pore-forming protein that contributes to the invasiveness of the bacterium in humans and TDH-related hemolysin (trh), which plays a similar role as tdh in the disease pathogenesis. This study aimed to investigate the antimicrobial resistance V. parahaemolyticus strains in shrimps purchased from wetmarkets and supermarkets. The toxR-based PCR assay indicated that a total of 57.8% (185/320) isolates were positive for V. parahaemolyticus. Only 10% (19/185) toxR-positive isolate exhibit the trh gene and none of the isolates were tested positive for tdh. The MAR index was measured for 14 common antimicrobial agents. The results indicated 98% of the isolates were highly susceptible to imipenem, ampicillin sulbactam (96%), chloramphenicol (95%), trimethoprim-sulfamethoxazole (93%), gentamicin (85%), levofloxacin (83%), and tetracycline (82%). The chloramphenicol (catA2) and kanamycin (aphA-3) resistance genes were detected in the resistant V. parahaemolyticus isolates. Our results demonstrate that shrimps are contaminated with V. parahaemolyticus, some of which carry the trh-gene thus being potential to cause food borne illness. The occurrence of multidrug resistance strains in the environment could be an indication of excessive usage of antibiotics in agriculture and aquaculture fields.

  9. Comparative proteomic analysis of Desulfotomaculum reducens MI-1: Insights into the metabolic versatility of a gram-positive sulfate- and metal-reducing bacterium

    DOE PAGES

    Otwell, Anne E.; Callister, Stephen J.; Zink, Erika M.; ...

    2016-02-19

    In this study, the proteomes of the metabolically versatile and poorly characterized Gram-positive bacterium Desulfotomaculum reducens MI-1 were compared across four cultivation conditions including sulfate reduction, soluble Fe(III) reduction, insoluble Fe(III) reduction, and pyruvate fermentation. Collectively across conditions, we observed at high confidence ~38% of genome-encoded proteins. Here, we focus on proteins that display significant differential abundance on conditions tested. To the best of our knowledge, this is the first full-proteome study focused on a Gram-positive organism cultivated either on sulfate or metal-reducing conditions. Several proteins with uncharacterized function encoded within heterodisulfide reductase ( hdr)-containing loci were upregulated on eithermore » sulfate (Dred_0633-4, Dred_0689-90, and Dred_1325-30) or Fe(III)-citrate-reducing conditions (Dred_0432-3 and Dred_1778-84). Two of these hdr-containing loci display homology to recently described flavin-based electron bifurcation (FBEB) pathways (Dred_1325-30 and Dred_1778-84). Additionally, we propose that a cluster of proteins, which is homologous to a described FBEB lactate dehydrogenase (LDH) complex, is performing lactate oxidation in D. reducens (Dred_0367-9). Analysis of the putative sulfate reduction machinery in D. reducens revealed that most of these proteins are constitutively expressed across cultivation conditions tested. In addition, peptides from the single multiheme c-type cytochrome (MHC) in the genome were exclusively observed on the insoluble Fe(III) condition, suggesting that this MHC may play a role in reduction of insoluble metals.« less

  10. Comparative proteomic analysis of Desulfotomaculum reducens MI-1: Insights into the metabolic versatility of a gram-positive sulfate- and metal-reducing bacterium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otwell, Anne E.; Callister, Stephen J.; Zink, Erika M.

    In this study, the proteomes of the metabolically versatile and poorly characterized Gram-positive bacterium Desulfotomaculum reducens MI-1 were compared across four cultivation conditions including sulfate reduction, soluble Fe(III) reduction, insoluble Fe(III) reduction, and pyruvate fermentation. Collectively across conditions, we observed at high confidence ~38% of genome-encoded proteins. Here, we focus on proteins that display significant differential abundance on conditions tested. To the best of our knowledge, this is the first full-proteome study focused on a Gram-positive organism cultivated either on sulfate or metal-reducing conditions. Several proteins with uncharacterized function encoded within heterodisulfide reductase ( hdr)-containing loci were upregulated on eithermore » sulfate (Dred_0633-4, Dred_0689-90, and Dred_1325-30) or Fe(III)-citrate-reducing conditions (Dred_0432-3 and Dred_1778-84). Two of these hdr-containing loci display homology to recently described flavin-based electron bifurcation (FBEB) pathways (Dred_1325-30 and Dred_1778-84). Additionally, we propose that a cluster of proteins, which is homologous to a described FBEB lactate dehydrogenase (LDH) complex, is performing lactate oxidation in D. reducens (Dred_0367-9). Analysis of the putative sulfate reduction machinery in D. reducens revealed that most of these proteins are constitutively expressed across cultivation conditions tested. In addition, peptides from the single multiheme c-type cytochrome (MHC) in the genome were exclusively observed on the insoluble Fe(III) condition, suggesting that this MHC may play a role in reduction of insoluble metals.« less

  11. Microbial Selenite Reduction and the Selenium Biogeochemical Cycle

    NASA Astrophysics Data System (ADS)

    Stolz, J. F.; Wells, M.

    2016-12-01

    Selenium is an essential trace element utilized by many species in the three domains of life. In most Bacteria and Archaea, selenium is primarily assimilated to form selenocysteine, the 21st amino acid (Sec). Additionally selenium can be methylated, demethylated, or used as a terminal electron acceptor in dissimilatory selenate or selenite reduction. Although progress has been made on elucidating the synthesis of selenoproteins, less is known of their occurrence, diversity, and functionality, primarily due to poor genome annotation (e.g., failure to recognize UGA as a Sec and not a stop codon) and proteomics analysis (e.g., failure to detect Sec in LC/MS-MS). Furthermore important parts of the selenium biogeochemical cycle remain to be fully explored, in particular the reduction of Se(IV) to Se(O). We have examined the selenoproteome of a selenate respiring bacterium Sulfurospirillum barnesii strain SES-3, which reduces Se(VI) to Se(0) and the dissimilatory selenite reducing bacterium, Bacillus selenitireducens, strain MLS-10, which reduces Se(IV) to Se(0). Candidate selenoproteins including D-proline reductase, formate dehydrogenase, and methionine-S sulfoxide reductase have been identified in the genomes. A putative dissimilatory selenate reducase (Ser) was found in the genome of S. barnesii. More significant was the discovery of a candidate for the respiratory selenite reductase in B. selenitireducens as determined by in gel assays and LC/MS-MS. The latter has provided a hint at the potential diversity of DSiR bacteria and the development of molecular probes for investigating DSiR in the selenium biogeochemical cycle.

  12. Characterisation of an efficient atrazine-degrading bacterium, Arthrobacter sp. ZXY-2: an attempt to lay the foundation for potential bioaugmentation applications.

    PubMed

    Zhao, Xinyue; Wang, Li; Ma, Fang; Yang, Jixian

    2018-01-01

    The isolation of atrazine-degrading microorganisms with specific characteristics is fundamental for bioaugmenting the treatment of wastewater containing atrazine. However, studies describing the specific features of such microorganisms are limited, and further investigation is needed to improve our understanding of bioaugmentation. In this study, strain Arthrobacter sp. ZXY-2, which displayed a strong capacity to degrade atrazine, was isolated and shown to be a potential candidate for bioaugmentation. The factors associated with the biodegrading capacity of strain ZXY-2 were investigated, and how these factors likely govern the metabolic characteristics that control bioaugmentation functionality was determined. The growth pattern of Arthrobacter sp. ZXY-2 followed the Haldane-Andrews model with an inhibition constant ( K i ) of 52.76 mg L -1 , indicating the possible augmentation of wastewater treatment with relatively high atrazine concentrations (> 50 ppm). Real-time quantitative PCR (RT-qPCR) results showed a positive correlation between the atrazine degradation rate and the expression levels of three functional genes ( trzN , atzB , and atzC ), which helped elucidate the role of strain ZXY-2 in bioaugmentation. In addition, multiple copies of the atzB gene were putatively identified, explaining the higher expression levels of this gene than those of the other functional genes. Multiple copies of the atzB gene may represent a compensatory mechanism that ensures the biodegradation of atrazine, a feature that should be exploited in future bioaugmentation applications.

  13. Genetic organization of plasmid pXF51 from the plant pathogen Xylella fastidiosa.

    PubMed

    Marques, M V; da Silva, A M; Gomes, S L

    2001-05-01

    The sequence of plasmid pXF51 from the plant pathogen Xylella fastidiosa, the causal agent of citrus variegated chlorosis, has been analyzed. This plasmid codes for 65 open reading frames (ORFs), organized into four main regions, containing genes related to replication, mobilization, and conjugative transfer. Twenty-five ORFs have no counterparts in the public sequence databases, and 7 are similar to conserved hypothetical proteins from other bacteria. A pXF51 incompatibility group has not been determined, as we could not find a typical replication origin. One cluster of conjugation-related genes (trb) seems to be incomplete in pXF51, and a copy of this sequence is found in the chromosome, suggesting it was generated by a duplication event. A second cluster (tra) contains all genes necessary for conjugation transfer to occur, showing a conserved organization with other conjugative plasmids. An identifiable origin of transfer similar to oriT from IncP plasmids is found adjacent to genes encoding two mobilization proteins. None of the ORFs with putative assigned function could be predicted as having a role in pathogenesis, except for a virulence-associated protein D homolog. These results indicate that even though pXF51 appears not to have a direct role in Xylella pathogenesis, it is a conjugative plasmid that could be important for lateral gene transfer in this bacterium. This property may be of great importance for future development of transformation techniques in X. fastidiosa.

  14. Co-occurrence of genes for aerobic and anaerobic biodegradation of dichloroethane in organochlorine-contaminated groundwater.

    PubMed

    Munro, Jacob E; Kimyon, Önder; Rich, Deborah J; Koenig, Joanna; Tang, Sihui; Low, Adrian; Lee, Matthew; Manefield, Mike; Coleman, Nicholas V

    2017-11-01

    1,2-Dichloroethane (DCA) is a problematic groundwater pollutant. Factors influencing the distribution and activities of DCA-degrading bacteria are not well understood, which has hampered their application for bioremediation. Here, we used quantitative PCR to investigate the distribution of putative DCA-dehalogenating bacteria at a DCA-impacted site in Sydney (Australia). The dehalogenase genes dhlA, tceA and bvcA were detected in all groundwater samples (n = 15), while vcrA was found in 11/15 samples. The 16S rRNA gene sequences specific to the dehalogenating genera Dehalobacter, Desulfitobacterium and Dehalogenimonas were detected in 15/15, 13/15 and 13/15 samples, respectively, while Dehalococcoides sequences were found in 9/15 samples. The tceA, bvcA and vcrA genes occurred in the same samples as Dehalococcoides and Dehalobacter. Microcosm experiments confirmed the presence of bacteria capable of dechlorination under anoxic conditions. The abundance of the dhlA gene, which is found in hydrolytic DCA degraders, was positively correlated to the DCA concentration, and was unexpectedly most abundant in samples with low oxygen conditions. A dhlA-containing bacterium isolated from the site (Xanthobacter EL8) was capable of anaerobic growth on DCA under denitrifying conditions. The presence of diverse DCA-dehalogenating bacteria at this site indicates that natural attenuation or biostimulation could be valid approaches for site cleanup. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. NH4+ transport system of a psychrophilic marine bacterium, Vibrio sp. strain ABE-1.

    PubMed

    Chou, M; Matsunaga, T; Takada, Y; Fukunaga, N

    1999-05-01

    NH4(+) transport system of a psychrophilic marine bacterium Vibrio sp. strain ABE-1 (Vibrio ABE-1) was examined by measuring the uptake of [14C]methylammonium ion (14CH3NH3+) into the intact cells. 14CH3NH3+ uptake was detected in cells grown in medium containing glutamate as the sole nitrogen source, but not in those grown in medium containing NH4Cl instead of glutamate. Vibrio ABE-1 did not utilize CH3NH3+ as a carbon or nitrogen source. NH4Cl and nonradiolabeled CH3NH3+ completely inhibited 14CH3NH3+ uptake. These results indicate that 14CH3NH3+ uptake in this bacterium is mediated via an NH4+ transport system and not by a specific carrier for CH3NH3+. The respiratory substrate succinate was required to drive 14CH3NH3+ uptake and the uptake was completely inhibited by KCN, indicating that the uptake was energy dependent. The electrochemical potentials of H+ and/or Na+ across membranes were suggested to be the driving forces for the transport system because the ionophores carbonylcyanide m-chlorophenylhydrazone and monensin strongly inhibited uptake activities at pH 6.5 and 8.5, respectively. Furthermore, KCl activated 14CH3NH3+ uptake. The 14CH3NH3+ uptake activity of Vibrio ABE-1 was markedly high at temperatures between 0 degrees and 15 degrees C, and the apparent Km value for CH3NH3+ of the uptake did not change significantly over the temperature range from 0 degrees to 25 degrees C. Thus, the NH4+ transport system of this bacterium was highly active at low temperatures.

  16. Occurrence and distribution of microbiological indicators in groundwater and stream water

    USGS Publications Warehouse

    Francy, D.S.; Helsel, D.R.; Nally, R.A.

    2000-01-01

    A total of 136 stream water and 143 groundwater samples collected in five important hydrologic systems of the United States were analyzed for microbiological indicators to test monitoring concepts in a nationally consistent program. Total coliforms were found in 99%, Escherichia coli in 97%, and Clostridium perfringens in 73% of stream water samples analyzed for each bacterium. Total coliforms were found in 20%, E. coli in less than 1%, and C. perfringens in none of the groundwater samples analyzed for each bacterium. Although coliphage analyses were performed on many of the samples, contamination in the laboratory and problems discerning discrete plaques precluded quantification. Land use was found to have the most significant effect on concentrations of bacterial indicators in stream water. Presence of septic systems on the property near the sampling site and well depth were found to be related to detection of coliforms in groundwater, although these relationships were not statistically significant. A greater diversity of sites, more detailed information about some factors, and a larger dataset may provide further insight to factors that affect microbiological indicators.

  17. Characterization of a potentially novel 'blown pack' spoilage bacterium isolated from bovine hide.

    PubMed

    Moschonas, G; Bolton, D J

    2013-03-01

    To characterize a psychrotrophic bacterium, designated TC1, previously isolated from a cattle hide in Ireland, and to investigate the ability of this strain to cause 'blown pack' spoilage (BPS) of vacuum-packaged beef primals. TC1 was characterized using a combination of phenotypic, chemotaxonomic and genotypic analyses and was assessed for its ability to spoil vacuum-packaged beef at refrigerated temperatures. TC1 was Gram-positive and formed elliptical subterminal endospores. The strain was able to grow between 0 and 33 °C, with optimal growth between 23 and 24 °C. TC1 could be differentiated from its phylogenetically closest neighbour (Clostridium lituseburense DSM 797(T)) by 16S rRNA gene sequencing, pulsed-field gel electrophoresis and cellular fatty acid composition. TC1 spoiled (BPS) beef within 42 days when inoculated in cold-stored (1 °C) vacuum-packed beef. The phenotypic, chemotaxonomic and genotypic characterization indicated that TC1 may represent a potentially novel, cold-tolerant, gas-producing bacterium of considerable economic significance to the beef industry. This study reports and characterizes an emerging BPS bacterium, which should be considered in future activities designed to minimize the psychrophilic and psychrotrophic spoilage of vacuum-packaged beef. © 2012 The Society for Applied Microbiology.

  18. Comparative genomic analysis of clinical and environmental strains provides insight into the pathogenicity and evolution of Vibrio parahaemolyticus.

    PubMed

    Li, Lei; Wong, Hin-chung; Nong, Wenyan; Cheung, Man Kit; Law, Patrick Tik Wan; Kam, Kai Man; Kwan, Hoi Shan

    2014-12-18

    Vibrio parahaemolyticus is a Gram-negative halophilic bacterium. Infections with the bacterium could become systemic and can be life-threatening to immunocompromised individuals. Genome sequences of a few clinical isolates of V. parahaemolyticus are currently available, but the genome dynamics across the species and virulence potential of environmental strains on a genome-scale have not been described before. Here we present genome sequences of four V. parahaemolyticus clinical strains from stool samples of patients and five environmental strains in Hong Kong. Phylogenomics analysis based on single nucleotide polymorphisms revealed a clear distinction between the clinical and environmental isolates. A new gene cluster belonging to the biofilm associated proteins of V. parahaemolyticus was found in clincial strains. In addition, a novel small genomic island frequently found among clinical isolates was reported. A few environmental strains were found harboring virulence genes and prophage elements, indicating their virulence potential. A unique biphenyl degradation pathway was also reported. A database for V. parahaemolyticus (http://kwanlab.bio.cuhk.edu.hk/vp) was constructed here as a platform to access and analyze genome sequences and annotations of the bacterium. We have performed a comparative genomics analysis of clinical and environmental strains of V. parahaemolyticus. Our analyses could facilitate understanding of the phylogenetic diversity and niche adaptation of this bacterium.

  19. Sexual Transmission of a Plant Pathogenic Bacterium, Candidatus Liberibacter asiaticus, between Conspecific Insect Vectors during Mating

    PubMed Central

    Mann, Rajinder S.; Pelz-Stelinski, Kirsten; Hermann, Sara L.; Tiwari, Siddharth; Stelinski, Lukasz L.

    2011-01-01

    Candidatus Liberibacter asiaticus is a fastidious, phloem-inhabiting, gram-negative bacterium transmitted by Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae). The bacterium is the presumed causal agent of huanglongbing (HLB), one of the most destructive and economically important diseases of citrus. We investigated whether Las is transmitted between infected and uninfected D. citri adults during courtship. Our results indicate that Las was sexually transmitted from Las-infected male D. citri to uninfected females at a low rate (<4%) during mating. Sexual transmission was not observed following mating of infected females and uninfected males or among adult pairs of the same sex. Las was detected in genitalia of both sexes and also in eggs of infected females. A latent period of 7 days or more was required to detect the bacterium in recipient females. Rod shaped as well as spherical structures resembling Las were observed in ovaries of Las-infected females with transmission electron microscopy, but were absent in ovaries from uninfected D. citri females. The size of the rod shaped structures varied from 0.39 to 0.67 µm in length and 0.19 to 0.39 µm in width. The spherical structures measured from 0.61 to 0.80 µm in diameter. This investigation provides convincing evidence that a plant pathogenic bacterium is sexually transmitted from male to female insects during courtship and established evidence that bacteria persist in reproductive organs. Moreover, these findings provide an alternative sexually horizontal mechanism for the spread of Las within populations of D. citri, even in the absence of infected host trees. PMID:22216209

  20. Lipid transfer proteins and protease inhibitors as key factors in the priming of barley responses to Fusarium head blight disease by a biocontrol strain of Pseudomonas fluorescens.

    PubMed

    Petti, Carloalberto; Khan, Mojibur; Doohan, Fiona

    2010-11-01

    Strains of non-pathogenic pseudomonad bacteria, can elicit host defence responses against pathogenic microorganisms. Pseudomonas fluorescens strain MKB158 can protect cereals from pathogenesis by Fusarium fungi, including Fusarium head blight which is an economically important disease due to its association with both yield loss and mycotoxin contamination of grain. Using the 22 K barley Affymetrix chip, trancriptome studies were undertaken to determine the local effect of P. fluorescens strain MKB158 on the transcriptome of barley head tissue, and to discriminate transcripts primed by the bacterium to respond to challenge by Fusarium culmorum, a causal agent of the economically important Fusarium head blight disease of cereals. The bacterium significantly affected the accumulation of 1203 transcripts and primed 74 to positively, and 14 to negatively, respond to the pathogen (P = 0.05). This is the first study to give insights into bacterium priming in the Triticeae tribe of grasses and associated transcripts were classified into 13 functional classes, associated with diverse functions, including detoxification, cell wall biosynthesis and the amplification of host defence responses. In silico analysis of Arabidopsis homologs of bacterium-primed barley genes indicated that, as is the case in dicots, jasmonic acid plays a role in pseudomonad priming of host responses. Additionally, the transcriptome studies described herein also reveal new insights into bacterium-mediated priming of host defences against necrotrophs, including the positive effects on grain filling, lignin deposition, oxidative stress responses, and the inhibition of protease inhibitors and proteins that play a key role in programmed cell death.

  1. Isolation of an Amoeba Naturally Harboring a Distinctive Legionella Species

    PubMed Central

    Newsome, Anthony L.; Scott, Tammy M.; Benson, Robert F.; Fields, Barry S.

    1998-01-01

    There are numerous in vitro studies documenting the multiplication of Legionella species in free-living amoebae and other protozoa. It is believed that protozoa serve as host cells for the intracellular replication of certain Legionella species in a variety of environmental settings. This study describes the isolation and characterization of a bacterium initially observed within an amoeba taken from a soil sample. In the laboratory, the bacterium multiplied within and was highly pathogenic for Acanthamoeba polyphaga. Extracellular multiplication was observed on buffered charcoal yeast extract agar but not on a variety of conventional laboratory media. A 16S rRNA gene analysis placed the bacterium within the genus Legionella. Serological studies indicate that it is distinct from previously described species of the genus. This report also describes methods that should prove useful for the isolation and characterization of additional Legionella-like bacteria from free-living amoebae. In addition, the characterization of bacterial pathogens of amoebae has significant implications for understanding the ecology and identification of other unrecognized bacterial pathogens. PMID:9572937

  2. Bacterial exopolymer utilization by a harpacticoid copepod: A methodology and results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decho, A.W.; Moriarty, D.J.W.

    1990-07-01

    Exopolymer mucus secretions of bacteria and diatoms are potential foods for benthic animals. These secretions are coincidently ingested by animals during consumption of microbial cells and sediments. The utilization of microbial secretions was investigated with exopolymer derived from a marine bacterium (pseudomonas sp.) from seagrass beds and a harpacticoid copepod Laophonte sp. from the same habitat. A new technique was developed to examine ingestion, absorption, and absorption efficiencies of these bacterial secretions by consumers. Exopolymer mucus (from the bacterium in stationary phase) was labeled with {sup 14}C, collected, purified, and bound onto bacterium-sized beads. The exopolymer slime coating mimicked themore » coatings associated with many marine bacteria. Results from feeding experiments where the coated beads were mixed with sediment demonstrated that the mucus-exopolymer secretions of bacteria were ingested and utilized by Laophonte sp. Absorption efficiencies, determined directly, were > 80% in the presence of other food resources, indicating that exopolymer is potentially a highly labile C resource for this animal.« less

  3. Isolation and Characterization of a Novel, Highly Selective Astaxanthin-Producing Marine Bacterium.

    PubMed

    Asker, Dalal

    2017-10-18

    A high-throughput screening approach for astaxanthin-producing bacteria led to the discovery of a novel, highly selective astaxanthin-producing marine bacterium (strain N-5). Phylogenetic analysis based on partial 16S rRNA gene and phenotypic metabolic testing indicated it belongs to the genus Brevundimonas. Therefore, it was designated as Brevundimonas sp. strain N-5. To identify and quantify carotenoids produced by strain N-5, HPLC-DAD and HPLC-MS methods were used. The culture conditions including media, shaking, and time had significant effects on cell growth and carotenoids production including astaxanthin. The total carotenoids were ∼601.2 μg g -1 dry cells including a remarkable amount (364.6 μg g -1 dry cells) of optically pure astaxanthin (3S, 3'S) isomer, with high selectivity (∼60.6%) under medium aeration conditions. Notably, increasing the culture aeration enhanced astaxanthin production up to 85% of total carotenoids. This is the first report that describes a natural, highly selective astaxanthin-producing marine bacterium.

  4. Characterization and identification of a chlorine-resistant bacterium, Sphingomonas TS001, from a model drinking water distribution system.

    PubMed

    Sun, Wenjun; Liu, Wenjun; Cui, Lifeng; Zhang, Minglu; Wang, Bei

    2013-08-01

    This study describes the identification and characterization of a new chlorine resistant bacterium, Sphingomonas TS001, isolated from a model drinking water distribution system. The isolate was identified by 16s rRNA gene analysis and morphological and physiological characteristics. Phylogenetic analysis indicates that TS001 belongs to the genus Sphingomonas. The model distribution system HPC results showed that, when the chlorine residual was greater than 0.7 mg L(-1), 100% of detected heterotrophic bacteria (HPC) was TS001. The bench-scale inactivation efficiency testing showed that this strain was very resistant to chlorine, and 4 mg L(-1) of chlorine with 240 min retention time provided only approximately 5% viability reduction of TS001. In contrast, a 3-log inactivation (99.9%) was obtained for UV fluencies of 40 mJ cm(-2). A high chlorine-resistant and UV sensitive bacterium, Sphingomonas TS001, was documented for the first time. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. (Methyl)ammonium Transport in the Nitrogen-Fixing Bacterium Azospirillum brasilense

    PubMed Central

    Van Dommelen, Anne; Keijers, Veerle; Vanderleyden, Jos; de Zamaroczy, Miklos

    1998-01-01

    An ammonium transporter of Azospirillum brasilense was characterized. In contrast to most previously reported putative prokaryotic NH4+ transporter genes, A. brasilense amtB is not part of an operon with glnB or glnZ which, in A. brasilense, encode nitrogen regulatory proteins PII and PZ, respectively. Sequence analysis predicts the presence of 12 transmembrane domains in the deduced AmtB protein and classifies AmtB as an integral membrane protein. Nitrogen regulates the transcription of the amtB gene in A. brasilense by the Ntr system. amtB is the first gene identified in A. brasilense whose expression is regulated by NtrC. The observation that ammonium uptake is still possible in mutants lacking the AmtB protein suggests the presence of a second NH4+ transport mechanism. Growth of amtB mutants at low ammonium concentrations is reduced compared to that of the wild type. This suggests that AmtB has a role in scavenging ammonium at low concentrations. PMID:9573149

  6. Mutant phenotypes for thousands of bacterial genes of unknown function

    DOE PAGES

    Price, Morgan N.; Wetmore, Kelly M.; Waters, R. Jordan; ...

    2018-05-16

    One-third of all protein-coding genes from bacterial genomes cannot be annotated with a function. Here, to investigate the functions of these genes, we present genome-wide mutant fitness data from 32 diverse bacteria across dozens of growth conditions. We identified mutant phenotypes for 11,779 protein-coding genes that had not been annotated with a specific function. Many genes could be associated with a specific condition because the gene affected fitness only in that condition, or with another gene in the same bacterium because they had similar mutant phenotypes. Of the poorly annotated genes, 2,316 had associations that have high confidence because theymore » are conserved in other bacteria. By combining these conserved associations with comparative genomics, we identified putative DNA repair proteins; in addition, we propose specific functions for poorly annotated enzymes and transporters and for uncharacterized protein families. Lastly, our study demonstrates the scalability of microbial genetics and its utility for improving gene annotations.« less

  7. Mutant phenotypes for thousands of bacterial genes of unknown function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Morgan N.; Wetmore, Kelly M.; Waters, R. Jordan

    One-third of all protein-coding genes from bacterial genomes cannot be annotated with a function. Here, to investigate the functions of these genes, we present genome-wide mutant fitness data from 32 diverse bacteria across dozens of growth conditions. We identified mutant phenotypes for 11,779 protein-coding genes that had not been annotated with a specific function. Many genes could be associated with a specific condition because the gene affected fitness only in that condition, or with another gene in the same bacterium because they had similar mutant phenotypes. Of the poorly annotated genes, 2,316 had associations that have high confidence because theymore » are conserved in other bacteria. By combining these conserved associations with comparative genomics, we identified putative DNA repair proteins; in addition, we propose specific functions for poorly annotated enzymes and transporters and for uncharacterized protein families. Lastly, our study demonstrates the scalability of microbial genetics and its utility for improving gene annotations.« less

  8. Data on partial polyhydroxyalkanoate synthase genes (phaC) mined from Aaptos aaptos marine sponge-associated bacteria metagenome.

    PubMed

    Amelia, Tan Suet May; Amirul, Al-Ashraf Abdullah; Bhubalan, Kesaven

    2018-02-01

    We report data associated with the identification of three polyhydroxyalkanoate synthase genes (phaC) isolated from the marine bacteria metagenome of Aaptos aaptos marine sponge in the waters of Bidong Island, Terengganu, Malaysia. Our data describe the extraction of bacterial metagenome from sponge tissue, measurement of purity and concentration of extracted metagenome, polymerase chain reaction (PCR)-mediated amplification using degenerate primers targeting Class I and II phaC genes, sequencing at First BASE Laboratories Sdn Bhd, and phylogenetic analysis of identified and known phaC genes. The partial nucleotide sequences were aligned, refined, compared with the Basic Local Alignment Search Tool (BLAST) databases, and released online in GenBank. The data include the identified partial putative phaC and their GenBank accession numbers, which are Rhodocista sp. phaC (MF457754), Pseudomonas sp. phaC (MF437016), and an uncultured bacterium AR5-9d_16 phaC (MF457753).

  9. Climate-driven introduction of the Black Death and successive plague reintroductions into Europe.

    PubMed

    Schmid, Boris V; Büntgen, Ulf; Easterday, W Ryan; Ginzler, Christian; Walløe, Lars; Bramanti, Barbara; Stenseth, Nils Chr

    2015-03-10

    The Black Death, originating in Asia, arrived in the Mediterranean harbors of Europe in 1347 CE, via the land and sea trade routes of the ancient Silk Road system. This epidemic marked the start of the second plague pandemic, which lasted in Europe until the early 19th century. This pandemic is generally understood as the consequence of a singular introduction of Yersinia pestis, after which the disease established itself in European rodents over four centuries. To locate these putative plague reservoirs, we studied the climate fluctuations that preceded regional plague epidemics, based on a dataset of 7,711 georeferenced historical plague outbreaks and 15 annually resolved tree-ring records from Europe and Asia. We provide evidence for repeated climate-driven reintroductions of the bacterium into European harbors from reservoirs in Asia, with a delay of 15 ± 1 y. Our analysis finds no support for the existence of permanent plague reservoirs in medieval Europe.

  10. Amylocyclicin, a Novel Circular Bacteriocin Produced by Bacillus amyloliquefaciens FZB42

    PubMed Central

    Scholz, Romy; Vater, Joachim; Budiharjo, Anto; Wang, Zhiyuan; He, Yueqiu; Dietel, Kristin; Schwecke, Torsten; Herfort, Stefanie; Lasch, Peter

    2014-01-01

    Bacillus amyloliquefaciens FZB42 is a Gram-positive plant growth-promoting bacterium with an impressive capacity to synthesize nonribosomal secondary metabolites with antimicrobial activity. Here we report on a novel circular bacteriocin which is ribosomally synthesized by FZB42. The compound displayed high antibacterial activity against closely related Gram-positive bacteria. Transposon mutagenesis and subsequent site-specific mutagenesis combined with matrix-assisted laser desorption ionization–time of flight mass spectroscopy revealed that a cluster of six genes covering 4,490 bp was responsible for the production, modification, and export of and immunity to an antibacterial compound, here designated amylocyclicin, with a molecular mass of 6,381 Da. Peptide sequencing of the fragments obtained after tryptic digestion of the purified peptide revealed posttranslational cleavage of an N-terminal extension and head-to-tail circularization of the novel bacteriocin. Homology to other putative circular bacteriocins in related bacteria let us assume that this type of peptide is widespread among the Bacillus/Paenibacillus taxon. PMID:24610713

  11. Climate-driven introduction of the Black Death and successive plague reintroductions into Europe

    PubMed Central

    Büntgen, Ulf; Easterday, W. Ryan; Ginzler, Christian; Walløe, Lars; Bramanti, Barbara; Stenseth, Nils Chr.

    2015-01-01

    The Black Death, originating in Asia, arrived in the Mediterranean harbors of Europe in 1347 CE, via the land and sea trade routes of the ancient Silk Road system. This epidemic marked the start of the second plague pandemic, which lasted in Europe until the early 19th century. This pandemic is generally understood as the consequence of a singular introduction of Yersinia pestis, after which the disease established itself in European rodents over four centuries. To locate these putative plague reservoirs, we studied the climate fluctuations that preceded regional plague epidemics, based on a dataset of 7,711 georeferenced historical plague outbreaks and 15 annually resolved tree-ring records from Europe and Asia. We provide evidence for repeated climate-driven reintroductions of the bacterium into European harbors from reservoirs in Asia, with a delay of 15 ± 1 y. Our analysis finds no support for the existence of permanent plague reservoirs in medieval Europe. PMID:25713390

  12. Characterization and Genomic Analysis of a Highly Efficient Dibutyl Phthalate-Degrading Bacterium Gordonia sp. Strain QH-12.

    PubMed

    Jin, Decai; Kong, Xiao; Liu, Huijun; Wang, Xinxin; Deng, Ye; Jia, Minghong; Yu, Xiangyang

    2016-06-25

    A bacterial strain QH-12 isolated from activated sludge was identified as Gordonia sp. based on analysis of 16S rRNA gene sequence and was found to be capable of utilizing dibutyl phthalate (DBP) and other common phthalate esters (PAEs) as the sole carbon and energy source. The degradation kinetics of DBP under different concentrations by the strain QH-12 fit well with the modified Gompertz model (R² > 0.98). However, strain QH-12 could not utilize the major intermediate product phthalate (phthalic acid; PA) as the sole carbon and energy source, and only a little amount of PA was detected. The QH-12 genome analysis revealed the presence of putative hydrolase/esterase genes involved in PAEs-degradation but no phthalic acid catabolic gene cluster was found, suggesting that a novel degradation pathway of PAEs was present in Gordonia sp. QH-12. This information will be valuable for obtaining a more holistic understanding on diverse genetic mechanisms of PAEs-degrading Gordonia sp. strains.

  13. Biological removal of nitrate and ammonium under aerobic atmosphere by Paracoccus versutus LYM.

    PubMed

    Shi, Zhuang; Zhang, Yu; Zhou, Jiti; Chen, Mingxiang; Wang, Xiaojun

    2013-11-01

    The bacterium isolated from sea sludge Paracoccus versutus LYM was characterized with the ability of aerobic denitrification. Strain LYM performs perfect activity in aerobically converting over 95% NO3(-)-N (approximate 400mg L(-1)) to gaseous products via nitrite with maximum reduction rate 33 mg NO3(-)-N L(-1) h(-1). Besides characteristic of aerobic denitrification, strain LYM was confirmed in terms of the ability to be heterotrophic nitrification and aerobic denitrification (HNAD) with few accumulations of intermediates. After the nitrogen balance and enzyme assays, the putative nitrogen pathway of HNAD could be NH4(+) → NH2OH → NO2(-)→ NO3(-), then NO3(-) was denitrified to gaseous products via nitrite. N2 was sole denitrification product without any detection of N2O by gas chromatography. Strain LYM could also simultaneously remove ammonium and additional nitrate. Meanwhile, the accumulated nitrite had inhibitory effect on ammonium reduction rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Draft genome sequence of chloride-tolerant Leptospirillum ferriphilum Sp-Cl from industrial bioleaching operations in northern Chile.

    PubMed

    Issotta, Francisco; Galleguillos, Pedro A; Moya-Beltrán, Ana; Davis-Belmar, Carol S; Rautenbach, George; Covarrubias, Paulo C; Acosta, Mauricio; Ossandon, Francisco J; Contador, Yasna; Holmes, David S; Marín-Eliantonio, Sabrina; Quatrini, Raquel; Demergasso, Cecilia

    2016-01-01

    Leptospirillum ferriphilum Sp-Cl is a Gram negative, thermotolerant, curved, rod-shaped bacterium, isolated from an industrial bioleaching operation in northern Chile, where chalcocite is the major copper mineral and copper hydroxychloride atacamite is present in variable proportions in the ore. This strain has unique features as compared to the other members of the species, namely resistance to elevated concentrations of chloride, sulfate and metals. Basic microbiological features and genomic properties of this biotechnologically relevant strain are described in this work. The 2,475,669 bp draft genome is arranged into 74 scaffolds of 74 contigs. A total of 48 RNA genes and 2,834 protein coding genes were predicted from its annotation; 55 % of these were assigned a putative function. Release of the genome sequence of this strain will provide further understanding of the mechanisms used by acidophilic bacteria to endure high osmotic stress and high chloride levels and of the role of chloride-tolerant iron-oxidizers in industrial bioleaching operations.

  15. The rpoE operon regulates heat stress response in Burkholderia pseudomallei.

    PubMed

    Vanaporn, Muthita; Vattanaviboon, Paiboon; Thongboonkerd, Visith; Korbsrisate, Sunee

    2008-07-01

    Burkholderia pseudomallei is a gram-negative bacterium and the causative agent of melioidosis, one of the important lethal diseases in tropical regions. In this article, we demonstrate the crucial role of the B. pseudomallei rpoE locus in the response to heat stress. The rpoE operon knockout mutant exhibited growth retardation and reduced survival when exposed to a high temperature. Expression analysis using rpoH promoter-lacZ fusion revealed that heat stress induction of rpoH, which encodes heat shock sigma factor (sigma(H)), was abolished in the B. pseudomallei rpoE mutant. Analysis of the rpoH promoter region revealed sequences sharing high homology to the consensus sequence of sigma(E)-dependent promoters. Moreover, the putative heat-induced sigma(H)-regulated heat shock proteins (i.e. GroEL and HtpG) were also absent in the rpoE operon mutant. Altogether, our data suggest that the rpoE operon regulates B. pseudomallei heat stress response through the function of rpoH.

  16. Efferocytosis is an innate antibacterial mechanism

    PubMed Central

    Martin, Constance J.; Booty, Matthew G.; Rosebrock, Tracy R.; Nunes-Alves, Cláudio; Desjardins, Danielle M.; Keren, Iris; Fortune, Sarah M.; Remold, Heinz G.; Behar, Samuel M.

    2012-01-01

    Summary Mycobacterium tuberculosis persists within macrophages in an arrested phagosome and depends upon necrosis to elude immunity and disseminate. Although apoptosis of M. tuberculosis-infected macrophages is associated with reduced bacterial growth, the bacteria are relatively resistant to death mechanisms, leaving the mechanisms underlying this observation unresolved. We find that following apoptosis, M. tuberculosis-infected macrophages are rapidly taken up by uninfected macrophages through efferocytosis, a dedicated apoptotic cell engulfment process. Efferocytosis of M. tuberculosis sequestered within an apoptotic macrophage further compartmentalizes the bacterium and delivers it along with the apoptotic cell debris to the lysosomal compartment. M. tuberculosis is killed only after efferocytosis, indicating that apoptosis itself is not intrinsically bactericidal but requires subsequent phagocytic uptake and lysosomal fusion of the apoptotic body harboring the bacterium. While efferocytosis is recognized as a constitutive housekeeping function of macrophages, these data indicate that it can also function as an antimicrobial effector mechanism. PMID:22980326

  17. Metabolic Fingerprints from the Human Oral Microbiome Reveal a Vast Knowledge Gap of Secreted Small Peptidic Molecules.

    PubMed

    Edlund, Anna; Garg, Neha; Mohimani, Hosein; Gurevich, Alexey; He, Xuesong; Shi, Wenyuan; Dorrestein, Pieter C; McLean, Jeffrey S

    2017-01-01

    Recent research indicates that the human microbiota play key roles in maintaining health by providing essential nutrients, providing immune education, and preventing pathogen expansion. Processes underlying the transition from a healthy human microbiome to a disease-associated microbiome are poorly understood, partially because of the potential influences from a wide diversity of bacterium-derived compounds that are illy defined. Here, we present the analysis of peptidic small molecules (SMs) secreted from bacteria and viewed from a temporal perspective. Through comparative analysis of mass spectral profiles from a collection of cultured oral isolates and an established in vitro multispecies oral community, we found that the production of SMs both delineates a temporal expression pattern and allows discrimination between bacterial isolates at the species level. Importantly, the majority of the identified molecules were of unknown identity, and only ~2.2% could be annotated and classified. The catalogue of bacterially produced SMs we obtained in this study reveals an undiscovered molecular world for which compound isolation and ecosystem testing will facilitate a better understanding of their roles in human health and disease. IMPORTANCE Metabolomics is the ultimate tool for studies of microbial functions under any specific set of environmental conditions (D. S. Wishart, Nat Rev Drug Discov 45:473-484, 2016, https://doi.org/10.1038/nrd.2016.32). This is a great advance over studying genes alone, which only inform about metabolic potential. Approximately 25,000 compounds have been chemically characterized thus far; however, the richness of metabolites such as SMs has been estimated to be as high as 1 × 10 30 in the biosphere (K. Garber, Nat Biotechnol 33:228-231, 2015, https://doi.org/10.1038/nbt.3161). Our classical, one-at-a-time activity-guided approach to compound identification continues to find the same known compounds and is also incredibly tedious, which represents a major bottleneck for global SM identification. These challenges have prompted new developments of databases and analysis tools that provide putative classifications of SMs by mass spectral alignments to already characterized tandem mass spectrometry spectra and databases containing structural information (e.g., PubChem and AntiMarin). In this study, we assessed secreted peptidic SMs (PSMs) from 27 oral bacterial isolates and a complex oral in vitro biofilm community of >100 species by using the Global Natural Products Social molecular Networking and the DEREPLICATOR infrastructures, which are methodologies that allow automated and putative annotation of PSMs. These approaches enabled the identification of an untapped resource of PSMs from oral bacteria showing species-unique patterns of secretion with putative matches to known bioactive compounds.

  18. Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare)WRKY transcription factor family reveals putatively retained functions betweenmonocots and dicots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangelsen, Elke; Kilian, Joachim; Berendzen, Kenneth W.

    2008-02-01

    WRKY proteins belong to the WRKY-GCM1 superfamily of zinc finger transcription factors that have been subject to a large plant-specific diversification. For the cereal crop barley (Hordeum vulgare), three different WRKY proteins have been characterized so far, as regulators in sucrose signaling, in pathogen defense, and in response to cold and drought, respectively. However, their phylogenetic relationship remained unresolved. In this study, we used the available sequence information to identify a minimum number of 45 barley WRKY transcription factor (HvWRKY) genes. According to their structural features the HvWRKY factors were classified into the previously defined polyphyletic WRKY subgroups 1 tomore » 3. Furthermore, we could assign putative orthologs of the HvWRKY proteins in Arabidopsis and rice. While in most cases clades of orthologous proteins were formed within each group or subgroup, other clades were composed of paralogous proteins for the grasses and Arabidopsis only, which is indicative of specific gene radiation events. To gain insight into their putative functions, we examined expression profiles of WRKY genes from publicly available microarray data resources and found group specific expression patterns. While putative orthologs of the HvWRKY transcription factors have been inferred from phylogenetic sequence analysis, we performed a comparative expression analysis of WRKY genes in Arabidopsis and barley. Indeed, highly correlative expression profiles were found between some of the putative orthologs. HvWRKY genes have not only undergone radiation in monocot or dicot species, but exhibit evolutionary traits specific to grasses. HvWRKY proteins exhibited not only sequence similarities between orthologs with Arabidopsis, but also relatedness in their expression patterns. This correlative expression is indicative for a putative conserved function of related WRKY proteins in mono- and dicot species.« less

  19. Glycosylation of a Capsule-Like Complex (CLC) by Francisella novicida Is Required for Virulence and Partial Protective Immunity in Mice

    DOE PAGES

    Freudenberger Catanzaro, Kelly C.; Champion, Anna E.; Mohapatra, Nrusingh; ...

    2017-05-30

    Francisella tularensis is a Gram-negative bacterium and the etiologic agent of tularemia. F. tularensis may appear encapsulated when examined by transmission electron microscopy (TEM), which is due to production of an extracellular capsule-like complex (CLC) when the bacterium is grown under specific environmental conditions. Deletion of two glycosylation genes in the live vaccine strain (LVS) results in loss of apparent CLC and attenuation of LVS in mice. In contrast, F. novicida, which is also highly virulent for mice, is reported to be non-encapsulated. But, the F. novicida genome contains a putative polysaccharide locus with homology to the CLC glycosylation locusmore » in F. tularensis. Following daily subculture of F. novicida in Chamberlain’s defined medium, an electron dense material surrounding F. novicida, similar to the F. tularensis CLC, was evident. Extraction with urea effectively removed the CLC, and compositional analysis indicated the extract contained galactose, glucose, mannose, and multiple proteins, similar to those found in the F. tularensis CLC. The same glycosylation genes deleted in LVS were targeted for deletion in F. novicida by allelic exchange using the same mutagenesis vector used for mutagenesis of LVS. In contrast, this mutation also resulted in the loss of five additional genes immediately upstream of the targeted mutation (all within the glycosylation locus), resulting in strain F. novicida Δ11212–1218. The subcultured mutant F. novicida Δ11212–1218 was CLC-deficient and the CLC contained significantly less carbohydrate than the subcultured parent strain. The mutant was severely attenuated in BALB/c mice inoculated intranasally, as determined by the lower number of F. novicida Δ11212–1218 recovered in tissues compared to the parent, and by clearance of the mutant by 10–14 days post-challenge. Mice immunized intranasally with F. novicida Δ11212–1218 were partially protected against challenge with the parent, produced significantly reduced levels of inflammatory cytokines, and their spleens contained only areas of lymphoid hyperplasia, whereas control mice challenged with the parent exhibited hypercytokinemia and splenic necrosis. Thus, F. novicida is capable of producing a CLC similar to that of F. tularensis, and glycosylation of the CLC contributed to F. novicida virulence and immunoprotection.« less

  20. Glycosylation of a Capsule-Like Complex (CLC) by Francisella novicida Is Required for Virulence and Partial Protective Immunity in Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freudenberger Catanzaro, Kelly C.; Champion, Anna E.; Mohapatra, Nrusingh

    Francisella tularensis is a Gram-negative bacterium and the etiologic agent of tularemia. F. tularensis may appear encapsulated when examined by transmission electron microscopy (TEM), which is due to production of an extracellular capsule-like complex (CLC) when the bacterium is grown under specific environmental conditions. Deletion of two glycosylation genes in the live vaccine strain (LVS) results in loss of apparent CLC and attenuation of LVS in mice. In contrast, F. novicida, which is also highly virulent for mice, is reported to be non-encapsulated. But, the F. novicida genome contains a putative polysaccharide locus with homology to the CLC glycosylation locusmore » in F. tularensis. Following daily subculture of F. novicida in Chamberlain’s defined medium, an electron dense material surrounding F. novicida, similar to the F. tularensis CLC, was evident. Extraction with urea effectively removed the CLC, and compositional analysis indicated the extract contained galactose, glucose, mannose, and multiple proteins, similar to those found in the F. tularensis CLC. The same glycosylation genes deleted in LVS were targeted for deletion in F. novicida by allelic exchange using the same mutagenesis vector used for mutagenesis of LVS. In contrast, this mutation also resulted in the loss of five additional genes immediately upstream of the targeted mutation (all within the glycosylation locus), resulting in strain F. novicida Δ11212–1218. The subcultured mutant F. novicida Δ11212–1218 was CLC-deficient and the CLC contained significantly less carbohydrate than the subcultured parent strain. The mutant was severely attenuated in BALB/c mice inoculated intranasally, as determined by the lower number of F. novicida Δ11212–1218 recovered in tissues compared to the parent, and by clearance of the mutant by 10–14 days post-challenge. Mice immunized intranasally with F. novicida Δ11212–1218 were partially protected against challenge with the parent, produced significantly reduced levels of inflammatory cytokines, and their spleens contained only areas of lymphoid hyperplasia, whereas control mice challenged with the parent exhibited hypercytokinemia and splenic necrosis. Thus, F. novicida is capable of producing a CLC similar to that of F. tularensis, and glycosylation of the CLC contributed to F. novicida virulence and immunoprotection.« less

  1. Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from retail shrimps in Malaysia

    PubMed Central

    Letchumanan, Vengadesh; Yin, Wai-Fong; Lee, Learn-Han; Chan, Kok-Gan

    2015-01-01

    Vibrio parahaemolyticus is a marine and estuarine bacterium that has been the leading cause of foodborne outbreaks which leads to a significant threat to human health worldwide. Consumption of seafood contaminated with V. parahaemolyticus causes acute gastroenteritis in individuals. The bacterium poses two main virulence factor including the thermostable direct hemolysin (tdh) which is a pore-forming protein that contributes to the invasiveness of the bacterium in humans and TDH-related hemolysin (trh), which plays a similar role as tdh in the disease pathogenesis. This study aimed to investigate the antimicrobial resistance V. parahaemolyticus strains in shrimps purchased from wetmarkets and supermarkets. The toxR-based PCR assay indicated that a total of 57.8% (185/320) isolates were positive for V. parahaemolyticus. Only 10% (19/185) toxR-positive isolate exhibit the trh gene and none of the isolates were tested positive for tdh. The MAR index was measured for 14 common antimicrobial agents. The results indicated 98% of the isolates were highly susceptible to imipenem, ampicillin sulbactam (96%), chloramphenicol (95%), trimethoprim-sulfamethoxazole (93%), gentamicin (85%), levofloxacin (83%), and tetracycline (82%). The chloramphenicol (catA2) and kanamycin (aphA-3) resistance genes were detected in the resistant V. parahaemolyticus isolates. Our results demonstrate that shrimps are contaminated with V. parahaemolyticus, some of which carry the trh-gene thus being potential to cause food borne illness. The occurrence of multidrug resistance strains in the environment could be an indication of excessive usage of antibiotics in agriculture and aquaculture fields. PMID:25688239

  2. Environmental Escherichia coli: ecology and public health implications-a review.

    PubMed

    Jang, J; Hur, H-G; Sadowsky, M J; Byappanahalli, M N; Yan, T; Ishii, S

    2017-09-01

    Escherichia coli is classified as a rod-shaped, Gram-negative bacterium in the family Enterobacteriaceae. The bacterium mainly inhabits the lower intestinal tract of warm-blooded animals, including humans, and is often discharged into the environment through faeces or wastewater effluent. The presence of E. coli in environmental waters has long been considered as an indicator of recent faecal pollution. However, numerous recent studies have reported that some specific strains of E. coli can survive for long periods of time, and potentially reproduce, in extraintestinal environments. This indicates that E. coli can be integrated into indigenous microbial communities in the environment. This naturalization phenomenon calls into question the reliability of E. coli as a faecal indicator bacterium (FIB). Recently, many studies reported that E. coli populations in the environment are affected by ambient environmental conditions affecting their long-term survival. Large-scale studies of population genetics revealed the diversity and complexity of E. coli strains in various environments, which are affected by multiple environmental factors. This review examines the current knowledge on the ecology of E. coli strains in various environments with regard to its role as a FIB and as a naturalized member of indigenous microbial communities. Special emphasis is given on the growth of pathogenic E. coli in the environment, and the population genetics of environmental members of the genus Escherichia. The impact of environmental E. coli on water quality and public health is also discussed. © 2017 The Society for Applied Microbiology.

