Sample records for putative nuclear localization

  1. Localization of the putative precursor of Alzheimer's disease-specific amyloid at nuclear envelopes of adult human muscle.

    PubMed Central

    Zimmermann, K; Herget, T; Salbaum, J M; Schubert, W; Hilbich, C; Cramer, M; Masters, C L; Multhaup, G; Kang, J; Lemaire, H G

    1988-01-01

    Cloning and sequence analysis revealed the putative amyloid A4 precursor (pre-A4) of Alzheimer's disease to have characteristics of a membrane-spanning glycoprotein. In addition to brain, pre-A4 mRNA was found in adult human muscle and other tissues. We demonstrate by in situ hybridization that pre-A4 mRNA is present in adult human muscle, in cultured human myoblasts and myotubes. Immunofluorescence with antipeptide antibodies shows the putative pre-A4 protein to be expressed in adult human muscle and associated with some but not all nuclear envelopes. Despite high levels of a single 3.5-kb pre-A4 mRNA species in cultured myoblasts and myotubes, the presence of putative pre-A4 protein could not be detected by immunofluorescence. This suggests that putative pre-A4 protein is stabilized and therefore functioning in the innervated muscle tissue but not in developing, i.e. non-innervated cultured muscle cells. The selective localization of the protein on distinct nuclear envelopes could reflect an interaction with motor endplates. Images PMID:2896589

  2. Prm3p is a pheromone-induced peripheral nuclear envelope protein required for yeast nuclear fusion.

    PubMed

    Shen, Shu; Tobery, Cynthia E; Rose, Mark D

    2009-05-01

    Nuclear membrane fusion is the last step in the mating pathway of the yeast Saccharomyces cerevisiae. We adapted a bioinformatics approach to identify putative pheromone-induced membrane proteins potentially required for nuclear membrane fusion. One protein, Prm3p, was found to be required for nuclear membrane fusion; disruption of PRM3 caused a strong bilateral defect, in which nuclear congression was completed but fusion did not occur. Prm3p was localized to the nuclear envelope in pheromone-responding cells, with significant colocalization with the spindle pole body in zygotes. A previous report, using a truncated protein, claimed that Prm3p is localized to the inner nuclear envelope. Based on biochemistry, immunoelectron microscopy and live cell microscopy, we find that functional Prm3p is a peripheral membrane protein exposed on the cytoplasmic face of the outer nuclear envelope. In support of this, mutations in a putative nuclear localization sequence had no effect on full-length protein function or localization. In contrast, point mutations and deletions in the highly conserved hydrophobic carboxy-terminal domain disrupted both protein function and localization. Genetic analysis, colocalization, and biochemical experiments indicate that Prm3p interacts directly with Kar5p, suggesting that nuclear membrane fusion is mediated by a protein complex.

  3. Active nuclear import and passive nuclear export are the primary determinants of TDP-43 localization.

    PubMed

    Pinarbasi, Emile S; Cağatay, Tolga; Fung, Ho Yee Joyce; Li, Ying C; Chook, Yuh Min; Thomas, Philip J

    2018-05-04

    ALS (Amyotrophic Lateral Sclerosis) is a neurodegenerative disease characterized by the redistribution of the RNA binding protein TDP-43 in affected neurons: from predominantly nuclear to aggregated in the cytosol. However, the determinants of TDP-43 localization and the cellular insults that promote redistribution are incompletely understood. Here, we show that the putative Nuclear Export Signal (NES) is not required for nuclear egress of TDP-43. Moreover, when the TDP-43 domain which contains the putative NES is fused to a reporter protein, YFP, the presence of the NES is not sufficient to mediate nuclear exclusion of the fusion protein. We find that the previously studied "∆NES" mutant, in which conserved hydrophobic residues are mutated to alanines, disrupts both solubility and splicing function. We further show that nuclear export of TDP-43 is independent of the exportin XPO1. Finally, we provide evidence that nuclear egress of TDP-43 is size dependent; nuclear export of dTomato TDP-43 is significantly impaired compared to Flag TDP-43. Together, these results suggest nuclear export of TDP-43 is predominantly driven by passive diffusion.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wanitchang, Asawin; Narkpuk, Jaraspim; Jongkaewwattana, Anan, E-mail: anan.jon@biotec.or.th

    The nucleoprotein of influenza B virus (BNP) shares several characteristics with its influenza A virus counterpart (ANP), including localization in the host's nucleus. However, while the nuclear localization signal(s) (NLS) of ANP are well characterized, little is known about those of BNP. In this study, we showed that the fusion protein bearing the BNP N-terminus fused with GFP (N70–GFP) is exclusively nuclear, and identified a highly conserved KRXR motif spanning residues 44–47 as a putative NLS. In addition, we demonstrated that residues 3–15 of BNP, though not an NLS, are also crucial for nuclear import. Results from mutational analyses ofmore » N70–GFP and the full-length BNP suggest that this region may be required for protection of the N-terminus from proteolytic cleavage. Altogether, we propose that the N-terminal region of BNP contains the NLS and cleavage-protection motif, which together drive its nuclear localization. - Highlights: • The N-terminal region of BNP is required for nuclear accumulation. • The conserved motif at position 44–47 is a putative nuclear localization signal. • The first 15 amino acids of BNP may function as a cleavage-protection motif. • BNP may get access to the nucleus via a mechanism distinct from ANP.« less

  5. Identification of novel nuclear localization signals of Drosophila myeloid leukemia factor.

    PubMed

    Sugano, Wakana; Yamaguchi, Masamitsu

    2007-01-01

    Myeloid leukemia factor 1 (MLF1) was first identified as part of a leukemic fusion protein produced by a chromosomal translocation, and MLF family proteins are present in many animals. In mammalian cells, MLF1 has been described as mainly cytoplasmic, but in Drosophila, one of the dMLF isoforms (dMLFA) localized mainly in the nucleus while the other isoform (dMLFB), that appears to be produced by the alternative splicing, displays both nuclear and cytoplasmic localization. To investigate the difference in subcellular localization between MLF family members, we examined the subcellular localization of deletion mutants of dMLFA isoform. The analyses showed that the C-terminal 40 amino acid region of dMLFA is necessary and sufficient for nuclear localization. Based on amino acid sequences, we hypothesized that two nuclear localization signals (NLSs) are present within the region. Site-directed mutagenesis of critical residues within the two putative NLSs leads to loss of nuclear localization, suggesting that both NLS motifs are necessary for nuclear localization.

  6. Unique nuclear localization of Nile tilapia (Oreochromis niloticus) Neu4 sialidase is regulated by nuclear transport receptor importin α/β.

    PubMed

    Honda, Akinobu; Chigwechokha, Petros Kingstone; Kamada-Futagami, Yuko; Komatsu, Masaharu; Shiozaki, Kazuhiro

    2018-06-01

    Sialidase catalyzes the removal of sialic acids from glycoconjugates. Different from Neu1 and Neu3 sialidases, Neu4 enzymatic properties such as substrate specificity and subcellular localization are not well-conserved among vertebrates. In fish only zebrafish and medaka neu4 genes have been cloned and their polypeptides have been characterized so far. Thus, characterization of Neu4 from other fish species is necessary to evaluate Neu4 physiological functions. Here, Nile tilapia was chosen for the characterization of Neu4 polypeptide considering that it is one of the major cultured fish all over the world and that its genomic sequences are now available. Coding DNA sequence of tilapia Neu4 was identified as 1,497 bp and its recombinant protein showed broad substrate specificity and optimal sialidase enzyme activity pH at 4.0. Neu4 activity was sustained even in neutral and alkali pH. Interestingly, immunofluorescence analysis revealed that major subcellular localization of tilapia Neu4 was nuclear, quite distinct from zebrafish (ER) and medaka Neu4 (lysosome). Bioinformatic analysis showed the existence of putative nuclear localization signal (NLS) in tilapia Neu4. In general, it is known that importin families bind to several proteins via NLS and transfer them into nucleus. Therefore, to determine the involvement of putative NLS in Neu4 nuclear localization, Neu4 mutant deleting NLS was constructed and expressed in cultured cells. As a result, NLS deletion significantly diminished the nuclear localization. Furthermore, treatment of importazole, interrupter of binding importin β and RanGTP, significantly suppressed Neu4 nuclear localization. In summary, tilapia Neu4 is a unique sialidase localized at nucleus and its transport system into nucleus is regulated by importin. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  7. Characterization of sequences in human TWIST required for nuclear localization

    PubMed Central

    Singh, Shalini; Gramolini, Anthony O

    2009-01-01

    Background Twist is a transcription factor that plays an important role in proliferation and tumorigenesis. Twist is a nuclear protein that regulates a variety of cellular functions controlled by protein-protein interactions and gene transcription events. The focus of this study was to characterize putative nuclear localization signals (NLSs) 37RKRR40 and 73KRGKK77 in the human TWIST (H-TWIST) protein. Results Using site-specific mutagenesis and immunofluorescences, we observed that altered TWISTNLS1 K38R, TWISTNLS2 K73R and K77R constructs inhibit nuclear accumulation of H-TWIST in mammalian cells, while TWISTNLS2 K76R expression was un-affected and retained to the nucleus. Subsequently, co-transfection of TWIST mutants K38R, K73R and K77R with E12 formed heterodimers and restored nuclear localization despite the NLSs mutations. Using a yeast-two-hybrid assay, we identified a novel TWIST-interacting candidate TCF-4, a basic helix-loop-helix transcription factor. The interaction of TWIST with TCF-4 confirmed using NLS rescue assays, where nuclear expression of mutant TWISTNLS1 with co-transfixed TCF-4 was observed. The interaction of TWIST with TCF-4 was also seen using standard immunoprecipitation assays. Conclusion Our study demonstrates the presence of two putative NLS motifs in H-TWIST and suggests that these NLS sequences are functional. Furthermore, we identified and confirmed the interaction of TWIST with a novel protein candidate TCF-4. PMID:19534813

  8. Plasmodium berghei MAPK1 Displays Differential and Dynamic Subcellular Localizations during Liver Stage Development

    PubMed Central

    Wierk, Jannika Katharina; Langbehn, Annette; Kamper, Maria; Richter, Stefanie; Burda, Paul-Christian; Heussler, Volker Theo; Deschermeier, Christina

    2013-01-01

    Mitogen-activated protein kinases (MAPKs) regulate key signaling events in eukaryotic cells. In the genomes of protozoan Plasmodium parasites, the causative agents of malaria, two genes encoding kinases with significant homology to other eukaryotic MAPKs have been identified (mapk1, mapk2). In this work, we show that both genes are transcribed during Plasmodium berghei liver stage development, and analyze expression and subcellular localization of the PbMAPK1 protein in liver stage parasites. Live cell imaging of transgenic parasites expressing GFP-tagged PbMAPK1 revealed a nuclear localization of PbMAPK1 in the early schizont stage mediated by nuclear localization signals in the C-terminal domain. In contrast, a distinct localization of PbMAPK1 in comma/ring-shaped structures in proximity to the parasite’s nuclei and the invaginating parasite membrane was observed during the cytomere stage of parasite development as well as in immature blood stage schizonts. The PbMAPK1 localization was found to be independent of integrity of a motif putatively involved in ATP binding, integrity of the putative activation motif and the presence of a predicted coiled-coil domain in the C-terminal domain. Although PbMAPK1 knock out parasites showed normal liver stage development, the kinase may still fulfill a dual function in both schizogony and merogony of liver stage parasites regulated by its dynamic and stage-dependent subcellular localization. PMID:23544094

  9. Expanding the Definition of the Classical Bipartite Nuclear Localization Signal

    PubMed Central

    Lange, Allison; McLane, Laura M.; Mills, Ryan E.; Devine, Scott E.; Corbett, Anita H.

    2010-01-01

    Nuclear localization signals (NLSs) are amino acid sequences that target cargo proteins into the nucleus. Rigorous characterization of NLS motifs is essential to understanding and predicting pathways for nuclear import. The best-characterized NLS is the classical NLS (cNLS), which is recognized by the cNLS receptor, importin-α. cNLSs are conventionally defined as having one (monopartite) or two clusters of basic amino acids separated by a 9-12 amino acid linker (bipartite). Motivated by the finding that Ty1 integrase, which contains an unconventional putative bipartite cNLS with a 29 amino acid linker, exploits the classical nuclear import machinery, we assessed the functional boundaries for linker length within a bipartite cNLS. We confirmed that the integrase cNLS is a bona fide bipartite cNLS, then carried out a systematic analysis of linker length in an obligate bipartite cNLS cargo, which revealed that some linkers longer than conventionally defined can function in nuclear import. Linker function is dependent on the sequence and likely the inherent flexibility of the linker. Subsequently, we interrogated the Saccharomyces cerevisiae proteome to identify cellular proteins containing putative long bipartite cNLSs. We experimentally confirmed that Rrp4 contains a bipartite cNLS with a 25 amino acid linker. Our studies reveal that the traditional definition of bipartite cNLSs is too restrictive and linker length can vary depending on amino acid composition PMID:20028483

  10. Identification of a nuclear localization signal in the retinitis pigmentosa-mutated RP26 protein, ceramide kinase-like protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inagaki, Yuichi; Mitsutake, Susumu; Igarashi, Yasuyuki

    2006-05-12

    Retinitis pigmentosa (RP) is a genetically heterogeneous disease characterized by degeneration of the retina. A mutation in a new ceramide kinase (CERK) homologous gene, named CERK-like protein (CERKL), was found to cause autosomal recessive retinitis pigmentosa (RP26). Here, we show a point mutation of one of two putative nuclear localization signal (NLS) sequences inhibited the nuclear localization of the protein. Furthermore, the tetra-GFP-tagged NLS, which cannot passively enter the nucleus, was observed not only in the nucleus but also in the nucleolus. Our results provide First evidence of the active nuclear import of CERKL and suggest that the identified NLSmore » might be responsible for nucleolar retention of the protein. As recent studies have shown other RP-related proteins are localized in the nucleus or the nucleolus, our identification of NLS in CERKL suggests that CERKL likely plays important roles for retinal functions in the nucleus and the nucleolus.« less

  11. The Treacher Collins syndrome (TCOF1) gene product, treacle, is targeted to the nucleolus by signals in its C-terminus.

    PubMed

    Winokur, S T; Shiang, R

    1998-11-01

    The TCOF1 gene product, treacle, responsible for the craniofacial disorder Treacher Collins syndrome, has been predicted to be a member of a class of nucleolar phosphoproteins based on its primary amino acid sequence. Treacle is a low complexity protein with ten repeating units of acidic and basic residues, each of which contains a large number of putative casein kinase 2 and protein kinase C phosphorylation sites. In addition, the C-terminus of treacle contains multiple putative nuclear localization signals. The overall structure of treacle, as well as sequence similarity to several nucleolar phosphoproteins, predicts that treacle is a member of this class of proteins. Using green fluorescent protein fusion constructs with the full-length and deleted domains of the murine homolog of treacle, we demonstrate that the cellular localization of treacle is nucleolar. This localization is mediated by the last 41 residues of the C-terminus (residues 1262-1302). At least two functional nuclear localization signals have been identified in the protein, one between residues 1176 and 1270 and the second within the last 32 residues of the protein (1271-1302). The nucleolar localization signal is disrupted by two constructs that split the C-terminal region between residues 1270 and 1271. This study provides the first direct analysis of treacle and demonstrates that the protein involved in TCOF1 is a nucleolar protein.

  12. Cyclophilin B enhances HIV-1 Infection

    PubMed Central

    DeBoer, Jason; Madson, Christian J.; Belshan, Michael

    2016-01-01

    Cyclophilin B (CypB) is a member of the immunophilin family and intracellular chaperone. It predominantly localizes to the ER, but also contains a nuclear localization signal and is secreted from cells. CypB has been shown to interact with the Gag protein of human immunodeficiency type 1 (HIV-1). Several proteomic and genetic studies identified it as a potential factor involved in HIV replication. Herein, we show that over-expression of CypB enhances HIV infection by increasing nuclear import of viral DNA. This enhancement was unaffected by cyclosporine treatment and requires the N-terminus of the protein. The N-terminus contains an ER leader sequence, putative nuclear localization signal, and is required for secretion. Deletion of the N-terminus resulted in mislocalization from the ER and suppression of HIV infection. Passive transfer experiments showed that secreted CypB did not impact HIV infection. Combined, these experiments show that intracellular CypB modulates a pathway of HIV nuclear import. PMID:26774171

  13. Cyclophilin B enhances HIV-1 infection.

    PubMed

    DeBoer, Jason; Madson, Christian J; Belshan, Michael

    2016-02-01

    Cyclophilin B (CypB) is a member of the immunophilin family and intracellular chaperone. It predominantly localizes to the ER, but also contains a nuclear localization signal and is secreted from cells. CypB has been shown to interact with the Gag protein of human immunodeficiency type 1 (HIV-1). Several proteomic and genetic studies identified it as a potential factor involved in HIV replication. Herein, we show that over-expression of CypB enhances HIV infection by increasing nuclear import of viral DNA. This enhancement was unaffected by cyclosporine treatment and requires the N-terminus of the protein. The N-terminus contains an ER leader sequence, putative nuclear localization signal, and is required for secretion. Deletion of the N-terminus resulted in mislocalization from the ER and suppression of HIV infection. Passive transfer experiments showed that secreted CypB did not impact HIV infection. Combined, these experiments show that intracellular CypB modulates a pathway of HIV nuclear import. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The MB2 gene family of Plasmodium species has a unique combination of S1 and GTP-binding domains

    PubMed Central

    Romero, Lisa C; Nguyen, Thanh V; Deville, Benoit; Ogunjumo, Oluwasanmi; James, Anthony A

    2004-01-01

    Background Identification and characterization of novel Plasmodium gene families is necessary for developing new anti-malarial therapeutics. The products of the Plasmodium falciparum gene, MB2, were shown previously to have a stage-specific pattern of subcellular localization and proteolytic processing. Results Genes homologous to MB2 were identified in five additional parasite species, P. knowlesi, P. gallinaceum, P. berghei, P. yoelii, and P. chabaudi. Sequence comparisons among the MB2 gene products reveal amino acid conservation of structural features, including putative S1 and GTP-binding domains, and putative signal peptides and nuclear localization signals. Conclusions The combination of domains is unique to this gene family and indicates that MB2 genes comprise a novel family and therefore may be a good target for drug development. PMID:15222903

  15. Atypical nuclear localization of VIP receptors in glioma cell lines and patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbarin, Alice; Séité, Paule; Godet, Julie

    Highlights: • The VIP receptor VPAC1 contains a putative NLS signal. • VPAC1 is predominantly nuclear in GBM cell lines but not VPAC2. • Non-nuclear VPAC1/2 protein expression is correlated with glioma grade. • Nuclear VPAC1 is observed in 50% of stage IV glioma (GBM). - Abstract: An increasing number of G protein-coupled receptors, like receptors for vasoactive intestinal peptide (VIP), are found in cell nucleus. As VIP receptors are involved in the regulation of glioma cell proliferation and migration, we investigated the expression and the nuclear localization of the VIP receptors VPAC1 and VPAC2 in this cancer. First, bymore » applying Western blot and immunofluorescence detection in three human glioblastoma (GBM) cell lines, we observed a strong nuclear staining for the VPAC1 receptor and a weak nuclear VPAC2 receptor staining. Second, immunohistochemical staining of VPAC1 and VPAC2 on tissue microarrays (TMA) showed that the two receptors were expressed in normal brain and glioma tissues. Expression in the non-nuclear compartment of the two receptors significantly increased with the grade of the tumors. Analysis of nuclear staining revealed a significant increase of VPAC1 staining with glioma grade, with up to 50% of GBM displaying strong VPAC1 nuclear staining, whereas nuclear VPAC2 staining remained marginal. The increase in VPAC receptor expression with glioma grades and the enhanced nuclear localization of the VPAC1 receptors in GBM might be of importance for glioma progression.« less

  16. Close but Distinct Regions of Human Herpesvirus 8 Latency-Associated Nuclear Antigen 1 Are Responsible for Nuclear Targeting and Binding to Human Mitotic Chromosomes

    PubMed Central

    Piolot, Tristan; Tramier, Marc; Coppey, Maité; Nicolas, Jean-Claude; Marechal, Vincent

    2001-01-01

    Human herpesvirus 8 is associated with all forms of Kaposi's sarcoma, AIDS-associated body cavity-based lymphomas, and some forms of multicentric Castleman's disease. Herpesvirus 8, like other gammaherpesviruses, can establish a latent infection in which viral genomes are stably maintained as multiple episomes. The latent nuclear antigen (LANA or LNAI) may play an essential role in the stable maintenance of latent episomes, notably by interacting concomitantly with the viral genomes and the metaphase chromosomes, thus ensuring an efficient transmission of the neoduplicated episomes to the daughter cells. To identify the regions responsible for its nuclear and subnuclear localization in interphase and mitotic cells, LNAI and various truncated forms were fused to a variant of green fluorescent protein. This enabled their localization and chromosome binding activity to be studied by low-light-level fluorescence microscopy in living HeLa cells. The results demonstrate that nuclear localization of LNAI is due to a unique signal, which maps between amino acids 24 and 30. Interestingly, this nuclear localization signal closely resembles those identified in EBNA1 from Epstein-Barr virus and herpesvirus papio. A region encompassing amino acids 5 to 22 was further proved to mediate the specific interaction of LNA1 with chromatin during interphase and the chromosomes during mitosis. The presence of putative phosphorylation sites in the chromosome binding sites of LNA1 and EBNA1 suggests that their activity may be regulated by specific cellular kinases. PMID:11264383

  17. An N-terminal nuclear localization sequence but not the calmodulin-binding domain mediates nuclear localization of nucleomorphin, a protein that regulates nuclear number in Dictyostelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myre, Michael A.; O'Day, Danton H.

    2005-06-24

    Nucleomorphin is a novel nuclear calmodulin (CaM)-binding protein (CaMBP) containing an extensive DEED (glu/asp repeat) domain that regulates nuclear number. GFP-constructs of the 38 kDa NumA1 isoform localize as intranuclear patches adjacent to the inner nuclear membrane. The translocation of CaMBPs into nuclei has previously been shown by others to be mediated by both classic nuclear localization sequences (NLSs) and CaM-binding domains (CaMBDs). Here we show that NumA1 possesses a CaMBD ({sup 171}EDVSRFIKGKLLQKQQKIYKDLERF{sup 195}) containing both calcium-dependent-binding motifs and an IQ-like motif for calcium-independent binding. GFP-constructs containing only NumA1 residues 1-129, lacking the DEED and CaMBDs, still localized as patchesmore » at the internal periphery of nuclei thus ruling out a direct role for the CaMBD in nuclear import. These constructs contained the amino acid residues {sup 48}KKSYQDPEIIAHSRPRK{sup 64} that include both a putative bipartite and classical NLS. GFP-bipartite NLS constructs localized uniformly within nuclei but not as patches. As with previous work, removal of the DEED domain resulted in highly multinucleate cells. However as shown here, multinuclearity only occurred when the NLS was present allowing the protein to enter nuclei. Site-directed mutation analysis in which the NLS was changed to {sup 48}EF{sup 49} abolished the stability of the GFP fusion at the protein but not RNA level preventing subcellular analyses. Cells transfected with the {sup 48}EF{sup 49} construct exhibited slowed growth when compared to parental AX3 cells and other GFP-NumA1 deletion mutants. In addition to identifying an NLS that is sufficient for nuclear translocation of nucleomorphin and ruling out CaM-binding in this event, this work shows that the nuclear localization of NumA1 is crucial to its ability to regulate nuclear number in Dictyostelium.« less

  18. Cyclophilin B enhances HIV-1 infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeBoer, Jason; Madson, Christian J.; Belshan, Michael, E-mail: michaelbelshan@creighton.edu

    Cyclophilin B (CypB) is a member of the immunophilin family and intracellular chaperone. It predominantly localizes to the ER, but also contains a nuclear localization signal and is secreted from cells. CypB has been shown to interact with the Gag protein of human immunodeficiency type 1 (HIV-1). Several proteomic and genetic studies identified it as a potential factor involved in HIV replication. Herein, we show that over-expression of CypB enhances HIV infection by increasing nuclear import of viral DNA. This enhancement was unaffected by cyclosporine treatment and requires the N-terminus of the protein. The N-terminus contains an ER leader sequence,more » putative nuclear localization signal, and is required for secretion. Deletion of the N-terminus resulted in mislocalization from the ER and suppression of HIV infection. Passive transfer experiments showed that secreted CypB did not impact HIV infection. Combined, these experiments show that intracellular CypB modulates a pathway of HIV nuclear import. - Highlights: • CypB has been identified in several proteomic studies of HIV-1 infection. • CypB expression is upregulated in activated and infected T-cells. • Over-expression of CypB enhances HIV nuclear import and infection. • The N-terminus of CypB is necessary for these effects.« less

  19. Plant U13 orthologues and orphan snoRNAs identified by RNomics of RNA from Arabidopsis nucleoli

    PubMed Central

    Kim, Sang Hyon; Spensley, Mark; Choi, Seung Kook; Calixto, Cristiane P. G.; Pendle, Ali F.; Koroleva, Olga; Shaw, Peter J.; Brown, John W. S.

    2010-01-01

    Small nucleolar RNAs (snoRNAs) and small Cajal body-specific RNAs (scaRNAs) are non-coding RNAs whose main function in eukaryotes is to guide the modification of nucleotides in ribosomal and spliceosomal small nuclear RNAs, respectively. Full-length sequences of Arabidopsis snoRNAs and scaRNAs have been obtained from cDNA libraries of capped and uncapped small RNAs using RNA from isolated nucleoli from Arabidopsis cell cultures. We have identified 31 novel snoRNA genes (9 box C/D and 22 box H/ACA) and 15 new variants of previously described snoRNAs. Three related capped snoRNAs with a distinct gene organization and structure were identified as orthologues of animal U13snoRNAs. In addition, eight of the novel genes had no complementarity to rRNAs or snRNAs and are therefore putative orphan snoRNAs potentially reflecting wider functions for these RNAs. The nucleolar localization of a number of the snoRNAs and the localization to nuclear bodies of two putative scaRNAs was confirmed by in situ hybridization. The majority of the novel snoRNA genes were found in new gene clusters or as part of previously described clusters. These results expand the repertoire of Arabidopsis snoRNAs to 188 snoRNA genes with 294 gene variants. PMID:20081206

  20. A Meloidogyne incognita effector is imported into the nucleus and exhibits transcriptional activation activity in planta.

    PubMed

    Zhang, Lei; Davies, Laura J; Elling, Axel A

    2015-01-01

    Root-knot nematodes are sedentary biotrophic endoparasites that maintain a complex interaction with their host plants. Nematode effector proteins are synthesized in the oesophageal glands of nematodes and secreted into plant tissue through a needle-like stylet. Effectors characterized to date have been shown to mediate processes essential for nematode pathogenesis. To gain an insight into their site of action and putative function, the subcellular localization of 13 previously isolated Meloidogyne incognita effectors was determined. Translational fusions were created between effectors and EGFP-GUS (enhanced green fluorescent protein-β-glucuronidase) reporter genes, which were transiently expressed in tobacco leaf cells. The majority of effectors localized to the cytoplasm, with one effector, 7H08, imported into the nuclei of plant cells. Deletion analysis revealed that the nuclear localization of 7H08 was mediated by two novel independent nuclear localization domains. As a result of the nuclear localization of the effector, 7H08 was tested for the ability to activate gene transcription. 7H08 was found to activate the expression of reporter genes in both yeast and plant systems. This is the first report of a plant-parasitic nematode effector with transcriptional activation activity. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  1. Caveolae-localized L-type Ca2+ channels do not contribute to function or hypertrophic signalling in the mouse heart.

    PubMed

    Correll, Robert N; Makarewich, Catherine A; Zhang, Hongyu; Zhang, Chen; Sargent, Michelle A; York, Allen J; Berretta, Remus M; Chen, Xiongwen; Houser, Steven R; Molkentin, Jeffery D

    2017-06-01

    L-type Ca2+ channels (LTCCs) in adult cardiomyocytes are localized to t-tubules where they initiate excitation-contraction coupling. Our recent work has shown that a subpopulation of LTCCs found at the surface sarcolemma in caveolae of adult feline cardiomyocytes can also generate a Ca2+ microdomain that activates nuclear factor of activated T-cells signaling and cardiac hypertrophy, although the relevance of this paradigm to hypertrophy regulation in vivo has not been examined. Here we generated heart-specific transgenic mice with a putative caveolae-targeted LTCC activator protein that was ineffective in initiating or enhancing cardiac hypertrophy in vivo. We also generated transgenic mice with cardiac-specific overexpression of a putative caveolae-targeted inhibitor of LTCCs, and while this protein inhibited caveolae-localized LTCCs without effects on global Ca2+ handling, it similarly had no effect on cardiac hypertrophy in vivo. Cardiac hypertrophy was elicited by pressure overload for 2 or 12 weeks or with neurohumoral agonist infusion. Caveolae-specific LTCC activator or inhibitor transgenic mice showed no greater change in nuclear factor of activated T-cells activity after 2 weeks of pressure overload stimulation compared with control mice. Our results indicate that LTCCs in the caveolae microdomain do not affect cardiac function and are not necessary for the regulation of hypertrophic signaling in the adult mouse heart. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  2. Human Cytomegalovirus Nuclear Egress Proteins Ectopically Expressed in the Heterologous Environment of Plant Cells are Strictly Targeted to the Nuclear Envelope.

    PubMed

    Lamm, Christian E; Link, Katrin; Wagner, Sabrina; Milbradt, Jens; Marschall, Manfred; Sonnewald, Uwe

    2016-03-10

    In all eukaryotic cells, the nucleus forms a prominent cellular compartment containing the cell's nuclear genome. Although structurally similar, animal and plant nuclei differ substantially in details of their architecture. One example is the nuclear lamina, a layer of tightly interconnected filament proteins (lamins) underlying the nuclear envelope of metazoans. So far no orthologous lamin genes could be detected in plant genomes and putative lamin-like proteins are only poorly described in plants. To probe for potentially conserved features of metazoan and plant nuclear envelopes, we ectopically expressed the core nuclear egress proteins of human cytomegalovirus pUL50 and pUL53 in plant cells. pUL50 localizes to the inner envelope of metazoan nuclei and recruits the nuclear localized pUL53 to it, forming heterodimers. Upon expression in plant cells, a very similar localization pattern of both proteins could be determined. Notably, pUL50 is specifically targeted to the plant nuclear envelope in a rim-like fashion, a location to which coexpressed pUL53 becomes strictly corecruited from its initial nucleoplasmic distribution. Using pUL50 as bait in a yeast two-hybrid screening, the cytoplasmic re-initiation supporting protein RISP could be identified. Interaction of pUL50 and RISP could be confirmed by coexpression and coimmunoprecipitation in mammalian cells and by confocal laser scanning microscopy in plant cells, demonstrating partial pUL50-RISP colocalization in areas of the nuclear rim and other intracellular compartments. Thus, our study provides strong evidence for conserved structural features of plant and metazoan nuclear envelops and identifies RISP as a potential pUL50-interacting plant protein.

  3. Lysine 271 but not lysine 210 of XRCC4 is required for the nuclear localization of XRCC4 and DNA ligase IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuchi, Mikoto; Wanotayan, Rujira; Liu, Sicheng

    2015-06-12

    XRCC4 and DNA Ligase IV (LIG4) cooperate to join two DNA ends at the final step of DNA double-strand break (DSB) repair through non-homologous end-joining (NHEJ). However, it is not fully understood how these proteins are localized to the nucleus. Here we created XRCC4{sup K271R} mutant, as Lys271 lies within the putative nuclear localization signal (NLS), and XRCC4{sup K210R} mutant, as Lys210 was reported to undergo SUMOylation, implicated in the nuclear localization of XRCC4. Wild-type and mutated XRCC4 with EGFP tag were introduced into HeLa cell, in which endogenous XRCC4 had been knocked down using siRNA directed to 3′-untranslated region,more » and tested for the nuclear localization function by fluorescence microscopy. XRCC4{sup K271R} was defective in the nuclear localization of itself and LIG4, whereas XRCC4{sup K210R} was competent for the nuclear localization with LIG4. To examine DSB repair function, wild-type and mutated XRCC4 were introduced into XRCC4-deficient M10. M10-XRCC4{sup K271R}, but not M10-XRCC4{sup K210R}, showed significantly reduced surviving fraction after 2 Gy γ-ray irradiation as compared to M10-XRCC4{sup WT}. The number of γ-H2AX foci remaining 2 h after 2 Gy γ-ray irradiation was significantly greater in M10-XRCC4{sup K271R} than in M10-XRCC4{sup WT}, whereas it was only marginally increased in M10-XRCC4{sup K210R} as compared to M10-XRCC4{sup WT}. The present results collectively indicated that Lys271, but not Lys210, of XRCC4 is required for the nuclear localization of XRCC4 and LIG4 and that the nuclear localizing ability is essential for DSB repair function of XRCC4. - Highlights: • XRCC4{sup K271R} is defective in the nuclear localization of itself and LIG4. • XRCC4{sup K210R} is competent for the nuclear localization of itself and LIG4. • XRCC4{sup K271R} is deficient in DSB repair function. • XRCC4{sup K210R} is mostly normal in DSB repair function.« less

  4. Axonal localization and mitochondrial association of precursor microRNA 338

    PubMed Central

    Vargas, Jose Norberto S.; Kar, Amar N.; Kowalak, Jeffrey A.; Gale, Jenna R.; Aschrafi, Armaz; Chen, Cai-Yun; Gioio, Anthony E.; Kaplan, Barry B.

    2016-01-01

    microRNAs (miRNAs) selectively localize to subcompartments of the neuron, such as dendrites, axons and presynaptic terminals, where they regulate the local protein synthesis of their putative target genes. In addition to mature miRNAs, precursor miRNAs (pre-miRNAs) have also been shown to localize to somatodendritic and axonal compartments. miRNA-338 (miR-338) regulates the local expression of several nuclear-encoded mitochondrial mRNAs within axons of sympathetic neurons. Previous work has shown that precursor miR-338 (pre-miR-338) introduced into the axon can be locally processed into mature miR-338, where it can regulate local ATP synthesis. However, the mechanisms underlying the localization of pre-miRNAs to the axonal compartment remain unknown. In this study, we investigated the axonal localization of pre-miR-338. Using proteomic and biochemical approaches, we provide evidence for the localization of pre-miR-338 to distal neuronal compartments and identify several constituents of the pre-miR-338 ribonucleoprotein complex. Furthermore, we found that pre-miR-338 is associated with the mitochondria in axons of superior cervical ganglion (SCG) neurons. The maintenance of mitochondrial function within axons requires the precise spatio-temporal synthesis of nuclear-encoded mRNAs, some of which are regulated by miR-338. Therefore, the association of pre-miR-338 with axonal mitochondria could serve as a reservoir of mature, biologically active miRNAs, which could coordinate the intra-axonal expression of multiple nuclear-encoded mitochondrial mRNAs. PMID:27229124

  5. Two host cytoplasmic effectors are required for pathogenesis of Phytophthora sojae by suppression of host defenses.

    PubMed

    Liu, Tingli; Ye, Wenwu; Ru, Yanyan; Yang, Xinyu; Gu, Biao; Tao, Kai; Lu, Shan; Dong, Suomeng; Zheng, Xiaobo; Shan, Weixing; Wang, Yuanchao; Dou, Daolong

    2011-01-01

    Phytophthora sojae encodes hundreds of putative host cytoplasmic effectors with conserved FLAK motifs following signal peptides, termed crinkling- and necrosis-inducing proteins (CRN) or Crinkler. Their functions and mechanisms in pathogenesis are mostly unknown. Here, we identify a group of five P. sojae-specific CRN-like genes with high levels of sequence similarity, of which three are putative pseudogenes. Functional analysis shows that the two functional genes encode proteins with predicted nuclear localization signals that induce contrasting responses when expressed in Nicotiana benthamiana and soybean (Glycine max). PsCRN63 induces cell death, while PsCRN115 suppresses cell death elicited by the P. sojae necrosis-inducing protein (PsojNIP) or PsCRN63. Expression of CRN fragments with deleted signal peptides and FLAK motifs demonstrates that the carboxyl-terminal portions of PsCRN63 or PsCRN115 are sufficient for their activities. However, the predicted nuclear localization signal is required for PsCRN63 to induce cell death but not for PsCRN115 to suppress cell death. Furthermore, silencing of the PsCRN63 and PsCRN115 genes in P. sojae stable transformants leads to a reduction of virulence on soybean. Intriguingly, the silenced transformants lose the ability to suppress host cell death and callose deposition on inoculated plants. These results suggest a role for CRN effectors in the suppression of host defense responses.

  6. A Variable Polyglutamine Repeat Affects Subcellular Localization and Regulatory Activity of a Populus ANGUSTIFOLIA Protein.

    PubMed

    Bryan, Anthony C; Zhang, Jin; Guo, Jianjun; Ranjan, Priya; Singan, Vasanth; Barry, Kerrie; Schmutz, Jeremy; Weighill, Deborah; Jacobson, Daniel; Jawdy, Sara; Tuskan, Gerald A; Chen, Jin-Gui; Muchero, Wellington

    2018-06-08

    Polyglutamine (polyQ) stretches have been reported to occur in proteins across many organisms including animals, fungi and plants. Expansion of these repeats has attracted much attention due their associations with numerous human diseases including Huntington's and other neurological maladies. This suggests that the relative length of polyQ stretches is an important modulator of their function. Here, we report the identification of a Populus C-terminus binding protein (CtBP) ANGUSTIFOLIA ( PtAN1 ) which contains a polyQ stretch whose functional relevance had not been established. Analysis of 917 resequenced Populus trichocarpa genotypes revealed three allelic variants at this locus encoding 11-, 13- and 15-glutamine residues. Transient expression assays using Populus leaf mesophyll protoplasts revealed that the 11Q variant exhibited strong nuclear localization whereas the 15Q variant was only found in the cytosol, with the 13Q variant exhibiting localization in both subcellular compartments. We assessed functional implications by evaluating expression changes of putative PtAN1 targets in response to overexpression of the three allelic variants and observed allele-specific differences in expression levels of putative targets. Our results provide evidence that variation in polyQ length modulates PtAN1 function by altering subcellular localization. Copyright © 2018, G3: Genes, Genomes, Genetics.

  7. Localization of a putative transcriptional regulator (ATRX) at pericentromeric heterochromatin and the short arms of acrocentric chromosomes.

    PubMed

    McDowell, T L; Gibbons, R J; Sutherland, H; O'Rourke, D M; Bickmore, W A; Pombo, A; Turley, H; Gatter, K; Picketts, D J; Buckle, V J; Chapman, L; Rhodes, D; Higgs, D R

    1999-11-23

    ATRX is a member of the SNF2 family of helicase/ATPases that is thought to regulate gene expression via an effect on chromatin structure and/or function. Mutations in the hATRX gene cause severe syndromal mental retardation associated with alpha-thalassemia. Using indirect immunofluorescence and confocal microscopy we have shown that ATRX protein is associated with pericentromeric heterochromatin during interphase and mitosis. By coimmunofluorescence, ATRX localizes with a mouse homologue of the Drosophila heterochromatic protein HP1 in vivo, consistent with a previous two-hybrid screen identifying this interaction. From the analysis of a trap assay for nuclear proteins, we have shown that the localization of ATRX to heterochromatin is encoded by its N-terminal region, which contains a conserved plant homeodomain-like finger and a coiled-coil domain. In addition to its association with heterochromatin, at metaphase ATRX clearly binds to the short arms of human acrocentric chromosomes, where the arrays of ribosomal DNA are located. The unexpected association of a putative transcriptional regulator with highly repetitive DNA provides a potential explanation for the variability in phenotype of patients with identical mutations in the ATRX gene.

  8. The 164 K, 165 K and 167 K residues in 160YPVVKKPKLTEE171 are required for the nuclear import of goose parvovirus VP1.

    PubMed

    Chen, Shun; Liu, Peng; He, Yu; Yang, Chao; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Yang, Qiao; Wu, Ying; Cheng, Anchun

    2018-06-01

    goose parvovirus (GPV) belongs to the Dependoparvovirus genus in Parvovirinae subfamily within Parvoviridae family, is the etiological agent of Derzsy's disease. Nuclear localization signal (NLS) is important for parvovirus lifecycle in the delivery of genomes and the structural protein of progeny virus into the nucleus. Here, NLS was first identified in GPV. By using the PSORT II program, a basic region (BR, 160YPVVKKPKLTEE171) in the N-terminus of VP1 was found, which predicted as putative NLS motif of goose parvovirus capsid. The GPV BR could transfer both small reporter proteins (EGFP) and large reporter protein (β-galactosidase) into the nucleus by Immunofluorescence assay. Furthermore, the K164A, or K165A, or K167A substitutions mutation of GPV VP1 did abolish its nuclear localization, suggesting that the 164 K, 165 K and 167 K residues in the 160YPVVKKPKLTEE171 are required for its for nuclear import. Our finding may help us to gain a better understand of GPV lifecycle. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Human stanniocalcin-1 interacts with nuclear and cytoplasmic proteins and acts as a SUMO E3 ligase.

