Science.gov

Sample records for putative leucine-rich repeat

  1. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction.

    PubMed

    Li, J; Chory, J

    1997-09-05

    Brassinosteroids are a class of growth-promoting regulators that play a key role throughout plant development. Despite their importance, nothing is known of the mechanism of action of these steroid hormones. We describe the identification of 18 Arabidopsis dwarf mutants that are unable to respond to exogenously added brassinosteroid, a phenotype that might be expected for brassinosteroid signaling mutants. All 18 mutations define alleles of a single previously described gene, BRI1. We cloned BRI1 and examined its expression pattern. It encodes a ubiquitously expressed putative receptor kinase. The extracellular domain contains 25 tandem leucine-rich repeats that resemble repeats found in animal hormone receptors, plant disease resistance genes, and genes involved in unknown signaling pathways controlling plant development.

  2. The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats.

    PubMed Central

    Torii, K U; Mitsukawa, N; Oosumi, T; Matsuura, Y; Yokoyama, R; Whittier, R F; Komeda, Y

    1996-01-01

    Arabidopsis Landsberg erecta is one of the most popular ecotypes and is used widely for both molecular and genetic studies. It harbors the erecta (er) mutation, which confers a compact inflorescence, blunt fruits, and short petioles. We have identified five er mutant alleles from ecotypes Columbia and Wassilewskija. Phenotypic characterization of the mutant alleles suggests a role for the ER gene in regulating the shape of organs originating from the shoot apical meristem. We cloned the ER gene, and here, we report that it encodes a putative receptor protein kinases. The deduced ER protein contains a cytoplasmic protein kinase catalytic domain, a transmembrane region, and an extracellular domain consisting of leucine-rich repeats, which are thought to interact with other macromolecules. Our results suggest that cell-cell communication mediated by a receptor kinase has an important role in plant morphogenesis. PMID:8624444

  3. The wheat homolog of putative nucleotide-binding site-leucine-rich repeat resistance gene TaRGA contributes to resistance against powdery mildew.

    PubMed

    Wang, Defu; Wang, Xiaobing; Mei, Yu; Dong, Hansong

    2016-03-01

    Powdery mildew, one of the most destructive wheat diseases worldwide, is caused by Blumeria graminis f. sp. tritici (Bgt), a fungal species with a consistently high mutation rate that makes individual resistance (R) genes ineffective. Therefore, effective resistance-related gene cloning is vital for breeding and studying the resistance mechanisms of the disease. In this study, a putative nucleotide-binding site-leucine-rich repeat (NBS-LRR) R gene (TaRGA) was cloned using a homology-based cloning strategy and analyzed for its effect on powdery mildew disease and wheat defense responses. Real-time reverse transcription-PCR (RT-PCR) analyses revealed that a Bgt isolate 15 and salicylic acid stimulation significantly induced TaRGA in the resistant variety. Furthermore, the silencing of TaRGA in powdery mildew-resistant plants increased susceptibility to Bgt15 and prompted conidia propagation at the infection site. However, the expression of TaRGA in leaf segments after single-cell transient expression assay highly increased the defense responses to Bgt15 by enhancing callose deposition and phenolic autofluorogen accumulation at the pathogen invading sites. Meanwhile, the expression of pathogenesis-related genes decreased in the TaRGA-silenced plants and increased in the TaRGA-transient-overexpressing leaf segments. These results implied that the TaRGA gene positively regulates the defense response to powdery mildew disease in wheat.

  4. Molecular characterisation of the STRUBBELIG-RECEPTOR FAMILY of genes encoding putative leucine-rich repeat receptor-like kinases in Arabidopsis thaliana

    PubMed Central

    Eyüboglu, Banu; Pfister, Karen; Haberer, Georg; Chevalier, David; Fuchs, Angelika; Mayer, Klaus FX; Schneitz, Kay

    2007-01-01

    Background Receptor-like kinases are a prominent class of surface receptors that regulate many aspects of the plant life cycle. Despite recent advances the function of most receptor-like kinases remains elusive. Therefore, it is paramount to investigate these receptors. The task is complicated by the fact that receptor-like kinases belong to a large monophyletic family with many sub-clades. In general, functional analysis of gene family members by reverse genetics is often obscured by several issues, such as redundancy, subtle or difficult to detect phenotypes in mutants, or by decision problems regarding suitable biological and biochemical assays. Therefore, in many cases additional strategies have to be employed to allow inference of hypotheses regarding gene function. Results We approached the function of genes encoding the nine-member STRUBBELIG-RECEPTOR FAMILY (SRF) class of putative leucine-rich repeat receptor-like kinases. Sequence comparisons show overall conservation but also divergence in predicted functional domains among SRF proteins. Interestingly, SRF1 undergoes differential splicing. As a result, SRF1 is predicted to exist in a standard receptor configuration and in a membrane-anchored receptor-like version that lacks most of the intracellular domain. Furthermore, SRF1 is characterised by a high degree of polymorphism between the Ler and Col accessions. Two independent T-DNA-based srf4 mutants showed smaller leaves while 35S::SRF4 plants displayed enlarged leaves. This is in addition to the strubbelig phenotype which has been described before. Additional single and several key double mutant combinations did not reveal obvious mutant phenotypes. Ectopic expression of several SRF genes, using the 35S promoter, resulted in male sterility. To gain possible insights into SRF gene function we employed a computational analysis of publicly available microarray data. We performed global expression profiling, coexpression analysis, and an analysis of the

  5. Artificial leucine rich repeats as new scaffolds for protein design.

    PubMed

    Baabur-Cohen, Hemda; Dayalan, Subashini; Shumacher, Inbal; Cohen-Luria, Rivka; Ashkenasy, Gonen

    2011-04-15

    The leucine rich repeat (LRR) motif that participates in many biomolecular recognition events in cells was suggested as a general scaffold for producing artificial receptors. We describe here the design and first total chemical synthesis of small LRR proteins, and their structural analysis. When evaluating the tertiary structure as a function of different number of repeating units (1-3), we were able to find that the 3-repeats sequence, containing 90 amino acids, folds into the expected structure.

  6. Distribution and Evolution of Yersinia Leucine-Rich Repeat Proteins

    PubMed Central

    Hu, Yueming; Huang, He; Hui, Xinjie; Cheng, Xi; White, Aaron P.

    2016-01-01

    Leucine-rich repeat (LRR) proteins are widely distributed in bacteria, playing important roles in various protein-protein interaction processes. In Yersinia, the well-characterized type III secreted effector YopM also belongs to the LRR protein family and is encoded by virulence plasmids. However, little has been known about other LRR members encoded by Yersinia genomes or their evolution. In this study, the Yersinia LRR proteins were comprehensively screened, categorized, and compared. The LRR proteins encoded by chromosomes (LRR1 proteins) appeared to be more similar to each other and different from those encoded by plasmids (LRR2 proteins) with regard to repeat-unit length, amino acid composition profile, and gene expression regulation circuits. LRR1 proteins were also different from LRR2 proteins in that the LRR1 proteins contained an E3 ligase domain (NEL domain) in the C-terminal region or an NEL domain-encoding nucleotide relic in flanking genomic sequences. The LRR1 protein-encoding genes (LRR1 genes) varied dramatically and were categorized into 4 subgroups (a to d), with the LRR1a to -c genes evolving from the same ancestor and LRR1d genes evolving from another ancestor. The consensus and ancestor repeat-unit sequences were inferred for different LRR1 protein subgroups by use of a maximum parsimony modeling strategy. Structural modeling disclosed very similar repeat-unit structures between LRR1 and LRR2 proteins despite the different unit lengths and amino acid compositions. Structural constraints may serve as the driving force to explain the observed mutations in the LRR regions. This study suggests that there may be functional variation and lays the foundation for future experiments investigating the functions of the chromosomally encoded LRR proteins of Yersinia. PMID:27217422

  7. Podocan-like protein: a novel small leucine-rich repeat matrix protein in bone.

    PubMed

    Mochida, Yoshiyuki; Kaku, Masaru; Yoshida, Keiko; Katafuchi, Michitsuna; Atsawasuwan, Phimon; Yamauchi, Mitsuo

    2011-07-01

    Recently, significant attention has been drawn to the biology of small leucine-rich repeat proteoglycans (SLRPs) due to their multiple functionalities in various cell types and tissues. Here, we characterize a novel SLRP member, "Podocan-like (Podnl) protein" identified by a bioinformatics approach. The Podnl protein has a signal peptide, a unique cysteine-rich N-terminal cluster, 21 leucine-rich repeat (LRR) motifs, and one putative N-glycosylation site. This protein is structurally similar to podocan in SLRPs. The gene was highly expressed in mineralized tissues and in osteoblastic cells and the high expression level was observed at and after matrix mineralization in vitro. Podnl was enriched in newly formed bones based on immunohistochemical analysis. When Podnl was transfected into osteoblastic cells, the protein with N-glycosylation was detected mainly in the cultured medium, indicating that Podnl is a secreted N-glycosylated protein. The endogenous Podnl protein was also present in bone matrix. These data provide a new insight into our understanding of the emerging SLRP functions in bone formation.

  8. Molecular Recognition of Muramyl Dipeptide Occurs in the Leucine-rich Repeat Domain of Nod2.

    PubMed

    Lauro, Mackenzie L; D'Ambrosio, Elizabeth A; Bahnson, Brian J; Grimes, Catherine Leimkuhler

    2017-04-14

    Genetic mutations in the innate immune receptor nucleotide-binding oligomerization domain-containing 2 (Nod2) have demonstrated increased susceptibility to Crohn's disease, an inflammatory bowel disease that is hypothesized to be accompanied by changes in the gut microbiota. Nod2 responds to the presence of bacteria, specifically a fragment of the bacterial cell wall, muramyl dipeptide (MDP). The proposed site of this interaction is the leucine-rich repeat (LRR) domain. Surface plasmon resonance and molecular modeling were used to investigate the interaction of the LRR domain with MDP. A functional and pure LRR domain was obtained from Escherichia coli expression in high yield. The LRR domain binds to MDP with high affinity, with a KD of 212 ± 24 nM. Critical portions of the receptor were determined by mutagenesis of putative binding residues. Fragment analysis of MDP revealed that both the peptide and carbohydrate portion contribute to the binding interaction.

  9. Parkinson's Disease: Leucine-Rich Repeat Kinase 2 and Autophagy, Intimate Enemies

    PubMed Central

    Bravo-San Pedro, José M.; Gómez-Sánchez, Rubén; Pizarro-Estrella, Elisa; Niso-Santano, Mireia; González-Polo, Rosa A.; Fuentes Rodríguez, José M.

    2012-01-01

    Parkinson's disease is the second common neurodegenerative disorder, after Alzheimer's disease. It is a clinical syndrome characterized by loss of dopamine-generating cells in the substancia nigra, a region of the midbrain. The etiology of Parkinson's disease has long been through to involve both genetic and environmental factors. Mutations in the leucine-rich repeat kinase 2 gene cause late-onset Parkinson's disease with a clinical appearance indistinguishable from Parkinson's disease idiopathic. Autophagy is an intracellular catabolic mechanism whereby a cell recycles or degrades damage proteins and cytoplasmic organelles. This degradative process has been associated with cellular dysfunction in neurodegenerative processes including Parkinson's disease. We discuss the role of leucine-rich repeat kinase 2 in autophagy, and how the deregulations of this degradative mechanism in cells can be implicated in the Parkinson's disease etiology. PMID:22970411

  10. Parkinson's disease: leucine-rich repeat kinase 2 and autophagy, intimate enemies.

    PubMed

    Bravo-San Pedro, José M; Gómez-Sánchez, Rubén; Pizarro-Estrella, Elisa; Niso-Santano, Mireia; González-Polo, Rosa A; Fuentes Rodríguez, José M

    2012-01-01

    Parkinson's disease is the second common neurodegenerative disorder, after Alzheimer's disease. It is a clinical syndrome characterized by loss of dopamine-generating cells in the substancia nigra, a region of the midbrain. The etiology of Parkinson's disease has long been through to involve both genetic and environmental factors. Mutations in the leucine-rich repeat kinase 2 gene cause late-onset Parkinson's disease with a clinical appearance indistinguishable from Parkinson's disease idiopathic. Autophagy is an intracellular catabolic mechanism whereby a cell recycles or degrades damage proteins and cytoplasmic organelles. This degradative process has been associated with cellular dysfunction in neurodegenerative processes including Parkinson's disease. We discuss the role of leucine-rich repeat kinase 2 in autophagy, and how the deregulations of this degradative mechanism in cells can be implicated in the Parkinson's disease etiology.

  11. An evolutionary comparison of leucine-rich repeat containing G protein-coupled receptors reveals a novel LGR subtype.

    PubMed

    Van Hiel, Matthias B; Vandersmissen, Hans Peter; Van Loy, Tom; Vanden Broeck, Jozef

    2012-03-01

    Leucine-rich repeat containing G protein-coupled receptors or LGRs are receptors with important functions in development and reproduction. Belonging to this evolutionarily conserved group of receptors are the well-studied glycoprotein hormone receptors and relaxin receptors in mammals, as well as the bursicon receptor, which triggers cuticle hardening and tanning in freshly enclosed insects. In this study, the numerous LGR sequences in different animal phyla are analyzed and compared. Based on these data a phylogenetic tree was generated. This information sheds new light on structural and evolutionary aspects regarding this receptor group. Apart from vertebrates and insects, LGRs are also present in early chordates (Urochordata, Cephalochordata and Hyperoartia) and other arthropods (Arachnida and Branchiopoda) as well as in Mollusca, Echinodermata, Hemichordata, Nematoda, and even in ancient animal life forms, such as Cnidaria and Placozoa. Three distinct types of LGR exist, distinguishable by their number of leucine-rich repeats (LRRs), their type-specific hinge region and the presence or absence of an LDLa motif. Type C LGRs containing only one LDLa (C1 subtype) appear to be present in nearly all animal phyla. We here describe a second subtype, C2, containing multiple LDLa motifs, which was discovered in echinoderms, mollusks and in one insect species (Pediculus humanis corporis). In addition, eight putative LGRs can be predicted from the genome data of the placozoan species Trichoplax adhaerens. They may represent an ancient form of the LGRs, however, more genomic data will be required to confirm this hypothesis.

  12. Measuring the Activity of Leucine-Rich Repeat Kinase 2: A Kinase Involved in Parkinson's Disease

    PubMed Central

    Lee, Byoung Dae; Li, Xiaojie; Dawson, Ted M.; Dawson, Valina L.

    2015-01-01

    Mutations in the LRRK2 (Leucine-Rich Repeat Kinase 2) gene are the most common cause of autosomal dominant Parkinson's disease. LRRK2 has multiple functional domains including a kinase domain. The kinase activity of LRRK2 is implicated in the pathogenesis of Parkinson's disease. Developing an assay to understand the mechanisms of LRRK2 kinase activity is important for the development of pharmacologic and therapeutic applications. Here, we describe how to measure in vitro LRRK2 kinase activity and its inhibition. PMID:21960214

  13. Role and mechanism of action of leucine-rich repeat kinase 1 in bone

    PubMed Central

    Xing, Weirong R; Goodluck, Helen; Zeng, Canjun; Mohan, Subburaman

    2017-01-01

    Leucine-rich repeat kinase 1 (LRRK1) plays a critical role in regulating cytoskeletal organization, osteoclast activity, and bone resorption with little effect on bone formation parameters. Deficiency of Lrrk1 in mice causes a severe osteopetrosis in the metaphysis of the long bones and vertebrae bones, which makes LRRK1 an attractive alternative drug target for the treatment of osteoporosis and other high-turnover bone diseases. This review summarizes recent advances on the functions of the Lrrk1-related family members, Lrrk1 deficiency-induced skeletal phenotypes, LRRK1 structure–function, potential biological substrates and interacting proteins, and the mechanisms of LRRK1 action in osteoclasts. PMID:28326224

  14. The Role of Leucine-Rich Repeat Containing Protein 10 (LRRC10) in Dilated Cardiomyopathy

    PubMed Central

    Brody, Matthew J.; Lee, Youngsook

    2016-01-01

    Leucine-rich repeat containing protein 10 (LRRC10) is a cardiomyocyte-specific member of the Leucine-rich repeat containing (LRRC) protein superfamily with critical roles in cardiac function and disease pathogenesis. Recent studies have identified LRRC10 mutations in human idiopathic dilated cardiomyopathy (DCM) and Lrrc10 homozygous knockout mice develop DCM, strongly linking LRRC10 to the molecular etiology of DCM. LRRC10 localizes to the dyad region in cardiomyocytes where it can interact with actin and α-actinin at the Z-disc and associate with T-tubule components. Indeed, this region is becoming increasingly recognized as a signaling center in cardiomyocytes, not only for calcium cycling, excitation-contraction coupling, and calcium-sensitive hypertrophic signaling, but also as a nodal signaling hub where the myocyte can sense and respond to mechanical stress. Disruption of a wide range of critical structural and signaling molecules in cardiomyocytes confers susceptibility to cardiomyopathies in addition to the more classically studied mutations in sarcomeric proteins. However, the molecular mechanisms underlying DCM remain unclear. Here, we review what is known about the cardiomyocyte functions of LRRC10, lessons learned about LRRC10 and DCM from the Lrrc10 knockout mouse model, and discuss ongoing efforts to elucidate molecular mechanisms whereby mutation or absence of LRRC10 mediates cardiac disease. PMID:27536250

  15. Leucine-Rich Repeat (LRR) Domains Containing Intervening Motifs in Plants

    PubMed Central

    Matsushima, Norio; Miyashita, Hiroki

    2012-01-01

    LRRs (leucine rich repeats) are present in over 14,000 proteins. Non-LRR, island regions (IRs) interrupting LRRs are widely distributed. The present article reviews 19 families of LRR proteins having non-LRR IRs (LRR@IR proteins) from various plant species. The LRR@IR proteins are LRR-containing receptor-like kinases (LRR-RLKs), LRR-containing receptor-like proteins (LRR-RLPs), TONSOKU/BRUSHY1, and MJK13.7; the LRR-RLKs are homologs of TMK1/Rhg4, BRI1, PSKR, PSYR1, Arabidopsis At1g74360, and RPK2, while the LRR-RLPs are those of Cf-9/Cf-4, Cf-2/Cf-5, Ve, HcrVf, RPP27, EIX1, clavata 2, fascinated ear2, RLP2, rice Os10g0479700, and putative soybean disease resistance protein. The LRRs are intersected by single, non-LRR IRs; only the RPK2 homologs have two IRs. In most of the LRR-RLKs and LRR-RLPs, the number of repeat units in the preceding LRR block (N1) is greater than the number of the following block (N2); N1 » N2 in which N1 is variable in the homologs of individual families, while N2 is highly conserved. The five families of the LRR-RLKs except for the RPK2 family show N1 = 8 − 18 and N2 = 3 − 5. The nine families of the LRR-RLPs show N1 = 12 − 33 and N2 = 4; while N1 = 6 and N2 = 4 for the rice Os10g0479700 family and the N1 = 4 − 28 and N2 = 4 for the soybean protein family. The rule of N1 » N2 might play a common, significant role in ligand interaction, dimerization, and/or signal transduction of the LRR-RLKs and the LRR-RLPs. The structure and evolution of the LRR domains with non-LRR IRs and their proteins are also discussed. PMID:24970139

  16. Modular mutagenesis of human placental ribonuclease inhibitor, a protein with leucine-rich repeats.

    PubMed Central

    Lee, F S; Vallee, B L

    1990-01-01

    Human placental ribonuclease inhibitor (PRI) is a potent protein inhibitor of pancreatic ribonucleases and the homologous blood vessel-inducing protein angiogenin. Although inhibition by PRI occurs with a 1:1 stoichiometry, its primary structure is composed predominantly of seven internal leucine-rich repeats. These internal repeats were systematically deleted either singly or in combination by "modular" mutagenesis. Deletion of repeat units 3 plus 4 or repeat unit 6 results in mutants that both bind to and inhibit ribonuclease A. Therefore, the angiogenin/ribonuclease binding site in PRI must reside primarily or entirely in repeats 1, 2, 5, or 7, the short N- or C-terminal segments, or a combination of these. Deletion of repeat units 3-5, 5-6, or 5 alone results in mutants that exhibit only binding activity. Hence, the binding site cannot reside exclusively in repeat 5. Other internal deletions or N- or C-terminal deletions of 6-86% of the protein all abolish activity. These results suggest that PRI has a modular structure, with one primary structural repeat constituting one module. The approach taken may be applicable to other proteins with repeat structures. Images PMID:2408043

  17. Assembly of Neuronal Connectivity by Neurotrophic Factors and Leucine-Rich Repeat Proteins

    PubMed Central

    Ledda, Fernanda; Paratcha, Gustavo

    2016-01-01

    Proper function of the nervous system critically relies on sophisticated neuronal networks interconnected in a highly specific pattern. The architecture of these connections arises from sequential developmental steps such as axonal growth and guidance, dendrite development, target determination, synapse formation and plasticity. Leucine-rich repeat (LRR) transmembrane proteins have been involved in cell-type specific signaling pathways that underlie these developmental processes. The members of this superfamily of proteins execute their functions acting as trans-synaptic cell adhesion molecules involved in target specificity and synapse formation or working in cis as cell-intrinsic modulators of neurotrophic factor receptor trafficking and signaling. In this review, we will focus on novel physiological mechanisms through which LRR proteins regulate neurotrophic factor receptor signaling, highlighting the importance of these modulatory events for proper axonal extension and guidance, tissue innervation and dendrite morphogenesis. Additionally, we discuss few examples linking this set of LRR proteins to neurodevelopmental and psychiatric disorders. PMID:27555809

  18. Structure of the OsSERK2 leucine-rich repeat extracellular domain

    PubMed Central

    McAndrew, Ryan; Pruitt, Rory N.; Kamita, Shizuo G.; Pereira, Jose Henrique; Majumdar, Dipali; Hammock, Bruce D.; Adams, Paul D.; Ronald, Pamela C.

    2014-01-01

    Somatic embryogenesis receptor kinases (SERKs) are leucine-rich repeat (LRR)-containing integral membrane receptors that are involved in the regulation of development and immune responses in plants. It has recently been shown that rice SERK2 (OsSERK2) is essential for XA21-mediated resistance to the pathogen Xanthomonas oryzae pv. oryzae. OsSERK2 is also required for the BRI1-mediated, FLS2-mediated and EFR-mediated responses to brassinosteroids, flagellin and elongation factor Tu (EF-Tu), respectively. Here, crystal structures of the LRR domains of OsSERK2 and a D128N OsSERK2 mutant, expressed as hagfish variable lymphocyte receptor (VLR) fusions, are reported. These structures suggest that the aspartate mutation does not generate any significant conformational change in the protein, but instead leads to an altered interaction with partner receptors. PMID:25372696

  19. Structure of the OsSERK2 leucine-rich repeat extracellular domain.

    PubMed

    McAndrew, Ryan; Pruitt, Rory N; Kamita, Shizuo G; Pereira, Jose Henrique; Majumdar, Dipali; Hammock, Bruce D; Adams, Paul D; Ronald, Pamela C

    2014-11-01

    Somatic embryogenesis receptor kinases (SERKs) are leucine-rich repeat (LRR)-containing integral membrane receptors that are involved in the regulation of development and immune responses in plants. It has recently been shown that rice SERK2 (OsSERK2) is essential for XA21-mediated resistance to the pathogen Xanthomonas oryzae pv. oryzae. OsSERK2 is also required for the BRI1-mediated, FLS2-mediated and EFR-mediated responses to brassinosteroids, flagellin and elongation factor Tu (EF-Tu), respectively. Here, crystal structures of the LRR domains of OsSERK2 and a D128N OsSERK2 mutant, expressed as hagfish variable lymphocyte receptor (VLR) fusions, are reported. These structures suggest that the aspartate mutation does not generate any significant conformational change in the protein, but instead leads to an altered interaction with partner receptors.

  20. Leucine-Rich Repeat Transmembrane Proteins Instruct Discrete Dendrite Targeting in an Olfactory Map

    PubMed Central

    Hong, Weizhe; Zhu, Haitao; Potter, Christopher J.; Barsh, Gabrielle; Kurusu, Mitsuhiko; Zinn, Kai; Luo, Liqun

    2010-01-01

    Olfactory systems utilize discrete neural pathways to process and integrate odorant information. In Drosophila, axons of first-order olfactory receptor neurons (ORNs) and dendrites of second-order projection neurons (PNs) form class-specific synaptic connections at ∼50 glomeruli. The mechanisms underlying PN dendrite targeting to distinct glomeruli in a 3-dimensional discrete neural map are unclear. Here we show that the leucine-rich repeat (LRR) transmembrane protein Capricious (Caps) is differentially expressed in different classes of PNs. Loss- and gain-of-function studies indicate that Caps instructs the segregation of Caps-positive and negative PN dendrites to discrete glomerular targets. Moreover, Caps does not mediate homophilic interactions and regulates PN dendrite targeting independent of pre-synaptic ORNs. The closely related protein Tartan plays a partially redundant function with Capricious. These LRR proteins are likely part of a combinatorial cell-surface code that instructs discrete olfactory map formation. PMID:19915565

  1. Control of Neural Circuit Formation by Leucine-Rich Repeat Proteins

    PubMed Central

    de Wit, Joris; Ghosh, Anirvan

    2014-01-01

    The function of neural circuits depends on the precise connectivity between populations of neurons. Increasing evidence indicates that disruptions in excitatory or inhibitory synapse formation or function lead to excitation/inhibition (E/I) imbalances and contribute to neurodevelopmental and psychiatric disorders. Leucine-rich repeat (LRR)-containing surface proteins have emerged as key organizers of excitatory and inhibitory synapses. Distinct LRR proteins are expressed in different cell types and interact with key pre- and postsynaptic proteins. These protein interaction networks allow LRR proteins to coordinate pre- and postsynaptic elements during synapse formation and differentiation, pathway-specific synapse development, and synaptic plasticity. LRR proteins thus play a critical role in organizing synaptic connections into functional neural circuits, and their dysfunction may contribute to neuropsychiatric disorders. PMID:25131359

  2. Leucine-rich repeat transmembrane proteins instruct discrete dendrite targeting in an olfactory map.

    PubMed

    Hong, Weizhe; Zhu, Haitao; Potter, Christopher J; Barsh, Gabrielle; Kurusu, Mitsuhiko; Zinn, Kai; Luo, Liqun

    2009-12-01

    Olfactory systems utilize discrete neural pathways to process and integrate odorant information. In Drosophila, axons of first-order olfactory receptor neurons (ORNs) and dendrites of second-order projection neurons (PNs) form class-specific synaptic connections at approximately 50 glomeruli. The mechanisms underlying PN dendrite targeting to distinct glomeruli in a three-dimensional discrete neural map are unclear. We found that the leucine-rich repeat (LRR) transmembrane protein Capricious (Caps) was differentially expressed in different classes of PNs. Loss-of-function and gain-of-function studies indicated that Caps instructs the segregation of Caps-positive and Caps-negative PN dendrites to discrete glomerular targets. Moreover, Caps-mediated PN dendrite targeting was independent of presynaptic ORNs and did not involve homophilic interactions. The closely related protein Tartan was partially redundant with Caps. These LRR proteins are probably part of a combinatorial cell-surface code that instructs discrete olfactory map formation.

  3. The small leucine-rich repeat proteoglycans in tissue repair and atherosclerosis

    PubMed Central

    Hultgårdh-Nilsson, Anna; Borén, Jan; Chakravarti, Shukti

    2015-01-01

    Proteoglycans consist of a protein core with one or more covalently attached glycosaminoglycan (GAG) side chains, and have multiple roles in the initiation and progression of atherosclerosis. Here we discuss the potential and known functions of a group of small leucine-rich repeat proteoglycans (SLRPs) in atherosclerosis. We focus on five SLRPs, decorin, biglycan lumican, fibromodulin, and PRELP, because these have been detected in atherosclerotic plaques or demonstrated to have a role in animal models of atherosclerosis. Decorin and biglycan are modified post translationally by substitution with chondroitin/dermatan sulfate GAGs, whereas lumican, fibromodulin, and PRELP have keratan sulfate side chains, and the core proteins have leucine-rich repeat (LRR) motifs that are characteristic of the LRR superfamily. The chondroitin/dermatan sulfate GAG side chains have been implicated in lipid retention in atherosclerosis. The core proteins are discussed here in the context of: (i) interactions with collagens and their implications in tissue integrity, fibrosis, and wound repair; and (ii) interactions with growth factors, cytokines, pathogen-associated molecular patterns, and cell surface receptors that impact normal physiology and disease processes such as inflammation, innate immune responses, and wound healing (i.e processes that are all important in plaque development and progression). Thus, studies of these SLRPs in the context of wound healing are providing clues about their functions that may be important in early stages of atherosclerosis to plaque vulnerability and cardiovascular disease at later stages. Understanding of signal transduction pathways regulated by the core protein interactions is leading to novel roles and therapeutic potential for these proteins in wound repair and atherosclerosis. PMID:26477596

  4. Metabolic labeling of leucine rich repeat kinases 1 and 2 with radioactive phosphate.

    PubMed

    Taymans, Jean-Marc; Gao, Fangye; Baekelandt, Veerle

    2013-09-18

    Leucine rich repeat kinases 1 and 2 (LRRK1 and LRRK2) are paralogs which share a similar domain organization, including a serine-threonine kinase domain, a Ras of complex proteins domain (ROC), a C-terminal of ROC domain (COR), and leucine-rich and ankyrin-like repeats at the N-terminus. The precise cellular roles of LRRK1 and LRRK2 have yet to be elucidated, however LRRK1 has been implicated in tyrosine kinase receptor signaling, while LRRK2 is implicated in the pathogenesis of Parkinson's disease. In this report, we present a protocol to label the LRRK1 and LRRK2 proteins in cells with (32)P orthophosphate, thereby providing a means to measure the overall phosphorylation levels of these 2 proteins in cells. In brief, affinity tagged LRRK proteins are expressed in HEK293T cells which are exposed to medium containing (32)P-orthophosphate. The (32)P-orthophosphate is assimilated by the cells after only a few hours of incubation and all molecules in the cell containing phosphates are thereby radioactively labeled. Via the affinity tag (3xflag) the LRRK proteins are isolated from other cellular components by immunoprecipitation. Immunoprecipitates are then separated via SDS-PAGE, blotted to PVDF membranes and analysis of the incorporated phosphates is performed by autoradiography ((32)P signal) and western detection (protein signal) of the proteins on the blots. The protocol can readily be adapted to monitor phosphorylation of any other protein that can be expressed in cells and isolated by immunoprecipitation.

  5. Cerebral pathological and compensatory mechanisms in the premotor phase of leucine-rich repeat kinase 2 parkinsonism.

    PubMed

    van Nuenen, Bart F L; Helmich, Rick C; Ferraye, Murielle; Thaler, Avner; Hendler, Talma; Orr-Urtreger, Avi; Mirelman, Anat; Bressman, Susan; Marder, Karen S; Giladi, Nir; van de Warrenburg, Bart P C; Bloem, Bastiaan R; Toni, Ivan

    2012-12-01

    Compensatory cerebral mechanisms can delay motor symptom onset in Parkinson's disease. We aim to characterize these compensatory mechanisms and early disease-related changes by quantifying movement-related cerebral function in subjects at significantly increased risk of developing Parkinson's disease, namely carriers of a leucine-rich repeat kinase 2-G2019S mutation associated with dominantly inherited parkinsonism. Functional magnetic resonance imaging was used to examine cerebral activity evoked during internal selection of motor representations, a core motor deficit in clinically overt Parkinson's disease. Thirty-nine healthy first-degree relatives of Ashkenazi Jewish patients with Parkinson's disease, who carry the leucine-rich repeat kinase 2-G2019S mutation, participated in this study. Twenty-one carriers of the leucine-rich repeat kinase 2-G2019S mutation and 18 non-carriers of this mutation were engaged in a motor imagery task (laterality judgements of left or right hands) known to be sensitive to motor control parameters. Behavioural performance of both groups was matched. Mutation carriers and non-carriers were equally sensitive to the extent and biomechanical constraints of the imagined movements in relation to the current posture of the participants' hands. Cerebral activity differed between groups, such that leucine-rich repeat kinase 2-G2019S carriers had reduced imagery-related activity in the right caudate nucleus and increased activity in the right dorsal premotor cortex. More severe striatal impairment was associated with stronger effective connectivity between the right dorsal premotor cortex and the right extrastriate body area. These findings suggest that altered movement-related activity in the caudate nuclei of leucine-rich repeat kinase 2-G2019S carriers might remain behaviourally latent by virtue of cortical compensatory mechanisms involving long-range connectivity between the dorsal premotor cortex and posterior sensory regions. These

  6. Neuronal leucine-rich repeat 1 negatively regulates anaplastic lymphoma kinase in neuroblastoma

    PubMed Central

    Satoh, Shunpei; Takatori, Atsushi; Ogura, Atsushi; Kohashi, Kenichi; Souzaki, Ryota; Kinoshita, Yoshiaki; Taguchi, Tomoaki; Hossain, Md. Shamim; Ohira, Miki; Nakamura, Yohko; Nakagawara, Akira

    2016-01-01

    In neuroblastoma (NB), one of the most common paediatric solid tumours, activation of anaplastic lymphoma kinase (ALK) is often associated with poor outcomes. Although genetic studies have identified copy number alteration and nonsynonymous mutations of ALK, the regulatory mechanism of ALK signalling at protein levels is largely elusive. Neuronal leucine-rich repeat 1 (NLRR1) is a type 1 transmembrane protein that is highly expressed in unfavourable NB and potentially influences receptor tyrosine kinase signalling. Here, we showed that NLRR1 and ALK exhibited a mutually exclusive expression pattern in primary NB tissues by immunohistochemistry. Moreover, dorsal root ganglia of Nlrr1+/+ and Nlrr1−/− mice displayed the opposite expression patterns of Nlrr1 and Alk. Of interest, NLRR1 physically interacted with ALK in vitro through its extracellular region. Notably, the NLRR1 ectodomain impaired ALK phosphorylation and proliferation of ALK-mutated NB cells. A newly identified cleavage of the NLRR1 ectodomain also supported NLRR1-mediated ALK signal regulation in trans. Thus, we conclude that NLRR1 appears to be an extracellular negative regulator of ALK signalling in NB and neuronal development. Our findings may be beneficial to comprehend NB heterogeneity and to develop a novel therapy against unfavourable NB. PMID:27604320

  7. Endogenous Leucine-Rich Repeat Kinase 2 Slows Synaptic Vesicle Recycling in Striatal Neurons

    PubMed Central

    Maas, James W. Jr.; Yang, Jing; Edwards, Robert H.

    2017-01-01

    Dominant mutations in leucine-rich repeat kinase 2 (LRRK2) produce the most common inherited form of Parkinson’s disease (PD) but the function of LRRK2 remains poorly understood. The presynaptic role of multiple genes linked to PD including α-synuclein (α-syn) has suggested that LRRK2 may also influence neurotransmitter release, a possibility supported by recent work. However, the use of disease-associated mutants that cause toxicity complicates the analysis. To determine whether LRRK2 normally influences the synaptic vesicle, we have now used a combination of imaging and electrophysiology to study LRRK2 knockout (KO) mice. Surprisingly, we find that in hippocampal (generally excitatory) neurons, the loss of LRRK2 does not affect synaptic vesicle exocytosis, endocytosis or the mobility of α-syn. Double KO (DKO) mice lacking LRRK1 as well as LRRK2 also show no defect in transmitter release by hippocampal neurons. However, in striatal neurons, which express LRRK2 at higher levels, the loss of LRRK2 leads to modest acceleration of synaptic vesicle endocytosis. Thus, endogenous LRRK2 normally slows synaptic vesicle recycling at striatal terminals. PMID:28280464

  8. reduced ocelli encodes the leucine rich repeat protein Pray For Elves in Drosophila melanogaster.

    PubMed

    Caldwell, Jason C; Fineberg, Sarah K; Eberl, Daniel F

    2007-01-01

    The ocelli are three simple photoreceptors on the vertex of the fruit fly head. We sought to identify the gene encoded by the classical ocellar mutant, reduced ocelli (rdo). Deficiency and inversion breakpoint mapping and P-element induced male recombination analyses were performed and Pray For Elves (PFE; CG15151; Fbgn0032661) emerged as a promising candidate for the rdo phenotype. The PFE locus maps to polytene region 36E on chromosome 2L between elfless (Fbgn0032660) and Arrestin 1 (Fbgn0000120). FlyBase annotation predicts that PFE encodes a serine/threonine kinase, yet protein prediction programs revealed no kinase domain. These analyses suggest that PFE simply encodes a leucine rich repeat molecule of unknown function, but presumably functions in nervous system protein-protein interaction. Two classical spontaneous alleles of rdo, rdo(1) and rdo(2), were characterized and the underlying mutations result from a small deletion spanning exon 1/intron 1 and a B104/roo insertion into the 3'UTR of PFE, respectively. Transposase-mediated excisions of several P-elements inserted into the PFE locus revert the rdo phenotype and a full-length PFE cDNA is sufficient to rescue rdo. A Gal4 enhancer trap reveals a broad adult neural expression pattern for PFE. Our identification and initial characterization of the rdo locus will contribute to the understanding of neurogenesis and neural development in the simple photoreceptors of the Drosophila visual system.

  9. mTOR independent regulation of macroautophagy by Leucine Rich Repeat Kinase 2 via Beclin-1

    PubMed Central

    Manzoni, Claudia; Mamais, Adamantios; Roosen, Dorien A.; Dihanich, Sybille; Soutar, Marc P. M.; Plun-Favreau, Helene; Bandopadhyay, Rina; Hardy, John; Tooze, Sharon A.; Cookson, Mark R.; Lewis, Patrick A.

    2016-01-01

    Leucine rich repeat kinase 2 is a complex enzyme with both kinase and GTPase activities, closely linked to the pathogenesis of several human disorders including Parkinson’s disease, Crohn’s disease, leprosy and cancer. LRRK2 has been implicated in numerous cellular processes; however its physiological function remains unclear. Recent reports suggest that LRRK2 can act to regulate the cellular catabolic process of macroautophagy, although the precise mechanism whereby this occurs has not been identified. To investigate the signalling events through which LRRK2 acts to influence macroautophagy, the mammalian target of rapamycin (mTOR)/Unc-51-like kinase 1 (ULK1) and Beclin-1/phosphatidylinositol 3-kinase (PI3K) pathways were evaluated in astrocytic cell models in the presence and absence of LRRK2 kinase inhibitors. Chemical inhibition of LRRK2 kinase activity resulted in the stimulation of macroautophagy in a non-canonical fashion, independent of mTOR and ULK1, but dependent upon the activation of Beclin 1-containing class III PI3-kinase. PMID:27731364

  10. New Insights on Leucine-Rich Repeats Receptor-Like Kinase Orthologous Relationships in Angiosperms

    PubMed Central

    Dufayard, Jean-François; Bettembourg, Mathilde; Fischer, Iris; Droc, Gaetan; Guiderdoni, Emmanuel; Périn, Christophe; Chantret, Nathalie; Diévart, Anne

    2017-01-01

    Leucine-Rich Repeats Receptor-Like Kinase (LRR-RLK) genes represent a large and complex gene family in plants, mainly involved in development and stress responses. These receptors are composed of an LRR-containing extracellular domain (ECD), a transmembrane domain (TM) and an intracellular kinase domain (KD). To provide new perspectives on functional analyses of these genes in model and non-model plant species, we performed a phylogenetic analysis on 8,360 LRR-RLK receptors in 31 angiosperm genomes (8 monocots and 23 dicots). We identified 101 orthologous groups (OGs) of genes being conserved among almost all monocot and dicot species analyzed. We observed that more than 10% of these OGs are absent in the Brassicaceae species studied. We show that the ECD structural features are not always conserved among orthologs, suggesting that functions may have diverged in some OG sets. Moreover, we looked at targets of positive selection footprints in 12 pairs of OGs and noticed that depending on the subgroups, positive selection occurred more frequently either in the ECDs or in the KDs. PMID:28424707

  11. AdpC is a Prevotella intermedia 17 leucine-rich repeat internalin-like protein.

    PubMed

    Iyer, Divya; Anaya-Bergman, Cecilia; Jones, Kevin; Yanamandra, Sai; Sengupta, Dipanwita; Miyazaki, Hiroshi; Lewis, Janina P

    2010-06-01

    The oral bacterium Prevotella intermedia attaches to and invades gingival epithelial cells, fibroblasts, and endothelial cells. Several genes encoding proteins that mediate both the adhesion and invasion processes are carried on the genome of this bacterium. Here, we characterized one such protein, AdpC, belonging to the leucine-rich repeat (LRR) protein family. Bioinformatics analysis revealed that this protein shares similarity with the Treponema pallidum LRR (LRR(TP)) family of proteins and contains six LRRs. Despite the absence of a signal peptide, this protein is localized on the bacterial outer membrane, indicating that it is transported through an atypical secretion mechanism. The recombinant form of this protein (rAdpC) was shown to bind fibrinogen. In addition, the heterologous host strain Escherichia coli BL21 expressing rAdpC (V2846) invaded fibroblast NIH 3T3 cells at a 40-fold-higher frequency than control E. coli BL21 cells expressing a sham P. intermedia 17 protein. Although similar results were obtained by using human umbilical vein endothelial cells (HUVECs), only a 3-fold-increased invasion of V2846 into oral epithelial HN4 cells was observed. Thus, AdpC-mediated invasion is cell specific. This work demonstrated that AdpC is an important invasin protein of P. intermedia 17.

  12. The Leucine-rich Pentatricopeptide-Repeat Containing Protein Regulates Mitochondrial Transcription

    PubMed Central

    Sondheimer, Neal; Fang, Ji-Kang; Polyak, Erzsebet; Falk, Marni; Avadhani, Narayan G.

    2010-01-01

    Mitochondrial function depends upon the coordinated expression of the mitochondrial and nuclear genomes. Although the basal factors that carry out the process of mitochondrial transcription are known, the regulation of this process is incompletely understood. To further our understanding of mitochondrial gene regulation we identified proteins that bound to the previously described point of termination for the major mRNA-coding transcript H2. One was the leucine-rich pentatricopeptide-repeat containing protein (LRPPRC), which has been linked to the French-Canadian variant of Leigh syndrome. Cells with reduced expression of LRPPRC had a reduction in oxygen consumption. The expression of mitochondrial mRNA and tRNA was dependent upon LRPPRC levels, but reductions in LRPPRC did not affect the expression of mitochondrial rRNA. Reduction of LRPPRC levels interfered with mitochondrial transcription in vitro but did not affect the stability of mitochondrial mRNAs or alter the expression of nuclear genes responsible for mitochondrial transcription in vivo. These findings demonstrate the control of mitochondrial mRNA synthesis by a protein that has an established role in regulating nuclear transcription, and a link to mitochondrial disease. PMID:20677761

  13. Leucine-rich repeat kinase 2 inhibitors: a patent review (2014-2016).

    PubMed

    Galatsis, Paul

    2017-06-01

    Leucine-rich repeat kinase 2 (LRRK2) is a member of the Tyrosine Kinase-Like (TKL) branch of the kinome tree and is a multi-domain protein that includes GTPase and kinase activity. While genome-wide association studies (GWAS) has linked LRRK2 with Crohn's disease and leprosy, it has received the greatest attention due to it being implicated as one of the genetic loci associated with autosomal dominant inheritance in Parkinson's disease (PD). Areas covered: In this review, the small molecule patent literature from 2014-2016 with a focus on composition of matter and use patents was surveyed. Scifinder was primarily searched using 'LRRK2' as the query to identify all relevant literature and then triaged for small molecule patents. Expert opinion: The patent landscape around LRRK2 continues to develop. The early patents covered using existing kinase inhibitors for use against LRRK2. This evolved to compounds specifically designed for selectivity against LRRK2, but key exemplified compounds lacked sufficient brain exposure to affect sufficient efficacy. More recent compounds have addressed this deficiency and show greater potential for treating PD. While potency will be necessary to generate medicines with low human daily doses, brain penetration and safety will be the key differentiators for ultimately determining the most effective LRRK2 disease-modifying treatment for PD.

  14. Endogenous Leucine-Rich Repeat Kinase 2 Slows Synaptic Vesicle Recycling in Striatal Neurons.

    PubMed

    Maas, James W Jr; Yang, Jing; Edwards, Robert H

    2017-01-01

    Dominant mutations in leucine-rich repeat kinase 2 (LRRK2) produce the most common inherited form of Parkinson's disease (PD) but the function of LRRK2 remains poorly understood. The presynaptic role of multiple genes linked to PD including α-synuclein (α-syn) has suggested that LRRK2 may also influence neurotransmitter release, a possibility supported by recent work. However, the use of disease-associated mutants that cause toxicity complicates the analysis. To determine whether LRRK2 normally influences the synaptic vesicle, we have now used a combination of imaging and electrophysiology to study LRRK2 knockout (KO) mice. Surprisingly, we find that in hippocampal (generally excitatory) neurons, the loss of LRRK2 does not affect synaptic vesicle exocytosis, endocytosis or the mobility of α-syn. Double KO (DKO) mice lacking LRRK1 as well as LRRK2 also show no defect in transmitter release by hippocampal neurons. However, in striatal neurons, which express LRRK2 at higher levels, the loss of LRRK2 leads to modest acceleration of synaptic vesicle endocytosis. Thus, endogenous LRRK2 normally slows synaptic vesicle recycling at striatal terminals.

  15. reduced ocelli Encodes the Leucine Rich Repeat Protein Pray For Elves in Drosophila melanogaster

    PubMed Central

    Caldwell, Jason C.; Fineberg, Sarah K.; Eberl, Daniel F.

    2009-01-01

    The ocelli are three simple photoreceptors on the vertex of the fruit fly head. We sought to identify the gene encoded by the classical ocellar mutant, reduced ocelli (rdo). Deficiency and inversion breakpoint mapping and P-element induced male recombination analyses were performed and Pray For Elves (PFE; CG15151; Fbgn0032661) emerged as a promising candidate for the rdo phenotype. The PFE locus maps to polytene region 36E on chromosome 2L between elfless (Fbgn0032660) and Arrestin 1 (Fbgn0000120). FlyBase annotation predicts that PFE encodes a serine/threonine kinase, yet protein prediction programs revealed no kinase domain. These analyses suggest that PFE simply encodes a leucine rich repeat molecule of unknown function, but presumably functions in nervous system protein-protein interaction. Two classical spontaneous alleles of rdo, rdo1 and rdo2, were characterized and the underlying mutations result from a small deletion spanning exon 1/intron 1 and a B104/roo insertion into the 3′UTR of PFE, respectively. Transposase-mediated excisions of several P-elements inserted into the PFE locus revert the rdo phenotype and a full-length PFE cDNA is sufficient to rescue rdo. A Gal4 enhancer trap reveals a broad adult neural expression pattern for PFE. Our identification and initial characterization of the rdo locus will contribute to the understanding of neurogenesis and neural development in the simple photoreceptors of the Drosophila visual system. PMID:18820435

  16. Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity

    PubMed Central

    West, Andrew B.; Moore, Darren J.; Biskup, Saskia; Bugayenko, Artem; Smith, Wanli W.; Ross, Christopher A.; Dawson, Valina L.; Dawson, Ted M.

    2005-01-01

    Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) cause late-onset Parkinson's disease (PD) with a clinical appearance indistinguishable from idiopathic PD. Initial studies suggest that LRRK2 mutations are the most common yet identified determinant of PD susceptibility, transmitted in an autosomal-dominant mode of inheritance. Herein, we characterize the LRRK2 gene and transcript in human brain and subclone the predominant ORF. Exogenously expressed LRRK2 protein migrates at ≈280 kDa and is present largely in the cytoplasm but also associates with the mitochondrial outer membrane. Familial-linked mutations G2019S or R1441C do not have an obvious effect on protein steady-state levels, turnover, or localization. However, in vitro kinase assays using full-length recombinant LRRK2 reveal an increase in activity caused by familial-linked mutations in both autophosphorylation and the phosphorylation of a generic substrate. These results suggest a gain-of-function mechanism for LRRK2-linked disease with a central role for kinase activity in the development of PD. PMID:16269541

  17. Novel leucine rich repeat domains in proteins from unicellular eukaryotes and bacteria.

    PubMed

    Miyashita, Hiroki; Kuroki, Yoshio; Matsushima, Norio

    2014-03-01

    Leucine rich repeats (LRRs) are present in over 20,000 proteins from viruses to eukaryotes. Two to sixty-two LRRs occur in tandem. Each repeat is typically 20-30 residues long and can be divided into an HCS (Highly conserved segment) and a VS (Variable segment). The HCS part consists of an eleven or a twelve residue stretch, LxxLxLxxNx(x/-)L, in which "L" is Leu, Ile, Val, or Phe, "N" is Asn, Thr, Ser, or Cys, "x" is a non-conserved residue, and "-" is a possible deletion site. Eight classes have been recognized. However, there are many unclassified or unrecognized LRRs. Here we performed to search novel LRRs using protein sequence database. The novel LRR domains are present over three hundred proteins, which include fungal ECM33 protein and Monosiga brevicollis LRR receptor kinase, from unicellular eukaryotes and bacteria. The HCS part is clearly different from that of the known LRRs and consists of a twelve or a thirteen residue stretch, VxGx(L/F)x(L/C)xxNx(x/-)L, that is characterized by the addition of Gly between the first conserved Val and the second conserved Leu. The novel LRRs identified here form a new family. The novel LRR domains were classified into four classes. The VS parts of the two classes are consistent with those of known, normal "SDS22-like" and "IRREKO" classes, while the other two classes have unique VS parts. The structures, functions, and evolution of the novel LRR domains and their proteins are described. The present results should stimulate various experimental studies.

  18. The Protein Synthesis Inhibitor Blasticidin S Enters Mammalian Cells via Leucine-rich Repeat-containing Protein 8D

    PubMed Central

    Lee, Clarissa C.; Freinkman, Elizaveta; Sabatini, David M.; Ploegh, Hidde L.

    2014-01-01

    Leucine-rich repeat-containing 8 (LRRC8) proteins have been identified as putative receptors involved in lymphocyte development and adipocyte differentiation. They remain poorly characterized, and no specific function has been assigned to them. There is no consensus on how this family of proteins might function because homology searches suggest that members of the LRRC8 family act not as plasma membrane receptors, but rather as channels that mediate cell-cell signaling. Here we provide experimental evidence that supports a role for LRRC8s in the transport of small molecules. We show that LRRC8D is a mammalian protein required for the import of the antibiotic blasticidin S. We characterize localization and topology of LRRC8A and LRRC8D and demonstrate that LRRC8D interacts with LRRC8A, LRRC8B, and LRRC8C. Given the suggested involvement in solute transport, our results support a model in which LRRC8s form one or more complexes that may mediate cell-cell communication by transporting small solutes. PMID:24782309

  19. Leucine-Rich Repeat Kinase 2 Modulates Retinoic Acid-Induced Neuronal Differentiation of Murine Embryonic Stem Cells

    PubMed Central

    Schulz, Cathrin; Paus, Marie; Frey, Katharina; Schmid, Ramona; Kohl, Zacharias; Mennerich, Detlev; Winkler, Jürgen; Gillardon, Frank

    2011-01-01

    Background Dominant mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most prevalent cause of Parkinson's disease, however, little is known about the biological function of LRRK2 protein. LRRK2 is expressed in neural precursor cells suggesting a role in neurodevelopment. Methodology/Principal Findings In the present study, differential gene expression profiling revealed a faster silencing of pluripotency-associated genes, like Nanog, Oct4, and Lin28, during retinoic acid-induced neuronal differentiation of LRRK2-deficient mouse embryonic stem cells compared to wildtype cultures. By contrast, expression of neurotransmitter receptors and neurotransmitter release was increased in LRRK2+/− cultures indicating that LRRK2 promotes neuronal differentiation. Consistently, the number of neural progenitor cells was higher in the hippocampal dentate gyrus of adult LRRK2-deficient mice. Alterations in phosphorylation of the putative LRRK2 substrates, translation initiation factor 4E binding protein 1 and moesin, do not appear to be involved in altered differentiation, rather there is indirect evidence that a regulatory signaling network comprising retinoic acid receptors, let-7 miRNA and downstream target genes/mRNAs may be affected in LRRK2-deficient stem cells in culture. Conclusion/Significance Parkinson's disease-linked LRRK2 mutations that associated with enhanced kinase activity may affect retinoic acid receptor signaling during neurodevelopment and/or neuronal maintenance as has been shown in other mouse models of chronic neurodegenerative diseases. PMID:21695257

  20. Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors

    PubMed Central

    Matsushima, Norio; Tanaka, Takanori; Enkhbayar, Purevjav; Mikami, Tomoko; Taga, Masae; Yamada, Keiko; Kuroki, Yoshio

    2007-01-01

    Background Toll-like receptors (TLRs) play a central role in innate immunity. TLRs are membrane glycoproteins and contain leucine rich repeat (LRR) motif in the ectodomain. TLRs recognize and respond to molecules such as lipopolysaccharide, peptidoglycan, flagellin, and RNA from bacteria or viruses. The LRR domains in TLRs have been inferred to be responsible for molecular recognition. All LRRs include the highly conserved segment, LxxLxLxxNxL, in which "L" is Leu, Ile, Val, or Phe and "N" is Asn, Thr, Ser, or Cys and "x" is any amino acid. There are seven classes of LRRs including "typical" ("T") and "bacterial" ("S"). All known domain structures adopt an arc or horseshoe shape. Vertebrate TLRs form six major families. The repeat numbers of LRRs and their "phasing" in TLRs differ with isoforms and species; they are aligned differently in various databases. We identified and aligned LRRs in TLRs by a new method described here. Results The new method utilizes known LRR structures to recognize and align new LRR motifs in TLRs and incorporates multiple sequence alignments and secondary structure predictions. TLRs from thirty-four vertebrate were analyzed. The repeat numbers of the LRRs ranges from 16 to 28. The LRRs found in TLRs frequently consists of LxxLxLxxNxLxxLxxxxF/LxxLxx ("T") and sometimes short motifs including LxxLxLxxNxLxxLPx(x)LPxx ("S"). The TLR7 family (TLR7, TLR8, and TLR9) contain 27 LRRs. The LRRs at the N-terminal part have a super-motif of STT with about 80 residues. The super-repeat is represented by STTSTTSTT or _TTSTTSTT. The LRRs in TLRs form one or two horseshoe domains and are mostly flanked by two cysteine clusters including two or four cysteine residue. Conclusion Each of the six major TLR families is characterized by their constituent LRR motifs, their repeat numbers, and their patterns of cysteine clusters. The central parts of the TLR1 and TLR7 families and of TLR4 have more irregular or longer LRR motifs. These central parts are

  1. Leucine-rich-repeat-containing variable lymphocyte receptors as modules to target plant-expressed proteins

    DOE PAGES

    Velásquez, André C.; Nomura, Kinya; Cooper, Max D.; ...

    2017-04-19

    The ability to target and manipulate protein-based cellular processes would accelerate plant research; yet, the technology to specifically and selectively target plant-expressed proteins is still in its infancy. Leucine-rich repeats (LRRs) are ubiquitously present protein domains involved in mediating protein–protein interactions. LRRs confer the binding specificity to the highly diverse variable lymphocyte receptor (VLR) antibodies (including VLRA, VLRB and VLRC types) that jawless vertebrates make as the functional equivalents of jawed vertebrate immunoglobulin-based antibodies. Here, VLRBs targeting an effector protein from a plant pathogen, HopM1, were developed by immunizing lampreys and using yeast surface display to select for high-affinity VLRBs.more » HopM1-specific VLRBs (VLRM1) were expressed in planta in the cytosol, the trans-Golgi network, and the apoplast. Expression of VLRM1 was higher when the protein localized to an oxidizing environment that would favor disulfide bridge formation (when VLRM1 was not localized to the cytoplasm), as disulfide bonds are necessary for proper VLR folding. VLRM1 specifically interacted in planta with HopM1 but not with an unrelated bacterial effector protein while HopM1 failed to interact with a non-specific VLRB. Later, VLRs may be used as flexible modules to bind proteins or carbohydrates of interest in planta, with broad possibilities for their use by binding directly to their targets and inhibiting their action, or by creating chimeric proteins with new specificities in which endogenous LRR domains are replaced by those present in VLRs.« less

  2. Frameshift Mutation Confers Function as Virulence Factor to Leucine-Rich Repeat Protein from Acidovorax avenae

    PubMed Central

    Kondo, Machiko; Hirai, Hiroyuki; Furukawa, Takehito; Yoshida, Yuki; Suzuki, Aika; Kawaguchi, Takemasa; Che, Fang-Sik

    2017-01-01

    Many plant pathogens inject type III (T3SS) effectors into host cells to suppress host immunity and promote successful infection. The bacterial pathogen Acidovorax avenae causes brown stripe symptom in many species of monocotyledonous plants; however, individual strains of each pathogen infect only one host species. T3SS-deleted mutants of A. avenae K1 (virulent to rice) or N1141 (virulent to finger millet) caused no symptom in each host plant, suggesting that T3SS effectors are involved in the symptom formation. To identify T3SS effectors as virulence factors, we performed whole-genome and predictive analyses. Although the nucleotide sequence of the novel leucine-rich repeat protein (Lrp) gene of N1141 had high sequence identity with K1 Lrp, the amino acid sequences of the encoded proteins were quite different due to a 1-bp insertion within the K1 Lrp gene. An Lrp-deleted K1 strain (KΔLrp) did not cause brown stripe symptom in rice (host plant for K1); by contrast, the analogous mutation in N1141 (NΔLrp) did not interfere with infection of finger millet. In addition, NΔLrp retained the ability to induce effector-triggered immunity (ETI), including hypersensitive response cell death and expression of ETI-related genes. These data indicated that K1 Lrp functions as a virulence factor in rice, whereas N1141 Lrp does not play a similar role in finger millet. Yeast two-hybrid screening revealed that K1 Lrp interacts with oryzain α, a pathogenesis-related protein of the cysteine protease family, whereas N1141 Lrp, which contains LRR domains, does not. This specific interaction between K1 Lrp and oryzain α was confirmed by Bimolecular fluorescence complementation assay in rice cells. Thus, K1 Lrp protein may have acquired its function as virulence factor in rice due to a frameshift mutation. PMID:28101092

  3. Leucine-rich repeat kinase 2 deficiency is protective in rhabdomyolysis-induced kidney injury

    PubMed Central

    Boddu, Ravindra; Hull, Travis D.; Bolisetty, Subhashini; Hu, Xianzhen; Moehle, Mark S.; Daher, João Paulo Lima; Kamal, Ahmed Ibrahim; Joseph, Reny; George, James F.; Agarwal, Anupam; Curtis, Lisa M.; West, Andrew B.

    2015-01-01

    Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common known genetic cause of Parkinson's disease, and LRRK2 is also linked to Crohn's and Hansen's disease. LRRK2 is expressed in many organs in mammals but is particularly abundant in the kidney. We find that LRRK2 protein is predominantly localized to collecting duct cells in the rat kidney, with much lower expression in other kidney cells. While genetic knockout (KO) of LRRK2 expression is well-tolerated in mice and rats, a unique age-dependent pathology develops in the kidney. The cortex and medulla of LRRK2 KO rat kidneys become darkly pigmented in early adulthood, yet aged animals display no overt signs of kidney failure. Accompanying the dark pigment we find substantial macrophage infiltration in LRRK2 KO kidneys, suggesting the presence of chronic inflammation that may predispose to kidney disease. Unexpectedly, the dark kidneys of the LRRK2 KO rats are highly resistant to rhabdomyolysis-induced acute kidney injury compared with wild-type rats. Biochemical profiling of the LRRK2 KO kidneys using immunohistochemistry, proteomic and lipidomic analyses show a massive accumulation of hemoglobin and lipofuscin in renal tubules that account for the pigmentation. The proximal tubules demonstrate a corresponding up-regulation of the cytoprotective protein heme oxygenase-1 (HO-1) which is capable of mitigating acute kidney injury. The unusual kidney pathology of LRRK2 KO rats highlights several novel physiological roles for LRRK2 and provides indirect evidence for HO-1 expression as a protective mechanism in acute kidney injury in LRRK2 deficiency. PMID:25904107

  4. Cytosolic 5'-nucleotidase II interacts with the leucin rich repeat of NLR family member Ipaf.

    PubMed

    Cividini, Federico; Tozzi, Maria Grazia; Galli, Alvaro; Pesi, Rossana; Camici, Marcella; Dumontet, Charles; Jordheim, Lars Petter; Allegrini, Simone

    2015-01-01

    IMP/GMP preferring cytosolic 5'-nucleotidase II (cN-II) is a bifunctional enzyme whose activities and expression play crucial roles in nucleotide pool maintenance, nucleotide-dependent pathways and programmed cell death. Alignment of primary amino acid sequences of cN-II from human and other organisms show a strong conservation throughout the entire vertebrata taxon suggesting a fundamental role in eukaryotic cells. With the aim to investigate the potential role of this homology in protein-protein interactions, a two hybrid system screening of cN-II interactors was performed in S. cerevisiae. Among the X positive hits, the Leucin Rich Repeat (LRR) domain of Ipaf was found to interact with cN-II. Recombinant Ipaf isoform B (lacking the Nucleotide Binding Domain) was used in an in vitro affinity chromatography assay confirming the interaction obtained in the screening. Moreover, co-immunoprecipitation with proteins from wild type Human Embryonic Kidney 293 T cells demonstrated that endogenous cN-II co-immunoprecipitated both with wild type Ipaf and its LRR domain after transfection with corresponding expression vectors, but not with Ipaf lacking the LRR domain. These results suggest that the interaction takes place through the LRR domain of Ipaf. In addition, a proximity ligation assay was performed in A549 lung carcinoma cells and in MDA-MB-231 breast cancer cells and showed a positive cytosolic signal, confirming that this interaction occurs in human cells. This is the first report of a protein-protein interaction involving cN-II, suggesting either novel functions or an additional level of regulation of this complex enzyme.

  5. The prodromal phase of leucine-rich repeat kinase 2-associated Parkinson disease: Clinical and imaging Studies.

    PubMed

    Pont-Sunyer, Claustre; Tolosa, Eduardo; Caspell-Garcia, Chelsea; Coffey, Christopher; Alcalay, Roy N; Chan, Piu; Duda, John E; Facheris, Maurizio; Fernández-Santiago, Rubén; Marek, Kenneth; Lomeña, Francisco; Marras, Connie; Mondragon, Elisabet; Saunders-Pullman, Rachel; Waro, Bjorg

    2017-05-01

    Asymptomatic, nonmanifesting carriers of leucine-rich repeat kinase 2 mutations are at increased risk of developing PD. Clinical and neuroimaging features may be associated with gene carriage and/or may demarcate individuals at greater risk for phenoconversion to PD. To investigate clinical and dopamine transporter single-photon emission computed tomography imaging characteristics of leucine-rich repeat kinase 2 asymptomatic carriers. A total of 342 carriers' and 259 noncarriers' relatives of G2019S leucine-rich repeat kinase 2/PD patients and 39 carriers' and 31 noncarriers' relatives of R1441G leucine-rich repeat kinase 2/PD patients were evaluated. Motor and nonmotor symptoms were assessed using specific scales and questionnaires. Neuroimaging quantitative data were obtained in 81 carriers and compared with 41 noncarriers. G2019S carriers scored higher in motor scores and had lower radioligand uptake compared to noncarriers, but no differences in nonmotor symptoms scores were observed. R1441G carriers scored higher in motor scores, had lower radioligand uptake, and had higher scores in depression, dysautonomia, and Rapid Eye Movements Sleep Behavior Disorder Screening Questionnaire scores, but had better cognition scores than noncarriers. Among G2019S carriers, a group with "mild motor signs" was identified, and was significantly older, with worse olfaction and lower radioligand uptake. G2019S and R1441G carriers differ from their noncarriers' relatives in higher motor scores and slightly lower radioligand uptake. Nonmotor symptoms were mild, and different nonmotor profiles were observed in G2019S carriers compared to R1441G carriers. A group of G2019S carriers with known prodromal features was identified. Longitudinal studies are required to determine whether such individuals are at short-term risk of developing overt parkinsonism. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  6. The relationship between the L1 and L2 domains of the insulin and epidermal growth factor receptors and leucine-rich repeat modules

    PubMed Central

    Ward, Colin W; Garrett, Thomas PJ

    2001-01-01

    Background Leucine-rich repeats are one of the more common modules found in proteins. The leucine-rich repeat consensus motif is LxxLxLxxNxLxxLxxLxxLxx- where the first 11–12 residues are highly conserved and the remainder of the repeat can vary in size Leucine-rich repeat proteins have been subdivided into seven subfamilies, none of which include members of the epidermal growth factor receptor or insulin receptor families despite the similarity between the 3D structure of the L domains of the type I insulin-like growth factor receptor and some leucine-rich repeat proteins. Results Here we have used profile searches and multiple sequence alignments to identify the repeat motif Ixx-LxIxx-Nx-Lxx-Lxx-Lxx-Lxx- in the L1 and L2 domains of the insulin receptor and epidermal growth factor receptors. These analyses were aided by reference to the known three dimensional structures of the insulin-like growth factor type I receptor L domains and two members of the leucine rich repeat family, porcine ribonuclease inhibitor and internalin 1B. Pectate lyase, another beta helix protein, can also be seen to contain the sequence motif and much of the structural features characteristic of leucine-rich repeat proteins, despite the existence of major insertions in some of its repeats. Conclusion Multiple sequence alignments and comparisons of the 3D structures has shown that right-handed beta helix proteins such as pectate lyase and the L domains of members of the insulin receptor and epidermal growth factor receptor families, are members of the leucine-rich repeat superfamily. PMID:11504559

  7. Deletion of internal structured repeats increases the stability of a leucine-rich repeat protein, YopM

    PubMed Central

    Barrick, Doug

    2011-01-01

    Mapping the stability distributions of proteins in their native folded states provides a critical link between structure, thermodynamics, and function. Linear repeat proteins have proven more amenable to this kind of mapping than globular proteins. C-terminal deletion studies of YopM, a large, linear leucine-rich repeat (LRR) protein, show that stability is distributed quite heterogeneously, yet a high level of cooperativity is maintained [1]. Key components of this distribution are three interfaces that strongly stabilize adjacent sequences, thereby maintaining structural integrity and promoting cooperativity. To better understand the distribution of interaction energy around these critical interfaces, we studied internal (rather than terminal) deletions of three LRRs in this region, including one of these stabilizing interfaces. Contrary to our expectation that deletion of structured repeats should be destabilizing, we find that internal deletion of folded repeats can actually stabilize the native state, suggesting that these repeats are destabilizing, although paradoxically, they are folded in the native state. We identified two residues within this destabilizing segment that deviate from the consensus sequence at a position that normally forms a stacked leucine ladder in the hydrophobic core. Replacement of these nonconsensus residues with leucine is stabilizing. This stability enhancement can be reproduced in the context of nonnative interfaces, but it requires an extended hydrophobic core. Our results demonstrate that different LRRs vary widely in their contribution to stability, and that this variation is context-dependent. These two factors are likely to determine the types of rearrangements that lead to folded, functional proteins, and in turn, are likely to restrict the pathways available for the evolution of linear repeat proteins. PMID:21764506

  8. Structural and functional analysis of two small leucine-rich repeat proteoglycans, fibromodulin and chondroadherin.

    PubMed

    Paracuellos, Patricia; Kalamajski, Sebastian; Bonna, Arkadiusz; Bihan, Dominique; Farndale, Richard W; Hohenester, Erhard

    2017-02-17

    The small leucine-rich proteoglycans (SLRPs) are important regulators of extracellular matrix assembly and cell signalling. We have determined crystal structures at ~2.2Å resolution of human fibromodulin and chondroadherin, two collagen-binding SLRPs. Their overall fold is similar to that of the prototypical SLRP, decorin, but unlike decorin neither fibromodulin nor chondroadherin forms a stable dimer. A previously identified binding site for integrin α2β1 maps to an α-helix in the C-terminal cap region of chondroadherin. Interrogation of the Collagen Toolkits revealed a unique binding site for chondroadherin in collagen II, and no binding to collagen III. A triple-helical peptide containing the sequence GAOGPSGFQGLOGPOGPO (O is hydroxyproline) forms a stable complex with chondroadherin in solution. In fibrillar collagen I and II, this sequence is aligned with the collagen cross-linking site KGHR, suggesting a role for chondroadherin in cross-linking.

  9. Evolutionary Dynamics of the Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) Subfamily in Angiosperms.

    PubMed

    Fischer, Iris; Diévart, Anne; Droc, Gaetan; Dufayard, Jean-François; Chantret, Nathalie

    2016-03-01

    Gene duplications are an important factor in plant evolution, and lineage-specific expanded (LSE) genes are of particular interest. Receptor-like kinases expanded massively in land plants, and leucine-rich repeat receptor-like kinases (LRR-RLK) constitute the largest receptor-like kinases family. Based on the phylogeny of 7,554 LRR-RLK genes from 31 fully sequenced flowering plant genomes, the complex evolutionary dynamics of this family was characterized in depth. We studied the involvement of selection during the expansion of this family among angiosperms. LRR-RLK subgroups harbor extremely contrasting rates of duplication, retention, or loss, and LSE copies are predominantly found in subgroups involved in environmental interactions. Expansion rates also differ significantly depending on the time when rounds of expansion or loss occurred on the angiosperm phylogenetic tree. Finally, using a dN/dS-based test in a phylogenetic framework, we searched for selection footprints on LSE and single-copy LRR-RLK genes. Selective constraint appeared to be globally relaxed at LSE genes, and codons under positive selection were detected in 50% of them. Moreover, the leucine-rich repeat domains, and specifically four amino acids in them, were found to be the main targets of positive selection. Here, we provide an extensive overview of the expansion and evolution of this very large gene family.

  10. Evolutionary Dynamics of the Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) Subfamily in Angiosperms1[OPEN

    PubMed Central

    Dufayard, Jean-François; Chantret, Nathalie

    2016-01-01

    Gene duplications are an important factor in plant evolution, and lineage-specific expanded (LSE) genes are of particular interest. Receptor-like kinases expanded massively in land plants, and leucine-rich repeat receptor-like kinases (LRR-RLK) constitute the largest receptor-like kinases family. Based on the phylogeny of 7,554 LRR-RLK genes from 31 fully sequenced flowering plant genomes, the complex evolutionary dynamics of this family was characterized in depth. We studied the involvement of selection during the expansion of this family among angiosperms. LRR-RLK subgroups harbor extremely contrasting rates of duplication, retention, or loss, and LSE copies are predominantly found in subgroups involved in environmental interactions. Expansion rates also differ significantly depending on the time when rounds of expansion or loss occurred on the angiosperm phylogenetic tree. Finally, using a dN/dS-based test in a phylogenetic framework, we searched for selection footprints on LSE and single-copy LRR-RLK genes. Selective constraint appeared to be globally relaxed at LSE genes, and codons under positive selection were detected in 50% of them. Moreover, the leucine-rich repeat domains, and specifically four amino acids in them, were found to be the main targets of positive selection. Here, we provide an extensive overview of the expansion and evolution of this very large gene family. PMID:26773008

  11. Crystal structure of the dimeric protein core of decorin, the archetypal small leucine-rich repeat proteoglycan.

    PubMed

    Scott, Paul G; McEwan, Paul A; Dodd, Carole M; Bergmann, Ernst M; Bishop, Paul N; Bella, Jordi

    2004-11-02

    Decorin is a ubiquitous extracellular matrix proteoglycan with a variety of important biological functions that are mediated by its interactions with extracellular matrix proteins, cytokines, and cell surface receptors. Decorin is the prototype of the family of small leucine-rich repeat proteoglycans and proteins (SLRPs), characterized by a protein core composed of leucine-rich repeats (LRRs), flanked by two cysteine-rich regions. We report here the crystal structure of the dimeric protein core of decorin, the best characterized member of the SLRP family. Each monomer adopts the curved solenoid fold characteristic of LRR domains, with a parallel beta-sheet on the inside interwoven with loops containing short segments of beta-strands, 3(10) helices, and polyproline II helices on the outside. Two main features are unique to this structure. First, decorin dimerizes through the concave surfaces of the LRR domains, which have been implicated previously in protein-ligand interactions. The amount of surface buried in this dimer rivals the buried surfaces of some of the highest-affinity macromolecular complexes reported to date. Second, the C-terminal region adopts an unusual capping motif that involves a laterally extended LRR and a disulfide bond. This motif seems to be unique to SLRPs and has not been observed in any other LRR protein structure to date. Possible implications of these features for decorin ligand binding and SLRP function are discussed.

  12. Small leucine-rich repeat proteoglycans associated with mature insoluble elastin serve as binding sites for galectins.

    PubMed

    Itoh, Aiko; Nonaka, Yasuhiro; Ogawa, Takashi; Nakamura, Takanori; Nishi, Nozomu

    2017-09-29

    We previously reported that galectin-9 (Gal-9), an immunomodulatory animal lectin, could bind to insoluble collagen preparations and exerted direct cytocidal effects on immune cells. In the present study, we found that mature insoluble elastin is capable of binding Gal-9 and other members of the human galectin family. Lectin blot analysis of a series of commercial water-soluble elastin preparations, PES-(A) ~ PES-(E), revealed that only PES-(E) contained substances recognized by Gal-9. Gal-9-interacting substances in PES-(E) were affinity-purified, digested with trypsin and then analyzed by reversed-phase HPLC. Peptide fragments derived from five members of the small leucine-rich repeat proteoglycan family, versican, lumican, osteoglycin/mimecan, prolargin, and fibromodulin, were identified by N-terminal amino acid sequence analysis. The results indicate that Gal-9 and possibly other galectins recognize glycans attached to small leucine-rich repeat proteoglycans associated with insoluble elastin and also indicate the possibility that mature insoluble elastin serves as an extracellular reservoir for galectins.

  13. Leucine-rich repeats and carboxyl terminus are required for interaction of yeast adenylate cyclase with RAS proteins.

    PubMed Central

    Suzuki, N; Choe, H R; Nishida, Y; Yamawaki-Kataoka, Y; Ohnishi, S; Tamaoki, T; Kataoka, T

    1990-01-01

    A Saccharomyces cerevisiae gene encoding adenylate cyclase has been analyzed by deletion and insertion mutagenesis to localize regions required for activation by the Sa. cerevisiae RAS2 protein. The NH2-terminal 657 amino acids were found to be dispensable for the activation. However, almost all 2-amino acid insertions in the middle 600 residues comprising leucine-rich repeats and deletions in the COOH-terminal 66 residues completely abolished activation by the RAS2 protein, whereas insertion mutations in the other regions generally had no effect. Chimeric adenylate cyclases were constructed by swapping the upstream and downstream portions surrounding the catalytic domains between the Sa. cerevisiae and Schizosaccharomyces pombe adenylate cyclases and examined for activation by the RAS2 protein. We found that the fusion containing both the NH2-terminal 1600 residues and the COOH-terminal 66 residues of the Sa. cerevisiae cyclase rendered the catalytic domain of the Sc. pombe cyclase, which otherwise did not respond to RAS proteins, activatable by the RAS2 protein. Thus the leucine-rich repeats and the COOH terminus of the Sa. cerevisiae adenylate cyclase appear to be required for interaction with RAS proteins. Images PMID:2247439

  14. A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes.

    PubMed Central

    Warren, R F; Henk, A; Mowery, P; Holub, E; Innes, R W

    1998-01-01

    Recognition of pathogens by plants is mediated by several distinct families of functionally variable but structurally related disease resistance (R) genes. The largest family is defined by the presence of a putative nucleotide binding domain and 12 to 21 leucine-rich repeats (LRRs). The function of these LRRs has not been defined, but they are speculated to bind pathogen-derived ligands. We have isolated a mutation in the Arabidopsis RPS5 gene that indicates that the LRR region may interact with other plant proteins. The rps5-1 mutation causes a glutamate-to-lysine substitution in the third LRR and partially compromises the function of several R genes that confer bacterial and downy mildew resistance. The third LRR is relatively well conserved, and we speculate that it may interact with a signal transduction component shared by multiple R gene pathways. PMID:9724691

  15. Polymorphisms in leucine-rich repeat genes are associated with autism spectrum disorder susceptibility in populations of European ancestry

    PubMed Central

    2010-01-01

    Background Autism spectrum disorders (ASDs) are a group of highly heritable neurodevelopmental disorders which are characteristically comprised of impairments in social interaction, communication and restricted interests/behaviours. Several cell adhesion transmembrane leucine-rich repeat (LRR) proteins are highly expressed in the nervous system and are thought to be key regulators of its development. Here we present an association study analysing the roles of four promising candidate genes - LRRTM1 (2p), LRRTM3 (10q), LRRN1 (3p) and LRRN3 (7q) - in order to identify common genetic risk factors underlying ASDs. Methods In order to gain a better understanding of how the genetic variation within these four gene regions may influence susceptibility to ASDs, a family-based association study was undertaken in 661 families of European ancestry selected from four different ASD cohorts. In addition, a case-control study was undertaken across the four LRR genes, using logistic regression in probands with ASD of each population against 295 ECACC controls. Results Significant results were found for LRRN3 and LRRTM3 (P < 0.005), using both single locus and haplotype approaches. These results were further supported by a case-control analysis, which also highlighted additional SNPs in LRRTM3. Conclusions Overall, our findings implicate the neuronal leucine-rich genes LRRN3 and LRRTM3 in ASD susceptibility. PMID:20678249

  16. Leucine-rich repeat-containing G-protein-coupled receptor 5 is associated with invasion, metastasis, and could be a potential therapeutic target in human gastric cancer

    PubMed Central

    Xi, H Q; Cai, A Z; Wu, X S; Cui, J X; Shen, W S; Bian, S B; Wang, N; Li, J Y; Lu, C R; Song, Z; Wei, B; Chen, L

    2014-01-01

    Background: Leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5), which is identified as a novel intestinal stem cell marker, is overexpressed in various tumours. In this study, we explore Lgr5 expression in gastric carcinoma and analyse its role in invasion, metastasis, and prognosis in carcinoma. Methods: A combination of immunohistochemistry, western blotting, and quantitative reverse transcription–polymerase chain reaction were used to detect mRNA and protein expression levels of Lgr5 and matrix metalloproteinase 2 (MMP2). Small interfering RNA against Lgr5 was designed, synthesised, and transfected into AGS cells. The effects of Lgr5 siRNA on cell invasion were detected by transwell invasion chamber assay and wound healing assay. Results: Leucine-rich repeat-containing G-protein-coupled receptor 5 expression was significantly higher in gastric carcinomas than in normal mucosa. Leucine-rich repeat-containing G-protein-coupled receptor 5 expression positively correlated with the depth of invasion, lymph node metastasis, distance of metastasis, and MMP2 expression levels. Multivariate analysis showed that Lgr5 had an independent effect on survival, and that it positively correlated with MMP2. Leucine-rich repeat-containing G-protein-coupled receptor 5 siRNAs inhibited Lgr5 mRNA and protein expression. Transwell assays indicated that these siRNAs resulted in significantly fewer cells migrating through the polycarbonate membrane, and wound healing assay also indicated that siRNAs decreased the migration of cells. Inhibition of Lgr5 resulted in a significant decrease in MMP2 and β-catenin levels compared with those in controls. Conclusions: Leucine-rich repeat-containing G-protein-coupled receptor 5 was correlated with invasion and metastasis. Leucine-rich repeat-containing G-protein-coupled receptor 5 inhibition could serve as a novel therapeutic approach. PMID:24594994

  17. Functional characterization and signal transduction ability of nucleotide-binding site-leucine-rich repeat resistance genes in plants.

    PubMed

    Joshi, R K; Nayak, S

    2011-10-25

    Pathogen infection in plants is often limited by a multifaceted defense response triggered by resistance genes. The most prevalent class of resistance proteins includes those that contain a nucleotide-binding site-leucine-rich repeat (NBS-LRR) domain. Over the past 15 years, more than 50 novel NBS-LRR class resistance genes have been isolated and characterized; they play a significant role in activating conserved defense-signaling networks. Recent molecular research on NBS-LRR resistance proteins and their signaling networks has the potential to broaden the use of resistance genes for disease control. Various transgenic approaches have been tested to broaden the disease resistance spectrum using NBS-LRR genes. This review highlights the recent progress in understanding the structure, function, signal transduction ability of NBS-LRR resistance genes in different host-pathogen systems and suggests new strategies for engineering pathogen resistance in crop plants.

  18. An update on polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein that protects crop plants against pathogens

    PubMed Central

    Kalunke, Raviraj M.; Tundo, Silvio; Benedetti, Manuel; Cervone, Felice; De Lorenzo, Giulia; D'Ovidio, Renato

    2015-01-01

    Polygalacturonase inhibiting proteins (PGIPs) are cell wall proteins that inhibit the pectin-depolymerizing activity of polygalacturonases secreted by microbial pathogens and insects. These ubiquitous inhibitors have a leucine-rich repeat structure that is strongly conserved in monocot and dicot plants. Previous reviews have summarized the importance of PGIP in plant defense and the structural basis of PG-PGIP interaction; here we update the current knowledge about PGIPs with the recent findings on the composition and evolution of pgip gene families, with a special emphasis on legume and cereal crops. We also update the information about the inhibition properties of single pgip gene products against microbial PGs and the results, including field tests, showing the capacity of PGIP to protect crop plants against fungal, oomycetes and bacterial pathogens. PMID:25852708

  19. Leucine rich repeat kinase 2 (LRRK2) as a potential therapeutic target for Parkinson’s disease

    PubMed Central

    Lee, Byoung Dae; Dawson, Valina L.; Dawson, Ted M.

    2012-01-01

    Parkinson’s disease (PD) is caused by the progressive degeneration of dopaminergic neurons in the substantia nigra. Although the etiology for most PD remains elusive, the identification of specific genetic defects in familial cases of PD and the signaling pathways governed by these genes has provided tremendous insight into PD pathogenesis. Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are frequently found in familial and sporadic PD. Although current knowledge regarding the regulatory mechanisms of LRRK2 activation is limited, it is becoming increasingly evident that aberrant kinase activity of the pathologic mutants of LRRK2 is associated with neurodegeneration, suggesting that the kinase activity of LRRK2 is a potential therapeutic target. In addition, LRRK2 inhibitors might provide valuable tools to understand the pathophysiological and physiological roles of LRRK2 as well as the etiology of PD. We discuss here the potential and feasibility of targeting LRRK2 as a therapeutic strategy for PD. PMID:22578536

  20. The hypersensitive induced reaction and leucine-rich repeat proteins regulate plant cell death associated with disease and plant immunity.