  3. Astrobiological Significance of Microbial Extremophiles

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.

    2007-01-01

    The microflora of the cryosphere of planet Earth provides the best analogs for life forms that might be found in the permafrost or polar ice caps of Mars, near the surface of the cometary nuclei, or in the liquid water beneath and the ice crusts of icy moons of Jupiter and Saturn. The importance of study alkaliphilic microorganisms for astrobiology was enhanced by the findings of abundant carbonates and carbonate globules rimmed with possibly biogenic magnetites in association with the putative microfossils in the ALH84001 meteorite. Although the ALH84001 "nanofossils" were to small and simple to be unambiguously recognized as biogenic, they stimulated Astrobiology research and studies of microbial extremophiles and biomarkers in ancient rocks and meteorites. Recent studies of CI and CM carbonaceous meteorites have resulted in the detection of the well-preserved mineralized remains of coccoidal and filamentous microorganisms in cyanobacterial mats. Energy Dispersive X-ray Analysis has shown anomalous biogenic element ratios clearly indicating they are not recent biological contaminants. This paper reviews microbial extremophiles in context of their significance to Astrobiology. The study of halophilic microorganisms was started from work with saline soils and lakes, and one of the record of good growth for Haloferax mediterranei was shown at 30 percent NaC1. Although alkali-tolerant nitrifying bacteria had previously been reported, the first described alkaliphilic microorganism was the bacterium Streptococcus faecalis. Halophilic and alkaliphilic forms are relevant to conditions that might be found in closed impact basins and craters on Mars filled with evaporite deposits. The first obligately acidophilic bacterium described was Acidithiobacillus ferrooxydans (formally Thiobacillus ferrooxidans). Later thermophilic lithotrophic acidophiles were found, and the hyperacidophilic moderately thermophilic species of the genus Picrophilus were found to grow at negative pH. The epoch of study of thermophilic microorganisms starts with the discovery of Thermus aquaticus, and presently the maximum temperature for growth at 113 C was found for Pyrolobus fumarii. The microorganisms capable of growth at high temperatures and in hyperacidic environments on Earth are good analogs for life that might be able to survive in hot acidic droplets in the upper regimes of the atmosphere of Venus. The study of barophiles was made possible by engineering achievements leading to the development of the submersible crafts used to study the Black Smokers of the Deep-sea Hydrothermal vents. The first described radioresistant bacterium Deinococcus radiodurans can survive ionizing irradiation and other DNA-damaging assaults at doses that are lethal to all other organisms. These microbes are models for life that might endure high radiation environments in the ice near the surface of comets or on the icy moons of Jupiter and Saturn and in the seafloor deep beneath icy crusts Europa and Enceladus. This paper presents ESEM and FESEM images showing intact microbes preserved in the deep ice cores extracted from just above Lake Vostok, Antarctica that are considered analogs for life forms that might survive on comets and icy moons.

  4. Analysis of etiology and drug resistance of biliary infections.

    PubMed

    Wang, Xin; Li, Qiu; Zou, Shengquan; Sun, Ziyong; Zhu, Feng

    2004-01-01

    The bile was collected from fro patients with biliary infections, with the bacterium isolated to study the sensitivity of each kind of the bacterium to several antibiotics in common use. Except G- bacterium, we also found some kinds of G+ bacterium in infection bile. G- bacterium were not sensitive to Clindamycin, G+ bacterium were sensitive to Ciprofloxacin. Escherichia coli, Xanthomonas maltophilia, Enterobacter cloacae, Pseudomonas aeruginosa were sensitive to Ampicillin. G+ bacterium were not sensitive to Azactam. Enterococcus faecalis, Enterococcus faecium, Enterobacter cloacae were not sensitive to Ceftazidime. Enterococcus faecalis, Staphylococcus coagulase negative, Staphylococcus epidermidis, Pseudomonas aeruginosa were not sensitive to Ceftriaxone Sodium. We didn't found any bacterium resistance Imipenem. The possibility of the existence of G+ bacterium as well as drug resistance should be considered n patients with biliary infections. The value of susceptibility test should be respected to avoid drug abuse of antibiotics.

  5. PATHOGENIC ESCHERICHIA COLI

    EPA Science Inventory

    Escherichia coli is a bacterial species which inhabits the gastrointestinal tract of man and warm-blooded animals. Because of the ubiquity of this bacterium in the intestinal flora, it serves as an important indicator organism of fecal contamination. E. coli, aside from serving a...

  6. PigZ, a TetR/AcrR family repressor, modulates secondary metabolism via the expression of a putative four-component resistance-nodulation-cell-division efflux pump, ZrpADBC, in Serratia sp. ATCC 39006.

    PubMed

    Gristwood, Tamzin; Fineran, Peter C; Everson, Lee; Salmond, George P C

    2008-07-01

    The Gram-negative enterobacterium, Serratia sp. ATCC 39006 synthesizes several secondary metabolites, including prodigiosin (Pig) and a carbapenem antibiotic (Car). A complex hierarchical network of regulatory proteins control Pig and Car production. In this study we characterize a TetR family regulator, PigZ, which represses transcription of a divergently transcribed putative resistance-nodulation-cell-division (RND) efflux pump, encoded by zrp (PigZ repressed pump) ADBC, via direct binding to the zrpA-pigZ intergenic region. Unusually, this putative RND pump contains two predicted membrane fusion proteins (MFPs), ZrpA and ZrpD. A mutation in pigZ resulted in multiple phenotypic changes, including exoenzyme production, motility and differential regulation of Pig and Car production. A polar suppressor mutation, within zrpA, restored all tested phenotypes to parental strain levels, indicating that the changes observed are due to the increase in expression of ZrpADBC in the absence of the repressor, PigZ. Genomic deletions of zrpA and zrpD indicate that the MFP ZrpD, but not ZrpA, is essential for activity of the putative pump. Bioinformatic analysis revealed that putative RND efflux pumps encoding two MFP components are not uncommon, particularly among plant-associated, Gram-negative bacteria. In addition, based on phylogenetic analysis, we propose that these pairs of MFPs consist of two distinct subtypes.

  7. Large-Scale Identification and Characterization of Heterodera avenae Putative Effectors Suppressing or Inducing Cell Death in Nicotiana benthamiana

    PubMed Central

    Chen, Changlong; Chen, Yongpan; Jian, Heng; Yang, Dan; Dai, Yiran; Pan, Lingling; Shi, Fengwei; Yang, Shanshan; Liu, Qian

    2018-01-01

    Heterodera avenae is one of the most important plant pathogens and causes vast losses in cereal crops. As a sedentary endoparasitic nematode, H. avenae secretes effectors that modify plant defenses and promote its biotrophic infection of its hosts. However, the number of effectors involved in the interaction between H. avenae and host defenses remains unclear. Here, we report the identification of putative effectors in H. avenae that regulate plant defenses on a large scale. Our results showed that 78 of the 95 putative effectors suppressed programmed cell death (PCD) triggered by BAX and that 7 of the putative effectors themselves caused cell death in Nicotiana benthamiana. Among the cell-death-inducing effectors, three were found to be dependent on their specific domains to trigger cell death and to be expressed in esophageal gland cells by in situ hybridization. Ten candidate effectors that suppressed BAX-triggered PCD also suppressed PCD triggered by the elicitor PsojNIP and at least one R-protein/cognate effector pair, suggesting that they are active in suppressing both pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). Notably, with the exception of isotig16060, these putative effectors could also suppress PCD triggered by cell-death-inducing effectors from H. avenae, indicating that those effectors may cooperate to promote nematode parasitism. Collectively, our results indicate that the majority of the tested effectors of H. avenae may play important roles in suppressing cell death induced by different elicitors in N. benthamiana. PMID:29379510

  8. Substances released from probiotic Lactobacillus rhamnosus GR-1 potentiate NF-κB activity in Escherichia coli-stimulated urinary bladder cells.

    PubMed

    Karlsson, Mattias; Scherbak, Nikolai; Khalaf, Hazem; Olsson, Per-Erik; Jass, Jana

    2012-11-01

    Lactobacillus rhamnosus GR-1 is a probiotic bacterium used to maintain urogenital health. The putative mechanism for its probiotic effect is by modulating the host immunity. Urinary tract infections (UTI) are often caused by uropathogenic Escherichia coli that frequently evade or suppress immune responses in the bladder and can target pathways, including nuclear factor-kappaB (NF-κB). We evaluated the role of L. rhamnosus GR-1 on NF-κB activation in E. coli-stimulated bladder cells. Viable L. rhamnosus GR-1 was found to potentiate NF-κB activity in E. coli-stimulated T24 bladder cells, whereas heat-killed lactobacilli demonstrated a marginal increase in NF-κB activity. Surface components released by trypsin- or LiCl treatment, or the resultant heat-killed shaved lactobacilli, had no effect on NF-κB activity. Isolation of released products from L. rhamnosus GR-1 demonstrated that the induction of NF-κB activity was owing to released product(s) with a relatively large native size. Several putative immunomodulatory proteins were identified, namely GroEL, elongation factor Tu and NLP/P60. GroEL and elongation factor Tu have previously been shown to elicit immune responses from human cells. Isolating and using immune-augmenting substances produced by lactobacilli is a novel strategy for the prevention or treatment of UTI caused by immune-evading E. coli. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. The Vanadium Iodoperoxidase from the Marine Flavobacteriaceae Species Zobellia galactanivorans Reveals Novel Molecular and Evolutionary Features of Halide Specificity in the Vanadium Haloperoxidase Enzyme Family

    PubMed Central

    Fournier, Jean-Baptiste; Rebuffet, Etienne; Delage, Ludovic; Grijol, Romain; Meslet-Cladière, Laurence; Rzonca, Justyna; Potin, Philippe; Michel, Gurvan; Czjzek, Mirjam

    2014-01-01

    Vanadium haloperoxidases (VHPO) are key enzymes that oxidize halides and are involved in the biosynthesis of organo-halogens. Until now, only chloroperoxidases (VCPO) and bromoperoxidases (VBPO) have been characterized structurally, mainly from eukaryotic species. Three putative VHPO genes were predicted in the genome of the flavobacterium Zobellia galactanivorans, a marine bacterium associated with macroalgae. In a phylogenetic analysis, these putative bacterial VHPO were closely related to other VHPO from diverse bacterial phyla but clustered independently from eukaryotic algal VBPO and fungal VCPO. Two of these bacterial VHPO, heterogeneously produced in Escherichia coli, were found to be strictly specific for iodide oxidation. The crystal structure of one of these vanadium-dependent iodoperoxidases, Zg-VIPO1, was solved by multiwavelength anomalous diffraction at 1.8 Å, revealing a monomeric structure mainly folded into α-helices. This three-dimensional structure is relatively similar to those of VCPO of the fungus Curvularia inaequalis and of Streptomyces sp. and is superimposable onto the dimeric structure of algal VBPO. Surprisingly, the vanadate binding site of Zg-VIPO1 is strictly conserved with the fungal VCPO active site. Using site-directed mutagenesis, we showed that specific amino acids and the associated hydrogen bonding network around the vanadate center are essential for the catalytic properties and also the iodide specificity of Zg-VIPO1. Altogether, phylogeny and structure-function data support the finding that iodoperoxidase activities evolved independently in bacterial and algal lineages, and this sheds light on the evolution of the VHPO enzyme family. PMID:25261522

  10. Isolation and Genomic Characterization of ‘Desulfuromonas soudanensis WTL’, a Metal- and Electrode-Respiring Bacterium from Anoxic Deep Subsurface Brine

    PubMed Central

    Badalamenti, Jonathan P.; Summers, Zarath M.; Chan, Chi Ho; Gralnick, Jeffrey A.; Bond, Daniel R.

    2016-01-01

    Reaching a depth of 713 m below the surface, the Soudan Underground Iron Mine (Soudan, MN, USA) transects a massive Archaean (2.7 Ga) banded iron formation, providing a remarkably accessible window into the terrestrial deep biosphere. Despite organic carbon limitation, metal-reducing microbial communities are present in potentially ancient anoxic brines continuously emanating from exploratory boreholes on Level 27. Using graphite electrodes deposited in situ as bait, we electrochemically enriched and isolated a novel halophilic iron-reducing Deltaproteobacterium, ‘Desulfuromonas soudanensis’ strain WTL, from an acetate-fed three-electrode bioreactor poised at +0.24 V (vs. standard hydrogen electrode). Cyclic voltammetry revealed that ‘D. soudanensis’ releases electrons at redox potentials approximately 100 mV more positive than the model freshwater surface isolate Geobacter sulfurreducens, suggesting that its extracellular respiration is tuned for higher potential electron acceptors. ‘D. soudanensis’ contains a 3,958,620-bp circular genome, assembled to completion using single-molecule real-time (SMRT) sequencing reads, which encodes a complete TCA cycle, 38 putative multiheme c-type cytochromes, one of which contains 69 heme-binding motifs, and a LuxI/LuxR quorum sensing cassette that produces an unidentified N-acyl homoserine lactone. Another cytochrome is predicted to lie within a putative prophage, suggesting that horizontal gene transfer plays a role in respiratory flexibility among metal reducers. Isolation of ‘D. soudanensis’ underscores the utility of electrode-based approaches for enriching rare metal reducers from a wide range of habitats. PMID:27445996

  11. Novel insights into the response of Atlantic salmon (Salmo salar) to Piscirickettsia salmonis: Interplay of coding genes and lncRNAs during bacterial infection.

    PubMed

    Valenzuela-Miranda, Diego; Gallardo-Escárate, Cristian

    2016-12-01

    Despite the high prevalence and impact to Chilean salmon aquaculture of the intracellular bacterium Piscirickettsia salmonis, the molecular underpinnings of host-pathogen interactions remain unclear. Herein, the interplay of coding and non-coding transcripts has been proposed as a key mechanism involved in immune response. Therefore, the aim of this study was to evidence how coding and non-coding transcripts are modulated during the infection process of Atlantic salmon with P. salmonis. For this, RNA-seq was conducted in brain, spleen, and head kidney samples, revealing different transcriptional profiles according to bacterial load. Additionally, while most of the regulated genes annotated for diverse biological processes during infection, a common response associated with clathrin-mediated endocytosis and iron homeostasis was present in all tissues. Interestingly, while endocytosis-promoting factors and clathrin inductions were upregulated, endocytic receptors were mainly downregulated. Furthermore, the regulation of genes related to iron homeostasis suggested an intracellular accumulation of iron, a process in which heme biosynthesis/degradation pathways might play an important role. Regarding the non-coding response, 918 putative long non-coding RNAs were identified, where 425 were newly characterized for S. salar. Finally, co-localization and co-expression analyses revealed a strong correlation between the modulations of long non-coding RNAs and genes associated with endocytosis and iron homeostasis. These results represent the first comprehensive study of putative interplaying mechanisms of coding and non-coding RNAs during bacterial infection in salmonids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Structural and genetic analysis of a mutant of Rhodobacter sphaeroides WS8 deficient in hook length control.

    PubMed Central

    González-Pedrajo, B; Ballado, T; Campos, A; Sockett, R E; Camarena, L; Dreyfus, G

    1997-01-01

    Motility in the photosynthetic bacterium Rhodobacter sphaeroides is achieved by the unidirectional rotation of a single subpolar flagellum. In this study, transposon mutagenesis was used to obtain nonmotile flagellar mutants from this bacterium. We report here the isolation and characterization of a mutant that shows a polyhook phenotype. Morphological characterization of the mutant was done by electron microscopy. Polyhooks were obtained by shearing and were used to purify the hook protein monomer (FlgE). The apparent molecular mass of the hook protein was 50 kDa. N-terminal amino acid sequencing and comparisons with the hook proteins of other flagellated bacteria indicated that the Rhodobacter hook protein has consensus sequences common to axial flagellar components. A 25-kb fragment from an R. sphaeroides WS8 cosmid library restored wild-type flagellation and motility to the mutant. Using DNA adjacent to the inserted transposon as a probe, we identified a 4.6-kb SalI restriction fragment that contained the gene responsible for the polyhook phenotype. Nucleotide sequence analysis of this region revealed an open reading frame with a deduced amino acid sequence that was 23.4% identical to that of FliK of Salmonella typhimurium, the polypeptide responsible for hook length control in that enteric bacterium. The relevance of a gene homologous to fliK in the uniflagellated bacterium R. sphaeroides is discussed. PMID:9352903

  13. Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium

    USGS Publications Warehouse

    Sparks, N.H.C.; Mann, S.; Bazylinski, D.A.; Lovley, D.R.; Jannasch, H.W.; Frankel, R.B.

    1990-01-01

    Intracellular crystals of magnetite synthesized by cells of the magnetotactic vibroid organism, MV-1, and extracellular crystals of magnetite produced by the non-magnetotactic dissimilatory iron-reducing bacterium strain GS-15, were examined using high-resolution transmission electron microscopy, electron diffraction and 57Fe Mo??ssbauer spectroscopy. The magnetotactic bacterium contained a single chain of approximately 10 crystals aligned along the long axis of the cell. The crystals were essentially pure stoichiometric magnetite. When viewed along the crystal long axis the particles had a hexagonal cross-section whereas side-on they appeared as rectangules or truncated rectangles of average dimension, 53 ?? 35 nm. These findings are explained in terms of a three-dimensional morphology comprising a hexagonal prism of {110} faces which are capped and truncated by {111} end faces. Electron diffraction and lattice imaging studies indicated that the particles were structurally well-defined single crystals. In contrast, magnetite particles produced by the strain, GS-15 were irregular in shape and had smaller mean dimensions (14 nm). Single crystals were imaged but these were not of high structural perfection. These results highlight the influence of intracellular control on the crystallochemical specificity of bacterial magnetites. The characterization of these crystals is important in aiding the identification of biogenic magnetic materials in paleomagnetism and in studies of sediment magnetization. ?? 1990.

  14. Escaping Underground Nets: Extracellular DNases Degrade Plant Extracellular Traps and Contribute to Virulence of the Plant Pathogenic Bacterium Ralstonia solanacearum

    PubMed Central

    Tran, Tuan Minh; MacIntyre, April; Hawes, Martha; Allen, Caitilyn

    2016-01-01

    Plant root border cells have been recently recognized as an important physical defense against soil-borne pathogens. Root border cells produce an extracellular matrix of protein, polysaccharide and DNA that functions like animal neutrophil extracellular traps to immobilize pathogens. Exposing pea root border cells to the root-infecting bacterial wilt pathogen Ralstonia solanacearum triggered release of DNA-containing extracellular traps in a flagellin-dependent manner. These traps rapidly immobilized the pathogen and killed some cells, but most of the entangled bacteria eventually escaped. The R. solanacearum genome encodes two putative extracellular DNases (exDNases) that are expressed during pathogenesis, suggesting that these exDNases contribute to bacterial virulence by enabling the bacterium to degrade and escape root border cell traps. We tested this hypothesis with R. solanacearum deletion mutants lacking one or both of these nucleases, named NucA and NucB. Functional studies with purified proteins revealed that NucA and NucB are non-specific endonucleases and that NucA is membrane-associated and cation-dependent. Single ΔnucA and ΔnucB mutants and the ΔnucA/B double mutant all had reduced virulence on wilt-susceptible tomato plants in a naturalistic soil-soak inoculation assay. The ΔnucA/B mutant was out-competed by the wild-type strain in planta and was less able to stunt root growth or colonize plant stems. Further, the double nuclease mutant could not escape from root border cells in vitro and was defective in attachment to pea roots. Taken together, these results demonstrate that extracellular DNases are novel virulence factors that help R. solanacearum successfully overcome plant defenses to infect plant roots and cause bacterial wilt disease. PMID:27336156

  15. Construction and Validation of the Rhodobacter sphaeroides 2.4.1 DNA Microarray: Transcriptome Flexibility at Diverse Growth Modes

    PubMed Central

    Pappas, Christopher T.; Sram, Jakub; Moskvin, Oleg V.; Ivanov, Pavel S.; Mackenzie, R. Christopher; Choudhary, Madhusudan; Land, Miriam L.; Larimer, Frank W.; Kaplan, Samuel; Gomelsky, Mark

    2004-01-01

    A high-density oligonucleotide DNA microarray, a genechip, representing the 4.6-Mb genome of the facultative phototrophic proteobacterium, Rhodobacter sphaeroides 2.4.1, was custom-designed and manufactured by Affymetrix, Santa Clara, Calif. The genechip contains probe sets for 4,292 open reading frames (ORFs), 47 rRNA and tRNA genes, and 394 intergenic regions. The probe set sequences were derived from the genome annotation generated by Oak Ridge National Laboratory after extensive revision, which was based primarily upon codon usage characteristic of this GC-rich bacterium. As a result of the revision, numerous missing ORFs were uncovered, nonexistent ORFs were deleted, and misidentified start codons were corrected. To evaluate R. sphaeroides transcriptome flexibility, expression profiles for three diverse growth modes—aerobic respiration, anaerobic respiration in the dark, and anaerobic photosynthesis—were generated. Expression levels of one-fifth to one-third of the R. sphaeroides ORFs were significantly different in cells under any two growth modes. Pathways involved in energy generation and redox balance maintenance under three growth modes were reconstructed. Expression patterns of genes involved in these pathways mirrored known functional changes, suggesting that massive changes in gene expression are the major means used by R. sphaeroides in adaptation to diverse conditions. Differential expression was observed for genes encoding putative new participants in these pathways (additional photosystem genes, duplicate NADH dehydrogenase, ATP synthases), whose functionality has yet to be investigated. The DNA microarray data correlated well with data derived from quantitative reverse transcription-PCR, as well as with data from the literature, thus validating the R. sphaeroides genechip as a powerful and reliable tool for studying unprecedented metabolic versatility of this bacterium. PMID:15231807

  16. Role of Thiobacillus thioparus in the biodegradation of carbon disulfide in a biofilter packed with a recycled organic pelletized material.

    PubMed

    Prenafeta-Boldú, Francesc X; Rojo, Naiara; Gallastegui, Gorka; Guivernau, Miriam; Viñas, Marc; Elías, Ana

    2014-07-01

    This study reports the biodegradation of carbon disulfide (CS2) in air biofilters packed with a pelletized mixture of composted manure and sawdust. Experiments were carried out in two lab-scale (1.2 L) biofiltration units. Biofilter B was seeded with activated sludge enriched previously on CS2-degrading biomass under batch conditions, while biofilter A was left as a negative inoculation control. This inoculum was characterized by an acidic pH and sulfate accumulation, and contained Achromobacter xylosoxidans as the main putative CS2 biodegrading bacterium. Biofilter operation start-up was unsuccessfully attempted under xerophilic conditions and significant CS2 elimination was only achieved in biofilter A upon the implementation of an intermittent irrigation regime. Sustained removal efficiencies of 90-100 % at an inlet load of up to 12 g CS2 m(-3) h(-1) were reached. The CS2 removal in this biofilter was linked to the presence of the chemolithoautotrophic bacterium Thiobacillus thioparus, known among the relatively small number of species with a reported capacity of growing on CS2 as the sole energy source. DGGE molecular profiles confirmed that this microbe had become dominant in biofilter A while it was not detected in samples from biofilter B. Conventional biofilters packed with inexpensive organic materials are suited for the treatment of low-strength CS2 polluted gases (IL <12 g CS2 m(-3) h(-1)), provided that the development of the adequate microorganisms is favored, either upon enrichment or by inoculation. The importance of applying culture-independent techniques for microbial community analysis as a diagnostic tool in the biofiltration of recalcitrant compounds has been highlighted.

  17. Quorum Sensing in a Methane-Oxidizing Bacterium.

    PubMed

    Puri, Aaron W; Schaefer, Amy L; Fu, Yanfen; Beck, David A C; Greenberg, E Peter; Lidstrom, Mary E

    2017-03-01

    Aerobic methanotrophic bacteria use methane as their sole source of carbon and energy and serve as a major sink for the potent greenhouse gas methane in freshwater ecosystems. Dissecting the molecular details of how these organisms interact in the environment may increase our understanding of how they perform this important ecological role. Many bacterial species use quorum sensing (QS) systems to regulate gene expression in a cell density-dependent manner. We have identified a QS system in the genome of Methylobacter tundripaludum , a dominant methane oxidizer in methane enrichments of sediment from Lake Washington (Seattle, WA). We determined that M. tundripaludum produces primarily N -3-hydroxydecanoyl-l-homoserine lactone (3-OH-C 10 -HSL) and that its production is governed by a positive feedback loop. We then further characterized this system by determining which genes are regulated by QS in this methane oxidizer using transcriptome sequencing (RNA-seq) and discovered that this system regulates the expression of a putative nonribosomal peptide synthetase biosynthetic gene cluster. Finally, we detected an extracellular factor that is produced by M. tundripaludum in a QS-dependent manner. These results identify and characterize a mode of cellular communication in an aerobic methane-oxidizing bacterium. IMPORTANCE Aerobic methanotrophs are critical for sequestering carbon from the potent greenhouse gas methane in the environment, yet the mechanistic details of chemical interactions in methane-oxidizing bacterial communities are not well understood. Understanding these interactions is important in order to maintain, and potentially optimize, the functional potential of the bacteria that perform this vital ecosystem function. In this work, we identify a quorum sensing system in the aerobic methanotroph Methylobacter tundripaludum and use both chemical and genetic methods to characterize this system at the molecular level. Copyright © 2017 American Society for Microbiology.

  18. Sequencing and characterizing the genome of Estrella lausannensis as an undergraduate project: training students and biological insights.

    PubMed

    Bertelli, Claire; Aeby, Sébastien; Chassot, Bérénice; Clulow, James; Hilfiker, Olivier; Rappo, Samuel; Ritzmann, Sébastien; Schumacher, Paolo; Terrettaz, Céline; Benaglio, Paola; Falquet, Laurent; Farinelli, Laurent; Gharib, Walid H; Goesmann, Alexander; Harshman, Keith; Linke, Burkhard; Miyazaki, Ryo; Rivolta, Carlo; Robinson-Rechavi, Marc; van der Meer, Jan Roelof; Greub, Gilbert

    2015-01-01

    With the widespread availability of high-throughput sequencing technologies, sequencing projects have become pervasive in the molecular life sciences. The huge bulk of data generated daily must be analyzed further by biologists with skills in bioinformatics and by "embedded bioinformaticians," i.e., bioinformaticians integrated in wet lab research groups. Thus, students interested in molecular life sciences must be trained in the main steps of genomics: sequencing, assembly, annotation and analysis. To reach that goal, a practical course has been set up for master students at the University of Lausanne: the "Sequence a genome" class. At the beginning of the academic year, a few bacterial species whose genome is unknown are provided to the students, who sequence and assemble the genome(s) and perform manual annotation. Here, we report the progress of the first class from September 2010 to June 2011 and the results obtained by seven master students who specifically assembled and annotated the genome of Estrella lausannensis, an obligate intracellular bacterium related to Chlamydia. The draft genome of Estrella is composed of 29 scaffolds encompassing 2,819,825 bp that encode for 2233 putative proteins. Estrella also possesses a 9136 bp plasmid that encodes for 14 genes, among which we found an integrase and a toxin/antitoxin module. Like all other members of the Chlamydiales order, Estrella possesses a highly conserved type III secretion system, considered as a key virulence factor. The annotation of the Estrella genome also allowed the characterization of the metabolic abilities of this strictly intracellular bacterium. Altogether, the students provided the scientific community with the Estrella genome sequence and a preliminary understanding of the biology of this recently-discovered bacterial genus, while learning to use cutting-edge technologies for sequencing and to perform bioinformatics analyses.

  19. Uncovering the Lactobacillus plantarum WCFS1 Gallate Decarboxylase Involved in Tannin Degradation

    PubMed Central

    Jiménez, Natalia; Curiel, José Antonio; Reverón, Inés; de las Rivas, Blanca

    2013-01-01

    Lactobacillus plantarum is a lactic acid bacterium able to degrade tannins by the subsequent action of tannase and gallate decarboxylase enzymes. The gene encoding tannase had previously been identified, whereas the gene encoding gallate decarboxylase is unknown. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of gallic-acid induced L. plantarum extracts showed a 54-kDa protein which was absent in the uninduced cells. This protein was identified as Lp_2945, putatively annotated UbiD. Homology searches identified ubiD-like genes located within three-gene operons which encoded the three subunits of nonoxidative aromatic acid decarboxylases. L. plantarum is the only bacterium in which the lpdC (lp_2945) gene and the lpdB and lpdD (lp_0271 and lp_0272) genes are separated in the chromosome. Combination of extracts from recombinant Escherichia coli cells expressing the lpdB, lpdC, and lpdC genes demonstrated that LpdC is the only protein required to yield gallate decarboxylase activity. However, the disruption of these genes in L. plantarum revealed that the lpdB and lpdC gene products are essential for gallate decarboxylase activity. Similar to L. plantarum tannase, which exhibited activity only in esters derived from gallic and protocatechuic acids, purified His6-LpdC protein from E. coli showed decarboxylase activity against gallic and protocatechuic acids. In contrast to the tannase activity, gallate decarboxylase activity is widely present among lactic acid bacteria. This study constitutes the first genetic characterization of a gallate decarboxylase enzyme and provides new insights into the role of the different subunits of bacterial nonoxidative aromatic acid decarboxylases. PMID:23645198

  20. Gene organization and primary structure of human hormone-sensitive lipase: possible significance of a sequence homology with a lipase of Moraxella TA144, an antarctic bacterium.

    PubMed Central

    Langin, D; Laurell, H; Holst, L S; Belfrage, P; Holm, C

    1993-01-01

    The human hormone-sensitive lipase (HSL) gene encodes a 786-aa polypeptide (85.5 kDa). It is composed of nine exons spanning approximately 11 kb, with exons 2-5 clustered in a 1.1-kb region. The putative catalytic site (Ser423) and a possible lipid-binding region in the C-terminal part are encoded by exons 6 and 9, respectively. Exon 8 encodes the phosphorylation site (Ser551) that controls cAMP-mediated activity and a second site (Ser553) that is phosphorylated by 5'-AMP-activated protein kinase. Human HSL showed 83% identity with the rat enzyme and contained a 12-aa deletion immediately upstream of the phosphorylation sites with an unknown effect on the activity control. Besides the catalytic site motif (Gly-Xaa-Ser-Xaa-Gly) found in most lipases, HSL shows no homology with other known lipases or proteins, except for a recently reported unexpected homology between the region surrounding its catalytic site and that of the lipase 2 of Moraxella TA144, an antarctic psychrotrophic bacterium. The gene of lipase 2, which catalyses lipolysis below 4 degrees C, was absent in the genomic DNA of five other Moraxella strains living at 37 degrees C. The lipase 2-like sequence in HSL may reflect an evolutionarily conserved cold adaptability that might be of critical survival value when low-temperature-mobilized endogenous lipids are the primary energy source (e.g., in poikilotherms or hibernators). The finding that HSL at 10 degrees C retained 3- to 5-fold more of its 37 degrees C catalytic activity than lipoprotein lipase or carboxyl ester lipase is consistent with this hypothesis. Images Fig. 5 PMID:8506334

  1. Alkaline phosphatase from the hyperthermophilic bacterium T. maritima requires cobalt for activity

    PubMed Central

    Wojciechowski, Cheryl L.; Cardia, James P.; Kantrowitz, Evan R.

    2002-01-01

    The hyperthermophilic bacterium Thermotoga maritima encodes a gene sharing sequence similarities with several known genes for alkaline phosphatase (AP). The putative gene was isolated and the corresponding protein expressed in Escherichia coli, with and without a predicted signal sequence. The recombinant protein showed phosphatase activity toward the substrate p-nitrophenyl-phosphate with a kcat of 16 s−1 and a Km of 175 μM at a pH optimum of 8.0 when assayed at 25°C. T. maritima phosphatase activity increased at high temperatures, reaching a maximum kcat of 100 s−1, with a Km of 93 μM at 65°C. Activity was stable at 65°C for >24 h and at 90°C for 5 h. Phosphatase activity was dependent on divalent metal ions, specifically Co(II) and Mg(II). Circular dichroism spectra showed that the enzyme gains secondary structure on addition of these metals. Zinc, the most common divalent metal ion required for activity in known APs, was shown to inhibit the T. maritima phosphatase enzyme at concentrations above 0.3 moles Zn: 1 mole monomer. All activity was abolished in the presence of 0.1 mM EDTA. The T. maritima AP primary sequence is 28% identical when compared with E. coli AP. Based on a structural model, the active sites are superimposable except for two residues near the E. coli AP Mg binding site, D153 and K328 (E. coli numbering) corresponding to histidine and tryptophan in T. maritima AP, respectively. Sucrose-density gradient sedimentation experiments showed that the protein exists in several quaternary forms predominated by an octamer. PMID:11910033

  2. Genome Sequence Analysis of the Naphthenic Acid Degrading and Metal Resistant Bacterium Cupriavidus gilardii CR3

    PubMed Central

    Xiao, Jingfa; Hao, Lirui; Crowley, David E.; Zhang, Zhewen; Yu, Jun; Huang, Ning; Huo, Mingxin; Wu, Jiayan

    2015-01-01

    Cupriavidus sp. are generally heavy metal tolerant bacteria with the ability to degrade a variety of aromatic hydrocarbon compounds, although the degradation pathways and substrate versatilities remain largely unknown. Here we studied the bacterium Cupriavidus gilardii strain CR3, which was isolated from a natural asphalt deposit, and which was shown to utilize naphthenic acids as a sole carbon source. Genome sequencing of C. gilardii CR3 was carried out to elucidate possible mechanisms for the naphthenic acid biodegradation. The genome of C. gilardii CR3 was composed of two circular chromosomes chr1 and chr2 of respectively 3,539,530 bp and 2,039,213 bp in size. The genome for strain CR3 encoded 4,502 putative protein-coding genes, 59 tRNA genes, and many other non-coding genes. Many genes were associated with xenobiotic biodegradation and metal resistance functions. Pathway prediction for degradation of cyclohexanecarboxylic acid, a representative naphthenic acid, suggested that naphthenic acid undergoes initial ring-cleavage, after which the ring fission products can be degraded via several plausible degradation pathways including a mechanism similar to that used for fatty acid oxidation. The final metabolic products of these pathways are unstable or volatile compounds that were not toxic to CR3. Strain CR3 was also shown to have tolerance to at least 10 heavy metals, which was mainly achieved by self-detoxification through ion efflux, metal-complexation and metal-reduction, and a powerful DNA self-repair mechanism. Our genomic analysis suggests that CR3 is well adapted to survive the harsh environment in natural asphalts containing naphthenic acids and high concentrations of heavy metals. PMID:26301592

  3. Discovery of a novel iota carrageenan sulfatase isolated from the marine bacterium Pseudoalteromonas carrageenovora

    NASA Astrophysics Data System (ADS)

    Genicot, Sabine; Groisillier, Agnès; Rogniaux, Hélène; Meslet-Cladière, Laurence; Barbeyron, Tristan; Helbert, William

    2014-08-01

    Carrageenans are sulfated polysaccharides extracted from the cell wall of some marine red algae. These polysaccharides are widely used as gelling, stabilizing, and viscosifying agents in the food and pharmaceutical industries. Since the rheological properties of these polysaccharides depend on their sulfate content, we screened several isolated marine bacteria for carrageenan specific sulfatase activity, in the aim of developing enzymatic bioconversion of carrageenans. As a result of the screening, an iota-carrageenan sulfatase was detected in the cell-free lysate of the marine bacterium Pseudoalteromonas carrageenovora strain PscT. It was purified through Phenyl Sepharose and Diethylaminoethyl Sepharose chromatography. The pure enzyme, Psc ?-CgsA, was characterized. It had a molecular weight of 115.9 kDaltons and exhibited an optimal activity/stability at pH ~8.3 and at 40°C ± 5°C. It was inactivated by phenylmethylsulfonyl fluoride but not by ethylene diamine tetraacetic acid. Psc ?-CgsA specifically catalyzes the hydrolysis of the 4-S sulfate of iota-carrageenan. The purified enzyme could transform iota-carrageenan into hybrid iota-/alpha- or pure alpha-carrageenan under controlled conditions. The gene encoding Psc ?-CgsA, a protein of 1038 amino acids, was cloned into Escherichia coli, and the sequence analysis revealed that Psc ?-CgsA has more than 90% sequence identity with a putative uncharacterized protein Q3IKL4 from the marine strain Pseudoalteromonas haloplanktis TAC 125, but besides this did not share any homology to characterized sulfatases. Phylogenetic studies show that P. carrageenovora sulfatase thus represents the first characterized member of a new sulfatase family, with a C-terminal domain having strong similarity with the superfamily of amidohydrolases, highlighting the still unexplored diversity of marine polysaccharide modifying enzymes.

  4. Characterization and gene expression analysis of pacu (Piaractus mesopotamicus) inducible nitric oxide synthase (iNOS) following Aeromonas dhakensis infection.

    PubMed

    Carriero, Mateus M; Henrique-Silva, Flávio; Caetano, Alexandre Rodrigues; Lobo, Francisco Pereira; Alves, Anderson Luis; Varela, Eduardo Sousa; Del Collado, Maite; Moreira, Gabriel S A; Maia, Antonio A M

    2018-03-01

    Nitric oxide (NO) is an important effector molecule which is involved in a myriad of biological processes, including immune responses against pathogens such as parasites, virus and bacteria. During the inflammatory processes in vertebrates, NO is produced by the inducible nitric oxide synthase (iNOS) enzyme in practically all nucleated cells to suppress or kill intracellular pathogens. The aim of the present study was to characterize the full coding region of the iNOS gene of pacu (Piaractus mesopotamicus), an economically and ecologically important South American fish species, and to analyze mRNA expression levels following intraperitoneal infection with the pathogenic bacterium Aeromonas dhakensis by means of quantitative real time PCR (qPCR). The results showed that the pacu iNOS transcript is 3237 bp in length, encoding a putative protein composed of 1078 amino acid residues. The amino acid sequence showed similarities ranging from 69.03% to 94.34% with other teleost fish and 57.70% with the human iNOS, with all characteristic domains and cofactor binding sites of the enzyme detected. Phylogenetic analysis showed that the iNOS from the red-bellied piranha, another South American characiform, was the closest related sequence to the pacu iNOS. iNOS transcripts were constitutively detected in the liver, spleen and head kidney, and there was a significant upregulation in the liver and spleen at 12, 24 and 48 h after infection with A. dhakensis. No significant variations were observed in the head kidney during the periods analyzed. These results show that iNOS expression was induced by A. dhakensis infection and suggest that this enzyme may be involved in the response to this bacterium in pacu. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Biological effects of paenilamicin, a secondary metabolite antibiotic produced by the honey bee pathogenic bacterium Paenibacillus larvae.

    PubMed

    Garcia-Gonzalez, Eva; Müller, Sebastian; Hertlein, Gillian; Heid, Nina; Süssmuth, Roderich D; Genersch, Elke

    2014-10-01

    Paenibacillus larvae is the etiological agent of American Foulbrood (AFB) a world-wide distributed devastating disease of the honey bee brood. Previous comparative genome analysis and more recently, the elucidation of the bacterial genome, provided evidence that this bacterium harbors putative functional nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) and therefore, might produce nonribosomal peptides (NRPs) and polyketides (PKs). Such biosynthesis products have been shown to display a wide-range of biological activities such as antibacterial, antifungal or cytotoxic activity. Herein we present an in silico analysis of the first NRPS/PKS hybrid of P. larvae and we show the involvement of this cluster in the production of a compound named paenilamicin (Pam). For the characterization of its in vitro and in vivo bioactivity, a knock-out mutant strain lacking the production of Pam was constructed and subsequently compared to wild-type species. This led to the identification of Pam by mass spectrometry. Purified Pam-fractions showed not only antibacterial but also antifungal and cytotoxic activities. The latter suggested a direct effect of Pam on honey bee larval death which could, however, not be corroborated in laboratory infection assays. Bee larvae infected with the non-producing Pam strain showed no decrease in larval mortality, but a delay in the onset of larval death. We propose that Pam, although not essential for larval mortality, is a virulence factor of P. larvae influencing the time course of disease. These findings are not only of significance in elucidating and understanding host-pathogen interactions but also within the context of the quest for new compounds with antibiotic activity for drug development. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  6. Discovery of a novel iota carrageenan sulfatase isolated from the marine bacterium Pseudoalteromonas carrageenovora.

    PubMed

    Genicot, Sabine M; Groisillier, Agnès; Rogniaux, Hélène; Meslet-Cladière, Laurence; Barbeyron, Tristan; Helbert, William

    2014-01-01

    Carrageenans are sulfated polysaccharides extracted from the cell wall of some marine red algae. These polysaccharides are widely used as gelling, stabilizing, and viscosifying agents in the food and pharmaceutical industries. Since the rheological properties of these polysaccharides depend on their sulfate content, we screened several isolated marine bacteria for carrageenan specific sulfatase activity, in the aim of developing enzymatic bioconversion of carrageenans. As a result of the screening, an iota-carrageenan sulfatase was detected in the cell-free lysate of the marine bacterium Pseudoalteromonas carrageenovora strain Psc(T). It was purified through Phenyl Sepharose and Diethylaminoethyl Sepharose chromatography. The pure enzyme, Psc ι-CgsA, was characterized. It had a molecular weight of 115.9 kDaltons and exhibited an optimal activity/stability at pH ~8.3 and at 40 ± 5°C. It was inactivated by phenylmethylsulfonyl fluoride but not by ethylene diamine tetraacetic acid. Psc ι-CgsA specifically catalyzes the hydrolysis of the 4-S sulfate of iota-carrageenan. The purified enzyme could transform iota-carrageenan into hybrid iota-/alpha- or pure alpha-carrageenan under controlled conditions. The gene encoding Psc ι-CgsA, a protein of 1038 amino acids, was cloned into Escherichia coli, and the sequence analysis revealed that Psc ι-CgsA has more than 90% sequence identity with a putative uncharacterized protein Q3IKL4 from the marine strain Pseudoalteromonas haloplanktis TAC 125, but besides this did not share any homology to characterized sulfatases. Phylogenetic studies show that P. carrageenovora sulfatase thus represents the first characterized member of a new sulfatase family, with a C-terminal domain having strong similarity with the superfamily of amidohydrolases, highlighting the still unexplored diversity of marine polysaccharide modifying enzymes.

  7. Discovery of a novel iota carrageenan sulfatase isolated from the marine bacterium Pseudoalteromonas carrageenovora

    PubMed Central

    Genicot, Sabine M.; Groisillier, Agnès; Rogniaux, Hélène; Meslet-Cladière, Laurence; Barbeyron, Tristan; Helbert, William

    2014-01-01

    Carrageenans are sulfated polysaccharides extracted from the cell wall of some marine red algae. These polysaccharides are widely used as gelling, stabilizing, and viscosifying agents in the food and pharmaceutical industries. Since the rheological properties of these polysaccharides depend on their sulfate content, we screened several isolated marine bacteria for carrageenan specific sulfatase activity, in the aim of developing enzymatic bioconversion of carrageenans. As a result of the screening, an iota-carrageenan sulfatase was detected in the cell-free lysate of the marine bacterium Pseudoalteromonas carrageenovora strain PscT. It was purified through Phenyl Sepharose and Diethylaminoethyl Sepharose chromatography. The pure enzyme, Psc ι-CgsA, was characterized. It had a molecular weight of 115.9 kDaltons and exhibited an optimal activity/stability at pH ~8.3 and at 40 ± 5°C. It was inactivated by phenylmethylsulfonyl fluoride but not by ethylene diamine tetraacetic acid. Psc ι-CgsA specifically catalyzes the hydrolysis of the 4-S sulfate of iota-carrageenan. The purified enzyme could transform iota-carrageenan into hybrid iota-/alpha- or pure alpha-carrageenan under controlled conditions. The gene encoding Psc ι-CgsA, a protein of 1038 amino acids, was cloned into Escherichia coli, and the sequence analysis revealed that Psc ι-CgsA has more than 90% sequence identity with a putative uncharacterized protein Q3IKL4 from the marine strain Pseudoalteromonas haloplanktis TAC 125, but besides this did not share any homology to characterized sulfatases. Phylogenetic studies show that P. carrageenovora sulfatase thus represents the first characterized member of a new sulfatase family, with a C-terminal domain having strong similarity with the superfamily of amidohydrolases, highlighting the still unexplored diversity of marine polysaccharide modifying enzymes. PMID:25207269

  8. Gene cloning and overexpression of a geranylgeranyl diphosphate synthase of an extremely thermophilic bacterium, Thermus thermophilus.

    PubMed

    Ohto, C; Ishida, C; Koike-Takeshita, A; Yokoyama, K; Muramatsu, M; Nishino, T; Obata, S

    1999-02-01

    A geranylgeranyl diphosphate (GGPP) synthase gene of an extremely thermophilic bacterium, Thermus thermophilus, was cloned and sequenced. T. thermophilus GGPP synthase, overexpressed in Escherichia coli cells as a glutathione S-transferase fusion protein, was purified and characterized. The fusion protein, retaining thermostability, formed a homodimer, and showed higher specific activity than did a partially purified thermostable enzyme previously reported. Optimal reaction conditions and kinetic parameters were also examined. The deduced amino acid sequence indicated that T. thermophilus GGPP synthase was excluded from the group of bacterial type GGPP synthases and lacked the insertion amino acid residues in the first aspartate-rich motif as do archaeal and eukaryotic short-chain prenyltransferases.

  9. Genetic diversity in natural populations of a soil bacterium across a landscape gradient

    PubMed Central

    McArthur, J. Vaun; Kovacic, David A.; Smith, Michael H.

    1988-01-01

    Genetic diversity in natural populations of the bacterium Pseudomonas cepacia was surveyed in 10 enzymes from 70 clones isolated along a landscape gradient. Estimates of genetic diversity, ranging from 0.54 to 0.70, were higher than any previously reported values of which we are aware and were positively correlated with habitat variability. Patterns of bacterial genetic diversity were correlated with habitat variability. Findings indicate that the source of strains used in genetic engineering will greatly affect the outcome of planned releases in variable environments. Selection of generalist strains may confer a large advantage to engineered populations, while selection of laboratory strains may result in quick elimination of the engineered strains. PMID:16594009

  10. New generic primer system targeting mucosal/genital and cutaneous human papillomaviruses leads to the characterization of HPV 115, a novel Beta-papillomavirus species 3

    PubMed Central

    Chouhy, Diego; Gorosito, Mario; Sánchez, Adriana; Serra, Esteban C; Bergero, Adriana; Bussy, Ramón Fernandez; Giri, Adriana A

    2009-01-01

    We explored the cutaneotropic HPV genetic diversity in 71 subjects from Argentina. New generic primers (CUT) targeting 88 mucosal/cutaneous HPV were designed and compared to FAP primers. Overall, 69 different HPV types/putative types were identified, being 17 of them novel putative types. Phylogenetic analysis of partial L1 sequences grouped 2 novel putative types in the Beta-PV, 14 in the Gamma-PV and 1 in the Mu-PV genera. CUT primers showed broader capacity than FAP primers in detecting different genera/species and novel putative types (p<0.01). Using overlapping PCR, the full-length genome of a Beta-PV putative type was amplified and cloned. The new virus, designated HPV 115, encodes 5 early genes and 2 late genes. Phylogenetic analysis indicated HPV 115 as the most divergent type within the genus Beta-PV species 3. This report is the first providing data on cutaneous HPVs circulating in South America and expands our knowledge of the Papillomaviridae family. PMID:19948351

  11. Biological reduction of uranium coupled with oxidation of ammonium by Acidimicrobiaceae bacterium A6 under iron reducing conditions.