    PubMed

    dos Santos, Marcos Tadeu; Trindade, Daniel Maragno; Gonçalves, Kaliandra de Almeida; Bressan, Gustavo Costa; Anastassopoulos, Filipe; Yunes, José Andres; Kobarg, Jörg

    2011-01-01

    Human stanniocalcin-1 (STC1) is a glycoprotein that has been implicated in different physiological process, including angiogenesis, apoptosis and carcinogenesis. Here we identified STC1 as a putative molecular marker for the leukemic bone marrow microenvironment and identified new interacting protein partners for STC1. Seven selected interactions retrieved from yeast two-hybrid screens were confirmed by GST-pull down assays in vitro. The N-terminal region was mapped to be the region that mediates the interaction with cytoplasmic, mitochondrial and nuclear proteins. STC1 interacts with SUMO-1 and several proteins that have been shown to be SUMOylated and localized to SUMOylation related nuclear bodies. Although STC1 interacts with SUMO-1 and has a high theoretical prediction score for a SUMOylation site, endogenous co-immunoprecipitation and in vitro SUMOylation assays with the purified recombinant protein could not detect STC1 SUMOylation. However, when we tested STC1 for SUMO E3 ligase activity, we found in an in vitro assay, that it significantly increases the SUMOylation of two other proteins. Confocal microscopic subcellular localization studies using both transfected cells and specific antibodies for endogenous STC1 revealed a cytoplasmic and nuclear deposition, the latter in the form of some specific dot-like substructure resembling SUMOylation related nuclear bodies. Together, these findings suggest a new role for STC1 in SUMOylation pathways, in nuclear bodies.

  10. Identification and Characterization of microRNA319a and Its Putative Target Gene, PvPCF5, in the Bioenergy Grass Switchgrass (Panicum virgatum).

    PubMed

    Xie, Qi; Liu, Xue; Zhang, Yinbing; Tang, Jinfu; Yin, Dedong; Fan, Bo; Zhu, Lihuang; Han, Liebao; Song, Guilong; Li, Dayong

    2017-01-01

    Due to its high biomass yield, low environmental impact, and widespread adaptability to poor soils and harsh conditions, switchgrass ( Panicum virgatum L.), a warm-region perennial herbaceous plant, has attracted much attention in recent years. However, little is known about microRNAs (miRNAs) and their functions in this bioenergy grass. Here, we identified and characterized a miRNA gene, Pvi-MIR319a , encoding microRNA319a in switchgrass. Transgenic rice lines generated by overexpressing the Pvi-MIR319a precursor gene exhibited broader leaves and delayed flowering compared with the control. Gene expression analysis indicated at least four putative target genes were downregulated. Additionally, we cloned a putative target gene ( PvPCF5 ) of Pvi-MIR319a from switchgrass. PvPCF5, a TCP transcription factor, is a nuclear-localized protein with transactivation activity and control the development of leaf. Our results suggest that Pvi-MIR319a and its target genes may be used as potential genetic regulators for future switchgrass genetic improvement.

  11. The Varicella-zoster virus DNA encapsidation genes: Identification and characterization of the putative terminase subunits

    PubMed Central

    Visalli, Robert J.; Nicolosi, Denise M.; Irven, Karen L.; Goshorn, Bradley; Khan, Tamseel; Visalli, Melissa A.

    2007-01-01

    The putative DNA encapsidation genes encoded by open reading frames (ORFs) 25, 26, 30, 34, 43, 45/42 and 54 were cloned from Varicella-zoster virus (VZV) strain Ellen. Sequencing revealed that the Ellen ORFs were highly conserved at the amino acid level when compared to those of nineteen previously published VZV isolates. Additionally, RT-PCR provided the first evidence that ORF45/42 was expressed as a spliced transcript in VZV-infected cells. All seven ORFs were expressed in vitro and full length products were identified using a C-terminal V5 epitope tag. The in vitro products of the putative VZV terminase subunits encoded by ORFs 30 and 45/42 proved useful in protein-protein interaction assays. Previous studies have reported the formation of a heterodimeric terminase complex involved in DNA encapsidation for both herpes simplex virus-type 1 (HSV-1) and human cytomegalovirus (HCMV). Here we report that the C-terminal portion of exon II of ORF45/42 (ORF42-C269) interacted in GST-pull down experiments with in vitro synthesized ORF30 and ORF45/42. The interactions were maintained in the presence of anionic detergents and in buffers of increasing ionic strength. Cells transiently transfected with epitope tagged ORF45/42 or ORF30 showed primarily cytoplasmic staining. In contrast, an antiserum directed to the N-terminal portion of ORF45 showed nearly exclusive nuclear localization of the ORF45/42 gene product in infected cells. An ORF30 specific antiserum detected an 87 kDa protein in both the cytoplasmic and nuclear fractions of VZV infected cells. The results were consistent with the localization and function of herpesviral terminase subunits. This is the first study aimed at the identification and characterization of the VZV DNA encapsidation gene products. PMID:17868947

  12. Non-senescent Hydra tolerates severe disturbances in the nuclear lamina.

    PubMed

    Klimovich, Alexander; Rehm, Arvid; Wittlieb, Jörg; Herbst, Eva-Maria; Benavente, Ricardo; Bosch, Thomas C G

    2018-05-10

    The cnidarian Hydra is known for its unlimited lifespan and non-senescence, due to the indefinite self-renewal capacity of its stem cells. While proteins of the Lamin family are recognized as critical factors affecting senescence and longevity in human and mice, their putative role in the extreme longevity and non-senescence in long-living animals remains unknown. Here we analyze the role of a single lamin protein in non-senescence of Hydra . We demonstrate that proliferation of stem cells in Hydra is robust against the disturbance of Lamin expression and localization. While Lamin is indispensable for Hydra , the stem cells tolerate overexpression, downregulation and mislocalization of Lamin, and disturbances in the nuclear envelope structure. This extraordinary robustness may underlie the indefinite self-renewal capacity of stem cells and the non-senescence of Hydra . A relatively low complexity of the nuclear envelope architecture in basal Metazoa might allow for their extreme lifespans, while an increasing complexity of the nuclear architecture in bilaterians resulted in restricted lifespans.

  13. Non-senescent Hydra tolerates severe disturbances in the nuclear lamina

    PubMed Central

    Rehm, Arvid; Wittlieb, Jörg; Herbst, Eva-Maria; Benavente, Ricardo

    2018-01-01

    The cnidarian Hydra is known for its unlimited lifespan and non-senescence, due to the indefinite self-renewal capacity of its stem cells. While proteins of the Lamin family are recognized as critical factors affecting senescence and longevity in human and mice, their putative role in the extreme longevity and non-senescence in long-living animals remains unknown. Here we analyze the role of a single lamin protein in non-senescence of Hydra. We demonstrate that proliferation of stem cells in Hydra is robust against the disturbance of Lamin expression and localization. While Lamin is indispensable for Hydra, the stem cells tolerate overexpression, downregulation and mislocalization of Lamin, and disturbances in the nuclear envelope structure. This extraordinary robustness may underlie the indefinite self-renewal capacity of stem cells and the non-senescence of Hydra. A relatively low complexity of the nuclear envelope architecture in basal Metazoa might allow for their extreme lifespans, while an increasing complexity of the nuclear architecture in bilaterians resulted in restricted lifespans. PMID:29754147

  14. Selection and sex-biased dispersal in a coastal shark: the influence of philopatry on adaptive variation.

    PubMed

    Portnoy, D S; Puritz, J B; Hollenbeck, C M; Gelsleichter, J; Chapman, D; Gold, J R

    2015-12-01

    Sex-biased dispersal is expected to homogenize nuclear genetic variation relative to variation in genetic material inherited through the philopatric sex. When site fidelity occurs across a heterogeneous environment, local selective regimes may alter this pattern. We assessed spatial patterns of variation in nuclear-encoded, single nucleotide polymorphisms (SNPs) and sequences of the mitochondrial control region in bonnethead sharks (Sphyrna tiburo), a species thought to exhibit female philopatry, collected from summer habitats used for gestation. Geographic patterns of mtDNA haplotypes and putatively neutral SNPs confirmed female philopatry and male-mediated gene flow along the northeastern coast of the Gulf of Mexico. A total of 30 outlier SNP loci were identified; alleles at over half of these loci exhibited signatures of latitude-associated selection. Our results indicate that in species with sex-biased dispersal, philopatry can facilitate sorting of locally adaptive variation, with the dispersing sex facilitating movement of potentially adaptive variation among locations and environments. © 2015 John Wiley & Sons Ltd.

  15. Nuclear localization of Klotho in brain: an anti-aging protein

    PubMed Central

    German, Dwight C.; Khobahy, Ida; Pastor, Johanne; Kuro-o, Makoto; Liu, Xinran

    2011-01-01

    Klotho is a putative age-suppressing gene whose over-expression in mice results in extension of life span. The klotho gene encodes a single-pass transmembrane protein whose extracellular domain is shed and released into blood, urine, and cerebrospinal fluid, potentially functioning as a humoral factor. The extracellular domain of Klotho has an activity that increases the expression of anti-oxidant enzymes and confers resistance to oxidative stress in cultured cells and in whole animals. The transmembrane form of the Klotho protein directly binds to multiple fibroblast growth factor receptors and modifies their ligand affinity and specificity. The purpose of the present study was to determine the precise cellular localization of Klotho in the mouse brain. Using light microscopic immunohistochemical methods, we found the highest levels of Klotho immunoreactivity in two brain regions: the choroid plexus, and cerebellar Purkinje cells. In the choroid plexus cells, Klotho was found not only on the plasma membrane but also in large amounts near the nuclear membrane. Likewise, in the Purkinje cell Klotho was found throughout the cell including dendrites, axon and soma with large amounts near the nuclear membrane. Using immunoelectron microscopy, we found Klotho in the cell membrane, but the highest concentration was localized in the peripheral portion of the nucleus and the nucleolus in both cell types. This new finding suggests that in addition to Klotho being secreted from cells in brain, it also has a nuclear function. PMID:22245317

  16. Identification and functional evaluation of cellular and viral factors involved in the alteration of nuclear architecture during herpes simplex virus 1 infection.

    PubMed

    Simpson-Holley, Martha; Colgrove, Robert C; Nalepa, Grzegorz; Harper, J Wade; Knipe, David M

    2005-10-01

    Herpes simplex virus 1 (HSV-1) replicates in the nucleus of host cells and radically alters nuclear architecture as part of its replication process. Replication compartments (RCs) form, and host chromatin is marginalized. Chromatin is later dispersed, and RCs spread past it to reach the nuclear edge. Using a lamin A-green fluorescent protein fusion, we provide direct evidence that the nuclear lamina is disrupted during HSV-1 infection and that the UL31 and UL34 proteins are required for this. We show nuclear expansion from 8 h to 24 h postinfection and place chromatin rearrangement and disruption of the lamina in the context of this global change in nuclear architecture. We show HSV-1-induced disruption of the localization of Cdc14B, a cellular protein and component of a putative nucleoskeleton. We also show that UL31 and UL34 are required for nuclear expansion. Studies with inhibitors of globular actin (G-actin) indicate that G-actin plays an essential role in nuclear expansion and chromatin dispersal but not in lamina alterations induced by HSV-1 infection. From analyses of HSV infections under various conditions, we conclude that nuclear expansion and chromatin dispersal are dispensable for optimal replication, while lamina rearrangement is associated with efficient replication.

  17. Protein Kinase D1 attenuates tumorigenesis in colon cancer by modulating β-catenin/T cell factor activity

    PubMed Central

    Sundram, Vasudha; Ganju, Aditya; Hughes, Joshua E.; Khan, Sheema; Chauhan, Subhash C.; Jaggi, Meena

    2014-01-01

    Over 80% of colon cancer development and progression is a result of the dysregulation of β-catenin signaling pathway. Herein, for the first time, we demonstrate that a serine-threonine kinase, Protein Kinase D1 (PKD1), modulates the functions of β-catenin to suppress colon cancer growth. Analysis of normal and colon cancer tissues reveals downregulation of PKD1 expression in advanced stages of colon cancer and its co-localization with β-catenin in the colon crypts. This PKD1 downregulation corresponds with the aberrant expression and nuclear localization of β-catenin. In-vitro investigation of the PKD1-β-catenin interaction in colon cancer cells reveal that PKD1 overexpression suppresses cell proliferation and clonogenic potential and enhances cell-cell aggregation. We demonstrate that PKD1 directly interacts with β-catenin and attenuates β-catenin transcriptional activity by decreasing nuclear β-catenin levels. Additionally, we show that inhibition of nuclear β-catenin transcriptional activity is predominantly influenced by nucleus targeted PKD1. This subcellular modulation of β-catenin results in enhanced membrane localization of β-catenin and thereby increases cell-cell adhesion. Studies in a xenograft mouse model indicate that PKD1 overexpression delayed tumor appearance, enhanced necrosis and lowered tumor hypoxia. Overall, our results demonstrate a putative tumor-suppressor function of PKD1 in colon tumorigenesis via modulation of β-catenin functions in cells. PMID:25149539

  18. The prion-like domain of FUS is multiphosphorylated following DNA damage without altering nuclear localization.

    PubMed

    Rhoads, Shannon N; Monahan, Zachary T; Yee, Debra S; Leung, Andrew Y; Newcombe, Cameron G; O'Meally, Robert N; Cole, Robert N; Shewmaker, Frank P

    2018-06-13

    FUS is an abundant, predominantly nuclear protein involved in RNA processing. Under various conditions, FUS functionally associates with RNA and other macromolecules to form distinct, reversible phase-separated liquid structures. Persistence of the phase-separated state and increased cytoplasmic localization are both hypothesized to predispose FUS to irreversible aggregation, which is a pathological hallmark of subtypes of amyotrophic lateral sclerosis and frontotemporal dementia. We previously showed that phosphorylation of FUS's prion-like domain suppressed phase separation and toxic aggregation, proportionally to the number of added phosphates. However, phosphorylation of FUS's prion-like domain was previously reported to promote its cytoplasmic localization, potentially favoring pathological behavior. Here, we used mass spectrometry and human cell models to further identify phosphorylation sites within FUS's prion-like domain, specifically following DNA-damaging stress. In total, 28 putative sites have been identified, about half of which are DNA-dependent protein kinase (DNA-PK) consensus sites. Custom antibodies were developed to confirm the phosphorylation of two of these sites (Ser26 and Ser30). Both sites were usually phosphorylated in a sub-population of cellular FUS following a variety of DNA-damaging stresses, but not necessarily equally or simultaneously. Importantly, we found DNA-PK-dependent multi-phosphorylation of FUS's prion-like domain does not cause cytoplasmic localization.

  19. The Oncogene PDRG1 Is an Interaction Target of Methionine Adenosyltransferases

    PubMed Central

    Garrido, Francisco; Reytor, Edel; Portillo, Francisco; Pajares, María A.

    2016-01-01

    Methionine adenosyltransferases MAT I and MAT III (encoded by Mat1a) catalyze S-adenosylmethionine synthesis in normal liver. Major hepatic diseases concur with reduced levels of this essential methyl donor, which are primarily due to an expression switch from Mat1a towards Mat2a. Additional changes in the association state and even in subcellular localization of these isoenzymes are also detected. All these alterations result in a reduced content of the moderate (MAT I) and high Vmax (MAT III) isoenzymes, whereas the low Vmax (MAT II) isoenzyme increases and nuclear accumulation of MAT I is observed. These changes derive in a reduced availability of cytoplasmic S-adenosylmethionine, together with an effort to meet its needs in the nucleus of damaged cells, rendering enhanced levels of certain epigenetic modifications. In this context, the putative role of protein-protein interactions in the control of S-adenosylmethionine synthesis has been scarcely studied. Using yeast two hybrid and a rat liver library we identified PDRG1 as an interaction target for MATα1 (catalytic subunit of MAT I and MAT III), further confirmation being obtained by immunoprecipitation and pull-down assays. Nuclear MATα interacts physically and functionally with the PDRG1 oncogene, resulting in reduced DNA methylation levels. Increased Pdrg1 expression is detected in acute liver injury and hepatoma cells, together with decreased Mat1a expression and nuclear accumulation of MATα1. Silencing of Pdrg1 expression in hepatoma cells alters their steady-state expression profile on microarrays, downregulating genes associated with tumor progression according to GO pathway analysis. Altogether, the results unveil the role of PDRG1 in the control of the nuclear methylation status through methionine adenosyltransferase binding and its putative collaboration in the progression of hepatic diseases. PMID:27548429

  20. Cloning, expression and nuclear localization of human NPM3, a member of the nucleophosmin/nucleoplasmin family of nuclear chaperones

    PubMed Central

    Shackleford, Gregory M; Ganguly, Amit; MacArthur, Craig A

    2001-01-01

    Background Studies suggest that the related proteins nucleoplasmin and nucleophosmin (also called B23, NO38 or numatrin) are nuclear chaperones that mediate the assembly of nucleosomes and ribosomes, respectively, and that these activities are accomplished through the binding of basic proteins via their acidic domains. Recently discovered and less well characterized members of this family of acidic phosphoproteins include mouse nucleophosmin/nucleoplasmin 3 (Npm3) and Xenopus NO29. Here we report the cloning and initial characterization of the human ortholog of Npm3. Results Human genomic and cDNA clones of NPM3 were isolated and sequenced. NPM3 lies 5.5 kb upstream of FGF8 and thus maps to chromosome 10q24-26. In addition to amino acid similarities, NPM3 shares many physical characteristics with the nucleophosmin/nucleoplasmin family, including an acidic domain, multiple potential phosphorylation sites and a putative nuclear localization signal. Comparative analyses of 14 members of this family from various metazoans suggest that Xenopus NO29 is a candidate ortholog of human and mouse NPM3, and they further group both proteins closer with the nucleoplasmins than with the nucleophosmins. Northern blot analysis revealed that NPM3 was strongly expressed in all 16 human tissues examined, with especially robust expression in pancreas and testis; lung displayed the lowest level of expression. An analysis of subcellular fractions of NIH3T3 cells expressing epitope-tagged NPM3 revealed that NPM3 protein was localized solely in the nucleus. Conclusions Human NPM3 is an abundant and widely expressed protein with primarily nuclear localization. These biological activities, together with its physical relationship to the chaparones nucleoplasmin and nucleophosmin, are consistent with the proposed function of NPM3 as a molecular chaperone functioning in the nucleus. PMID:11722795

  1. Identification of the WBSCR9 gene, encoding a novel transcriptional regulator, in the Williams-Beuren syndrome deletion at 7q11.23.

    PubMed

    Peoples, R J; Cisco, M J; Kaplan, P; Francke, U

    1998-01-01

    We have identified a novel gene (WBSCR9) within the common Williams-Beuren syndrome (WBS) deletion by interspecies sequence conservation. The WBSCR9 gene encodes a roughly 7-kb transcript with an open reading frame of 1483 amino acids and a predicted protein product size of 170.8 kDa. WBSCR9 is comprised of at least 20 exons extending over 60 kb. The transcript is expressed ubiquitously throughout development and is subject to alternative splicing. Functional motifs identified by sequence homology searches include a bromodomain; a PHD, or C4HC3, finger; several putative nuclear localization signals; four nuclear receptor binding motifs; a polyglutamate stretch and two PEST sequences. Bromodomains, PHD motifs and nuclear receptor binding motifs are cardinal features of proteins that are involved in chromatin remodeling and modulation of transcription. Haploinsufficiency for WBSCR9 gene products may contribute to the complex phenotype of WBS by interacting with tissue-specific regulatory factors during development.

  2. Activity and subcellular compartmentalization of peroxisome proliferator-activated receptor alpha are altered by the centrosome-associated protein CAP350.

    PubMed

    Patel, Hansa; Truant, Ray; Rachubinski, Richard A; Capone, John P

    2005-01-01

    Peroxisome proliferator-activated nuclear hormone receptors (PPAR) are ligand-activated transcription factors that play pivotal roles in governing metabolic homeostasis and cell growth. PPARs are primarily in the nucleus but, under certain circumstances, can be found in the cytoplasm. We show here that PPAR(alpha) interacts with the centrosome-associated protein CAP350. CAP350 also interacts with PPAR(delta), PPAR(gamma) and liver-X-receptor alpha, but not with the 9-cis retinoic acid receptor, RXR(alpha). Immunofluorescence analysis indicated that PPAR(alpha) is diffusely distributed in the nucleus and excluded from the cytoplasm. However, in the presence of coexpressed CAP350, PPAR(alpha) colocalizes with CAP350 to discrete nuclear foci and to the centrosome, perinuclear region and intermediate filaments. In contrast, the subcellular distribution of RXR(alpha) or of thyroid hormone receptor alpha was not altered by coexpression of CAP350. An amino-terminal fragment of CAP350 was localized exclusively to nuclear foci and was sufficient to recruit PPAR(alpha) to these sites. Mutation of the single putative nuclear hormone receptor interacting signature motif LXXLL present in this fragment had no effect on its subnuclear localization but abrogated recruitment of PPAR(alpha) to nuclear foci. Surprisingly, mutation of the LXXLL motif in this CAP350 subfragment did not prevent its binding to PPAR(alpha) in vitro, suggesting that this motif serves some function other than PPAR(alpha) binding in recruiting PPAR(alpha) to nuclear spots. CAP350 inhibited PPAR(alpha)-mediated transactivation in an LXXLL-dependent manner, suggesting that CAP350 represses PPAR(alpha) function. Our findings implicate CAP350 in a dynamic process that recruits PPAR(alpha) to discrete nuclear and cytoplasmic compartments and suggest that altered intracellular compartmentalization represents a regulatory process that modulates PPAR function.

  3. TCOF1 gene encodes a putative nucleolar phosphoprotein that exhibits mutations in Treacher Collins Syndrome throughout its coding region.

    PubMed

    Wise, C A; Chiang, L C; Paznekas, W A; Sharma, M; Musy, M M; Ashley, J A; Lovett, M; Jabs, E W

    1997-04-01

    Treacher Collins Syndrome (TCS) is the most common of the human mandibulofacial dysostosis disorders. Recently, a partial TCOF1 cDNA was identified and shown to contain mutations in TCS families. Here we present the entire exon/intron genomic structure and the complete coding sequence of TCOF1. TCOF1 encodes a low complexity protein of 1,411 amino acids, whose predicted protein structure reveals repeated motifs that mirror the organization of its exons. These motifs are shared with nucleolar trafficking proteins in other species and are predicted to be highly phosphorylated by casein kinase. Consistent with this, the full-length TCOF1 protein sequence also contains putative nuclear and nucleolar localization signals. Throughout the open reading frame, we detected an additional eight mutations in TCS families and several polymorphisms. We postulate that TCS results from defects in a nucleolar trafficking protein that is critically required during human craniofacial development.

  4. TCOF1 gene encodes a putative nucleolar phosphoprotein that exhibits mutations in Treacher Collins Syndrome throughout its coding region

    PubMed Central

    Wise, Carol A.; Chiang, Lydia C.; Paznekas, William A.; Sharma, Mridula; Musy, Maurice M.; Ashley, Jennifer A.; Lovett, Michael; Jabs, Ethylin W.

    1997-01-01

    Treacher Collins Syndrome (TCS) is the most common of the human mandibulofacial dysostosis disorders. Recently, a partial TCOF1 cDNA was identified and shown to contain mutations in TCS families. Here we present the entire exon/intron genomic structure and the complete coding sequence of TCOF1. TCOF1 encodes a low complexity protein of 1,411 amino acids, whose predicted protein structure reveals repeated motifs that mirror the organization of its exons. These motifs are shared with nucleolar trafficking proteins in other species and are predicted to be highly phosphorylated by casein kinase. Consistent with this, the full-length TCOF1 protein sequence also contains putative nuclear and nucleolar localization signals. Throughout the open reading frame, we detected an additional eight mutations in TCS families and several polymorphisms. We postulate that TCS results from defects in a nucleolar trafficking protein that is critically required during human craniofacial development. PMID:9096354

  5. Varicella Zoster Virus Induces Nuclear Translocation of the Neurokinin-1 Receptor, Promoting Lamellipodia Formation and Viral Spread in Spinal Astrocytes.

    PubMed

    Bubak, Andrew N; Como, Christina N; Blackmon, Anna M; Frietze, Seth; Mescher, Teresa; Jones, Dallas; Cohrs, Randall J; Paucek, Petr; Baird, Nicholas L; Nagel, Maria A

    2018-05-19

    Varicella zoster virus (VZV) can present as a myelopathy with spinal astrocyte infection. Recent studies support a role for the neurokinin-1 receptor (NK-1R) in virus infections, as well as for cytoskeletal alterations that may promote viral spread. Thus, we examined the role of NK-1R in VZV-infected primary human spinal astrocytes (HA-sps) to shed light on the pathogenesis of VZV myelopathy. Mock- and VZV-infected HA-sps were examined for substance P (subP) production, NK-1R localization, morphological changes and viral spread in the presence or absence of NK-1R antagonists, aprepitant and rolapitant. VZV infection of HA-sps induced nuclear localization of full-length and truncated NK-1R in the absence of the endogenous ligand, subP, and was associated with extensive lamellipodia formation and viral spread that was inhibited by NK-1R antagonists. We have identified a novel, subP-independent, proviral function of nuclear NK-1R associated with lamellipodia formation and viral spread that is distinct from subP-induced NK-1R cell membrane/cytoplasmic localization without lamellipodia formation. These results suggest that binding of a putative viral ligand to NK-1R produces a dramatically different NK-1R downstream effect than binding of subP. Finally, NK-1R antagonists aprepitant and rolapitant provide promising alternatives to nucleoside analogs in treating VZV infections, including myelopathy.

  6. Nuclear transport of the Neurospora crassa NIT-2 transcription factor is mediated by importin-α.

    PubMed

    Bernardes, Natália E; Takeda, Agnes A S; Dreyer, Thiago R; Cupertino, Fernanda B; Virgilio, Stela; Pante, Nelly; Bertolini, Maria Célia; Fontes, Marcos R M

    2017-12-06

    The Neurospora crassa NIT-2 transcription factor belongs to the GATA transcription factor family and plays a fundamental role in the regulation of nitrogen metabolism. Because NIT-2 acts by accessing DNA inside the nucleus, understanding the nuclear import process of NIT-2 is necessary to characterize its function. Thus, in the present study, NIT-2 nuclear transport was investigated using a combination of biochemical, cellular, and biophysical methods. A complemented strain that produced an sfGFP-NIT-2 fusion protein was constructed, and nuclear localization assessments were made under conditions that favored protein translocation to the nucleus. Nuclear translocation was also investigated using HeLa cells, which showed that the putative NIT-2 nuclear localization sequence (NLS; 915 TISSKRQRRHSKS 927 ) was recognized by importin-α and that subsequent transport occurred via the classical import pathway. The interaction between the N. crassa importin-α (NcImpα) and the NIT-2 NLS was quantified with calorimetric assays, leading to the observation that the peptide bound to two sites with different affinities, which is typical of a monopartite NLS sequence. The crystal structure of the NcImpα/NIT-2 NLS complex was solved and revealed that the NIT-2 peptide binds to NcImpα with the major NLS-binding site playing a primary role. This result contrasts other recent studies that suggested a major role for the minor NLS-binding site in importin-α from the α2 family, indicating that both sites can be used for different cargo proteins according to specific metabolic requirements. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  7. Mapping a nucleolar targeting sequence of an RNA binding nucleolar protein, Nop25

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujiwara, Takashi; Suzuki, Shunji; Kanno, Motoko

    2006-06-10

    Nop25 is a putative RNA binding nucleolar protein associated with rRNA transcription. The present study was undertaken to determine the mechanism of Nop25 localization in the nucleolus. Deletion experiments of Nop25 amino acid sequence showed Nop25 to contain a nuclear targeting sequence in the N-terminal and a nucleolar targeting sequence in the C-terminal. By expressing derivative peptides from the C-terminal as GFP-fusion proteins in the cells, a lysine and arginine residue-enriched peptide (KRKHPRRAQDSTKKPPSATRTSKTQRRRR) allowed a GFP-fusion protein to be transported and fully retained in the nucleolus. When the peptide was fused with cMyc epitope and expressed in the cells, amore » cMyc epitope was then detected in the nucleolus. Nop25 did not localize in the nucleolus by deletion of the peptide from Nop25. Furthermore, deletion of a subdomain (KRKHPRRAQ) in the peptide or amino acid substitution of lysine and arginine residues in the subdomain resulted in the loss of Nop25 nucleolar localization. These results suggest that the lysine and arginine residue-enriched peptide is the most prominent nucleolar targeting sequence of Nop25 and that the long stretch of basic residues might play an important role in the nucleolar localization of Nop25. Although Nop25 contained putative SUMOylation, phosphorylation and glycosylation sites, the amino acid substitution in these sites had no effect on the nucleolar localization, thus suggesting that these post-translational modifications did not contribute to the localization of Nop25 in the nucleolus. The treatment of the cells, which expressed a GFP-fusion protein with a nucleolar targeting sequence of Nop25, with RNase A resulted in a complete dislocation of the protein from the nucleolus. These data suggested that the nucleolar targeting sequence might therefore play an important role in the binding of Nop25 to RNA molecules and that the RNA binding of Nop25 might be essential for the nucleolar localization of Nop25.« less

  8. Localization of Allotetraploid Gossypium SNPs Using Physical Mapping Resources

    USDA-ARS?s Scientific Manuscript database

    Recent efforts in Gossypium SNP development have produced thousands of putative SNPs for G. barbadense, G. mustelinum, and G. tomentosum relative to G. hirsutum. Here we report on current efforts to localize putative SNPs using physical mapping resources. Recent advances in physical mapping resour...

  9. Yap4 PKA- and GSK3-dependent phosphorylation affects its stability but not its nuclear localization.

    PubMed

    Pereira, Jorge; Pimentel, Catarina; Amaral, Catarina; Menezes, Regina A; Rodrigues-Pousada, Claudina

    2009-12-01

    Yap4 is a nuclear-resident transcription factor induced in Saccharomyces cerevisiae when exposed to several stress conditions, which include mild hyperosmotic and oxidative stress, temperature shift or metal exposure. This protein is also phosphorylated. Here we report that this modification is driven by PKA and GSK3. In order to ascertain whether Yap4 is directly or indirectly phosphorylated by PKA, we searched for stress and PKA-related kinases that could phosphorylate Yap4. We show that phosphorylation is independent of the kinases Rim15, Yak1, Sch9, Slt2, Ste20 and Ptk2. In addition, we showed that Yap4 phosphorylation is also abrogated in the triple GSK3 mutant mck1 rim11 yol128c. Furthermore, our data reveal that Yap4 nuclear localization is independent of its phosphorylation state. This protein has several putative phosphorylation sites, but only the mutation of residues T192 and S196 impairs its phosphorylation under different stress conditions. The ability of the non-phosphorylated forms of Yap4 to partially rescue the hog1 severe sensitivity phenotype is not affected, suggesting that Yap4 activity is maintained in the absence of phosphorylation. However, this modification seems to be required for stability of the protein, as the non-phosphorylated form has a shorter half-life than the phosphorylated one.

  10. Molecular basis of the specific subcellular localization of the C2-like domain of 5-lipoxygenase.

    PubMed

    Kulkarni, Shilpa; Das, Sudipto; Funk, Colin D; Murray, Diana; Cho, Wonhwa

    2002-04-12

    The activation of 5-lipoxygenase (5-LO) involves its calcium-dependent translocation to the nuclear envelope, where it catalyzes the two-step transformation of arachidonic acid into leukotriene A(4), leading to the synthesis of various leukotrienes. To understand the mechanism by which 5-LO is specifically targeted to the nuclear envelope, we studied the membrane binding properties of the amino-terminal domain of 5-LO, which has been proposed to have a C2 domain-like structure. The model building, electrostatic potential calculation, and in vitro membrane binding studies of the isolated C2-like domain of 5-LO and selected mutants show that this Ca(2+)-dependent domain selectively binds zwitterionic phosphatidylcholine, which is conferred by tryptophan residues (Trp(13), Trp(75), and Trp(102)) located in the putative Ca(2+)-binding loops. The spatiotemporal dynamics of the enhanced green fluorescence protein-tagged C2-like domain of 5-LO and mutants in living cells also show that the phosphatidylcholine selectivity of the C2-like domain accounts for the specific targeting of 5-LO to the nuclear envelope. Together, these results show that the C2-like domain of 5-LO is a genuine Ca(2+)-dependent membrane-targeting domain and that the subcellular localization of the domain is governed in large part by its membrane binding properties.

  11. C. elegans Nuclear Envelope Proteins Emerin, MAN1, Lamin, and Nucleoporins Reveal Unique Timing of Nuclear Envelope Breakdown during Mitosis

    PubMed Central

    Lee, Kenneth K.; Gruenbaum, Yosef; Spann, Perah; Liu, Jun; Wilson, Katherine L.

    2000-01-01

    Emerin, MAN1, and LAP2 are integral membrane proteins of the vertebrate nuclear envelope. They share a 43-residue N-terminal motif termed the LEM domain. We found three putative LEM domain genes in Caenorhabditis elegans, designated emr-1, lem-2, and lem-3. We analyzed emr-l, which encodes Ce-emerin, and lem-2, which encodes Ce-MAN1. Ce-emerin and Ce-MAN1 migrate on SDS-PAGE as 17- and 52-kDa proteins, respectively. Based on their biochemical extraction properties and immunolocalization, both Ce-emerin and Ce-MAN1 are integral membrane proteins localized at the nuclear envelope. We used antibodies against Ce-MAN1, Ce-emerin, nucleoporins, and Ce-lamin to determine the timing of nuclear envelope breakdown during mitosis in C. elegans. The C. elegans nuclear envelope disassembles very late compared with vertebrates and Drosophila. The nuclear membranes remained intact everywhere except near spindle poles during metaphase and early anaphase, fully disassembling only during mid-late anaphase. Disassembly of pore complexes, and to a lesser extent the lamina, depended on embryo age: pore complexes were absent during metaphase in >30-cell embryos but existed until anaphase in 2- to 24-cell embryos. Intranuclear mRNA splicing factors disassembled after prophase. The timing of nuclear disassembly in C. elegans is novel and may reflect its evolutionary position between unicellular and more complex eukaryotes. PMID:10982402

  12. Evidence for triclosan-induced activation of human and rodent xenobiotic nuclear receptors

    EPA Science Inventory

    The bacteriostat triclosan (2,4,40-trichloro-20-hydroxydiphenylether) (TCS) decreases rat serum thyroxine via putative nuclear receptor (NR) interaction(s) and subsequent transcriptional up-regulation of hepatic catabolism and clearance. However, due to the evolutionary divergenc...

  13. Rice Ovate Family Protein 2 (OFP2) alters hormonal homeostasis and vasculature development.

    PubMed

    Schmitz, Aaron J; Begcy, Kevin; Sarath, Gautam; Walia, Harkamal

    2015-12-01

    OFP (Ovate Family Protein) is a transcription factor family found only in plants. In dicots, OFPs control fruit shape and secondary cell wall biosynthesis. OFPs are also thought to function through interactions with KNOX and BELL transcription factors. Here, we have functionally characterized OsOFP2, a member of the OFP subgroup associated with regulating fruit shape. OsOFP2 was found to localize to the nucleus and to the cytosol. A putative nuclear export signal was identified within the OVATE domain and was required for the localization of OsOFP2 to distinct cytosolic spots. Rice plants overexpressing OsOFP2 were reduced in height and exhibited altered leaf morphology, seed shape, and positioning of vascular bundles in stems. Transcriptome analysis indicated disruptions of genes associated with vasculature development, lignin biosynthesis, and hormone homeostasis. Reduced expression of the gibberellin biosynthesis gene GA 20-oxidase 7 coincided with lower gibberellin content in OsOFP2 overexpression lines. Also, we found that OsOFP2 was expressed in plant vasculature and determined that putative vascular development KNOX and BELL proteins interact with OsOFP2. KNOX and BELL genes are known to suppress gibberellin biosynthesis through GA20ox gene regulation and can restrict lignin biosynthesis. We propose that OsOFP2 could modulate KNOX-BELL function to control diverse aspects of development including vasculature development. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Mitochondrial phylogeny of grey mullets (Acanthopterygii: Mugilidae) suggests high proportion of cryptic species.

    PubMed

    Durand, Jean-Dominique; Borsa, Philippe

    2015-04-01

    The low level of morphometric variability and the poor phylogenetic information borne by the morpho-anatomical characters used thus far in the systematics of grey mullets (Mugilidae) emphasize the utility of molecular systematics in this family. A recent mitochondrial phylogeny of grey mullets has uncovered multiple deep lineages within several species, flagging putative cryptic species. Here, we considered that several of the deeply divergent lineages represent separate species based on either the tree topology, independent data from nuclear markers, geographic distributions, or a combination of the foregoing. By analogy with these well-documented cases, we considered other deep lineages in seven genera we focused on to represent putative cryptic species. Up to two cryptic species were thus potentially detected in the genus Chelon, three in Crenimugil (including two within the single Crenimugil seheli), two in Dajaus, one in Ellochelon, 16 in Mugil (including 13 within the single M. cephalus), two in Osteomugil, and 10 in Planiliza. Wherever possible, we kept the current species epithets to designate those lineages that unambiguously correspond to the type material, based on type locality, and we assigned arbitrary letters (sp. A, B, etc.) to the other lineages. We present a molecular diagnosis for 24 of the species analysed in this work, as well as for 25 putative cryptic species. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  15. Cdc6 localizes to S- and G2-phase centrosomes in a cell cycle-dependent manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Gwang Su; Kang, Jeeheon; Bang, Sung Woong

    2015-01-16

    Highlights: • Cdc6 protein is a component of the pre-replicative complex required for chromosomal replication initiation. • Cdc6 localized to centrosomes of S and G2 phases in a cell cycle-dependent manner. • The centrosomal localization was governed by centrosomal localization signal sequences of Cdc6. • Deletions or substitution mutations on the centrosomal localization signal interfered with centrosomal localization of the Cdc6 proteins. - Abstract: The Cdc6 protein has been primarily investigated as a component of the pre-replicative complex for the initiation of chromosome replication, which contributes to maintenance of chromosomal integrity. Here, we show that Cdc6 localized to the centrosomesmore » during S and G2 phases of the cell cycle. The centrosomal localization was mediated by Cdc6 amino acid residues 311–366, which are conserved within other Cdc6 homologues and contains a putative nuclear export signal. Deletions or substitutions of the amino acid residues did not allow the proteins to localize to centrosomes. In contrast, DsRed tag fused to the amino acid residues localized to centrosomes. These results indicated that a centrosome localization signal is contained within amino acid residues 311–366. The cell cycle-dependent centrosomal localization of Cdc6 in S and G2 phases suggest a novel function of Cdc6 in centrosomes.« less

  16. Characterization of an AtCCX5 gene from Arabidopsis thaliana that involves in high-affinity K{sup +} uptake and Na{sup +} transport in yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xinxin; Zhang, Min; Takano, Tetsuo

    Highlights: {yields} The AtCCX5 protein coding a putative cation calcium exchanger was characterized. {yields} AtCCX5 expressed in yeast was localized in the plasma membrane and nuclear periphery. {yields} AtCCX5 protein did not show the same transport properties as the CAXs. {yields} AtCCX5 protein involves in mediating high-affinity K{sup +} uptake in yeast. {yields} AtCCX5 protein also involves in Na{sup +} transport in yeast. -- Abstract: The gene for a putative cation calcium exchanger (CCX) from Arabidopsis thaliana, AtCCX5, was cloned and its function was analyzed in yeast. Green fluorescent protein-tagged AtCCX5 expressed in yeast was localized in the plasma membranemore » and nuclear periphery. The yeast transformants expressing AtCCX5 were created and their growth in the presence of various cations (K{sup +}, Na{sup +}, Ca{sup 2+}, Mg{sup 2+}, Fe{sup 2+}, Cu{sup 2+}, Co{sup 2+}, Cd{sup 2+}, Mn{sup 2+}, Ba{sup 2+}, Ni{sup 2+}, Zn{sup 2+}, and Li{sup +}) were analyzed. AtCCX5 expression was found to affect the response to K{sup +} and Na{sup +} in yeast. The AtCCX5 transformant also showed a little better growth to Zn{sup 2+}. The yeast mutant 9.3 expressing AtCCX5 restored growth of the mutant on medium with low K{sup +} (0.5 mM), and also suppressed its Na{sup +} sensitivity. Ion uptake experiments showed that AtCCX5 mediated relatively high-affinity K{sup +} uptake and was also involved in Na{sup +} transport in yeast. Taken together, these findings suggest that the AtCCX5 is a novel transport protein involves in mediating high-affinity K{sup +} uptake and Na{sup +} transport in yeast.« less

  17. A protein that interacts with members of the nuclear hormone receptor family: identification and cDNA cloning.

    PubMed Central

    Zeiner, M; Gehring, U

    1995-01-01

    In search of proteins which interact with activated steroid hormone receptors, we screened a human liver lambda gt11 expression library with the glucocorticoid receptor. We identified and cloned a cDNA sequence of 1322 bp that encodes a protein of 274 aa. This protein consists predominantly of hydrophilic amino acids and contains a putative bipartite nuclear localization signal. The in vitro translated receptor-associating protein runs in SDS/polyacrylamide gels with an apparent molecular mass of 46 kDa. By use of the bacterially expressed fusion protein with glutathione S-transferase we have found that interaction is not limited to the glucocorticoid receptor but included other nuclear receptors--most notably, the estrogen and thyroid receptors. Binding also occurs with the glucocorticoid receptor complexed with the antiglucocorticoid RU 38486, with the estrogen receptor complexed with the antiestrogen 4-hydroxytamoxifen or ICI 164,384, and even with receptors not complexed with ligand. Association with steroid hormone receptors depends on prior receptor activation--i.e., release from heat shock proteins. The sequence identified here appears to be a general partner protein for nuclear hormone receptors, with the gene being expressed in a variety of mammalian tissues. Images Fig. 2 Fig. 3 Fig. 4 PMID:8524784

  18. Nuclear localization and transactivation by Vitis CBF transcription factors are regulated by combinations of conserved amino acid domains.