    PubMed

    Choi, Hyong Woo; Kim, Young Jin; Hwang, Byung Kook

    2011-01-01

    Pathogen-induced programmed cell death (PCD) is intimately linked with disease resistance and susceptibility. However, the molecular components regulating PCD, including hypersensitive and susceptible cell death, are largely unknown in plants. In this study, we show that pathogen-induced Capsicum annuum hypersensitive induced reaction 1 (CaHIR1) and leucine-rich repeat 1 (CaLRR1) function as distinct plant PCD regulators in pepper plants during Xanthomonas campestris pv. vesicatoria infection. Confocal microscopy and protein gel blot analyses revealed that CaLRR1 and CaHIR1 localize to the extracellular matrix and plasma membrane (PM), respectively. Bimolecular fluorescent complementation and coimmunoprecipitation assays showed that the extracellular CaLRR1 specifically binds to the PM-located CaHIR1 in pepper leaves. Overexpression of CaHIR1 triggered pathogen-independent cell death in pepper and Nicotiana benthamiana plants but not in yeast cells. Virus-induced gene silencing (VIGS) of CaLRR1 and CaHIR1 distinctly strengthened and compromised hypersensitive and susceptible cell death in pepper plants, respectively. Endogenous salicylic acid levels and pathogenesis-related gene transcripts were elevated in CaHIR1-silenced plants. VIGS of NbLRR1 and NbHIR1, the N. benthamiana orthologs of CaLRR1 and CaHIR1, regulated Bax- and avrPto-/Pto-induced PCD. Taken together, these results suggest that leucine-rich repeat and hypersensitive induced reaction proteins may act as cell-death regulators associated with plant immunity and disease.

  1. Leucine-rich repeat kinase 2 interacts with p21-activated kinase 6 to control neurite complexity in mammalian brain.

    PubMed

    Civiero, Laura; Cirnaru, Maria Daniela; Beilina, Alexandra; Rodella, Umberto; Russo, Isabella; Belluzzi, Elisa; Lobbestael, Evy; Reyniers, Lauran; Hondhamuni, Geshanthi; Lewis, Patrick A; Van den Haute, Chris; Baekelandt, Veerle; Bandopadhyay, Rina; Bubacco, Luigi; Piccoli, Giovanni; Cookson, Mark R; Taymans, Jean-Marc; Greggio, Elisa

    2015-12-01

    Leucine-rich repeat kinase 2 (LRRK2) is a causative gene for Parkinson's disease, but the physiological function and the mechanism(s) by which the cellular activity of LRRK2 is regulated are poorly understood. Here, we identified p21-activated kinase 6 (PAK6) as a novel interactor of the GTPase/ROC domain of LRRK2. p21-activated kinases are serine-threonine kinases that serve as targets for the small GTP binding proteins Cdc42 and Rac1 and have been implicated in different morphogenetic processes through remodeling of the actin cytoskeleton such as synapse formation and neuritogenesis. Using an in vivo neuromorphology assay, we show that PAK6 is a positive regulator of neurite outgrowth and that LRRK2 is required for this function. Analyses of post-mortem brain tissue from idiopathic and LRRK2 G2019S carriers reveal an increase in PAK6 activation state, whereas knock-out LRRK2 mice display reduced PAK6 activation and phosphorylation of PAK6 substrates. Taken together, these results support a critical role of LRRK2 GTPase domain in cytoskeletal dynamics in vivo through the novel interactor PAK6, and provide a valuable platform to unravel the mechanism underlying LRRK2-mediated pathophysiology. We propose p21-activated kinase 6 (PAK6) as a novel interactor of leucine-rich repeat kinase 2 (LRRK2), a kinase involved in Parkinson's disease (PD). In health, PAK6 regulates neurite complexity in the brain and LRRK2 is required for its function, (a) whereas PAK6 is aberrantly activated in LRRK2-linked PD brain (b) suggesting that LRRK2 toxicity is mediated by PAK6.

  2. Molecular characterization and cellular localization of TpLRR, a processed leucine-rich repeat protein of Treponema pallidum, the syphilis spirochete.

    PubMed Central

    Shevchenko, D V; Akins, D R; Robinson, E; Li, M; Popova, T G; Cox, D L; Radolf, J D

    1997-01-01

    Automated Edman degradation was used to obtain N-terminal and internal amino acid sequences from a 26-kDa protein in isolated Treponema pallidum outer membranes (OMs). The resulting sequences enabled us to PCR amplify from T. pallidum DNA a 275-bp fragment of the corresponding gene. The complete nucleotide sequence of the gene was determined from fragments amplified by long-distance PCR. Primer extension verified the assigned translational start of the open reading frame (ORF) and putative upstream promoter elements. The ORF encoded a highly basic (pI 9.6) 26-kDa protein which contained an N-terminal 25-amino-acid leader peptide terminated by a signal peptidase I cleavage site. The mature protein contained seven tandemly spaced copies (as well as an eighth incomplete copy) of a leucine-rich repeat (LRR), a motif previously identified in a number of prokaryotic and eukaryotic proteins. Accordingly, the polypeptide was designated T. pallidum leucine-rich repeat protein (TpLRR). Although Triton X-114 phase partitioning showed that TpLRR was hydrophilic, cell localization studies showed that most of the antigen was associated with the peptidoglycan-cytoplasmic membrane complex rather than being freely soluble in the periplasmic space. Immunoblot studies showed that syphilis patients develop a weak antibody response to the antigen. Lastly, the lrr(T. pallidum) gene was mapped to a 60-kb SfiI-SpeI fragment of the T. pallidum chromosome which also contains the rrnA and flaA genes. The function(s) of TpLRR is currently unknown; however, protein-protein and/or protein-lipid interactions mediated by its LRR motifs may facilitate interactions between components of the T. pallidum cell envelope. PMID:9150213

  3. Wound induced Beta vulgaris polygalacturonase-inhibiting protein genes encode a longer leucine-rich repeat domain and inhibit fungal polygalacturonases

    USDA-ARS?s Scientific Manuscript database

    Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat (LRR) proteins involved in plant defense. Sugar beet (Beta vulgaris L.) PGIP genes, BvPGIP1, BvPGIP2 and BvPGIP3, were isolated from two breeding lines, F1016 and F1010. Full-length cDNA sequences of the three BvPGIP genes encod...

  4. ARHGEF7 (Beta-PIX) acts as guanine nucleotide exchange factor for leucine-rich repeat kinase 2.

    PubMed

    Haebig, Karina; Gloeckner, Christian Johannes; Miralles, Marta Garcia; Gillardon, Frank; Schulte, Claudia; Riess, Olaf; Ueffing, Marius; Biskup, Saskia; Bonin, Michael

    2010-10-29

    Mutations within the leucine-rich repeat kinase 2 (LRRK2) gene are a common cause of familial and sporadic Parkinson's disease. The multidomain protein LRRK2 exhibits overall low GTPase and kinase activity in vitro. Here, we show that the rho guanine nucleotide exchange factor ARHGEF7 and the small GTPase CDC42 are interacting with LRRK2 in vitro and in vivo. GTPase activity of full-length LRRK2 increases in the presence of recombinant ARHGEF7. Interestingly, LRRK2 phosphorylates ARHGEF7 in vitro at previously unknown phosphorylation sites. We provide evidence that ARHGEF7 might act as a guanine nucleotide exchange factor for LRRK2 and that R1441C mutant LRRK2 with reduced GTP hydrolysis activity also shows reduced binding to ARHGEF7. Downstream effects of phosphorylation of ARHGEF7 through LRRK2 could be (i) a feedback control mechanism for LRRK2 activity as well as (ii) an impact of LRRK2 on actin cytoskeleton regulation. A newly identified familial mutation N1437S, localized within the GTPase domain of LRRK2, further underlines the importance of the GTPase domain of LRRK2 in Parkinson's disease pathogenesis.

  5. Ablation of the Cardiac-Specific Gene Leucine-Rich Repeat Containing 10 (Lrrc10) Results in Dilated Cardiomyopathy

    PubMed Central

    Brody, Matthew J.; Hacker, Timothy A.; Patel, Jitandrakumar R.; Feng, Li; Sadoshima, Junichi; Tevosian, Sergei G.; Balijepalli, Ravi C.; Moss, Richard L.; Lee, Youngsook

    2012-01-01

    Leucine-rich repeat containing 10 (LRRC10) is a cardiac-specific protein exclusively expressed in embryonic and adult cardiomyocytes. However, the role of LRRC10 in mammalian cardiac physiology remains unknown. To determine if LRRC10 is critical for cardiac function, Lrrc10-null (Lrrc10−/−) mice were analyzed. Lrrc10−/− mice exhibit prenatal systolic dysfunction and dilated cardiomyopathy in postnatal life. Importantly, Lrrc10−/− mice have diminished cardiac performance in utero, prior to ventricular dilation observed in young adults. We demonstrate that LRRC10 endogenously interacts with α-actinin and α-actin in the heart and all actin isoforms in vitro. Gene expression profiling of embryonic Lrrc10−/− hearts identified pathways and transcripts involved in regulation of the actin cytoskeleton to be significantly upregulated, implicating dysregulation of the actin cytoskeleton as an early defective molecular signal in the absence of LRRC10. In contrast, microarray analyses of adult Lrrc10−/− hearts identified upregulation of oxidative phosphorylation and cardiac muscle contraction pathways during the progression of dilated cardiomyopathy. Analyses of hypertrophic signal transduction pathways indicate increased active forms of Akt and PKCε in adult Lrrc10−/− hearts. Taken together, our data demonstrate that LRRC10 is essential for proper mammalian cardiac function. We identify Lrrc10 as a novel dilated cardiomyopathy candidate gene and the Lrrc10−/− mouse model as a unique system to investigate pediatric cardiomyopathy. PMID:23236519

  6. Leucine-rich repeats containing protein functions in the antibacterial immune reaction in stomach of kuruma shrimp Marsupenaeus japonicus.

    PubMed

    Shi, Xiu-Zhen; Feng, Xiao-Wu; Sun, Jie-Jie; Zhao, Xiao-Fan; Wang, Jin-Xing

    2017-02-01

    Leucine rich repeat (LRR) motif exists in many immune receptors of animals and plants. Most LRR containing (LRRC) proteins are involved in protein-ligand and protein-protein interaction, but the exact functions of most LRRC proteins were not well-studied. In this study, an LRRC protein was identified from kuruma shrimp Marsupenaeus japonicus, and named as MjLRRC1. MjLRRC1 was consistently expressed in different tissues of normal shrimp with higher expression in gills and stomach. At the transcriptional level, there were no significant changes of MjLRRC1 after injection of Vibrio anguillarum or Staphylococcus aureus in gills and hepatopancreas. While in V. anguillarum oral infection, MjLRRC1 was upregulated in stomach but not in intestine. The recombinant MjLRRC1 protein could bind to Gram-positive and Gram-negative bacteria, bacterial cell wall components including peptidoglycan, lipoteichoic acid, and lipopolysaccharide. MjLRRC1 regulated the expression of some antimicrobial peptide (AMP) genes and participated in bacteria clearance of stomach. All these results suggested that MjLRRC1 might play important roles in antibacterial immune response of kuruma shrimp.

  7. Behavior of leucine-rich repeat-containing G-protein coupled receptor 5-expressing cells in the reprogramming process.

    PubMed

    Arioka, Yuko; Ito, Hiroyasu; Hirata, Akihiro; Semi, Katsunori; Yamada, Yasuhiro; Seishima, Mitsuru

    2017-02-04

    It remains unclear what cells are proper for the generation of induced pluripotent stem cells (iPSCs). Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5) is well known as a tissue stem cell and progenitor marker, both of which are reported to be sensitive to reprogramming. In the present study, we examined the reprogramming behavior of Lgr5-expressing cells (Lgr5+ cells). First, we compared reprogramming behavior using mouse Lgr5+ and Lgr5 negative (Lgr5-) hair follicles (HFs). The number of alkaline phosphatase staining-positive cells was lesser in a well of Lgr5+ HFs than in Lgr5- HFs; however, the ratio of Nanog+ SSEA1+ cells in the cell mixture derived from Lgr5+ HFs was much higher than that from Lgr5- HFs. Lgr5+ cells could be induced from mouse embryonic fibroblasts (MEFs) after transduction with Yamanaka factors. As shown in HFs, the progeny of Lgr5+ cells arising from MEFs highly converted into Nanog+ cells and did not form Nanog- colonies. The progeny represented the status of the late reprogramming phase to a higher degree than the nonprogeny. We also confirmed this using human Lg5+ cells. Our findings suggest that the use of Lgr5+ cells will minimize sorting efforts for obtaining superior iPSCs.

  8. LRT, a tendon-specific leucine-rich repeat protein, promotes muscle-tendon targeting through its interaction with Robo.

    PubMed

    Wayburn, Bess; Volk, Talila

    2009-11-01

    Correct muscle migration towards tendon cells, and the adhesion of these two cell types, form the basis for contractile tissue assembly in the Drosophila embryo. While molecules promoting the attraction of muscles towards tendon cells have been described, signals involved in the arrest of muscle migration following the arrival of myotubes at their corresponding tendon cells have yet to be elucidated. Here, we describe a novel tendon-specific transmembrane protein, which we named LRT due to the presence of a leucine-rich repeat domain (LRR) in its extracellular region. Our analysis suggests that LRT acts non-autonomously to better target the muscle and/or arrest its migration upon arrival at its corresponding tendon cell. Muscles in embryos lacking LRT exhibited continuous formation of membrane extensions despite arrival at their corresponding tendon cells, and a partial failure of muscles to target their correct tendon cells. In addition, overexpression of LRT in tendon cells often stalled muscles located close to the tendon cells. LRT formed a protein complex with Robo, and we detected a functional genetic interaction between Robo and LRT at the level of muscle migration behavior. Taken together, our data suggest a novel mechanism by which muscles are targeted towards tendon cells as a result of LRT-Robo interactions. This mechanism may apply to the Robo-dependent migration of a wide variety of cell types.

  9. Plant Nucleotide Binding Site–Leucine-Rich Repeat (NBS-LRR) Genes: Active Guardians in Host Defense Responses

    PubMed Central

    Marone, Daniela; Russo, Maria A.; Laidò, Giovanni; De Leonardis, Anna M.; Mastrangelo, Anna M.

    2013-01-01

    The most represented group of resistance genes are those of the nucleotide binding site–leucine-rich repeat (NBS-LRR) class. These genes are very numerous in the plant genome, and they often occur in clusters at specific loci following gene duplication and amplification events. To date, hundreds of resistance genes and relatively few quantitative trait loci for plant resistance to pathogens have been mapped in different species, with some also cloned. When these NBS-LRR genes have been physically or genetically mapped, many cases have shown co-localization between resistance loci and NBS-LRR genes. This has allowed the identification of candidate genes for resistance, and the development of molecular markers linked to R genes. This review is focused on recent genomics studies that have described the abundance, distribution and evolution of NBS-LRR genes in plant genomes. Furthermore, in terms of their expression, NBS-LRR genes are under fine regulation by cis- and trans-acting elements. Recent findings have provided insights into the roles of alternative splicing, the ubiquitin/proteasome system, and miRNAs and secondary siRNAs in the regulation of NBS-LRR gene expression at the post-transcriptional, post-translational and epigenetic levels. The possibility to use this knowledge for genetic improvement of plant resistance to pathogens is discussed. PMID:23549266

  10. Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells.

    PubMed

    Barker, Nick; Clevers, Hans

    2010-05-01

    Molecular markers are used to characterize and track adult stem cells. Colon cancer research has led to the identification of 2 related receptors, leucine-rich repeat-containing, G-protein-coupled receptors (Lgr)5 and Lgr6, that are expressed by small populations of cells in a variety of adult organs. Genetic mouse models have allowed the visualization, isolation, and genetic marking of Lgr5(+ve) and Lgr6(+ve) cells and provided evidence that they are stem cells. The Lgr5(+ve) cells were found to occupy locations not commonly associated with stem cells in the stomach, small intestine, colon, and hair follicles. A multipotent population of skin stem cells express Lgr6. Single Lgr5(+ve) stem cells from the small intestine and the stomach can be cultured into long-lived organoids. Further studies of these markers might reveal adult stem cell populations in additional tissues. Identification of the ligands for Lgr5 and 6 will help elucidate stem cell functions and modes of intracellular signaling.

  11. A MicroRNA Superfamily Regulates Nucleotide Binding Site–Leucine-Rich Repeats and Other mRNAs[W][OA

    PubMed Central

    Shivaprasad, Padubidri V.; Chen, Ho-Ming; Patel, Kanu; Bond, Donna M.; Santos, Bruno A.C.M.; Baulcombe, David C.

    2012-01-01

    Analysis of tomato (Solanum lycopersicum) small RNA data sets revealed the presence of a regulatory cascade affecting disease resistance. The initiators of the cascade are microRNA members of an unusually diverse superfamily in which miR482 and miR2118 are prominent members. Members of this superfamily are variable in sequence and abundance in different species, but all variants target the coding sequence for the P-loop motif in the mRNA sequences for disease resistance proteins with nucleotide binding site (NBS) and leucine-rich repeat (LRR) motifs. We confirm, using transient expression in Nicotiana benthamiana, that miR482 targets mRNAs for NBS-LRR disease resistance proteins with coiled-coil domains at their N terminus. The targeting causes mRNA decay and production of secondary siRNAs in a manner that depends on RNA-dependent RNA polymerase 6. At least one of these secondary siRNAs targets other mRNAs of a defense-related protein. The miR482-mediated silencing cascade is suppressed in plants infected with viruses or bacteria so that expression of mRNAs with miR482 or secondary siRNA target sequences is increased. We propose that this process allows pathogen-inducible expression of NBS-LRR proteins and that it contributes to a novel layer of defense against pathogen attack. PMID:22408077

  12. Uncovering the dynamic evolution of nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes in Brassicaceae.

    PubMed

    Zhang, Yan-Mei; Shao, Zhu-Qing; Wang, Qiang; Hang, Yue-Yu; Xue, Jia-Yu; Wang, Bin; Chen, Jian-Qun

    2016-02-01

    Plant genomes harbor dozens to hundreds of nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes; however, the long-term evolutionary history of these resistance genes has not been fully understood. This study focuses on five Brassicaceae genomes and the Carica papaya genome to explore changes in NBS-LRR genes that have taken place in this Rosid II lineage during the past 72 million years. Various numbers of NBS-LRR genes were identified from Arabidopsis lyrata (198), A. thaliana (165), Brassica rapa (204), Capsella rubella (127), Thellungiella salsuginea (88), and C. papaya (51). In each genome, the identified NBS-LRR genes were found to be unevenly distributed among chromosomes and most of them were clustered together. Phylogenetic analysis revealed that, before and after Brassicaceae speciation events, both toll/interleukin-1 receptor-NBS-LRR (TNL) genes and non-toll/interleukin-1 receptor-NBS-LRR (nTNL) genes exhibited a pattern of first expansion and then contraction, suggesting that both subclasses of NBS-LRR genes were responding to pathogen pressures synchronically. Further, by examining the gain/loss of TNL and nTNL genes at different evolutionary nodes, this study revealed that both events often occurred more drastically in TNL genes. Finally, the phylogeny of nTNL genes suggested that this NBS-LRR subclass is composed of two separate ancient gene types: RPW8-NBS-LRR and Coiled-coil-NBS-LRR.

  13. Leucine-Rich Repeat Kinase 2 Influences Fate Decision of Human Monocytes Differentiated from Induced Pluripotent Stem Cells.

    PubMed

    Speidel, Anna; Felk, Sandra; Reinhardt, Peter; Sterneckert, Jared; Gillardon, Frank

    2016-01-01

    Mutations in Leucine-rich repeat kinase 2 (LRRK2) are strongly associated with familial Parkinson's disease (PD). High expression levels in immune cells suggest a role of LRRK2 in regulating the immune system. In this study, we investigated the effect of the LRRK2 (G2019S) mutation in monocytes, using a human stem cell-derived model expressing LRRK2 at endogenous levels. We discovered alterations in the differentiation pattern of LRRK2 mutant, compared to non-mutant isogenic controls, leading to accelerated monocyte production and a reduction in the non-classical CD14+CD16+ monocyte subpopulation in the LRRK2 mutant cells. LPS-treatment of the iPSC-derived monocytes significantly increased the release of pro-inflammatory cytokines, demonstrating a functional response without revealing any significant differences between the genotypes. Assessment of the migrational capacity of the differentiated monocytes revealed moderate deficits in LRRK2 mutant cells, compared to their respective controls. Our findings indicate a pivotal role of LRRK2 in hematopoietic fate decision, endorsing the involvement of the immune system in the development of PD.

  14. Identification of a unique TLR2-interacting peptide motif in a microbial leucine-rich-repeat protein

    PubMed Central

    Myneni, Srinivas R.; Settem, Rajendra P.; Sojar, Hakimuddin T.; Malone, James P.; Vuokko, Loimaranta; Nakajima, Takuma; Sharma, Ashu

    2012-01-01

    Pathogenesis of many bacterially-induced inflammatory diseases is driven by toll- like receptor (TLR) mediated immune responses following recognition of bacterial factors by different TLRs. Periodontitis is a chronic inflammation of the tooth supporting apparatus often leading to tooth loss, and is caused by a Gram-negative bacterial consortium that includes Tannerella forsythia. This bacterium expresses a virulence factor, the BspA, which drives periodontal inflammation by activating TLR2. The N- terminal portion of the BspA protein comprises a leucine-rich repeat (LRR) domain previously shown to be involved in the binding and activation of TLR2. The objective of the current study was to identify specific epitopes in the LRR domain of BspA that interact with TLR2. Our results demonstrate that a sequence motif GC(S/T)GLXSIT is involved in mediating the interaction of BspA with TLR2. Thus, our study has identified a peptide motif that mediates the binding of a bacterial protein to TLR2 and highlights the promiscuous nature of TLR2 with respect to ligand binding. This work could provide a structural basis for designing peptidomimetics to modulate the activity of TLR2 in order to block bacterially-induced inflammation. PMID:22695115

  15. Leucine-Rich Repeat Kinase 2 Influences Fate Decision of Human Monocytes Differentiated from Induced Pluripotent Stem Cells

    PubMed Central

    Felk, Sandra; Reinhardt, Peter; Sterneckert, Jared; Gillardon, Frank

    2016-01-01

    Mutations in Leucine-rich repeat kinase 2 (LRRK2) are strongly associated with familial Parkinson’s disease (PD). High expression levels in immune cells suggest a role of LRRK2 in regulating the immune system. In this study, we investigated the effect of the LRRK2 (G2019S) mutation in monocytes, using a human stem cell-derived model expressing LRRK2 at endogenous levels. We discovered alterations in the differentiation pattern of LRRK2 mutant, compared to non-mutant isogenic controls, leading to accelerated monocyte production and a reduction in the non-classical CD14+CD16+ monocyte subpopulation in the LRRK2 mutant cells. LPS-treatment of the iPSC-derived monocytes significantly increased the release of pro-inflammatory cytokines, demonstrating a functional response without revealing any significant differences between the genotypes. Assessment of the migrational capacity of the differentiated monocytes revealed moderate deficits in LRRK2 mutant cells, compared to their respective controls. Our findings indicate a pivotal role of LRRK2 in hematopoietic fate decision, endorsing the involvement of the immune system in the development of PD. PMID:27812199

  16. Comparative study of Parkinson's disease and leucine-rich repeat kinase 2 p.G2019S parkinsonism.

    PubMed

    Trinh, Joanne; Amouri, Rim; Duda, John E; Morley, James F; Read, Matthew; Donald, Alan; Vilariño-Güell, Carles; Thompson, Christina; Szu Tu, Chelsea; Gustavsson, Emil K; Ben Sassi, Samia; Hentati, Emna; Zouari, Mourad; Farhat, Emna; Nabli, Fatma; Hentati, Faycel; Farrer, Matthew J

    2014-05-01

    Parkinson disease is a progressive neurodegenerative disease for which leucine-rich repeat kinase 2 (LRRK2 carriers) p.G2019S confers substantial genotypic and population attributable risk. With informed consent, we have recruited clinical data from 778 patients from Tunisia (of which 266 have LRRK2 parkinsonism) and 580 unaffected subjects. Motor, autonomic, and cognitive assessments in idiopathic Parkinson disease and LRRK2 patients were compared with regression models. The age-associated cumulative incidence of LRRK2 parkinsonism was also estimated using case-control and family-based designs. LRRK2 parkinsonism patients had slightly less gastrointestinal dysfunction and rapid eye movement sleep disorder. Overall, disease penetrance in LRRK2 carriers was 80% by 70 years but women become affected a median 5 years younger than men. Idiopathic Parkinson disease patients with younger age at diagnosis have slower disease progression. However, age at diagnoses does not predict progression in LRRK2 parkinsonism. LRRK2 p.G2019S mutation is a useful aid to diagnosis and modifiers of disease in LRRK2 parkinsonism may aid in developing therapeutic targets.

  17. Antisense phenotypes reveal a role for SHY, a pollen-specific leucine-rich repeat protein, in pollen tube growth.

    PubMed

    Guyon, Virginie; Tang, Wei-Hua; Monti, Maurilia M; Raiola, Alessandro; Lorenzo, Giulia De; McCormick, Sheila; Taylor, Loverine P

    2004-08-01

    SHY, a pollen-specific gene identified in a screen for genes upregulated at pollen germination, encodes a leucine-rich repeat (LRR) protein that is predicted to be secreted. To test if SHY plays an important role during pollen germination, we generated transgenic plants expressing an antisense (AS) copy of the SHY cDNA in pollen. Primary transformants exhibited poor seed set, but homozygous lines could be identified. In these lines, nearly all pollen tubes failed to reach the ovules; tube growth was arrested at the apex of the ovary and the pollen tubes exhibited abnormal callose deposits throughout the tube and in the tips. We show that a SHY::eGFP fusion protein is targeted to the cell wall. The structure of the SHY protein is nearly identical to other extracellular matrix glycoproteins that are composed of LRRs, such as the polygalacturonase inhibitor proteins (PGIP) of plants. PGIPs may function as defense proteins by inhibiting fungal endo-polygalacturonases, but enzyme assays with extracts of AS-SHY pollen do not support such an inhibitor role for SHY. The tomato ortholog of SHY interacts with a tomato receptor kinase (LePRK2) in yeast two-hybrid and pull-down assays; this, and the AS-SHY phenotypes, suggest instead that SHY might function in a signal transduction pathway mediating pollen tube growth.

  18. Leucine-Rich Repeat Kinase 2 (LRRK2): A Key Player in the Pathogenesis of Parkinson’s Disease

    PubMed Central

    Gandhi, Payal N.; Chen, Shu G.; Wilson-Delfosse, Amy L.

    2014-01-01

    Parkinson’s disease (PD) is the most common neurodegenerative movement disorder with a prevalence of more than 1% after the age of 65 years. Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) have recently been linked to autosomal dominant, late-onset PD that is clinically indistinguishable from typical, idiopathic disease. LRRK2 is a multi-domain protein containing several protein interaction motifs as well as dual enzymatic domains of GTPase and protein kinase activities. Disease-associated mutations are found throughout the multi-domain structure of the protein. LRRK2, however, is unique among the PD-causing genes because a missense mutation, G2019S, is a frequent determinant of not only familial, but also of sporadic PD. Thus, LRRK2 has emerged as a promising therapeutic target for combating PD. This article reviews the current state of knowledge regarding the domain structure, amino acid substitutions, and potential functional roles of LRRK2. PMID:19025767

  19. Interplay between Leucine-Rich Repeat Kinase 2 (LRRK2) and p62/SQSTM-1 in Selective Autophagy

    PubMed Central

    Park, Sangwook; Han, Seulki; Choi, Insup; Kim, Beomsue; Park, Seung Pyo; Joe, Eun-Hye; Suh, Young Ho

    2016-01-01

    The deposit of polyubiquitinated aggregates has been implicated in the pathophysiology of Parkinson’s disease (PD), and growing evidence indicates that selective autophagy plays a critical role in the clearance of ubiquitin-positive protein aggregates by autophagosomes. The selective autophagic receptor p62/SQSTM-1, which associates directly with both ubiquitin and LC3, transports ubiquitin conjugates to autophagosomes for degradation. Leucine-rich repeat kinase 2 (LRRK2), a PD-associated protein kinase, is tightly controlled by autophagy-lysosome degradation as well as by the ubiquitin-proteasome pathway. However, little is known about the degradation of ubiquitinated LRRK2 via selective autophagy. In the present study, we found that p62/SQSTM-1 physically interacts with LRRK2 as a selective autophagic receptor. The overexpression of p62 leads to the robust degradation of LRRK2 through the autophagy-lysosome pathway. In addition, LRRK2 indirectly regulates Ser351 and Ser403 phosphorylation of p62. Of particular interest, the interaction between phosphorylated p62 and Keap1 is reduced by LRRK2 overexpression. Therefore, we propose that the interplay between LRRK2 and p62 may contribute to the pathophysiological function and homeostasis of LRRK2 protein. PMID:27631370

  20. Paracrine regulation of growth factor signaling by shed leucine-rich repeats and immunoglobulin-like domains 1

    SciTech Connect

    Yi, Wei; Holmlund, Camilla; Nilsson, Jonas; Inui, Shigeki; Lei, Ting; Itami, Satoshi; Henriksson, Roger; Hedman, Hakan

    2011-02-15

    Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) is a recently discovered negative regulator of growth factor signaling. The LRIG1 integral membrane protein has been demonstrated to regulate various oncogenic receptor tyrosine kinases, including epidermal growth factor (EGF) receptor (EGFR), by cell-autonomous mechanisms. Here, we investigated whether LRIG1 ectodomains were shed, and if LRIG1 could regulate cell proliferation and EGF signaling in a paracrine manner. Cells constitutively shed LRIG1 ectodomains in vitro, and shedding was modulated by known regulators of metalloproteases, including the ADAM17 specific inhibitor TAPI-2. Furthermore, shedding was enhanced by ectopic expression of Adam17. LRIG1 ectodomains appeared to be shed in vivo, as well, as demonstrated by immunoblotting of mouse and human tissue lysates. Ectopic expression of LRIG1 in lymphocytes suppressed EGF signaling in co-cultured fibroblastoid cells, demonstrating that shed LRIG1 ectodomains can function in a paracrine fashion. Purified LRIG1 ectodomains suppressed EGF signaling without any apparent downregulation of EGFR levels. Taken together, the results show that the LRIG1 ectodomain can be proteolytically shed and can function as a non-cell-autonomous regulator of growth factor signaling. Thus, LRIG1 or its ectodomain could have therapeutic potential in the treatment of growth factor receptor-dependent cancers.

  1. ARHGEF7 (BETA-PIX) Acts as Guanine Nucleotide Exchange Factor for Leucine-Rich Repeat Kinase 2

    PubMed Central

    Haebig, Karina; Gloeckner, Christian Johannes; Miralles, Marta Garcia; Gillardon, Frank; Schulte, Claudia; Riess, Olaf; Ueffing, Marius; Biskup, Saskia; Bonin, Michael

    2010-01-01

    Background Mutations within the leucine-rich repeat kinase 2 (LRRK2) gene are a common cause of familial and sporadic Parkinson's disease. The multidomain protein LRRK2 exhibits overall low GTPase and kinase activity in vitro. Methodology/Principal Findings Here, we show that the rho guanine nucleotide exchange factor ARHGEF7 and the small GTPase CDC42 are interacting with LRRK2 in vitro and in vivo. GTPase activity of full-length LRRK2 increases in the presence of recombinant ARHGEF7. Interestingly, LRRK2 phosphorylates ARHGEF7 in vitro at previously unknown phosphorylation sites. We provide evidence that ARHGEF7 might act as a guanine nucleotide exchange factor for LRRK2 and that R1441C mutant LRRK2 with reduced GTP hydrolysis activity also shows reduced binding to ARHGEF7. Conclusions/Significance Downstream effects of phosphorylation of ARHGEF7 through LRRK2 could be (i) a feedback control mechanism for LRRK2 activity as well as (ii) an impact of LRRK2 on actin cytoskeleton regulation. A newly identified familial mutation N1437S, localized within the GTPase domain of LRRK2, further underlines the importance of the GTPase domain of LRRK2 in Parkinson's disease pathogenesis. PMID:21048939

  2. Force-Induced Unfolding of Leucine-Rich Repeats of Glycoprotein Ibα Strengthens Ligand Interaction.

    PubMed

    Ju, Lining; Lou, Jizhong; Chen, Yunfeng; Li, Zhenhai; Zhu, Cheng

    2015-11-03

    Leucine-rich repeat (LRR) is a versatile motif widely present in adhesive proteins and signal-transducing receptors. The concave structure formed by a group of LRRs is thought to facilitate binding to globular protein domains with increased affinities. However, little is known about the conformational dynamics of LRRs in such a structure, e.g., whether and how force induces conformational changes in LRRs to regulate protein binding and signal transduction. Here we investigated the platelet glycoprotein Ibα (GPIbα), a demonstrated mechanoreceptor with known crystal structures for the N-terminal domain (GPIbαN), as a model for LRR-containing proteins using a combined method of steered molecular dynamics simulations and single-molecule force spectroscopy with a biomembrane force probe. We found that force-induced unfolding of GPIbαN starts with LRR2-4 and propagates to other LRRs. Importantly, force-dependent lifetimes of individual VWF-A1 bonds with GPIbα are prolonged after LRR unfolding. Enhancement of protein-protein interactions by force-induced LRR unfolding may be a phenomenon of interest in biology.

  3. Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and arabidopsis.

    PubMed Central

    Pan, Q; Liu, Y S; Budai-Hadrian, O; Sela, M; Carmel-Goren, L; Zamir, D; Fluhr, R

    2000-01-01

    The presence of a single resistance (R) gene allele can determine plant disease resistance. The protein products of such genes may act as receptors that specifically interact with pathogen-derived factors. Most functionally defined R-genes are of the nucleotide binding site-leucine rich repeat (NBS-LRR) supergene family and are present as large multigene families. The specificity of R-gene interactions together with the robustness of plant-pathogen interactions raises the question of their gene number and diversity in the genome. Genomic sequences from tomato showing significant homology to genes conferring race-specific resistance to pathogens were identified by systematically "scanning" the genome using a variety of primer pairs based on ubiquitous NBS motifs. Over 70 sequences were isolated and 10% are putative pseudogenes. Mapping of the amplified sequences on the tomato genetic map revealed their organization as mixed clusters of R-gene homologues that showed in many cases linkage to genetically characterized tomato resistance loci. Interspecific examination within Lycopersicon showed the existence of a null allele. Consideration of the tomato and potato comparative genetic maps unveiled conserved syntenic positions of R-gene homologues. Phylogenetic clustering of R-gene homologues within tomato and other Solanaceae family members was observed but not with R-gene homologues from Arabidopsis thaliana. Our data indicate remarkably rapid evolution of R-gene homologues during diversification of plant families. PMID:10790405

  4. Leucine-rich Repeat Kinase 2 (LRRK2) Pharmacological Inhibition Abates α-Synuclein Gene-induced Neurodegeneration.

    PubMed

    Daher, João P L; Abdelmotilib, Hisham A; Hu, Xianzhen; Volpicelli-Daley, Laura A; Moehle, Mark S; Fraser, Kyle B; Needle, Elie; Chen, Yi; Steyn, Stefanus J; Galatsis, Paul; Hirst, Warren D; West, Andrew B

    2015-08-07

    Therapeutic approaches to slow or block the progression of Parkinson disease (PD) do not exist. Genetic and biochemical studies implicate α-synuclein and leucine-rich repeat kinase 2 (LRRK2) in late-onset PD. LRRK2 kinase activity has been linked to neurodegenerative pathways. However, the therapeutic potential of LRRK2 kinase inhibitors is not clear because significant toxicities have been associated with one class of LRRK2 kinase inhibitors. Furthermore, LRRK2 kinase inhibitors have not been tested previously for efficacy in models of α-synuclein-induced neurodegeneration. To better understand the therapeutic potential of LRRK2 kinase inhibition in PD, we evaluated the tolerability and efficacy of a LRRK2 kinase inhibitor, PF-06447475, in preventing α-synuclein-induced neurodegeneration in rats. Both wild-type rats as well as transgenic G2019S-LRRK2 rats were injected intracranially with adeno-associated viral vectors expressing human α-synuclein in the substantia nigra. Rats were treated with PF-06447475 or a control compound for 4 weeks post-viral transduction. We found that rats expressing G2019S-LRRK2 have exacerbated dopaminergic neurodegeneration and inflammation in response to the overexpression of α-synuclein. Both neurodegeneration and neuroinflammation associated with G2019S-LRRK2 expression were mitigated by LRRK2 kinase inhibition. Furthermore, PF-06447475 provided neuroprotection in wild-type rats. We could not detect adverse pathological indications in the lung, kidney, or liver of rats treated with PF-06447475. These results demonstrate that pharmacological inhibition of LRRK2 is well tolerated for a 4-week period of time in rats and can counteract dopaminergic neurodegeneration caused by acute α-synuclein overexpression.

  5. Genomic Dissection and Expression Profiling Revealed Functional Divergence in Triticum aestivum Leucine Rich Repeat Receptor Like Kinases (TaLRRKs).

    PubMed

    Shumayla; Sharma, Shailesh; Kumar, Rohit; Mendu, Venugopal; Singh, Kashmir; Upadhyay, Santosh K

    2016-01-01

    The leucine rich repeat receptor like kinases (LRRK) constitute the largest subfamily of receptor like kinases (RLK), which play critical roles in plant development and stress responses. Herein, we identified 531 TaLRRK genes in Triticum aestivum (bread wheat), which were distributed throughout the A, B, and D sub-genomes and chromosomes. These were clustered into 233 homologous groups, which were mostly located on either homeologous chromosomes from various sub-genomes or in proximity on the same chromosome. A total of 255 paralogous genes were predicted which depicted the role of duplication events in expansion of this gene family. Majority of TaLRRKs consisted of trans-membrane region and localized on plasma-membrane. The TaLRRKs were further categorized into eight phylogenetic groups with numerous subgroups on the basis of sequence homology. The gene and protein structure in terms of exon/intron ratio, domains, and motifs organization were found to be variably conserved across the different phylogenetic groups/subgroups, which indicated a potential divergence and neofunctionalization during evolution. High-throughput transcriptome data and quantitative real time PCR analyses in various developmental stages, and biotic and abiotic (heat, drought, and salt) stresses provided insight into modus operandi of TaLRRKs during these conditions. Distinct expression of majority of stress responsive TaLRRKs homologous genes suggested their specified role in a particular condition. These results provided a comprehensive analysis of various characteristic features including functional divergence, which may provide the way for future functional characterization of this important gene family in bread wheat.

  6. α-Synuclein, Leucine-Rich Repeat Kinase-2, and Manganese in the Pathogenesis of Parkinson Disease

    PubMed Central

    Covy, Jason P.; Giasson, Benoit I.

    2011-01-01

    Parkinson disease (PD) is the most common movement disorder. It is characterized by bradykinesia, postural instability, resting tremor, and rigidity associated with the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Another pathological hallmark of PD is the presence of α-synuclein proteiniacous inclusions, known as Lewy bodies and Lewy neurites, in some of the remaining dopaminergic neurons. Mounting evidence indicates that both genetic and environmental factors contribute to the etiology of PD. For example, genetic mutations (duplications, triplications or missense mutations) in the α-synuclein gene can lead to PD, but even in these patients age-dependent physiological changes or environmental exposures appear to be involved in disease presentation. Several additional alterations in many other genes have been established to either cause or increase the risk of Parkinson disease. More specifically, autosomal dominant missense mutations in the gene for leucine-rich repeat kinase 2 (LRRK2/PARK8) are the most common known cause of PD. Recently it was shown that G2019S, the most common diseasing-causing mutant of LRRK2, has dramatic effects on the kinase activity of LRRK2: while activity of wild-type LRRK2 is inhibited by manganese, the G2019S mutation abrogates this inhibition. Based on the in vitro kinetic properties of LRRK2 in the presence of manganese, we proposed that LRRK2 may be a sensor of cytoplasmic manganese levels and that the G2019S mutant has lost this function. This finding, alongside a growing number of studies demonstrating an interaction between PD-associated proteins and manganese, suggest that dysregulation of neuronal manganese homeostasis over a lifetime can play an important role in the etiology of PD. PMID:21238487

  7. Recombinant expression of TLR5 proteins by ligand supplementation and a leucine-rich repeat hybrid technique.

    PubMed

    Hong, Minsun; Yoon, Sung-Il; Wilson, Ian A

    2012-10-12

    Vertebrate TLR5 directly binds bacterial flagellin proteins and activates innate immune responses against pathogenic flagellated bacteria. Structural and biochemical studies on the TLR5/flagellin interaction have been challenging due to the technical difficulty in obtaining active recombinant proteins of TLR5 ectodomain (TLR5-ECD). We recently succeeded in production of the N-terminal leucine rich repeats (LRRs) of Danio rerio (dr) TLR5-ECD in a hybrid with another LRR protein, hagfish variable lymphocyte receptor (VLR), and determined the crystal structure of its complex with flagellin D1-D2-D3 domains. Although the structure provides valuable information about the interaction, it remains to be revealed how the C-terminal region of TLR5-ECD contributes to the interaction. Here, we present two methods to obtain recombinant TLR5 proteins that contain the C-terminal region in a baculovirus expression system. First, production of biologically active full-length drTLR5-ECD was substantially enhanced by supplementation of expression culture with purified flagellin proteins. Second, we designed TLR5-VLR hybrids using an LRR hybrid technology by single and double LRR fusions and were able to express diverse regions of drTLR5-ECD, allowing us to detect a previously unidentified TLR5/flagellin interaction. The drTLR5-VLR hybrid technique was also successfully applied to human TLR5-ECD whose expression has been highly problematic. These alternative TLR5 expression strategies provide an opportunity to obtain a complete view of the TLR5/flagellin interaction and can be applied to other LRR proteins.

  8. Comprehensive characterization and optimization of anti-LRRK2 (leucine-rich repeat kinase 2) monoclonal antibodies.

    PubMed

    Davies, Paul; Hinkle, Kelly M; Sukar, Nour N; Sepulveda, Bryan; Mesias, Roxana; Serrano, Geidy; Alessi, Dario R; Beach, Thomas G; Benson, Deanna L; White, Charles L; Cowell, Rita M; Das, Sonal S; West, Andrew B; Melrose, Heather L

    2013-07-01

    Missense mutations in LRRK2 (leucine-rich repeat kinase 2) are a major cause of PD (Parkinson's disease). Several antibodies against LRRK2 have been developed, but results using these polyclonal antibodies have varied widely leading to conflicting conclusions. To address this challenge, the Michael J. Fox Foundation for Parkinson's Research generated a number of monoclonal antibodies targeting epitopes across the LRRK2 protein. In the present paper, we report optimized protocols and results for ten monoclonal antibodies for immunoblotting, immunohistochemistry, immunoprecipitation and kinase activity assays, in rat, mouse and human brain tissue. Several efficacious antibodies were identified, but results demonstrate that the mouse monoclonal N241A/34 is suitable for most applications, with the best overall rabbit monoclonal antibody being c41-2. These antibodies produced a dominant band of the expected size via immunoblotting and a lack of labelling in tissue derived from LRRK2-knockout animals under optimized conditions. A significant proportion of LRRK2 protein localizes to insoluble fractions and no evidence of truncated LRRK2 protein was detected in any fraction from rodent or human tissues. An assay was developed for the robust detection of LRRK2 kinase activity directly from frozen mouse and human brain tissue, but precipitous declines in activity were observed that corresponded to increasing post-mortem intervals and processing times. Finally, we demonstrate the highest levels of brain-localized LRRK2 in the striatum, but note differential expression patterns between rat and mouse in both striatum and cortex. Anti-LRRK2 monoclonal antibodies that are unlimited in availability together with the proposed standardized protocols should aid in the definition of LRRK2 function in both health and disease.

  9. Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants.

    PubMed

    Liu, Ping-Li; Du, Liang; Huang, Yuan; Gao, Shu-Min; Yu, Meng

    2017-02-07

    Leucine-rich repeat receptor-like protein kinases (LRR-RLKs) are the largest group of receptor-like kinases in plants and play crucial roles in development and stress responses. The evolutionary relationships among LRR-RLK genes have been investigated in flowering plants; however, no comprehensive studies have been performed for these genes in more ancestral groups. The subfamily classification of LRR-RLK genes in plants, the evolutionary history and driving force for the evolution of each LRR-RLK subfamily remain to be understood. We identified 119 LRR-RLK genes in the Physcomitrella patens moss genome, 67 LRR-RLK genes in the Selaginella moellendorffii lycophyte genome, and no LRR-RLK genes in five green algae genomes. Furthermore, these LRR-RLK sequences, along with previously reported LRR-RLK sequences from Arabidopsis thaliana and Oryza sativa, were subjected to evolutionary analyses. Phylogenetic analyses revealed that plant LRR-RLKs belong to 19 subfamilies, eighteen of which were established in early land plants, and one of which evolved in flowering plants. More importantly, we found that the basic structures of LRR-RLK genes for most subfamilies are established in early land plants and conserved within subfamilies and across different plant lineages, but divergent among subfamilies. In addition, most members of the same subfamily had common protein motif compositions, whereas members of different subfamilies showed variations in protein motif compositions. The unique gene structure and protein motif compositions of each subfamily differentiate the subfamily classifications and, more importantly, provide evidence for functional divergence among LRR-RLK subfamilies. Maximum likelihood analyses showed that some sites within four subfamilies were under positive selection. Much of the diversity of plant LRR-RLK genes was established in early land plants. Positive selection contributed to the evolution of a few LRR-RLK subfamilies.

  10. Development of inducible leucine-rich repeat kinase 2 (LRRK2) cell lines for therapeutics development in Parkinson's disease.

    PubMed

    Huang, Liang; Shimoji, Mika; Wang, Juan; Shah, Salim; Kamila, Sukanta; Biehl, Edward R; Lim, Seung; Chang, Allison; Maguire-Zeiss, Kathleen A; Su, Xiaomin; Federoff, Howard J

    2013-10-01

    The pathogenic mechanism(s) contributing to loss of dopamine neurons in Parkinson's disease (PD) remain obscure. Leucine-rich repeat kinase 2 (LRRK2) mutations are linked, as a causative gene, to PD. LRRK2 mutations are estimated to account for 10% of familial and between 1 % and 3 % of sporadic PD. LRRK2 proximate single nucleotide polymorphisms have also been significantly associated with idiopathic/sporadic PD by genome-wide association studies. LRRK2 is a multidomain-containing protein and belongs to the protein kinase super-family. We constructed two inducible dopaminergic cell lines expressing either human-LRRK2-wild-type or human-LRRK2-mutant (G2019S). Phenotypes of these LRRK2 cell lines were examined with respect to cell viability, morphology, and protein function with or without induction of LRRK2 gene expression. The overexpression of G2019S gene promoted (1) low cellular metabolic activity without affecting cell viability, (2) blunted neurite extension, and (3) increased phosphorylation at S910 and S935. Our observations are consistent with reported general phenotypes in LRRK2 cell lines by other investigators. We used these cell lines to interrogate the biological function of LRRK2, to evaluate their potential as a drug-screening tool, and to investigate screening for small hairpin RNA-mediated LRRK2 G2019S gene knockdown as a potential therapeutic strategy. A proposed LRRK2 kinase inhibitor (i.e., IN-1) decreased LRRK2 S910 and S935 phosphorylation in our MN9DLRRK2 cell lines in a dose-dependent manner. Lentivirus-mediated transfer of LRRK2 G2019S allele-specific small hairpin RNA reversed the blunting of neurite extension caused by LRRK2 G2019S overexpression. Taken together, these inducible LRRK2 cell lines are suitable reagents for LRRK2 functional studies, and the screening of potential LRRK2 therapeutics.

  11. Mutational analysis identifies leucine-rich repeat insertions crucial for pigeon toll-like receptor 7 recognition and signaling.

    PubMed

    Xiong, Dan; Song, Li; Jiao, Yang; Kang, Xilong; Chen, Xiang; Geng, Shizhong; Pan, Zhiming; Jiao, Xinan

    2015-11-15

    Toll-like receptor 7 (TLR7) is responsible for recognizing viral single-stranded RNA and antiviral imidazoquinoline compounds, leading to the activation of the innate immune response. In this study, mutated pigeon TLR7 fragments, in which the insertion at position 10 of leucine-rich repeat 10 (LRR10) or at position 15 of LRR2/11/13/14 was deleted, were amplified with an overlap-PCR method, and inserted into the expression vector pCMV. The immune functions of the TLR7 mutants were determined with an NF-κB luciferase assay of transfected cells. The deletion of the insertions absolutely abolished TLR7-NF-κB signaling. With quantitative real-time PCR and sandwich enzyme-linked immunosorbent assay, we observed that stimulation with R848 failed to induce the expression of interleukin 8 (IL-8) in any of the mutant-TLR7-transfected cells, consistent with their lack of NF-κB activity. However, the expression of interferon α (IFN-α) and tumor necrosis factor α (TNF-α) was significantly upregulated in the Del10IN10 and Del14IN15 groups. Remarkably, the levels of pigeon TLR7 expression were significantly increased in all the TLR7-mutated groups. Therefore, we speculate that another part of the deficient TLR7 mediates the induction of IFN-α and TNF-α by increasing the expression of TLR7 as compensation. However, the increased expression of TLR7 in the Del11IN15 group failed to induce the production of IFN-α, IL-8, or TNF-α, indicating that a false compensation occurred when the crucial LRR insertion was deleted.

  12. Leucine-Rich Repeat Kinase 2 (Lrrk2)-Sensitive Na(+)/K(+) ATPase Activity in Dendritic Cells.

    PubMed

    Hosseinzadeh, Zohreh; Singh, Yogesh; Shimshek, Derya R; van der Putten, Herman; Wagner, Carsten A; Lang, Florian

    2017-01-25

    Leucine-rich repeat kinase 2 (Lrrk2) has been implicated in the pathophysiology of Parkinson's disease. Lrrk2 is expressed in diverse cells including neurons and dendritic cells (DCs). In DCs Lrrk2 was shown to up-regulate Na(+)/Ca(2+)-exchanger activity. The elimination of Ca(2+) by Na(+)/Ca(2+) -exchangers requires maintenance of the Na(+) gradient by the Na(+)/K(+) -ATPase. The present study thus explored whether Lrrk2 impacts on Na(+)/K(+) -ATPase expression and function. To this end DCs were isolated from gene-targeted mice lacking Lrrk2 (Lrrk2(-/-)) and their wild-type littermates (Lrrk2(+/+)). Na(+)/K(+) -ATPase activity was estimated from K(+) induced, ouabain sensitive, current determined by whole cell patch clamp. Na(+)/K(+) -ATPase α1 subunit transcript and protein levels were determined by RT-qPCR and flow cytometry. As a result, the K(+) induced current was significantly smaller in Lrrk2(-/-) than in Lrrk2(+/+) DCs and was completely abolished by ouabain (100 μM) in both genotypes. The K(+) induced, ouabain sensitive, current in Lrrk2(+/+) DCs was significantly blunted by Lrrk2 inhibitor GSK2578215A (1 μM, 24 hours). The Na(+)/K(+) -ATPase α1 subunit transcript and protein levels were significantly lower in Lrrk2(-/-) than in Lrrk2(+/+) DCs and significantly decreased by Lrrk2 inhibitor GSK2578215A (1 μM, 24 hours). In conclusion, Lrrk2 is a powerful regulator of Na(+)/K(+) -ATPase expression and activity in dendritic cells.

  13. Cytosolic 5’-Nucleotidase II Interacts with the Leucin Rich Repeat of NLR Family Member Ipaf

    PubMed Central

    Cividini, Federico; Tozzi, Maria Grazia; Galli, Alvaro; Pesi, Rossana; Camici, Marcella; Dumontet, Charles; Jordheim, Lars Petter; Allegrini, Simone

    2015-01-01

    IMP/GMP preferring cytosolic 5'-nucleotidase II (cN-II) is a bifunctional enzyme whose activities and expression play crucial roles in nucleotide pool maintenance, nucleotide-dependent pathways and programmed cell death. Alignment of primary amino acid sequences of cN-II from human and other organisms show a strong conservation throughout the entire vertebrata taxon suggesting a fundamental role in eukaryotic cells. With the aim to investigate the potential role of this homology in protein-protein interactions, a two hybrid system screening of cN-II interactors was performed in S. cerevisiae. Among the X positive hits, the Leucin Rich Repeat (LRR) domain of Ipaf was found to interact with cN-II. Recombinant Ipaf isoform B (lacking the Nucleotide Binding Domain) was used in an in vitro affinity chromatography assay confirming the interaction obtained in the screening. Moreover, co-immunoprecipitation with proteins from wild type Human Embryonic Kidney 293 T cells demonstrated that endogenous cN-II co-immunoprecipitated both with wild type Ipaf and its LRR domain after transfection with corresponding expression vectors, but not with Ipaf lacking the LRR domain. These results suggest that the interaction takes place through the LRR domain of Ipaf. In addition, a proximity ligation assay was performed in A549 lung carcinoma cells and in MDA-MB-231 breast cancer cells and showed a positive cytosolic signal, confirming that this interaction occurs in human cells. This is the first report of a protein-protein interaction involving cN-II, suggesting either novel functions or an additional level of regulation of this complex enzyme. PMID:25811392

  14. Genomic Dissection and Expression Profiling Revealed Functional Divergence in Triticum aestivum Leucine Rich Repeat Receptor Like Kinases (TaLRRKs)

    PubMed Central

    Shumayla; Sharma, Shailesh; Kumar, Rohit; Mendu, Venugopal; Singh, Kashmir; Upadhyay, Santosh K.

    2016-01-01

    The leucine rich repeat receptor like kinases (LRRK) constitute the largest subfamily of receptor like kinases (RLK), which play critical roles in plant development and stress responses. Herein, we identified 531 TaLRRK genes in Triticum aestivum (bread wheat), which were distributed throughout the A, B, and D sub-genomes and chromosomes. These were clustered into 233 homologous groups, which were mostly located on either homeologous chromosomes from various sub-genomes or in proximity on the same chromosome. A total of 255 paralogous genes were predicted which depicted the role of duplication events in expansion of this gene family. Majority of TaLRRKs consisted of trans-membrane region and localized on plasma-membrane. The TaLRRKs were further categorized into eight phylogenetic groups with numerous subgroups on the basis of sequence homology. The gene and protein structure in terms of exon/intron ratio, domains, and motifs organization were found to be variably conserved across the different phylogenetic groups/subgroups, which indicated a potential divergence and neofunctionalization during evolution. High-throughput transcriptome data and quantitative real time PCR analyses in various developmental stages, and biotic and abiotic (heat, drought, and salt) stresses provided insight into modus operandi of TaLRRKs during these conditions. Distinct expression of majority of stress responsive TaLRRKs homologous genes suggested their specified role in a particular condition. These results provided a comprehensive analysis of various characteristic features including functional divergence, which may provide the way for future functional characterization of this important gene family in bread wheat. PMID:27713749

  15. Leucine-Rich Repeat Kinase 2 (Lrrk2)-Sensitive Na+/K+ ATPase Activity in Dendritic Cells

    PubMed Central

    Hosseinzadeh, Zohreh; Singh, Yogesh; Shimshek, Derya R.; van der Putten, Herman; Wagner, Carsten A.; Lang, Florian

    2017-01-01

    Leucine-rich repeat kinase 2 (Lrrk2) has been implicated in the pathophysiology of Parkinson’s disease. Lrrk2 is expressed in diverse cells including neurons and dendritic cells (DCs). In DCs Lrrk2 was shown to up-regulate Na+/Ca2+-exchanger activity. The elimination of Ca2+ by Na+/Ca2+ -exchangers requires maintenance of the Na+ gradient by the Na+/K+ -ATPase. The present study thus explored whether Lrrk2 impacts on Na+/K+ -ATPase expression and function. To this end DCs were isolated from gene-targeted mice lacking Lrrk2 (Lrrk2−/−) and their wild-type littermates (Lrrk2+/+). Na+/K+ -ATPase activity was estimated from K+ induced, ouabain sensitive, current determined by whole cell patch clamp. Na+/K+ -ATPase α1 subunit transcript and protein levels were determined by RT-qPCR and flow cytometry. As a result, the K+ induced current was significantly smaller in Lrrk2−/− than in Lrrk2+/+ DCs and was completely abolished by ouabain (100 μM) in both genotypes. The K+ induced, ouabain sensitive, current in Lrrk2+/+ DCs was significantly blunted by Lrrk2 inhibitor GSK2578215A (1 μM, 24 hours). The Na+/K+ -ATPase α1 subunit transcript and protein levels were significantly lower in Lrrk2−/− than in Lrrk2+/+ DCs and significantly decreased by Lrrk2 inhibitor GSK2578215A (1 μM, 24 hours). In conclusion, Lrrk2 is a powerful regulator of Na+/K+ -ATPase expression and activity in dendritic cells. PMID:28120865

  16. A Direct Interaction between Leucine-rich Repeat Kinase 2 and Specific β-Tubulin Isoforms Regulates Tubulin Acetylation*

    PubMed Central

    Law, Bernard M. H.; Spain, Victoria A.; Leinster, Veronica H. L.; Chia, Ruth; Beilina, Alexandra; Cho, Hyun J.; Taymans, Jean-Marc; Urban, Mary K.; Sancho, Rosa M.; Ramírez, Marian Blanca; Biskup, Saskia; Baekelandt, Veerle; Cai, Huaibin; Cookson, Mark R.; Berwick, Daniel C.; Harvey, Kirsten

    2014-01-01

    Mutations in LRRK2, encoding the multifunctional protein leucine-rich repeat kinase 2 (LRRK2), are a common cause of Parkinson disease. LRRK2 has been suggested to influence the cytoskeleton as LRRK2 mutants reduce neurite outgrowth and cause an accumulation of hyperphosphorylated Tau. This might cause alterations in the dynamic instability of microtubules suggested to contribute to the pathogenesis of Parkinson disease. Here, we describe a direct interaction between LRRK2 and β-tubulin. This interaction is conferred by the LRRK2 Roc domain and is disrupted by the familial R1441G mutation and artificial Roc domain mutations that mimic autophosphorylation. LRRK2 selectively interacts with three β-tubulin isoforms: TUBB, TUBB4, and TUBB6, one of which (TUBB4) is mutated in the movement disorder dystonia type 4 (DYT4). Binding specificity is determined by lysine 362 and alanine 364 of β-tubulin. Molecular modeling was used to map the interaction surface to the luminal face of microtubule protofibrils in close proximity to the lysine 40 acetylation site in α-tubulin. This location is predicted to be poorly accessible within mature stabilized microtubules, but exposed in dynamic microtubule populations. Consistent with this finding, endogenous LRRK2 displays a preferential localization to dynamic microtubules within growth cones, rather than adjacent axonal microtubule bundles. This interaction is functionally relevant to microtubule dynamics, as mouse embryonic fibroblasts derived from LRRK2 knock-out mice display increased microtubule acetylation. Taken together, our data shed light on the nature of the LRRK2-tubulin interaction, and indicate that alterations in microtubule stability caused by changes in LRRK2 might contribute to the pathogenesis of Parkinson disease. PMID:24275654

  17. Distinct Secondary Structures of the Leucine-Rich Repeat Proteoglycans Decorin and Biglycan: Glycosylation-Dependent Conformational Stability

    NASA Technical Reports Server (NTRS)

    Krishnan, Priya; Hocking, Anne M.; Scholtz, J. Martin; Pace, C. Nick; Holik, Kimberly K.; McQuillan, David J.

    1998-01-01

    Biglycan and decorin, closely related small leucine-rich repeat proteoglycans, have been overexpressed in eukaryotic cers and two major glycoforms isolated under native conditions: a proteoglycan substituted with glycosaminoglycan chains; and a core protein form secreted devoid of glycosaminoglycans. A comparative biophysical study of these glycoforms has revealed that the overall secondary structures of biglycan and decorin are different. Far-UV Circular Dichroism (CD) spectroscopy of decorin and biglycan proteoglycans indicates that, although they are predominantly Beta-sheet, biglycan has a significantly higher content of alpha-helical structure. Decorin proteoglycan and core protein are very similar, whereas the biglycan core protein exhibits closer similarity to the decorin glycoforms than to. the biglycan proteoglycan form. However, enzymatic removal of the chondroitin sulfate chains from biglycan proteoglycan does not induce a shift to the core protein structure, suggesting that the fmal form is influenced by polysaccharide addition only during biosynthesis. Fluorescence emission spectroscopy demonstrated that the single tryptophan residue, which is at a conserved position at the C-terminal domain of both biglycan and decorin, is found in similar microenvironments. This indicates that at least in this specific domain, the different glycoforms do exhibit apparent conservation of structure. Exposure of decorin and biglycan to 10 M urea resulted in an increase in fluorescent intensity, which indicates that the emission from tryptophan in the native state is quenched. Comparison of urea-induced protein unfolding curves provided further evidence that decorin and biglycan assume different structures in solution. Decorin proteoglycan and core protein unfold in a manner similar to a classic two-state model, in which there is a steep transition to an unfolded state between 1-2 M urea. The biglycan core protein also shows a similar steep transition. However, biglycan

  18. Genomic and Post-Translational Modification Analysis of Leucine-Rich-Repeat Receptor-Like Kinases in Brassica rapa

    PubMed Central

    Dhandapani, Vignesh; Yu, Xiaona; Choi, Su Ryun; Oh, Man-Ho; Lim, Yong Pyo

    2015-01-01

    Among several receptor-like kinases (RLKs), leucine-rich-repeat receptor-like kinases (LRR-RLKs) are a major group of genes that play crucial roles in growth, development and stress responses in plant systems. Given that they have several functional roles, it is important to investigate their roles in Brassica rapa. In the present study, 303 LRR-RLKs were identified in the genome of B. rapa and comparative phylogenetic analysis of 1213 combined LRR-RLKs of B. rapa, Arabidopsis thaliana, Oryza sativa and Populus trichocarpa helped us to categorize the gene family into 15 subfamilies based on their sequence and structural similarities. The chromosome localizations of 293 genes allowed the prediction of duplicates, and motif conservation and intron/exon patterns showed differences among the B. rapa LRR-RLK (BrLRR-RLK) genes. Additionally, computational function annotation and expression analysis was used to predict their possible functional roles in the plant system. Biochemical results for 11 selected genes showed variations in phosphorylation activity. Interestingly, BrBAK1 showed strong auto-phosphorylation and trans-phosphorylation on its tyrosine and threonine residues compared with AtBAK1 in previous studies. The AtBAK1 receptor kinase is involved in plant growth and development, plant innate immunity, and programmed cell death, and our results suggest that BrBAK1 might also be involved in the same functions. Another interesting result was that BrBAK1, BrBRI1, BrPEPR1 and BrPEPR2 showed activity with both anti-phosphotyrosine and anti-phosphothreonine antibodies, indicating that they might have dual-specificity kinase activity. This study provides comprehensive results for the BrLRR-RLKs, revealing expansion of the gene family through gene duplications, structural similarities and variations among the genes, and potential functional roles according to gene ontology, transcriptome profiling and biochemical analysis. PMID:26588465

  19. The C. elegans gene pan-1 encodes novel transmembrane and cytoplasmic leucine-rich repeat proteins and promotes molting and the larva to adult transition

    PubMed Central

    2013-01-01

    Background Extracellular leucine-rich repeat (eLRR) proteins are a highly diverse superfamily of membrane-associated or secreted proteins. In the membrane-associated eLRR proteins, the leucine-rich repeat motifs interact with the extracellular matrix and other ligands. Characterizing their functions in animal model systems is key to deciphering their activities in various developmental processes. Results In this study, we identify pan-1 as a critical regulator of C. elegans larval development. pan-1 encodes both transmembrane and cytoplasmic isoforms that vary in the presence and number of leucine-rich repeats. RNAi experiments reveal that pan-1 is required for developmental processes that occur during the mid to late larval stages. Specifically, pan-1 loss of function causes a late larval arrest with a failure to complete development of the gonad, vulva, and hypodermis. pan-1 is also required for early larval ecdysis and execution of the molting cycle at the adult molt. We also provide evidence that pan-1 functionally interacts with the heterochronic gene lin-29 during the molting process. Conclusions We show that PAN-1 is a critical regulator of larval development. Our data suggests that PAN-1 promotes developmental progression of multiple tissues during the transition from a larva to a reproductive adult. We further demonstrate that the activity of PAN-1 is complex with diverse roles in the regulation of animal development. PMID:23682709

  20. Leptospira borgpetersenii hybrid leucine-rich repeat protein: Cloning and expression, immunogenic identification and molecular docking evaluation.

    PubMed

    Sritrakul, Tepyuda; Nitipan, Supachai; Wajjwalku, Worawidh; La-Ard, Anchalee; Suphatpahirapol, Chattip; Petkarnjanapong, Wimol; Ongphiphadhanakul, Boonsong; Prapong, Siriwan

    2017-09-11

    Leptospirosis is an important zoonotic disease, and the major outbreak of this disease in Thailand in 1999 was due largely to the Leptospira borgpetersenii serovar Sejroe. Identification of the leucine-rich repeat (LRR) LBJ_2271 protein containing immunogenic epitopes and the discovery of the LBJ_2271 ortholog in Leptospira serovar Sejroe, KU_Sej_R21_2271, led to further studies of the antigenic immune properties of KU_Sej_LRR_2271. The recombinant hybrid (rh) protein was created and expressed from a hybrid PCR fragment of KU_Sej_R21_2271 fused with DNA encoding the LBJ_2271 signal sequence for targeting protein as a membrane-anchoring protein. The fusion DNA was cloned into pET160/GW/D-TOPO® to form the pET160_hKU_R21_2271 plasmid. The plasmid was used to express the rhKU_Sej_LRR_2271 protein in Escherichia coli BL21 Star™ (DE3). The expressed protein was immunologically detected by Western blotting and immunoreactivity detection with hyperimmune sera, T cell epitope prediction by HLA allele and epitope peptide binding affinity, and potential T cell reactivity analysis. The immunogenic epitopes of the protein were evaluated and verified by HLA allele and epitope peptide complex structure molecular docking. Among fourteen best allele epitopes of this protein, binding affinity values of 12 allele epitopes remained unchanged compared to LBJ_2271. Two epitopes for alleles HLA-A0202 and -A0301 had higher IC50 values, while T cell reactivity values of these peptides were better than values from LBJ_2271 epitopes. Eight of twelve epitope peptides had positive T-cell reactivity scores. Although the molecular docking of two epitopes, 3FPLLKEFLV11/47FPLLKEFLV55 and 50KLSTVPEGV58, into an HLA-A0202 model revealed a good fit in the docked structures, 50KLSTVPEGV58 and 94KLSTVPEEV102 are still considered as the proteins' best epitopes for allele HLA-A0202. The results of this study showed that rhKU_Sej_LRR_2271 protein contained natural immunological properties that should

  1. Genome-wide identification, characterization and expression analysis of populus leucine-rich repeat receptor-like protein kinase genes

    PubMed Central

    2013-01-01

    Background Leucine-rich repeat receptor-like kinases (LRR-RLKs) comprise the largest group within the receptor-like kinase (RLK) superfamily in plants. This gene family plays critical and diverse roles in plant growth, development and stress response. Although the LRR-RLK families in Arabidopsis and rice have been previously analyzed, no comprehensive studies have been performed on this gene family in tree species. Results In this work, 379 LRR-RLK genes were retrieved from the Populus trichocarpa genome and further grouped into 14 subfamilies based on their structural and sequence similarities. Approximately 82% (312 out of 379) of the PtLRR-RLK genes are located in segmental duplication blocks indicating the role of duplication process in the expansion of this gene family. The conservation and variation in motif composition and intron/exon arrangement among PtLRR-RLK subfamilies were analyzed to provide additional support for their phylogenetic relationship and more importantly to indicate the potential divergence in their functions. Expression profiling of PtLRR-RLKs showed that they were differentially expressed in different organs and tissues and some PtLRR-RLKs were specifically expressed in meristem tissues, which indicated their potential involvement in tissue development and differentiation. For most AtLRR-RLKs with defined functions, Populus homologues exhibiting similar expression patterns could be identified, which might indicate the functional conservation during evolution. Among 12 types of environmental cues analyzed by the genome-wide microarray data, PtLRR-RLKs showed specific responses to shoot organogenesis, wounding, low ammonium feeding, hypoxia and seasonal dormancy, but not to drought, re-watering after drought, flooding, AlCl3 treatment and bacteria or fungi treatments. Conclusions This study provides the first comprehensive genomic analysis of the Populus LRR-RLK gene family. Segmental duplication contributes significantly to the expansion

  2. Leucine-rich repeat-containing G-protein-coupled receptor 5-positive cells in the endometrial stem cell niche.

    PubMed

    Cervelló, Irene; Gil-Sanchis, Claudia; Santamaría, Xavier; Faus, Amparo; Vallvé-Juanico, Julia; Díaz-Gimeno, Patricia; Genolet, Oriana; Pellicer, Antonio; Simón, Carlos

    2017-02-01

    To study, isolate and characterize leucine-rich repeat-containing heterotrimeric guanine nucleotide-binding protein-coupled receptor 5 (LGR5)-positive cells from human endometrium to determine their functional relevance. Prospective experimental animal study. University research laboratories. Nonobese diabetic mice (NOD-SCID) (strain code 394; NOD.CB17-Prkdc(scid)/NcrCrl). Human LGR5(+) cells were labeled with superparamagnetic iron oxide nanoparticles (SPIOs) and injected under the kidney capsule in immunocompromised mice. Epithelial and stromal LGR5(+) cells were isolated from human endometrium by means of fluorescence-activated cell sorting, and phenotypic characterization was performed by means of flow cytometry with the use of hematopoietic and mesenchymal markers. Engrafted SPIO-labeled LGR5(+) cells were localized with the use of Prussian blue staining and immunohistochemistry against CD9 and Vimentin. Deep transcriptomic profiling of LGR5(+) cells was performed with the use of microarrays and RNA sequencing. The percentage of LGR5(+) cells in human endometrium represented 1.08 ± 0.73% and 0.82 ± 0.76% of total cells in the epithelial and stromal compartments, respectively. LGR5(+) cells were phenotypically characterized by abundant expression of CD45 hematopoietic marker and no expression of surface markers CD31, CD34, CD133, CD73, and CD90. Coexpression with the macrophage marker CD163 was detected. Xenotransplantation of labeled LGR5(+) cells into the kidney capsules of immunocompromised mice resulted in a weak endometrial reconstitution from this cell of origin. Transcriptomic profiling revealed new attributes for LGR5(+) cells related to their putative hematopoietic origin. These data suggest that endometrial LGR5 is not an endogenous stem cell marker. Instead, LGR5(+) cells appear to be recruited from blood to be part of the stem cell niche at the perivascular microenvironment to activate the endogenous niche. Copyright © 2016 American Society for

  3. Emerging role for leucine-rich repeat-containing G-protein-coupled receptors LGR5 and LGR4 in cancer stem cells

    PubMed Central

    Nakata, Susumu; Phillips, Emma; Goidts, Violaine

    2014-01-01

    The concept of cancer stem cells has gained considerable interest in the last few decades, partly because of their potential implication in therapy resistance. However, the lack of specific cellular surface markers for these cells has impeded their isolation, making the characterization of this cellular subpopulation technically challenging. Recent studies have indicated that leucine-rich repeat-containing G-protein-coupled receptor 4 and 5 (LGR4 and LGR5) expression in multiple organs may represent a global marker of adult stem cells. This review aims to give an overview of LGR4 and LGR5 as cancer stem cell markers and their function in development. PMID:24711713

  4. Emerging role for leucine-rich repeat-containing G-protein-coupled receptors LGR5 and LGR4 in cancer stem cells.

    PubMed

    Nakata, Susumu; Phillips, Emma; Goidts, Violaine

    2014-01-01

    The concept of cancer stem cells has gained considerable interest in the last few decades, partly because of their potential implication in therapy resistance. However, the lack of specific cellular surface markers for these cells has impeded their isolation, making the characterization of this cellular subpopulation technically challenging. Recent studies have indicated that leucine-rich repeat-containing G-protein-coupled receptor 4 and 5 (LGR4 and LGR5) expression in multiple organs may represent a global marker of adult stem cells. This review aims to give an overview of LGR4 and LGR5 as cancer stem cell markers and their function in development.

  5. Leucine-rich Repeat and WD Repeat-containing Protein 1 Is Recruited to Pericentric Heterochromatin by Trimethylated Lysine 9 of Histone H3 and Maintains Heterochromatin Silencing*

    PubMed Central

    Chan, Kui Ming; Zhang, Zhiguo

    2012-01-01

    Lrwd1, a protein containing a leucine-rich repeat and a WD40 repeat domain, interacts with the origin replication complex (ORC), a protein complex involved in both initiation of DNA replication and heterochromatin silencing. Lrwd1 and ORC are known to co-purify with repressive histone marks (trimethylated lysine 9 of histone H3 (H3K9me3) and trimethylated lysine 20 of histone H4 (H4K20me3)) and localize to pericentric heterochromatin. However, how the Lrwd1 is recruited to heterochromatin and the functional significance of the localization of Lrwd1 to the heterochromatin are not known. Here, we show that Lrwd1 preferentially binds to trimethylated repressive histone marks in vitro, which is dependent on an intact WD40 domain but independent of ORC proteins. The localization of Lrwd1 and Orc2 at pericentric heterochromatin in mouse cells is lost in cells lacking H3K9me3 but not in cells lacking H4K20me3. In addition, depletion of HP1α has little impact on the localization of Lrwd1 on pericentric heterochromatin. Finally, depletion of Lrwd1 and Orc2 in mouse cells leads to increased transcription of major satellite repeats. These results indicate that the Lrwd1 is recruited to pericentric heterochromatin through binding to H3K9me3 and that the association of Lrwd1 with pericentric heterochromatin is required for heterochromatin silencing and maintenance. PMID:22427655

  6. Highly polarized C-terminal transition state of the leucine-rich repeat domain of PP32 is governed by local stability

    PubMed Central

    Dao, Thuy Phuong; Majumdar, Ananya; Barrick, Doug

    2015-01-01

    The leucine-rich repeat domain of PP32 is composed of five β-strand-containing repeats anchored by terminal caps. These repeats differ in sequence but are similar in structure, providing a means to connect topology, sequence, and folding pathway selection. Through kinetic studies of PP32, we find folding to be rate-limited by the formation of an on-pathway intermediate. Destabilizing core substitutions reveal a transition state ensemble that is highly polarized toward the C-terminal repeat and cap. To determine if this nucleus for folding corresponds to the most stable region of PP32, we monitored amide hydrogen exchange by NMR spectroscopy. Indeed, we find the highest protection to be biased toward the C terminus. Sequence manipulations that destabilize the C terminus spread out the transition state toward the middle of the protein. Consistent with results for helical ankyrin repeat proteins, these results suggest that local stabilities determine folding pathways. PMID:25902505

  7. The leucine-rich repeats of LINGO-1 are not required for self-interaction or interaction with the amyloid precursor protein.

    PubMed

    Stein, Thomas; Walmsley, Adrian Robert

    2012-02-10

    LINGO-1 (leucine rich repeat and Ig domain containing Nogo receptor interacting protein-1) is a central nervous system transmembrane protein which simultaneously interacts with the Nogo-66 receptor and p75(NTR) or TROY on neurons to form a receptor complex responsible for myelin-mediated neurite outgrowth inhibition. On oligodendroglial cells, LINGO-1 interacts with p75(NTR) to constitutively inhibit multiple aspects of oligodendrocyte differentiation. Recently, LINGO-1 was identified as an in vivo interacting partner of the amyloid precursor protein (APP) and, correspondingly, cellular LINGO-1 expression was found to augment the release of the Abeta peptide, the potential causative agent of Alzheimer's disease. In addition, the recombinant LINGO-1 ectodomain has been shown to self-interact in solution and after crystallisation. Here, we have used deletional mutagenesis to identify the regions on LINGO-1 that are involved in homo- and heterotypic interactions. We have found that the N-terminal region containing the leucine-rich repeats along with the transmembrane and cytoplasmic domains of LINGO-1 are not required for self-interaction or interaction with APP.

  8. Over-expression of rice leucine-rich repeat protein results in activation of defense response, thereby enhancing resistance to bacterial soft rot in Chinese cabbage.

    PubMed

    Park, Young Ho; Choi, Changhyun; Park, Eun Mi; Kim, Hyo Sun; Park, Hong Jae; Bae, Shin Cheol; Ahn, Ilpyung; Kim, Min Gab; Park, Sang Ryeol; Hwang, Duk-Ju

    2012-10-01

    Pectobacterium carotovorum subsp. carotovorum causes soft rot disease in various plants, including Chinese cabbage. The simple extracellular leucine-rich repeat (eLRR) domain proteins have been implicated in disease resistance. Rice leucine-rich repeat protein (OsLRP), a rice simple eLRR domain protein, is induced by pathogens, phytohormones, and salt. To see whether OsLRP enhances disease resistance to bacterial soft rot, OsLRP was introduced into Chinese cabbage by Agrobacterium-mediated transformation. Two independent transgenic lines over-expressing OsLRP were generated and further analyzed. Transgenic lines over-expressing OsLRP showed enhanced disease resistance to bacterial soft rot compared to non-transgenic control. Bacterial growth was retarded in transgenic lines over-expressing OsLRP compared to non-transgenic controls. We propose that OsLRP confers enhanced resistance to bacterial soft rot. Monitoring expression of defense-associated genes in transgenic lines over-expressing OsLRP, two different glucanases and Brassica rapa polygalacturonase inhibiting protein 2, PDF1 were constitutively activated in transgenic lines compared to non-transgenic control. Taken together, heterologous expression of OsLRP results in the activation of defense response and enhanced resistance to bacterial soft rot.

  9. Requirement of the cytosolic interaction between PATHOGENESIS-RELATED PROTEIN10 and LEUCINE-RICH REPEAT PROTEIN1 for cell death and defense signaling in pepper.

    PubMed

    Choi, Du Seok; Hwang, In Sun; Hwang, Byung Kook

    2012-04-01

    Plants recruit innate immune receptors such as leucine-rich repeat (LRR) proteins to recognize pathogen attack and activate defense genes. Here, we identified the pepper (Capsicum annuum) pathogenesis-related protein10 (PR10) as a leucine-rich repeat protein1 (LRR1)-interacting partner. Bimolecular fluorescence complementation and coimmunoprecipitation assays confirmed the specific interaction between LRR1 and PR10 in planta. Avirulent Xanthomonas campestris pv vesicatoria infection induces PR10 expression associated with the hypersensitive cell death response. Transient expression of PR10 triggers hypersensitive cell death in pepper and Nicotiana benthamiana leaves, which is amplified by LRR1 coexpression as a positive regulator. LRR1 promotes the ribonuclease activity and phosphorylation of PR10, leading to enhanced cell death signaling. The LRR1-PR10 complex is formed in the cytoplasm, resulting in its secretion into the apoplastic space. Engineered nuclear confinement of both proteins revealed that the cytoplasmic localization of the PR10-LRR1 complex is essential for cell death-mediated defense signaling. PR10/LRR1 silencing in pepper compromises resistance to avirulent X. campestris pv vesicatoria infection. By contrast, PR10/LRR1 overexpression in Arabidopsis thaliana confers enhanced resistance to Pseudomonas syringae pv tomato and Hyaloperonospora arabidopsidis. Together, these results suggest that the cytosolic LRR-PR10 complex is responsible for cell death-mediated defense signaling.

  10. Requirement of the Cytosolic Interaction between PATHOGENESIS-RELATED PROTEIN10 and LEUCINE-RICH REPEAT PROTEIN1 for Cell Death and Defense Signaling in Pepper[W

    PubMed Central

    Choi, Du Seok; Hwang, In Sun; Hwang, Byung Kook

    2012-01-01

    Plants recruit innate immune receptors such as leucine-rich repeat (LRR) proteins to recognize pathogen attack and activate defense genes. Here, we identified the pepper (Capsicum annuum) pathogenesis-related protein10 (PR10) as a leucine-rich repeat protein1 (LRR1)–interacting partner. Bimolecular fluorescence complementation and coimmunoprecipitation assays confirmed the specific interaction between LRR1 and PR10 in planta. Avirulent Xanthomonas campestris pv vesicatoria infection induces PR10 expression associated with the hypersensitive cell death response. Transient expression of PR10 triggers hypersensitive cell death in pepper and Nicotiana benthamiana leaves, which is amplified by LRR1 coexpression as a positive regulator. LRR1 promotes the ribonuclease activity and phosphorylation of PR10, leading to enhanced cell death signaling. The LRR1-PR10 complex is formed in the cytoplasm, resulting in its secretion into the apoplastic space. Engineered nuclear confinement of both proteins revealed that the cytoplasmic localization of the PR10-LRR1 complex is essential for cell death–mediated defense signaling. PR10/LRR1 silencing in pepper compromises resistance to avirulent X. campestris pv vesicatoria infection. By contrast, PR10/LRR1 overexpression in Arabidopsis thaliana confers enhanced resistance to Pseudomonas syringae pv tomato and Hyaloperonospora arabidopsidis. Together, these results suggest that the cytosolic LRR-PR10 complex is responsible for cell death–mediated defense signaling. PMID:22492811

  11. Fission yeast leucine-rich repeat protein Lrp1 is essential for cell morphogenesis as a component of the morphogenesis Orb6 network (MOR).

    PubMed

    Kume, Kazunori; Kubota, Shunsuke; Koyano, Takayuki; Kanai, Muneyoshi; Mizunuma, Masaki; Toda, Takashi; Hirata, Dai

    2013-01-01

    In eukaryotes, cell morphogenesis is regulated coordinately with the cell cycle. In fission yeast, the morphogenesis network MOR (morphogenesis Orb6 network) consists of 5 conserved proteins, Pmo25, Nak1, Mor2, Orb6, and Mob2, and is essential for cell polarity control and cell separation following cytokinesis. Here we show that the conserved leucine-rich repeat protein Lrp1 is required for cell morphogenesis as a newly recognized component of MOR. Lrp1 has 4 leucine-rich repeats in its N-terminus and is a homolog of the budding yeast Sog2, which is a component of the RAM network (regulation of Ace2 activity and cellular morphogenesis). Lrp1 was essential for both cell growth and cell morphogenesis as were the other MOR components. Lrp1 was localized to the SPBs (spindle pole bodies, the yeast equivalent of the animal centrosome) throughout the cell cycle and to the medial ring during cytokinesis. Lrp1 interacted with Nak1 and was important for Orb6 kinase activity. Thus Lrp1 proved to function upstream of Orb6 in cell morphogenesis.