    PubMed

    Gilson, Emily R; Huang, Shan; Jaffé, Peter R

    2015-11-01

    This study investigated the possibility of links between the biological immobilization of uranium (U) and ammonium oxidation under iron (Fe) reducing conditions. The recently-identified Acidimicrobiaceae bacterium A6 (ATCC, PTA-122488) derives energy from ammonium oxidation coupled with Fe reduction. This bacterium has been found in various soil and wetland environments, including U-contaminated wetland sediments. Incubations of Acidimicrobiaceae bacteria A6 with nontronite, an Fe(III)-rich clay, and approximately 10 µM U indicate that these bacteria can use U(VI) in addition to Fe(III) as an electron acceptor in the presence of ammonium. Measurements of Fe(II) production and ammonium oxidation support this interpretation. Concentrations of approximately 100 µM U were found to entirely inhibit Acidimicrobiaceae bacteria A6 activity. These results suggest that natural sites of active ammonium oxidation under Fe reducing conditions by Acidimicrobiaceae bacteria A6 could be hotspots of U immobilization by bioreduction. This is the first report of biological U reduction that is not coupled to carbon oxidation.

  12. Isolation, identification, and algicidal activity of aerobic denitrifying bacterium R11 and its effect on Microcystis aeruginosa.

    PubMed

    Su, Jun-feng; Shao, Si-cheng; Huang, Ting-lin; Ma, Fang; Zhang, Kai; Wen, Gang; Zheng, Sheng-chen

    2016-01-01

    Recently, algicidal bacteria have attracted attention as possible agents for the inhibition of algal water blooms. In this study, an aerobic denitrifying bacterium, R11, with high algicidal activity against the toxic Microcystis aeruginosa was isolated from lake sediments. Based on its physiological characteristics and 16S rRNA gene sequence, it was identified as Raoultella, indicating that the bacterium R11 has a good denitrifying ability at 30 °C and can reduce the concentration of nitrate-N completely within 36 h. Additionally, different algicidal characteristics against Microcystis aeruginosa were tested. The results showed that the initial bacterial cell density and algal cell densities strongly influence the removal rates of chlorophyll a. Algicidal activity increased with an increase in the bacterial cell density. With densities of bacterial culture at over 2.4 × 10(5) cell/mL, algicidal activity of up to 80% was obtained in 4 days. We have demonstrated that, with the low initial algal cell density (OD680 less than 0.220), the algicidal activity reached was higher than 90% after 6 days.

  13. Low nitrogen stress stimulating the indole-3-acetic acid biosynthesis of Serratia sp. ZM is vital for the survival of the bacterium and its plant growth-promoting characteristic.

    PubMed

    Ouyang, Liming; Pei, Haiyan; Xu, Zhaohui

    2017-04-01

    Serratia sp. ZM is a plant growth-promoting (PGP) bacterial strain isolated from the rhizospheric soil of Populus euphratica in northwestern China. In this study, low nitrogen supply significantly stimulated the production of indole-3-acetic acid (IAA) in Serratia sp.ZM. The inoculation of the bacterium to wheat seedlings improved plant growth compared with the uninoculated group, and the stimulating effect was more prominent under low nitrogen stress. Inactivation of the predicted key gene in the IAA biosynthesis pathway impaired IAA production and significantly hampered mutant growth in poor medium. Furthermore, the IAA-deficient mutant lost the PGP effect under either normal or low nitrogen conditions in plant experiments. This study revealed the significant impact of environmental nitrogen levels on IAA production in the PGP strain and the vital effect of IAA on resistance physiology of both the bacterium and host plant. The characteristics of Serratia sp. ZM also indicated its application potential as a biofertilizer for plants, especially those suffering from poor nitrogen soil.

  14. Characterization of carbon dioxide concentrating chemolithotrophic bacterium Serratia sp. ISTD04 for production of biodiesel.

    PubMed

    Kumar, Manish; Morya, Raj; Gnansounou, Edgard; Larroche, Christian; Thakur, Indu Shekhar

    2017-11-01

    Proteomics and metabolomics analysis has become a powerful tool for characterization of microbial ability for fixation of Carbon dioxide. Bacterial community of palaeoproterozoic metasediments was enriched in the shake flask culture in the presence of NaHCO 3 . One of the isolate showed resistance to NaHCO 3 (100mM) and was identified as Serratia sp. ISTD04 by 16S rRNA sequence analysis. Carbon dioxide fixing ability of the bacterium was established by carbonic anhydrase enzyme assay along with proteomic analysis by LC-MS/MS. In proteomic analysis 96 proteins were identified out of these 6 protein involved in carbon dioxide fixation, 11 in fatty acid metabolism, indicating the carbon dioxide fixing potency of bacterium along with production of biofuel. GC-MS analysis revealed that hydrocarbons and FAMEs produced by bacteria within the range of C 13 -C 24 and C 11 -C 19 respectively. Presence of 59% saturated and 41% unsaturated organic compounds, make it a better fuel composition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Immobilization of iron- and manganese-oxidizing bacteria with a biofilm-forming bacterium for the effective removal of iron and manganese from groundwater.

    PubMed

    Li, Chunyan; Wang, Shuting; Du, Xiaopeng; Cheng, Xiaosong; Fu, Meng; Hou, Ning; Li, Dapeng

    2016-11-01

    In this study, three bacteria with high Fe- and Mn-oxidizing capabilities were isolated from groundwater well sludge and identified as Acinetobacter sp., Bacillus megaterium and Sphingobacterium sp. The maximum removal ratios of Fe and Mn (99.75% and 96.69%) were obtained by an optimal combination of the bacteria at a temperature of 20.15°C, pH 7.09 and an inoculum size of 2.08%. Four lab-scale biofilters were tested in parallel for the removal of iron and manganese ions from groundwater. The results indicated that the Fe/Mn removal ratios of biofilter R4, which was inoculated with iron- and manganese-oxidizing bacteria and a biofilm-forming bacterium, were approximately 95% for each metal during continuous operation and were better than the other biofilters. This study demonstrated that the biofilm-forming bacterium could promote the immobilization of the iron- and manganese-oxidizing bacteria on the biofilters and enhance the removal efficiency of iron and manganese ions from groundwater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A PhoPQ-Regulated ABC Transporter System Exports Tetracycline in Pseudomonas aeruginosa.

    PubMed

    Chen, Lin; Duan, Kangmin

    2016-05-01

    Pseudomonas aeruginosa is an important human pathogen whose infections are difficult to treat due to its high intrinsic resistance to many antibiotics. Here, we show that the disruption of PA4456, encoding the ATP binding component of a putative ATP-binding cassette (ABC) transporter, increased the bacterium's susceptible to tetracycline and other antibiotics or toxic chemicals. Fluorescence spectroscopy and antibiotic accumulation tests showed that the interruption of the ABC transporter caused increased intracellular accumulation of tetracycline, demonstrating a role of the ABC transporter in tetracycline expulsion. Site-directed mutagenesis proved that the conserved residues of E170 in the Walker B motif and H203 in the H-loop, which are important for ATP hydrolysis, were essential for the function of PA4456. Through a genome-wide search, the PhoPQ two-component system was identified as a regulator of the computationally predicted PA4456-4452 operon that encodes the ABC transporter system. A >5-fold increase of the expression of this operon was observed in the phoQ mutant. The results obtained also show that the expression of the phzA1B1C1D1E1 operon and the production of pyocyanin were significantly higher in the ABC transporter mutant, signifying a connection between the ABC transporter and pyocyanin production. These results indicated that the PhoPQ-regulated ABC transporter is associated with intrinsic resistance to antibiotics and other adverse compounds in P. aeruginosa, probably by extruding them out of the cell. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  17. Toxin-Antitoxin Systems in the Mobile Genome of Acidithiobacillus ferrooxidans

    PubMed Central

    Bustamante, Paula; Tello, Mario; Orellana, Omar

    2014-01-01

    Toxin-antitoxin (TA) systems are genetic modules composed of a pair of genes encoding a stable toxin and an unstable antitoxin that inhibits toxin activity. They are widespread among plasmids and chromosomes of bacteria and archaea. TA systems are known to be involved in the stabilization of plasmids but there is no consensus about the function of chromosomal TA systems. To shed light on the role of chromosomally encoded TA systems we analyzed the distribution and functionality of type II TA systems in the chromosome of two strains from Acidithiobacillus ferrooxidans (ATCC 23270 and 53993), a Gram-negative, acidophilic, environmental bacterium that participates in the bioleaching of minerals. As in other environmental microorganisms, A. ferrooxidans has a high content of TA systems (28-29) and in twenty of them the toxin is a putative ribonuclease. According to the genetic context, some of these systems are encoded near or within mobile genetic elements. Although most TA systems are shared by both strains, four of them, which are encoded in the active mobile element ICEAfe1, are exclusive to the type strain ATCC 23270. We demostrated that two TA systems from ICEAfe1 are functional in E. coli cells, since the toxins inhibit growth and the antitoxins counteract the effect of their cognate toxins. All the toxins from ICEAfe1, including a novel toxin, are RNases with different ion requirements. The data indicate that some of the chromosomally encoded TA systems are actually part of the A. ferrooxidans mobile genome and we propose that could be involved in the maintenance of these integrated mobile genetic elements. PMID:25384039

  18. Genome analysis of Elusimicrobium minutum, the first cultivated representative of the Elusimicrobia phylum (formerly Termite Group 1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herlemann, D. P. R.; Geissinger, O.; Ikeda-Ohtsubo, W.

    2009-02-01

    The candidate phylum Termite group 1 (TG1), is regularly 1 encountered in termite hindguts but is present also in many other habitats. Here we report the complete genome sequence (1.64 Mbp) of Elusimicrobium minutum strain Pei191{sup T}, the first cultured representative of the TG1 phylum. We reconstructed the metabolism of this strictly anaerobic bacterium isolated from a beetle larva gut and discuss the findings in light of physiological data. E. minutum has all genes required for uptake and fermentation of sugars via the Embden-Meyerhof pathway, including several hydrogenases, and an unusual peptide degradation pathway comprising transamination reactions and leading tomore » the formation of alanine, which is excreted in substantial amounts. The presence of genes encoding lipopolysaccharide biosynthesis and the presence of a pathway for peptidoglycan formation are consistent with ultrastructural evidence of a Gram-negative cell envelope. Even though electron micrographs showed no cell appendages, the genome encodes many genes putatively involved in pilus assembly. We assigned some to a type II secretion system, but the function of 60 pilE-like genes remains unknown. Numerous genes with hypothetical functions, e.g., polyketide synthesis, non-ribosomal peptide synthesis, antibiotic transport, and oxygen stress protection, indicate the presence of hitherto undiscovered physiological traits. Comparative analysis of 22 concatenated single-copy marker genes corroborated the status of Elusimicrobia (formerly TG1) as a separate phylum in the bacterial domain, which was so far based only on 16S rRNA sequence analysis.« less

  19. Characterization of a putative Xylella fastidiosa diffusible signal factor by HRGC-EI-MS.

    PubMed

    Colnaghi Simionato, Ana Valéria; da Silva, Denise Santos; Lambais, Marcio Rodrigues; Carrilho, Emanuel

    2007-10-01

    Xylella fastidiosa (X.f.) is a plant pathogen with high levels of genomic similarity to Xanthomonas campestris pv. campestris (X.c.c.). It has been shown that X. fastidiosa synthesizes a putative diffusible signal factor (X.f.-DSF) that activates regulation of pathogenicity factor (rpf) genes in a X.c.c. reporter system, which might be involved in the regulation of pathogenesis associated genes as in X.c.c., as well as in quorum-sensing. The nature of the X.f.-DSF is not known, whereas the X.c.c.-DSF has been identified as cis-11-methyl-2-dodecenoic acid. In this work, the chemical nature of a putative X.f.-DSF molecule, able to restore endoglucanase activity in a X.c.c. rpfF mutant, was investigated as if it was a fatty acid derivative. Bioassays with X.c.c. reporter bacterium and X.f. culture extracts, based on endoglucanase restoration activity, were also carried out in order to confirm the DSFs molecules similarities. For this reason, a gas chromatography-mass spectrometry method was developed with standard fatty acids methyl esters mixtures. The retention time, as well as the fragmentation patterns, of each standard was used to identify the DSF molecule synthesized by X.f. in the culture medium. Typical ester fragmentation patterns (the derivatized analyte) were observed, such as: McLafferty rearrangement and migration of the Hdelta followed by 1,4-hydrogen shift and cleavage of the bond Cbeta--Cgamma, confirming the nature of this molecule. This confirmation was corroborated by the common peaks in both spectra. Besides, the observed retention time reinforces our conclusion since it corresponds to a methyl ester with 15 carbons. Since the X.f.-DSF molecule was tentatively identified as 12-methyl-tetradecanoic acid (by mass spectra library comparison), this standard compound was also analyzed, strongly suggesting that this is the identification of such a molecule. To our knowledge, this is the first time a DSF produced by X.f. has been characterized.

  20. Characterization of a putative Xylella fastidiosa diffusible signal factor by HRGC-EI-MS.

    PubMed

    Colnaghi Simionato, Ana Valéria; da Silva, Denise Santos; Lambais, Marcio Rodrigues; Carrilho, Emanuel

    2007-04-01

    Xylella fastidiosa (X.f.) is a plant pathogen with high levels of genomic similarity to Xanthomonas campestris pv. campestris (X.c.c.). It has been shown that X. fastidiosa synthesizes a putative diffusible signal factor (X.f.-DSF) that activates regulation of pathogenicity factor (rpf) genes in a X.c.c. reporter system, which might be involved in the regulation of pathogenesis associated genes as in X.c.c., as well as in quorum-sensing. The nature of the X.f.-DSF is not known, whereas the X.c.c.-DSF has been identified as cis-11-methyl-2-dodecenoic acid. In this work, the chemical nature of a putative X.f.-DSF molecule, able to restore endoglucanase activity in a X.c.c. rpfF mutant, was investigated as if it was a fatty acid derivative. Bioassays with X.c.c. reporter bacterium and X.f. culture extracts, based on endoglucanase restoration activity, were also carried out in order to confirm the DSFs molecules similarities. For this reason, a gas chromatography-mass spectrometry method was developed with standard fatty acids methyl esters mixtures. The retention time, as well as the fragmentation patterns, of each standard was used to identify the DSF molecule synthesized by X.f. in the culture medium. Typical ester fragmentation patterns (the derivatized analyte) were observed, such as: McLafferty rearrangement and migration of the Hdelta followed by 1,4-hydrogen shift and cleavage of the bond Cbeta-Cgamma, confirming the nature of this molecule. This confirmation was corroborated by the common peaks in both spectra. Besides, the observed retention time reinforces our conclusion since it corresponds to a methyl ester with 15 carbons. Since the X.f.-DSF molecule was tentatively identified as 12-methyl-tetradecanoic acid (by mass spectra library comparison), this standard compound was also analyzed, strongly suggesting that this is the identification of such a molecule. To our knowledge, this is the first time a DSF produced by X.f. has been characterized. Copyright 2007 John Wiley & Sons, Ltd.

  1. Single Upconversion Nanoparticle-Bacterium Cotrapping for Single-Bacterium Labeling and Analysis.

    PubMed

    Xin, Hongbao; Li, Yuchao; Xu, Dekang; Zhang, Yueli; Chen, Chia-Hung; Li, Baojun

    2017-04-01

    Detecting and analyzing pathogenic bacteria in an effective and reliable manner is crucial for the diagnosis of acute bacterial infection and initial antibiotic therapy. However, the precise labeling and analysis of bacteria at the single-bacterium level are a technical challenge but very important to reveal important details about the heterogeneity of cells and responds to environment. This study demonstrates an optical strategy for single-bacterium labeling and analysis by the cotrapping of single upconversion nanoparticles (UCNPs) and bacteria together. A single UCNP with an average size of ≈120 nm is first optically trapped. Both ends of a single bacterium are then trapped and labeled with single UCNPs emitting green light. The labeled bacterium can be flexibly moved to designated locations for further analysis. Signals from bacteria of different sizes are detected in real time for single-bacterium analysis. This cotrapping method provides a new approach for single-pathogenic-bacterium labeling, detection, and real-time analysis at the single-particle and single-bacterium level. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The energy spilling reactions of bacteria and other organisms.

    PubMed

    Russell, James B

    2007-01-01

    For many years it was assumed that living organisms always utilized ATP in a highly efficient manner, but simple growth studies with bacteria indicated that the efficiency of biomass production was often at least 3-fold lower than the amount that would be predicted from standard biosynthetic pathways. The utilization of energy for maintenance could only explain a small portion of this discrepancy particularly when the growth rate was high. These ideas and thermodynamic arguments indicated that cells might have another avenue of energy utilization. This phenomenon has also been called 'uncoupling', 'spillage' and 'overflow metabolism', but 'energy spilling' is probably the most descriptive term. It appears that many bacteria spill energy, and the few that do not can be killed (large and often rapid decrease in viability), if the growth medium is nitrogen-limited and the energy source is in 'excess'. The lactic acid bacterium, Streptococcus bovis, is an ideal bacterium for the study of energy spilling. Because it only uses substrate level phosphorylation to generate ATP, ATP generation can be calculated with a high degree of certainty. It does not store glucose as glycogen, and its cell membrane can be easily accessed. Comparative analysis of heat production, membrane voltage, ATP production and Ohm's law indicated that the energy spilling reaction of S. bovis is mediated by a futile cycle of protons through the cell membrane. Less is known about Escherichia coli, but in this bacterium energy spilling could be mediated by a futile cycle of potassium or ammonium ions. Energy spilling is not restricted to prokaryotes and appears to occur in yeasts and in higher organisms. In man, energy spilling may be related to cancer, ageing, ischemia and cardiac failure. Copyright (c) 2007 S. Karger AG, Basel.

  3. Ectoine: A compatible solute in radio-halophilic Stenotrophomonas sp. WMA-LM19 strain to prevent ultraviolet-induced protein damage.

    PubMed

    Sajjad, Wasim; Qadir, Sundas; Ahmad, Manzoor; Rafiq, Muhammad; Hasan, Fariha; Tehan, Richard; McPhail, Kerry L; Shah, Aamer Ali

    2018-05-04

    The current study was conducted to investigate the possible role of a compatible solute from radio-halophilic bacterium against desiccation and ultra-violet radiation induced oxidative stress. Nine different radio-resistant bacteria were isolated from desert soil, where strain WMA-LM19 was chosen for detailed studies on the basis of its high tolerance to ultraviolet radiation among all these isolates. 16S rRNA gene sequencing indicated the bacterium was closely related to Stenotrophomonas sp. (KT008383). A bacterial milking strategy was applied for extraction of intracellular compatible solutes in 70% (v/v) ethanol, which were purified by High Performance Liquid Chromatography (HPLC). The compound was characterized as ectoine by 1 H and 13 C Nuclear Magnetic Resonance (NMR), and Mass Spectrometry (MS). Ectoine inhibited oxidative damage to proteins and lipids in comparison to the standard ascorbic acid. It also demonstrated more efficient preventition (54.80%) against lysis to erythrocytes membrane by surface active agents than lecithin. Furthermore, a high level of ectoine-mediated protection of bovine serum albumin against ionizing radiation (1500-2000Jm -2 ) was observed, as indicated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. The results indicated that ectoine from Stenotrophomonas sp. WMA-LM19 can be used as a potential mitigator and radio-protective agent to overcome radiation- and salinity-mediated oxidative damages in extreme environment. Due to its anti-oxidant properties, ectoine from a radio-halophilic bacterium might be used in sunscreen formulation for protection against UV induced oxidative stress. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Involvement of EupR, a response regulator of the NarL/FixJ family, in the control of the uptake of the compatible solutes ectoines by the halophilic bacterium Chromohalobacter salexigens.

    PubMed

    Rodríguez-Moya, Javier; Argandoña, Montserrat; Reina-Bueno, Mercedes; Nieto, Joaquín J; Iglesias-Guerra, Fernando; Jebbar, Mohamed; Vargas, Carmen

    2010-10-13

    Osmosensing and associated signal transduction pathways have not yet been described in obligately halophilic bacteria. Chromohalobacter salexigens is a halophilic bacterium with a broad range of salt tolerance. In response to osmotic stress, it synthesizes and accumulates large amounts of the compatible solutes ectoine and hydroxyectoine. In a previous work, we showed that ectoines can be also accumulated upon transport from the external medium, and that they can be used as carbon sources at optimal, but not at low salinity. This was related to an insufficient ectoine(s) transport under these conditions. A C. salexigens Tn1732-induced mutant (CHR95) showed a delayed growth with glucose at low and optimal salinities, could not grow at high salinity, and was able to use ectoines as carbon sources at low salinity. CHR95 was affected in the transport and/or metabolism of glucose, and showed a deregulated ectoine uptake at any salinity, but it was not affected in ectoine metabolism. Transposon insertion in CHR95 caused deletion of three genes, Csal0865-Csal0867: acs, encoding an acetyl-CoA synthase, mntR, encoding a transcriptional regulator of the DtxR/MntR family, and eupR, encoding a putative two-component response regulator with a LuxR_C-like DNA-binding helix-turn-helix domain. A single mntR mutant was sensitive to manganese, suggesting that mntR encodes a manganese-dependent transcriptional regulator. Deletion of eupR led to salt-sensitivity and enabled the mutant strain to use ectoines as carbon source at low salinity. Domain analysis included EupR as a member of the NarL/FixJ family of two component response regulators. Finally, the protein encoded by Csal869, located three genes downstream of eupR was suggested to be the cognate histidine kinase of EupR. This protein was predicted to be a hybrid histidine kinase with one transmembrane and one cytoplasmic sensor domain. This work represents the first example of the involvement of a two-component response regulator in the osmoadaptation of a true halophilic bacterium. Our results pave the way to the elucidation of the signal transduction pathway involved in the control of ectoine transport in C. salexigens.

  5. Efferocytosis is an innate antibacterial mechanism.

    PubMed

    Martin, Constance J; Booty, Matthew G; Rosebrock, Tracy R; Nunes-Alves, Cláudio; Desjardins, Danielle M; Keren, Iris; Fortune, Sarah M; Remold, Heinz G; Behar, Samuel M

    2012-09-13

    Mycobacterium tuberculosis persists within macrophages in an arrested phagosome and depends upon necrosis to elude immunity and disseminate. Although apoptosis of M. tuberculosis-infected macrophages is associated with reduced bacterial growth, the bacteria are relatively resistant to other forms of death, leaving the mechanism underlying this observation unresolved. We find that after apoptosis, M. tuberculosis-infected macrophages are rapidly taken up by uninfected macrophages through efferocytosis, a dedicated apoptotic cell engulfment process. Efferocytosis of M. tuberculosis sequestered within an apoptotic macrophage further compartmentalizes the bacterium and delivers it along with the apoptotic cell debris to the lysosomal compartment. M. tuberculosis is killed only after efferocytosis, indicating that apoptosis itself is not intrinsically bactericidal but requires subsequent phagocytic uptake and lysosomal fusion of the apoptotic body harboring the bacterium. While efferocytosis is recognized as a constitutive housekeeping function of macrophages, these data indicate that it can also function as an antimicrobial effector mechanism. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Transcriptomic and proteomic analyses of Desulfovibrio vulgaris biofilms: carbon and energy flow contribute to the distinct biofilm growth state.

    PubMed

    Clark, Melinda E; He, Zhili; Redding, Alyssa M; Joachimiak, Marcin P; Keasling, Jay D; Zhou, Jizhong Z; Arkin, Adam P; Mukhopadhyay, Aindrila; Fields, Matthew W

    2012-04-16

    Desulfovibrio vulgaris Hildenborough is a sulfate-reducing bacterium (SRB) that is intensively studied in the context of metal corrosion and heavy-metal bioremediation, and SRB populations are commonly observed in pipe and subsurface environments as surface-associated populations. In order to elucidate physiological changes associated with biofilm growth at both the transcript and protein level, transcriptomic and proteomic analyses were done on mature biofilm cells and compared to both batch and reactor planktonic populations. The biofilms were cultivated with lactate and sulfate in a continuously fed biofilm reactor, and compared to both batch and reactor planktonic populations. The functional genomic analysis demonstrated that biofilm cells were different compared to planktonic cells, and the majority of altered abundances for genes and proteins were annotated as hypothetical (unknown function), energy conservation, amino acid metabolism, and signal transduction. Genes and proteins that showed similar trends in detected levels were particularly involved in energy conservation such as increases in an annotated ech hydrogenase, formate dehydrogenase, pyruvate:ferredoxin oxidoreductase, and rnf oxidoreductase, and the biofilm cells had elevated formate dehydrogenase activity. Several other hydrogenases and formate dehydrogenases also showed an increased protein level, while decreased transcript and protein levels were observed for putative coo hydrogenase as well as a lactate permease and hyp hydrogenases for biofilm cells. Genes annotated for amino acid synthesis and nitrogen utilization were also predominant changers within the biofilm state. Ribosomal transcripts and proteins were notably decreased within the biofilm cells compared to exponential-phase cells but were not as low as levels observed in planktonic, stationary-phase cells. Several putative, extracellular proteins (DVU1012, 1545) were also detected in the extracellular fraction from biofilm cells. Even though both the planktonic and biofilm cells were oxidizing lactate and reducing sulfate, the biofilm cells were physiologically distinct compared to planktonic growth states due to altered abundances of genes/proteins involved in carbon/energy flow and extracellular structures. In addition, average expression values for multiple rRNA transcripts and respiratory activity measurements indicated that biofilm cells were metabolically more similar to exponential-phase cells although biofilm cells are structured differently. The characterization of physiological advantages and constraints of the biofilm growth state for sulfate-reducing bacteria will provide insight into bioremediation applications as well as microbially-induced metal corrosion.

  7. Transcriptomic and proteomic analyses of Desulfovibrio vulgaris biofilms: Carbon and energy flow contribute to the distinct biofilm growth state

    PubMed Central

    2012-01-01

    Background Desulfovibrio vulgaris Hildenborough is a sulfate-reducing bacterium (SRB) that is intensively studied in the context of metal corrosion and heavy-metal bioremediation, and SRB populations are commonly observed in pipe and subsurface environments as surface-associated populations. In order to elucidate physiological changes associated with biofilm growth at both the transcript and protein level, transcriptomic and proteomic analyses were done on mature biofilm cells and compared to both batch and reactor planktonic populations. The biofilms were cultivated with lactate and sulfate in a continuously fed biofilm reactor, and compared to both batch and reactor planktonic populations. Results The functional genomic analysis demonstrated that biofilm cells were different compared to planktonic cells, and the majority of altered abundances for genes and proteins were annotated as hypothetical (unknown function), energy conservation, amino acid metabolism, and signal transduction. Genes and proteins that showed similar trends in detected levels were particularly involved in energy conservation such as increases in an annotated ech hydrogenase, formate dehydrogenase, pyruvate:ferredoxin oxidoreductase, and rnf oxidoreductase, and the biofilm cells had elevated formate dehydrogenase activity. Several other hydrogenases and formate dehydrogenases also showed an increased protein level, while decreased transcript and protein levels were observed for putative coo hydrogenase as well as a lactate permease and hyp hydrogenases for biofilm cells. Genes annotated for amino acid synthesis and nitrogen utilization were also predominant changers within the biofilm state. Ribosomal transcripts and proteins were notably decreased within the biofilm cells compared to exponential-phase cells but were not as low as levels observed in planktonic, stationary-phase cells. Several putative, extracellular proteins (DVU1012, 1545) were also detected in the extracellular fraction from biofilm cells. Conclusions Even though both the planktonic and biofilm cells were oxidizing lactate and reducing sulfate, the biofilm cells were physiologically distinct compared to planktonic growth states due to altered abundances of genes/proteins involved in carbon/energy flow and extracellular structures. In addition, average expression values for multiple rRNA transcripts and respiratory activity measurements indicated that biofilm cells were metabolically more similar to exponential-phase cells although biofilm cells are structured differently. The characterization of physiological advantages and constraints of the biofilm growth state for sulfate-reducing bacteria will provide insight into bioremediation applications as well as microbially-induced metal corrosion. PMID:22507456

  8. Identification and methods for prevention of Enterococcus mundtii infection in silkworm larvae, Bombyx mori, reared on artificial diet.

    PubMed

    Nwibo, Don Daniel; Matsumoto, Yasuhiko; Sekimizu, Kazuhisa

    2015-06-01

    Previously, it was reported that Enterococcus mundtii (E. mundtii) was associated with flacherie disease of silkworm larvae reared on artificial diet. In this study, we report that E. mundtii was isolated from diseased silkworm larvae, and validated as a pathogenic bacterium of the animal. When silkworm larva was infected with 1.04 × 10⁶ colony-forming units of E. mundtii via oral administration of diet, half population died within six days, indicating that the bacterium is pathogenic to silkworm. Less severe infection was found to cause anorexia and hamper the development of larvae. This pathogen was found to proliferate in both time- and dose-dependent manner in the gastrointestinal tract of the animal. The bacterium was isolated from powder of artificial diet made from mulberry leaves, and from mulberry leaves growing at a field. Minimum inhibitory concentration determination revealed that this bacterium was susceptible to tested antibiotics. Vancomycin treatment of diet significantly decreased the number of E. mundtii in intestine of silkworm larvae infected with the bacteria, compared to control. Furthermore, autoclaving or gamma ray irradiation of diet was also effective for exclusion of E. mundtii from the diet without the loss of its nutrient capacities. These results suggest that mulberry leaves used in making artificial diet for silkworm larvae is one of the sources of E. mundtii infection; and that antibiotic treatment, autoclaving or gamma ray irradiation of artificial diet can exclude the bacteria.

  9. Elucidation of Genetic Backgrounds Necessary for Chlorophyll a Biosynthesis Toward Artificial Creation of Oxygenic Photosynthesis

    NASA Astrophysics Data System (ADS)

    Tsukatani, Yusuke; Masuda, Shinji

    2015-09-01

    We succeeded to create the genetically modified purple photosynthetic bacterium capable of synthesizing chlorophyll a. The results indicate that not only chlorophyll synthase, but also an enzyme for galactolipid synthesis and reaction center proteins are required for accumulating chlorophyll a.

  10. Nonspecific Adherence by Actinobacillus actinomycetemcomitans Requires Genes Widespread in Bacteria and Archaea

    PubMed Central

    Kachlany, Scott C.; Planet, Paul J.; Bhattacharjee, Mrinal K.; Kollia, Evyenia; DeSalle, Rob; Fine, Daniel H.; Figurski, David H.

    2000-01-01

    The gram-negative coccobacillus, Actinobacillus actinomycetemcomitans, is the putative agent for localized juvenile periodontitis, a particularly destructive form of periodontal disease in adolescents. This bacterium has also been isolated from a variety of other infections, notably endocarditis. Fresh clinical isolates of A. actinomycetemcomitans form tenacious biofilms, a property likely to be critical for colonization of teeth and other surfaces. Here we report the identification of a locus of seven genes required for nonspecific adherence of A. actinomycetemcomitans to surfaces. The recently developed transposon IS903φkan was used to isolate mutants of the rough clinical isolate CU1000 that are defective in tight adherence to surfaces (Tad−). Unlike wild-type cells, Tad− mutant cells adhere poorly to surfaces, fail to form large autoaggregates, and lack long, bundled fibrils. Nucleotide sequencing and genetic complementation analysis revealed a 6.7-kb region of the genome with seven adjacent genes (tadABCDEFG) required for tight adherence. The predicted TadA polypeptide is similar to VirB11, an ATPase involved in macromolecular transport. The predicted amino acid sequences of the other Tad polypeptides indicate membrane localization but no obvious functions. We suggest that the tad genes are involved in secretion of factors required for tight adherence of A. actinomycetemcomitans. Remarkably, complete and highly conserved tad gene clusters are present in the genomes of the bubonic plague bacillus Yersinia pestis and the human and animal pathogen Pasteurella multocida. Partial tad loci also occur in strikingly diverse Bacteria and Archaea. Our results show that the tad genes are required for tight adherence of A. actinomycetemcomitans to surfaces and are therefore likely to be essential for colonization and pathogenesis. The occurrence of similar genes in a wide array of microorganisms indicates that they have important functions. We propose that tad-like genes have a significant role in microbial colonization. PMID:11029439

  11. Metabolic potential of a Novel Gram-Negative, Spore-forming, and Putatively Sulfate-Reducing Bacterium in the Continental Subsurface

    NASA Astrophysics Data System (ADS)

    Lau, C. Y. M.; Becraft, E. D.; Cason, E. D.; Borgonie, G.; Kieft, T. L.; Li, L.; van Heerden, E.; Jarett, J.; Woyke, T.; Stepanauskas, R.; Onstott, T. C.

    2017-12-01

    Anaerobic sulfate reduction is among the most thermodynamically favorable biochemical reactions in the deep subsurface environments. Phylogenetically and functionally diverse sulfate-reducing bacteria (SRB) within Deltaproteobacteria and Firmicutes have been reported. However, only few of them have been isolated in pure cultures for detailed physiological characterization. Previous studies showed that fracture fluid samples from the 1 km-deep borehole DR5IPC (Driefontein gold mine, South Africa) harbored novel SRB, as indicated by the low percentages (84% and 90%) of identity of the 16S ribosomal RNA clone sequences to known SRB. To overcome the challenge of low cultivability, we employed next-generation sequencing to unveil the metabolic potential of these novel SRB. Metagenomic assembly and binning yielded seven >50% complete genomes including a methylotrophic SRB belonging to Deltaproteobacteria (DR5_3) and two draft genomes representing an uncultivated phylum, tentatively "Driefonteinae" (DR5_4 and DR5_5). They accounted for 3%, 2% and 18% of all metagenomic reads. Three single-cell assembled genomes (SAGs) sharing 99% of average nucleotide identity (ANI) with DR5_5 were obtained. Analysis of the protein-coding genes in DR5_5 and related SAGs indicated that "Driefonteinae" possesses dissimilatory sulfite reductase genes (dsrAB), suggesting that sulfate would be the terminal electron acceptor. Whereas it may use diverse electron acceptors such as carbon monoxide, acetate, lactate and formate. A near-complete collection of genes for Wood-Ljungdahl pathway and genes for partial pentose phosphate pathway, glycolysis and tricarboxylic acid cycle further showed that "Driefonteinae" may live a mixotrophic life style. It is evident that archaeal genes related to methanogens were acquired through horizontal gene transfer. Phenotypically, "Driefonteinae" has a Gram-negative cell wall and flagella. The ability of forming spores would enable this microorganism to endure adverse conditions. Genomic analysis has provided an invaluable avenue to reveal novel microbial players in the subsurface sulfur cycle.

  12. Phenotypic and genotypic characterization of peptidoglycan hydrolases of Lactobacillus sakei

    PubMed Central

    Najjari, Afef; Amairi, Houda; Chaillou, Stéphane; Mora, Diego; Boudabous, Abdellatif; Zagorec, Monique; Ouzari, Hadda

    2015-01-01

    Lactobacillus sakei, a lactic acid bacterium naturally found in fresh meat and sea products, is considered to be one of the most important bacterial species involved in meat fermentation and bio-preservation. Several enzymes of Lb. sakei species contributing to microbial safeguarding and organoleptic properties of fermented-meat were studied. However, the specific autolytic mechanisms and associated enzymes involved in Lb. sakei are not well understood. The autolytic phenotype of 22 Lb. sakei strains isolated from Tunisian meat and seafood products was evaluated under starvation conditions, at pH 6.5 and 8.5, and in the presence of different carbon sources. A higher autolytic rate was observed when cells were grown in the presence of glucose and incubated at pH 6.5. Almost all strains showed high resistance to mutanolysin, indicating a minor role of muramidases in Lb. sakei cell lysis. Using Micrococcus lysodeikticus cells as a substrate in activity gels zymogram, peptidoglycan hydrolase (PGH) patterns for all strains was characterized by two lytic bands of ∼80 (B1) and ∼70 kDa (B2), except for strain BMG.167 which harbored two activity signals at a lower MW. Lytic activity was retained in high salt and in acid/basic conditions and was active toward cells of Lb. sakei, Listeria monocytogenes, Listeria ivanovii and Listeria innocua. Analysis of five putative PGH genes found in the Lb. sakei 23 K model strain genome, indicated that one gene, lsa1437, could encode a PGH (N-acetylmuramoyl-L-alanine amidase) containing B1 and B2 as isoforms. According to this hypothesis, strain BMG.167 showed an allelic version of lsa1437 gene deleted of one of the five LysM domains, leading to a reduction in the MW of lytic bands and the high autolytic rate of this strain. Characterization of autolytic phenotype of Lb. sakei should expand the knowledge of their role in fermentation processes where they represent the dominant species. PMID:26843981

  13. Determination of the small RNA GcvB regulon in the Gram-negative bacterial pathogen Pasteurella multocida and identification of the GcvB seed binding region.

    PubMed

    Gulliver, Emily L; Wright, Amy; Lucas, Deanna Deveson; Mégroz, Marianne; Kleifeld, Oded; Schittenhelm, Ralf B; Powell, David R; Seemann, Torsten; Bulitta, Jürgen B; Harper, Marina; Boyce, John D

    2018-05-01

    Pasteurella multocida is a Gram-negative bacterium responsible for many important animal diseases. While a number of P. multocida virulence factors have been identified, very little is known about how gene expression and protein production is regulated in this organism. Small RNA (sRNA) molecules are critical regulators that act by binding to specific mRNA targets, often in association with the RNA chaperone protein Hfq. In this study, transcriptomic analysis of the P. multocida strain VP161 revealed a putative sRNA with high identity to GcvB from Escherichia coli and Salmonella enterica serovar Typhimurium. High-throughput quantitative liquid proteomics was used to compare the proteomes of the P. multocida VP161 wild-type strain, a gcvB mutant, and a GcvB overexpression strain. These analyses identified 46 proteins that displayed significant differential production after inactivation of gcvB , 36 of which showed increased production. Of the 36 proteins that were repressed by GcvB, 27 were predicted to be involved in amino acid biosynthesis or transport. Bioinformatic analyses of putative P. multocida GcvB target mRNAs identified a strongly conserved 10 nucleotide consensus sequence, 5'-AACACAACAT-3', with the central eight nucleotides identical to the seed binding region present within GcvB mRNA targets in E. coli and S. Typhimurium. Using a defined set of seed region mutants, together with a two-plasmid reporter system that allowed for quantification of sRNA-mRNA interactions, this sequence was confirmed to be critical for the binding of the P. multocida GcvB to the target mRNA, gltA . © 2018 Gulliver et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  14. Characterization of Five Novel Brevibacillus Bacteriophages and Genomic Comparison of Brevibacillus Phages

    PubMed Central

    Berg, Jordan A.; Merrill, Bryan D.; Crockett, Justin T.; Esplin, Kyle P.; Evans, Marlee R.; Heaton, Karli E.; Hilton, Jared A.; Hyde, Jonathan R.; McBride, Morgan S.; Schouten, Jordan T.; Simister, Austin R.; Thurgood, Trever L.; Ward, Andrew T.; Breakwell, Donald P.; Hope, Sandra; Grose, Julianne H.

    2016-01-01

    Brevibacillus laterosporus is a spore-forming bacterium that causes a secondary infection in beehives following European Foulbrood disease. To better understand the contributions of Brevibacillus bacteriophages to the evolution of their hosts, five novel phages (Jenst, Osiris, Powder, SecTim467, and Sundance) were isolated and characterized. When compared with the five Brevibacillus phages currently in NCBI, these phages were assigned to clusters based on whole genome and proteome synteny. Powder and Osiris, both myoviruses, were assigned to the previously described Jimmer-like cluster. SecTim467 and Jenst, both siphoviruses, formed a novel phage cluster. Sundance, a siphovirus, was assigned as a singleton phage along with the previously isolated singleton, Emery. In addition to characterizing the basic relationships between these phages, several genomic features were observed. A motif repeated throughout phages Jenst and SecTim467 was frequently upstream of genes predicted to function in DNA replication, nucleotide metabolism, and transcription, suggesting transcriptional co-regulation. In addition, paralogous gene pairs that encode a putative transcriptional regulator were identified in four Brevibacillus phages. These paralogs likely evolved to bind different DNA sequences due to variation at amino acid residues predicted to bind specific nucleotides. Finally, a putative transposable element was identified in SecTim467 and Sundance that carries genes homologous to those found in Brevibacillus chromosomes. Remnants of this transposable element were also identified in phage Jenst. These discoveries provide a greater understanding of the diversity of phages, their behavior, and their evolutionary relationships to one another and to their host. In addition, they provide a foundation with which further Brevibacillus phages can be compared. PMID:27304881

  15. Diverse Array of New Viral Sequences Identified in Worldwide Populations of the Asian Citrus Psyllid (Diaphorina citri) Using Viral Metagenomics

    PubMed Central

    Nouri, Shahideh; Salem, Nidá; Nigg, Jared C.

    2015-01-01

    ABSTRACT The Asian citrus psyllid, Diaphorina citri, is the natural vector of the causal agent of Huanglongbing (HLB), or citrus greening disease. Together; HLB and D. citri represent a major threat to world citrus production. As there is no cure for HLB, insect vector management is considered one strategy to help control the disease, and D. citri viruses might be useful. In this study, we used a metagenomic approach to analyze viral sequences associated with the global population of D. citri. By sequencing small RNAs and the transcriptome coupled with bioinformatics analysis, we showed that the virus-like sequences of D. citri are diverse. We identified novel viral sequences belonging to the picornavirus superfamily, the Reoviridae, Parvoviridae, and Bunyaviridae families, and an unclassified positive-sense single-stranded RNA virus. Moreover, a Wolbachia prophage-related sequence was identified. This is the first comprehensive survey to assess the viral community from worldwide populations of an agricultural insect pest. Our results provide valuable information on new putative viruses, some of which may have the potential to be used as biocontrol agents. IMPORTANCE Insects have the most species of all animals, and are hosts to, and vectors of, a great variety of known and unknown viruses. Some of these most likely have the potential to be important fundamental and/or practical resources. In this study, we used high-throughput next-generation sequencing (NGS) technology and bioinformatics analysis to identify putative viruses associated with Diaphorina citri, the Asian citrus psyllid. D. citri is the vector of the bacterium causing Huanglongbing (HLB), currently the most serious threat to citrus worldwide. Here, we report several novel viral sequences associated with D. citri. PMID:26676774

  16. Diverse Array of New Viral Sequences Identified in Worldwide Populations of the Asian Citrus Psyllid (Diaphorina citri) Using Viral Metagenomics.

    PubMed

    Nouri, Shahideh; Salem, Nidá; Nigg, Jared C; Falk, Bryce W

    2015-12-16

    The Asian citrus psyllid, Diaphorina citri, is the natural vector of the causal agent of Huanglongbing (HLB), or citrus greening disease. Together; HLB and D. citri represent a major threat to world citrus production. As there is no cure for HLB, insect vector management is considered one strategy to help control the disease, and D. citri viruses might be useful. In this study, we used a metagenomic approach to analyze viral sequences associated with the global population of D. citri. By sequencing small RNAs and the transcriptome coupled with bioinformatics analysis, we showed that the virus-like sequences of D. citri are diverse. We identified novel viral sequences belonging to the picornavirus superfamily, the Reoviridae, Parvoviridae, and Bunyaviridae families, and an unclassified positive-sense single-stranded RNA virus. Moreover, a Wolbachia prophage-related sequence was identified. This is the first comprehensive survey to assess the viral community from worldwide populations of an agricultural insect pest. Our results provide valuable information on new putative viruses, some of which may have the potential to be used as biocontrol agents. Insects have the most species of all animals, and are hosts to, and vectors of, a great variety of known and unknown viruses. Some of these most likely have the potential to be important fundamental and/or practical resources. In this study, we used high-throughput next-generation sequencing (NGS) technology and bioinformatics analysis to identify putative viruses associated with Diaphorina citri, the Asian citrus psyllid. D. citri is the vector of the bacterium causing Huanglongbing (HLB), currently the most serious threat to citrus worldwide. Here, we report several novel viral sequences associated with D. citri. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  17. Transcriptional and Functional Studies of Acidithiobacillus ferrooxidans Genes Related to Survival in the Presence of Copper▿

    PubMed Central

    Navarro, Claudio A.; Orellana, Luis H.; Mauriaca, Cecilia; Jerez, Carlos A.

    2009-01-01

    The acidophilic Acidithiobacillus ferrooxidans can resist exceptionally high copper (Cu) concentrations. This property is important for its use in biomining processes, where Cu and other metal levels range usually between 15 and 100 mM. To learn about the mechanisms that allow A. ferrooxidans cells to survive in this environment, a bioinformatic search of its genome showed the presence of at least 10 genes that are possibly related to Cu homeostasis. Among them are three genes coding for putative ATPases related to the transport of Cu (A. ferrooxidans copA1 [copA1Af], copA2Af, and copBAf), three genes related to a system of the resistance nodulation cell division family involved in the extraction of Cu from the cell (cusAAf, cusBAf, and cusCAf), and two genes coding for periplasmic chaperones for this metal (cusFAf and copCAf). The expression of most of these open reading frames was studied by real-time reverse transcriptase PCR using A. ferrooxidans cells adapted for growth in the presence of high concentrations of Cu. The putative A. ferrooxidans Cu resistance determinants were found to be upregulated when this bacterium was exposed to Cu in the range of 5 to 25 mM. These A. ferrooxidans genes conferred to Escherichia coli a greater Cu resistance than wild-type cells, supporting their functionality. The results reported here and previously published data strongly suggest that the high resistance of the extremophilic A. ferrooxidans to Cu may be due to part or all of the following key elements: (i) a wide repertoire of Cu resistance determinants, (ii) the duplication of some of these Cu resistance determinants, (iii) the existence of novel Cu chaperones, and (iv) a polyP-based Cu resistance system. PMID:19666734

  18. Molecular Species Delimitation and Morphology of Aquatic and Sub-Aquatic Bugs (Heteroptera) in Cameroon

    PubMed Central

    Le Gall, Philippe; Chen, Ping-Ping; Nieser, Nico; Guilbert, Eric; Njiokou, Flobert; Marsollier, Laurent; Guégan, Jean-François; Pluot-Sigwalt, Dominique; Eyangoh, Sara; Harry, Myriam

    2016-01-01

    Aquatic and semi-aquatic bugs (Heteroptera) represent a remarkable diversity and a resurging interest has been given to documenting at the species level these insects inhabiting Cameroon in Central Africa due to their potential implication in the transmission of the bacterium Mycobacterium ulcerans, the causal agent of Buruli ulcer, an emerging human disease. A survey was carried out over two years in Cameroon. Morphological analyses were done in two steps. A first step consisted in separating the specimens based on broadly shared characters into morphotypes. The specimens were then separated into two independent batches containing each the same representation of each morphotype. One batch (309 specimens) was used by taxonomy experts on aquatic bugs for species level identification and/or to reconcile nymph with their corresponding adult species. The second batch (188 specimens) was used to define species based on the COI DNA sequences (standard sequence used for “DNA barcoding”) and using the Automatic Barcode Gap Discovery (ABGD) method. The first morphological analysis step separated the specimens into 63 different morphotypes (49 adults and 14 nymphs), which were then found to belong to 54 morphological species in the infra-orders Gerromorpha and Nepomorpha based on the species-level morphological identification, and 41–45 putative molecular species according to the gap value retained in the ABGD. Integrating morphology and “DNA barcoding” reconciled all the specimens into 62 aquatic bug species in Cameroon. Generally, we obtained a good congruence between species a priori identified based on morphology from adult morphotypes and molecular putative species. Moreover, molecular identification has allowed the association of 86% of nymphs with adults. This work illustrates the importance of integrative taxonomy. PMID:27149077

  19. Cloning and heterologous expression of chlorophyll a synthase in Rhodobacter sphaeroides.

    PubMed

    Ipekoğlu, Emre M; Göçmen, Koray; Öz, Mehmet T; Gürgan, Muazzez; Yücel, Meral

    2017-03-01

    Rhodobacter sphaeroides is a purple non-sulfur bacterium which photoheterotrophically produces hydrogen from organic acids under anaerobic conditions. A gene coding for putative chlorophyll a synthase (chlG) from cyanobacterium Prochlorococcus marinus was amplified by nested polymerase chain reaction and cloned into an inducible-expression plasmid which was subsequently transferred to R. sphaeroides for heterologous expression. Induced expression of chlG in R. sphaeroides led to changes in light absorption spectrum within 400-700 nm. The hydrogen production capacity of the mutant strain was evaluated on hydrogen production medium with 15 mM malate and 2 mM glutamate. Hydrogen yield and productivity were increased by 13.6 and 22.6%, respectively, compared to the wild type strain. The results demonstrated the feasibility of genetic engineering to combine chlorophyll and bacteriochlorophyll biosynthetic pathways which utilize common intermediates. Heterologous expression of key enzymes from biosynthetic pathways of various pigments is proposed here as a general strategy to improve absorption spectra and yield of photosynthesis and hydrogen gas production in bacteria. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Deciphering the adaptation strategies of Desulfovibrio piezophilus to hydrostatic pressure through metabolic and transcriptional analyses.