    PubMed

    Carlow, Chevonne E; Faultless, J Trent; Lee, Christine; Siddiqua, Mahbuba; Edge, Alison; Nassuth, Annette

    2017-09-01

    The highly conserved CBF pathway is crucial in the regulation of plant responses to low temperatures. Extensive analysis of Arabidopsis CBF proteins revealed that their functions rely on several conserved amino acid domains although the exact function of each domain is disputed. The question was what functions similar domains have in CBFs from other, overwintering woody plants such as Vitis, which likely have a more involved regulation than the model plant Arabidopsis. A total of seven CBF genes were cloned and sequenced from V. riparia and the less frost tolerant V. vinifera. The deduced species-specific amino acid sequences differ in only a few amino acids, mostly in non-conserved regions. Amino acid sequence comparison and phylogenetic analysis showed two distinct groups of Vitis CBFs. One group contains CBF1, CBF2, CBF3 and CBF8 and the other group contains CBF4, CBF5 and CBF6. Transient transactivation assays showed that all Vitis CBFs except CBF5 activate via a CRT or DRE promoter element, whereby Vitis CBF3 and 4 prefer a CRT element. The hydrophobic domains in the C-terminal end of VrCBF6 were shown to be important for how well it activates. The putative nuclear localization domain of Vitis CBF1 was shown to be sufficient for nuclear localization, in contrast to previous reports for AtCBF1, and also important for transactivation. The latter highlights the value of careful analysis of domain functions instead of reliance on computer predictions and published data for other related proteins. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Frequent Nuclear/Cytoplasmic Localization of β-Catenin without Exon 3 Mutations in Malignant Melanoma

    PubMed Central

    Rimm, David L.; Caca, Karel; Hu, Gang; Harrison, Frank B.; Fearon, Eric R.

    1999-01-01

    β-Catenin has a critical role in E-cadherin-mediated cell-cell adhesion, and it also functions as a downstream signaling molecule in the wnt pathway. Mutations in the putative glycogen synthase kinase 3β phosphorylation sites near the β-catenin amino terminus have been found in some cancers and cancer cell lines. The mutations render β-catenin resistant to regulation by a complex containing the glycogen synthase kinase 3β, adenomatous polyposis coli, and axin proteins. As a result, β-catenin accumulates in the cytosol and nucleus and activates T-cell factor/lymphoid enhancing factor transcription factors. Previously, 6 of 27 melanoma cell lines were found to have β-catenin exon 3 mutations affecting the N-terminal phosphorylation sites (Rubinfeld B, Robbins P, Elgamil M, Albert I, Porfiri E, Polakis P: Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science 1997, 275:1790–1792). To assess the role of β-catenin defects in primary melanomas, we undertook immunohistochemical and DNA sequencing studies in 65 melanoma specimens. Nuclear and/or cytoplasmic localization of β-catenin, a potential indicator of wnt pathway activation, was seen focally within roughly one third of the tumors, though a clonal somatic mutation in β-catenin was found in only one case (codon 45 Ser→Pro). Our findings demonstrate that β-catenin mutations are rare in primary melanoma, in contrast to the situation in melanoma cell lines. Nonetheless, activation of β-catenin, as indicated by its nuclear and/or cytoplasmic localization, appears to be frequent in melanoma, and in some cases, it may reflect focal and transient activation of the wnt pathway within the tumor. PMID:10027390

  20. Host and viral determinants for MxB restriction of HIV-1 infection.

    PubMed

    Matreyek, Kenneth A; Wang, Weifeng; Serrao, Erik; Singh, Parmit Kumar; Levin, Henry L; Engelman, Alan

    2014-10-25

    Interferon-induced cellular proteins play important roles in the host response against viral infection. The Mx family of dynamin-like GTPases, which include MxA and MxB, target a wide variety of viruses. Despite considerable evidence demonstrating the breadth of antiviral activity of MxA, human MxB was only recently discovered to specifically inhibit lentiviruses. Here we assess both host and viral determinants that underlie MxB restriction of HIV-1 infection. Heterologous expression of MxB in human osteosarcoma cells potently inhibited HIV-1 infection (~12-fold), yet had little to no effect on divergent retroviruses. The anti-HIV effect manifested as a partial block in the formation of 2-long terminal repeat circle DNA and hence nuclear import, and we accordingly found evidence for an additional post-nuclear entry block. A large number of previously characterized capsid mutations, as well as mutations that abrogated integrase activity, counteracted MxB restriction. MxB expression suppressed integration into gene-enriched regions of chromosomes, similar to affects observed previously when cells were depleted for nuclear transport factors such as transportin 3. MxB activity did not require predicted GTPase active site residues or a series of unstructured loops within the stalk domain that confer functional oligomerization to related dynamin family proteins. In contrast, we observed an N-terminal stretch of residues in MxB to harbor key determinants. Protein localization conferred by a nuclear localization signal (NLS) within the N-terminal 25 residues, which was critical, was fully rescuable by a heterologous NLS. Consistent with this observation, a heterologous nuclear export sequence (NES) abolished full-length MxB activity. We additionally mapped sub-regions within amino acids 26-90 that contribute to MxB activity, finding sequences present within residues 27-50 particularly important. MxB inhibits HIV-1 by interfering with minimally two steps of infection, nuclear entry and post-nuclear trafficking and/or integration, without destabilizing the inherent catalytic activity of viral preintegration complexes. Putative MxB GTPase active site residues and stalk domain Loop 4 -- both previously shown to be necessary for MxA function -- were dispensable for MxB antiviral activity. Instead, we highlight subcellular localization and a yet-determined function(s) present in the unique MxB N-terminal region to be required for HIV-1 restriction.

  1. Nuclear organization and morphology of cholinergic, putative catecholaminergic and serotonergic neurons in the brain of the rock hyrax, Procavia capensis.

    PubMed

    Gravett, Nadine; Bhagwandin, Adhil; Fuxe, Kjell; Manger, Paul R

    2009-09-01

    The nuclear subdivisions of the cholinergic, putative catecholaminergic and serotonergic systems within the brain of the rock hyrax (Procavia capensis) were identified following immunohistochemistry for acetylcholinesterase, tyrosine hydroxylase and serotonin. The aim of the present study was to investigate possible differences in the complement of nuclear subdivisions of these systems by comparing those of the rock hyrax to published studies of other mammals. The rock hyrax belongs to the order Hyracoidea and forms part of the Afroplacentalia mammalian cohort. For the most part, the nuclear organization of these three systems closely resembled that described for many other mammalian species. The nuclear organization of the serotonergic system was identical to that seen in all eutherian mammals. The nuclear organization of the putative catecholaminergic system was very similar to that seen in rodents except for the lack of a C3 nucleus and the compact division of the locus coeruleus (A6c). In addition, the diffuse locus coeruleus (A6d) appeared to contain very few tyrosine hydroxylase immunoreactive (TH+) neurons. The cholinergic system showed many features in common with that seen in both rodents and primates; however, there were three differences of note: (1) cholinergic neurons were observed in the anterior nuclei of the dorsal thalamus; (2) cholinergic parvocellular nerve cells, probably representing interneurons, forming subdivisions of the laterodorsal and pedunculopontine tegmental nuclei were observed at the midbrain/pons interface; and (3) a large number of cholinergic nerve cells in the periventricular grey of the medulla oblongata were observed. Thus, while there are many similarities to other mammalian species, the nuclear organization of these systems in the rock hyrax shows specific differences to what has been observed previously in other mammals. These differences are discussed in both a functional and phylogenetic perspective.

  2. Modular structural elements in the replication origin region of Tetrahymena rDNA.

    PubMed Central

    Du, C; Sanzgiri, R P; Shaiu, W L; Choi, J K; Hou, Z; Benbow, R M; Dobbs, D L

    1995-01-01

    Computer analyses of the DNA replication origin region in the amplified rRNA genes of Tetrahymena thermophila identified a potential initiation zone in the 5'NTS [Dobbs, Shaiu and Benbow (1994), Nucleic Acids Res. 22, 2479-2489]. This region consists of a putative DNA unwinding element (DUE) aligned with predicted bent DNA segments, nuclear matrix or scaffold associated region (MAR/SAR) consensus sequences, and other common modular sequence elements previously shown to be clustered in eukaryotic chromosomal origin regions. In this study, two mung bean nuclease-hypersensitive sites in super-coiled plasmid DNA were localized within the major DUE-like element predicted by thermodynamic analyses. Three restriction fragments of the 5'NTS region predicted to contain bent DNA segments exhibited anomalous migration characteristic of bent DNA during electrophoresis on polyacrylamide gels. Restriction fragments containing the 5'NTS region bound Tetrahymena nuclear matrices in an in vitro binding assay, consistent with an association of the replication origin region with the nuclear matrix in vivo. The direct demonstration in a protozoan origin region of elements previously identified in Drosophila, chick and mammalian origin regions suggests that clusters of modular structural elements may be a conserved feature of eukaryotic chromosomal origins of replication. Images PMID:7784181

  3. Conservation of Matrix Attachment Region-Binding Filament-Like Protein 1 among Higher Plants1

    PubMed Central

    Harder, Patricia A.; Silverstein, Rebecca A.; Meier, Iris

    2000-01-01

    The interaction of chromatin with the nuclear matrix via matrix attachment regions (MARs) on the DNA is considered to be of fundamental importance for higher-order chromatin organization and the regulation of gene expression. We have previously isolated a novel nuclear matrix-localized protein (MFP1) from tomato (Lycopersicon esculentum) that preferentially binds to MAR DNA. Tomato MFP1 has a predicted filament-protein-like structure and is associated with the nuclear envelope via an N-terminal targeting domain. Based on the antigenic relationship, we report here that MFP1 is conserved in a large number of dicot and monocot species. Several cDNAs were cloned from tobacco (Nicotiana tabacum) and shown to correspond to two tobacco MFP1 genes. Comparison of the primary and predicted secondary structures of MFP1 from tomato, tobacco, and Arabidopsis indicates a high degree of conservation of the N-terminal targeting domain, the overall putative coiled-coil structure of the protein, and the C-terminal DNA-binding domain. In addition, we show that tobacco MFP1 is regulated in an organ-specific and developmental fashion, and that this regulation occurs at the level of transcription or RNA stability. PMID:10631266

  4. A Fungal Effector With Host Nuclear Localization and DNA-Binding Properties Is Required for Maize Anthracnose Development.

    PubMed

    Vargas, Walter A; Sanz-Martín, José M; Rech, Gabriel E; Armijos-Jaramillo, Vinicio D; Rivera, Lina P; Echeverria, María Mercedes; Díaz-Mínguez, José M; Thon, Michael R; Sukno, Serenella A

    2016-02-01

    Plant pathogens have the capacity to manipulate the host immune system through the secretion of effectors. We identified 27 putative effector proteins encoded in the genome of the maize anthracnose pathogen Colletotrichum graminicola that are likely to target the host's nucleus, as they simultaneously contain sequence signatures for secretion and nuclear localization. We functionally characterized one protein, identified as CgEP1. This protein is synthesized during the early stages of disease development and is necessary for anthracnose development in maize leaves, stems, and roots. Genetic, molecular, and biochemical studies confirmed that this effector targets the host's nucleus and defines a novel class of double-stranded DNA-binding protein. We show that CgEP1 arose from a gene duplication in an ancestor of a lineage of monocot-infecting Colletotrichum spp. and has undergone an intense evolution process, with evidence for episodes of positive selection. We detected CgEP1 homologs in several species of a grass-infecting lineage of Colletotrichum spp., suggesting that its function may be conserved across a large number of anthracnose pathogens. Our results demonstrate that effectors targeted to the host nucleus may be key elements for disease development and aid in the understanding of the genetic basis of anthracnose development in maize plants.

  5. Overexpression of OsRAN2 in rice and Arabidopsis renders transgenic plants hypersensitive to salinity and osmotic stress

    PubMed Central

    Zang, Aiping; Xu, Xiaojie; Neill, Steven; Cai, Weiming

    2010-01-01

    Nucleo-cytoplasmic partitioning of regulatory proteins is increasingly being recognized as a major control mechanism for the regulation of signalling in plants. Ras-related nuclear protein (Ran) GTPase is required for regulating transport of proteins and RNA across the nuclear envelope and also has roles in mitotic spindle assembly and nuclear envelope (NE) assembly. However, thus far little is known of any Ran functions in the signalling pathways in plants in response to changing environmental stimuli. The OsRAN2 gene, which has high homology (77% at the amino acid level) with its human counterpart, was isolated here. Subcellular localization results showed that OsRan2 is mainly localized in the nucleus, with some in the cytoplasm. Transcription of OsRAN2 was reduced by salt, osmotic, and exogenous abscisic acid (ABA) treatments, as determined by real-time PCR. Overexpression of OsRAN2 in rice resulted in enhanced sensitivity to salinity, osmotic stress, and ABA. Seedlings of transgenic Arabidopsis thaliana plants overexpressing OsRAN2 were overly sensitive to salinity stress and exogenous ABA treatment. Furthermore, three ABA- or stress-responsive genes, AtNCED3, AtPLC1, and AtMYB2, encoding a key enzyme in ABA synthesis, a phospholipase C homologue, and a putative transcriptional factor, respectively, were shown to have differentially induced expression under salinity and ABA treatments in transgenic and wild-type Arabidopsis plants. OsRAN2 overexpression in tobacco epidermal leaf cells disturbed the nuclear import of a maize (Zea mays L.) leaf colour transcription factor (Lc). In addition, gene-silenced rice plants generated via RNA interference (RNAi) displayed pleiotropic developmental abnormalities and were male sterile. PMID:20018899

  6. Chromosomal localization and partial genomic structure of the human peroxisome proliferator activated receptor-gamma (hPPAR gamma) gene.

    PubMed

    Beamer, B A; Negri, C; Yen, C J; Gavrilova, O; Rumberger, J M; Durcan, M J; Yarnall, D P; Hawkins, A L; Griffin, C A; Burns, D K; Roth, J; Reitman, M; Shuldiner, A R

    1997-04-28

    We determined the chromosomal localization and partial genomic structure of the coding region of the human PPAR gamma gene (hPPAR gamma), a nuclear receptor important for adipocyte differentiation and function. Sequence analysis and long PCR of human genomic DNA with primers that span putative introns revealed that intron positions and sizes of hPPAR gamma are similar to those previously determined for the mouse PPAR gamma gene[13]. Fluorescent in situ hybridization localized hPPAR gamma to chromosome 3, band 3p25. Radiation hybrid mapping with two independent primer pairs was consistent with hPPAR gamma being within 1.5 Mb of marker D3S1263 on 3p25-p24.2. These sequences of the intron/exon junctions of the 6 coding exons shared by hPPAR gamma 1 and hPPAR gamma 2 will facilitate screening for possible mutations. Furthermore, D3S1263 is a suitable polymorphic marker for linkage analysis to evaluate PPAR gamma's potential contribution to genetic susceptibility to obesity, lipoatrophy, insulin resistance, and diabetes.

  7. Rat Humanin is encoded and translated in mitochondria and is localized to the mitochondrial compartment where it regulates ROS production.

    PubMed

    Paharkova, Vladislava; Alvarez, Griselda; Nakamura, Hiromi; Cohen, Pinchas; Lee, Kuk-Wha

    2015-09-15

    Evidence for the putative mitochondrial origin of the Humanin (HN) peptide has been lacking, although its cytoprotective activity has been demonstrated in a variety of organismal and cellular systems. We sought to establish proof-of-principle for a mitochondria-derived peptide (MDP) in a rat-derived cellular system as the rat HN sequence is predicted to lack nuclear insertions of mitochondrial origin (NUMT). We found that the rat HN (Rattin; rHN) homologue is derived from the mitochondrial genome as evidenced by decreased production in Rho-0 cells, and that peptide translation occurs in the mitochondria as it is unaffected by cycloheximide. Rat HN localizes to the mitochondria in cellular subfractionation and immunohistochemical studies. Addition of a HN analogue to isolated mitochondria from rat INS-1 beta cells reduced hydrogen peroxide production by 55%. In summary, a locally bioactive peptide is derived and translated from an open reading frame (ORF) within rat mitochondrial DNA encoding 16S rRNA. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. In vivo binding of hot pepper bZIP transcription factor CabZIP1 to the G-box region of pathogenesis-related protein 1 promoter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Boo-Ja; Park, Chang-Jin; Kim, Sung-Kyu

    2006-05-26

    We find that salicylic acid and ethephon treatment in hot pepper increases the expression of a putative basic/leucine zipper (bZIP) transcription factor gene, CabZIP1. CabZIP1 mRNA is expressed ubiquitously in various organs. The green fluorescent protein-fused transcription factor, CabZIP1::GFP, can be specifically localized to the nucleus, an action that is consistent with the presence of a nuclear localization signal in its protein sequence. Transient overexpression of the CabZIP1 transcription factor results in an increase in PR-1 transcripts level in Nicotiana benthamiana leaves. Using chromatin immunoprecipitation, we demonstrate that CabZIP1 binds to the G-box elements in native promoter of the hotmore » pepper pathogenesis-related protein 1 (CaPR-1) gene in vivo. Taken together, our results suggest that CabZIP1 plays a role as a transcriptional regulator of the CaPR-1 gene.« less

  9. Identification of Putative Nuclear Receptors and Steroidogenic Enzymes in Murray-Darling Rainbowfish (Melanotaenia fluviatilis) Using RNA-Seq and De Novo Transcriptome Assembly.

    PubMed

    Bain, Peter A; Papanicolaou, Alexie; Kumar, Anupama

    2015-01-01

    Murray-Darling rainbowfish (Melanotaenia fluviatilis [Castelnau, 1878]; Atheriniformes: Melanotaeniidae) is a small-bodied teleost currently under development in Australasia as a test species for aquatic toxicological studies. To date, efforts towards the development of molecular biomarkers of contaminant exposure have been hindered by the lack of available sequence data. To address this, we sequenced messenger RNA from brain, liver and gonads of mature male and female fish and generated a high-quality draft transcriptome using a de novo assembly approach. 149,742 clusters of putative transcripts were obtained, encompassing 43,841 non-redundant protein-coding regions. Deduced amino acid sequences were annotated by functional inference based on similarity with sequences from manually curated protein sequence databases. The draft assembly contained protein-coding regions homologous to 95.7% of the complete cohort of predicted proteins from the taxonomically related species, Oryzias latipes (Japanese medaka). The mean length of rainbowfish protein-coding sequences relative to their medaka homologues was 92.1%, indicating that despite the limited number of tissues sampled a large proportion of the total expected number of protein-coding genes was captured in the study. Because of our interest in the effects of environmental contaminants on endocrine pathways, we manually curated subsets of coding regions for putative nuclear receptors and steroidogenic enzymes in the rainbowfish transcriptome, revealing 61 candidate nuclear receptors encompassing all known subfamilies, and 41 putative steroidogenic enzymes representing all major steroidogenic enzymes occurring in teleosts. The transcriptome presented here will be a valuable resource for researchers interested in biomarker development, protein structure and function, and contaminant-response genomics in Murray-Darling rainbowfish.

  10. NUCLEOPORINS NPP-1, NPP-3, NPP-4, NPP-11 and NPP-13 ARE REQUIRED FOR PROPER SPINDLE ORIENTATION IN C. ELEGANS

    PubMed Central

    Schetter, Aaron; Askjaer, Peter; Piano, Fabio; Mattaj, Iain; Kemphues, Kenneth

    2006-01-01

    Nucleoporins are components of the nuclear pore, which is required for nucleo-cytoplasmic transport. We report a role for a subclass of nucleoporins in orienting the mitotic spindle in C. elegans embryos. RNAi-mediated depletion of any of five putative nucleoporins npp-1, npp-3, npp-4, npp-11, and npp-13 leads to indistinguishable spindle orientation defects. Transgenic worms expressing NPP-1::GFP or NPP-11::GFP show GFP localization at the nuclear envelope, consistent with their predicted function. NPP-1 interacts with the other nucleoporins in yeast two-hybrid assays suggesting that the proteins affect spindle orientation by a common process. The failed orientation phenotype of npp-1(RNAi) is at least partially epistatic to the ectopic spindle rotation in the AB blastomere of par-3 mutant embryos. This suggests that NPP-1 contributes to the mechanics of spindle orientation. However, NPP-1 is also required for PAR-6 asymmetry at the two-cell stage, indicating that nucleoporins may be required to define cortical domains in the germ line blasotmere P1. Nuclear envelope structure is abnormal in npp-1(RNAi) embryos but the envelope maintains its integrity and most nuclear proteins we assayed accumulate normally. These findings raise the possibility that these nucleoporins may have direct roles in orienting the mitotic spindle and the maintenance of cell polarity. PMID:16325795

  11. Role of cyclophilins in somatolactogenic action.

    PubMed

    Rycyzyn, M A; Clevenger, C V

    2000-01-01

    Prolactin (PRL) and growth hormone (GH) are members of the somatolactogenic hormone family, the pleiotropic actions of which are necessary for vertebrate growth and mammary differentiation. The basis for the specific function of these hormones has remained uncertain; however, their action is associated with internalization and translocation into the nucleus. A yeast two-hybrid screen identified an interaction between PRL and cyclophilin B (CypB), a peptidyl prolyl isomerase (PPI) found in the endoplasmic reticulum (ER), extracellular space, and nucleus. The interaction between CypB and PRL/GH was confirmed in vitro and in vivo through the use of recombinant proteins and coimmunoprecipitation studies. The exogenous addition of CypB potentiated the proliferation of PRL- and GH-dependent cell lines 18- and 40-fold, respectively. The potentiation of PRL action by CypB was accompanied by a dramatic increase in the nuclear retrotranslocation of PRL. Immunogold electron microscopy has revealed this retrotransport to occur via a vesicular pathway. A CypB mutant, termed CypB-NT, was generated that lacked the putative wild-type N-terminal nuclear localization sequence. Although CypB-NT demonstrated levels of PRL binding and PPI activity equivalent to wild-type CypB, it was incapable of mediating the nuclear retrotranslocation of PRL or enhancing PRL-driven proliferation. These studies reveal CypB as an important chaperone facilitating the nuclear retrotransport and action of the somatolactogenic hormone family.

  12. Transactivation activity and nucleocytoplasmic transport of β-catenin are independently regulated by its C-terminal end.

    PubMed

    Maturana, J L; Niechi, I; Silva, E; Huerta, H; Cataldo, R; Härtel, S; Barros, L F; Galindo, M; Tapia, J C

    2015-11-15

    The key protein in the canonical Wnt pathway is β-catenin, which is phosphorylated both in absence and presence of Wnt signals by different kinases. Upon activation in the cytoplasm, β-catenin can enter into the nucleus to transactivate target gene expression, many of which are cancer-related genes. The mechanism governing β-catenin's nucleocytoplasmic transport has been recently unvealed, although phosphorylation at its C-terminal end and its functional consequences are not completely understood. Serine 646 of β-catenin is a putative CK2 phosphorylation site and lies in a region which has been proposed to be important for its nucleocytoplasmic transport and transactivation activity. This residue was mutated to aspartic acid mimicking CK2-phosphorylation and its effects on β-catenin activity as well as localization were explored. β-Catenin S6464D did not show significant differences in both transcriptional activity and nuclear localization compared to the wild-type form, but displayed a characteristic granular nuclear pattern. Three-dimensional models of nuclei were constructed which showed differences in number and volume of granules, being those from β-catenin S646D more and smaller than the wild-type form. FRAP microscopy was used to compare nuclear export of both proteins which showed a slightly higher but not significant retention of β-catenin S646D. Altogether, these results show that C-terminal phosphorylation of β-catenin seems to be related with its nucleocytoplasmic transport but not transactivation activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Evolution Analysis of the Aux/IAA Gene Family in Plants Shows Dual Origins and Variable Nuclear Localization Signals.

    PubMed

    Wu, Wentao; Liu, Yaxue; Wang, Yuqian; Li, Huimin; Liu, Jiaxi; Tan, Jiaxin; He, Jiadai; Bai, Jingwen; Ma, Haoli

    2017-10-08

    The plant hormone auxin plays pivotal roles in many aspects of plant growth and development. The auxin/indole-3-acetic acid (Aux/IAA) gene family encodes short-lived nuclear proteins acting on auxin perception and signaling, but the evolutionary history of this gene family remains to be elucidated. In this study, the Aux/IAA gene family in 17 plant species covering all major lineages of plants is identified and analyzed by using multiple bioinformatics methods. A total of 434 Aux/IAA genes was found among these plant species, and the gene copy number ranges from three ( Physcomitrella patens ) to 63 ( Glycine max ). The phylogenetic analysis shows that the canonical Aux/IAA proteins can be generally divided into five major clades, and the origin of Aux/IAA proteins could be traced back to the common ancestor of land plants and green algae. Many truncated Aux/IAA proteins were found, and some of these truncated Aux/IAA proteins may be generated from the C-terminal truncation of auxin response factor (ARF) proteins. Our results indicate that tandem and segmental duplications play dominant roles for the expansion of the Aux/IAA gene family mainly under purifying selection. The putative nuclear localization signals (NLSs) in Aux/IAA proteins are conservative, and two kinds of new primordial bipartite NLSs in P. patens and Selaginella moellendorffii were discovered. Our findings not only give insights into the origin and expansion of the Aux/IAA gene family, but also provide a basis for understanding their functions during the course of evolution.

  14. Evolution Analysis of the Aux/IAA Gene Family in Plants Shows Dual Origins and Variable Nuclear Localization Signals

    PubMed Central

    Wu, Wentao; Liu, Yaxue; Wang, Yuqian; Li, Huimin; Liu, Jiaxi; Tan, Jiaxin; He, Jiadai; Bai, Jingwen

    2017-01-01

    The plant hormone auxin plays pivotal roles in many aspects of plant growth and development. The auxin/indole-3-acetic acid (Aux/IAA) gene family encodes short-lived nuclear proteins acting on auxin perception and signaling, but the evolutionary history of this gene family remains to be elucidated. In this study, the Aux/IAA gene family in 17 plant species covering all major lineages of plants is identified and analyzed by using multiple bioinformatics methods. A total of 434 Aux/IAA genes was found among these plant species, and the gene copy number ranges from three (Physcomitrella patens) to 63 (Glycine max). The phylogenetic analysis shows that the canonical Aux/IAA proteins can be generally divided into five major clades, and the origin of Aux/IAA proteins could be traced back to the common ancestor of land plants and green algae. Many truncated Aux/IAA proteins were found, and some of these truncated Aux/IAA proteins may be generated from the C-terminal truncation of auxin response factor (ARF) proteins. Our results indicate that tandem and segmental duplications play dominant roles for the expansion of the Aux/IAA gene family mainly under purifying selection. The putative nuclear localization signals (NLSs) in Aux/IAA proteins are conservative, and two kinds of new primordial bipartite NLSs in P. patens and Selaginella moellendorffii were discovered. Our findings not only give insights into the origin and expansion of the Aux/IAA gene family, but also provide a basis for understanding their functions during the course of evolution. PMID:28991190

  15. Yrb4p, a yeast ran-GTP-binding protein involved in import of ribosomal protein L25 into the nucleus.

    PubMed Central

    Schlenstedt, G; Smirnova, E; Deane, R; Solsbacher, J; Kutay, U; Görlich, D; Ponstingl, H; Bischoff, F R

    1997-01-01

    Gsp1p, the essential yeast Ran homologue, is a key regulator of transport across the nuclear pore complex (NPC). We report the identification of Yrb4p, a novel Gsp1p binding protein. The 123 kDa protein was isolated from Saccharomyces cerevisiae cells and found to be related to importin-beta, the mediator of nuclear localization signal (NLS)-dependent import into the nucleus, and to Pse1p. Like importin-beta, Yrb4p and Pse1p specifically bind to Gsp1p-GTP, protecting it from GTP hydrolysis and nucleotide exchange. The GTPase block of Gsp1p complexed to Yrb4p or Pse1p is released by Yrb1p, which contains a Gsp1p binding domain distinct from that of Yrb4p. This might reflect an in vivo function for Yrb1p. Cells disrupted for YRB4 are defective in nuclear import of ribosomal protein L25, but show no defect in the import of proteins containing classical NLSs. Expression of a Yrb4p mutant deficient in Gsp1p-binding is dominant-lethal and blocks bidirectional traffic across the NPC in wild-type cells. L25 binds to Yrb4p and Pse1p and is released by Gsp1p-GTP. Consistent with its putative role as an import receptor for L25-like proteins, Yrb4p localizes to the cytoplasm, the nucleoplasm and the NPC. PMID:9321403

  16. Identification, cloning, and expression analysis of three putative Lymantria dispar nuclear polyhedrosis virus immediate early genes

    Treesearch

    James M. Slavicek; Nancy Hayes-Plazolles

    1991-01-01

    Viral immediate early gene products are usually regulatory proteins that control expression of other viral genes at the transcriptional level or are proteins that are part of the viral DNA replication complex. The identification and functional characterization of the immediate early gene products of Lymantria dispar nuclear polyhedrosis virus (LdNPV...

  17. Distribution and population genetics of walleye and sauger

    USGS Publications Warehouse

    Haponski, Amanda E.; Sloss, Brian L.

    2014-01-01

    Conserving genetic diversity and local adaptations are management priorities for wild populations of exploited species, which increasingly are subject to climate change, habitat loss, and pollution. These constitute growing concerns for the walleye Sander vitreus, an ecologically and economically valuable North American temperate fish with large Laurentian Great Lakes' fisheries. This study compares genetic diversity and divergence patterns across its widespread native range using mitochondrial (mt) DNA control region sequences and nine nuclear DNA microsatellite (μsat) loci, examining historic and contemporary influences. We analyze the genetic and morphological characters of a putative endemic variant– “blue pike” S. v. “glaucus” –described from Lakes Erie and Ontario, which became extinct. Walleye with turquoise-colored mucus also are evaluated, since some have questioned whether these are related to the “blue pike”.

  18. New Centromeric Component CENP-W Is an RNA-associated Nuclear Matrix Protein That Interacts with Nucleophosmin/B23 Protein*

    PubMed Central

    Chun, Younghwa; Park, Byoungwoo; Koh, Wansoo; Lee, Sunhee; Cheon, Yeongmi; Kim, Raehyung; Che, Lihua; Lee, Soojin

    2011-01-01

    CENP-W was originally identified as a putative oncogene, cancer-upregulated gene 2 (CUG2) that was commonly up-regulated in many cancer tissues. Recently, CENP-W has also been identified as a new centromeric component that interacts with CENP-T. As a complex with CENP-T, CENP-W plays crucial roles in assembly of the functional kinetochore complex. In this study, the subnuclear localization of CENP-W was extensively analyzed using various approaches. We found that ectopically expressed CENP-W primarily accumulated in the nucleolus and remained substantially associated with the nucleolus in stable cells. The following fractionation study also showed that CENP-W is associated with RNA as well as DNA. Moreover, a considerable amount of CENP-W was found in the nuclear mesh-like structure, nuclear matrix, possibly indicating that CENP-W participates in diverse subnuclear activities. Finally, biochemical affinity binding analysis revealed that CENP-W specifically interacts with the nucleolar phosphoprotein, nucleophosmin (B23). Depletion of cellular B23 by siRNA treatment induced a dramatic decrease of CENP-W stability and severe mislocalization during prophase. Our data proposed that B23 may function in the assembly of the kinetochore complex by interacting with CENP-W during interphase. PMID:22002061

  19. Population genomics and geographical parthenogenesis in Japanese harvestmen (Opiliones, Sclerosomatidae, Leiobunum).

    PubMed

    Burns, Mercedes; Hedin, Marshal; Tsurusaki, Nobuo

    2018-01-01

    Naturally occurring population variation in reproductive mode presents an opportunity for researchers to test hypotheses regarding the evolution of sex. Asexual reproduction frequently assumes a geographical pattern, in which parthenogenesis-dominated populations are more broadly dispersed than their sexual conspecifics. We evaluate the geographical distribution of genomic signatures associated with parthenogenesis using nuclear and mitochondrial DNA sequence data from two Japanese harvestman sister taxa, Leiobunum manubriatum and Leiobunum globosum . Asexual reproduction is putatively facultative in these species, and female-biased localities are common in habitat margins. Past karyotypic and current cytometric work indicates L. globosum is entirely tetraploid, while L. manubriatum may be either diploid or tetraploid. We estimated species phylogeny, genetic differentiation, diversity, and mitonuclear discordance in females collected across the species range in order to identify range expansion toward marginal habitat, potential for hybrid origin, and persistence of asexual lineages. Our results point to northward expansion of a tetraploid ancestor of L. manubriatum and L. globosum , coupled with support for greater male gene flow in southern L. manubriatum localities. Specimens from localities in the Tohoku and Hokkaido regions were indistinct, particularly those of L. globosum , potentially due to little mitochondrial differentiation or haplotypic variation. Although L. manubriatum overlaps with L. globosum across its entire range, L. globosum was reconstructed as monophyletic with strong support using mtDNA, and marginal support with nuclear loci. Ultimately, we find evidence for continued sexual reproduction in both species and describe opportunities to clarify the rate and mechanism of parthenogenesis.

  20. Genetic structure and signatures of selection in grey reef sharks (Carcharhinus amblyrhynchos).

    PubMed

    Momigliano, P; Harcourt, R; Robbins, W D; Jaiteh, V; Mahardika, G N; Sembiring, A; Stow, A

    2017-09-01

    With overfishing reducing the abundance of marine predators in multiple marine ecosystems, knowledge of genetic structure and local adaptation may provide valuable information to assist sustainable management. Despite recent technological advances, most studies on sharks have used small sets of neutral markers to describe their genetic structure. We used 5517 nuclear single-nucleotide polymorphisms (SNPs) and a mitochondrial DNA (mtDNA) gene to characterize patterns of genetic structure and detect signatures of selection in grey reef sharks (Carcharhinus amblyrhynchos). Using samples from Australia, Indonesia and oceanic reefs in the Indian Ocean, we established that large oceanic distances represent barriers to gene flow, whereas genetic differentiation on continental shelves follows an isolation by distance model. In Australia and Indonesia differentiation at nuclear SNPs was weak, with coral reefs acting as stepping stones maintaining connectivity across large distances. Differentiation of mtDNA was stronger, and more pronounced in females, suggesting sex-biased dispersal. Four independent tests identified a set of loci putatively under selection, indicating that grey reef sharks in eastern Australia are likely under different selective pressures to those in western Australia and Indonesia. Genetic distances averaged across all loci were uncorrelated with genetic distances calculated from outlier loci, supporting the conclusion that different processes underpin genetic divergence in these two data sets. This pattern of heterogeneous genomic differentiation, suggestive of local adaptation, has implications for the conservation of grey reef sharks; furthermore, it highlights that marine species showing little genetic differentiation at neutral loci may exhibit patterns of cryptic genetic structure driven by local selection.

  1. Echinoderm phosphorylated matrix proteins UTMP16 and UTMP19 have different functions in sea urchin tooth mineralization.

    PubMed

    Alvares, Keith; Dixit, Saryu N; Lux, Elizabeth; Veis, Arthur

    2009-09-18

    Studies of mineralization of embryonic spicules and of the sea urchin genome have identified several putative mineralization-related proteins. These predicted proteins have not been isolated or confirmed in mature mineralized tissues. Mature Lytechinus variegatus teeth were demineralized with 0.6 N HCl after prior removal of non-mineralized constituents with 4.0 M guanidinium HCl. The HCl-extracted proteins were fractionated on ceramic hydroxyapatite and separated into bound and unbound pools. Gel electrophoresis compared the protein distributions. The differentially present bands were purified and digested with trypsin, and the tryptic peptides were separated by high pressure liquid chromatography. NH2-terminal sequences were determined by Edman degradation and compared with the genomic sequence bank data. Two of the putative mineralization-related proteins were found. Their complete amino acid sequences were cloned from our L. variegatus cDNA library. Apatite-binding UTMP16 was found to be present in two isoforms; both isoforms had a signal sequence, a Ser-Asp-rich extracellular matrix domain, and a transmembrane and cytosolic insertion sequence. UTMP19, although rich in Glu and Thr did not bind to apatite. It had neither signal peptide nor transmembrane domain but did have typical nuclear localization and nuclear exit signal sequences. Both proteins were phosphorylated and good substrates for phosphatase. Immunolocalization studies with anti-UTMP16 show it to concentrate at the syncytial membranes in contact with the mineral. On the basis of our TOF-SIMS analyses of magnesium ion and Asp mapping of the mineral phase composition, we speculate that UTMP16 may be important in establishing the high magnesium columns that fuse the calcite plates together to enhance the mechanical strength of the mineralized tooth.

  2. Presence of the tunicate Asterocarpa humilis on ship hulls and aquaculture facilities in the coast of the Biobío Region, south central Chile.

    PubMed

    Pinochet, Javier; Leclerc, Jean-Charles; Brante, Antonio; Daguin-Thiébaut, Claire; Díaz, Christian; Tellier, Florence; Viard, Frédérique

    2017-01-01

    Non-native ascidians are important members of the fouling community associated with artificial substrata and man-made structures. Being efficient fouling species, they are easily spread by human-mediated transports (e.g., with aquaculture trade and maritime transports). This is exemplified by the ascidian Asterocarpa humilis which displays a wide distribution in the Southern Hemisphere and has been recently reported in the Northern Hemisphere (NW Europe). In continental Chile, its first report dates back from 2000 for the locality of Antofagasta (23°S). Although there was no evidence about the vectors of introduction and spread, nor the source, some authors suggested maritime transport by ship hulls and aquaculture devices as putative introduction pathways and vectors. In the present study, we report for the first time the presence of A. humilis on the hull of an international ship in a commercial port in Concepción bay (36°S), south central Chile. We also found one individual associated to a seashell farm, 70 km far from Concepción bay. Further individuals were subsequently identified within Concepción bay: one juvenile settled upon international harbor pilings and a dozen individuals along aquaculture seashell longlines. For the first specimens sampled, species identification was ascertained using both morphological criteria and molecular barcoding, using the mitochondrial gene cytochrome c oxidase subunit I (COI) and a nuclear gene (ribosomal RNA 18S). The nuclear 18S gene and the mitochondrial gene COI clearly assigned the specimens to A. humilis, confirming our morphological identification. Two haplotypes were obtained with COI corresponding to haplotypes previously obtained with European and Northern Chilean specimens. The present study thus reports for the first time the presence of A. humilis in the Araucanian ecoregion, documenting the apparent expansion of this non-native tunicate in Chile over 2,000 km, spanning over three ecoregions. In addition we reveal the potential implication of the international maritime transport as a vector of spread of this species along the Eastern Pacific coast, and the putative role of aquaculture facilities in promoting local establishments of non-native tunicates.

  3. In vivo subcellular localization of Mal de Rio Cuarto virus (MRCV) non-structural proteins in insect cells reveals their putative functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maroniche, Guillermo A.; Mongelli, Vanesa C.; Llauger, Gabriela

    2012-09-01

    The in vivo subcellular localization of Mal de Rio Cuarto virus (MRCV, Fijivirus, Reoviridae) non-structural proteins fused to GFP was analyzed by confocal microscopy. P5-1 showed a cytoplasmic vesicular-like distribution that was lost upon deleting its PDZ binding TKF motif, suggesting that P5-1 interacts with cellular PDZ proteins. P5-2 located at the nucleus and its nuclear import was affected by the deletion of its basic C-termini. P7-1 and P7-2 also entered the nucleus and therefore, along with P5-2, could function as regulators of host gene expression. P6 located in the cytoplasm and in perinuclear cloud-like inclusions, was driven to P9-1more » viroplasm-like structures and co-localized with P7-2, P10 and {alpha}-tubulin, suggesting its involvement in viroplasm formation and viral intracellular movement. Finally, P9-2 was N-glycosylated and located at the plasma membrane in association with filopodia-like protrusions containing actin, suggesting a possible role in virus cell-to-cell movement and spread.« less

  4. Organization of cholinergic, putative catecholaminergic and serotonergic nuclei in the diencephalon, midbrain and pons of sub-adult male giraffes.

    PubMed

    Bux, Faiza; Bhagwandin, Adhil; Fuxe, Kjell; Manger, Paul R

    2010-05-01

    The current study describes the nuclear organization and neuronal morphology of the cholinergic, putative catecholaminergic and serotonergic systems within the diencephalon, midbrain and pons of the giraffe using immunohistochemistry for choline acetyltransferase, tyrosine hydroxylase and serotonin. The giraffe has a unique phenotype (the long neck), a large brain (over 500 g) and is a non-domesticated animal, while previous studies examining the brains of other Artiodactyls have all been undertaken on domesticated animals. The aim of the present study was to investigate possible differences in the nuclear organization and neuronal morphology of the above-mentioned systems compared to that seen in other Artiodactyls and mammals. The nuclear organization of all three systems within the giraffe brain was similar to that of other Artiodactyls. Some features of interest were noted for the giraffe and in comparison to other mammals studied. The cholinergic neuronal somata of the laterodorsal tegmental nucleus were slightly larger than those of the pedunculopontine tegmental nucleus, a feature not described in other mammals. The putative catecholaminergic system of the giraffe appeared to lack an A15 dorsal nucleus, which is commonly seen in other mammals but absent in the Artiodactyls, had a large and expanded substantia nigra pars reticulata (A9 ventral), a small diffuse portion of the locus coerueleus (A6d), an expansive subcoeruleus (A7sc and A7d), and lacked the A4 nucleus of the locus coeruleus complex. The nuclear organization of the serotonergic system of the giraffe was identical to that seen in all other eutherian mammals studied to date. These observations in the giraffe demonstrate that despite significant changes in life history, phenotype, brain size and time of divergence, species within the same order show the same nuclear organization of the systems investigated. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  5. Putative embryonic stem cells derived from porcine cloned blastocysts using induced pluripotent stem cells as donors.