  12. The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes.

    PubMed Central

    Ori, N; Eshed, Y; Paran, I; Presting, G; Aviv, D; Tanksley, S; Zamir, D; Fluhr, R

    1997-01-01

    Characterization of plant resistance genes is an important step in understanding plant defense mechanisms. Fusarium oxysporum f sp lycopersici is the causal agent of a vascular wilt disease in tomato. Genes conferring resistance to plant vascular diseases have yet to be described molecularly. Members of a new multigene family, complex I2C, were isolated by map-based cloning from the I2 F. o. lycopersici race 2 resistance locus. The genes show structural similarity to the group of recently isolated resistance genes that contain a nucleotide binding motif and leucine-rich repeats. Importantly, the presence of I2C antisense transgenes abrogated race 2 but not race 1 resistance in otherwise normal plants. Expression of the complete sense I2C-1 transgene conferred significant but partial resistance to F. o. lycopersici race 2. All members of the I2C gene family have been mapped genetically and are dispersed on three different chromosomes. Some of the I2C members cosegregate with other tomato resistance loci. Comparison within the leucine-rich repeat region of I2C gene family members shows that they differ from each other mainly by insertions or deletions. PMID:9144960

  13. Unbiased screen for interactors of leucine-rich repeat kinase 2 supports a common pathway for sporadic and familial Parkinson disease

    PubMed Central

    Beilina, Alexandria; Rudenko, Iakov N.; Kaganovich, Alice; Civiero, Laura; Chau, Hien; Kalia, Suneil K.; Kalia, Lorraine V.; Lobbestael, Evy; Chia, Ruth; Ndukwe, Kelechi; Ding, Jinhui; Nalls, Mike A.; Olszewski, Maciej; Hauser, David N.; Kumaran, Ravindran; Lozano, Andres M.; Baekelandt, Veerle; Greene, Lois E.; Taymans, Jean-Marc; Greggio, Elisa; Cookson, Mark R.; Nalls, Mike A.; Plagnol, Vincent; Martinez, Maria; Hernandez, Dena G; Sharma, Manu; Sheerin, Una-Marie; Saad, Mohamad; Simón-Sánchez, Javier; Schulte, Claudia; Lesage, Suzanne; Sveinbjörnsdóttir, Sigurlaug; Arepalli, Sampath; Barker, Roger; Ben-Shlomo, Yoav; Berendse, Henk W; Berg, Daniela; Bhatia, Kailash; de Bie, Rob M A; Biffi, Alessandro; Bloem, Bas; Bochdanovits, Zoltan; Bonin, Michael; Bras, Jose M; Brockmann, Kathrin; Brooks, Janet; Burn, David J; Charlesworth, Gavin; Chen, Honglei; Chong, Sean; Clarke, Carl E; Cookson, Mark R; Cooper, J Mark; Corvol, Jean Christophe; Counsell, Carl; Damier, Philippe; Dartigues, Jean-François; Deloukas, Panos; Deuschl, Günther; Dexter, David T; van Dijk, Karin D; Dillman, Allissa; Durif, Frank; Dürr, Alexandra; Edkins, Sarah; Evans, Jonathan R; Foltynie, Thomas; Gao, Jianjun; Gardner, Michelle; Gibbs, J Raphael; Goate, Alison; Gray, Emma; Guerreiro, Rita; Gústafsson, Ómar; Harris, Clare; van Hilten, Jacobus J; Hofman, Albert; Hollenbeck, Albert; Holton, Janice; Hu, Michele; Huang, Xuemei; Huber, Heiko; Hudson, Gavin; Hunt, Sarah E; Huttenlocher, Johanna; Illig, Thomas; München, Helmholtz Zentrum; Jónsson, Pálmi V; Lambert, Jean-Charles; Langford, Cordelia; Lees, Andrew; Lichtner, Peter; München, Helmholtz Zentrum; Limousin, Patricia; Lopez, Grisel; Lorenz, Delia; McNeill, Alisdair; Moorby, Catriona; Moore, Matthew; Morris, Huw R; Morrison, Karen E; Mudanohwo, Ese; O’Sullivan, Sean S; Pearson, Justin; Perlmutter, Joel S; Pétursson, Hjörvar; Pollak, Pierre; Post, Bart; Potter, Simon; Ravina, Bernard; Revesz, Tamas; Riess, Olaf; Rivadeneira, Fernando; Rizzu, Patrizia; Ryten, Mina; Sawcer, Stephen; Schapira, Anthony; Scheffer, Hans; Shaw, Karen; Shoulson, Ira; Sidransky, Ellen; Smith, Colin; Spencer, Chris C A; Stefánsson, Hreinn; Steinberg, Stacy; Stockton, Joanna D; Strange, Amy; Talbot, Kevin; Tanner, Carlie M; Tashakkori-Ghanbaria, Avazeh; Tison, François; Trabzuni, Daniah; Traynor, Bryan J; Uitterlinden, André G; Velseboer, Daan; Vidailhet, Marie; Walker, Robert; van de Warrenburg, Bart; Wickremaratchi, Mirdhu; Williams, Nigel; Williams-Gray, Caroline H; Winder-Rhodes, Sophie; Stefánsson, Kári; Hardy, John; Heutink, Peter; Brice, Alexis; Gasser, Thomas; Singleton, Andrew B; Wood, Nicholas W; Chinnery, Patrick F; Arepalli, Sampath; Cookson, Mark R; Dillman, Allissa; Ferrucci, Luigi; Gibbs, J Raphael; Hernandez, Dena G; Johnson, Robert; Longo, Dan L; Majounie, Elisa; Nalls, Michael A; O’Brien, Richard; Singleton, Andrew B; Traynor, Bryan J; Troncoso, Juan; van der Brug, Marcel; Zielke, H Ronald; Zonderman, Alan B

    2014-01-01

    Mutations in leucine-rich repeat kinase 2 (LRRK2) cause inherited Parkinson disease (PD), and common variants around LRRK2 are a risk factor for sporadic PD. Using protein–protein interaction arrays, we identified BCL2-associated athanogene 5, Rab7L1 (RAB7, member RAS oncogene family-like 1), and Cyclin-G–associated kinase as binding partners of LRRK2. The latter two genes are candidate genes for risk for sporadic PD identified by genome-wide association studies. These proteins form a complex that promotes clearance of Golgi-derived vesicles through the autophagy–lysosome system both in vitro and in vivo. We propose that three different genes for PD have a common biological function. More generally, data integration from multiple unbiased screens can provide insight into human disease mechanisms. PMID:24510904

  14. Inhibition of the leucine-rich repeat protein LINGO-1 enhances survival, structure, and function of dopaminergic neurons in Parkinson's disease models.

    PubMed

    Inoue, Haruhisa; Lin, Ling; Lee, Xinhua; Shao, Zhaohui; Mendes, Shannon; Snodgrass-Belt, Pamela; Sweigard, Harry; Engber, Tom; Pepinsky, Blake; Yang, Lichuan; Beal, M Flint; Mi, Sha; Isacson, Ole

    2007-09-04

    The nervous system-specific leucine-rich repeat Ig-containing protein LINGO-1 is associated with the Nogo-66 receptor complex and is endowed with a canonical EGF receptor (EGFR)-like tyrosine phosphorylation site. Our studies indicate that LINGO-1 expression is elevated in the substantia nigra of Parkinson's disease (PD) patients compared with age-matched controls and in animal models of PD after neurotoxic lesions. LINGO-1 expression is present in midbrain dopaminergic (DA) neurons in the human and rodent brain. Therefore, the role of LINGO-1 in cell damage responses of DA neurons was examined in vitro and in experimental models of PD induced by either oxidative (6-hydroxydopamine) or mitochondrial (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) toxicity. In LINGO-1 knockout mice, DA neuron survival was increased and behavioral abnormalities were reduced compared with WT. This neuroprotection was accompanied by increased Akt phosphorylation (p-Akt). Similar neuroprotective in vivo effects on midbrain DA neurons were obtained in WT mice by blocking LINGO-1 activity using LINGO-1-Fc protein. Neuroprotection and enhanced neurite growth were also demonstrated for midbrain DA neurons in vitro. LINGO-1 antagonists (LINGO-1-Fc, dominant negative LINGO-1, and anti-LINGO-1 antibody) improved DA neuron survival in response to MPP+ in part by mechanisms that involve activation of the EGFR/Akt signaling pathway through a direct inhibition of LINGO-1's binding to EGFR. These results show that inhibitory agents of LINGO-1 activity can protect DA neurons against degeneration and indicate a role for the leucine-rich repeat protein LINGO-1 and related classes of proteins in the pathophysiological responses of midbrain DA neurons in PD.

  15. Crystal structure of LGR4-Rspo1 complex: insights into the divergent mechanisms of ligand recognition by leucine-rich repeat G-protein-coupled receptors (LGRs).

    PubMed

    Xu, Jin-Gen; Huang, Chunfeng; Yang, Zhengfeng; Jin, Mengmeng; Fu, Panhan; Zhang, Ni; Luo, Jian; Li, Dali; Liu, Mingyao; Zhou, Yan; Zhu, Yongqun

    2015-01-23

    Leucine-rich repeat G-protein-coupled receptors (LGRs) are a unique class of G-protein-coupled receptors characterized by a large extracellular domain to recognize ligands and regulate many important developmental processes. Among the three groups of LGRs, group B members (LGR4-6) recognize R-spondin family proteins (Rspo1-4) to stimulate Wnt signaling. In this study, we successfully utilized the "hybrid leucine-rich repeat technique," which fused LGR4 with the hagfish VLR protein, to obtain two recombinant human LGR4 proteins, LGR415 and LGR49. We determined the crystal structures of ligand-free LGR415 and the LGR49-Rspo1 complex. LGR4 exhibits a twisted horseshoe-like structure. Rspo1 adopts a flat and β-fold architecture and is bound in the concave surface of LGR4 in the complex through electrostatic and hydrophobic interactions. All the Rspo1-binding residues are conserved in LGR4-6, suggesting that LGR4-6 bind R-spondins through an identical surface. Structural analysis of our LGR4-Rspo1 complex with the previously determined LGR4 and LGR5 structures revealed that the concave surface of LGR4 is the sole binding site for R-spondins, suggesting a one-site binding model of LGR4-6 in ligand recognition. The molecular mechanism of LGR4-6 is distinct from the two-step mechanism of group A receptors LGR1-3 and the multiple-interface binding model of group C receptors LGR7-8, suggesting LGRs utilize the divergent mechanisms for ligand recognition. Our structures, together with previous reports, provide a comprehensive understanding of the ligand recognition by LGRs.

  16. Interaction of Prevotella intermedia strain 17 leucine-rich repeat domain protein AdpF with eukaryotic cells promotes bacterial internalization.

    PubMed

    Sengupta, Dipanwita; Kang, Dae-Joong; Anaya-Bergman, Cecilia; Wyant, Tiana; Ghosh, Arnab K; Miyazaki, Hiroshi; Lewis, Janina P

    2014-06-01

    Prevotella intermedia is an oral bacterium implicated in a variety of oral diseases. Although internalization of this bacterium by nonphagocytic host cells is well established, the molecular players mediating the process are not well known. Here, the properties of a leucine-rich repeat (LRR) domain protein, designated AdpF, are described. This protein contains a leucine-rich region composed of 663 amino acid residues, and molecular modeling shows that it folds into a classical curved solenoid structure. The cell surface localization of recombinant AdpF (rAdpF) was confirmed by electron and confocal microscopy analyses. The recombinant form of this protein bound fibronectin in a dose-dependent manner. Furthermore, the protein was internalized by host cells, with the majority of the process accomplished within 30 min. The internalization of rAdpF was inhibited by nystatin, cytochalasin, latrunculin, nocodazole, and wortmannin, indicating that microtubules, microfilaments, and signal transduction are required for the invasion. It is noteworthy that preincubation of eukaryotic cells with AdpF increased P. intermedia 17 internalization by 5- and 10-fold for HeLa and NIH 3T3 fibroblast cell lines, respectively. The addition of the rAdpF protein was also very effective in inducing bacterial internalization into the oral epithelial cell line HN4, as well as into primary cells, including human oral keratinocytes (HOKs) and human umbilical vein endothelial cells (HUVECs). Finally, cells exposed to P. intermedia 17 internalized the bacteria more readily upon reinfection. Taken together, our data demonstrate that rAdpF plays a role in the internalization of P. intermedia 17 by a variety of host cells.

  17. Interaction of Prevotella intermedia Strain 17 Leucine-Rich Repeat Domain Protein AdpF with Eukaryotic Cells Promotes Bacterial Internalization

    PubMed Central

    Sengupta, Dipanwita; Kang, Dae-Joong; Anaya-Bergman, Cecilia; Wyant, Tiana; Ghosh, Arnab K.; Miyazaki, Hiroshi

    2014-01-01

    Prevotella intermedia is an oral bacterium implicated in a variety of oral diseases. Although internalization of this bacterium by nonphagocytic host cells is well established, the molecular players mediating the process are not well known. Here, the properties of a leucine-rich repeat (LRR) domain protein, designated AdpF, are described. This protein contains a leucine-rich region composed of 663 amino acid residues, and molecular modeling shows that it folds into a classical curved solenoid structure. The cell surface localization of recombinant AdpF (rAdpF) was confirmed by electron and confocal microscopy analyses. The recombinant form of this protein bound fibronectin in a dose-dependent manner. Furthermore, the protein was internalized by host cells, with the majority of the process accomplished within 30 min. The internalization of rAdpF was inhibited by nystatin, cytochalasin, latrunculin, nocodazole, and wortmannin, indicating that microtubules, microfilaments, and signal transduction are required for the invasion. It is noteworthy that preincubation of eukaryotic cells with AdpF increased P. intermedia 17 internalization by 5- and 10-fold for HeLa and NIH 3T3 fibroblast cell lines, respectively. The addition of the rAdpF protein was also very effective in inducing bacterial internalization into the oral epithelial cell line HN4, as well as into primary cells, including human oral keratinocytes (HOKs) and human umbilical vein endothelial cells (HUVECs). Finally, cells exposed to P. intermedia 17 internalized the bacteria more readily upon reinfection. Taken together, our data demonstrate that rAdpF plays a role in the internalization of P. intermedia 17 by a variety of host cells. PMID:24711565

  18. Functional roles of the pepper leucine-rich repeat protein and its interactions with pathogenesis-related and hypersensitive-induced proteins in plant cell death and immunity.

    PubMed

    Hong, Jeum Kyu; Hwang, In Sun; Hwang, Byung Kook

    2017-05-15

    Pepper leucine-rich repeat protein (CaLRR1) interacts with defense response proteins to regulate plant cell death and immunity. This review highlights the current understanding of the molecular functions of CaLRR1 and its interactor proteins. Plant cell death and immune responses to microbial pathogens are controlled by complex and tightly regulated molecular signaling networks. Xanthomonas campestris pv. vesicatoria (Xcv)-inducible pepper (Capsicum annuum) leucine-rich repeat protein 1 (CaLRR1) serves as a molecular marker for plant cell death and immunity signaling. In this review, we discuss recent advances in elucidating the functional roles of CaLRR1 and its interacting plant proteins, and understanding how they are involved in the cell death and defense responses. CaLRR1 physically interacts with pepper pathogenesis-related proteins (CaPR10 and CaPR4b) and hypersensitive-induced reaction protein (CaHIR1) to regulate plant cell death and defense responses. CaLRR1 is produced in the cytoplasm and trafficked to the extracellular matrix. CaLRR1 binds to CaPR10 in the cytoplasm and CaPR4b and CaHIR1 at the plasma membrane. CaLRR1 synergistically accelerates CaPR10-triggered hypersensitive cell death, but negatively regulates CaPR4b- and CaHIR1-triggered cell death. CaHIR1 interacts with Xcv filamentous hemagglutinin (Fha1) to trigger disease-associated cell death. The subcellular localization and cellular function of these CaLRR1 interactors during plant cell death and defense responses were elucidated by Agrobacterium-mediated transient expression, virus-induced gene silencing, and transgenic overexpression studies. CaPR10, CaPR4b, and CaHIR1 positively regulate defense signaling mediated by salicylic acid and reactive oxygen species, thereby activating hypersensitive cell death and disease resistance. A comprehensive understanding of the molecular functions of CaLRR1 and its interacting protein partners in cell death and defense responses will provide valuable

  19. Identification of a novel pathogen-induced gene encoding a leucine-rich repeat protein expressed in phloem cells of Capsicum annuum.

    PubMed

    Jung, Eui Hwan; Jung, Ho Won; Lee, Sung Chul; Han, Sang Wook; Heu, Sunggi; Hwang, Byung Kook

    2004-02-20

    The CALRR1 gene, expressed in pepper leaves following infection by Xanthomonas campestris pv. vesicatoria, encodes a secreted leucine-rich repeat (LRR) with five tandem repeats of a 24-amino-acid LRR motif. Northern blot analyses revealed that CALRR1 is not constitutively expressed in pepper plants, but is strongly induced upon the infection by X. campestris pv. vesicatoria, Phytophthora capsici, Colletotrichum coccodes and Colletotrichum gloeosporioides on leaves. CALRR1 was not systemically induced in upper leaves by bacterial infection. The inoculation of bacterial live cells, and treatment with dead cells and culture filtrates of pathogenic or nonpathogenic bacteria triggered the accumulation of CALRR1 transcripts. Treatment with signaling molecules, including salicylic acid (SA), ethylene (ET), methyl jasmonate (MeJA), dl-beta-amino-n-butyric acid (BABA) and benzothiadiazole (BTH), did not activate the transcription of the CALRR1 gene, indicating that CALRR1 expression is not regulated by defense signaling pathways activated by these molecules. CALRR1 was induced by treatment with high salinity, abscisic acid (ABA) and wounding, but not by drought and cold stress. An in situ hybridization study showed that CALRR1 mRNA was localized in phloem tissues of leaves, stems, and green fruits of pepper plants during the pathogen infection and ABA exposure. The location characteristics and the spatio-temporal expression pattern of CALRR1 suggest that it may play a role in protecting phloem cells against biotic and abiotic stresses affecting phloem function.

  20. A scan without evidence is not evidence of absence: Scans without evidence of dopaminergic deficit in a symptomatic leucine-rich repeat kinase 2 mutation carrier.

    PubMed

    Wile, Daryl J; Dinelle, Katie; Vafai, Nasim; McKenzie, Jessamyn; Tsui, Joseph K; Schaffer, Paul; Ding, Yu-Shin; Farrer, Matthew; Sossi, Vesna; Stoessl, A Jon

    2016-03-01

    The basis for SWEDD is unclear, with most cases representing PD mimics but some later developing PD with a dopaminergic deficit. We studied a patient initially diagnosed with SWEDD (based on (18)F-dopa PET) who developed unequivocal PD associated with a leucine-rich repeat kinase 2 p.G2019S mutation. Repeat multitracer PET was performed at 17 years' disease duration, including (+)[11C]dihydrotetrabenazine, [11C](N,N-dimethyl-2-(2-amino-4-cyanophenylthio) benzylamine (which binds the serotonin transporter), and (18)F-dopa. The patient showed bilateral striatal dopaminergic denervation (right putamen 28% of age-matched normal, left putamen 33%). (18)F-dopa uptake was decreased, particularly on the left (mean 31% of normal vs. 45% on the more affected right side). Serotonin transporter binding was relatively preserved in the putamen (right mean 90% of normal, left 81%) and several cortical regions. SWEDD can occur in genetically determined PD and may, in some cases, be the result of compensatory nondopaminergic mechanisms operating in early disease. © 2015 International Parkinson and Movement Disorder Society.

  1. Comparative Geometrical Analysis of Leucine-Rich Repeat Structures in the Nod-Like and Toll-Like Receptors in Vertebrate Innate Immunity

    PubMed Central

    Matsushima, Norio; Miyashita, Hiroki; Enkhbayar, Purevjav; Kretsinger, Robert H.

    2015-01-01

    The NOD-like receptors (NLRs) and Toll-like receptors (TLRs) are pattern recognition receptors that are involved in the innate, pathogen pattern recognition system. The TLR and NLR receptors contain leucine-rich repeats (LRRs) that are responsible for ligand interactions. In LRRs short β-strands stack parallel and then the LRRs form a super helical arrangement of repeating structural units (called a coil of solenoids). The structures of the LRR domains of NLRC4, NLRP1, and NLRX1 in NLRs and of TLR1-5, TLR6, TLR8, TLR9 in TLRs have been determined. Here we report nine geometrical parameters that characterize the LRR domains; these include four helical parameters from HELFIT analysis. These nine parameters characterize well the LRR structures in NLRs and TLRs; the LRRs of NLR adopts a right-handed helix. In contrast, the TLR LRRs adopt either a left-handed helix or are nearly flat; RP105 and CD14 also adopt a left-handed helix. This geometrical analysis subdivides TLRs into four groups consisting of TLR3/TLR8/TLR9, TLR1/TLR2/TRR6, TLR4, and TLR5; these correspond to the phylogenetic tree based on amino acid sequences. In the TLRs an ascending lateral surface that consists of loops connecting the β-strand at the C-terminal side is involved in protein, protein/ligand interactions, but not the descending lateral surface on the opposite side. PMID:26295267

  2. A Scan Without Evidence Is Not Evidence of Absence: Scans Without Evidence of Dopaminergic Deficit in a Symptomatic Leucine-Rich repeat Kinase 2 Mutation Carrier

    PubMed Central

    Wile, Daryl J.; Dinelle, Katie; Vafai, Nasim; McKenzie, Jessamyn; Tsui, Joseph K.; Schaffer, Paul; Ding, Yu-Shin; Farrer, Matthew; Sossi, Vesna; Stoessl, A. Jon

    2016-01-01

    Introduction The basis for SWEDD is unclear, with most cases representing PD mimics but some later developing PD with a dopaminergic deficit. Methods We studied a patient initially diagnosed with SWEDD (based on 18F-dopa PET) who developed unequivocal PD associated with a leucine-rich repeat kinase 2 p.G2019S mutation. Repeat multitracer PET was performed at 17 years’ disease duration, including (+)[11C]dihydrotetrabenazine, [11C](N,N-dimethyl-2-(2-amino-4-cyanophenylthio) benzylamine (which binds the serotonin transporter), and 18F-dopa. Results The patient showed bilateral striatal dopaminergic denervation (right putamen 28% of age-matched normal, left putamen 33%). 18F-dopa uptake was decreased, particularly on the left (mean 31% of normal vs. 45% on the more affected right side). Serotonin transporter binding was relatively preserved in the putamen (right mean 90% of normal, left 81%) and several cortical regions. Conclusions SWEDD can occur in genetically determined PD and may, in some cases, be the result of compensatory nondopaminergic mechanisms operating in early disease. PMID:26685774

  3. CSL encodes a leucine-rich-repeat protein implicated in red/violet light signaling to the circadian clock in Chlamydomonas.

    PubMed

    Kinoshita, Ayumi; Niwa, Yoshimi; Onai, Kiyoshi; Yamano, Takashi; Fukuzawa, Hideya; Ishiura, Masahiro; Matsuo, Takuya

    2017-03-01

    The green alga Chlamydomonas reinhardtii shows various light responses in behavior and physiology. One such photoresponse is the circadian clock, which can be reset by external light signals to entrain its oscillation to daily environmental cycles. In a previous report, we suggested that a light-induced degradation of the clock protein ROC15 is a trigger to reset the circadian clock in Chlamydomonas. However, light signaling pathways of this process remained unclear. Here, we screened for mutants that show abnormal ROC15 diurnal rhythms, including the light-induced protein degradation at dawn, using a luciferase fusion reporter. In one mutant, ROC15 degradation and phase resetting of the circadian clock by light were impaired. Interestingly, the impairments were observed in response to red and violet light, but not to blue light. We revealed that an uncharacterized gene encoding a protein similar to RAS-signaling-related leucine-rich repeat (LRR) proteins is responsible for the mutant phenotypes. Our results indicate that a previously uncharacterized red/violet light signaling pathway is involved in the phase resetting of circadian clock in Chlamydomonas.

  4. Isolation and characterization of nucleotide-binding site and C-terminal leucine-rich repeat-resistance gene candidates in bananas.

    PubMed

    Lu, Y; Xu, W H; Xie, Y X; Zhang, X; Pu, J J; Qi, Y X; Li, H P

    2011-12-15

    Commercial banana varieties are highly susceptible to fungal pathogens, as well as bacterial pathogens, nematodes, viruses, and insect pests. The largest known family of plant resistance genes encodes proteins with nucleotide-binding site (NBS) and C-terminal leucine-rich repeat (LRR) domains. Conserved motifs in such genes in diverse plant species offer a means for the isolation of candidate genes in banana that may be involved in plant defense. Six degenerate PCR primers were designed to target NBS and additional domains were tested on commercial banana species Musa acuminata subsp malaccensis and the Musa AAB Group propagated in vitro and plants maintained in a greenhouse. Total DNA was isolated by a modified CTAB extraction technique. Four resistance gene analogs were amplified and deposited in GenBank and assigned numbers HQ199833-HQ199836. The predicted amino acid sequences compared to the amino acid sequences of known resistance genes (MRGL1, MRGL2, MRGL3, and MRGL4) revealed significant sequence similarity. The presence of consensus domains, namely kinase-1a, kinase-2 and hydrophobic domain, provided evidence that the cloned sequences belong to the typical non-Toll/interleukin-1 receptor-like domain NBS-LRR gene family.

  5. Suppression among alleles encoding nucleotide-binding-leucine-rich repeat resistance proteins interferes with resistance in F1 hybrid and allele-pyramided wheat plants.

    PubMed

    Stirnweis, Daniel; Milani, Samira D; Brunner, Susanne; Herren, Gerhard; Buchmann, Gabriele; Peditto, David; Jordan, Tina; Keller, Beat

    2014-09-01

    The development of high-yielding varieties with broad-spectrum durable disease resistance is the ultimate goal of crop breeding. In plants, immune receptors of the nucleotide-binding-leucine-rich repeat (NB-LRR) class mediate race-specific resistance against pathogen attack. When employed in agriculture this type of resistance is often rapidly overcome by newly adapted pathogen races. The stacking of different resistance genes or alleles in F1 hybrids or in pyramided lines is a promising strategy for achieving more durable resistance. Here, we identify a molecular mechanism which can negatively interfere with the allele-pyramiding approach. We show that pairwise combinations of different alleles of the powdery mildew resistance gene Pm3 in F1 hybrids and stacked transgenic wheat lines can result in suppression of Pm3-based resistance. This effect is independent of the genetic background and solely dependent on the Pm3 alleles. Suppression occurs at the post-translational level, as levels of RNA and protein in the suppressed alleles are unaffected. Using a transient expression system in Nicotiana benthamiana, the LRR domain was identified as the domain conferring suppression. The results of this study suggest that the expression of closely related NB-LRR resistance genes or alleles in the same genotype can lead to dominant-negative interactions. These findings provide a molecular explanation for the frequently observed ineffectiveness of resistance genes introduced from the secondary gene pool into polyploid crop species and mark an important step in overcoming this limitation.

  6. Molecular Analysis of a Large Subtelomeric Nucleotide-Binding-Site–Leucine-Rich-Repeat Family in Two Representative Genotypes of the Major Gene Pools of Phaseolus vulgaris

    PubMed Central

    Geffroy, Valérie; Macadré, Catherine; David, Perrine; Pedrosa-Harand, Andrea; Sévignac, Mireille; Dauga, Catherine; Langin, Thierry

    2009-01-01

    In common bean, the B4 disease resistance (R) gene cluster is a complex cluster localized at the end of linkage group (LG) B4, containing at least three R specificities to the fungus Colletotrichum lindemuthianum. To investigate the evolution of this R cluster since the divergence of Andean and Mesoamerican gene pools, DNA sequences were characterized from two representative genotypes of the two major gene pools of common bean (BAT93: Mesoamerican; JaloEEP558: Andean). Sequences encoding 29 B4-CC nucleotide-binding-site–leucine-rich-repeat (B4-CNL) genes were determined—12 from JaloEEP558 and 17 from BAT93. Although sequence exchange events were identified, phylogenetic analyses revealed that they were not frequent enough to lead to homogenization of B4-CNL sequences within a haplotype. Genetic mapping based on pulsed-field gel electrophoresis separation confirmed that the B4-CNL family is a large family specific to one end of LG B4 and is present at two distinct blocks separated by 26 cM. Fluorescent in situ hybridization on meiotic pachytene chromosomes revealed that two B4-CNL blocks are located in the subtelomeric region of the short arm of chromosome 4 on both sides of a heterochromatic block (knob), suggesting that this peculiar genomic environment may favor the proliferation of a large R gene cluster. PMID:19087965

  7. Molecular analysis of a large subtelomeric nucleotide-binding-site-leucine-rich-repeat family in two representative genotypes of the major gene pools of Phaseolus vulgaris.

    PubMed

    Geffroy, Valérie; Macadré, Catherine; David, Perrine; Pedrosa-Harand, Andrea; Sévignac, Mireille; Dauga, Catherine; Langin, Thierry

    2009-02-01

    In common bean, the B4 disease resistance gene cluster is a complex cluster localized at the end of linkage group (LG) B4, containing at least three R specificities to the fungus Colletotrichum lindemuthianum. To investigate the evolution of this R cluster since the divergence of Andean and Mesoamerican gene pools, DNA sequences were characterized from two representative genotypes of the two major gene pools of common bean (BAT93: Mesoamerican; JaloEEP558: Andean). Sequences encoding 29 B4-CC nucleotide-binding-site-leucine-rich-repeat (B4-CNL) genes were determined-12 from JaloEEP558 and 17 from BAT93. Although sequence exchange events were identified, phylogenetic analyses revealed that they were not frequent enough to lead to homogenization of B4-CNL sequences within a haplotype. Genetic mapping based on pulsed-field gel electrophoresis separation confirmed that the B4-CNL family is a large family specific to one end of LG B4 and is present at two distinct blocks separated by 26 cM. Fluorescent in situ hybridization on meiotic pachytene chromosomes revealed that two B4-CNL blocks are located in the subtelomeric region of the short arm of chromosome 4 on both sides of a heterochromatic block (knob), suggesting that this peculiar genomic environment may favor the proliferation of a large R gene cluster.

  8. LINGO-1-mediated inhibition of oligodendrocyte differentiation does not require the leucine-rich repeats and is reversed by p75(NTR) antagonists.

    PubMed

    Bourikas, Dimitris; Mir, Anis; Walmsley, Adrian Robert

    2010-12-01

    LINGO-1 is a potent negative regulator of oligodendrocyte differentiation and hence may play a pivotal restrictive role during remyelination in demyelinating diseases such as multiple sclerosis. However, little is known as to which stages of oligodendrocyte differentiation are inhibited by LINGO-1, which domains of the protein are involved and whether accessory proteins are required. Here, we show that LINGO-1 expression in the human oligodendroglial cell line MO3.13 inhibited process extension and this was reversed by an anti-LINGO-1 antibody or the antagonist LINGO-1-Fc. LINGO-1 expression was also found to inhibit myelin basic protein transcription in the rat oligodendroglial cell line CG4. Both of these inhibitory actions of LINGO-1 were abrogated by deletion of the entire ectodomain or cytoplasmic domains but, surprisingly, were unaffected by deletion of the leucine-rich repeats (LRRs). As in neurons, LINGO-1 physically associated with endogenous p75(NTR) in MO3.13 cells and, correspondingly, its inhibition of process extension was reversed by antagonists of p75(NTR). Thus, LINGO-1 inhibits multiple aspects of oligodendrocyte differentiation independently of the LRRs via a process that requires p75(NTR) signalling.

  9. The Potato Nucleotide-binding Leucine-rich Repeat (NLR) Immune Receptor Rx1 Is a Pathogen-dependent DNA-deforming Protein*

    PubMed Central

    Fenyk, Stepan; Townsend, Philip D.; Dixon, Christopher H.; Spies, Gerhard B.; de San Eustaquio Campillo, Alba; Slootweg, Erik J.; Westerhof, Lotte B.; Gawehns, Fleur K. K.; Knight, Marc R.; Sharples, Gary J.; Goverse, Aska; Pålsson, Lars-Olof; Takken, Frank L. W.; Cann, Martin J.

    2015-01-01

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable cells to respond to pathogen attack. Several NLRs act in the nucleus; however, conserved nuclear targets that support their role in immunity are unknown. Previously, we noted a structural homology between the nucleotide-binding domain of NLRs and DNA replication origin-binding Cdc6/Orc1 proteins. Here we show that the NB-ARC (nucleotide-binding, Apaf-1, R-proteins, and CED-4) domain of the Rx1 NLR of potato binds nucleic acids. Rx1 induces ATP-dependent bending and melting of DNA in vitro, dependent upon a functional P-loop. In situ full-length Rx1 binds nuclear DNA following activation by its cognate pathogen-derived effector protein, the coat protein of potato virus X. In line with its obligatory nucleocytoplasmic distribution, DNA binding was only observed when Rx1 was allowed to freely translocate between both compartments and was activated in the cytoplasm. Immune activation induced by an unrelated NLR-effector pair did not trigger an Rx1-DNA interaction. DNA binding is therefore not merely a consequence of immune activation. These data establish a role for DNA distortion in Rx1 immune signaling and define DNA as a molecular target of an activated NLR. PMID:26306038

  10. Leucine-rich repeat kinase 2 is associated with the endoplasmic reticulum in dopaminergic neurons and accumulates in the core of Lewy bodies in Parkinson disease.

    PubMed

    Vitte, Jérémie; Traver, Sabine; Maués De Paula, André; Lesage, Suzanne; Rovelli, Giorgio; Corti, Olga; Duyckaerts, Charles; Brice, Alexis

    2010-09-01

    Mutation of the leucine-rich repeat kinase 2 (LRRK2) gene is the most frequent genetic cause of Parkinson disease (PD). To understand the role of LRRK2 in the neuropathology of PD, we investigated the protein expression in a healthy brain and brains from patients with PD and its subcellular localization in dopaminergic neurons. LRRK2 was found to be widely expressed in healthy adult brain, including areas involved in PD. By double fluorescent staining, we found that endogenous LRRK2 is colocalized with the endoplasmic reticulum (ER) markers Neurotrace and KDEL in human dopaminergic neurons. Labeling of brain sections with anti-LRRK2 and anti-α-synuclein antibodies revealed localization of LRRK2 in the core of 24% of Lewy bodies (LBs) in the substantia nigra and 11% of LBs in the locus coeruleus in idiopathic PD patients. The percentage was increased to 50% in both areas in a patient with the G2019S LRRK2 mutation. The finding of ER localization suggests the possibility that LRRK2 is involved in the ER stress response and could account for the susceptibility to neuronal degeneration of LRRK2 mutation carriers. The localization of LRRK2 protein in the core of a subset of LBs demonstrates the contribution of LRRK2 to LB formation and disease pathogenesis.

  11. Genome-Wide Comparative Analyses Reveal the Dynamic Evolution of Nucleotide-Binding Leucine-Rich Repeat Gene Family among Solanaceae Plants.

    PubMed

    Seo, Eunyoung; Kim, Seungill; Yeom, Seon-In; Choi, Doil

    2016-01-01

    Plants have evolved an elaborate innate immune system against invading pathogens. Within this system, intracellular nucleotide-binding leucine-rich repeat (NLR) immune receptors are known play critical roles in effector-triggered immunity (ETI) plant defense. We performed genome-wide identification and classification of NLR-coding sequences from the genomes of pepper, tomato, and potato using fixed criteria. We then compared genomic duplication and evolution features. We identified intact 267, 443, and 755 NLR-encoding genes in tomato, potato, and pepper genomes, respectively. Phylogenetic analysis and classification of Solanaceae NLRs revealed that the majority of NLR super family members fell into 14 subgroups, including a TIR-NLR (TNL) subgroup and 13 non-TNL subgroups. Specific subgroups have expanded in each genome, with the expansion in pepper showing subgroup-specific physical clusters. Comparative analysis of duplications showed distinct duplication patterns within pepper and among Solanaceae plants suggesting subgroup- or species-specific gene duplication events after speciation, resulting in divergent evolution. Taken together, genome-wide analysis of NLR family members provide insights into their evolutionary history in Solanaceae. These findings also provide important foundational knowledge for understanding NLR evolution and will empower broader characterization of disease resistance genes to be used for crop breeding.

  12. A Novel Plant Leucine-Rich Repeat Receptor Kinase Regulates the Response of Medicago truncatula Roots to Salt Stress[W

    PubMed Central

    de Lorenzo, Laura; Merchan, Francisco; Laporte, Philippe; Thompson, Richard; Clarke, Jonathan; Sousa, Carolina; Crespi, Martín

    2009-01-01

    In plants, a diverse group of cell surface receptor-like protein kinases (RLKs) plays a fundamental role in sensing external signals to regulate gene expression. Roots explore the soil environment to optimize their growth via complex signaling cascades, mainly analyzed in Arabidopsis thaliana. However, legume roots have significant physiological differences, notably their capacity to establish symbiotic interactions. These major agricultural crops are affected by environmental stresses such as salinity. Here, we report the identification of a leucine-rich repeat RLK gene, Srlk, from the legume Medicago truncatula. Srlk is rapidly induced by salt stress in roots, and RNA interference (RNAi) assays specifically targeting Srlk yielded transgenic roots whose growth was less inhibited by the presence of salt in the medium. Promoter-β-glucuronidase fusions indicate that this gene is expressed in epidermal root tissues in response to salt stress. Two Srlk-TILLING mutants also failed to limit root growth in response to salt stress and accumulated fewer sodium ions than controls. Furthermore, early salt-regulated genes are downregulated in Srlk-RNAi roots and in the TILLING mutant lines when submitted to salt stress. We propose a role for Srlk in the regulation of the adaptation of M. truncatula roots to salt stress. PMID:19244136

  13. Analysis of the Arabidopsis Shoot Meristem Transcriptome during Floral Transition Identifies Distinct Regulatory Patterns and a Leucine-Rich Repeat Protein That Promotes Flowering[C][W][OA

    PubMed Central

    Torti, Stefano; Fornara, Fabio; Vincent, Coral; Andrés, Fernando; Nordström, Karl; Göbel, Ulrike; Knoll, Daniela; Schoof, Heiko; Coupland, George

    2012-01-01

    Flowering of Arabidopsis thaliana is induced by exposure to long days (LDs). During this process, the shoot apical meristem is converted to an inflorescence meristem that forms flowers, and this transition is maintained even if plants are returned to short days (SDs). We show that exposure to five LDs is sufficient to commit the meristem of SD-grown plants to flower as if they were exposed to continuous LDs. The MADS box proteins SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) and FRUITFULL (FUL) play essential roles in this commitment process and in the induction of flowering downstream of the transmissible FLOWERING LOCUS T (FT) signal. We exploited laser microdissection and Solexa sequencing to identify 202 genes whose transcripts increase in the meristem during floral commitment. Expression of six of these transcripts was tested in different mutants, allowing them to be assigned to FT-dependent or FT-independent pathways. Most, but not all, of those dependent on FT and its paralog TWIN SISTER OF FT (TSF) also relied on SOC1 and FUL. However, this dependency on FT and TSF or SOC1 and FUL was often bypassed in the presence of the short vegetative phase mutation. FLOR1, which encodes a leucine-rich repeat protein, was induced in the early inflorescence meristem, and flor1 mutations delayed flowering. Our data contribute to the definition of LD-dependent pathways downstream and in parallel to FT. PMID:22319055

  14. Silencing of NbCEP1 encoding a chloroplast envelope protein containing 15 leucine-rich-repeats disrupts chloroplast biogenesis in Nicotiana benthamiana.

    PubMed

    Jeon, Young; Hwang, A-Reum; Hwang, Inhwan; Pai, Hyun-Sook

    2010-02-28

    We characterized the physiological functions of Nicotiana benthamiana Chloroplast Envelope Protein 1 (NbCEP1) in Nicotiana benthamiana. NbCEP1 contains a chloroplast transit peptide and a single transmembrane domain at the N terminus, and most of its protein coding region is comprised of 15 leucine-rich-repeats (LRRs). The NbCEP1 gene is expressed in both aerial and underground plant tissues, and is induced by light. A GFP fusion protein of full length NbCEP1 was targeted to the chloroplast envelope and co-localized with OEP7:RFP, a marker protein for the chloroplast envelope. A fusion protein consisting of GFP and the NbCEP1 transit peptide mainly localized in the chloroplast stroma. Reduction of NbCEP1 expression by virus-induced gene silencing resulted in a leaf yellowing phenotype without much affecting overall plant growth. At the cellular level, depletion of NbCEP1 severely influenced chloroplast development, reducing both the number and size of the chloroplasts. Interestingly, mitochondrial development was also impaired, possibly an indirect effect of chloroplast ablation. A deficiency in NbCEP1 activity decreased the chlorophyll and carotenoid levels. Our results suggest that NbCEP1 plays a critical function, possibly through protein-protein interactions mediated by its LRRs, in chloroplast development in N. benthamiana.

  15. The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses.

    PubMed

    Van der Does, Dieuwertje; Boutrot, Freddy; Engelsdorf, Timo; Rhodes, Jack; McKenna, Joseph F; Vernhettes, Samantha; Koevoets, Iko; Tintor, Nico; Veerabagu, Manikandan; Miedes, Eva; Segonzac, Cécile; Roux, Milena; Breda, Alice S; Hardtke, Christian S; Molina, Antonio; Rep, Martijn; Testerink, Christa; Mouille, Grégory; Höfte, Herman; Hamann, Thorsten; Zipfel, Cyril

    2017-06-01

    Plants actively perceive and respond to perturbations in their cell walls which arise during growth, biotic and abiotic stresses. However, few components involved in plant cell wall integrity sensing have been described to date. Using a reverse-genetic approach, we identified the Arabidopsis thaliana leucine-rich repeat receptor kinase MIK2 as an important regulator of cell wall damage responses triggered upon cellulose biosynthesis inhibition. Indeed, loss-of-function mik2 alleles are strongly affected in immune marker gene expression, jasmonic acid production and lignin deposition. MIK2 has both overlapping and distinct functions with THE1, a malectin-like receptor kinase previously proposed as cell wall integrity sensor. In addition, mik2 mutant plants exhibit enhanced leftward root skewing when grown on vertical plates. Notably, natural variation in MIK2 (also named LRR-KISS) has been correlated recently to mild salt stress tolerance, which we could confirm using our insertional alleles. Strikingly, both the increased root skewing and salt stress sensitivity phenotypes observed in the mik2 mutant are dependent on THE1. Finally, we found that MIK2 is required for resistance to the fungal root pathogen Fusarium oxysporum. Together, our data identify MIK2 as a novel component in cell wall integrity sensing and suggest that MIK2 is a nexus linking cell wall integrity sensing to growth and environmental cues.

  16. Toll-like receptor 2-mediated interleukin-8 expression in gingival epithelial cells by the Tannerella forsythia leucine-rich repeat protein BspA.

    PubMed

    Onishi, Shinsuke; Honma, Kiyonobu; Liang, Shuang; Stathopoulou, Panagiota; Kinane, Denis; Hajishengallis, George; Sharma, Ashu

    2008-01-01

    Tannerella forsythia is a gram-negative anaerobe strongly associated with chronic human periodontitis. This bacterium expresses a cell surface-associated and secreted protein, designated BspA, which has been recognized as an important virulence factor. The BspA protein belongs to the leucine-rich repeat (LRR) and bacterial immunoglobulin-like protein families. BspA is, moreover, a multifunctional protein which interacts with a variety of host cells, including monocytes which appear to respond to BspA through Toll-like receptor (TLR) signaling. Since gingival epithelium forms a barrier against periodontal pathogens, this study was undertaken to determine if gingival epithelial cells respond to BspA challenge and if TLRs play any role in BspA recognition. This study was also directed towards identifying the BspA domains responsible for cellular activation. We provide direct evidence for BspA binding to TLR2 and demonstrate that the release of the chemokine interleukin-8 from human gingival epithelial cells by BspA is TLR2 dependent. Furthermore, the LRR domain of BspA is involved in activation of TLR2, while TLR1 serves as a signaling partner. Thus, our findings suggest that BspA is an important modulator of host innate immune responses through activation of TLR2 in cooperation with TLR1.

  17. Effect of a Leucine-rich Repeat Kinase 2 Variant on Motor and Non-motor Symptoms in Chinese Parkinson’s Disease Patients

    PubMed Central

    Sun, Qian; Wang, Tian; Jiang, Tian-Fang; Huang, Pei; Li, Dun-Hui; Wang, Ying; Xiao, Qin; Liu, Jun; Chen, Sheng-Di

    2016-01-01

    The G2385R variant of the leucine-rich repeat kinase 2 (LRRK2) is strongly associated with Parkinson’s disease (PD) in Asian populations. However, it is still unclear whether the clinical phenotype of PD patients with the G2385R variant can be distinguished from that of patients with idiopathic PD. In this study, we investigated motor and non-motor symptoms of LRRK2 G2385R variant carriers in a Chinese population. We genotyped 1031 Chinese PD patients for the G2385R variant of the LRRK2 gene, and examined the demographic and clinical characteristics of LRRK2 G2385R variant carrier and non-carrier PD patients. LRRK2 G2385R variant carriers were more likely to present the postural instability and gait difficulty dominant (PIGD) phenotype. This variant was also significantly associated with motor fluctuations and the levodopa equivalent dose (LED). G2385R variant carriers had higher REM sleep behavior disorder (RBD) screening questionnaire (RBDSQ) score and more RBD symptoms compared with non-carriers. We concluded that the G2385R variant could be a risk factor for the PIGD phenotype, motor fluctuations, LED values and RBD symptoms. PMID:27330837

  18. Comparison of leucine-rich repeat-containing G protein-coupled receptor 5 expression in different cancer and normal cell lines

    PubMed Central

    ALIZADEH-NAVAEI, REZA; RAFIEI, ALIREZA; ABEDIAN-KENARI, SAEID; ASGARIAN-OMRAN, HOSSEIN; VALADAN, REZA; HEDAYATIZADEH-OMRAN, AKBAR

    2016-01-01

    Evaluating the expression of leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) may be useful for predicting the best models and achieving more accurate results in cancer research. Therefore, the aim of the present study was to analyze the LGR5 expression levels in different cell lines. Eight commonly used cell lines were assessed (COS-7, NIH3T3, HEK293, VERO, HeLa, BHK, HepG2 and AGS). All the cell lines were cultured in RPMI-1640 medium contain 10% fetal calf serum at 37°C in humidified conditions with 5% CO2. According to the western blotting results, LGR5 was expressed in all cell lines. Densitometry results of LGR5 expression in the different cell lines showed that high LGR5 expression levels were apparent in BHK, AGS, VERO and NIH3T3 cell lines compared with the other cell lines. The results indicate that for the normal and cancer cell lines, BNK and AGS may be a better choice, respectively, for in vitro cancer studies. PMID:27347416

  19. Pleckstrin Homology (PH) Domain Leucine-rich Repeat Protein Phosphatase Controls Cell Polarity by Negatively Regulating the Activity of Atypical Protein Kinase C.

    PubMed

    Xiong, Xiaopeng; Li, Xin; Wen, Yang-An; Gao, Tianyan

    2016-11-25

    The proper establishment of epithelial polarity allows cells to sense and respond to signals that arise from the microenvironment in a spatiotemporally controlled manner. Atypical PKCs (aPKCs) are implicated as key regulators of epithelial polarity. However, the molecular mechanism underlying the negative regulation of aPKCs remains largely unknown. In this study, we demonstrated that PH domain leucine-rich repeat protein phosphatase (PHLPP), a novel family of Ser/Thr protein phosphatases, plays an important role in regulating epithelial polarity by controlling the phosphorylation of both aPKC isoforms. Altered expression of PHLPP1 or PHLPP2 disrupted polarization of Caco2 cells grown in 3D cell cultures as indicated by the formation of aberrant multi-lumen structures. Overexpression of PHLPP resulted in a decrease in aPKC phosphorylation at both the activation loop and the turn motif sites; conversely, knockdown of PHLPP increased aPKC phosphorylation. Moreover, in vitro dephosphorylation experiments revealed that both aPKC isoforms were substrates of PHLPP. Interestingly, knockdown of PKCζ, but not PKCι, led to similar disruption of the polarized lumen structure, suggesting that PKCζ likely controls the polarization process of Caco2 cells. Furthermore, knockdown of PHLPP altered the apical membrane localization of aPKCs and reduced the formation of aPKC-Par3 complex. Taken together, our results identify a novel role of PHLPP in regulating aPKC and cell polarity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Genome-Wide Comparative Analyses Reveal the Dynamic Evolution of Nucleotide-Binding Leucine-Rich Repeat Gene Family among Solanaceae Plants

    PubMed Central

    Seo, Eunyoung; Kim, Seungill; Yeom, Seon-In; Choi, Doil

    2016-01-01

    Plants have evolved an elaborate innate immune system against invading pathogens. Within this system, intracellular nucleotide-binding leucine-rich repeat (NLR) immune receptors are known play critical roles in effector-triggered immunity (ETI) plant defense. We performed genome-wide identification and classification of NLR-coding sequences from the genomes of pepper, tomato, and potato using fixed criteria. We then compared genomic duplication and evolution features. We identified intact 267, 443, and 755 NLR-encoding genes in tomato, potato, and pepper genomes, respectively. Phylogenetic analysis and classification of Solanaceae NLRs revealed that the majority of NLR super family members fell into 14 subgroups, including a TIR-NLR (TNL) subgroup and 13 non-TNL subgroups. Specific subgroups have expanded in each genome, with the expansion in pepper showing subgroup-specific physical clusters. Comparative analysis of duplications showed distinct duplication patterns within pepper and among Solanaceae plants suggesting subgroup- or species-specific gene duplication events after speciation, resulting in divergent evolution. Taken together, genome-wide analysis of NLR family members provide insights into their evolutionary history in Solanaceae. These findings also provide important foundational knowledge for understanding NLR evolution and will empower broader characterization of disease resistance genes to be used for crop breeding. PMID:27559340

  1. CSL encodes a leucine-rich-repeat protein implicated in red/violet light signaling to the circadian clock in Chlamydomonas

    PubMed Central

    Kinoshita, Ayumi; Niwa, Yoshimi; Onai, Kiyoshi; Fukuzawa, Hideya; Ishiura, Masahiro

    2017-01-01

    The green alga Chlamydomonas reinhardtii shows various light responses in behavior and physiology. One such photoresponse is the circadian clock, which can be reset by external light signals to entrain its oscillation to daily environmental cycles. In a previous report, we suggested that a light-induced degradation of the clock protein ROC15 is a trigger to reset the circadian clock in Chlamydomonas. However, light signaling pathways of this process remained unclear. Here, we screened for mutants that show abnormal ROC15 diurnal rhythms, including the light-induced protein degradation at dawn, using a luciferase fusion reporter. In one mutant, ROC15 degradation and phase resetting of the circadian clock by light were impaired. Interestingly, the impairments were observed in response to red and violet light, but not to blue light. We revealed that an uncharacterized gene encoding a protein similar to RAS-signaling-related leucine-rich repeat (LRR) proteins is responsible for the mutant phenotypes. Our results indicate that a previously uncharacterized red/violet light signaling pathway is involved in the phase resetting of circadian clock in Chlamydomonas. PMID:28333924

  2. The leucine-rich repeat domain can determine effective interaction between RPS2 and other host factors in arabidopsis RPS2-mediated disease resistance.

    PubMed Central

    Banerjee, D; Zhang, X; Bent, A F

    2001-01-01

    Like many other plant disease resistance genes, Arabidopsis thaliana RPS2 encodes a product with nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains. This study explored the hypothesized interaction of RPS2 with other host factors that may be required for perception of Pseudomonas syringae pathogens that express avrRpt2 and/or for the subsequent induction of plant defense responses. Crosses between Arabidopsis ecotypes Col-0 (resistant) and Po-1 (susceptible) revealed segregation of more than one gene that controls resistance to P. syringae that express avrRpt2. Many F(2) and F(3) progeny exhibited intermediate resistance phenotypes. In addition to RPS2, at least one additional genetic interval associated with this defense response was identified and mapped using quantitative genetic methods. Further genetic and molecular genetic complementation experiments with cloned RPS2 alleles revealed that the Po-1 allele of RPS2 can function in a Col-0 genetic background, but not in a Po-1 background. The other resistance-determining genes of Po-1 can function, however, as they successfully conferred resistance in combination with the Col-0 allele of RPS2. Domain-swap experiments revealed that in RPS2, a polymorphism at six amino acids in the LRR region is responsible for this allele-specific ability to function with other host factors. PMID:11333251

  3. The phenome analysis of mutant alleles in Leucine-Rich Repeat Receptor-Like Kinase genes in rice reveals new potential targets for stress tolerant cereals.

    PubMed

    Dievart, Anne; Perin, Christophe; Hirsch, Judith; Bettembourg, Mathilde; Lanau, Nadège; Artus, Florence; Bureau, Charlotte; Noel, Nicolas; Droc, Gaétan; Peyramard, Matthieu; Pereira, Serge; Courtois, Brigitte; Morel, Jean-Benoit; Guiderdoni, Emmanuel

    2016-01-01

    Plants are constantly exposed to a variety of biotic and abiotic stresses that reduce their fitness and performance. At the molecular level, the perception of extracellular stimuli and the subsequent activation of defense responses require a complex interplay of signaling cascades, in which protein phosphorylation plays a central role. Several studies have shown that some members of the Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) family are involved in stress and developmental pathways. We report here a systematic analysis of the role of the members of this gene family by mutant phenotyping in the monocotyledon model plant rice, Oryza sativa. We have then targeted 176 of the ∼320 LRR-RLK genes (55.7%) and genotyped 288 mutant lines. Position of the insertion was confirmed in 128 lines corresponding to 100 LRR-RLK genes (31.6% of the entire family). All mutant lines harboring homozygous insertions have been screened for phenotypes under normal conditions and under various abiotic stresses. Mutant plants have been observed at several stages of growth, from seedlings in Petri dishes to flowering and grain filling under greenhouse conditions. Our results show that 37 of the LRR-RLK rice genes are potential targets for improvement especially in the generation of abiotic stress tolerant cereals.

  4. A Cluster of Nucleotide-Binding Site-Leucine-Rich Repeat Genes Resides in a Barley Powdery Mildew Resistance Quantitative Trait Loci on 7HL.

    PubMed

    Cantalapiedra, Carlos P; Contreras-Moreira, Bruno; Silvar, Cristina; Perovic, Dragan; Ordon, Frank; Gracia, María Pilar; Igartua, Ernesto; Casas, Ana M

    2016-07-01

    Powdery mildew causes severe yield losses in barley production worldwide. Although many resistance genes have been described, only a few have already been cloned. A strong QTL (quantitative trait locus) conferring resistance to a wide array of powdery mildew isolates was identified in a Spanish barley landrace on the long arm of chromosome 7H. Previous studies narrowed down the QTL position, but were unable to identify candidate genes or physically locate the resistance. In this study, the exome of three recombinant lines from a high-resolution mapping population was sequenced and analyzed, narrowing the position of the resistance down to a single physical contig. Closer inspection of the region revealed a cluster of closely related NBS-LRR (nucleotide-binding site-leucine-rich repeat containing protein) genes. Large differences were found between the resistant lines and the reference genome of cultivar Morex, in the form of PAV (presence-absence variation) in the composition of the NBS-LRR cluster. Finally, a template-guided assembly was performed and subsequent expression analysis revealed that one of the new assembled candidate genes is transcribed. In summary, the results suggest that NBS-LRR genes, absent from the reference and the susceptible genotypes, could be functional and responsible for the powdery mildew resistance. The procedure followed is an example of the use of NGS (next-generation sequencing) tools to tackle the challenges of gene cloning when the target gene is absent from the reference genome.

  5. The G2019S Pathogenic Mutation Disrupts Sensitivity of Leucine-Rich Repeat Kinase 2 to Manganese Kinase Inhibition

    PubMed Central

    Covy, Jason P.; Giasson, Benoit I.

    2010-01-01

    Mutations in leucine-repeat rich kinase-2 (LRRK2) are the most common cause of late-onset Parkinson disease. Previously, we showed that the G2019S pathogenic mutation can cause a dramatic increase (~10 fold) in kinase activity, far above other published studies. A notable experimental difference was the use of Mn-ATP as a substrate. Therefore, the effects of metal cation-ATP cofactors on LRRK2 kinase activity were investigated. It is shown, using several divalent metal cations, that only Mg2+ or Mn2+ can support LRRK2 kinase activity. However, for wild-type, I2020T and R1441C LRRK2, Mn2+ was significantly less effective at supporting kinase activity. In sharp contrast, both Mn2+and Mg2+ were effective at supporting the activity of G2019S LRRK2. These divergent effects associated with divalent cation usage and the G2019S mutation were predominantly due to differences in catalytic rates. However, LRRK2 was shown to have much lower (~40 fold) ATP Km for Mn-ATP compared to Mg-ATP. Consequently, sub-stoichiometric concentrations of Mn2+ can act to inhibit the kinase activity of wild-type, but not G2019S LRRK2 in the presence of Mg2+. From these findings, a new model is proposed for a possible function of LRRK2 and the consequence of the G2019S LRRK2 pathogenic mutation. PMID:20626563

  6. Mutations in the Parkinson’s disease genes, Leucine Rich Repeat Kinase 2 (LRRK2) and Glucocerebrosidase (GBA), are not associated with essential tremor

    PubMed Central

    Clark, Lorraine N.; Kisselev, Sergey; Park, Naeun; Ross, Barbara; Verbitsky, Miguel; Rios, Eileen; Alcalay, Roy N.; Lee, Joseph H.; Louis, Elan D.

    2009-01-01

    We evaluated an association between essential tremor (ET) and the Parkinson’s disease (PD) genes, Leucine Rich Repeat Kinase 2 (LRRK2) and Glucocerebrosidase (GBA). Clinical studies demonstrate an association between ET and PD, suggesting possible shared pathophysiologies, yet LRRK2 has rarely been studied in ET, and GBA, not at all. ET cases (n = 275, including 42 with rest tremor) and controls (n = 289) were enrolled in an epidemiological study (Columbia University). Post-mortem brain tissue samples were obtained on 24 additional ET cases, including 3 with brainstem Lewy bodies. We performed a comprehensive analysis of the LRRK2 gene by genotyping 4 LRRK2 mutations (G2019S, I2020T, R1441C and Y1699C), 2 rare LRRK2 variants (L1114L and I1122V) and 19 LRRK2 SNPs. All GBA exons were sequenced in a subset of 93 Ashkenazi Jewish (AJ) cases, 62 AJ controls and 24 ET brains. LRRK2 mutations were not found in any ET cases or ET brains and none of the LRRK2 SNPs was associated with ET. GBA mutations were found in 7.5% (7/93) of AJ ET cases and 4.8% (3/62) of AJ controls (p = 0.75). 8.3% (2/24) of ET brains carried a GBA mutation. Four different heterozygous mutations were identified, including 3 previously reported mutations (N370S, R496H, and E326K) and 1 new missense variant (R44C). As suggested by several smaller prior reports, the known mutations for the LRRK2 gene are not risk factors for ET. Furthermore, a similar frequency of GBA mutations in AJ ET cases and controls suggests that GBA is not a common cause of ET either. PMID:19527940

  7. Mutations in the Parkinson's disease genes, Leucine Rich Repeat Kinase 2 (LRRK2) and Glucocerebrosidase (GBA), are not associated with essential tremor.

    PubMed

    Clark, Lorraine N; Kisselev, Sergey; Park, Naeun; Ross, Barbara; Verbitsky, Miguel; Rios, Eileen; Alcalay, Roy N; Lee, Joseph H; Louis, Elan D

    2010-02-01

    We evaluated an association between essential tremor (ET) and the Parkinson's disease (PD) genes, Leucine Rich Repeat Kinase 2 (LRRK2) and Glucocerebrosidase (GBA). Clinical studies demonstrate an association between ET and PD, suggesting possible shared pathophysiologies, yet LRRK2 has rarely been studied in ET, and GBA, not at all. ET cases (n = 275, including 42 with rest tremor) and controls (n = 289) were enrolled in an epidemiological study (Columbia University). Post-mortem brain tissue samples were obtained on 24 additional ET cases, including 3 with brainstem Lewy bodies. We performed a comprehensive analysis of the LRRK2 gene by genotyping 4 LRRK2 mutations (G2019S, I2020T, R1441C and Y1699C), 2 rare LRRK2 variants (L1114L and I1122V) and 19 LRRK2 SNPs. All GBA exons were sequenced in a subset of 93 Ashkenazi Jewish (AJ) cases, 62 AJ controls and 24 ET brains. LRRK2 mutations were not found in any ET cases or ET brains and none of the LRRK2 SNPs was associated with ET. GBA mutations were found in 7.5% (7/93) of AJ ET cases and 4.8% (3/62) of AJ controls (p = 0.75). 8.3% (2/24) of ET brains carried a GBA mutation. Four different heterozygous mutations were identified, including 3 previously reported mutations (N370S, R496H, and E326K) and 1 new missense variant (R44C). As suggested by several smaller prior reports, the known mutations for the LRRK2 gene are not risk factors for ET. Furthermore, a similar frequency of GBA mutations in AJ ET cases and controls suggests that GBA is not a common cause of ET either. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Structural and functional investigation of zebrafish (Danio rerio) NOD1 leucine rich repeat domain and its interaction with iE-DAP.

    PubMed

    Maharana, Jitendra; Sahoo, Bikash Ranjan; Bej, Aritra; Patra, Mahesh Chandra; Dehury, Budheswar; Bhoi, Gopal Krushna; Lenka, Santosh Kumar; Sahoo, Jyoti Ranjan; Rout, Ajaya Kumar; Behera, Bijay Kumar

    2014-11-01

    Nucleotide binding and oligomerization domain 1 (NOD1), a cytoplasmic pattern recognition receptor (PRR) and is a key component for modulating innate immunity and signaling. It is highly specific to γ-D-Glu-mDAP (iE-DAP), a cell wall component of Gram-negative and few Gram-positive bacteria. In the absence of the experimental structure of NOD1 leucine rich repeat (NOD1-LRR) domain, the NOD signaling cascade mediated through NOD1 and iE-DAP interaction is poorly understood. Herein, we modeled 3D structure of zebrafish NOD1-LRR (zNOD1-LRR) through a protein-threading approach and structural integrity of the model was assessed using molecular dynamics simulations. Molecular interaction analysis of iE-DAP and zNOD1-LRR, their complex stability and binding free energy studies were conducted to anticipate the ligand binding residues in zNOD1. Our study revealed that His775, Lys777, Asp803, Gly805, Trp807, Asn831, Ser833, Ile859 and Trp861 situated in the β-sheet region of zNOD1-LRR could be involved in iE-DAP recognition, which correlates the earlier findings in human. Comparison of binding free energies of native and mutant zNOD1-iE-DAP complexes delineated His775, Lys777, Asp803, Ser833 and Ile859 as the pivotal residues for energetic stability of NOD1 and iE-DAP interaction. This study provides the first comprehensive description of biophysical and biochemical parameters responsible for NOD1 and iE-DAP interaction in zebrafish, which is expected to shed more light on NOD1 signaling and therapeutic applications in other organisms.

  9. Dynamic Nucleotide-Binding Site and Leucine-Rich Repeat-Encoding Genes in the Grass Family1[C][W][OA

    PubMed Central

    Luo, Sha; Zhang, Yu; Hu, Qun; Chen, Jiongjiong; Li, Kunpeng; Lu, Chen; Liu, Hui; Wang, Wen; Kuang, Hanhui

    2012-01-01

    The proper use of resistance genes (R genes) requires a comprehensive understanding of their genomics and evolution. We analyzed genes encoding nucleotide-binding sites and leucine-rich repeats in the genomes of rice (Oryza sativa), maize (Zea mays), sorghum (Sorghum bicolor), and Brachypodium distachyon. Frequent deletions and translocations of R genes generated prevalent presence/absence polymorphism between different accessions/species. The deletions were caused by unequal crossover, homologous repair, nonhomologous repair, or other unknown mechanisms. R gene loci identified from different genomes were mapped onto the chromosomes of rice cv Nipponbare using comparative genomics, resulting in an integrated map of 495 R loci. Sequence analysis of R genes from the partially sequenced genomes of an African rice cultivar and 10 wild accessions suggested that there are many additional R gene lineages in the AA genome of Oryza. The R genes with chimeric structures (termed type I R genes) are diverse in different rice accessions but only account for 5.8% of all R genes in the Nipponbare genome. In contrast, the vast majority of R genes in the rice genome are type II R genes, which are highly conserved in different accessions. Surprisingly, pseudogene-causing mutations in some type II lineages are often conserved, indicating that their conservations were not due to their functions. Functional R genes cloned from rice so far have more type II R genes than type I R genes, but type I R genes are predicted to contribute considerable diversity in wild species. Type I R genes tend to reduce the microsynteny of their flanking regions significantly more than type II R genes, and their flanking regions have slightly but significantly lower G/C content than those of type II R genes. PMID:22422941

  10. Long-Term Evolution of Nucleotide-Binding Site-Leucine-Rich Repeat Genes: Understanding Gained from and beyond the Legume Family1[C][W

    PubMed Central

    Shao, Zhu-Qing; Zhang, Yan-Mei; Hang, Yue-Yu; Xue, Jia-Yu; Zhou, Guang-Can; Wu, Ping; Wu, Xiao-Yi; Wu, Xun-Zong; Wang, Qiang; Wang, Bin; Chen, Jian-Qun

    2014-01-01

    Proper utilization of plant disease resistance genes requires a good understanding of their short- and long-term evolution. Here we present a comprehensive study of the long-term evolutionary history of nucleotide-binding site (NBS)-leucine-rich repeat (LRR) genes within and beyond the legume family. The small group of NBS-LRR genes with an amino-terminal RESISTANCE TO POWDERY MILDEW8 (RPW8)-like domain (referred to as RNL) was first revealed as a basal clade sister to both coiled-coil-NBS-LRR (CNL) and Toll/Interleukin1 receptor-NBS-LRR (TNL) clades. Using Arabidopsis (Arabidopsis thaliana) as an outgroup, this study explicitly recovered 31 ancestral NBS lineages (two RNL, 21 CNL, and eight TNL) that had existed in the rosid common ancestor and 119 ancestral lineages (nine RNL, 55 CNL, and 55 TNL) that had diverged in the legume common ancestor. It was shown that, during their evolution in the past 54 million years, approximately 94% (112 of 119) of the ancestral legume NBS lineages experienced deletions or significant expansions, while seven original lineages were maintained in a conservative manner. The NBS gene duplication pattern was further examined. The local tandem duplications dominated NBS gene gains in the total number of genes (more than 75%), which was not surprising. However, it was interesting from our study that ectopic duplications had created many novel NBS gene loci in individual legume genomes, which occurred at a significant frequency of 8% to 20% in different legume lineages. Finally, by surveying the legume microRNAs that can potentially regulate NBS genes, we found that the microRNA-NBS gene interaction also exhibited a gain-and-loss pattern during the legume evolution. PMID:25052854

  11. Long-term evolution of nucleotide-binding site-leucine-rich repeat genes: understanding gained from and beyond the legume family.

    PubMed

    Shao, Zhu-Qing; Zhang, Yan-Mei; Hang, Yue-Yu; Xue, Jia-Yu; Zhou, Guang-Can; Wu, Ping; Wu, Xiao-Yi; Wu, Xun-Zong; Wang, Qiang; Wang, Bin; Chen, Jian-Qun

    2014-09-01

    Proper utilization of plant disease resistance genes requires a good understanding of their short- and long-term evolution. Here we present a comprehensive study of the long-term evolutionary history of nucleotide-binding site (NBS)-leucine-rich repeat (LRR) genes within and beyond the legume family. The small group of NBS-LRR genes with an amino-terminal RESISTANCE TO POWDERY MILDEW8 (RPW8)-like domain (referred to as RNL) was first revealed as a basal clade sister to both coiled-coil-NBS-LRR (CNL) and Toll/Interleukin1 receptor-NBS-LRR (TNL) clades. Using Arabidopsis (Arabidopsis thaliana) as an outgroup, this study explicitly recovered 31 ancestral NBS lineages (two RNL, 21 CNL, and eight TNL) that had existed in the rosid common ancestor and 119 ancestral lineages (nine RNL, 55 CNL, and 55 TNL) that had diverged in the legume common ancestor. It was shown that, during their evolution in the past 54 million years, approximately 94% (112 of 119) of the ancestral legume NBS lineages experienced deletions or significant expansions, while seven original lineages were maintained in a conservative manner. The NBS gene duplication pattern was further examined. The local tandem duplications dominated NBS gene gains in the total number of genes (more than 75%), which was not surprising. However, it was interesting from our study that ectopic duplications had created many novel NBS gene loci in individual legume genomes, which occurred at a significant frequency of 8% to 20% in different legume lineages. Finally, by surveying the legume microRNAs that can potentially regulate NBS genes, we found that the microRNA-NBS gene interaction also exhibited a gain-and-loss pattern during the legume evolution. © 2014 American Society of Plant Biologists. All Rights Reserved.

  12. Duplication and Divergence of Leucine-Rich Repeat Receptor-Like Protein Kinase (LRR-RLK) Genes in Basal Angiosperm Amborella trichopoda.

    PubMed

    Liu, Ping-Li; Xie, Lu-Lu; Li, Peng-Wei; Mao, Jian-Feng; Liu, Hui; Gao, Shu-Min; Shi, Peng-Hao; Gong, Jun-Qing

    2016-01-01

    Leucine-rich repeat receptor-like protein kinases (LRR-RLKs) are the largest group of receptor-like kinases, which are one of the largest protein superfamilies in plants, and play crucial roles in development and stress responses. Although the evolution of LRR-RLK families has been investigated in some eudicot and monocot plants, no comprehensive evolutionary studies have been performed for these genes in basal angiosperms like Amborella trichopoda. In this study, we identified 94 LRR-RLK genes in the genome of A. trichopoda. The number of LRR-RLK genes in the genome of A. trichopoda is only 17-50% of that of several eudicot and monocot species. Tandem duplication and whole-genome duplication have made limited contributions to the expansion of LRR-RLK genes in A. trichopoda. According to the phylogenetic analysis, all A. trichopoda LRR-RLK genes can be organized into 18 subfamilies, which roughly correspond to the LRR-RLK subfamilies defined in Arabidopsis thaliana. Most LRR-RLK subfamilies are characterized by highly conserved protein structures, motif compositions, and gene structures. The unique gene structure, protein structures, and protein motif compositions of each subfamily provide evidence for functional divergence among LRR-RLK subfamilies. Moreover, the expression data of LRR-RLK genes provided further evidence for the functional diversification of them. In addition, selection analyses showed that most LRR-RLK protein sites are subject to purifying selection. Our results contribute to a better understanding of the evolution of LRR-RLK gene family in angiosperm and provide a framework for further functional investigation on A. trichopoda LRR-RLKs.

  13. The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange*

    PubMed Central

    Fenyk, Stepan; Dixon, Christopher H.; Gittens, William H.; Townsend, Philip D.; Sharples, Gary J.; Pålsson, Lars-Olof; Takken, Frank L. W.; Cann, Martin J.

    2016-01-01

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA. PMID:26601946

  14. Biophysical Analysis of Anopheles gambiae Leucine-Rich Repeat Proteins APL1A1, APL1B and APL1C and Their Interaction with LRIM1

    DOE PAGES

    Williams, Marni; Summers, Brady J.; Baxter, Richard H. G.; ...

    2015-03-16

    Natural infection of Anopheles gambiae by malaria-causing Plasmodium parasites is significantly influenced by the APL1 genetic locus. The locus contains three closely related leucine-rich repeat (LRR) genes, APL1A, APL1B and APL1C. Multiple studies have reported the participation of APL1A—C in the immune response of A. gambiae to invasion by both rodent and human Plasmodium isolates. APL1C forms a heterodimer with the related LRR protein LRIM1 via a C-terminal coiled-coil domain that is also present in APL1A and APL1B. The LRIM1/APL1C heterodimer protects A. gambiae from infection by binding the complement-like protein TEP1 to form a stable and active immune complex.more » We report solution x-ray scatting data for the LRIM1/APL1C heterodimer, the oligomeric state of LRIM1/APL1 LRR domains in solution and the crystal structure of the APL1B LRR domain. The LRIM1/APL1C heterodimeric complex has a flexible and extended structure in solution. In contrast to the APL1A, APL1C and LRIM1 LRR domains, the APL1B LRR domain is a homodimer. The crystal structure of APL1B-LRR shows that the homodimer is formed by an N-terminal helix that complements for the absence of an N-terminal capping motif in APL1B, which is a unique distinction within the LRIM1/APL1 protein family. Full-length APL1A1 and APL1B form a stable complex with LRIM1. Our results support a model in which APL1A1, APL1B and APL1C can all form an extended, flexible heterodimer with LRIM1, providing a repertoire of functional innate immune complexes to protect A. gambiae from a diverse array of pathogens.« less

  15. Over-expression in the nucleotide-binding site-leucine rich repeat gene DEPG1 increases susceptibility to bacterial leaf streak disease in transgenic rice plants.

    PubMed

    Guo, Lijia; Li, Min; Wang, Wujing; Wang, Lijuan; Hao, Guojing; Guo, Chiming; Chen, Liang

    2012-04-01

    Bacterial leaf streak of rice (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) is a widely-spread disease in the main rice-producing areas of the world. Investigating the genes that play roles in rice-Xoc interactions helps us to understand the defense signaling pathway in rice. Here we report a differentially expressed protein gene (DEPG1), which regulates susceptibility to BLS. DEPG1 is a nucleotide-binding site (NBS)-leucine rich repeat (LRR) gene, and the deduced protein sequence of DEPG1 has approximately 64% identity with that of the disease resistance gene Pi37. Phylogenetic analysis of DEPG1 and the 18 characterized NBS-LRR genes revealed that DEPG1 is more closely related to Pi37. DEPG1 protein is located to the cytoplasm, which was confirmed by transient expression of DEPG1-GFP (green fluorescent protein) fusion construct in onion epidermal cells. Semi-quantitative PCR assays showed that DEPG1 is widely expressed in rice, and is preferentially expressed in internodes, leaf blades, leaf sheaths and flag leaves. Observation of cross sections of leaves from the transgenic plants with a DEPG1-promoter::glucuronidase (GUS) fusion gene revealed that DEPG1 is also highly expressed in mesophyll tissues where Xoc mainly colonizes. Additionally, Xoc negatively regulates expression of DEPG1 at the early stage of the pathogen infection, and so do the three defense-signal compounds including salicylic acid (SA), methyl jasmonate (MeJA) and 1-aminocyclopropane-1-carboxylic-acid (ACC). Transgenic rice plants overexpressing DEPG1 exhibit enhanced susceptibility to Xoc compared to the wild-type controls. Moreover, enhanced susceptibility to Xoc may be mediated by inhibition of the expression of some SA biosynthesis-related genes and pathogenesis-related genes that may contribute to the disease resistance. Taken together, DEPG1 plays roles in the interactions between rice and BLS pathogen Xoc.

  16. Purinergic Receptor-mediated Rapid Depletion of Nuclear Phosphorylated Akt Depends on Pleckstrin Homology Domain Leucine-rich Repeat Phosphatase, Calcineurin, Protein Phosphatase 2A, and PTEN Phosphatases*

    PubMed Central

    Mistafa, Oras; Ghalali, Aram; Kadekar, Sandeep; Högberg, Johan; Stenius, Ulla

    2010-01-01

    Akt is an important oncoprotein, and data suggest a critical role for nuclear Akt in cancer development. We have previously described a rapid (3–5 min) and P2X7-dependent depletion of nuclear phosphorylated Akt (pAkt) and effects on downstream targets, and here we studied mechanisms behind the pAkt depletion. We show that cholesterol-lowering drugs, statins, or extracellular ATP, induced a complex and coordinated response in insulin-stimulated A549 cells leading to depletion of nuclear pAkt. It involved protein/lipid phosphatases PTEN, pleckstrin homology domain leucine-rich repeat phosphatase (PHLPP1 and -2), protein phosphatase 2A (PP2A), and calcineurin. We employed immunocytology, immunoprecipitation, and proximity ligation assay techniques and show that PHLPP and calcineurin translocated to the nucleus and formed complexes with Akt within 3 min. Also PTEN translocated to the nucleus and then co-localized with pAkt close to the nuclear membrane. An inhibitor of the scaffolding immunophilin FK506-binding protein 51 (FKBP51) and calcineurin, FK506, prevented depletion of nuclear pAkt. Furthermore, okadaic acid, an inhibitor of PP2A, prevented the nuclear pAkt depletion. Chemical inhibition and siRNA indicated that PHLPP, PP2A, and PTEN were required for a robust depletion of nuclear pAkt, and in prostate cancer cells lacking PTEN, transfection of PTEN restored the statin-induced pAkt depletion. The activation of protein and lipid phosphatases was paralleled by a rapid proliferating cell nuclear antigen (PCNA) translocation to the nucleus, a PCNA-p21cip1 complex formation, and cyclin D1 degradation. We conclude that these effects reflect a signaling pathway for rapid depletion of pAkt that may stop the cell cycle. PMID:20605778

  17. Biophysical Analysis of Anopheles gambiae Leucine-Rich Repeat Proteins APL1A1, APL1B and APL1C and Their Interaction with LRIM1

    SciTech Connect

    Williams, Marni; Summers, Brady J.; Baxter, Richard H. G.; Kobe, Bostjan

    2015-03-16

    Natural infection of Anopheles gambiae by malaria-causing Plasmodium parasites is significantly influenced by the APL1 genetic locus. The locus contains three closely related leucine-rich repeat (LRR) genes, APL1A, APL1B and APL1C. Multiple studies have reported the participation of APL1A—C in the immune response of A. gambiae to invasion by both rodent and human Plasmodium isolates. APL1C forms a heterodimer with the related LRR protein LRIM1 via a C-terminal coiled-coil domain that is also present in APL1A and APL1B. The LRIM1/APL1C heterodimer protects A. gambiae from infection by binding the complement-like protein TEP1 to form a stable and active immune complex. We report solution x-ray scatting data for the LRIM1/APL1C heterodimer, the oligomeric state of LRIM1/APL1 LRR domains in solution and the crystal structure of the APL1B LRR domain. The LRIM1/APL1C heterodimeric complex has a flexible and extended structure in solution. In contrast to the APL1A, APL1C and LRIM1 LRR domains, the APL1B LRR domain is a homodimer. The crystal structure of APL1B-LRR shows that the homodimer is formed by an N-terminal helix that complements for the absence of an N-terminal capping motif in APL1B, which is a unique distinction within the LRIM1/APL1 protein family. Full-length APL1A1 and APL1B form a stable complex with LRIM1. Our results support a model in which APL1A1, APL1B and APL1C can all form an extended, flexible heterodimer with LRIM1, providing a repertoire of functional innate immune complexes to protect A. gambiae from a diverse array of pathogens.

  18. Leucine-rich repeat-containing G protein-coupled receptor 4 facilitates vesicular stomatitis virus infection by binding vesicular stomatitis virus glycoprotein.

    PubMed

    Zhang, Na; Huang, Hongjun; Tan, Binghe; Wei, Yinglei; Xiong, Qingqing; Yan, Yan; Hou, Lili; Wu, Nannan; Siwko, Stefan; Cimarelli, Andrea; Xu, Jianrong; Han, Honghui; Qian, Min; Liu, Mingyao; Du, Bing

    2017-10-06

    Vesicular stomatitis virus (VSV) and rabies and Chandipura viruses belong to the Rhabdovirus family. VSV is a common laboratory virus to study viral evolution and host immune responses to viral infection, and recombinant VSV-based vectors have been widely used for viral oncolysis, vaccination, and gene therapy. Although the tropism of VSV is broad, and its envelope glycoprotein G is often used for pseudotyping other viruses, the host cellular components involved in VSV infection remain unclear. Here, we demonstrate that the host protein leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is essential for VSV and VSV-G pseudotyped lentivirus (VSVG-LV) to infect susceptible cells. Accordingly, Lgr4-deficient mice had dramatically decreased VSV levels in the olfactory bulb. Furthermore, Lgr4 knockdown in RAW 264.7 cells also significantly suppressed VSV infection, and Lgr4 overexpression in RAW 264.7 cells enhanced VSV infection. Interestingly, only VSV infection relied on Lgr4, whereas infections with Newcastle disease virus, influenza A virus (A/WSN/33), and herpes simplex virus were unaffected by Lgr4 status. Of note, assays of virus entry, cell ELISA, immunoprecipitation, and surface plasmon resonance indicated that VSV bound susceptible cells via the Lgr4 extracellular domain. Pretreating cells with an Lgr4 antibody, soluble LGR4 extracellular domain, or R-spondin 1 blocked VSV infection by competitively inhibiting VSV binding to Lgr4. Taken together, the identification of Lgr4 as a VSV-specific host factor provides important insights into understanding VSV entry and its pathogenesis and lays the foundation for VSV-based gene therapy and viral oncolytic therapeutics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Extracellular leucine-rich repeat proteins are required to organize the apical extracellular matrix and maintain epithelial junction integrity in C. elegans

    PubMed Central

    Mancuso, Vincent P.; Parry, Jean M.; Storer, Luke; Poggioli, Corey; Nguyen, Ken C. Q.; Hall, David H.; Sundaram, Meera V.

    2012-01-01

    Epithelial cells are linked by apicolateral junctions that are essential for tissue integrity. Epithelial cells also secrete a specialized apical extracellular matrix (ECM) that serves as a protective barrier. Some components of the apical ECM, such as mucins, can influence epithelial junction remodeling and disassembly during epithelial-to-mesenchymal transition (EMT). However, the molecular composition and biological roles of the apical ECM are not well understood. We identified a set of extracellular leucine-rich repeat only (eLRRon) proteins in C. elegans (LET-4 and EGG-6) that are expressed on the apical surfaces of epidermal cells and some tubular epithelia, including the excretory duct and pore. A previously characterized paralog, SYM-1, is also expressed in epidermal cells and secreted into the apical ECM. Related mammalian eLRRon proteins, such as decorin or LRRTM1-3, influence stromal ECM or synaptic junction organization, respectively. Mutants lacking one or more of the C. elegans epithelial eLRRon proteins show multiple defects in apical ECM organization, consistent with these proteins contributing to the embryonic sheath and cuticular ECM. Furthermore, epithelial junctions initially form in the correct locations, but then rupture at the time of cuticle secretion and remodeling of cell-matrix interactions. This work identifies epithelial eLRRon proteins as important components and organizers of the pre-cuticular and cuticular apical ECM, and adds to the small but growing body of evidence linking the apical ECM to epithelial junction stability. We propose that eLRRon-dependent apical ECM organization contributes to cell-cell adhesion and may modulate epithelial junction dynamics in both normal and disease situations. PMID:22278925

  20. The Arabidopsis Leucine-rich Repeat Receptor Kinase BIR3 Negatively Regulates BAK1 Receptor Complex Formation and Stabilizes BAK1.

    PubMed

    Imkampe, Julia; Halter, Thierry; Huang, Shuhua; Schulze, Sarina; Mazzotta, Sara; Schmidt, Nikola; Manstretta, Raffaele; Postel, Sandra; Wierzba, Michael; Yang, Yong; vanDongen, Walter Mam; Stahl, Mark; Zipfel, Cyril; Goshe, Michael B; Clouse, Steven; de Vries, Sacco C; Tax, Frans; Wang, Xiaofeng; Kemmerling, Birgit

    2017-08-25

    BAK1 is a co-receptor and positive regulator of multiple ligand-binding leucine-rich-repeat receptor kinases (LRR-RKs) and is involved in brassinosteroid (BR)-dependent growth and development, innate immunity and cell death control. The BAK1-interacting LRR-RKs BIR2 and BIR3 were previously identified by proteomics analyses of in vivo BAK1 complexes. Here we show that BAK1-related pathways such as innate immunity and cell death control are affected by BIR3 in Arabidopsis thaliana. BIR3 also has a strong negative impact on BR signaling. BIR3 directly interacts with the BR receptor BRI1 and other ligand-binding receptors and negatively regulates BR signaling by competitive inhibition of BRI1. BIR3 is released from BAK1 and BRI1 after ligand exposure and directly affects the formation of BAK1 complexes with BRI1 or FLAGELLIN SENSING2. Double mutants of bak1 and bir3 show spontaneous cell death and constitutive activation of defense responses. BAK1 and its closest homolog BKK1 interact with and are stabilized by BIR3, suggesting that bak1 bir3 double mutants mimic the spontaneous cell death phenotype observed in bak1 bkk1 mutants via destabilization of BIR3 target proteins. Our results provide evidence for a negative regulatory mechanism for BAK1 receptor complexes in which BIR3 interacts with BAK1 and inhibits ligand-binding receptors to prevent BAK1 receptor complex formation. © 2017 American Society of Plant Biologists. All rights reserved.