    PubMed

    Amrani, Amira; van Helden, Jacques; Bergon, Aurélie; Aouane, Aicha; Ben Hania, Wajdi; Tamburini, Christian; Loriod, Béatrice; Imbert, Jean; Ollivier, Bernard; Pradel, Nathalie; Dolla, Alain

    2016-08-01

    Desulfovibrio piezophilus strain C1TLV30(T) is a mesophilic piezophilic sulfate-reducer isolated from Wood Falls at 1700 m depth in the Mediterranean Sea. In this study, we analysed the effect of the hydrostatic pressure on this deep-sea living bacterium at the physiologic and transcriptomic levels. Our results showed that lactate oxidation and energy metabolism were affected by the hydrostatic pressure. Especially, acetyl-CoA oxidation pathway and energy conservation through hydrogen and formate recycling would be more important when the hydrostatic pressure is above (26 MPa) than below (0.1 MPa) the optimal one (10 MPa). This work underlines also the role of the amino acid glutamate as a piezolyte for the Desulfovibrio genus. The transcriptomic analysis revealed 146 differentially expressed genes emphasizing energy production and conversion, amino acid transport and metabolism and cell motility and signal transduction mechanisms as hydrostatic pressure responding processes. This dataset allowed us to identify a sequence motif upstream of a subset of differentially expressed genes as putative pressure-dependent regulatory element. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. The Genome of the Obligately Intracellular Bacterium Ehrlichia canis Reveals Themes of Complex Membrane Structure and Immune Evasion Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavromatis, K; Doyle, C Kuyler; Lykidis, A

    2006-01-01

    Ehrlichia canis, a small obligately intracellular, tick-transmitted, gram-negative, {alpha}-proteobacterium, is the primary etiologic agent of globally distributed canine monocytic ehrlichiosis. Complete genome sequencing revealed that the E. canis genome consists of a single circular chromosome of 1,315,030 bp predicted to encode 925 proteins, 40 stable RNA species, 17 putative pseudogenes, and a substantial proportion of noncoding sequence (27%). Interesting genome features include a large set of proteins with transmembrane helices and/or signal sequences and a unique serine-threonine bias associated with the potential for O glycosylation that was prominent in proteins associated with pathogen-host interactions. Furthermore, two paralogous protein families associatedmore » with immune evasion were identified, one of which contains poly(G-C) tracts, suggesting that they may play a role in phase variation and facilitation of persistent infections. Genes associated with pathogen-host interactions were identified, including a small group encoding proteins (n = 12) with tandem repeats and another group encoding proteins with eukaryote-like ankyrin domains (n = 7).« less

  2. The dtd gene from Bacillus amyloliquefaciens encodes a putative D-tyrosyl-tRNATyr deacylase and is a selectable marker for Bacillus subtilis.

    PubMed

    Geraskina, Natalia V; Butov, Ivan A; Yomantas, Yurgis A V; Stoynova, Nataliya V

    2015-02-01

    Genetically engineered microbes are of high practical importance due to their cost-effective production of valuable metabolites and enzymes, and the search for new selectable markers for genetic manipulation is of particular interest. Here, we revealed that the soil bacterium Bacillus amyloliquefaciens A50 is tolerant to the non-canonical amino acid D-tyrosine (D-Tyr), in contrast to the closely related Bacillus strain B. subtilis 168, which is a widely used "domesticated" laboratory strain. The gene responsible for resistance to D-Tyr was identified. The resistance was associated with the activity of a potential D-tyrosyl-tRNA(Tyr) deacylase. Orthologs of this enzyme are capable of hydrolyzing the ester bond and recycling misacetylated D-aminoacyl-tRNA molecules into free tRNAs and D-amino acids. This gene, yrvI (dtd), is applicable as a convenient, small selectable marker for non-antibiotic resistance selection in experiments aimed at genome editing of D-Tyr-sensitive microorganisms. Copyright © 2014 Elsevier GmbH. All rights reserved.

  3. Genome sequence and description of the anaerobic lignin-degrading bacterium Tolumonas lignolytica sp. nov.

    DOE PAGES

    Billings, Andrew F.; Fortney, Julian L.; Hazen, Terry C.; ...

    2015-11-19

    Tolumonas lignolytica BRL6-1 T sp. nov. is the type strain of T. lignolytica sp. nov., a proposed novel species of the Tolumonas genus. This strain was isolated from tropical rainforest soils based on its ability to utilize lignin as a sole carbon source. Cells of Tolumonas lignolytica BRL6-1 T are mesophilic, non-spore forming, Gram-negative rods that are oxidase and catalase negative. The genome for this isolate was sequenced and returned in seven unique contigs totaling 3.6Mbp, enabling the characterization of several putative pathways for lignin breakdown. Particularly, we found an extracellular peroxidase involved in lignin depolymerization, as well as severalmore » enzymes involved in β-aryl ether bond cleavage, which is the most abundant linkage between lignin monomers. We also found genes for enzymes involved in ferulic acid metabolism, which is a common product of lignin breakdown. Finally, by characterizing pathways and enzymes employed in the bacterial breakdown of lignin in anaerobic environments, this work should assist in the efficient engineering of biofuel production from lignocellulosic material.« less

  4. Inhibition of biofilm formation in Bacillus subtilis by new halogenated furanones.

    PubMed

    Kayumov, Airat R; Khakimullina, Elvina N; Sharafutdinov, Irshad S; Trizna, Elena Y; Latypova, Lilia Z; Thi Lien, Hoang; Margulis, Anna B; Bogachev, Mikhail I; Kurbangalieva, Almira R

    2015-05-01

    Gram-positive bacteria can cause various infections including hospital-acquired infections. While in the biofilm, the resistance of bacteria to both antibiotics and the human immune system is increased causing difficulties in the treatment. Bacillus subtilis, a non-pathogenic Gram-positive bacterium, is widely used as a model organism for studying biofilm formation. Here we investigated the effect of novel synthesized chloro- and bromo-containing 2(5H)-furanones on biofilm formation by B. subtilis. Mucobromic acid (3,4-dibromo-5-hydroxy-2(5H)-furanone) and the two derivatives of mucochloric acid (3,4-dichloro-5-hydroxy-2(5H)-furanone)-F8 and F12-were found to inhibit the growth and to efficiently prevent biofilm formation by B. subtilis. Along with the low production of polysaccharide matrix and repression of the eps operon, strong repression of biofilm-related yqxM also occurred in the presence of furanones. Therefore, our data confirm that furanones affect significantly the regulatory pathway(s) leading to biofilm formation. We propose that the global regulator, Spo0A, is one of the potential putative cellular targets for these compounds.

  5. Identification and structural characterization of serobactins, a suite of lipopeptide siderophores produced by the grass endophyte Herbaspirillum seropedicae.

    PubMed

    Rosconi, Federico; Davyt, Danilo; Martínez, Verónica; Martínez, Marcela; Abin-Carriquiry, Juan Andrés; Zane, Hannah; Butler, Alison; de Souza, Emanuel M; Fabiano, Elena

    2013-03-01

    Herbaspirillum seropedicae Z67 is a diazotrophic endophyte able to colonize the interior of many economically relevant crops such as rice, wheat, corn and sorghum. Structures of siderophores produced by bacterial endophytes have not yet been elucidated. The aim of this work was to identify and characterize the siderophores produced by this bacterium. In a screening for mutants unable to produce siderophores we found a mutant that had a transposon insertion in a non-ribosomal peptide synthase (NRPS) gene coding for a putative siderophore biosynthetic enzyme. The chemical structure of the siderophore was predicted using computational genomic tools. The predicted structure was confirmed by chemical analysis. We found that siderophores produced by H. seropedicae Z67 are a suite of amphiphilic lipopeptides, named serobactin A, B and C, which vary by the length of the fatty acid chain. We also demonstrated the biological activity of serobactins as nutritional iron sources for H. seropedicae. These are the first structurally described siderophores produced by endophytic bacteria. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  6. Substrates Control Multimerization and Activation of the Multi-Domain ATPase Motor of Type VII Secretion

    DOE PAGES

    Rosenberg, Oren S.; Dovala, Dustin; Li, Xueming; ...

    2015-04-09

    We report that Mycobacterium tuberculosis and Staphylococcus aureus secrete virulence factors via type VII protein secretion (T7S), a system that intriguingly requires all of its secretion substrates for activity. To gain insights into T7S function, we used structural approaches to guide studies of the putative translocase EccC, a unique enzyme with three ATPase domains, and its secretion substrate EsxB. The crystal structure of EccC revealed that the ATPase domains are joined by linker/pocket interactions that modulate its enzymatic activity. EsxB binds via its signal sequence to an empty pocket on the C-terminal ATPase domain, which is accompanied by an increasemore » in ATPase activity. Surprisingly, substrate binding does not activate EccC allosterically but, rather, by stimulating its multimerization. Thus, the EsxB substrate is also an integral T7S component, illuminating a mechanism that helps to explain interdependence of substrates, and suggests a model in which binding of substrates modulates their coordinate release from the bacterium.« less

  7. Genomic and Physiological Characterization of the Chromate-Reducing, Aquifer-Derived Firmicute Pelosinus sp. Strain HCF1

    NASA Astrophysics Data System (ADS)

    Beller, H. R.; Han, R.; Karaoz, U.; Lim, H.; Brodie, E. L.

    2012-12-01

    Pelosinus species are fermentative firmicutes that were recently reported to be prominent members of microbial communities at contaminated subsurface sites in multiple locations. Here we report metabolic characteristics and their putative genetic basis in Pelosinus sp. strain HCF1, an isolate that predominated anaerobic, Cr(VI)-reducing columns constructed with Hanford 100H aquifer sediment (constituting 80% of the total bacterial population in the columns). Strain HCF1 ferments lactate to propionate and acetate (a complete fermentation pathway was identified in the genome) and its genome encodes both [NiFe]- and [FeFe]-hydrogenases for H2 cycling. This bacterium has unexpected capabilities and gene content associated with reduction of nitrogen oxides. In this strain, either H2 or lactate can act as a sole electron donor for nitrate, Cr(VI), and Fe(III) reduction. Transcriptional studies demonstrated differential expression of nitrate reductases and hydrogenases. Overall, the unexpected metabolic capabilities and gene content reported here broaden our perspective on what biogeochemical and ecological roles this species might play as a prominent member of microbial communities in subsurface environments.

  8. NREL Researchers Discover How a Bacterium, Clostridium thermocellum,

    Science.gov Websites

    containing the bacterium actually promotes the growth of C. thermocellum, yet its mechanistic details remained a puzzle. This enhanced growth implied the bacterium had the ability to use CO2 and prompted NREL researchers to investigate the phenomena enhancing the bacterium's growth. "It took us by surprise that

  9. [Analysis of different pipe corrosion by ESEM and bacteria identification by API in pilot distribution network].

    PubMed

    Wu, Qing; Zhao, Xinhua; Yu, Qing; Li, Jun

    2008-07-01

    To understand the corrosion of different material water supply pipelines and bacterium in drinking water and biofilms. A pilot distribution network was built and water quality detection was made on popular pipelines of galvanized iron pipe, PPR and ABS plastic pipes by ESEM (environmental scanning electron microscopy). Bacterium in drinking water and biofilms were identified by API Bacteria Identification System 10s and 20E (Biomerieux, France), and pathogenicity of bacterium were estimated. Galvanized zinc pipes were seriously corroded; there were thin layers on inner face of PPR and ABS plastic pipes. 10 bacterium (got from water samples) were identified by API10S, in which 7 bacterium were opportunistic pathogens. 21 bacterium (got from water and biofilms samples) were identified by API20E, in which 5 bacterium were pathogens and 11 bacterium were opportunistic pathogens and 5 bacteria were not reported for their pathogenicities to human beings. The bacterial water quality of drinking water distribution networks were not good. Most bacterium in drinking water and biofilms on the inner face of pipeline of the drinking water distribution network were opportunistic pathogens, it could cause serious water supply accident, if bacteria spread in suitable conditions. In the aspect of pipe material, old pipelines should be changed by new material pipes.

  10. Mining novel effector proteins from the esophageal gland cells of Meloidogyne incognita

    PubMed Central

    Rutter, William B.; Hewezi, Tarek; Abubucker, Sahar; Maier, Tom R.; Huang, Guozhong; Mitreva, Makedonka; Hussey, Richard S.; Baum, Thomas J.

    2014-01-01

    Meloidogyne incognita is one of the most economically damaging plant pathogens in agriculture and horticulture. Identifying and characterizing the effector proteins, which M. incognita secretes into its host plants during infection, is an important step towards finding new ways to manage this pest. In this study we have identified the cDNAs for 18 putative effectors, i.e., proteins that have the potential to facilitate M. incognita parasitism of host plants. These putative effectors are secretory proteins that do not contain transmembrane domains and whose genes are specifically expressed in the secretory gland cells of the nematode, indicating that they are likely secreted from the nematode through its stylet. We have determined that in the plant cells, these putative effectors are likely to localize to the cytoplasm. Furthermore, the transcripts of many of these novel effectors are specifically up-regulated during different stages of the nematode’s life cycle, indicating that they function at specific stages during M. incognita parasitism. The predicted proteins showed little to no homology to known proteins from free-living nematode species, suggesting that they evolved recently to support the parasitic lifestyle. On the other hand, several of the effectors are part of gene families within the M. incognita genome as well as that of Meloidogyne hapla, which points to an important role that these putative effectors are playing in both parasites. With the discovery of these putative effectors we have increased our knowledge of the effector repertoire utilized by root-knot nematodes to infect, feed, and reproduce on their host plants. Future studies investigating the roles these proteins play in planta will help mitigate the effects of this damaging pest. PMID:24875667

  11. Mining novel effector proteins from the esophageal gland cells of Meloidogyne incognita.

    PubMed

    Rutter, William B; Hewezi, Tarek; Abubucker, Sahar; Maier, Tom R; Huang, Guozhong; Mitreva, Makedonka; Hussey, Richard S; Baum, Thomas J

    2014-09-01

    Meloidogyne incognita is one of the most economically damaging plant pathogens in agriculture and horticulture. Identifying and characterizing the effector proteins which M. incognita secretes into its host plants during infection is an important step toward finding new ways to manage this pest. In this study, we have identified the cDNAs for 18 putative effectors (i.e., proteins that have the potential to facilitate M. incognita parasitism of host plants). These putative effectors are secretory proteins that do not contain transmembrane domains and whose genes are specifically expressed in the secretory gland cells of the nematode, indicating that they are likely secreted from the nematode through its stylet. We have determined that, in the plant cells, these putative effectors are likely to localize to the cytoplasm. Furthermore, the transcripts of many of these novel effectors are specifically upregulated during different stages of the nematode's life cycle, indicating that they function at specific stages during M. incognita parasitism. The predicted proteins showed little to no homology to known proteins from free-living nematode species, suggesting that they evolved recently to support the parasitic lifestyle. On the other hand, several of the effectors are part of gene families within the M. incognita genome as well as that of M. hapla, which points to an important role that these putative effectors are playing in both parasites. With the discovery of these putative effectors, we have increased our knowledge of the effector repertoire utilized by root-knot nematodes to infect, feed on, and reproduce on their host plants. Future studies investigating the roles that these proteins play in planta will help mitigate the effects of this damaging pest.

  12. Effects of grapevine sap phenolics on the in vitro growth of Xylella fastidiosa

    USDA-ARS?s Scientific Manuscript database

    Pierce’s disease, caused by the bacterium Xylella fastidiosa, poses a serious threat to grape production in the United States. Previous work indicated that grapevines infected with Xylella fastidiosa respond by producing greater levels of phenolic compounds in xylem sap and tissues, presumably to l...

  13. Potentially Novel Ehrlichia Species in Horses, Nicaragua

    PubMed Central

    O’Nion, Victoria L.; Montilla, Hernan J.; Qurollo, Barbara A.; Maggi, Ricardo G.; Hegarty, Barbara C.; Tornquist, Susan J.

    2015-01-01

    Ehrlichia sp. DNA was amplified from 4 Ehrlichia-seroreactive horses from Mérida, Nicaragua. Sequencing of 16S rDNA, sodB, and groEL genes indicated that the bacterium is most likely a novel Ehrlichia species. The tick vector and the potential for canine and human infection remain unknown. PMID:25625228

  14. Glucocorticoid Regulation of the Vitamin D Receptor

    PubMed Central

    Hidalgo, Alejandro A.; Trump, Donald L.; Johnson, Candace S.

    2010-01-01

    Many studies indicate calcitriol has potent anti-tumor activity in different types of cancers. However, high levels of vitamin D can produce hypercalcemia in some patients. Glucocorticoids are used to ameliorate hypercalcemia and to enhance calcitriol anti-tumor activity. Calcitriol in combination with the glucocorticoid dexamethasone (Dex) increased vitamin D receptor (VDR) protein levels and ligand binding in squamous cell carcinoma VII (SCC). In this study we found that both calcitriol and Dex induce VDR- and glucocorticoid receptor (GR)-mediated transcription respectively, indicating both hormone receptors are active in SCC. Pre-treatment with Dex increases VDR-mediated transcription at the human CYP24A1 promoter. Whereas, pre-treatment with other steroid hormones, including dihydrotestosterone and R1881, has no effect on VDR-mediated transcription. Real-time PCR indicates treatment with Dex increases Vdr transcripts in a time-dependent manner, suggesting Dex may directly regulate expression of Vdr. Numerous putative glucocorticoid response elements (GREs) were found in the Vdr gene. Chromatin immunoprecipitation (ChIP) assay demonstrated GR binding at several putative GREs located within the mouse Vdr gene. However, none of the putative GREs studied increase GR-mediated transcription in luciferase reporter assays. In an attempt to identify the response element responsible for Vdr transcript regulation, future studies will continue to analyze newly identified GREs more distal from the Vdr gene promoter. PMID:20398752

  15. Pumilacidin-Like Lipopeptides Derived from Marine Bacterium Bacillus sp. Strain 176 Suppress the Motility of Vibrio alginolyticus

    PubMed Central

    Xiu, Pengyuan; Liu, Rui

    2017-01-01

    ABSTRACT Bacterial motility is a crucial factor during the invasion and colonization processes of pathogens, which makes it an attractive therapeutic drug target. Here, we isolated a marine bacterium (Vibrio alginolyticus strain 178) from a seamount in the tropical West Pacific that exhibits vigorous motility on agar plates and severe pathogenicity to zebrafish. We found that V. alginolyticus 178 motility was significantly suppressed by another marine bacterium, Bacillus sp. strain 176, isolated from the same niche. We isolated, purified, and characterized two different cyclic lipopeptides (CLPs) from Bacillus sp. 176 using high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy. The two related CLPs have a pumilacidin-like structure and were both effective inhibitors of V. alginolyticus 178 motility. The CLPs differ by only one methylene group in their fatty acid chains. In addition to motility suppression, the CLPs also induced cell aggregation in the medium and reduced adherence of V. alginolyticus 178 to glass substrates. Notably, upon CLP treatment, the expression levels of two V. alginolyticus flagellar assembly genes (flgA and flgP) dropped dramatically. Moreover, the CLPs inhibited biofilm formation in several other strains of pathogenic bacteria without inducing cell death. This study indicates that CLPs from Bacillus sp. 176 show promise as antimicrobial lead compounds targeting bacterial motility and biofilm formation with a low potential for eliciting antibiotic resistance. IMPORTANCE Pathogenic bacteria often require motility to establish infections and subsequently spread within host organisms. Thus, motility is an attractive therapeutic target for the development of novel antibiotics. We found that cyclic lipopeptides (CLPs) produced by marine bacterium Bacillus sp. strain 176 dramatically suppress the motility of the pathogenic bacterium Vibrio alginolyticus strain 178, reduce biofilm formation, and promote cellular aggregation without inducing cell death. These findings suggest that CLPs hold great promise as potential drug candidates targeting bacterial motility and biofilm formation with a low overall potential for triggering antibiotic resistance. PMID:28389538

  16. Portrait of a viral infection: The infection cycle of Vibrio vulnificus phage VvAW1 visualized through plaque assay, electron microscopy, and proteomics

    NASA Astrophysics Data System (ADS)

    Clah, K. E. Y.; Nigro, O. D.; Miranda, J.; Schvarcz, C.; Culley, A.; Saito, M. A.; Steward, G.

    2016-02-01

    The bacterium Vibrio vulnificus is an opportunistic human pathogen that thrives in warm brackish waters. Viral infection is one of several mechanisms influencing the population dynamics of this bacterium in the natural environment. V. vulnificus-specific viruses have been isolated; however, the details of their infection cycle have not been reported. As a result, our current understanding of the interaction between the bacterium and its viruses in the environment is limited. To better understand the infection process, a strain of V. vulnificus (V93D1V) and its bacteriophage, Vibrio phage VvAW1, were isolated from the estuarine waters of the Ala Wai Canal, HI. A time-series infection experiment was conducted with the virus-host pair in which samples were collected every ten minutes for eighty minutes post-infection for analysis by plaque assay, electron microscopy, and proteomics. Using electron microscopy, visibly infected bacteria were observed forty minutes after the introduction of the virus, signaling the end of the eclipse period. The peak of infection occurred at seventy minutes with an average viral load of 78 viruses per bacterium. The percentage of visibly infected bacteria reached a maximum just prior to a rise in free viruses in the culture, indicating the end of the latent period. The percentage of infected cells that lysed was low and there was little effect on the bacterial population growth rate. Analysis of the proteome revealed that protein expression patterns, in particular capsid and other structural proteins, closely follow the timing of the observed infection cycle. Together, these analyses provided the first detailed view of a viral infection in a highly lethal aquatic bacterium. The apparent temperate nature of this virus suggests that it can be a source of mortality to V. vulnificus, but has evolved to avoid total destruction of its host by complete lysis, a characteristic that helps ensure its replication in subsequent generations.

  17. Pumilacidin-Like Lipopeptides Derived from Marine Bacterium Bacillus sp. Strain 176 Suppress the Motility of Vibrio alginolyticus.

    PubMed

    Xiu, Pengyuan; Liu, Rui; Zhang, Dechao; Sun, Chaomin

    2017-06-15

    Bacterial motility is a crucial factor during the invasion and colonization processes of pathogens, which makes it an attractive therapeutic drug target. Here, we isolated a marine bacterium ( Vibrio alginolyticus strain 178) from a seamount in the tropical West Pacific that exhibits vigorous motility on agar plates and severe pathogenicity to zebrafish. We found that V. alginolyticus 178 motility was significantly suppressed by another marine bacterium, Bacillus sp. strain 176, isolated from the same niche. We isolated, purified, and characterized two different cyclic lipopeptides (CLPs) from Bacillus sp. 176 using high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy. The two related CLPs have a pumilacidin-like structure and were both effective inhibitors of V. alginolyticus 178 motility. The CLPs differ by only one methylene group in their fatty acid chains. In addition to motility suppression, the CLPs also induced cell aggregation in the medium and reduced adherence of V. alginolyticus 178 to glass substrates. Notably, upon CLP treatment, the expression levels of two V. alginolyticus flagellar assembly genes ( flgA and flgP ) dropped dramatically. Moreover, the CLPs inhibited biofilm formation in several other strains of pathogenic bacteria without inducing cell death. This study indicates that CLPs from Bacillus sp. 176 show promise as antimicrobial lead compounds targeting bacterial motility and biofilm formation with a low potential for eliciting antibiotic resistance. IMPORTANCE Pathogenic bacteria often require motility to establish infections and subsequently spread within host organisms. Thus, motility is an attractive therapeutic target for the development of novel antibiotics. We found that cyclic lipopeptides (CLPs) produced by marine bacterium Bacillus sp. strain 176 dramatically suppress the motility of the pathogenic bacterium Vibrio alginolyticus strain 178, reduce biofilm formation, and promote cellular aggregation without inducing cell death. These findings suggest that CLPs hold great promise as potential drug candidates targeting bacterial motility and biofilm formation with a low overall potential for triggering antibiotic resistance. Copyright © 2017 American Society for Microbiology.

  18. Biofilm Formation by a Metabolically Versatile Bacterium

    DTIC Science & Technology

    2009-03-19

    ABSTRACT Rhodopseudomonas palustris is a photosynthetic bacterium that has good potential as a biocatalyst for the production ofhydrogen gas, a biofuel...Biofilm formation by a metabolically versatile bacterium: final report Report Title ABSTRACT Rhodopseudomonas palustris is a photosynthetic bacterium...agricultural waste. We characterized five new Rhodopseudomonas genome sequences and isolated and described R. palustris mutant strains that produce

  19. Adhesion to the host cell surface is sufficient to mediate Listeria monocytogenes entry into epithelial cells

    PubMed Central

    Ortega, Fabian E.; Rengarajan, Michelle; Chavez, Natalie; Radhakrishnan, Prathima; Gloerich, Martijn; Bianchini, Julie; Siemers, Kathleen; Luckett, William S.; Lauer, Peter; Nelson, W. James; Theriot, Julie A.

    2017-01-01

    The intestinal epithelium is the first physiological barrier breached by the Gram-positive facultative pathogen Listeria monocytogenes during an in vivo infection. Listeria monocytogenes binds to the epithelial host cell receptor E-cadherin, which mediates a physical link between the bacterium and filamentous actin (F-actin). However, the importance of anchoring the bacterium to F-actin through E-cadherin for bacterial invasion has not been tested directly in epithelial cells. Here we demonstrate that depleting αE-catenin, which indirectly links E-cadherin to F-actin, did not decrease L. monocytogenes invasion of epithelial cells in tissue culture. Instead, invasion increased due to increased bacterial adhesion to epithelial monolayers with compromised cell–cell junctions. Furthermore, expression of a mutant E-cadherin lacking the intracellular domain was sufficient for efficient L. monocytogenes invasion of epithelial cells. Importantly, direct biotin-mediated binding of bacteria to surface lipids in the plasma membrane of host epithelial cells was sufficient for uptake. Our results indicate that the only requirement for L. monocytogenes invasion of epithelial cells is adhesion to the host cell surface, and that E-cadherin–mediated coupling of the bacterium to F-actin is not required. PMID:28877987

  20. Isolation of a thermophilic bacterium capable of low-molecular-weight polyethylene degradation.

    PubMed

    Jeon, Hyun Jeong; Kim, Mal Nam

    2013-02-01

    A thermophilic bacterium capable of low-molecular-weight polyethylene (LMWPE) degradation was isolated from a compost sample, and was identified as Chelatococcus sp. E1, through sequencing of the 16S rRNA gene. LMWPE was prepared by thermal degradation of commercial PE in a strict nitrogen atmosphere. LMWPE with a weight-average-molecular-weight (Mw) in the range of 1,700-23,700 was noticeably mineralized into CO(2) by the bacterium. The biodegradability of LMWPE decreased as the Mw increased. The low molecular weight fraction of LMWPE decreased significantly as a result of the degradation process, and thereby both the number-average-molecular-weight and Mw increased after biodegradation. The polydispersity of LMWPE was either narrowed or widened, depending on the initial Mw of LMWPE, due to the preferential elimination of the low molecular weight fraction, in comparison to the high molecular weight portion. LMWPE free from an extremely low molecular weight fraction was also mineralized by the strain at a remarkable rate, and FTIR peaks assignable to C-O stretching appeared as a result of microbial action. The FTIR peaks corresponding to alkenes also became more intense, indicating that dehydrogenations occurred concomitantly with microbial induced oxidation.

  1. Effect of UV radiation on a thermostable superoxide dismutase purified from a thermophilic bacterium isolated from a sterilization drying oven.

    PubMed

    Monsalves, María T; Amenábar, Maximiliano J; Ollivet-Besson, Gabriela P; Blamey, Jenny M

    2013-07-01

    A thermostable superoxide dismutase from a thermophilic bacterium, called Geobacillus wiegeli (GWE1), isolated from the interior of a sterilization drying oven, was purified by anion-exchange and molecular size-exclusion liquid chromatography. On the basis of SDS-PAGE, the purified enzyme was found to be homogeneous and showed an estimated subunit molecular mass of 23.9 kDa. The holoenzyme is a homotetramer of 97.3 kDa. Superoxide dismutase exhibited maximal activity at pH 8.5 and at temperature around 60 ºC. The enzyme was thermostable maintaining 50% of its activity even after 4.5 hours incubation at 60 ºC and more than 70% of its activity after 30 min at 80 ºC. When the microorganism was irradiated with UVA, an increase in the specific activity of superoxide dismutase was observed which was correlated with decreasing levels of anion superoxide, indicating the direct involvement of this enzyme in the capture of reactive oxygen species. This study reports the effects of UV radiation on a superoxide dismutase from a thermophilic bacterium isolated from an anthropogenic environment.

  2. Removal of arsenic from groundwater by using a native isolated arsenite-oxidizing bacterium.

    PubMed

    Kao, An-Chieh; Chu, Yu-Ju; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2013-12-01

    Arsenic (As) contamination of groundwater is a significant public health concern. In this study, the removal of arsenic from groundwater using biological processes was investigated. The efficiency of arsenite (As(III)) bacterial oxidation and subsequent arsenate (As(V)) removal from contaminated groundwater using bacterial biomass was examined. A novel As(III)-oxidizing bacterium (As7325) was isolated from the aquifer in the blackfoot disease (BFD) endemic area in Taiwan. As7325 oxidized 2300μg/l As(III) using in situ As(III)-contaminated groundwater under aerobic conditions within 1d. After the oxidation of As(III) to As(V), As(V) removal was further examined using As7325 cell pellets. The results showed that As(V) could be adsorbed efficiently by lyophilized As7325 cell pellets, the efficiency of which was related to lyophilized cell pellet concentration. Our study conducted the examination of an alternative technology for the removal of As(III) and As(V) from groundwater, indicating that the oxidation of As(III)-contaminated groundwater by native isolated bacterium, followed by As(V) removal using bacterial biomass is a potentially effective technology for the treatment of As(III)-contaminated groundwater. © 2013.

  3. Phylogenetic and Kinetic Characterization of a Suite of Dehydrogenases from a Newly Isolated Bacterium, Strain SG61-1L, That Catalyze the Turnover of Guaiacylglycerol-β-Guaiacyl Ether Stereoisomers

    PubMed Central

    Palamuru, Shannu; Dellas, Nikki; Pearce, Stephen L.; Warden, Andrew C.; Oakeshott, John G.

    2015-01-01

    Lignin is a complex aromatic polymer found in plant cell walls that makes up 15 to 40% of plant biomass. The degradation of lignin substructures by bacteria is of emerging interest because it could provide renewable alternative feedstocks and intermediates for chemical manufacturing industries. We have isolated a bacterium, strain SG61-1L, that rapidly degrades all of the stereoisomers of one lignin substructure, guaiacylglycerol-β-guaiacyl ether (GGE), which contains a key β-O-4 linkage found in most intermonomer linkages in lignin. In an effort to understand the rapid degradation of GGE by this bacterium, we heterologously expressed and kinetically characterized a suite of dehydrogenase candidates for the first known step of GGE degradation. We identified a clade of active GGE dehydrogenases and also several other dehydrogenases outside this clade that were all able to oxidize GGE. Several candidates exhibited stereoselectivity toward the GGE stereoisomers, while others had higher levels of catalytic performance than previously described GGE dehydrogenases for all four stereoisomers, indicating a variety of potential applications for these enzymes in the manufacture of lignin-derived commodities. PMID:26386069

  4. Seroprevalence of Rhodococcus equi in horses in Israel.

    PubMed

    Tirosh-Levy, Sharon; Gürbilek, Sevil E; Tel, Osman Y; Keskin, Oktay; Steinman, Amir

    2017-06-26

    Rhodococcus equi is a common cause of pneumonia in foals and has extensive clinical, economic and possibly zoonotic consequences. This bacterium survives well in the environment and may be considered as normal flora of adult horses. Certain strains of this bacterium are extremely virulent in foals, and early identification and intervention is crucial for prognosis. Rhodococcus equi is endemic in many parts of the world and occasionally isolated in Israel. This study was designed to evaluate R. equi seroprevalence in adult horses in Israel to indirectly indicate the potential level of exposure of susceptible foals. Sera were collected from 144 horses during spring 2011 and from 293 horses during fall 2014, and the presence of antibodies against virulent R. equi was detected by enzyme-linked immunosorbent assay. Equine seroprevalence of R. equi was found to be 7.6% in 2011 and 5.1% in 2014. Only one farm had seropositive horses in 2011, whereas several farms had seropositive horses in 2014. No significant risk factors for seropositivity were found. Rhodococcus equi appears to be endemic in Israel. This is the first survey of R. equi in Israel that provides information on the epidemiology of this important bacterium.

  5. Characterization of Putative Iron Responsive Genes as Species-Specific Indicators of Iron Stress in Thalassiosiroid Diatoms

    PubMed Central

    Whitney, LeAnn P.; Lins, Jeremy J.; Hughes, Margaret P.; Wells, Mark L.; Chappell, P. Dreux; Jenkins, Bethany D.

    2011-01-01

    Iron (Fe) availability restricts diatom growth and primary production in large areas of the oceans. It is a challenge to assess the bulk Fe nutritional health of natural diatom populations, since species can differ in their physiological and molecular responses to Fe limitation. We assayed expression of selected genes in diatoms from the Thalassiosira genus to assess their potential utility as species-specific molecular markers to indicate Fe status in natural diatom assemblages. In this study, we compared the expression of the photosynthetic genes encoding ferredoxin (a Fe-requiring protein) and flavodoxin (a Fe-free protein) in culture experiments with Fe replete and Fe stressed Thalassiosira pseudonana (CCMP 1335) isolated from coastal waters and Thalassiosira weissflogii (CCMP 1010) isolated from the open ocean. In T. pseudonana, expression of flavodoxin and ferredoxin genes were not sensitive to Fe status but were found to display diel periodicities. In T. weissflogii, expression of flavodoxin was highly responsive to iron levels and was only detectable when cultures were Fe limited. Flavodoxin genes have been duplicated in most diatoms with available genome data and we show that T. pseudonana has lost its copy related to the Fe-responsive copy in T. weissflogii. We also examined the expression of genes for a putative high affinity, copper (Cu)-dependent Fe uptake system in T. pseudonana. Our results indicate that genes encoding putative Cu transporters, a multi-Cu oxidase, and a Fe reductase are not linked to Fe status. The expression of a second putative Fe reductase increased in Fe limited cultures, but this gene was also highly expressed in Fe replete cultures, indicating it may not be a useful marker in the field. Our findings highlight that Fe metabolism may differ among diatoms even within a genus and show a need to validate responses in different species as part of the development pipeline for genetic markers of Fe status in field populations. PMID:22275908

  6. Identification and functional analysis of two Golgi-localized UDP-galactofuranose transporters with overlapping functions in Aspergillus niger.

    PubMed

    Park, Joohae; Tefsen, Boris; Heemskerk, Marc J; Lagendijk, Ellen L; van den Hondel, Cees A M J J; van Die, Irma; Ram, Arthur F J

    2015-11-02

    Galactofuranose (Galf)-containing glycoconjugates are present in numerous microbes, including filamentous fungi where they are important for morphology, virulence and maintaining cell wall integrity. The incorporation of Galf-residues into galactomannan, galactomannoproteins and glycolipids is carried out by Golgi-localized Galf transferases. The nucleotide sugar donor used by these transferases (UDP-Galf) is produced in the cytoplasm and has to be transported to the lumen of the Golgi by a dedicated nucleotide sugar transporter. Based on homology with recently identified UDP-Galf-transporters in A. fumigatus and A. nidulans, two putative UDP-Galf-transporters in A. niger were found. Their function and localization was determined by gene deletions and GFP-tagging studies, respectively. The two putative UDP-Galf-transporters in A. niger are homologous to each other and are predicted to contain eleven transmembrane domains (UgtA) or ten transmembrane domains (UgtB) due to a reduced length of the C-terminal part of the UgtB protein. The presence of two putative UDP-Galf-transporters in the genome was not unique for A. niger. From the twenty Aspergillus species analysed, nine species contained two additional putative UDP-Galf-transporters. Three of the nine species were outside the Aspergillus section nigri, indication an early duplication of UDP-Galf-transporters and subsequent loss of the UgtB copy in several aspergilli. Deletion analysis of the single and double mutants in A. niger indicated that the two putative UDP-Galf-transporters (named UgtA and UgtB) have a redundant function in UDP-Galf-transport as only the double mutant displayed a Galf-negative phenotype. The Galf-negative phenotype of the double mutant could be complemented by expressing either CFP-UgtA or CFP-UgtB fusion proteins from their endogenous promoters, indicating that both CFP-tagged proteins are functional. Both Ugt proteins co-localize with each other as well as with the GDP-mannose nucleotide transporter, as was demonstrated by fluorescence microscopy, thereby confirming their predicted localization in the Golgi. A. niger contains two genes encoding UDP-Galf-transporters. Deletion and localization studies indicate that UgtA and UgtB have redundant functions in the biosynthesis of Galf-containing glycoconjugates.

  7. Biotechnology

    NASA Image and Video Library

    2003-01-22

    Dr. Cheryl Nickerson of Tulane University is studying the effects of simulated low-g on a well-known pathogen, Salmonella typhimurium, a bacterium that causes two to four million cases of gastrointestinal illness in the United States each year. While most healthy people recover readily, S. typhimurium can kill people with weakened immune systems. Thus, a simple case of food poisoning could disrupt a space mission. Using the NASA rotating-wall bioreactor, Nickerson cultured S. typhimurium in modeled microgravity. Mice infected with the bacterium died an average of three days faster than the control mice, indicating that S. typhimurium's virulence was enhanced by the bioreactor. Earlier research showed that 3 percent of the genes were altered by exposure to the bioreactor. Nickerson's work earned her a 2001 Presidential Early Career Award for Scientists and Engineers.

  8. Biotechnology

    NASA Image and Video Library

    2003-01-22

    Dr. Cheryl Nickerson (right) of Tulane University is studying the effects of simulated low-g on a well-known pathogen, Salmonella typhimurium, a bacterium that causes two to four million cases of gastrointestinal illness in the United States each year. While most healthy people recover readily, S. typhimurium can kill people with weakened immune systems. Thus, a simple case of food poisoning could disrupt a space mission. Using the NASA rotating-wall bioreactor, Nickerson cultured S. typhimurium in modeled microgravity. Mice infected with the bacterium died an average of three days faster than the control mice, indicating that S. typhimurium's virulence was enhanced by the bioreactor. Earlier research showed that 3 percent of the genes were altered by exposure to the bioreactor. Nickerson's work earned her a 2001 Presidential Early Career Award for Scientists and Engineers.

  9. Vitellogenin from the Silkworm, Bombyx mori: An Effective Anti-Bacterial Agent

    PubMed Central

    Kumar, Manish; Prasad, Tulika; Kannan, Mani; König, Simone

    2013-01-01

    Silkworm, Bombyx mori, vitellogenin (Vg) was isolated from perivisceral fat body of day 3 of pupa. Both Vg subunits were co-purified as verified by mass spectrometry and immunoblot. Purified Vg responded to specific tests for major posttranslational modifications on native gels indicating its nature as lipo-glyco-phosphoprotein. The Vg fraction had strong antibacterial activity against Gram negative bacterium Escherichia coli and Gram positive bacterium Bacillus subtilis. Microscopic images showed binding of Vg to bacterial cells and their destruction. When infected silkworm larvae were treated with purified Vg they survived the full life cycle in contrast to untreated animals. This result showed that Vg has the ability to inhibit the proliferation of bacteria in the silkworm fluid system without disturbing the regular metabolism of the host. PMID:24058454

  10. Isotope effects associated with the anaerobic oxidation of sulfite and thiosulfate by the photosynthetic bacterium, Chromatium vinosum

    NASA Technical Reports Server (NTRS)

    Fry, B.; Gest, H.; Hayes, J. M.

    1985-01-01

    The purple photosynthetic bacterium Chromatium vinosum, strain D, catalyzes several oxidations of reduced sulfur compounds under anaerobic conditions in the light: e.g., sulfide --> sulfur --> sulfate, sulfite --> sulfate, and thiosulfate --> sulfur + sulfate. Here it is shown that no sulfur isotope effect is associated with the last of these processes; isotopic compositions of the sulfur and sulfate produced can differ, however, if the sulfane and sulfonate positions within the thiosulfate have different isotopic compositions. In the second process, an observed change from an inverse to a normal isotope effect during oxidation of sulfite may indicate the operation of 2 enzymatic pathways. In contrast to heterotrophic anaerobic reduction of oxidized sulfur compounds, anaerobic oxidations of inorganic sulfur compounds by photosynthetic bacteria are characterized by relatively small isotope effects.

  11. Quantification of the Flavonoid-Degrading Bacterium Eubacterium ramulus in Human Fecal Samples with a Species-Specific Oligonucleotide Hybridization Probe

    PubMed Central

    Simmering, Rainer; Kleessen, Brigitta; Blaut, Michael

    1999-01-01

    To investigate the occurrence of the flavonoid-degrading bacterium Eubacterium ramulus in the human intestinal tract, an oligonucleotide probe designated S-S-E.ram-0997-a-A-18 was designed and validated, with over 90 bacterial strains representing the dominant described human fecal flora. Application of S-S-E.ram-0997-a-A-18 to fecal samples from 20 subjects indicated the presence of E. ramulus in each individual tested in numbers from 4.4 × 107 to 2.0 × 109 cells/g of fecal dry mass. Six fecal E. ramulus isolates were recognized by S-S-E.ram-0997-a-A-18 but exhibited different band patterns when analyzed by randomly amplified polymorphic DNA. PMID:10427069

  12. Identification of an anaerobic bacterium which reduces perchlorate and chlorate as Wolinella succinogenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, W.; Attaway, H.

    1995-12-31

    Perchlorate and chlorate salts are widely used by the chemical, aerospace and defense industries as oxidizers in propellant, explosives and pyrotechnics. The authors have isolated a anaerobic bacterium which is capable of the dissimilatory reduction of both perchlorate and chlorate for energy and growth. Strain HAP-1 is a gram negative, thin rod, non-sporeforming, highly motile strict anaerobe. Antibiotic resistance profiles, utilization of carbon substrates and electron acceptors demonstrated similar physiological characteristics to Wolinella succinogenes. Pairwise comparisons of 16S RNA sequences showed only a 0.75% divergence between strain HAP-1 and W. succinogenes. Physiological, morphological and 16S RRNA sequence data indicate strainmore » HAP-1 is a subspecies of W. succinogenes that can utilize perchlorate and chlorate as terminal electron acceptors.« less

  13. Dr. Cheryl Nickerson studies Salmonella Typhimurium

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Dr. Cheryl Nickerson of Tulane University is studying the effects of simulated low-g on a well-known pathogen, Salmonella typhimurium, a bacterium that causes two to four million cases of gastrointestinal illness in the United States each year. While most healthy people recover readily, S. typhimurium can kill people with weakened immune systems. Thus, a simple case of food poisoning could disrupt a space mission. Using the NASA rotating-wall bioreactor, Nickerson cultured S. typhimurium in modeled microgravity. Mice infected with the bacterium died an average of three days faster than the control mice, indicating that S. typhimurium's virulence was enhanced by the bioreactor. Earlier research showed that 3 percent of the genes were altered by exposure to the bioreactor. Nickerson's work earned her a 2001 Presidential Early Career Award for Scientists and Engineers.

  14. The domestication of the probiotic bacterium Lactobacillus acidophilus

    PubMed Central

    Bull, Matthew J.; Jolley, Keith A.; Bray, James E.; Aerts, Maarten; Vandamme, Peter; Maiden, Martin C. J.; Marchesi, Julian R.; Mahenthiralingam, Eshwar

    2014-01-01

    Lactobacillus acidophilus is a Gram-positive lactic acid bacterium that has had widespread historical use in the dairy industry and more recently as a probiotic. Although L. acidophilus has been designated as safe for human consumption, increasing commercial regulation and clinical demands for probiotic validation has resulted in a need to understand its genetic diversity. By drawing on large, well-characterised collections of lactic acid bacteria, we examined L. acidophilus isolates spanning 92 years and including multiple strains in current commercial use. Analysis of the whole genome sequence data set (34 isolate genomes) demonstrated L. acidophilus was a low diversity, monophyletic species with commercial isolates essentially identical at the sequence level. Our results indicate that commercial use has domesticated L. acidophilus with genetically stable, invariant strains being consumed globally by the human population. PMID:25425319

  15. The domestication of the probiotic bacterium Lactobacillus acidophilus.

    PubMed

    Bull, Matthew J; Jolley, Keith A; Bray, James E; Aerts, Maarten; Vandamme, Peter; Maiden, Martin C J; Marchesi, Julian R; Mahenthiralingam, Eshwar

    2014-11-26

    Lactobacillus acidophilus is a Gram-positive lactic acid bacterium that has had widespread historical use in the dairy industry and more recently as a probiotic. Although L. acidophilus has been designated as safe for human consumption, increasing commercial regulation and clinical demands for probiotic validation has resulted in a need to understand its genetic diversity. By drawing on large, well-characterised collections of lactic acid bacteria, we examined L. acidophilus isolates spanning 92 years and including multiple strains in current commercial use. Analysis of the whole genome sequence data set (34 isolate genomes) demonstrated L. acidophilus was a low diversity, monophyletic species with commercial isolates essentially identical at the sequence level. Our results indicate that commercial use has domesticated L. acidophilus with genetically stable, invariant strains being consumed globally by the human population.

  16. Vitellogenin from the silkworm, Bombyx mori: an effective anti-bacterial agent.

    PubMed

    Singh, Nitin Kumar; Pakkianathan, Britto Cathrin; Kumar, Manish; Prasad, Tulika; Kannan, Mani; König, Simone; Krishnan, Muthukalingan

    2013-01-01

    Silkworm, Bombyx mori, vitellogenin (Vg) was isolated from perivisceral fat body of day 3 of pupa. Both Vg subunits were co-purified as verified by mass spectrometry and immunoblot. Purified Vg responded to specific tests for major posttranslational modifications on native gels indicating its nature as lipo-glyco-phosphoprotein. The Vg fraction had strong antibacterial activity against Gram negative bacterium Escherichia coli and Gram positive bacterium Bacillus subtilis. Microscopic images showed binding of Vg to bacterial cells and their destruction. When infected silkworm larvae were treated with purified Vg they survived the full life cycle in contrast to untreated animals. This result showed that Vg has the ability to inhibit the proliferation of bacteria in the silkworm fluid system without disturbing the regular metabolism of the host.

  17. Influence of photoperiod duration and phloem disruption through scoring on growth, disease symptoms and bacterial titer in citrus graft-inoculated with Candidatus Liberibacter asiaticus

    USDA-ARS?s Scientific Manuscript database

    Plants inoculated with the huanglongbing (HLB)-associated bacterium, Candidatus Liberibacter asiaticus (CLas) are typically monitored for 8-10 months to identify differences in susceptibility between genotypes. A previous report indicated that continuous light accelerated development of HLB symptoms...

  18. 40 CFR 142.304 - For which of the regulatory requirements is a small system variance available?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... subpart for a national primary drinking water regulation for a microbial contaminant (including a bacterium, virus, or other organism) or an indicator or treatment technique for a microbial contaminant. (b... requirement specifying a maximum contaminant level or treatment technique for a contaminant with respect to...

  19. Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene-Trap Insertional Mutagenesis.

    PubMed

    Cheng, Feixiong; Murray, James L; Zhao, Junfei; Sheng, Jinsong; Zhao, Zhongming; Rubin, Donald H

    2016-09-01

    Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap) host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase). Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B) identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline) that may be potential for antiviral indication (e.g. anti-Ebola). In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics.