    PubMed

    Kim, Eunhye; Hwang, Seon-Ung; Yoo, Hyunju; Yoon, Junchul David; Jeon, Yubyeol; Kim, Hyunggee; Jeung, Eui-Bae; Lee, Chang-Kyu; Hyun, Sang-Hwan

    2016-03-01

    The establishment of porcine embryonic stem cells (ESCs) would have great impact in biomedical studies and preclinical trials through their use in genetic engineering. However, authentic porcine ESCs have not been established until now. In this study, a total of seven putative ESC lines were derived from porcine embryos of various origins, including in vitro fertilization, parthenogenetic activation, and, in particular, induced pluripotent stem (iPS) nuclear transfer (NT) from a donor cell with induced pluripotent stem cells (iPSCs). To characterize these cell lines, several assays including an assessment of intensive alkaline phosphatase activity, karyotyping, embryoid body formation, expression analysis of the pluripotency-associated markers, and the three germ layerassociated markers were performed. Based on quantitative polymerase chain reaction, the expression levels of REX1 and FGFR2 in iPS-NT lines were higher than those of cells of other origins. Additionally, only iPS-NT lines showed multiple aberrant patterns of nuclear foci elucidated by immunofluorescence staining of H3K27me3 as a marker of the state of X chromosome inactivation and a less mature form of mitochondria like naive ESCs, by transmission electron microscopy. Together, these data suggested that established putative porcine ESC lines generally exhibited a primed pluripotent state, like human ESCs. However, iPS-NT lines have especially unique characteristics distinct from other origins because they have more epigenetic instability and naive-like mitochondrial morphology than other putative ESC lines. This is the first study to establish and characterize the iPSC-derived putative ESC lines and compare them with other lines derived from different origins in pigs. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. DNA mismatch repair proteins MLH1 and PMS2 can be imported to the nucleus by a classical nuclear import pathway.

    PubMed

    de Barros, Andrea C; Takeda, Agnes A S; Dreyer, Thiago R; Velazquez-Campoy, Adrian; Kobe, Boštjan; Fontes, Marcos R M

    2018-03-01

    MLH1 and PMS2 proteins form the MutLα heterodimer, which plays a major role in DNA mismatch repair (MMR) in humans. Mutations in MMR-related proteins are associated with cancer, especially with colon cancer. The N-terminal region of MutLα comprises the N-termini of PMS2 and MLH1 and, similarly, the C-terminal region of MutLα is composed by the C-termini of PMS2 and MLH1, and the two are connected by linker region. The nuclear localization sequences (NLSs) necessary for the nuclear transport of the two proteins are found in this linker region. However, the exact NLS sequences have been controversial, with different sequences reported, particularly for MLH1. The individual components are not imported efficiently, presumably due to their C-termini masking their NLSs. In order to gain insights into the nuclear transport of these proteins, we solved the crystal structures of importin-α bound to peptides corresponding to the supposed NLSs of MLH1 and PMS2 and performed isothermal titration calorimetry to study their binding affinities. Both putative MLH1 and PMS2 NLSs can bind to importin-α as monopartite NLSs, which is in agreement with some previous studies. However, MLH1-NLS has the highest affinity measured by a natural NLS peptide, suggesting a major role of MLH1 protein in nuclear import compared to PMS2. Finally, the role of MLH1 and PMS2 in the nuclear transport of the MutLα heterodimer is discussed. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  7. Multilocus sequence data reveal dozens of putative cryptic species in a radiation of endemic Californian mygalomorph spiders (Araneae, Mygalomorphae, Nemesiidae).

    PubMed

    Leavitt, Dean H; Starrett, James; Westphal, Michael F; Hedin, Marshal

    2015-10-01

    We use mitochondrial and multi-locus nuclear DNA sequence data to infer both species boundaries and species relationships within California nemesiid spiders. Higher-level phylogenetic data show that the California radiation is monophyletic and distantly related to European members of the genus Brachythele. As such, we consider all California nemesiid taxa to belong to the genus Calisoga Chamberlin, 1937. Rather than find support for one or two taxa as previously hypothesized, genetic data reveal Calisoga to be a species-rich radiation of spiders, including perhaps dozens of species. This conclusion is supported by multiple mitochondrial barcoding analyses, and also independent analyses of nuclear data that reveal general genealogical congruence. We discovered three instances of sympatry, and genetic data indicate reproductive isolation when in sympatry. An examination of female reproductive morphology does not reveal species-specific characters, and observed male morphological differences for a subset of putative species are subtle. Our coalescent species tree analysis of putative species lays the groundwork for future research on the taxonomy and biogeographic history of this remarkable endemic radiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Phylogenetic marker development for target enrichment from transcriptome and genome skim data: the pipeline and its application in southern African Oxalis (Oxalidaceae)

    Treesearch

    Roswitha Schmickl; Aaron Liston; Vojtěch Zeisek; Kenneth Oberlander; Kevin Weitemier; Shannon C. K. Straub; Richard C. Cronn; Léanne L. Dreyer; Jan Suda

    2016-01-01

    Phylogenetics benefits from using a large number of putatively independent nuclear loci and their combination with other sources of information, such as the plastid and mitochondrial genomes. To facilitate the selection of orthologous low-copy nuclear (LCN) loci for phylogenetics in nonmodel organisms, we created an automated and interactive script to select hundreds...

  9. Target of Rapamycin Regulates Development and Ribosomal RNA Expression through Kinase Domain in Arabidopsis1[W][OA

    PubMed Central

    Ren, Maozhi; Qiu, Shuqing; Venglat, Prakash; Xiang, Daoquan; Feng, Li; Selvaraj, Gopalan; Datla, Raju

    2011-01-01

    Target of rapamycin (TOR) is a central regulator of cell growth, cell death, nutrition, starvation, hormone, and stress responses in diverse eukaryotes. However, very little is known about TOR signaling and the associated functional domains in plants. We have taken a genetic approach to dissect TOR functions in Arabidopsis (Arabidopsis thaliana) and report here that the kinase domain is essential for the role of TOR in embryogenesis and 45S rRNA expression. Twelve new T-DNA insertion mutants, spanning 14.2 kb of TOR-encoding genomic region, have been characterized. Nine of these share expression of defective kinase domain and embryo arrest at 16 to 32 cell stage. However, three T-DNA insertion lines affecting FATC domain displayed normal embryo development, indicating that FATC domain was dispensable in Arabidopsis. Genetic complementation showed that the TOR kinase domain alone in tor-10/tor-10 mutant background can rescue early embryo lethality and restore normal development. Overexpression of full-length TOR or kinase domain in Arabidopsis displayed developmental abnormalities in meristem, leaf, root, stem, flowering time, and senescence. We further show that TOR, especially the kinase domain, plays a role in ribosome biogenesis by activating 45S rRNA production. Of the six putative nuclear localization sequences in the kinase domain, nuclear localization sequence 6 was identified to confer TOR nuclear targeting in transient expression assays. Chromatin immunoprecipitation studies revealed that the HEAT repeat domain binds to 45S rRNA promoter and the 5′ external transcribed spacer elements motif. Together, these results show that TOR controls the embryogenesis, postembryonic development, and 45S rRNA production through its kinase domain in Arabidopsis. PMID:21266656

  10. Constrained release of lamina-associated enhancers and genes from the nuclear envelope during T-cell activation facilitates their association in chromosome compartments

    PubMed Central

    de las Heras, Jose I.; Czapiewski, Rafal; Sivakumar, Aishwarya; Kerr, Alastair R.W.; Schirmer, Eric C.

    2017-01-01

    The 3D organization of the genome changes concomitantly with expression changes during hematopoiesis and immune activation. Studies have focused either on lamina-associated domains (LADs) or on topologically associated domains (TADs), defined by preferential local chromatin interactions, and chromosome compartments, defined as higher-order interactions between TADs sharing functionally similar states. However, few studies have investigated how these affect one another. To address this, we mapped LADs using Lamin B1–DamID during Jurkat T-cell activation, finding significant genome reorganization at the nuclear periphery dominated by release of loci frequently important for T-cell function. To assess how these changes at the nuclear periphery influence wider genome organization, our DamID data sets were contrasted with TADs and compartments. Features of specific repositioning events were then tested by fluorescence in situ hybridization during T-cell activation. First, considerable overlap between TADs and LADs was observed with the TAD repositioning as a unit. Second, A1 and A2 subcompartments are segregated in 3D space through differences in proximity to LADs along chromosomes. Third, genes and a putative enhancer in LADs that were released from the periphery during T-cell activation became preferentially associated with A2 subcompartments and were constrained to the relative proximity of the lamina. Thus, lamina associations influence internal nuclear organization, and changes in LADs during T-cell activation may provide an important additional mode of gene regulation. PMID:28424353

  11. Intracellular Localization of Arabidopsis Sulfurtransferases1

    PubMed Central

    Bauer, Michael; Dietrich, Christof; Nowak, Katharina; Sierralta, Walter D.; Papenbrock, Jutta

    2004-01-01

    Sulfurtransferases (Str) comprise a group of enzymes widely distributed in archaea, eubacteria, and eukaryota which catalyze the transfer of a sulfur atom from suitable sulfur donors to nucleophilic sulfur acceptors. In all organisms analyzed to date, small gene families encoding Str proteins have been identified. The gene products were localized to different compartments of the cells. Our interest concerns the localization of Str proteins encoded in the nuclear genome of Arabidopsis. Computer-based prediction methods revealed localization in different compartments of the cell for six putative AtStrs. Several methods were used to determine the localization of the AtStr proteins experimentally. For AtStr1, a mitochondrial localization was demonstrated by immunodetection in the proteome of isolated mitochondria resolved by one- and two-dimensional gel electrophoresis and subsequent blotting. The respective mature AtStr1 protein was identified by mass spectrometry sequencing. The same result was obtained by transient expression of fusion constructs with the green fluorescent protein in Arabidopsis protoplasts, whereas AtStr2 was exclusively localized to the cytoplasm by this method. Three members of the single-domain AtStr were localized in the chloroplasts as demonstrated by transient expression of green fluorescent protein fusions in protoplasts and stomata, whereas the single-domain AtStr18 was shown to be cytoplasmic. The remarkable subcellular distribution of AtStr15 was additionally analyzed by transmission electron immunomicroscopy using a monospecific antibody against green fluorescent protein, indicating an attachment to the thylakoid membrane. The knowledge of the intracellular localization of the members of this multiprotein family will help elucidate their specific functions in the organism. PMID:15181206

  12. Intracellular localization of Arabidopsis sulfurtransferases.

    PubMed

    Bauer, Michael; Dietrich, Christof; Nowak, Katharina; Sierralta, Walter D; Papenbrock, Jutta

    2004-06-01

    Sulfurtransferases (Str) comprise a group of enzymes widely distributed in archaea, eubacteria, and eukaryota which catalyze the transfer of a sulfur atom from suitable sulfur donors to nucleophilic sulfur acceptors. In all organisms analyzed to date, small gene families encoding Str proteins have been identified. The gene products were localized to different compartments of the cells. Our interest concerns the localization of Str proteins encoded in the nuclear genome of Arabidopsis. Computer-based prediction methods revealed localization in different compartments of the cell for six putative AtStrs. Several methods were used to determine the localization of the AtStr proteins experimentally. For AtStr1, a mitochondrial localization was demonstrated by immunodetection in the proteome of isolated mitochondria resolved by one- and two-dimensional gel electrophoresis and subsequent blotting. The respective mature AtStr1 protein was identified by mass spectrometry sequencing. The same result was obtained by transient expression of fusion constructs with the green fluorescent protein in Arabidopsis protoplasts, whereas AtStr2 was exclusively localized to the cytoplasm by this method. Three members of the single-domain AtStr were localized in the chloroplasts as demonstrated by transient expression of green fluorescent protein fusions in protoplasts and stomata, whereas the single-domain AtStr18 was shown to be cytoplasmic. The remarkable subcellular distribution of AtStr15 was additionally analyzed by transmission electron immunomicroscopy using a monospecific antibody against green fluorescent protein, indicating an attachment to the thylakoid membrane. The knowledge of the intracellular localization of the members of this multiprotein family will help elucidate their specific functions in the organism.

  13. Cloning, localization and expression analysis of vacuolar sugar transporters in the CAM plant Ananas comosus (pineapple).

    PubMed

    Antony, Edna; Taybi, Tahar; Courbot, Mikaël; Mugford, Sam T; Smith, J Andrew C; Borland, Anne M

    2008-01-01

    In photosynthetic tissues of the CAM plant pineapple (Ananas comosus), storage of soluble sugars in the central vacuole during the daytime and their remobilization at night is required to provide carbon skeletons for nocturnal CO(2) fixation. However, soluble sugars produced photosynthetically must also be exported to support growth processes in heterotrophic tissues. To begin to address how vacuolar sugar storage and assimilate partitioning are regulated in A. comosus, degenerate PCR and cDNA library screening were used to clone three candidate sugar transporters from the leaves of this species. Subcellular localization of the three transporters was investigated via expression of YFP-fusion proteins in tobacco epidermal cells and their co-localization with subcellular markers by confocal microscopy. Using this strategy, a putative hexose transporter (AcMST1) and a putative inositol transporter (AcINT1) were identified that both localized to the tonoplast, whereas a putative sucrose transporter (AcSUT1) was found to localize to prevacuolar compartments. A cDNA (AcMST2) with high similarity to a recently characterized tonoplast hexose transporter in Arabidopsis was also identified from an A. comosus fruit EST database. Analyses of transcript abundance indicated that AcMST1 was more highly expressed in fruits compared to leaves of A. comosus, whilst transcripts of AcINT1, AcSUT1, and AcMST2 were more abundant in leaves. Transcript abundance of AcINT1, the putative inositol transporter, showed day-night changes comparable to those of other CAM-related transcripts described in Mesembryanthemum crystallinum. The results are discussed in terms of the role of vacuolar sugar transporters in regulating carbon flow during the diel cycle in CAM plants.

  14. Identification of a novel putative gastrointestinal stem cell and adenoma stem cell marker, doublecortin and CaM kinase-like-1, following radiation injury and in adenomatous polyposis coli/multiple intestinal neoplasia mice.

    PubMed

    May, Randal; Riehl, Terrence E; Hunt, Clayton; Sureban, Sripathi M; Anant, Shrikant; Houchen, Courtney W

    2008-03-01

    In the gut, tumorigenesis arises from intestinal or colonic crypt stem cells. Currently, no definitive markers exist that reliably identify gut stem cells. Here, we used the putative stem cell marker doublecortin and CaM kinase-like-1 (DCAMKL-1) to examine radiation-induced stem cell apoptosis and adenomatous polyposis coli (APC)/multiple intestinal neoplasia (min) mice to determine the effects of APC mutation on DCAMKL-1 expression. Immunoreactive DCAMKL-1 staining was demonstrated in the intestinal stem cell zone. Furthermore, we observed apoptosis of the cells negative for DCAMKL-1 at 6 hours. We found DNA damage in all the cells in the crypt region, including the DCAMKL-1-positive cells. We also observed stem cell apoptosis and mitotic DCAMKL-1-expressing cells 24 hours after irradiation. Moreover, in APC/min mice, DCAMKL-1-expressing cells were negative for proliferating cell nuclear antigen and nuclear beta-catenin in normal-appearing intestine. However, beta-catenin was nuclear in DCAMKL-1-positive cells in adenomas. Thus, nuclear translocation of beta-catenin distinguishes normal and adenoma stem cells. Targeting DCAMKL-1 may represent a strategy for developing novel chemotherapeutic agents.

  15. The SBP-Box Gene VpSBP11 from Chinese Wild Vitis Is Involved in Floral Transition and Affects Leaf Development.

    PubMed

    Hou, Hongmin; Yan, Xiaoxiao; Sha, Ting; Yan, Qin; Wang, Xiping

    2017-07-13

    Flowering occurs in angiosperms during a major developmental transition from vegetative growth to the reproductive phase. Squamosa promoter binding protein (SBP)-box genes have been found to play critical roles in regulating flower and fruit development, but their roles in grapevine have remained unclear. To better understand the functions of the grape SBP-box genes in both vegetative and reproductive growth phases, a full-length complementary DNA (cDNA) sequence of the putative SBP-box transcription factor gene, VpSBP11 , was obtained from Chinese wild grapevine Vitis pseudoreticulata Wen Tsai Wang (W. T. Wang) clone 'Baihe-35-1'. VpSBP11 encoded a putative polypeptide of 170 amino acids with a highly conserved SBP-domain with two zinc-binding sites of the Cx2C-x3-H-x11-C-x6-H (C2HCH) type and a nuclear localization signal. We confirmed that the VpSBP11 protein was targeted to the nucleus and possessed transcriptional activation activity by subcellular localization and trans -activation assay. Over-expression of VpSBP11 in Arabidopsis thaliana was shown to activate the FUL gene, and subsequently the AP1 and LFY genes, all of which were floral meristem identity genes, and to cause earlier flowering than in wild type (WT) plants. The pattern of vegetative growth was also different between the transgenic and WT plants. For example, in the VpSBP11 over-expressing transgenic plants, the number of rosette leaves was less than that of WT; the petiole was significantly elongated; and the rosette and cauline leaves curled upwards or downwards. These results were consistent with VpSBP11 acting as a transcription factor during the transition from the vegetative stage to the reproductive stage.

  16. Hybridization among Arctic white-headed gulls (Larus spp.) obscures the genetic legacy of the Pleistocene

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Chesser, R. Terry; Bell, Douglas A.; Dove, Carla J.

    2012-01-01

    We studied the influence of glacial oscillations on the genetic structure of seven species of white-headed gull that breed at high latitudes (Larus argentatus, L. canus, L. glaucescens, L. glaucoides, L. hyperboreus, L. schistisagus, and L. thayeri). We evaluated localities hypothesized as ice-free areas or glacial refugia in other Arctic vertebrates using molecular data from 11 microsatellite loci, mitochondrial DNA (mtDNA) control region, and six nuclear introns for 32 populations across the Holarctic. Moderate levels of genetic structure were observed for microsatellites (FST= 0.129), introns (ΦST= 0.185), and mtDNA control region (ΦST= 0.461), with among-group variation maximized when populations were grouped based on subspecific classification. Two haplotype and at least two allele groups were observed across all loci. However, no haplotype/allele group was composed solely of individuals of a single species, a pattern consistent with recent divergence. Furthermore, northernmost populations were not well differentiated and among-group variation was maximized when L. argentatus and L. hyberboreus populations were grouped by locality rather than species, indicating recent hybridization. Four populations are located in putative Pleistocene glacial refugia and had larger t estimates than the other 28 populations. However, we were unable to substantiate these putative refugia using coalescent theory, as all populations had genetic signatures of stability based on mtDNA. The extent of haplotype and allele sharing among Arctic white-headed gull species is noteworthy. Studies of other Arctic taxa have generally revealed species-specific clusters as well as genetic structure within species, usually correlated with geography. Aspects of white-headed gull behavioral biology, such as colonization ability and propensity to hybridize, as well as their recent evolutionary history, have likely played a large role in the limited genetic structure observed.

  17. The CCDC55 couples cannabinoid receptor CNR1 to a putative DISC1 schizophrenia pathway.

    PubMed

    Xie, J; Gizatullin, R; Vukojevic, V; Leopardi, R

    2015-12-03

    Our previous study suggested that the coiled coil domain-containing 55 gene (CCDC55), also named as NSRP1 (nuclear speckle splicing regulatory protein 1 (NSRP1)), was encompassed in a haplotype block spanning over the serotonin transporter (5-HTT) gene in patients with schizophrenia (SCZ). However, the neurobiological function of CCDC55 gene remains unknown. This study aims to uncover the potential role of CCDC55 in SCZ-associated molecular pathways. Using molecular cloning, sequencing and immune blotting to identify basic properties, yeast two-hybrid screening and glutathione S-transferase (GST) pull-down assay to test protein-protein interaction, and confocal laser scanning microscopy (CSLM) to show intracellular interaction of proteins. (i) CCDC55 is expressed as a nuclear protein in human neuronal cells; (ii) Protein-protein interaction analyses showed CCDC55 physically interacted with Ran binding protein 9 (RanBP9) and disrupted in schizophrenia 1 (DISC1); (iii) CCDC55 and RanBP9 co-localized in the nucleus of human neuronal cells; (iv) CCDC55 also interacted with the cannabinoid receptor 1 (CNR1), and with the brain cannabinoid receptor-interacting protein 1a (CNRIP1a); (v) CNR1 activation in differentiated human neuronal cells resulted in an altered RanBP9 localization. CCDC55 may be involved in a functional bridging between the CNR1 activation and the DISC1/RanBP9-associated pathways. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. A Novel WRKY Transcription Factor, MuWRKY3 (Macrotyloma uniflorum Lam. Verdc.) Enhances Drought Stress Tolerance in Transgenic Groundnut (Arachis hypogaea L.) Plants.

    PubMed

    Kiranmai, Kurnool; Lokanadha Rao, Gunupuru; Pandurangaiah, Merum; Nareshkumar, Ambekar; Amaranatha Reddy, Vennapusa; Lokesh, Uppala; Venkatesh, Boya; Anthony Johnson, A M; Sudhakar, Chinta

    2018-01-01

    Drought stress has adverse effects on growth, water relations, photosynthesis and yield of groundnut. WRKY transcription factors (TFs) are the plant-specific TFs which regulate several down-stream stress-responsive genes and play an essential role in plant biotic and abiotic stress responses. We found that WRKY3 gene is highly up-regulated under drought stress conditions and therefore isolated a new WRKY3TF gene from a drought-adapted horsegram ( Macrotyloma uniflorum Lam. Verdc.). Conserved domain studies revealed that protein encoded by this gene contains highly conserved regions of two WRKY domains and two C2H2 zinc-finger motifs. The fusion protein localization studies of transient MuWRKY 3-YFP revealed its nuclear localization. Overexpression of MuWRKY3 TF gene in groundnut ( Arachis hypogaea L.) showed increased tolerance to drought stress compared to wild-type (WT) plants. MuWRKY3 groundnut transgenics displayed lesser and delayed wilting symptoms than WT plants after 10-days of drought stress imposition. The transgenic groundnut plants expressing MuWRKY3 showed less accumulation of malondialdehyde, hydrogen peroxide (H 2 O 2 ), and superoxide anion (O 2 ∙- ), accompanied by more free proline, total soluble sugar content, and activities of antioxidant enzymes than WT plants under drought stress. Moreover, a series of stress-related LEA, HSP, MIPS, APX, SOD , and CAT genes found up-regulated in the transgenic groundnut plants. The study demonstrates that nuclear-localized MuWRKY3 TF regulates the expression of stress-responsive genes and the activity of ROS scavenging enzymes which results in improved drought tolerance in groundnut. We conclude that MuWRKY3 may serve as a new putative candidate gene for the improvement of stress resistance in plants.

  19. A Novel WRKY Transcription Factor, MuWRKY3 (Macrotyloma uniflorum Lam. Verdc.) Enhances Drought Stress Tolerance in Transgenic Groundnut (Arachis hypogaea L.) Plants

    PubMed Central

    Kiranmai, Kurnool; Lokanadha Rao, Gunupuru; Pandurangaiah, Merum; Nareshkumar, Ambekar; Amaranatha Reddy, Vennapusa; Lokesh, Uppala; Venkatesh, Boya; Anthony Johnson, A. M.; Sudhakar, Chinta

    2018-01-01

    Drought stress has adverse effects on growth, water relations, photosynthesis and yield of groundnut. WRKY transcription factors (TFs) are the plant-specific TFs which regulate several down-stream stress-responsive genes and play an essential role in plant biotic and abiotic stress responses. We found that WRKY3 gene is highly up-regulated under drought stress conditions and therefore isolated a new WRKY3TF gene from a drought-adapted horsegram (Macrotyloma uniflorum Lam. Verdc.). Conserved domain studies revealed that protein encoded by this gene contains highly conserved regions of two WRKY domains and two C2H2 zinc-finger motifs. The fusion protein localization studies of transient MuWRKY3-YFP revealed its nuclear localization. Overexpression of MuWRKY3 TF gene in groundnut (Arachis hypogaea L.) showed increased tolerance to drought stress compared to wild-type (WT) plants. MuWRKY3 groundnut transgenics displayed lesser and delayed wilting symptoms than WT plants after 10-days of drought stress imposition. The transgenic groundnut plants expressing MuWRKY3 showed less accumulation of malondialdehyde, hydrogen peroxide (H2O2), and superoxide anion (O2∙-), accompanied by more free proline, total soluble sugar content, and activities of antioxidant enzymes than WT plants under drought stress. Moreover, a series of stress-related LEA, HSP, MIPS, APX, SOD, and CAT genes found up-regulated in the transgenic groundnut plants. The study demonstrates that nuclear-localized MuWRKY3 TF regulates the expression of stress-responsive genes and the activity of ROS scavenging enzymes which results in improved drought tolerance in groundnut. We conclude that MuWRKY3 may serve as a new putative candidate gene for the improvement of stress resistance in plants. PMID:29616059

  20. Identification and functional analysis of two Golgi-localized UDP-galactofuranose transporters with overlapping functions in Aspergillus niger.

    PubMed

    Park, Joohae; Tefsen, Boris; Heemskerk, Marc J; Lagendijk, Ellen L; van den Hondel, Cees A M J J; van Die, Irma; Ram, Arthur F J

    2015-11-02

    Galactofuranose (Galf)-containing glycoconjugates are present in numerous microbes, including filamentous fungi where they are important for morphology, virulence and maintaining cell wall integrity. The incorporation of Galf-residues into galactomannan, galactomannoproteins and glycolipids is carried out by Golgi-localized Galf transferases. The nucleotide sugar donor used by these transferases (UDP-Galf) is produced in the cytoplasm and has to be transported to the lumen of the Golgi by a dedicated nucleotide sugar transporter. Based on homology with recently identified UDP-Galf-transporters in A. fumigatus and A. nidulans, two putative UDP-Galf-transporters in A. niger were found. Their function and localization was determined by gene deletions and GFP-tagging studies, respectively. The two putative UDP-Galf-transporters in A. niger are homologous to each other and are predicted to contain eleven transmembrane domains (UgtA) or ten transmembrane domains (UgtB) due to a reduced length of the C-terminal part of the UgtB protein. The presence of two putative UDP-Galf-transporters in the genome was not unique for A. niger. From the twenty Aspergillus species analysed, nine species contained two additional putative UDP-Galf-transporters. Three of the nine species were outside the Aspergillus section nigri, indication an early duplication of UDP-Galf-transporters and subsequent loss of the UgtB copy in several aspergilli. Deletion analysis of the single and double mutants in A. niger indicated that the two putative UDP-Galf-transporters (named UgtA and UgtB) have a redundant function in UDP-Galf-transport as only the double mutant displayed a Galf-negative phenotype. The Galf-negative phenotype of the double mutant could be complemented by expressing either CFP-UgtA or CFP-UgtB fusion proteins from their endogenous promoters, indicating that both CFP-tagged proteins are functional. Both Ugt proteins co-localize with each other as well as with the GDP-mannose nucleotide transporter, as was demonstrated by fluorescence microscopy, thereby confirming their predicted localization in the Golgi. A. niger contains two genes encoding UDP-Galf-transporters. Deletion and localization studies indicate that UgtA and UgtB have redundant functions in the biosynthesis of Galf-containing glycoconjugates.

  1. Mutations in the Treacher Collins syndrome gene lead to mislocalization of the nucleolar protein treacle.

    PubMed

    Marsh, K L; Dixon, J; Dixon, M J

    1998-10-01

    Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development, the features of which include conductive hearing loss and cleft palate. The TCS gene ( TCOF1 ), which is localized to chromosome 5q32-q33.1, recently has been identified by positional cloning. Analysis of TCOF1 revealed that the majority of TCS mutations result in the creation of a premature termination codon. The function of the predicted protein, treacle, is unknown, although indirect evidence from database analyses suggests that it may function as a shuttling nucleolar phosphoprotein. In the current study, we provide the first direct evidence that treacle is a nucleolar protein. An antibody generated against treacle shows that it localizes to the nucleolus. Fusion proteins tagged to a green fluorescent protein reporter were shown to localize to different compartments of the cell when putative nuclear localization signals were deleted. Parallel experiments using conserved regions of the murine homologue of TCOF1 confirmed these results. Site-directed mutagenesis has been used to recreate mutations observed in individuals with TCS. The resulting truncated proteins are mislocalized within the cell, which further supports the hypothesis that an integral part of treacle's function involves shuttling between the nucleolus and the cytoplasm. TCS is, therefore, the first Mendelian disorder resulting from mutations which lead to aberrant expression of a nucleolar protein.

  2. Mammalian Peptidylglycine α-Amidating Monooxygenase mRNA Expression Can Be Modulated by the La Autoantigen

    PubMed Central

    Brenet, Fabienne; Dussault, Nadège; Borch, Jonas; Ferracci, Géraldine; Delfino, Christine; Roepstorff, Peter; Miquelis, Raymond; Ouafik, L'Houcine

    2005-01-01

    Peptidylglycine α-amidating monooxygenase (PAM; EC 1.14.17.3) catalyzes the COOH-terminal α-amidation of peptidylglycine substrates, yielding amidated products. We have previously reported a putative regulatory RNA binding protein (PAM mRNA-BP) that binds specifically to the 3′ untranslated region (UTR) of PAM-mRNA. Here, the PAM mRNA-BP was isolated and revealed to be La protein using affinity purification onto a 3′ UTR PAM RNA, followed by tandem mass spectrometry identification. We determined that the core binding sequence is approximately 15-nucleotides (nt) long and is located 471 nt downstream of the stop codon. Moreover, we identified the La autoantigen as a protein that specifically binds the 3′ UTR of PAM mRNA in vivo and in vitro. Furthermore, La protein overexpression caused a nuclear retention of PAM mRNAs and resulted in the down-regulation of endogenous PAM activity. Most interestingly, the nuclear retention of PAM mRNA is lost upon expressing the La proteins that lack a conserved nuclear retention element, suggesting a direct association between PAM mRNA and La protein in vivo. Reporter assays using a chimeric mRNA that combined luciferase and the 3′ UTR of PAM mRNA demonstrated a decrease of the reporter activity due to an increase in the nuclear localization of reporter mRNAs, while the deletion of the 15-nt La binding site led to their clear-cut cytoplasmic relocalization. The results suggest an important role for the La protein in the modulation of PAM expression, possibly by mechanisms that involve a nuclear retention and perhaps a processing of pre-PAM mRNA molecules. PMID:16107699

  3. Bortezomib reverses the proliferative and antiapoptotic effect of neuropeptides on prostate cancer cells.

    PubMed

    Tsapakidis, Konstantinos; Vlachostergios, Panagiotis J; Voutsadakis, Ioannis A; Befani, Christina D; Patrikidou, Anna; Hatzidaki, Eleana; Daliani, Danai D; Moutzouris, George; Liakos, Panagiotis; Papandreou, Christos N

    2012-06-01

    Neuropeptides are important signal initiators in advanced prostate cancer, partially acting through activation of nuclear factor kappa B. Central to nuclear factor kappa B regulation is the ubiquitin-proteasome system, pharmacological inhibition of which has been proposed as an anticancer strategy. We investigated the putative role of the proteasome inhibitor bortezomib in neuropeptides signaling effects on prostate cancer cells. Human prostate cancer cell lines, LNCaP and PC-3, were used to examine cell proliferation, levels of proapoptotic (caspase-3, Bad) and cell cycle regulatory proteins (p53, p27, p21), as well as total and phosphorylated Akt and p44/42 mitogen-activated protein kinase proteins. Furthermore, 20S proteasome activity, subcellular localization of nuclear factor kappa B and transcription of nuclear factor kappa B target genes, interleukin-8 and vascular endothelial growth factor, were assessed. Neuropeptides (endothelin-1, bombesin) increased cell proliferation, whereas bortezomib decreased proliferation and induced apoptosis, an effect maintained after cotreatment with neuropeptides. Bad, p53, p21 and p27 were downregulated by neuropeptides in PC-3, and these effects were reversed with the addition of bortezomib. Neuropeptides increased proteasomal activity and nuclear factor kappa B levels in PC-3, and these effects were prevented by bortezomib. Interleukin-8 and vascular endothelial growth factor transcripts were induced after neuropeptides treatment, but downregulated by bortezomib. These results coincided with the ability of bortezomib to reduce mitogen-activated protein kinase signaling in both cell lines. These findings are consistent with bortezomib-mediated abrogation of neuropeptides-induced proliferative and antiapoptotic signaling. Thus, the effect of the drug on the neuropeptides axis needs to be further investigated, as neuropeptide action in prostate cancer might entail involvement of the proteasome. © 2012 The Japanese Urological Association.

  4. Hypothesis: Gene-rich plastid genomes in red algae may be an outcome of nuclear genome reduction.

    PubMed

    Qiu, Huan; Lee, Jun Mo; Yoon, Hwan Su; Bhattacharya, Debashish

    2017-06-01

    Red algae (Rhodophyta) putatively diverged from the eukaryote tree of life >1.2 billion years ago and are the source of plastids in the ecologically important diatoms, haptophytes, and dinoflagellates. In general, red algae contain the largest plastid gene inventory among all such organelles derived from primary, secondary, or additional rounds of endosymbiosis. In contrast, their nuclear gene inventory is reduced when compared to their putative sister lineage, the Viridiplantae, and other photosynthetic lineages. The latter is thought to have resulted from a phase of genome reduction that occurred in the stem lineage of Rhodophyta. A recent comparative analysis of a taxonomically broad collection of red algal and Viridiplantae plastid genomes demonstrates that the red algal ancestor encoded ~1.5× more plastid genes than Viridiplantae. This difference is primarily explained by more extensive endosymbiotic gene transfer (EGT) in the stem lineage of Viridiplantae, when compared to red algae. We postulate that limited EGT in Rhodophytes resulted from the countervailing force of ancient, and likely recurrent, nuclear genome reduction. In other words, the propensity for nuclear gene loss led to the retention of red algal plastid genes that would otherwise have undergone intracellular gene transfer to the nucleus. This hypothesis recognizes the primacy of nuclear genome evolution over that of plastids, which have no inherent control of their gene inventory and can change dramatically (e.g., secondarily non-photosynthetic eukaryotes, dinoflagellates) in response to selection acting on the host lineage. © 2017 Phycological Society of America.

  5. Rat1p and Xrn1p are functionally interchangeable exoribonucleases that are restricted to and required in the nucleus and cytoplasm, respectively.

    PubMed Central

    Johnson, A W

    1997-01-01

    XRN1 encodes an abundant cytoplasmic exoribonuclease, Xrn1p, responsible for mRNA turnover in yeast. A screen for bypass suppressors of the inviability of xrn1 ski2 double mutants identified dominant alleles of RAT1, encoding an exoribonuclease homologous with Xrn1p. These RAT1 alleles restored XRN1-like functions, including cytoplasmic RNA turnover, wild-type sensitivity to the microtubule-destabilizing drug benomyl, and sporulation. The mutations were localized to a region of the RAT1 gene encoding a putative bipartite nuclear localization sequence (NLS). Fusions to green fluorescent protein were used to demonstrate that wild-type Rat1p is localized to the nucleus and that the mutant alleles result in mislocalization of Rat1p to the cytoplasm. Conversely, targeting Xrn1p to the nucleus by the addition of the simian virus 40 large-T-antigen NLS resulted in complementation of the temperature sensitivity of a rat1-1 strain. These results indicate that Xrn1p and Rat1p are functionally interchangeable exoribonucleases that function in and are restricted to the cytoplasm and nucleus, respectively. It is likely that the higher eukaryotic homologs of these proteins will function similarly in the cytoplasm and nucleus. PMID:9315672

  6. Geographic patterns of genetic variation in native pecans

    USDA-ARS?s Scientific Manuscript database

    A structured collection of eighty seedling pecan trees [Carya illinoinensis (Wangenh.) K. Koch] representing nineteen putatively native pecan populations across the species range were evaluated at three plastid and 14 nuclear microsatellite (simple sequence repeat, SSR) loci. Data were analyzed usi...

  7. Expression, purification and preliminary X-ray diffraction studies of VERNALIZATION1208–341 from Arabidopsis thaliana

    PubMed Central

    King, Gordon; Hill, Justine M.; Martin, Jennifer L.; Mylne, Joshua S.

    2009-01-01

    VERNALIZATION1 (VRN1) is required in the model plant Arabidopsis thaliana for the epigenetic suppression of the floral repressor FLC by prolonged cold treatment. Stable suppression of FLC accelerates flowering, a physiological process known as vernalization. VRN1 is a 341-residue DNA-binding protein that contains two plant-specific B3 domains (B3a and B3b), a putative nuclear localization sequence (NLS) and two putative PEST domains. VRN1208–341 includes the second B3 domain and a region upstream that is highly conserved in the VRN1 orthologues of other dicotyledonous plants. VRN1208–341 was crystallized by the hanging-drop method in 0.05 M sodium acetate pH 6.0 containing 1.0 M NaCl and 18%(w/v) PEG 3350. Preliminary X-ray diffraction data analysis revealed that the VRN1208–341 crystal diffracted to 2.1 Å and belonged to space group C2, with unit-cell parameters a = 105.2, b = 47.9, c = 61.2 Å, α = 90.0, β = 115.4, γ = 90.0°. Assuming that two molecules occupy the asymmetric unit, a Matthews coefficient of 2.05 Å3 Da−1 and a solvent content of 40.1% were calculated. PMID:19255487

  8. Constrained release of lamina-associated enhancers and genes from the nuclear envelope during T-cell activation facilitates their association in chromosome compartments.

    PubMed

    Robson, Michael I; de Las Heras, Jose I; Czapiewski, Rafal; Sivakumar, Aishwarya; Kerr, Alastair R W; Schirmer, Eric C

    2017-07-01

    The 3D organization of the genome changes concomitantly with expression changes during hematopoiesis and immune activation. Studies have focused either on lamina-associated domains (LADs) or on topologically associated domains (TADs), defined by preferential local chromatin interactions, and chromosome compartments, defined as higher-order interactions between TADs sharing functionally similar states. However, few studies have investigated how these affect one another. To address this, we mapped LADs using Lamin B1-DamID during Jurkat T-cell activation, finding significant genome reorganization at the nuclear periphery dominated by release of loci frequently important for T-cell function. To assess how these changes at the nuclear periphery influence wider genome organization, our DamID data sets were contrasted with TADs and compartments. Features of specific repositioning events were then tested by fluorescence in situ hybridization during T-cell activation. First, considerable overlap between TADs and LADs was observed with the TAD repositioning as a unit. Second, A1 and A2 subcompartments are segregated in 3D space through differences in proximity to LADs along chromosomes. Third, genes and a putative enhancer in LADs that were released from the periphery during T-cell activation became preferentially associated with A2 subcompartments and were constrained to the relative proximity of the lamina. Thus, lamina associations influence internal nuclear organization, and changes in LADs during T-cell activation may provide an important additional mode of gene regulation. © 2017 Robson et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Compatibility of SYTO 13 and Hoechst 33342 for Longitudinal Imaging of Neuron Viability and Cell Death

    DTIC Science & Technology

    2012-08-14

    Defining the molecular and biochemical pathways re- sponsible for cell death phenotypes is essential for iden- tifying critical points that could be...clearly image nuclear structure resulted in PI-positive nuclei developing an orange hue. (B) Planimetric quantitation of nuclear size measured...metabolites on undifferentiated PC12 cells: a putative structure -toxicity relationship. Chem Res Toxicol 2006, 19(10):1294–1304. 10. McNutt P, Celver J

  10. Membrane topology of Golgi-localized probable S-adenosylmethionine-dependent methyltransferase in tobacco (Nicotiana tabacum) BY-2 cells.

    PubMed

    Liu, Jianping; Hayashi, Kyoko; Matsuoka, Ken

    2015-01-01

    S-adenosylmethionine (SAM)-dependent methyltransferases (MTases) transfer methyl groups to substrates. In this study, a novel putative tobacco SAM-MTase termed Golgi-localized methyl transferase 1 (GLMT1) has been characterized. GLMT1 is comprised of 611 amino acids with short N-terminal region, putative transmembrane region, and C-terminal SAM-MTase domain. Expression of monomeric red fluorescence protein (mRFP)-tagged protein in tobacco BY-2 cell indicated that GLMT1 is a Golgi-localized protein. Analysis of the membrane topology by protease digestion suggested that both C-terminal catalytic region and N-terminal region seem to be located to the cytosolic side of the Golgi apparatus. Therefore, GLMT1 might have a different function than the previously studied SAM-MTases in plants.