  1. Purinergic receptor-mediated rapid depletion of nuclear phosphorylated Akt depends on pleckstrin homology domain leucine-rich repeat phosphatase, calcineurin, protein phosphatase 2A, and PTEN phosphatases.

    PubMed

    Mistafa, Oras; Ghalali, Aram; Kadekar, Sandeep; Högberg, Johan; Stenius, Ulla

    2010-09-03

    Akt is an important oncoprotein, and data suggest a critical role for nuclear Akt in cancer development. We have previously described a rapid (3-5 min) and P2X7-dependent depletion of nuclear phosphorylated Akt (pAkt) and effects on downstream targets, and here we studied mechanisms behind the pAkt depletion. We show that cholesterol-lowering drugs, statins, or extracellular ATP, induced a complex and coordinated response in insulin-stimulated A549 cells leading to depletion of nuclear pAkt. It involved protein/lipid phosphatases PTEN, pleckstrin homology domain leucine-rich repeat phosphatase (PHLPP1 and -2), protein phosphatase 2A (PP2A), and calcineurin. We employed immunocytology, immunoprecipitation, and proximity ligation assay techniques and show that PHLPP and calcineurin translocated to the nucleus and formed complexes with Akt within 3 min. Also PTEN translocated to the nucleus and then co-localized with pAkt close to the nuclear membrane. An inhibitor of the scaffolding immunophilin FK506-binding protein 51 (FKBP51) and calcineurin, FK506, prevented depletion of nuclear pAkt. Furthermore, okadaic acid, an inhibitor of PP2A, prevented the nuclear pAkt depletion. Chemical inhibition and siRNA indicated that PHLPP, PP2A, and PTEN were required for a robust depletion of nuclear pAkt, and in prostate cancer cells lacking PTEN, transfection of PTEN restored the statin-induced pAkt depletion. The activation of protein and lipid phosphatases was paralleled by a rapid proliferating cell nuclear antigen (PCNA) translocation to the nucleus, a PCNA-p21(cip1) complex formation, and cyclin D1 degradation. We conclude that these effects reflect a signaling pathway for rapid depletion of pAkt that may stop the cell cycle.

  2. Transcriptional responses to loss or gain of function of the leucine-rich repeat kinase 2 (LRRK2) gene uncover biological processes modulated by LRRK2 activity

    PubMed Central

    Nikonova, Elena V.; Xiong, Yulan; Tanis, Keith Q.; Dawson, Valina L.; Vogel, Robert L.; Finney, Eva M.; Stone, David J.; Reynolds, Ian J.; Kern, Jonathan T.; Dawson, Ted M.

    2012-01-01

    Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are the most common genetic cause of Parkinson's disease (PD) and cause both autosomal dominant familial and sporadic PD. Currently, the physiological and pathogenic activities of LRRK2 are poorly understood. To decipher the biological functions of LRRK2, including the genes and pathways modulated by LRRK2 kinase activity in vivo, we assayed genome-wide mRNA expression in the brain and peripheral tissues from LRRK2 knockout (KO) and kinase hyperactive G2019S (G2019S) transgenic mice. Subtle but significant differences in mRNA expression were observed relative to wild-type (WT) controls in the cortex, striatum and kidney of KO animals, but only in the striatum in the G2019S model. In contrast, robust, consistent and highly significant differences were identified by the direct comparison of KO and G2019S profiles in the cortex, striatum, kidney and muscle, indicating opposite effects on mRNA expression by the two models relative to WT. Ribosomal and glycolytic biological functions were consistently and significantly up-regulated in LRRK2 G2019S compared with LRRK2 KO tissues. Genes involved in membrane-bound organelles, oxidative phosphorylation, mRNA processing and the endoplasmic reticulum were down-regulated in LRRK2 G2019S mice compared with KO. We confirmed the expression patterns of 35 LRRK2-regulated genes using quantitative reverse transcription polymerase chain reaction. These findings provide the first description of the transcriptional responses to genetically modified LRRK2 activity and provide preclinical target engagement and/or pharmacodynamic biomarker strategies for LRRK2 and may inform future therapeutic strategies for LRRK2-associated PD. PMID:21972245

  3. Imipramine blue halts head and neck cancer invasion through promoting F-box and leucine-rich repeat protein 14-mediated Twist1 degradation.

    PubMed

    Yang, W-H; Su, Y-H; Hsu, W-H; Wang, C-C; Arbiser, J L; Yang, M-H

    2016-05-05

    The unique characteristic of head and neck squamous cell carcinoma (HNSCC) is that local invasion rather than distant metastasis is the major route for dissemination. Therefore, targeting the locally invasive cancer cells is more important than preventing systemic metastasis in HNSCC and other invasive-predominant cancers. We previously demonstrate a specific mechanism for HNSCC local invasion: the epithelial-mesenchymal transition (EMT) regulator Twist1 represses microRNA let-7i expression, leading to the activation of the small GTPase Rac1 and engendering the mesenchymal-mode movement in three-dimensional (3D) culture. However, targeting the EMT regulator is relatively difficult because of its transcription factor nature and the strategy for confining HNSCC invasion to facilitate local treatment is limited. Imipramine blue (IB) is a newly identified anti-invasive compound that effectively inhibits glioma invasion. Here we demonstrate that in HNSCC cells, a noncytotoxic dose of IB represses mesenchymal-mode migration in two-and-a-half-dimensional/3D culture system. IB suppresses EMT and stemness of HNSCC cells through inhibition of Twist1-mediated let-7i downregulation and Rac1 activation and the EMT signalling. Mechanistically, IB inhibits reactive oxygen species-induced nuclear factor-κB pathway activation. Importantly, IB promotes degradation of the EMT inducer Twist1 by enhancing F-box and leucine-rich repeat protein 14 (FBXL14)-mediated polyubiquitination of Twist1. Together, this study demonstrates the potent anti-invasion and EMT-inhibition effect of IB, suggesting the potential of IB in treating local invasion-predominant cancers.

  4. Leucine-rich repeat-mediated intramolecular interactions in nematode recognition and cell death signaling by the tomato resistance protein Mi.

    PubMed

    Hwang, Chin-Feng; Williamson, Valerie M

    2003-06-01

    The root-knot nematode resistance gene Mi from tomato encodes a nucleotide-binding/leucine-rich repeat (NB/LRR) protein with a novel amino-terminal domain compared to related disease-resistance genes. The closely linked paralog Mi-1.1, which does not confer nematode resistance, encodes a protein 91% identical to the functional copy, Mi-1.2. The chimeric construct Mi-DS3, which encodes the 161 amino-terminal residues from Mi-1.1 fused to the remainder of Mi-1.2, induces localized necrosis when transiently expressed in Nicotiana benthamiana leaves. We produced mutant constructs that exchanged sequences encoding each of the 40 amino acid differences from the Mi-1.1 LRR region into Mi-DS3 and into Mi-1.2. For 23 of the substitutions, necrosis was lost upon transient expression of the mutated Mi-DS3 in N. benthamiana, and nematode resistance was lost when the altered Mi-1.2 was expressed in the tomato roots. One substitution, R961D, failed to give Mi-DS3-induced necrosis, but produced a dominant lethal phenotype when introduced into Mi-1.2. This gain-of-function phenotype was suppressed by co-expression with the amino-terminal region of Mi-1.1, suggesting that residue 961 is critical for negative regulation by the corresponding N-terminal region. Substitutions of Mi-1.1 residues 984-986 retained the ability to cause necrosis in Mi-DS3, but resulted in loss-of-nematode resistance in Mi-1.2, suggesting that these residues are essential for nematode recognition. None of the loss-of-function mutations in Mi-1.2 had a dominant negative phenotype. These results indicate that the Mi-1.2 LRR is involved in regulation of the transmission of the resistance response as well as in recognition of the nematode.

  5. Molecular evolution of vertebrate Toll-like receptors: evolutionary rate difference between their leucine-rich repeats and their TIR domains.

    PubMed

    Mikami, Tomoko; Miyashita, Hiroki; Takatsuka, Shintaro; Kuroki, Yoshio; Matsushima, Norio

    2012-07-25

    Toll-like receptors (TLRs) that initiate an innate immune response contain an extracellular leucine rich repeat (LRR) domain and an intracellular Toll IL-receptor (TIR) domain. There are fifteen different TLRs in vertebrates. The LRR domains, which adopt a solenoid structure, usually have higher rates of evolution than do the TIR globular domains. It is important to understand the molecular evolution and functional roles of TLRs from this standpoint. Both pairwise genetic distances and Ka/Ks's (the ratios between non synonymous and synonymous substitution rates) were compared between the LRR domain and the TIR domain of 366 vertebrate TLRs from 96 species (from fish to primates). In fourteen members (TLRs 1, 2, 3, 4, 5, 6, 7, 8, 9, 11/12, 13, 14, 21, and 22/23) the LRR domains evolved significantly more rapidly than did the corresponding TIR domains. The evolutionary rates of the LRR domains are significantly different among these members; LRR domains from TLR3 and TLR7 from primates to fishes have the lowest rate of evolution. In contrast, the fifteenth member, TLR10, shows no significant differences; its TIR domain is not highly conserved. The present results suggest that TLR10 may have a different function in signaling from those other members and that a higher conservation of TLR3 and TLR7 may reflect a more ancient mechanism and/or structure in the innate immune response system. Gene conversions are suggested to have occurred in platypus TLR6 and TLR10. This study provides new insight about structural and functional diversification of vertebrate TLRs. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Regulation and Function of the Nucleotide Binding Domain Leucine-Rich Repeat-Containing Receptor, Pyrin Domain-Containing-3 Inflammasome in Lung Disease

    PubMed Central

    Lee, Seonmin; Suh, Gee-Young; Ryter, Stefan W.

    2016-01-01

    Inflammasomes are specialized inflammatory signaling platforms that govern the maturation and secretion of proinflammatory cytokines, such as IL-1β and IL-18, through the regulation of caspase-1–dependent proteolytic processing. Several nucleotide binding domain leucine-rich repeat-containing receptor (NLR) family members (i.e., NLR family, pyrin domain containing [NLRP] 1, NLRP3, and NLR family, caspase recruitment domain containing-4 [NLRC4]) as well as the pyrin and hemopoietic expression, interferon-inducibility, nuclear localization domain–containing family member, absent in melanoma 2, can form inflammasome complexes in human cells. In particular, the NLRP3 inflammasome is activated in response to cellular stresses through a two-component pathway, involving Toll-like receptor 4–ligand interaction (priming) followed by a second signal, such as ATP-dependent P2X purinoreceptor 7 receptor activation. Emerging studies suggest that the NLRP3 inflammasome can exert pleiotropic effects in human diseases with potentially both pro- and antipathogenic sequelae. Whereas NLRP3 inflammasome activation can serve as a vital component of host defense against invading bacteria and pathogens, excessive activation of the inflammasome can lead to inflammation-associated tissue injury in the setting of chronic disease. In addition, pyroptosis, an inflammasome-associated mode of cell death, contributes to host defense. Recent research has described the regulation and function of the NLRP3 inflammasome in various pulmonary diseases, including acute lung injury and acute respiratory distress syndrome, sepsis, respiratory infections, chronic obstructive pulmonary disease, asthma, pulmonary hypertension, cystic fibrosis, and idiopathic pulmonary fibrosis. The NLRP3 and related inflammasomes, and their regulated cytokines or receptors, may represent novel diagnostic or therapeutic targets in pulmonary diseases and other diseases in which inflammation contributes to pathogenesis

  7. The G2385R Variant of Leucine-Rich Repeat Kinase 2 Associated with Parkinson's Disease is a Partial Loss of Function Mutation

    PubMed Central

    Rudenko, Iakov N.; Kaganovich, Alice; Hauser, David N.; Beylina, Aleksandra; Chia, Ruth; Ding, Jinhui; Maric, Dragan; Jaffe, Howard; Cookson, Mark R.

    2015-01-01

    Autosomal-dominant missense mutations in leucine-rich repeat kinase 2 (LRRK2) are a common genetic cause of Parkinson's disease (PD). LRRK2 is a multidomain protein with kinase and GTPase activities. Dominant mutations are found in the domains that have these two enzyme activities including the common G2019S mutation that increases kinase activity by 2-3 fold. However, there is also a genetic variant in some populations, G2385R, that lies in a C-terminal WD40 domain of LRRK2 and acts as a risk factor for PD. In this study we show that the G2385R mutation causes a partial loss of the kinase function of LRRK2 and deletion of the C-terminus completely abolishes kinase activity. This effect is strong enough to overcome the kinase activating effects of the G2019S mutation in the kinase domain. Hsp90 has an increased affinity to G2385R variant compare to wild type LRRK2 and inhibition of the chaperone binding combined with proteasome inhibition leads to association of mutant LRRK2 with high molecular weight native fractions that likely represent proteasome degradation pathways. The loss of function of G2385R correlates with several cellular phenotypes that have been proposed to be kinase dependent. These results suggest that the C-terminus of LRRK2 plays an important role in maintaining enzymatic function of the protein and that G2385R may be associated with PD in a way that is different from kinase activating mutations. These results may be important in understanding the differing mechanism(s) by which mutations in LRRK2 act and may also have implications for therapeutic strategies for PD. PMID:22612223

  8. Large-Scale Analyses of Angiosperm Nucleotide-Binding Site-Leucine-Rich Repeat Genes Reveal Three Anciently Diverged Classes with Distinct Evolutionary Patterns.

    PubMed

    Shao, Zhu-Qing; Xue, Jia-Yu; Wu, Ping; Zhang, Yan-Mei; Wu, Yue; Hang, Yue-Yu; Wang, Bin; Chen, Jian-Qun

    2016-04-01

    Nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes make up the largest plant disease resistance gene family (R genes), with hundreds of copies occurring in individual angiosperm genomes. However, the expansion history of NBS-LRR genes during angiosperm evolution is largely unknown. By identifying more than 6,000 NBS-LRR genes in 22 representative angiosperms and reconstructing their phylogenies, we present a potential framework of NBS-LRR gene evolution in the angiosperm. Three anciently diverged NBS-LRR classes (TNLs, CNLs, and RNLs) were distinguished with unique exon-intron structures and DNA motif sequences. A total of seven ancient TNL, 14 CNL, and two RNL lineages were discovered in the ancestral angiosperm, from which all current NBS-LRR gene repertoires were evolved. A pattern of gradual expansion during the first 100 million years of evolution of the angiosperm clade was observed for CNLs. TNL numbers remained stable during this period but were eventually deleted in three divergent angiosperm lineages. We inferred that an intense expansion of both TNL and CNL genes started from the Cretaceous-Paleogene boundary. Because dramatic environmental changes and an explosion in fungal diversity occurred during this period, the observed expansions of R genes probably reflect convergent adaptive responses of various angiosperm families. An ancient whole-genome duplication event that occurred in an angiosperm ancestor resulted in two RNL lineages, which were conservatively evolved and acted as scaffold proteins for defense signal transduction. Overall, the reconstructed framework of angiosperm NBS-LRR gene evolution in this study may serve as a fundamental reference for better understanding angiosperm NBS-LRR genes.

  9. Duplication and Divergence of Leucine-Rich Repeat Receptor-Like Protein Kinase (LRR-RLK) Genes in Basal Angiosperm Amborella trichopoda

    PubMed Central

    Liu, Ping-Li; Xie, Lu-Lu; Li, Peng-Wei; Mao, Jian-Feng; Liu, Hui; Gao, Shu-Min; Shi, Peng-Hao; Gong, Jun-Qing

    2016-01-01

    Leucine-rich repeat receptor-like protein kinases (LRR-RLKs) are the largest group of receptor-like kinases, which are one of the largest protein superfamilies in plants, and play crucial roles in development and stress responses. Although the evolution of LRR-RLK families has been investigated in some eudicot and monocot plants, no comprehensive evolutionary studies have been performed for these genes in basal angiosperms like Amborella trichopoda. In this study, we identified 94 LRR-RLK genes in the genome of A. trichopoda. The number of LRR-RLK genes in the genome of A. trichopoda is only 17–50% of that of several eudicot and monocot species. Tandem duplication and whole-genome duplication have made limited contributions to the expansion of LRR-RLK genes in A. trichopoda. According to the phylogenetic analysis, all A. trichopoda LRR-RLK genes can be organized into 18 subfamilies, which roughly correspond to the LRR-RLK subfamilies defined in Arabidopsis thaliana. Most LRR-RLK subfamilies are characterized by highly conserved protein structures, motif compositions, and gene structures. The unique gene structure, protein structures, and protein motif compositions of each subfamily provide evidence for functional divergence among LRR-RLK subfamilies. Moreover, the expression data of LRR-RLK genes provided further evidence for the functional diversification of them. In addition, selection analyses showed that most LRR-RLK protein sites are subject to purifying selection. Our results contribute to a better understanding of the evolution of LRR-RLK gene family in angiosperm and provide a framework for further functional investigation on A. trichopoda LRR-RLKs. PMID:28066499

  10. Biophysical Analysis of Anopheles gambiae Leucine-Rich Repeat Proteins APL1A1, APL1B and APL1C and Their Interaction with LRIM1

    PubMed Central

    Williams, Marni; Summers, Brady J.; Baxter, Richard H. G.

    2015-01-01

    Natural infection of Anopheles gambiae by malaria-causing Plasmodium parasites is significantly influenced by the APL1 genetic locus. The locus contains three closely related leucine-rich repeat (LRR) genes, APL1A, APL1B and APL1C. Multiple studies have reported the participation of APL1A—C in the immune response of A. gambiae to invasion by both rodent and human Plasmodium isolates. APL1C forms a heterodimer with the related LRR protein LRIM1 via a C-terminal coiled-coil domain that is also present in APL1A and APL1B. The LRIM1/APL1C heterodimer protects A. gambiae from infection by binding the complement-like protein TEP1 to form a stable and active immune complex. Here we report solution x-ray scatting data for the LRIM1/APL1C heterodimer, the oligomeric state of LRIM1/APL1 LRR domains in solution and the crystal structure of the APL1B LRR domain. The LRIM1/APL1C heterodimeric complex has a flexible and extended structure in solution. In contrast to the APL1A, APL1C and LRIM1 LRR domains, the APL1B LRR domain is a homodimer. The crystal structure of APL1B-LRR shows that the homodimer is formed by an N-terminal helix that complements for the absence of an N-terminal capping motif in APL1B, which is a unique distinction within the LRIM1/APL1 protein family. Full-length APL1A1 and APL1B form a stable complex with LRIM1. These results support a model in which APL1A1, APL1B and APL1C can all form an extended, flexible heterodimer with LRIM1, providing a repertoire of functional innate immune complexes to protect A. gambiae from a diverse array of pathogens. PMID:25775123

  11. Proline/arginine-rich end leucine-rich repeat protein N-terminus is a novel osteoclast antagonist that counteracts bone loss.

    PubMed

    Rucci, Nadia; Capulli, Mattia; Ventura, Luca; Angelucci, Adriano; Peruzzi, Barbara; Tillgren, Viveka; Muraca, Maurizio; Heinegård, Dick; Teti, Anna

    2013-09-01

    (hbd) PRELP is a peptide corresponding to the N-terminal heparin binding domain of the matrix protein proline/arginine-rich end leucine-rich repeat protein (PRELP). (hbd) PRELP inhibits osteoclastogenesis entering pre-fusion osteoclasts through a chondroitin sulfate- and annexin 2-dependent mechanism and reducing the nuclear factor-κB transcription factor activity. In this work, we hypothesized that (hbd) PRELP could have a pharmacological relevance, counteracting bone loss in a variety of in vivo models of bone diseases induced by exacerbated osteoclast activity. In healthy mice, we demonstrated that the peptide targeted the bone and increased trabecular bone mass over basal level. In mice treated with retinoic acid to induce an acute increase of osteoclast formation, the peptide consistently antagonized osteoclastogenesis and prevented the increase of the serum levels of the osteoclast-specific marker tartrate-resistant acid phosphatase. In ovariectomized mice, in which osteoclast activity was chronically enhanced by estrogen deficiency, (hbd) PRELP counteracted exacerbated osteoclast activity and bone loss. In mice carrying osteolytic bone metastases, in which osteoclastogenesis and bone resorption were enhanced by tumor cell-derived factors, (hbd) PRELP reduced the incidence of osteolytic lesions, both preventively and curatively, with mechanisms involving impaired tumor cell homing to bone and tumor growth in the bone microenvironment. Interestingly, in tumor-bearing mice, (hbd) PRELP also inhibited breast tumor growth in orthotopic sites and development of metastatic disease in visceral organs, reducing cachexia and improving survival especially when administered preventively. (hbd) PRELP was retained in the tumor tissue and appeared to affect tumor growth by interacting with the microenvironment rather than by directly affecting the tumor cells. Because safety studies and high-dose treatments revealed no adverse effects, (hbd) PRELP could be employed as a

  12. Homo-dimerization and ligand binding by the leucine-rich repeat domain at RHG1/RFS2 underlying resistance to two soybean pathogens

    PubMed Central

    2013-01-01

    Background The protein encoded by GmRLK18-1 (Glyma_18_02680 on chromosome 18) was a receptor like kinase (RLK) encoded within the soybean (Glycine max L. Merr.) Rhg1/Rfs2 locus. The locus underlies resistance to the soybean cyst nematode (SCN) Heterodera glycines (I.) and causal agent of sudden death syndrome (SDS) Fusarium virguliforme (Aoki). Previously the leucine rich repeat (LRR) domain was expressed in Escherichia coli. Results The aims here were to evaluate the LRRs ability to; homo-dimerize; bind larger proteins; and bind to small peptides. Western analysis suggested homo-dimers could form after protein extraction from roots. The purified LRR domain, from residue 131–485, was seen to form a mixture of monomers and homo-dimers in vitro. Cross-linking experiments in vitro showed the H274N region was close (<11.1 A) to the highly conserved cysteine residue C196 on the second homo-dimer subunit. Binding constants of 20–142 nM for peptides found in plant and nematode secretions were found. Effects on plant phenotypes including wilting, stem bending and resistance to infection by SCN were observed when roots were treated with 50 pM of the peptides. Far-Western analyses followed by MS showed methionine synthase and cyclophilin bound strongly to the LRR domain. A second LRR from GmRLK08-1 (Glyma_08_g11350) did not show these strong interactions. Conclusions The LRR domain of the GmRLK18-1 protein formed both a monomer and a homo-dimer. The LRR domain bound avidly to 4 different CLE peptides, a cyclophilin and a methionine synthase. The CLE peptides GmTGIF, GmCLE34, GmCLE3 and HgCLE were previously reported to be involved in root growth inhibition but here GmTGIF and HgCLE were shown to alter stem morphology and resistance to SCN. One of several models from homology and ab-initio modeling was partially validated by cross-linking. The effect of the 3 amino acid replacements present among RLK allotypes, A87V, Q115K and H274N were predicted to alter domain

  13. Expression of Leucine-rich Repeat-containing G-protein Coupled Receptor 5 and CD44: Potential Implications for Gastric Cancer Stem Cell Marker

    PubMed Central

    Choi, Yoon Jin; Kim, Nayoung; Lee, Hye Seung; Park, Seon Mee; Park, Ji Hyun; Yoon, Hyuk; Shin, Cheol Min; Park, Young Soo; Kim, Jin-Wook; Lee, Dong Ho

    2016-01-01

    Background The human leucine-rich repeat-containing G-protein coupled receptor (LGR) 5 and CD44 are one of the candidates for the marker of gastric cancer stem cells. We compared the expressions of two genes among control, dysplasia and cancer groups. Methods We compared the mRNA expression of LGR5, CD44 and CD44v8–10 and immunohistochemistry (IHC) of LGR5 and CD44 in gastric antral mucosa of 45 controls, 36 patients with gastric dysplasia, and 39 patients with early gastric cancer. Additionally, IHC of LGR5 in gastric body mucosa was analyzed. Normal mucosa adjacent to dysplastic or cancer lesions was used for the quantitative real-time–PCR and IHC. Results Immunoreactivity of LGR5 in base of antral mucosa was higher in non-cancerous tissues of cancer than those of control (P = 0.006), whereas the expression of LGR5 mRNA was not different among the three groups. Immunostaining of LGR5 was much stronger in the antrum than in the body of stomach (P < 0.001). Although there was no difference in antral immunointensity of LGR5 according to the severity of intestinal metaplasia, stronger immunostaining was found in the body with an aggravation of intestinal metaplasia (P trend < 0.001). The expression of CD44v8–10 mRNA was higher in cancer patients than control subjects and patients with dysplasia (P = 0.018 and 0.009) while the expression of CD44 mRNA was higher in the control groups than the others. Conclusions IHC of LGR5 in crypt base and CD44 may be used for gastric CSC markers. LGR5 expression may be associated with the developing of corporal intestinal metaplasia. The expression of CD44v8–10 mRNA would be more suitable for gastric cancer stem cell marker than CD44 or LGR5 mRNA. PMID:28053963

  14. Report of leucine-rich repeats (LRRs) from Scylla serrata: Ontogeny, molecular cloning, characterization and expression analysis following ligand stimulation, and upon bacterial and viral infections.

    PubMed

    Vidya, R; Makesh, M; Purushothaman, C S; Chaudhari, A; Gireesh-Babu, P; Rajendran, K V

    2016-09-15

    Leucine-rich repeat (LRR) proteins are present in all living organisms, and their participation in signal transduction and defense mechanisms has been elucidated in humans and mosquitoes. LRRs possibly involve in protein-protein interactions also and show differential expression pattern upon challenge with pathogens. In the present study, a new LRR gene was identified in mud crab, Scylla serrata. LRR gene mRNA levels in different developmental stages and various tissues of S. serrata were analysed. Further, the response of the gene against different ligands, Gram-negative bacterium, and white spot syndrome virus (WSSV) was investigated in vitro and in vivo. Full-length cDNA sequence of S. serrata LRR (SsLRR) was found to be 2290 nucleotide long with an open reading frame of 1893bp. SsLRR encodes for a protein containing 630 deduced amino acids with 17 conserved LRR domains and exhibits significant similarity with crustacean LRRs so that these could be clustered into a branch in the phylogenetic tree. SsLRR mRNA transcripts were detected in all the developmental stages (egg, Zoea1-5, megalopa and crab instar), haemocytes and various tissues such as, stomach, gill, muscle, hepatopancreas, hematopoietic organ, heart, epithelial layer and testis by reverse-transcriptase PCR. SsLRR transcripts in cultured haemocytes showed a 2-fold increase in expression at 1.5 and 12h upon Poly I:C induction. WSSV challenge resulted in significant early up-regulation at 3h in-vitro and late up-regulation at 72h in-vivo. Peptidoglycan (PGN)-induction resulted in marginal up-regulation of SsLRR at timepoints, 6, 12 and 24h (fold change below 1.5) and no significant change in the expression at early timepoints. LPS-stimulation, on the other hand, showed either down-regulation or normal level of expression at all timepoints. However, a delayed 5-fold up-regulation was observed in vivo against Vibrio parahaemolyticus infection at 72hpi. The constitutive expression of the LRR gene in all the

  15. Prediction of the repeat domain structures and impact of parkinsonism-associated variations on structure and function of all functional domains of leucine-rich repeat kinase 2 (LRRK2).

    PubMed

    Mills, Ryan D; Mulhern, Terrence D; Liu, Fei; Culvenor, Janetta G; Cheng, Heung-Chin

    2014-04-01

    Genetic variations of leucine-rich repeat kinase 2 (LRRK2) are the major cause of dominantly inherited Parkinson disease (PD). LRRK2 protein contains seven predicted domains: a tandem Ras-like GTPase (ROC) domain and C-terminal of Roc (COR) domain, a protein kinase domain, and four repeat domains. PD-causative variations arise in all domains, suggesting that aberrant functioning of any domain can contribute to neurotoxic mechanisms of LRRK2. Determination of the three-dimensional structure of LRRK2 is one of the best avenues to decipher its neurotoxic mechanism. However, with the exception of the Roc domain, the three-dimensional structures of the functional domains of LRRK2 have yet to be determined. Based on the known three-dimensional structures of repeat domains of other proteins, the tandem Roc-COR domains of the Chlorobium tepidum Rab family protein, and the kinase domain of the Dictyostelium discoideum Roco4 protein, we predicted (1) the motifs essential for protein-protein interactions in all domains, (2) the motifs critical for catalysis and substrate recognition in the tandem Roc-COR and kinase domains, and (3) the effects of some PD-associated missense variations on the neurotoxic action of LRRK2. Results of our analysis provide a conceptual framework for future investigation into the regulation and the neurotoxic mechanism of LRRK2.

  16. Discovery of a 3-(4-Pyrimidinyl) Indazole (MLi-2), an Orally Available and Selective Leucine-Rich Repeat Kinase 2 (LRRK2) Inhibitor that Reduces Brain Kinase Activity.

    PubMed

    Scott, Jack D; DeMong, Duane E; Greshock, Thomas J; Basu, Kallol; Dai, Xing; Harris, Joel; Hruza, Alan; Li, Sarah W; Lin, Sue-Ing; Liu, Hong; Macala, Megan K; Hu, Zhiyong; Mei, Hong; Zhang, Honglu; Walsh, Paul; Poirier, Marc; Shi, Zhi-Cai; Xiao, Li; Agnihotri, Gautam; Baptista, Marco A S; Columbus, John; Fell, Matthew J; Hyde, Lynn A; Kuvelkar, Reshma; Lin, Yinghui; Mirescu, Christian; Morrow, John A; Yin, Zhizhang; Zhang, Xiaoping; Zhou, Xiaoping; Chang, Ronald K; Embrey, Mark W; Sanders, John M; Tiscia, Heather E; Drolet, Robert E; Kern, Jonathan T; Sur, Sylvie M; Renger, John J; Bilodeau, Mark T; Kennedy, Matthew E; Parker, Eric M; Stamford, Andrew W; Nargund, Ravi; McCauley, John A; Miller, Michael W

    2017-03-16

    Leucine-rich repeat kinase 2 (LRRK2) is a large, multidomain protein which contains a kinase domain and GTPase domain among other regions. Individuals possessing gain of function mutations in the kinase domain such as the most prevalent G2019S mutation have been associated with an increased risk for the development of Parkinson's disease (PD). Given this genetic validation for inhibition of LRRK2 kinase activity as a potential means of affecting disease progression, our team set out to develop LRRK2 inhibitors to test this hypothesis. A high throughput screen of our compound collection afforded a number of promising indazole leads which were truncated in order to identify a minimum pharmacophore. Further optimization of these indazoles led to the development of MLi-2 (1): a potent, highly selective, orally available, brain-penetrant inhibitor of LRRK2.

  17. High-throughput RNAi screen in Ewing sarcoma cells identifies leucine rich repeats and WD repeat domain containing 1 (LRWD1) as a regulator of EWS-FLI1 driven cell viability.

    PubMed

    He, Tao; Surdez, Didier; Rantala, Juha K; Haapa-Paananen, Saija; Ban, Jozef; Kauer, Maximilian; Tomazou, Eleni; Fey, Vidal; Alonso, Javier; Kovar, Heinrich; Delattre, Olivier; Iljin, Kristiina

    2017-01-05

    A translocation leading to the formation of an oncogenic EWS-ETS fusion protein defines Ewing sarcoma. The most frequent gene fusion, present in 85 percent of Ewing sarcomas, is EWS-FLI1. Here, a high-throughput RNA interference screen was performed to identify genes whose function is critical for EWS-FLI1 driven cell viability. In total, 6781 genes were targeted by siRNA molecules and the screen was performed both in presence and absence of doxycycline-inducible expression of the EWS-FLI1 shRNA in A673/TR/shEF Ewing sarcoma cells. The Leucine rich repeats and WD repeat Domain containing 1 (LRWD1) targeting siRNA pool was the strongest hit reducing cell viability only in EWS-FLI1 expressing Ewing sarcoma cells. LRWD1 had been previously described as a testis specific gene with only limited information on its function. Analysis of LRWD1 mRNA levels in patient samples indicated that high expression associated with poor overall survival in Ewing sarcoma. Gene ontology analysis of LRWD1 co-expressed genes in Ewing tumors revealed association with DNA replication and analysis of differentially expressed genes in LRWD1 depleted Ewing sarcoma cells indicated a role in connective tissue development and cellular morphogenesis. Moreover, EWS-FLI1 repressed genes with repressive H3K27me3 chromatin marks were highly enriched among LRWD1 target genes in A673/TR/shEF Ewing sarcoma cells, suggesting that LRWD1 contributes to EWS-FLI1 driven transcriptional regulation. Taken together, we have identified LRWD1 as a novel regulator of EWS-FLI1 driven cell viability in A673/TR/shEF Ewing sarcoma cells, shown association between high LRWD1 mRNA expression and aggressive disease and identified processes by which LRWD1 may promote oncogenesis in Ewing sarcoma.

  18. PnLRR-RLK27, a novel leucine-rich repeats receptor-like protein kinase from the Antarctic moss Pohlia nutans, positively regulates salinity and oxidation-stress tolerance.

    PubMed

    Wang, Jing; Liu, Shenghao; Li, Chengcheng; Wang, Tailin; Zhang, Pengying; Chen, Kaoshan

    2017-01-01

    Leucine-rich repeats receptor-like kinases (LRR-RLKs) play important roles in plant growth and development as well as stress responses. Here, 56 LRR-RLK genes were identified in the Antarctic moss Pohlia nutans transcriptome, which were further classified into 11 subgroups based on their extracellular domain. Of them, PnLRR-RLK27 belongs to the LRR II subgroup and its expression was significantly induced by abiotic stresses. Subcellular localization analysis showed that PnLRR-RLK27 was a plasma membrane protein. The overexpression of PnLRR-RLK27 in Physcomitrella significantly enhanced the salinity and ABA tolerance in their gametophyte growth. Similarly, PnLRR-RLK27 heterologous expression in Arabidopsis increased the salinity and ABA tolerance in their seed germination and early root growth as well as the tolerance to oxidative stress. PnLRR-RLK27 overproduction in these transgenic plants increased the expression of salt stress/ABA-related genes. Furthermore, PnLRR-RLK27 increased the activities of reactive oxygen species (ROS) scavengers and reduced the levels of malondialdehyde (MDA) and ROS. Taken together, these results suggested that PnLRR-RLK27 as a signaling regulator confer abiotic stress response associated with the regulation of the stress- and ABA-mediated signaling network.

  19. The Internal Region Leucine-rich Repeat 6 of Decorin Interacts with Low Density Lipoprotein Receptor-related Protein-1, Modulates Transforming Growth Factor (TGF)-β-dependent Signaling, and Inhibits TGF-β-dependent Fibrotic Response in Skeletal Muscles*

    PubMed Central

    Cabello-Verrugio, Claudio; Santander, Cristian; Cofré, Catalina; Acuña, Maria José; Melo, Francisco; Brandan, Enrique

    2012-01-01

    Decorin is a small proteoglycan, composed of 12 leucine-rich repeats (LRRs) that modulates the activity of transforming growth factor type β (TGF-β) and other growth factors, and thereby influences proliferation and differentiation in a wide array of physiological and pathological processes, such as fibrosis, in several tissues and organs. Previously we described two novel modulators of the TGF-β-dependent signaling pathway: LDL receptor-related protein (LRP-1) and decorin. Here we have determined the regions in decorin that are responsible for interaction with LRP-1 and are involved in TGF-β-dependent binding and signaling. Specifically, we used decorin deletion mutants, as well as peptides derived from internal LRR regions, to determine the LRRs responsible for these decorin functions. Our results indicate that LRR6 and LRR5 participate in the interaction with LRP-1 and TGF-β as well as in its dependent signaling. Furthermore, the internal region (LRR6i), composed of 11 amino acids, is responsible for decorin binding to LRP-1 and subsequent TGF-β-dependent signaling. Furthermore, using an in vivo approach, we also demonstrate that the LRR6 region of decorin can inhibit TGF-β mediated action in response to skeletal muscle injury. PMID:22203668

  20. PnLRR-RLK27, a novel leucine-rich repeats receptor-like protein kinase from the Antarctic moss Pohlia nutans, positively regulates salinity and oxidation-stress tolerance

    PubMed Central

    Wang, Jing; Liu, Shenghao; Li, Chengcheng; Wang, Tailin; Chen, Kaoshan

    2017-01-01

    Leucine-rich repeats receptor-like kinases (LRR-RLKs) play important roles in plant growth and development as well as stress responses. Here, 56 LRR-RLK genes were identified in the Antarctic moss Pohlia nutans transcriptome, which were further classified into 11 subgroups based on their extracellular domain. Of them, PnLRR-RLK27 belongs to the LRR II subgroup and its expression was significantly induced by abiotic stresses. Subcellular localization analysis showed that PnLRR-RLK27 was a plasma membrane protein. The overexpression of PnLRR-RLK27 in Physcomitrella significantly enhanced the salinity and ABA tolerance in their gametophyte growth. Similarly, PnLRR-RLK27 heterologous expression in Arabidopsis increased the salinity and ABA tolerance in their seed germination and early root growth as well as the tolerance to oxidative stress. PnLRR-RLK27 overproduction in these transgenic plants increased the expression of salt stress/ABA-related genes. Furthermore, PnLRR-RLK27 increased the activities of reactive oxygen species (ROS) scavengers and reduced the levels of malondialdehyde (MDA) and ROS. Taken together, these results suggested that PnLRR-RLK27 as a signaling regulator confer abiotic stress response associated with the regulation of the stress- and ABA-mediated signaling network. PMID:28241081

  1. PRELP (proline/arginine-rich end leucine-rich repeat protein) promotes osteoblastic differentiation of preosteoblastic MC3T3-E1 cells by regulating the β-catenin pathway

    SciTech Connect

    Li, Haiying; Cui, Yazhou; Luan, Jing; Zhang, Xiumei; Li, Chengzhi; Zhou, Xiaoyan; Shi, Liang; Wang, Huaxin; Han, Jinxiang

    2016-02-12

    Proline/arginine-rich end leucine-rich repeat protein (PRELP) is a collagen-binding proteoglycan highly expressed in the developing bones. Recent studies indicated that PRELP could inhibit osteoclastogenesis as a NF-κB inhibitor. However, its role during osteoblast differentiation is still unclear. In this study, we confirmed that the expression of PRELP increased with the osteogenesis induction of preosteoblastic MC3T3-E1 cells. Down-regulation of PRELP expression by shRNA reduced ALP activity, mineralization and expression of osteogenic marker gene Runx2. Our microarray analysis data suggested that β-catenin may act as a hub gene in the PRELP-mediated gene network. We validated furtherly that PRELP knockdown could inhibit the level of connexin43, a key regulator of osteoblast differentiation by affecting β-catenin protein expression, and its nuclear translocation in MC3T3-E1 preosteoblasts. Therefore, this study established a new role of PRELP in modulating β-catenin/connexin43 pathway and osteoblast differentiation.

  2. Overexpression of MicroRNA-216a Suppresses Proliferation, Migration, and Invasion of Glioma Cells By Targeting Leucine-rich Repeat-containing G Protein-coupled Receptor 5.

    PubMed

    Zhang, Junfeng; Xu, Kun; Shi, Lili; Zhang, Li; Zhao, Zhaohua; Xu, Hao; Liang, Fei; Li, Hongbo; Zhao, Yan; Xu, Xi; Tian, Yingfang

    2017-03-02

    Increasing studies have suggested that microRNAs (miRNAs) are involved in the development of gliomas. MicroRNA-216a hasbeen reported as a tumor-associated miRNA in many types of cancer, either as an oncogene or a tumor suppressor. However, little is known about the function of miR-216a in gliomas. The present study was designed to explore the potential role of miR-216a in gliomas. We found that miR-216a was significantly decreased in glioma tissues and cell lines. Overexpression of miR-216a significantly suppressed the proliferation, migration and invasion of glioma cells. Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) was identified as a target gene of miR-216a in glioma cells by bioinformatics analysis, dual-luciferase reporter assay, real-time quantitative polymerase chain reaction and western blot analysis. Moreover, miR-216a overexpression inhibited the Wnt/β-catenin signaling pathway. The restoration of LGR5 expression markedly reversed the antitumor effect of miR-216a in glioma cells. Taken together, these findings suggest a tumor suppressor role of miR-216a in gliomas which inhibits glioma cell proliferation, migration and invasion by targeting LGR5. Our study suggests that miR-216a may serve as a potential therapeutic target for future glioma treatment.

  3. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and PH domain and leucine-rich repeat phosphatase cross-talk (PHLPP) in cancer cells and in transforming growth factor β-activated stem cells.

    PubMed

    Ghalali, Aram; Ye, Zhi-Wei; Högberg, Johan; Stenius, Ulla

    2014-04-25

    Akt kinase controls cell survival, proliferation, and invasive growth and is a critical factor for cancer development. Here we describe a cross-talk between phosphatases that may preserve levels of activated/phosphorylated Akt and confer aggressive growth of cancer cells. In prostatic cancer cells, but not in non-transformed cells or in prostate stem cells, we found that the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) overexpression down-regulated PH domain and leucine-rich repeat phosphatase (PHLPP) and that PHLPP overexpression down-regulated PTEN. We also show that silencing PTEN by siRNA increased the levels of PHLPPs. This cross-talk facilitated invasive migration and was mediated by epigenetic alterations, including activation of miR-190, miR-214, polycomb group of proteins, as well as DNA methylation. A role for the purinergic receptor P2X4, previously associated with wound healing, was indicated. We also show that TGF-β1 induced cross-talk concomitant with epithelial-mesenchymal transition in stem cells. The cross-talk emerged as an integrated part of epithelial-mesenchymal transition. We conclude that cross-talk between PTEN and PHLPPs is silenced in normal prostate cells but activated in TGF-β1 transformed prostate stem and cancer cells and facilitates invasive growth.

  4. The internal region leucine-rich repeat 6 of decorin interacts with low density lipoprotein receptor-related protein-1, modulates transforming growth factor (TGF)-β-dependent signaling, and inhibits TGF-β-dependent fibrotic response in skeletal muscles.

    PubMed

    Cabello-Verrugio, Claudio; Santander, Cristian; Cofré, Catalina; Acuña, Maria José; Melo, Francisco; Brandan, Enrique

    2012-02-24

    Decorin is a small proteoglycan, composed of 12 leucine-rich repeats (LRRs) that modulates the activity of transforming growth factor type β (TGF-β) and other growth factors, and thereby influences proliferation and differentiation in a wide array of physiological and pathological processes, such as fibrosis, in several tissues and organs. Previously we described two novel modulators of the TGF-β-dependent signaling pathway: LDL receptor-related protein (LRP-1) and decorin. Here we have determined the regions in decorin that are responsible for interaction with LRP-1 and are involved in TGF-β-dependent binding and signaling. Specifically, we used decorin deletion mutants, as well as peptides derived from internal LRR regions, to determine the LRRs responsible for these decorin functions. Our results indicate that LRR6 and LRR5 participate in the interaction with LRP-1 and TGF-β as well as in its dependent signaling. Furthermore, the internal region (LRR6i), composed of 11 amino acids, is responsible for decorin binding to LRP-1 and subsequent TGF-β-dependent signaling. Furthermore, using an in vivo approach, we also demonstrate that the LRR6 region of decorin can inhibit TGF-β mediated action in response to skeletal muscle injury.

  5. AvrACXcc8004, a Type III Effector with a Leucine-Rich Repeat Domain from Xanthomonas campestris Pathovar campestris Confers Avirulence in Vascular Tissues of Arabidopsis thaliana Ecotype Col-0▿ †

    PubMed Central

    Xu, Rong-Qi; Blanvillain, Servane; Feng, Jia-Xun; Jiang, Bo-Le; Li, Xian-Zhen; Wei, Hong-Yu; Kroj, Thomas; Lauber, Emmanuelle; Roby, Dominique; Chen, Baoshan; He, Yong-Qiang; Lu, Guang-Tao; Tang, Dong-Jie; Vasse, Jacques; Arlat, Matthieu; Tang, Ji-Liang

    2008-01-01

    Xanthomonas campestris pathovar campestris causes black rot, a vascular disease on cruciferous plants, including Arabidopsis thaliana. The gene XC1553 from X. campestris pv. campestris strain 8004 encodes a protein containing leucine-rich repeats (LRRs) and appears to be restricted to strains of X. campestris pv. campestris. LRRs are found in a number of type III-secreted effectors in plant and animal pathogens. These prompted us to investigate the role of the XC1553 gene in the interaction between X. campestris pv. campestris and A. thaliana. Translocation assays using the hypersensitive-reaction-inducing domain of X. campestris pv. campestris AvrBs1 as a reporter revealed that XC1553 is a type III effector. Infiltration of Arabidopsis leaf mesophyll with bacterial suspensions showed no differences between the wild-type strain and an XC1553 gene mutant; both strains induced disease symptoms on Kashmir and Col-0 ecotypes. However, a clear difference was observed when bacteria were introduced into the vascular system by piercing the central vein of leaves. In this case, the wild-type strain 8004 caused disease on the Kashmir ecotype, but not on ecotype Col-0; the XC1553 gene mutant became virulent on the Col-0 ecotype and still induced disease on the Kashmir ecotype. Altogether, these data show that the XC1553 gene, which was renamed avrACXcc8004, functions as an avirulence gene whose product seems to be recognized in vascular tissues. PMID:17951377

  6. Maize Homologs of Hydroxycinnamoyltransferase, a Key Enzyme in Lignin Biosynthesis, Bind the Nucleotide Binding Leucine-Rich Repeat Rp1 Proteins to Modulate the Defense Response1

    PubMed Central

    Wang, Guan-Feng; He, Yijian; Strauch, Renee; Olukolu, Bode A.; Nielsen, Dahlia; Li, Xu; Balint-Kurti, Peter J.

    2015-01-01

    In plants, most disease resistance genes encode nucleotide binding Leu-rich repeat (NLR) proteins that trigger a rapid localized cell death called a hypersensitive response (HR) upon pathogen recognition. The maize (Zea mays) NLR protein Rp1-D21 derives from an intragenic recombination between two NLRs, Rp1-D and Rp1-dp2, and confers an autoactive HR in the absence of pathogen infection. From a previous quantitative trait loci and genome-wide association study, we identified a single-nucleotide polymorphism locus highly associated with variation in the severity of Rp1-D21-induced HR. Two maize genes encoding hydroxycinnamoyltransferase (HCT; a key enzyme involved in lignin biosynthesis) homologs, termed HCT1806 and HCT4918, were adjacent to this single-nucleotide polymorphism. Here, we show that both HCT1806 and HCT4918 physically interact with and suppress the HR conferred by Rp1-D21 but not other autoactive NLRs when transiently coexpressed in Nicotiana benthamiana. Other maize HCT homologs are unable to confer the same level of suppression on Rp1-D21-induced HR. The metabolic activity of HCT1806 and HCT4918 is unlikely to be necessary for their role in suppressing HR. We show that the lignin pathway is activated by Rp1-D21 at both the transcriptional and metabolic levels. We derive a model to explain the roles of HCT1806 and HCT4918 in Rp1-mediated disease resistance. PMID:26373661

  7. The nucleotide-binding domain, leucine-rich repeat protein 3 inflammasome/IL-1 receptor I axis mediates innate, but not adaptive, immune responses after exposure to particulate matter under 10 μm.

    PubMed

    Hirota, Jeremy A; Gold, Matthew J; Hiebert, Paul R; Parkinson, Leigh G; Wee, Tracee; Smith, Dirk; Hansbro, Phil M; Carlsten, Chris; VanEeden, Stephan; Sin, Don D; McNagny, Kelly M; Knight, Darryl A

    2015-01-01

    Exposure to particulate matter (PM), a major component of air pollution, contributes to increased morbidity and mortality worldwide. Inhaled PM induces innate immune responses by airway epithelial cells that may lead to the exacerbation or de novo development of airway disease. We have previously shown that 10-μm PM (PM10) activates the nucleotide-binding domain, leucine-rich repeat protein (NLRP) 3 inflammasome in human airway epithelial cells. Our objective was to determine the innate and adaptive immune responses mediated by the airway epithelium NLRP3 inflammasome in response to PM10 exposure. Using in vitro cultures of human airway epithelial cells and in vivo studies with wild-type and Nlrp3(-/-) mice, we investigated the downstream consequences of PM10-induced NLPR3 inflammasome activation on cytokine production, cellular inflammation, dendritic cell activation, and PM10-facilitated allergic sensitization. PM10 activates an NLRP3 inflammasome/IL-1 receptor I (IL-1RI) axis in airway epithelial cells, resulting in IL-1β, CC chemokine ligand-20, and granulocyte/macrophage colony-stimulating factor production, which is associated with dendritic cell activation and lung neutrophilia. Despite these profound innate immune responses in the airway epithelium, the NLRP3 inflammasome/IL-1RI axis is dispensable for PM10-facilitated allergic sensitization. We demonstrate the importance of the lung NLRP3 inflammasome in mediating PM10 exposure-associated innate, but not adaptive, immune responses. Our study highlights a mechanism by which PM10 exposure can contribute to the exacerbation of airway disease, but not PM10-facilitated allergic sensitization.

  8. The heterozygous R1441C mutation of leucine-rich repeat kinase 2 gene in a Chinese patient with Parkinson disease: A five-year follow-up and literatures review.

    PubMed

    Peng, Fang; Sun, Yi-Min; Chen, Chen; Luo, Su-Shan; Li, Da-Ke; Wang, Yi-Xuan; Yang, Ke; Liu, Feng-Tao; Zuo, Chuan-Tao; Ding, Zheng-Tong; An, Yu; Wu, Jian-Jun; Wang, Jian

    2017-02-15

    Leucine-rich repeat kinase 2 gene (LRRK2) was recognized associated with both familial and sporadic Parkinson Disease (PD). Seven missense mutations (G2019S, R1441C, R1441G, R1441H, Y1699C, I2020T, N1437H) of it have been confirmed disease- causing. They were common among Caucasian PD patients, but rarely reported in Asian, especially in Chinese Han population. We aimed to identify the frequencies of these seven mutations of LRRK2 in Chinese early-onset PD (EOPD) patients and analyze the phenotypes. One hundred and thirty seven EOPD patients were enrolled for genetic testing. The seven disease-causing mutations of LRRK2 were carried out by target sequencing using Illumina HiSeq 2000 Sequencer. The identified variants were further confirmed by Sanger sequence. The clinical materials were investigated retrospectively. Only one patient (0.73%) was found carrying pathogenetic LRRK2 mutation of R1441C. The age at onset of the female patient was 44. She manifested typical motor symptoms of PD and responded well to levodopa therapy. Longitudinal evaluation showed progression of motor symptoms and depression but no cognitive impairment. The dopamine transporter (DAT) imaging via [11C]-2β-carbomethoxy-3β-(4-fluorophenyl) tropan (CFT) and Positron emission computed tomography (PET) revealed typical dopamine transporter uptake reduction. The LRRK2 R1441C mutation was found in a Chinese EOPD patient for the first time. The manifestations of LRRK2-R1441C carriers were indistinguishable from sporadic PD patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Selective expression of Parkinson's disease-related Leucine-rich repeat kinase 2 G2019S missense mutation in midbrain dopaminergic neurons impairs dopamine release and dopaminergic gene expression.

    PubMed

    Liu, Guoxiang; Sgobio, Carmelo; Gu, Xinglong; Sun, Lixin; Lin, Xian; Yu, Jia; Parisiadou, Loukia; Xie, Chengsong; Sastry, Namratha; Ding, Jinhui; Lohr, Kelly M; Miller, Gary W; Mateo, Yolanda; Lovinger, David M; Cai, Huaibin

    2015-09-15

    Preferential dysfunction/degeneration of midbrain substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons contributes to the main movement symptoms manifested in Parkinson's disease (PD). Although the Leucine-rich repeat kinase 2 (LRRK2) G2019S missense mutation (LRRK2 G2019S) is the most common causative genetic factor linked to PD, the effects of LRRK2 G2019S on the function and survival of SNpc DA neurons are poorly understood. Using a binary gene expression system, we generated transgenic mice expressing either wild-type human LRRK2 (WT mice) or the LRRK2 G2019S mutation (G2019S mice) selectively in the midbrain DA neurons. Here we show that overexpression of LRRK2 G2019S did not induce overt motor abnormalities or substantial SNpc DA neuron loss. However, the LRRK2 G2019S mutation impaired dopamine homeostasis and release in aged mice. This reduction in dopamine content/release coincided with the degeneration of DA axon terminals and decreased expression of DA neuron-enriched genes tyrosine hydroxylase (TH), vesicular monoamine transporter 2, dopamine transporter and aldehyde dehydrogenase 1. These factors are responsible for dopamine synthesis, transport and degradation, and their expression is regulated by transcription factor paired-like homeodomain 3 (PITX3). Levels of Pitx3 mRNA and protein were similarly decreased in the SNpc DA neurons of aged G2019S mice. Together, these findings suggest that PITX3-dependent transcription regulation could be one of the many potential mechanisms by which LRRK2 G2019S acts in SNpc DA neurons, resulting in downregulation of its downstream target genes critical for dopamine homeostasis and release.

  10. The role of the LRPPRC (leucine-rich pentatricopeptide repeat cassette) gene in cytochrome oxidase assembly: mutation causes lowered levels of COX (cytochrome c oxidase) I and COX III mRNA

    PubMed Central

    2004-01-01

    Leigh syndrome French Canadian (LSFC) is a variant of cytochrome oxidase deficiency found in Québec and caused by mutations in the LRPPRC (leucine-rich pentatricopeptide repeat cassette) gene. Northern blots showed that the LRPPRC mRNA levels seen in skeletal muscle>heart>placenta>kidney>liver>lung=brain were proportionally almost opposite in strength to the severity of the enzymic cytochrome oxidase defect. The levels of COX (cytochrome c oxidase) I and COX III mRNA visible on Northern blots were reduced in LSFC patients due to the common (A354V, Ala354→Val) founder mutation. The amount of LRPPRC protein found in both fibroblast and liver mitochondria from LSFC patients was consistently reduced to <30% of control levels. Import of [35S]methionine LRPPRC into rat liver mitochondria was slower for the mutant (A354V) protein. A titre of LRPPRC protein was also found in nuclear fractions that could not be easily accounted for by mitochondrial contamination. [35S]Methionine labelling of mitochondrial translation products showed that the translation of COX I, and perhaps COX III, was specifically reduced in the presence of the mutation. These results suggest that the gene product of LRPPRC, like PET 309p, has a role in the translation or stability of the mRNA for mitochondrially encoded COX subunits. A more diffuse distribution of LRPPRC in LSFC cells compared with controls was evident when viewed by immunofluorescence microscopy, with less LRPPRC present in peripheral mitochondria. PMID:15139850

  11. The tomato I gene for Fusarium wilt resistance encodes an atypical leucine-rich repeat receptor-like protein whose function is nevertheless dependent on SOBIR1 and SERK3/BAK1.

    PubMed

    Catanzariti, Ann-Maree; Do, Huong T T; Bru, Pierrick; de Sain, Mara; Thatcher, Louise F; Rep, Martijn; Jones, David A

    2017-03-01

    We have identified the tomato I gene for resistance to the Fusarium wilt fungus Fusarium oxysporum f. sp. lycopersici (Fol) and show that it encodes a membrane-anchored leucine-rich repeat receptor-like protein (LRR-RLP). Unlike most other LRR-RLP genes involved in plant defence, the I gene is not a member of a gene cluster and contains introns in its coding sequence. The I gene encodes a loopout domain larger than those in most other LRR-RLPs, with a distinct composition rich in serine and threonine residues. The I protein also lacks a basic cytosolic domain. Instead, this domain is rich in aromatic residues that could form a second transmembrane domain. The I protein recognises the Fol Avr1 effector protein, but, unlike many other LRR-RLPs, recognition specificity is determined in the C-terminal half of the protein by polymorphic amino acid residues in the LRRs just preceding the loopout domain and in the loopout domain itself. Despite these differences, we show that I/Avr1-dependent necrosis in Nicotiana benthamiana depends on the LRR receptor-like kinases (RLKs) SERK3/BAK1 and SOBIR1. Sequence comparisons revealed that the I protein and other LRR-RLPs involved in plant defence all carry residues in their last LRR and C-terminal LRR capping domain that are conserved with SERK3/BAK1-interacting residues in the same relative positions in the LRR-RLKs BRI1 and PSKR1. Tyrosine mutations of two of these conserved residues, Q922 and T925, abolished I/Avr1-dependent necrosis in N. benthamiana, consistent with similar mutations in BRI1 and PSKR1 preventing their interaction with SERK3/BAK1.

  12. Downregulation of a barley (Hordeum vulgare) leucine-rich repeat, non-arginine-aspartate receptor-like protein kinase reduces expression of numerous genes involved in plant pathogen defense.

    PubMed

    Parrott, David L; Huang, Li; Fischer, Andreas M

    2016-03-01

    Pattern recognition receptors represent a first line of plant defense against pathogens. Comparing the flag leaf transcriptomes of barley (Hordeum vulgare L.) near-isogenic lines varying in the allelic state of a locus controlling senescence, we have previously identified a leucine-rich repeat receptor-like protein kinase gene (LRR-RLK; GenBank accession: AK249842), which was strongly upregulated in leaves of early-as compared to late-senescing germplasm. Bioinformatic analysis indicated that this gene codes for a subfamily XII, non-arginine-aspartate (non-RD) LRR-RLK. Virus-induced gene silencing resulted in a two-fold reduction of transcript levels as compared to controls. Transcriptomic comparison of leaves from untreated plants, from plants treated with virus only without any plant sequences (referred to as 'empty virus' control), and from plants in which AK249842 expression was knocked down identified numerous genes involved in pathogen defense. These genes were strongly induced in 'empty virus' as compared to untreated controls, but their expression was significantly reduced (again compared to 'empty virus' controls) when AK249842 was knocked down, indicating that their expression partially depends on the LRR-RLK investigated here. Expression analysis, using datasets from BarleyBase/PLEXdb, demonstrated that AK249842 transcript levels are heavily influenced by the allelic state of the well-characterized mildew resistance a (Mla) locus, and that the gene is induced after powdery mildew and stem rust infection. Together, our data suggest that AK249842 is a barley pattern recognition receptor with a tentative role in defense against fungal pathogens, setting the stage for its full functional characterization.

  13. Proliferation related acidic leucine-rich protein PAL31 functions as a caspase-3 inhibitor

    SciTech Connect

    Sun Weiyong; Kimura, Hiromichi; Shiota, Kunio . E-mail: ashiota@mail.ecc.u-tokyo.ac.jp

    2006-04-14

    Proliferation related acidic leucine-rich protein PAL31 (PAL31) is expressed in proliferating cells and consists of 272 amino acids with a tandem structure of leucine-rich repeats in the N-terminus and a highly acidic region with a putative nuclear localization signal in the C-terminus. We previously reported that PAL31 is required for cell cycle progression. In the present study, we found that the antisense oligonucleotide of PAL31 induced apoptosis to the transfected Nb2 cells. Stable transfectants, in which PAL31 was regulated by an inducible promoter, were generated to gain further insight into the signaling role of PAL31 in the regulation of apoptosis. Expression of PAL31 resulted in the marked rescue of Rat1 cells from etoposide and UV radiation-induced apoptosis and the cytoprotection was correlated with the levels of PAL31 protein. Thus, cytoprotection from apoptosis is a physiological function of PAL31. PAL31 can suppress caspase-3 activity but not cytochrome c release in vitro, indicating that PAL31 is a direct caspase-3 inhibitor. In conclusion, PAL31 is a multifunctional protein working as a cell cycle progression factor as well as a cell survival factor.

  14. Regulation of Transcription of Nucleotide-Binding Leucine-Rich Repeat-Encoding Genes SNC1 and RPP4 via H3K4 Trimethylation1[C][W][OA

    PubMed Central

    Xia, Shitou; Cheng, Yu Ti; Huang, Shuai; Win, Joe; Soards, Avril; Jinn, Tsung-Luo; Jones, Jonathan D.G.; Kamoun, Sophien; Chen, She; Zhang, Yuelin; Li, Xin

    2013-01-01

    Plant nucleotide-binding leucine-rich repeat (NB-LRR) proteins serve as intracellular sensors to detect pathogen effectors and trigger immune responses. Transcription of the NB-LRR-encoding Resistance (R) genes needs to be tightly controlled to avoid inappropriate defense activation. How the expression of the NB-LRR R genes is regulated is poorly understood. The Arabidopsis (Arabidopsis thaliana) suppressor of npr1-1, constitutive 1 (snc1) mutant carries a gain-of-function mutation in a Toll/Interleukin1 receptor-like (TIR)-NB-LRR-encoding gene, resulting in the constitutive activation of plant defense responses. A snc1 suppressor screen identified modifier of snc1,9 (mos9), which partially suppresses the autoimmune phenotypes of snc1. Positional cloning revealed that MOS9 encodes a plant-specific protein of unknown function. Expression analysis showed that MOS9 is required for the full expression of TIR-NB-LRR protein-encoding RECOGNITION OF PERONOSPORA PARASITICA 4 (RPP4) and SNC1, both of which reside in the RPP4 cluster. Coimmunoprecipitation and mass spectrometry analyses revealed that MOS9 associates with the Set1 class lysine 4 of histone 3 (H3K4) methyltransferase Arabidopsis Trithorax-Related7 (ATXR7). Like MOS9, ATXR7 is also required for the full expression of SNC1 and the autoimmune phenotypes in the snc1 mutant. In atxr7 mutant plants, the expression of RPP4 is similarly reduced, and resistance against Hyaloperonospora arabidopsidis Emwa1 is compromised. Consistent with the attenuated expression of SNC1 and RPP4, trimethylated H3K4 marks are reduced around the promoters of SNC1 and RPP4 in mos9 plants. Our data suggest that MOS9 functions together with ATXR7 to regulate the expression of SNC1 and RPP4 through H3K4 methylation, which plays an important role in fine-tuning their transcription levels and functions in plant defense. PMID:23690534

  15. Expression of PH Domain Leucine-rich Repeat Protein Phosphatase, Forkhead Homeobox Type O 3a and RAD51, and their Relationships with Clinicopathologic Features and Prognosis in Ovarian Serous Adenocarcinoma

    PubMed Central

    Zhang, Jun; Wang, Jun-Chao; Li, Yue-Hong; Wang, Rui-Xue; Fan, Xiao-Mei

    2017-01-01

    Background: Ovarian serous adenocarcinoma can be divided into low- and high-grade tumors, which exhibit substantial differences in pathogenesis, clinicopathology, and prognosis. This study aimed to investigate the differences in the PH domain leucine-rich repeat protein phosphatase (PHLPP), forkhead homeobox type O 3a (FoxO3a), and RAD51 protein expressions, and their associations with prognosis in patients with low- and high-grade ovarian serous adenocarcinomas. Methods: The PHLPP, FoxO3a, and RAD51 protein expressions were examined in 94 high- and 26 low-grade ovarian serous adenocarcinomas by immunohistochemistry. The differences in expression and their relationships with pathological features and prognosis were analyzed. Results: In high-grade serous adenocarcinomas, the positive rates of PHLPP and FoxO3a were 24.5% and 26.6%, while in low-grade tumors, they were 23.1% and 26.9%, respectively (P < 0.05 vs. the control specimens; low- vs. high-grade: P > 0.05). The positive rates of RAD51 were 70.2% and 65.4% in high- and low-grade serous adenocarcinomas, respectively (P < 0.05 vs. the control specimens; low- vs. high-grade: P > 0.05). Meanwhile, in high-grade tumors, Stage III/IV tumors and lymph node and omental metastases were significantly associated with lower PHLPP and FoxO3a and higher RAD51 expression. The 5-year survival rates of patients with PHLPP- and FoxO3a-positive high-grade tumors (43.5% and 36.0%) were significantly higher than in patients with PHLPP-negative tumors (5.6% and 7.2%, respectively; P < 0.05). Similarly, the 5-year survival rate of RAD51-positive patients (3.0%) was significantly lower than in negative patients (42.9%; P < 0.05). In low-grade tumors, the PHLPP, FoxO3a, and RAD51 expressions were not significantly correlated with lymph node metastasis, omental metastasis, Federation of Gynecology and Obstetrics stage, or prognosis. Conclusions: Abnormal PHLPP, FoxO3a, and RAD51 protein expressions may be involved in the development

  16. Leucine-rich Repeat 11 of Toll-like Receptor 9 Can Tightly Bind to CpG-containing Oligodeoxynucleotides, and the Positively Charged Residues Are Critical for the High Affinity*

    PubMed Central

    Pan, Xichun; Yue, Junjie; Ding, Guofu; Li, Bin; Liu, Xin; Zheng, Xinchuan; Yu, Mengchen; Li, Jun; Jiang, Weiwei; Wu, Chong; Zheng, Jiang; Zhou, Hong

    2012-01-01

    TLR9 is a receptor for sensing bacterial DNA/CpG-containing oligonucleotides (CpG ODN). The extracellular domain (ECD) of human TLR9 (hTLR9) is composed of 25 leucine-rich repeats (LRR) contributing to the binding of CpG ODN. Herein, we showed that among LRR2, -5, -8, and -11, LRR11 of hTLR9 had the highest affinity for CpG ODN followed by LRR2 and -5, whereas LRR8 had almost no affinity. In vitro, preincubation with LRR11 more significantly decreased CpG ODN internalization, subsequent NF-κB activation, and cytokine release than with LRR2 and -5 in mouse peritoneal macrophages treated with CpG ODN. The LRR11 deletion mutant of hTLR9 conferred decreased cellular responses to CpG ODN. Single- or multiple-site mutants at five positively charged residues of LRR11 (LRR11m1–9), especially Arg-337 and Lys-367, were shown to contribute to hTLR9 binding of CpG ODN. LRR11m1–9 showed reduced inhibition of CpG ODN internalization and CpG ODN/TLR9 signaling, supporting the above findings. Prediction of whole hTLR9 ECD-CpG ODN interactions revealed that Arg-337 and Lys-338 directly contact CpG ODN through hydrogen bonding, whereas Lys-347, Arg-348, and His-353 contribute to stabilizing the shape of the ligand binding region. These findings suggested that although all five positively charged residues within LRR11 contributed to its high affinity, only Arg-337 and Lys-338 directly interacted with CpG ODN. In conclusion, the results suggested that LRR11 could strongly bind to CpG ODN, whereas mutations at the five positively charge residues reduced this high affinity. LRR11 may be further investigated as an antagonist of hTLR9. PMID:22822061

  17. Multiple transcripts of a gene for a leucine-rich repeat receptor kinase from morning glory (Ipomoea nil) originate from different TATA boxes in a tissue-specific manner.

    PubMed

    Bassett, C L; Nickerson, M L; Farrell, R E; Harrison, M

    2004-07-01

    TATA boxes are the most common regulatory elements found in the promoters of eukaryotic genes because they are associated with basal transcription initiation by RNA polymerase II. Often only a single TATA element is found in a given promoter, and tissue-, stage- and/or stimulus-specific expression occurs because the TATA box is associated with other cis -acting elements that enhance or repress transcription. We used software tools for gene analysis to assist in locating potential TATA box(es) in an AT-rich region of the promoter of a gene, inrpk1, which codes for a leucine-rich receptor protein kinase in morning glory (Ipomoea nil). Through the use of RT-PCR and various combinations of forward primers bracketing most of the promoter region we were able to define the 5'-ends of transcripts in this region. The region was then targeted for analysis by RNA Ligase-Mediated-5' Rapid Amplification of cDNA Ends (RLM-5' RACE) to identify the transcript initiation site(s). Positioning of initiation sites with respect to TATA boxes identified by gene analysis tools allowed us to identify three operational TATA elements which regulate basal transcription from this gene. Two TATA boxes were responsible for all of the inrpk1 transcripts found in leaves and cotyledons, and about 25-30% of the transcripts in roots. A third TATA box was involved only in expression in roots and accounted for the remaining 50-70% of root transcripts. RNAs expressed from this element lack two potentially functional upstream AUG codons, and may be translated more efficiently than transcripts originating from the other TATA boxes.

  18. Jerking & confused: Leucine-rich glioma inactivated 1 receptor encephalitis.

    PubMed

    Casault, Colin; Alikhani, Katayoun; Pillay, Neelan; Koch, Marcus

    2015-12-15

    This is a case of autoimmune encephalitis with features of faciobrachial dystonic seizures (FBDS) pathognomonic for Leucine Rich Glioma inactivated (LGI)1 antibody encephalitis. This voltage-gated potassium channel complex encephalitis is marked by rapid onset dementia, FBDS and hyponatremia, which is sensitive to management with immunotherapy including steroids, IVIG and other agents. In this case report we review the clinical features, imaging and management of this condition. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  19. Monocytes from patients with rheumatoid arthritis and type 2 diabetes mellitus display an increased production of interleukin (IL)-1β via the nucleotide-binding domain and leucine-rich repeat containing family pyrin 3(NLRP3)-inflammasome activation: a possible implication for therapeutic decision in these patients.

    PubMed

    Ruscitti, P; Cipriani, P; Di Benedetto, P; Liakouli, V; Berardicurti, O; Carubbi, F; Ciccia, F; Alvaro, S; Triolo, G; Giacomelli, R

    2015-10-01

    A better understanding about the mechanisms involved in the pathogenesis of type 2 diabetes mellitus (T2D) showed that inflammatory cytokines such as tumour necrosis factor (TNF) and interleukin (IL)-1β play a pivotal role, mirroring data largely reported in rheumatoid arthritis (RA). IL-1β is produced mainly by monocytes (MO), and hyperglycaemia may be able to modulate, in the cytoplasm of these cells, the assembly of a nucleotide-binding domain and leucine-rich repeat containing family pyrin (NLRP3)-inflammosome, a cytosolic multi-protein platform where the inactive pro-IL-1β is cleaved into active form, via caspase-1 activity. In this paper, we evaluated the production of IL-1 β and TNF, in peripheral blood MO of patients affected by RA or T2D or both diseases, in order to understand if an alteration of the glucose metabolism may influence their proinflammatory status. Our data showed, after 24 h of incubation with different glucose concentrations, a significantly increased production of IL-1β and TNF in all evaluated groups when compared with healthy controls. However, a significant increase of IL-1β secretion by T2D/RA was observed when compared with other groups. The analysis of relative mRNA expression confirmed these data. After 24 h of incubation with different concentrations of glucose, our results showed a significant increase in NLRP3 expression. In this work, an increased production of IL-1β by MO obtained from patients affected by both RA and T2D via NLRP3-inflammasome activation may suggest a potential IL-1β targeted therapy in these patients.

  20. Expression of small leucine-rich proteoglycans in rat anterior pituitary gland.

    PubMed

    Horiguchi, Kotaro; Syaidah, Rahimi; Fujiwara, Ken; Tsukada, Takehiro; Ramadhani, Dini; Jindatip, Depicha; Kikuchi, Motoshi; Yashiro, Takashi

    2013-01-01

    Proteoglycans are components of the extracellular matrix and comprise a specific core protein substituted with covalently linked glycosaminoglycan chains. Small leucine-rich proteoglycans (SLRPs) are a major family of proteoglycans and have key roles as potent effectors in cellular signaling pathways. Research during the last two decades has shown that SLRPs regulate biological functions in many tissues such as skin, tendon, kidney, liver, and heart. However, little is known of the expression of SLRPs, or the characteristics of the cells that produce them, in the anterior pituitary gland. Therefore, we have determined whether SLRPs are present in rat anterior pituitary gland. We have used real-time reverse transcription with the polymerase chain reaction to analyze the expression of SLRP genes and have identified the cells that produce SLRPs by using in situ hybridization with a digoxigenin-labeled cRNA probe. We have clearly detected the mRNA expression of SLRP genes, and cells expressing decorin, biglycan, fibromodulin, lumican, proline/arginine-rich end leucine-rich repeat protein (PRELP), and osteoglycin are located in the anterior pituitary gland. We have also investigated the possible double-staining of SLRP mRNA and pituitary hormones, S100 protein (a marker of folliculostellate cells), desmin (a marker of capillary pericytes), and isolectin B4 (a marker of endothelial cells). Decorin, biglycan, fibromodulin, lumican, PRELP, and osteoglycin mRNA have been identified in S100-protein-positive and desmin-positive cells. Thus, we conclude that folliculostellate cells and pericytes produce SLRPs in rat anterior pituitary gland.

  1. Biomimetic Enamel Regeneration Mediated by Leucine-Rich Amelogenin Peptide.

    PubMed

    Kwak, S Y; Litman, A; Margolis, H C; Yamakoshi, Y; Simmer, J P

    2017-01-01

    We report here a novel biomimetic approach to the regeneration of human enamel. The approach combines the use of inorganic pyrophosphate (PPi) to control the onset and rate of enamel regeneration and the use of leucine-rich amelogenin peptide (LRAP), a nonphosphorylated 56-amino acid alternative splice product of amelogenin, to regulate the shape and orientation of growing enamel crystals. This study builds on our previous findings that show LRAP can effectively guide the formation of ordered arrays of needle-like hydroxyapatite (HA) crystals in vitro and on the known role mineralization inhibitors, like PPi, play in the regulation of mineralized tissue formation. Acid-etched enamel surfaces of extracted human molars, cut perpendicular or parallel to the direction of the enamel rods, were exposed to a PPi-stabilized supersaturated calcium phosphate (CaP) solution containing 0 to 0.06 mg/mL LRAP for 20 h. In the absence of LRAP, PPi inhibition was reversed by the presence of etched enamel surfaces and led to the formation of large, randomly distributed plate-like HA crystals that were weakly attached, regardless of rod orientation. In the presence of 0.04 mg/mL LRAP, however, densely packed mineral layers, comprising bundles of small needle-like HA crystals, formed on etched surfaces that were cut perpendicular to the enamel rods. These crystals were strongly attached, and their arrangement reflected to a significant degree the underlying enamel prism pattern. In contrast, under the same conditions with LRAP, little to no crystal formation was found on enamel surfaces that were cut parallel to the direction of the enamel rods. These results suggest that LRAP preferentially interacts with ab surfaces of mature enamel crystals, inhibiting their directional growth, thus selectively promoting linear growth along the c-axis of enamel crystals. The present findings demonstrate a potential for the development of a new approach to regenerate enamel structure and properties.

  2. [Unexplicated neuropsychiatric disorders: Do not ignore dysimmune encephalitis. A case report of a dysimmune encephalitis with anti-leucine rich glioma inactivated 1 (LGI-1) antibodies].

    PubMed

    Le Dault, E; Lagarde, S; Guedj, E; Dufournet, B; Rey, C; Kaphan, E; Tanguy, G; Bregigeon, M; Sagui, E; Brosset, C

    2016-02-01

    Anti-leucine rich glioma inactivated 1 encephalitis is a common and a treatable etiology of autoimmune encephalitis. Its diagnosis is a challenge because the initial diagnostic work-up is often normal. A 48-year-old man experienced cognitive and behavioral troubles, facio-brachial dystonic seizures and a syndrome of inappropriate antidiuretic hormone secretion. First line tests excluded infectious, neoplastic, systemic inflammatory, endrocrine or toxic etiologies. Cerebral (18)Fluoro-desoxy-glucose (FDG) position emission tomography and research of specific antibodies in cerebro-spinal fluid and serum led to diagnose an anti-leucine rich glioma inactivated 1 encephalitis. Intravenous immunoglobulins and corticosteroids were partially effective. Cyclophosphamid permitted a good recovery. In the presence of acute neuropsychiatric disorders with a negative etiologic research, physician should think about dysimmune encephalitis. Facio-brachial dystonic seizures and syndrome of inappropriate antidiuretic hormone secretion are highly evocative of anti-leucine rich glioma inactivated 1 encephalitis. The diagnosis needs specific diagnostic tests (cerebral (18)FDG position emission tomography and antibodies research in cerebro-spinal fluid and in serum), after the exclusion of alternative diagnoses. Extensive and repeated diagnostic work-up for neoplasia is required. Immunosupressive therapies are effective in most cases. Copyright © 2015 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  3. The yeast splicing factor Prp40p contains functional leucine-rich nuclear export signals that are essential for splicing.

    PubMed Central

    Murphy, Mark W; Olson, Brian L; Siliciano, Paul G

    2004-01-01

    To investigate the function of the essential U1 snRNP protein Prp40p, we performed a synthetic lethal screen in Saccharomyces cerevisiae. Using an allele of PRP40 that deletes 47 internal residues and causes only a slight growth defect, we identified aphenotypic mutations in three distinct complementation groups that conferred synthetic lethality. The synthetic phenotypes caused by these mutations were suppressed by wild-type copies of CRM1 (XPO1), YNL187w, and SME1, respectively. The strains whose synthetic phenotypes were suppressed by CRM1 contained no mutations in the CRM1 coding sequence or promoter. This indicates that overexpression of CRM1 confers dosage suppression of the synthetic lethality. Interestingly, PRP40 and YNL187w encode proteins with putative leucine-rich nuclear export signal (NES) sequences that fit the consensus sequence recognized by Crm1p. One of Prp40p's two NESs lies within the internal deletion. We demonstrate here that the NES sequences of Prp40p are functional for nuclear export in a leptomycin B-sensitive manner. Furthermore, mutation of these NES sequences confers temperature-sensitive growth and a pre-mRNA splicing defect. Although we do not expect that yeast snRNPs undergo compartmentalized biogenesis like their metazoan counterparts, our results suggest that Prp40p and Ynl187wp contain redundant NESs that aid in an important, Crm1p-mediated nuclear export event. PMID:15020406

  4. Leucine-rich diet supplementation modulates foetal muscle protein metabolism impaired by Walker-256 tumour

    PubMed Central

    2014-01-01

    Background Cancer-cachexia induces a variety of metabolic disorders of protein turnover and is more pronounced when associated with pregnancy. Tumour-bearing pregnant rats have impaired protein balance, which decreases protein synthesis and increases muscle breakdown. Because branched-chain amino acids, especially leucine, stimulate protein synthesis, we investigated the effect of a leucine-rich diet on protein metabolism in the foetal gastrocnemius muscles of tumour-bearing pregnant rats. Methods Foetuses of pregnant rats with or without Walker 256 tumours were divided into six groups. During the 20 days of the experiment, the pregnant groups were fed with either a control diet (C, control rats; W, tumour-bearing rats; Cp, rats pair-fed the same normoprotein-diet as the W group) or with a leucine-rich diet (L, leucine rats; LW, leucine tumour-bearing rats; and Lp, rats pair-fed the same leucine-rich diet as the LW group). After the mothers were sacrificed, the foetal gastrocnemius muscle samples were resected, and the protein synthesis and degradation and tissue chymotrypsin-like, cathepsin and calpain enzyme activities were assayed. The muscle oxidative enzymes (catalase, glutathione-S-transferase and superoxide dismutase), alkaline phosphatase enzyme activities and lipid peroxidation (malondialdehyde) were also measured. Results Tumour growth led to a reduction in foetal weight associated with decreased serum protein, albumin and glucose levels and low haematocrit in the foetuses of the W group, whereas in the LW foetuses, these changes were less pronounced. Muscle protein synthesis (measured by L-[3H]-phenylalanine incorporation) was reduced in the W foetuses but was restored in the LW group. Protein breakdown (as assessed by tyrosine release) was enhanced in the L and W groups, but chymotrypsin-like activity increased only in group W and tended toward an increase in the LW foetuses. The activity of cathepsin H was significantly higher in the W group foetuses

  5. An autophosphorylation site database for leucine-rich repeat receptor-like kinases in Arabidopsis thaliana

    USDA-ARS?s Scientific Manuscript database

    We conducted a family-wide study to identify and characterize sites of autophosphorylation in 73 representative LRR RLKs of the 223 member LRR RLK family in Arabidopsis thaliana. His-tagged constructs of intact cytoplasmic domains (CDs) for 73 of 223 A. thaliana LRR RLKs were cloned into E. coli BL-...

  6. Prediction of leucine-rich nuclear export signal containing proteins with NESsential

    PubMed Central

    Fu, Szu-Chin; Imai, Kenichiro; Horton, Paul

    2011-01-01

    The classical nuclear export signal (NES), also known as the leucine-rich NES, is a protein localization signal often involved in important processes such as signal transduction and cell cycle regulation. Although 15 years has passed since its discovery, limited structural information and high sequence diversity have hampered understanding of the NES. Several consensus sequences have been proposed to describe it, but they suffer from poor predictive power. On the other hand, the NetNES server provides the only computational method currently available. Although these two methods have been widely used to attempt to find the correct NES position within potential NES-containing proteins, their performance has not yet been evaluated on the basic task of identifying NES-containing proteins. We propose a new predictor, NESsential, which uses sequence derived meta-features, such as predicted disorder and solvent accessibility, in addition to primary sequence. We demonstrate that it can identify promising NES-containing candidate proteins (albeit at low coverage), but other methods cannot. We also quantitatively demonstrate that predicted disorder is a useful feature for prediction and investigate the different features of (predicted) ordered versus disordered NES’s. Finally, we list 70 recently discovered NES-containing proteins, doubling the number available to the community. PMID:21705415

  7. Leucine Rich α-2 Glycoprotein: A Novel Neutrophil Granule Protein and Modulator of Myelopoiesis

    PubMed Central

    Druhan, Lawrence J.; Lance, Amanda; Li, Shimena; Price, Andrea E.; Emerson, Jacob T.; Baxter, Sarah A.; Gerber, Jonathan M.; Avalos, Belinda R.