  20. Involvement of polyphosphate kinase in virulence and stress tolerance of uropathogenic Proteus mirabilis.

    PubMed

    Peng, Liang; Jiang, Qiao; Pan, Jia-Yun; Deng, Cong; Yu, Jing-Yi; Wu, Xiao-Man; Huang, Sheng-He; Deng, Xiao-Yan

    2016-04-01

    Proteus mirabilis (P. mirabilis), a gram-negative enteric bacterium, frequently causes urinary tract infections. Many virulence factors of uropathogenic P. mirabilis have been identified, including urease, flagella, hemolysin and fimbriae. However, the functions of polyphosphate kinase (PPK), which are related to the pathogenicity of many bacteria, remain entirely unknown in P. mirabilis. In this study, a ppk gene encoding the PPK insertional mutant in P. mirabilis strain HI4320 was constructed, and its biological functions were examined. The results of survival studies demonstrated that the ppk mutant was deficient in resistance to oxidative, hyperosmotic and heat stress. The swarming and biofilm formation abilities of P. mirabilis were also attenuated after the ppk interruption. In vitro and in vivo experiments suggested that ppk was required for P. mirabilis to invade the bladder. The negative phenotypes of the ppk mutant could be restored by ppk gene complementation. Furthermore, two-dimensional gel electrophoresis and liquid chromatography-mass spectrometry were used to analyze the proteomes of the wild-type strain and the ppk mutant. Compared with the wild-type strain, seven proteins including TonB-dependent receptor, universal stress protein G, major mannose-resistant/Proteus-like fimbrial protein (MR/P fimbriae), heat shock protein, flagellar capping protein, putative membrane protein and multidrug efflux protein were down-regulated, and four proteins including exported peptidase, repressor protein for FtsI, FKBP-type peptidyl-prolyl cis-trans isomerase and phosphotransferase were up-regulated in the ppk mutant. As a whole, these results indicate that PPK is an important regulator and plays a crucial role in stress tolerance and virulence in uropathogenic P. mirabilis.

  1. Sustainable growth of Dehalococcoides mccartyi 195 by corrinoid salvaging and remodeling in defined lactate-fermenting consortia.

    PubMed

    Men, Yujie; Seth, Erica C; Yi, Shan; Allen, Robert H; Taga, Michiko E; Alvarez-Cohen, Lisa

    2014-04-01

    Corrinoids are essential cofactors of reductive dehalogenases in Dehalococcoides mccartyi, an important bacterium in bioremediation, yet sequenced D. mccartyi strains do not possess the complete pathway for de novo corrinoid biosynthesis. Pelosinus sp. and Desulfovibrio sp. have been detected in dechlorinating communities enriched from contaminated groundwater without exogenous cobalamin corrinoid. To investigate the corrinoid-related interactions among key members of these communities, we constructed consortia by growing D. mccartyi strain 195 (Dhc195) in cobalamin-free, trichloroethene (TCE)- and lactate-amended medium in cocultures with Desulfovibrio vulgaris Hildenborough (DvH) or Pelosinus fermentans R7 (PfR7) and with both in tricultures. Only the triculture exhibited sustainable dechlorination and cell growth when a physiological level of 5,6-dimethylbenzimidazole (DMB), the lower ligand of cobalamin, was provided. In the triculture, DvH provided hydrogen while PfR7 provided corrinoids to Dhc195, and the initiation of dechlorination and Dhc195 cell growth was highly dependent on the growth of PfR7. Corrinoid analysis indicated that Dhc195 imported and remodeled the phenolic corrinoids produced by PfR7 into cobalamin in the presence of DMB. Transcriptomic analyses of Dhc195 showed the induction of the CbiZ-dependent corrinoid-remodeling pathway and BtuFCD corrinoid ABC transporter genes during corrinoid salvaging and remodeling. In contrast, another operon annotated to encode a putative iron/cobalamin ABC transporter (DET1174-DET1176) was induced when cobalamin was exogenously provided. Interestingly, a global upregulation of phage-related genes was observed when PfR7 was present. These findings provide insights into both the gene regulation of corrinoid salvaging and remodeling in Dhc195 when it is grown without exogenous cobalamin and microbe-to-microbe interactions in dechlorinating microbial communities.

  2. Diguanylate cyclase null mutant reveals that C-Di-GMP pathway regulates the motility and adherence of the extremophile bacterium Acidithiobacillus caldus.

    PubMed

    Castro, Matías; Deane, Shelly M; Ruiz, Lina; Rawlings, Douglas E; Guiliani, Nicolas

    2015-01-01

    An understanding of biofilm formation is relevant to the design of biological strategies to improve the efficiency of the bioleaching process and to prevent environmental damages caused by acid mine/rock drainage. For this reason, our laboratory is focused on the characterization of the molecular mechanisms involved in biofilm formation in different biomining bacteria. In many bacteria, the intracellular levels of c-di-GMP molecules regulate the transition from the motile planktonic state to sessile community-based behaviors, such as biofilm development, through different kinds of effectors. Thus, we recently started a study of the c-di-GMP pathway in several biomining bacteria including Acidithiobacillus caldus. C-di-GMP molecules are synthesized by diguanylate cyclases (DGCs) and degraded by phosphodiesterases (PDEs). We previously reported the existence of intermediates involved in c-di-GMP pathway from different Acidithiobacillus species. Here, we report our work related to At. caldus ATCC 51756. We identified several putative-ORFs encoding DGC and PDE and effector proteins. By using total RNA extracted from At. caldus cells and RT-PCR, we demonstrated that these genes are expressed. We also demonstrated the presence of c-di-GMP by mass spectrometry and showed that genes for several of the DGC enzymes were functional by heterologous genetic complementation in Salmonella enterica serovar Typhimurium mutants. Moreover, we developed a DGC defective mutant strain (Δc1319) that strongly indicated that the c-di-GMP pathway regulates the swarming motility and adherence to sulfur surfaces by At. caldus. Together, our results revealed that At. caldus possesses a functional c-di-GMP pathway which could be significant for ores colonization during the bioleaching process.

  3. Isolation and Complete Genome Sequence of Algibacter alginolytica sp. nov., a Novel Seaweed-Degrading Bacteroidetes Bacterium with Diverse Putative Polysaccharide Utilization Loci.

    PubMed

    Sun, Cong; Fu, Ge-Yi; Zhang, Chong-Ya; Hu, Jing; Xu, Lin; Wang, Rui-Jun; Su, Yue; Han, Shuai-Bo; Yu, Xiao-Yun; Cheng, Hong; Zhang, Xin-Qi; Huo, Ying-Yi; Xu, Xue-Wei; Wu, Min

    2016-05-15

    The members of the phylum Bacteroidetes are recognized as some of the most important specialists for the degradation of polysaccharides. However, in contrast to research on Bacteroidetes in the human gut, research on polysaccharide degradation by marine Bacteroidetes is still rare. The genus Algibacter belongs to the Flavobacteriaceae family of the Bacteroidetes, and most species in this genus are isolated from or near the habitat of algae, indicating a preference for the complex polysaccharides of algae. In this work, a novel brown-seaweed-degrading strain designated HZ22 was isolated from the surface of a brown seaweed (Laminaria japonica). On the basis of its physiological, chemotaxonomic, and genotypic characteristics, it is proposed that strain HZ22 represents a novel species in the genus Algibacter with the proposed name Algibacter alginolytica sp. nov. The genome of strain HZ22, the type strain of this species, harbors 3,371 coding sequences (CDSs) and 255 carbohydrate-active enzymes (CAZymes), including 104 glycoside hydrolases (GHs) and 18 polysaccharide lyases (PLs); this appears to be the highest proportion of CAZymes (∼7.5%) among the reported strains in the class Flavobacteria Seventeen polysaccharide utilization loci (PUL) are predicted to be specific for marine polysaccharides, especially algal polysaccharides from red, green, and brown seaweeds. In particular, PUL N is predicted to be specific for alginate. Taking these findings together with the results of assays of crude alginate lyases, we prove that strain HZ22(T) can completely degrade alginate. This work reveals that strain HZ22(T) has good potential for the degradation of algal polysaccharides and that the structure and related mechanism of PUL in strain HZ22(T) are worth further research. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Cellulose synthase (CesA) genes in the green alga Mesotaenium caldariorum.

    PubMed

    Roberts, Alison W; Roberts, Eric M; Delmer, Deborah P

    2002-12-01

    Cellulose, a microfibrillar polysaccharide consisting of bundles of beta-1,4-glucan chains, is a major component of plant and most algal cell walls and is also synthesized by some prokaryotes. Seed plants and bacteria differ in the structures of their membrane terminal complexes that make cellulose and, in turn, control the dimensions of the microfibrils produced. They also differ in the domain structures of their CesA gene products (the catalytic subunit of cellulose synthase), which have been localized to terminal complexes and appear to help maintain terminal complex structure. Terminal complex structures in algae range from rosettes (plant-like) to linear forms (bacterium-like). Thus, algal CesA genes may reveal domains that control terminal complex assembly and microfibril structure. The CesA genes from the alga Mesotaenium caldariorum, a member of the order Zygnematales, which have rosette terminal complexes, are remarkably similar to seed plant CesAs, with deduced amino acid sequence identities of up to 59%. In addition to the putative transmembrane helices and the D-D-D-QXXRW motif shared by all known CesA gene products, M. caldariorum and seed plant CesAs share a region conserved among plants, an N-terminal zinc-binding domain, and a variable or class-specific region. This indicates that the domains that characterize seed plant CesAs arose prior to the evolution of land plants and may play a role in maintaining the structures of rosette terminal complexes. The CesA genes identified in M. caldariorum are the first reported for any eukaryotic alga and will provide a basis for analyzing the CesA genes of algae with different types of terminal complexes.

  5. Diguanylate Cyclase Null Mutant Reveals That C-Di-GMP Pathway Regulates the Motility and Adherence of the Extremophile Bacterium Acidithiobacillus caldus

    PubMed Central

    Castro, Matías; Deane, Shelly M.; Ruiz, Lina; Rawlings, Douglas E.; Guiliani, Nicolas

    2015-01-01

    An understanding of biofilm formation is relevant to the design of biological strategies to improve the efficiency of the bioleaching process and to prevent environmental damages caused by acid mine/rock drainage. For this reason, our laboratory is focused on the characterization of the molecular mechanisms involved in biofilm formation in different biomining bacteria. In many bacteria, the intracellular levels of c-di-GMP molecules regulate the transition from the motile planktonic state to sessile community-based behaviors, such as biofilm development, through different kinds of effectors. Thus, we recently started a study of the c-di-GMP pathway in several biomining bacteria including Acidithiobacillus caldus. C-di-GMP molecules are synthesized by diguanylate cyclases (DGCs) and degraded by phosphodiesterases (PDEs). We previously reported the existence of intermediates involved in c-di-GMP pathway from different Acidithiobacillus species. Here, we report our work related to At. caldus ATCC 51756. We identified several putative-ORFs encoding DGC and PDE and effector proteins. By using total RNA extracted from At. caldus cells and RT-PCR, we demonstrated that these genes are expressed. We also demonstrated the presence of c-di-GMP by mass spectrometry and showed that genes for several of the DGC enzymes were functional by heterologous genetic complementation in Salmonella enterica serovar Typhimurium mutants. Moreover, we developed a DGC defective mutant strain (Δc1319) that strongly indicated that the c-di-GMP pathway regulates the swarming motility and adherence to sulfur surfaces by At. caldus. Together, our results revealed that At. caldus possesses a functional c-di-GMP pathway which could be significant for ores colonization during the bioleaching process. PMID:25689133

  6. Biochemical Characterization of a Haloalkane Dehalogenase DadB from Alcanivorax dieselolei B-5

    PubMed Central

    Li, Anzhang; Shao, Zongze

    2014-01-01

    Recently, we found that Alcanivorax bacteria from various marine environments were capable of degrading halogenated alkanes. Genome sequencing of A. dieselolei B-5 revealed two putative haloalkane dehalogenase (HLD) genes, which were supposed to be involved in degradation of halogenated compounds. In this report, we confirm for the first time that the Alcanivorax bacterium encodes a truly functional HLD named DadB. An activity assay with 46 halogenated substrates indicated that DadB possesses broad substrate range and has the highest overall activity among the identified HLDs. DadB prefers brominated substrates; chlorinated alkenes; and the C2-C3 substrates, including the persistent pollutants of 1,2-dichloroethane, 1,2-dichloropropane and 1,2,3-trichloropropane. As DadB displays no detectable activity toward long-chain haloalkanes such as 1-chlorohexadecane and 1-chlorooctadecane, the degradation of them in A. dieselolei B-5 might be attributed to other enzymes. Kinetic constants were determined with 6 substrates. DadB has highest affinity and largest k cat/K m value toward 1,3-dibromopropane (K m = 0.82 mM, k cat/K m = 16.43 mM−1·s−1). DadB aggregates fast in the buffers with pH≤7.0, while keeps stable in monomer form when pH≥7.5. According to homology modeling, DadB has an open active cavity with a large access tunnel, which is supposed important for larger molecules as opposed to C2-C3 substrates. Combined with the results for other HLDs, we deduce that residue I247 plays an important role in substrate selection. These results suggest that DadB and its host, A. dieselolei B-5, are of potential use for biocatalysis and bioremediation applications. PMID:24586552

  7. Salivary detection of periodontopathic bacteria and periodontal health status in dental students.

    PubMed

    Leblebicioglu, Binnaz; Kulekci, Guven; Ciftci, Sevgi; Keskin, Fahriye; Badur, Selim

    2009-06-01

    Saliva may become a potential source of contamination through vertical and horizontal transmissions as well as cross-infections. This study aims to use saliva as a screening tool to detect putative periodontal pathogens in a young population with fairly good oral hygiene. Stimulated saliva samples were obtained from 134 dental students (20.5+/-1 years, range 18-22 years). Among those, 77 subjects also completed a periodontal examination including attachment loss, modified dental, gingival and plaque indices (AL, mDI, GI and PI). The test bacteria were identified using a 16S rRNA-based PCR detection method. One or more of the test bacteria was found in 67% of the subjects. Prevotella nigrescens was detected as single bacterium in 16% of the subjects followed by Treponema denticola (4%), Porphyromonas gingivalis (2%), Aggregatibacter (formerly Actinobacillus) actinomycetemcomitans (1%) and Tannerella forsythia (1%). Two or more pathogens were detected in 42% of the subjects. Clinical examination revealed health with no attachment loss (AL) in 84% of the students. In no AL group, 38% of the students were pathogen free while this was 25% for students in localized AL group (p>0.05). There was a statistically significant association between the detection of salivary periodontal pathogen in general and higher PI (p=0.018) and GI (p=0.043). Within the limits of this study, it is possible to detect all six periodontal pathogens in the saliva of dental students. Although a correlation can be observed between the presence of salivary periodontal pathogen and clinical signs of inflammation such as plaque accumulation and gingival bleeding, detection of specific bacteria in saliva is not related to the presence of localized AL based on the presented study population.

  8. Bioluminescence Imaging to Track Bacteroides fragilis Inhibition of Vibrio parahaemolyticus Infection in Mice.

    PubMed

    Li, Zhengchao; Deng, Huimin; Zhou, Yazhou; Tan, Yafang; Wang, Xiaoyi; Han, Yanping; Liu, Yangyang; Wang, Ye; Yang, Ruifu; Bi, Yujing; Zhi, Fachao

    2017-01-01

    Bacteroides fragilis is an anaerobic, Gram-negative, commensal bacterium of the human gut. It plays an important role in promoting the maturation of the immune system, as well as suppressing abnormal inflammation. Many recent studies have focused on the relationship between B. fragilis and human immunity, and indicate that B. fragilis has many useful probiotic effects. As inhibition of intestinal pathogens is an important characteristic of probiotic strains, this study examined whether B. fragilis could inhibit pathogenic bacteria. Results showed that Vibrio parahaemolyticus was inhibited by B. fragilis in vitro , and that B. fragilis could protect both RAW 264.7 and LoVo cells from damage caused by V. parahaemolyticus . Using in vivo imaging, we constructed a light-emitting V. parahaemolyticus strain and showed that B. fragilis might shorten the colonization time and reduce the number of lux -expressing bacteria in a mouse model. These results provide useful information for developing B. fragilis into a probiotic product, and also indicate that this commensal bacterium might aid in the clinical treatment of gastroenteritis caused by V. parahaemolyticus .

  9. Bioluminescence Imaging to Track Bacteroides fragilis Inhibition of Vibrio parahaemolyticus Infection in Mice

    PubMed Central

    Li, Zhengchao; Deng, Huimin; Zhou, Yazhou; Tan, Yafang; Wang, Xiaoyi; Han, Yanping; Liu, Yangyang; Wang, Ye; Yang, Ruifu; Bi, Yujing; Zhi, Fachao

    2017-01-01

    Bacteroides fragilis is an anaerobic, Gram-negative, commensal bacterium of the human gut. It plays an important role in promoting the maturation of the immune system, as well as suppressing abnormal inflammation. Many recent studies have focused on the relationship between B. fragilis and human immunity, and indicate that B. fragilis has many useful probiotic effects. As inhibition of intestinal pathogens is an important characteristic of probiotic strains, this study examined whether B. fragilis could inhibit pathogenic bacteria. Results showed that Vibrio parahaemolyticus was inhibited by B. fragilis in vitro, and that B. fragilis could protect both RAW 264.7 and LoVo cells from damage caused by V. parahaemolyticus. Using in vivo imaging, we constructed a light-emitting V. parahaemolyticus strain and showed that B. fragilis might shorten the colonization time and reduce the number of lux-expressing bacteria in a mouse model. These results provide useful information for developing B. fragilis into a probiotic product, and also indicate that this commensal bacterium might aid in the clinical treatment of gastroenteritis caused by V. parahaemolyticus. PMID:28553617

  10. Regulation of the alpha-glucuronidase-encoding gene ( aguA) from Aspergillus niger.

    PubMed

    de Vries, R P; van de Vondervoort, P J I; Hendriks, L; van de Belt, M; Visser, J

    2002-09-01

    The alpha-glucuronidase gene aguA from Aspergillus niger was cloned and characterised. Analysis of the promoter region of aguA revealed the presence of four putative binding sites for the major carbon catabolite repressor protein CREA and one putative binding site for the transcriptional activator XLNR. In addition, a sequence motif was detected which differed only in the last nucleotide from the XLNR consensus site. A construct in which part of the aguA coding region was deleted still resulted in production of a stable mRNA upon transformation of A. niger. The putative XLNR binding sites and two of the putative CREA binding sites were mutated individually in this construct and the effects on expression were examined in A. niger transformants. Northern analysis of the transformants revealed that the consensus XLNR site is not actually functional in the aguA promoter, whereas the sequence that diverges from the consensus at a single position is functional. This indicates that XLNR is also able to bind to the sequence GGCTAG, and the XLNR binding site consensus should therefore be changed to GGCTAR. Both CREA sites are functional, indicating that CREA has a strong influence on aguA expression. A detailed expression analysis of aguA in four genetic backgrounds revealed a second regulatory system involved in activation of aguA gene expression. This system responds to the presence of glucuronic and galacturonic acids, and is not dependent on XLNR.

  11. Degradation of polyester polyurethane by a newly isolated soil bacterium, Bacillus subtilis strain MZA-75.

    PubMed

    Shah, Ziaullah; Krumholz, Lee; Aktas, Deniz Fulya; Hasan, Fariha; Khattak, Mutiullah; Shah, Aamer Ali

    2013-11-01

    A polyurethane (PU) degrading bacterial strain MZA-75 was isolated from soil through enrichment technique. The bacterium was identified through 16S rRNA gene sequencing, the phylogenetic analysis indicated the strain MZA-75 belonged to genus Bacillus having maximum similarity with Bacillus subtilis strain JBE0016. The degradation of PU films by strain MZA-75 in mineral salt medium (MSM) was analyzed by scanning electron microscopy (SEM), fourier transform infra-red spectroscopy (FT-IR) and gel permeation chromatography (GPC). SEM revealed the appearance of widespread cracks on the surface. FTIR spectrum showed decrease in ester functional group. Increase in polydispersity index was observed in GPC, which indicates chain scission as a result of microbial treatment. CO2 evolution and cell growth increased when PU was used as carbon source in MSM in Sturm test. Increase in both cell associated and extracellular esterases was observed in the presence of PU indicated by p-Nitrophenyl acetate (pNPA) hydrolysis assay. Analysis of cell free supernatant by gas chromatography-mass spectrometry (GC-MS) revealed that 1,4-butanediol and adipic acid monomers were produced. Bacillus subtilis strain MZA-75 can degrade the soft segment of polyester polyurethane, unfortunately no information about the fate of hard segment could be obtained. Growth of strain MZA-75 in the presence of these metabolites indicated mineralization of ester hydrolysis products into CO2 and H2O.

  12. Detection of Salmonella bacterium in drinking water using microring resonator.

    PubMed

    Bahadoran, Mahdi; Noorden, Ahmad Fakhrurrazi Ahmad; Mohajer, Faeze Sadat; Abd Mubin, Mohamad Helmi; Chaudhary, Kashif; Jalil, Muhammad Arif; Ali, Jalil; Yupapin, Preecha

    2016-01-01

    A new microring resonator system is proposed for the detection of the Salmonella bacterium in drinking water, which is made up of SiO2-TiO2 waveguide embedded inside thin film layer of the flagellin. The change in refractive index due to the binding of the Salmonella bacterium with flagellin layer causes a shift in the output signal wavelength and the variation in through and drop port's intensities, which leads to the detection of Salmonella bacterium in drinking water. The sensitivity of proposed sensor for detecting of Salmonella bacterium in water solution is 149 nm/RIU and the limit of detection is 7 × 10(-4)RIU.

  13. Capsule-Transmitted Gut Symbiotic Bacterium of the Japanese Common Plataspid Stinkbug, Megacopta punctatissima

    PubMed Central

    Fukatsu, Takema; Hosokawa, Takahiro

    2002-01-01

    The Japanese common plataspid stinkbug, Megacopta punctatissima, deposits small brown particles, or symbiont capsules, on the underside of the egg mass for the purpose of transmission of symbiotic bacteria to the offspring. We investigated the microbiological aspects of the bacteria contained in the capsule, such as microbial diversity, phylogenetic placement, localization in vivo, and fitness effects on the host insect. Restriction fragment length polymorphism analysis of 16S ribosomal DNA clones revealed that a single bacterial species dominates the microbiota in the capsule. The bacterium was not detected in the eggs but in the capsules, which unequivocally demonstrated that the bacterium is transmitted to the offspring of the insect orally rather than transovarially, through probing of the capsule content. Molecular phylogenetic analysis showed that the bacterium belongs to the γ-subdivision of the Proteobacteria. In adult insects the bacterium was localized in the posterior section of the midgut. Deprivation of the bacterium from the nymphs resulted in retarded development, arrested growth, abnormal body coloration, and other symptoms, suggesting that the bacterium is essential for normal development and growth of the host insect. PMID:11772649

  14. Putative fossil life in a hydrothermal system of the Dellen impact structure, Sweden

    NASA Astrophysics Data System (ADS)

    Lindgren, Paula; Ivarsson, Magnus; Neubeck, Anna; Broman, Curt; Henkel, Herbert; Holm, Nils G.

    2010-07-01

    Impact-generated hydrothermal systems are commonly proposed as good candidates for hosting primitive life on early Earth and Mars. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is rarely reported in the literature. Here we present the occurrence of putative fossil microorganisms in a hydrothermal system of the 89 Ma Dellen impact structure, Sweden. We found the putative fossilized microorganisms hosted in a fine-grained matrix of hydrothermal alteration minerals set in interlinked fractures of an impact breccia. The putative fossils appear as semi-straight to twirled filaments, with a thickness of 1-2 μm, and a length between 10 and 100 μm. They have an internal structure with segmentation, and branching of filaments occurs frequently. Their composition varies between an outer and an inner layer of a filament, where the inner layer is more iron rich. Our results indicate that hydrothermal systems in impact craters could potentially be capable of supporting microbial life. This could have played an important role for the evolution of life on early Earth and Mars.

  15. Prevalence and putative risk markers of challenging behavior in students with intellectual disabilities.

    PubMed

    Dworschak, Wolfgang; Ratz, Christoph; Wagner, Michael

    2016-11-01

    Numerous studies have reported a high prevalence of challenging behavior among students with intellectual disabilities (ID). They discuss different putative risk markers as well as their influence on the occurrence of challenging behavior. The study investigates the prevalence of challenging behavior and evaluates in terms of a replication study well-known putative risk markers among a representative sample of students with ID (N=1629) in Bavaria, one of the largest regions in Germany. The research is based on a modified version of the Developmental Behavior Checklist (DBC). Findings indicate a prevalence rate of 52% for challenging behavior. The following putative risk markers are associated with challenging behavior: intense need for care, male gender, lack of communication skills, and residential setting. These risk markers explain 8.4% of the variance concerning challenging behavior. These results reveal that challenging behavior either is to a large extent determined by situations and interactions between individuals and environment and cannot be explained by the measured individual and social risk markers alone, or it is determined by further risk markers that were not measured. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Dr. Cheryl Nickerson studying Salmonella at Tulane University

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Dr. Cheryl Nickerson (right) of Tulane University is studying the effects of simulated low-g on a well-known pathogen, Salmonella typhimurium, a bacterium that causes two to four million cases of gastrointestinal illness in the United States each year. While most healthy people recover readily, S. typhimurium can kill people with weakened immune systems. Thus, a simple case of food poisoning could disrupt a space mission. Using the NASA rotating-wall bioreactor, Nickerson cultured S. typhimurium in modeled microgravity. Mice infected with the bacterium died an average of three days faster than the control mice, indicating that S. typhimurium's virulence was enhanced by the bioreactor. Earlier research showed that 3 percent of the genes were altered by exposure to the bioreactor. Nickerson's work earned her a 2001 Presidential Early Career Award for Scientists and Engineers.

  17. Dr. Cheryl Nickerson studies Salmonella in simulated low-g

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Dr. Cheryl Nickerson of Tulane University is studying the effects of simulated low-g on a well-known pathogen, Salmonella typhimurium, a bacterium that causes two to four million cases of gastrointestinal illness in the United States each year. While most healthy people recover readily, S. typhimurium can kill people with weakened immune systems. Thus, a simple case of food poisoning could disrupt a space mission. Using the NASA rotating-wall bioreactor, Nickerson cultured S. typhimurium in modeled microgravity. Mice infected with the bacterium died an average of three days faster than the control mice, indicating that S. typhimurium's virulence was enhanced by the bioreactor. Earlier research showed that 3 percent of the genes were altered by exposure to the bioreactor. Nickerson's work earned her a 2001 Presidential Early Career Award for Scientists and Engineers.

  18. Biodegradation of Benzene, Toluene, Ethylbenzene, and o-, m-, and p-Xylenes by the Newly Isolated Bacterium Comamonas sp. JB.

    PubMed

    Jiang, Bei; Zhou, Zunchun; Dong, Ying; Tao, Wei; Wang, Bai; Jiang, Jingwei; Guan, Xiaoyan

    2015-07-01

    A bacterium designated strain JB, able to degrade six benzene, toluene, ethylbenzene, and o-, m-, and p-xylene (BTEX) compounds, was isolated from petroleum-contaminated soil. Taxonomic analyses showed that the isolate belonged to Comamonas, and until now, the genus Comamonas has not included any known BTEX degraders. The BTEX biodegradation rate was slightly low on the mineral salt medium (MSM), but adding a small amount of yeast extract greatly enhanced the biodegradation. The relationship between specific degradation rate and individual BTEX was described well by Michaelis-Menten kinetics. The treatment of petrochemical wastewater containing BTEX mixture and phenol was shown to be highly efficient by BTEX-grown JB. In addition, toxicity assessment indicated the treatment of the petrochemical wastewater by BTEX-grown JB led to less toxicity than untreated wastewater.

  19. Investigation of paternity establishing without the putative father using hypervariable DNA probes.

    PubMed

    Yokoi, T; Odaira, T; Nata, M; Sagisaka, K

    1990-09-01

    Seven kinds of DNA probes which recognize hypervariable loci were applied for paternity test. The putative father was decreased and unavailable for the test. The two legitimate children and their mother (the deceased's wife) and the four illegitimate children and their mother (the deceased's kept mistress) were available for analysis. Paternity index of four illegitimate child was investigated. Allelic frequencies and their confidence intervals among unrelated Japanese individuals were previously reported from our laboratory, and co-dominant segregation of the polymorphism was confirmed in family studies. Cumulative paternity indices of four illegitimate children from 16 kinds of standard blood group markers were 165, 42, 0.09, and 36, respectively. On the other hand, cumulative paternity indices from 7 kinds of DNA probes are 2,363, 4,685, 57,678, and 54,994, respectively, which are 14, 113, 640, 864, and 1,509 times higher than that from standard blood group markers. The DNA analyses gave nearly conclusive evidence that the putative father was the biological father of the children. Especially, the paternity relation of the third illegitimate child could not be established without the DNA analyses. Accordingly, DNA polymorphism is considered to be informative enough for paternity test.

  20. Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum

    PubMed Central

    2012-01-01

    Background The expression of genes in Corynebacterium glutamicum, a Gram-positive non-pathogenic bacterium used mainly for the industrial production of amino acids, is regulated by seven different sigma factors of RNA polymerase, including the stress-responsive ECF-sigma factor SigH. The sigH gene is located in a gene cluster together with the rshA gene, putatively encoding an anti-sigma factor. The aim of this study was to analyze the transcriptional regulation of the sigH and rshA gene cluster and the effects of RshA on the SigH regulon, in order to refine the model describing the role of SigH and RshA during stress response. Results Transcription analyses revealed that the sigH gene and rshA gene are cotranscribed from four sigH housekeeping promoters in C. glutamicum. In addition, a SigH-controlled rshA promoter was found to only drive the transcription of the rshA gene. To test the role of the putative anti-sigma factor gene rshA under normal growth conditions, a C. glutamicum rshA deletion strain was constructed and used for genome-wide transcription profiling with DNA microarrays. In total, 83 genes organized in 61 putative transcriptional units, including those previously detected using sigH mutant strains, exhibited increased transcript levels in the rshA deletion mutant compared to its parental strain. The genes encoding proteins related to disulphide stress response, heat stress proteins, components of the SOS-response to DNA damage and proteasome components were the most markedly upregulated gene groups. Altogether six SigH-dependent promoters upstream of the identified genes were determined by primer extension and a refined consensus promoter consisting of 45 original promoter sequences was constructed. Conclusions The rshA gene codes for an anti-sigma factor controlling the function of the stress-responsive sigma factor SigH in C. glutamicum. Transcription of rshA from a SigH-dependent promoter may serve to quickly shutdown the SigH-dependent stress response after the cells have overcome the stress condition. Here we propose a model of the regulation of oxidative and heat stress response including redox homeostasis by SigH, RshA and the thioredoxin system. PMID:22943411

  1. Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum.

    PubMed

    Busche, Tobias; Silar, Radoslav; Pičmanová, Martina; Pátek, Miroslav; Kalinowski, Jörn

    2012-09-03

    The expression of genes in Corynebacterium glutamicum, a Gram-positive non-pathogenic bacterium used mainly for the industrial production of amino acids, is regulated by seven different sigma factors of RNA polymerase, including the stress-responsive ECF-sigma factor SigH. The sigH gene is located in a gene cluster together with the rshA gene, putatively encoding an anti-sigma factor. The aim of this study was to analyze the transcriptional regulation of the sigH and rshA gene cluster and the effects of RshA on the SigH regulon, in order to refine the model describing the role of SigH and RshA during stress response. Transcription analyses revealed that the sigH gene and rshA gene are cotranscribed from four sigH housekeeping promoters in C. glutamicum. In addition, a SigH-controlled rshA promoter was found to only drive the transcription of the rshA gene. To test the role of the putative anti-sigma factor gene rshA under normal growth conditions, a C. glutamicum rshA deletion strain was constructed and used for genome-wide transcription profiling with DNA microarrays. In total, 83 genes organized in 61 putative transcriptional units, including those previously detected using sigH mutant strains, exhibited increased transcript levels in the rshA deletion mutant compared to its parental strain. The genes encoding proteins related to disulphide stress response, heat stress proteins, components of the SOS-response to DNA damage and proteasome components were the most markedly upregulated gene groups. Altogether six SigH-dependent promoters upstream of the identified genes were determined by primer extension and a refined consensus promoter consisting of 45 original promoter sequences was constructed. The rshA gene codes for an anti-sigma factor controlling the function of the stress-responsive sigma factor SigH in C. glutamicum. Transcription of rshA from a SigH-dependent promoter may serve to quickly shutdown the SigH-dependent stress response after the cells have overcome the stress condition. Here we propose a model of the regulation of oxidative and heat stress response including redox homeostasis by SigH, RshA and the thioredoxin system.

  2. Chitinase Expression in Listeria monocytogenes Is Influenced by lmo0327, Which Encodes an Internalin-Like Protein.

    PubMed

    Paspaliari, Dafni Katerina; Kastbjerg, Vicky Gaedt; Ingmer, Hanne; Popowska, Magdalena; Larsen, Marianne Halberg

    2017-11-15

    The chitinolytic system of Listeria monocytogenes thus far comprises two chitinases, ChiA and ChiB, and a lytic polysaccharide monooxygenase, Lmo2467. The role of the system in the bacterium appears to be pleiotropic, as besides mediating the hydrolysis of chitin, the second most ubiquitous carbohydrate in nature, the chitinases have been deemed important for the colonization of unicellular molds, as well as mammalian hosts. To identify additional components of the chitinolytic system, we screened a transposon mutant library for mutants exhibiting impaired chitin hydrolysis. The screening yielded a mutant with a transposon insertion in a locus corresponding to lmo0327 of the EGD-e strain. lmo0327 encodes a large (1,349 amino acids [aa]) cell wall-associated protein that has been proposed to possess murein hydrolase activity. The single inactivation of lmo0327 , as well as of lmo0325 that codes for a putative transcriptional regulator functionally related to lmo0327 , led to an almost complete abolishment of chitinolytic activity. The effect could be traced at the transcriptional level, as both chiA and chiB transcripts were dramatically decreased in the lmo0327 mutant. In accordance with that, we could barely detect ChiA and ChiB in the culture supernatants of the mutant strain. Our results provide new information regarding the function of the lmo0325-lmo0327 locus in L. monocytogenes and link it to the expression of chitinolytic activity. IMPORTANCE Many bacteria from terrestrial and marine environments express chitinase activities enabling them to utilize chitin as the sole source of carbon and nitrogen. Interestingly, several bacterial chitinases may also be involved in host pathogenesis. For example, in the important foodborne pathogen Listeria monocytogenes , the chitinases ChiA and ChiB and the lytic polysaccharide monooxygenase Lmo2467 are implicated in chitin assimilation but also act as virulence factors during the infection of mammalian hosts. Therefore, it is important to identify their regulators and induction cues to understand how the different roles of the chitinolytic system are controlled and mediated. Here, we provide evidence for the importance of lmo0327 and lmo0325 , encoding a putative internalin/autolysin and a putative transcriptional activator, respectively, in the efficient expression of chitinase activity in L. monocytogenes and thereby provide new information regarding the function of the lmo0325-lmo0327 locus. Copyright © 2017 Paspaliari et al.

  3. Characterization of Streptococcus bovis from the rumen of the dromedary camel and Rusa deer.

    PubMed

    Ghali, M B; Scott, P T; Al Jassim, R A M

    2004-01-01

    Isolation and characterization of Streptococcus bovis from the dromedary camel and Rusa deer. Bacteria were isolated from the rumen contents of four camels and two deer fed lucerne hay by culturing on the semi-selective medium MRS agar. Based on Gram morphology and RFLP analysis seven isolates, MPR1, MPR2, MPR3, MPR4, MPR5, RD09 and RD11 were selected and putatively identified as Streptococcus. The identity of these isolates was later confirmed by comparative DNA sequence analysis of the 16S rRNA gene with the homologous sequence from S. bovis strains, JB1, C14b1, NCFB2476, SbR1, SbR7 and Sb5, from cattle and sheep, and the Streptococcus equinus strain NCD01037T. The percentage similarity amongst all strains was >99%, confirming the identification of the camel isolates as S. bovis. The strains were further characterized by their ability to utilize a range of carbohydrates, the production of volatile fatty acids (VFA) and lactate and the determination of the doubling time in basal medium 10 supplemented with glucose. All the isolates produced l-lactate as a major fermentation end product, while four of five camel isolates produced VFA. The range of carbohydrates utilized by all the strains tested, including those from cattle and sheep were identical, except that all camel isolates and the deer isolate RD11 were additionally able to utilize arabinose. Streptococcus bovis was successfully isolated from the rumen of camels and deer, and shown by molecular and biochemical characterization to be almost identical to S. bovis isolates from cattle and sheep. Streptococcus bovis is considered a key lactic acid producing bacterium from the gastrointestinal tract of ruminants, and has been implicated as a causative agent of lactic acidosis. This study is the first report of the isolation and characterization of S. bovis from the dromedary camel and Rusa deer, and suggests a major contributive role of this bacterium to fermentative acidosis.

  4. Comparative genomic analysis of a new tellurite-resistant Psychrobacter strain isolated from the Antarctic Peninsula.

    PubMed

    Muñoz-Villagrán, Claudia Melissa; Mendez, Katterinne N; Cornejo, Fabian; Figueroa, Maximiliano; Undabarrena, Agustina; Morales, Eduardo Hugo; Arenas-Salinas, Mauricio; Arenas, Felipe Alejandro; Castro-Nallar, Eduardo; Vásquez, Claudio Christian

    2018-01-01

    The Psychrobacter genus is a cosmopolitan and diverse group of aerobic, cold-adapted, Gram-negative bacteria exhibiting biotechnological potential for low-temperature applications including bioremediation. Here, we present the draft genome sequence of a bacterium from the Psychrobacter genus isolated from a sediment sample from King George Island, Antarctica (3,490,622 bp; 18 scaffolds; G + C = 42.76%). Using phylogenetic analysis, biochemical properties and scanning electron microscopy the bacterium was identified as Psychrobacter glacincola BNF20, making it the first genome sequence reported for this species. P. glacincola BNF20 showed high tellurite (MIC 2.3 mM) and chromate (MIC 6.0 mM) resistance, respectively. Genome-wide nucleotide identity comparisons revealed that P. glacincola BNF20 is highly similar (>90%) to other uncharacterized Psychrobacter spp. such as JCM18903, JCM18902, and P11F6. Bayesian multi-locus phylogenetic analysis showed that P. glacincola BNF20 belongs to a polyphyletic clade with other bacteria isolated from polar regions. A high number of genes related to metal(loid) resistance were found, including tellurite resistance genetic determinants located in two contigs: Contig LIQB01000002.1 exhibited five ter genes, each showing putative promoter sequences (terACDEZ), whereas contig LIQB1000003.2 showed a variant of the terZ gene. Finally, investigating the presence and taxonomic distribution of ter genes in the NCBI's RefSeq bacterial database (5,398 genomes, as January 2017), revealed that 2,623 (48.59%) genomes showed at least one ter gene. At the family level, most (68.7%) genomes harbored one ter gene and 15.6% exhibited five (including P. glacincola BNF20). Overall, our results highlight the diverse nature (genetic and geographic diversity) of the Psychrobacter genus, provide insights into potential mechanisms of metal resistance, and exemplify the benefits of sampling remote locations for prospecting new molecular determinants.

  5. Identification and characterization of a novel β-galactosidase from Victivallis vadensis ATCC BAA-548, an anaerobic fecal bacterium.

    PubMed

    Temuujin, Uyangaa; Chi, Won-Jae; Park, Jae-Sun; Chang, Yong-Keun; Song, Jae Yang; Hong, Soon-Kwang

    2012-12-01

    Victivallis vadensis ATCC BAA-548 is a Gram-negative, anaerobic bacterium that was isolated from a human fecal sample. From the genomic sequence of V. vadensis, one gene was found to encode agarase; however, its enzymatic properties have never been characterized. The gene encoding the putative agarase (NCBI reference number ZP_01923925) was cloned by PCR and expressed in E. coli Rosetta-gami by using the inducible T(7) promoter of pET28a(+). The expressed protein with a 6×His tag at the N-terminus was named His6-VadG925 and purified as a soluble protein by Ni(2+)-NTA agarose affinity column chromatography. The purification of the enzyme was 26.8-fold, with a yield of 73.2% and a specific activity of 1.02 U/mg of protein. The purified His6-VadG925 produced a single band with an approximate MW of 155 kDa, which is consistent with the calculated value (154,660 Da) including the 6×His tag. Although VadG925 and many of its homologs were annotated as agarases, it did not hydrolyze agarose. Instead, purified His(6)-VadG925 hydrolyzed an artificial chromogenic substrate, p-nitrophenyl-β-D-galactopyranoside, but not p-nitrophenyl-α-D-galactopyranoside. The optimum pH and temperature for this β-galactosidase activity were pH 7.0 and 40°C, respectively. The K(m) and V(max) of His6-VadG925 towards p-nitrophenyl-β-D-galactopyranoside were 1.69 mg/ml (0.0056 M) and 30.3 U/mg, respectively. His6-VadG925 efficiently hydrolyzed lactose into glucose and galactose, which was demonstrated by TLC and mass spectroscopy. These results clearly demonstrated that VadG925 is a novel β-galactosidase that can hydrolyze lactose, which is unusual because of its low homology to validated β-galactosidases.

  6. [Characterization of D-lactate dehydrogenase isozymes from a D-lactic acid producing bacterium Sporolactobacillus inulinus].

    PubMed

    Zhang, Danru; Zheng, Lu; Wu, Bin; He, Bingfang

    2016-11-04

    Sporolactobacillus inulinus, a typical homofermentative lactic acid bacterium, is an efficient D-lactic acid producer. Various environment factors affect the productivity of S. inulinus. Glucokinase, phosphofructokinase, pyruvate kinase and lactic dehydrogenase are the key enzymes of D-lactic acid production from glucose by S. inulinus. The characteristics of these enzymes are important in controlling and regulating the fermentation process. According to the genome bioinformatics analysis of S. inulinus CASD, three putative D-lactate dehydrogenases were identified, among which the bifunctional protein had been reported. In this study, we provided insights into the characteristics of the other two D-lactate dehydrogenase isozymes. S. inulinus Y2-8 genome was used as the template to amplify D-lactate dehydrogenase gene (dldh) and D-isomer specific 2-hydroxyacid dehydrogenase gene (dhdh). The two recombinant strains E-pET-28a/dldh and E-pET-28a/dhdh were constructed for enzyme expression. Both recombinants DLDH and DHDH could convert pyruvic acid into D-lactic acid. Enzymes expressed by recombinant strains were purified by Ni-NTA chromatography. The apparent molecular mass of DLDH was approximately 37 kDa by SDS-PAGE analysis, and DLDH showed a high affinity to pyruvate with the Km value of (0.58±0.04) mmol/L. The optimal reaction temperature and pH for DLDH was 35℃ and 6.5, respectively. The apparent molecular mass of DHDH was approximately 39 kDa, and the Km of DHDH toward pyruvate was (1.70±0.08) mmol/L. The optimum catalysis temperature and pH of DHDH were 30℃ and 7.5, respectively. According to the Km and optimal reaction pH, DLDH was suggested as the main catalyst in formation D-lactic acid from pyruvate during the fermentation. The enzymatic properties would contribute to the regulation of the fermentation of S. inulinus.

  7. Spread and change in stress resistance of Shiga toxin-producing Escherichia coli O157 on fungal colonies

    PubMed Central

    Lee, Ken-ichi; Kobayashi, Naoki; Watanabe, Maiko; Sugita-Konishi, Yoshiko; Tsubone, Hirokazu; Kumagai, Susumu; Hara-Kudo, Yukiko

    2014-01-01

    To elucidate the effect of fungal hyphae on the behaviour of Shiga toxin-producing Escherichia coli (STEC) O157, the spread and change in stress resistance of the bacterium were evaluated after coculture with 11 species of food-related fungi including fermentation starters. Spread distances of STEC O157 varied depending on the co-cultured fungal species, and the motile bacterial strain spread for longer distances than the non-motile strain. The population of STEC O157 increased when co-cultured on colonies of nine fungal species but decreased on colonies of Emericella nidulans and Aspergillus ochraceus. Confocal scanning microscopy visualization of green fluorescent protein-tagged STEC O157 on fungal hyphae revealed that the bacterium colonized in the water film that existed on and between hyphae. To investigate the physiological changes in STEC O157 caused by co-culturing with fungi, the bacterium was harvested after 7 days of co-culturing and tested for acid resistance. After co-culture with eight fungal species, STEC O157 showed greater acid resistance compared to those cultured without fungi. Our results indicate that fungal hyphae can spread the contamination of STEC O157 and can also enhance the stress resistance of the bacteria. PMID:23919289

  8. Photoinhibition of Phaeocystis globosa resulting from oxidative stress induced by a marine algicidal bacterium Bacillus sp. LP-10.

    PubMed

    Guan, Chengwei; Guo, Xiaoyun; Li, Yi; Zhang, Huajun; Lei, Xueqian; Cai, Guanjing; Guo, Jiajia; Yu, Zhiming; Zheng, Tianling

    2015-11-25

    Harmful algal blooms caused by Phaeocystis globosa have resulted in staggering losses to coastal countries because of their world-wide distribution. Bacteria have been studied for years to control the blooms of harmful alga, however, the action mechanism of them against harmful algal cells is still not well defined. Here, a previously isolated algicidal bacterium Bacillus sp. LP-10 was used to elucidate the potential mechanism involved in the dysfunction of P. globosa algal cells at physiological and molecular levels. Our results showed Bacillus sp. LP-10 induced an obvious rise of reactive oxygen species (ROS), which was supposed to be major reason for algal cell death. Meanwhile, the results revealed a significant decrease of photosynthetic physiological indexes and apparent down-regulated of photosynthesis-related genes (psbA and rbcS) and protein (PSII reaction center protein D1), after treated by Bacillus sp. LP-10 filtrates, suggesting photoinhibition occurred in the algal cells. Furthermore, our results indicated that light played important roles in the algal cell death. Our work demonstrated that the major lethal reason of P. globosa cells treated by the algicidal bacterium was the photoinhibition resulted from oxidative stress induced by Bacillus sp. LP-10.

  9. Photoinhibition of Phaeocystis globosa resulting from oxidative stress induced by a marine algicidal bacterium Bacillus sp. LP-10

    PubMed Central

    Guan, Chengwei; Guo, Xiaoyun; Li, Yi; Zhang, Huajun; Lei, Xueqian; Cai, Guanjing; Guo, Jiajia; Yu, Zhiming; Zheng, Tianling

    2015-01-01

    Harmful algal blooms caused by Phaeocystis globosa have resulted in staggering losses to coastal countries because of their world-wide distribution. Bacteria have been studied for years to control the blooms of harmful alga, however, the action mechanism of them against harmful algal cells is still not well defined. Here, a previously isolated algicidal bacterium Bacillus sp. LP-10 was used to elucidate the potential mechanism involved in the dysfunction of P. globosa algal cells at physiological and molecular levels. Our results showed Bacillus sp. LP-10 induced an obvious rise of reactive oxygen species (ROS), which was supposed to be major reason for algal cell death. Meanwhile, the results revealed a significant decrease of photosynthetic physiological indexes and apparent down-regulated of photosynthesis-related genes (psbA and rbcS) and protein (PSII reaction center protein D1), after treated by Bacillus sp. LP-10 filtrates, suggesting photoinhibition occurred in the algal cells. Furthermore, our results indicated that light played important roles in the algal cell death. Our work demonstrated that the major lethal reason of P. globosa cells treated by the algicidal bacterium was the photoinhibition resulted from oxidative stress induced by Bacillus sp. LP-10. PMID:26601700

  10. Desulfamplus magnetovallimortis gen. nov., sp. nov., a magnetotactic bacterium from a brackish desert spring able to biomineralize greigite and magnetite, that represents a novel lineage in the Desulfobacteraceae.

    PubMed

    Descamps, Elodie C T; Monteil, Caroline L; Menguy, Nicolas; Ginet, Nicolas; Pignol, David; Bazylinski, Dennis A; Lefèvre, Christopher T

    2017-07-01

    A magnetotactic bacterium, designated strain BW-1 T , was isolated from a brackish spring in Death Valley National Park (California, USA) and cultivated in axenic culture. The Gram-negative cells of strain BW-1 T are relatively large and rod-shaped and possess a single polar flagellum (monotrichous). This strain is the first magnetotactic bacterium isolated in axenic culture capable of producing greigite and/or magnetite nanocrystals aligned in one or more chains per cell. Strain BW-1 T is an obligate anaerobe that grows chemoorganoheterotrophically while reducing sulfate as a terminal electron acceptor. Optimal growth occurred at pH 7.0 and 28°C with fumarate as electron donor and carbon source. Based on its genome sequence, the G+C content is 40.72mol %. Phylogenomic and phylogenetic analyses indicate that strain BW-1 T belongs to the Desulfobacteraceae family within the Deltaproteobacteria class. Based on average amino acid identity, strain BW-1 T can be considered as a novel species of a new genus, for which the name Desulfamplus magnetovallimortis is proposed. The type strain of D. magnetovallimortis is BW-1 T (JCM 18010 T -DSM 103535 T ). Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Proteomic analysis of carbon concentrating chemolithotrophic bacteria Serratia sp. for sequestration of carbon dioxide.