  11. Molecular Evidence for Natural Hybridization between Cotoneaster dielsianus and C. glaucophyllus

    PubMed Central

    Li, Mingwan; Chen, Sufang; Zhou, Renchao; Fan, Qiang; Li, Feifei; Liao, Wenbo

    2017-01-01

    Hybridization accompanied by polyploidization and apomixis has been demonstrated as a driving force in the evolution and speciation of many plants. A good example to study the evolutionary process of hybridization associated with polyploidy and apomixis is the genus Cotoneaster (Rosaceae), which includes approximately 150 species, most of which are polyploid apomicts. In this study, we investigated all Cotoneaster taxa distributed in a small region of Malipo, Yunnan, China. Based on the morphological characteristics, four Cotoneaster taxa were identified and sampled: C. dielsianus, C. glaucophyllus, C. franchetii, and a putative hybrid. Flow cytometry analyses showed that C. glaucophyllus was diploid, while the other three taxa were tetraploid. A total of five low-copy nuclear genes and six chloroplast regions were sequenced to validate the status of the putative hybrid. Sequence analyses showed that C. dielsianus and C. glaucophyllus are distantly related and they could be well separated using totally 50 fixed nucleotide substitutions and four fixed indels at the 11 investigated genes. All individuals of the putative hybrid harbored identical sequences: they showed chromatogram additivity for all fixed differences between C. dielsianus and C. glaucophyllus at the five nuclear genes, and were identical with C. glaucophyllus at the six chloroplast regions. Haplotype analysis revealed that C. dielsianus possessed nine haplotypes for the 11 genes, while C. glaucophyllus had ten, and there were no shared haplotypes between the two species. The putative hybrid harbored two haplotypes for each nuclear gene: one shared with C. dielsianus and the other with C. glaucophyllus. They possessed the same chloroplast haplotype with C. glaucophyllus. Our study provided convincing evidence for natural hybridization between C. dielsianus and C. glaucophyllus, and revealed that all hybrid individuals were derivatives of one initial F1 via apomixes. C. glaucophyllus served as the maternal parent at the initial hybridization event. We proposed that anthropological disturbance provided an opportunity for hybridization between C. dielsianus and C. glaucophyllus, and a tetraploid F1 successfully bred many identical progenies via apomixis. Under this situation, species integrity could be maintained for these Cotoneaster species, but attentions should be kept for this new-born hybrid. PMID:28536587

  12. Asymmetrical Gene Flow in a Hybrid Zone of Hawaiian Schiedea (Caryophyllaceae) Species with Contrasting Mating Systems

    PubMed Central

    Wallace, Lisa E.; Culley, Theresa M.; Weller, Stephen G.; Sakai, Ann K.; Kuenzi, Ashley; Roy, Tilottama; Wagner, Warren L.; Nepokroeff, Molly

    2011-01-01

    Asymmetrical gene flow, which has frequently been documented in naturally occurring hybrid zones, can result from various genetic and demographic factors. Understanding these factors is important for determining the ecological conditions that permitted hybridization and the evolutionary potential inherent in hybrids. Here, we characterized morphological, nuclear, and chloroplast variation in a putative hybrid zone between Schiedea menziesii and S. salicaria, endemic Hawaiian species with contrasting breeding systems. Schiedea menziesii is hermaphroditic with moderate selfing; S. salicaria is gynodioecious and wind-pollinated, with partially selfing hermaphrodites and largely outcrossed females. We tested three hypotheses: 1) putative hybrids were derived from natural crosses between S. menziesii and S. salicaria, 2) gene flow via pollen is unidirectional from S. salicaria to S. menziesii and 3) in the hybrid zone, traits associated with wind pollination would be favored as a result of pollen-swamping by S. salicaria. Schiedea menziesii and S. salicaria have distinct morphologies and chloroplast genomes but are less differentiated at the nuclear loci. Hybrids are most similar to S. menziesii at chloroplast loci, exhibit nuclear allele frequencies in common with both parental species, and resemble S. salicaria in pollen production and pollen size, traits important to wind pollination. Additionally, unlike S. menziesii, the hybrid zone contains many females, suggesting that the nuclear gene responsible for male sterility in S. salicaria has been transferred to hybrid plants. Continued selection of nuclear genes in the hybrid zone may result in a population that resembles S. salicaria, but retains chloroplast lineage(s) of S. menziesii. PMID:21949765

  13. Diffusive-like effects and possible non trivial local topology on the half-Heusler YPdBi compound

    NASA Astrophysics Data System (ADS)

    Souza, J. C.; Lesseux, G. G.; Urbano, R. R.; Rettori, C.; Pagliuso, P. G.

    2018-05-01

    The non-ambiguous experimental identification of topological states of matter is one of the main interesting problems regarding this new quantum state of matter. In particular, the half-Heusler family RMT (R = rare-earth, T = Pd, Pt or Au and T = Bi, Sb, Pb or Sn) could be a useful platform to explore these states due to their cubic symmetry and the topological properties tunable via their unit cell volume and/or the nuclear charges of the M and T atoms. In this work, we report electron spin resonance (ESR) and complementary macroscopic measurements in the Nd3 + -doped putative topologically trivial semimetal YPdBi. Following the Nd3 + ESR lineshape as a function of microwave power, size of the particle and temperature, we have been able to observe an evolution from a Dysonian lineshape to a diffusive-like lineshape. Furthermore, the Nd3 + ESR intensity saturation is concentration dependent, which could be due to a phonon-bottleneck process. Comparing these results with the Nd3 + -doped YPtBi, we discuss a possible scenario in which the Nd3 + ions could locally tune the topological properties of the system.

  14. Role of the putative structural protein Sed1p in mitochondrial genome maintenance.

    PubMed

    Phadnis, Naina; Ayres Sia, Elaine

    2004-09-24

    The nuclear gene MIP1 encodes the mitochondrial DNA polymerase responsible for replicating the mitochondrial genome in Saccharomyces cerevisiae. A number of other factors involved in replicating and segregating the mitochondrial genome are yet to be identified. Here, we report that a bacterial two-hybrid screen using the mitochondrial polymerase, Mip1p, as bait identified the yeast protein Sed1p. Sed1p is a cell surface protein highly expressed in the stationary phase. We find that several modified forms of Sed1p are expressed and the largest of these forms interacts with the mitochondrial polymerase in vitro. Deletion of SED1 causes a 3.5-fold increase in the rate of mitochondrial DNA point mutations as well as a 4.3-fold increase in the rate of loss of respiration. In contrast, we see no change in the rate of nuclear point mutations indicating the specific role of Sed1p function in mitochondrial genome stability. Indirect immunofluorescence analysis of Sed1p localization shows that Sed1p is targeted to the mitochondria. Moreover, Sed1p is detected in purified mitochondrial fractions and the localization to the mitochondria of the largest modified form is insensitive to the action of proteinase K. Deletion of the sed1 gene results in a reduction in the quantity of Mip1p and also affects the levels of a mitochondrially-expressed protein, Cox3p. Our results point towards a role for Sed1p in mitochondrial genome maintenance.

  15. Nup93, a Vertebrate Homologue of Yeast Nic96p, Forms a Complex with a Novel 205-kDa Protein and Is Required for Correct Nuclear Pore Assembly

    PubMed Central

    Grandi, Paola; Dang, Tam; Pané, Nelly; Shevchenko, Andrej; Mann, Matthias; Forbes, Douglass; Hurt, Ed

    1997-01-01

    Yeast and vertebrate nuclear pores display significant morphological similarity by electron microscopy, but sequence similarity between the respective proteins has been more difficult to observe. Herein we have identified a vertebrate nucleoporin, Nup93, in both human and Xenopus that has proved to be an evolutionarily related homologue of the yeast nucleoporin Nic96p. Polyclonal antiserum to human Nup93 detects corresponding proteins in human, rat, and Xenopus cells. Immunofluorescence and immunoelectron microscopy localize vertebrate Nup93 at the nuclear basket and at or near the nuclear entry to the gated channel of the pore. Immunoprecipitation from both mammalian and Xenopus cell extracts indicates that a small fraction of Nup93 physically interacts with the nucleoporin p62, just as yeast Nic96p interacts with the yeast p62 homologue. However, a large fraction of vertebrate Nup93 is extracted from pores and is also present in Xenopus egg extracts in complex with a newly discovered 205-kDa protein. Mass spectrometric sequencing of the human 205-kDa protein reveals that this protein is encoded by an open reading frame, KIAAO225, present in the human database. The putative human nucleoporin of 205 kDa has related sequence homologues in Caenorhabditis elegans and Saccharomyces cerevisiae. To analyze the role of the Nup93 complex in the pore, nuclei were assembled that lack the Nup93 complex after immunodepletion of a Xenopus nuclear reconstitution extract. The Nup93-complex–depleted nuclei are clearly defective for correct nuclear pore assembly. From these experiments, we conclude that the vertebrate and yeast pore have significant homology in their functionally important cores and that, with the identification of Nup93 and the 205-kDa protein, we have extended the knowledge of the nearest-neighbor interactions of this core in both yeast and vertebrates. PMID:9348540

  16. Imaging the secretory compartments involved in the intracellular traffic of CHS-4, a class IV chitin synthase, in Neurospora crassa.

    PubMed

    Rico-Ramírez, Adriana M; Roberson, Robert W; Riquelme, Meritxell

    2018-03-27

    In Neurospora crassa hyphae the localization of all seven chitin synthases (CHSs) at the Spitzenkörper (Spk) and at developing septa has been well analyzed. Hitherto, the mechanisms of CHSs traffic and sorting from synthesis to delivery sites remain largely unexplored. In Saccharomyces cerevisiae exit of Chs3p from the endoplasmic reticulum (ER) requires chaperone Chs7p. Here, we analyzed the role of CSE-7, N. crassa Chs7p orthologue in the biogenesis of CHS-4 (orthologue of Chs3p). In a N. crassa Δcse-7 mutant, CHS-4-GFP no longer accumulated at the Spk and septa. Instead, fluorescence was retained in hyphal subapical regions in an extensive network of elongated cisternae (NEC) referred to previously as tubular vacuoles. In a complemented strain expressing a copy of cse-7 the localization of CHS-4-GFP at the Spk and septa was restored, providing evidence that CSE-7 is necessary for the localization of CHS-4 at hyphal tips and septa. CSE-7 was revealed at delimited regions of the ER at the immediacies of nuclei, at the NEC, and remarkably also at septa and the Spk. The organization of the NEC was dependent on the cytoskeleton. SEC-63, an extensively used ER marker, and NCA-1, a SERCA-type ATPase previously localized at the nuclear envelope, were used as markers to discern the nature of the membranes containing CSE-7. Both SEC-63 and NCA-1 were found at the nuclear envelope, but also at regions of the NEC. However, at the NEC only NCA-1 co-localized extensively with CSE-7. Observations by transmission electron microscopy revealed abundant rough ER sheets and distinct electron translucent smooth flattened cisternae, which could correspond collectively to the NEC, thorough the subapical cytoplasm. This study identifies CSE-7 as the putative ER receptor for its cognate cargo, the polytopic membrane protein CHS-4, and elucidates the complexity of the ER system in filamentous fungi. Copyright © 2018. Published by Elsevier Inc.

  17. Isolation and characterization of a novel calmodulin-binding protein from potato

    NASA Technical Reports Server (NTRS)

    Reddy, Anireddy S N.; Day, Irene S.; Narasimhulu, S. B.; Safadi, Farida; Reddy, Vaka S.; Golovkin, Maxim; Harnly, Melissa J.

    2002-01-01

    Tuberization in potato is controlled by hormonal and environmental signals. Ca(2+), an important intracellular messenger, and calmodulin (CaM), one of the primary Ca(2+) sensors, have been implicated in controlling diverse cellular processes in plants including tuberization. The regulation of cellular processes by CaM involves its interaction with other proteins. To understand the role of Ca(2+)/CaM in tuberization, we have screened an expression library prepared from developing tubers with biotinylated CaM. This screening resulted in isolation of a cDNA encoding a novel CaM-binding protein (potato calmodulin-binding protein (PCBP)). Ca(2+)-dependent binding of the cDNA-encoded protein to CaM is confirmed by (35)S-labeled CaM. The full-length cDNA is 5 kb long and encodes a protein of 1309 amino acids. The deduced amino acid sequence showed significant similarity with a hypothetical protein from another plant, Arabidopsis. However, no homologs of PCBP are found in nonplant systems, suggesting that it is likely to be specific to plants. Using truncated versions of the protein and a synthetic peptide in CaM binding assays we mapped the CaM-binding region to a 20-amino acid stretch (residues 1216-1237). The bacterially expressed protein containing the CaM-binding domain interacted with three CaM isoforms (CaM2, CaM4, and CaM6). PCBP is encoded by a single gene and is expressed differentially in the tissues tested. The expression of CaM, PCBP, and another CaM-binding protein is similar in different tissues and organs. The predicted protein contained seven putative nuclear localization signals and several strong PEST motifs. Fusion of the N-terminal region of the protein containing six of the seven nuclear localization signals to the reporter gene beta-glucuronidase targeted the reporter gene to the nucleus, suggesting a nuclear role for PCBP.

  18. Hepatocellular differentiation status is characterized by distinct subnuclear localization and form of the chanzyme TRPM7.

    PubMed

    Ogunrinde, Adenike; Pereira, Robyn D; Beaton, Natalie; Lam, D Hung; Whetstone, Christiane; Hill, Ceredwyn E

    The channel-kinase TRPM7 is important for the survival, proliferation, and differentiation, of many cell types. Both plasma membrane channel activity and kinase function are implicated in these roles. Channel activity is greater in less differentiated hepatoma cells compared with non-dividing, terminally differentiated adult hepatocytes, suggesting differences in protein expression and/or localization. We used electrophysiological and immunofluorescence approaches to establish whether hepatocellular differentiation is associated with altered TRPM7 expression. Mean outward current decreased by 44% in WIF-B hepatoma cells incubated with the established hepatic differentiating factors oncostatin M/dexamethasone for 1-8 days. Pre-incubation with pyridone 6, a pan-JAK inhibitor, blocked the current reduction. An antibody targeted to the C-terminus of TRPM7 labelled the cytoplasm in WIF-B cells and intact rat liver. Significant label also localized to the nuclear envelope (NE), with relatively more detected in adult hepatocytes compared with WIF-B cells. Hepatoma cells also exhibited nucleoplasmic labelling with intense signal in the nucleolus. The endogenous labelling pattern closely resembles that of HEK293T cells heterologously expressing a TRPM7 kinase construct containing a putative nucleolar localization sequence. These results suggest that TRPM7 form and distribution between the plasma membrane and nucleus, rather than expression, is altered in parallel with differentiation status in rat hepatic cells. Copyright © 2017 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  19. Characterization of calcineurin-dependent response element binding protein and its involvement in copper-metallothionein gene expression in Neurospora

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Kalari Satish; Ravi Kumar, B.; Siddavattam, Dayananda

    2006-07-07

    In continuation of our recent observations indicating the presence of a lone calcineurin-dependent response element (CDRE) in the -3730 bp upstream region of copper-induced metallothionein (CuMT) gene of Neurospora [K.S. Kumar, S. Dayananda, C. Subramanyam, Copper alone, but not oxidative stress, induces copper-metallothionein gene in Neurospora crassa, FEMS Microbiol. Lett. 242 (2005) 45-50], we isolated and characterized the CDRE-binding protein. The cloned upstream region of CuMT gene was used as the template to specifically amplify CDRE element, which was immobilized on CNBr-activated Sepharose 4B for use as the affinity matrix to purify the CDRE binding protein from nuclear extracts obtainedmore » from Neurospora cultures grown in presence of copper. Two-dimensional gel electrophoresis of the affinity purified protein revealed the presence of a single 17 kDa protein, which was identified and characterized by MALDI-TOF. Peptide mass finger printing of tryptic digests and analysis of the 17 kDa protein matched with the regulatory {beta}-subunit of calcineurin (Ca{sup 2+}-calmodulin dependent protein phosphatase). Parallel identification of nuclear localization signals in this protein by in silico analysis suggests a putative role for calcineurin in the regulation of CuMT gene expression.« less

  20. Multiple roles of genome-attached bacteriophage terminal proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redrejo-Rodríguez, Modesto; Salas, Margarita, E-mail: msalas@cbm.csic.es

    2014-11-15

    Protein-primed replication constitutes a generalized mechanism to initiate DNA or RNA synthesis in linear genomes, including viruses, gram-positive bacteria, linear plasmids and mobile elements. By this mechanism a specific amino acid primes replication and becomes covalently linked to the genome ends. Despite the fact that TPs lack sequence homology, they share a similar structural arrangement, with the priming residue in the C-terminal half of the protein and an accumulation of positively charged residues at the N-terminal end. In addition, various bacteriophage TPs have been shown to have DNA-binding capacity that targets TPs and their attached genomes to the host nucleoid.more » Furthermore, a number of bacteriophage TPs from different viral families and with diverse hosts also contain putative nuclear localization signals and localize in the eukaryotic nucleus, which could lead to the transport of the attached DNA. This suggests a possible role of bacteriophage TPs in prokaryote-to-eukaryote horizontal gene transfer. - Highlights: • Protein-primed genome replication constitutes a strategy to initiate DNA or RNA synthesis in linear genomes. • Bacteriophage terminal proteins (TPs) are covalently attached to viral genomes by their primary function priming DNA replication. • TPs are also DNA-binding proteins and target phage genomes to the host nucleoid. • TPs can also localize in the eukaryotic nucleus and may have a role in phage-mediated interkingdom gene transfer.« less

  1. E3 ligase Hei10: a multifaceted structure-based signaling molecule with roles within and beyond meiosis

    PubMed Central

    De Muyt, Arnaud; Zhang, Liangran; Piolot, Tristan; Kleckner, Nancy; Espagne, Eric; Zickler, Denise

    2014-01-01

    Human enhancer of invasion-10 (Hei10) mediates meiotic recombination and also plays roles in cell proliferation. Here we explore Hei10’s roles throughout the sexual cycle of the fungus Sordaria with respect to localization and effects of null, RING-binding, and putative cyclin-binding (RXL) domain mutations. Hei10 makes three successive types of foci. Early foci form along synaptonemal complex (SC) central regions. At some of these positions, depending on its RING and RXL domains, Hei10 mediates development and turnover of two sequential types of recombination complexes, each demarked by characteristic amplified Hei10 foci. Integration with ultrastructural data for recombination nodules further reveals that recombination complexes differentiate into three types, one of which corresponds to crossover recombination events during or prior to SC formation. Finally, Hei10 positively and negatively modulates SUMO localization along SCs by its RING and RXL domains, respectively. The presented findings suggest that Hei10 integrates signals from the SC, associated recombination complexes, and the cell cycle to mediate both the development and programmed turnover/evolution of recombination complexes via SUMOylation/ubiquitination. Analogous cell cycle-linked assembly/disassembly switching could underlie localization and roles for Hei10 in centrosome/spindle pole body dynamics and associated nuclear trafficking. We suggest that Hei10 is a unique type of structure-based signal transduction protein. PMID:24831702

  2. Evolutionary history of tall fescue morphotypes inferred from molecular phylogenetics of the Lolium-Festuca species complex

    PubMed Central

    2010-01-01

    Background The agriculturally important pasture grass tall fescue (Festuca arundinacea Schreb. syn. Lolium arundinaceum (Schreb.) Darbysh.) is an outbreeding allohexaploid, that may be more accurately described as a species complex consisting of three major (Continental, Mediterranean and rhizomatous) morphotypes. Observation of hybrid infertility in some crossing combinations between morphotypes suggests the possibility of independent origins from different diploid progenitors. This study aims to clarify the evolutionary relationships between each tall fescue morphotype through phylogenetic analysis using two low-copy nuclear genes (encoding plastid acetyl-CoA carboxylase [Acc1] and centroradialis [CEN]), the nuclear ribosomal DNA internal transcribed spacer (rDNA ITS) and the chloroplast DNA (cpDNA) genome-located matK gene. Other taxa within the closely related Lolium-Festuca species complex were also included in the study, to increase understanding of evolutionary processes in a taxonomic group characterised by multiple inter-specific hybridisation events. Results Putative homoeologous sequences from both nuclear genes were obtained from each polyploid species and compared to counterparts from 15 diploid taxa. Phylogenetic reconstruction confirmed F. pratensis and F. arundinacea var. glaucescens as probable progenitors to Continental tall fescue, and these species are also likely to be ancestral to the rhizomatous morphotype. However, these two morphotypes are sufficiently distinct to be located in separate clades based on the ITS-derived data set. All four of the generated data sets suggest independent evolution of the Mediterranean and Continental morphotypes, with minimal affinity between cognate sequence haplotypes. No obvious candidate progenitor species for Mediterranean tall fescues were identified, and only two putative sub-genome-specific haplotypes were identified for this morphotype. Conclusions This study describes the first phylogenetic analysis of the Festuca genus to include representatives of each tall fescue morphotype, and to use low copy nuclear gene-derived sequences to identify putative progenitors of the polyploid species. The demonstration of distinct tall fescue lineages has implications for both taxonomy and molecular breeding strategies, and may facilitate the generation of morphotype and/or sub-genome-specific molecular markers. PMID:20937141

  3. Putative members of the Arabidopsis Nup107-160 nuclear pore sub-complex contribute to pathogen defense.

    PubMed

    Wiermer, Marcel; Cheng, Yu Ti; Imkampe, Julia; Li, Meilan; Wang, Dongmei; Lipka, Volker; Li, Xin

    2012-06-01

    In eukaryotic cells, transduction of external stimuli into the nucleus to induce transcription and export of mRNAs for translation in the cytoplasm is mediated by nuclear pore complexes (NPCs) composed of nucleoporin proteins (Nups). We previously reported that Arabidopsis MOS3, encoding the homolog of vertebrate Nup96, is required for plant immunity and constitutive resistance mediated by the de-regulated Toll interleukin 1 receptor/nucleotide-binding/leucine-rich repeat (TNL)-type R gene snc1. In vertebrates, Nup96 is a component of the conserved Nup107-160 nuclear pore sub-complex, and implicated in immunity-related mRNA export. Here, we used a reverse genetics approach to examine the requirement for additional subunits of the predicted Arabidopsis Nup107-160 complex in plant immunity. We show that, among eight putative complex members, beside MOS3, only plants with defects in Nup160 or Seh1 are impaired in basal resistance. Constitutive resistance in the snc1 mutant and immunity mediated by TNL-type R genes also depend on functional Nup160 and have a partial requirement for Seh1. Conversely, resistance conferred by coiled coil-type immune receptors operates largely independently of both genes, demonstrating specific contributions to plant defense signaling. Our functional analysis further revealed that defects in nup160 and seh1 result in nuclear accumulation of poly(A) mRNA, and, in the case of nup160, considerable depletion of EDS1, a key positive regulator of basal and TNL-triggered resistance. These findings suggest that Nup160 is required for nuclear mRNA export and full expression of EDS1-conditioned resistance pathways in Arabidopsis. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  4. A COMPARATIVE ANALYSIS BETWEEN FRANCE AND JAPAN ON LOCAL GOVERNMENTS' INVOLVEMENT IN NUCLEAR SAFETY GOVERNANCE

    NASA Astrophysics Data System (ADS)

    Sugawara, Shin-Etsu; Shiroyama, Hideaki

    This paper shows a comparative analysis between France and Japan on the way of the local governments' involvement in nuclear safety governance through some interviews. In France, a law came into force that requires related local governments to establish "Commision Locale d'Information" (CLI), which means the local governments officially involve in nuclear regulatory activity. Meanwhile, in Japan, related local governments substantially involve in the operation of nuclear facilities through the "safety agreements" in spite of the lack of legal authority. As a result of comparative analysis, we can point out some institutional input from French cases as follows: to clarify the local governments' roles in the nuclear regulation system, to establish the official channels of communication among nuclear utilities, national regulatory authorities and local governments, and to stipulate explicitly the transparency as a purpose of safety regulation.

  5. Evidence for asymmetrical hybridization despite pre- and post-pollination reproductive barriers between two Silene species

    PubMed Central

    Zhang, Jin-Ju; Montgomery, Benjamin R.; Huang, Shuang-Quan

    2016-01-01

    Interspecific hybridization is widespread among plants; nevertheless, pre- and post-zygotic isolating mechanisms may maintain species integrity for interfertile species in sympatry despite some gene flow. Interspecific hybridization and potential isolating barriers were evaluated between co-flowering Silene asclepiadea and Silene yunnanensis in an alpine community in southwest China. We investigated morphological and molecular (nuclear microsatellites and chloroplast gene sequence) variation in sympatric populations of S. asclepiadea and S. yunnanensis. Additionally, we analyzed pollinator behaviour and compared reproductive success between the putative hybrids and their parental species. Both the molecular and morphological data indicate that there were putative natural hybrids in the field, with S. asclepiadae the ovule parent and S. yunnanensis the pollen parent. Bumblebees were the primary visitors to S. asclepiadae and putative hybrids, while butterflies were the primary visitors to S. yunnanensis. Pollen production and viability were significantly lower in putative hybrids than the parental species. The direction of hybridization is quite asymmetric from S. yunnanensis to S. asclepiadea. Protandry combined with later peak flowering of S. yunnanensis, and pollinator preference may have contributed to the asymmetric pattern of hybridization, but putative hybrids were rare. Our results thus suggest that despite gene flow, S. asclepiadea and S. yunnanensis can maintain species boundaries, perhaps as a result of floral isolation and low fecundity of the hybrids. PMID:27178066

  6. Evidence for asymmetrical hybridization despite pre- and post-pollination reproductive barriers between two Silene species.

    PubMed

    Zhang, Jin-Ju; Montgomery, Benjamin R; Huang, Shuang-Quan

    2016-01-01

    Interspecific hybridization is widespread among plants; nevertheless, pre- and post-zygotic isolating mechanisms may maintain species integrity for interfertile species in sympatry despite some gene flow. Interspecific hybridization and potential isolating barriers were evaluated between co-flowering Silene asclepiadea and Silene yunnanensis in an alpine community in southwest China. We investigated morphological and molecular (nuclear microsatellites and chloroplast gene sequence) variation in sympatric populations of S. asclepiadea and S. yunnanensis. Additionally, we analyzed pollinator behaviour and compared reproductive success between the putative hybrids and their parental species. Both the molecular and morphological data indicate that there were putative natural hybrids in the field, with S. asclepiadae the ovule parent and S. yunnanensis the pollen parent. Bumblebees were the primary visitors to S. asclepiadae and putative hybrids, while butterflies were the primary visitors to S. yunnanensis Pollen production and viability were significantly lower in putative hybrids than the parental species. The direction of hybridization is quite asymmetric from S. yunnanensis to S. asclepiadea Protandry combined with later peak flowering of S. yunnanensis, and pollinator preference may have contributed to the asymmetric pattern of hybridization, but putative hybrids were rare. Our results thus suggest that despite gene flow, S. asclepiadea and S. yunnanensis can maintain species boundaries, perhaps as a result of floral isolation and low fecundity of the hybrids. Published by Oxford University Press on behalf of the Annals of Botany Company.

  7. Constitutive expression of DaCBF7, an Antarctic vascular plant Deschampsia antarctica CBF homolog, resulted in improved cold tolerance in transgenic rice plants.

    PubMed

    Byun, Mi Young; Lee, Jungeun; Cui, Li Hua; Kang, Yoonjee; Oh, Tae Kyung; Park, Hyun; Lee, Hyoungseok; Kim, Woo Taek

    2015-07-01

    Deschampsia antarctica is an Antarctic hairgrass that grows on the west coast of the Antarctic peninsula. In this report, we have identified and characterized a transcription factor, D. antarctica C-repeat binding factor 7 (DaCBF7), that is a member of the monocot group V CBF homologs. The protein contains a single AP2 domain, a putative nuclear localization signal, and the typical CBF signature. DaCBF7, like other monocot group V homologs, contains a distinct polypeptide stretch composed of 43 amino acids in front of the AP2 motif. DaCBF7 was predominantly localized to nuclei and interacted with the C-repeat/dehydration responsive element (CRT/DRE) core sequence (ACCGAC) in vitro. DaCBF7 was induced by abiotic stresses, including drought, cold, and salinity. To investigate its possible cellular role in cold tolerance, a transgenic rice system was employed. DaCBF7-overexpressing transgenic rice plants (Ubi:DaCBF7) exhibited markedly increased tolerance to cold stress compared to wild-type plants without growth defects; however, overexpression of DaCBF7 exerted little effect on tolerance to drought or salt stress. Transcriptome analysis of a Ubi:DaCBF7 transgenic line revealed 13 genes that were up-regulated in DaCBF7-overexpressing plants compared to wild-type plants in the absence of cold stress and in short- or long-term cold stress. Five of these genes, dehydrin, remorin, Os03g63870, Os11g34790, and Os10g22630, contained putative CRT/DRE or low-temperature responsive elements in their promoter regions. These results suggest that overexpression of DaCBF7 directly and indirectly induces diverse genes in transgenic rice plants and confers enhanced tolerance to cold stress. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Inhibition of Bombyx mori nuclear polyhedrosis virus (NPV) replication by the putative DNA helicase gene of Autographa californica NPV.

    PubMed Central

    Kamita, S G; Maeda, S

    1993-01-01

    Coinfection of Bombyx mori nuclear polyhedrosis virus (BmNPV) with Autographa californica NPV (AcNPV) in the BmNPV-permissive BmN cell line resulted in the complete inhibition of BmNPV replication. Coinfected BmN cells exhibited an atypical cytopathic effect (CPE) and synthesis of viral and host proteins was dramatically attenuated by 5 h postinfection (p.i.) and nearly completely blocked by 24 h p.i. Viral transcription, however, appeared to occur normally during both early (5-h-p.i.) and late (24-h-p.i.) stages of infection. Superinfection of BmN cells with AcNPV at 5 and 12 h post-BmNPV infection resulted in limited inhibition of BmNPV replication. BmN cells singly infected with AcNPV also showed similar CPE, premature inhibition of viral and host protein synthesis, and apparently normal viral transcription. BmNPV replication occurred normally following coinfection of BmNPV and eh2-AcNPV, an AcNPV mutant identical to AcNPV except for a 572-bp region in its putative DNA helicase gene originating from BmNPV (S. Maeda, S. G. Kamita, and A. Kondo, J. Virol. 67:6234-6238, 1993). Furthermore, atypical CPE and premature attenuation of host and viral protein synthesis were not observed. These results indicated that the inhibition of BmNPV replication was caused either directly or indirectly at the translational level by the putative AcNPV DNA helicase gene. Images PMID:7690422

  9. Efficient and dynamic nuclear localization of green fluorescent protein via RNA binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitamura, Akira; Nakayama, Yusaku; Kinjo, Masataka, E-mail: kinjo@sci.hokudai.ac.jp

    2015-07-31

    Classical nuclear localization signal (NLS) sequences have been used for artificial localization of green fluorescent protein (GFP) in the nucleus as a positioning marker or for measurement of the nuclear-cytoplasmic shuttling rate in living cells. However, the detailed mechanism of nuclear retention of GFP-NLS remains unclear. Here, we show that a candidate mechanism for the strong nuclear retention of GFP-NLS is via the RNA-binding ability of the NLS sequence. GFP tagged with a classical NLS derived from Simian virus 40 (GFP-NLS{sup SV40}) localized not only in the nucleoplasm, but also to the nucleolus, the nuclear subdomain in which ribosome biogenesismore » takes place. GFP-NLS{sup SV40} in the nucleolus was mobile, and intriguingly, the diffusion coefficient, which indicates the speed of diffusing molecules, was 1.5-fold slower than in the nucleoplasm. Fluorescence correlation spectroscopy (FCS) analysis showed that GFP-NLS{sup SV40} formed oligomers via RNA binding, the estimated molecular weight of which was larger than the limit for passive nuclear export into the cytoplasm. These findings suggest that the nuclear localization of GFP-NLS{sup SV40} likely results from oligomerization mediated via RNA binding. The analytical technique used here can be applied for elucidating the details of other nuclear localization mechanisms, including those of several types of nuclear proteins. In addition, GFP-NLS{sup SV40} can be used as an excellent marker for studying both the nucleoplasm and nucleolus in living cells. - Highlights: • Nuclear localization signal-tagged GFP (GFP-NLS) showed clear nuclear localization. • The GFP-NLS dynamically localized not only in the nucleoplasm, but also to the nucleolus. • The nuclear localization of GFP-NLS results from transient oligomerization mediated via RNA binding. • Our NLS-tagging procedure is ideal for use in artificial sequestration of proteins in the nucleus.« less

  10. Using mitogenomic and nuclear ribosomal sequence data to investigate the phylogeny of the Xiphinema americanum species complex

    USDA-ARS?s Scientific Manuscript database

    Nematodes within the Xiphinema americanum species complex are economically important because they vector nepoviruses which cause considerable damage to a variety of agricultural crops. The taxonomy of X. americanum is controversial, with the number of putative species being the subject of debate. Ac...

  11. Testing deep reticulate evolution in Amaryllidaceae Tribe Hippeastreae (Asparagales) with ITS and chloroplast sequence data

    USDA-ARS?s Scientific Manuscript database

    The phylogeny of Amaryllidaceae tribe Hippeastreae was inferred using chloroplast (3’ycf1, ndhF, trnL-F) and nuclear (ITS rDNA) sequence data under maximum parsimony and maximum likelihood frameworks. Network analyses were applied to resolve conflicting signals among data sets and putative scenarios...

  12. Myosin-1C uses a novel phosphoinositide-dependent pathway for nuclear localization.

    PubMed

    Nevzorov, Ilja; Sidorenko, Ekaterina; Wang, Weihuan; Zhao, Hongxia; Vartiainen, Maria K

    2018-02-01

    Accurate control of macromolecule transport between nucleus and cytoplasm underlines several essential biological processes, including gene expression. According to the canonical model, nuclear import of soluble proteins is based on nuclear localization signals and transport factors. We challenge this view by showing that nuclear localization of the actin-dependent motor protein Myosin-1C (Myo1C) resembles the diffusion-retention mechanism utilized by inner nuclear membrane proteins. We show that Myo1C constantly shuttles in and out of the nucleus and that its nuclear localization does not require soluble factors, but is dependent on phosphoinositide binding. Nuclear import of Myo1C is preceded by its interaction with the endoplasmic reticulum, and phosphoinositide binding is specifically required for nuclear import, but not nuclear retention, of Myo1C. Our results therefore demonstrate, for the first time, that membrane association and binding to nuclear partners is sufficient to drive nuclear localization of also soluble proteins, opening new perspectives to evolution of cellular protein sorting mechanisms. © 2018 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  13. An in silico pipeline to filter the Toxoplasma gondii proteome for proteins that could traffic to the host cell nucleus and influence host cell epigenetic regulation.

    PubMed

    Syn, Genevieve; Blackwell, Jenefer M; Jamieson, Sarra E; Francis, Richard W

    2018-01-01

    Toxoplasma gondii uses epigenetic mechanisms to regulate both endogenous and host cell gene expression. To identify genes with putative epigenetic functions, we developed an in silico pipeline to interrogate the T. gondii proteome of 8313 proteins. Step 1 employs PredictNLS and NucPred to identify genes predicted to target eukaryotic nuclei. Step 2 uses GOLink to identify proteins of epigenetic function based on Gene Ontology terms. This resulted in 611 putative nuclear localised proteins with predicted epigenetic functions. Step 3 filtered for secretory proteins using SignalP, SecretomeP, and experimental data. This identified 57 of the 611 putative epigenetic proteins as likely to be secreted. The pipeline is freely available online, uses open access tools and software with user-friendly Perl scripts to automate and manage the results, and is readily adaptable to undertake any such in silico search for genes contributing to particular functions.

  14. PuTmiR: A database for extracting neighboring transcription factors of human microRNAs

    PubMed Central

    2010-01-01

    Background Some of the recent investigations in systems biology have revealed the existence of a complex regulatory network between genes, microRNAs (miRNAs) and transcription factors (TFs). In this paper, we focus on TF to miRNA regulation and provide a novel interface for extracting the list of putative TFs for human miRNAs. A putative TF of an miRNA is considered here as those binding within the close genomic locality of that miRNA with respect to its starting or ending base pair on the chromosome. Recent studies suggest that these putative TFs are possible regulators of those miRNAs. Description The interface is built around two datasets that consist of the exhaustive lists of putative TFs binding respectively in the 10 kb upstream region (USR) and downstream region (DSR) of human miRNAs. A web server, named as PuTmiR, is designed. It provides an option for extracting the putative TFs for human miRNAs, as per the requirement of a user, based on genomic locality, i.e., any upstream or downstream region of interest less than 10 kb. The degree distributions of the number of putative TFs and miRNAs against each other for the 10 kb USR and DSR are analyzed from the data and they explore some interesting results. We also report about the finding of a significant regulatory activity of the YY1 protein over a set of oncomiRNAs related to the colon cancer. Conclusion The interface provided by the PuTmiR web server provides an important resource for analyzing the direct and indirect regulation of human miRNAs. While it is already an established fact that miRNAs are regulated by TFs binding to their USR, this database might possibly help to study whether an miRNA can also be regulated by the TFs binding to their DSR. PMID:20398296

  15. Serotype-specific differences in dengue virus non-structural protein 5 nuclear localization.

    PubMed

    Hannemann, Holger; Sung, Po-Yu; Chiu, Han-Chen; Yousuf, Amjad; Bird, Jim; Lim, Siew Pheng; Davidson, Andrew D

    2013-08-02

    The four serotypes of dengue virus (DENV-1 to -4) cause the most important arthropod-borne viral disease of humans. DENV non-structural protein 5 (NS5) contains enzymatic activities required for capping and replication of the viral RNA genome that occurs in the host cytoplasm. However, previous studies have shown that DENV-2 NS5 accumulates in the nucleus during infection. In this study, we examined the nuclear localization of NS5 for all four DENV serotypes. We demonstrate for the first time that there are serotypic differences in NS5 nuclear localization. Whereas the DENV-2 and -3 proteins accumulate in the nucleus, DENV-1 and -4 NS5 are predominantly if not exclusively localized to the cytoplasm. Comparative studies on the DENV-2 and -4 NS5 proteins revealed that the difference in DENV-4 NS5 nuclear localization was not due to rapid nuclear export but rather the lack of a functional nuclear localization sequence. Interaction studies using DENV-2 and -4 NS5 and human importin-α isoforms failed to identify an interaction that supported the differential nuclear localization of NS5. siRNA knockdown of the human importin-α isoform KPNA2, corresponding to the murine importin-α isoform previously shown to bind to DENV-2 NS5, did not substantially affect DENV-2 NS5 nuclear localization, whereas knockdown of importin-β did. The serotypic differences in NS5 nuclear localization did not correlate with differences in IL-8 gene expression. The results show that NS5 nuclear localization is not strictly required for virus replication but is more likely to have an auxiliary function in the life cycle of specific DENV serotypes.

  16. Serotype-specific Differences in Dengue Virus Non-structural Protein 5 Nuclear Localization*

    PubMed Central

    Hannemann, Holger; Sung, Po-Yu; Chiu, Han-Chen; Yousuf, Amjad; Bird, Jim; Lim, Siew Pheng; Davidson, Andrew D.

    2013-01-01

    The four serotypes of dengue virus (DENV-1 to -4) cause the most important arthropod-borne viral disease of humans. DENV non-structural protein 5 (NS5) contains enzymatic activities required for capping and replication of the viral RNA genome that occurs in the host cytoplasm. However, previous studies have shown that DENV-2 NS5 accumulates in the nucleus during infection. In this study, we examined the nuclear localization of NS5 for all four DENV serotypes. We demonstrate for the first time that there are serotypic differences in NS5 nuclear localization. Whereas the DENV-2 and -3 proteins accumulate in the nucleus, DENV-1 and -4 NS5 are predominantly if not exclusively localized to the cytoplasm. Comparative studies on the DENV-2 and -4 NS5 proteins revealed that the difference in DENV-4 NS5 nuclear localization was not due to rapid nuclear export but rather the lack of a functional nuclear localization sequence. Interaction studies using DENV-2 and -4 NS5 and human importin-α isoforms failed to identify an interaction that supported the differential nuclear localization of NS5. siRNA knockdown of the human importin-α isoform KPNA2, corresponding to the murine importin-α isoform previously shown to bind to DENV-2 NS5, did not substantially affect DENV-2 NS5 nuclear localization, whereas knockdown of importin-β did. The serotypic differences in NS5 nuclear localization did not correlate with differences in IL-8 gene expression. The results show that NS5 nuclear localization is not strictly required for virus replication but is more likely to have an auxiliary function in the life cycle of specific DENV serotypes. PMID:23770669

  17. Nuclear localization of Schizosaccharomyces pombe Mcm2/Cdc19p requires MCM complex assembly.

    PubMed

    Pasion, S G; Forsburg, S L

    1999-12-01

    The minichromosome maintenance (MCM) proteins MCM2-MCM7 are conserved eukaryotic replication factors that assemble in a heterohexameric complex. In fission yeast, these proteins are nuclear throughout the cell cycle. In studying the mechanism that regulates assembly of the MCM complex, we analyzed the cis and trans elements required for nuclear localization of a single subunit, Mcm2p. Mutation of any single mcm gene leads to redistribution of wild-type MCM subunits to the cytoplasm, and this redistribution depends on an active nuclear export system. We identified the nuclear localization signal sequences of Mcm2p and showed that these are required for nuclear targeting of other MCM subunits. In turn, Mcm2p must associate with other MCM proteins for its proper localization; nuclear localization of MCM proteins thus requires assembly of MCM proteins in a complex. We suggest that coupling complex assembly to nuclear targeting and retention ensures that only intact heterohexameric MCM complexes remain nuclear.

  18. Nuclear Localization of Schizosaccharomyces pombe Mcm2/Cdc19p Requires MCM Complex Assembly

    PubMed Central

    Pasion, Sally G.; Forsburg, Susan L.