    2017-01-01

    Leucine-rich α2 glycoprotein (LRG1), a serum protein produced by hepatocytes, has been implicated in angiogenesis and tumor promotion. Our laboratory previously reported the expression of LRG1 in murine myeloid cell lines undergoing neutrophilic granulocyte differentiation. However, the presence of LRG1 in primary human neutrophils and a role for LRG1 in regulation of hematopoiesis have not been previously described. Here we show that LRG1 is packaged into the granule compartment of human neutrophils and secreted upon neutrophil activation to modulate the microenvironment. Using immunofluorescence microscopy and direct biochemical measurements, we demonstrate that LRG1 is present in the peroxidase-negative granules of human neutrophils. Exocytosis assays indicate that LRG1 is differentially glycosylated in neutrophils, and co-released with the secondary granule protein lactoferrin. Like LRG1 purified from human serum, LRG1 secreted from activated neutrophils also binds cytochrome c. We also show that LRG1 antagonizes the inhibitory effects of TGFβ1 on colony growth of human CD34+ cells and myeloid progenitors. Collectively, these data invoke an additional role for neutrophils in innate immunity that has not previously been reported, and suggest a novel mechanism whereby neutrophils may modulate the microenvironment via extracellular release of LRG1. PMID:28081565

  8. Leucine-rich α2-glycoprotein overexpression in the brain contributes to memory impairment.

    PubMed

    Akiba, Chihiro; Nakajima, Madoka; Miyajima, Masakazu; Ogino, Ikuko; Miura, Masami; Inoue, Ritsuko; Nakamura, Eri; Kanai, Fumio; Tada, Norihiro; Kunichika, Miyuki; Yoshida, Mitsutaka; Nishimura, Kinya; Kondo, Akihide; Sugano, Hidenori; Arai, Hajime

    2017-08-24

    We previously reported increase in leucine-rich α2-glycoprotein (LRG) concentration in cerebrospinal fluid is associated with cognitive decline in humans. To investigate relationship between LRG expression in the brain and memory impairment, we analyzed transgenic mice overexpressing LRG in the brain (LRG-Tg) focusing on hippocampus. Immunostaining and Western blotting revealed age-related increase in LRG expression in hippocampal neurons in 8-, 24-, and 48-week-old controls and LRG-Tg. Y-maze and Morris water maze tests indicated retained spatial memory in 8- and 24-week-old LRG-Tg, while deteriorated in 48-week-old LRG-Tg compared with age-matched controls. Field excitatory postsynaptic potentials declined with age in LRG-Tg compared with controls at 8, 24, and 48 weeks. Paired-pulse ratio decreased with age in LRG-Tg, while increased in controls. As a result, long-term potentiation was retained in 8- and 24-week-old LRG-Tg, whereas diminished in 48-week-old LRG-Tg compared with age-matched controls. Electron microscopy observations revealed fewer synaptic vesicles and junctions in LRG-Tg compared with age-matched controls, which became significant with age. Hippocampal LRG overexpression contributes to synaptic dysfunction, which leads to memory impairment with advance of age. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Sputum Leucine-Rich Alpha-2 Glycoprotein as a Marker of Airway Inflammation in Asthma

    PubMed Central

    Honda, Hiromi; Fujimoto, Minoru; Miyamoto, Shintaro; Ishikawa, Nobuhisa; Serada, Satoshi; Hattori, Noboru; Nomura, Shintaro; Kohno, Nobuoki; Yokoyama, Akihito; Naka, Tetsuji

    2016-01-01

    Background Asthma is a chronic inflammatory disease of airways, but an ideal biomarker that accurately reflects ongoing airway inflammation has not yet been established. The aim of this study was to examine the potential of sputum leucine-rich alpha-2 glycoprotein (LRG) as a new biomarker for airway inflammation in asthma. Methods We obtained induced sputum samples from patients with asthma (N = 64) and healthy volunteers (N = 22) and measured LRG concentration by sandwich enzyme-linked immunosorbent assay (ELISA). Ovalbumin (OVA)-induced asthma model mice were used to investigate the mechanism of LRG production during airway inflammation. The LRG concentrations in the bronchoalveolar lavage fluid (BALF) obtained from mice were determined by ELISA and mouse lung sections were stained with anti-LRG antibody and periodic acid-Schiff (PAS) reagent. Results Sputum LRG concentrations were significantly higher in patients with asthma than in healthy volunteers (p = 0.00686). Consistent with patients’ data, BALF LRG levels in asthma model mice were significantly higher than in control mice (p = 0.00013). Immunohistochemistry of lung sections from asthma model mice revealed that LRG was intensely expressed in a subpopulation of bronchial epithelial cells, which corresponded with PAS-positive mucus producing cells. Conclusion These findings suggest that sputum LRG is a promising biomarker of local inflammation in asthma. PMID:27611322

  10. Vascular accumulation of the small leucine-rich proteoglycan decorin in CADASIL.

    PubMed

    Lee, Soo Jung; Zhang, Xiaojie; Wang, Michael M

    2014-09-10

    Small penetrating brain artery thickening is a major feature of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Although affected fibrotic arteries of CADASIL have been shown to accumulate collagen, other components that compose pathological arterial walls remain incompletely characterized. We investigated the expression of decorin (DCN), the first collagen-binding small leucine-rich proteoglycan identified, in CADASIL. DCN was markedly upregulated in pathologically affected leptomeningeal and small penetrating arteries in CADASIL and was notably weaker in normal arteries from control brains. DCN protein was localized principally to the media and adventitia and only occasionally expressed in the intima. Immunoblotting of brain lysates showed a three-fold increase of DCN in CADASIL brains (compared with controls). Messenger RNA encoding DCN was five-fold increased in CADASIL. We conclude that DCN is the first identified proteoglycan to be identified in CADASIL arteries and may accumulate through transcriptional mechanisms. Additional studies are warranted to determine whether DCN localizes broadly to pathological small vessels in other cerebrovascular disorders.

  11. Small Leucine Rich Proteoglycans Exhibit Unique Spatiotemporal Expression Profiles During Cardiac Valve Development

    PubMed Central

    Dupuis, Loren E.; Kern, Christine B.

    2015-01-01

    Background Small Leucine Rich Proteoglycans (SLRPs) play a role in collagen fiber formation and also function as signaling molecules. Given the importance of collagen synthesis to the cardiovascular extracellular matrix (ECM), we examined the spatiotemporal expression of SLRPs, not previously investigated in the murine heart. Results Cardiac expression using antibodies specific for biglycan (BGN), decorin (DCN), fibromodulin (FMOD) and lumican (LUM) revealed distinct patterns among the SLRPs in mesenchymal-derived tissues. DCN showed the most intense localization within the developing valve cusps, while LUM was evident primarily in the hinge region of postnatal cardiac valves. BGN, DCN and FMOD were immunolocalized to regions where cardiac valves anchor into adjacent tissues. Medial (BGN), and adventitial (BGN, DCN, FMOD and LUM) layers of the pulmonary and aortic arteries also showed intense staining of SLRPs but this spatiotemporal expression varied with developmental age. Conclusions The unique expression patterns of SLRPs suggest they have adapted to specialized roles in the cardiovascular ECM. SLRP expression patterns overlap with areas where TGFβ signaling is critical to the developing heart. Therefore we speculate that SLRPs may not only be required to facilitate collagen fiber formation but may also regulate TGFβ signaling in the murine heart. PMID:24272803

  12. The regulatory roles of small leucine-rich proteoglycans in extracellular assembly*

    PubMed Central

    Chen, Shoujun; Birk, David E.

    2013-01-01

    Small leucine rich proteoglycans (SLRPs) are involved in a variety of biological and pathological processes. This review focuses on their regulatory roles in matrix assembly. SLRPs have protein cores and hypervariable glycosylation with multivalent binding abilities. During development, differential interactions of SLRPs with other molecules results in tissue-specific spatial and temporal distributions. The changing expression patterns play a critical role in the regulation of tissue-specific matrix assembly and, therefore, tissue function. SLRPs have significant structural roles within extracellular matrices. In addition, they have instructive roles, regulating collagen fibril growth, fibril organization, and extracellular matrix assembly. Moreover, they are involved in mediating cell-matrix interactions. Abnormal SLRP expression and/or structures result in dysfunctional extracellular matrices and pathophysiology. Altered expression of SLRPs has been found in many disease models, and structural deficiency also causes altered matrix assembly. SLRPs regulate the assembly of the extracellular matrix, which defines the microenvironment, modulating both the extracellular matrix and cellular functions leading to an impact on tissue function. PMID:23331954

  13. NESmapper: accurate prediction of leucine-rich nuclear export signals using activity-based profiles.

    PubMed

    Kosugi, Shunichi; Yanagawa, Hiroshi; Terauchi, Ryohei; Tabata, Satoshi

    2014-09-01

    The nuclear export of proteins is regulated largely through the exportin/CRM1 pathway, which involves the specific recognition of leucine-rich nuclear export signals (NESs) in the cargo proteins, and modulates nuclear-cytoplasmic protein shuttling by antagonizing the nuclear import activity mediated by importins and the nuclear import signal (NLS). Although the prediction of NESs can help to define proteins that undergo regulated nuclear export, current methods of predicting NESs, including computational tools and consensus-sequence-based searches, have limited accuracy, especially in terms of their specificity. We found that each residue within an NES largely contributes independently and additively to the entire nuclear export activity. We created activity-based profiles of all classes of NESs with a comprehensive mutational analysis in mammalian cells. The profiles highlight a number of specific activity-affecting residues not only at the conserved hydrophobic positions but also in the linker and flanking regions. We then developed a computational tool, NESmapper, to predict NESs by using profiles that had been further optimized by training and combining the amino acid properties of the NES-flanking regions. This tool successfully reduced the considerable number of false positives, and the overall prediction accuracy was higher than that of other methods, including NESsential and Wregex. This profile-based prediction strategy is a reliable way to identify functional protein motifs. NESmapper is available at http://sourceforge.net/projects/nesmapper.

  14. Small leucine-rich proteoglycans (SLRPs): characteristics and function in the intervertebral disc.

    PubMed

    Chen, Lili; Liao, Jingwen; Klineberg, Eric; Leung, Victor Yl; Huang, Shishu

    2017-03-01

    The intervertebral disc (IVD) is responsible for normal spinal motion and load distribution. However, degeneration may occur due to age- and non-age-related processes and is primarily characterized by a reduction in the number of chondrocyte-like cells and abnormal extracellular matrix (ECM) structure in the nucleus pulposus. Although IVD progenitor cells have been identified, the local microenvironment components regulating the behaviour of these progenitor cell populations remain unknown. Small leucine-rich proteoglycans (SLRPs) are bioactive components of the ECM associated with fibrillogenesis, cellular growth and apoptosis and tissue remodelling. SLRPs support the survival of IVD progenitor cells under hypoxic conditions via the activation of specific hypoxia-inducible factors. Additionally, SLRPs deficiency (biglycan) in knockout mice is sufficient to accelerate the IVD degenerative process. These data suggest that SLRPs play an important role in the homeostasis of IVD. Given their specific properties and physiological functions, we propose a role of SLRPs in IVD degeneration and potential application in its regeneration. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Structural basis for leucine-rich nuclear export signal recognition by CRM1

    SciTech Connect

    Dong, Xiuhua; Biswas, Anindita; Süel, Katherine E.; Jackson, Laurie K.; Martinez, Rita; Gu, Hongmei; Chook, Yuh Min

    2009-07-10

    CRM1 (also known as XPO1 and exportin 1) mediates nuclear export of hundreds of proteins through the recognition of the leucine-rich nuclear export signal (LR-NES). Here we present the 2.9 {angstrom} structure of CRM1 bound to snurportin 1 (SNUPN). Snurportin 1 binds CRM1 in a bipartite manner by means of an amino-terminal LR-NES and its nucleotide-binding domain. The LR-NES is a combined {alpha}-helical-extended structure that occupies a hydrophobic groove between two CRM1 outer helices. The LR-NES interface explains the consensus hydrophobic pattern, preference for intervening electronegative residues and inhibition by leptomycin B. The second nuclear export signal epitope is a basic surface on the snurportin 1 nucleotide-binding domain, which binds an acidic patch on CRM1 adjacent to the LR-NES site. Multipartite recognition of individually weak nuclear export signal epitopes may be common to CRM1 substrates, enhancing CRM1 binding beyond the generally low affinity LR-NES. Similar energetic construction is also used in multipartite nuclear localization signals to provide broad substrate specificity and rapid evolution in nuclear transport.

  16. Key roles for the small leucine-rich proteoglycans in renal and pulmonary pathophysiology

    PubMed Central

    Nastase, Madalina V.; Iozzo, Renato V.; Schaefer, Liliana

    2014-01-01

    Background Small leucine-rich proteoglycans (SLRPs) are molecules that have signaling roles in a multitude of biological processes. In this respect, SLRPs play key roles in the evolution of a variety of diseases throughout the human body. Scope of Review We will critically review current developments in the roles of SLRPs in several types of disease of the kidney and lungs. Particular emphasis will be given to the roles of decorin and biglycan, the best characterized members of the SLRP gene family. Major Conclusions In both renal and pulmonary disorders, SLRPs are essential elements that regulate several pathophysiological processes including fibrosis, inflammation and tumor progression. Decorin has remarkable antifibrotic and antitumorigenic properties and is considered a valuable potential treatment of these diseases. Biglycan can modulate inflammatory processes in lung and renal inflammation and is a potential target in the treatment of inflammatory conditions. General significance SLRPs can serve as either treatment targets or as potential treatment in renal or lung disease. PMID:24508120

  17. Small leucine-rich proteoglycans in the vertebrae of Atlantic salmon Salmo salar.

    PubMed

    Pedersen, Mona E; Ytteborg, Elisabeth; Kohler, Achim; Baeverfjord, Grete; Enersen, Grethe; Ruyter, Bente; Takle, Harald; Hannesson, Kirsten O

    2013-09-24

    We analysed the distribution and expression of the small leucine-rich proteoglycans (SLRPs) decorin, biglycan and lumican in vertebral columns of Atlantic salmon Salmo salar L. with and without radiographically detectable deformities. Vertebral deformities are a reoccurring problem in salmon and other intensively farmed species, and an understanding of the components involved in the pathologic development of the vertebrae is important in order to find adequate solutions to this problem. Using immunohistology and light microscopy, we found that in non-deformed vertebrae biglycan, lumican and decorin were all expressed in osteoblasts at the vertebral growth zones and at the ossification front of the chondrocytic arches. Hence, the SLRPs are expressed in regions where intramembranous and endochondral ossification take place. In addition, mRNA expression of biglycan, decorin and lumican was demonstrated in a primary osteoblast culture established from Atlantic salmon, supporting the in vivo findings. Transcription of the SLRPs increased during differentiation of the osteoblasts in vitro and where lumican mRNA expression increased later in the differentiation compared with decorin and biglycan. Intriguingly, in vertebral fusions, biglycan, decorin and lumican protein expression was extended to trans-differentiating cells at the border between arch centra and osteoblast growth zones. In addition, mRNA expression of biglycan, decorin and lumican differed between non-deformed and fused vertebrae, as shown by quantitative PCR (qPCR). Western blotting revealed an additional band of biglycan in fused vertebrae which had a higher molecular weight than in non-deformed vertebrae. Fourier-transform infrared (FTIR) spectroscopy revealed more spectral focality in the endplates of vertebral fusions and significantly more non-reducible collagen crosslinks compared with non-deformed vertebrae, thus identifying differences in bone structure.

  18. The small leucine-rich proteoglycan BGN accumulates in CADASIL and binds to NOTCH3.

    PubMed

    Zhang, Xiaojie; Lee, Soo Jung; Young, Marian F; Wang, Michael M

    2015-04-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an inherited form of cerebral small vessel disease caused by mutations in conserved residues of NOTCH3. Affected arteries of CADASIL feature fibrosis and accumulation of NOTCH3. A variety of collagen subtypes (types I, III, IV, and VI) have been identified in fibrotic CADASIL vessels. Biglycan (BGN) and decorin (DCN) are class I members of the small leucine-rich proteoglycan (SLRP) family that regulate collagen fibril size. Because DCN has been shown to deposit in arteries in cerebral small vessel disease, we tested whether BGN accumulates in arteries of CADASIL brains. BGN was strongly expressed in both small penetrating and leptomeningeal arteries of CADASIL brain. BGN protein was localized to all three layers of arteries (intima, media, and adventitia). Substantially, more immunoreactivity was observed in CADASIL brains compared to controls. Immunoblotting of brain lysates showed a fourfold increase in CADASIL brains (compared to controls). Messenger RNA encoding BGN was also increased in CADASIL and was localized by in situ hybridization to all three vascular layers in CADASIL. Human cerebrovascular smooth muscle cells exposed to purified NOTCH3 ectodomain upregulated BGN, DCN, and COL4A1 through mechanisms that are sensitive to rapamycin, a potent mTOR inhibitor. In addition, BGN protein interacted directly with NOTCH3 protein in cell culture and in direct protein interaction assays. In conclusion, BGN is a CADASIL-enriched protein that potentially accumulates in vessels by mTOR-mediated transcriptional activation and/or post-translational accumulation via protein interactions with NOTCH3 and collagen.

  19. The Leucine-Rich Amelogenin Protein (LRAP) is Primarily Monomeric and Unstructured in Physiological Solution

    PubMed Central

    Tarasevich, Barbara J.; Philo, John S.; Maluf, Nasib Karl; Krueger, Susan; Buchko, Garry W.; Lin, Genyao; Shaw, Wendy J.

    2015-01-01

    Amelogenin proteins are critical to the formation of enamel in teeth and may have roles in controlling growth and regulating microstructures of the intricately woven hydroxyapatite (HAP). Leucine-rich amelogenin protein (LRAP) is a 59-residue splice variant of amelogenin and contains the N- and C-terminal charged regions of the full-length protein thought to control crystal growth. Although the quaternary structure of full-length amelogenin in solution has been well studied and can consist of self-assemblies of monomers called nanospheres, there is limited information on the quaternary structure of LRAP. Here, sedimentation velocity analytical ultracentrifugation (SV) and small angle neutron scattering (SANS) were used to study the tertiary and quaternary structure of LRAP at various pH values, ionic strengths, and concentrations. We found that the monomer is the dominant species of phosphorylated LRAP (LRAP(+P)) over a range of solution conditions (pH 2.7 to 4.1, pH 4.5 to 8, 50 mmol/L(mM) to 200 mM NaCl, 0.065 to 2 mg/mL). The monomer is also the dominant species for unphosphorylated LRAP (LRAP(−P)) at pH 7.4 and for LRAP(+P) in the presence of 2.5 mM calcium at pH 7.4. LRAP aggregates in a narrow pH range near the isoelectric point of pH 4.1. SV and SANS show that the LRAP monomer has a radius of ~2.0 nm and an asymmetric structure, and solution NMR studies indicate that the monomer is largely unstructured. This work provides new insights into the secondary, tertiary, and quaternary structure of LRAP in solution and provides evidence that the monomeric species may be an important functional form of some amelogenins. PMID:25449314

  20. Contaminants in commercial preparations of 'purified' small leucine-rich proteoglycans may distort mechanistic studies.

    PubMed

    Brown, Sharon J; Fuller, Heidi R; Jones, Philip; Caterson, Bruce; Shirran, Sally L; Botting, Catherine H; Roberts, Sally

    2017-02-28

    The present study reports the perplexing results that came about because of seriously impure commercially available reagents. Commercial reagents and chemicals are routinely ordered by scientists and expected to have been rigorously assessed for their purity. Unfortunately, we found this assumption to be risky. Extensive work was carried out within our laboratory using commercially sourced preparations of the small leucine-rich proteoglycans (SLRPs), decorin and biglycan, to investigate their influence on nerve cell growth. Unusual results compelled us to analyse the composition and purity of both preparations of these proteoglycans (PGs) using both mass spectrometry (MS) and Western blotting, with and without various enzymatic deglycosylations. Commercial 'decorin' and 'biglycan' were found to contain a mixture of PGs including not only both decorin and biglycan but also fibromodulin and aggrecan. The unexpected effects of 'decorin' and 'biglycan' on nerve cell growth could be explained by these impurities. Decorin and biglycan contain either chondroitin or dermatan sulfate glycosaminoglycan (GAG) chains whereas fibromodulin only contains keratan sulfate and the large (>2500 kDa), highly glycosylated aggrecan contains both keratan and chondroitin sulfate. The different structure, molecular weight and composition of these impurities significantly affected our work and any conclusions that could be made. These findings beg the question as to whether scientists need to verify the purity of each commercially obtained reagent used in their experiments. The implications of these findings are vast, since the effects of these impurities may already have led to inaccurate conclusions and reports in the literature with concomitant loss of researchers' funds and time.

  1. Leucine-rich Alpha-2 Glycoprotein is a Serum Biomarker of Mucosal Healing in Ulcerative Colitis

    PubMed Central

    Shinzaki, Shinichiro; Matsuoka, Katsuyoshi; Iijima, Hideki; Mizuno, Shinta; Serada, Satoshi; Fujimoto, Minoru; Arai, Norimitsu; Koyama, Noriyuki; Morii, Eiichi; Watanabe, Mamoru; Hibi, Toshifumi; Kanai, Takanori; Takehara, Tetsuo

    2017-01-01

    Background and Aims: Although several noninvasive and easily accessible biomarkers for inflammatory bowel disease [IBD] are available, their sensitivity and specificity are not adequate to be used as single markers and do not overrule the need for endoscopic evaluation. We previously reported that serum leucine-rich alpha-2 glycoprotein [LRG] was a novel biomarker for rheumatoid arthritis and IBD. We herein investigated whether LRG could indicate endoscopic activity in patients with ulcerative colitis [UC]. Methods: Serum LRG concentrations were determined by enzyme-linked immunosorbent assay [ELISA] in consecutive 129 patients with UC in two tertiary care hospitals, and associations of LRG with clinical and endoscopic activities were evaluated. Clinical activity index [CAI] < 6 was defined as clinical remission, and mucosal healing [MH] and complete mucosal healing were defined as Matts’ endoscopic grades of 1 or 2 and grade of 1, respectively. Results: Serum LRG levels were significantly increased and correlated with clinical and endoscopic activities in patients with UC. LRG levels were associated with both clinical and endoscopic activities even in patients with normal serum C-reactive protein [CRP] levels. Furthermore, LRG levels were significantly lower in patients with complete MH and deep remission. Serial measurements of LRG levels in a subset of patients demonstrated that LRG was significantly elevated during the endoscopically active stage compared with that during the MH stage. Conclusions: Serum LRG is a novel biomarker for detecting MH during disease course in patients with UC and a surrogate marker of endoscopic inflammation in patients with normal CRP levels. PMID:27466171

  2. Leucine-Rich Amelogenin Peptide (LRAP) Uptake by Cementoblast Requires Flotillin-1 Mediated Endocytosis.

    PubMed

    Martins, Luciane; Leme, Adriana Franco Paes; Kantovitz, Kamila Rosamilia; de Luciane Martins, Em Nome; Sallum, Enilson Antonio; Casati, Márcio Zaffalon; Nociti, Francisco Humberto

    2017-03-01

    Basic, pre-clinical, and clinical studies have documented the potential of amelogenin, and its variants, to affect cell response and tissue regeneration. However, the mechanisms are unclear. Thus, the aim of the present study was to identify, in cementoblasts, novel binding partners for an alternatively spliced amelogenin form (Leucine-Rich Amelogenin Peptide-LRAP), which is supposed to act as a signaling molecule in epithelial-mesenchymal interactions. LRAP-binding protein complexes from immortalized murine cementoblasts (OCCM-30) were achieved by capture affinity assay (GST pull down) and proteins present in these complexes were identified by mass spectrometry and immunoblotting. Flotillin-1, which functions as a platform for signal transduction, vesicle trafficking, endocytosis, and exocytosis, was identified and confirmed by co-precipitation and co-localization assays as a protein-binding partner for LRAP in OCCM-30 cells. In addition, we found that exogenously added GST-LRAP recombinant protein was internalized by OCCM-30 cells, predominantly localized in the perinuclear region and, that inhibition of flotillin1-dependent functions by small interference RNA (siRNA) methodology significantly affected LRAP uptake and its biological properties on OCCM-30 cells, including LRAP effect on the expression of genes encoding osteocalcin (Ocn), bone sialoprotein (Bsp), and runt-related transcription factor 2 (RunX2). In conclusion, LRAP uptake by cementoblast involves flotillin-assisted endocytosis, which suggests an involvement of LRAP in lipid-raft-dependent signaling pathways which are mediated by flotillin-1. J. Cell. Physiol. 232: 556-565, 2017. © 2016 Wiley Periodicals, Inc.

  3. The leucine-rich amelogenin protein (LRAP) is primarily monomeric and unstructured in physiological solution

    DOE PAGES

    Tarasevich, Barbara J.; Philo, John S.; Maluf, Nasib Karl; ...

    2014-10-25

    Amelogenin proteins are critical to the formation of enamel in teeth and may have roles in promoting nucleation, controlling growth, and regulating microstructures of the intricately woven hydroxyapatite (HAP). Leucine-rich amelogenin protein (LRAP) is a 59-residue splice variant of amelogenin and contains the N- and C-terminal charged regions of the full-length protein thought to control crystal growth. Although the quaternary structure of full-length amelogenin in solution has been well studied and can consist of self-assemblies of monomers called nanospheres, the quaternary structure of LRAP is not as well studied. Here, analytical ultracentrifugation sedimentation velocity (SV) and small angle neutron scatteringmore » (SANS) were used to study the tertiary and quaternary structure of LRAP over a range of pH values, ionic strengths, and concentrations. SV has advantages over other techniques in accurately quantifying protein speciation in polydisperse solutions. We found that the monomer was the dominant species of phosphorylated LRAP (LRAP(+P)) over a range of solution conditions (pH 2.7 to 4.1, pH 4.5 to 8, 50 mmol/L( mM) to 200 mM NaCl, 0.065 to 2 mg/mL). The monomer was also the dominant species for unphosphorylated LRAP (LRAP(-P)) at pH 7.4 and LRAP(+P) in the presence of 2.5 mM calcium at pH 7.4. LRAP aggregated in a narrow pH range near the isoelectric point (pH 4.1). We conclude that LRAP does not form nanospheres under physiological solution conditions. Both SV and SANS showed that the LRAP monomer has a radius of ~2.0 nm and adopts an extended structure which solution NMR studies show is intrinsically disordered. This work provides new insights into the tertiary and quaternary structure of LRAP and further evidence that the monomeric species is an important functional form of amelogenins« less

  4. The leucine-rich amelogenin protein (LRAP) is primarily monomeric and unstructured in physiological solution

    SciTech Connect

    Tarasevich, Barbara J.; Philo, John S.; Maluf, Nasib Karl; Krueger, Susan; Buchko, Garry W.; Lin, Genyao; Shaw, Wendy J.

    2014-10-25

    Amelogenin proteins are critical to the formation of enamel in teeth and may have roles in promoting nucleation, controlling growth, and regulating microstructures of the intricately woven hydroxyapatite (HAP). Leucine-rich amelogenin protein (LRAP) is a 59-residue splice variant of amelogenin and contains the N- and C-terminal charged regions of the full-length protein thought to control crystal growth. Although the quaternary structure of full-length amelogenin in solution has been well studied and can consist of self-assemblies of monomers called nanospheres, the quaternary structure of LRAP is not as well studied. Here, analytical ultracentrifugation sedimentation velocity (SV) and small angle neutron scattering (SANS) were used to study the tertiary and quaternary structure of LRAP over a range of pH values, ionic strengths, and concentrations. SV has advantages over other techniques in accurately quantifying protein speciation in polydisperse solutions. We found that the monomer was the dominant species of phosphorylated LRAP (LRAP(+P)) over a range of solution conditions (pH 2.7 to 4.1, pH 4.5 to 8, 50 mmol/L( mM) to 200 mM NaCl, 0.065 to 2 mg/mL). The monomer was also the dominant species for unphosphorylated LRAP (LRAP(-P)) at pH 7.4 and LRAP(+P) in the presence of 2.5 mM calcium at pH 7.4. LRAP aggregated in a narrow pH range near the isoelectric point (pH 4.1). We conclude that LRAP does not form nanospheres under physiological solution conditions. Both SV and SANS showed that the LRAP monomer has a radius of ~2.0 nm and adopts an extended structure which solution NMR studies show is intrinsically disordered. This work provides new insights into the tertiary and quaternary structure of LRAP and further evidence that the monomeric species is an important functional form of amelogenins

  5. Role of the leucine-rich domain of platelet GPIbalpha in correct post-translational processing--the Nancy I Bernard-Soulier mutation expressed on CHO cells.

    PubMed

    Ulsemer, P; Lanza, F; Baas, M J; Schwartz, A; Ravanat, C; Briquel, M E; Cranmer, S; Jackson, S; Cazenave, J P; de la Salle, C

    2000-07-01

    The mechanisms governing the biosynthesis and surface expression of platelet adhesive receptors on parent megakaryocytes are as yet poorly understood. In particular, the assembly and processing of the multisubunit glycoprotein (GP) Ib-IX-V complex, a receptor for von Willebrand factor (vWf) is not fully understood. In the present work, these questions were addressed by reproducing a natural mutation of GPIbalpha found in a variant case of Bernard-Soulier syndrome (Nancy I), due to the deletion of leucine 179 in the seventh leucine-rich repeat of the polypeptide. Wild type and mutated GPIbalpha were transfected into CHO cells expressing GPlbbeta and GPIX. Flow cytometry showed surface expression of the three subunits of both GPIb-IX complexes, but GPlbalphadeltaLeu was present at lower levels (20-40%) and was recognized only by a sub class of monoclonal antibodies which epitopes were not modified by the mutation. These properties reproduce the defect found in the patient's platelets, demonstrating the causative nature of the mutation and validate the use of the CHO cells model. Biochemical studies were performed in an attempt to elucidate the mechanism of the conformational change of GPIbalphadeltaLeu. They unexpectedly revealed a major glycosylation deficiency of the mutated GPIbalpha leading to a 40% decrease in molecular weight. The other two subunits of the complex were however normal and present at the plasma membrane. The deletion led to complete functional deficiency with lack of vWf binding of CHOalphadeltaLeu transfected cells in the presence of botrocetin and defective adhesion to a vWf coated surface under static conditions. Finally, in contrast to normal CHOalphabetaIX cells, which displayed rolling and deceleration when perfused over a vWf surface, CHOalphadeltaLeubetaIX cells were unable to roll over or attach to a vWf substratum. These results show that the integrity of the leucine-rich region of GPIbalpha is essential for normal processing and

  6. Small leucine-rich proteoglycans (SLRPs) in the endometrium of polycystic ovary syndrome women: a pilot study.

    PubMed

    Simões, Ricardo Santos; Soares-Jr, José Maria; Simões, Manuel J; Nader, Helena B; Baracat, Maria Cândida P; Maciel, Gustavo Arantes R; Serafini, Paulo C; Azziz, Ricardo; Baracat, Edmund C

    2017-08-08

    Small leucine-rich proteoglycans (SLRPs) play an important role in tissue homeostasis and cell proliferation since these proteoglycans sequester multiple growth factors. However, the content of SLRPs in the endometrium of polycystic ovary syndrome (PCOS) women is unknown. Our purpose was to test the hypothesis that excessive endometrial proliferation in PCOS may be partly related to abnormalities in SLRPs. In a cross section study a total of 20 endometrial samples were collected from 10 patients with PCOS and 10 ovulatory women during their proliferative (pre-ovulatory) phase. The study subjects were matched for age, body mass index and race. The age range was 20 to 35 years. All volunteers were evaluated in reproductive endocrinology clinic, Gynecology Division, Clinics Hospital, University of São Paulo Medical School Profile and concentration of small leucine-rich proteoglycans (decorin, lumican, fibromodulin and biglycan) were determined by immunohistochemical testing and Western blotting. Decorin and lumican demonstrated higher immunoreactivity and relative expression in the endometrium of women with PCOS compared to that of women with regular menstrual cycles. Our data suggests that the endometrium of PCOS women demonstrate a greater content of SLRP than controls; decorin and lumican, in particular, were found in higher concentrations in the endometrium of PCOS women during the proliferative phase. These differences may, in part, explain the excess of endometrial proliferation frequently observed in PCOS. Further studies are warranted.

  7. Autophosphorylation in the Leucine-Rich Repeat Kinase 2 (LRRK2) GTPase Domain Modifies Kinase and GTP-Binding Activities

    PubMed Central

    Webber, Philip J.; Smith, Archer D.; Sen, Saurabh; Renfrow, Matthew B.; Mobley, James A.; West, Andrew B.

    2011-01-01

    The LRRK2 protein has both GTPase and kinase activities and mutation in either enzymatic domain can cause late-onset Parkinson’s disease (PD). Nucleotide binding in the GTPase domain may be required for kinase activity and residues in the GTPase domain are potential sites for autophosphorylation, suggesting a complex mechanism of intrinsic regulation. To further define the effects of LRRK2 autophosphorylation, we applied a technique optimal for detection of protein phosphorylation, electron transfer dissociation (ETD), and identified autophosphorylation events exclusively nearby the nucleotide binding pocket in the GTPase domain. PD-linked mutations alter kinase activity but did not alter autophosphorylation site specificity or sites of phosphorylation in a robust in vitro substrate myelin basic protein. Amino-acid substitutions in the GTPase domain have large effects on kinase activity, as insertion of the GTPase-associated R1441C pathogenic mutation together with the G2019S kinase-domain mutation resulted in a multiplicative increase (~7-fold) in activity. Removal of a conserved autophosphorylation site (T1503) by mutation to an alanine residue resulted in greatly decreased GTP-binding and kinase activity. While autophosphorylation likely serves to potentiate kinase activity, we find that oligomerization and loss of the active dimer species occurs in an ATP and autophosphorylation independent manner. LRRK2 autophosphorylation sites are overall robustly protected from dephosphorylation in vitro, suggesting tight control over activity in vivo. We developed highly specific antibodies targeting pT1503 but failed to detect endogenous autophosphorylation in protein derived from transgenic mice and cell lines. LRRK2 activity in vivo is unlikely to be constitutive but rather refined to specific responses. PMID:21806997

  8. The Novel Small Leucine-rich Protein Chondroadherin-like (CHADL) Is Expressed in Cartilage and Modulates Chondrocyte Differentiation*

    PubMed Central

    Tillgren, Viveka; Ho, James C. S.; Önnerfjord, Patrik; Kalamajski, Sebastian

    2015-01-01

    The constitution and biophysical properties of extracellular matrices can dramatically influence cellular phenotype during development, homeostasis, or pathogenesis. These effects can be signaled through a differentially regulated assembly of collagen fibrils, orchestrated by a family of collagen-associated small leucine-rich proteins (SLRPs). In this report, we describe the tissue-specific expression and function of a previously uncharacterized SLRP, chondroadherin-like (CHADL). We developed antibodies against CHADL and, by immunohistochemistry, detected CHADL expression mainly in skeletal tissues, particularly in fetal cartilage and in the pericellular space of adult chondrocytes. In situ hybridizations and immunoblots on tissue lysates confirmed this tissue-specific expression pattern. Recombinant CHADL bound collagen in cell culture and inhibited in vitro collagen fibrillogenesis. After Chadl shRNA knockdown, chondrogenic ATDC5 cells increased their differentiation, indicated by increased transcript levels of Sox9, Ihh, Col2a1, and Col10a1. The knockdown increased collagen II and aggrecan deposition in the cell layers. Microarray analysis of the knockdown samples suggested collagen receptor-related changes, although other upstream effects could not be excluded. Together, our data indicate that the novel SLRP CHADL is expressed in cartilaginous tissues, influences collagen fibrillogenesis, and modulates chondrocyte differentiation. CHADL appears to have a negative regulatory role, possibly ensuring the formation of a stable extracellular matrix. PMID:25451920

  9. Laminin and collagen modulate expression of the small leucine-rich proteoglycan fibromodulin in rat anterior pituitary gland.

    PubMed

    Syaidah, Rahimi; Horiguchi, Kotaro; Fujiwara, Ken; Tsukada, Takehiro; Kikuchi, Motoshi; Yashiro, Takashi

    2013-11-01

    The anterior pituitary is a complex organ consisting of five types of hormone-producing cells, non–hormone-producing cells such as folliculostellate (FS) cells and vascular cells (endothelial cells and pericytes). We have previously shown that FS cells and pericytes produce fibromodulin, a small leucine-rich proteoglycan (SLRP). SLRPs are major proteoglycans of the extracellular matrix (ECM) and are important in regulating cell signaling pathways and ECM assembly. However, the mechanism regulating fibromodulin expression in the anterior pituitary has not been elucidated. Here, we investigate whether fibromodulin expression is modulated by major anterior pituitary ECM components such as laminin and type I collagen. Using transgenic rats expressing green fluorescent protein (GFP) specifically in FS cells, we examine fibromodulin expression in GFP-positive (FS cells) and GFP-negative cells (e.g., pericytes, endocrine cells and endothelial cells). Immunostaining and Western blot analysis were used to assess protein expression in the presence and absence of laminin or type I collagen. We confirmed fibromodulin expression in the pituitary and observed the up-regulation of fibromodulin in FS cells in the presence of ECM components. However, neither laminin nor type I collagen affected expression in GFP-negative cells. This suggests that laminin and type I collagen support the function of FS cells by increasing fibromodulin protein expression in the anterior pituitary.

  10. Partial high-resolution structure of phosphorylated and non-phosphorylated leucine-rich amelogenin protein adsorbed to hydroxyapatite

    SciTech Connect

    Masica, David L.; Gray, Jeffrey J.; Shaw, Wendy J.

    2011-07-21

    The formation of biogenic materials requires the interaction of organic molecules with the mineral phase. In forming enamel, the amelogenin proteins contribute to the mineralization of hydroxyapatite (HAp). Leucine-rich amelogenin protein (LRAP) is a naturally occurring splice variant of amelogenin that comprises amelogenin’s predicted HAp binding domains. We determined the partial structure of phosphorylated and non-phosphorylated LRAP variants bound to HAp using combined solid-state NMR (ssNMR) and ssNMR-biased computational structure prediction. The ssNMR measurements indicate a largely extended structure for both variants, though some measurements are consistent with a partially helical N-terminal segment. Structure prediction was biased using 21 ssNMR measurements at five HAp crystal faces. The predicted fold of LRAP is similar at all HAp faces studied, regardless of phosphorylation. LRAP’s predicted structure is relatively extended with a helix-turn-helix motif in the N-terminal domain and some helix in the C-terminal domain. The N-terminal domain of the phosphorylated variant binds HAp more tightly than the N-terminal domain of the non-phosphorylated variant. Both variants are predicted to preferentially bind the {010} HAp crystal face providing further evidence that amelogenins block crystal growth on the a and b faces to allow elongated crystals in the c-axis. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  11. [Study of human leucine-rich amelogenin peptide and its regulation of mineralization by cryogenic transmission electron microscopy].

    PubMed

    Kun, Tian; Xiaoyun, Feng; Qin, Du; Chuhang, Liao; Xiaohua, Ren

    2017-02-01

    Recombinant human leucine-rich amelogenin peptide (LRAP) was studied by cryogenic transmission electron microscopy (TEM); evaluation focused on its self-assembly and crystal growth in vitro. Human LRAP was recombined through prokaryotic expression vector pCold-SUMO and transformed into Escherichia coli BL21plys to acquire purified proteins. Cryogen TEM recorded assembly and self-assembling of LRAP from pH 3.5 to pH 8.0, and the hydroxyapatite crystal growth in the mixture of LRAP protein solution and artificial saliva was observed using TEM and selected area electron diffraction. More than 90% purity LRAP was expressed, purified and identified as described in methods. LRAP linked into oligomers, nanospheres, nanochains, and microribbons, whereas pH value increased from 3.5 to 8.0. Mature hydroxyapatite crystal growth was guided in artificial saliva filled with calcium phosphate. LRAP is simplified amelogenin functional domain and conserved the basic characters of amelogenin such as self-assembling and inducing crystallization along c axis. In the area of acellular synthesis of hydroxyapatite using extracellular enamel matrix protein, LRAP is one of candidate repair materials for irregular hard tissue defection.
.

  12. Identification of putative CLE peptide receptors involved in determinate nodulation on soybean.

    PubMed

    Mortier, Virginie; Fenta, Berhanu Amsalu; Kunert, Karl; Holsters, Marcelle; Goormachtig, Sofie

    2011-07-01

    CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptides tightly control the balance between stem cell proliferation and differentiation in several plant developmental processes. Transmission of the CLE peptide signal has been shown to be rather complex. Despite their recent identification, little is known about the receptors by which nodulation-specific CLE peptides, which were identified in soybean, are perceived. Genetic analysis has indicated that the leucine-rich repeat receptor-like kinase NARK of soybean (Glycine max) and its orthologs in other legumes are possible candidates. However, more receptors need to be identified because CLE peptides are often detected by heteromultimeric complexes. Here, we identified two additional putative CLE peptide receptor pairs in the soybean genome with a nodulation-related expression pattern, GmRLK1-GmRLK2 and GmRLK3-GmRLK4, and discuss their role in CLE peptide perception during nodulation.

  13. Opticin, a small leucine-rich proteoglycan, is uniquely expressed and translocated to the nucleus of chronic lymphocytic leukemia cells

    PubMed Central

    2013-01-01

    Background Opticin (OPTC) is a member of the small leucine-rich proteoglycan (SLRP) family and is localized particularly in certain extracellular matrices. We have previously reported the unique expression of another SLRP, fibromodulin (FMOD) in the leukemic cells of patients with chronic lymphocytic leukemia (CLL). OPTC is located in the same region as FMOD on chromosome 1 (1q32.1). Cluster up-regulation of genes may be observed in malignancies and the aim of the present study was to analyze the expression of OPTC in CLL cells. Methods The expression of OPTC was tested by RT-PCR and realtime qPCR in PBMC from CLL patients, other hematological malignancies and healthy controls. The presence of OPTC protein, and its subcellular localization, was investigated using fractionation methods where the obtained lysate fractions were analyzed by Western blotting. Deglycosylation experiments were performed to investigate the glycosylation status of the CLL OPTC. Results OPTC was expressed at the gene level in all patients with CLL (n = 90) and in 2/8 patients with mantle cell lymphoma (MCL) but not in blood mononuclear cells of healthy control donors (n = 20) or in tumor samples from nine other types of hematological malignancies. OPTC was detected by Western blot in all CLL samples analyzed (n = 30) but not in normal leukocytes (n = 10). Further analysis revealed a CLL-unique unglycosylated 37 kDa core protein that was found to be located preferentially in the cell nucleus and endoplasmic reticulum (ER) of the CLL cells. Conclusions A 37 kDa unglycosylated OPTC protein was detected in ER and in the nucleus of CLL cells and not in healthy control donors. The function of this OPTC core protein remains unclear but its CLL-specific expression and subcellular localization warrants further investigations in the pathobiology of CLL. PMID:24499526

  14. Over-Expression of Cysteine Leucine Rich Protein Is Related to SAG Resistance in Clinical Isolates of Leishmania donovani.

    PubMed

    Das, Sanchita; Shah, Priyanka; Tandon, Rati; Yadav, Narendra Kumar; Sahasrabuddhe, Amogh A; Sundar, Shyam; Siddiqi, Mohammad Imran; Dube, Anuradha

    2015-08-01

    Resistance emergence against antileishmanial drugs, particularly Sodium Antimony Gluconate (SAG) has severely hampered the therapeutic strategy against visceral leishmaniasis, the mechanism of resistance being indistinguishable. Cysteine leucine rich protein (CLrP), was recognized as one of the overexpressed proteins in resistant isolates, as observed in differential proteomics between sensitive and resistant isolates of L. donovani. The present study deals with the characterization of CLrP and for its possible connection with SAG resistance. In pursuance of deciphering the role of CLrP in SAG resistance, gene was cloned, over-expressed in E. coli system and thereafter antibody was raised. The expression profile of CLrP and was found to be over-expressed in SAG resistant clinical isolates of L. donovani as compared to SAG sensitive ones when investigated by real-time PCR and western blotting. CLrP has been characterized through bioinformatics, immunoblotting and immunolocalization analysis, which reveals its post-translational modification along with its dual existence in the nucleus as well as in the membrane of the parasite. Further investigation using a ChIP assay confirmed its DNA binding potential. Over-expression of CLrP in sensitive isolate of L. donovani significantly decreased its responsiveness to SAG (SbV and SbIII) and a shift towards the resistant mode was observed. Further, a significant increase in its infectivity in murine macrophages has been observed. The study reports the differential expression of CLrP in SAG sensitive and resistant isolates of L. donovani. Functional intricacy of CLrP increases with dual localization, glycosylation and DNA binding potential of the protein. Further over-expressing CLrP in sensitive isolate of L. donovani shows significantly decreased sensitivity towards SAG and increased infectivity as well, thus assisting the parasite in securing a safe niche. Results indicates the possible contribution of CLrP to antimonial

  15. Inhibiting clathrin-mediated endocytosis of the leucine-rich G protein-coupled Receptor-5 diminishes cell fitness.

    PubMed

    Snyder, Joshua C; Rochelle, Lauren K; Ray, Caroline; Pack, Thomas F; Bock, Cheryl B; Lubkov, Veronica; Lyerly, H Kim; Waggoner, Alan S; Barak, Larry S; Caron, Marc G

    2017-03-08

    The leucine-rich G protein-coupled receptor-5 (LGR5) is expressed in adult tissue stem cells of many epithelia and its overexpression is negatively correlated with cancer prognosis. LGR5 potentiates WNT/β-catenin signaling through its unique constitutive internalization property that clears negative regulators of the WNT-receptor complex from the membrane. However, both the mechanism and physiological relevance of LGR5 internalization is unclear. Therefore, a natural product library was screened to discover LGR5 internalization inhibitors and gain mechanistic insight into LGR5 internalization. The plant lignan justicidin B, blocked the constitutive internalization of LGR5. Justicidin B is structurally similar to more potent vacuolar-type H+-ATPase (vATPase) inhibitors, which all inhibited LGR5 internalization by blocking clathrin-mediated endocytosis. We then tested the physiological relevance of LGR5 internalization blockade in vivo. A LGR5-rainbow (LBOW) mouse line was engineered to express three different LGR5 isoforms along with unique fluorescent protein lineage reporters in the same mouse. In this manner, the effects of each isoform on cell fate can be simultaneously assessed through simple fluorescent imaging for each lineage reporter. LBOW mice express three different forms of LGR5, which includes a wild-type form that constitutively internalizes and two mutant forms whose internalization properties have been compromised by genetic perturbations within the carboxyl-terminal tail. LBOW was activated in the intestinal epithelium and a year-long lineage tracing course revealed that genetic blockade of LGR5 internalization diminished cell fitness. Together these data provide proof-of-concept genetic evidence that blocking the clathrin-mediated endocytosis of LGR5 could be used to pharmacologically control cell behavior.

  16. Contaminants in commercial preparations of ‘purified’ small leucine-rich proteoglycans may distort mechanistic studies

    PubMed Central

    Brown, Sharon J.; Fuller, Heidi R.; Jones, Philip; Caterson, Bruce; Shirran, Sally L.; Botting, Catherine H.

    2016-01-01

    The present study reports the perplexing results that came about because of seriously impure commercially available reagents. Commercial reagents and chemicals are routinely ordered by scientists and expected to have been rigorously assessed for their purity. Unfortunately, we found this assumption to be risky. Extensive work was carried out within our laboratory using commercially sourced preparations of the small leucine-rich proteoglycans (SLRPs), decorin and biglycan, to investigate their influence on nerve cell growth. Unusual results compelled us to analyse the composition and purity of both preparations of these proteoglycans (PGs) using both mass spectrometry (MS) and Western blotting, with and without various enzymatic deglycosylations. Commercial ‘decorin’ and ‘biglycan’ were found to contain a mixture of PGs including not only both decorin and biglycan but also fibromodulin and aggrecan. The unexpected effects of ‘decorin’ and ‘biglycan’ on nerve cell growth could be explained by these impurities. Decorin and biglycan contain either chondroitin or dermatan sulfate glycosaminoglycan (GAG) chains whereas fibromodulin only contains keratan sulfate and the large (>2500 kDa), highly glycosylated aggrecan contains both keratan and chondroitin sulfate. The different structure, molecular weight and composition of these impurities significantly affected our work and any conclusions that could be made. These findings beg the question as to whether scientists need to verify the purity of each commercially obtained reagent used in their experiments. The implications of these findings are vast, since the effects of these impurities may already have led to inaccurate conclusions and reports in the literature with concomitant loss of researchers’ funds and time. PMID:27994047

  17. A solution NMR investigation into the murine amelogenin splice-variant LRAP (Leucine-Rich Amelogenin Protein)

    PubMed Central

    Buchko, Garry W.; Tarasevich, Barbara J.; Roberts, Jacky; Snead, Malcolm L.; Shaw, Wendy J.

    2010-01-01

    Amelogenins are the dominant proteins present in ameloblasts during the early stages of enamel biomineralization, making up >90% of the matrix protein. Along with the full-length protein there are several splice-variant isoforms of amelogenin present including LRAP (Leucine-Rich Amelogenin Protein), a protein that consists of the first 33 and the last 26 residues of full-length amelogenin. Using solution-state NMR spectroscopy we have assigned the 1H-15N HSQC spectrum of murine LRAP (rp(H)LRAP) in 2% acetic acid at pH 3.0 by making extensive use of previous chemical shift assignments for full-length murine amelogenin (rp(H)M180). This correlation was possible because LRAP, like the full-length protein, is intrinsically disordered under these solution conditions. The major difference between the 1H-15N HSQC spectra of rp(H)M180 and rp(H)LRAP was an additional set of amide resonances for each of the seven non-proline residues between S12* and Y12 at the N-terminus of rp(H)LRAP indicating that the N-terminal region of LRAP exists in two different conformations. Analysis of the proline carbon chemical shifts suggest that the molecular basis for the two states is not a cis-trans isomerization of one or more of the proline residues in the N-terminal region. Starting from 2% acetic acid, where rp(H)LRAP was monomeric in solution, NaCl addition effected residue specific changes in molecular dynamics manifested by the reduction in intensity and disappearance of 1H-15N HSQC cross peaks. As observed for the full length protein, these perturbations may signal early events governing supramolecular self-assembly of rp(H)LRAP into nanospheres. However, the different pattern of 1H-15N HSQC cross peak perturbation between rp(H)LRAP and rp(H)M180 in high salt suggest that the termini may behave differently in their respective nanospheres, and perhaps, these differences contribute to the cell signaling properties attributable to LRAP but not the full-length protein. PMID:20304108

  18. A solution NMR investigation into the murine amelogenin splice-variant LRAP (Leucine-Rich Amelogenin Protein).

    PubMed

    Buchko, Garry W; Tarasevich, Barbara J; Roberts, Jacky; Snead, Malcolm L; Shaw, Wendy J

    2010-09-01

    Amelogenins are the dominant proteins present in ameloblasts during the early stages of enamel biomineralization, making up >90% of the matrix protein. Along with the full-length protein there are several splice-variant isoforms of amelogenin present including LRAP (Leucine-Rich Amelogenin Protein), a protein that consists of the first 33 and the last 26 residues of full-length amelogenin. Using solution-state NMR spectroscopy we have assigned the (1)H-(15)N HSQC spectrum of murine LRAP (rp(H)LRAP) in 2% acetic acid at pH 3.0 by making extensive use of previous chemical shift assignments for full-length murine amelogenin (rp(H)M180). This correlation was possible because LRAP, like the full-length protein, is intrinsically disordered under these solution conditions. The major difference between the (1)H-(15)N HSQC spectra of rp(H)M180 and rp(H)LRAP was an additional set of amide resonances for each of the seven non-proline residues between S12 and Y12 near the N-terminus of rp(H)LRAP indicating that the N-terminal region of LRAP exists in two different conformations. Analysis of the proline carbon chemical shifts suggests that the molecular basis for the two states is not a cis-trans isomerization of one or more of the proline residues in the N-terminal region. Starting from 2% acetic acid, where rp(H)LRAP was monomeric in solution, NaCl addition effected residue specific changes in molecular dynamics manifested by the reduction in intensity and disappearance of (1)H-(15)N HSQC cross peaks. As observed for the full-length protein, these perturbations may signal early events governing supramolecular self-assembly of rp(H)LRAP into nanospheres. However, the different patterns of (1)H-(15)N HSQC cross peak perturbation between rp(H)LRAP and rp(H)M180 in high salt suggest that the termini may behave differently in their respective nanospheres, and perhaps, these differences contribute to the cell signaling properties attributable to LRAP but not to the full

  19. Leucine-rich alpha-2-glycoprotein-1 is upregulated in sera and tumors of ovarian cancer patients

    PubMed Central

    2010-01-01

    Background New biomarkers that replace or are used in conjunction with the current ovarian cancer diagnostic antigen, CA125, are needed for detection of ovarian cancer in the presurgical setting, as well as for detection of disease recurrence. We previously demonstrated the upregulation of leucine-rich alpha-2-glycoprotein-1 (LRG1) in the sera of ovarian cancer patients compared to healthy women using quantitative mass spectrometry. Methods LRG1 was quantified by ELISA in serum from two relatively large cohorts of women with ovarian cancer and benign gynecological disease. The expression of LRG1 in ovarian cancer tissues and cell lines was examined by gene microarray, reverse-transcriptase polymerase chain reaction (RT-PCR), Western blot, immunocytochemistry and mass spectrometry. Results Mean serum LRG1 was higher in 58 ovarian cancer patients than in 56 healthy women (89.33 ± 77.90 vs. 42.99 ± 9.88 ug/ml; p = 0.0008) and was highest among stage III/IV patients. In a separate set of 193 pre-surgical samples, LRG1 was higher in patients with serous or clear cell ovarian cancer (145.82 ± 65.99 ug/ml) compared to patients with benign gynecological diseases (82.53 ± 76.67 ug/ml, p < 0.0001). CA125 and LRG1 levels were moderately correlated (r = 0.47, p < 0.0001). LRG1 mRNA levels were higher in ovarian cancer tissues and cell lines compared to their normal counterparts when analyzed by gene microarray and RT-PCR. LRG1 protein was detected in ovarian cancer tissue samples and cell lines by immunocytochemistry and Western blotting. Multiple iosforms of LRG1 were observed by Western blot and were shown to represent different glycosylation states by digestion with glycosidase. LRG1 protein was also detected in the conditioned media of ovarian cancer cell culture by ELISA, Western blotting, and mass spectrometry. Conclusions Serum LRG1 was significantly elevated in women with ovarian cancer compared to healthy women and women with benign gynecological disease, and was

  20. A Solution NMR Investigation into the Murine Amelogenin Splice-Variant LRAP (Leucine-Rich Amelogenin Protein).

    SciTech Connect

    Buchko, Garry W.; Tarasevich, Barbara J.; Roberts, Jacky; Snead, Malcolm L.; Shaw, Wendy J.

    2010-09-01

    Amelogenins are the dominant proteins present in ameloblasts during the early stages of enamel biomineralization, making up >90% of the matrix protein. Along with the full-length protein there are several splice-variant isoforms of amelogenin present including LRAP (Leucine-Rich Amelogenin Protein), a protein that consists of the first 33 and the last 26 residues of full-length amelogenin. Using solution-state NMR spectroscopy we have assigned the 1H-15N HSQC spectrum of murine LRAP (rp(H)LRAP) in 2% acetic acid at pH 3.0 by making extensive use of previous chemical shift assignments for full-length murine amelogenin (rp(H)M180). This correlation was possible because LRAP, like the full-length protein, is intrinsically disordered under these solution conditions. The major difference between the 1H-15N HSQC spectra of rp(H)M180 and rp(H)LRAP was an additional set of amide resonances for each of the seven non-proline residues between S12* and Y12 at the N-terminus of rp(H)LRAP indicating that the N-terminal region of LRAP exists in two different conformations. Analysis of the proline carbon chemical shifts suggest that the molecular basis for the two states is not a cis-trans isomerization of one or more of the proline residues in the N-terminal region and is likely due to a slow exchange process. As observed with rp(H)M180, residue specific changes in molecular dynamics, manifested by the reduction in intensity and disappearance of 1H-15N HSQC cross peaks, were observed with the addition of NaCl to rp(H)LRAP. These perturbations may signal early events governing supramolecular self-assembly of rp(H)LRAP into nanospheres. However, the different pattern of 1H-15N HSQC cross peak perturbation between rp(H)LRAP and rp(H)M180 in high salt suggest that the termini may behave differently in their respective nanospheres, and perhaps, these differences account for the cell signaling properties attributable to LRAP but not the full-length protein.

  1. Clinical analysis of leucine-rich glioma inactivated-1 protein antibody associated with limbic encephalitis onset with seizures

    PubMed Central

    Li, Zhimei; Cui, Tao; Shi, Weixiong; Wang, Qun

    2016-01-01

    Abstract We summarized the clinical characteristics of patients presenting with seizures and limbic encephalitis (LE) associated with leucine-rich glioma inactivated-1 protein antibody (LGI1) in order help recognize and treat this condition at its onset. We analyzed clinical, video electroencephalogram (VEEG), magnetic resonance imaging (MRI), and laboratory data of 10 patients who presented with LGI1-LE and followed up their outcomes from 2 to 16 (9.4 ± 4.2) months. All patients presented with seizures onset, including faciobrachial dystonic seizure (FBDS), partial seizure (PS), and generalized tonic-clonic seizure (GTCS). Four patients (Cases 3, 5, 7, and 8) had mild cognitive deficits. Interictal VEEG showed normal patterns, focal slowing, or sharp waves in the temporal or frontotemporal lobes. Ictal VEEG of Cases 4, 5, and 7 showed diffuse voltage depression preceding FBDS, a left frontal/temporal origin, and a bilateral temporal origin, respectively. Ictal foci could not be localized in other cases. MRI scan revealed T2/fluid-attenuated inversion recovery (FLAIR) hyperintensity and evidence of edema in the right medial temporal lobe in Case 3, left hippocampal atrophy in Case 5, hyperintensities in the bilateral medial temporal lobes in Case 7, and hyperintensities in the basal ganglia and frontal cortex in Case 10. All 10 serum samples were positive for LGI1 antibody, but it was only detected in the cerebrospinal fluid (CSF) of 7 patients. Five patients (Cases 2, 4, 6, 7, and 8) presented with hyponatremia. One patient (Case 2) was diagnosed with small cell lung cancer. While responses to antiepileptic drugs (AEDs) were poor, most patients (except Case 2) responded favorably to immunotherapy. LGI1-LE may initially manifest with various types of seizures, particularly FBDS and complex partial seizures (CPS) of mesial temporal origin, and slowly progressive cognitive involvement. Clinical follow-up, VEEG monitoring, and MRI scan are helpful in early

  2. Reduced muscular fatigue after a 12-week leucine-rich amino acid supplementation combined with moderate training in elderly: a randomised, placebo-controlled, double-blind trial.

    PubMed

    Reule, Claudia A; Scholz, Claudia; Schoen, Christiane; Brown, Niklas; Siepelmeyer, Anne; Alt, Wilfried W

    2016-01-01

    Age-related muscle loss is characterised by a progressing decrease in muscle mass, strength and function. Besides resistance training and physical activity, appropriate nutrition that is rich in protein, especially branched-chain amino acids, is very important to support training effects and positively influence the protein synthesis to degradation ratio. The purpose of this study was to evaluate the effect of a 12-week leucine-rich amino acid supplementation in combination with moderate training. Forty-eight healthy subjects exercised for 30 min three times per week and received either a leucine-rich amino acid supplementation or a placebo. Before and after supplementation, volunteers performed an exhaustive eccentric exercise protocol. Maximal concentric strength, muscle soreness, creatine kinase (CK), type II collagen collagenase cleavage neoepitope (C2C), C propeptide of type II procollagen (CP2) and safety assessments were performed before exercise and after 3, 24, 48 and 72 hours. The supplementation with leucine resulted in reduced loss of strength at 0 and 3 hours after downhill walking compared with the placebo (p=0.0439). The reduction of C2C/CP2 ratio deflection was significantly increased (p=0.038) due to leucine compared with the placebo. The same tendency could be observed for the recovery phase. No significant supplement effects for muscle soreness and CK could be observed. The principle findings show that leucine-rich amino acid supplementation can counteract the negative effects of eccentric exercise. The treatment resulted in a reduction of exercise-induced strength loss.

  3. Reduced muscular fatigue after a 12-week leucine-rich amino acid supplementation combined with moderate training in elderly: a randomised, placebo-controlled, double-blind trial

    PubMed Central

    Reule, Claudia A; Scholz, Claudia; Schoen, Christiane; Brown, Niklas; Siepelmeyer, Anne; Alt, Wilfried W

    2016-01-01

    Background Age-related muscle loss is characterised by a progressing decrease in muscle mass, strength and function. Besides resistance training and physical activity, appropriate nutrition that is rich in protein, especially branched-chain amino acids, is very important to support training effects and positively influence the protein synthesis to degradation ratio. Aim The purpose of this study was to evaluate the effect of a 12-week leucine-rich amino acid supplementation in combination with moderate training. Methods Forty-eight healthy subjects exercised for 30 min three times per week and received either a leucine-rich amino acid supplementation or a placebo. Before and after supplementation, volunteers performed an exhaustive eccentric exercise protocol. Maximal concentric strength, muscle soreness, creatine kinase (CK), type II collagen collagenase cleavage neoepitope (C2C), C propeptide of type II procollagen (CP2) and safety assessments were performed before exercise and after 3, 24, 48 and 72 hours. Results The supplementation with leucine resulted in reduced loss of strength at 0 and 3 hours after downhill walking compared with the placebo (p=0.0439). The reduction of C2C/CP2 ratio deflection was significantly increased (p=0.038) due to leucine compared with the placebo. The same tendency could be observed for the recovery phase. No significant supplement effects for muscle soreness and CK could be observed. Conclusion The principle findings show that leucine-rich amino acid supplementation can counteract the negative effects of eccentric exercise. The treatment resulted in a reduction of exercise-induced strength loss. PMID:28879028

  4. Leucine-rich diet alters the (1)H-NMR based metabolomic profile without changing the Walker-256 tumour mass in rats.

    PubMed

    Viana, Laís Rosa; Canevarolo, Rafael; Luiz, Anna Caroline Perina; Soares, Raquel Frias; Lubaczeuski, Camila; Zeri, Ana Carolina de Mattos; Gomes-Marcondes, Maria Cristina Cintra

    2016-10-03

    Cachexia is one of the most important causes of cancer-related death. Supplementation with branched-chain amino acids, particularly leucine, has been used to minimise loss of muscle tissue, although few studies have examined the effect of this type of nutritional supplementation on the metabolism of the tumour-bearing host. Therefore, the present study evaluated whether a leucine-rich diet affects metabolomic derangements in serum and tumour tissues in tumour-bearing Walker-256 rats (providing an experimental model of cachexia). After 21 days feeding Wistar female rats a leucine-rich diet, distributed in L-leucine and LW-leucine Walker-256 tumour-bearing groups, we examined the metabolomic profile of serum and tumour tissue samples and compared them with samples from tumour-bearing rats fed a normal protein diet (C - control; W - tumour-bearing groups). We utilised (1)H-NMR as a means to study the serum and tumour metabolomic profile, tumour proliferation and tumour protein synthesis pathway. Among the 58 serum metabolites examined, we found that 12 were altered in the tumour-bearing group, reflecting an increase in activity of some metabolic pathways related to energy production, which diverted many nutrients toward tumour growth. Despite displaying increased tumour cell activity (i.e., higher Ki-67 and mTOR expression), there were no differences in tumour mass associated with changes in 23 metabolites (resulting from valine, leucine and isoleucine synthesis and degradation, and from the synthesis and degradation of ketone bodies) in the leucine-tumour group. This result suggests that the majority of nutrients were used for host maintenance. A leucine rich-diet, largely used to prevent skeletal muscle loss, did not affect Walker 256 tumour growth and led to metabolomic alterations that may partially explain the positive effects of leucine for the whole tumour-bearing host.

  5. A case of autoimmune epilepsy associated with anti-leucine-rich glioma inactivated subunit 1 antibodies manifesting electrical shock-like sensations and transparent sadness.

    PubMed

    Murata, Yoshiko; Watanabe, Osamu; Taniguchi, Go; Sone, Daichi; Fujioka, Mao; Okazaki, Mitsutoshi; Nakagawa, Eiji; Watanabe, Yutaka; Watanabe, Masako

    2015-01-01

    Autoimmune epilepsy is an isolated phenotype of autoimmune encephalitis, which may be suspected in patients with unexplained adult-onset seizure disorders or resistance to antiepileptic drugs (AEDs). Antibodies against leucine-rich glioma inactivated subunit 1 of the voltage-gated potassium channel (VGKC) complex, recently termed anti-LGI-1 antibodies, are one of the causes of autoimmune epilepsies. Bizarre symptoms with extremely short duration and high frequency are clues to the possible presence of autoimmune epilepsy with anti-LGI-1 antibodies. Precise diagnosis is important because autoimmune epilepsy is treatable and the prognosis can be predicted.

  6. A case of autoimmune epilepsy associated with anti-leucine-rich glioma inactivated subunit 1 antibodies manifesting electrical shock-like sensations and transparent sadness

    PubMed Central

    Murata, Yoshiko; Watanabe, Osamu; Taniguchi, Go; Sone, Daichi; Fujioka, Mao; Okazaki, Mitsutoshi; Nakagawa, Eiji; Watanabe, Yutaka; Watanabe, Masako

    2015-01-01

    Autoimmune epilepsy is an isolated phenotype of autoimmune encephalitis, which may be suspected in patients with unexplained adult-onset seizure disorders or resistance to antiepileptic drugs (AEDs). Antibodies against leucine-rich glioma inactivated subunit 1 of the voltage-gated potassium channel (VGKC) complex, recently termed anti-LGI-1 antibodies, are one of the causes of autoimmune epilepsies. Bizarre symptoms with extremely short duration and high frequency are clues to the possible presence of autoimmune epilepsy with anti-LGI-1 antibodies. Precise diagnosis is important because autoimmune epilepsy is treatable and the prognosis can be predicted. PMID:26543815

  7. Nuclear export of cutaneous HPV8 E7 oncoprotein is mediated by a leucine-rich nuclear export signal via a CRM1 pathway

    SciTech Connect

    Onder, Zeynep; Chang, Vivian; Moroianu, Junona

    2015-01-01

    We recently determined that the nuclear import of cutaneous beta genus HPV8 E7 oncoprotein it is mediated by its zinc-binding domain via direct hydrophobic interactions with the FG nucleoporins Nup62 and Nup153 (Onder and Moroianu, 2014). Here we investigated the nuclear export of HPV8 E7 oncoprotein using confocal microscopy after transfections of HeLa cells with EGFP–8cE7 and mutant plasmids and treatment with Ratjadone A nuclear export inhibitor. We determined that HPV8 E7 contains a leucine-rich nuclear export signal (NES), {sub 76}IRTFQELLF{sub 84}, within its zinc-binding domain that mediates its nuclear export via a CRM1 pathway. We found that HPV8 E7 interacts with CRM1 and that the hydrophobic amino acid residues I76, F79 and L82 of the NES are essential for this interaction and for nuclear export of HPV8 E7 oncoprotein. - Highlights: • HPV8 E7 has a leucine-rich NES within its zinc-binding domain that mediates its nuclear export. • CRM1 nuclear export receptor interacts with HPV8 E7 and mediates its export. • Identification of the critical hydrophobic amino acids of the NES of HPV8 E7.

  8. Anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis show distinct patterns of brain glucose metabolism in 18F-fluoro-2-deoxy-d-glucose positron emission tomography

    PubMed Central

    2014-01-01

    Background Pathogenic autoantibodies targeting the recently identified leucine rich glioma inactivated 1 protein and the subunit 1 of the N-methyl-D-aspartate receptor induce autoimmune encephalitis. A comparison of brain metabolic patterns in 18F-fluoro-2-deoxy-d-glucose positron emission tomography of anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis patients has not been performed yet and shall be helpful in differentiating these two most common forms of autoimmune encephalitis. Methods The brain 18F-fluoro-2-deoxy-d-glucose uptake from whole-body positron emission tomography of six anti-N-methyl-D-aspartate receptor encephalitis patients and four patients with anti-leucine rich glioma inactivated 1 protein encephalitis admitted to Hannover Medical School between 2008 and 2012 was retrospectively analyzed and compared to matched controls. Results Group analysis of anti-N-methyl-D-aspartate encephalitis patients demonstrated regionally limited hypermetabolism in frontotemporal areas contrasting an extensive hypometabolism in parietal lobes, whereas the anti-leucine rich glioma inactivated 1 protein syndrome was characterized by hypermetabolism in cerebellar, basal ganglia, occipital and precentral areas and minor frontomesial hypometabolism. Conclusions This retrospective 18F-fluoro-2-deoxy-d-glucose positron emission tomography study provides novel evidence for distinct brain metabolic patterns in patients with anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis. PMID:24950993

  9. Nuclear export of cutaneous HPV8 E7 oncoprotein is mediated by a leucine-rich nuclear export signal via a CRM1 pathway

    PubMed Central

    Onder, Zeynep; Chang, Vivian; Moroianu, Junona

    2014-01-01

    We recently determined that the nuclear import of cutaneous beta genus HPV8 E7 oncoprotein it is mediated by its zinc-binding domain via direct hydrophobic interactions with the FG nucleoporins Nup62 and Nup153 (Onder and Moroianu, 2014). Here we investigated the nuclear export of HPV8 E7 oncoprotein using confocal microscopy after transfections of HeLa cells with EGFP-8cE7 and mutant plasmids and treatment with Ratjadone A nuclear export inhibitor. We determined that HPV8 E7 contains a leucine-rich nuclear export signal (NES), 76IRTFQELLF84, within its zinc-binding domain that mediates its nuclear export via a CRM1 pathway. We found that HPV8 E7 interacts with CRM1 and that the hydrophobic amino acid residues I76, F79 and L82 of the NES are essential for this interaction and for nuclear export of HPV8 E7 oncoprotein. PMID:25463601

  10. Nuclear export of cutaneous HPV8 E7 oncoprotein is mediated by a leucine-rich nuclear export signal via a CRM1 pathway.

    PubMed

    Onder, Zeynep; Chang, Vivian; Moroianu, Junona

    2015-01-01

    We recently determined that the nuclear import of cutaneous beta genus HPV8 E7 oncoprotein it is mediated by its zinc-binding domain via direct hydrophobic interactions with the FG nucleoporins Nup62 and Nup153 (Onder and Moroianu, 2014). Here we investigated the nuclear export of HPV8 E7 oncoprotein using confocal microscopy after transfections of HeLa cells with EGFP-8cE7 and mutant plasmids and treatment with Ratjadone A nuclear export inhibitor. We determined that HPV8 E7 contains a leucine-rich nuclear export signal (NES), 76IRTFQELLF84, within its zinc-binding domain that mediates its nuclear export via a CRM1 pathway. We found that HPV8 E7 interacts with CRM1 and that the hydrophobic amino acid residues I76, F79 and L82 of the NES are essential for this interaction and for nuclear export of HPV8 E7 oncoprotein.

  11. Analysis of LRRK2 accessory repeat domains: prediction of repeat length, number and sites of Parkinson's disease mutations.

    PubMed

    Mills, Ryan D; Mulhern, Terrence D; Cheng, Heung-Chin; Culvenor, Janetta G

    2012-10-01

    Various investigators have identified the major domain organization of LRRK2 (leucine-rich repeat kinase 2), which includes a GTPase ROC (Ras of complex proteins) domain followed by a COR (C-terminal of ROC) domain and a protein kinase domain. In addition, there are four domains composed of structural repeat motifs likely to be involved in regulation and localization of this complex protein. In the present paper, we report our bioinformatic analyses of the human LRRK2 amino acid sequence to predict the repeat size, number and likely boundaries for the armadillo repeat, ankyrin repeat, the leucine-rich repeat and WD40 repeat regions of LRRK2. Homology modelling using known protein structures with similar domains was used to predict structures, exposed residues and location of mutations for these repeat regions. We predict that the armadillo repeats, ankyrin repeats and leucine-rich repeats together form an extended N-terminal flexible 'solenoid'-like structure composed of tandem repeat modules likely to be important in anchoring to the membrane and cytoskeletal structures as well as binding to other protein ligands. Near the C-terminus of LRRK2, the WD40 repeat region is predicted to form a closed propeller structure that is important for protein complex formation.

  12. Abundant Intergenic TAACTGA Direct Repeats and Putative Alternate RNA Polymerase β′ Subunits in Marine Beggiatoaceae Genomes: Possible Regulatory Roles and Origins

    PubMed Central

    MacGregor, Barbara J.

    2015-01-01

    The genome sequences of several giant marine sulfur-oxidizing bacteria present evidence of a possible post-transcriptional regulatory network that may have been transmitted to or from two distantly related bacteria lineages. The draft genome of a Cand. “Maribeggiatoa” filament from the Guaymas Basin (Gulf of California, Mexico) seafloor contains 169 sets of TAACTGA direct repeats and one indirect repeat, with two to six copies per set. Related heptamers are rarely or never found as direct repeats. TAACTGA direct repeats are also found in some other Beggiatoaceae, Thiocystis violascens, a range of Cyanobacteria, and five Bacteroidetes. This phylogenetic distribution suggests they may have been transmitted horizontally, but no mechanism is evident. There is no correlation between total TAACTGA occurrences and repeats per genome. In most species the repeat units are relatively short, but longer arrays of up to 43 copies are found in several Bacteroidetes and Cyanobacteria. The majority of TAACTGA repeats in the Cand. “Maribeggiatoa” Orange Guaymas (BOGUAY) genome are within several nucleotides upstream of a putative start codon, suggesting they may be binding sites for a post-transcriptional regulator. Candidates include members of the ribosomal protein S1, Csp (cold shock protein), and Csr (carbon storage regulator) families. No pattern was evident in the predicted functions of the open reading frames (ORFs) downstream of repeats, but some encode presumably essential products such as ribosomal proteins. Among these is an ORF encoding a possible alternate or modified RNA polymerase beta prime subunit, predicted to have the expected subunit interaction domains but lacking most catalytic residues. A similar ORF was found in the Thioploca ingrica draft genome, but in no others. In both species they are immediately upstream of putative sensor kinase genes with nearly identical domain structures. In the marine Beggiatoaceae, a role for the TAACTGA repeats in

  13. Hemerythrin-like domain within F-box and leucine-rich repeat protein 5 (FBXL5) communicates cellular iron and oxygen availability by distinct mechanisms.

    PubMed

    Chollangi, Srinivas; Thompson, Joel W; Ruiz, Julio C; Gardner, Kevin H; Bruick, Richard K

    2012-07-06

    Iron regulatory proteins play a principal role in maintaining cellular iron homeostasis by post-transcriptionally regulating factors responsible for iron uptake, utilization, and storage. An E3 ubiquitin ligase complex containing FBXL5 targets IRP2 for proteasomal degradation under iron- and oxygen-replete conditions, whereas FBXL5 itself is degraded when iron and oxygen availability decreases. FBXL5 contains a hemerythrin-like (Hr) domain at its N terminus that mediates its own differential stability. Here, we investigated the iron- and oxygen-dependent conformational changes within FBXL5-Hr that underlie its role as a cellular sensor. As predicted, FBXL5-Hr undergoes substantive structural changes when iron becomes limiting, accounting for its switch-like behavior. However, these same changes are not observed in response to oxygen depletion, indicating that this domain accommodates two distinct sensing mechanisms. Moreover, FBXL5-Hr does not behave as a dynamic sensor that continuously samples the cellular environment, assuming conformations in equilibrium with ever-changing cellular iron levels. Instead, the isolated domain appears competent to incorporate iron only at or near the time of its own synthesis. These observations have important implications for mechanisms by which these metabolites are sensed within mammalian cells.

  14. Prognostic significance of leucine-rich-repeat-containing G-protein-coupled receptor 5, an intestinal stem cell marker, in gastric carcinomas.

    PubMed

    Jang, Bo Gun; Lee, Byung Lan; Kim, Woo Ho

    2016-07-01

    Cells expressing LGR5, an intestinal stem cell marker, have been suggested as cancer stem cells in human colon cancers. Previously, we discovered that LGR5-expressing cells exist in the gastric antrum and remarkably increase in number in intestinal metaplasia. In addition, most gastric adenomas contain abundant LGR5-expressing cells coexpressing intestinal stem cell signatures. However, LGR5 expression in gastric cancers (GCs) and its prognostic significance remain unknown. We examined the LGR5 expression in GC tissues by real time-PCR and RNA in situ hybridization, and analyzed its clinicopathological relevance and prognostic value. The effects of LGR5 on cancer cell proliferation and migration were assessed with an in vitro transfection technique. LGR5 expression was significantly lower in GCs than in matched nontumorous gastric mucosa. RNA in situ hybridization on tissue microarrays showed that 7 % of GCs were positive for LGR5. LGR5 positivity was associated with old age, well to moderate differentiation, and nuclear β-catenin positivity. Although LGR5 did not show any prognostic significance for all GC cases, it was associated with poor survival in GCs with nuclear β-catenin expression. LGR5 expression was induced by transfection in GC cell lines with abnormal Wnt activation, which, however, showed no influence on the growth and migration of GC cells. A small portion of GCs expressed LGR5. Although LGR5 was associated with poor survival in GCs with nuclear β-catenin, LGR5 expression in GC cells had no effects on the growth and migration, requiring a further study exploring a biological role of LGR5 in GCs.

  15. Mechanisms of haplotype divergence at the RGA08 nucleotide-binding leucine-rich repeat gene locus in wild banana (Musa balbisiana)

    PubMed Central

    2010-01-01

    Background Comparative sequence analysis of complex loci such as resistance gene analog clusters allows estimating the degree of sequence conservation and mechanisms of divergence at the intraspecies level. In banana (Musa sp.), two diploid wild species Musa acuminata (A genome) and Musa balbisiana (B genome) contribute to the polyploid genome of many cultivars. The M. balbisiana species is associated with vigour and tolerance to pests and disease and little is known on the genome structure and haplotype diversity within this species. Here, we compare two genomic sequences of 253 and 223 kb corresponding to two haplotypes of the RGA08 resistance gene analog locus in M. balbisiana "Pisang Klutuk Wulung" (PKW). Results Sequence comparison revealed two regions of contrasting features. The first is a highly colinear gene-rich region where the two haplotypes diverge only by single nucleotide polymorphisms and two repetitive element insertions. The second corresponds to a large cluster of RGA08 genes, with 13 and 18 predicted RGA genes and pseudogenes spread over 131 and 152 kb respectively on each haplotype. The RGA08 cluster is enriched in repetitive element insertions, in duplicated non-coding intergenic sequences including low complexity regions and shows structural variations between haplotypes. Although some allelic relationships are retained, a large diversity of RGA08 genes occurs in this single M. balbisiana genotype, with several RGA08 paralogs specific to each haplotype. The RGA08 gene family has evolved by mechanisms of unequal recombination, intragenic sequence exchange and diversifying selection. An unequal recombination event taking place between duplicated non-coding intergenic sequences resulted in a different RGA08 gene content between haplotypes pointing out the role of such duplicated regions in the evolution of RGA clusters. Based on the synonymous substitution rate in coding sequences, we estimated a 1 million year divergence time for these M. balbisiana haplotypes. Conclusions A large RGA08 gene cluster identified in wild banana corresponds to a highly variable genomic region between haplotypes surrounded by conserved flanking regions. High level of sequence identity (70 to 99%) of the genic and intergenic regions suggests a recent and rapid evolution of this cluster in M. balbisiana. PMID:20637079

  16. GsLRPK, a novel cold-activated leucine-rich repeat receptor-like protein kinase from Glycine soja, is a positive regulator to cold stress tolerance.

    PubMed

    Yang, Liang; Wu, Kangcheng; Gao, Peng; Liu, Xiaojuan; Li, Guangpu; Wu, Zujian

    2014-02-01

    Plant LRR-RLKs serve as protein interaction platforms, and as regulatory modules of protein activation. Here, we report the isolation of a novel plant-specific LRR-RLK from Glycine soja (termed GsLRPK) by differential screening. GsLRPK expression was cold-inducible and shows Ser/Thr protein kinase activity. Subcellular localization studies using GFP fusion protein indicated that GsLRPK is localized in the plasma membrane. Real-time PCR analysis indicated that temperature, salt, drought, and ABA treatment can alter GsLRPK gene transcription in G. soja. However, just protein induced by cold stress not by salinity and ABA treatment in tobacco was found to possess kinase activity. Furthermore, we found that overexpression of GsLRPK in yeast and Arabidopsis can enhance resistance to cold stress and increase the expression of a number of cold responsive gene markers. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Leucine-Rich Repeat Kinase 2 (Lrrk2) Deficiency Diminishes the Development of Experimental Autoimmune Uveitis (EAU) and the Adaptive Immune Response.

    PubMed

    Wandu, Wambui S; Tan, Cuiyan; Ogbeifun, Osato; Vistica, Barbara P; Shi, Guangpu; Hinshaw, Samuel J H; Xie, Chengsong; Chen, Xi; Klinman, Dennis M; Cai, Huaibin; Gery, Igal

    2015-01-01

    Mutations in LRRK2 are related to certain forms of Parkinson's disease and, possibly, to the pathogenesis of Crohn's disease. In both these diseases inflammatory processes participate in the pathogenic process. LRRK2 is expressed in lymphoid cells and, interestingly, Lrrk2 (-/-) mice were reported to develop more severe experimental colitis than their wild type (WT) controls. Here, we examined the possible involvement of LRRK2 in the pathogenesis of experimental autoimmune uveitis (EAU), an animal model for human uveitis, by testing Lrrk2 (-/-) mice for their capacity to develop this experimental eye disease and related immune responses. Lrrk2 (-/-) mice and their WT controls (C57Bl/6) were immunized with interphotoreceptor retinoid-binding protein (IRBP) and compared for their development of EAU, delayed type hypersensitivity (DTH) by skin tests, production of cytokines in culture, and expression of interferon (IFN)-γ, interleukin (IL)-17 and FoxP3 by spleen cells, using flow cytometry. Peritoneal macrophages were examined for their production of cytokines/chemokines in culture following stimulation with LPS or the oligodeoxynucleotide CpG. The Lrrk2 (-/-) and WT mice were also compared for their response to bovine serum albumin (BSA). The Lrrk2 (-/-) mice developed lower levels of EAU, DTH responses and cytokine production by lymphocytes than did their WT controls. Intracellular expression of IFN-γ and IL-17, by spleen cells, and secretion of cytokines/chemokines by activated peritoneal macrophages of Lrrk2 (-/-) mice trended toward diminished levels, although variabilities were noted. The expression levels of FoxP3 by Lrrk2 (-/-) spleen cells, however, were similar to those seen in WT controls. Consistent with their low response to IRBP, Lrrk2 (-/-) mice responded to BSA less vigorously than their WT controls. Lrrk2 deficiency in mice diminished the development of EAU and the related adaptive immune responses to IRBP as compared to the WT controls.

  18. Leucine-Rich Repeat Kinase 2 (Lrrk2) Deficiency Diminishes the Development of Experimental Autoimmune Uveitis (EAU) and the Adaptive Immune Response

    PubMed Central

    Vistica, Barbara P.; Shi, Guangpu; Hinshaw, Samuel J. H.; Xie, Chengsong; Chen, Xi; Klinman, Dennis M.; Cai, Huaibin; Gery, Igal

    2015-01-01

    Background Mutations in LRRK2 are related to certain forms of Parkinson’s disease and, possibly, to the pathogenesis of Crohn’s disease. In both these diseases inflammatory processes participate in the pathogenic process. LRRK2 is expressed in lymphoid cells and, interestingly, Lrrk2 (-/-) mice were reported to develop more severe experimental colitis than their wild type (WT) controls. Here, we examined the possible involvement of LRRK2 in the pathogenesis of experimental autoimmune uveitis (EAU), an animal model for human uveitis, by testing Lrrk2 (-/-) mice for their capacity to develop this experimental eye disease and related immune responses. Methods Lrrk2 (-/-) mice and their WT controls (C57Bl/6) were immunized with interphotoreceptor retinoid-binding protein (IRBP) and compared for their development of EAU, delayed type hypersensitivity (DTH) by skin tests, production of cytokines in culture, and expression of interferon (IFN)-γ, interleukin (IL)-17 and FoxP3 by spleen cells, using flow cytometry. Peritoneal macrophages were examined for their production of cytokines/chemokines in culture following stimulation with LPS or the oligodeoxynucleotide CpG. The Lrrk2 (-/-) and WT mice were also compared for their response to bovine serum albumin (BSA). Results The Lrrk2 (-/-) mice developed lower levels of EAU, DTH responses and cytokine production by lymphocytes than did their WT controls. Intracellular expression of IFN-γ and IL-17, by spleen cells, and secretion of cytokines/chemokines by activated peritoneal macrophages of Lrrk2 (-/-) mice trended toward diminished levels, although variabilities were noted. The expression levels of FoxP3 by Lrrk2 (-/-) spleen cells, however, were similar to those seen in WT controls. Consistent with their low response to IRBP, Lrrk2 (-/-) mice responded to BSA less vigorously than their WT controls. Conclusions Lrrk2 deficiency in mice diminished the development of EAU and the related adaptive immune responses to IRBP as compared to the WT controls. PMID:26067490

  19. Mechanisms of haplotype divergence at the RGA08 nucleotide-binding leucine-rich repeat gene locus in wild banana (Musa balbisiana).