    PubMed

    Bharti, Randhir K; Srivastava, Shaili; Thakur, Indu Shekhar

    2014-01-01

    A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO). The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC), however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials.

  12. Proteomic Analysis of Carbon Concentrating Chemolithotrophic Bacteria Serratia sp. for Sequestration of Carbon Dioxide

    PubMed Central

    Bharti, Randhir K.; Srivastava, Shaili; Thakur, Indu Shekhar

    2014-01-01

    A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO). The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC), however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials. PMID:24619032

  13. Deciphering the Intracellular Fate of Propionibacterium acnes in Macrophages

    PubMed Central

    Fischer, Natalie; Mak, Tim N.; Shinohara, Debika Biswal; Sfanos, Karen S.; Meyer, Thomas F.

    2013-01-01

    Propionibacterium acnes is a Gram-positive bacterium that colonizes various niches of the human body, particularly the sebaceous follicles of the skin. Over the last years a role of this common skin bacterium as an opportunistic pathogen has been explored. Persistence of P. acnes in host tissue has been associated with chronic inflammation and disease development, for example, in prostate pathologies. This study investigated the intracellular fate of P. acnes in macrophages after phagocytosis. In a mouse model of P. acnes-induced chronic prostatic inflammation, the bacterium could be detected in prostate-infiltrating macrophages at 2 weeks postinfection. Further studies performed in the human macrophage cell line THP-1 revealed intracellular survival and persistence of P. acnes but no intracellular replication or escape from the host cell. Confocal analyses of phagosome acidification and maturation were performed. Acidification of P. acnes-containing phagosomes was observed at 6 h postinfection but then lost again, indicative of cytosolic escape of P. acnes or intraphagosomal pH neutralization. No colocalization with the lysosomal markers LAMP1 and cathepsin D was observed, implying that the P. acnes-containing phagosome does not fuse with lysosomes. Our findings give first insights into the intracellular fate of P. acnes; its persistency is likely to be important for the development of P. acnes-associated inflammatory diseases. PMID:23862148

  14. Kinetic and thermodynamic properties of alginate lyase and cellulase co-produced by Exiguobacterium species Alg-S5.

    PubMed

    Mohapatra, Bidyut R

    2017-05-01

    In an effort to screen out the alginolytic and cellulolytic bacteria from the putrefying invasive seaweed Sargassum species accumulated off Barbados' coast, a potent bacterial strain was isolated. This bacterium, which simultaneously produced alginate lyase and cellulase, was identified as Exiguobacterium sp. Alg-S5 via the phylogenetic approach targeting the 16S rRNA gene. The co-produced alginate lyase and cellulase exhibited maximal enzymatic activity at pH 7.5 and at 40°C and 45°C, respectively. The K m and V max values recorded as 0.91mg/mL and 21.8U/mg-protein, respectively, for alginate lyase, and 10.9mg/mL and 74.6U/mg-protein, respectively, for cellulase. First order kinetic analysis of the thermal denaturation of the co-produced alginate lyase and cellulase in the temperature range from 40°C to 55°C revealed that both the enzymes were thermodynamically efficient by displaying higher activation energy and enthalpy of denaturation. These enzymatic properties indicate the potential industrial importance of this bacterium in algal biomass conversion. This appears to be the first report on assessing the efficacy of a bacterium for the co-production of alginate lyase and cellulase. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Conjugal Transfer of the Pathogenicity Island ROD21 in Salmonella enterica serovar Enteritidis Depends on Environmental Conditions

    PubMed Central

    Salazar-Echegarai, Francisco J.; Tobar, Hugo E.; Nieto, Pamela A.; Riedel, Claudia A.; Bueno, Susan M.

    2014-01-01

    Unstable pathogenicity islands are chromosomal elements that can be transferred from one bacterium to another. Salmonella enterica serovar Enteritidis (S. Enteritidis) is a pathogenic bacterium containing such unstable pathogenicity islands. One of them, denominated ROD21, is 26.5 kb in size and capable of excising from the chromosome in certain culture conditions, as well as during bacterial infection of phagocytic cells. In this study we have evaluated whether ROD21 can be effectively transferred from one bacterium to another. We generated a donor and several recipient strains of S. Enteritidis to carry out transfer assays in liquid LB medium. These assays showed that ROD21 is effectively transferred from donor to recipient strains of S. Enteritidis and S. Typhimurium. When Escherichia coli was used as the recipient strain, ROD21 transfer failed to be observed. Subsequently, we showed that a conjugative process was required for the transfer of the island and that changes in temperature and pH increased the transfer frequency between Salmonella strains. Our data indicate that ROD21 is an unstable pathogenicity island that can be transferred by conjugation in a species-specific manner between Salmonellae. Further, ROD21 transfer frequency increases in response to environmental changes, such as pH and temperature. PMID:24705125

  16. A monogalactosyldiacylglycerol synthase found in the green sulfur bacterium Chlorobaculum tepidum reveals important roles for galactolipids in photosynthesis.

    PubMed

    Masuda, Shinji; Harada, Jiro; Yokono, Makio; Yuzawa, Yuichi; Shimojima, Mie; Murofushi, Kazuhiro; Tanaka, Hironori; Masuda, Hanako; Murakawa, Masato; Haraguchi, Tsuyoshi; Kondo, Maki; Nishimura, Mikio; Yuasa, Hideya; Noguchi, Masato; Oh-Oka, Hirozo; Tanaka, Ayumi; Tamiaki, Hitoshi; Ohta, Hiroyuki

    2011-07-01

    Monogalactosyldiacylglycerol (MGDG), which is conserved in almost all photosynthetic organisms, is the most abundant natural polar lipid on Earth. In plants, MGDG is highly accumulated in the chloroplast membranes and is an important bulk constituent of thylakoid membranes. However, precise functions of MGDG in photosynthesis have not been well understood. Here, we report a novel MGDG synthase from the green sulfur bacterium Chlorobaculum tepidum. This enzyme, MgdA, catalyzes MGDG synthesis using UDP-Gal as a substrate. The gene encoding MgdA was essential for this bacterium; only heterozygous mgdA mutants could be isolated. An mgdA knockdown mutation affected in vivo assembly of bacteriochlorophyll c aggregates, suggesting the involvement of MGDG in the construction of the light-harvesting complex called chlorosome. These results indicate that MGDG biosynthesis has been independently established in each photosynthetic organism to perform photosynthesis under different environmental conditions. We complemented an Arabidopsis thaliana MGDG synthase mutant by heterologous expression of MgdA. The complemented plants showed almost normal levels of MGDG, although they also had abnormal morphological phenotypes, including reduced chlorophyll content, no apical dominance in shoot growth, atypical flower development, and infertility. These observations provide new insights regarding the importance of regulated MGDG synthesis in the physiology of higher plants.

  17. Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir.

    PubMed

    Greene, A C; Patel, B K; Sheehy, A J

    1997-04-01

    A thermophilic anaerobic bacterium, designated strain BMAT (T = type strain), was isolated from the production water of Beatrice oil field in the North Sea (United Kingdom). The cells were straight to bent rods (1 to 5 by 0.3 to 0.5 microns) which stained gram negative. Strain BMAT obtained energy from the reduction of manganese (IV), iron(III), and nitrate in the presence of yeast extract, peptone, Casamino Acids, tryptone, hydrogen, malate, acetate, citrate, pyruvate, lactate, succinate, and valerate. The isolate grew optimally at 60 degrees C (temperature range for growth, 50 to 65 degrees C) and in the presence of 2% (wt/vol) NaCl (NaCl range for growth, 0 to 5% [wt/vol]). The DNA base composition was 34 mol% G + C. Phylogenetic analyses of the 16S rRNA gene indicated that strain BMAT is a member of the domain Bacteria. The closest known bacterium is the moderate thermophile Flexistipes sinusarabici (similarity value, 88%). Strain BMAT possesses phenotypic and phylogenetic traits that do not allow its classification as a member of any previously described genus; therefore, we propose that this isolate should be described as a member of a novel species of a new genus, Deferribacter thermophilus gen. nov., sp. nov.

  18. Reduction of Tubulin Expression in Angomonas deanei by RNAi Modifies the Ultrastructure of the Trypanosomatid Protozoan and Impairs Division of Its Endosymbiotic Bacterium.

    PubMed

    Catta-Preta, Carolina Moura Costa; Dos Santos Pascoalino, Bruno; de Souza, Wanderley; Mottram, Jeremy C; Motta, Maria Cristina M; Schenkman, Sergio

    2016-11-01

    In the last two decades, RNA interference pathways have been employed as a useful tool for reverse genetics in trypanosomatids. Angomonas deanei is a nonpathogenic trypanosomatid that maintains an obligatory endosymbiosis with a bacterium related to the Alcaligenaceae family. Studies of this symbiosis can help us to understand the origin of eukaryotic organelles. The recent elucidation of both the A. deanei and the bacterium symbiont genomes revealed that the host protozoan codes for the enzymes necessary for RNAi activity in trypanosomatids. Here, we tested the functionality of the RNAi machinery by transfecting cells with dsRNA to a reporter gene (green fluorescent protein), which had been previously expressed in the parasite and to α-tubulin, an endogenous gene. In both cases, protein expression was reduced by the presence of specific dsRNA, inducing, respectively, a decreased GFP fluorescence and the formation of enlarged cells with modified arrangement of subpellicular microtubules. Furthermore, symbiont division was impaired. These results indicate that the RNAi system is active in A. deanei and can be used to further explore gene function in symbiont-containing trypanosomatids and to clarify important aspects of symbiosis and cell evolution. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  19. The Components of the Unique Zur Regulon of Cupriavidus metallidurans Mediate Cytoplasmic Zinc Handling

    PubMed Central

    Bütof, Lucy; Schmidt-Vogler, Christopher; Herzberg, Martin; Große, Cornelia

    2017-01-01

    ABSTRACT Zinc is an essential trace element, yet it is toxic at high concentrations. In the betaproteobacterium Cupriavidus metallidurans, the highly efficient removal of surplus zinc from the periplasm is responsible for the outstanding metal resistance of the organism. Rather than having a typical Zur-dependent, high-affinity ATP-binding cassette transporter of the ABC protein superfamily for zinc uptake at low concentrations, C. metallidurans has the secondary zinc importer ZupT of the zinc-regulated transporter, iron-regulated transporter (ZRT/IRT)-like protein (ZIP) family. It is important to understand, therefore, how this zinc-resistant bacterium copes with exposure to low zinc concentrations. Members of the Zur regulon in C. metallidurans were identified by comparing the transcriptomes of a Δzur mutant and its parent strain. The consensus sequence of the Zur-binding box was derived for the zupTp promoter-regulatory region by use of a truncation assay. The motif was used to predict possible Zur boxes upstream of Zur regulon members. The binding of Zur to these boxes was confirmed. Two Zur boxes upstream of the cobW1 gene, encoding a putative zinc chaperone, proved to be required for complete repression of cobW1 and its downstream genes in cells cultivated in mineral salts medium. A Zur box upstream of each of zur-cobW2, cobW3, and zupT permitted both low expression levels of these genes and their upregulation under conditions of zinc starvation. This demonstrates a compartmentalization of zinc homeostasis in C. metallidurans, where the periplasm is responsible for the removal of surplus zinc, cytoplasmic components are responsible for the management of zinc as an essential cofactor, and the two compartments are connected by ZupT. IMPORTANCE Elucidating zinc homeostasis is necessary for understanding both host-pathogen interactions and the performance of free-living bacteria in their natural environments. Escherichia coli acquires zinc under conditions of low zinc concentrations via the Zur-controlled ZnuABC importer of the ABC superfamily, and this was also the paradigm for other bacteria. In contrast, the heavy-metal-resistant bacterium C. metallidurans achieves high tolerance to zinc through sophisticated zinc handling and efflux systems operating on periplasmic zinc ions, so that removal of surplus zinc is a periplasmic feature in this bacterium. It is shown here that this process is augmented by the management of zinc by cytoplasmic zinc chaperones, whose synthesis is controlled by the Zur regulator. This demonstrates a new mechanism, involving compartmentalization, for organizing zinc homeostasis. PMID:28808127

  20. The components of the unique Zur regulon of Cupriavidus metallidurans mediate cytoplasmic zinc handling.

    PubMed

    Bütof, Lucy; Schmidt-Vogler, Christopher; Herzberg, Martin; Große, Cornelia; Nies, Dietrich H

    2017-08-14

    Zinc is an essential trace element and at the same time it is toxic at high concentrations. In the beta-proteobacterium Cupriavidus metallidurans the highly efficient removal of surplus zinc from the periplasm is responsible for its outstanding metal resistance. Rather than having a typical Zur-dependent, high-affinity ATP-binding cassette transporter of the ABC protein superfamily for zinc uptake at low concentrations, C. metallidurans instead has the secondary zinc importer ZupT of the ZRT/IRT (ZIP) family. It is important to understand, therefore, how this zinc-resistant bacterium copes when it is exposed to low zinc concentrations. Members of the Zur regulon in C. metallidurans were identified by comparing the transcriptomes of a Δ zur mutant and its parent strain. The consensus sequence of the Zur-binding box was derived for the zupTp promoter-regulatory region using a truncation assay. The motif was used to predict possible Zur-boxes upstream of Zur regulon members. Binding of Zur to these boxes was confirmed. Two Zur-boxes upstream of the cobW 1 gene, encoding a putative zinc chaperone, proved to be required for complete repression of cobW 1 and its downstream genes in cells cultivated in mineral salts medium. A Zur box upstream of each of zur-cobW 2 , cobW 3 and zupT permitted low-expression level of these genes plus their up-regulation under zinc starvation conditions. This demonstrates a compartmentalization of zinc homeostasis in C. metallidurans with the periplasm being responsible for removal of surplus zinc and cytoplasmic components for management of zinc as an essential co-factor, with both compartments connected by ZupT. Importance Elucidating zinc homeostasis is necessary to understand both host-pathogen interactions and performance of free-living bacteria in their natural environment. Escherichia coli acquires zinc under low zinc concentrations by the Zur-controlled ZnuABC importer of the ABC superfamily, and this was also the paradigm for other bacteria. In contrast, the heavy metal-resistant bacterium C. metallidurans achieves high tolerance to zinc due to sophisticated zinc handling and efflux systems operating on periplasmic zinc ions, so that removal of surplus zinc is a periplasmic feature in this bacterium. It is shown here that this process is augmented by management of zinc through cytoplasmic zinc chaperones, whose syntheses are controlled by the Zur regulator. This demonstrates a new mechanism to organize zinc homeostasis through compartmentalization. Copyright © 2017 American Society for Microbiology.

  1. Sex Differences in Cortisol Level and Neurobehavioral Disinhibition in Children of Substance Abusers.

    ERIC Educational Resources Information Center

    Pajer, Kathleen; Gardner, William; Kirillova, Galina P.; Vanyukov, Michael M.

    2001-01-01

    Determines the extent to which cortisol level covaries with psychological dysregulation. Results indicated that dysregulation was higher and cortisol level lower in boys compared to girls. Concludes that boys and girls differ with respect to biochemical indicators of stress reactivity underlying psychological dysregulation, a putative phenotype…

  2. Salmonellosis Outbreak Traced to Playground Sand, Australia, 2007–2009

    PubMed Central

    Musto, Jennie; Hogg, Geoff; Janssen, Monika; Rose, Karrie

    2012-01-01

    A community outbreak of gastroenteritis in Australia during 2007–2009 was caused by ingestion of playground sand contaminated with Salmonella enterica Paratyphi B, variant Java. The bacterium was also isolated from local wildlife. Findings support consideration of nonfood sources during salmonellosis outbreak investigations and indicate transmission through the animal–human interface. PMID:22709539

  3. Chitin utilization by the insect-transmitted bacterium Xylella fastidiosa.

    PubMed

    Killiny, Nabil; Prado, Simone S; Almeida, Rodrigo P P

    2010-09-01

    Xylella fastidiosa is an insect-borne bacterium that colonizes xylem vessels of a large number of host plants, including several crops of economic importance. Chitin is a polysaccharide present in the cuticle of leafhopper vectors of X. fastidiosa and may serve as a carbon source for this bacterium. Biological assays showed that X. fastidiosa reached larger populations in the presence of chitin. Additionally, chitin induced phenotypic changes in this bacterium, notably increasing adhesiveness. Quantitative PCR assays indicated transcriptional changes in the presence of chitin, and an enzymatic assay demonstrated chitinolytic activity by X. fastidiosa. An ortholog of the chitinase A gene (chiA) was identified in the X. fastidiosa genome. The in silico analysis revealed that the open reading frame of chiA encodes a protein of 351 amino acids with an estimated molecular mass of 40 kDa. chiA is in a locus that consists of genes implicated in polysaccharide degradation. Moreover, this locus was also found in the genomes of closely related bacteria in the genus Xanthomonas, which are plant but not insect associated. X. fastidiosa degraded chitin when grown on a solid chitin-yeast extract-agar medium and grew in liquid medium with chitin as the sole carbon source; ChiA was also determined to be secreted. The gene encoding ChiA was cloned into Escherichia coli, and endochitinase activity was detected in the transformant, showing that the gene is functional and involved in chitin degradation. The results suggest that X. fastidiosa may use its vectors' foregut surface as a carbon source. In addition, chitin may trigger X. fastidiosa's gene regulation and biofilm formation within vectors. Further work is necessary to characterize the role of chitin and its utilization in X. fastidiosa.

  4. Chitin Utilization by the Insect-Transmitted Bacterium Xylella fastidiosa▿ †

    PubMed Central

    Killiny, Nabil; Prado, Simone S.; Almeida, Rodrigo P. P.

    2010-01-01

    Xylella fastidiosa is an insect-borne bacterium that colonizes xylem vessels of a large number of host plants, including several crops of economic importance. Chitin is a polysaccharide present in the cuticle of leafhopper vectors of X. fastidiosa and may serve as a carbon source for this bacterium. Biological assays showed that X. fastidiosa reached larger populations in the presence of chitin. Additionally, chitin induced phenotypic changes in this bacterium, notably increasing adhesiveness. Quantitative PCR assays indicated transcriptional changes in the presence of chitin, and an enzymatic assay demonstrated chitinolytic activity by X. fastidiosa. An ortholog of the chitinase A gene (chiA) was identified in the X. fastidiosa genome. The in silico analysis revealed that the open reading frame of chiA encodes a protein of 351 amino acids with an estimated molecular mass of 40 kDa. chiA is in a locus that consists of genes implicated in polysaccharide degradation. Moreover, this locus was also found in the genomes of closely related bacteria in the genus Xanthomonas, which are plant but not insect associated. X. fastidiosa degraded chitin when grown on a solid chitin-yeast extract-agar medium and grew in liquid medium with chitin as the sole carbon source; ChiA was also determined to be secreted. The gene encoding ChiA was cloned into Escherichia coli, and endochitinase activity was detected in the transformant, showing that the gene is functional and involved in chitin degradation. The results suggest that X. fastidiosa may use its vectors' foregut surface as a carbon source. In addition, chitin may trigger X. fastidiosa's gene regulation and biofilm formation within vectors. Further work is necessary to characterize the role of chitin and its utilization in X. fastidiosa. PMID:20656858

  5. Sphingomonas alaskensis Strain AFO1, an Abundant Oligotrophic Ultramicrobacterium from the North Pacific

    PubMed Central

    Eguchi, Mitsuru; Ostrowski, Martin; Fegatella, Fitri; Bowman, John; Nichols, David; Nishino, Tomohiko; Cavicchioli, Ricardo

    2001-01-01

    Numerous studies have established the importance of picoplankton (microorganisms of ≤2 μm in length) in energy flow and nutrient cycling in marine oligotrophic environments, and significant effort has been directed at identifying and isolating heterotrophic picoplankton from the world's oceans. Using a method of diluting natural seawater to extinction followed by monthly subculturing for 12 months, a bacterium was isolated that was able to form colonies on solid medium. The strain was isolated from a 105 dilution of seawater where the standing bacterial count was 3.1 × 105 cells ml−1. This indicated that the isolate was representative of the most abundant bacteria at the sampling site, 1.5 km from Cape Muroto, Japan. The bacterium was characterized and found to be ultramicrosized (less than 0.1 μm3), and the size varied to only a small degree when the cells were starved or grown in rich media. A detailed molecular (16S rRNA sequence, DNA-DNA hybridization, G+C mol%, genome size), chemotaxonomic (lipid analysis, morphology), and physiological (resistance to hydrogen peroxide, heat, and ethanol) characterization of the bacterium revealed that it was a strain of Sphingomonas alaskensis. The type strain, RB2256, was previously isolated from Resurrection Bay, Alaska, and similar isolates have been obtained from the North Sea. The isolation of this species over an extended period, its high abundance at the time of sampling, and its geographical distribution indicate that it has the capacity to proliferate in ocean waters and is therefore likely to be an important contributor in terms of biomass and nutrient cycling in marine environments. PMID:11679312

  6. Acute aerocystitis in Nile tilapia bred in net cages and supplemented with chromium carbochelate and Saccharomyces cerevisiae.

    PubMed

    Castro, Marcello P; Claudiano, Gustavo S; Petrillo, Thalita R; Shimada, Marina Tie; Belo, Marco A A; Marzocchi-Machado, Cleni M; Moraes, Julieta R E; Manrique, G Wilson; Moraes, Flávio R

    2014-01-01

    Oreochromis niloticus bred in net cages were supplemented with cell wall of Saccharomyces cerevisiae (Sc) (0.3%) or chromium carbochelate (Cr) (18 mg/kg of feed) or in association (Sc + Cr), for 90 days. After this period, acute inflammation was induced in the swim bladder by inoculation of 3 × 10(8) CFU of inactivated Streptococcus agalactiae, and another group received 0.65% saline solution (control). Twelve, 24, and 48 h after stimulation, the inflammation was evaluated through total and differential counting of accumulated cells, and through leukocyte respiratory burst in the blood, cortisolemia, glycemia and serum lysozyme concentration. The results showed that there were greater total numbers of cells in the exudate of fish inoculated with inactivated bacterium than in those injected with saline solution, with predominance of lymphocytes, thrombocytes, macrophages and granulocytes. Tilapia supplemented with Cr presented increased total numbers of cells with significant accumulation of lymphocytes and reductions in cortisolemia and glycemia, but the different treatments did not have any influence on leukocyte respiratory burst or serum lysozyme concentration. Tilapia supplemented with Sc and the Cr + Sc association did not present significant changes to the variables evaluated, despite higher accumulation of lymphocytes in the inflammatory exudate from fish treated with Sc. The results indicate that tilapia bred in net cages and supplemented with Cr presented higher total accumulation of cells at the inflammatory focus, thus indicating an increase in the inflammatory response induced by the bacterium, probably due to the reduction in cortisolemia and higher glucose consumption. Thus, supplementation with Cr had beneficial action, which facilitated development of acute inflammation induced by the bacterium, but did not affect neither leukocyte respiratory burst in the blood nor serum lysozyme concentration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. [Diversity analysis of desulfuration bacterium from the oxidation ditch of city sewage treatment plant with SO2 gas].

    PubMed

    Huang, Bing; Zhang, Shi-Ling; Zhang, Jiang-Hong; Ao, Yong; Shi, Zhe

    2011-07-01

    A group of removing SO2 bacterium was obtained from the oxidation ditch of city sewage treatment plant by inductive domestication over 6 d with low concentration SO2 gas, and they have an ability with biodegradation rate of 888 mg x (L x h)(-1) and a degradation efficiency of 85% during 1.5 h for SO2 dissolved in water with their synergy. The clone library and two phylogenetic trees of the removing SO2 bacterium communities were obtained based on 16S rRNA DNA comparison by DNA extraction of the sample and in situ polymerase chain reaction (PCR). The phylogenetic analysis showed that 8 dominant desulfuration bacterium occupy about 69% of all removing SO2 bacterium, and some of them have a kindred with discovered desulfuration bacterium but not homogeneity, and there are four belong to alpha-Proteobacteria, another four belong to beta-Proteobacteria in them. The gene information about 16S rRNA sequence of the dominant desulfuration bacteria and domestication method provide a basic of looking for or domesticating removing SO2 bacterium for development microbial desulfurization technology of contained SO2 tail gas.

  8. In silico Prediction, in vitro Antibacterial Spectrum, and Physicochemical Properties of a Putative Bacteriocin Produced by Lactobacillus rhamnosus Strain L156.4

    PubMed Central

    Oliveira, Letícia de C.; Silveira, Aline M. M.; Monteiro, Andréa de S.; dos Santos, Vera L.; Nicoli, Jacques R.; Azevedo, Vasco A. de C.; Soares, Siomar de C.; Dias-Souza, Marcus V.; Nardi, Regina M. D.

    2017-01-01

    A bacteriocinogenic Lactobacillus rhamnosus L156.4 strain isolated from the feces of NIH mice was identified by 16S rRNA gene sequencing and MALDI-TOF mass spectrometry. The entire genome was sequenced using Illumina, annotated in the PGAAP, and RAST servers, and deposited. Conserved genes associated with bacteriocin synthesis were predicted using BAGEL3, leading to the identification of an open reading frame (ORF) that shows homology with the L. rhamnosus GG (ATCC 53103) prebacteriocin gene. The encoded protein contains a conserved protein motif associated a structural gene of the Enterocin A superfamily. We found ORFs related to the prebacteriocin, immunity protein, ABC transporter proteins, and regulatory genes with 100% identity to those of L. rhamnosus HN001. In this study, we provide evidence of a putative bacteriocin produced by L. rhamnosus L156.4 that was further confirmed by in vitro assays. The antibacterial activity of the substances produced by this strain was evaluated using the deferred agar-spot and spot-on-the lawn assays, and a wide antimicrobial activity spectrum against human and foodborne pathogens was observed. The physicochemical characterization of the putative bacteriocin indicated that it was sensitive to proteolytic enzymes, heat stable and maintained its antibacterial activity in a pH ranging from 3 to 9. The activity against Lactobacillus fermentum, which was used as an indicator strain, was detected during bacterial logarithmic growth phase, and a positive correlation was confirmed between bacterial growth and production of the putative bacteriocin. After a partial purification from cell-free supernatant by salt precipitation, the putative bacteriocin migrated as a diffuse band of approximately 1.0–3.0 kDa by SDS-PAGE. Additional studies are being conducted to explore its use in the food industry for controlling bacterial growth and for probiotic applications. PMID:28579977

  9. Evidence for asymmetrical hybridization despite pre- and post-pollination reproductive barriers between two Silene species

    PubMed Central

    Zhang, Jin-Ju; Montgomery, Benjamin R.; Huang, Shuang-Quan

    2016-01-01

    Interspecific hybridization is widespread among plants; nevertheless, pre- and post-zygotic isolating mechanisms may maintain species integrity for interfertile species in sympatry despite some gene flow. Interspecific hybridization and potential isolating barriers were evaluated between co-flowering Silene asclepiadea and Silene yunnanensis in an alpine community in southwest China. We investigated morphological and molecular (nuclear microsatellites and chloroplast gene sequence) variation in sympatric populations of S. asclepiadea and S. yunnanensis. Additionally, we analyzed pollinator behaviour and compared reproductive success between the putative hybrids and their parental species. Both the molecular and morphological data indicate that there were putative natural hybrids in the field, with S. asclepiadae the ovule parent and S. yunnanensis the pollen parent. Bumblebees were the primary visitors to S. asclepiadae and putative hybrids, while butterflies were the primary visitors to S. yunnanensis. Pollen production and viability were significantly lower in putative hybrids than the parental species. The direction of hybridization is quite asymmetric from S. yunnanensis to S. asclepiadea. Protandry combined with later peak flowering of S. yunnanensis, and pollinator preference may have contributed to the asymmetric pattern of hybridization, but putative hybrids were rare. Our results thus suggest that despite gene flow, S. asclepiadea and S. yunnanensis can maintain species boundaries, perhaps as a result of floral isolation and low fecundity of the hybrids. PMID:27178066

  10. Evidence for asymmetrical hybridization despite pre- and post-pollination reproductive barriers between two Silene species.

    PubMed

    Zhang, Jin-Ju; Montgomery, Benjamin R; Huang, Shuang-Quan

    2016-01-01

    Interspecific hybridization is widespread among plants; nevertheless, pre- and post-zygotic isolating mechanisms may maintain species integrity for interfertile species in sympatry despite some gene flow. Interspecific hybridization and potential isolating barriers were evaluated between co-flowering Silene asclepiadea and Silene yunnanensis in an alpine community in southwest China. We investigated morphological and molecular (nuclear microsatellites and chloroplast gene sequence) variation in sympatric populations of S. asclepiadea and S. yunnanensis. Additionally, we analyzed pollinator behaviour and compared reproductive success between the putative hybrids and their parental species. Both the molecular and morphological data indicate that there were putative natural hybrids in the field, with S. asclepiadae the ovule parent and S. yunnanensis the pollen parent. Bumblebees were the primary visitors to S. asclepiadae and putative hybrids, while butterflies were the primary visitors to S. yunnanensis Pollen production and viability were significantly lower in putative hybrids than the parental species. The direction of hybridization is quite asymmetric from S. yunnanensis to S. asclepiadea Protandry combined with later peak flowering of S. yunnanensis, and pollinator preference may have contributed to the asymmetric pattern of hybridization, but putative hybrids were rare. Our results thus suggest that despite gene flow, S. asclepiadea and S. yunnanensis can maintain species boundaries, perhaps as a result of floral isolation and low fecundity of the hybrids. Published by Oxford University Press on behalf of the Annals of Botany Company.

  11. Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring.

    PubMed

    Singh, Nisha; Mathur, Anshu S; Tuli, Deepak K; Gupta, Ravi P; Barrow, Colin J; Puri, Munish

    2017-01-01

    Cellulose-degrading thermophilic anaerobic bacterium as a suitable host for consolidated bioprocessing (CBP) has been proposed as an economically suited platform for the production of second-generation biofuels. To recognize the overall objective of CBP, fermentation using co-culture of different cellulolytic and sugar-fermenting thermophilic anaerobic bacteria has been widely studied as an approach to achieving improved ethanol production. We assessed monoculture and co-culture fermentation of novel thermophilic anaerobic bacterium for ethanol production from real substrates under controlled conditions. In this study, Clostridium sp. DBT-IOC-C19, a cellulose-degrading thermophilic anaerobic bacterium, was isolated from the cellulolytic enrichment cultures obtained from a Himalayan hot spring. Strain DBT-IOC-C19 exhibited a broad substrate spectrum and presented single-step conversion of various cellulosic and hemicellulosic substrates to ethanol, acetate, and lactate with ethanol being the major fermentation product. Additionally, the effect of varying cellulose concentrations on the fermentation performance of the strain was studied, indicating a maximum cellulose utilization ability of 10 g L -1 cellulose. Avicel degradation kinetics of the strain DBT-IOC-C19 displayed 94.6% degradation at 5 g L -1 and 82.74% degradation at 10 g L -1 avicel concentration within 96 h of fermentation. In a comparative study with Clostridium thermocellum DSM 1313, the ethanol and total product concentrations were higher by the newly isolated strain on pretreated rice straw at an equivalent substrate loading. Three different co-culture combinations were used on various substrates that presented two-fold yield improvement than the monoculture during batch fermentation. This study demonstrated the direct fermentation ability of the novel thermophilic anaerobic bacteria on various cellulosic and hemicellulosic substrates into ethanol without the aid of any exogenous enzymes, representing CBP-based fermentation approach. Here, the broad substrate utilization spectrum of isolated cellulolytic thermophilic anaerobic bacterium was shown to be of potential utility. We demonstrated that the co-culture strategy involving novel strains is efficient in improving ethanol production from real substrate.

  12. Discrimination of putative M1 and M2 muscarinic receptor subtypes in rat brain by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, A.B.; Creese, I.

    1986-03-01

    The EC/sub 50/ of EEDQ for the inhibition of (/sup 3/H)(-)QNB binding in vitro was approximately 3 fold lower for homogenates of hippocampus than brainstem (containing predominantly putative M/sub 1/ and M/sub 2/ muscarinic receptor subtypes respectively). Furthermore, the time-dependent loss of (/sup 3/H)(-)QNB binding produced by 100 ..mu..M EEDQ was faster in homogenates of hippocampus than brainstem. Administration of EEDQ (20 mg/kg i.p.) irreversibly reduced the Bmax of (/sup 3/H)(-)QNB binding by 56% and 34% in hippocampus and brainstem respectively. Pirenzepine competition for the remaining (/sup 3/H)(-)QNB binding sites following in vitro and in vivo treatment with EEDQ revealedmore » a significant increase in the proportion of (/sup 3/H)(-)QNB binding sites having low affinity for pirenzepine (M/sub 2/ receptors), indicating that the high affinity pirenzepine binding sites (M/sub 1/ receptors) were selectively and irreversibly lost. Thus, EEDQ discriminates the same putative M/sub 1/ and M/sub 2/ muscarinic receptor subtypes that are discriminated by pirenzepine. The reduction of (/sup 3/H)(-)QNB binding could be prevented both in vitro and in vivo by atropine or scopolamine. These data may indicate differences in the accessibility of these putative receptor subtypes to EEDQ or, alternatively, differences in the availability of carboxyl groups able to interact with EEDQ at the ligand recognition site of M/sub 1/ and M/sub 2/ muscarinic receptors.« less

  13. Calculated Energy Deposits from the Decay of Tritium and Other Radioisotopes Incorporated into Bacteria

    PubMed Central

    Bockrath, Richard; Person, Stanley; Funk, Fred

    1968-01-01

    Transmutation of the radioisotope tritium occurs with the production of a low energy electron, having a range in biological material similar to the dimensions of a bacterium. A computer program was written to determine the radiation dose distributions which may be expected within a bacterium as a result of tritium decay, when the isotope has been incorporated into specific regions of the bacterium. A nonspherical model bacterium was used, represented by a cylinder with hemispherical ends. The energy distributions resulting from a wide variety of simulated labeled regions were determined; the results suggested that the nuclear region of a bacterium receives on the average significantly different per decay doses, if the labeled regions were those conceivably produced by the incorporation of thymidine-3H, uracil-3H, or 3H-amino acids. Energy distributions in the model bacterium were also calculated for the decay of incorporated 14carbon, 35sulfur, and 32phosphorous. PMID:5678319

  14. Effect of dielectrophoretic force on swimming bacteria.

    PubMed

    Tran, Ngoc Phu; Marcos

    2015-07-01

    Dielectrophoresis (DEP) has been applied widely in bacterial manipulation such as separating, concentrating, and focusing. Previous studies primarily focused on the collective effects of DEP force on the bacterial population. However, the influence of DEP force on the swimming of a single bacterium had not been investigated. In this study, we present a model to analyze the effect of DEP force on a swimming helically flagellated bacterium, particularly on its swimming direction and velocity. We consider a simple DEP force that acts along the X-direction, and its strength as well as direction varies with the X- and Y-positions. Resistive force theory is employed to compute the hydrodynamic force on the bacterium's flagellar bundle, and the effects of both DEP force and rotational diffusion on the swimming of the bacterium are simultaneously taken into consideration using the Fokker-Planck equation. We show the mechanism of how DEP force alters the orientation and velocity of the bacterium. In most cases, the DEP force dominantly influences the orientation of the swimming bacterium; however, when the DEP force strongly varies along the Y-direction, the rotational diffusion is also responsible for determining the bacterium's reorientation. More interestingly, the variance of DEP force along the Y-direction causes the bacterium to experience a translational velocity perpendicular to its primary axis, and this phenomenon could be utilized to focus the bacteria. Finally, we show the feasibility of applying our findings to achieve bacterial focusing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Predicting gene expression levels from codon biases in alpha-proteobacterial genomes.

    PubMed

    Karlin, Samuel; Barnett, Melanie J; Campbell, Allan M; Fisher, Robert F; Mrazek, Jan

    2003-06-10

    Predicted highly expressed (PHX) genes in five currently available high G+C complete alpha-proteobacterial genomes are analyzed. These include: the nitrogen-fixing plant symbionts Sinorhizobium meliloti (SINME) and Mesorhizobium loti (MESLO), the nonpathogenic aquatic bacterium Caulobacter crescentus (CAUCR), the plant pathogen Agrobacterium tumefaciens (AGRTU), and the mammalian pathogen Brucella melitensis (BRUME). Three of these genomes, SINME, AGRTU, and BRUME, contain multiple chromosomes or megaplasmids (>1 Mb length). PHX genes in these genomes are concentrated mainly in the major (largest) chromosome with few PHX genes found in the secondary chromosomes and megaplasmids. Tricarboxylic acid cycle and aerobic respiration genes are strongly PHX in all five genomes, whereas anaerobic pathways of glycolysis and fermentation are mostly not PHX. Only in MESLO (but not SINME) and BRUME are most glycolysis genes PHX. Many flagellar genes are PHX in MESLO and CAUCR, but mostly are not PHX in SINME and AGRTU. The nonmotile BRUME also carries many flagellar genes but these are generally not PHX and all but one are located in the second chromosome. CAUCR stands out among available prokaryotic genomes with 25 PHX TonB-dependent receptors. These are putatively involved in uptake of iron ions and other nonsoluble compounds.

  16. Characterization of Spbhp-37, a Hemoglobin-Binding Protein of Streptococcus pneumoniae

    PubMed Central

    Romero-Espejel, María E.; Rodríguez, Mario A.; Chávez-Munguía, Bibiana; Ríos-Castro, Emmanuel; Olivares-Trejo, José de Jesús

    2016-01-01

    Streptococcus pneumoniae is a Gram-positive microorganism that is the cause of bacterial pneumonia, sinusitis and otitis media. This human pathogen also can cause invasive diseases such as meningitis, bacteremia and septicemia. Hemoglobin (Hb) and haem can support the growth and viability of S. pneumoniae as sole iron sources. Unfortunately, the acquisition mechanism of Hb and haem in this bacterium has been poorly studied. Previously we identified two proteins of 37 and 22 kDa as putative Hb- and haem-binding proteins (Spbhp-37 and Spbhp-22, respectively). The sequence of Spbhp-37 protein was database annotated as lipoprotein without any function or localization. Here it was immunolocalized in the surface cell by transmission electron microscopy using specific antibodies produced against the recombinant protein. The expression of Spbhp-37 was increased when bacteria were grown in media culture supplied with Hb. In addition, the affinity of Sphbp-37 for Hb was determined. Thus, in this work we are presenting new findings that attempt to explain the mechanism involved in iron acquisition of this pathogen. In the future these results could help to develop new therapy targets in order to avoid the secondary effects caused by the traditional therapies. PMID:27200302

  17. A natural plasmid uniquely encodes two biosynthetic pathways creating a potent anti-MRSA antibiotic.

    PubMed

    Fukuda, Daisuke; Haines, Anthony S; Song, Zhongshu; Murphy, Annabel C; Hothersall, Joanne; Stephens, Elton R; Gurney, Rachel; Cox, Russell J; Crosby, John; Willis, Christine L; Simpson, Thomas J; Thomas, Christopher M

    2011-03-31

    Understanding how complex antibiotics are synthesised by their producer bacteria is essential for creation of new families of bioactive compounds. Thiomarinols, produced by marine bacteria belonging to the genus Pseudoalteromonas, are hybrids of two independently active species: the pseudomonic acid mixture, mupirocin, which is used clinically against MRSA, and the pyrrothine core of holomycin. High throughput DNA sequencing of the complete genome of the producer bacterium revealed a novel 97 kb plasmid, pTML1, consisting almost entirely of two distinct gene clusters. Targeted gene knockouts confirmed the role of these clusters in biosynthesis of the two separate components, pseudomonic acid and the pyrrothine, and identified a putative amide synthetase that joins them together. Feeding mupirocin to a mutant unable to make the endogenous pseudomonic acid created a novel hybrid with the pyrrothine via "mutasynthesis" that allows inhibition of mupirocin-resistant isoleucyl-tRNA synthetase, the mupirocin target. A mutant defective in pyrrothine biosynthesis was also able to incorporate alternative amine substrates. Plasmid pTML1 provides a paradigm for combining independent antibiotic biosynthetic pathways or using mutasynthesis to develop a new family of hybrid derivatives that may extend the effective use of mupirocin against MRSA.

  18. An acid-stable bacterial laccase identified from the endophyte Pantoea ananatis Sd-1 genome exhibiting lignin degradation and dye decolorization abilities.

    PubMed

    Shi, Xiaowei; Liu, Qian; Ma, Jiangshan; Liao, Hongdong; Xiong, Xianqiu; Zhang, Keke; Wang, Tengfei; Liu, Xuanmin; Xu, Ting; Yuan, Shanshan; Zhang, Xin; Zhu, Yonghua

    2015-11-01

    Isolation and identification of a novel laccase (namely Lac4) with various industrial applications potentials from an endophytical bacterium. Endophyte Sd-1 cultured in rice straw showed intra- and extra-cellular laccase activities. Genomic analysis of Sd-1 identified four putative laccases, Lac1 to Lac4. However, only Lac4 contains the complete signature sequence of laccase and shares at most 64 % sequence identity with other characterized bacterial multi-copper oxidases. Recombinant Lac4 can oxidize non-phenolic and phenolic compounds under acidic conditions and at 30-50 °C; Km values of Lac4 for ABTS at pH 2.5 and for guaiacol at pH 4.5 were 1 ± 0.15 and 6.1 ± 1.7 mM, respectively. The activity of Lac4 was stimulated by 0.8 mM Cu(2+) and 5 mM Fe(2+). In addition, Lac4 could decolorize various synthetic dyes and exhibit the degradation rate of 38 % for lignin. The data suggest that Lac4 possesses promising biotechnological potentials.

  19. Genomics-Based Exploration of Virulence Determinants and Host-Specific Adaptations of Pseudomonas syringae Strains Isolated from Grasses

    PubMed Central

    Dudnik, Alexey; Dudler, Robert

    2014-01-01

    The Pseudomonas syringae species complex has recently been named the number one plant pathogen, due to its economic and environmental impacts, as well as for its role in scientific research. The bacterium has been repeatedly reported to cause outbreaks on bean, cucumber, stone fruit, kiwi and olive tree, as well as on other crop and non-crop plants. It also serves as a model organism for research on the Type III secretion system (T3SS) and plant-pathogen interactions. While most of the current work on this pathogen is either carried out on one of three model strains found on dicot plants with completely sequenced genomes or on isolates obtained from recent outbreaks, not much is known about strains isolated from grasses (Poaceae). Here, we use comparative genomics in order to identify putative virulence-associated genes and other Poaceae-specific adaptations in several newly available genome sequences of strains isolated from grass species. All strains possess only a small number of known Type III effectors, therefore pointing to the importance of non-Type III secreted virulence factors. The implications of this finding are discussed. PMID:25437611

  20. A multicopper oxidase is essential for manganese oxidation and laccase-like activity in Pedomicrobium sp. ACM 3067.

    PubMed

    Ridge, Justin P; Lin, Marianne; Larsen, Eloise I; Fegan, Mark; McEwan, Alastair G; Sly, Lindsay I

    2007-04-01

    Pedomicrobium sp. ACM 3067 is a budding-hyphal bacterium belonging to the alpha-Proteobacteria which is able to oxidize soluble Mn2+ to insoluble manganese oxide. A cosmid, from a whole-genome library, containing the putative genes responsible for manganese oxidation was identified and a primer-walking approach yielded 4350 bp of novel sequence. Analysis of this sequence showed the presence of a predicted three-gene operon, moxCBA. The moxA gene product showed homology to multicopper oxidases (MCOs) and contained the characteristic four copper-binding motifs (A, B, C and D) common to MCOs. An insertion mutation of moxA showed that this gene was essential for both manganese oxidation and laccase-like activity. The moxB gene product showed homology to a family of outer membrane proteins which are essential for Type I secretion in Gram-negative bacteria. moxBA has not been observed in other manganese-oxidizing bacteria but homologues were identified in the genomes of several bacteria including Sinorhizobium meliloti 1021 and Agrobacterium tumefaciens C58. These results suggest that moxBA and its homologues constitute a family of genes encoding an MCO and a predicted component of the Type I secretion system.

  1. Absorption and fluorescence spectroscopic characterization of BLUF domain of AppA from Rhodobacter sphaeroides

    NASA Astrophysics Data System (ADS)

    Zirak, P.; Penzkofer, A.; Schiereis, T.; Hegemann, P.; Jung, A.; Schlichting, I.

    2005-08-01

    The BLUF domain of the transcriptional anti-repressor protein AppA from the non-sulfur anoxyphototrophic purple bacterium Rhodobacter sphaeroides was characterized by absorption and emission spectroscopy. The BLUF domain constructs AppA 148 (consisting of amino-acid residues 1-148) and AppA 126 (amino-acid residues 1-126) are investigated. The cofactor of the investigated domains is found to consist of a mixture of the flavins riboflavin, FMN, and FAD. The dark-adapted domains exist in two different active receptor conformations (receptor states) with different sub-nanosecond fluorescence lifetimes (BLUF r,f and BLUF r,sl) and a small non-interacting conformation (BLUF nc). The active receptor conformations are transformed to putative signalling states (BLUF s,f and BLUF s,sl) of low fluorescence efficiency and picosecond fluorescence lifetime by blue-light excitation (light-adapted domains). In the dark at room temperature both signalling states recover back to the initial receptor states with a time constant of about 17 min. A quantum yield of signalling state formation of about 25% was determined by intensity dependent transmission measurements. A photo-cycle scheme is presented including photo-induced charge transfer complex formation, charge recombination, and protein binding pocket reorganisation.

  2. Characterization of the Xylella fastidiosa PD1671 Gene Encoding Degenerate c-di-GMP GGDEF/EAL Domains, and Its Role in the Development of Pierce’s Disease

    PubMed Central

    Cursino, Luciana; Athinuwat, Dusit; Patel, Kelly R.; Galvani, Cheryl D.; Zaini, Paulo A.; Li, Yaxin; De La Fuente, Leonardo; Hoch, Harvey C.; Burr, Thomas J.; Mowery, Patricia

    2015-01-01

    Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases including Pierce’s disease of grapevines. X. fastidiosa is thought to induce disease by colonizing and clogging xylem vessels through the formation of cell aggregates and bacterial biofilms. Here we examine the role in X. fastidiosa virulence of an uncharacterized gene, PD1671, annotated as a two-component response regulator with potential GGDEF and EAL domains. GGDEF domains are found in c-di-GMP diguanylate cyclases while EAL domains are found in phosphodiesterases, and these domains are for c-di-GMP production and turnover, respectively. Functional analysis of the PD1671 gene revealed that it affected multiple X. fastidiosa virulence-related phenotypes. A Tn5 PD1671 mutant had a hypervirulent phenotype in grapevines presumably due to enhanced expression of gum genes leading to increased exopolysaccharide levels that resulted in elevated biofilm formation. Interestingly, the PD1671 mutant also had decreased motility in vitro but did not show a reduced distribution in grapevines following inoculation. Given these responses, the putative PD1671 protein may be a negative regulator of X. fastidiosa virulence. PMID:25811864

  3. Characterization of the Xylella fastidiosa PD1671 gene encoding degenerate c-di-GMP GGDEF/EAL domains, and its role in the development of Pierce's disease.

    PubMed

    Cursino, Luciana; Athinuwat, Dusit; Patel, Kelly R; Galvani, Cheryl D; Zaini, Paulo A; Li, Yaxin; De La Fuente, Leonardo; Hoch, Harvey C; Burr, Thomas J; Mowery, Patricia

    2015-01-01

    Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases including Pierce's disease of grapevines. X. fastidiosa is thought to induce disease by colonizing and clogging xylem vessels through the formation of cell aggregates and bacterial biofilms. Here we examine the role in X. fastidiosa virulence of an uncharacterized gene, PD1671, annotated as a two-component response regulator with potential GGDEF and EAL domains. GGDEF domains are found in c-di-GMP diguanylate cyclases while EAL domains are found in phosphodiesterases, and these domains are for c-di-GMP production and turnover, respectively. Functional analysis of the PD1671 gene revealed that it affected multiple X. fastidiosa virulence-related phenotypes. A Tn5 PD1671 mutant had a hypervirulent phenotype in grapevines presumably due to enhanced expression of gum genes leading to increased exopolysaccharide levels that resulted in elevated biofilm formation. Interestingly, the PD1671 mutant also had decreased motility in vitro but did not show a reduced distribution in grapevines following inoculation. Given these responses, the putative PD1671 protein may be a negative regulator of X. fastidiosa virulence.