    1999-01-01

    The minichromosome maintenance (MCM) proteins MCM2–MCM7 are conserved eukaryotic replication factors that assemble in a heterohexameric complex. In fission yeast, these proteins are nuclear throughout the cell cycle. In studying the mechanism that regulates assembly of the MCM complex, we analyzed the cis and trans elements required for nuclear localization of a single subunit, Mcm2p. Mutation of any single mcm gene leads to redistribution of wild-type MCM subunits to the cytoplasm, and this redistribution depends on an active nuclear export system. We identified the nuclear localization signal sequences of Mcm2p and showed that these are required for nuclear targeting of other MCM subunits. In turn, Mcm2p must associate with other MCM proteins for its proper localization; nuclear localization of MCM proteins thus requires assembly of MCM proteins in a complex. We suggest that coupling complex assembly to nuclear targeting and retention ensures that only intact heterohexameric MCM complexes remain nuclear. PMID:10588642

  19. A putative N-terminal nuclear export sequence is sufficient for Mps1 nuclear exclusion during interphase.

    PubMed

    Jia, Haiwei; Zhang, Xiaojuan; Wang, Wenjun; Bai, Yuanyuan; Ling, Youguo; Cao, Cheng; Ma, Runlin Z; Zhong, Hui; Wang, Xue; Xu, Quanbin

    2015-02-27

    Mps1, an essential component of the mitotic checkpoint, is also an important interphase regulator and has roles in DNA damage response, cytokinesis and centrosome duplication. Mps1 predominantly resides in the cytoplasm and relocates into the nucleus at the late G2 phase. So far, the mechanism underlying the Mps1 translocation between the cytoplasm and nucleus has been unclear. In this work, a dynamic export process of Mps1 from the nucleus to cytoplasm in interphase was revealed- a process blocked by the Crm1 inhibitor, Leptomycin B, suggesting that export of Mps1 is Crm1 dependent. Consistent with this speculation, a direct association between Mps1 and Crm1 was found. Furthermore, a putative nuclear export sequence (pNES) motif at the N-terminal of Mps1 was identified by analyzing the motif of Mps1. This motif shows a high sequence similarity to the classic NES, a fusion of this motif with EGFP results in dramatic exclusion of the fusion protein from the nucleus. Additionally, Mps1 mutant loss of pNES integrity was shown by replacing leucine with alanine which produced a diffused subcellular distribution, compared to the wild type protein which resides predominantly in cytoplasm. Taken these findings together, it was concluded that the pNES sequence is sufficient for the Mps1 export from nucleus during interphase.

  20. Nuclear import of glucokinase in pancreatic beta-cells is mediated by a nuclear localization signal and modulated by SUMOylation.

    PubMed

    Johansson, Bente Berg; Fjeld, Karianne; Solheim, Marie Holm; Shirakawa, Jun; Zhang, Enming; Keindl, Magdalena; Hu, Jiang; Lindqvist, Andreas; Døskeland, Anne; Mellgren, Gunnar; Flatmark, Torgeir; Njølstad, Pål Rasmus; Kulkarni, Rohit N; Wierup, Nils; Aukrust, Ingvild; Bjørkhaug, Lise

    2017-10-15

    The localization of glucokinase in pancreatic beta-cell nuclei is a controversial issue. Although previous reports suggest such a localization, the mechanism for its import has so far not been identified. Using immunofluorescence, subcellular fractionation and mass spectrometry, we present evidence in support of glucokinase localization in beta-cell nuclei of human and mouse pancreatic sections, as well as in human and mouse isolated islets, and murine MIN6 cells. We have identified a conserved, seven-residue nuclear localization signal ( 30 LKKVMRR 36 ) in the human enzyme. Substituting the residues KK 31,32 and RR 35,36 with AA led to a loss of its nuclear localization in transfected cells. Furthermore, our data indicates that SUMOylation of glucokinase modulates its nuclear import, while high glucose concentrations do not significantly alter the enzyme nuclear/cytosolic ratio. Thus, for the first time, we provide data in support of a nuclear import of glucokinase mediated by a redundant mechanism, involving a nuclear localization signal, and which is modulated by its SUMOylation. These findings add new knowledge to the functional role of glucokinase in the pancreatic beta-cell. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Local Melatoninergic System as the Protector of Skin Integrity

    PubMed Central

    Slominski, Andrzej T.; Kleszczyński, Konrad; Semak, Igor; Janjetovic, Zorica; Żmijewski, Michał A.; Kim, Tae-Kang; Slominski, Radomir M.; Reiter, Russel J.; Fischer, Tobias W.

    2014-01-01

    The human skin is not only a target for the protective actions of melatonin, but also a site of melatonin synthesis and metabolism, suggesting an important role for a local melatoninergic system in protection against ultraviolet radiation (UVR) induced damages. While melatonin exerts many effects on cell physiology and tissue homeostasis via membrane bound melatonin receptors, the strong protective effects of melatonin against the UVR-induced skin damage including DNA repair/protection seen at its high (pharmocological) concentrations indicate that these are mainly mediated through receptor-independent mechanisms or perhaps through activation of putative melatonin nuclear receptors. The destructive effects of the UVR are significantly counteracted or modulated by melatonin in the context of a complex intracutaneous melatoninergic anti-oxidative system with UVR-enhanced or UVR-independent melatonin metabolites. Therefore, endogenous intracutaneous melatonin production, together with topically-applied exogenous melatonin or metabolites would be expected to represent one of the most potent anti-oxidative defense systems against the UV-induced damage to the skin. In summary, we propose that melatonin can be exploited therapeutically as a protective agent or as a survival factor with anti-genotoxic properties or as a “guardian” of the genome and cellular integrity with clinical applications in UVR-induced pathology that includes carcinogenesis and skin aging. PMID:25272227

  2. The Hsp90 Inhibitor, 17-AAG, Prevents the Ligand-Independent Nuclear Localization of Androgen Receptor in Refractory Prostate Cancer Cells

    PubMed Central

    Saporita, Anthony J.; Ai, Junkui; Wang, Zhou

    2010-01-01

    BACKGROUND Androgen receptor (AR) is the key molecule in androgen-refractory prostate cancer. Despite androgen ablative conditions, AR remains active and is necessary for the growth of androgen-refractory prostate cancer cells. Nuclear localization of AR is a prerequisite for its transcriptional activation. We examined AR localization in androgen-dependent and androgen-refractory prostate cancer cells. METHODS AND RESULTS We demonstrate increased nuclear localization of a GFP-tagged AR in the absence of hormone in androgen-refractory C4-2 cells compared to parental androgen-sensitive human prostate cancer LNCaP cells. Analysis of AR mutants impaired in ligand-binding indicates that the nuclear localization of AR in C4-2 cells is truly androgen-independent. The hsp90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), inhibits basal PSA expression and disrupts the ligand-independent nuclear localization of AR at doses much lower than required to inhibit androgen-induced nuclear import. CONCLUSIONS Hsp90 is a key regulator of ligand-independent nuclear localization and activation of AR in androgen-refractory prostate cancer cells. PMID:17221841

  3. PmVRP15, a novel viral responsive protein from the black tiger shrimp, Penaeus monodon, promoted white spot syndrome virus replication.

    PubMed

    Vatanavicharn, Tipachai; Prapavorarat, Adisak; Jaree, Phattarunda; Somboonwiwat, Kunlaya; Tassanakajon, Anchalee

    2014-01-01

    Suppression subtractive hybridization of Penaeus monodon hemocytes challenged with white spot syndrome virus (WSSV) has identified the viral responsive gene, PmVRP15, as the highest up-regulated gene ever reported in shrimps. Expression analysis by quantitative real time RT-PCR revealed 9410-fold up-regulated level at 48 h post WSSV injection. Tissue distribution analysis showed that PmVRP15 transcript was mainly expressed in the hemocytes of shrimp. The full-length cDNA of PmVRP15 transcript was obtained and showed no significant similarity to any known gene in the GenBank database. The predicted open reading frame of PmVRP15 encodes for a deduced 137 amino acid protein containing a putative transmembrane helix. Immunofluorescent localization of the PmVRP15 protein revealed it accumulated around the nuclear membrane in all three types of shrimp hemocytes and that the protein was highly up-regulated in WSSV-infected shrimps. Double-stranded RNA interference-mediated gene silencing of PmVRP15 in P. monodon significantly decreased WSSV propagation compared to the control shrimps (injected with GFP dsRNA). The significant decrease in cumulative mortality rate of WSSV-infected shrimp following PmVRP15 knockdown was observed. These results suggest that PmVRP15 is likely to be a nuclear membrane protein and that it acts as a part of WSSV propagation pathway.

  4. Proteomics and Functional Analyses of Pepper Abscisic Acid–Responsive 1 (ABR1), Which Is Involved in Cell Death and Defense Signaling[C][W

    PubMed Central

    Choi, Du Seok; Hwang, Byung Kook

    2011-01-01

    Abscisic acid (ABA) is a key regulator of plant growth and development, as well as plant defense responses. A high-throughput in planta proteome screen identified the pepper (Capsicum annuum) GRAM (for glucosyltransferases, Rab-like GTPase activators, and myotubularins) domain-containing ABA-RESPONSIVE1 (ABR1), which is highly induced by infection with avirulent Xanthomonas campestris pv vesicatoria and also by treatment with ABA. The GRAM domain is essential for the cell death response and for the nuclear localization of ABR1. ABR1 is required for priming cell death and reactive oxygen species production, as well as ABA-salicylic acid (SA) antagonism. Silencing of ABR1 significantly compromised the hypersensitive response but enhanced bacterial pathogen growth and ABA levels in pepper. High levels of ABA in ABR1-silenced plants antagonized the SA levels induced by pathogen infection. Heterologous transgenic expression of ABR1 in Arabidopsis thaliana conferred enhanced resistance to Pseudomonas syringae pv tomato and Hyaloperonospora arabidopsidis infection. The susceptibility of the Arabidopsis ABR1 putative ortholog mutant, abr1, to these pathogens also supports the involvement of ABR1 in disease resistance. Together, these results reveal ABR1 as a novel negative regulator of ABA signaling and suggest that the nuclear ABR1 pool is essential for the cell death induction associated with ABA-SA antagonism. PMID:21335377

  5. A Long Terminal Repeat-Containing Retrotransposon of Schizosaccharomyces pombe Expresses a Gag-Like Protein That Assembles into Virus-Like Particles Which Mediate Reverse Transcription

    PubMed Central

    Teysset, Laure; Dang, Van-Dinh; Kim, Min Kyung; Levin, Henry L.

    2003-01-01

    The Tf1 element of Schizosaccharomyces pombe is a long terminal repeat-containing retrotransposon that encodes functional protease, reverse transcriptase, and integrase proteins. Although these proteins are known to be necessary for protein processing, reverse transcription, and integration, respectively, the function of the protein thought to be Gag has not been determined. We present here the first electron microscopy of Tf1 particles. We tested whether the putative Gag of Tf1 was required for particle formation, packaging of RNA, and reverse transcription. We generated deletions of 10 amino acids in each of the four hydrophilic domains of the protein and found that all four mutations reduced transposition activity. The N-terminal deletion removed a nuclear localization signal and inhibited nuclear import of the transposon. The two mutations in the center of Gag destabilized the protein and resulted in no virus-like particles. The C-terminal deletion caused a defect in RNA packaging and, as a result, low levels of cDNA. The electron microscopy of cells expressing a truncated Tf1 showed that Gag alone was sufficient for the formation of virus-like particles. Taken together, these results indicate that Tf1 encodes a Gag protein that is a functional equivalent of the Gag proteins of retroviruses. PMID:12692246

  6. The Potyviral P3 Protein Targets Eukaryotic Elongation Factor 1A to Promote the Unfolded Protein Response and Viral Pathogenesis1[OPEN

    PubMed Central

    Shine, M.B.; Cui, Xiaoyan; Chen, Xin; Ma, Na; Kachroo, Pradeep; Zhi, Haijan; Kachroo, Aardra

    2016-01-01

    The biochemical function of the potyviral P3 protein is not known, although it is known to regulate virus replication, movement, and pathogenesis. We show that P3, the putative virulence determinant of soybean mosaic virus (SMV), targets a component of the translation elongation complex in soybean. Eukaryotic elongation factor 1A (eEF1A), a well-known host factor in viral pathogenesis, is essential for SMV virulence and the associated unfolded protein response (UPR). Silencing GmEF1A inhibits accumulation of SMV and another ER-associated virus in soybean. Conversely, endoplasmic reticulum (ER) stress-inducing chemicals promote SMV accumulation in wild-type, but not GmEF1A-knockdown, plants. Knockdown of genes encoding the eEF1B isoform, which is important for eEF1A function in translation elongation, has similar effects on UPR and SMV resistance, suggesting a link to translation elongation. P3 and GmEF1A promote each other’s nuclear localization, similar to the nuclear-cytoplasmic transport of eEF1A by the Human immunodeficiency virus 1 Nef protein. Our results suggest that P3 targets host elongation factors resulting in UPR, which in turn facilitates SMV replication and place eEF1A upstream of BiP in the ER stress response during pathogen infection. PMID:27356973

  7. Adipogenesis stimulates the nuclear localization of EWS with an increase in its O-GlcNAc glycosylation in 3T3-L1 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qiang; Kamemura, Kazuo, E-mail: k_kamemura@nagahama-i-bio.ac.jp

    2014-07-18

    Highlights: • The majority of EWS localizes stably in the cytosol in 3T3-L1 preadipocytes. • Adipogenic stimuli induce the nuclear localization of EWS. • Adipogenesis promotes O-GlcNAcylation of EWS. • O-GlcNAcylation stimulates the recruitment of EWS to the nuclear periphery. - Abstract: Although the Ewing sarcoma (EWS) proto-oncoprotein is found in the nucleus and cytosol and is associated with the cell membrane, the regulatory mechanisms of its subcellular localization are still unclear. Here we found that adipogenic stimuli induce the nuclear localization of EWS in 3T3-L1 cells. Tyrosine phosphorylation in the C-terminal PY-nuclear localization signal of EWS was negative throughoutmore » adipogenesis. Instead, an adipogenesis-dependent increase in O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation of EWS was observed. Pharmacological inactivation of O-GlcNAcase in preadipocytes promoted perinuclear localization of EWS. Our findings suggest that the nuclear localization of EWS is partly regulated by the glycosylation.« less

  8. Characterization of Coffee ringspot virus-Lavras: A model for an emerging threat to coffee production and quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramalho, T.O.; Figueira, A.R.; Sotero, A.J.

    2014-09-15

    The emergence of viruses in Coffee (Coffea arabica and Coffea canephora), the most widely traded agricultural commodity in the world, is of critical concern. The RNA1 (6552 nt) of Coffee ringspot virus is organized into five open reading frames (ORFs) capable of encoding the viral nucleocapsid (ORF1p), phosphoprotein (ORF2p), putative cell-to-cell movement protein (ORF3p), matrix protein (ORF4p) and glycoprotein (ORF5p). Each ORF is separated by a conserved intergenic junction. RNA2 (5945 nt), which completes the bipartite genome, encodes a single protein (ORF6p) with homology to RNA-dependent RNA polymerases. Phylogenetic analysis of L protein sequences firmly establishes CoRSV as a membermore » of the recently proposed Dichorhavirus genus. Predictive algorithms, in planta protein expression, and a yeast-based nuclear import assay were used to determine the nucleophillic character of five CoRSV proteins. Finally, the temperature-dependent ability of CoRSV to establish systemic infections in an initially local lesion host was quantified. - Highlights: • We report genome sequence determination for Coffee ringspot virus (CoRSV). • CoRSV should be considered a member of the proposed Dichorhavirus genus. • We report temperature-dependent systemic infection of an initially local lesion host. • We report in planta protein and localization data for five CoRSV proteins. • In silico predictions of the CoRSV proteins were validated using in vivo assays.« less

  9. How Displaced Migratory Birds Could Use Volatile Atmospheric Compounds to Find Their Migratory Corridor: A Test Using a Particle Dispersion Model

    PubMed Central

    Safi, Kamran; Gagliardo, Anna; Wikelski, Martin; Kranstauber, Bart

    2016-01-01

    Olfaction represents an important sensory modality for navigation of both homing pigeons and wild birds. Experimental evidence in homing pigeons showed that airborne volatile compounds carried by the winds at the home area are learned in association with wind directions. When displaced, pigeons obtain information on the direction of their displacement using local odors at the release site. Recently, the role of olfactory cues in navigation has been reported also for wild birds during migration. However, the question whether wild birds develop an olfactory navigational map similar to that described in homing pigeons or, alternatively, exploit the distribution of volatile compounds in different manner for reaching the goal is still an open question. Using an interdisciplinary approach, we evaluate the possibilities of reconstructing spatio-temporally explicit aerosol dispersion at large spatial scales using the particle dispersion model FLEXPART. By combining atmospheric information with particle dispersion models, atmospheric scientists predict the dispersion of pollutants for example, after nuclear fallouts or volcanic eruptions or wildfires, or in retrospect reconstruct the origin of emissions such as aerosols. Using simple assumptions, we reconstructed the putative origin of aerosols traveling to the location of migrating birds. We use the model to test whether the putative odor plume could have originated from an important stopover site. If the migrating birds knew this site and the associated plume from previous journeys, the odor could contribute to the reorientation towards the migratory corridor, as suggested for the model scenario in displaced Lesser black-backed gulls migrating from Northern Europe into Africa. PMID:27799899

  10. Abscisic acid regulates pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol accumulation in developing flax (Linum usitatissimum L.) seeds.

    PubMed

    Renouard, Sullivan; Corbin, Cyrielle; Lopez, Tatiana; Montguillon, Josiane; Gutierrez, Laurent; Lamblin, Frédéric; Lainé, Eric; Hano, Christophe

    2012-01-01

    Secoisolariciresinol diglucoside (SDG), the main phytoestrogenic lignan of Linum usitatissimum, is accumulated in the seed coat of flax during its development and pinoresinol-lariciresinol reductase (PLR) is a key enzyme in flax for its synthesis. The promoter of LuPLR1, a flax gene encoding a pinoresinol lariciresinol reductase, contains putative regulatory boxes related to transcription activation by abscisic acid (ABA). Gel mobility shift experiments evidenced an interaction of nuclear proteins extracted from immature flax seed coat with a putative cis-acting element involved in ABA response. As ABA regulates a number of physiological events during seed development and maturation we have investigated its involvement in the regulation of this lignan synthesis by different means. ABA and SDG accumulation time courses in the seed as well as LuPLR1 expression were first determined in natural conditions. These results showed that ABA timing and localization of accumulation in the flax seed coat could be correlated with the LuPLR1 gene expression and SDG biosynthesis. Experimental modulations of ABA levels were performed by exogenous application of ABA or fluridone, an inhibitor of ABA synthesis. When submitted to exogenous ABA, immature seeds synthesized 3-times more SDG, whereas synthesis of SDG was reduced in immature seeds treated with fluridone. Similarly, the expression of LuPLR1 gene in the seed coat was up-regulated by exogenous ABA and down-regulated when fluridone was applied. These results demonstrate that SDG biosynthesis in the flax seed coat is positively controlled by ABA through the transcriptional regulation of LuPLR1 gene.

  11. Mosaic genome of endobacteria in arbuscular mycorrhizal fungi: Transkingdom gene transfer in an ancient mycoplasma-fungus association.

    PubMed

    Torres-Cortés, Gloria; Ghignone, Stefano; Bonfante, Paola; Schüßler, Arthur

    2015-06-23

    For more than 450 million years, arbuscular mycorrhizal fungi (AMF) have formed intimate, mutualistic symbioses with the vast majority of land plants and are major drivers in almost all terrestrial ecosystems. The obligate plant-symbiotic AMF host additional symbionts, so-called Mollicutes-related endobacteria (MRE). To uncover putative functional roles of these widespread but yet enigmatic MRE, we sequenced the genome of DhMRE living in the AMF Dentiscutata heterogama. Multilocus phylogenetic analyses showed that MRE form a previously unidentified lineage sister to the hominis group of Mycoplasma species. DhMRE possesses a strongly reduced metabolic capacity with 55% of the proteins having unknown function, which reflects unique adaptations to an intracellular lifestyle. We found evidence for transkingdom gene transfer between MRE and their AMF host. At least 27 annotated DhMRE proteins show similarities to nuclear-encoded proteins of the AMF Rhizophagus irregularis, which itself lacks MRE. Nuclear-encoded homologs could moreover be identified for another AMF, Gigaspora margarita, and surprisingly, also the non-AMF Mortierella verticillata. Our data indicate a possible origin of the MRE-fungus association in ancestors of the Glomeromycota and Mucoromycotina. The DhMRE genome encodes an arsenal of putative regulatory proteins with eukaryotic-like domains, some of them encoded in putative genomic islands. MRE are highly interesting candidates to study the evolution and interactions between an ancient, obligate endosymbiotic prokaryote with its obligate plant-symbiotic fungal host. Our data moreover may be used for further targeted searches for ancient effector-like proteins that may be key components in the regulation of the arbuscular mycorrhiza symbiosis.

  12. Local dynamic nuclear polarization using quantum point contacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wald, K.R.; Kouwenhoven, L.P.; McEuen, P.L.

    1994-08-15

    We have used quantum point contacts (QPCs) to locally create and probe dynamic nuclear polarization (DNP) in GaAs heterostructures in the quantum Hall regime. DNP is created via scattering between spin-polarized Landau level electrons and the Ga and As nuclear spins, and it leads to hysteresis in the dc transport characteristics. The nuclear origin of this hysteresis is demonstrated by nuclear magnetic resonance (NMR). Our results show that QPCs can be used to create and probe local nuclear spin populations, opening up new possibilities for mesoscopic NMR experiments.

  13. Growth hormone-specific induction of the nuclear localization of porcine growth hormone receptor in porcine hepatocytes.

    PubMed

    Lan, H N; Hong, P; Li, R N; Shan, A S; Zheng, X

    2017-10-01

    The phenomenon of nuclear translocation of growth hormone receptor (GHR) in human, rat, and fish has been reported. To date, this phenomenon has not been described in a domestic animal (such as pig). In addition, the molecular mechanisms of GHR nuclear translocation have not been thoroughly elucidated. To this end, porcine hepatocytes were isolated and used as a cell model. We observed that porcine growth hormone (pGH) can induce porcine GHR's nuclear localization in porcine hepatocytes. Subsequently, the dynamics of pGH-induced pGHR's nuclear localization were analyzed and demonstrated that pGHR's nuclear localization occurs in a time-dependent manner. Next, we explored the mechanism of pGHR nuclear localization using different pGHR ligands, and we demonstrated that pGHR's nuclear translocation is GH(s)-dependent. We also observed that pGHR translocates into cell nuclei in a pGH dimerization-dependent fashion, whereas further experiments indicated that IMPα/β is involved in the nuclear translocation of the pGH-pGHR dimer. The pGH-pGHR dimer may form a pGH-GHR-JAK2 multiple complex in cell nuclei, which would suggest that similar to its function in the cell membrane, the nuclear-localized pGH-pGHR dimer might still have the ability to signal. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Intracellular Localization Map of Human Herpesvirus 8 Proteins▿

    PubMed Central

    Sander, Gaby; Konrad, Andreas; Thurau, Mathias; Wies, Effi; Leubert, Rene; Kremmer, Elisabeth; Dinkel, Holger; Schulz, Thomas; Neipel, Frank; Stürzl, Michael

    2008-01-01

    Human herpesvirus 8 (HHV-8) is the etiological agent of Kaposi's sarcoma. We present a localization map of 85 HHV-8-encoded proteins in mammalian cells. Viral open reading frames were cloned with a Myc tag in expression plasmids, confirmed by full-length sequencing, and expressed in HeLa cells. Protein localizations were analyzed by immunofluorescence microscopy. Fifty-one percent of all proteins were localized in the cytoplasm, 22% were in the nucleus, and 27% were found in both compartments. Surprisingly, we detected viral FLIP (v-FLIP) in the nucleus and in the cytoplasm, whereas cellular FLIPs are generally localized exclusively in the cytoplasm. This suggested that v-FLIP may exert additional or alternative functions compared to cellular FLIPs. In addition, it has been shown recently that the K10 protein can bind to at least 15 different HHV-8 proteins. We noticed that K10 and only five of its 15 putative binding factors were localized in the nucleus when the proteins were expressed in HeLa cells individually. Interestingly, in coexpression experiments K10 colocalized with 87% (13 of 15) of its putative binding partners. Colocalization was induced by translocation of either K10 alone or both proteins. These results indicate active intracellular translocation processes in virus-infected cells. Specifically in this framework, the localization map may provide a useful reference to further elucidate the function of HHV-8-encoded genes in human diseases. PMID:18077714

  15. Evidence that the Malaria Parasite Plasmodium falciparum Putative Rhoptry Protein 2 Localizes to the Golgi Apparatus throughout the Erythrocytic Cycle.

    PubMed

    Hallée, Stéphanie; Richard, Dave

    2015-01-01

    Invasion of a red blood cell by Plasmodium falciparum merozoites is an essential step in the malaria lifecycle. Several of the proteins involved in this process are stored in the apical complex of the merozoite, a structure containing secretory organelles that are released at specific times during invasion. The molecular players involved in erythrocyte invasion thus represent potential key targets for both therapeutic and vaccine-based strategies to block parasite development. In our quest to identify and characterize new effectors of invasion, we investigated the P. falciparum homologue of a P. berghei protein putatively localized to the rhoptries, the Putative rhoptry protein 2 (PbPRP2). We show that in P. falciparum, the protein colocalizes extensively with the Golgi apparatus across the asexual erythrocytic cycle. Furthermore, imaging of merozoites caught at different times during invasion show that PfPRP2 is not secreted during the process instead staying associated with the Golgi apparatus. Our evidence therefore suggests that PfPRP2 is a Golgi protein and that it is likely not a direct effector in the process of merozoite invasion.

  16. Identification and functional characterization of a novel bipartite nuclear localization sequence in ARID1A.

    PubMed

    Bateman, Nicholas W; Shoji, Yutaka; Conrads, Kelly A; Stroop, Kevin D; Hamilton, Chad A; Darcy, Kathleen M; Maxwell, George L; Risinger, John I; Conrads, Thomas P

    2016-01-01

    AT-rich interactive domain-containing protein 1A (ARID1A) is a recently identified nuclear tumor suppressor frequently altered in solid tumor malignancies. We have identified a bipartite-like nuclear localization sequence (NLS) that contributes to nuclear import of ARID1A not previously described. We functionally confirm activity using GFP constructs fused with wild-type or mutant NLS sequences. We further show that cyto-nuclear localized, bipartite NLS mutant ARID1A exhibits greater stability than nuclear-localized, wild-type ARID1A. Identification of this undescribed functional NLS within ARID1A contributes vital insights to rationalize the impact of ARID1A missense mutations observed in patient tumors. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Identification and functional characterization of a novel bipartite nuclear localization sequence in ARID1A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, Nicholas W.; The John P. Murtha Cancer Center, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD; Shoji, Yutaka

    2016-01-01

    AT-rich interactive domain-containing protein 1A (ARID1A) is a recently identified nuclear tumor suppressor frequently altered in solid tumor malignancies. We have identified a bipartite-like nuclear localization sequence (NLS) that contributes to nuclear import of ARID1A not previously described. We functionally confirm activity using GFP constructs fused with wild-type or mutant NLS sequences. We further show that cyto-nuclear localized, bipartite NLS mutant ARID1A exhibits greater stability than nuclear-localized, wild-type ARID1A. Identification of this undescribed functional NLS within ARID1A contributes vital insights to rationalize the impact of ARID1A missense mutations observed in patient tumors. - Highlights: • We have identified a bipartitemore » nuclear localization sequence (NLS) in ARID1A. • Confirmation of the NLS was performed using GFP constructs. • NLS mutant ARID1A exhibits greater stability than wild-type ARID1A.« less

  18. Discrimination between NL1- and NL2-Mediated Nuclear Localization of the Glucocorticoid Receptor

    PubMed Central

    Savory, Joanne G. A.; Hsu, Brian; Laquian, Ian R.; Giffin, Ward; Reich, Terry; Haché, Robert J. G.; Lefebvre, Yvonne A.

    1999-01-01

    Glucocorticoid receptor (GR) cycles between a free liganded form that is localized to the nucleus and a heat shock protein (hsp)-immunophilin-complexed, unliganded form that is usually localized to the cytoplasm but that can also be nuclear. In addition, rapid nucleocytoplasmic exchange or shuttling of the receptor underlies its localization. Nuclear import of liganded GR is mediated through a well-characterized sequence, NL1, adjacent to the receptor DNA binding domain and a second, uncharacterized motif, NL2, that overlaps with the ligand binding domain. In this study we report that rapid nuclear import (half-life [t1/2] of 4 to 6 min) of agonist- and antagonist-treated GR and the localization of unliganded, hsp-associated GRs to the nucleus in G0 are mediated through NL1 and correlate with the binding of GR to pendulin/importin α. By contrast, NL2-mediated nuclear transfer of GR occurred more slowly (t1/2 = 45 min to 1 h), was agonist specific, and appeared to be independent of binding to importin α. Together, these results suggest that NL2 mediates the nuclear import of GR through an alternative nuclear import pathway. Nuclear export of GR was inhibited by leptomycin B, suggesting that the transfer of GR to the cytoplasm is mediated through the CRM1-dependent pathway. Inhibition of GR nuclear export by leptomycin B enhanced the nuclear localization of both unliganded, wild-type GR and hormone-treated NL1− GR. These results highlight that the subcellular localization of both liganded and unliganded GRs is determined, at least in part, by a flexible equilibrium between the rates of nuclear import and export. PMID:9891038

  19. Arachidonate 15-Lipoxygenase 2 as an Endogenous Inhibitor of Prostate Cancer Development

    DTIC Science & Technology

    2006-03-01

    dehydrogenase; NHP, normal human prostate epithelial cells; PCa, prostate cancer; NLS, nuclear localization signal; PPAR -, peroxisome proliferator...cloned, i.e., 15-LOX2sv-a/b/c, are mostly excluded from the nucleus. A potential bi-partite nuclear localization signal (NLS...only partially involved in the nuclear import of 15-LOX2. To elucidate the relationship between nuclear localization , enzymatic activity, and tumor

  20. Joint Estimation of Contamination, Error and Demography for Nuclear DNA from Ancient Humans

    PubMed Central

    Slatkin, Montgomery

    2016-01-01

    When sequencing an ancient DNA sample from a hominin fossil, DNA from present-day humans involved in excavation and extraction will be sequenced along with the endogenous material. This type of contamination is problematic for downstream analyses as it will introduce a bias towards the population of the contaminating individual(s). Quantifying the extent of contamination is a crucial step as it allows researchers to account for possible biases that may arise in downstream genetic analyses. Here, we present an MCMC algorithm to co-estimate the contamination rate, sequencing error rate and demographic parameters—including drift times and admixture rates—for an ancient nuclear genome obtained from human remains, when the putative contaminating DNA comes from present-day humans. We assume we have a large panel representing the putative contaminant population (e.g. European, East Asian or African). The method is implemented in a C++ program called ‘Demographic Inference with Contamination and Error’ (DICE). We applied it to simulations and genome data from ancient Neanderthals and modern humans. With reasonable levels of genome sequence coverage (>3X), we find we can recover accurate estimates of all these parameters, even when the contamination rate is as high as 50%. PMID:27049965

  1. Yes-associated protein homolog, YAP-1, is involved in the thermotolerance and aging in the nematode Caenorhabditis elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwasa, Hiroaki; Maimaiti, Sainawaer; Department of Psychotherapy, The Fourth People's Hospital of Urumqi, Urumqi 830000

    2013-04-15

    The mammalian Hippo pathway comprises mammalian Ste20-like kinases (MST1/2) and large tumor suppressor kinases (LATS1/2). LATS1/2, which are activated by MST1/2, phosphorylate a transcriptional co-activator, yes-associated protein (YAP), and induce the recruitment of YAP by 14-3-3 to cytoplasm, so that the TEAD-dependent gene transcriptions are turned off. Although the core components of the Hippo pathway are well conserved in metazoans, it has been discussed that Caenorhabditis elegans lacks YAP ortholog, we found that F13E6.4 gene encodes a protein that shows sequence similarities to YAP in the N-terminal TEAD-binding domain and in the WW domain. We designated this gene as yap-1.more » YAP-1 is widely expressed in various cells such as epithelial cells, muscles, hypodermal cells, gonadal sheath cells, spermatheca, and hypodermal cells. YAP-1 is distributed in cytoplasm and nuclei. wts-1 (LATS ortholog) and ftt-2 (14-3-3 ortholog) knockdowns cause nuclear accumulation of YAP-1, supporting that the subcellular localization of YAP-1 is regulated in a similar way as that of YAP. Heat shock also causes the nuclear accumulation of YAP-1 but after heat shock, YAP-1 translocates to cytoplasm. Knockdowns of DAF-21 (HSP90 ortholog) and HSF-1block the nuclear export of YAP-1 during this recovery. YAP-1 overexpression is beneficial for thermotolerance, whereas YAP-1 hyperactivity induced by wts-1 and ftt-2 knockdowns is deleterious on thermal response and yap-1 deficiency promotes health aging. In short, YAP-1 partially shares basal characters with mammalian YAP and plays a role in thermal stress response and healthy aging. - Highlights: ► We named Caenorhabditis elegans F13E6.4 gene yap-1 as a putative YAP homolog. ► The localization of YAP-1 is regulated by WTS-1 and FTT-2. ► YAP-1 is involved in healthy aging and thermosensitivity.« less

  2. Role of regulatory subunits and protein kinase inhibitor (PKI) in determining nuclear localization and activity of the catalytic subunit of protein kinase A.

    PubMed

    Wiley, J C; Wailes, L A; Idzerda, R L; McKnight, G S

    1999-03-05

    Regulation of protein kinase A by subcellular localization may be critical to target catalytic subunits to specific substrates. We employed epitope-tagged catalytic subunit to correlate subcellular localization and gene-inducing activity in the presence of regulatory subunit or protein kinase inhibitor (PKI). Transiently expressed catalytic subunit distributed throughout the cell and induced gene expression. Co-expression of regulatory subunit or PKI blocked gene induction and prevented nuclear accumulation. A mutant PKI lacking the nuclear export signal blocked gene induction but not nuclear accumulation, demonstrating that nuclear export is not essential to inhibit gene induction. When the catalytic subunit was targeted to the nucleus with a nuclear localization signal, it was not sequestered in the cytoplasm by regulatory subunit, although its activity was completely inhibited. PKI redistributed the nuclear catalytic subunit to the cytoplasm and blocked gene induction, demonstrating that the nuclear export signal of PKI can override a strong nuclear localization signal. With increasing PKI, the export process appeared to saturate, resulting in the return of catalytic subunit to the nucleus. These results demonstrate that both the regulatory subunit and PKI are able to completely inhibit the gene-inducing activity of the catalytic subunit even when the catalytic subunit is forced to concentrate in the nuclear compartment.

  3. Methanol clusters (CH3OH)n: putative global minimum-energy structures from model potentials and dispersion-corrected density functional theory.

    PubMed

    Kazachenko, Sergey; Bulusu, Satya; Thakkar, Ajit J

    2013-06-14

    Putative global minima are reported for methanol clusters (CH3OH)n with n ≤ 15. The predictions are based on global optimization of three intermolecular potential energy models followed by local optimization and single-point energy calculations using two variants of dispersion-corrected density functional theory. Recurring structural motifs include folded and/or twisted rings, folded rings with a short branch, and stacked rings. Many of the larger structures are stabilized by weak C-H···O bonds.

  4. Are plant formins integral membrane proteins?

    PubMed

    Cvrcková, F

    2000-01-01

    The formin family of proteins has been implicated in signaling pathways of cellular morphogenesis in both animals and fungi; in the latter case, at least, they participate in communication between the actin cytoskeleton and the cell surface. Nevertheless, they appear to be cytoplasmic or nuclear proteins, and it is not clear whether they communicate with the plasma membrane, and if so, how. Because nothing is known about formin function in plants, I performed a systematic search for putative Arabidopsis thaliana formin homologs. I found eight putative formin-coding genes in the publicly available part of the Arabidopsis genome sequence and analyzed their predicted protein sequences. Surprisingly, some of them lack parts of the conserved formin-homology 2 (FH2) domain and the majority of them seem to have signal sequences and putative transmembrane segments that are not found in yeast or animals formins. Plant formins define a distinct subfamily. The presence in most Arabidopsis formins of sequence motifs typical or transmembrane proteins suggests a mechanism of membrane attachment that may be specific to plant formins, and indicates an unexpected evolutionary flexibility of the conserved formin domain.

  5. Characterization of karyopherins in androgen receptor intracellular trafficking in the yeast model

    PubMed Central

    Nguyen, Minh M; Harmon, Robert M; Wang, Zhou

    2014-01-01

    Background: Mechanisms regulating androgen receptor (AR) subcellular localization represent an essential component of AR signaling. Karyopherins are a family of nucleocytoplasmic trafficking factors. In this paper, we used the yeast model to study the effects of karyopherins on the subcellular localization of the AR. Methods: Yeast mutants deficient in different nuclear transport factors were transformed with various AR based, GFP tagged constructs and their localization was monitored using microscopy. Results: We showed that yeast can mediate androgen-induced AR nuclear localization and that in addition to the import factor, Importinα/β, this process required the import karyopherin Sxm1. We also showed that a previously identified nuclear export sequence (NESAR) in the ligand binding domain of AR does not appear to rely on karyopherins for cytoplasmic localization. Conclusions: These results suggest that while AR nuclear import relies on karyopherin activity, AR nuclear export and/or cytoplasmic localization may require other undefined mechanisms. PMID:25031696

  6. Kar5p is required for multiple functions in both inner and outer nuclear envelope fusion in Saccharomyces cerevisiae.

    PubMed

    Rogers, Jason V; Rose, Mark D

    2014-12-02

    During mating in the budding yeast Saccharomyces cerevisiae, two haploid nuclei fuse via two sequential membrane fusion steps. SNAREs (i.e., soluble N-ethylmaleimide-sensitive factor attachment protein receptors) and Prm3p mediate outer nuclear membrane fusion, but the inner membrane fusogen remains unknown. Kar5p is a highly conserved transmembrane protein that localizes adjacent to the spindle pole body (SPB), mediates nuclear envelope fusion, and recruits Prm3p adjacent to the SPB. To separate Kar5p's functions, we tested localization, Prm3p recruitment, and nuclear fusion efficiency in various kar5 mutants. All domains and the conserved cysteine residues were essential for nuclear fusion. Several kar5 mutant proteins localized properly but did not mediate Prm3p recruitment; other kar5 mutant proteins localized and recruited Prm3p but were nevertheless defective for nuclear fusion, demonstrating additional functions beyond Prm3p recruitment. We identified one Kar5p domain required for SPB localization, which is dependent on the half-bridge protein Mps3p. Electron microscopy revealed a kar5 mutant that arrests with expanded nuclear envelope bridges, suggesting that Kar5p is required after outer nuclear envelope fusion. Finally, a split-GFP assay demonstrated that Kar5p localizes to both the inner and outer nuclear envelope. These insights suggest a mechanism by which Kar5p mediates inner nuclear membrane fusion. Copyright © 2015 Rogers and Rose.

  7. Kar5p Is Required for Multiple Functions in Both Inner and Outer Nuclear Envelope Fusion in Saccharomyces cerevisiae

    PubMed Central

    Rogers, Jason V.; Rose, Mark D.

    2014-01-01

    During mating in the budding yeast Saccharomyces cerevisiae, two haploid nuclei fuse via two sequential membrane fusion steps. SNAREs (i.e., soluble N-ethylmaleimide–sensitive factor attachment protein receptors) and Prm3p mediate outer nuclear membrane fusion, but the inner membrane fusogen remains unknown. Kar5p is a highly conserved transmembrane protein that localizes adjacent to the spindle pole body (SPB), mediates nuclear envelope fusion, and recruits Prm3p adjacent to the SPB. To separate Kar5p’s functions, we tested localization, Prm3p recruitment, and nuclear fusion efficiency in various kar5 mutants. All domains and the conserved cysteine residues were essential for nuclear fusion. Several kar5 mutant proteins localized properly but did not mediate Prm3p recruitment; other kar5 mutant proteins localized and recruited Prm3p but were nevertheless defective for nuclear fusion, demonstrating additional functions beyond Prm3p recruitment. We identified one Kar5p domain required for SPB localization, which is dependent on the half-bridge protein Mps3p. Electron microscopy revealed a kar5 mutant that arrests with expanded nuclear envelope bridges, suggesting that Kar5p is required after outer nuclear envelope fusion. Finally, a split-GFP assay demonstrated that Kar5p localizes to both the inner and outer nuclear envelope. These insights suggest a mechanism by which Kar5p mediates inner nuclear membrane fusion. PMID:25467943

  8. Type 1 IGF Receptor Localization in Paediatric Gliomas: Significant Association with WHO Grading and Clinical Outcome.