    PubMed

    Baurens, Franc-Christophe; Bocs, Stéphanie; Rouard, Mathieu; Matsumoto, Takashi; Miller, Robert N G; Rodier-Goud, Marguerite; MBéguié-A-MBéguié, Didier; Yahiaoui, Nabila

    2010-07-16

    Comparative sequence analysis of complex loci such as resistance gene analog clusters allows estimating the degree of sequence conservation and mechanisms of divergence at the intraspecies level. In banana (Musa sp.), two diploid wild species Musa acuminata (A genome) and Musa balbisiana (B genome) contribute to the polyploid genome of many cultivars. The M. balbisiana species is associated with vigour and tolerance to pests and disease and little is known on the genome structure and haplotype diversity within this species. Here, we compare two genomic sequences of 253 and 223 kb corresponding to two haplotypes of the RGA08 resistance gene analog locus in M. balbisiana "Pisang Klutuk Wulung" (PKW). Sequence comparison revealed two regions of contrasting features. The first is a highly colinear gene-rich region where the two haplotypes diverge only by single nucleotide polymorphisms and two repetitive element insertions. The second corresponds to a large cluster of RGA08 genes, with 13 and 18 predicted RGA genes and pseudogenes spread over 131 and 152 kb respectively on each haplotype. The RGA08 cluster is enriched in repetitive element insertions, in duplicated non-coding intergenic sequences including low complexity regions and shows structural variations between haplotypes. Although some allelic relationships are retained, a large diversity of RGA08 genes occurs in this single M. balbisiana genotype, with several RGA08 paralogs specific to each haplotype. The RGA08 gene family has evolved by mechanisms of unequal recombination, intragenic sequence exchange and diversifying selection. An unequal recombination event taking place between duplicated non-coding intergenic sequences resulted in a different RGA08 gene content between haplotypes pointing out the role of such duplicated regions in the evolution of RGA clusters. Based on the synonymous substitution rate in coding sequences, we estimated a 1 million year divergence time for these M. balbisiana haplotypes. A large RGA08 gene cluster identified in wild banana corresponds to a highly variable genomic region between haplotypes surrounded by conserved flanking regions. High level of sequence identity (70 to 99%) of the genic and intergenic regions suggests a recent and rapid evolution of this cluster in M. balbisiana.

  20. Molecular cloning of a coiled-coil-nucleotide-binding-site-leucine-rich repeat gene from pearl millet and its expression pattern in response to the downy mildew pathogen.

    PubMed

    Veena, Mariswamy; Melvin, Prasad; Prabhu, Sreedhara Ashok; Shailasree, Sekhar; Shetty, Hunthrike Shekar; Kini, Kukkundoor Ramachandra

    2016-03-01

    Downy mildew caused by Sclerospora graminicola is a devastating disease of pearl millet. Based on candidate gene approach, a set of 22 resistance gene analogues were identified. The clone RGPM 301 (AY117410) containing a partial sequence shared 83% similarity to rice R-proteins. A full-length R-gene RGA RGPM 301 of 3552 bp with 2979 bp open reading frame encoding 992 amino acids was isolated by the degenerate primers and rapid amplification of cDNA ends polymerase chain reaction (RACE-PCR) approach. It had a molecular mass of 113.96 kDa and isoelectric point (pI) of 8.71. The sequence alignment and phylogenetic analysis grouped it to a non-TIR NBS LRR group. The quantitative real-time PCR (qRT-PCR) analysis revealed higher accumulation of the transcripts following inoculation with S. graminicola in the resistant cultivar (IP18296) compared to susceptible cultivar (7042S). Further, significant induction in the transcript levels were observed when treated with abiotic elicitor β-aminobutyric acid (BABA) and biotic elicitor Pseudomonas fluorescens. Exogenous application of phytohormones jasmonic acid or salicylic acid also up-regulated the expression levels of RGA RGPM 301. The treatment of cultivar IP18296 with mitogen-activated protein kinase (MPK) inhibitors (PD98059 and U0126) suppressed the levels of RGA RGPM 301. A 3.5 kb RGA RGPM 301 which is a non-TIR NBS-LRR protein was isolated from pearl millet and its up-regulation during downy mildew interaction was demonstrated by qRT-PCR. These studies indicate a role for this RGA in pearl millet downy mildew interaction.

  1. Leucine-rich repeat kinase 2 (LRRK2)-deficient rats exhibit renal tubule injury and perturbations in metabolic and immunological homeostasis.

    PubMed

    Ness, Daniel; Ren, Zhao; Gardai, Shyra; Sharpnack, Douglas; Johnson, Victor J; Brennan, Richard J; Brigham, Elizabeth F; Olaharski, Andrew J

    2013-01-01

    Genetic evidence links mutations in the LRRK2 gene with an increased risk of Parkinson's disease, for which no neuroprotective or neurorestorative therapies currently exist. While the role of LRRK2 in normal cellular function has yet to be fully described, evidence suggests involvement with immune and kidney functions. A comparative study of LRRK2-deficient and wild type rats investigated the influence that this gene has on the phenotype of these rats. Significant weight gain in the LRRK2 null rats was observed and was accompanied by significant increases in insulin and insulin-like growth factors. Additionally, LRRK2-deficient rats displayed kidney morphological and histopathological alterations in the renal tubule epithelial cells of all animals assessed. These perturbations in renal morphology were accompanied by significant decreases of lipocalin-2, in both the urine and plasma of knockout animals. Significant alterations in the cellular composition of the spleen between LRRK2 knockout and wild type animals were identified by immunophenotyping and were associated with subtle differences in response to dual infection with rat-adapted influenza virus (RAIV) and Streptococcus pneumoniae. Ontological pathway analysis of LRRK2 across metabolic and kidney processes and pathological categories suggested that the thioredoxin network may play a role in perturbing these organ systems. The phenotype of the LRRK2 null rat is suggestive of a complex biology influencing metabolism, immune function and kidney homeostasis. These data need to be extended to better understand the role of the kinase domain or other biological functions of the gene to better inform the development of pharmacological inhibitors.

  2. Leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is necessary for prostate cancer metastasis via epithelial-mesenchymal transition.

    PubMed

    Luo, Weijia; Tan, Peng; Rodriguez, Melissa; He, Lian; Tan, Kunrong; Zeng, Li; Siwko, Stefan; Liu, Mingyao

    2017-09-15

    Prostate cancer is a highly penetrant disease among men in industrialized societies, but the factors regulating the transition from indolent to aggressive and metastatic cancer remain poorly understood. We found that men with prostate cancers expressing high levels of the G protein-coupled receptor LGR4 had a significantly shorter recurrence-free survival compared with patients with cancers having low LGR4 expression. LGR4 expression was elevated in human prostate cancer cell lines with metastatic potential. We therefore generated a novel transgenic adenocarcinoma of the mouse prostate (TRAMP) mouse model to investigate the role of Lgr4 in prostate cancer development and metastasis in vivo TRAMP Lgr4(-/-) mice exhibited an initial delay in prostate intraepithelial neoplasia formation, but the frequency of tumor formation was equivalent between TRAMP and TRAMP Lgr4(-/-) mice by 12 weeks. The loss of Lgr4 significantly improved TRAMP mouse survival and dramatically reduced the occurrence of lung metastases. LGR4 knockdown impaired the migration, invasion, and colony formation of DU145 cells and reversed epithelial-mesenchymal transition (EMT), as demonstrated by up-regulation of E-cadherin and decreased expression of the EMT transcription factors ZEB, Twist, and Snail. Overexpression of LGR4 in LNCaP cells had the opposite effects. Orthotopic injection of DU145 cells stably expressing shRNA targeting LGR4 resulted in decreased xenograft tumor size, reduced tumor EMT marker expression, and impaired metastasis, in accord with our findings in TRAMP Lgr4(-/-) mice. In conclusion, we propose that Lgr4 is a key protein necessary for prostate cancer EMT and metastasis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Porphyromonas gingivalis vesicles enhance attachment, and the leucine-rich repeat BspA protein is required for invasion of epithelial cells by "Tannerella forsythia".

    PubMed

    Inagaki, Satoru; Onishi, Shinsuke; Kuramitsu, Howard K; Sharma, Ashu

    2006-09-01

    The human oral cavity harbors more than 500 species of bacteria. Periodontitis, a bacterially induced inflammatory disease that leads to tooth loss, is believed to result from infection by a select group of gram-negative periodontopathogens that includes Porphyromonas gingivalis, Treponema denticola, and "Tannerella forsythia" (opinion on name change from Tannerella forsythensis pending; formerly Bacteroides forsythus). Epithelial cell invasion by periodontopathogens is considered to be an important virulence mechanism for evasion of the host defense responses. Further, the epithelial cells with invading bacteria also serve as reservoirs important in recurrent infections. The present study was therefore undertaken to address the epithelial cell adherence and invasion properties of T. forsythia and the role of the cell surface-associated protein BspA in these processes. Further, we were interested in determining if P. gingivalis, one of the pathogens frequently found associated in disease, or its outer membrane vesicles (OMVs) could modulate the epithelial cell adherence and invasion abilities of T. forsythia. Here we show that epithelial cell attachment and invasion by T. forsythia are dependent on the BspA protein. In addition, P. gingivalis or its OMVs enhance the attachment and invasion of T. forsythia to epithelial cells. Thus, interactions between these two bacteria may play important roles in virulence by promoting host cell attachment and invasion.

  4. Leucine-Rich Repeat Kinase 2 interacts with Parkin, DJ-1 and PINK-1 in a Drosophila melanogaster model of Parkinson's disease.

    PubMed

    Venderova, Katerina; Kabbach, Ghassan; Abdel-Messih, Elizabeth; Zhang, Yi; Parks, Robin J; Imai, Yuzuru; Gehrke, Stephan; Ngsee, Johnny; Lavoie, Matthew J; Slack, Ruth S; Rao, Yong; Zhang, Zhuohua; Lu, Bingwei; Haque, M Emdadul; Park, David S

    2009-11-15

    Mutations in the LRRK2 gene are the most common genetic cause of familial Parkinson's disease (PD). However, its physiological and pathological functions are unknown. Therefore, we generated several independent Drosophila lines carrying WT or mutant human LRRK2 (mutations in kinase, COR or LRR domains, resp.). Ectopic expression of WT or mutant LRRK2 in dopaminergic neurons caused their significant loss accompanied by complex age-dependent changes in locomotor activity. Overall, the ubiquitous expression of LRRK2 increased lifespan and fertility of the flies. However, these flies were more sensitive to rotenone. LRRK2 expression in the eye exacerbated retinal degeneration. Importantly, in double transgenic flies, various indices of the eye and dopaminergic survival were modified in a complex fashion by a concomitant expression of PINK1, DJ-1 or Parkin. This evidence suggests a genetic interaction between these PD-relevant genes.

  5. XYLEM INTERMIXED WITH PHLOEM1, a leucine-rich repeat receptor-like kinase required for stem growth and vascular development in Arabidopsis thaliana.

    PubMed

    Bryan, Anthony C; Obaidi, Adam; Wierzba, Michael; Tax, Frans E

    2012-01-01

    The regulation of cell specification in plants is particularly important in vascular development. The vascular system is comprised two differentiated tissue types, the xylem and phloem, which form conductive elements for the transport of water, nutrients and signaling molecules. A meristematic layer, the procambium, is located between these two differentiated cell types and divides to initiate vascular growth. We report the identification of a receptor-like kinase (RLK) that is expressed in the vasculature. Histochemical analyses of mutants in this kinase display an aberrant accumulation of highly lignified cells, typical of xylem or fiber cells, within the phloem. In addition, phloem cells are sometimes located adjacent to xylem cells in these mutants. We, therefore, named this RLK XYLEM INTERMIXED WITH PHLOEM 1 (XIP1). Analyses of longitudinal profiles of xip1 mutant stems show malformed cell files, indicating defects in oriented cell divisions or cell morphology. We propose that XIP1 prevents ectopic lignification in phloem cells and is necessary to maintain the organization of cell files or cell morphology in conductive elements.

  6. Mice deficient in small leucine-rich proteoglycans: novel in vivo models for osteoporosis, osteoarthritis, Ehlers-Danlos syndrome, muscular dystrophy, and corneal diseases.

    PubMed

    Ameye, Laurent; Young, Marian F

    2002-09-01

    Small leucine-rich proteoglycans (SLRPs) are extracellular molecules that bind to TGFbetas and collagens and other matrix molecules. In vitro, SLRPs were shown to regulate collagen fibrillogenesis, a process essential in development, tissue repair, and metastasis. To better understand their functions in vivo, mice deficient in one or two of the four most prominent and widely expressed SLRPs (biglycan, decorin, fibromodulin, and lumican) were recently generated. All four SLRP deficiencies result in the formation of abnormal collagen fibrils. Taken together, the collagen phenotypes demonstrate a cooperative, sequential, timely orchestrated action of the SLRPs that altogether shape the architecture and mechanical properties of the collagen matrix. In addition, SLRP-deficient mice develop a wide array of diseases (osteoporosis, osteoarthritis, muscular dystrophy, Ehlers-Danlos syndrome, and corneal diseases), most of them resulting primarily from an abnormal collagen fibrillogenesis. The development of these diseases by SLRP-deficient mice suggests that mutations in SLRPs may be part of undiagnosed predisposing genetic factors for these diseases. Although the distinct phenotypes developed by the different singly deficient mice point to distinct in vivo function for each SLRP, the analysis of the double-deficient mice also demonstrates the existence of rescuing/compensation mechanisms, indicating some functional overlap within the SLRP family.

  7. Overexpression of the leucine-rich receptor-like kinase gene LRK2 increases drought tolerance and tiller number in rice.

    PubMed

    Kang, Junfang; Li, Jianmin; Gao, Shuang; Tian, Chao; Zha, Xiaojun

    2017-02-09

    Drought represents a key limiting factor of global crop distribution. Receptor-like kinases play major roles in plant development and defense responses against stresses such as drought. In this study, LRK2, which encodes a leucine-rich receptor-like kinase, was cloned and characterized and found to be localized on the plasma membrane in rice. Promoter-GUS analysis revealed strong expression in tiller buds, roots, nodes and anthers. Transgenic plants overexpressing LRK2 exhibited enhanced tolerance to drought stress due to an increased number of lateral roots compared to the wild-type at the vegetative stage. Moreover, ectopic expression of LRK2 seedlings resulted in increased tiller development. Yeast two-hybrid screening and bimolecular fluorescence complementation (BiFC) indicated a possible interaction between LRK2 and elongation factor 1 alpha (OsEF1A) in vitro. These results suggest that LRK2 functions as a positive regulator of the drought stress response and tiller development via increased branch development in rice. These findings will aid our understanding of branch regulation in other grasses and support improvements in rice genetics. This article is protected by copyright. All rights reserved.

  8. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking.

    PubMed Central

    Stommel, J M; Marchenko, N D; Jimenez, G S; Moll, U M; Hope, T J; Wahl, G M

    1999-01-01

    Appropriate subcellular localization is crucial for regulating p53 function. We show that p53 export is mediated by a highly conserved leucine-rich nuclear export signal (NES) located in its tetramerization domain. Mutation of NES residues prevented p53 export and hampered tetramer formation. Although the p53-binding protein MDM2 has an NES and has been proposed to mediate p53 export, we show that the intrinsic p53 NES is both necessary and sufficient for export. This report also demonstrates that the cytoplasmic localization of p53 in neuroblastoma cells is due to its hyperactive nuclear export: p53 in these cells can be trapped in the nucleus by the export-inhibiting drug leptomycin B or by binding a p53-tetramerization domain peptide that masks the NES. We propose a model in which regulated p53 tetramerization occludes its NES, thereby ensuring nuclear retention of the DNA-binding form. We suggest that attenuation of p53 function involves the conversion of tetramers into monomers or dimers, in which the NES is exposed to the proteins which mediate their export to the cytoplasm. PMID:10075936

  9. Acidic leucine-rich nuclear phosphoprotein 32 family member B (ANP32B) contributes to retinoic acid-induced differentiation of leukemic cells

    SciTech Connect

    Yu, Yun; Shen, Shao-Ming; Zhang, Fei-Fei; Wu, Zhao-Xia; Han, Bin; Wang, Li-Shun

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer ANP32B was down-regulated during ATRA-induced leukemic cell differentiation. Black-Right-Pointing-Pointer Knockdown of ANP32B enhanced ATRA-induced leukemic cell differentiation. Black-Right-Pointing-Pointer Ectopic expression of ANP32B inhibited ATRA-induced leukemic cell differentiation. Black-Right-Pointing-Pointer ANP32B inhibited ATRA activated transcriptional activity of RAR{alpha}. -- Abstract: The acidic leucine-rich nuclear phosphoprotein 32B (ANP32B) is a member of a conserved superfamily of nuclear proteins whose functions are largely unknown. In our previous work, ANP32B was identified as a novel direct substrate for caspase-3 and acted as a negative regulator for leukemic cell apoptosis. In this work, we provided the first demonstration that ANP32B expression was down-regulated during differentiation induction of leukemic cells by all-trans retinoic acid (ATRA). Knockdown of ANP32B expression by specific shRNA enhanced ATRA-induced leukemic cell differentiation, while ectopic expression of ANP32B attenuated it, indicating an inhibitory role of ANP32B against leukemic cell differentiation. Furthermore, luciferase reporter assay revealed that ANP32B might exert this role through inhibiting the ATRA dependent transcriptional activity of retinoic acid receptor (RAR{alpha}). These data will shed new insights into understanding the biological functions of ANP32B protein.

  10. Acidic leucine-rich nuclear phosphoprotein-32A (ANP32A) association with lymph node metastasis predicts poor survival in oral squamous cell carcinoma patients

    PubMed Central

    Lee, Chien-Hung; Lin, Shu-Hui; Chin, Mei-Chung; Chiang, Shang-Lun; Wang, Zhi-Hong; Hua, Chun-Hung; Tsai, Ming-Hsui; Chang, Jan-Gowth; Ko, Ying-Chin

    2016-01-01

    Acidic leucine-rich nuclear phosphoprotein-32A (ANP32A) is a multifunctional protein aberrantly expressed in various types of cancers. However, its expression pattern and clinical significance in oral squamous cell carcinoma (OSCC) remains unclear. In this study, we immunohistochemically investigated the expression pattern of ANP32A in 259 OSCC patients and the results were correlated with clinicopathological factors using Allred, Klein and Immunoreactive scoring (IRS) system. Our data indicated that high expression of ANP32A was significantly associated with N stage and tumor differentiation status in OSCC patients. High ANP32A expression with N2/N3 stage had an increased mortality risk than low ANP32A expressing OSCC patients with N0/N1 stage. Functional studies revealed that knockdown of ANP32A significantly decreased the migration and invasion ability thereby concomitantly increasing E-cadherin and decreasing Slug, Claudin-1 and Vimentin expression in vitro. These results suggest that ANP32A is commonly increased in oral squamous cell carcinoma and ANP32A protein could act as a potential biomarker for prognosis assessment of oral cancer patients with lymph node metastasis. PMID:26918356

  11. Leptoglycin: a new Glycine/Leucine-rich antimicrobial peptide isolated from the skin secretion of the South American frog Leptodactylus pentadactylus (Leptodactylidae).

    PubMed

    Sousa, Juliana C; Berto, Raquel F; Gois, Elicélia A; Fontenele-Cardi, Nauíla C; Honório, José E R; Konno, Katsuhiro; Richardson, Michael; Rocha, Marcos F G; Camargo, Antônio A C M; Pimenta, Daniel C; Cardi, Bruno A; Carvalho, Krishnamurti M

    2009-07-01

    Antimicrobial peptides are components of innate immunity that is the first-line defense against invading pathogens for a wide range of organisms. Here, we describe the isolation, biological characterization and amino acid sequencing of a novel neutral Glycine/Leucine-rich antimicrobial peptide from skin secretion of Leptodactylus pentadactylus named leptoglycin. The amino acid sequence of the peptide purified by RP-HPLC (C(18) column) was deduced by mass spectrometric de novo sequencing and confirmed by Edman degradation: GLLGGLLGPLLGGGGGGGGGLL. Leptoglycin was able to inhibit the growth of Gram-negative bacteria Pseudomonas aeruginosa, Escherichia coli and Citrobacter freundii with minimal inhibitory concentrations (MICs) of 8 microM, 50 microM, and 75 microM respectively, but it did not show antimicrobial activity against Gram-positive bacteria (Staphylococcus aureus, Micrococcus luteus and Enterococcus faecalis), yeasts (Candida albicans and Candida tropicalis) and dermatophytes fungi (Microsporum canis and Trichophyton rubrum). No hemolytic activity was observed at the 2-200 microM range concentration. The amino acid sequence of leptoglycin with high level of glycine (59.1%) and leucine (36.4%) containing an unusual central proline suggests the existence of a new class of Gly/Leu-rich antimicrobial peptides. Taken together, these results suggest that this natural antimicrobial peptide could be a tool to develop new antibiotics.

  12. Potential of mean force analysis of the self-association of leucine-rich transmembrane α-helices: Difference between atomistic and coarse-grained simulations

    NASA Astrophysics Data System (ADS)

    Nishizawa, Manami; Nishizawa, Kazuhisa

    2014-08-01

    Interaction of transmembrane (TM) proteins is important in many biological processes. Large-scale computational studies using coarse-grained (CG) simulations are becoming popular. However, most CG model parameters have not fully been calibrated with respect to lateral interactions of TM peptide segments. Here, we compare the potential of mean forces (PMFs) of dimerization of TM helices obtained using a MARTINI CG model and an atomistic (AT) Berger lipids-OPLS/AA model (ATOPLS). For helical, tryptophan-flanked, leucine-rich peptides (WL15 and WALP15) embedded in a parallel configuration in an octane slab, the ATOPLS PMF profiles showed a shallow minimum (with a depth of approximately 3 kJ/mol; i.e., a weak tendency to dimerize). A similar analysis using the CHARMM36 all-atom model (ATCHARMM) showed comparable results. In contrast, the CG analysis generally showed steep PMF curves with depths of approximately 16-22 kJ/mol, suggesting a stronger tendency to dimerize compared to the AT model. This CG > AT discrepancy in the propensity for dimerization was also seen for dilauroylphosphatidylcholine (DLPC)-embedded peptides. For a WL15 (and WALP15)/DLPC bilayer system, ATOPLS PMF showed a repulsive mean force for a wide range of interhelical distances, in contrast to the attractive forces observed in the octane system. The change from the octane slab to the DLPC bilayer also mitigated the dimerization propensity in the CG system. The dimerization energies of CG (AALALAA)3 peptides in DLPC and dioleoylphosphatidylcholine bilayers were in good agreement with previous experimental data. The lipid headgroup, but not the length of the lipid tails, was a key causative factor contributing to the differences between octane and DLPC. Furthermore, the CG model, but not the AT model, showed high sensitivity to changes in amino acid residues located near the lipid-water interface and hydrophobic mismatch between the peptides and membrane. These findings may help interpret CG and AT

  13. Leucine-rich amelogenin peptide (LRAP) as a surface primer for biomimetic remineralization of superficial enamel defects: An in vitro study.

    PubMed

    Shafiei, Farhad; Hossein, Bagheri G; Farajollahi, Mohammad M; Fathollah, Moztarzadeh; Marjan, Behroozibakhsh; Tahereh, Jafarzadeh Kashi

    2015-01-01

    This study was carried out to obtain more information about the assembly of hydroxyapatite bundles formed in the presence of Leucine-Rich Amelogenin Peptide (LRAP) and to evaluate its effect on the remineralization of enamel defects through a biomimetic approach. One or 2 mg/mL LRAP solutions containing 2.5 mM of Ca(+2) and 1.5 mM phosphate were prepared (pH = 7.2) and stored at 37 °C for 24 h. The products of the reaction were studied using atomic force microscopy (AFM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). Vickers surface microhardness recovery (SMR%) of acid-etched bovine enamel, with or without LRAP surface treatment, were calculated to evaluate the influence of peptide on the lesion remineralization. Distilled water and 1 or 2 mg/mL LRAP solution (pH = 7.2) were applied on the lesions and the specimens were incubated in mineralization solution (2.5mM Ca(+2) , 1.5mM PO4 (-3) , pH = 7.2) for 24 h. One-way ANOVA and Tukey's multi-comparison tests were used for statistical analysis. The pattern of enamel surface repair was studied using FE-SEM. AFM showed the formation of highly organized hierarchical structures, composed of hydroxyapatite (HA) crystals, similar to the dental enamel microstructure. ANOVA procedure showed significant effect of peptide treatment on the calculated SMR% (p < 0.001). Tukey's test revealed that peptide treated groups had significantly higher values of SMR%. In conclusion, LRAP is able to regulate the formation of HA and enhances the remineralization of acid-etched enamel as a surface treatment agent.

  14. Spatial patterns of diversity at the putative recognition domain of resistance gene candidates in wild bean populations.

    PubMed

    de Meaux, J; Neema, C

    2003-01-01

    Leucine Rich Repeats (LRR) domains have been identified on most known plant resistance genes and appear to be involved in the specific recognition of pathogen strains. Here we explore the processes which may drive the evolution of this putative recognition domain. We developed AFLP markers specifically situated in the LRR domain of members of the PRLJ1 complex Resistance Gene Candidate (RGC) family identified in common bean (Phaseolus vulgaris). Diversity for these markers was assessed in ten wild populations of P. vulgaris and compared to locally co-occurring pathogen populations of Colletotrichum lindemuthianum. Nine PRLJ1 LRR specific markers were obtained. Marker sequences revealed that RGC diversity at PRLJ1 is similar to that at other complex R-loci. Wild bean populations showed contrasting levels of PRLJ1 LRR diversity and were all significantly differentiated. We could not detect an effect of local C. lindemuthianum population diversity on the spatial distribution of P. vulgaris PRLJ1 diversity. However, host populations have been previously assessed for neutral (RAPD) markers and for resistance phenotypes to six strains of C. lindemuthianum isolated from cultivated bean fields. A comparative analysis of PRLJ1 LRR diversity and host diversity for resistance phenotypes indicated that evolutionary processes related to the antagonistic C. lindemuthianum/P. vulgaris interaction are likely to have shaped molecular diversity of the putative recognition domains of the PRLJ1 RGC family members.

  15. High mutation rate of TPE repeats: a microsatellite in the putative transposase of the hobo element in Drosophila melanogaster.

    PubMed

    Souames, Sémi; Bonnivard, Eric; Bazin, Claude; Higuet, Dominique

    2003-11-01

    The hobo transposable element contains a polymorphic microsatellite sequence located in its coding region, the TPE repeats. Previous surveys of natural populations of Drosophila melanogaster have detected at least seven different hobo transposons. These natural populations are geographically structured with regard to TPE polymorphism, and a scenario has been proposed for the invasion process. Natural populations have recently been completely invaded by hobo elements with three TPE repeats. New elements then appeared by mutation, triggering a new stage of invasion by other elements. Since TPE polymorphism appeared over a short period of time, we focused on estimating the mutation rate of these TPE repeats. We used transgenic lines harboring three TPE and/or five TPE hobo elements that had been evolving for at least 16 generations to search for a new TPE repeat polymorphism. We detected three mutants, with four, seven, and eight TPE repeats, respectively. The estimated mutation rate of the TPE repeats is therefore higher than that of neutral microsatellites in D. melanogaster (4.2 x 10-4 versus 6.5 x 10-6). The role of the transposition mechanism and the particular structure of the TPE repeats of the hobo element in this increase in the mutation rate are discussed.

  16. Potential of mean force analysis of the self-association of leucine-rich transmembrane α-helices: difference between atomistic and coarse-grained simulations.

    PubMed

    Nishizawa, Manami; Nishizawa, Kazuhisa

    2014-08-21

    Interaction of transmembrane (TM) proteins is important in many biological processes. Large-scale computational studies using coarse-grained (CG) simulations are becoming popular. However, most CG model parameters have not fully been calibrated with respect to lateral interactions of TM peptide segments. Here, we compare the potential of mean forces (PMFs) of dimerization of TM helices obtained using a MARTINI CG model and an atomistic (AT) Berger lipids-OPLS/AA model (AT(OPLS)). For helical, tryptophan-flanked, leucine-rich peptides (WL15 and WALP15) embedded in a parallel configuration in an octane slab, the AT(OPLS) PMF profiles showed a shallow minimum (with a depth of approximately 3 kJ/mol; i.e., a weak tendency to dimerize). A similar analysis using the CHARMM36 all-atom model (AT(CHARMM)) showed comparable results. In contrast, the CG analysis generally showed steep PMF curves with depths of approximately 16-22 kJ/mol, suggesting a stronger tendency to dimerize compared to the AT model. This CG > AT discrepancy in the propensity for dimerization was also seen for dilauroylphosphatidylcholine (DLPC)-embedded peptides. For a WL15 (and WALP15)/DLPC bilayer system, AT(OPLS) PMF showed a repulsive mean force for a wide range of interhelical distances, in contrast to the attractive forces observed in the octane system. The change from the octane slab to the DLPC bilayer also mitigated the dimerization propensity in the CG system. The dimerization energies of CG (AALALAA)3 peptides in DLPC and dioleoylphosphatidylcholine bilayers were in good agreement with previous experimental data. The lipid headgroup, but not the length of the lipid tails, was a key causative factor contributing to the differences between octane and DLPC. Furthermore, the CG model, but not the AT model, showed high sensitivity to changes in amino acid residues located near the lipid-water interface and hydrophobic mismatch between the peptides and membrane. These findings may help interpret CG

  17. Potential of mean force analysis of the self-association of leucine-rich transmembrane α-helices: Difference between atomistic and coarse-grained simulations

    SciTech Connect

    Nishizawa, Manami; Nishizawa, Kazuhisa

    2014-08-21

    Interaction of transmembrane (TM) proteins is important in many biological processes. Large-scale computational studies using coarse-grained (CG) simulations are becoming popular. However, most CG model parameters have not fully been calibrated with respect to lateral interactions of TM peptide segments. Here, we compare the potential of mean forces (PMFs) of dimerization of TM helices obtained using a MARTINI CG model and an atomistic (AT) Berger lipids-OPLS/AA model (AT{sup OPLS}). For helical, tryptophan-flanked, leucine-rich peptides (WL15 and WALP15) embedded in a parallel configuration in an octane slab, the AT{sup OPLS} PMF profiles showed a shallow minimum (with a depth of approximately 3 kJ/mol; i.e., a weak tendency to dimerize). A similar analysis using the CHARMM36 all-atom model (AT{sup CHARMM}) showed comparable results. In contrast, the CG analysis generally showed steep PMF curves with depths of approximately 16–22 kJ/mol, suggesting a stronger tendency to dimerize compared to the AT model. This CG > AT discrepancy in the propensity for dimerization was also seen for dilauroylphosphatidylcholine (DLPC)-embedded peptides. For a WL15 (and WALP15)/DLPC bilayer system, AT{sup OPLS} PMF showed a repulsive mean force for a wide range of interhelical distances, in contrast to the attractive forces observed in the octane system. The change from the octane slab to the DLPC bilayer also mitigated the dimerization propensity in the CG system. The dimerization energies of CG (AALALAA){sub 3} peptides in DLPC and dioleoylphosphatidylcholine bilayers were in good agreement with previous experimental data. The lipid headgroup, but not the length of the lipid tails, was a key causative factor contributing to the differences between octane and DLPC. Furthermore, the CG model, but not the AT model, showed high sensitivity to changes in amino acid residues located near the lipid-water interface and hydrophobic mismatch between the peptides and membrane. These

  18. Study on the influence of leucine-rich amelogenin peptide (LRAP) on the remineralization of enamel defects via micro-focus x-ray computed tomography and nanoindentation.

    PubMed

    Bagheri G, Hossein; Sadr, Alireza; Espigares, Jorge; Hariri, Ilnaz; Nakashima, Syozi; Hamba, Hidenori; Shafiei, Farhad; Moztarzadeh, Fathollah; Tagami, Junji

    2015-06-04

    Regeneration of severely damaged enamel (e.g. deep demineralized lesions) is currently not possible, because the structural units of enamel crystal construction are removed after its maturation. The aim of this in vitro study was to evaluate the effect of surface impregnation by leucine-rich amelogenin peptide (LRAP) on the remineralization of eroded enamel using micro-focus x-ray computed tomography (µCT). Fifteen bovine enamel blocks were embedded in resin and three zones (sound, demineralization, and remineralization) were defined on each specimen. Lesions were prepared by immersing the samples in demineralization solution for 7 d. The samples were soaked in distilled water or 60 or 120 µg mL(-1) solution of LRAP in water for 30 min. After the surface treatment, specimens were incubated in artificial saliva for either 5 or 10 d at 37 °C. The amount of mineral gain (dΔZ%) and the relative changes in the lesion depth (dLD%), obtained from µCT, were used to evaluate the effect of LRAP on the remineralization of lesions. The effects of LRAP on cross-sectional integrated hardness ΔINH were studied after 10 d using nanoindentation. ANOVA test was used to determine the effect of time and/or LRAP concentration on dΔZ%, dLD% and ΔINH mean values. Tukey's analysis was used for multiple comparison testing (α = 0.05). Analysis of µCT data showed significant effect of time and LRAP concentration on the dΔZ% (p = 0.013, p = 0.003) and the dLD% (p  <  0.001, p = 0.002) mean values. The nanoindentation hardness was significantly improved by 120 µg mL(-1) LRAP (p = 0.02). Also, the peptide treatment affected the mineral distribution throughout the lesion by inhibiting of superficial deposition. This study showed that the treatment of eroded lesions in enamel by LRAP can improve and regulate the pattern of remineralization in vitro.

  19. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia

    PubMed Central

    Irani, Sarosh R.; Alexander, Sian; Waters, Patrick; Kleopa, Kleopas A.; Pettingill, Philippa; Zuliani, Luigi; Peles, Elior; Buckley, Camilla; Lang, Bethan

    2010-01-01

    Antibodies that immunoprecipitate 125I-α-dendrotoxin-labelled voltage-gated potassium channels extracted from mammalian brain tissue have been identified in patients with neuromyotonia, Morvan’s syndrome, limbic encephalitis and a few cases of adult-onset epilepsy. These conditions often improve following immunomodulatory therapies. However, the proportions of the different syndromes, the numbers with associated tumours and the relationships with potassium channel subunit antibody specificities have been unclear. We documented the clinical phenotype and tumour associations in 96 potassium channel antibody positive patients (titres >400 pM). Five had thymomas and one had an endometrial adenocarcinoma. To define the antibody specificities, we looked for binding of serum antibodies and their effects on potassium channel currents using human embryonic kidney cells expressing the potassium channel subunits. Surprisingly, only three of the patients had antibodies directed against the potassium channel subunits. By contrast, we found antibodies to three proteins that are complexed with 125I-α-dendrotoxin-labelled potassium channels in brain extracts: (i) contactin-associated protein-2 that is localized at the juxtaparanodes in myelinated axons; (ii) leucine-rich, glioma inactivated 1 protein that is most strongly expressed in the hippocampus; and (iii) Tag-1/contactin-2 that associates with contactin-associated protein-2. Antibodies to Kv1 subunits were found in three sera, to contactin-associated protein-2 in 19 sera, to leucine-rich, glioma inactivated 1 protein in 55 sera and to contactin-2 in five sera, four of which were also positive for the other antibodies. The remaining 18 sera were negative for potassium channel subunits and associated proteins by the methods employed. Of the 19 patients with contactin-associated protein-antibody-2, 10 had neuromyotonia or Morvan’s syndrome, compared with only 3 of the 55 leucine-rich, glioma inactivated 1 protein

  20. Identification of a putative nuclear export signal motif in human NANOG homeobox domain

    SciTech Connect

    Park, Sung-Won; Do, Hyun-Jin; Huh, Sun-Hyung; Sung, Boreum; Uhm, Sang-Jun; Song, Hyuk; Kim, Nam-Hyung; Kim, Jae-Hwan

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer We found the putative nuclear export signal motif within human NANOG homeodomain. Black-Right-Pointing-Pointer Leucine-rich residues are important for human NANOG homeodomain nuclear export. Black-Right-Pointing-Pointer CRM1-specific inhibitor LMB blocked the potent human NANOG NES-mediated nuclear export. -- Abstract: NANOG is a homeobox-containing transcription factor that plays an important role in pluripotent stem cells and tumorigenic cells. To understand how nuclear localization of human NANOG is regulated, the NANOG sequence was examined and a leucine-rich nuclear export signal (NES) motif ({sup 125}MQELSNILNL{sup 134}) was found in the homeodomain (HD). To functionally validate the putative NES motif, deletion and site-directed mutants were fused to an EGFP expression vector and transfected into COS-7 cells, and the localization of the proteins was examined. While hNANOG HD exclusively localized to the nucleus, a mutant with both NLSs deleted and only the putative NES motif contained (hNANOG HD-{Delta}NLSs) was predominantly cytoplasmic, as observed by nucleo/cytoplasmic fractionation and Western blot analysis as well as confocal microscopy. Furthermore, site-directed mutagenesis of the putative NES motif in a partial hNANOG HD only containing either one of the two NLS motifs led to localization in the nucleus, suggesting that the NES motif may play a functional role in nuclear export. Furthermore, CRM1-specific nuclear export inhibitor LMB blocked the hNANOG potent NES-mediated export, suggesting that the leucine-rich motif may function in CRM1-mediated nuclear export of hNANOG. Collectively, a NES motif is present in the hNANOG HD and may be functionally involved in CRM1-mediated nuclear export pathway.

  1. Activation of Autophagy and Nucleotide-Binding Domain Leucine-Rich Repeat–Containing-Like Receptor Family, Pyrin Domain–Containing 3 Inflammasome during Leishmania infantum–Associated Glomerulonephritis

    PubMed Central

    Esch, Kevin J.; Schaut, Robert G.; Lamb, Ian M.; Clay, Gwendolyn; Morais Lima, Ádila L.; do Nascimento, Paulo R.P.; Whitley, Elizabeth M.; Jeronimo, Selma M.B.; Sutterwala, Fayyaz S.; Haynes, Joseph S.; Petersen, Christine A.

    2016-01-01

    Chronic kidney disease is a major contributor to human and companion animal morbidity and mortality. Renal complications are sequelae of canine and human visceral leishmaniasis (VL). Despite the high incidence of infection-mediated glomerulonephritis, little is known about pathogenesis of VL-associated renal disease. Leishmania infantum–infected dogs are a naturally occurring model of VL-associated glomerulonephritis. Membranoproliferative glomerulonephritis type I [24 of 25 (96%)], with interstitial lymphoplasmacytic nephritis [23 of 25 (92%)], and glomerular and interstitial fibrosis [12 of 25 (48%)] were predominant lesions. An ultrastructural evaluation of glomeruli from animals with VL identified mesangial cell proliferation and interposition. Immunohistochemistry demonstrated significant Leishmania antigen, IgG, and C3b deposition in VL dog glomeruli. Asymptomatic and symptomatic dogs had increased glomerular nucleotide-binding domain leucine-rich repeat–containing-like receptor family, pyrin domain containing 3 and autophagosome-associated microtubule-associated protein 1 light chain 3 associated with glomerular lesion severity. Transcriptional analyses from symptomatic dogs confirmed induction of autophagy and inflammasome genes within glomeruli and tubules. On the basis of temporal VL staging, glomerulonephritis was initiated by IgG and complement deposition. This deposition preceded presence of nucleotide-binding domain leucine-rich repeat–containing-like receptor family, pyrin domain containing 3–associated inflammasomes and increased light chain 3 puncta indicative of autophagosomes in glomeruli from dogs with clinical VL and renal failure. These findings indicate potential roles for inflammasome complexes in glomerular damage during VL and autophagy in ensuing cellular responses. PMID:26079813

  2. [Conformational polymorphysm of G-rich fragments of DNA Alu-repeats. II. the putative role of G-quadruplex structures in genomic rearrangements].

    PubMed

    Varizhuk, A M; Sekridova, A V; Tankevich, M V; Podgorsky, V S; Smirnov, I P; Pozmogova, G E

    2016-11-01

    Three evolutionary conserved sites of Alu repeats (PQS2, PQS3 and PQS4) were shown to form stable inter- and intramolecular G-quadruplexes (GQs) in vitro. Structures and topologies of these GQs were elucidated using spectral methods. Self-association of G-rich Alu fragments was studied. Dimeric GQ formation from two distal identical or different putative quadruplex sites - (PQS2)2, (PQS3)2 or PQS2-PQS3 - within one lengthy DNA strand was demonstrated by a FRET-based method. Oligomer PQS4 (folded into a parallel intramolecular GQ) was shown to form stacks of quadruplexes that are stabilized by stacking interactions of external G-tetrads (this was confirmed by DOSY NMR, AFM microscopy and differential CD spectroscopy). Comparative analysis of the properties of various GQs allowed us to put forward a hypothesis of two general mechanisms of intermolecular GQ-dependant genomic rearrangements: 1) formation of a dimeric GQs; 2) association of pre-folded intramolecular parallel GQs from different strands into GQ-stacks. Thus, the observed co-localization of G-rich motifs of Alu elements with double-strand break hotspots and rearrangement hotspots may be accounted for by the specific secondary structure of these motifs. At the same time, this is likely primarily due to high abundance of such G-rich Alu fragments in the genome.

  3. Species-specific sequence in the repeat 3 region of the gene encoding a putative Loa loa allergen: a diagnostic tool for occult loiasis.

    PubMed

    Toure, F S; Egwang, T G; Wahl, G; Millet, P; Bain, O; Georges, A J

    1997-01-01

    A polymerase chain reaction (PCR)-based method to detect Loa loa DNA in the blood lysate of infected individuals is described. A set of primers was designed to amplify the repeat 3 sequence (15r3) of the gene encoding a putative L. loa allergen. The qualitative PCR was carried out using blood lysates from subjects from an L. loaendemic area of Gabon where loiasis exists sympatrically with Mansonella perstans, and from individuals from a loiasis-free area in Togo infected concomitantly with M. perstans and Onchocerca volvulus. No specific amplification was observed after ethidium bromide staining of a gel containing M. perstans and O. volvulus control samples. In contrast, a 396-basepair (bp) DNA was detected in all L. loa microfilaremic individuals and in seven of the 20 L. loa amicrofilaremic subjects diagnosed by leukoconcentration. Qualitative Southern blots carried out at high stringency (65 degrees C) using 15r3 oligonucleotide probe revealed hybridization only with L. loa samples (5 of 5 microfilaremic individuals and 15 of 20 amicrofilaremic individuals), confirming the results obtained with ethidium bromide staining of PCR products. We conclude that this 396-bp sequence could be used as a species-specific diagnostic tool for occult loiasis in an endemic area with concurrent filarial infections.

  4. Presence of Putative Repeat-in-Toxin Gene tosA in Escherichia coli Predicts Successful Colonization of the Urinary Tract

    PubMed Central

    Vigil, Patrick D.; Stapleton, Ann E.; Johnson, James R.; Hooton, Thomas M.; Hodges, Andrew P.; He, Yongqun; Mobley, Harry L. T.

    2011-01-01

    ABSTRACT Uropathogenic Escherichia coli (UPEC) strains, which cause the majority of uncomplicated urinary tract infections (UTIs), carry a unique assortment of virulence or fitness genes. However, no single defining set of virulence or fitness genes has been found in all strains of UPEC, making the differentiation between UPEC and fecal commensal strains of E. coli difficult without the use of animal models of infection or phylogenetic grouping. In the present study, we consider three broad categories of virulence factors simultaneously to better define a combination of virulence factors that predicts success in the urinary tract. A total of 314 strains of E. coli, representing isolates from fecal samples, asymptomatic bacteriuria, complicated UTIs, and uncomplicated bladder and kidney infections, were assessed by multiplex PCR for the presence of 15 virulence or fitness genes encoding adhesins, toxins, and iron acquisition systems. The results confirm previous reports of gene prevalence among isolates from different clinical settings and identify several new patterns of gene associations. One gene, tosA, a putative repeat-in-toxin (RTX) homolog, is present in 11% of fecal strains but 25% of urinary isolates. Whereas tosA-positive strains carry an unusually high number (11.2) of the 15 virulence or fitness genes, tosA-negative strains have an average of only 5.4 virulence or fitness genes. The presence of tosA was predictive of successful colonization of a murine model of infection, even among fecal isolates, and can be used as a marker of pathogenic strains of UPEC within a distinct subset of the B2 lineage. PMID:21540363

  5. Leucine-rich α2-glycoprotein as the acute-phase reactant to detect systemic juvenile idiopathic arthritis disease activity during anti-interleukin-6 blockade therapy: A case series.

    PubMed

    Shimizu, Masaki; Nakagishi, Yasuo; Inoue, Natsumi; Mizuta, Mao; Yachie, Akihiro

    2017-09-01

    To assess the role of leucine-rich α2-glycoprotein (LRG) as a biomarker for monitoring systemic juvenile idiopathic arthritis (s-JIA) disease activity during interleukin (IL)-6 blockade treatment. We serially measured serum LRG levels in four s-JIA patients treated with the anti-IL-6 receptor antibody tocilizumab and determined the correlation between clinical symptoms and other inflammatory biomarkers and proinflammatory cytokines, including IL-18, IL-6, neopterin, and tumor necrosis factor-α receptor type I and II. The serum levels of LRG and proinflammatory cytokines were determined using enzyme-linked immunosorbent assay. Serum LRG levels increased concomitantly with s-JIA disease flare-up and macrophage activation syndrome development. Furthermore, even in the clinically inactive phase, serum LRG levels were well above normal values. There were no correlations between serum LRG levels and indicators of s-JIA disease activity other than aspartate aminotransferase. There were significant positive correlations between serum LRG levels and proinflammatory cytokines. Serum LRG levels might be a unique and potential biomarker of s-JIA disease activity during IL-6 blockade treatment.

  6. Retinal pigment epithelium protein of 65 kDA gene-linked retinal degeneration is not modulated by chicken acidic leucine-rich epidermal growth factor-like domain containing brain protein/Neuroglycan C/ chondroitin sulfate proteoglycan 5

    PubMed Central

    Cottet, Sandra; Jüttner, René; Voirol, Nathalie; Chambon, Pierre; Rathjen, Fritz G.; Schorderet, Daniel F.

    2013-01-01

    Purpose To analyze in vivo the function of chicken acidic leucine-rich epidermal growth factor-like domain containing brain protein/Neuroglycan C (gene symbol: Cspg5) during retinal degeneration in the Rpe65−/− mouse model of Leber congenital amaurosis. Methods We resorted to mice with targeted deletions in the Cspg5 and retinal pigment epithelium protein of 65 kDa (Rpe65) genes (Cspg5−/−/Rpe65−/−). Cone degeneration was assessed with cone-specific peanut agglutinin staining. Transcriptional expression of rhodopsin (Rho), S-opsin (Opn1sw), M-opsin (Opn1mw), rod transducin α subunit (Gnat1), and cone transducin α subunit (Gnat2) genes was assessed with quantitative PCR from 2 weeks to 12 months. The retinal pigment epithelium (RPE) was analyzed at P14 with immunodetection of the retinol-binding protein membrane receptor Stra6. Results No differences in the progression of retinal degeneration were observed between the Rpe65−/− and Cspg5−/−/Rpe65−/− mice. No retinal phenotype was detected in the late postnatal and adult Cspg5−/− mice, when compared to the wild-type mice. Conclusions Despite the previously reported upregulation of Cspg5 during retinal degeneration in Rpe65−/− mice, no protective effect or any involvement of Cspg5 in disease progression was identified. PMID:24265546

  7. The tomato leucine-rich repeat receptor-like kinases SlSERK3A and SlSERK3B have overlapping functions in bacterial and nematode innate immunity.

    PubMed

    Peng, Hsuan-Chieh; Kaloshian, Isgouhi

    2014-01-01

    The Somatic Embryogenesis Receptor Kinase 3 (SERK3)/Brassinosteroid (BR) Insensitive 1-Associated Kinase 1 (BAK1) is required for pattern-triggered immunity (PTI) in Arabidopsis thaliana and Nicotiana benthamiana. Tomato (Solanum lycopersicum) has three SlSERK members. Two of them exhibit particularly high levels of sequence similarity to AtSERK3 and, therefore, were named SlSERK3A and SlSERK3B. To characterize a role for SlSERK3A and SlSERK3B in defense, we suppressed each gene individually or co-silenced both using virus-induced gene silencing (VIGS) in the tomato cv. Moneymaker. Co-silencing SlSERK3A and SlSERK3B resulted in spontaneous necrotic lesions and reduced sensitivity to exogenous BR treatment. Silencing either SlSERK3A or SlSERK3B resulted in enhanced susceptibility to root knot-nematode and to non-pathogenic Pseudomonas syringae pv. tomato (Pst) DC3000 hrcC indicating that both SlSERK3s are positive regulators of defense. Interestingly, silencing SlSERK3B, but not SlSERK3A, resulted in enhanced susceptibility to the pathogenic strain Pst DC3000 indicating distinct roles for these two SlSERK3 paralogs. SlSERK3A and SlSERK3B are active kinases, localized to the plasma membrane, and interact in vivo with the Flagellin Sensing 2 receptor in a flg22-dependent manner. Complementation of the Atserk3/bak1-4 mutant with either SlSERK3A or SlSERK3B partially rescued the mutant phenotype. Thus, SlSERK3A and SlSERK3B are likely to constitute tomato orthologs of BAK1.

  8. Elevation of a novel angiogenic factor, leucine-rich-α2-glycoprotein (LRG1), is associated with arterial stiffness, endothelial dysfunction, and peripheral arterial disease in patients with type 2 diabetes.

    PubMed

    Pek, Sharon L T; Tavintharan, S; Wang, Xiaomeng; Lim, Su Chi; Woon, Kaing; Yeoh, Lee Ying; Ng, Xiaowei; Liu, Jianjun; Sum, Chee Fang

    2015-04-01

    Increased arterial stiffness and endothelial dysfunction are associated with peripheral arterial disease (PAD). Leucine-rich-α2-glycoprotein (LRG1) is a proangiogenic factor involved in regulation of the TGFβ signaling pathway. This study in patients with type 2 diabetes mellitus explored the associations of plasma LRG1 with arterial stiffness, endothelial function, and PAD. Based on the ankle brachial index (ABI), patients were classified as having PAD (ABI ≤ 0.9) or as being borderline abnormal (ABI, 0.91-0.99) or normal (ABI, 1.00-1.40). LRG1 was measured by immunoassay; arterial stiffness, by carotid-femoral pulse-wave velocity and augmentation index; and endothelial function, by laser Doppler flowmetry. A total of 2058 patients with type 2 diabetes mellitus were recruited. Mean age (1 SD) was 57.4 (0.2) years. Patients with PAD (n = 258) had significantly higher LRG1 compared to patients with borderline ABI and patients without PAD (19.00 [13.50] vs 17.35 [13.30] and 15.28 [10.40] μg/mL, respectively; P < .0001). Multiple regression analysis revealed that female gender (P < .0001), non-Chinese ethnicity (P < .0001), higher waist circumference (P = .017), lower estimated glomerular filtration rate (P < .0001), higher urine albumin-creatinine ratio (P = .009), lower ABI (P < .0001), higher pulse wave velocity (P = .040), and poorer endothelium-dependent vasodilation (P = .007) were independent significant predictors of higher plasma LRG1 levels. A generalized linear model showed that a 1-SD increase in log LRG1 was associated with an odds ratio of 4.072 (95% confidence interval, 1.889-8.777; P < .0001) for prevalence of PAD, after adjustment for traditional risk factors. Higher LRG1 is a significant predictor for arterial stiffness, endothelial function, and PAD. The pathobiological basis and the temporal relationships of these associations need to be explored by further mechanistic and prospective studies to understand the clinical significance of these

  9. The flexible structure of the K24S28 region of Leucine-Rich Amelogenin Protein (LRAP) bound to apatites as a function of surface type, calcium, mutation, and ionic strength

    SciTech Connect

    Lu, Junxia; Burton, Sarah D.; Xu, Yimin; Buchko, Garry W.; Shaw, Wendy J.

    2014-07-11

    Leucine-Rich Amelogenin Protein (LRAP) is a member of the amelogenin family of biomineralization proteins, proteins which play a critical role in enamel formation. Recent studies have revealed the structure and orientation of the N- and C-terminus of LRAP bound to hydroxyapatite (HAP), a surface used as an analog of enamel. The structure of one region, K24 to S28, was found to be sensitive to phosphorylation of S16, the only naturally observed site of serine phosphorylation in LRAP, suggesting that the residues from K24 to S28 may sit at a key region of structural flexibility and play a role in the protein’s function. In this work, we investigated the sensitivity of the structure and orientation of this region when bound to HAP as a function of several factors which may vary during enamel formation to influence structure: the ionic strength (0.05 M, 0.15 M, 0.2 M), the calcium concentration (0.07 mM and 0.4 mM), and the surface to which it is binding (HAP and carbonated apatite (CAP), a more direct mimic of enamel). A naturally occurring mutation found in amelogenin (T21I), was also investigated. The structure in the K24S28 region of the protein was found to be sensitive to these conditions, with the CAP surface and excess Ca2+ (8:1 [Ca2+]:[LRAP-K24S28(+P)]) resulting in a much tighter helix, while low ionic strength relaxed the helical structure. Higher ionic strength and the point mutation did not result in any structural change in this region. The distance of the backbone of K24 from the surface was most sensitive to excess Ca2+ and in the T21I-mutation. Collectively, these data suggest that the protein is able to accommodate structural changes while maintaining its interaction with the surface, and provides further evidence of the structural sensitivity of the K24 to S28 region, a sensitivity that may contribute to function in biomineralization. This research was supported by NIH-NIDCR Grant DE-015347. The research was performed at the Pacific Northwest

  10. The flexible structure of the K24S28 region of Leucine-Rich Amelogenin Protein (LRAP) bound to apatites as a function of surface type, calcium, mutation, and ionic strength.

    PubMed

    Lu, Jun-Xia; Burton, Sarah D; Xu, Yimin S; Buchko, Garry W; Shaw, Wendy J

    2014-01-01

    Leucine-Rich Amelogenin Protein (LRAP) is a member of the amelogenin family of biomineralization proteins, proteins which play a critical role in enamel formation. Recent studies have revealed the structure and orientation of the N- and C-terminus of LRAP bound to hydroxyapatite (HAP), a surface used as an analog of enamel. The structure of one region, K24 to S28, was found to be sensitive to phosphorylation of S16, the only naturally observed site of serine phosphorylation in LRAP, suggesting that K24S28 may sit at a key region of structural flexibility and play a role in the protein's function. In this work, we investigated the sensitivity of the structure and orientation of this region when bound to HAP as a function of several factors which may vary during enamel formation to influence structure: the ionic strength (0.05, 0.15, 0.2 M), the calcium concentration (0.07 and 0.4 mM), and the surface to which it is binding [HAP and carbonated apatite (CAP), a more direct mimic of enamel]. A naturally occurring mutation found in amelogenin (T21I) was also investigated. The structure in the K24S28 region of the protein was found to be sensitive to these conditions, with the CAP surface and excess Ca(2+) (8:1 [Ca(2+)]:[LRAP-K24S28(+P)]) resulting in a tighter helix, while low ionic strength relaxed the helical structure. Higher ionic strength and the point mutation did not result in any structural change in this region. The distance of the backbone of K24 from the surface was most sensitive to excess Ca(2+) and in the T21I-mutation. Collectively, these data suggest that phosphorylated LRAP is able to accommodate structural changes while maintaining its interaction with the surface, and provides further evidence of the structural sensitivity of the K24S28 region, a sensitivity that may contribute to function in biomineralization.

  11. A leucine-rich diet modulates the tumor-induced down-regulation of the MAPK/ERK and PI3K/Akt/mTOR signaling pathways and maintains the expression of the ubiquitin-proteasome pathway in the placental tissue of NMRI mice.

    PubMed

    Viana, Laís Rosa; Gomes-Marcondes, Maria Cristina Cintra

    2015-02-01

    Placental tissue injury is concomitant with tumor development. We investigated tumor-driven placental damage by tracing certain steps of the protein synthesis and degradation pathways under leucine-rich diet supplementation in MAC16 tumor-bearing mice. Cell signaling and ubiquitin-proteasome pathways were assessed in the placental tissues of pregnant mice, which were distributed into three groups on a control diet (pregnant control, tumor-bearing pregnant, and pregnant injected with MAC-ascitic fluid) and three other groups on a leucine-rich diet (pregnant, tumor-bearing pregnant, and pregnant injected with MAC-ascitic fluid). MAC tumor growth down-regulated the cell-signaling pathways of the placental tissue and decreased the levels of IRS-1, Akt/PKB, Erk/MAPK, mTOR, p70S6K, STAT3, and STAT6 phosphorylated proteins, as assessed by the multiplex Millipore Luminex assay. Leucine supplementation maintained the levels of these proteins within the established cell-signaling pathways. In the tumor-bearing group (MAC) only, the placental tissue showed increased PC5 mRNA expression, as assessed by quantitative RT-PCR, decreased 19S and 20S protein expression, as assessed by Western blot analysis, and decreased placental tyrosine levels, likely reflecting up-regulation of the ubiquitin-proteasome pathway. Similar effects were found in the pregnant injected with MAC-ascitic fluid group, confirming that the effects of the tumor were mimicked by MAC-ascitic fluid injection. Although tumor progression occurred, the degradation pathway-related protein levels were modulated under leucine-supplementation conditions. In conclusion, tumor evolution reduced the protein expression of the cell-signaling pathway associated with elevated protein degradation, thereby jeopardizing placental activity. Under the leucine-rich diet, the impact of cancer on placental function could be minimized by improving the cell-signaling activity and reducing the proteolytic process.

  12. Transcription of TP0126, Treponema pallidum Putative OmpW Homolog, Is Regulated by the Length of a Homopolymeric Guanosine Repeat

    PubMed Central

    Brandt, Stephanie L.; Ke, Wujian; Reid, Tara B.; Molini, Barbara J.; Iverson-Cabral, Stefanie; Ciccarese, Giulia; Drago, Francesco; Lukehart, Sheila A.; Centurion-Lara, Arturo

    2015-01-01

    An effective mechanism for introduction of phenotypic diversity within a bacterial population exploits changes in the length of repetitive DNA elements located within gene promoters. This phenomenon, known as phase variation, causes rapid activation or silencing of gene expression and fosters bacterial adaptation to new or changing environments. Phase variation often occurs in surface-exposed proteins, and in Treponema pallidum subsp. pallidum, the syphilis agent, it was reported to affect transcription of three putative outer membrane protein (OMP)-encoding genes. When the T. pallidum subsp. pallidum Nichols strain genome was initially annotated, the TP0126 open reading frame was predicted to include a poly(G) tract and did not appear to have a predicted signal sequence that might suggest the possibility of its being an OMP. Here we show that the initial annotation was incorrect, that this poly(G) is instead located within the TP0126 promoter, and that it varies in length in vivo during experimental syphilis. Additionally, we show that TP0126 transcription is affected by changes in the poly(G) length consistent with regulation by phase variation. In silico analysis of the TP0126 open reading frame based on the experimentally identified transcriptional start site shortens this hypothetical protein by 69 amino acids, reveals a predicted cleavable signal peptide, and suggests structural homology with the OmpW family of porins. Circular dichroism of recombinant TP0126 supports structural homology to OmpW. Together with the evidence that TP0126 is fully conserved among T. pallidum subspecies and strains, these data suggest an important role for TP0126 in T. pallidum biology and syphilis pathogenesis. PMID:25802057

  13. In Silico Identification of Carboxylate Clamp Type Tetratricopeptide Repeat Proteins in Arabidopsis and Rice As Putative Co-Chaperones of Hsp90/Hsp70

    PubMed Central

    Krishna, Priti

    2010-01-01

    The essential eukaryotic molecular chaperone Hsp90 operates with the help of different co-chaperones, which regulate its ATPase activity and serve as adaptors to recruit client proteins and other molecular chaperones, such as Hsp70, to the Hsp90 complex. Several Hsp90 and Hsp70 co-chaperones contain the tetratricopeptide repeat (TPR) domain, which interacts with the highly conserved EEVD motif at the C-terminal ends of Hsp90 and Hsp70. The acidic side chains in EEVD interact with a subset of basic residues in the TPR binding pocket called a ‘carboxylate clamp’. Since the carboxylate clamp residues are conserved in the TPR domains of known Hsp90/Hsp70 co-chaperones, we carried out an in silico search for TPR proteins in Arabidopsis and rice comprising of at least one three-motif TPR domain with conserved amino acid residues required for Hsp90/Hsp70 binding. This approach identified in Arabidopsis a total of 36 carboxylate clamp (CC)-TPR proteins, including 24 novel proteins, with potential to interact with Hsp90/Hsp70. The newly identified CC-TPR proteins in Arabidopsis and rice contain additional protein domains such as ankyrin, SET, octicosapeptide/Phox/Bem1p (Phox/PB1), DnaJ-like, thioredoxin, FBD and F-box, and protein kinase and U-box, indicating varied functions for these proteins. To provide proof-of-concept of the newly identified CC-TPR proteins for interaction with Hsp90, we demonstrated interaction of AtTPR1 and AtTPR2 with AtHsp90 in yeast two-hybrid and in vitro pull down assays. These findings indicate that the in silico approach used here successfully identified in a genome-wide context CC-TPR proteins with potential to interact with Hsp90/Hsp70, and further suggest that the Hsp90/Hsp70 system relies on TPR co-chaperones more than it was previously realized. PMID:20856808

  14. Understanding and identifying amino acid repeats

    PubMed Central

    Nijveen, Harm

    2014-01-01

    Amino acid repeats (AARs) are abundant in protein sequences. They have particular roles in protein function and evolution. Simple repeat patterns generated by DNA slippage tend to introduce length variations and point mutations in repeat regions. Loss of normal and gain of abnormal function owing to their variable length are potential risks leading to diseases. Repeats with complex patterns mostly refer to the functional domain repeats, such as the well-known leucine-rich repeat and WD repeat, which are frequently involved in protein–protein interaction. They are mainly derived from internal gene duplication events and stabilized by ‘gate-keeper’ residues, which play crucial roles in preventing inter-domain aggregation. AARs are widely distributed in different proteomes across a variety of taxonomic ranges, and especially abundant in eukaryotic proteins. However, their specific evolutionary and functional scenarios are still poorly understood. Identifying AARs in protein sequences is the first step for the further investigation of their biological function and evolutionary mechanism. In principle, this is an NP-hard problem, as most of the repeat fragments are shaped by a series of sophisticated evolutionary events and become latent periodical patterns. It is not possible to define a uniform criterion for detecting and verifying various repeat patterns. Instead, different algorithms based on different strategies have been developed to cope with different repeat patterns. In this review, we attempt to describe the amino acid repeat-detection algorithms currently available and compare their strategies based on an in-depth analysis of the biological significance of protein repeats. PMID:23418055

  15. Putative resistance gene markers associated with quantitative trait loci for fire blight resistance in Malus ‘Robusta 5’ accessions

    PubMed Central

    2012-01-01

    Background Breeding of fire blight resistant scions and rootstocks is a goal of several international apple breeding programs, as options are limited for management of this destructive disease caused by the bacterial pathogen Erwinia amylovora. A broad, large-effect quantitative trait locus (QTL) for fire blight resistance has been reported on linkage group 3 of Malus ‘Robusta 5’. In this study we identified markers derived from putative fire blight resistance genes associated with the QTL by integrating further genetic mapping studies with bioinformatics analysis of transcript profiling data and genome sequence databases. Results When several defined E.amylovora strains were used to inoculate three progenies from international breeding programs, all with ‘Robusta 5’ as a common parent, two distinct QTLs were detected on linkage group 3, where only one had previously been mapped. In the New Zealand ‘Malling 9’ X ‘Robusta 5’ population inoculated with E. amylovora ICMP11176, the proximal QTL co-located with SNP markers derived from a leucine-rich repeat, receptor-like protein ( MxdRLP1) and a closely linked class 3 peroxidase gene. While the QTL detected in the German ‘Idared’ X ‘Robusta 5’ population inoculated with E. amylovora strains Ea222_JKI or ICMP11176 was approximately 6 cM distal to this, directly below a SNP marker derived from a heat shock 90 family protein gene ( HSP90). In the US ‘Otawa3’ X ‘Robusta5’ population inoculated with E. amylovora strains Ea273 or E2002a, the position of the LOD score peak on linkage group 3 was dependent upon the pathogen strains used for inoculation. One of the five MxdRLP1 alleles identified in fire blight resistant and susceptible cultivars was genetically associated with resistance and used to develop a high resolution melting PCR marker. A resistance QTL detected on linkage group 7 of the US population co-located with another HSP90 gene-family member and a WRKY transcription factor

  16. Expansion and Function of Repeat Domain Proteins During Stress and Development in Plants

    PubMed Central

    Sharma, Manisha; Pandey, Girdhar K.

    2016-01-01

    The recurrent repeats having conserved stretches of amino acids exists across all domains of life. Subsequent repetition of single sequence motif and the number and length of the minimal repeating motifs are essential characteristics innate to these proteins. The proteins with tandem peptide repeats are essential for providing surface to mediate protein–protein interactions for fundamental biological functions. Plants are enriched in tandem repeat containing proteins typically distributed into various families. This has been assumed that the occurrence of multigene repeats families in plants enable them to cope up with adverse environmental conditions and allow them to rapidly acclimatize to these conditions. The evolution, structure, and function of repeat proteins have been studied in all kingdoms of life. The presence of repeat proteins is particularly profuse in multicellular organisms in comparison to prokaryotes. The precipitous expansion of repeat proteins in plants is presumed to be through internal tandem duplications. Several repeat protein gene families have been identified in plants. Such as Armadillo (ARM), Ankyrin (ANK), HEAT, Kelch-like repeats, Tetratricopeptide (TPR), Leucine rich repeats (LRR), WD40, and Pentatricopeptide repeats (PPR). The structure and functions of these repeat proteins have been extensively studied in plants suggesting a critical role of these repeating peptides in plant cell physiology, stress and development. In this review, we illustrate the structural, functional, and evolutionary prospects of prolific repeat proteins in plants. PMID:26793205

  17. Expression of LGR-5, MSI-1 and DCAMKL-1, putative stem cell markers, in the early phases of 1,2-dimethylhydrazine-induced rat colon carcinogenesis: correlation with nuclear β-catenin.

    PubMed

    Femia, Angelo Pietro; Dolara, Piero; Salvadori, Maddalena; Caderni, Giovanna

    2013-02-01

    Colon cancer stem cells may drive carcinogenesis and account for chemotherapeutic failure. Although many markers for these cells have been proposed, there is no complete agreement regarding them, nor has their presence in the early phases of carcinogenesis been characterized in depth. The expression of the putative markers LGR-5 (leucine-rich-repeat-containing G-protein-coupled receptor 5), MSI-1 (Musashi-1) and DCAMKL-1 (doublecortin and calcium/calmodulin-dependent protein kinase-like-1) was studied in normal colon mucosa (NM), in the precancerous lesions Mucin Depleted Foci (MDF) and in macroscopic tumours (adenomas) of 1,2-dimethylhydrazine-treated rats. Co-localization between these markers and nuclear β-catenin (NBC), an attributed feature of cancer stem cells, was also determined. Moreover, since PGE2 could increase NBC, we tested whether short-term treatment with celecoxib, a COX-2 inhibitor (2 weeks, 250 ppm in the diet) could reduce the expression of these markers. LGR-5 expression in NM was low (Labelling Index (LI): 0.22 ± 0.03 (means ± SE)) with positive cells located mainly at the base of the crypts. Compared to NM, LGR-5 was overexpressed in MDF and tumours (LI: 4.7 ± 2.0 and 2.9 ± 1.0 in MDF and tumours, respectively, P<0.01 compared to NM). DCAMKL-1 positive cells, distributed along the length of normal crypts, were reduced in MDF and tumours. Nuclear expression of MSI-1, located mainly at the base of normal crypts, was not observed in MDF or tumours. In both MDF and tumours, few cells co-expressed LGR-5 and NBC (LI: 1.0 ± 0.3 and 0.4 ± 0.2 in MDF and tumours, respectively). Notwithstanding the lower expression of DCAMKL-1 in tumours, the percentage of cells co-expressing DCAMKL-1 and NBC was higher than in NM (LI: 0.5 ± 0.1 and 0.04 ± 0.02 in tumours and NM, respectively). MSI-1 and NBC co-localization was not observed. Celecoxib did not reduce cells co-expressing LGR-5 and NBC. Based on its prevalent localization at the base of normal

  18. Expression of LGR-5, MSI-1 and DCAMKL-1, putative stem cell markers, in the early phases of 1,2-dimethylhydrazine-induced rat colon carcinogenesis: correlation with nuclear β-catenin

    PubMed Central

    2013-01-01

    Background Colon cancer stem cells may drive carcinogenesis and account for chemotherapeutic failure. Although many markers for these cells have been proposed, there is no complete agreement regarding them, nor has their presence in the early phases of carcinogenesis been characterized in depth. Methods The expression of the putative markers LGR-5 (leucine-rich-repeat-containing G-protein-coupled receptor 5), MSI-1 (Musashi-1) and DCAMKL-1 (doublecortin and calcium/calmodulin-dependent protein kinase-like-1) was studied in normal colon mucosa (NM), in the precancerous lesions Mucin Depleted Foci (MDF) and in macroscopic tumours (adenomas) of 1,2-dimethylhydrazine-treated rats. Co-localization between these markers and nuclear β-catenin (NBC), an attributed feature of cancer stem cells, was also determined. Moreover, since PGE2 could increase NBC, we tested whether short-term treatment with celecoxib, a COX-2 inhibitor (2 weeks, 250 ppm in the diet) could reduce the expression of these markers. Results LGR-5 expression in NM was low (Labelling Index (LI): 0.22±0.03 (means±SE)) with positive cells located mainly at the base of the crypts. Compared to NM, LGR-5 was overexpressed in MDF and tumours (LI: 4.7±2.0 and 2.9±1.0 in MDF and tumours, respectively, P<0.01 compared to NM). DCAMKL-1 positive cells, distributed along the length of normal crypts, were reduced in MDF and tumours. Nuclear expression of MSI-1, located mainly at the base of normal crypts, was not observed in MDF or tumours. In both MDF and tumours, few cells co-expressed LGR-5 and NBC (LI: 1.0±0.3 and 0.4±0.2 in MDF and tumours, respectively). Notwithstanding the lower expression of DCAMKL-1 in tumours, the percentage of cells co-expressing DCAMKL-1 and NBC was higher than in NM (LI: 0.5±0.1 and 0.04±0.02 in tumours and NM, respectively). MSI-1 and NBC co-localization was not observed. Celecoxib did not reduce cells co-expressing LGR-5 and NBC. Conclusions Based on its prevalent localization

  19. The 28S-18S rDNA intergenic spacer from Crithidia fasciculata: repeated sequences, length heterogeneity, putative processing sites and potential interactions between U3 small nucleolar RNA and the ribosomal RNA precursor.

    PubMed

    Schnare, M N; Collings, J C; Spencer, D F; Gray, M W

    2000-09-15

    In Crithidia fasciculata, the ribosomal RNA (rRNA) gene repeats range in size from approximately 11 to 12 kb. This length heterogeneity is localized to a region of the intergenic spacer (IGS) that contains tandemly repeated copies of a 19mer sequence. The IGS also contains four copies of an approximately 55 nt repeat that has an internal inverted repeat and is also present in the IGS of Leishmania species. We have mapped the C.fasciculata transcription initiation site as well as two other reverse transcriptase stop sites that may be analogous to the A0 and A' pre-rRNA processing sites within the 5' external transcribed spacer (ETS) of other eukaryotes. Features that could influence processing at these sites include two stretches of conserved primary sequence and three secondary structure elements present in the 5' ETS. We also characterized the C.fasciculata U3 snoRNA, which has the potential for base-pairing with pre-rRNA sequences. Finally, we demonstrate that biosynthesis of large subunit rRNA in both C. fasciculata and Trypanosoma brucei involves 3'-terminal addition of three A residues that are not present in the corresponding DNA sequences.

  20. A WD-Repeat Protein Stabilizes ORC Binding to Chromatin

    PubMed Central

    Shen, Zhen; Sathyan, Kizhakke M.; Geng, Yijie; Zheng, Ruiping; Chakraborty, Arindam; Freeman, Brian; Wang, Fei; Prasanth, Kannanganattu V.; Prasanth, Supriya G.

    2015-01-01

    SUMMARY Origin recognition complex (ORC) plays critical roles in the initiation of DNA replication and cell-cycle progression. In metazoans, ORC associates with origin DNA during G1 and with heterochromatin in postreplicated cells. However, what regulates the binding of ORC to chromatin is not understood. We have identified a highly conserved, leucine-rich repeats and WD40 repeat domain-containing protein 1 (LRWD1) or ORC-associated (ORCA) in human cells that interacts with ORC and modulates chromatin association of ORC. ORCA colocalizes with ORC and shows similar cell-cycle dynamics. We demonstrate that ORCA efficiently recruits ORC to chromatin. Depletion of ORCA in human primary cells and embryonic stem cells results in loss of ORC association to chromatin, concomitant reduction of MCM binding, and a subsequent accumulation in G1 phase. Our results suggest ORCA-mediated association of ORC to chromatin is critical to initiate preRC assembly in G1 and chromatin organization in post-G1 cells. PMID:20932478

  1. The evolution and function of protein tandem repeats in plants.

    PubMed

    Schaper, Elke; Anisimova, Maria

    2015-04-01

    Sequence tandem repeats (TRs) are abundant in proteomes across all domains of life. For plants, little is known about their distribution or contribution to protein function. We exhaustively annotated TRs and studied the evolution of TR unit variations for all Ensembl plants. Using phylogenetic patterns of TR units, we detected conserved TRs with unit number and order preserved during evolution, and those TRs that have diverged via recent TR unit gains/losses. We correlated the mode of evolution of TRs to protein function. TR number was strongly correlated with proteome size, with about one-half of all TRs recognized as common protein domains. The majority of TRs have been highly conserved over long evolutionary distances, some since the separation of red algae and green plants c. 1.6 billion yr ago. Conversely, recurrent recent TR unit mutations were rare. Our results suggest that the first TRs by far predate the first plants, and that TR appearance is an ongoing process with similar rates across the plant kingdom. Interestingly, the few detected highly mutable TRs might provide a source of variation for rapid adaptation. In particular, such TRs are enriched in leucine-rich repeats (LRRs) commonly found in R genes, where TR unit gain/loss may facilitate resistance to emerging pathogens. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  2. A WD-repeat protein stabilizes ORC binding to chromatin.

    PubMed

    Shen, Zhen; Sathyan, Kizhakke M; Geng, Yijie; Zheng, Ruiping; Chakraborty, Arindam; Freeman, Brian; Wang, Fei; Prasanth, Kannanganattu V; Prasanth, Supriya G

    2010-10-08

    Origin recognition complex (ORC) plays critical roles in the initiation of DNA replication and cell-cycle progression. In metazoans, ORC associates with origin DNA during G1 and with heterochromatin in postreplicated cells. However, what regulates the binding of ORC to chromatin is not understood. We have identified a highly conserved, leucine-rich repeats and WD40 repeat domain-containing protein 1 (LRWD1) or ORC-associated (ORCA) in human cells that interacts with ORC and modulates chromatin association of ORC. ORCA colocalizes with ORC and shows similar cell-cycle dynamics. We demonstrate that ORCA efficiently recruits ORC to chromatin. Depletion of ORCA in human primary cells and embryonic stem cells results in loss of ORC association to chromatin, concomitant reduction of MCM binding, and a subsequent accumulation in G1 phase. Our results suggest ORCA-mediated association of ORC to chromatin is critical to initiate preRC assembly in G1 and chromatin organization in post-G1 cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Repeated nightmares

    MedlinePlus

    ... different from night terrors . Alternative Names Nightmares - repeated; Dream anxiety disorder References American Academy of Family Physicians. Information from your family doctor. Nightmares and night terrors in children. ...

  4. Nanospring behaviour of ankyrin repeats.

    PubMed

    Lee, Gwangrog; Abdi, Khadar; Jiang, Yong; Michaely, Peter; Bennett, Vann; Marszalek, Piotr E

    2006-03-09

    Ankyrin repeats are an amino-acid motif believed to function in protein recognition; they are present in tandem copies in diverse proteins in nearly all phyla. Ankyrin repeats contain antiparallel alpha-helices that can stack to form a superhelical spiral. Visual inspection of the extrapolated structure of 24 ankyrin-R repeats indicates the possibility of spring-like behaviour of the putative superhelix. Moreover, stacks of 17-29 ankyrin repeats in the cytoplasmic domains of transient receptor potential (TRP) channels have been identified as candidates for a spring that gates mechanoreceptors in hair cells as well as in Drosophila bristles. Here we report that tandem ankyrin repeats exhibit tertiary-structure-based elasticity and behave as a linear and fully reversible spring in single-molecule measurements by atomic force microscopy. We also observe an unexpected ability of unfolded repeats to generate force during refolding, and report the first direct measurement of the refolding force of a protein domain. Thus, we show that one of the most common amino-acid motifs has spring properties that could be important in mechanotransduction and in the design of nanodevices.

  5. A repeat protein-based DNA polymerase inhibitor for an efficient and accurate gene amplification by PCR.

    PubMed

    Hwang, Da-Eun; Shin, Yong-Keol; Munashingha, Palinda Ruvan; Park, So-Yeon; Seo, Yeon-Soo; Kim, Hak-Sung

    2016-12-01

    A polymerase chain reaction (PCR) using a thermostable DNA polymerase is the most widely applied method in many areas of research, including life sciences, biotechnology, and medical sciences. However, a conventional PCR incurs an amplification of undesired genes mainly owing to non-specifically annealed primers and the formation of a primer-dimer complex. Herein, we present the development of a Taq DNA polymerase-specific repebody, which is a small-sized protein binder composed of leucine rich repeat (LRR) modules, as a thermolabile inhibitor for a precise and accurate gene amplification by PCR. We selected a repebody that specifically binds to the DNA polymerase through a phage display, and increased its affinity to up to 10 nM through a modular evolution approach. The repebody was shown to effectively inhibit DNA polymerase activity at low temperature and undergo thermal denaturation at high temperature, leading to a rapid and full recovery of the polymerase activity, during the initial denaturation step of the PCR. The performance and utility of the repebody was demonstrated through an accurate and efficient amplification of a target gene without nonspecific gene products in both conventional and real-time PCRs. The repebody is expected to be effectively utilized as a thermolabile inhibitor in a PCR. Biotechnol. Bioeng. 2016;113: 2544-2552. © 2016 Wiley Periodicals, Inc.

  6. Isolation and characterization of the leucine-rich proteoglycan nyctalopin gene (cNyx) from chick.

    PubMed

    Bech-Hansen, N Torben; Cockfield, Josh; Liu, Dan; Logan, C Cairine

    2005-10-01

    We describe the isolation and molecular characterization of the chick ortholog of nyctalopin (NYX), the gene responsible for X-linked complete congenital stationary night blindness (CSNB1, also known as cCSNB). Chick Nyx (cNyx) comprises four exons spanning approximately 6.2 kb on Chromosome 1 and encodes a protein of 473 amino acids that shares 55% identity overall with its human counterpart. cNyx is expressed in both the developing and the fully differentiated retina. Transcripts are localized primarily to cells within the outer half of the inner nuclear layer (INL) and the ganglion cell layer (GCL), a pattern consistent with the principal electrophysiologic findings in CSNB1 that suggest a main defect in depolarizing ON-bipolar cells normally located in the outer half of the INL. Expression (albeit weaker) was also detected in the cerebrum and cerebellum and in non-neuronal tissues. Finally, we also report the identification of three novel splice variants, one of which predominates in the retina.

  7. The leucine rich amelogenin protein (LRAP) adsorbs as monomers or dimers onto surfaces

    SciTech Connect

    Tarasevich, Barbara J.; Lea, Alan S.; Shaw, Wendy J.

    2010-03-15

    Amelogenin and amelogenin splice variants are believed to be involved in controlling the formation of the highly anisotropic and ordered hydroxyapatite crystallites that form enamel. The adsorption behavior of amelogenin proteins onto substrates is very important because protein-surface interactions are critical to it’s function. We have studied the adsorption of LRAP, a splice variant of amelogenin which may also contribute to enamel function, onto model self-assembled monolayers on gold containing of COOH, CH3, and NH2 end groups. Dynamic light scattering (DLS) experiments indicated that LRAP in phosphate buffered saline (PBS) and solutions at saturation with calcium phosphate contained aggregates of nanospheres. Null ellipsometry and atomic force microscopy (AFM) were used to study protein adsorption amounts and structures. Relatively high amounts of adsorption occurred onto the CH3 and NH2 surfaces from both calcium phosphate and PBS solutions. Adsorption was also promoted onto COOH surfaces when calcium was present in the solutions suggesting an interaction that involves calcium bridging with the negatively charged C-terminus. The ellipsometry and AFM studies suggested that the protein adsorbed onto all surfaces as LRAP monomers. We propose that the monomers adsorb onto the surfaces by disassembling or “shedding” from the nanospheres that are present in solution. This work reveals the importance of small subnanosphere-sized structures of LRAP at interfaces, structures that may be important in the biomineralization of tooth enamel.

  8. An association analysis of Alzheimer disease candidate genes detects an ancestral risk haplotype clade in ACE and putative multilocus association between ACE, A2M, and LRRTM3

    PubMed Central

    Edwards, Todd L.; Pericak-Vance, Margaret; Gilbert, Johnny; Haines, Jonathan L.; Martin, Eden; Ritchie, Marylyn D.

    2009-01-01

    Alzheimer’s disease (AD) is the most common form of progressive dementia in the elderly. It is a neurodegenerative disorder characterized by the neuropathologic findings of intracellular neurofibrillary tangles and extracellular amyloid plaques that accumulate in vulnerable brain regions. AD etiology has been studied by many groups, but since the discovery of the APOE ε4 allele, no further genes have been mapped conclusively to the late-onset form of the disease. In this study, we examined genetic association with late-onset Alzheimer’s susceptibility in 738 Caucasian families with 4704 individuals and an independent case-control dataset with 296 unrelated cases and 566 unrelated controls exploring 11 candidate genes with 47 SNPs common to both samples. In addition to tests for main effects and haplotype analyses, the Multifactor Dimensionality Reduction Pedigree Disequilibrium Test (MDR-PDT) was used to search for single-locus effects as well as 2-locus and 3-locus gene-gene interactions associated with AD in the family data. We observed significant haplotype effects in ACE in both family and case-control samples using standard and cladistic haplotype models. ACE was also part of significant 2-locus and 3-locus MDR-PDT joint effects models with Alpha-2-Macroglobulin (A2M), which mediates the clearance of Aβ, and Leucine-Rich Repeat Transmembrane 3 (LRRTM3), a nested gene in Alpha-3 Catenin (CTNNA3) which binds Presenilin 1. This result did not replicate in the case-control sample, and may not be a true positive. These genes are related to amyloid beta clearance; thus this constellation of effects might constitute an axis of susceptibility for late-onset AD. The consistent ACE haplotype result between independent data sets of families and unrelated cases and controls is strong evidence in favor of ACE as a susceptibility locus for AD, and replicates results from several other studies in a very large sample. PMID:19105203

  9. A Repeat Look at Repeating Patterns

    ERIC Educational Resources Information Center

    Markworth, Kimberly A.