  4. Paenilarvins: Iturin family lipopeptides from the honey bee pathogen Paenibacillus larvae.

    PubMed

    Sood, Sakshi; Steinmetz, Heinrich; Beims, Hannes; Mohr, Kathrin I; Stadler, Marc; Djukic, Marvin; von der Ohe, Werner; Steinert, Michael; Daniel, Rolf; Müller, Rolf

    2014-09-05

    The bacterium Paenibacillus larvae has been extensively studied as it is an appalling honey bee pathogen. In the present work, we screened crude extracts derived from fermentations of P. larvae genotypes ERIC I and II for antimicrobial activity, following the detection of four putative secondary metabolite gene clusters that show high sequence homology to known biosynthetic gene clusters for the biosynthesis of antibiotics. Low molecular weight metabolites produced by P. larvae have recently been shown to have toxic effects on honey bee larvae. Moreover, a novel tripeptide, sevadicin, was recently characterized from laboratory cultures of P. larvae. In this study, paenilarvins, which are iturinic lipopeptides exhibiting strong antifungal activities, were obtained by bioassay-guided fractionation from cultures of P. larvae, genotype ERIC II. Their molecular structures were determined by extensive 2D NMR spectroscopy, high resolution mass spectrometry, and other methods. Paenilarvins are the first antifungal secondary metabolites to be identified from P. larvae. In preliminary experiments, these lipopeptides also affected honey bee larvae and might thus play a role in P. larvae survival and pathogenesis. However, further studies are needed to investigate their function. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Biotechnology

    NASA Image and Video Library

    2003-01-22

    Salmonella typhimurium appears green in on human intestinal tissue (stained red) cultured in a NASA rotating wall bioreactor. Dr. Cheryl Nickerson of Tulane University is studying the effects of simulated low-g on a well-known pathogen, Salmonella typhimurium, a bacterium that causes two to four million cases of gastrointestinal illness in the United States each year. While most healthy people recover readily, S. typhimurium can kill people with weakened immune systems. Thus, a simple case of food poisoning could disrupt a space mission. Using the NASA rotating-wall bioreactor, Nickerson cultured S. typhimurium in modeled microgravity. Mice infected with the bacterium died an average of three days faster than the control mice, indicating that S. typhimurium's virulence was enhanced by the bioreactor. Earlier research showed that 3 percent of the genes were altered by exposure to the bioreactor. Nickerson's work earned her a 2001 Presidential Early Career Award for Scientists and Engineers.

  6. Draft genome sequence of Bradyrhizobium sp. strain BR 3262, an effective microsymbiont recommended for cowpea inoculation in Brazil.

    PubMed

    Simões-Araújo, Jean Luiz; Leite, Jakson; Marie Rouws, Luc Felicianus; Passos, Samuel Ribeiro; Xavier, Gustavo Ribeiro; Rumjanek, Norma Gouvêa; Zilli, Jerri Édson

    The strain BR 3262 was isolated from nodule of cowpea (Vigna unguiculata L. Walp) growing in soil of the Atlantic Forest area in Brazil and it is reported as an efficient nitrogen fixing bacterium associated to cowpea. Firstly, this strain was assigned as Bradyrhizobium elkanii, however, recently a more detailed genetic and molecular characterization has indicated it could be a Bradyrhizobium pachyrhizi species. We report here the draft genome sequence of B. pachyrhizi strain BR 3262, an elite bacterium used as inoculant for cowpea. The whole genome with 116 scaffolds, 8,965,178bp and 63.8% of C+G content for BR 3262 was obtained using Illumina MiSeq sequencing technology. Annotation was added by the RAST prokaryotic genome annotation service and shown 8369 coding sequences, 52 RNAs genes, classified in 504 subsystems. Published by Elsevier Editora Ltda.

  7. Bioethanol production from mannitol by a newly isolated bacterium, Enterobacter sp. JMP3.

    PubMed

    Wang, Jing; Kim, Young Mi; Rhee, Hong Soon; Lee, Min Woo; Park, Jong Moon

    2013-05-01

    In this study a new bacterium capable of growing on brown seaweed Laminaria japonica, Enterobacter sp. JMP3 was isolated from the gut of turban shell, Batillus cornutus. In anaerobic condition, it produced high yields of ethanol (1.15 mol-EtOH mol-mannitol(-1)) as well as organic acids from mannitol, the major carbohydrate component of L. japonica. Based on carbon distribution and metabolic flux analysis, it was revealed that mannitol was more favorable than glucose for ethanol production due to their different redox states. This indicates that L. japonica is one of the promising feedstock for bioethanol production. Additionally, the mannitol dehydrogenation pathway in Enterobacter sp. JMP3 was examined and verified. Finally, an attempt was made to explore the possibility of controlling ethanol production by altering the redox potential via addition of external NADH in mannitol fermentation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Concentration-dependent effects of carbon nanotubes on growth and biphenyl degradation of Dyella ginsengisoli LA-4.

    PubMed

    Qu, Yuanyuan; Wang, Jingwei; Zhou, Hao; Ma, Qiao; Zhang, Zhaojing; Li, Duanxing; Shen, Wenli; Zhou, Jiti

    2016-02-01

    To enrich the understanding on interactions between carbon nanotubes (CNTs) and microbes, the responses of a biphenyl-degrading bacterium to single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs) and carboxyl single-walled carbon nanotubes (SWCNT-COOHs) were investigated. Electron microscopy, viability test, cellular membrane integrity, and oxidative stress analyses indicated that CNT toxicity was mainly caused by physical piercing. Apart from antibacterial activities, the experimental results showed that CNTs enhanced cell growth and biphenyl degradation at certain concentrations (1.0-1.5 mg/L). The CNTs aggregated and adsorbed cells and biphenyl to form a CNTs-cells-biphenyl coexisting system, thus it created a suitable microenvironment for cell attachment and proliferation where the cells could utilize biphenyl easier for their growth. To the best of our knowledge, this is the first report about CNTs' impact on biodegradation efficacy and growth of aromatic-degrading bacterium.

  9. Initiation of Anaerobic Degradation of p-Cresol by Formation of 4-Hydroxybenzylsuccinate in Desulfobacterium cetonicum

    PubMed Central

    Müller, Jochen A.; Galushko, Alexander S.; Kappler, Andreas; Schink, Bernhard

    2001-01-01

    The anaerobic bacterium Desulfobacterium cetonicum oxidized p-cresol completely to CO2 with sulfate as the electron acceptor. During growth, 4-hydroxybenzylsuccinate accumulated in the medium. This finding indicated that the methyl group of p-cresol is activated by addition to fumarate, analogous to anaerobic toluene, m-xylene, and m-cresol degradation. In cell extracts, the formation of 4-hydroxybenzylsuccinate from p-cresol and fumarate was detected at an initial rate of 0.57 nmol min−1 (mg of protein)−1. This activity was specific for extracts of p-cresol-grown cells. 4-Hydroxybenzylsuccinate was degraded further to 4-hydroxybenzoyl-coenzyme A (CoA), most likely via β-oxidation. 4-Hydroxybenzoyl-CoA was reductively dehydroxylated to benzoyl-CoA. There was no evidence of degradation of p-cresol via methyl group oxidation by p-cresol-methylhydroxylase in this bacterium. PMID:11133971

  10. Confounders of mutation-rate estimators: selection and phenotypic lag in Thermus thermophilus

    PubMed Central

    Kissling, Grace E.; Grogan, Dennis W.; Drake, John W.

    2015-01-01

    In a recent description of the rate and character of spontaneous mutation in the hyperthermophilic bacterium Thermus thermophilus, the mutation rate was observed to be substantially lower than seen in several mesophiles. Subsequently, a report appeared indicating that this bacterium maintains an average of about 4.5 genomes per cell. This number of genomes might result in a segregation lag for the expression of a recessive mutation and might therefore lead to an underestimate of the rate of mutation. Here we describe some kinds of problems that may arise when estimating mutation rates and outline ways to adjust the rates accordingly. The emphasis is mainly on differential rates of growth of mutants versus their parents and on various kinds of phenotypic lag. We then apply these methods to the T. thermophilus data and conclude that there is as yet no reliable impact on a previously described rate. PMID:23916418

  11. Salmonella Typhimurium grown in a rotating wall bioreactor

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Salmonella typhimurium appears green in on human intestinal tissue (stained red) cultured in a NASA rotating wall bioreactor. Dr. Cheryl Nickerson of Tulane University is studying the effects of simulated low-g on a well-known pathogen, Salmonella typhimurium, a bacterium that causes two to four million cases of gastrointestinal illness in the United States each year. While most healthy people recover readily, S. typhimurium can kill people with weakened immune systems. Thus, a simple case of food poisoning could disrupt a space mission. Using the NASA rotating-wall bioreactor, Nickerson cultured S. typhimurium in modeled microgravity. Mice infected with the bacterium died an average of three days faster than the control mice, indicating that S. typhimurium's virulence was enhanced by the bioreactor. Earlier research showed that 3 percent of the genes were altered by exposure to the bioreactor. Nickerson's work earned her a 2001 Presidential Early Career Award for Scientists and Engineers.

  12. Microarray-mediated transcriptome analysis of the tributyltin (TBT)-resistant bacterium Pseudomonas aeruginosa 25W in the presence of TBT.

    PubMed

    Dubey, Santosh K; Tokashiki, Tsutomu; Suzuki, Satoru

    2006-04-01

    The tributyltin (TBT)-resistant bacterium, Pseudomonas aeruginosa 25W, which was isolated in seawater from the Arabian Sea, was subjected to transcriptome analysis in the presence of high concentrations of TBT. Only slight effects were observed at TBT concentration of 50 microM, but exposure to 500 microM resulted in the upregulation of 6 genes and the downregulation of 75. Among the 75 downregulated genes, 53% (40 out of 75) were of hypothetical function, followed by 14 transcriptional regulation- and translation-associated genes. The results of this study indicated that although the 25W strain was highly resistant to TBT, high concentrations of TBT result in toxic effect on the transcriptional and translational levels. The target genes likely belong to a specific category of transcription- and translation-associated genes rather than to other gene categories.

  13. Different sensitivities to oxygen between two strains of the photosynthetic green sulfur bacterium Chlorobium vibrioforme NCIB 8327 with bacteriochlorophyll c and d.

    PubMed

    Harada, Jiro; Saga, Yoshitaka; Oh-oka, Hirozo; Tamiaki, Hitoshi

    2005-11-01

    Two sub-strains of the anoxygenic photosynthetic green sulfur bacterium Chlorobium vibrioforme NCIB 8327 were derived from the same clone and could be discriminated only by their possession of either bacteriochlorophyll (BChl) c or d as the major pigment in the peripheral light-harvesting antenna system, chlorosome (Saga Y et al. (2003) Anal Sci 19: 1575-1579). In the presence of a proper amount of oxygen in the initial culture medium, the BChl d strain showed longer retardation on its growth initiation than the BChl c strain, indicating that the latter was advantageous for survival under aerobic light conditions which produced reactive oxygen species in vivo. The result would be ascribable to the difference of the midpoint potentials between two kinds of chlorosomes formed by self-aggregates of BChl c and d as measured by their fluorescence quenching.

  14. Edwardsiella ictaluri Encodes an Acid Activated Urease that is Required for Intracellular Replication in Channel Catfish Ictalurus punctatus Macrophages

    USDA-ARS?s Scientific Manuscript database

    Genomic analysis indicated that Edwardsiella ictaluri encodes a putative ureasepathogenicity island containing 9 open reading frames, including urea and ammonium transporters. In vitro studies with the wild-type E. ictaluri and a ureG::kan urease mutant strain indicated that E. ictaluri is significa...

  15. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taghavi, S.; van der Lelie, D.; Hoffman, A.

    2010-05-13

    Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpa x deltoides cv. H11-11), a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1). Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plantmore » roots), root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis), colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase), plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol), and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT-PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further exploited to improve establishment and sustainable production of poplar as an energy feedstock on marginal, non-agricultural soils using endophytic bacteria as growth promoting agents. Poplar is considered as the model tree species for the production of lignocellulosic biomass destined for biofuel production. The plant growth promoting endophytic bacterium Enterobacter sp. 638 can improve the growth of poplar on marginal soils by as much as 40%. This prompted us to sequence the genome of this strain and, via comparative genomics, identify functions essential for the successful colonization and endophytic association with its poplar host. Analysis of the genome sequence, combined with metabolite analysis and quantitative PCR, pointed to a remarkable interaction between Enterobacter sp. 638 and its poplar host with the endophyte responsible for the production of a phytohormone, and a precursor for another that poplar is unable to synthesize, and where the production of the plant growth promoting compounds depended on the presence of plant synthesized compounds, such as sucrose, in the growth medium. Our results provide the basis to better understanding the synergistic interactions between poplar and Enterobacter sp. 638. This information can be further exploited to improve establishment and sustainable production of poplar on marginal, non-agricultural soils using endophytic bacteria such as Enterobacter sp. 638 as growth promoting agents.« less

  16. Recent research advances on Chromobacterium violaceum.

    PubMed

    Kothari, Vijay; Sharma, Sakshi; Padia, Divya

    2017-08-01

    Chromobacterium violaceum is a gram-negative bacterium, which has been used widely in microbiology labs involved in quorum sensing (QS) research. Among the QS-regulated traits of this bacterium, violacein production has received the maximum attention. Violacein production in this organism, however is not under sole control of QS machinery, and other QS-regulated traits of this bacterium also need to be investigated in better detail. Though not often involved in human infections, this bacterium is being viewed as an emerging pathogen. This review attempts to highlight the recent research advances on C. violaceum, with respect to violacein biosynthesis, development of various applications of this bacterium and its bioactive metabolite violacein, and its pathogenicity. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  17. Characterization of the cellulose-degrading bacterium NCIMB 10462

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dees, C.; Scott, T.C.; Phelps, T.J.

    The gram-negative cellulase-producing bacterium NCIMB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulose. Because of renewed interest in cellulose-degrading bacteria for use in the bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its true metabolic potential. Metabolic and physical characterization of NCIMB 10462 revealed that this is an alkalophilic, non-fermentative, gram-negative, oxidase-positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium has few characteristics consistent with a classification of P. fluorescens and a very low probability match with the genus Sphingomonas. However, total lipid analysismore » did not reveal that any sphingolipid bases are produced by this bacterium. NCIMB 10462 grows best aerobically, but also grows well in complex media under reducing conditions. NCIMB 10462 grows slowly under anaerobic conditions on complex media, but growth on cellulosic media occurred only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIMB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is its ability to degrade cellulose, we suggest that it be called Pseudomonas cellulosa.« less

  18. Understanding the interaction between an obligate hyperparasitic bacterium, Pasteuria penetrans and its obligate plant-parasitic nematode host, Meloidogyne spp.

    PubMed

    Davies, Keith G

    2009-01-01

    Pasteuria penetrans is an endospore-forming bacterium, which is a hyperparasite of root-knot nematodes Meloidogyne spp. that are economically important pests of a wide range of crops. The life cycle of the bacterium and nematode are described with emphasis on the bacterium's potential as a biocontrol agent. Two aspects that currently prohibit the commercial development of the bacterium as a biocontrol agent are the inability to culture it outside its host and its host specificity. Vegetative growth of the bacterium is possible in vitro; however, getting the vegetative stages of the bacterium to enter sporogenesis has been problematic. Insights from genomic survey sequences regarding the role of cation concentration and the phosphorylation of Spo0F have proved useful in inducing vegetative bacteria to sporulate. Similarly, genomic data have also proved useful in understanding the attachment of endospores to the cuticle of infective nematode juveniles, and a Velcro-like model of spore attachment is proposed that involves collagen-like fibres on the surface of the endospore interacting with mucins on the nematode cuticle. Ecological studies of the interactions between Daphnia and Pasteuria ramosa are examined and similarities are drawn between the co-evolution of virulence in the Daphnia system and that of plant-parasitic nematodes.

  19. Determination of phenanthrene bioavailability by using a self-dying reporter bacterium: test with model solids and soil.

    PubMed

    Shin, Doyun; Nam, Kyoungphile

    2012-02-20

    The present study was conducted to investigate the performance and feasibility of a self-dying reporter bacterium to visualize and quantify phenanthrene bioavailability in soil. The self-dying reporter bacterium was designed to die on the initiation of phenanthrene biodegradation. The viability of the reporter bacterium was determined by a fluorescence live/dead cell staining method and visualized by confocal laser scanning microscopic observation. Phenanthrene was spiked into four types of model solids and a sandy loam. The bioavailability of phenanthrene to the reporter bacterium was remarkably declined with the hydrophobicity of the model solids: essentially no phenanthrene was biodegraded in the presence of 9-nm pores and about 35.8% of initial phenanthrene was biodegraded without pores. Decrease in bioavailability was not evident in the nonporous hydrophilic bead, but a small decrease was observed in the porous hydrophilic bead at 1000 mg/kg of phenanthrene. The fluorescence intensity was commensurate with the extent of phenanthrene biodegradation by the reporter bacterium at the concentration range from 50 to 500 mg/kg. Such a quantitative relationship was also confirmed with a sandy loam spiked up to 1000 mg/kg of phenanthrene. This reporter bacterium may be a useful means to determine phenanthrene bioavailability in soil. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Database of Autotransplants for Breast Cancer.

    DTIC Science & Technology

    1996-12-01

    Infections (Indicate code for atypical bacteria; 301 Herpes Simplex (HSV1, HSV2) list bacterium for non-atypical bacteria.) 302 Herpes Zoster ( Chicken pox ...for non-atypical bacteria.) 302 Herpes Zoster ( Chicken pox , Varicella) 303 Cytomegalovirus (CMV) 100 Atypical bacteria, not otherwise specified 304... Chicken pox , Varicella) 303 Cytomegalovirus (CMV) 100 Atypical bacteria, not otherwise specified 304 Adenovirus 101 Coxiella 305 Enterovirus (Coxsackie

  1. Occurrence and molecular characterization of cultivable mesophilic and thermophilic obligate anaerobic bacteria isolated from paper mills.

    PubMed

    Suihko, Maija-Liisa; Partanen, Laila; Mattila-Sandholm, Tiina; Raaska, Laura

    2005-08-01

    The aim of this work was to characterize the cultivable obligate anaerobic bacterial population in paper mill environments. A total of 177 anaerobically grown bacterial isolates were screened for aerotolerance, from which 67 obligate anaerobes were characterized by automated ribotyping and 41 were further identified by partial 16S rDNA sequencing. The mesophilic isolates indicated 11 different taxa (species) within the genus Clostridium and the thermophilic isolates four taxa within the genus Thermoanaerobacterium and one within Thermoanaerobacter (both formerly Clostridium). The most widespread mesophilic bacterium was closely related to C. magnum and occurred in three of four mills. One mill was contaminated with a novel mesophilic bacterium most closely related to C. thiosulfatireducens. The most common thermophile was T. thermosaccharolyticum, occurring in all four mills. The genetic relationships of the mill isolates to described species indicated that most of them are potential members of new species. On the basis of identical ribotypes clay could be identified to be the contamination source of thermophilic bacteria. Automated ribotyping can be a useful tool for the identification of clostridia as soon as comprehensive identification libraries are available.

  2. Evaluation of the tannic acid inhibitory effect against the NorA efflux pump of Staphylococcus aureus.

    PubMed

    Tintino, Saulo R; Oliveira-Tintino, Cícera D M; Campina, Fábia F; Silva, Raimundo L P; Costa, Maria do S; Menezes, Irwin R A; Calixto-Júnior, João T; Siqueira-Junior, José P; Coutinho, Henrique D M; Leal-Balbino, Tereza C; Balbino, Valdir Q

    2016-08-01

    During the early periods of antibiotic usage, bacterial infections were considered tamed. However, widespread antibiotic use has promoted the emergence of antibiotic-resistant pathogens, including multidrug resistant strains. Active efflux is a mechanism for bacterial resistance to inhibitory substances, known simply as drug efflux pumps. The bacterium Staphylococcus aureus is an important pathogenic bacterium responsible for an array of infections. The NorA efflux pump has been shown to be responsible for moderate fluoroquinolone resistance of S. aureus. The inhibition of the efflux pump was assayed using a sub-inhibitory concentration of standard efflux pump inhibitors and tannic acid (MIC/8), where its capacity to decrease the MIC of Ethidium bromide (EtBr) and antibiotics due to the possible inhibitory effect of these substances was observed. The MICs of EtBr and antibiotics were significantly reduced in the presence of tannic acid, indicating the inhibitory effect of this agent against the efflux pumps of both strains causing a three-fold reduction of the MIC when compared with the control. These results indicate the possible usage of tannic acid as an adjuvant in antibiotic therapy against multidrug resistant bacteria (MDR). Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A Review of Selected Candidate Endophenotypes for Depression

    PubMed Central

    Goldstein, Brandon L.; Klein, Daniel N.

    2014-01-01

    Endophenotypes are proposed to occupy an intermediate position in the pathway between genotype and phenotype in genetically complex disorders such as depression. To be considered an endophenotype, a construct must meet a set of criteria proposed by Gottesman and Gould (2003). In this qualitative review, we summarize evidence for each criterion for several putative endophenotypes for depression: neuroticism, morning cortisol, frontal asymmetry of cortical electrical activity, reward learning, and biases of attention and memory. Our review indicates that while there is strong support for some depression endophenotypes, other putative endophenotypes lack data or have inconsistent findings for core criteria. PMID:25006008

  4. Identification and Characterization of Long Non-Coding RNAs Related to Mouse Embryonic Brain Development from Available Transcriptomic Data

    PubMed Central

    He, Hongjuan; Xiu, Youcheng; Guo, Jing; Liu, Hui; Liu, Qi; Zeng, Tiebo; Chen, Yan; Zhang, Yan; Wu, Qiong

    2013-01-01

    Long non-coding RNAs (lncRNAs) as a key group of non-coding RNAs have gained widely attention. Though lncRNAs have been functionally annotated and systematic explored in higher mammals, few are under systematical identification and annotation. Owing to the expression specificity, known lncRNAs expressed in embryonic brain tissues remain still limited. Considering a large number of lncRNAs are only transcribed in brain tissues, studies of lncRNAs in developmental brain are therefore of special interest. Here, publicly available RNA-sequencing (RNA-seq) data in embryonic brain are integrated to identify thousands of embryonic brain lncRNAs by a customized pipeline. A significant proportion of novel transcripts have not been annotated by available genomic resources. The putative embryonic brain lncRNAs are shorter in length, less spliced and show less conservation than known genes. The expression of putative lncRNAs is in one tenth on average of known coding genes, while comparable with known lncRNAs. From chromatin data, putative embryonic brain lncRNAs are associated with active chromatin marks, comparable with known lncRNAs. Embryonic brain expressed lncRNAs are also indicated to have expression though not evident in adult brain. Gene Ontology analysis of putative embryonic brain lncRNAs suggests that they are associated with brain development. The putative lncRNAs are shown to be related to possible cis-regulatory roles in imprinting even themselves are deemed to be imprinted lncRNAs. Re-analysis of one knockdown data suggests that four regulators are associated with lncRNAs. Taken together, the identification and systematic analysis of putative lncRNAs would provide novel insights into uncharacterized mouse non-coding regions and the relationships with mammalian embryonic brain development. PMID:23967161

  5. 76 FR 8603 - Citrus Seed Imports; Citrus Greening and Citrus Variegated Chlorosis

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... strain of the bacterium Xylella fastidiosa, CVC causes severe chlorosis between veins on the leaves of...\\ ARS researchers did note, however, that the bacterium causing HLB remained at a very low titer in... these 769 seedlings tested positive for the disease. However, titer levels of the bacterium were low...

  6. Isolation and characterization of Leu[7]-Surfactin from the endophytic bacterium Bacillus mojavensis RRC 101, a biocontrol agent for Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Bacillus mojavensis is an endophytic bacterium patented for control of fungal diseases in maize and other plants. Culture extracts and filtrates from this bacterium were antagonistic to the pathogenic and mycotoxic fungus Fusarium verticillioides. However, the identity of the inhibitory substance ...

  7. Co-infections and transmission dynamics in a tick-borne bacterium community exposed to songbirds.

    PubMed

    Heylen, Dieter; Fonville, Manoj; van Leeuwen, Arieke Docters; Sprong, Hein

    2016-03-01

    We investigated the transmission dynamics of a community of tick-borne pathogenic bacteria in a common European songbird (Parus major). Tick-naïve birds were infested with three successive batches (spaced 5 days apart) of field-collected Ixodes ricinus nymphs, carrying the following tick-borne bacteria: Rickettsia helvetica (16.9%), Borrelia garinii (1.9%), Borrelia miyamotoi (1.6%), Anaplasma phagocytophilum (1.2%) and Candidatus Neoehrlichia mikurensis (0.4%). Fed ticks were screened for the pathogens after moulting to the next developmental phase. We found evidence for early transmission (within 2.75 days after exposure) of R. helvetica and B. garinii, and to a lesser extent of A. phagocytophilum based on the increased infection rates of ticks during the first infestation. The proportion of ticks infected with R. helvetica remained constant over the three infestations. In contrast, the infection rate of B. garinii in the ticks increased over the three infestations, indicating a more gradual development of host tissue infection. No interactions were found among the different bacterium species during transmission. Birds did not transmit or amplify the other bacterial species. We show that individual birds can transmit several pathogenic bacterium species at the same time using different mechanisms, and that the transmission facilitation by birds increases the frequency of co-infections in ticks. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Cloacibacterium normanense gen. nov., sp. nov., a novel bacterium in the family Flavobacteriaceae isolated from municipal wastewater.

    PubMed

    Allen, Toby D; Lawson, Paul A; Collins, Matthew D; Falsen, Enevold; Tanner, Ralph S

    2006-06-01

    Phenotypic and phylogenetic studies were performed on three isolates of an unknown Gram-negative, facultatively anaerobic, non-motile, yellow-pigmented, rod-shaped organism isolated from raw sewage. 16S rRNA gene sequence analysis indicated that these strains were members of the Bergeyella-Chryseobacterium-Riemerella branch of the family Flavobacteriaceae. The unknown bacterium was readily distinguished from reference strains by 16S rRNA gene sequencing and biochemical tests. The organism contained menaquinone MK-6 as the predominant respiratory quinone and had a DNA G+C content of 31 mol%. A most probable number-PCR approach was developed to detect, and estimate the numbers of, this organism. Untreated wastewater from one plant yielded an estimated count of 1.4 x 10(5) cells ml(-1), and untreated wastewater from a second plant yielded an estimated count of 1.4 x 10(4) cells ml(-1). Signal was not detected from treated effluent or from human stool specimens. On the basis of the results of the study presented, it is proposed that the unknown bacterium be classified in a novel genus Cloacibacterium, as Cloacibacterium normanense gen. nov., sp. nov., which is also the type species. The type strain of Cloacibacterium normanense is strain NRS1(T) (=CCUG 46293(T) = CIP 108613(T) = ATCC BAA-825(T) = DSM 15886(T)).

  9. DEVRIESEASIS IN A PLUMED BASILISK (BASILISCUS PLUMIFRONS) AND CHINESE WATER DRAGONS (PHYSIGNATHUS COCINCINUS) IN A ZOOLOGIC COLLECTION.

    PubMed

    Rossier, Christophe; Hoby, Stefan; Wenker, Christian; Brawand, Stefanie Gobeli; Thomann, Andreas; Brodard, Isabelle; Jermann, Thomas; Posthaus, Horst

    2016-03-01

    Devriesea agamarum is a Gram-positive bacterium that was first described in 2008 as a causative agent of disease in lizards. Until today, reports from several countries reported the presence of this bacterium in various lizard species, which suggests a wide distribution among lizard collections. Pathologic lesions ranged from proliferative dermatitis and cheilitis to abscesses in multiple organs and septicemia in single animals, as well as entire groups. Until now, disease caused by D. agamarum has been reported in several lizard species. Because the bacterium is only identified by 16S rRNA sequencing and no commercially available identification systems contain the agent in their database, it may be underdiagnosed. This report describes a series of fatal devrieseasis in plumed basilisks (Basiliscus plumifrons) and Chinese water dragons (Physignathus cocincinus) from a zoologic collection and extends the range of susceptible species. In 3 mo, five animals died with pyogranulomatous lesions in the subcutis, the coelomic cavity, or multiple organs. In all cases, diffuse swelling or focal skin elevations of different body parts were observed. Devriesea agamarum could be isolated from lesions in all animals. A subsequent clinical survey of the lizard collection including bacteriologic investigation of oral cavity swabs indicated that bearded dragons (Pogona vitticeps) were carriers of D. agamarum, which suggests that this species could be a source of infection with this pathogen.

  10. Isolation and characterization of Sphingomonas sp. Y2 capable of high-efficiency degradation of nonylphenol polyethoxylates in wastewater.

    PubMed

    Bai, Naling; Wang, Sheng; Abuduaini, Rexiding; Zhu, Xufen; Zhao, Yuhua

    2016-06-01

    Nonylphenol polyethoxylates (NPEOs), although banned for decades, are still widely used in manufactories and thus affect human lives. In this study, a highly efficient NPEO-degrading bacterium, Sphingomonas sp. Y2, was isolated from sewage sludge by enrichment culture. Strain Y2 ensured the complete removal of NPEO in 48 h and degraded 99.2 % NPEO (1,000 mg L(-1)) within 30 h at a specific growth rate of 0.73 h(-1) in minimum salt medium. To date, this degradation efficiency is the highest reported for NPEO metabolism by a pure bacterium under this condition. Furthermore, the application of this bacterium to wastewater treatment demonstrated that it metabolized 98.5 % NPEO (1,000 mg L(-1)) within 5 days with a specific growth rate of 2.03 day(-1). The degradation intermediates, identified as nonylphenol, short-chain NPEOs and short-chain nonylphenol polyethoxycarboxylates by high-performance liquid chromatography and gas chromatography-mass spectrometry, indicated the sequential exo-cleavage of the EO chain. Additionally, the enzymes involved in the biodegradation were inducible rather than constitutive. Considering that strain Y2 exhibits prominent biodegradation advantages in industrial wastewater treatment, it might serve as a promising potential candidate for in situ bioremediation of contamination by NPEOs and other structurally similar compounds.

  11. Colony-level assessment of Brucella and Leptospira in the Guadalupe fur seal, Isla Guadalupe, Mexico.

    PubMed

    Ziehl-Quirós, E Carolina; García-Aguilar, María C; Mellink, Eric

    2017-01-24

    The relatively small population size and restricted distribution of the Guadalupe fur seal Arctocephalus townsendi could make it highly vulnerable to infectious diseases. We performed a colony-level assessment in this species of the prevalence and presence of Brucella spp. and Leptospira spp., pathogenic bacteria that have been reported in several pinniped species worldwide. Forty-six serum samples were collected in 2014 from pups at Isla Guadalupe, the only place where the species effectively reproduces. Samples were tested for Brucella using 3 consecutive serological tests, and for Leptospira using the microscopic agglutination test. For each bacterium, a Bayesian approach was used to estimate prevalence to exposure, and an epidemiological model was used to test the null hypothesis that the bacterium was present in the colony. No serum sample tested positive for Brucella, and the statistical analyses concluded that the colony was bacterium-free with a 96.3% confidence level. However, a Brucella surveillance program would be highly recommendable. Twelve samples were positive (titers 1:50) to 1 or more serovars of Leptospira. The prevalence was calculated at 27.1% (95% credible interval: 15.6-40.3%), and the posterior analyses indicated that the colony was not Leptospira-free with a 100% confidence level. Serovars Icterohaemorrhagiae, Canicola, and Bratislava were detected, but only further research can unveil whether they affect the fur seal population.

  12. Spread and change in stress resistance of Shiga toxin-producing Escherichia coli O157 on fungal colonies.

    PubMed

    Lee, Ken-Ichi; Kobayashi, Naoki; Watanabe, Maiko; Sugita-Konishi, Yoshiko; Tsubone, Hirokazu; Kumagai, Susumu; Hara-Kudo, Yukiko

    2014-11-01

    To elucidate the effect of fungal hyphae on the behaviour of Shiga toxin-producing Escherichia coli (STEC) O157, the spread and change in stress resistance of the bacterium were evaluated after coculture with 11 species of food-related fungi including fermentation starters. Spread distances of STEC O157 varied depending on the co-cultured fungal species, and the motile bacterial strain spread for longer distances than the non-motile strain. The population of STEC O157 increased when co-cultured on colonies of nine fungal species but decreased on colonies of Emericella nidulans and Aspergillus ochraceus. Confocal scanning microscopy visualization of green fluorescent protein-tagged STEC O157 on fungal hyphae revealed that the bacterium colonized in the water film that existed on and between hyphae. To investigate the physiological changes in STEC O157 caused by co-culturing with fungi, the bacterium was harvested after 7 days of co-culturing and tested for acid resistance. After co-culture with eight fungal species, STEC O157 showed greater acid resistance compared to those cultured without fungi. Our results indicate that fungal hyphae can spread the contamination of STEC O157 and can also enhance the stress resistance of the bacteria. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  13. Contribution of the 7β-hydroxysteroid dehydrogenase from Ruminococcus gnavus N53 to ursodeoxycholic acid formation in the human colon.

    PubMed

    Lee, Ja-Young; Arai, Hisashi; Nakamura, Yusuke; Fukiya, Satoru; Wada, Masaru; Yokota, Atsushi

    2013-11-01

    Bile acid composition in the colon is determined by bile acid flow in the intestines, the population of bile acid-converting bacteria, and the properties of the responsible bacterial enzymes. Ursodeoxycholic acid (UDCA) is regarded as a chemopreventive beneficial bile acid due to its low hydrophobicity. However, it is a minor constituent of human bile acids. Here, we characterized an UDCA-producing bacterium, N53, isolated from human feces. 16S rDNA sequence analysis identified this isolate as Ruminococcus gnavus, a novel UDCA-producer. The forward reaction that produces UDCA from 7-oxo-lithocholic acid was observed to have a growth-dependent conversion rate of 90-100% after culture in GAM broth containing 1 mM 7-oxo-lithocholic acid, while the reverse reaction was undetectable. The gene encoding 7β-hydroxysteroid dehydrogenase (7β-HSDH), which facilitates the UDCA-producing reaction, was cloned and overexpressed in Escherichia coli. Characterization of the purified 7β-HSDH revealed that the kcat/Km value was about 55-fold higher for the forward reaction than for the reverse reaction, indicating that the enzyme favors the UDCA-producing reaction. As R. gnavus is a common, core bacterium of the human gut microbiota, these results suggest that this bacterium plays a pivotal role in UDCA formation in the colon.

  14. Contribution of the 7β-hydroxysteroid dehydrogenase from Ruminococcus gnavus N53 to ursodeoxycholic acid formation in the human colon[S

    PubMed Central

    Lee, Ja-Young; Arai, Hisashi; Nakamura, Yusuke; Fukiya, Satoru; Wada, Masaru; Yokota, Atsushi

    2013-01-01

    Bile acid composition in the colon is determined by bile acid flow in the intestines, the population of bile acid-converting bacteria, and the properties of the responsible bacterial enzymes. Ursodeoxycholic acid (UDCA) is regarded as a chemopreventive beneficial bile acid due to its low hydrophobicity. However, it is a minor constituent of human bile acids. Here, we characterized an UDCA-producing bacterium, N53, isolated from human feces. 16S rDNA sequence analysis identified this isolate as Ruminococcus gnavus, a novel UDCA-producer. The forward reaction that produces UDCA from 7-oxo-lithocholic acid was observed to have a growth-dependent conversion rate of 90–100% after culture in GAM broth containing 1 mM 7-oxo-lithocholic acid, while the reverse reaction was undetectable. The gene encoding 7β-hydroxysteroid dehydrogenase (7β-HSDH), which facilitates the UDCA-producing reaction, was cloned and overexpressed in Escherichia coli. Characterization of the purified 7β-HSDH revealed that the kcat/Km value was about 55-fold higher for the forward reaction than for the reverse reaction, indicating that the enzyme favors the UDCA-producing reaction. As R. gnavus is a common, core bacterium of the human gut microbiota, these results suggest that this bacterium plays a pivotal role in UDCA formation in the colon. PMID:23729502

  15. Reduction of cadmium uptake in rice endophytically colonized with the cadmium-tolerant bacterium Cupriavidus taiwanensis KKU2500-3.

    PubMed

    Punjee, Putthita; Siripornadulsil, Wilailak; Siripornadulsil, Surasak

    2018-02-01

    The effects of the cadmium (Cd)-tolerant bacterium Cupriavidus taiwanensis KKU2500-3 on the growth, yield, and Cd concentration in rice grains were investigated in the rice variety Phitsanulok 2 (PL2), which was cultivated in a hydroponic greenhouse. The numbers of Cd-tolerant bacteria isolated from the roots and shoots of plants under the RB (rice with bacteria) and RBC (rice with bacteria and Cd) treatments ranged from 2.60 to 9.03 and from 3.99 to 9.60 log cfu·g -1 of PL2, respectively. This KKU2500-3 strain was successfully colonized in rice, indicating that it was not only nontoxic to the plants but also became distributed and reproduced throughout the plants. Scanning electron microscopy analysis revealed attachment of the bacterium to the root surface, whereas the internally colonized bacteria were located in the vascular tissue, cell wall, and intercellular space. Although the Cd contents found in PL2 were very high (189.10 and 79.49 mg·kg -1 in the RC (rice with Cd) and RBC roots, respectively), the Cd accumulated inside the rice seeds at densities of only 3.10 and 1.31 mg·kg -1 , respectively; thus, the bacteria reduced the Cd content to 57.74% of the control content. Therefore, the colonizing bacteria likely acted as an inhibitor of Cd translocation in PL2.

  16. Structural analysis of the 5{prime} region of mouse and human Huntington disease genes reveals conservation of putative promoter region and Di- and trinucleotide polymorphisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Biaoyang; Nasir, J.; Kalchman, M.A.

    1995-02-10

    We have previously cloned and characterized the murine homologue of the Huntington disease (HD) gene and shown that it maps to mouse chromosome 5 within a region of conserved synteny with human chromosome 4p16.3. Here we present a detailed comparison of the sequence of the putative promoter and the organization of the 5{prime} genomic region of the murine (Hdh) and human HD genes encompassing the first five exons. We show that in this region these two genes share identical exon boundaries, but have different-size introns. Two dinucleotide (CT) and one trinucleotide intronic polymorphism in Hdh and an intronic CA polymorphismmore » in the HD gene were identified. Comparison of 940-bp sequence 5{prime} to the putative translation start site reveals a highly conserved region (78.8% nucleotide identity) between Hdh and the HD gene from nucleotide -56 to -206 (of Hdh). Neither Hdh nor the HD gene have typical TATA or CCAAT elements, but both show one putative AP2 binding site and numerous potential Sp1 binding sites. The high sequence identity between Hdh and the HD gene for approximately 200 bp 5{prime} to the putative translation start site indicates that these sequences may play a role in regulating expression of the Huntington disease gene. 30 refs., 4 figs., 2 tabs.« less

  17. Putative Porin of Bradyrhizobium sp. (Lupinus) Bacteroids Induced by Glyphosate▿

    PubMed Central

    de María, Nuria; Guevara, Ángeles; Serra, M. Teresa; García-Luque, Isabel; González-Sama, Alfonso; de Lacoba, Mario García; de Felipe, M. Rosario; Fernández-Pascual, Mercedes

    2007-01-01

    Application of glyphosate (N-[phosphonomethyl] glycine) to Bradyrhizobium sp. (Lupinus)-nodulated lupin plants caused modifications in the protein pattern of bacteroids. The most significant change was the presence of a 44-kDa polypeptide in bacteroids from plants treated with the higher doses of glyphosate employed (5 and 10 mM). The polypeptide has been characterized by the amino acid sequencing of its N terminus and the isolation and nucleic acid sequencing of its encoding gene. It is putatively encoded by a single gene, and the protein has been identified as a putative porin. Protein modeling revealed the existence of several domains sharing similarity to different porins, such as a transmembrane beta-barrel. The protein has been designated BLpp, for Bradyrhizobium sp. (Lupinus) putative porin, and would be the first porin described in Bradyrhizobium sp. (Lupinus). In addition, a putative conserved domain of porins has been identified which consists of 87 amino acids, located in the BLpp sequence 30 amino acids downstream of the N-terminal region. In bacteroids, mRNA of the BLpp gene shows a basal constitutive expression that increases under glyphosate treatment, and the expression of the gene is seemingly regulated at the transcriptional level. By contrast, in free-living bacteria glyphosate treatment leads to an inhibition of BLpp mRNA accumulation, indicating a different effect of glyphosate on BLpp gene expression in bacteroids and free-living bacteria. The possible role of BLpp in a metabolite interchange between Bradyrhizobium and lupin is discussed. PMID:17557843

  18. Endohyphal Bacterium Enhances Production of Indole-3-Acetic Acid by a Foliar Fungal Endophyte

    PubMed Central

    Hoffman, Michele T.; Gunatilaka, Malkanthi K.; Wijeratne, Kithsiri; Gunatilaka, Leslie; Arnold, A. Elizabeth

    2013-01-01

    Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA), often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria) have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales), but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales). Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions. PMID:24086270

  19. Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dees, C.; Ringleberg, D.; Scott, T.C.

    The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescensmore » with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.« less

  20. TcNPR3 from Theobroma cacao functions as a repressor of the pathogen defense response

    PubMed Central

    2013-01-01

    Background Arabidopsis thaliana (Arabidopsis) NON-EXPRESSOR OF PR1 (NPR1) is a transcription coactivator that plays a central role in regulating the transcriptional response to plant pathogens. Developing flowers of homozygous npr3 mutants are dramatically more resistant to infection by the pathogenic bacterium Pseudomonas syringae, suggesting a role of NPR3 as a repressor of NPR1-mediated defense response with a novel role in flower development. Results We report here the characterization of a putative NPR3 gene from the tropical tree species Theobroma cacao (TcNPR3). Like in Arabidopsis, TcNPR3 was constitutively expressed across a wide range of tissue types and developmental stages but with some differences in relative levels compared to Arabidopsis. To test the function of TcNPR3, we performed transgenic complementation analysis by introducing a constitutively expressing putative TcNPR3 transgene into an Arabidopsis npr3 mutant. TcNPR3 expressing Arabidopsis plants were partially restored to the WT pathogen phenotype (immature flowers susceptible to bacterial infection). To test TcNPR3 function directly in cacao tissues, a synthetic microRNA targeting TcNPR3 mRNA was transiently expressed in cacao leaves using an Agrobacterium-infiltration method. TcNPR3 knock down leaf tissues were dramatically more resistance to infection with Phytophthora capsici in a leaf bioassay, showing smaller lesion sizes and reduced pathogen replication. Conclusions We conclude that TcNPR3 functions similar to the Arabidopsis NPR3 gene in the regulation of the cacao defense response. Since TcNPR3 did not show a perfect complementation of the Arabidopsis NPR3 mutation, the possibility remains that other functions of TcNPR3 remain to be found. This novel knowledge can contribute to the breeding of resistant cacao varieties against pathogens through molecular markers based approaches or biotechnological strategies. PMID:24314063

  1. TcNPR3 from Theobroma cacao functions as a repressor of the pathogen defense response.

    PubMed

    Shi, Zi; Zhang, Yufan; Maximova, Siela N; Guiltinan, Mark J

    2013-12-06

    Arabidopsis thaliana (Arabidopsis) NON-EXPRESSOR OF PR1 (NPR1) is a transcription coactivator that plays a central role in regulating the transcriptional response to plant pathogens. Developing flowers of homozygous npr3 mutants are dramatically more resistant to infection by the pathogenic bacterium Pseudomonas syringae, suggesting a role of NPR3 as a repressor of NPR1-mediated defense response with a novel role in flower development. We report here the characterization of a putative NPR3 gene from the tropical tree species Theobroma cacao (TcNPR3). Like in Arabidopsis, TcNPR3 was constitutively expressed across a wide range of tissue types and developmental stages but with some differences in relative levels compared to Arabidopsis. To test the function of TcNPR3, we performed transgenic complementation analysis by introducing a constitutively expressing putative TcNPR3 transgene into an Arabidopsis npr3 mutant. TcNPR3 expressing Arabidopsis plants were partially restored to the WT pathogen phenotype (immature flowers susceptible to bacterial infection). To test TcNPR3 function directly in cacao tissues, a synthetic microRNA targeting TcNPR3 mRNA was transiently expressed in cacao leaves using an Agrobacterium-infiltration method. TcNPR3 knock down leaf tissues were dramatically more resistance to infection with Phytophthora capsici in a leaf bioassay, showing smaller lesion sizes and reduced pathogen replication. We conclude that TcNPR3 functions similar to the Arabidopsis NPR3 gene in the regulation of the cacao defense response. Since TcNPR3 did not show a perfect complementation of the Arabidopsis NPR3 mutation, the possibility remains that other functions of TcNPR3 remain to be found. This novel knowledge can contribute to the breeding of resistant cacao varieties against pathogens through molecular markers based approaches or biotechnological strategies.

  2. Transcriptional and functional studies of Acidithiobacillus ferrooxidans genes related to survival in the presence of copper.

    PubMed

    Navarro, Claudio A; Orellana, Luis H; Mauriaca, Cecilia; Jerez, Carlos A

    2009-10-01

    The acidophilic Acidithiobacillus ferrooxidans can resist exceptionally high copper (Cu) concentrations. This property is important for its use in biomining processes, where Cu and other metal levels range usually between 15 and 100 mM. To learn about the mechanisms that allow A. ferrooxidans cells to survive in this environment, a bioinformatic search of its genome showed the presence of at least 10 genes that are possibly related to Cu homeostasis. Among them are three genes coding for putative ATPases related to the transport of Cu (A. ferrooxidans copA1 [copA1(Af)], copA2(Af), and copB(Af)), three genes related to a system of the resistance nodulation cell division family involved in the extraction of Cu from the cell (cusA(Af), cusB(Af), and cusC(Af)), and two genes coding for periplasmic chaperones for this metal (cusF(Af) and copC(Af)). The expression of most of these open reading frames was studied by real-time reverse transcriptase PCR using A. ferrooxidans cells adapted for growth in the presence of high concentrations of Cu. The putative A. ferrooxidans Cu resistance determinants were found to be upregulated when this bacterium was exposed to Cu in the range of 5 to 25 mM. These A. ferrooxidans genes conferred to Escherichia coli a greater Cu resistance than wild-type cells, supporting their functionality. The results reported here and previously published data strongly suggest that the high resistance of the extremophilic A. ferrooxidans to Cu may be due to part or all of the following key elements: (i) a wide repertoire of Cu resistance determinants, (ii) the duplication of some of these Cu resistance determinants, (iii) the existence of novel Cu chaperones, and (iv) a polyP-based Cu resistance system.

  3. Field-Evolved Mode 1 Resistance of the Fall Armyworm to Transgenic Cry1Fa-Expressing Corn Associated with Reduced Cry1Fa Toxin Binding and Midgut Alkaline Phosphatase Expression

    PubMed Central

    Jakka, Siva R. K.; Gong, Liang; Hasler, James; Banerjee, Rahul; Sheets, Joel J.; Narva, Kenneth; Blanco, Carlos A.

    2015-01-01

    Insecticidal protein genes from the bacterium Bacillus thuringiensis (Bt) are expressed by transgenic Bt crops (Bt crops) for effective and environmentally safe pest control. The development of resistance to these insecticidal proteins is considered the most serious threat to the sustainability of Bt crops. Resistance in fall armyworm (Spodoptera frugiperda) populations from Puerto Rico to transgenic corn producing the Cry1Fa insecticidal protein resulted, for the first time in the United States, in practical resistance, and Bt corn was withdrawn from the local market. In this study, we used a field-collected Cry1Fa corn-resistant strain (456) of S. frugiperda to identify the mechanism responsible for field-evolved resistance. Binding assays detected reduced Cry1Fa, Cry1Ab, and Cry1Ac but not Cry1Ca toxin binding to midgut brush border membrane vesicles (BBMV) from the larvae of strain 456 compared to that from the larvae of a susceptible (Ben) strain. This binding phenotype is descriptive of the mode 1 type of resistance to Bt toxins. A comparison of the transcript levels for putative Cry1 toxin receptor genes identified a significant downregulation (>90%) of a membrane-bound alkaline phosphatase (ALP), which translated to reduced ALP protein levels and a 75% reduction in ALP activity in BBMV from 456 compared to that of Ben larvae. We cloned and heterologously expressed this ALP from susceptible S. frugiperda larvae and demonstrated that it specifically binds with Cry1Fa toxin. This study provides a thorough mechanistic description of field-evolved resistance to a transgenic Bt crop and supports an association between resistance and reduced Cry1Fa toxin binding and levels of a putative Cry1Fa toxin receptor, ALP, in the midguts of S. frugiperda larvae. PMID:26637593

  4. Environmental Conditions Constrain the Distribution and Diversity of Archaeal merA in Yellowstone National Park, Wyoming, U.S.A.

    USGS Publications Warehouse

    Wang, Y.; Boyd, E.; Crane, S.; Lu-Irving, P.; Krabbenhoft, D.; King, S.; Dighton, J.; Geesey, G.; Barkay, T.