    PubMed

    Clément, Florencia; Martin, Ayelen; Venara, Marcela; de Luján Calcagno, Maria; Mathó, Cecilia; Maglio, Silvana; Lombardi, Mercedes García; Bergadá, Ignacio; Pennisi, Patricia A

    2018-06-01

    Nuclear localization of insulin-like growth factor receptor type 1 (IGF-1R) has been described as adverse prognostic factor in some cancers. We studied the expression and localization of IGF-1R in paediatric patients with gliomas, as well as its association with World Health Organization (WHO) grading and survival. We conducted a single cohort, prospective study of paediatric patients with gliomas. Samples were taken at the time of the initial surgery; IGF-1R expression and localization were characterized by immunohistochemistry (IHC), subcellular fractionation and western blotting. Tumours (47/53) showed positive staining for IGF-1R by IHC. IGF-1R nuclear labelling was observed in 10/47 cases. IGF-1R staining was mostly non-nuclear in low-grade tumours, while IGF-1R nuclear labelling was predominant in high-grade gliomas (p = 0.0001). Survival was significantly longer in patients with gliomas having non-nuclear IGF-1R localization than in patients with nuclear IGF-1R tumours (p = 0.016). In gliomas, IGF-1R nuclear localization was significantly associated with both high-grade tumours and increased risk of death. Based on a prospective design, we provide evidence of a potential usefulness of intracellular localization of IGF-1R as prognostic factor in paediatric patients with gliomas.

  9. The radial distribution of supernovae in nuclear starbursts

    NASA Astrophysics Data System (ADS)

    Herrero-Illana, R.; Pérez-Torres, M. A.; Alberdi, A.

    2013-05-01

    Galaxy-galaxy interactions are expected to be responsible for triggering massive star formation and possibly accretion onto a supermassive black hole, by providing large amounts of dense molecular gas down to the central kiloparsec region. Several scenarios to drive the gas further down to the central ˜100 pc, have been proposed, including the formation of a nuclear disk around the black hole, where massive stars would produce supernovae. Here, we probe the radial distribution of supernovae and supernova remnants in the nuclear regions of the starburst galaxies M82, Arp 299-A, and Arp 220, by using high-angular resolution (≲ 0.''1) radio observations. We derived scale-length values for the putative nuclear disks, which range from ˜20-30 pc for Arp 299-A and Arp 220, up to ˜140 pc for M82. The radial distribution of SNe for the nuclear disks in Arp 299-A and Arp 220 is also consistent with a power-law surface density profile of exponent γ = 1, as expected from detailed hydrodynamical simulations of nuclear disks. This study is detailed in te{herrero-illana12}.

  10. In situ localization and tissue distribution of ostreid herpesvirus 1 proteins in infected Pacific oyster, Crassostrea gigas.

    PubMed

    Martenot, Claire; Segarra, Amélie; Baillon, Laury; Faury, Nicole; Houssin, Maryline; Renault, Tristan

    2016-05-01

    Immunohistochemistry (IHC) assays were conducted on paraffin sections from experimentally infected spat and unchallenged spat produced in hatchery to determine the tissue distribution of three viral proteins within the Pacific oyster, Crassostrea gigas. Polyclonal antibodies were produced from recombinant proteins corresponding to two putative membrane proteins and one putative apoptosis inhibitor encoded by ORF 25, 72, and 87, respectively. Results were then compared to those obtained by in situ hybridization performed on the same individuals, and showed a substantial agreement according to Landis and Koch numeric scale. Positive signals were mainly observed in connective tissue of gills, mantle, adductor muscle, heart, digestive gland, labial palps, and gonads of infected spat. Positive signals were also reported in digestive epithelia. However, few positive signals were also observed in healthy appearing oysters (unchallenged spat) and could be due to virus persistence after a primary infection. Cellular localization of staining seemed to be linked to the function of the viral protein targeted. A nucleus staining was preferentially observed with antibodies targeting the putative apoptosis inhibitor protein whereas a cytoplasmic localization was obtained using antibodies recognizing putative membrane proteins. The detection of viral proteins was often associated with histopathological changes previously reported during OsHV-1 infection by histology and transmission electron microscopy. Within the 6h after viral suspension injection, positive signals were almost at the maximal level with the three antibodies and all studied organs appeared infected at 28h post viral injection. Connective tissue appeared to be a privileged site for OsHV-1 replication even if positive signals were observed in the epithelium cells of different organs which may be interpreted as a hypothetical portal of entry or release for the virus. IHC constitutes a suited method for analyzing the early infection stages of OsHV-1 infection and a useful tool to investigate interactions between OsHV-1 and its host at a protein level. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  11. Isolation, identification and evolution analysis of a novel subgroup of avian leukosis virus isolated from a local Chinese yellow broiler in South China

    USDA-ARS?s Scientific Manuscript database

    Avian leukosis virus (ALV) causes high mortality associated with tumor formation and decreased fertility, and results in major economic losses in the poultry industry worldwide. Recently, a putative novel ALV subgroup virus named ALV-K was observed in Chinese local chickens. In this study, a novel A...

  12. Nuclear localization signal-dependent and -independent movements of Drosophila melanogaster dUTPase isoforms during nuclear cleavage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muha, Villo; Zagyva, Imre; Venkei, Zsolt

    2009-04-03

    Two dUTPase isoforms (23 kDa and 21 kDa) are present in the fruitfly with the sole difference of an N-terminal extension. In Drosophila embryo, both isoforms are detected inside the nucleus. Here, we investigated the function of the N-terminal segment using eYFP-dUTPase constructs. In Schneider 2 cells, only the 23 kDa construct showed nuclear localization arguing that it may contain a nuclear localization signal (NLS). Sequence comparisons identified a lysine-rich nonapeptide with similarity to the human c-myc NLS. In Drosophila embryos during nuclear cleavages, the 23 kDa isoform showed the expected localization shifts. Contrariwise, although the 21 kDa isoform wasmore » excluded from the nuclei during interphase, it was shifted to the nucleus during prophase and forthcoming mitotic steps. The observed dynamic localization character showed strict timing to the nuclear cleavage phases and explained how both isoforms can be present within the nuclear microenvironment, although at different stages of cell cycle.« less

  13. In vivo functional mapping of the conserved protein domains within murine Themis1.

    PubMed

    Zvezdova, Ekaterina; Lee, Jan; El-Khoury, Dalal; Barr, Valarie; Akpan, Itoro; Samelson, Lawrence; Love, Paul E

    2014-09-01

    Thymocyte development requires the coordinated input of signals that originate from numerous cell surface molecules. Although the majority of thymocyte signal-initiating receptors are lineage-specific, most trigger 'ubiquitous' downstream signaling pathways. T-lineage-specific receptors are coupled to these signaling pathways by lymphocyte-restricted adapter molecules. We and others recently identified a new putative adapter protein, Themis1, whose expression is largely restricted to the T lineage. Mice lacking Themis1 exhibit a severe block in thymocyte development and a striking paucity of mature T cells revealing a critical role for Themis1 in T-cell maturation. Themis1 orthologs contain three conserved domains: a proline-rich region (PRR) that binds to the ubiquitous cytosolic adapter Grb2, a nuclear localization sequence (NLS), and two copies of a novel cysteine-containing globular (CABIT) domain. In the present study, we evaluated the functional importance of each of these motifs by retroviral reconstitution of Themis1(-/-) progenitor cells. The results demonstrate an essential requirement for the PRR and NLS motifs but not the conserved CABIT cysteines for Themis1 function.

  14. Mouse TCOF1 is expressed widely, has motifs conserved in nucleolar phosphoproteins, and maps to chromosome 18.

    PubMed

    Paznekas, W A; Zhang, N; Gridley, T; Jabs, E W

    1997-09-08

    Mutations in the human TCOF1 gene have been identified in patients with Treacher Collins Syndrome (Mandibulofacial Dysostosis), an autosomal dominant condition affecting the craniofacial region. We report the isolation of the entire mouse Tcof1 coding sequence (3960 bp) by performing a computer-based search for mouse cDNA clones homologous to TCOF1 and generating overlapping RT-PCR products from mouse RNA. Tcof1 is a 1320 amino acid protein of 135 kd with 61.4% identity to TCOF1 and displays repeating motifs enriched for serine- and acidic amino acid-rich regions with potential phosphorylation sites and putative nuclear localization signals. Tcof1 maps to the mouse chromosome 18 region syntenic with human chromosome 5q32-->q33 which contains the TCOF1 locus. Northern blot hybridization indicates Tcof1 expression is ubiquitous in adult tissues and in the embryonic stage, is elevated at 11 dpc when the branchial arches and facial swellings are present in mouse. Our results are consistent with TCOF1 mutations leading to the Treacher Collins syndrome phenotype.

  15. Facial asymmetry and clinical manifestations in patients with novel insertion of the TCOF1 gene.

    PubMed

    Su, P-H; Liu, Y-F; Yu, J-S; Chen, J-Y; Chen, S-J; Lai, Y-J

    2012-11-01

    This study explored the role of TCOF1 insertion mutations in Taiwanese patients with craniofacial anomalies. Twelve patients with single or multiple, asymmetrical congenital craniofacial anomalies were enrolled. Genomic DNA was prepared from leukocytes; the coding regions of TCOF1 were analyzed by polymerase chain reaction and direct sequencing. Clinical manifestations were correlated to the TCOF1 mutation. Six of 12 patients diagnosed with hemifacial microsomia exhibited a novel insertion mutation 4127 ins G (frameshift) in exon 24 in the TCOF1 gene. All six patients were diagnosed with anomalies on the left side. In addition, four of these six patients had hearing impairment; three had other major anomalies; and two had developmental delay. The insertion caused a frameshift, an early truncation, the loss of two putative nuclear localization signals (residues 1404-1420 and 1424-1440), and the loss of coiled coil domain (1406-1426) in treacle protein. These findings support the existence of two regulators of growth of the mandibular condyles. © 2011 John Wiley & Sons A/S.

  16. Mutations in a novel gene, NHS, cause the pleiotropic effects of Nance-Horan syndrome, including severe congenital cataract, dental anomalies, and mental retardation.

    PubMed

    Burdon, Kathryn P; McKay, James D; Sale, Michèle M; Russell-Eggitt, Isabelle M; Mackey, David A; Wirth, M Gabriela; Elder, James E; Nicoll, Alan; Clarke, Michael P; FitzGerald, Liesel M; Stankovich, James M; Shaw, Marie A; Sharma, Shiwani; Gajovic, Srecko; Gruss, Peter; Ross, Shelley; Thomas, Paul; Voss, Anne K; Thomas, Tim; Gécz, Jozef; Craig, Jamie E

    2003-11-01

    Nance-Horan syndrome (NHS) is an X-linked disorder characterized by congenital cataracts, dental anomalies, dysmorphic features, and, in some cases, mental retardation. NHS has been mapped to a 1.3-Mb interval on Xp22.13. We have confirmed the same localization in the original, extended Australian family with NHS and have identified protein-truncating mutations in a novel gene, which we have called "NHS," in five families. The NHS gene encompasses approximately 650 kb of genomic DNA, coding for a 1,630-amino acid putative nuclear protein. NHS orthologs were found in other vertebrates, but no sequence similarity to known genes was identified. The murine developmental expression profile of the NHS gene was studied using in situ hybridization and a mouse line containing a lacZ reporter-gene insertion in the Nhs locus. We found a complex pattern of temporally and spatially regulated expression, which, together with the pleiotropic features of NHS, suggests that this gene has key functions in the regulation of eye, tooth, brain, and craniofacial development.

  17. Mutations in a Novel Gene, NHS, Cause the Pleiotropic Effects of Nance-Horan Syndrome, Including Severe Congenital Cataract, Dental Anomalies, and Mental Retardation

    PubMed Central

    Burdon, Kathryn P.; McKay, James D.; Sale, Michèle M.; Russell-Eggitt, Isabelle M.; Mackey, David A.; Wirth, M. Gabriela; Elder, James E.; Nicoll, Alan; Clarke, Michael P.; FitzGerald, Liesel M.; Stankovich, James M.; Shaw, Marie A.; Sharma, Shiwani; Gajovic, Srecko; Gruss, Peter; Ross, Shelley; Thomas, Paul; Voss, Anne K.; Thomas, Tim; Gécz, Jozef; Craig, Jamie E.

    2003-01-01

    Nance-Horan syndrome (NHS) is an X-linked disorder characterized by congenital cataracts, dental anomalies, dysmorphic features, and, in some cases, mental retardation. NHS has been mapped to a 1.3-Mb interval on Xp22.13. We have confirmed the same localization in the original, extended Australian family with NHS and have identified protein-truncating mutations in a novel gene, which we have called “NHS,” in five families. The NHS gene encompasses ∼650 kb of genomic DNA, coding for a 1,630–amino acid putative nuclear protein. NHS orthologs were found in other vertebrates, but no sequence similarity to known genes was identified. The murine developmental expression profile of the NHS gene was studied using in situ hybridization and a mouse line containing a lacZ reporter-gene insertion in the Nhs locus. We found a complex pattern of temporally and spatially regulated expression, which, together with the pleiotropic features of NHS, suggests that this gene has key functions in the regulation of eye, tooth, brain, and craniofacial development. PMID:14564667

  18. A domesticated transposon mediates the effects of a single-nucleotide polymorphism responsible for enhanced muscle growth.

    PubMed

    Butter, Falk; Kappei, Dennis; Buchholz, Frank; Vermeulen, Michiel; Mann, Matthias

    2010-04-01

    Single-nucleotide polymorphisms (SNPs) in the regulatory regions of the genome can have a profound impact on phenotype. The G3072A polymorphism in intron 3 of insulin-like growth factor 2 (IGF2) is implicated in higher muscle content and reduced fat in European pigs and is bound by a putative repressor. Here, we identify this repressor--which we call muscle growth regulator (MGR)--by using a DNA protein interaction screen based on quantitative mass spectrometry. MGR has a bipartite nuclear localization signal, two BED-type zinc fingers and is highly conserved between placental mammals. Surprisingly, the gene is located in an intron and belongs to the hobo-Ac-Tam3 transposase superfamily, suggesting regulatory use of a formerly parasitic element. In transactivation assays, MGR differentially represses the expression of the two SNP variants. Knockdown of MGR in C2C12 myoblast cells upregulates Igf2 expression and mild overexpression retards growth. Thus, MGR is the repressor responsible for enhanced muscle growth in the IGF2 G3072A polymorphism in commercially bred pigs.

  19. AfAP2-1, An Age-Dependent Gene of Aechmea fasciata, Responds to Exogenous Ethylene Treatment

    PubMed Central

    Lei, Ming; Li, Zhi-Ying; Wang, Jia-Bin; Fu, Yun-Liu; Ao, Meng-Fei; Xu, Li

    2016-01-01

    The Bromeliaceae family is one of the most morphologically diverse families with a pantropical distribution. To schedule an appropriate flowering time for bromeliads, ethylene is commonly used to initiate flower development in adult plants. However, the mechanism by which ethylene induces flowering in adult bromeliads remains unknown. Here, we identified an APETALA2 (AP2)-like gene, AfAP2-1, in Aechmea fasciata. AfAP2-1 contains two AP2 domains and is a nuclear-localized protein. It functions as a transcriptional activator, and the activation domain is located in the C-terminal region. The expression level of AfAP2-1 is higher in juvenile plants than in adult plants, and the AfAP2-1 transcript level was rapidly and transiently reduced in plants treated with exogenous ethylene. Overexpression of AfAP2-1 in Arabidopsis thaliana results in an extremely delayed flowering phenotype. These results suggested that AfAP2-1 responds to ethylene and is a putative age-dependent flowering regulator in A. fasciata. PMID:26927090

  20. ALMA 0.1–0.2 arcsec resolution imaging of the NGC 1068 Nucleus: compact dense molecular gas emission at the putative AGN location

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imanishi, Masatoshi; Nakanishi, Kouichiro; Izumi, Takuma, E-mail: masa.imanishi@nao.ac.jp

    2016-05-01

    We present the results of our ALMA Cycle 2 high angular resolution (0.″1–0.″2) observations of the nuclear region of the nearby well-studied type-2 active galactic nucleus (AGN), NGC 1068, at HCN J = 3–2 and HCO{sup +} J = 3–2 emission lines. For the first time, due to a higher angular resolution than previous studies, we clearly detected dense molecular gas emission at the putative AGN location, identified as a ∼1.1 mm (∼266 GHz) continuum emission peak, by separating this emission from brighter emission located at 0.″5–2.″0 on the eastern and western sides of the AGN. The estimated intrinsic molecularmore » emission size and dense molecular mass, which are thought to be associated with the putative dusty molecular torus around an AGN, were ∼10 pc and ∼several × 10{sup 5} M {sub ⊙}, respectively. HCN-to-HCO{sup +} J = 3–2 flux ratios substantially higher than unity were found throughout the nuclear region of NGC 1068. The continuum emission displayed an elongated morphology along the direction of the radio jet located at the northern side of the AGN, as well as a weak spatially-resolved component at ∼2.″0 on the southwestern side of the AGN. The latter component most likely originated from star formation, with the estimated luminosity more than one order of magnitude lower than the luminosity of the central AGN. No vibrationally excited ( v {sub 2} = 1f) J = 3–2 emission lines were detected for HCN and HCO{sup +} across the field of view.« less

  1. ALMA 0.1-0.2 arcsec Resolution Imaging of the NGC 1068 Nucleus: Compact Dense Molecular Gas Emission at the Putative AGN Location

    NASA Astrophysics Data System (ADS)

    Imanishi, Masatoshi; Nakanishi, Kouichiro; Izumi, Takuma

    2016-05-01

    We present the results of our ALMA Cycle 2 high angular resolution (0.″1-0.″2) observations of the nuclear region of the nearby well-studied type-2 active galactic nucleus (AGN), NGC 1068, at HCN J = 3-2 and HCO+ J = 3-2 emission lines. For the first time, due to a higher angular resolution than previous studies, we clearly detected dense molecular gas emission at the putative AGN location, identified as a ˜1.1 mm (˜266 GHz) continuum emission peak, by separating this emission from brighter emission located at 0.″5-2.″0 on the eastern and western sides of the AGN. The estimated intrinsic molecular emission size and dense molecular mass, which are thought to be associated with the putative dusty molecular torus around an AGN, were ˜10 pc and ˜several × 105 M ⊙, respectively. HCN-to-HCO+ J = 3-2 flux ratios substantially higher than unity were found throughout the nuclear region of NGC 1068. The continuum emission displayed an elongated morphology along the direction of the radio jet located at the northern side of the AGN, as well as a weak spatially-resolved component at ˜2.″0 on the southwestern side of the AGN. The latter component most likely originated from star formation, with the estimated luminosity more than one order of magnitude lower than the luminosity of the central AGN. No vibrationally excited (v 2 = 1f) J = 3-2 emission lines were detected for HCN and HCO+ across the field of view.

  2. Genome-Wide SNP Discovery, Genotyping and Their Preliminary Applications for Population Genetic Inference in Spotted Sea Bass (Lateolabrax maculatus)

    PubMed Central

    Wang, Juan; Xue, Dong-Xiu; Zhang, Bai-Dong; Li, Yu-Long; Liu, Bing-Jian; Liu, Jin-Xian

    2016-01-01

    Next-generation sequencing and the collection of genome-wide single-nucleotide polymorphisms (SNPs) allow identifying fine-scale population genetic structure and genomic regions under selection. The spotted sea bass (Lateolabrax maculatus) is a non-model species of ecological and commercial importance and widely distributed in northwestern Pacific. A total of 22 648 SNPs was discovered across the genome of L. maculatus by paired-end sequencing of restriction-site associated DNA (RAD-PE) for 30 individuals from two populations. The nucleotide diversity (π) for each population was 0.0028±0.0001 in Dandong and 0.0018±0.0001 in Beihai, respectively. Shallow but significant genetic differentiation was detected between the two populations analyzed by using both the whole data set (FST = 0.0550, P < 0.001) and the putatively neutral SNPs (FST = 0.0347, P < 0.001). However, the two populations were highly differentiated based on the putatively adaptive SNPs (FST = 0.6929, P < 0.001). Moreover, a total of 356 SNPs representing 298 unique loci were detected as outliers putatively under divergent selection by FST-based outlier tests as implemented in BAYESCAN and LOSITAN. Functional annotation of the contigs containing putatively adaptive SNPs yielded hits for 22 of 55 (40%) significant BLASTX matches. Candidate genes for local selection constituted a wide array of functions, including binding, catalytic and metabolic activities, etc. The analyses with the SNPs developed in the present study highlighted the importance of genome-wide genetic variation for inference of population structure and local adaptation in L. maculatus. PMID:27336696

  3. Genome-Wide SNP Discovery, Genotyping and Their Preliminary Applications for Population Genetic Inference in Spotted Sea Bass (Lateolabrax maculatus).

    PubMed

    Wang, Juan; Xue, Dong-Xiu; Zhang, Bai-Dong; Li, Yu-Long; Liu, Bing-Jian; Liu, Jin-Xian

    2016-01-01

    Next-generation sequencing and the collection of genome-wide single-nucleotide polymorphisms (SNPs) allow identifying fine-scale population genetic structure and genomic regions under selection. The spotted sea bass (Lateolabrax maculatus) is a non-model species of ecological and commercial importance and widely distributed in northwestern Pacific. A total of 22 648 SNPs was discovered across the genome of L. maculatus by paired-end sequencing of restriction-site associated DNA (RAD-PE) for 30 individuals from two populations. The nucleotide diversity (π) for each population was 0.0028±0.0001 in Dandong and 0.0018±0.0001 in Beihai, respectively. Shallow but significant genetic differentiation was detected between the two populations analyzed by using both the whole data set (FST = 0.0550, P < 0.001) and the putatively neutral SNPs (FST = 0.0347, P < 0.001). However, the two populations were highly differentiated based on the putatively adaptive SNPs (FST = 0.6929, P < 0.001). Moreover, a total of 356 SNPs representing 298 unique loci were detected as outliers putatively under divergent selection by FST-based outlier tests as implemented in BAYESCAN and LOSITAN. Functional annotation of the contigs containing putatively adaptive SNPs yielded hits for 22 of 55 (40%) significant BLASTX matches. Candidate genes for local selection constituted a wide array of functions, including binding, catalytic and metabolic activities, etc. The analyses with the SNPs developed in the present study highlighted the importance of genome-wide genetic variation for inference of population structure and local adaptation in L. maculatus.

  4. Genotyping microsatellite DNA markers at putative disease loci in inbred/multiplex families with respiratory chain complex I deficiency allows rapid identification of a novel nonsense mutation (IVS1nt -1) in the NDUFS4 gene in Leigh syndrome.

    PubMed

    Bénit, Paule; Steffann, Julie; Lebon, Sophie; Chretien, Dominique; Kadhom, Noman; de Lonlay, Pascale; Goldenberg, Alice; Dumez, Yves; Dommergues, Marc; Rustin, Pierre; Munnich, Arnold; Rötig, Agnès

    2003-05-01

    Complex I deficiency, the most common cause of mitochondrial disorders, accounts for a variety of clinical symptoms and its genetic heterogeneity makes identification of the disease genes particularly tedious. Indeed, most of the 43 complex I subunits are encoded by nuclear genes, only seven of them being mitochondrially encoded. In order to offer urgent prenatal diagnosis, we have studied an inbred/multiplex family with complex I deficiency by using microsatellite DNA markers flanking the putative disease loci. Microsatellite DNA markers have allowed us to exclude the NDUFS7, NDUFS8, NDUFV1 and NDUFS1 genes and to find homozygosity at the NDUFS4 locus. Direct sequencing has led to identification of a homozygous splice acceptor site mutation in intron 1 of the NDUFS4 gene (IVS1nt -1, G-->A); this was not found in chorion villi of the ongoing pregnancy. We suggest that genotyping microsatellite DNA markers at putative disease loci in inbred/multiplex families helps to identify the disease-causing mutation. More generally, we suggest giving consideration to a more systematic microsatellite analysis of putative disease loci for identification of disease genes in inbred/multiplex families affected with genetically heterogeneous conditions.

  5. Molecular Evidence of Demographic Expansion of the Chagas Disease Vector Triatoma dimidiata (Hemiptera, Reduviidae, Triatominae) in Colombia

    PubMed Central

    Gómez-Palacio, Andrés; Triana, Omar

    2014-01-01

    Background Triatoma dimidiata is one of the most significant vectors of Chagas disease in Central America and Colombia, and, as in most species, its pattern of genetic variation within and among populations is strongly affected by its phylogeographic history. A putative origin from Central America has been proposed for Colombian populations, and high genetic differentiation among three biographically different population groups has recently been evidenced. Analyses based on putatively neutral markers provide data from which past events, such as population expansions and colonization, can be inferred. We analyzed the genealogies of the nicotinamide adenine dinucleotide dehydrogenase 4 (ND4) and the cytochrome oxidase subunit 1-mitochondrial genes, as well as partial nuclear ITS-2 DNA sequences obtained across most of the eco-geographical range in Colombia, to assess the population structure and demographic factors that may explain the geographical distribution of T. dimidiata in this country. Results The population structure results support a significant association between genetic divergence and the eco-geographical location of population groups, suggesting that clear signals of demographic expansion can explain the geographical distribution of haplotypes of population groups. Additionally, empirical date estimation of the event suggests that the population's expansion can be placed after the emergence of the Panama Isthmus, and that it was possibly followed by a population fragmentation process, perhaps resulting from local adaptation accomplished by orographic factors such as geographical isolation. Conclusion Inferences about the historical population processes in Colombian T. dimidiata populations are generally in accordance with population expansions that may have been accomplished by two important biotic and orographic events such as the Great American Interchange and the uplift of the eastern range of the Andes mountains in central Colombia. PMID:24625572

  6. Cloning and expression of a nuclear encoded plastid specific 33 kDa ribonucleoprotein gene (33RNP) from pea that is light stimulated.

    PubMed

    Reddy, M K; Nair, S; Singh, B N; Mudgil, Y; Tewari, K K; Sopory, S K

    2001-01-24

    We report the cloning and sequencing of both cDNA and genomic DNA of a 33 kDa chloroplast ribonucleoprotein (33RNP) from pea. The analysis of the predicted amino acid sequence of the cDNA clone revealed that the encoded protein contains two RNA binding domains, including the conserved consensus ribonucleoprotein sequences CS-RNP1 and CS-RNP2, on the C-terminus half and the presence of a putative transit peptide sequence in the N-terminus region. The phylogenetic and multiple sequence alignment analysis of pea chloroplast RNP along with RNPs reported from the other plant sources revealed that the pea 33RNP is very closely related to Nicotiana sylvestris 31RNP and 28RNP and also to 31RNP and 28RNP of Arabidopsis and spinach, respectively. The pea 33RNP was expressed in Escherichia coli and purified to homogeneity. The in vitro import of precursor protein into chloroplasts confirmed that the N-terminus putative transit peptide is a bona fide transit peptide and 33RNP is localized in the chloroplast. The nucleic acid-binding properties of the recombinant protein, as revealed by South-Western analysis, showed that 33RNP has higher binding affinity for poly (U) and oligo dT than for ssDNA and dsDNA. The steady state transcript level was higher in leaves than in roots and the expression of this gene is light stimulated. Sequence analysis of the genomic clone revealed that the gene contains four exons and three introns. We have also isolated and analyzed the 5' flanking region of the pea 33RNP gene.

  7. Properties of Localized Protons in Neutron Star Matter at Finite Temperatures

    NASA Astrophysics Data System (ADS)

    Szmaglinski, A.; Kubis, S.; Wójcik, W.

    2014-02-01

    We study properties of the proton component of neutron star matter for realistic nuclear models. Vanishing of the nuclear symmetry energy implies proton-neutron separation in dense nuclear matter. Protons which form admixture tend to be localized in potential wells. Here, we extend the description of proton localization to finite temperatures. It appears that the protons are still localized at temperatures typical for hot neutron stars. That fact has important astrophysical consequences. Moreover, the temperature inclusion leads to unexpected results for the behavior of the proton localized state.

  8. PmVRP15, a Novel Viral Responsive Protein from the Black Tiger Shrimp, Penaeus monodon, Promoted White Spot Syndrome Virus Replication

    PubMed Central

    Vatanavicharn, Tipachai; Prapavorarat, Adisak; Jaree, Phattarunda; Somboonwiwat, Kunlaya; Tassanakajon, Anchalee

    2014-01-01

    Suppression subtractive hybridization of Penaeus monodon hemocytes challenged with white spot syndrome virus (WSSV) has identified the viral responsive gene, PmVRP15, as the highest up-regulated gene ever reported in shrimps. Expression analysis by quantitative real time RT-PCR revealed 9410–fold up-regulated level at 48 h post WSSV injection. Tissue distribution analysis showed that PmVRP15 transcript was mainly expressed in the hemocytes of shrimp. The full-length cDNA of PmVRP15 transcript was obtained and showed no significant similarity to any known gene in the GenBank database. The predicted open reading frame of PmVRP15 encodes for a deduced 137 amino acid protein containing a putative transmembrane helix. Immunofluorescent localization of the PmVRP15 protein revealed it accumulated around the nuclear membrane in all three types of shrimp hemocytes and that the protein was highly up-regulated in WSSV-infected shrimps. Double-stranded RNA interference-mediated gene silencing of PmVRP15 in P. monodon significantly decreased WSSV propagation compared to the control shrimps (injected with GFP dsRNA). The significant decrease in cumulative mortality rate of WSSV-infected shrimp following PmVRP15 knockdown was observed. These results suggest that PmVRP15 is likely to be a nuclear membrane protein and that it acts as a part of WSSV propagation pathway. PMID:24637711

  9. Characterization of a nuclear localization signal in the foot-and-mouth disease virus polymerase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez-Aparicio, Maria Teresa; Rosas, Maria Flora; Sobrino, Francisco, E-mail: fsobrino@cbm.uam.es

    2013-09-15

    We have experimentally tested whether the MRKTKLAPT sequence in FMDV 3D protein (residues 16 to 24) can act as a nuclear localization signal (NLS). Mutants with substitutions in two basic residues within this sequence, K18E and K20E, were generated. A decreased nuclear localization was observed in transiently expressed 3D and its precursor 3CD, suggesting a role of K18 and K20 in nuclear targeting. Fusion of MRKTKLAPT to the green fluorescence protein (GFP) increased the nuclear localization of GFP, which was not observed when GFP was fused to the 3D mutated sequences. These results indicate that the sequence MRKTKLAPT can bemore » functionally considered as a NLS. When introduced in a FMDV full length RNA replacements K18E and K20E led to production of revertant viruses that replaced the acidic residues introduced (E) by K, suggesting that the presence of lysins at positions 18 and 20 of 3D is essential for virus multiplication. - Highlights: • The FMDV 3D polymerase contains a nuclear localization signal. • Replacements K18E and K20E decrease nuclear localization of 3D and its precursor 3CD. • Fusion of the MRKTKLAPT 3D motif to GFP increases the nuclear localization of GFP. • Replacements K18E and K20E abolish the ability of MRKTKLAPT to relocate GFP. • RNAs harboring replacements K18E and K20E lead to recovery of revertant FMDVs.« less

  10. Nuclear localization signal regulates porcine circovirus type 2 capsid protein nuclear export through phosphorylation.

    PubMed

    Hou, Qiang; Hou, Shaohua; Chen, Qing; Jia, Hong; Xin, Ting; Jiang, Yitong; Guo, Xiaoyu; Zhu, Hongfei

    2018-02-15

    The open reading frame 2 (ORF2) of Porcine circovirus type 2 (PCV2) encodes the major Capsid (Cap) protein, which self-assembles into virus-like particle (VLP) of similar morphology to the PCV2 virion and accumulates in the nucleus through the N-terminal arginine-rich nuclear localization signal (NLS). In this study, PCV2 Cap protein and its derivates were expressed via the baculovirus expression system, and the cellular localization of the recombinant proteins were investigated using anti-Cap mAb by imaging flow cytometry. Analysis of subcellular localization of Cap protein and its variants demonstrated that NLS mediated Cap protein nuclear export as well as nuclear import, and a phosphorylation site (S17) was identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the NLS domain to regulate Cap protein nuclear export. Phosphorylation of NLS regulating the PCV2 Cap protein nuclear export was also demonstrated in PK15 cells by fluorescence microscopy. Moreover, the influence of Rep and Rep' protein on Cap protein subcellular localization was investigated in PK15 cells. Phosphorylation of NLS regulating Cap protein nuclear export provides more detailed knowledge of the PCV2 viral life cycle. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Protein Sub-Nuclear Localization Prediction Using SVM and Pfam Domain Information

    PubMed Central

    Kumar, Ravindra; Jain, Sohni; Kumari, Bandana; Kumar, Manish

    2014-01-01

    The nucleus is the largest and the highly organized organelle of eukaryotic cells. Within nucleus exist a number of pseudo-compartments, which are not separated by any membrane, yet each of them contains only a specific set of proteins. Understanding protein sub-nuclear localization can hence be an important step towards understanding biological functions of the nucleus. Here we have described a method, SubNucPred developed by us for predicting the sub-nuclear localization of proteins. This method predicts protein localization for 10 different sub-nuclear locations sequentially by combining presence or absence of unique Pfam domain and amino acid composition based SVM model. The prediction accuracy during leave-one-out cross-validation for centromeric proteins was 85.05%, for chromosomal proteins 76.85%, for nuclear speckle proteins 81.27%, for nucleolar proteins 81.79%, for nuclear envelope proteins 79.37%, for nuclear matrix proteins 77.78%, for nucleoplasm proteins 76.98%, for nuclear pore complex proteins 88.89%, for PML body proteins 75.40% and for telomeric proteins it was 83.33%. Comparison with other reported methods showed that SubNucPred performs better than existing methods. A web-server for predicting protein sub-nuclear localization named SubNucPred has been established at http://14.139.227.92/mkumar/subnucpred/. Standalone version of SubNucPred can also be downloaded from the web-server. PMID:24897370

  12. Improving nuclear envelope dynamics by EBV BFRF1 facilitates intranuclear component clearance through autophagy.

    PubMed

    Liu, Guan-Ting; Kung, Hsiu-Ni; Chen, Chung-Kuan; Huang, Cheng; Wang, Yung-Li; Yu, Cheng-Pu; Lee, Chung-Pei

    2018-02-26

    Although a vesicular nucleocytoplasmic transport system is believed to exist in eukaryotic cells, the features of this pathway are mostly unknown. Here, we report that the BFRF1 protein of the Epstein-Barr virus improves vesicular transport of nuclear envelope (NE) to facilitate the translocation and clearance of nuclear components. BFRF1 expression induces vesicles that selectively transport nuclear components to the cytoplasm. With the use of aggregation-prone proteins as tools, we found that aggregated nuclear proteins are dispersed when these BFRF1-induced vesicles are formed. BFRF1-containing vesicles engulf the NE-associated aggregates, exit through from the NE, and putatively fuse with autophagic vacuoles. Chemical treatment and genetic ablation of autophagy-related factors indicate that autophagosome formation and autophagy-linked FYVE protein-mediated autophagic proteolysis are involved in this selective clearance of nuclear proteins. Remarkably, vesicular transport, elicited by BFRF1, also attenuated nuclear aggregates accumulated in neuroblastoma cells. Accordingly, induction of NE-derived vesicles by BFRF1 facilitates nuclear protein translocation and clearance, suggesting that autophagy-coupled transport of nucleus-derived vesicles can be elicited for nuclear component catabolism in mammalian cells.-Liu, G.-T., Kung, H.-N., Chen, C.-K., Huang, C., Wang, Y.-L., Yu, C.-P., Lee, C.-P. Improving nuclear envelope dynamics by EBV BFRF1 facilitates intranuclear component clearance through autophagy.

  13. Classic Nuclear Localization Signals and a Novel Nuclear Localization Motif Are Required for Nuclear Transport of Porcine Parvovirus Capsid Proteins

    PubMed Central

    Boisvert, Maude; Bouchard-Lévesque, Véronique; Fernandes, Sandra

    2014-01-01

    ABSTRACT Nuclear targeting of capsid proteins (VPs) is important for genome delivery and precedes assembly in the replication cycle of porcine parvovirus (PPV). Clusters of basic amino acids, corresponding to potential nuclear localization signals (NLS), were found only in the unique region of VP1 (VP1up, for VP1 unique part). Of the five identified basic regions (BR), three were important for nuclear localization of VP1up: BR1 was a classic Pat7 NLS, and the combination of BR4 and BR5 was a classic bipartite NLS. These NLS were essential for viral replication. VP2, the major capsid protein, lacked these NLS and contained no region with more than two basic amino acids in proximity. However, three regions of basic clusters were identified in the folded protein, assembled into a trimeric structure. Mutagenesis experiments showed that only one of these three regions was involved in VP2 transport to the nucleus. This structural NLS, termed the nuclear localization motif (NLM), is located inside the assembled capsid and thus can be used to transport trimers to the nucleus in late steps of infection but not for virions in initial infection steps. The two NLS of VP1up are located in the N-terminal part of the protein, externalized from the capsid during endosomal transit, exposing them for nuclear targeting during early steps of infection. Globally, the determinants of nuclear transport of structural proteins of PPV were different from those of closely related parvoviruses. IMPORTANCE Most DNA viruses use the nucleus for their replication cycle. Thus, structural proteins need to be targeted to this cellular compartment at two distinct steps of the infection: in early steps to deliver viral genomes to the nucleus and in late steps to assemble new viruses. Nuclear targeting of proteins depends on the recognition of a stretch of basic amino acids by cellular transport proteins. This study reports the identification of two classic nuclear localization signals in the minor capsid protein (VP1) of porcine parvovirus. The major protein (VP2) nuclear localization was shown to depend on a complex structural motif. This motif can be used as a strategy by the virus to avoid transport of incorrectly folded proteins and to selectively import assembled trimers into the nucleus. Structural nuclear localization motifs can also be important for nuclear proteins without a classic basic amino acid stretch, including multimeric cellular proteins. PMID:25078698

  14. 0610009K11Rik, a testis-specific and germ cell nuclear receptor-interacting protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Heng; Denhard, Leslie A.; Zhou Huaxin

    Using an in silico approach, a putative nuclear receptor-interacting protein 0610009K11Rik was identified in mouse testis. We named this gene testis-specific nuclear receptor-interacting protein-1 (Tnrip-1). Tnrip-1 was predominantly expressed in the testis of adult mouse tissues. Expression of Tnrip-1 in the testis was regulated during postnatal development, with robust expression in 14-day-old or older testes. In situ hybridization analyses showed that Tnrip-1 is highly expressed in pachytene spermatocytes and spermatids. Consistent with its mRNA expression, Tnrip-1 protein was detected in adult mouse testes. Immunohistochemical studies showed that Tnrip-1 is a nuclear protein and mainly expressed in pachytene spermatocytes and roundmore » spermatids. Moreover, co-immunoprecipitation analyses showed that endogenous Tnrip-1 protein can interact with germ cell nuclear receptor (GCNF) in adult mouse testes. Our results suggest that Tnrip-1 is a testis-specific and GCNF-interacting protein which may be involved in the modulation of GCNF-mediated gene transcription in spermatogenic cells within the testis.« less

  15. Nuclear Glycolytic Enzyme Enolase of Toxoplasma gondii Functions as a Transcriptional Regulator

    PubMed Central

    Mouveaux, Thomas; Oria, Gabrielle; Werkmeister, Elisabeth; Slomianny, Christian; Fox, Barbara A.; Bzik, David J.; Tomavo, Stanislas

    2014-01-01

    Apicomplexan parasites including Toxoplasma gondii have complex life cycles within different hosts and their infectivity relies on their capacity to regulate gene expression. However, little is known about the nuclear factors that regulate gene expression in these pathogens. Here, we report that T. gondii enolase TgENO2 is targeted to the nucleus of actively replicating parasites, where it specifically binds to nuclear chromatin in vivo. Using a ChIP-Seq technique, we provide evidence for TgENO2 enrichment at the 5′ untranslated gene regions containing the putative promoters of 241 nuclear genes. Ectopic expression of HA-tagged TgENO1 or TgENO2 led to changes in transcript levels of numerous gene targets. Targeted disruption of TgENO1 gene results in a decrease in brain cyst burden of chronically infected mice and in changes in transcript levels of several nuclear genes. Complementation of this knockout mutant with ectopic TgENO1-HA fully restored normal transcript levels. Our findings reveal that enolase functions extend beyond glycolytic activity and include a direct role in coordinating gene regulation in T. gondii. PMID:25153525

  16. Phylogeny of Eleusine (Poaceae: Chloridoideae) based on nuclear ITS and plastid trnT-trnF sequences.

    PubMed

    Neves, Susana S; Swire-Clark, Ginger; Hilu, Khidir W; Baird, Wm Vance

    2005-05-01

    Phylogenetic relationships in the genus Eleusine (Poaceae: Chloridoideae) were investigated using nuclear ITS and plastid trnT-trnF sequences. Separate and combined data sets were analyzed using parsimony, distance, and likelihood based methods, including Bayesian. Data congruence was examined using character and topological measures. Significant data heterogeneity was detected, but there was little conflict in the topological substructure measures for triplets and quartets, and resolution and clade support increased in the combined analysis. Data incongruence may be a result of noise and insufficient information in the slower evolving trnT-trnF. Monophyly of Eleusine is strongly supported in all analyses, but basal relationships in the genus remain uncertain. There is good support for a CAIK clade (E. coracana subsp. coracana and africana, E. indica, and E. kigeziensis), with E. tristachya as its sister group. Two putative ITS homeologues (A and B loci) were identified in the allotetraploid E. coracana; the 'B' locus sequence type was not found in the remaining species. Eleusine coracana and its putative 'A' genome donor, the diploid E. indica, are confirmed close allies, but sequence data contradicts the hypothesis that E. floccifolia is its second genome donor. The 'B' genome donor remains unidentified and may be extinct.

  17. Putative melatonin receptors in a human biological clock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reppert, S.M.; Weaver, D.R.; Rivkees, S.A.