    2016-01-01

    A "repeating pattern" is a cyclical repetition of an identifiable core. Children in the primary grades usually begin pattern work with fairly simple patterns, such as AB, ABC, or ABB patterns. The unique letters represent unique elements, whereas the sequence of letters represents the core that is repeated. Based on color, shape,…

  10. Constitutive heterologous overexpression of a TIR-NB-ARC-LRR gene encoding a putative disease resistance protein from wild Chinese Vitis pseudoreticulata in Arabidopsis and tobacco enhances resistance to phytopathogenic fungi and bacteria.

    PubMed

    Wen, Zhifeng; Yao, Liping; Singer, Stacy D; Muhammad, Hanif; Li, Zhi; Wang, Xiping

    2017-03-01

    Plants use resistance (R) proteins to detect pathogen effector proteins and activate their innate immune response against the pathogen. The majority of these proteins contain an NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4) domain along with a leucine-rich repeat (LRR), and some also bear a toll interleukin 1 receptor (TIR) domain. In this study, we characterized a gene encoding a TIR-NB-ARC-LRR R protein (VpTNL1) (GenBank accession number KX649890) from wild Chinese grapevine Vitis pseudoreticulata accession "Baihe-35-1", which was identified previously from a transcriptomic analysis of leaves inoculated with powdery mildew (PM; Erysiphe necator (Schw.)). The VpTNL1 transcript was found to be highly induced in V. pseudoreticulata following inoculation with E. necator, as well as treatment with salicylic acid (SA). Sequence analysis demonstrated that the deduced amino acid sequence contained a TIR domain at the N-terminus, along with an NB-ARC and four LRRs domains within the C-terminus. Constitutive expression of VpTNL1 in Arabidopsis thaliana resulted in either a wild-type or dwarf phenotype. Intriguingly, the phenotypically normal transgenic lines displayed enhanced resistance to Arabidopsis PM, Golovinomyces cichoracearum, as well as to the virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Similarly, constitutive expression of VpTNL1 in Nicotiana tabacum was found to confer enhanced resistance to tobacco PM, Erysiphe cichoacearum DC. Subsequent isolation of the VpTNL1 promoter and deletion analysis indicated that TC-rich repeats and TCA elements likely play an important role in its response to E. necator and SA treatment, respectively. Taken together, these results indicate that VpTNL1 contributes to PM resistance in grapevine and provide an interesting gene target for the future amelioration of grape via breeding and/or biotechnology.

  11. Structures of designed armadillo-repeat proteins show propagation of inter-repeat interface effects

    PubMed Central

    Reichen, Christian; Madhurantakam, Chaithanya; Hansen, Simon; Grütter, Markus G.; Plückthun, Andreas; Mittl, Peer R. E.

    2016-01-01

    The armadillo repeat serves as a scaffold for the development of modular peptide-recognition modules. In order to develop such a system, three crystal structures of designed armadillo-repeat proteins with third-generation N-caps (YIII-type), four or five internal repeats (M-type) and second-generation C-caps (AII-type) were determined at 1.8 Å (His-YIIIM4AII), 2.0 Å (His-YIIIM5AII) and 1.95 Å (YIIIM5AII) resolution and compared with those of variants with third-generation C-caps. All constructs are full consensus designs in which the internal repeats have exactly the same sequence, and hence identical conformations of the internal repeats are expected. The N-cap and internal repeats M1 to M3 are indeed extremely similar, but the comparison reveals structural differences in internal repeats M4 and M5 and the C-cap. These differences are caused by long-range effects of the C-cap, contacting molecules in the crystal, and the intrinsic design of the repeat. Unfortunately, the rigid-body movement of the C-terminal part impairs the regular arrangement of internal repeats that forms the putative peptide-binding site. The second-generation C-cap improves the packing of buried residues and thereby the stability of the protein. These considerations are useful for future improvements of an armadillo-repeat-based peptide-recognition system. PMID:26894544

  12. Comparative analyses of a putative Francisella conjugative element.

    PubMed

    Siddaramappa, Shivakumara; Challacombe, Jean F; Petersen, Jeannine M; Pillai, Segaran; Kuske, Cheryl R

    2014-03-01

    A large circular plasmid detected in Francisella novicida-like strain PA10-7858, designated pFNPA10, was sequenced completely and analyzed. This 41,013-bp plasmid showed no homology to any of the previously sequenced Francisella plasmids and was 8-10 times larger in size than them. A total of 57 ORFs were identified within pFNPA10 and at least 9 of them encoded putative proteins with homology to different conjugal transfer proteins. The presence of iteron-like direct repeats and an ORF encoding a putative replication protein within pFNPA10 suggested that it replicated by the theta mode. Phylogenetic analyses indicated that pFNPA10 had no near neighbors in the databases and that it may have originated within an environmental Francisella lineage. Based on its features, pFNPA10 appears to be a novel extra-chromosomal genetic element within the genus Francisella. The suitability of pFNPA10 as a vector for transformation of species of Francisella by conjugation remains to be explored.

  13. The Ma gene for complete-spectrum resistance to Meloidogyne species in Prunus is a TNL with a huge repeated C-terminal post-LRR region.

    PubMed

    Claverie, Michel; Dirlewanger, Elisabeth; Bosselut, Nathalie; Van Ghelder, Cyril; Voisin, Roger; Kleinhentz, Marc; Lafargue, Bernard; Abad, Pierre; Rosso, Marie-Noëlle; Chalhoub, Boulos; Esmenjaud, Daniel

    2011-06-01

    Root-knot nematode (RKN) Meloidogyne species are major polyphagous pests of most crops worldwide, and cultivars with durable resistance are urgently needed because of nematicide bans. The Ma gene from the Myrobalan plum (Prunus cerasifera) confers complete-spectrum, heat-stable, and high-level resistance to RKN, which is remarkable in comparison with the Mi-1 gene from tomato (Solanum lycopersicum), the sole RKN resistance gene cloned. We report here the positional cloning and the functional validation of the Ma locus present at the heterozygous state in the P.2175 accession. High-resolution mapping totaling over 3,000 segregants reduced the Ma locus interval to a 32-kb cluster of three Toll/Interleukin1 Receptor-Nucleotide Binding Site-Leucine-Rich Repeat (LRR) genes (TNL1-TNL3), including a pseudogene (TNL2) and a truncated gene (TNL3). The sole complete gene in this interval (TNL1) was validated as Ma, as it conferred the same complete-spectrum and high-level resistance (as in P.2175) using its genomic sequence and native promoter region in Agrobacterium rhizogenes-transformed hairy roots and composite plants. The full-length cDNA (2,048 amino acids) of Ma is the longest of all Resistance genes cloned to date. Its TNL structure is completed by a huge post-LRR (PL) sequence (1,088 amino acids) comprising five repeated carboxyl-terminal PL exons with two conserved motifs. The amino-terminal region (213 amino acids) of the LRR exon is conserved between alleles and contrasts with the high interallelic polymorphisms of its distal region (111 amino acids) and of PL domains. The Ma gene highlights the importance of these uncharacterized PL domains, which may be involved in pathogen recognition through the decoy hypothesis or in nuclear signaling.

  14. Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: A role in cytoskeletal remodeling.

    PubMed

    Turner, C E; Brown, M C; Perrotta, J A; Riedy, M C; Nikolopoulos, S N; McDonald, A R; Bagrodia, S; Thomas, S; Leventhal, P S

    1999-05-17

    Paxillin is a focal adhesion adaptor protein involved in the integration of growth factor- and adhesion-mediated signal transduction pathways. Repeats of a leucine-rich sequence named paxillin LD motifs (Brown M.C., M.S. Curtis, and C.E. Turner. 1998. Nature Struct. Biol. 5:677-678) have been implicated in paxillin binding to focal adhesion kinase (FAK) and vinculin. Here we demonstrate that the individual paxillin LD motifs function as discrete and selective protein binding interfaces. A novel scaffolding function is described for paxillin LD4 in the binding of a complex of proteins containing active p21 GTPase-activated kinase (PAK), Nck, and the guanine nucleotide exchange factor, PIX. The association of this complex with paxillin is mediated by a new 95-kD protein, p95PKL (paxillin-kinase linker), which binds directly to paxillin LD4 and PIX. This protein complex also binds to Hic-5, suggesting a conservation of LD function across the paxillin superfamily. Cloning of p95PKL revealed a multidomain protein containing an NH2-terminal ARF-GAP domain, three ankyrin-like repeats, a potential calcium-binding EF hand, calmodulin-binding IQ motifs, a myosin homology domain, and two paxillin-binding subdomains (PBS). Green fluorescent protein- (GFP-) tagged p95PKL localized to focal adhesions/complexes in CHO.K1 cells. Overexpression in neuroblastoma cells of a paxillin LD4 deletion mutant inhibited lamellipodia formation in response to insulin-like growth fac- tor-1. Microinjection of GST-LD4 into NIH3T3 cells significantly decreased cell migration into a wound. These data implicate paxillin as a mediator of p21 GTPase-regulated actin cytoskeletal reorganization through the recruitment to nascent focal adhesion structures of an active PAK/PIX complex potentially via interactions with p95PKL.

  15. The Putative Son's Attractiveness Alters the Perceived Attractiveness of the Putative Father.

    PubMed

    Prokop, Pavol

    2015-08-01

    A body of literature has investigated female mate choice in the pre-mating context (pre-mating sexual selection). Humans, however, are long-living mammals forming pair-bonds which sequentially produce offspring. Post-mating evaluations of a partner's attractiveness may thus significantly influence the reproductive success of men and women. I tested herein the theory that the attractiveness of putative sons provides extra information about the genetic quality of fathers, thereby influencing fathers' attractiveness across three studies. As predicted, facially attractive boys were more frequently attributed to attractive putative fathers and vice versa (Study 1). Furthermore, priming with an attractive putative son increased the attractiveness of the putative father with the reverse being true for unattractive putative sons. When putative fathers were presented as stepfathers, the effect of the boy's attractiveness on the stepfather's attractiveness was lower and less consistent (Study 2). This suggests that the presence of an attractive boy has the strongest effect on the perceived attractiveness of putative fathers rather than on non-fathers. The generalized effect of priming with beautiful non-human objects also exists, but its effect is much weaker compared with the effects of putative biological sons (Study 3). Overall, this study highlighted the importance of post-mating sexual selection in humans and suggests that the heritable attractive traits of men are also evaluated by females after mating and/or may be used by females in mate poaching.

  16. Toddlers' Duration of Attention toward Putative Threat

    ERIC Educational Resources Information Center

    Kiel, Elizabeth J.; Buss, Kristin A.

    2011-01-01

    Although individual differences in reactions to novelty in the toddler years have been consistently linked to risk of developing anxious behavior, toddlers' attention toward a novel, putatively threatening stimulus while in the presence of other enjoyable activities has rarely been examined as a precursor to such risk. The current study examined…

  17. Toddlers' Duration of Attention toward Putative Threat

    ERIC Educational Resources Information Center

    Kiel, Elizabeth J.; Buss, Kristin A.

    2011-01-01

    Although individual differences in reactions to novelty in the toddler years have been consistently linked to risk of developing anxious behavior, toddlers' attention toward a novel, putatively threatening stimulus while in the presence of other enjoyable activities has rarely been examined as a precursor to such risk. The current study examined…

  18. Formation of the Arabidopsis pentatricopeptide repeat family.

    PubMed

    Rivals, Eric; Bruyère, Clémence; Toffano-Nioche, Claire; Lecharny, Alain

    2006-07-01

    In Arabidopsis (Arabidopsis thaliana) the 466 pentatricopeptide repeat (PPR) proteins are putative RNA-binding proteins with essential roles in organelles. Roughly half of the PPR proteins form the plant combinatorial and modular protein (PCMP) subfamily, which is land-plant specific. PCMPs exhibit a large and variable tandem repeat of a standard pattern of three PPR variant motifs. The association or not of this repeat with three non-PPR motifs at their C terminus defines four distinct classes of PCMPs. The highly structured arrangement of these motifs and the similar repartition of these arrangements in the four classes suggest precise relationships between motif organization and substrate specificity. This study is an attempt to reconstruct an evolutionary scenario of the PCMP family. We developed an innovative approach based on comparisons of the proteins at two levels: namely the succession of motifs along the protein and the amino acid sequence of the motifs. It enabled us to infer evolutionary relationships between proteins as well as between the inter- and intraprotein repeats. First, we observed a polarized elongation of the repeat from the C terminus toward the N-terminal region, suggesting local recombinations of motifs. Second, the most N-terminal PPR triple motif proved to evolve under different constraints than the remaining repeat. Altogether, the evidence indicates different evolution for the PPR region and the C-terminal one in PCMPs, which points to distinct functions for these regions. Moreover, local sequence homogeneity observed across PCMP classes may be due to interclass shuffling of motifs, or to deletions/insertions of non-PPR motifs at the C terminus.

  19. Coding Tandem Repeats Generate Diversity in Aspergillus fumigatus Genes▿ †

    PubMed Central

    Levdansky, Emma; Romano, Jacob; Shadkchan, Yona; Sharon, Haim; Verstrepen, Kevin J.; Fink, Gerald R.; Osherov, Nir

    2007-01-01

    Genes containing multiple coding mini- and microsatellite repeats are highly dynamic components of genomes. Frequent recombination events within these tandem repeats lead to changes in repeat numbers, which in turn alters the amino acid sequence of the corresponding protein. In bacteria and yeasts, the expansion of such coding repeats in cell wall proteins is associated with alterations in immunogenicity, adhesion, and pathogenesis. We hypothesized that identification of repeat-containing putative cell wall proteins in the human pathogen Aspergillus fumigatus may reveal novel pathogenesis-related elements. Here, we report that the genome of A. fumigatus contains as many as 292 genes with internal repeats. Fourteen of 30 selected genes showed size variation of their repeat-containing regions among 11 clinical A. fumigatus isolates. Four of these genes, Afu3g08990, Afu2g05150 (MP-2), Afu4g09600, and Afu6g14090, encode putative cell wall proteins containing a leader sequence and a glycosylphosphatidylinositol anchor motif. All four genes are expressed and produce variable-size mRNA encoding a discrete number of repeat amino acid units. Their expression was altered during development and in response to cell wall-disrupting agents. Deletion of one of these genes, Afu3g08990, resulted in a phenotype characterized by rapid conidial germination and reduced adherence to extracellular matrix suggestive of an alteration in cell wall characteristics. The Afu3g08990 protein was localized to the cell walls of dormant and germinating conidia. Our findings suggest that a subset of the A. fumigatus cell surface proteins may be hypervariable due to recombination events in their internal tandem repeats. This variation may provide the functional diversity in cell surface antigens which allows rapid adaptation to the environment and/or elusion of the host immune system. PMID:17557878

  20. Identification and characterization of potential NBS-encoding resistance genes and induction kinetics of a putative candidate gene associated with downy mildew resistance in Cucumis

    PubMed Central

    2010-01-01

    Background Due to the variation and mutation of the races of Pseudoperonospora cubensis, downy mildew has in recent years become the most devastating leaf disease of cucumber worldwide. Novel resistance to downy mildew has been identified in the wild Cucumis species, C. hystrix Chakr. After the successful hybridization between C. hystrix and cultivated cucumber (C. sativus L.), an introgression line (IL5211S) was identified as highly resistant to downy mildew. Nucleotide-binding site and leucine-rich repeat (NBS-LRR) genes are the largest class of disease resistance genes cloned from plant with highly conserved domains, which can be used to facilitate the isolation of candidate genes associated with downy mildew resistance in IL5211S. Results Degenerate primers that were designed based on the conserved motifs in the NBS domain of resistance (R) proteins were used to isolate NBS-type sequences from IL5211S. A total of 28 sequences were identified and named as cucumber (C. sativus = CS) resistance gene analogs as CSRGAs. Polygenetic analyses separated these sequences into four different classes. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that these CSRGAs expressed at different levels in leaves, roots, and stems. In addition, introgression from C. hystrix induced expression of the partial CSRGAs in cultivated cucumber, especially CSRGA23, increased four-fold when compared to the backcross parent CC3. Furthermore, the expression of CSRGA23 under P. cubensis infection and abiotic stresses was also analyzed at different time points. Results showed that the P. cubensis treatment and four tested abiotic stimuli, MeJA, SA, ABA, and H2O2, triggered a significant induction of CSRGA23 within 72 h of inoculation. The results indicate that CSRGA23 may play a critical role in protecting cucumber against P. cubensis through a signaling the pathway triggered by these molecules. Conclusions Four classes of NBS-type RGAs were successfully isolated

  1. Putative archaeal viruses from the mesopelagic ocean.

    PubMed

    Vik, Dean R; Roux, Simon; Brum, Jennifer R; Bolduc, Ben; Emerson, Joanne B; Padilla, Cory C; Stewart, Frank J; Sullivan, Matthew B

    2017-01-01

    Oceanic viruses that infect bacteria, or phages, are known to modulate host diversity, metabolisms, and biogeochemical cycling, while the viruses that infect marine Archaea remain understudied despite the critical ecosystem roles played by their hosts. Here we introduce "MArVD", for Metagenomic Archaeal Virus Detector, an annotation tool designed to identify putative archaeal virus contigs in metagenomic datasets. MArVD is made publicly available through the online iVirus analytical platform. Benchmarking analysis of MArVD showed it to be >99% accurate and 100% sensitive in identifying the 127 known archaeal viruses among the 12,499 viruses in the VirSorter curated dataset. Application of MArVD to 10 viral metagenomes from two depth profiles in the Eastern Tropical North Pacific (ETNP) oxygen minimum zone revealed 43 new putative archaeal virus genomes and large genome fragments ranging in size from 10 to 31 kb. Network-based classifications, which were consistent with marker gene phylogenies where available, suggested that these putative archaeal virus contigs represented six novel candidate genera. Ecological analyses, via fragment recruitment and ordination, revealed that the diversity and relative abundances of these putative archaeal viruses were correlated with oxygen concentration and temperature along two OMZ-spanning depth profiles, presumably due to structuring of the host Archaea community. Peak viral diversity and abundances were found in surface waters, where Thermoplasmata 16S rRNA genes are prevalent, suggesting these archaea as hosts in the surface habitats. Together these findings provide a baseline for identifying archaeal viruses in sequence datasets, and an initial picture of the ecology of such viruses in non-extreme environments.

  2. Putative archaeal viruses from the mesopelagic ocean

    PubMed Central

    Roux, Simon; Brum, Jennifer R.; Bolduc, Ben; Emerson, Joanne B.; Padilla, Cory C.; Stewart, Frank J.; Sullivan, Matthew B.

    2017-01-01

    Oceanic viruses that infect bacteria, or phages, are known to modulate host diversity, metabolisms, and biogeochemical cycling, while the viruses that infect marine Archaea remain understudied despite the critical ecosystem roles played by their hosts. Here we introduce “MArVD”, for Metagenomic Archaeal Virus Detector, an annotation tool designed to identify putative archaeal virus contigs in metagenomic datasets. MArVD is made publicly available through the online iVirus analytical platform. Benchmarking analysis of MArVD showed it to be >99% accurate and 100% sensitive in identifying the 127 known archaeal viruses among the 12,499 viruses in the VirSorter curated dataset. Application of MArVD to 10 viral metagenomes from two depth profiles in the Eastern Tropical North Pacific (ETNP) oxygen minimum zone revealed 43 new putative archaeal virus genomes and large genome fragments ranging in size from 10 to 31 kb. Network-based classifications, which were consistent with marker gene phylogenies where available, suggested that these putative archaeal virus contigs represented six novel candidate genera. Ecological analyses, via fragment recruitment and ordination, revealed that the diversity and relative abundances of these putative archaeal viruses were correlated with oxygen concentration and temperature along two OMZ-spanning depth profiles, presumably due to structuring of the host Archaea community. Peak viral diversity and abundances were found in surface waters, where Thermoplasmata 16S rRNA genes are prevalent, suggesting these archaea as hosts in the surface habitats. Together these findings provide a baseline for identifying archaeal viruses in sequence datasets, and an initial picture of the ecology of such viruses in non-extreme environments. PMID:28630803

  3. Repeating the Past

    NASA Astrophysics Data System (ADS)

    Moore, John W.

    1998-05-01

    As part of the celebration of the Journal 's 75th year, we are scanning each Journal issue from 25, 50, and 74 years ago. Many of the ideas and practices described are so similar to present-day "innovations" that George Santayana's adage (1) "Those who cannot remember the past are condemned to repeat it" comes to mind. But perhaps "condemned" is too strong - sometimes it may be valuable to repeat something that was done long ago. One example comes from the earliest days of the Division of Chemical Education and of the Journal.

  4. Slit Wheel Repeatability

    NASA Astrophysics Data System (ADS)

    DiFelice, Audrey

    2013-10-01

    Test the repeatibility of the slit wheel by taking a sequence of comparison lamp spectra with grating G230MB {2697} and the three smallest long slits {52X0.2, 52X0.1, and 52X0.05}. This is a clone of Cycle 20 Program 13140.

  5. Slit Wheel Repeatability

    NASA Astrophysics Data System (ADS)

    Long, Chris

    2011-10-01

    Test the repeatibility of the slit wheel by taking a sequence of comparison lamp spectra with grating G230MB {2697} and the three smallest long slits {52X0.2, 52X0.1, and 52X0.05}. This is a clone of Cycle 18 Program 12410.

  6. Slit Wheel Repeatability

    NASA Astrophysics Data System (ADS)

    DiFelice, Audrey

    2012-10-01

    Test the repeatibility of the slit wheel by taking a sequence of comparison lamp spectra with grating G230MB {2697} and the three smallest long slits {52X0.2, 52X0.1, and 52X0.05}. This is a clone of Cycle 19 Program 12771.

  7. Repeated Causal Decision Making

    ERIC Educational Resources Information Center

    Hagmayer, York; Meder, Bjorn

    2013-01-01

    Many of our decisions refer to actions that have a causal impact on the external environment. Such actions may not only allow for the mere learning of expected values or utilities but also for acquiring knowledge about the causal structure of our world. We used a repeated decision-making paradigm to examine what kind of knowledge people acquire in…

  8. The Ma Gene for Complete-Spectrum Resistance to Meloidogyne Species in Prunus Is a TNL with a Huge Repeated C-Terminal Post-LRR Region1[C][W

    PubMed Central

    Claverie, Michel; Dirlewanger, Elisabeth; Bosselut, Nathalie; Van Ghelder, Cyril; Voisin, Roger; Kleinhentz, Marc; Lafargue, Bernard; Abad, Pierre; Rosso, Marie-Noëlle; Chalhoub, Boulos; Esmenjaud, Daniel

    2011-01-01

    Root-knot nematode (RKN) Meloidogyne species are major polyphagous pests of most crops worldwide, and cultivars with durable resistance are urgently needed because of nematicide bans. The Ma gene from the Myrobalan plum (Prunus cerasifera) confers complete-spectrum, heat-stable, and high-level resistance to RKN, which is remarkable in comparison with the Mi-1 gene from tomato (Solanum lycopersicum), the sole RKN resistance gene cloned. We report here the positional cloning and the functional validation of the Ma locus present at the heterozygous state in the P.2175 accession. High-resolution mapping totaling over 3,000 segregants reduced the Ma locus interval to a 32-kb cluster of three Toll/Interleukin1 Receptor-Nucleotide Binding Site-Leucine-Rich Repeat (LRR) genes (TNL1–TNL3), including a pseudogene (TNL2) and a truncated gene (TNL3). The sole complete gene in this interval (TNL1) was validated as Ma, as it conferred the same complete-spectrum and high-level resistance (as in P.2175) using its genomic sequence and native promoter region in Agrobacterium rhizogenes-transformed hairy roots and composite plants. The full-length cDNA (2,048 amino acids) of Ma is the longest of all Resistance genes cloned to date. Its TNL structure is completed by a huge post-LRR (PL) sequence (1,088 amino acids) comprising five repeated carboxyl-terminal PL exons with two conserved motifs. The amino-terminal region (213 amino acids) of the LRR exon is conserved between alleles and contrasts with the high interallelic polymorphisms of its distal region (111 amino acids) and of PL domains. The Ma gene highlights the importance of these uncharacterized PL domains, which may be involved in pathogen recognition through the decoy hypothesis or in nuclear signaling. PMID:21482634

  9. Transcriptional status of known and novel genes tagged with consensus of 33.15 repeat loci employing minisatellite-associated sequence amplification (MASA) and real-time PCR in water buffalo, Bubalus bubalis.

    PubMed

    Srivastava, Jyoti; Premi, Sanjay; Pathak, Deepali; Ahsan, Zaid; Tiwari, Madhulika; Garg, Lalit C; Ali, Sher

    2006-01-01

    We conducted minisatellite-associated sequence amplification (MASA) with an oligo (5' CACCTCTCCACCTGCC 3') based on consensus of 33.15 repeat loci using cDNA from the testis, ovary, spleen, kidney, heart, liver, and lung of water buffalo Bubalus bubalis and uncovered 25 amplicons of six different sizes (1,263, 846/847, 602, 576, 487, and 324 base pairs). These fragments, cloned and sequenced, were found to represent several functional, regulatory, and structural genes. Blast search of all the 25 amplicons showed homologies with 43 transcribing genes across the species. Of these, the 846/847-bp fragment, having homology with the adenylate kinase gene, showed nucleotide changes at six identical places in the ovary and testis. The 1,263; 324; and 487-bp fragments showed homology with the secreted modular calcium binding protein (SMOC-1), leucine-rich repeat neuronal 6A (LRRN6A) mRNA, and human TTTY5 mRNA, respectively. Real-time PCR showed maximum expression of AKL, LRRN6A, and T-cell receptor gamma (TCR-gamma)-like genes in the testis, SMOC-1 in the liver, and the T-cell receptor-like (TCRL) gene in the spleen compared to those used as endogenous control. We construe that these genes have evolved from a common progenitor and conformed to various biological functions during the course of evolution. MASA approach coupled with real-time PCR has potentials to uncover accurate expression of a large number of genes within and across the species circumventing the screening of cDNA library.

  10. Detection and diagnostic value of urine leucine-rich alpha-2-glycoprotein (LRG) in children with suspected acute appendicitis

    PubMed Central

    Kentsis, Alex; Ahmed, Saima; Kurek, Kyle; Brennan, Eileen; Bradwin, Gary; Steen, Hanno; Bachur, Richard

    2013-01-01

    Objective Previously, we used a proteomics approach for the discovery of new diagnostic markers of acute appendicitis (AA) and identified LRG that was elevated in the urine of children with AA and enriched in diseased appendices. Here, we sought to evaluate the diagnostic utility of enzyme-linked immunoassay (ELISA) of urine LRG in a blinded, prospective, cohort study of children being evaluated for acute abdominal pain. Methods Urine LRG concentration was measured using a commercially available LRG ELISA, and selected ion monitoring (SIM) mass spectrometry (MS). Urine LRG test performance was evaluated blindly against the pathologic diagnosis and histologic grade of appendicitis. Results Urine LRG was measured in 49 patients. Mean urine LRG concentration measured using commercial LRG ELISA was significantly elevated in patients with AA, but exhibited an interference effect. Direct measurements using SIM MS demonstrated that LRG was elevated more than 100-fold in patients with AA as compared to those without, with the receiver operating characteristic area under the curve of 0.98 (95% CI = 0.96-1.0). Among patients with AA, elevations of urine LRG measured using ELISA and SIM MS correlated with the histologic severity of appendicitis. Conclusion Urine LRG ELISA allows for discrimination between patients with and without AA, but exhibits limited accuracy due to immunoassay interference. Direct measurements of urine LRG using SIM MS demonstrate superior diagnostic performance. Development of a clinical-grade urine LRG assay is needed to advance the diagnostic accuracy of clinical evaluations of appendicitis. PMID:22305331

  11. Ten Putative Contributors to the Obesity Epidemic

    PubMed Central

    McAllister, Emily J.; Dhurandhar, Nikhil V.; Keith, Scott W.; Aronne, Louis J.; Barger, Jamie; Baskin, Monica; Benca, Ruth M.; Biggio, Joseph; Boggiano, Mary M.; Eisenmann, Joe C.; Elobeid, Mai; Fontaine, Kevin R.; Gluckman, Peter; Hanlon, Erin C.; Katzmarzyk, Peter; Pietrobelli, Angelo; Redden, David T.; Ruden, Douglas M.; Wang, Chenxi; Waterland, Robert A.; Wright, Suzanne M.; Allison, David B.

    2010-01-01

    The obesity epidemic is a global issue and shows no signs of abating, while the cause of this epidemic remains unclear. Marketing practices of energy-dense foods and institutionally-driven declines in physical activity are the alleged perpetrators for the epidemic, despite a lack of solid evidence to demonstrate their causal role. While both may contribute to obesity, we call attention to their unquestioned dominance in program funding and public efforts to reduce obesity, and propose several alternative putative contributors that would benefit from equal consideration and attention. Evidence for microorganisms, epigenetics, increasing maternal age, greater fecundity among people with higher adiposity, assortative mating, sleep debt, endocrine disruptors, pharmaceutical iatrogenesis, reduction in variability of ambient temperatures, and intrauterine and intergenerational effects, as contributing factors to the obesity epidemic are reviewed herein. While the evidence is strong for some contributors such as pharmaceutical-induced weight gain, it is still emerging for other reviewed factors. Considering the role of such putative etiological factors of obesity may lead to comprehensive, cause specific, and effective strategies for prevention and treatment of this global epidemic. PMID:19960394

  12. Derivation and evaluation of putative adverse outcome ...

    EPA Pesticide Factsheets

    Cyclooxygenase (COX) inhibition is of concern in fish because COX inhibitors (e.g., ibuprofen) are ubiquitous in aquatic systems/fish tissues, and can disrupt synthesis of prostaglandins that modulate a variety of essential biological functions including reproduction. High content (transcriptomic) empirical data and publicly available high throughput toxicity data (actor.epa.gov) were utilized to develop putative adverse outcome pathways (AOPs) for molecular initiating event (MIE) of COX inhibition. Effects of a waterborne, 96h exposure to indomethacin (IN; 100 µg/L), ibuprofen (IB; 200 µg/L) and celecoxib (CX; 20 µg/L) on liver metabolome and ovarian gene expression (using oligonucleotide microarrays) in sexually mature fathead minnows (n=8) were examined. Metabolomic profiles of IN, IB and CX were not significantly different from control or one another. Exposure to IB and CX resulted in differential expression of comparable numbers of genes (IB = 433, CX= 545). In contrast, 2558 genes were differentially expressed in IN-treated fish. Functional analyses (canonical pathway and gene set enrichment) indicated extensive effects of IN on prostaglandin synthesis pathway, oocyte meiosis and several other processes consistent with physiological roles of prostaglandins. Transcriptomic data was congruent with apical endpoint data - IN reduced plasma prostaglandin F2 alpha concentrations, and ovarian COX activity, whereas IB and CX did not. Putative AOPs pathways for

  13. Duct Leakage Repeatability Testing

    SciTech Connect

    Walker, Iain; Sherman, Max

    2014-01-01

    Duct leakage often needs to be measured to demonstrate compliance with requirements or to determine energy or Indoor Air Quality (IAQ) impacts. Testing is often done using standards such as ASTM E1554 (ASTM 2013) or California Title 24 (California Energy Commission 2013 & 2013b), but there are several choices of methods available within the accepted standards. Determining which method to use or not use requires an evaluation of those methods in the context of the particular needs. Three factors that are important considerations are the cost of the measurement, the accuracy of the measurement and the repeatability of the measurement. The purpose of this report is to evaluate the repeatability of the three most significant measurement techniques using data from the literature and recently obtained field data. We will also briefly discuss the first two factors. The main question to be answered by this study is to determine if differences in the repeatability of these tests methods is sufficient to indicate that any of these methods is so poor that it should be excluded from consideration as an allowed procedure in codes and standards.

  14. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.

  15. Major Quantitative Trait Loci and Putative Candidate Genes for Powdery Mildew Resistance and Fruit-Related Traits Revealed by an Intraspecific Genetic Map for Watermelon (Citrullus lanatus var. lanatus).

    PubMed

    Kim, Kwang-Hwan; Hwang, Ji-Hyun; Han, Dong-Yeup; Park, Minkyu; Kim, Seungill; Choi, Doil; Kim, Yongjae; Lee, Gung Pyo; Kim, Sun-Tae; Park, Young-Hoon

    2015-01-01

    An intraspecific genetic map for watermelon was constructed using an F2 population derived from 'Arka Manik' × 'TS34' and transcript sequence variants and quantitative trait loci (QTL) for resistance to powdery mildew (PMR), seed size (SS), and fruit shape (FS) were analyzed. The map consists of 14 linkage groups (LGs) defined by 174 cleaved amplified polymorphic sequences (CAPS), 2 derived-cleaved amplified polymorphic sequence markers, 20 sequence-characterized amplified regions, and 8 expressed sequence tag-simple sequence repeat markers spanning 1,404.3 cM, with a mean marker interval of 6.9 cM and an average of 14.6 markers per LG. Genetic inheritance and QTL analyses indicated that each of the PMR, SS, and FS traits is controlled by an incompletely dominant effect of major QTLs designated as pmr2.1, ss2.1, and fsi3.1, respectively. The pmr2.1, detected on chromosome 2 (Chr02), explained 80.0% of the phenotypic variation (LOD = 30.76). This QTL was flanked by two CAPS markers, wsb2-24 (4.00 cM) and wsb2-39 (13.97 cM). The ss2.1, located close to pmr2.1 and CAPS marker wsb2-13 (1.00 cM) on Chr02, explained 92.3% of the phenotypic variation (LOD = 68.78). The fsi3.1, detected on Chr03, explained 79.7% of the phenotypic variation (LOD = 31.37) and was flanked by two CAPS, wsb3-24 (1.91 cM) and wsb3-9 (7.00 cM). Candidate gene-based CAPS markers were developed from the disease resistance and fruit shape gene homologs located on Chr.02 and Chr03 and were mapped on the intraspecific map. Colocalization of these markers with the major QTLs indicated that watermelon orthologs of a nucleotide-binding site-leucine-rich repeat class gene containing an RPW8 domain and a member of SUN containing the IQ67 domain are candidate genes for pmr2.1 and fsi3.1, respectively. The results presented herein provide useful information for marker-assisted breeding and gene cloning for PMR and fruit-related traits.

  16. Major Quantitative Trait Loci and Putative Candidate Genes for Powdery Mildew Resistance and Fruit-Related Traits Revealed by an Intraspecific Genetic Map for Watermelon (Citrullus lanatus var. lanatus)

    PubMed Central

    Kim, Kwang-Hwan; Hwang, Ji-Hyun; Han, Dong-Yeup; Park, Minkyu; Kim, Seungill; Choi, Doil; Kim, Yongjae; Lee, Gung Pyo; Kim, Sun-Tae; Park, Young-Hoon

    2015-01-01

    An intraspecific genetic map for watermelon was constructed using an F2 population derived from ‘Arka Manik’ × ‘TS34’ and transcript sequence variants and quantitative trait loci (QTL) for resistance to powdery mildew (PMR), seed size (SS), and fruit shape (FS) were analyzed. The map consists of 14 linkage groups (LGs) defined by 174 cleaved amplified polymorphic sequences (CAPS), 2 derived-cleaved amplified polymorphic sequence markers, 20 sequence-characterized amplified regions, and 8 expressed sequence tag-simple sequence repeat markers spanning 1,404.3 cM, with a mean marker interval of 6.9 cM and an average of 14.6 markers per LG. Genetic inheritance and QTL analyses indicated that each of the PMR, SS, and FS traits is controlled by an incompletely dominant effect of major QTLs designated as pmr2.1, ss2.1, and fsi3.1, respectively. The pmr2.1, detected on chromosome 2 (Chr02), explained 80.0% of the phenotypic variation (LOD = 30.76). This QTL was flanked by two CAPS markers, wsb2-24 (4.00 cM) and wsb2-39 (13.97 cM). The ss2.1, located close to pmr2.1 and CAPS marker wsb2-13 (1.00 cM) on Chr02, explained 92.3% of the phenotypic variation (LOD = 68.78). The fsi3.1, detected on Chr03, explained 79.7% of the phenotypic variation (LOD = 31.37) and was flanked by two CAPS, wsb3-24 (1.91 cM) and wsb3-9 (7.00 cM). Candidate gene-based CAPS markers were developed from the disease resistance and fruit shape gene homologs located on Chr.02 and Chr03 and were mapped on the intraspecific map. Colocalization of these markers with the major QTLs indicated that watermelon orthologs of a nucleotide-binding site-leucine-rich repeat class gene containing an RPW8 domain and a member of SUN containing the IQ67 domain are candidate genes for pmr2.1 and fsi3.1, respectively. The results presented herein provide useful information for marker-assisted breeding and gene cloning for PMR and fruit-related traits. PMID:26700647

  17. Repeatability of Cryogenic Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Johnson, W. L.; Vanderlaan, M.; Wood, J. J.; Rhys, N. O.; Guo, W.; Van Sciver, S.; Chato, D. J.

    2017-01-01

    Due to the variety of requirements across aerospace platforms, and one off projects, the repeatability of cryogenic multilayer insulation has never been fully established. The objective of this test program is to provide a more basic understanding of the thermal performance repeatability of MLI systems that are applicable to large scale tanks. There are several different types of repeatability that can be accounted for: these include repeatability between multiple identical blankets, repeatability of installation of the same blanket, and repeatability of a test apparatus. The focus of the work in this report is on the first two types of repeatability. Statistically, repeatability can mean many different things. In simplest form, it refers to the range of performance that a population exhibits and the average of the population. However, as more and more identical components are made (i.e. the population of concern grows), the simple range morphs into a standard deviation from an average performance. Initial repeatability testing on MLI blankets has been completed at Florida State University. Repeatability of five GRC provided coupons with 25 layers was shown to be +/- 8.4 whereas repeatability of repeatedly installing a single coupon was shown to be +/- 8.0. A second group of 10 coupons have been fabricated by Yetispace and tested by Florida State University, through the first 4 tests, the repeatability has been shown to be +/- 16. Based on detailed statistical analysis, the data has been shown to be statistically significant.

  18. Duct Leakage Repeatability Testing

    SciTech Connect

    Walker, Iain; Sherman, Max

    2014-08-01

    The purpose of this report is to evaluate the repeatability of the three most significant measurement techniques for duct leakage using data from the literature and recently obtained field data. We will also briefly discuss the first two factors. The main question to be answered by this study is to determine if differences in the repeatability of these tests methods is sufficient to indicate that any of these methods is so poor that it should be excluded from consideration as an allowed procedure in codes and standards. The three duct leak measurement methods assessed in this report are the two duct pressurization methods that are commonly used by many practitioners and the DeltaQ technique. These are methods B, C and A, respectively of the ASTM E1554 standard. Although it would be useful to evaluate other duct leak test methods, this study focused on those test methods that are commonly used and are required in various test standards, such as BPI (2010), RESNET (2014), ASHRAE 62.2 (2013), California Title 24 (CEC 2012), DOE Weatherization and many other energy efficiency programs.

  19. Ising Model Reprogramming of a Repeat Protein's Equilibrium Unfolding Pathway.

    PubMed

    Millership, C; Phillips, J J; Main, E R G

    2016-05-08

    Repeat proteins are formed from units of 20-40 aa that stack together into quasi one-dimensional non-globular structures. This modular repetitive construction means that, unlike globular proteins, a repeat protein's equilibrium folding and thus thermodynamic stability can be analysed using linear Ising models. Typically, homozipper Ising models have been used. These treat the repeat protein as a series of identical interacting subunits (the repeated motifs) that couple together to form the folded protein. However, they cannot describe subunits of differing stabilities. Here we show that a more sophisticated heteropolymer Ising model can be constructed and fitted to two new helix deletion series of consensus tetratricopeptide repeat proteins (CTPRs). This analysis, showing an asymmetric spread of stability between helices within CTPR ensembles, coupled with the Ising model's predictive qualities was then used to guide reprogramming of the unfolding pathway of a variant CTPR protein. The designed behaviour was engineered by introducing destabilising mutations that increased the thermodynamic asymmetry within a CTPR ensemble. The asymmetry caused the terminal α-helix to thermodynamically uncouple from the rest of the protein and preferentially unfold. This produced a specific, highly populated stable intermediate with a putative dimerisation interface. As such it is the first step in designing repeat proteins with function regulated by a conformational switch.

  20. 78 FR 65594 - Vehicular Repeaters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... changes, and on whether current mobile repeater filter technologies can support reduced frequency... feasibility of adapting SAW filters, or other filter technology, for mobile repeater use. We particularly... mobile repeaters by public safety licensees on certain frequencies in the VHF band. DATES:...

  1. Repeat Customer Success in Extension

    ERIC Educational Resources Information Center

    Bess, Melissa M.; Traub, Sarah M.

    2013-01-01

    Four multi-session research-based programs were offered by two Extension specialist in one rural Missouri county. Eleven participants who came to multiple Extension programs could be called "repeat customers." Based on the total number of participants for all four programs, 25% could be deemed as repeat customers. Repeat customers had…

  2. Repeat Customer Success in Extension

    ERIC Educational Resources Information Center

    Bess, Melissa M.; Traub, Sarah M.

    2013-01-01

    Four multi-session research-based programs were offered by two Extension specialist in one rural Missouri county. Eleven participants who came to multiple Extension programs could be called "repeat customers." Based on the total number of participants for all four programs, 25% could be deemed as repeat customers. Repeat customers had…

  3. LRG1 — EDRN Public Portal

    Cancer.gov

    The leucine-rich repeat (LRR) family of proteins, including secreted protein LRG1, have been shown to be involved in protein-protein interaction, signal transduction, and cell adhesion and development. LRG1 is expressed during granulocyte differentiation.

  4. The Biogeography of Putative Microbial Antibiotic Production

    PubMed Central

    Bryant, Jessica A.; Charkoudian, Louise K.; Docherty, Kathryn M.; Jones, Evan; Kembel, Steven W.; Green, Jessica L.; Bohannan, Brendan J. M.

    2015-01-01

    Understanding patterns in the distribution and abundance of functional traits across a landscape is of fundamental importance to ecology. Mapping these distributions is particularly challenging for species-rich groups with sparse trait measurement coverage, such as flowering plants, insects, and microorganisms. Here, we use likelihood-based character reconstruction to infer and analyze the spatial distribution of unmeasured traits. We apply this framework to a microbial dataset comprised of 11,732 ketosynthase alpha gene sequences extracted from 144 soil samples from three continents to document the spatial distribution of putative microbial polyketide antibiotic production. Antibiotic production is a key competitive strategy for soil microbial survival and performance. Additionally, novel antibiotic discovery is highly relevant to human health, making natural antibiotic production by soil microorganisms a major target for bioprospecting. Our comparison of trait-based biogeographical patterns to patterns based on taxonomy and phylogeny is relevant to our basic understanding of microbial biogeography as well as the pressing need for new antibiotics. PMID:26102275

  5. PUTATIVE ADVERSE OUTCOME PATHWAY FOR INHIBITON ...

    EPA Pesticide Factsheets

    The adverse outcome pathway (AOP) provides a framework for organizing knowledge to define links between a molecular initiating event (MIE) and an adverse outcome (AO) occurring at a higher level of biological organization, such as the individual or population. The AOP framework proceeds from a general (e.g., not chemical specific) molecular mode of action, designated as a MIE, through stepwise changes in biological status, defined as key events (KEs), to a final AO that can be used in risk assessment. Because aromatase-inhibiting pharmaceuticals are widely used to treat breast cancer patients, we explored the unintended consequences that might occur in fish exposed to these chemicals through wastewater discharge into the aquatic environment. Unlike mammals, fish have two isoforms of aromatase, one that predominates in the ovary (cyp19a1a) and a second (cyp19a1b) that prevails in the brain. Aromatase activity in fish brain can be 100 to 1000 times that in mammals and is associated with reproduction. We have developed a putative AOP for inhibition of brain aromatase in fish leading to reproductive dysfunction based on review of relevant literature and reproductive experiments with the marine fish cunner (Tautogolabrus adspersus) exposed to aromatase-inhibiting pharmaceuticals in the laboratory. The first KE in this AOP is a decrease in brain aromatase activity due to exposure to an aromatase inhibitor. KEs then progress through subsequent steps including decreas

  6. Biogenic Origin for Earth's Oldest Putative Microfossils

    SciTech Connect

    De Gregorio, B.; Sharp, T; Flynn, G; Wirick, S; Hervig, R

    2009-01-01

    Carbonaceous microbe-like features preserved within a local chert unit of the 3.5 Ga old Apex Basalt in Western Australia may represent some of the oldest evidence of life on Earth. However, the biogenicity of these putative microfossils has been called into question, primarily because the sample collection locality is a black, carbon-rich, brecciated chert dike representing an Archean submarine hydrothermal spring, suggesting a formation via an abiotic organic synthesis mechanism. Here we describe the macromolecular hydrocarbon structure, carbon bonding, functional group chemistry, and biotic element abundance of carbonaceous matter associated with these filamentous features. These characteristics are similar to those of biogenic kerogen from the ca. 1.9 Ga old Gunflint Formation. Although an abiotic origin cannot be entirely ruled out, it is unlikely that known abiotic synthesis mechanisms could recreate both the structural and compositional complexity of this ancient carbonaceous matter. Thus, we find that a biogenic origin for this material is more likely, implying that the Apex microbe-like features represent authentic biogenic organic matter.

  7. The Biogeography of Putative Microbial Antibiotic Production.

    PubMed

    Morlon, Hélène; O'Connor, Timothy K; Bryant, Jessica A; Charkoudian, Louise K; Docherty, Kathryn M; Jones, Evan; Kembel, Steven W; Green, Jessica L; Bohannan, Brendan J M

    2015-01-01

    Understanding patterns in the distribution and abundance of functional traits across a landscape is of fundamental importance to ecology. Mapping these distributions is particularly challenging for species-rich groups with sparse trait measurement coverage, such as flowering plants, insects, and microorganisms. Here, we use likelihood-based character reconstruction to infer and analyze the spatial distribution of unmeasured traits. We apply this framework to a microbial dataset comprised of 11,732 ketosynthase alpha gene sequences extracted from 144 soil samples from three continents to document the spatial distribution of putative microbial polyketide antibiotic production. Antibiotic production is a key competitive strategy for soil microbial survival and performance. Additionally, novel antibiotic discovery is highly relevant to human health, making natural antibiotic production by soil microorganisms a major target for bioprospecting. Our comparison of trait-based biogeographical patterns to patterns based on taxonomy and phylogeny is relevant to our basic understanding of microbial biogeography as well as the pressing need for new antibiotics.

  8. Mechanosensory neurons, cutaneous mechanoreceptors, and putative mechanoproteins.

    PubMed

    Del Valle, M E; Cobo, T; Cobo, J L; Vega, J A

    2012-08-01

    The mammalian skin has developed sensory structures (mechanoreceptors) that are responsible for different modalities of mechanosensitivity like touch, vibration, and pressure sensation. These specialized sensory organs are anatomically and functionally connected to a special subset of sensory neurons called mechanosensory neurons, which electrophysiologically correspond with Aβ fibers. Although mechanosensory neurons and cutaneous mechanoreceptors are rather well known, the biology of the sense of touch still remains poorly understood. Basically, the process of mechanosensitivity requires the conversion of a mechanical stimulus into an electrical signal through the activation of ion channels that gate in response to mechanical stimuli. These ion channels belong primarily to the family of the degenerin/epithelium sodium channels, especially the subfamily acid-sensing ion channels, and to the family of transient receptor potential channels. This review compiles the current knowledge on the occurrence of putative mechanoproteins in mechanosensory neurons and mechanoreceptors, as well as the involvement of these proteins on the biology of touch. Furthermore, we include a section about what the knock-out mice for mechanoproteins are teaching us. Finally, the possibilities for mechanotransduction in mechanoreceptors, and the common involvement of the ion channels, extracellular membrane, and cytoskeleton, are revisited.

  9. PUTATIVE ADVERSE OUTCOME PATHWAY FOR INHIBITON ...

    EPA Pesticide Factsheets

    The adverse outcome pathway (AOP) provides a framework for organizing knowledge to define links between a molecular initiating event (MIE) and an adverse outcome (AO) occurring at a higher level of biological organization, such as the individual or population. The AOP framework proceeds from a general (e.g., not chemical specific) molecular mode of action, designated as a MIE, through stepwise changes in biological status, defined as key events (KEs), to a final AO that can be used in risk assessment. Because aromatase-inhibiting pharmaceuticals are widely used to treat breast cancer patients, we explored the unintended consequences that might occur in fish exposed to these chemicals through wastewater discharge into the aquatic environment. Unlike mammals, fish have two isoforms of aromatase, one that predominates in the ovary (cyp19a1a) and a second (cyp19a1b) that prevails in the brain. Aromatase activity in fish brain can be 100 to 1000 times that in mammals and is associated with reproduction. We have developed a putative AOP for inhibition of brain aromatase in fish leading to reproductive dysfunction based on review of relevant literature and reproductive experiments with the marine fish cunner (Tautogolabrus adspersus) exposed to aromatase-inhibiting pharmaceuticals in the laboratory. The first KE in this AOP is a decrease in brain aromatase activity due to exposure to an aromatase inhibitor. KEs then progress through subsequent steps including decreas

  10. Putative Bronchopulmonary Flagellated Protozoa in Immunosuppressed Patients

    PubMed Central

    Kilimcioglu, Ali Ahmet; Havlucu, Yavuz; Çelik, Pınar; Özbilgin, Ahmet

    2014-01-01

    Flagellated protozoa that cause bronchopulmonary symptoms in humans are commonly neglected. These protozoal forms which were presumed to be “flagellated protozoa” have been previously identified in immunosuppressed patients in a number of studies, but have not been certainly classified so far. Since no human cases of bronchopulmonary flagellated protozoa were reported from Turkey, we aimed to investigate these putative protozoa in immunosuppressed patients who are particularly at risk of infectious diseases. Bronchoalveolar lavage fluid samples of 110 immunosuppressed adult patients who were admitted to the Department of Chest Diseases, Hafsa Sultan Hospital of Celal Bayar University, Manisa, Turkey, were examined in terms of parasites by light microscopy. Flagellated protozoal forms were detected in nine (8.2%) of 110 cases. Metronidazole (500 mg b.i.d. for 30 days) was given to all positive cases and a second bronchoscopy was performed at the end of the treatment, which revealed no parasites. In conclusion, immunosuppressed patients with bronchopulmonary symptoms should attentively be examined with regard to flagellated protozoa which can easily be misidentified as epithelial cells. PMID:24804259

  11. Putative bronchopulmonary flagellated protozoa in immunosuppressed patients.

    PubMed

    Kilimcioglu, Ali Ahmet; Havlucu, Yavuz; Girginkardesler, Nogay; Celik, Pınar; Yereli, Kor; Özbilgin, Ahmet

    2014-01-01

    Flagellated protozoa that cause bronchopulmonary symptoms in humans are commonly neglected. These protozoal forms which were presumed to be "flagellated protozoa" have been previously identified in immunosuppressed patients in a number of studies, but have not been certainly classified so far. Since no human cases of bronchopulmonary flagellated protozoa were reported from Turkey, we aimed to investigate these putative protozoa in immunosuppressed patients who are particularly at risk of infectious diseases. Bronchoalveolar lavage fluid samples of 110 immunosuppressed adult patients who were admitted to the Department of Chest Diseases, Hafsa Sultan Hospital of Celal Bayar University, Manisa, Turkey, were examined in terms of parasites by light microscopy. Flagellated protozoal forms were detected in nine (8.2%) of 110 cases. Metronidazole (500 mg b.i.d. for 30 days) was given to all positive cases and a second bronchoscopy was performed at the end of the treatment, which revealed no parasites. In conclusion, immunosuppressed patients with bronchopulmonary symptoms should attentively be examined with regard to flagellated protozoa which can easily be misidentified as epithelial cells.

  12. Genome-wide analysis of tandem repeats in plants and green algae

    Treesearch

    Zhixin Zhao; Cheng Guo; Sreeskandarajan Sutharzan; Pei Li; Craig Echt; Jie Zhang; Chun Liang

    2014-01-01

    Tandem repeats (TRs) extensively exist in the genomes of prokaryotes and eukaryotes. Based on the sequenced genomes and gene annotations of 31 plant and algal species in Phytozome version 8.0 (http://www.phytozome.net/), we examined TRs in a genome-wide scale, characterized their distributions and motif features, and explored their putative biological functions. Among...

  13. FUNCTIONAL ANALYSIS OF A RING DOMAIN ANKYRIN REPEAT PROTEIN THAT IS HIGHLY EXPRESSED DURING FLOWER SENESCENCE

    USDA-ARS?s Scientific Manuscript database

    A gene encoding a RING zinc finger ankyrin repeat protein (MjXB3), a putative E3 ubiquitin ligase, is highly expressed in petals of senescing four o'clock (Mirabilis jalapa) flowers, increasing >40 000-fold during the onset of visible senescence. The gene has homologues in many other species, and t...

  14. RepeatsDB: a database of tandem repeat protein structures

    PubMed Central

    Di Domenico, Tomás; Potenza, Emilio; Walsh, Ian; Gonzalo Parra, R.; Giollo, Manuel; Minervini, Giovanni; Piovesan, Damiano; Ihsan, Awais; Ferrari, Carlo; Kajava, Andrey V.; Tosatto, Silvio C.E.

    2014-01-01

    RepeatsDB (http://repeatsdb.bio.unipd.it/) is a database of annotated tandem repeat protein structures. Tandem repeats pose a difficult problem for the analysis of protein structures, as the underlying sequence can be highly degenerate. Several repeat types haven been studied over the years, but their annotation was done in a case-by-case basis, thus making large-scale analysis difficult. We developed RepeatsDB to fill this gap. Using state-of-the-art repeat detection methods and manual curation, we systematically annotated the Protein Data Bank, predicting 10 745 repeat structures. In all, 2797 structures were classified according to a recently proposed classification schema, which was expanded to accommodate new findings. In addition, detailed annotations were performed in a subset of 321 proteins. These annotations feature information on start and end positions for the repeat regions and units. RepeatsDB is an ongoing effort to systematically classify and annotate structural protein repeats in a consistent way. It provides users with the possibility to access and download high-quality datasets either interactively or programmatically through web services. PMID:24311564

  15. Environmental stresses induce the expression of putative glycine-rich insect cuticular protein genes in adult Leptinotarsa decemlineata (Say).

    PubMed

    Zhang, J; Goyer, C; Pelletier, Y

    2008-06-01

    The deposition of cuticular proteins in insects usually occurs during the moulting process. Three putative glycine-rich insect cuticular proteins, Ld-GRP1 to 3, were identified and characterized from the Colorado potato beetle, Leptinotarsa decemlineata. The Ld-GRPs contained conserved GXGX and/or GGXG sequence repeats. Ld-GRP1 also contained a conserved AAPA/V motif commonly found in cuticular proteins. The transcripts of Ld-GRP1 and Ld-GRP2 were detected in the epidermal cell layer by in situ hybridization, making them putative insect cuticular proteins. The putative cuticular protein genes were highly induced by the insecticide azinphosmethyl (organophosphorous) 2-3 weeks after adult moulting. Putative cuticular protein gene expression level was higher in azinphosmethyl-resistant beetles than in susceptible beetles. Furthermore, two of the putative cuticular protein genes were highly induced by dry environmental conditions. These results suggest that the insect might increase cuticular component deposition in the adult stage in response to environmental stresses. This ability may allow the insect to adapt to new or changing environments.

  16. Identification of the In Vivo Phosphorylation Sites of the Ras Suppressor Rsu-1

    DTIC Science & Technology

    2000-12-11

    Characterization of a Novel Ras-Binding Protein Ce-Ai-l Comprising Leucine-Rich Repeats and Gelsolin-Like Domains. Biochem. Biophys. Res. Comm. 257...with Skeletal Muscle ~-Tropomyosin . 1. Bioi. Chern. 271, 768-773. Zehn. I.M. et al. (1998). Rho family proteins and Ras transformation: the RHOad...275, 23065-23073. Goshima. M .• et al. (1999). Characterization of a Novel Ras-Binding Protein Ce-Ai-l Comprising Leucine-Rich Repeats and Gelsolin

  17. Alanine repeats influence protein localization in splicing speckles and paraspeckles.

    PubMed

    Chang, Shuo-Hsiu; Chang, Wei-Lun; Lu, Chia-Chen; Tarn, Woan-Yuh

    2014-12-16

    Mammalian splicing regulatory protein RNA-binding motif protein 4 (RBM4) has an alanine repeat-containing C-terminal domain (CAD) that confers both nuclear- and splicing speckle-targeting activities. Alanine-repeat expansion has pathological potential. Here we show that the alanine-repeat tracts influence the subnuclear targeting properties of the RBM4 CAD in cultured human cells. Notably, truncation of the alanine tracts redistributed a portion of RBM4 to paraspeckles. The alanine-deficient CAD was sufficient for paraspeckle targeting. On the other hand, alanine-repeat expansion reduced the mobility of RBM4 and impaired its splicing activity. We further took advantage of the putative coactivator activator (CoAA)-RBM4 conjoined splicing factor, CoAZ, to investigate the function of the CAD in subnuclear targeting. Transiently expressed CoAZ formed discrete nuclear foci that emerged and subsequently separated-fully or partially-from paraspeckles. Alanine-repeat expansion appeared to prevent CoAZ separation from paraspeckles, resulting in their complete colocalization. CoAZ foci were dynamic but, unlike paraspeckles, were resistant to RNase treatment. Our results indicate that the alanine-rich CAD, in conjunction with its conjoined RNA-binding domain(s), differentially influences the subnuclear localization and biogenesis of RBM4 and CoAZ.

  18. To Repeat or Not to Repeat a Course

    ERIC Educational Resources Information Center

    Armstrong, Michael J.; Biktimirov, Ernest N.

    2013-01-01

    The difficult transition from high school to university means that many students need to repeat (retake) 1 or more of their university courses. The authors examine the performance of students repeating first-year core courses in an undergraduate business program. They used data from university records for 116 students who took a total of 232…

  19. To Repeat or Not to Repeat a Course

    ERIC Educational Resources Information Center

    Armstrong, Michael J.; Biktimirov, Ernest N.

    2013-01-01

    The difficult transition from high school to university means that many students need to repeat (retake) 1 or more of their university courses. The authors examine the performance of students repeating first-year core courses in an undergraduate business program. They used data from university records for 116 students who took a total of 232…

  20. Dietary sugar utilisation by putative oral probiotics.

    PubMed

    Stamatova, I; Kari, K; Hervonen, L; Meurman, J H

    2012-09-01

    Probiotic consumption and repeated probiotic intake have shown promising results as adjunct therapies in prevention and alleviation of some chronic disease conditions in the gastrointestinal tract. Recent evidence suggests that probiotics may also be beneficial in preventing oral diseases. An efficient probiotic candidate in the mouth, however, should not impose any risk to oral tissues, such as acid demineralisation of tooth enamel because of sugar fermentation. The aim of the present in vitro study was to evaluate the utilisation of some sugars and sugar alcohols by yogurt starter Lactobacillus delbrueckii subsp. bulgaricus strains and to assess the influence of these carbohydrate sources on cell surface properties. For comparsion, a commercially available probiotic, Lactobacillus rhamnosus GG, was used. The results showed that lactose, glucose and fructose were readily metabolised by all strains tested. However, strain-specific metabolic patterns were observed when other sugars and sugar alcohols were used as sole carbohydrate source in the growth medium. Surface properties of the bacteria such as hydrophobicity and surface-associated proteins appeared to vary with the carbohydrate content of the growth medium. Based on these results it can be concluded that among the L. delbrueckii subsp. bulgaricus strains probiotic candidate strains are available that warrant further studies due to their inability to ferment sugars with pronounced cariogenic properties.

  1. Directly repeated sequences associated with pathogenic mitochondrial DNA deletions.

    PubMed Central

    Johns, D R; Rutledge, S L; Stine, O C; Hurko, O

    1989-01-01

    We determined the nucleotide sequences of junctional regions associated with large deletions of mitochondrial DNA found in four unrelated individuals with a phenotype of chronic progressive external ophthalmoplegia. In each patient, the deletion breakpoint occurred within a directly repeated sequence of 13-18 base pairs, present in different regions of the normal mitochondrial genome-separated by 4.5-7.7 kilobases. In two patients, the deletions were identical. When all four repeated sequences are compared, a consensus sequence of 11 nucleotides emerges, similar to putative recombination signals, suggesting the involvement of a recombinational event. Partially deleted and normal mitochondrial DNAs were found in all tissues examined, but in very different proportions, indicating that these mutations originated before the primary cell layers diverged. Images PMID:2813377

  2. Nifty Nines and Repeating Decimals

    ERIC Educational Resources Information Center

    Brown, Scott A.

    2016-01-01

    The traditional technique for converting repeating decimals to common fractions can be found in nearly every algebra textbook that has been published, as well as in many precalculus texts. However, students generally encounter repeating decimal numerals earlier than high school when they study rational numbers in prealgebra classes. Therefore, how…

  3. Nifty Nines and Repeating Decimals

    ERIC Educational Resources Information Center

    Brown, Scott A.

    2016-01-01

    The traditional technique for converting repeating decimals to common fractions can be found in nearly every algebra textbook that has been published, as well as in many precalculus texts. However, students generally encounter repeating decimal numerals earlier than high school when they study rational numbers in prealgebra classes. Therefore, how…

  4. Repeated Prescribed Burning in Aspen

    Treesearch

    Donald A. Perala

    1974-01-01

    Infrequent burning weather, low flammability of the aspen-hardwood association, and prolific sprouting and seeding of shrubs and hardwoods made repeated dormant season burning a poor tool to convert good site aspen to conifers. Repeat fall burns for wildlife habitat maintenance is workable if species composition changes are not important.

  5. All-photonic quantum repeaters

    NASA Astrophysics Data System (ADS)

    Azuma, Koji; Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2015-04-01

    Quantum communication holds promise for unconditionally secure transmission of secret messages and faithful transfer of unknown quantum states. Photons appear to be the medium of choice for quantum communication. Owing to photon losses, robust quantum communication over long lossy channels requires quantum repeaters. It is widely believed that a necessary and highly demanding requirement for quantum repeaters is the existence of matter quantum memories. Here we show that such a requirement is, in fact, unnecessary by introducing the concept of all-photonic quantum repeaters based on flying qubits. In particular, we present a protocol based on photonic cluster-state machine guns and a loss-tolerant measurement equipped with local high-speed active feedforwards. We show that, with such all-photonic quantum repeaters, the communication efficiency scales polynomially with the channel distance. Our result paves a new route towards quantum repeaters with efficient single-photon sources rather than matter quantum memories.

  6. All-photonic quantum repeaters

    PubMed Central

    Azuma, Koji; Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2015-01-01

    Quantum communication holds promise for unconditionally secure transmission of secret messages and faithful transfer of unknown quantum states. Photons appear to be the medium of choice for quantum communication. Owing to photon losses, robust quantum communication over long lossy channels requires quantum repeaters. It is widely believed that a necessary and highly demanding requirement for quantum repeaters is the existence of matter quantum memories. Here we show that such a requirement is, in fact, unnecessary by introducing the concept of all-photonic quantum repeaters based on flying qubits. In particular, we present a protocol based on photonic cluster-state machine guns and a loss-tolerant measurement equipped with local high-speed active feedforwards. We show that, with such all-photonic quantum repeaters, the communication efficiency scales polynomially with the channel distance. Our result paves a new route towards quantum repeaters with efficient single-photon sources rather than matter quantum memories. PMID:25873153

  7. All-photonic quantum repeaters.

    PubMed

    Azuma, Koji; Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2015-04-15

    Quantum communication holds promise for unconditionally secure transmission of secret messages and faithful transfer of unknown quantum states. Photons appear to be the medium of choice for quantum communication. Owing to photon losses, robust quantum communication over long lossy channels requires quantum repeaters. It is widely believed that a necessary and highly demanding requirement for quantum repeaters is the existence of matter quantum memories. Here we show that such a requirement is, in fact, unnecessary by introducing the concept of all-photonic quantum repeaters based on flying qubits. In particular, we present a protocol based on photonic cluster-state machine guns and a loss-tolerant measurement equipped with local high-speed active feedforwards. We show that, with such all-photonic quantum repeaters, the communication efficiency scales polynomially with the channel distance. Our result paves a new route towards quantum repeaters with efficient single-photon sources rather than matter quantum memories.

  8. [Construction and analysis of the SSH library with the resistant wheat near-isogenic line and its susceptible parent infected by Puccinia striiformis Westend. f. sp. tritici].

    PubMed

    Shu, Wei; Chen, Xiao-Hong; Niu, Yong-Chun

    2011-09-01

    To analyze the differentially expressed genes between resistant and susceptible wheat near-isogenic lines infected by Puccinia striiformis Westend. f. sp. tritici, a subtractive library containing about 1300 clones was constructed using suppression subtractive hybridization (SSH) in which the cDNA from resistant Yr4/6 × Taichung 29 seedlings inoculated with race CY26 was used as the tester, and the corresponding cDNA from susceptible Taichung 29 as the driver. Six hundred clones from the library were analyzed with reverse Northern blot. The positive clones were further tested by Northern blotting analysis. Twelve clones were verified and showed significant difference. By means of sequencing and BlastX analysis, six function-known differentially expressed sequences were detected, and their putative products were leucine-rich repeat protein, catalase, thioredoxin H-type, RNA binding protein, ascorbate peroxidase, and heat shock protein, respectively. Among them, leucine-rich repeat protein belongs to signal transduction protein, and others belong to defense response protein.

  9. Molecular cloning and functional analysis of duck Toll-like receptor 5.

    PubMed

    Xiong, Dan; Pan, Zhiming; Kang, Xilong; Wang, Jing; Song, Li; Jiao, Xinan

    2014-08-01

    Toll-like receptor 5 (TLR5) is responsible for the recognition of bacterial flagellin in vertebrates. In this study, we cloned the single-exon TLR5 gene of the Maya breed of Common Shelduck (Tadorna tadorna). The TLR5 open reading frame is 2580 bp in length and encodes an 859-amino acid protein. The putative amino acid sequence of duck TLR5 consisted of a signal peptide sequence, 11 leucine-rich repeat domains, a leucine-rich repeat C-terminal domain, a transmembrane domain, and an intracellular Toll-interleukin-1 receptor domain. The duck TLR5 gene was highly expressed in the lung, bone marrow, spleen, and liver; moderately expressed in kidney, small intestine, large intestine, and brain. A plasmid expressing duck TLR5 was constructed and transfected into HEK293T cells, and expression was confirmed by indirect immunofluorescence assay. HEK293T cells transfected with duck TLR5- and NF-κB-luciferase-containing plasmids significantly responded to flagellin from Salmonella typhimurium, indicating that it is a functional TLR5 homolog.

  10. Superfamily of ankyrin repeat proteins in tomato.

    PubMed

    Yuan, Xiaowei; Zhang, Shizhong; Qing, Xiaohe; Sun, Meihong; Liu, Shiyang; Su, Hongyan; Shu, Huairui; Li, Xinzheng

    2013-07-10

    The ankyrin repeat (ANK) protein family plays a crucial role in plant growth and development and in response to biotic and abiotic stresses. However, no detailed information concerning this family is available for tomato (Solanum lycopersicum) due to the limited information on whole genome sequences. In this study, we identified a total of 130 ANK genes in tomato genome (SlANK), and these genes were distributed across all 12 chromosomes at various densities. And chromosomal localizations of SlANK genes indicated 25 SlANK genes were involved in tandem duplications. Based on their domain composition, all of the SlANK proteins were grouped into 13 subgroups. A combined phylogenetic tree was constructed with the aligned SlANK protein sequences. This tree revealed that the SlANK proteins comprise five major groups. An analysis of the expression profiles of SlANK genes in tomato in different tissues and in response to stresses showed that the SlANK proteins play roles in plant growth, development and stress responses. To our knowledge, this is the first report of a genome-wide analysis of the tomato ANK gene family. This study provides valuable information regarding the classification and putative functions of SlANK genes in tomato.

  11. Filamin repeat segments required for photosensory signalling in Dictyostelium discoideum

    PubMed Central

    Annesley, Sarah J; Bandala-Sanchez, Esther; Ahmed, Afsar U; Fisher, Paul R

    2007-01-01

    Background Filamin is an actin binding protein which is ubiquitous in eukaryotes and its basic structure is well conserved – an N-terminal actin binding domain followed by a series of repeated segments which vary in number in different organisms. D. discoideum is a well established model organism for the study of signalling pathways and the actin cytoskeleton and as such makes an excellent organism in which to study filamin. Ddfilamin plays a putative role as a scaffolding protein in a photosensory signalling pathway and this role is thought to be mediated by the unusual repeat segments in the rod domain. Results To study the role of filamin in phototaxis, a filamin null mutant, HG1264, was transformed with constructs each of which expressed wild type filamin or a mutant filamin with a deletion of one of the repeat segments. Transformants expressing the full length filamin to wild type levels completely rescued the phototaxis defect in HG1264, however if filamin was expressed at lower than wild type levels the phototaxis defect was not restored. The transformants lacking any one of the repeat segments 2–6 retained defective phototaxis and thermotaxis phenotypes, whereas transformants expressing filaminΔ1 exhibited a range of partial complementation of the phototaxis phenotype which was related to expression levels. Immunofluorescence microscopy showed that filamin lacking any of the repeat segments still localised to the same actin rich areas as wild type filamin. Ddfilamin interacts with RasD and IP experiments demonstrated that this interaction did not rely upon any single repeat segment or the actin binding domain. Conclusion This paper demonstrates that wild type levels of filamin expression are essential for the formation of functional photosensory signalling complexes and that each of the repeat segments 2–6 are essential for filamins role in phototaxis. By contrast, repeat segment 1 is not essential provided the mutated filamin lacking repeat segment

  12. Quantum repeaters: fundamental and future

    NASA Astrophysics Data System (ADS)

    Li, Yue; Hua, Sha; Liu, Yu; Ye, Jun; Zhou, Quan

    2007-04-01

    An overview of the Quantum Repeater techniques based on Entanglement Distillation and Swapping is provided. Beginning with a brief history and the basic concepts of the quantum repeaters, the article primarily focuses on the communication model based on the quantum repeater techniques, which mainly consists of two fundamental modules --- the Entanglement Distillation module and the Swapping module. The realizations of Entanglement Distillation are discussed, including the Bernstein's Procrustean method, the Entanglement Concentration and the CNOT-purification method, etc. The schemes of implementing Swapping, which include the Swapping based on Bell-state measurement and the Swapping in Cavity QED, are also introduced. Then a comparison between these realizations and evaluations on them are presented. At last, the article discusses the experimental schemes of quantum repeaters at present, documents some remaining problems and emerging trends in this field.

  13. Repeatability in redundant manipulator systems

    NASA Astrophysics Data System (ADS)

    Mukherjee, Ranjan

    1994-02-01

    Terrestrial manipulators with more DOF than the dimension of the workspace and space manipulators with as many manipulator DOF as the dimension of the workspace are both redundant systems. An interesting problem of such redundant systems has been the repeatability problem due to the presence of nonholonomic constraints. We show, contrary to the existing belief, that integrability of the nonholonomic constraints is not a necessary condition for the repeatability of the configuration variables. There exist certain trajectories in the independent configuration variable space that are like 'holonomic loops' along which the redundant manipulators exhibit repeatable motion. We present a simple method based on optimization techniques for designing repeatable trajectories for free-flying space manipulators and terrestrial manipulators under pseudoinverse control.

  14. Protein Repeats from First Principles.

    PubMed

    Turjanski, Pablo; Parra, R Gonzalo; Espada, Rocío; Becher, Verónica; Ferreiro, Diego U

    2016-04-05

    Some natural proteins display recurrent structural patterns. Despite being highly similar at the tertiary structure level, repeating patterns within a single repeat protein can be extremely variable at the sequence level. We use a mathematical definition of a repetition and investigate the occurrences of these in sequences of different protein families. We found that long stretches of perfect repetitions are infrequent in individual natural proteins, even for those which are known to fold into structures of recurrent structural motifs. We found that natural repeat proteins are indeed repetitive in their families, exhibiting abundant stretches of 6 amino acids or longer that are perfect repetitions in the reference family. We provide a systematic quantification for this repetitiveness. We show that this form of repetitiveness is not exclusive of repeat proteins, but also occurs in globular domains. A by-product of this work is a fast quantification of the likelihood of a protein to belong to a family.

  15. Protein Repeats from First Principles

    PubMed Central

    Turjanski, Pablo; Parra, R. Gonzalo; Espada, Rocío; Becher, Verónica; Ferreiro, Diego U.

    2016-01-01

    Some natural proteins display recurrent structural patterns. Despite being highly similar at the tertiary structure level, repeating patterns within a single repeat protein can be extremely variable at the sequence level. We use a mathematical definition of a repetition and investigate the occurrences of these in sequences of different protein families. We found that long stretches of perfect repetitions are infrequent in individual natural proteins, even for those which are known to fold into structures of recurrent structural motifs. We found that natural repeat proteins are indeed repetitive in their families, exhibiting abundant stretches of 6 amino acids or longer that are perfect repetitions in the reference family. We provide a systematic quantification for this repetitiveness. We show that this form of repetitiveness is not exclusive of repeat proteins, but also occurs in globular domains. A by-product of this work is a fast quantification of the likelihood of a protein to belong to a family. PMID:27044676

  16. Functional insights from the distribution and role of homopeptide repeat-containing proteins.

    PubMed

    Faux, Noel G; Bottomley, Stephen P; Lesk, Arthur M; Irving, James A; Morrison, John R; de la Banda, Maria Garcia; Whisstock, James C

    2005-04-01

    Expansion of "low complex" repeats of amino acids such as glutamine (Poly-Q) is associated with protein misfolding and the development of degenerative diseases such as Huntington's disease. The mechanism by which such regions promote misfolding remains controversial, the function of many repeat-containing proteins (RCPs) remains obscure, and the role (if any) of repeat regions remains to be determined. Here, a Web-accessible database of RCPs is presented. The distribution and evolution of RCPs that contain homopeptide repeats tracts are considered, and the existence of functional patterns investigated. Generally, it is found that while polyamino acid repeats are extremely rare in prokaryotes, several eukaryote putative homologs of prokaryote RCP-involved in important housekeeping processes-retain the repetitive region, suggesting an ancient origin for certain repeats. Within eukarya, the most common uninterrupted amino acid repeats are glutamine, asparagines, and alanine. Interestingly, while poly-Q repeats are found in vertebrates and nonvertebrates, poly-N repeats are only common in more primitive nonvertebrate organisms, such as insects and nematodes. We have assigned function to eukaryote RCPs using Online Mendelian Inheritance in Man (OMIM), the Human Reference Protein Database (HRPD), FlyBase, and Wormpep. Prokaryote RCPs were annotated using BLASTp searches and Gene Ontology. These data reveal that the majority of RCPs are involved in processes that require the assembly of large, multiprotein complexes, such as transcription and signaling.

  17. Genetic relationships in Zoysia species and the identification of putative interspecific hybrids using simple sequence repeat markers and inflorescence traits

    USDA-ARS?s Scientific Manuscript database

    Zoysia spp. are warm-season turfgrasses used throughout the southern U.S. and upwards into the transition zone for their superior heat and drought tolerances and their relatively low input requirements. Understanding the population structure present within Zoysia germplasm can assist plant breeders ...

  18. Functional dissection of the mouse tyrosinase locus control region identifies a new putative boundary activity

    PubMed Central

    Giraldo, Patricia; Martínez, Antonio; Regales, Lucía; Lavado, Alfonso; García-Díaz, Angel; Alonso, Ángel; Busturia, Ana; Montoliu, Lluís

    2003-01-01

    Locus control regions (LCRs) are complex high-order chromatin structures harbouring several regulatory elements, including enhancers and boundaries. We have analysed the mouse tyrosinase LCR functions, in vitro, in cell lines and, in vivo, in transgenic mice and flies. The LCR-core (2.1 kb), located at –15 kb and carrying a previously described tissue-specific DNase I hypersensitive site, operates as a transcriptional enhancer that efficiently transactivates heterologous promoters in a cell-specific orientation-independent manner. Furthermore, we have investigated the boundary activity of these sequences in transgenic animals and cells. In mice, the LCR fragment (3.7 kb) rescued a weakly expressed reference construct that displays position effects. In Drosophila, the LCR fragment and its core insulated the expression of a white minigene reporter construct from chromosomal position effects. In cells, sequences located 5′ from the LCR-core displayed putative boundary activities. We have obtained genomic sequences surrounding the LCR fragment and found a LINE1 repeated element at 5′. In B16 melanoma and L929 fibroblast mouse cells, this element was found heavily methylated, supporting the existence of putative boundary elements that could prevent the spreading of condensed chromatin from the LINE1 sequences into the LCR fragment, experimentally shown to be in an open chromatin structure. PMID:14576318

  19. Genetic structure and putative selective sweep in the pioneer tree, Zanthoxylum ailanthoides.

    PubMed

    Yoshida, Takanori; Nagai, Hisako; Yahara, Tetsukazu; Tachida, Hidenori

    2010-07-01

    Zanthoxylum ailanthoides Siebold & Zucc. is one of the most frequently encountered pioneer trees in Japanese warm-temperate evergreen oak forests. Our previous study in one region of Japan suggested high levels of population differentiation and putative natural selection acting on one of the nuclear loci analyzed. Here, we extend our analysis to study the genetic structure of 10 populations of Z. ailanthoides across Japan using 9 simple sequence repeat (SSR) loci for a better understanding of its genetic structure. First, the southernmost population (Kagoshima) in the samples was found to have the highest genetic diversity, suggesting there was a glacial refugium at or near the location of the population. Second, relatively strong genetic differentiation was found among populations, and there was a positive correlation between genetic distances and geographic distances (Mantel test; P < 0.001). Based on this information, we analyzed nucleotide variation at the putatively selected locus homologous to the gene encoding the ADP-glucose pyrophosphorylase large subunit (agpL). Despite the strong genetic differentiation among populations suggested by the SSR loci, the agpL locus was monomorphic in almost all populations analyzed. The results of this study strongly supported the possibility of a selective sweep at or near the agpL locus.

  20. Functional dissection of the mouse tyrosinase locus control region identifies a new putative boundary activity.

    PubMed

    Giraldo, Patricia; Martínez, Antonio; Regales, Lucía; Lavado, Alfonso; García-Díaz, Angel; Alonso, Angel; Busturia, Ana; Montoliu, Lluís

    2003-11-01

    Locus control regions (LCRs) are complex high-order chromatin structures harbouring several regulatory elements, including enhancers and boundaries. We have analysed the mouse tyrosinase LCR functions, in vitro, in cell lines and, in vivo, in transgenic mice and flies. The LCR-core (2.1 kb), located at -15 kb and carrying a previously described tissue-specific DNase I hypersensitive site, operates as a transcriptional enhancer that efficiently transactivates heterologous promoters in a cell-specific orientation-independent manner. Furthermore, we have investigated the boundary activity of these sequences in transgenic animals and cells. In mice, the LCR fragment (3.7 kb) rescued a weakly expressed reference construct that displays position effects. In Drosophila, the LCR fragment and its core insulated the expression of a white minigene reporter construct from chromosomal position effects. In cells, sequences located 5' from the LCR-core displayed putative boundary activities. We have obtained genomic sequences surrounding the LCR fragment and found a LINE1 repeated element at 5'. In B16 melanoma and L929 fibroblast mouse cells, this element was found heavily methylated, supporting the existence of putative boundary elements that could prevent the spreading of condensed chromatin from the LINE1 sequences into the LCR fragment, experimentally shown to be in an open chromatin structure.

  1. A putative hybrid swarm within Oonopsis foliosa (Asteraceae: Astereae)

    USGS Publications Warehouse

    Hughes, J.F.; Brown, G.K.

    2004-01-01

    Oo??nopsis foliosa var. foliosa and var. monocephala are endemic to short-grass steppe of southeastern Colorado and until recently were considered geographically disjunct. The only known qualitative feature separating these 2 varieties is floral head type; var. foliosa has radiate heads, whereas var. monocephala heads are discoid. Sympatry between these varieties is restricted to a small area in which a range of parental types and intermediate head morphologies is observed. We used distribution mapping, morphometric analyses, chromosome cytology, and pollen stainability to characterize the sympatric zone. Morphometrics confirms that the only discrete difference between var. foliosa and var. monocephala is radiate versus discoid heads, respectively. The outer florets of putative hybrid individuals ranged from conspicuously elongated yet radially symmetric disc-floret corollas, to elongated radially asymmetric bilabiate- or deeply cleft corollas, to stunted ray florets with appendages remnant of corolla lobes. Chromosome cytology of pollen mother cells from both putative parental varieties and a series of intermediate morphological types collected at the sympatric zone reveal evidence of translocation heterozygosity. Pollen stainability shows no significant differences in viability between the parental varieties and putative hybrids. The restricted distribution of putative hybrids to a narrow zone of sympatry between the parental types and the presence of meiotic chromosome-pairing anomalies in these intermediate plants are consistent with a hybrid origin. The high stainability of putative-hybrid pollen adds to a growing body of evidence that hybrids are not universally unfit.

  2. Report on the development of putative functional SSR and SNP markers in passion fruits.

    PubMed

    da Costa, Zirlane Portugal; Munhoz, Carla de Freitas; Vieira, Maria Lucia Carneiro

    2017-09-06

    Passionflowers Passiflora edulis and Passiflora alata are diploid, outcrossing and understudied fruit bearing species. In Brazil, passion fruit cultivation began relatively recently and has earned the country an outstanding position as the world's top producer of passion fruit. The fruit's main economic value lies in the production of juice, an essential exotic ingredient in juice blends. Currently, crop improvement strategies, including those for underexploited tropical species, tend to incorporate molecular genetic approaches. In this study, we examined a set of P. edulis transcripts expressed in response to infection by Xanthomonas axonopodis, (the passion fruit's main bacterial pathogen that attacks the vines), aiming at the development of putative functional markers, i.e. SSRs (simple sequence repeats) and SNPs (single nucleotide polymorphisms). A total of 210 microsatellites were found in 998 sequences, and trinucleotide repeats were found to be the most frequent (31.4%). Of the sequences selected for designing primers, 80.9% could be used to develop SSR markers, and 60.6% SNP markers for P. alata. SNPs were all biallelic and found within 15 gene fragments of P. alata. Overall, gene fragments generated 10,003 bp. SNP frequency was estimated as one SNP every 294 bp. Polymorphism rates revealed by SSR and SNP loci were 29.4 and 53.6%, respectively. Passiflora edulis transcripts were useful for the development of putative functional markers for P. alata, suggesting a certain level of sequence conservation between these cultivated species. The markers developed herein could be used for genetic mapping purposes and also in diversity studies.