    2011-01-01

    The distribution and phylogeny of extant protein-encoding genes recovered from geochemically diverse environments can provide insight into the physical and chemical parameters that led to the origin and which constrained the evolution of a functional process. Mercuric reductase (MerA) plays an integral role in mercury (Hg) biogeochemistry by catalyzing the transformation of Hg(II) to Hg(0). Putative merA sequences were amplified from DNA extracts of microbial communities associated with mats and sulfur precipitates from physicochemically diverse Hg-containing springs in Yellowstone National Park, Wyoming, using four PCR primer sets that were designed to capture the known diversity of merA. The recovery of novel and deeply rooted MerA lineages from these habitats supports previous evidence that indicates merA originated in a thermophilic environment. Generalized linear models indicate that the distribution of putative archaeal merA lineages was constrained by a combination of pH, dissolved organic carbon, dissolved total mercury and sulfide. The models failed to identify statistically well supported trends for the distribution of putative bacterial merA lineages as a function of these or other measured environmental variables, suggesting that these lineages were either influenced by environmental parameters not considered in the present study, or the bacterial primer sets were designed to target too broad of a class of genes which may have responded differently to environmental stimuli. The widespread occurrence of merA in the geothermal environments implies a prominent role for Hg detoxification in these environments. Moreover, the differences in the distribution of the merA genes amplified with the four merA primer sets suggests that the organisms putatively engaged in this activity have evolved to occupy different ecological niches within the geothermal gradient. ?? 2011 Springer Science+Business Media, LLC.

  5. Environmental conditions constrain the distribution and diversity of archaeal merA in Yellowstone National Park, Wyoming, U.S.A.

    PubMed

    Wang, Yanping; Boyd, Eric; Crane, Sharron; Lu-Irving, Patricia; Krabbenhoft, David; King, Susan; Dighton, John; Geesey, Gill; Barkay, Tamar

    2011-11-01

    The distribution and phylogeny of extant protein-encoding genes recovered from geochemically diverse environments can provide insight into the physical and chemical parameters that led to the origin and which constrained the evolution of a functional process. Mercuric reductase (MerA) plays an integral role in mercury (Hg) biogeochemistry by catalyzing the transformation of Hg(II) to Hg(0). Putative merA sequences were amplified from DNA extracts of microbial communities associated with mats and sulfur precipitates from physicochemically diverse Hg-containing springs in Yellowstone National Park, Wyoming, using four PCR primer sets that were designed to capture the known diversity of merA. The recovery of novel and deeply rooted MerA lineages from these habitats supports previous evidence that indicates merA originated in a thermophilic environment. Generalized linear models indicate that the distribution of putative archaeal merA lineages was constrained by a combination of pH, dissolved organic carbon, dissolved total mercury and sulfide. The models failed to identify statistically well supported trends for the distribution of putative bacterial merA lineages as a function of these or other measured environmental variables, suggesting that these lineages were either influenced by environmental parameters not considered in the present study, or the bacterial primer sets were designed to target too broad of a class of genes which may have responded differently to environmental stimuli. The widespread occurrence of merA in the geothermal environments implies a prominent role for Hg detoxification in these environments. Moreover, the differences in the distribution of the merA genes amplified with the four merA primer sets suggests that the organisms putatively engaged in this activity have evolved to occupy different ecological niches within the geothermal gradient.

  6. 77 FR 56237 - Notice of Permit Applications Received Under the Antarctic Conservation Act of 1978 (Pub. L. 95-541)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    ... use commercially available, freeze-dried marine bacterium, Vibrio fisheri, NRRL B-11177, for experimental use at the Crary Science and Engineering Center (CSEC) at McMurdo Station. This bacterium is used... bacterium is used with a reconstituting reagent to determine toxicity levels. All laboratory plastic-ware...

  7. Modified cyanobacteria

    DOEpatents

    Vermaas, Willem F J.

    2014-06-17

    Disclosed is a modified photoautotrophic bacterium comprising genes of interest that are modified in terms of their expression and/or coding region sequence, wherein modification of the genes of interest increases production of a desired product in the bacterium relative to the amount of the desired product production in a photoautotrophic bacterium that is not modified with respect to the genes of interest.

  8. Copper Tolerance and Characterization of a Copper-Responsive Operon, copYAZ, in an M1T1 Clinical Strain of Streptococcus pyogenes

    PubMed Central

    Gordon, Lily D.; Fang, Zhong; Holder, Robert C.; Reid, Sean D.

    2015-01-01

    ABSTRACT Infection with Streptococcus pyogenes is associated with a breadth of clinical manifestations ranging from mild pharyngitis to severe necrotizing fasciitis. Elevated levels of intracellular copper are highly toxic to this bacterium, and thus, the microbe must tightly regulate the level of this metal ion by one or more mechanisms, which have, to date, not been clearly defined. In this study, we have identified two virulence mechanisms by which S. pyogenes protects itself against copper toxicity. We defined a set of putative genes, copY (for a regulator), copA (for a P1-type ATPase), and copZ (for a copper chaperone), whose expression is regulated by copper. Our results indicate that these genes are highly conserved among a range of clinical S. pyogenes isolates. The copY, copA, and copZ genes are induced by copper and are transcribed as a single unit. Heterologous expression assays revealed that S. pyogenes CopA can confer copper tolerance in a copper-sensitive Escherichia coli mutant by preventing the accumulation of toxic levels of copper, a finding that is consistent with a role for CopA in copper export. Evaluation of the effect of copper stress on S. pyogenes in a planktonic or biofilm state revealed that biofilms may aid in protection during initial exposure to copper. However, copper stress appears to prevent the shift from the planktonic to the biofilm state. Therefore, our results indicate that S. pyogenes may use several virulence mechanisms, including altered gene expression and a transition to and from planktonic and biofilm states, to promote survival during copper stress. IMPORTANCE Bacterial pathogens encounter multiple stressors at the host-pathogen interface. This study evaluates a virulence mechanism(s) utilized by S. pyogenes to combat copper at sites of infection. A better understanding of pathogen tolerance to stressors such as copper is necessary to determine how host-pathogen interactions impact bacterial survival during infections. These insights may lead to the identification of novel therapeutic targets that can be used to address antibiotic resistance. PMID:26013489

  9. Copper Tolerance and Characterization of a Copper-Responsive Operon, copYAZ, in an M1T1 Clinical Strain of Streptococcus pyogenes.

    PubMed

    Young, Christie A; Gordon, Lily D; Fang, Zhong; Holder, Robert C; Reid, Sean D

    2015-08-01

    Infection with Streptococcus pyogenes is associated with a breadth of clinical manifestations ranging from mild pharyngitis to severe necrotizing fasciitis. Elevated levels of intracellular copper are highly toxic to this bacterium, and thus, the microbe must tightly regulate the level of this metal ion by one or more mechanisms, which have, to date, not been clearly defined. In this study, we have identified two virulence mechanisms by which S. pyogenes protects itself against copper toxicity. We defined a set of putative genes, copY (for a regulator), copA (for a P1-type ATPase), and copZ (for a copper chaperone), whose expression is regulated by copper. Our results indicate that these genes are highly conserved among a range of clinical S. pyogenes isolates. The copY, copA, and copZ genes are induced by copper and are transcribed as a single unit. Heterologous expression assays revealed that S. pyogenes CopA can confer copper tolerance in a copper-sensitive Escherichia coli mutant by preventing the accumulation of toxic levels of copper, a finding that is consistent with a role for CopA in copper export. Evaluation of the effect of copper stress on S. pyogenes in a planktonic or biofilm state revealed that biofilms may aid in protection during initial exposure to copper. However, copper stress appears to prevent the shift from the planktonic to the biofilm state. Therefore, our results indicate that S. pyogenes may use several virulence mechanisms, including altered gene expression and a transition to and from planktonic and biofilm states, to promote survival during copper stress. Bacterial pathogens encounter multiple stressors at the host-pathogen interface. This study evaluates a virulence mechanism(s) utilized by S. pyogenes to combat copper at sites of infection. A better understanding of pathogen tolerance to stressors such as copper is necessary to determine how host-pathogen interactions impact bacterial survival during infections. These insights may lead to the identification of novel therapeutic targets that can be used to address antibiotic resistance. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Metabolism of Hydrocarbons in n-Alkane-Utilizing Anaerobic Bacteria.

    PubMed

    Wilkes, Heinz; Buckel, Wolfgang; Golding, Bernard T; Rabus, Ralf

    2016-01-01

    The glycyl radical enzyme-catalyzed addition of n-alkanes to fumarate creates a C-C-bond between two concomitantly formed stereogenic carbon centers. The configurations of the two diastereoisomers of the product resulting from n-hexane activation by the n-alkane-utilizing denitrifying bacterium strain HxN1, i.e. (1-methylpentyl)succinate, were assigned as (2S,1'R) and (2R,1'R). Experiments with stereospecifically deuterated n-(2,5-2H2)hexanes revealed that exclusively the pro-S hydrogen atom is abstracted from C2 of the n-alkane by the enzyme and later transferred back to C3 of the alkylsuccinate formed. These results indicate that the alkylsuccinate-forming reaction proceeds with an inversion of configuration at the carbon atom (C2) of the n-alkane forming the new C-C-bond, and thus stereochemically resembles a SN2-type reaction. Therefore, the reaction may occur in a concerted manner, which may avoid the highly energetic hex-2-yl radical as an intermediate. The reaction is associated with a significant primary kinetic isotope effect (kH/kD ≥3) for hydrogen, indicating that the homolytic C-H-bond cleavage is involved in the first irreversible step of the reaction mechanism. The (1-methylalkyl)succinate synthases of n-alkane-utilizing anaerobic bacteria apparently have very broad substrate ranges enabling them to activate not only aliphatic but also alkyl-aromatic hydrocarbons. Thus, two denitrifiers and one sulfate reducer were shown to convert the nongrowth substrate toluene to benzylsuccinate and further to the dead-end product benzoyl-CoA. For this purpose, however, the modified β-oxidation pathway known from alkylbenzene-utilizing bacteria was not employed, but rather the pathway used for n-alkane degradation involving CoA ligation, carbon skeleton rearrangement and decarboxylation. Furthermore, various n-alkane- and alkylbenzene-utilizing denitrifiers and sulfate reducers were found to be capable of forming benzyl alcohols from diverse alkylbenzenes, putatively via dehydrogenases. The thermophilic sulfate reducer strain TD3 forms n-alkylsuccinates during growth with n-alkanes or crude oil, which, based on the observed patterns of homologs, do not derive from a terminal activation of n-alkanes. © 2016 S. Karger AG, Basel.

  11. Discovery of a new subgroup of sulfur dioxygenases and characterization of sulfur dioxygenases in the sulfur metabolic network of Acidithiobacillus caldus

    PubMed Central

    Pang, Xin; Lin, Jianqiang; Liu, Xiangmei; Wang, Rui; Lin, Jianqun; Chen, Linxu

    2017-01-01

    Acidithiobacillus caldus is a chemolithoautotrophic sulfur-oxidizing bacterium that is widely used for bioleaching processes. Acidithiobacillus spp. are suggested to contain sulfur dioxygenases (SDOs) that facilitate sulfur oxidation. In this study, two putative sdo genes (A5904_0421 and A5904_1112) were detected in the genome of A. caldus MTH-04 by BLASTP searching with the previously identified SDO (A5904_0790). We cloned and expressed these genes, and detected the SDO activity of recombinant protein A5904_0421 by a GSH-dependent in vitro assay. Phylogenetic analysis indicated that A5904_0421and its homologous SDOs, mainly found in autotrophic bacteria, were distantly related to known SDOs and were categorized as a new subgroup of SDOs. The potential functions of genes A5904_0421 (termed sdo1) and A5904_0790 (termed sdo2) were investigated by generating three knockout mutants (Δsdo1, Δsdo2 and Δsdo1&2), two sdo overexpression strains (OE-sdo1 and OE-sdo2) and two sdo complemented strains (Δsdo1/sdo1’ and Δsdo2/sdo2’) of A. caldus MTH-04. Deletion or overexpression of the sdo genes did not obviously affect growth of the bacteria on S0, indicating that the SDOs did not play an essential role in the oxidation of extracellular elemental sulfur in A. caldus. The deletion of sdo1 resulted in complete inhibition of growth on tetrathionate, slight inhibition of growth on thiosulfate and increased GSH-dependent sulfur oxidation activity on S0. Transcriptional analysis revealed a strong correlation between sdo1 and the tetrathionate intermediate pathway. The deletion of sdo2 promoted bacterial growth on tetrathionate and thiosulfate, and overexpression of sdo2 altered gene expression patterns of sulfide:quinone oxidoreductase and rhodanese. Taken together, the results suggest that sdo1 is essential for the survival of A. caldus when tetrathionate is used as the sole energy resource, and sdo2 may also play a role in sulfur metabolism. PMID:28873420

  12. Bacterial Leaf Scorch of Amenity Trees a Wide-Spread Problem of Economic Significance to the Urban Forest

    Treesearch

    James Lashomb; Alan Iskra; Ann Brooks Gould; George Hamilton

    2003-01-01

    Bacterial leaf scorch (BLS) of amenity trees is caused by the bacterium Xylella fastidiosa, a xylem-limited pathogen that causes water stress resulting in leaf scorch, decline, and eventual death of affected trees. Recent surveys indicate that BLS is widespread throughout the eastern half of the United States. In New Jersey, BLS primarily affects red and pin oaks...

  13. Neuronal activity determines distinct gliotransmitter release from a single astrocyte

    PubMed Central

    Covelo, Ana

    2018-01-01

    Accumulating evidence indicates that astrocytes are actively involved in brain function by regulating synaptic activity and plasticity. Different gliotransmitters, such as glutamate, ATP, GABA or D-serine, released form astrocytes have been shown to induce different forms of synaptic regulation. However, whether a single astrocyte may release different gliotransmitters is unknown. Here we show that mouse hippocampal astrocytes activated by endogenous (neuron-released endocannabinoids or GABA) or exogenous (single astrocyte Ca2+ uncaging) stimuli modulate putative single CA3-CA1 hippocampal synapses. The astrocyte-mediated synaptic modulation was biphasic and consisted of an initial glutamate-mediated potentiation followed by a purinergic-mediated depression of neurotransmitter release. The temporal dynamic properties of this biphasic synaptic regulation depended on the firing frequency and duration of the neuronal activity that stimulated astrocytes. Present results indicate that single astrocytes can decode neuronal activity and, in response, release distinct gliotransmitters to differentially regulate neurotransmission at putative single synapses. PMID:29380725

  14. 75 FR 44291 - Notice of Permit Applications Received Under the Antarctic Conservation Act of 1978 (Pub. L. 95-541)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ... available, freeze- dried marine bacterium, Vibrio fisher, NRRL B-11177, for experimental use at the McMurdo Station Crary Science and Engineering Center (CSEC). This bacterium is used as one of the reagents for the Microtox toxicity analyzer, Azur Environmental model 500, 0073486. The bacterium are used with a...

  15. Draft Genome Sequence of the Cellulolytic Bacterium Clostridium papyrosolvens C7 (ATCC 700395).

    PubMed

    Zepeda, Veronica; Dassa, Bareket; Borovok, Ilya; Lamed, Raphael; Bayer, Edward A; Cate, Jamie H D

    2013-09-12

    We report the draft genome sequence of the cellulose-degrading bacterium Clostridium papyrosolvens C7, originally isolated from mud collected below a freshwater pond in Massachusetts. This Gram-positive bacterium grows in a mesophilic anaerobic environment with filter paper as the only carbon source, and it has a simple cellulosome system with multiple carbohydrate-degrading enzymes.

  16. Draft Genome Sequence of the Cellulolytic Bacterium Clostridium papyrosolvens C7 (ATCC 700395)

    PubMed Central

    Zepeda, Veronica; Dassa, Bareket; Borovok, Ilya; Lamed, Raphael; Bayer, Edward A.

    2013-01-01

    We report the draft genome sequence of the cellulose-degrading bacterium Clostridium papyrosolvens C7, originally isolated from mud collected below a freshwater pond in Massachusetts. This Gram-positive bacterium grows in a mesophilic anaerobic environment with filter paper as the only carbon source, and it has a simple cellulosome system with multiple carbohydrate-degrading enzymes. PMID:24029755

  17. Oxidation of Ethylene Glycol by a Salt-Requiring Bacterium

    PubMed Central

    Caskey, William H.; Taber, Willard A.

    1981-01-01

    Bacterium T-52, cultured on ethylene glycol, readily oxidized glycolate and glyoxylate and exhibited elevated activities of ethylene glycol dehydrogenase and glycolate oxidase. Labeled glyoxylate was identified in reaction mixtures containing [14C]-ethylene glycol, but no glycolate was detected. The most likely pathway of ethylene glycol catabolism by bacterium T-52 is sequential oxidation to glycolate and glyoxylate. PMID:16345810

  18. Near-complete genome sequence of the cellulolytic Bacterium Bacteroides ( Pseudobacteroides) cellulosolvens ATCC 35603

    DOE PAGES

    Dassa, Bareket; Utturkar, Sagar M.; Hurt, Richard A.; ...

    2015-09-24

    We report the single-contig genome sequence of the anaerobic, mesophilic, cellulolytic bacterium, Bacteroides cellulosolvens. The bacterium produces a particularly elaborate cellulosome system, whereas the types of cohesin-dockerin interactions are opposite of other known cellulosome systems: cell-surface attachment is thus mediated via type-I interactions whereas enzymes are integrated via type-II interactions.

  19. Biomolecular Architectures Molecular Biology

    DTIC Science & Technology

    2013-08-31

    when the Salmonella beacon (13 nM) was tested in the presence of 800 ng bacterial genomic DNA in chicken broth (33%) (data not shown). Since it was...bacterium, Bacillus thuringiensis, transgenic tobacco containing the transgene, Bt cry1Ac, the Gram-negative bacterium, Salmonella Typhimurium, and the Gram... Salmonella Typhimurium, and the Gram-positive bacterium, Listeria monocytogenes, were monitored for detection by coupling molecular beacon (MB

  20. Insect symbiotic bacteria harbour viral pathogens for transovarial transmission.

    PubMed

    Jia, Dongsheng; Mao, Qianzhuo; Chen, Yong; Liu, Yuyan; Chen, Qian; Wu, Wei; Zhang, Xiaofeng; Chen, Hongyan; Li, Yi; Wei, Taiyun

    2017-03-06

    Many insects, including mosquitoes, planthoppers, aphids and leafhoppers, are the hosts of bacterial symbionts and the vectors for transmitting viral pathogens 1-3 . In general, symbiotic bacteria can indirectly affect viral transmission by enhancing immunity and resistance to viruses in insects 3-5 . Whether symbiotic bacteria can directly interact with the virus and mediate its transmission has been unknown. Here, we show that an insect symbiotic bacterium directly harbours a viral pathogen and mediates its transovarial transmission to offspring. We observe rice dwarf virus (a plant reovirus) binding to the envelopes of the bacterium Sulcia, a common obligate symbiont of leafhoppers 6-8 , allowing the virus to exploit the ancient oocyte entry path of Sulcia in rice leafhopper vectors. Such virus-bacterium binding is mediated by the specific interaction of the viral capsid protein and the Sulcia outer membrane protein. Treatment with antibiotics or antibodies against Sulcia outer membrane protein interferes with this interaction and strongly prevents viral transmission to insect offspring. This newly discovered virus-bacterium interaction represents the first evidence that a viral pathogen can directly exploit a symbiotic bacterium for its transmission. We believe that such a model of virus-bacterium communication is a common phenomenon in nature.

  1. A review of selected candidate endophenotypes for depression.

    PubMed

    Goldstein, Brandon L; Klein, Daniel N

    2014-07-01

    Endophenotypes are proposed to occupy an intermediate position in the pathway between genotype and phenotype in genetically complex disorders such as depression. To be considered an endophenotype, a construct must meet a set of criteria proposed by Gottesman and Gould (2003). In this qualitative review, we summarize evidence for each criterion for several putative endophenotypes for depression: neuroticism, morning cortisol, frontal asymmetry of cortical electrical activity, reward learning, and biases of attention and memory. Our review indicates that while there is strong support for some depression endophenotypes, other putative endophenotypes lack data or have inconsistent findings for core criteria. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Putative kappa opioid heteromers as targets for developing analgesics free of adverse effects.

    PubMed

    Le Naour, Morgan; Lunzer, Mary M; Powers, Michael D; Kalyuzhny, Alexander E; Benneyworth, Michael A; Thomas, Mark J; Portoghese, Philip S

    2014-08-14

    It is now generally recognized that upon activation by an agonist, β-arrestin associates with G protein-coupled receptors and acts as a scaffold in creating a diverse signaling network that could lead to adverse effects. As an approach to reducing side effects associated with κ opioid agonists, a series of β-naltrexamides 3-10 was synthesized in an effort to selectively target putative κ opioid heteromers without recruiting β-arrestin upon activation. The most potent derivative 3 (INTA) strongly activated KOR-DOR and KOR-MOR heteromers in HEK293 cells. In vivo studies revealed 3 to produce potent antinociception, which, when taken together with antagonism data, was consistent with the activation of both heteromers. 3 was devoid of tolerance, dependence, and showed no aversive effect in the conditioned place preference assay. As immunofluorescence studies indicated no recruitment of β-arrestin2 to membranes in coexpressed KOR-DOR cells, this study suggests that targeting of specific putative heteromers has the potential to identify leads for analgesics devoid of adverse effects.

  3. Two pheromone precursor genes are transcriptionally expressed in the homothallic ascomycete Sordaria macrospora.

    PubMed

    Pöggeler, S

    2000-06-01

    In order to analyze the involvement of pheromones in cell recognition and mating in a homothallic fungus, two putative pheromone precursor genes, named ppg1 and ppg2, were isolated from a genomic library of Sordaria macrospora. The ppg1 gene is predicted to encode a precursor pheromone that is processed by a Kex2-like protease to yield a pheromone that is structurally similar to the alpha-factor of the yeast Saccharomyces cerevisiae. The ppg2 gene encodes a 24-amino-acid polypeptide that contains a putative farnesylated and carboxy methylated C-terminal cysteine residue. The sequences of the predicted pheromones display strong structural similarity to those encoded by putative pheromones of heterothallic filamentous ascomycetes. Both genes are expressed during the life cycle of S. macrospora. This is the first description of pheromone precursor genes encoded by a homothallic fungus. Southern-hybridization experiments indicated that ppg1 and ppg2 homologues are also present in other homothallic ascomycetes.

  4. Single-cell lineage tracking analysis reveals that an established cell line comprises putative cancer stem cells and their heterogeneous progeny

    PubMed Central

    Sato, Sachiko; Rancourt, Ann; Sato, Yukiko; Satoh, Masahiko S.

    2016-01-01

    Mammalian cell culture has been used in many biological studies on the assumption that a cell line comprises putatively homogeneous clonal cells, thereby sharing similar phenotypic features. This fundamental assumption has not yet been fully tested; therefore, we developed a method for the chronological analysis of individual HeLa cells. The analysis was performed by live cell imaging, tracking of every single cell recorded on imaging videos, and determining the fates of individual cells. We found that cell fate varied significantly, indicating that, in contrast to the assumption, the HeLa cell line is composed of highly heterogeneous cells. Furthermore, our results reveal that only a limited number of cells are immortal and renew themselves, giving rise to the remaining cells. These cells have reduced reproductive ability, creating a functionally heterogeneous cell population. Hence, the HeLa cell line is maintained by the limited number of immortal cells, which could be putative cancer stem cells. PMID:27003384

  5. Taxonomic revision of Israeli snakes belonging to the Platyceps rhodorachis species complex (Reptilia: Squamata: Colubridae).

    PubMed

    Sinaiko, Guy; Magory-Cohen, Tali; Meiri, Shai; Dor, Roi

    2018-02-15

    The Platyceps rhodorachis species complex encompasses a widespread group of morphologically similar colubrid snakes. The number and identities of species from this complex in Israel have recently been debated. Studies from the previous decade concluded that there are two species in Israel and its vicinity (compared with one previously recognized), but their identity remained contested. We estimated the number of species and their taxonomic identity using morphological and molecular data. We found some evidence for clinal variation in many of the characters used to differentiate the species, and a great overlap in traits of putative species. Genetic data revealed very low sequence divergence, with all putative species being paraphyletic. Platyceps rogersi emerged as genetically closer to Platyceps saharicus rather than to its putative conspecific, P. karelini. The phylogenetic and taxonomic results thus indicate that the Israeli populations of the P. rhodorachis complex all belong to a single species, Platyceps saharicus (Schätti McCarthy 2004).

  6. Parcellation in Left Lateral Parietal Cortex Is Similar in Adults and Children

    PubMed Central

    Nelson, Steven M.; Cohen, Alexander L.; Power, Jonathan D.; Coalson, Rebecca S.; Miezin, Francis M.; Vogel, Alecia C.; Dubis, Joseph W.; Church, Jessica A.; Petersen, Steven E.; Schlaggar, Bradley L.

    2012-01-01

    A key question in developmental neuroscience involves understanding how and when the cerebral cortex is partitioned into distinct functional areas. The present study used functional connectivity MRI mapping and graph theory to identify putative cortical areas and generate a parcellation scheme of left lateral parietal cortex (LLPC) in 7 to 10-year-old children and adults. Results indicated that a majority of putative LLPC areas could be matched across groups (mean distance between matched areas across age: 3.15 mm). Furthermore, the boundaries of children's putative LLPC areas respected the boundaries generated from the adults' parcellation scheme for a majority of children's areas (13/15). Consistent with prior research, matched LLPC areas showed age-related differences in functional connectivity strength with other brain regions. These results suggest that LLPC cortical parcellation and functional connectivity mature along different developmental trajectories, with adult-like boundaries between LLPC areas established in school-age children prior to adult-like functional connectivity. PMID:21810781

  7. A Fruit-Specific Putative Dihydroflavonol 4-Reductase Gene Is Differentially Expressed in Strawberry during the Ripening Process1

    PubMed Central

    Moyano, Enriqueta; Portero-Robles, Ignacio; Medina-Escobar, Nieves; Valpuesta, Victoriano; Muñoz-Blanco, Juan; Luis Caballero, José

    1998-01-01

    A cDNA clone encoding a putative dihydroflavonol 4-reductase gene has been isolated from a strawberry (Fragaria × ananassa cv Chandler) DNA subtractive library. Northern analysis showed that the corresponding gene is predominantly expressed in fruit, where it is first detected during elongation (green stages) and then declines and sharply increases when the initial fruit ripening events occur, at the time of initiation of anthocyanin accumulation. The transcript can be induced in unripe green fruit by removing the achenes, and this induction can be partially inhibited by treatment of de-achened fruit with naphthylacetic acid, indicating that the expression of this gene is under hormonal control. We propose that the putative dihydroflavonol 4-reductase gene in strawberry plays a main role in the biosynthesis of anthocyanin during color development at the late stages of fruit ripening; during the first stages the expression of this gene could be related to the accumulation of condensed tannins. PMID:9625725

  8. Influence of Substrates on the Surface Characteristics and Membrane Proteome of Fibrobacter succinogenes S85

    PubMed Central

    Raut, Mahendra P.; Karunakaran, Esther; Mukherjee, Joy; Biggs, Catherine A.; Wright, Phillip C.

    2015-01-01

    Although Fibrobacter succinogenes S85 is one of the most proficient cellulose degrading bacteria among all mesophilic organisms in the rumen of herbivores, the molecular mechanism behind cellulose degradation by this bacterium is not fully elucidated. Previous studies have indicated that cell surface proteins might play a role in adhesion to and subsequent degradation of cellulose in this bacterium. It has also been suggested that cellulose degradation machinery on the surface may be selectively expressed in response to the presence of cellulose. Based on the genome sequence, several models of cellulose degradation have been suggested. The aim of this study is to evaluate the role of the cell envelope proteins in adhesion to cellulose and to gain a better understanding of the subsequent cellulose degradation mechanism in this bacterium. Comparative analysis of the surface (exposed outer membrane) chemistry of the cells grown in glucose, acid-swollen cellulose and microcrystalline cellulose using physico-chemical characterisation techniques such as electrophoretic mobility analysis, microbial adhesion to hydrocarbons assay and Fourier transform infra-red spectroscopy, suggest that adhesion to cellulose is a consequence of an increase in protein display and a concomitant reduction in the cell surface polysaccharides in the presence of cellulose. In order to gain further understanding of the molecular mechanism of cellulose degradation in this bacterium, the cell envelope-associated proteins were enriched using affinity purification and identified by tandem mass spectrometry. In total, 185 cell envelope-associated proteins were confidently identified. Of these, 25 proteins are predicted to be involved in cellulose adhesion and degradation, and 43 proteins are involved in solute transport and energy generation. Our results supports the model that cellulose degradation in F. succinogenes occurs at the outer membrane with active transport of cellodextrins across for further metabolism of cellodextrins to glucose in the periplasmic space and inner cytoplasmic membrane. PMID:26492413

  9. Molecular Mechanisms for Microbe Recognition and Defense by the Red Seaweed Laurencia dendroidea.

    PubMed

    de Oliveira, Louisi Souza; Tschoeke, Diogo Antonio; Magalhães Lopes, Ana Carolina Rubem; Sudatti, Daniela Bueno; Meirelles, Pedro Milet; Thompson, Cristiane C; Pereira, Renato Crespo; Thompson, Fabiano L

    2017-01-01

    The ability to recognize and respond to the presence of microbes is an essential strategy for seaweeds to survive in the marine environment, but understanding of molecular seaweed-microbe interactions is limited. Laurencia dendroidea clones were inoculated with the marine bacterium Vibrio madracius . The seaweed RNA was sequenced, providing an unprecedentedly high coverage of the transcriptome of Laurencia , and the gene expression levels were compared between control and inoculated samples after 24, 48, and 72 h. Transcriptomic changes in L. dendroidea in the presence of V. madracius include the upregulation of genes that participate in signaling pathways described here for the first time as a response of seaweeds to microbes. Genes coding for defense-related transcription activators, reactive oxygen species metabolism, terpene biosynthesis, and energy conversion pathways were upregulated in inoculated samples of L. dendroidea , indicating an integrated defensive system in seaweeds. This report contributes significantly to the current knowledge about the molecular mechanisms involved in the highly dynamic seaweed-bacterium interactions. IMPORTANCE Marine bacteria are part of the healthy microbiota associated with seaweeds, but some species, such as Vibrio spp., are frequently associated with disease outbreaks, especially in economically valuable cultures. In this context, the ability of seaweeds to recognize microbes and, when necessary, activate defense mechanisms is essential for their survival. However, studies dedicated to understanding the molecular components of the immune response in seaweeds are rare and restricted to indirect stimulus. This work provides an unprecedentedly large-scale evaluation of the transcriptional changes involved in microbe recognition, cellular signaling, and defense in the red seaweed Laurencia dendroidea in response to the marine bacterium Vibrio madracius . By expanding knowledge about seaweed-bacterium interactions and about the integrated defensive system in seaweeds, this work offers the basis for the development of tools to increase the resistance of cultured seaweeds to bacterial infections.

  10. Draft Genome Sequence of an Anaerobic and Extremophilic Bacterium, Caldanaerobacter yonseiensis, Isolated from a Geothermal Hot Stream

    PubMed Central

    Lee, Sang-Jae; Lee, Yong-Jik; Park, Gun-Seok; Kim, Byoung-Chan; Lee, Sang Jun; Shin, Jae-Ho

    2013-01-01

    Caldanaerobacter yonseiensis is a strictly anaerobic, thermophilic, spore-forming bacterium, which was isolated from a geothermal hot stream in Indonesia. This bacterium utilizes xylose and produces a variety of proteases. Here, we report the draft genome sequence of C. yonseiensis, which reveals insights into the pentose phosphate pathway and protein degradation metabolism in thermophilic microorganisms. PMID:24201201

  11. A Pathway Closely Related to the d-Tagatose Pathway of Gram-Negative Enterobacteria Identified in the Gram-Positive Bacterium Bacillus licheniformis

    PubMed Central

    Van der Heiden, Edwige; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M.; Galleni, Moreno; Joris, Bernard

    2013-01-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus. PMID:23524682

  12. A pathway closely related to the (D)-tagatose pathway of gram-negative enterobacteria identified in the gram-positive bacterium Bacillus licheniformis.

    PubMed

    Van der Heiden, Edwige; Delmarcelle, Michaël; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M; Galleni, Moreno; Joris, Bernard

    2013-06-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus.

  13. Benzene Degradation by a Variovorax Species within a Coal Tar-Contaminated Groundwater Microbial Community.

    PubMed

    Posman, Kevin M; DeRito, Christopher M; Madsen, Eugene L

    2017-02-15

    Investigations of environmental microbial communities are crucial for the discovery of populations capable of degrading hazardous compounds and may lead to improved bioremediation strategies. The goal of this study was to identify microorganisms responsible for aerobic benzene degradation in coal tar-contaminated groundwater. Benzene degradation was monitored in laboratory incubations of well waters using gas chromatography mass spectrometry (GC-MS). Stable isotope probing (SIP) experiments using [ 13 C]benzene enabled us to obtain 13 C-labled community DNA. From this, 16S rRNA clone libraries identified Gammaproteobacteria and Betaproteobacteria as the active benzene-metabolizing microbial populations. Subsequent cultivation experiments yielded nine bacterial isolates that grew in the presence of benzene; five were confirmed in laboratory cultures to grow on benzene. The isolated benzene-degrading organisms were genotypically similar (>97% 16S rRNA gene nucleotide identities) to the organisms identified in SIP experiments. One isolate, Variovorax MAK3, was further investigated for the expression of a putative aromatic ring-hydroxylating dioxygenase (RHD) hypothesized to be involved in benzene degradation. Microcosm experiments using Variovorax MAK3 revealed a 10-fold increase in RHD (Vapar_5383) expression, establishing a link between this gene and benzene degradation. Furthermore, the addition of Variovorax MAK3 to microcosms prepared from site waters accelerated community benzene degradation and correspondingly increased RHD gene expression. In microcosms using uninoculated groundwater, quantitative (q)PCR assays (with 16S rRNA and RDH genes) showed that Variovorax was present and responsive to added benzene. These data demonstrate how the convergence of cultivation-dependent and -independent techniques can boost understandings of active populations and functional genes in complex benzene-degrading microbial communities. Benzene is a human carcinogen whose presence in contaminated groundwater drives environmental cleanup efforts. Although the aerobic biodegradation of benzene has long been established, knowledge of the identity of the microorganisms in complex naturally occurring microbial communities responsible for benzene biodegradation has evaded scientific inquiry for many decades. Here, we applied a molecular biology technique known as stable isotope probing (SIP) to the microbial communities residing in contaminated groundwater samples to identify the community members active in benzene biodegradation. We complemented this approach by isolating and growing in the laboratory a bacterium representative of the bacteria found using SIP. Further characterization of the isolated bacterium enabled us to track the expression of a key gene that attacks benzene both in pure cultures of the bacterium and in the naturally occurring groundwater microbial community. This work advances information regarding the documentation of microbial processes, especially the populations and genes that contribute to bioremediation. Copyright © 2017 American Society for Microbiology.

  14. Benzene Degradation by a Variovorax Species within a Coal Tar-Contaminated Groundwater Microbial Community

    PubMed Central

    Posman, Kevin M.; DeRito, Christopher M.

    2016-01-01

    ABSTRACT Investigations of environmental microbial communities are crucial for the discovery of populations capable of degrading hazardous compounds and may lead to improved bioremediation strategies. The goal of this study was to identify microorganisms responsible for aerobic benzene degradation in coal tar-contaminated groundwater. Benzene degradation was monitored in laboratory incubations of well waters using gas chromatography mass spectrometry (GC-MS). Stable isotope probing (SIP) experiments using [13C]benzene enabled us to obtain 13C-labled community DNA. From this, 16S rRNA clone libraries identified Gammaproteobacteria and Betaproteobacteria as the active benzene-metabolizing microbial populations. Subsequent cultivation experiments yielded nine bacterial isolates that grew in the presence of benzene; five were confirmed in laboratory cultures to grow on benzene. The isolated benzene-degrading organisms were genotypically similar (>97% 16S rRNA gene nucleotide identities) to the organisms identified in SIP experiments. One isolate, Variovorax MAK3, was further investigated for the expression of a putative aromatic ring-hydroxylating dioxygenase (RHD) hypothesized to be involved in benzene degradation. Microcosm experiments using Variovorax MAK3 revealed a 10-fold increase in RHD (Vapar_5383) expression, establishing a link between this gene and benzene degradation. Furthermore, the addition of Variovorax MAK3 to microcosms prepared from site waters accelerated community benzene degradation and correspondingly increased RHD gene expression. In microcosms using uninoculated groundwater, quantitative (q)PCR assays (with 16S rRNA and RDH genes) showed that Variovorax was present and responsive to added benzene. These data demonstrate how the convergence of cultivation-dependent and -independent techniques can boost understandings of active populations and functional genes in complex benzene-degrading microbial communities. IMPORTANCE Benzene is a human carcinogen whose presence in contaminated groundwater drives environmental cleanup efforts. Although the aerobic biodegradation of benzene has long been established, knowledge of the identity of the microorganisms in complex naturally occurring microbial communities responsible for benzene biodegradation has evaded scientific inquiry for many decades. Here, we applied a molecular biology technique known as stable isotope probing (SIP) to the microbial communities residing in contaminated groundwater samples to identify the community members active in benzene biodegradation. We complemented this approach by isolating and growing in the laboratory a bacterium representative of the bacteria found using SIP. Further characterization of the isolated bacterium enabled us to track the expression of a key gene that attacks benzene both in pure cultures of the bacterium and in the naturally occurring groundwater microbial community. This work advances information regarding the documentation of microbial processes, especially the populations and genes that contribute to bioremediation. PMID:27913419

  15. Enzymatic Mechanism for Arabinan Degradation and Transport in the Thermophilic Bacterium Caldanaerobius polysaccharolyticus.

    PubMed

    Wefers, Daniel; Dong, Jia; Abdel-Hamid, Ahmed M; Paul, Hans Müller; Pereira, Gabriel V; Han, Yejun; Dodd, Dylan; Baskaran, Ramiya; Mayer, Beth; Mackie, Roderick I; Cann, Isaac

    2017-09-15

    The plant cell wall polysaccharide arabinan provides an important supply of arabinose, and unraveling arabinan-degrading strategies by microbes is important for understanding its use as a source of energy. Here, we explored the arabinan-degrading enzymes in the thermophilic bacterium Caldanaerobius polysaccharolyticus and identified a gene cluster encoding two glycoside hydrolase (GH) family 51 α-l-arabinofuranosidases (CpAbf51A, CpAbf51B), a GH43 endoarabinanase (CpAbn43A), a GH27 β-l-arabinopyranosidase (CpAbp27A), and two GH127 β-l-arabinofuranosidases (CpAbf127A, CpAbf127B). The genes were expressed as recombinant proteins, and the functions of the purified proteins were determined with para -nitrophenyl ( p NP)-linked sugars and naturally occurring pectin structural elements as the substrates. The results demonstrated that CpAbn43A is an endoarabinanase while CpAbf51A and CpAbf51B are α-l-arabinofuranosidases that exhibit diverse substrate specificities, cleaving α-1,2, α-1,3, and α-1,5 linkages of purified arabinan-oligosaccharides. Furthermore, both CpAbf127A and CpAbf127B cleaved β-arabinofuranose residues in complex arabinan side chains, thus providing evidence of the function of this family of enzymes on such polysaccharides. The optimal temperatures of the enzymes ranged between 60°C and 75°C, and CpAbf43A and CpAbf51A worked synergistically to release arabinose from branched and debranched arabinan. Furthermore, the hydrolytic activity on branched arabinan oligosaccharides and degradation of pectic substrates by the endoarabinanase and l-arabinofuranosidases suggested a microbe equipped with diverse activities to degrade complex arabinan in the environment. Based on our functional analyses of the genes in the arabinan degradation cluster and the substrate-binding studies on a component of the cognate transporter system, we propose a model for arabinan degradation and transport by C. polysaccharolyticus IMPORTANCE Genomic DNA sequencing and bioinformatic analysis allowed the identification of a gene cluster encoding several proteins predicted to function in arabinan degradation and transport in C. polysaccharolyticus The analysis of the recombinant proteins yielded detailed insights into the putative arabinan metabolism of this thermophilic bacterium. The use of various branched arabinan oligosaccharides provided a detailed understanding of the substrate specificities of the enzymes and allowed assignment of two new GH127 polypeptides as β-l-arabinofuranosidases able to degrade pectic substrates, thus expanding our knowledge of this rare group of glycoside hydrolases. In addition, the enzymes showed synergistic effects for the degradation of arabinans at elevated temperatures. The enzymes characterized from the gene cluster are, therefore, of utility for arabinose production in both the biofuel and food industries. Copyright © 2017 American Society for Microbiology.

  16. Enzymatic Mechanism for Arabinan Degradation and Transport in the Thermophilic Bacterium Caldanaerobius polysaccharolyticus

    PubMed Central

    Dong, Jia; Abdel-Hamid, Ahmed M.; Paul, Hans Müller; Pereira, Gabriel V.; Han, Yejun; Dodd, Dylan; Baskaran, Ramiya; Mayer, Beth; Mackie, Roderick I.

    2017-01-01

    ABSTRACT The plant cell wall polysaccharide arabinan provides an important supply of arabinose, and unraveling arabinan-degrading strategies by microbes is important for understanding its use as a source of energy. Here, we explored the arabinan-degrading enzymes in the thermophilic bacterium Caldanaerobius polysaccharolyticus and identified a gene cluster encoding two glycoside hydrolase (GH) family 51 α-l-arabinofuranosidases (CpAbf51A, CpAbf51B), a GH43 endoarabinanase (CpAbn43A), a GH27 β-l-arabinopyranosidase (CpAbp27A), and two GH127 β-l-arabinofuranosidases (CpAbf127A, CpAbf127B). The genes were expressed as recombinant proteins, and the functions of the purified proteins were determined with para-nitrophenyl (pNP)-linked sugars and naturally occurring pectin structural elements as the substrates. The results demonstrated that CpAbn43A is an endoarabinanase while CpAbf51A and CpAbf51B are α-l-arabinofuranosidases that exhibit diverse substrate specificities, cleaving α-1,2, α-1,3, and α-1,5 linkages of purified arabinan-oligosaccharides. Furthermore, both CpAbf127A and CpAbf127B cleaved β-arabinofuranose residues in complex arabinan side chains, thus providing evidence of the function of this family of enzymes on such polysaccharides. The optimal temperatures of the enzymes ranged between 60°C and 75°C, and CpAbf43A and CpAbf51A worked synergistically to release arabinose from branched and debranched arabinan. Furthermore, the hydrolytic activity on branched arabinan oligosaccharides and degradation of pectic substrates by the endoarabinanase and l-arabinofuranosidases suggested a microbe equipped with diverse activities to degrade complex arabinan in the environment. Based on our functional analyses of the genes in the arabinan degradation cluster and the substrate-binding studies on a component of the cognate transporter system, we propose a model for arabinan degradation and transport by C. polysaccharolyticus. IMPORTANCE Genomic DNA sequencing and bioinformatic analysis allowed the identification of a gene cluster encoding several proteins predicted to function in arabinan degradation and transport in C. polysaccharolyticus. The analysis of the recombinant proteins yielded detailed insights into the putative arabinan metabolism of this thermophilic bacterium. The use of various branched arabinan oligosaccharides provided a detailed understanding of the substrate specificities of the enzymes and allowed assignment of two new GH127 polypeptides as β-l-arabinofuranosidases able to degrade pectic substrates, thus expanding our knowledge of this rare group of glycoside hydrolases. In addition, the enzymes showed synergistic effects for the degradation of arabinans at elevated temperatures. The enzymes characterized from the gene cluster are, therefore, of utility for arabinose production in both the biofuel and food industries. PMID:28710263

  17. Dissecting the Genetic Basis for Seed Coat Mucilage Heteroxylan Biosynthesis in Plantago ovata Using Gamma Irradiation and Infrared Spectroscopy

    PubMed Central

    Tucker, Matthew R.; Ma, Chao; Phan, Jana; Neumann, Kylie; Shirley, Neil J.; Hahn, Michael G.; Cozzolino, Daniel; Burton, Rachel A.

    2017-01-01

    Seeds from the myxospermous species Plantago ovata release a polysaccharide-rich mucilage upon contact with water. This seed coat derived mucilage is composed predominantly of heteroxylan (HX) and is utilized as a gluten-free dietary fiber supplement to promote human colorectal health. In this study, a gamma-irradiated P. ovata population was generated and screened using histological stains and Fourier Transform Mid Infrared (FTMIR) spectroscopy to identify putative mutants showing defects in seed coat mucilage HX composition and/or structure. FTMIR analysis of dry seed revealed variation in regions of the IR spectra previously linked to xylan structure in Secale cereale (rye). Subsequent absorbance ratio and PCA multivariate analysis identified 22 putative mutant families with differences in the HX IR fingerprint region. Many of these showed distinct changes in the amount and subtle changes in structure of HX after mucilage extrusion, while 20% of the putative HX mutants identified by FTMIR showed no difference in staining patterns of extruded mucilage compared to wild-type. Transcriptional screening analysis of two putative reduced xylan in mucilage (rxm) mutants, rxm1 and rxm3, revealed that changes in HX levels in rxm1 correlate with reduced transcription of known and novel genes associated with xylan synthesis, possibly indicative of specific co-regulatory units within the xylan biosynthetic pathway. These results confirm that FTMIR is a suitable method for identifying putative mutants with altered mucilage HX composition in P. ovata, and therefore forms a resource to identify novel genes involved in xylan biosynthesis. PMID:28377777

  18. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Gary; Dalin, Eileen; Tice, Hope

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer-ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi-cellulose. This bacterium is also considered as a potential probiotic. Complete genome squence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  19. Contribution of β-adrenoceptor subtypes to relaxation of colon and oesophagus and pacemaker activity of ureter in wildtype and β3-adrenoceptor knockout mice

    PubMed Central

    Oostendorp, Jaap; Preitner, Frédéric; Moffatt, James; Jimenez, Maria; Giacobino, Jean Paul; Molenaar, Peter; Kaumann, Alberto Julio

    2000-01-01

    The smooth muscle relaxant responses to the mixed β3-, putative β4-adrenoceptor agonist, (−)-CGP 12177 in rat colon are partially resistant to blockade by the β3-adrenoceptor antagonist SR59230A suggesting involvement of β3- and putative β4-adrenoceptors. We now investigated the function of the putative β4-adrenoceptor and other β-adrenoceptor subtypes in the colon, oesophagus and ureter of wildtype (WT) and β3-adrenoceptor knockout (β3KO) mice.(−)-Noradrenaline and (−)-adrenaline relaxed KCl (30 mM)-precontracted colon mostly through β1-and β3-adrenoceptors to a similar extent and to a minor extent through β2-adrenoceptors. In colon from β3KO mice, (−)-noradrenaline was as potent as in WT mice but the effects were mediated entirely through β1-adrenoceptors. (−)-CGP 12177 relaxed colon from β3KO mice with 2 fold greater potency than in WT mice. The maintenance of potency for (−)-noradrenaline and increase for (−)-CGP 12177 indicate compensatory increases in β1- and putative β4-adrenoceptor function in β3KO mice.In oesophagi precontracted with 1 μM carbachol, (−)-noradrenaline caused relaxation mainly through β1-and β3-adrenoceptors. (−)-CGP 12177 (2 μM) relaxed oesophagi from WT by 61.4±5.1% and β3KO by 67.3±10.1% of the (−)-isoprenaline-evoked relaxation, consistent with mediation through putative β4-adrenoceptors.In ureter, (−)-CGP 12177 (2 μM) reduced pacemaker activity by 31.1±2.3% in WT and 31.3±7.5% in β3KO, consistent with mediation through putative β4-adrenoceptors.Relaxation of mouse colon and oesophagus by catecholamines are mediated through β1- and β3-adrenoceptors in WT. The putative β4-adrenoceptor, which presumably is an atypical state of the β1-adrenoceptor, mediates the effects of (−)-CGP 12177 in colon, oesophagus and ureter. PMID:10864880

  20. Motility of Colwellia psychrerythraea Strain 34H at Subzero Temperatures

    PubMed Central

    Junge, Karen; Eicken, Hajo; Deming, Jody W.

    2003-01-01

    We examined the Arctic bacterium Colwellia psychrerythraea strain 34H for motility at temperatures from −1 to −15°C by using transmitted-light microscopy in a temperature-controlled laboratory. The results, showing motility to −10°C, indicate much lower temperatures to be permissive of motility than previously reported (5°C), with implications for microbial activity in frozen environments. PMID:12839815

Top