  3. Limitations on quantum key repeaters

    NASA Astrophysics Data System (ADS)

    Bäuml, Stefan; Christandl, Matthias; Horodecki, Karol; Winter, Andreas

    2015-04-01

    A major application of quantum communication is the distribution of entangled particles for use in quantum key distribution. Owing to noise in the communication line, quantum key distribution is, in practice, limited to a distance of a few hundred kilometres, and can only be extended to longer distances by use of a quantum repeater, a device that performs entanglement distillation and quantum teleportation. The existence of noisy entangled states that are undistillable but nevertheless useful for quantum key distribution raises the question of the feasibility of a quantum key repeater, which would work beyond the limits of entanglement distillation, hence possibly tolerating higher noise levels than existing protocols. Here we exhibit fundamental limits on such a device in the form of bounds on the rate at which it may extract secure key. As a consequence, we give examples of states suitable for quantum key distribution but unsuitable for the most general quantum key repeater protocol.

  4. Limitations on quantum key repeaters.

    PubMed

    Bäuml, Stefan; Christandl, Matthias; Horodecki, Karol; Winter, Andreas

    2015-04-23

    A major application of quantum communication is the distribution of entangled particles for use in quantum key distribution. Owing to noise in the communication line, quantum key distribution is, in practice, limited to a distance of a few hundred kilometres, and can only be extended to longer distances by use of a quantum repeater, a device that performs entanglement distillation and quantum teleportation. The existence of noisy entangled states that are undistillable but nevertheless useful for quantum key distribution raises the question of the feasibility of a quantum key repeater, which would work beyond the limits of entanglement distillation, hence possibly tolerating higher noise levels than existing protocols. Here we exhibit fundamental limits on such a device in the form of bounds on the rate at which it may extract secure key. As a consequence, we give examples of states suitable for quantum key distribution but unsuitable for the most general quantum key repeater protocol.

  5. Repeated DNA in Pneumocystis carinii.

    PubMed Central

    Stringer, S L; Hong, S T; Giuntoli, D; Stringer, J R

    1991-01-01

    A 16-kb DNA fragment designated Rp3-1 and cloned from the genome of rat-derived Pneumocystis carinii was found to contain sequences that were repeated approximately 70 times per genome. The repeated sequences in Rp3-1 spanned at least 10.4 kb. Sequences in Rp3-1 were present on each of the 16 P. carinii chromosomes resolved by field inversion gel electrophoresis. Most of the P. carinii genomic sequences homologous to those in the Rp3-1 clone appeared to be as long as those in the Rp3-1 clone but were highly polymorphic with respect to restriction enzyme cleavage sites. The Rp3-1 DNA fragment appears to be a member of a family of large, degenerate, dispersed repeats. Images PMID:1677941

  6. Magnetars as soft gamma repeaters

    NASA Astrophysics Data System (ADS)

    O'Meara, Karen

    1999-05-01

    The source of non-periodic, repeating, gamma-ray bursts located within our galaxy and near supernova remnants has been a mystery. A new theory by Christopher Thompson and Robert Duncan, postulating the existence of young neutron stars with intense magnetic fields (1E14 Gauss or more) offers an explanation. The intense magnetic fields of these "magnetars" suffice to create the phenomena detected from soft gamma-ray repeaters. The poles of a magnetar are hot enough to emit steady, low level x-ray emissions. Stresses on the star's crust due to the drifting of the magnetic field through the superfluid core create seismic activity and "starquakes," which release enormous bursts of energy. Data collected from recent soft gamma-ray repeater bursts appear to be strong evidence in support of this exciting new theory.

  7. [A method to calculate the probability of paternity between relatives--a paternity case where the putative father was a deceased granduncle].

    PubMed

    Ishitani, A; Minakata, K; Ito, N; Nagaike, C; Morimura, Y; Hirota, T; Hatake, K

    1996-06-01

    To test paternity in a case where the putative father was a deceased uncle of mother (plaintiff's granduncle), we designed a new method to calculate the probability of paternity likelihood. The putative father's genotypes of red cell antigens, HLA and short tandem repeat (STR) polymorphism were estimated from those of mother and sister of the plaintiff. When the probability was calculated from the frequencies in the unrelated individuals (the standard method), a significant bias might be introduced since the putative father and the plaintiff were likely to have the same alleles come from their common ancestry. Therefore, we designed a new method to calculate the likelihood ratio from the frequencies in the group of mother's uncles estimated from mother's genotypes. The probability (0.9299) calculated with our method was found to be lower than that (0.9992) done with the standard method indicating that the new method could remove the bias introduced from the incest.

  8. Origin of a folded repeat protein from an intrinsically disordered ancestor.

    PubMed

    Zhu, Hongbo; Sepulveda, Edgardo; Hartmann, Marcus D; Kogenaru, Manjunatha; Ursinus, Astrid; Sulz, Eva; Albrecht, Reinhard; Coles, Murray; Martin, Jörg; Lupas, Andrei N

    2016-09-13

    Repetitive proteins are thought to have arisen through the amplification of subdomain-sized peptides. Many of these originated in a non-repetitive context as cofactors of RNA-based replication and catalysis, and required the RNA to assume their active conformation. In search of the origins of one of the most widespread repeat protein families, the tetratricopeptide repeat (TPR), we identified several potential homologs of its repeated helical hairpin in non-repetitive proteins, including the putatively ancient ribosomal protein S20 (RPS20), which only becomes structured in the context of the ribosome. We evaluated the ability of the RPS20 hairpin to form a TPR fold by amplification and obtained structures identical to natural TPRs for variants with 2-5 point mutations per repeat. The mutations were neutral in the parent organism, suggesting that they could have been sampled in the course of evolution. TPRs could thus have plausibly arisen by amplification from an ancestral helical hairpin.

  9. Hysteresis of magnetostructural transitions: Repeatable and non-repeatable processes

    NASA Astrophysics Data System (ADS)

    Provenzano, Virgil; Della Torre, Edward; Bennett, Lawrence H.; ElBidweihy, Hatem

    2014-02-01

    The Gd5Ge2Si2 alloy and the off-stoichiometric Ni50Mn35In15 Heusler alloy belong to a special class of metallic materials that exhibit first-order magnetostructural transitions near room temperature. The magnetic properties of this class of materials have been extensively studied due to their interesting magnetic behavior and their potential for a number of technological applications such as refrigerants for near-room-temperature magnetic refrigeration. The thermally driven first-order transitions in these materials can be field-induced in the reverse order by applying a strong enough field. The field-induced transitions are typically accompanied by the presence of large magnetic hysteresis, the characteristics of which are a complicated function of temperature, field, and magneto-thermal history. In this study we show that the virgin curve, the major loop, and sequentially measured MH loops are the results of both repeatable and non-repeatable processes, in which the starting magnetostructural state, prior to the cycling of field, plays a major role. Using the Gd5Ge2Si2 and Ni50Mn35In15 alloys, as model materials, we show that a starting single phase state results in fully repeatable processes and large magnetic hysteresis, whereas a mixed phase starting state results in non-repeatable processes and smaller hysteresis.

  10. Molecular Characterization and SNP Detection of CD14 Gene of Crossbred Cattle

    PubMed Central

    Pal, Aruna; Sharma, Arjava; Bhattacharya, T. K.; Chatterjee, P. N.; Chakravarty, A. K.

    2011-01-01

    CD14 is an important molecule for innate immunity that can act against a wide range of pathogens. The present paper has characterized CD14 gene of crossbred (CB) cattle (Bos indicus×Bos taurus). Cloning and sequence analysis of CD14 cDNA revealed 1119 nucleotide long open reading frame encoding 373 amino acids protein and 20 amino acids signal peptide. CB cattle CD14 gene exhibited a high percentage of nucleotide identity (59.3–98.1%) with the corresponding mammalian homologs. Cattle and buffalo appear to have diverged from a common ancestor in phylogenetic analysis. 25 SNPs with 17 amino acid changes were newly reported and the site for mutational hot-spot was detected in CB cattle CD14 gene. Non-synonymous substitutions exceeding synonymous substitutions indicate the evolution of this protein through positive selection among domestic animals. Predicted protein structures obtained from deduced amino acid sequence indicated CB cattle CD14 molecule to be a receptor with horse shoe-shaped structure. The sites for LPS binding, LPS signalling, leucine-rich repeats, putative N-linked glycosylation, O-linked glycosylation, glycosyl phosphatidyl inositol anchor, disulphide bridges, alpha helix, beta strand, leucine rich nuclear export signal, leucine zipper and domain linker were predicted. Most of leucine and cysteine residues remain conserved across the species. PMID:22132326

  11. Investigation of a Quadruplex-Forming Repeat Sequence Highly Enriched in Xanthomonas and Nostoc sp.

    PubMed

    Rehm, Charlotte; Wurmthaler, Lena A; Li, Yuanhao; Frickey, Tancred; Hartig, Jörg S

    2015-01-01

    In prokaryotes simple sequence repeats (SSRs) with unit sizes of 1-5 nucleotides (nt) are causative for phase and antigenic variation. Although an increased abundance of heptameric repeats was noticed in bacteria, reports about SSRs of 6-9 nt are rare. In particular G-rich repeat sequences with the propensity to fold into G-quadruplex (G4) structures have received little attention. In silico analysis of prokaryotic genomes show putative G4 forming sequences to be abundant. This report focuses on a surprisingly enriched G-rich repeat of the type GGGNATC in Xanthomonas and cyanobacteria such as Nostoc. We studied in detail the genomes of Xanthomonas campestris pv. campestris ATCC 33913 (Xcc), Xanthomonas axonopodis pv. citri str. 306 (Xac), and Nostoc sp. strain PCC7120 (Ana). In all three organisms repeats are spread all over the genome with an over-representation in non-coding regions. Extensive variation of the number of repetitive units was observed with repeat numbers ranging from two up to 26 units. However a clear preference for four units was detected. The strong bias for four units coincides with the requirement of four consecutive G-tracts for G4 formation. Evidence for G4 formation of the consensus repeat sequences was found in biophysical studies utilizing CD spectroscopy. The G-rich repeats are preferably located between aligned open reading frames (ORFs) and are under-represented in coding regions or between divergent ORFs. The G-rich repeats are preferentially located within a distance of 50 bp upstream of an ORF on the anti-sense strand or within 50 bp from the stop codon on the sense strand. Analysis of whole transcriptome sequence data showed that the majority of repeat sequences are transcribed. The genetic loci in the vicinity of repeat regions show increased genomic stability. In conclusion, we introduce and characterize a special class of highly abundant and wide-spread quadruplex-forming repeat sequences in bacteria.

  12. Investigation of a Quadruplex-Forming Repeat Sequence Highly Enriched in Xanthomonas and Nostoc sp.

    PubMed Central

    Rehm, Charlotte; Wurmthaler, Lena A.; Li, Yuanhao; Frickey, Tancred; Hartig, Jörg S.

    2015-01-01

    In prokaryotes simple sequence repeats (SSRs) with unit sizes of 1–5 nucleotides (nt) are causative for phase and antigenic variation. Although an increased abundance of heptameric repeats was noticed in bacteria, reports about SSRs of 6–9 nt are rare. In particular G-rich repeat sequences with the propensity to fold into G-quadruplex (G4) structures have received little attention. In silico analysis of prokaryotic genomes show putative G4 forming sequences to be abundant. This report focuses on a surprisingly enriched G-rich repeat of the type GGGNATC in Xanthomonas and cyanobacteria such as Nostoc. We studied in detail the genomes of Xanthomonas campestris pv. campestris ATCC 33913 (Xcc), Xanthomonas axonopodis pv. citri str. 306 (Xac), and Nostoc sp. strain PCC7120 (Ana). In all three organisms repeats are spread all over the genome with an over-representation in non-coding regions. Extensive variation of the number of repetitive units was observed with repeat numbers ranging from two up to 26 units. However a clear preference for four units was detected. The strong bias for four units coincides with the requirement of four consecutive G-tracts for G4 formation. Evidence for G4 formation of the consensus repeat sequences was found in biophysical studies utilizing CD spectroscopy. The G-rich repeats are preferably located between aligned open reading frames (ORFs) and are under-represented in coding regions or between divergent ORFs. The G-rich repeats are preferentially located within a distance of 50 bp upstream of an ORF on the anti-sense strand or within 50 bp from the stop codon on the sense strand. Analysis of whole transcriptome sequence data showed that the majority of repeat sequences are transcribed. The genetic loci in the vicinity of repeat regions show increased genomic stability. In conclusion, we introduce and characterize a special class of highly abundant and wide-spread quadruplex-forming repeat sequences in bacteria. PMID:26695179

  13. Do Twelfths Terminate or Repeat?

    ERIC Educational Resources Information Center

    Ambrose, Rebecca; Burnison, Erica

    2015-01-01

    When finding the decimal equivalent of a fraction with 12 in the denominator, will it terminate or repeat? This question came from a seventh grader in author Erica Burnison's class as the student was pondering a poster generated by one of her classmates. Not only was the question intriguing, but it also affirmed the belief in the power of…

  14. Mechanical Anisotropy of Ankyrin Repeats

    PubMed Central

    Lee, Whasil; Zeng, Xiancheng; Rotolo, Kristina; Yang, Ming; Schofield, Christopher J.; Bennett, Vann; Yang, Weitao; Marszalek, Piotr E.

    2012-01-01

    Red blood cells are frequently deformed and their cytoskeletal proteins such as spectrin and ankyrin-R are repeatedly subjected to mechanical forces. While the mechanics of spectrin was thoroughly investigated in vitro and in vivo, little is known about the mechanical behavior of ankyrin-R. In this study, we combine coarse-grained steered molecular dynamics simulations and atomic force spectroscopy to examine the mechanical response of ankyrin repeats (ARs) in a model synthetic AR protein NI6C, and in the D34 fragment of native ankyrin-R when these proteins are subjected to various stretching geometry conditions. Our steered molecular dynamics results, supported by AFM measurements, reveal an unusual mechanical anisotropy of ARs: their mechanical stability is greater when their unfolding is forced to propagate from the N-terminus toward the C-terminus (repeats unfold at ∼60 pN), as compared to the unfolding in the opposite direction (unfolding force ∼ 30 pN). This anisotropy is also reflected in the complex refolding behavior of ARs. The origin of this unfolding and refolding anisotropy is in the various numbers of native contacts that are broken and formed at the interfaces between neighboring repeats depending on the unfolding/refolding propagation directions. Finally, we discuss how these complex mechanical properties of ARs in D34 may affect its behavior in vivo. PMID:22404934

  15. Do Twelfths Terminate or Repeat?

    ERIC Educational Resources Information Center

    Ambrose, Rebecca; Burnison, Erica

    2015-01-01

    When finding the decimal equivalent of a fraction with 12 in the denominator, will it terminate or repeat? This question came from a seventh grader in author Erica Burnison's class as the student was pondering a poster generated by one of her classmates. Not only was the question intriguing, but it also affirmed the belief in the power of…

  16. Repeat length variation in the dopamine D4 receptor gene shows no evidence of association with schizophrenia

    SciTech Connect

    Daniels, J.; Williams, J.; Asherson, P.

    1994-09-15

    The D4 receptor has been shown to exist in several allelic forms reflecting variation in the number of 48 base-pair sequence repeats in the putative cytoplasmic loop. We report a comparison of repeat length variation between schizophrenic patients and controls. Our sample of 106 unrelated schizophrenic cases and 119 controls showed no significant differences in allele or genotype distribution between patients and controls. In particular, we were unable to support the previous observation of an excess of 4-repeat homozygotes in patients. 16 refs., 2 tabs.

  17. Pentapeptide Repeat Proteins and Cyanobacteria

    SciTech Connect

    Buchko, Garry W.

    2009-10-16

    Cyanobacteria are unique in many ways and one unusual feature is the presence of a suite of proteins that contain at least one domain with a minimum of eight tandem repeated five-residues (Rfr) of the general consensus sequence A[N/D]LXX. The function of such pentapeptide repeat proteins (PRPs) are still unknown, however, their prevalence in cyanobacteria suggests that they may play some role in the unique biological activities of cyanobacteria. As part of an inter-disciplinary Membrane Biology Grand Challenge at the Environmental Molecular Sciences Laboratory (Pacific Northwest National Laboratory) and Washington University in St. Louis, the genome of Cyanothece 51142 was sequenced and its molecular biology studied with relation to circadian rhythms. The genome of Cyanothece encodes for 35 proteins that contain at least one PRP domain. These proteins range in size from 105 (Cce_3102) to 930 (Cce_2929) kDa with the PRP domains ranging in predicted size from 12 (Cce_1545) to 62 (cce_3979) tandem pentapeptide repeats. Transcriptomic studies with 29 out of the 35 genes showed that at least three of the PRPs in Cyanothece 51142 (cce_0029, cce_3083, and cce_3272) oscillated with repeated periods of light and dark, further supporting a biological function for PRPs. Using X-ray diffraction crystallography, the structure for two pentapeptide repeat proteins from Cyanothece 51142 were determined, cce_1272 (aka Rfr32) and cce_4529 (aka Rfr23). Analysis of their molecular structures suggests that all PRP may share the same structural motif, a novel type of right-handed quadrilateral β-helix, or Rfr-fold, reminiscent of a square tower with four distinct faces. Each pentapeptide repeat occupies one face of the Rfr-fold with four consecutive pentapeptide repeats completing a coil that, in turn, stack upon each other to form “protein skyscrapers”. Details of the structural features of the Rfr-fold are reviewed here together with a discussion for the possible role of end

  18. Sulfur Isotope Composition of Putative Primary Troilite in Chondrules

    NASA Technical Reports Server (NTRS)

    Tachibana, Shogo; Huss, Gary R.

    2002-01-01

    Sulfur isotope compositions of putative primary troilites in chondrules from Bishunpur were measured by ion probe. These primary troilites have the same S isotope compositions as matrix troilites and thus appear to be isotopically unfractionated. Additional information is contained in the original extended abstract.

  19. Putative porin of Bradyrhizobium sp. (Lupinus) bacteroids induced by glyphosate.

    PubMed

    de María, Nuria; Guevara, Angeles; Serra, M Teresa; García-Luque, Isabel; González-Sama, Alfonso; García de Lacoba, Mario; de Felipe, M Rosario; Fernández-Pascual, Mercedes

    2007-08-01

    Application of glyphosate (N-[phosphonomethyl] glycine) to Bradyrhizobium sp. (Lupinus)-nodulated lupin plants caused modifications in the protein pattern of bacteroids. The most significant change was the presence of a 44-kDa polypeptide in bacteroids from plants treated with the higher doses of glyphosate employed (5 and 10 mM). The polypeptide has been characterized by the amino acid sequencing of its N terminus and the isolation and nucleic acid sequencing of its encoding gene. It is putatively encoded by a single gene, and the protein has been identified as a putative porin. Protein modeling revealed the existence of several domains sharing similarity to different porins, such as a transmembrane beta-barrel. The protein has been designated BLpp, for Bradyrhizobium sp. (Lupinus) putative porin, and would be the first porin described in Bradyrhizobium sp. (Lupinus). In addition, a putative conserved domain of porins has been identified which consists of 87 amino acids, located in the BLpp sequence 30 amino acids downstream of the N-terminal region. In bacteroids, mRNA of the BLpp gene shows a basal constitutive expression that increases under glyphosate treatment, and the expression of the gene is seemingly regulated at the transcriptional level. By contrast, in free-living bacteria glyphosate treatment leads to an inhibition of BLpp mRNA accumulation, indicating a different effect of glyphosate on BLpp gene expression in bacteroids and free-living bacteria. The possible role of BLpp in a metabolite interchange between Bradyrhizobium and lupin is discussed.

  20. Developing putative AOPs from high content dataDeveloping putative AOPs from high content dataDeveloping putative AOPs from high content dataDeveloping putative AOPs from high content data

    EPA Science Inventory

    Developing putative AOPs from high content data Shannon M. Bell1,2, Stephen W. Edwards2 1 Oak Ridge Institute for Science and Education 2 Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development,...

  1. Bartonella henselae AS A PUTATIVE CAUSE OF CONGENITAL CHOLESTASIS.

    PubMed

    Velho, Paulo Eduardo Neves Ferreira; Bellomo-Brandão, Maria Ângela; Drummond, Marina Rovani; Magalhães, Renata Ferreira; Hessel, Gabriel; Barjas-Castro, Maria de Lourdes; Escanhoela, Cecília Amélia Fazzio; Del Negro, Gilda Maria Barbaro; Okay, Thelma Suely

    2016-07-11

    Severe anemia and cholestatic hepatitis are associated with bartonella infections. A putative vertical Bartonella henselae infection was defined on the basis of ultrastructural and molecular analyses in a three-year-old child with anemia, jaundice and hepatosplenomegaly since birth. Physicians should consider bartonellosis in patients with anemia and hepatitis of unknown origin.

  2. Spectral Evidence of Aqueous Activity in Two Putative Martian Paleolakes

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; Marzo, Giuseppe A.; Fonti, Sergio; Orofino, Vincenzo; Blanco, Armando

    2010-01-01

    CRISM observations of putative paleolakes in Cankuzo and Luqa craters exhibit spectral features consistent with the activity of water. The spatial distributions suggest different formation scenarios for each site. In Cankuzo the distribution suggests postimpact alteration whereas in Luqa there are hints of possible formation of a layer of phyllosilicate materials.

  3. Sulfur Isotope Composition of Putative Primary Troilite in Chondrules

    NASA Technical Reports Server (NTRS)

    Tachibana, Shogo; Huss, Gary R.

    2002-01-01

    Sulfur isotope compositions of putative primary troilites in chondrules from Bishunpur were measured by ion probe. These primary troilites have the same S isotope compositions as matrix troilites and thus appear to be isotopically unfractionated. Additional information is contained in the original extended abstract.

  4. Developing putative AOPs from high content dataDeveloping putative AOPs from high content dataDeveloping putative AOPs from high content dataDeveloping putative AOPs from high content data

    EPA Science Inventory

    Developing putative AOPs from high content data Shannon M. Bell1,2, Stephen W. Edwards2 1 Oak Ridge Institute for Science and Education 2 Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development,...

  5. Bartonella henselae AS A PUTATIVE CAUSE OF CONGENITAL CHOLESTASIS

    PubMed Central

    VELHO, Paulo Eduardo Neves Ferreira; BELLOMO-BRANDÃO, Maria Ângela; DRUMMOND, Marina Rovani; MAGALHÃES, Renata Ferreira; HESSEL, Gabriel; BARJAS-CASTRO, Maria de Lourdes; ESCANHOELA, Cecília Amélia Fazzio; NEGRO, Gilda Maria Barbaro DEL; OKAY, Thelma Suely

    2016-01-01

    SUMMARY Severe anemia and cholestatic hepatitis are associated with bartonella infections. A putative vertical Bartonella henselae infection was defined on the basis of ultrastructural and molecular analyses in a three-year-old child with anemia, jaundice and hepatosplenomegaly since birth. Physicians should consider bartonellosis in patients with anemia and hepatitis of unknown origin. PMID:27410916

  6. The putative drug efflux systems of the Bacillus cereus group

    PubMed Central

    Elbourne, Liam D. H.; Vörös, Aniko; Kroeger, Jasmin K.; Simm, Roger; Tourasse, Nicolas J.; Finke, Sarah; Henderson, Peter J. F.; Økstad, Ole Andreas; Paulsen, Ian T.; Kolstø, Anne-Brit

    2017-01-01

    The Bacillus cereus group of bacteria includes seven closely related species, three of which, B. anthracis, B. cereus and B. thuringiensis, are pathogens of humans, animals and/or insects. Preliminary investigations into the transport capabilities of different bacterial lineages suggested that genes encoding putative efflux systems were unusually abundant in the B. cereus group compared to other bacteria. To explore the drug efflux potential of the B. cereus group all putative efflux systems were identified in the genomes of prototypical strains of B. cereus, B. anthracis and B. thuringiensis using our Transporter Automated Annotation Pipeline. More than 90 putative drug efflux systems were found within each of these strains, accounting for up to 2.7% of their protein coding potential. Comparative analyses demonstrated that the efflux systems are highly conserved between these species; 70–80% of the putative efflux pumps were shared between all three strains studied. Furthermore, 82% of the putative efflux system proteins encoded by the prototypical B. cereus strain ATCC 14579 (type strain) were found to be conserved in at least 80% of 169 B. cereus group strains that have high quality genome sequences available. However, only a handful of these efflux pumps have been functionally characterized. Deletion of individual efflux pump genes from B. cereus typically had little impact to drug resistance phenotypes or the general fitness of the strains, possibly because of the large numbers of alternative efflux systems that may have overlapping substrate specificities. Therefore, to gain insight into the possible transport functions of efflux systems in B. cereus, we undertook large-scale qRT-PCR analyses of efflux pump gene expression following drug shocks and other stress treatments. Clustering of gene expression changes identified several groups of similarly regulated systems that may have overlapping drug resistance functions. In this article we review current

  7. The putative drug efflux systems of the Bacillus cereus group.

    PubMed

    Hassan, Karl A; Fagerlund, Annette; Elbourne, Liam D H; Vörös, Aniko; Kroeger, Jasmin K; Simm, Roger; Tourasse, Nicolas J; Finke, Sarah; Henderson, Peter J F; Økstad, Ole Andreas; Paulsen, Ian T; Kolstø, Anne-Brit

    2017-01-01

    The Bacillus cereus group of bacteria includes seven closely related species, three of which, B. anthracis, B. cereus and B. thuringiensis, are pathogens of humans, animals and/or insects. Preliminary investigations into the transport capabilities of different bacterial lineages suggested that genes encoding putative efflux systems were unusually abundant in the B. cereus group compared to other bacteria. To explore the drug efflux potential of the B. cereus group all putative efflux systems were identified in the genomes of prototypical strains of B. cereus, B. anthracis and B. thuringiensis using our Transporter Automated Annotation Pipeline. More than 90 putative drug efflux systems were found within each of these strains, accounting for up to 2.7% of their protein coding potential. Comparative analyses demonstrated that the efflux systems are highly conserved between these species; 70-80% of the putative efflux pumps were shared between all three strains studied. Furthermore, 82% of the putative efflux system proteins encoded by the prototypical B. cereus strain ATCC 14579 (type strain) were found to be conserved in at least 80% of 169 B. cereus group strains that have high quality genome sequences available. However, only a handful of these efflux pumps have been functionally characterized. Deletion of individual efflux pump genes from B. cereus typically had little impact to drug resistance phenotypes or the general fitness of the strains, possibly because of the large numbers of alternative efflux systems that may have overlapping substrate specificities. Therefore, to gain insight into the possible transport functions of efflux systems in B. cereus, we undertook large-scale qRT-PCR analyses of efflux pump gene expression following drug shocks and other stress treatments. Clustering of gene expression changes identified several groups of similarly regulated systems that may have overlapping drug resistance functions. In this article we review current

  8. A novel putative enterococcal pathogenicity island linked to the esp virulence gene of Enterococcus faecium and associated with epidemicity.

    PubMed

    Leavis, Helen; Top, Janetta; Shankar, Nathan; Borgen, Katrine; Bonten, Marc; van Embden, Jan; Willems, Rob J L

    2004-02-01

    Enterococcus faecalis harbors a virulence-associated surface protein encoded by the esp gene. This gene has been shown to be part of a 150-kb putative pathogenicity island. A gene similar to esp has recently been found in Enterococcus faecium isolates recovered from hospitalized patients. In the present study we analyzed the polymorphism in the esp gene of E. faecium, and we investigated the association of esp with neighboring chromosomal genes. The esp gene showed considerable sequence heterogeneity in the regions encoding the nonrepeat N- and C-terminal domains of the Esp protein as well as differences in the number of repeats. DNA sequencing of chromosomal regions flanking the esp gene of E. faecium revealed seven open reading frames, representing putative genes implicated in virulence, regulation of transcription, and antibiotic resistance. These flanking regions were invariably associated with the presence or absence of the esp gene in E. faecium, indicating that esp in E. faecium is part of a distinct genetic element. Because of the presence of virulence genes in this gene cluster, the lower G+C content relative to that of the genome, and the presence of esp in E. faecium isolates associated with nosocomial outbreaks and clinically documented infections, we conclude that this genetic element constitutes a putative pathogenicity island, the first one described in E. faecium. Except for the presence of esp and araC, this pathogenicity island is completely different from the esp-containing pathogenicity island previously disclosed in E. faecalis.

  9. Exopolysaccharide Production and Ropy Phenotype Are Determined by Two Gene Clusters in Putative Probiotic Strain Lactobacillus paraplantarum BGCG11

    PubMed Central

    Zivkovic, Milica; Miljkovic, Marija; Ruas-Madiedo, Patricia; Strahinic, Ivana; Tolinacki, Maja; Golic, Natasa

    2014-01-01

    Lactobacillus paraplantarum BGCG11, a putative probiotic strain isolated from a soft, white, artisanal cheese, produces a high-molecular-weight heteropolysaccharide, exopolysaccharide (EPS)-CG11, responsible for the ropy phenotype and immunomodulatory activity of the strain. In this study, a 26.4-kb region originating from the pCG1 plasmid, previously shown to be responsible for the production of EPS-CG11 and a ropy phenotype, was cloned, sequenced, and functionally characterized. In this region 16 putative open reading frames (ORFs), encoding enzymes for the production of EPS-CG11, were organized in specific loci involved in the biosynthesis of the repeat unit, polymerization, export, regulation, and chain length determination. Interestingly, downstream of the eps gene cluster, a putative transposase gene was identified, followed by an additional rfb gene cluster containing the rfbACBD genes, the ones most probably responsible for dTDP-l-rhamnose biosynthesis. The functional analysis showed that the production of the high-molecular-weight fraction of EPS-CG11 was absent in two knockout mutants, one in the eps and the other in the rfb gene cluster, as confirmed by size exclusion chromatography analysis. Therefore, both eps and rfb genes clusters are prerequisites for the production of high-molecular-weight EPS-CG11 and for the ropy phenotype of strain L. paraplantarum BGCG11. PMID:25527533

  10. Dominant short repeated sequences in bacterial genomes.

    PubMed

    Avershina, Ekaterina; Rudi, Knut

    2015-03-01

    We use a novel multidimensional searching approach to present the first exhaustive search for all possible repeated sequences in 166 genomes selected to cover the bacterial domain. We found an overrepresentation of repeated sequences in all but one of the genomes. The most prevalent repeats by far were related to interspaced short palindromic repeats (CRISPRs)—conferring bacterial adaptive immunity. We identified a deep branching clade of thermophilic Firmicutes containing the highest number of CRISPR repeats. We also identified a high prevalence of tandem repeated heptamers. In addition, we identified GC-rich repeats that could potentially be involved in recombination events. Finally, we identified repeats in a 16322 amino acid mega protein (involved in biofilm formation) and inverted repeats flanking miniature transposable elements (MITEs). In conclusion, the exhaustive search for repeated sequences identified new elements and distribution of these, which has implications for understanding both the ecology and evolution of bacteria.

  11. Analysis of the Dendrobium officinale transcriptome reveals putative alkaloid biosynthetic genes and genetic markers.

    PubMed

    Guo, Xu; Li, Ying; Li, Chunfang; Luo, Hongmei; Wang, Lizhi; Qian, Jun; Luo, Xiang; Xiang, Li; Song, Jingyuan; Sun, Chao; Xu, Haibin; Yao, Hui; Chen, Shilin

    2013-09-15

    Dendrobium officinale Kimura et Migo (Orchidaceae) is a traditional Chinese medicinal plant. The stem contains an alkaloid that is the primary bioactive component. However, the details of alkaloid biosynthesis have not been effectively explored because of the limited number of expressed sequence tags (ESTs) available in GenBank. In this study, we analyzed RNA isolated from the stem of D. officinale using a single half-run on the Roche 454 GS FLX Titanium platform to generate 553,084 ESTs with an average length of 417 bases. The ESTs were assembled into 36,407 unique putative transcripts. A total of 69.97% of the unique sequences were annotated, and a detailed view of alkaloid biosynthesis was obtained. Functional assignment based on Kyoto Encyclopedia of Genes and Genomes (KEGG) terms revealed 69 unique sequences representing 25 genes involved in alkaloid backbone biosynthesis. A series of qRT-PCR experiments confirmed that the expression levels of 5 key enzyme-encoding genes involved in alkaloid biosynthesis are greater in the leaves of D. officinale than in the stems. Cytochrome P450s, aminotransferases, methyltransferases, multidrug resistance protein (MDR) transporters and transcription factors were screened for possible involvement in alkaloid biosynthesis. Furthermore, a total of 1061 simple sequence repeat motifs (SSR) were detected from 36,407 unigenes. Dinucleotide repeats were the most abundant repeat type. Of these, 179 genes were associated with a metabolic pathway in KEGG. This study is the first to produce a large volume of transcriptome data from D. officinale. It extends the foundation to facilitate gene discovery in D. officinale and provides an important resource for the molecular genetic and functional genomic studies in this species. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Observations of Soft Gamma Repeaters

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2004-01-01

    Magnetars (Soft Gamma Repeaters and Anomalous X-ray Pulsars) are a subclass of neutron stars characterized by their recurrent X-ray bursts. While in an active (bursting) state (lasting anywhere between days and years), they are emit&ng hundreds of predominantly soft (kT=30 kev), short (0.1-100 ms long) events. Their quiescent source x-ray light ewes exhibit puhlions rotational period rate changes (spin-down) indicate that their magnetic fields are extremely high, of the order of 10^14- 10^l5 G. Such high B-field objects, dubbed "magnetars", had been predicted to exist in 1992, but the first concrete observational evidence were obtained in 1998 for two of these sources. I will discuss here the history of Soft Gamma Repeaters, and their spectral, timing and flux characteristics both in the persistent and their burst emission.

  13. A repeating fast radio burst.

    PubMed

    Spitler, L G; Scholz, P; Hessels, J W T; Bogdanov, S; Brazier, A; Camilo, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J; Ferdman, R D; Freire, P C C; Kaspi, V M; Lazarus, P; Lynch, R; Madsen, E C; McLaughlin, M A; Patel, C; Ransom, S M; Seymour, A; Stairs, I H; Stappers, B W; van Leeuwen, J; Zhu, W W

    2016-03-10

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.

  14. A repeating fast radio burst

    NASA Astrophysics Data System (ADS)

    Spitler, L. G.; Scholz, P.; Hessels, J. W. T.; Bogdanov, S.; Brazier, A.; Camilo, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J.; Ferdman, R. D.; Freire, P. C. C.; Kaspi, V. M.; Lazarus, P.; Lynch, R.; Madsen, E. C.; McLaughlin, M. A.; Patel, C.; Ransom, S. M.; Seymour, A.; Stairs, I. H.; Stappers, B. W.; van Leeuwen, J.; Zhu, W. W.

    2016-03-01

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.

  15. Characterization of muscle ankyrin repeat proteins in human skeletal muscle.

    PubMed

    Wette, Stefan G; Smith, Heather K; Lamb, Graham D; Murphy, Robyn M

    2017-09-01

    Muscle ankyrin repeat proteins (MARPs) are a family of titin-associated, stress-response molecules and putative transducers of stretch-induced signaling in skeletal muscle. In cardiac muscle, cardiac ankyrin repeat protein (CARP) and diabetes-related ankyrin repeat protein (DARP) reportedly redistribute from binding sites on titin to the nucleus following a prolonged stretch. However, it is unclear whether ankyrin repeat domain protein 2 (Ankrd 2) shows comparable stretch-induced redistribution to the nucleus. We measured the following in rested human skeletal muscle: 1) the absolute amount of MARPs and 2) the distribution of Ankrd 2 and DARP in both single fibers and whole muscle preparations. In absolute amounts, Ankrd 2 is the most abundant MARP in human skeletal muscle, there being ~3.1 µmol/kg, much greater than DARP and CARP (~0.11 and ~0.02 µmol/kg, respectively). All DARP was found to be tightly bound at cytoskeletal (or possibly nuclear) sites. In contrast, ~70% of the total Ankrd 2 is freely diffusible in the cytosol [including virtually all of the phosphorylated (p)Ankrd 2-Ser99 form], ~15% is bound to non-nuclear membranes, and ~15% is bound at cytoskeletal sites, likely at the N2A region of titin. These data are not consistent with the proposal that Ankrd 2, per se, or pAnkrd 2-Ser99 mediates stretch-induced signaling in skeletal muscle, dissociating from titin and translocating to the nucleus, because the majority of these forms of Ankrd 2 are already free in the cytosol. It will be necessary to show that the titin-associated Ankrd 2 is modified by stretch in some as-yet-unidentified way, distinct from the diffusible pool, if it is to act as a stretch-sensitive signaling molecule. Copyright © 2017 the American Physiological Society.

  16. Molecular identification and characterization of clustered regularly interspaced short palindromic repeat (CRISPR) gene cluster in Taylorella equigenitalis.

    PubMed

    Hara, Yasushi; Hayashi, Kyohei; Nakajima, Takuya; Kagawa, Shizuko; Tazumi, Akihiro; Moore, John E; Matsuda, Motoo

    2013-09-01

    Clustered regularly interspaced short palindromic repeats (CRISPRs), of approximately 10,000 base pairs (bp) in length, were shown to occur in the Japanese Taylorella equigenitalis strain, EQ59. The locus was composed of the putative CRISPRs-associated with 5 (cas5), RAMP csd1, csd2, recB, cas1, a leader region, 13 CRISPR consensus sequence repeats (each 32 bp; 5'-TCAGCCACGTTCGCGTGGCTGTGTGTTTAAAG-3'). These were in turn separated by 12 non repetitive unique spacer regions of similar length. In addition, a leader region, a transposase/IS protein, a leader region, and cas3 were also seen. All seven putative open reading frames carry their ribosome binding sites. Promoter consensus sequences at the -35 and -10 regions and putative intrinsic ρ-independent transcription terminator regions also occurred. A possible long overlap of 170 bp in length occurred between the recB and cas1 loci. Positive reverse transcription PCR signals of cas5, RAMP csd1, csd2-recB/cas1, and cas3 were generated. A putative secondary structure of the CRISPR consensus repeats was constructed. Following this, CRISPR results of the T. equigenitalis EQ59 isolate were subsequently compared with those from the Taylorella asinigenitalis MCE3 isolate.

  17. De Novo assembly of the Japanese flounder (Paralichthys olivaceus) spleen transcriptome to identify putative genes involved in immunity.

    PubMed

    Huang, Lin; Li, Guiyang; Mo, Zhaolan; Xiao, Peng; Li, Jie; Huang, Jie

    2015-01-01

    Japanese flounder (Paralichthys olivaceus) is an economically important marine fish in Asia and has suffered from disease outbreaks caused by various pathogens, which requires more information for immune relevant genes on genome background. However, genomic and transcriptomic data for Japanese flounder remain scarce, which limits studies on the immune system of this species. In this study, we characterized the Japanese flounder spleen transcriptome using an Illumina paired-end sequencing platform to identify putative genes involved in immunity. A cDNA library from the spleen of P. olivaceus was constructed and randomly sequenced using an Illumina technique. The removal of low quality reads generated 12,196,968 trimmed reads, which assembled into 96,627 unigenes. A total of 21,391 unigenes (22.14%) were annotated in the NCBI Nr database, and only 1.1% of the BLASTx top-hits matched P. olivaceus protein sequences. Approximately 12,503 (58.45%) unigenes were categorized into three Gene Ontology groups, 19,547 (91.38%) were classified into 26 Cluster of Orthologous Groups, and 10,649 (49.78%) were assigned to six Kyoto Encyclopedia of Genes and Genomes pathways. Furthermore, 40,928 putative simple sequence repeats and 47, 362 putative single nucleotide polymorphisms were identified. Importantly, we identified 1,563 putative immune-associated unigenes that mapped to 15 immune signaling pathways. The P. olivaceus transciptome data provides a rich source to discover and identify new genes, and the immune-relevant sequences identified here will facilitate our understanding of the mechanisms involved in the immune response. Furthermore, the plentiful potential SSRs and SNPs found in this study are important resources with respect to future development of a linkage map or marker assisted breeding programs for the flounder.

  18. A catalog of putative adverse outcome pathways (AOPs) that ...

    EPA Pesticide Factsheets

    A number of putative AOPs for several distinct MIEs of thyroid disruption have been formulated for amphibian metamorphosis and fish swim bladder inflation. These have been entered into the AOP knowledgebase on the OECD WIKI. The EDSP has been actively advancing high-throughput screening for chemical activity toward estrogen, androgen and thyroid targets. However, it has been recently identified that coverage for thyroid-related targets is lagging behind estrogen and androgen assay coverage. As thyroid-related medium-high throughput assays are actively being developed for inclusion in the ToxCast chemical screening program, a parallel effort is underway to characterize putative adverse outcome pathways (AOPs) specific to these thyroid-related targets. This effort is intended to provide biological and ecological context that will enhance the utility of ToxCast high throughput screening data for hazard identification.

  19. Membrane vesicles released by Avibacterium paragallinarum contain putative virulence factors.

    PubMed

    Ramón Rocha, Marcela O; García-González, Octavio; Pérez-Méndez, Alma; Ibarra-Caballero, Jorge; Pérez-Márquez, Victor M; Vaca, Sergio; Negrete-Abascal, Erasmo

    2006-04-01

    Avibacterium paragallinarum, the causative agent of infectious coryza, releases extracellular membrane vesicles (MVs), containing immunogenic proteins, proteases, putative RTX proteins, haemagglutinin, and nucleic acids, into the medium. MVs ranging 50-300 nm in diameter were observed by electron microscopy. They contained immunogenic proteins in the range of 20-160 kDa, detected using vaccinated or experimentally infected chicken sera raised against Av. paragallinarum, but not in pooled sera from specific pathogen-free chickens. Proteolytic activity was not detected in MVs through zymograms; however, immune recognition of high molecular mass bands was observed by Western blotting using an antiprotease serum against Actinobacillus pleuropneumoniae serotype 1 purified protease, suggesting its presence. MVs agglutinated glutaraldehyde-fixed chicken red blood cells indicating the presence of haemagglutinating antigens. Nucleic acids were also detected inside MVs. Avibacterium paragallinarum releases MVs containing putative virulence factors, which could be important in the pathogenesis of infectious coryza.

  20. Putative melatonin receptors in a human biological clock.

    PubMed

    Reppert, S M; Weaver, D R; Rivkees, S A; Stopa, E G

    1988-10-07

    In vitro autoradiography with 125I-labeled melatonin was used to examine melatonin binding sites in human hypothalamus. Specific 125I-labeled melatonin binding was localized to the suprachiasmatic nuclei, the site of a putative biological clock, and was not apparent in other hypothalamic regions. Specific 125I-labeled melatonin binding was consistently found in the suprachiasmatic nuclei of hypothalami from adults and fetuses. Densitometric analysis of competition experiments with varying concentrations of melatonin showed monophasic competition curves, with comparable half-maximal inhibition values for the suprachiasmatic nuclei of adults (150 picomolar) and fetuses (110 picomolar). Micromolar concentrations of the melatonin agonist 6-chloromelatonin completely inhibited specific 125I-labeled melatonin binding, whereas the same concentrations of serotonin and norepinephrine caused only a partial reduction in specific binding. The results suggest that putative melatonin receptors are located in a human biological clock.

  1. Putative melatonin receptors in a human biological clock

    SciTech Connect

    Reppert, S.M.; Weaver, D.R.; Rivkees, S.A.; Stopa, E.G.

    1988-10-07

    In vitro autoradiography with /sup 125/I-labeled melatonin was used to examine melatonin binding sites in human hypothalamus. Specific /sup 125/I-labeled melatonin binding was localized to the suprachiasmatic nuclei, the site of a putative biological clock, and was not apparent in other hypothalamic regions. Specific /sup 125/I-labeled melatonin binding was consistently found in the suprachiasmatic nuclei of hypothalami from adults and fetuses. Densitometric analysis of competition experiments with varying concentrations of melatonin showed monophasic competition curves, with comparable half-maximal inhibition values for the suprachiasmatic nuclei of adults (150 picomolar) and fetuses (110 picomolar). Micromolar concentrations of the melatonin agonist 6-chloromelatonin completely inhibited specific /sup 125/I-labeled melatonin binding, whereas the same concentrations of serotonin and norepinephrine caused only a partial reduction in specific binding. The results suggest that putative melatonin receptors are located in a human biological clock.

  2. Putative Porin of Bradyrhizobium sp. (Lupinus) Bacteroids Induced by Glyphosate▿

    PubMed Central

    de María, Nuria; Guevara, Ángeles; Serra, M. Teresa; García-Luque, Isabel; González-Sama, Alfonso; de Lacoba, Mario García; de Felipe, M. Rosario; Fernández-Pascual, Mercedes

    2007-01-01

    Application of glyphosate (N-[phosphonomethyl] glycine) to Bradyrhizobium sp. (Lupinus)-nodulated lupin plants caused modifications in the protein pattern of bacteroids. The most significant change was the presence of a 44-kDa polypeptide in bacteroids from plants treated with the higher doses of glyphosate employed (5 and 10 mM). The polypeptide has been characterized by the amino acid sequencing of its N terminus and the isolation and nucleic acid sequencing of its encoding gene. It is putatively encoded by a single gene, and the protein has been identified as a putative porin. Protein modeling revealed the existence of several domains sharing similarity to different porins, such as a transmembrane beta-barrel. The protein has been designated BLpp, for Bradyrhizobium sp. (Lupinus) putative porin, and would be the first porin described in Bradyrhizobium sp. (Lupinus). In addition, a putative conserved domain of porins has been identified which consists of 87 amino acids, located in the BLpp sequence 30 amino acids downstream of the N-terminal region. In bacteroids, mRNA of the BLpp gene shows a basal constitutive expression that increases under glyphosate treatment, and the expression of the gene is seemingly regulated at the transcriptional level. By contrast, in free-living bacteria glyphosate treatment leads to an inhibition of BLpp mRNA accumulation, indicating a different effect of glyphosate on BLpp gene expression in bacteroids and free-living bacteria. The possible role of BLpp in a metabolite interchange between Bradyrhizobium and lupin is discussed. PMID:17557843

  3. Synthesis of the putative structure of 15-oxopuupehenoic acid.

    PubMed

    Boulifa, Ettahir; Fernández, Antonio; Alvarez, Esteban; Alvarez-Manzaneda, Ramón; Mansour, Ahmed I; Chahboun, Rachid; Alvarez-Manzaneda, Enrique

    2014-11-07

    Synthesis of the putative structure of the marine natural 15-oxopuupehenoic acid has been achieved starting from commercial (-)-sclareol. Key steps of the synthetic sequence are the Robinson annulation of a β-ketoester and methyl vinyl ketone and an unprecedented cyclization of the resulting α,β-enone, which is mediated by tin(IV) chloride in the presence of N-phenylselenophthalimide. The physical properties of the synthetic compound are somewhat different from those reported for the natural product.

  4. In vitro activity of rodogyl against putative periodontopathic bacteria.

    PubMed Central

    Quee, T C; Roussou, T; Chan, E C

    1983-01-01

    The minimal inhibitory concentrations of Rodogyl (composite tablet of metronidazole and spiramycin), metronidazole-spiramycin mixture, spiramycin, metronidazole, and tetracycline were determined for selected putative periodontopathic microorganisms. Rodogyl was active against almost all strains, including Bacteroides species and the anaerobic spirochetes. Synergism of the component drugs in the Rodogyl combination was noted against Propionibacterium species. Spiramycin activity against Actinomyces species was enhanced in the presence of metronidazole. PMID:6639002

  5. Accumulate Repeat Accumulate Coded Modulation

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative coded modulation scheme called 'Accumulate Repeat Accumulate Coded Modulation' (ARA coded modulation). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes that are combined with high level modulation. Thus at the decoder belief propagation can be used for iterative decoding of ARA coded modulation on a graph, provided a demapper transforms the received in-phase and quadrature samples to reliability of the bits.

  6. Unique CCT repeats mediate transcription of the TWIST1 gene in mesenchymal cell lines

    SciTech Connect

    Ohkuma, Mizue; Funato, Noriko; Higashihori, Norihisa; Murakami, Masanori; Ohyama, Kimie; Nakamura, Masataka . E-mail: naka.gene@cmn.tmd.ac.jp

    2007-01-26

    TWIST1, a basic helix-loop-helix transcription factor, plays critical roles in embryo development, cancer metastasis and mesenchymal progenitor differentiation. Little is known about transcriptional regulation of TWIST1 expression. Here we identified DNA sequences responsible for TWIST1 expression in mesenchymal lineage cell lines. Reporter assays with TWIST1 promoter mutants defined the -102 to -74 sequences that are essential for TWIST1 expression in human and mouse mesenchymal cell lines. Tandem repeats of CCT, but not putative CREB and NF-{kappa}B sites in the sequences substantially supported activity of the TWIST1 promoter. Electrophoretic mobility shift assay demonstrated that the DNA sequences with the CCT repeats formed complexes with nuclear factors, containing, at least, Sp1 and Sp3. These results suggest critical implication of the CCT repeats in association with Sp1 and Sp3 factors in sustaining expression of the TWIST1 gene in mesenchymal cells.

  7. A novel ankyrin repeat-rich gene in potato, Star, involved in response to late blight.

    PubMed

    Wu, Tian; Tian, Zhendong; Liu, Jun; Yao, Chunguang; Xie, Conghua

    2009-06-01

    The Solanum tuberosum ankyrin repeat gene (Star) is a novel gene from potato leaves challenged by Phytophthora infestans, a pathogen causing late blight disease. The gene was isolated, based on the reported expressed sequence tag, by the rapid amplification of cDNA ends. Star contains a maximum open reading frame of 1542 bp encoding a peptide with 514 amino acids, and it encodes a RING finger ankyrin repeat protein, a putative E3 ubiquitin ligase. To the authors' knowledge, it is the first RING finger ankyrin repeat gene isolated from the potato. The gene is highly expressed in roots, stems, and flowers at the transcript level. Star mRNA was strongly expressed from 24 to 72 h in potato leaves inoculated with P. infestans. The results suggested that Star may be involved in the development of organs and may play a role in late blight resistance.

  8. STRUBBELIG defines a receptor kinase-mediated signaling pathway regulating organ development in Arabidopsis

    PubMed Central

    Chevalier, David; Batoux, Martine; Fulton, Lynette; Pfister, Karen; Yadav, Ram Kishor; Schellenberg, Maja; Schneitz, Kay

    2005-01-01

    An open question remains as to what coordinates cell behavior during organogenesis, permitting organs to reach their appropriate size and shape. The Arabidopsis gene STRUBBELIG (SUB) defines a receptor-mediated signaling pathway in plants. SUB encodes a putative leucine-rich repeat transmembrane receptor-like kinase. The mutant sub phenotype suggests that SUB affects the formation and shape of several organs by influencing cell morphogenesis, the orientation of the division plane, and cell proliferation. Mutational analysis suggests that the kinase domain is important for SUB function. Biochemical assays using bacterially expressed fusion proteins indicate that the SUB kinase domain lacks enzymatic phosphotransfer activity. Furthermore, transgenes encoding WT and different mutant variants of SUB were tested for their ability to rescue the mutant sub phenotype. These genetic data also indicate that SUB carries a catalytically inactive kinase domain. The SUB receptor-like kinase may therefore signal in an atypical fashion. PMID:15951420

  9. Cloning and characterization of a transposable-like repeat in the heterochromatin of the darkling beetle Misolampus goudoti.

    PubMed

    Pons, Joan

    2004-08-01

    A long repeat unit of the PstI family in Misolampus goudoti (Coleoptera, Tenebrionodae) is characterized in this work. The 30 sequenced units have small differences in length (consensus 1169 bp), but very similar nucleotide composition (mean 61.1% A+T). PstI repeats contain a 36-bp-long inverted repeat at both the 5' and 3' ends, with a fully conserved 16-bp-long motif similar to those found in class II transposable elements. However, the transposable-like PstI repeats seems to be defective, since they do not encode for any protein related with transposition. Interestingly, energetically stable hairpins resembled the structure of a miniature interspersed transposable element, suggesting that the PstI satellite DNA family in M. goudoti may have originated from an ancestral active transposable element as also described in Drosophila guanche. The presence of transposable-like structure along with the non-detection of gene conversion or unequal crossing-over events suggest that transposition could be one of the putative molecular mechanisms involved in the strong amplification and (or) homogenization of these repeats. A putative transposition of PstI repeats allowing their genomic mobility also could explain why this satellite is widely distributed to all heterochromatic regions, telomeres, pericentromeric regions, and on the Y chromosome, whereas satellites of other tenebrionids lacking transposable-like structures are restricted only to pericentromeric regions.

  10. Crowding by a repeating pattern

    PubMed Central

    Rosen, Sarah; Pelli, Denis G.

    2015-01-01

    Theinability to recognize a peripheral target among flankers is called crowding. For a foveal target, crowding can be distinguished from overlap masking by its sparing of detection, linear scaling with eccentricity, and invariance with target size.Crowding depends on the proximity and similarity of the flankers to the target. Flankers that are far from or dissimilar to the target do not crowd it. On a gray page, text whose neighboring letters have different colors, alternately black and white, has enough dissimilarity that it might escape crowding. Since reading speed is normally limited by crowding, escape from crowding should allow faster reading. Yet reading speed is unchanged (Chung & Mansfield, 2009). Why? A recent vernier study found that using alternating-color flankers produces strong crowding (Manassi, Sayim, & Herzog, 2012). Might that effect occur with letters and reading? Critical spacing is the minimum center-to-center target–flanker spacing needed to correctly identify the target. We measure it for a target letter surrounded by several equidistant flanker letters of the same polarity, opposite polarity, or mixed polarity: alternately white and black. We find strong crowding in the alternating condition, even though each flanker letter is beyond its own critical spacing (as measured in a separate condition). Thus a periodic repeating pattern can produce crowding even when the individual elements do not. Further, in all conditions we find that, once a periodic pattern repeats (two cycles), further repetition does not affect critical spacing of the innermost flanker. PMID:26024457

  11. Crowding by a repeating pattern.

    PubMed

    Rosen, Sarah; Pelli, Denis G

    2015-01-01

    Theinability to recognize a peripheral target among flankers is called crowding. For a foveal target, crowding can be distinguished from overlap masking by its sparing of detection, linear scaling with eccentricity, and invariance with target size.Crowding depends on the proximity and similarity of the flankers to the target. Flankers that are far from or dissimilar to the target do not crowd it. On a gray page, text whose neighboring letters have different colors, alternately black and white, has enough dissimilarity that it might escape crowding. Since reading speed is normally limited by crowding, escape from crowding should allow faster reading. Yet reading speed is unchanged (Chung & Mansfield, 2009). Why? A recent vernier study found that using alternating-color flankers produces strong crowding (Manassi, Sayim, & Herzog, 2012). Might that effect occur with letters and reading? Critical spacing is the minimum center-to-center target-flanker spacing needed to correctly identify the target. We measure it for a target letter surrounded by several equidistant flanker letters of the same polarity, opposite polarity, or mixed polarity: alternately white and black. We find strong crowding in the alternating condition, even though each flanker letter is beyond its own critical spacing (as measured in a separate condition). Thus a periodic repeating pattern can produce crowding even when the individual elements do not. Further, in all conditions we find that, once a periodic pattern repeats (two cycles), further repetition does not affect critical spacing of the innermost flanker.

  12. CDC Vital Signs: Preventing Repeat Teen Births

    MedlinePlus

    ... file Error processing SSI file Preventing Repeat Teen Births Recommend on Facebook Tweet Share Compartir On this ... Too many teens, ages 15–19, have repeat births. Nearly 1 in 5 births to teens, ages ...

  13. The autolytic activity of the recombinant amidase of Staphylococcus saprophyticus is inhibited by its own recombinant GW repeats.

    PubMed

    Hell, Wolfgang; Reichl, Sylvia; Anders, Agnes; Gatermann, Sören

    2003-10-10

    The Aas (autolysin/adhesin of Staphylococcus saprophyticus) is a multifunctional surface protein containing two enzymatic domains an N-acetyl-muramyl-L-alanine amidase, an endo-beta-N-acetyl-D-glucosaminidase, and two different regions of repetitive sequences, an N-terminal and a C-terminal repetitive domain. The C-terminal repetitive domain is built up by the repeats R1, R2 and R3, which interconnect the putative active centers of the amidase and glucosaminidase. To investigate the influence of the C-terminal repeats and the N-terminal repeats on the amidase activity, the repetitive domains and fragments of them were cloned and expressed in Escherichia coli. The influence of the different fragments on the activity of the recombinant amidase of the Aas, consisting of the active center of the enzyme and repeat R1, was investigated in a turbidimetric microassay. The different fragments derived from the C-terminal repeats inhibited the amidase activity, while the N-terminal repeats did not influence the activity of the enzyme. The inhibiting activity increased with the number of GW repeats the recombinant fragment contained. Thus we conclude, that the C-terminal GW repeats and not the N-terminal repeats are necessary for the cell wall targeting and the autolytic function of the amidase.

  14. Characterization of a sugarcane (Saccharum spp.) gene homolog to the brassinosteroid insensitive1-associated receptor kinase 1 that is associated to sugar content.

    PubMed

    Vicentini, Renato; Felix, Juliana de Maria; Dornelas, Marcelo Carnier; Menossi, Marcelo

    2009-03-01

    The present article reports on the characterization of ScBAK1, a leucine-rich repeat receptor-like kinase from sugarcane (Saccharum spp.), expressed predominantly in bundle-sheath cells of the mature leaf and potentially involved in cellular signaling cascades mediated by high levels of sugar in this organ. In this report, it was shown that the ScBAK1 sequence was similar to the brassinosteroid insensitive1-associated receptor kinase1 (BAK1). The putative cytoplasmatic domain of ScBAK1 contains all the amino acids characteristic of protein kinases, and the extracellular domain contains five leucine-rich repeats and a putative leucine zipper. Transcripts of ScBAK1 were almost undetectable in sugarcane roots or in any other sink tissue, but accumulated abundantly in the mature leaves. The ScBAK1 expression was higher in the higher sugar content individuals from a population segregating for sugar content throughout the growing season. In situ hybridization in sugarcane leaves showed that the ScBAK1 mRNA accumulated at much higher levels in bundle-sheath cells than in mesophyll cells. In addition, using biolistic bombardment of onion epidermal cells, it was shown that ScBAK1-GFP fusions were localized in the plasma membrane as predicted for a receptor kinase. All together, the present data indicate that ScBAK1 might be a receptor involved in the regulation of specific processes in bundle-sheath cells and in sucrose synthesis in mature sugarcane leaves.

  15. Repeated Reading. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2014

    2014-01-01

    "Repeated reading" is an academic practice that aims to increase oral reading fluency. "Repeated reading" can be used with students who have developed initial word reading skills but demonstrate inadequate reading fluency for their grade level. During "repeated reading," a student sits in a quiet location with a…

  16. Evolution of Protein Domain Repeats in Metazoa

    PubMed Central

    Schüler, Andreas; Bornberg-Bauer, Erich

    2016-01-01

    Repeats are ubiquitous elements of proteins and they play important roles for cellular function and during evolution. Repeats are, however, also notoriously difficult to capture computationally and large scale studies so far had difficulties in linking genetic causes, structural properties and evolutionary trajectories of protein repeats. Here we apply recently developed methods for repeat detection and analysis to a large dataset comprising over hundred metazoan genomes. We find that repeats in larger protein families experience generally very few insertions or deletions (indels) of repeat units but there is also a significant fraction of noteworthy volatile outliers with very high indel rates. Analysis of structural data indicates that repeats with an open structure and independently folding units are more volatile and more likely to be intrinsically disordered. Such disordered repeats are also significantly enriched in sites with a high functional potential such as linear motifs. Furthermore, the most volatile repeats have a high sequence similarity between their units. Since many volatile repeats also show signs of recombination, we conclude they are often shaped by concerted evolution. Intriguingly, many of these conserved yet volatile repeats are involved in host-pathogen interactions where they might foster fast but subtle adaptation in biological arms races. Key Words: protein evolution, domain rearrangements, protein repeats, concerted evolution. PMID:27671125

  17. Structural organization of the nine spectrin repeats of Kalirin

    PubMed Central

    Vishwanatha, KS; Wang, YP; Keutmann, HT; Mains, RE; Eipper, BA

    2012-01-01

    Sequence analysis suggests that KALRN, a Rho GDP/GTP exchange factor genetically linked to schizophrenia, could contain as many as nine tandem spectrin repeats (SRs). We expressed and purified fragments of Kalirin containing from one to five putative SRs in order to determine whether they formed nested structures that could endow Kalirin with the flexible rod-like properties characteristic of spectrin and dystrophin. Far UV circular dichroism studies indicated that Kalirin contains nine SRs. Based on thermal denaturation, sensitivity to chemical denaturants and the solubility of pairs of repeats, the nine SRs of Kalirin form nested structures. Modeling studies confirmed this conclusion and identified an exposed loop in SR5; consistent with the modeling, this loop was extremely labile to proteolytic cleavage. Analysis of a di-repeat fragment (SR4:5) encompassing the region of Kalirin known to interact with NOS2, DISC-1, PAM and Arf6 identified this as the least stable region. Analytical ultracentrifugation indicated that SR1:3, SR4:6 and SR7:9 were monomers and adopted an extended conformation. Gel filtration suggested that ΔKal7, a natural isoform which includes SR5:9, was monomeric and was not more extended than SR5:9. Similarly, the nine SRs of Kal7, which was also monomeric, were not more extended than SR5:9. The rigidity and flexibility of the nine SRs of Kal7, which separate its essential N-terminal Sec14p domain from its catalytic domain, play an essential role in its contribution to the formation and function of dendritic spines. PMID:22738176

  18. Two-dimensional quantum repeaters

    NASA Astrophysics Data System (ADS)

    Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.

    2016-11-01

    The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.

  19. Linear Synchronous Motor Repeatability Tests

    SciTech Connect

    Ward, C.R.

    2002-10-18

    A cart system using linear synchronous motors was being considered for the Plutonium Immobilization Plant (PIP). One of the applications in the PIP was the movement of a stack of furnace trays, filled with the waste form (pucks) from a stacking/unstacking station to several bottom loaded furnaces. A system was ordered to perform this function in the PIP Ceramic Prototype Test Facility (CPTF). This system was installed and started up in SRTC prior to being installed in the CPTF. The PIP was suspended and then canceled after the linear synchronous motor system was started up. This system was used to determine repeatability of a linear synchronous motor cart system for the Modern Pit Facility.

  20. The "kynurenate test", a biochemical assay for putative cognition enhancers.

    PubMed

    Pittaluga, A; Vaccari, D; Raiteri, M

    1997-10-01

    Some putative cognition enhancers (oxiracetam, aniracetam and D-cycloserine) were previously shown to prevent the kynurenic acid antagonism of the N-methyl-D-aspartate (NMDA)-evoked norepinephrine (NE) release in rat hippocampal slices. This functional in vitro assay was further characterized in the present work. D-Serine, a glutamate coagonist at the NMDA receptor glycine site, concentration-dependently (EC50 approximately 0.1 microM) prevented the kynurenate (100 microM) block of the NMDA (100 microM)-evoked [3H]NE release. L-Serine was ineffective up to 10 microM. The gamma-aminobutyric acidB (GABA[B]) receptor antagonist CGP 36742, reported to improve cognitive performance, potently prevented the kynurenate antagonism. The activity of CGP 36742 (1 microM) appeared to be unaffected by 10 microM (-)-baclofen, a GABA(B) receptor agonist; furthermore, CGP 52432, a GABA(B) antagonist more potent than CGP 36742, but reportedly devoid of nootropic properties, was inactive in the "kynurenate test." The novel putative cognition enhancer CR2249, but not its enantiomer CR2361, also potently prevented the kynurenate antagonism. In contrast, linopirdine, nicotine and tacrine were inactive. In rat hippocampal synaptosomes glycine and D-cycloserine enhanced the NMDA-evoked [3H]NE release, whereas oxiracetam and CR2249 did not. These four compounds were all similarly effective in preventing kynurenate antagonism, both in slices and in synaptosomes. The NMDA potentiation caused by glycine (0.1-100 microM) was not affected by 100 microM oxiracetam, which suggested that drugs active in the "kynurenate test" may bind to sites different from the glycine site of the NMDA receptor. To conclude, the "kynurenate test" is an in vitro assay useful in the identification and characterization of putative cognition enhancers acting via NMDA receptors.

  1. Expression of Estrogen Receptor Coactivator Proline-, Glutamic Acid- and Leucine-Rich Protein 1 within Paraspinal Muscles in Adolescents with Idiopathic Scoliosis

    PubMed Central

    Skibinska, Izabela; Tomaszewski, Marek; Andrusiewicz, Miroslaw; Urbaniak, Paulina; Czarnecka-Klos, Roza; Shadi, Milud; Kotwicki, Tomasz; Kotwicka, Malgorzata

    2016-01-01

    Purpose The aim of this study was to detect and assess the estrogen receptor (ESR) coactivator PELP1 expression within human paraspinal skeletal muscles in patients suffering from idiopathic scoliosis. Methods During surgical correction of scoliosis the muscle biopsies harvested in 29 females. Presence of PELP1, ESR1 and ESR2 genes transcripts was studied using RT-qPCR technique while immunohistochemistry and western blot methods were used to detect the PEPL1 protein presence. Results PELP1 expression in deep paraspinal muscles revealed higher than in superficial back muscles (p = 0.005). Positive immunohistochemical staining for PELP1 was observed in the nuclei of the paraspinal muscle cells. Western blot revealed PELP1 protein in all samples. No significant difference in PELP1 expression between the convex and the concave scoliosis side (p>0.05) was found. In deep paraspinal back muscles, a significant correlation between the PELP1 expression level on the concave side and the Cobb angle (r = 0.4; p<0.05) was noted as well as between the PELP1 and ESR1 expression level (r = 0.7; p<0.05) while no correlation between PELP1 and ESR2 expression level was found. Conclusion To our knowledge, three techniques for the first time demonstrated the presence of the PELP1 in paraspinal muscles of patients with idiopathic scoliosis. The PELP1 potential regulatory impact on back muscle function is to be further investigated. PMID:27045366

  2. Leucine-Rich Glioma Inactivated-1 and Voltage-Gated Potassium Channel Autoimmune Encephalitis Associated with Ischemic Stroke: A Case Report

    PubMed Central

    McGinley, Marisa; Morales-Vidal, Sarkis; Ruland, Sean

    2016-01-01

    Autoimmune encephalitis is associated with a wide variety of antibodies and clinical presentations. Voltage-gated potassium channel (VGKC) antibodies are a cause of autoimmune non-paraneoplastic encephalitis characterized by memory impairment, psychiatric symptoms, and seizures. We present a case of VGKC encephalitis likely preceding an ischemic stroke. Reports of autoimmune encephalitis associated with ischemic stroke are rare. Several hypotheses linking these two disease processes are proposed. PMID:27242653

  3. Type of carbohydrate in feed affects the expression of small leucine-rich proteoglycans (SLRPs), glycosaminoglycans (GAGs) and interleukins in skeletal muscle of Atlantic cod (Gadus morhua L.).

    PubMed

    Tingbø, M G; Pedersen, M E; Grøndahl, F; Kolset, S O; Veiseth-Kent, E; Enersen, G; Hannesson, K O

    2012-09-01

    Aquaculture requires feed that ensures rapid growth and healthy fish. Higher inclusion of plant ingredients is desirable, as marine resources are limited. In this study we investigated the effects of higher starch inclusion in feed on muscular extracellular matrix and interleukin expression in farmed cod. Starch was replaced by complex fibers in the low-starch diet to keep total carbohydrate inclusion similar. Blood glucose and fructosamine levels were elevated in the high-starch group. The group fed a high-starch diet showed up-regulation on mRNA level of proteoglycans biglycan and decorin. ELISA confirmed the real-time PCR results on protein level for biglycan and also showed increase of lumican. For decorin the protein levels were decreased in the high-starch group, in contrast to real-time PCR results. Disaccharide analyses using HPLC showed reduction of glycosaminoglycans. Further, there was up-regulation of interleukin-1β and -10 on mRNA level in muscle. This study shows that the muscular extracellular matrix composition is affected by diet, and that a high-starch diet results in increased expression of pro-inflammatory genes similar to diabetes in humans. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Repeated episodes of endosulfan poisoning.

    PubMed

    Dewan, Aruna; Bhatnagar, Vijay K; Mathur, Murli L; Chakma, Tapas; Kashyap, Rekha; Sadhu, Harsiddha G; Sinha, Sukesh N; Saiyed, Habibullah N

    2004-01-01

    A number of families in a rural area of Jabalpur District (Madhya Pradesh), India, were affected by repeated episodes of convulsive illness over a period of three weeks. The aim of this investigation was to determine the cause of the illness. The investigation included a house-to-house survey, interviews of affected families, discussions with treating physicians, and examination of hospital records. Endosulfan poisoning was suspected as many villagers were using empty pesticide containers for food storage. To confirm this, our team collected blood and food samples, which were transported to the laboratory and analyzed with GC-ECD. Thirty-six persons of all age groups had illness of varying severity over a period of three weeks. In the first week, due to superstitions and lack of treatment, three children died. In the second week, symptomatic treatment of affected persons in a district hospital led to recovery but recurrence of convulsive episodes occurred after the return home. In the third week, 10 people were again hospitalized in a teaching hospital. Investigations carried out in this hospital ruled out infective etiology but no facilities were available for chemical analysis. All persons responded to symptomatic treatment. The blood and food samples analyzed by our team showed presence of endosulfan, which was confirmed by GCMS. One of the food items (Laddu) prepared from wheat flour was found to contain 676 ppm of alpha-endosulfan. Contamination of wheat grains or flour with endosulfan and its consumption over a period of time was the most likely cause of repeated episodes of convulsions, but the exact reason for this contamination could not be determined. This report highlights the unsafe disposal of pesticide containers by illiterate farm workers, superstitions leading to delay in treatment, and susceptibility of children to endosulfan.

  5. Learning in repeated visual search

    PubMed Central

    Hout, Michael C.; Goldinger, Stephen D.

    2014-01-01

    Visual search (e.g., finding a specific object in an array of other objects) is performed most effectively when people are able to ignore distracting nontargets. In repeated search, however, incidental learning of object identities may facilitate performance. In three experiments, with over 1,100 participants, we examined the extent to which search could be facilitated by object memory and by memory for spatial layouts. Participants searched for new targets (real-world, nameable objects) embedded among repeated distractors. To make the task more challenging, some participants performed search for multiple targets, increasing demands on visual working memory (WM). Following search, memory for search distractors was assessed using a surprise two-alternative forced choice recognition memory test with semantically matched foils. Search performance was facilitated by distractor object learning and by spatial memory; it was most robust when object identity was consistently tied to spatial locations and weakest (or absent) when object identities were inconsistent across trials. Incidental memory for distractors was better among participants who searched under high WM load, relative to low WM load. These results were observed when visual search included exhaustive-search trials (Experiment 1) or when all trials were self-terminating (Experiment 2). In Experiment 3, stimulus exposure was equated across WM load groups by presenting objects in a single-object stream; recognition accuracy was similar to that in Experiments 1 and 2. Together, the results suggest that people incidentally generate memory for nontarget objects encountered during search and that such memory can facilitate search performance. PMID:20601709

  6. An ORF from Bacillus licheniformis encodes a putative DNA repressor.

    PubMed

    Naval, J; Aguilar, D; Serra, X; Pérez-Pons, J A; Piñol, J; Lloberas, J; Querol, E

    2000-01-01

    The complete sequence of a reading frame adjacent to the endo-beta-1,3-1,4-D-glucanase gene from Bacillus licheniformis is reported. It encodes a putative 171 amino acid residues protein with either, low significant sequence similarity in data banks or the corresponding orthologue in the recently sequenced Bacillus subtilis genome. Computer analyses predict a canonical Helix-Turn-Helix motif characteristic of bacterial repressors/DNA binding proteins. A maxicells assay shows that the encoded polypeptide is expressed. A DNA-protein binding, assay performed by gel electrophoresis shows that the expressed protein specifically binds to Bacillus licheniformis DNA.

  7. PUTATIVE GENE PROMOTER SEQUENCES IN THE CHLORELLA VIRUSES

    PubMed Central

    Fitzgerald, Lisa A.; Boucher, Philip T.; Yanai-Balser, Giane; Suhre, Karsten; Graves, Michael V.; Van Etten, James L.

    2008-01-01

    Three short (7 to 9 nucleotides) highly conserved nucleotide sequences were identified in the putative promoter regions (150 bp upstream and 50 bp downstream of the ATG translation start site) of three members of the genus Chlorovirus, family Phycodnaviridae. Most of these sequences occurred in similar locations within the defined promoter regions. The sequence and location of the motifs were often conserved among homologous ORFs within the Chlorovirus family. One of these conserved sequences (AATGACA) is predominately associated with genes expressed early in virus replication. PMID:18768195

  8. Molecular genetics: DNA analysis of a putative dog clone.

    PubMed

    Parker, Heidi G; Kruglyak, Leonid; Ostrander, Elaine A

    2006-03-09

    In August 2005, Lee et al. reported the first cloning of a domestic dog from adult somatic cells. This putative dog clone was the result of somatic-cell nuclear transfer from a fibroblast cell of a three-year-old male Afghan hound into a donor oocyte provided by a dog of mixed breed. In light of recent concerns regarding the creation of cloned human cell lines from the same institution, we have undertaken an independent test to determine the validity of the claims made by Lee et al..

  9. Repeat instability: mechanisms of dynamic mutations.

    PubMed

    Pearson, Christopher E; Nichol Edamura, Kerrie; Cleary, John D

    2005-10-01

    Disease-causing repeat instability is an important and unique form of mutation that is linked to more than 40 neurological, neurodegenerative and neuromuscular disorders. DNA repeat expansion mutations are dynamic and ongoing within tissues and across generations. The patterns of inherited and tissue-specific instability are determined by both gene-specific cis-elements and trans-acting DNA metabolic proteins. Repeat instability probably involves the formation of unusual DNA structures during DNA replication, repair and recombination. Experimental advances towards explaining the mechanisms of repeat instability have broadened our understanding of this mutational process. They have revealed surprising ways in which metabolic pathways can drive or protect from repeat instability.

  10. Genome comparison and context analysis reveals putative mobile forms of restriction–modification systems and related rearrangements

    PubMed Central

    Furuta, Yoshikazu; Abe, Kentaro; Kobayashi, Ichizo

    2010-01-01

    The mobility of restriction–modification (RM) gene complexes and their association with genome rearrangements is a subject of active investigation. Here we conducted systematic genome comparisons and genome context analysis on fully sequenced prokaryotic genomes to detect RM-linked genome rearrangements. RM genes were frequently found to be linked to mobility-related genes such as integrase and transposase homologs. They were flanked by direct and inverted repeats at a significantly high frequency. Insertion by long target duplication was observed for I, II, III and IV restriction types. We found several RM genes flanked by long inverted repeats, some of which had apparently inserted into a genome with a short target duplication. In some cases, only a portion of an apparently complete RM system was flanked by inverted repeats. We also found a unit composed of RM genes and an integrase homolog that integrated into a tRNA gene. An allelic substitution of a Type III system with a linked Type I and IV system pair, and allelic diversity in the putative target recognition domain of Type IIG systems were observed. This study revealed the possible mobility of all types of RM systems, and the diversity in their mobility-related organization. PMID:20071371

  11. Unfolding a linker between helical repeats.

    PubMed

    Ortiz, Vanessa; Nielsen, Steven O; Klein, Michael L; Discher, Dennis E

    2005-06-10

    In many multi-repeat proteins, linkers between repeats have little secondary structure and place few constraints on folding or unfolding. However, the large family of spectrin-like proteins, including alpha-actinin, spectrin, and dystrophin, share three-helix bundle, spectrin repeats that appear in crystal structures to be linked by long helices. All of these proteins are regularly subjected to mechanical stress. Recent single molecule atomic force microscopy (AFM) experiments demonstrate not only forced unfolding but also simultaneous unfolding of tandem repeats at finite frequency, which suggests that the contiguous helix between spectrin repeats can propagate a cooperative helix-to-coil transition. Here, we address what happens atomistically to the linker under stress by steered molecular dynamics simulations of tandem spectrin repeats in explicit water. The results for alpha-actinin repeats reveal rate-dependent pathways, with one pathway showing that the linker between repeats unfolds, which may explain the single-repeat unfolding pathway observed in AFM experiments. A second pathway preserves the structural integrity of the linker, which explains the tandem-repeat unfolding event. Unfolding of the linker begins with a splay distortion of proximal loops away from hydrophobic contacts with the linker. This is followed by linker destabilization and unwinding with increased hydration of the backbone. The end result is an unfolded helix that mechanically decouples tandem repeats. Molecularly detailed insights obtained here aid in understanding the mechanical coupling of domain stability in spectrin family proteins.

  12. A Semiparametric Bayesian Model for Repeatedly Repeated Binary Outcomes

    PubMed Central

    Quintana, Fernando A.; Müller, Peter; Rosner, Gary L.; Relling, Mary V.

    2009-01-01

    Summary We discuss the analysis of data from single nucleotide polymorphism (SNP) arrays comparing tumor and normal tissues. The data consist of sequences of indicators for loss of heterozygosity (LOH) and involve three nested levels of repetition: chromosomes for a given patient, regions within chromosomes, and SNPs nested within regions. We propose to analyze these data using a semiparametric model for multi-level repeated binary data. At the top level of the hierarchy we assume a sampling model for the observed binary LOH sequences that arises from a partial exchangeability argument. This implies a mixture of Markov chains model. The mixture is defined with respect to the Markov transition probabilities. We assume a nonparametric prior for the random mixing measure. The resulting model takes the form of a semiparametric random effects model with the matrix of transition probabilities being the random effects. The model includes appropriate dependence assumptions for the two remaining levels of the hierarchy, i.e., for regions within chromosomes and for chromosomes within patient. We use the model to identify regions of increased LOH in a dataset coming from a study of treatment-related leukemia in children with an initial cancer diagnostic. The model successfully identifies the desired regions and performs well compared to other available alternatives. PMID:19746193

  13. Recurrent gains and losses of large (84-109 bp) repeats in the rDNA internal transcribed spacer 2 (ITS2) of rhipicephaline ticks.

    PubMed

    Murrell, A; Campbell, N J; Barker, S C

    2001-12-01

    We studied the internal transcribed spacer 2 (ITS2) in twenty-two spp. of ticks from the subfamily Rhipicephalinae. A 104-109 base pair (bp) region was imperfectly repeated in most ticks studied. Mapping the number of repeat copies on to a phylogeny from the ITS2 showed that there have been many independent gains and losses of repeats. Comparison of the sequences of the repeat copies indicated that in most taxa concerted evolution had played little if any role in the evolution of these regions, as the copies clustered by sequence position rather than species. In our putative secondary structure, each repeat copy can fold into a distinct and almost identical stem-loop complex; a gain or loss of a repeat copy apparently does not impair the function of the ITS2 in these ticks.

  14. DNA barcode-based delineation of putative species: efficient start for taxonomic workflows

    PubMed Central

    Kekkonen, Mari; Hebert, Paul D N

    2014-01-01

    The analysis of DNA barcode sequences with varying techniques for cluster recognition provides an efficient approach for recognizing putative species (operational taxonomic units, OTUs). This approach accelerates and improves taxonomic workflows by exposing cryptic species and decreasing the risk of synonymy. This study tested the congruence of OTUs resulting from the application of three analytical methods (ABGD, BIN, GMYC) to sequence data for Australian hypertrophine moths. OTUs supported by all three approaches were viewed as robust, but 20% of the OTUs were only recognized by one or two of the methods. These OTUs were examined for three criteria to clarify their status. Monophyly and diagnostic nucleotides were both uninformative, but information on ranges was useful as sympatric sister OTUs were viewed as distinct, while allopatric OTUs were merged. This approach revealed 124 OTUs of Hypertrophinae, a more than twofold increase from the currently recognized 51 species. Because this analytical protocol is both fast and repeatable, it provides a valuable tool for establishing a basic understanding of species boundaries that can be validated with subsequent studies. PMID:24479435

  15. Putative transposases conserved in Exiguobacterium isolates from ancient Siberian permafrost and from contemporary surface habitats.

    PubMed

    Vishnivetskaya, Tatiana A; Kathariou, Sophia

    2005-11-01

    Gram-positive bacteria of the genus Exiguobacterium have been repeatedly isolated from Siberian permafrost ranging in age from 20,000 to 2 to 3 million years and have been sporadically recovered from markedly diverse habitats, including microbial mats in Lake Fryxell (Antarctic), surface water, and food-processing environments. However, there is currently no information on genomic diversity of this microorganism or on the physiological strategies that have allowed its survival under prolonged freezing in the permafrost. Analysis of the genome sequence of the most ancient available Exiguobacterium isolate (Exiguobacterium sp. strain 255-15, from 2 to 3 million-year-old Siberian permafrost) revealed numerous putative transposase sequences, primarily of the IS200/IS605, IS30, and IS3 families, with four transposase families identified. Several of the transposase genes appeared to be part of insertion sequences. Southern blots with different transposase probes yielded high-resolution genomic fingerprints which differentiated the different permafrost isolates from each other and from the Exiguobacterium spp. type strains which have been derived from diverse surface habitats. Each of the Exiguobacterium sp. strain 255-15 transposases that were used as probes had highly conserved homologs in the genome of other Exiguobacterium strains, both from permafrost and from modern sites. These findings suggest that, prior to their entrapment in permafrost, Exiguobacterium isolates had acquired transposases and that conserved transposases are present in Exiguobacterium spp., which now can be isolated from various modern surface habitats.

  16. Characterisation of putative oxygen chemoreceptors in bowfin (Amia calva).

    PubMed

    Porteus, Cosima S; Wright, Patricia A; Milsom, William K

    2014-04-15

    Serotonin containing neuroepithelial cells (NECs) are putative oxygen sensing cells found in different locations within the gills of fish. In this study we wished to determine the effect of sustained internal (blood) hypoxaemia versus external (aquatic) hypoxia on the size and density of NECs in the first gill arch of bowfin (Amia calva), a facultative air breather. We identified five different populations of serotonergic NECs in this species (Types I-V) based on location, presence of synaptic vesicles (SV) that stain for the antibody SV2, innervation and labelling with the neural crest marker HNK-1. Cell Types I-III were innervated, and these cells, which participate in central O2 chemoreflexes, were studied further. Although there was no change in the density of any cell type in bowfin after exposure to sustained hypoxia (6.0 kPa for 7 days) without access to air, all three of these cell types increased in size. In contrast, only Type II and III cells increased in size in bowfin exposed to sustained hypoxia with access to air. These data support the suggestion that NECs are putative oxygen-sensing cells, that they occur in several locations, and that Type I cells monitor only hypoxaemia, whereas both other cell types monitor hypoxia and hypoxaemia.

  17. Putative golden proportions as predictors of facial esthetics in adolescents.

    PubMed

    Kiekens, Rosemie M A; Kuijpers-Jagtman, Anne Marie; van 't Hof, Martin A; van 't Hof, Bep E; Maltha, Jaap C

    2008-10-01

    In orthodontics, facial esthetics is assumed to be related to golden proportions apparent in the ideal human face. The aim of the study was to analyze the putative relationship between facial esthetics and golden proportions in white adolescents. Seventy-six adult laypeople evaluated sets of photographs of 64 adolescents on a visual analog scale (VAS) from 0 to 100. The facial esthetic value of each subject was calculated as a mean