    In vitro autoradiography with /sup 125/I-labeled melatonin was used to examine melatonin binding sites in human hypothalamus. Specific /sup 125/I-labeled melatonin binding was localized to the suprachiasmatic nuclei, the site of a putative biological clock, and was not apparent in other hypothalamic regions. Specific /sup 125/I-labeled melatonin binding was consistently found in the suprachiasmatic nuclei of hypothalami from adults and fetuses. Densitometric analysis of competition experiments with varying concentrations of melatonin showed monophasic competition curves, with comparable half-maximal inhibition values for the suprachiasmatic nuclei of adults (150 picomolar) and fetuses (110 picomolar). Micromolar concentrations of the melatonin agonist 6-chloromelatonin completelymore » inhibited specific /sup 125/I-labeled melatonin binding, whereas the same concentrations of serotonin and norepinephrine caused only a partial reduction in specific binding. The results suggest that putative melatonin receptors are located in a human biological clock.« less

  18. The absence of p53 during Human Cytomegalovirus infection leads to decreased UL53 expression, disrupting UL50 localization to the inner nuclear membrane, and thereby inhibiting capsid nuclear egress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuan, Man I; O’Dowd, John M.; Fortunato, Elizabeth

    Our electron microscopy study (Kuan et al., 2016) found HCMV nuclear capsid egress was significantly reduced in p53 knockout cells (p53KOs), correlating with inhibited formation of infoldings of the inner nuclear membrane (IINMs). Molecular examination of these phenomena has found p53KOs expressed UL97 and phosphorylated lamins, however the lamina failed to remodel. The nuclear egress complex (NEC) protein UL50 was expressed in almost all cells. UL50 re-localized to the inner nuclear membrane (INM) in ~90% of wt cells, but only ~35% of p53KOs. UL53 expression was significantly reduced in p53KOs, and cells lacking UL50 nuclear staining, expressed no UL53. Re-introductionmore » of p53 into p53KOs largely recovered UL53 positivity and UL50 nuclear re-localization. Nuclear rim located UL50/53 puncta, which co-localized with the major capsid protein, were largely absent in p53KOs. We believe these puncta were IINMs. In the absence of p53, UL53 expression was inhibited, disrupting formation of the NEC/IINMs, and reducing functional virion secretion. -- Highlights: •Phosphorylated nuclear lamins were inefficiently remodeled in p53KO cells. •p53KO cells expressed UL50, but it was not efficiently targeted to the nuclear rim. •UL53 was not expressed in the large majority of p53KO cells. •Cells failing to express UL53 did not localize UL50 to the nucleus. •NEC puncta/infoldings of the inner nuclear membrane were scarce in p53KO cells.« less

  19. Baculovirus LEF-11 nuclear localization signal is important for viral DNA replication.

    PubMed

    Chen, Tingting; Dong, Zhanqi; Hu, Nan; Hu, Zhigang; Dong, Feifan; Jiang, Yaming; Li, Jun; Chen, Peng; Lu, Cheng; Pan, Minhui

    2017-06-15

    Baculovirus LEF-11 is a small nuclear protein that is involved in viral late gene transcription and DNA replication. However, the characteristics of its nuclear localization signal and its impact on viral DNA replication are unknown. In the present study, systemic bioinformatics analysis showed that the baculovirus LEF-11 contains monopartite and bipartite classical nuclear localization signal sequences (cNLSs), which were also detected in a few alphabaculovirus species. Localization of representative LEF-11 proteins of four baculovirus genera indicated that the nuclear localization characteristics of baculovirus LEF-11 coincided with the predicted results. Moreover, Bombyx mori nucleopolyhedrovirus (BmNPV) LEF-11 could be transported into the nucleus during viral infection in the absence of a cNLSs. Further investigations demonstrated that the NLS of BmNPV LEF-11 is important for viral DNA replication. The findings of the present study indicate that the characteristics of the baculovirus LEF-11 protein and the NLS is essential to virus DNA replication and nuclear transport mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Aberrant localization of lamin B receptor (LBR) in cellular senescence in human cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, Rumi; En, Atsuki; Ukekawa, Ryo

    2016-05-13

    5-Bromodeoxyuridine (BrdU), a thymidine analogue, induces cellular senescence in mammalian cells. BrdU induces cellular senescence probably through the regulation of chromatin because BrdU destabilizes or disrupts nucleosome positioning and decondenses heterochromatin. Since heterochromatin is tethered to the nuclear periphery through the interaction with the nuclear envelope proteins, we examined the localization of the several nuclear envelope proteins such as lamins, lamin-interacting proteins, nuclear pore complex proteins, and nuclear transport proteins in senescent cells. We have shown here that lamin B receptor (LBR) showed a change in localization in both BrdU-induced and replicative senescent cells.

  1. Immunological and biochemical evidence for nuclear localization of annexin in peas

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Dauwalder, M.; Roux, S. J.

    1998-01-01

    Immunofluorescent localization of annexins using an anti-pea annexin polyclonal antibody (anti-p35) in pea (Pisum sativum) leaf and stem epidermal peels showed staining of the nuclei and the cell periphery. Nuclear staining was also seen in cell teases prepared from pea plumules. The amount of nuclear stain was reduced both by fixation time and by dehydration and organic solvent treatment. Observation with confocal microscopy demonstrated that the anti-p35 stain was diffusely distributed throughout the nuclear structure. Immunoblots of purified nuclei, nuclear envelope matrix, nucleolar, and chromatin fractions showed a cross-reactive protein band of 35 kDa. These data are the first to show annexins localized in plant cell nuclei where they may play a role in nuclear function.

  2. Iron-Inducible Nuclear Translocation of a Myb3 Transcription Factor in the Protozoan Parasite Trichomonas vaginalis

    PubMed Central

    Hsu, Hong-Ming; Lee, Yu; Indra, Dharmu; Wei, Shu-Yi; Liu, Hsing-Wei; Chang, Lung-Chun; Chen, Chinpan; Ong, Shiou-Jeng

    2012-01-01

    In Trichomonas vaginalis, a novel nuclear localization signal spanning the folded R2R3 DNA-binding domain of a Myb2 protein was previously identified. To study whether a similar signal is used for nuclear translocation by other Myb proteins, nuclear translocation of Myb3 was examined in this report. When overexpressed, hemagglutinin-tagged Myb3 was localized to nuclei of transfected cells, with a cellular distribution similar to that of endogenous Myb3. Fusion to a bacterial tetracycline repressor, R2R3, of Myb3 that spans amino acids (aa) 48 to 156 was insufficient for nuclear translocation of the fusion protein, unless its C terminus was extended to aa 167. The conserved isoleucine in helix 2 of R2R3, which is important for Myb2's structural integrity in maintaining DNA-binding activity and nuclear translocation, was also vital for the former activity of Myb3, but less crucial for the latter. Sequential nuclear influx and efflux of Myb3, which require further extension of the nuclear localization signal to aa 180, were immediately induced after iron repletion. Sequence elements that regulate nuclear translocation with cytoplasmic retention, nuclear influx, and nuclear efflux were identified within the C-terminal tail. These results suggest that the R2R3 DNA-binding domain also serves as a common module for the nuclear translocation of both Myb2 and Myb3, but there are intrinsic differences between the two nuclear localization signals. PMID:23042127

  3. Advancing Precision Nuclear Medicine and Molecular Imaging for Lymphoma.

    PubMed

    Wright, Chadwick L; Maly, Joseph J; Zhang, Jun; Knopp, Michael V

    2017-01-01

    PET with fluorodeoxyglucose F 18 ( 18 F FDG-PET) is a meaningful biomarker for the detection, targeted biopsy, and treatment of lymphoma. This article reviews the evolution of 18 F FDG-PET as a putative biomarker for lymphoma and addresses the current capabilities, challenges, and opportunities to enable precision medicine practices for lymphoma. Precision nuclear medicine is driven by new imaging technologies and methodologies to more accurately detect malignant disease. Although quantitative assessment of response is limited, such technologies will enable a more precise metabolic mapping with much higher definition image detail and thus may make it a robust and valid quantitative response assessment methodology. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Introgression of the SbASR-1 Gene Cloned from a Halophyte Salicornia brachiata Enhances Salinity and Drought Endurance in Transgenic Groundnut (Arachis hypogaea) and Acts as a Transcription Factor

    PubMed Central

    Tiwari, Vivekanand; Chaturvedi, Amit Kumar; Mishra, Avinash; Jha, Bhavanath

    2015-01-01

    The SbASR-1 gene, cloned from a halophyte Salicornia brachiata, encodes a plant-specific hydrophilic and stress responsive protein. The genome of S. brachiata has two paralogs of the SbASR-1 gene (2549 bp), which is comprised of a single intron of 1611 bp, the largest intron of the  abscisic acid stress ripening [ASR] gene family yet reported. In silico analysis of the 843-bp putative promoter revealed the presence of ABA, biotic stress, dehydration, phytohormone, salinity, and sugar responsive cis-regulatory motifs. The SbASR-1 protein belongs to Group 7 LEA protein family with different amino acid composition compared to their glycophytic homologs. Bipartite Nuclear Localization Signal (NLS) was found on the C-terminal end of protein and localization study confirmed that SbASR-1 is a nuclear protein. Furthermore, transgenic groundnut (Arachis hypogaea) plants over-expressing the SbASR-1 gene constitutively showed enhanced salinity and drought stress tolerance in the T1 generation. Leaves of transgenic lines exhibited higher chlorophyll and relative water contents and lower electrolyte leakage, malondialdehyde content, proline, sugars, and starch accumulation under stress treatments than wild-type (Wt) plants. Also, lower accumulation of H2O2 and O2 .- radicals was detected in transgenic lines compared to Wt plants under stress conditions. Transcript expression of APX (ascorbate peroxidase) and CAT (catalase) genes were higher in Wt plants, whereas the SOD (superoxide dismutase) transcripts were higher in transgenic lines under stress. Electrophoretic mobility shift assay (EMSA) confirmed that the SbASR-1 protein binds at the consensus sequence (C/G/A)(G/T)CC(C/G)(C/G/A)(A/T). Based on results of the present study, it may be concluded that SbASR-1 enhances the salinity and drought stress tolerance in transgenic groundnut by functioning as a LEA (late embryogenesis abundant) protein and a transcription factor. PMID:26158616

  5. Evidence of Nuclear Disks from the Radial Distribution of CCSNe in Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Herrero-Illana, Rubén; Pérez-Torres, Miguel Ángel; Alberdi, Antxon

    Galaxy-galaxy interactions are expected to be responsible for triggering massive star formation and possibly accretion onto a supermassive black hole, by providing large amounts of dense molecular gas down to the central kiloparsec region. Several scenarios to drive the gas further down to the central ˜ 100 pc, have been proposed, including the formation of a nuclear disk around the black hole, where massive stars would produce supernovae. Here, we probe the radial distribution of supernovae and supernova remnants in the nuclear regions of the starburst galaxies M82, Arp 299-A, and Arp 220, by using high-angular resolution (≲ 0.'1) radio observations. We derived scale-length values for the putative nuclear disks, which range from ˜ 20-30 pc for Arp 299-A and Arp 220, up to ˜ 140 pc for M82. The radial distribution of SNe for the nuclear disks in Arp 299-A and Arp 220 is also consistent with a power-law surface density profile of exponent γ = 1, as expected from detailed hydrodynamical simulations of nuclear disks. This study is detailed in Herrero-Illana, Perez-Torres, and Alberdi [11].

  6. Characterization of a nuclear export signal within the human T cell leukemia virus type I transactivator protein Tax.

    PubMed

    Alefantis, Timothy; Barmak, Kate; Harhaj, Edward W; Grant, Christian; Wigdahl, Brian

    2003-06-13

    Human T cell leukemia virus type I (HTLV-I) is the etiologic agent of adult T cell leukemia and HTLV-I-associated myelopathy/tropical spastic paraparesis. The HTLV-I transactivator protein Tax plays an integral role in the etiology of adult T cell leukemia, as expression of Tax in T lymphocytes has been shown to result in immortalization. In addition, Tax is known to interface with numerous transcription factor families, including activating transcription factor/cAMP response element-binding protein and nuclear factor-kappaB, requiring Tax to localize to both the nucleus and cytoplasm. In this report, the nucleocytoplasmic localization of Tax was examined in Jurkat, HeLa, and U-87 MG cells. The results reported herein indicate that Tax contains a leucine-rich nuclear export signal (NES) that, when fused to green fluorescent protein (GFP), can direct nuclear export via the CRM-1 pathway, as determined by leptomycin B inhibition of nuclear export. However, cytoplasmic localization of full-length Tax was not altered by treatment with leptomycin B, suggesting that native Tax utilizes another nuclear export pathway. Additional support for the presence of a functional NES has also been shown because the NES mutant Tax(L200A)-GFP localized to the nuclear membrane in the majority of U-87 MG cells. Evidence has also been provided suggesting that the Tax NES likely exists as a conditionally masked signal because the truncation mutant TaxDelta214-GFP localized constitutively to the cytoplasm. These results suggest that Tax localization may be directed by specific changes in Tax conformation or by specific interactions with cellular proteins leading to changes in the availability of the Tax NES and nuclear localization signal.

  7. Quantitative Expression and Co-Localization of Wnt Signalling Related Proteins in Feline Squamous Cell Carcinoma

    PubMed Central

    Marote, Georgina; Abramo, Francesca; McKay, Jenny; Thomson, Calum; Beltran, Mariana; Millar, Michael; Priestnall, Simon; Dobson, Jane; Costantino-Casas, Fernando; Petrou, Terry; McGonnell, Imelda M.; Davies, Anthony J.; Weetman, Malcolm; Garden, Oliver A.; Masters, John R.; Thrasivoulou, Christopher; Ahmed, Aamir

    2016-01-01

    Feline oral squamous cell carcinoma (FOSCC) is an aggressive neoplasm in cats. Little is known about the possible molecular mechanisms that may be involved in the initiation, maintenance and progression of FOSCC. Wnt signalling is critical in development and disease, including many mammalian cancers. In this study, we have investigated the expression of Wnt signalling related proteins using quantitative immunohistochemical techniques on tissue arrays. We constructed tissue arrays with 58 individual replicate tissue samples. We tested for the expression of four key Wnt/ß-catenin transcription targets, namely Cyclin D1 (CCND1 or CD1), FRA1, c-Myc and MMP7. All antibodies showed cross reactivity in feline tissue except MMP7. Quantitative immunohistochemical analysis of single proteins (expressed as area fraction / amount of tissue for normal vs tumor, mean ± SE) showed that the expression of CD1 (3.9 ± 0.5 vs 12.2 ± 0.9), FRA1 (5.5 ± 0.6 vs 16.8 ± 1.1) and c-Myc (5.4 ± 0.5 vs 12.5 ± 0.9) was increased in FOSCC tissue by 2.3 to 3 fold compared to normal controls (p<0.0001). By using a multilabel, quantitative fluorophore technique we further investigated if the co-localization of these proteins (all transcription factors) with each other and in the nucleus (stained with 4',6-diamidino-2-phenylindole, DAPI) was altered in FOSCC compared to normal tissue. The global intersection coefficients, a measure of the proximity of two fluorophore labeled entities, showed that there was a significant change (p < 0.01) in the co-localization for all permutations (e.g. CD1/FRA1 etc), except for the nuclear localization of CD1. Our results show that putative targets of Wnt signalling transcription are up-regulated in FOSCC with alterations in the co-localization of these proteins and could serve as a useful marker for the disease. PMID:27559731

  8. A Role for Caenorhabditis elegans Importin IMA-2 in Germ Line and Embryonic Mitosis

    PubMed Central

    Geles, Kenneth G.; Johnson, Jeffrey J.; Jong, Sena; Adam, Stephen A.

    2002-01-01

    The importin α family of nuclear-cytoplasmic transport factors mediates the nuclear localization of proteins containing classical nuclear localization signals. Metazoan animals express multiple importin α proteins, suggesting their possible roles in cell differentiation and development. Adult Caenorhabditis elegans hermaphrodites express three importin α proteins, IMA-1, IMA-2, and IMA-3, each with a distinct expression and localization pattern. IMA-2 was expressed exclusively in germ line cells from the early embryonic through adult stages. The protein has a dynamic pattern of localization dependent on the stage of the cell cycle. In interphase germ cells and embryonic cells, IMA-2 is cytoplasmic and nuclear envelope associated, whereas in developing oocytes, the protein is cytoplasmic and intranuclear. During mitosis in germ line cells and embryos, IMA-2 surrounded the condensed chromosomes but was not directly associated with the mitotic spindle. The timing of IMA-2 nuclear localization suggested that the protein surrounded the chromosomes after fenestration of the nuclear envelope in prometaphase. Depletion of IMA-2 by RNA-mediated gene interference (RNAi) resulted in embryonic lethality and a terminal aneuploid phenotype. ima-2(RNAi) embryos have severe defects in nuclear envelope formation, accumulating nucleoporins and lamin in the cytoplasm. We conclude that IMA-2 is required for proper chromosome dynamics in germ line and early embryonic mitosis and is involved in nuclear envelope assembly at the conclusion of mitosis. PMID:12221121

  9. Nuclear localization of Merkel cell polyomavirus large T antigen in Merkel cell carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Tomoyuki; Sato, Yuko; Watanabe, Daisuke

    2010-03-15

    To clarify whether mutations in the large T gene encoded by Merkel cell polyomavirus affect the expression and function of large T antigen in Merkel cell carcinoma cases, we investigated the expression of large T antigen in vitro and in vivo. Immunohistochemistry using a rabbit polyclonal antibody revealed that large T antigen was expressed in the nuclei of Merkel cell carcinoma cells with Merkel cell polyomavirus infection. Deletion mutant analyses identified an Arg-Lys-Arg-Lys sequence (amino acids 277-280) as a nuclear localization signal in large T antigen. Sequence analyses revealed that there were no mutations in the nuclear localization signal inmore » any of the eleven Merkel cell polyomavirus strains examined. Furthermore, stop codons were not observed in the upstream of the nuclear localization signal in any of the Merkel cell carcinoma cases examined. These data suggest that the nuclear localization signal is highly conserved and functional in Merkel cell carcinoma cases.« less

  10. A Highly Organized Structure Mediating Nuclear Localization of a Myb2 Transcription Factor in the Protozoan Parasite Trichomonas vaginalis ▿ †

    PubMed Central

    Chu, Chien-Hsin; Chang, Lung-Chun; Hsu, Hong-Ming; Wei, Shu-Yi; Liu, Hsing-Wei; Lee, Yu; Kuo, Chung-Chi; Indra, Dharmu; Chen, Chinpan; Ong, Shiou-Jeng; Tai, Jung-Hsiang

    2011-01-01

    Nuclear proteins usually contain specific peptide sequences, referred to as nuclear localization signals (NLSs), for nuclear import. These signals remain unexplored in the protozoan pathogen, Trichomonas vaginalis. The nuclear import of a Myb2 transcription factor was studied here using immunodetection of a hemagglutinin-tagged Myb2 overexpressed in the parasite. The tagged Myb2 was localized to the nucleus as punctate signals. With mutations of its polybasic sequences, 48KKQK51 and 61KR62, Myb2 was localized to the nucleus, but the signal was diffusive. When fused to a C-terminal non-nuclear protein, the Myb2 sequence spanning amino acid (aa) residues 48 to 143, which is embedded within the R2R3 DNA-binding domain (aa 40 to 156), was essential and sufficient for efficient nuclear import of a bacterial tetracycline repressor (TetR), and yet the transport efficiency was reduced with an additional fusion of a firefly luciferase to TetR, while classical NLSs from the simian virus 40 T-antigen had no function in this assay system. Myb2 nuclear import and DNA-binding activity were substantially perturbed with mutation of a conserved isoleucine (I74) in helix 2 to proline that altered secondary structure and ternary folding of the R2R3 domain. Disruption of DNA-binding activity alone by point mutation of a lysine residue, K51, preceding the structural domain had little effect on Myb2 nuclear localization, suggesting that nuclear translocation of Myb2, which requires an ordered structural domain, is independent of its DNA binding activity. These findings provide useful information for testing whether myriad Mybs in the parasite use a common module to regulate nuclear import. PMID:22021237

  11. Nuclear import of human MLH1, PMS2, and MutLalpha: redundancy is the key.

    PubMed

    Leong, Vivian; Lorenowicz, Jessica; Kozij, Natalie; Guarné, Alba

    2009-08-01

    DNA mismatch repair maintains genomic stability by correcting errors that have escaped polymerase proofreading. Defects on mismatch repair genes lead to an increased mutation rate, microsatellite instability and predisposition to human non-polyposis colorectal cancer (HNPCC). Human MutLalpha is a heterodimer formed by the interaction of MLH1 and PMS2 that coordinates a series of key events in mismatch repair. It has been proposed that nuclear import of MutLalpha may be the first regulatory step on the activation of the mismatch repair pathway. Using confocal microscopy and mismatch repair deficient cells, we have identified the sequence determinants that drive nuclear import of human MLH1, PMS2, and MutLalpha. Transient transfection of the individual proteins reveals that MLH1 has a bipartite and PMS2 has a single monopartite nuclear localization signal. Although dimerization is not required for nuclear localization, the MutLalpha heterodimer is imported more efficiently than the MLH1 or PMS2 monomers. Interestingly, the bipartite localization signal of MLH1 can direct import of MutLalpha even when PMS2 encompasses a mutated localization signal. Hence we conclude that the presence of redundant nuclear localization signals guarantees nuclear transport of MutLalpha and, consequently, efficient mismatch repair.

  12. The Role ERG and CXCR4 in Prostate Cancer Progression

    DTIC Science & Technology

    2011-06-01

    axis functions in PC progression to enhance invasion and metastasis. To address the regulation of CXCR4 expression, we identified several putative ERG...interaction between ERG factor and CXCR4 gene promoter and link these activities with TMPRSS2-ERG translocations and enhanced metastasis of tumor cells via...and increased VCaP nuclear extract protein in assay enhanced the intensity of bands (Figure 1D). Inclusion of anti-ERG antibodies super shifted

  13. HAM-5 functions as a MAP kinase scaffold during cell fusion in Neurospora crassa

    DOE PAGES

    Jonkers, Wilfried; Leeder, Abigail C.; Ansong, Charles; ...

    2014-11-20

    Cell fusion in genetically identical Neurospora crassa germlings and in hyphae is a highly regulated process involving the activation of a conserved MAP kinase cascade that includes NRC1, MEK2 and MAK2. During chemotrophic growth in germlings, the MAP kinase cascade members localize to conidial anastomosis tube (CAT) tips every 4 minutes, perfectly out of phase with another protein that is recruited to the tip: SOFT, a protein of unknown biochemical function. How this oscillation process is initiated, maintained and what proteins regulate the MAP kinase cascade is currently unclear. A global phosphoproteomics approach using an allele of mak-2 (mak-2Q100G) thatmore » can be specifically inhibited by the ATP analog 1NM-PP1 was utilized to identify MAK2 kinase targets in germlings that were potentially involved in this process. One such putative target was HAM5, a protein of unknown biochemical function. Previously, Δham-5 mutants were shown to be deficient for hyphal fusion. Here we show that HAM5-GFP co-localized with NRC1, MEK2 and MAK2 and oscillated with identical dynamics from the cytoplasm to CAT tips during chemotropic interactions. In the Δmak-2 strain, HAM5-GFP localized to punctate complexes that did not oscillate, but still localized to the germling tip, suggesting that MAK2 activity influences HAM5 function/localization. However, MAK2-GFP showed only cytoplasmic and nuclear localization in a Δham-5 strain and did not localize to puncta, as observed in wild type germlings. Via co-immunoprecipitation experiments, HAM5 was shown to physically interact with MAK2, MEK2 and NRC1, suggesting that it functions as a scaffold/transport hub for the MAP kinase cascade members during oscillation and chemotropic interactions during both germling and hyphal fusion in N. crassa. The identification of HAM5 as a scaffold-like protein will help to link the activation of MAK2 to upstream factors and other proteins involved in this intriguing process of fungal communication.« less

  14. HAM-5 Functions As a MAP Kinase Scaffold during Cell Fusion in Neurospora crassa

    PubMed Central

    Jonkers, Wilfried; Leeder, Abigail C.; Ansong, Charles; Wang, Yuexi; Yang, Feng; Starr, Trevor L.; Camp, David G.; Smith, Richard D.; Glass, N. Louise

    2014-01-01

    Cell fusion in genetically identical Neurospora crassa germlings and in hyphae is a highly regulated process involving the activation of a conserved MAP kinase cascade that includes NRC-1, MEK-2 and MAK-2. During chemotrophic growth in germlings, the MAP kinase cascade members localize to conidial anastomosis tube (CAT) tips every ∼8 minutes, perfectly out of phase with another protein that is recruited to the tip: SOFT, a recently identified scaffold for the MAK-1 MAP kinase pathway in Sordaria macrospora. How the MAK-2 oscillation process is initiated, maintained and what proteins regulate the MAP kinase cascade is currently unclear. A global phosphoproteomics approach using an allele of mak-2 (mak-2Q100G) that can be specifically inhibited by the ATP analog 1NM-PP1 was utilized to identify MAK-2 kinase targets in germlings that were potentially involved in this process. One such putative target was HAM-5, a protein of unknown biochemical function. Previously, Δham-5 mutants were shown to be deficient for hyphal fusion. Here we show that HAM-5-GFP co-localized with NRC-1, MEK-2 and MAK-2 and oscillated with identical dynamics from the cytoplasm to CAT tips during chemotropic interactions. In the Δmak-2 strain, HAM-5-GFP localized to punctate complexes that did not oscillate, but still localized to the germling tip, suggesting that MAK-2 activity influences HAM-5 function/localization. However, MAK-2-GFP showed cytoplasmic and nuclear localization in a Δham-5 strain and did not localize to puncta. Via co-immunoprecipitation experiments, HAM-5 was shown to physically interact with NRC-1, MEK-2 and MAK-2, suggesting that it functions as a scaffold/transport hub for the MAP kinase cascade members for oscillation and chemotropic interactions during germling and hyphal fusion in N. crassa. The identification of HAM-5 as a scaffold-like protein will help to link the activation of MAK-2 cascade to upstream factors and proteins involved in this intriguing process of fungal communication. PMID:25412208

  15. HAM-5 functions as a MAP kinase scaffold during cell fusion in Neurospora crassa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonkers, Wilfried; Leeder, Abigail C.; Ansong, Charles

    Cell fusion in genetically identical Neurospora crassa germlings and in hyphae is a highly regulated process involving the activation of a conserved MAP kinase cascade that includes NRC1, MEK2 and MAK2. During chemotrophic growth in germlings, the MAP kinase cascade members localize to conidial anastomosis tube (CAT) tips every 4 minutes, perfectly out of phase with another protein that is recruited to the tip: SOFT, a protein of unknown biochemical function. How this oscillation process is initiated, maintained and what proteins regulate the MAP kinase cascade is currently unclear. A global phosphoproteomics approach using an allele of mak-2 (mak-2Q100G) thatmore » can be specifically inhibited by the ATP analog 1NM-PP1 was utilized to identify MAK2 kinase targets in germlings that were potentially involved in this process. One such putative target was HAM5, a protein of unknown biochemical function. Previously, Δham-5 mutants were shown to be deficient for hyphal fusion. Here we show that HAM5-GFP co-localized with NRC1, MEK2 and MAK2 and oscillated with identical dynamics from the cytoplasm to CAT tips during chemotropic interactions. In the Δmak-2 strain, HAM5-GFP localized to punctate complexes that did not oscillate, but still localized to the germling tip, suggesting that MAK2 activity influences HAM5 function/localization. However, MAK2-GFP showed only cytoplasmic and nuclear localization in a Δham-5 strain and did not localize to puncta, as observed in wild type germlings. Via co-immunoprecipitation experiments, HAM5 was shown to physically interact with MAK2, MEK2 and NRC1, suggesting that it functions as a scaffold/transport hub for the MAP kinase cascade members during oscillation and chemotropic interactions during both germling and hyphal fusion in N. crassa. The identification of HAM5 as a scaffold-like protein will help to link the activation of MAK2 to upstream factors and other proteins involved in this intriguing process of fungal communication.« less

  16. Karyopherin-mediated nuclear import of the homing endonuclease VMA1-derived endonuclease is required for self-propagation of the coding region.

    PubMed

    Nagai, Yuri; Nogami, Satoru; Kumagai-Sano, Fumi; Ohya, Yoshikazu

    2003-03-01

    VMA1-derived endonuclease (VDE), a site-specific endonuclease in Saccharomyces cerevisiae, enters the nucleus to generate a double-strand break in the VDE-negative allelic locus, mediating the self-propagating gene conversion called homing. Although VDE is excluded from the nucleus in mitotic cells, it relocalizes at premeiosis, becoming localized in both the nucleus and the cytoplasm in meiosis. The nuclear localization of VDE is induced by inactivation of TOR kinases, which constitute central regulators of cell differentiation in S. cerevisiae, and by nutrient depletion. A functional genomic approach revealed that at least two karyopherins, Srp1p and Kap142p, are required for the nuclear localization pattern. Genetic and physical interactions between Srp1p and VDE imply direct involvement of karyopherin-mediated nuclear transport in this process. Inactivation of TOR signaling or acquisition of an extra nuclear localization signal in the VDE coding region leads to artificial nuclear localization of VDE and thereby induces homing even during mitosis. These results serve as evidence that VDE utilizes the host systems of nutrient signal transduction and nucleocytoplasmic transport to ensure the propagation of its coding region.

  17. Karyopherin-Mediated Nuclear Import of the Homing Endonuclease VMA1-Derived Endonuclease Is Required for Self-Propagation of the Coding Region

    PubMed Central

    Nagai, Yuri; Nogami, Satoru; Kumagai-Sano, Fumi; Ohya, Yoshikazu

    2003-01-01

    VMA1-derived endonuclease (VDE), a site-specific endonuclease in Saccharomyces cerevisiae, enters the nucleus to generate a double-strand break in the VDE-negative allelic locus, mediating the self-propagating gene conversion called homing. Although VDE is excluded from the nucleus in mitotic cells, it relocalizes at premeiosis, becoming localized in both the nucleus and the cytoplasm in meiosis. The nuclear localization of VDE is induced by inactivation of TOR kinases, which constitute central regulators of cell differentiation in S. cerevisiae, and by nutrient depletion. A functional genomic approach revealed that at least two karyopherins, Srp1p and Kap142p, are required for the nuclear localization pattern. Genetic and physical interactions between Srp1p and VDE imply direct involvement of karyopherin-mediated nuclear transport in this process. Inactivation of TOR signaling or acquisition of an extra nuclear localization signal in the VDE coding region leads to artificial nuclear localization of VDE and thereby induces homing even during mitosis. These results serve as evidence that VDE utilizes the host systems of nutrient signal transduction and nucleocytoplasmic transport to ensure the propagation of its coding region. PMID:12588991

  18. Identification of multiple nuclear localization signals in murine Elf3, an ETS transcription factor.

    PubMed

    Do, Hyun-Jin; Song, Hyuk; Yang, Heung-Mo; Kim, Dong-Ku; Kim, Nam-Hyung; Kim, Jin-Hoi; Cha, Kwang-Yul; Chung, Hyung-Min; Kim, Jae-Hwan

    2006-03-20

    We investigated nuclear localization signal (NLS) determinants within the AT-hook and ETS DNA-binding domains of murine Elf3 (mElf3), a member of the subfamily of epithelium-specific ETS transcription factors. Deletion mutants containing the AT-hook, ETS domain or both localized strictly in the nucleus, suggesting that these individual domains contain independent NLS motif(s). Within the AT-hook domain, four basic residues (244KRKR247) were critical for strong NLS activity, and two potent bipartite NLS motifs (236-252 and 249-267) were sufficient for nuclear import of mElf3, although less efficient than the full domain. In addition, one stretch of basic residues (318KKK320) within the ETS domain appears to be essential for mElf3 nuclear localization. Taken together, mElf3 contains multiple NLS motifs, which may function cooperatively to effect efficient nuclear transport.

  19. The association between local atherosclerosis of the prostatic artery and benign prostatic enlargement in humans: Putative mechanism of chronic ischemia for prostatic enlargement.

    PubMed

    Haga, Nobuhiro; Akaihata, Hidenori; Hata, Junya; Aikawa, Ken; Yanagida, Tomohiko; Matsuoka, Kanako; Koguchi, Tomoyuki; Hoshi, Seiji; Ogawa, Soichiro; Kataoka, Masao; Sato, Yuichi; Ishibashi, Kei; Suzuki, Osamu; Hashimoto, Yuko; Kojima, Yoshiyuki

    2018-05-21

    To investigate the possible pathogenesis of the benign prostatic enlargement (BPE) induced by local atherosclerosis, the association between local atherosclerosis and prostatic enlargement was investigated, and molecular biological analyses were performed using human prostatectomy specimens. A total of 69 consecutive patients who underwent robot-assisted radical prostatectomy (RARP) participated in this prospective study. To evaluate actual local atherosclerosis, prostatic arteries were removed during RARP. Microscopic assessment of local atherosclerosis was classified as one of three degrees of narrowing (minimal, moderate, and severe) according to the degree of obstruction of the inner cavity of the prostatic artery. The expressions of several mediators related to chronic ischemia and cell proliferation of the prostate were investigated by immunohistochemistry. The median age of the present cohort was 68 (range: 55-75) years. Although there was no relationship between local atherosclerosis and lower urinary symptoms evaluated by questionnaires, local atherosclerosis was significantly more severe in patients who had a history of treatment for benign prostatic hyperplasia (P = 0.02). Prostate size was significantly larger in the severe local atherosclerosis group than in the minimal and moderate local atherosclerosis groups (P < 0.001 and P = 0.03, respectively). Thepositive expression rates of hypoxia-inducible factor (HIF)-1α, malondialdehyde (MDA), transforming growth factor (TGF)-β 1 , and basic fibroblast growth factor (bFGF) in the prostate were significantly higher in patients with local atherosclerosis than in patients without local atherosclerosis (all P < 0.01, respectively). In human surgical specimens, there is evidence that local atherosclerosis of the prostatic artery is significantly associated with prostate size. Given the molecular evidence provided in this study, the putative mechanism for this relationship is that chronic ischemia induced upregulation of oxidative stress pathways, leading to BPE. © 2018 Wiley Periodicals, Inc.

  20. Age- and sex-related differences in nuclear lipid content and nucleoside triphosphatase activity in the JCR:LA-cp corpulent rat.

    PubMed

    Czubryt, M P; Russell, J C; Sarantopoulos, J; Gilchrist, J S; Pierce, G N

    1997-11-01

    The putative role of the nuclear nucleoside triphosphatase (NTPase) is to provide energy to the nuclear pore complex for poly A(+) mRNA export. Previous work has demonstrated that liver nuclear NTPase activity is greater in 6 month old corpulent (cp/cp) female JCR:LA rats, a hyperlipidemic rat model, compared to lean (+/?) animals. This increase appeared to be related to increases in nuclear membrane cholesterol content. The current study extended these initial data to compare NTPase activity as a function of age and sex in isolated JCR:LA-cp rat liver nuclei, to further test the hypothesis that nuclear membrane cholesterol may modulate NTPase activity. NTPase activity was increased in cp/cp female animals compared to +/? females at all ages studied, with Vmax values increased by 60-176%. Membrane integrity of cp/cp female nuclei was reduced compared to +/? female nuclei. Nuclear membrane cholesterol levels increased linearly with age by 50, 150 and 250% in 3, 6 and 9 month old cp/cp females over leans. In contrast, nuclei from cp/cp males exhibited only minor, isolated changes in NTPase activity. Furthermore, there were no significant changes in nuclear cholesterol content or membrane integrity in the less hyperlipidemic male animals at any age. These data suggest that altered lipid metabolism may lead to changes in nuclear membrane structure, which in turn may alter NTPase activity and functioning of the nuclear pore complex.

  1. Mapping the nuclear localization signal in the matrix protein of potato yellow dwarf virus.

    PubMed

    Anderson, Gavin; Jang, Chanyong; Wang, Renyuan; Goodin, Michael

    2018-05-01

    The ability of the matrix (M) protein of potato yellow dwarf virus (PYDV) to remodel nuclear membranes is controlled by a di-leucine motif located at residues 223 and 224 of its primary structure. This function can be uncoupled from that of its nuclear localization signal (NLS), which is controlled primarily by lysine and arginine residues immediately downstream of the LL motif. In planta localization of green fluorescent protein fusions, bimolecular fluorescence complementation assays with nuclear import receptor importin-α1 and yeast-based nuclear import assays provided three independent experimental approaches to validate the authenticity of the M-NLS. The carboxy terminus of M is predicted to contain a nuclear export signal, which is belived to be functional, given the ability of M to bind the Arabidopsis nuclear export receptor 1 (XPO1). The nuclear shuttle activity of M has implications for the cell-to-cell movement of PYDV nucleocapsids, based upon its interaction with the N and Y proteins.

  2. Fission yeast Lem2 and Man1 perform fundamental functions of the animal cell nuclear lamina.

    PubMed

    Gonzalez, Yanira; Saito, Akira; Sazer, Shelley

    2012-01-01

    In animal cells the nuclear lamina, which consists of lamins and lamin-associated proteins, serves several functions: it provides a structural scaffold for the nuclear envelope and tethers proteins and heterochromatin to the nuclear periphery. In yeast, proteins and large heterochromatic domains including telomeres are also peripherally localized, but there is no evidence that yeast have lamins or a fibrous nuclear envelope scaffold. Nonetheless, we found that the Lem2 and Man1 proteins of the fission yeast Schizosaccharomyces pombe, evolutionarily distant relatives of the Lap2/Emerin/Man1 (LEM) sub-family of animal cell lamin-associated proteins, perform fundamental functions of the animal cell lamina. These integral inner nuclear membrane localized proteins, with nuclear localized DNA binding Helix-Extension-Helix (HEH) domains, impact nuclear envelope structure and integrity, are essential for the enrichment of telomeres at the nuclear periphery and by means of their HEH domains anchor chromatin, most likely transcriptionally repressed heterochromatin, to the nuclear periphery. These data indicate that the core functions of the nuclear lamina are conserved between fungi and animal cells and can be performed in fission yeast, without lamins or other intermediate filament proteins.

  3. Autosomal recessive mutations in nuclear transport factor KPNA7 are associated with infantile spasms and cerebellar malformation.

    PubMed

    Paciorkowski, Alex R; Weisenberg, Judy; Kelley, Joshua B; Spencer, Adam; Tuttle, Emily; Ghoneim, Dalia; Thio, Liu Lin; Christian, Susan L; Dobyns, William B; Paschal, Bryce M

    2014-05-01

    Nuclear import receptors of the KPNA family recognize the nuclear localization signal in proteins and together with importin-β mediate translocation into the nucleus. Accordingly, KPNA family members have a highly conserved architecture with domains that contact the nuclear localization signal and bind to importin-β. Here, we describe autosomal recessive mutations in KPNA7 found by whole exome sequencing in a sibling pair with severe developmental disability, infantile spasms, subsequent intractable epilepsy consistent with Lennox-Gastaut syndrome, partial agenesis of the corpus callosum, and cerebellar vermis hypoplasia. The mutations mapped to exon 7 in KPNA7 result in two amino-acid substitutions, Pro339Ala and Glu344Gln. On the basis of the crystal structure of the paralog KPNA2 bound to a bipartite nuclear localization signal from the retinoblastoma protein, the amino-acid substitutions in the affected subjects were predicted to occur within the seventh armadillo repeat that forms one of the two nuclear localization signal-binding sites in KPNA family members. Glu344 is conserved in all seven KPNA proteins, and we found that the Glu354Gln mutation in KPNA2 is sufficient to reduce binding to the retinoblastoma nuclear localization signal to approximately one-half that of wild-type protein. Our data show that compound heterozygous mutations in KPNA7 are associated with a human neurodevelopmental disease, and provide the first example of a human disease associated with mutation of a nuclear transport receptor.

  4. Autosomal recessive mutations in nuclear transport factor KPNA7 are associated with infantile spasms and cerebellar malformation

    PubMed Central

    Paciorkowski, Alex R; Weisenberg, Judy; Kelley, Joshua B; Spencer, Adam; Tuttle, Emily; Ghoneim, Dalia; Thio, Liu Lin; Christian, Susan L; Dobyns, William B; Paschal, Bryce M

    2014-01-01

    Nuclear import receptors of the KPNA family recognize the nuclear localization signal in proteins and together with importin-β mediate translocation into the nucleus. Accordingly, KPNA family members have a highly conserved architecture with domains that contact the nuclear localization signal and bind to importin-β. Here, we describe autosomal recessive mutations in KPNA7 found by whole exome sequencing in a sibling pair with severe developmental disability, infantile spasms, subsequent intractable epilepsy consistent with Lennox–Gastaut syndrome, partial agenesis of the corpus callosum, and cerebellar vermis hypoplasia. The mutations mapped to exon 7 in KPNA7 result in two amino-acid substitutions, Pro339Ala and Glu344Gln. On the basis of the crystal structure of the paralog KPNA2 bound to a bipartite nuclear localization signal from the retinoblastoma protein, the amino-acid substitutions in the affected subjects were predicted to occur within the seventh armadillo repeat that forms one of the two nuclear localization signal-binding sites in KPNA family members. Glu344 is conserved in all seven KPNA proteins, and we found that the Glu354Gln mutation in KPNA2 is sufficient to reduce binding to the retinoblastoma nuclear localization signal to approximately one-half that of wild-type protein. Our data show that compound heterozygous mutations in KPNA7 are associated with a human neurodevelopmental disease, and provide the first example of a human disease associated with mutation of a nuclear transport receptor. PMID:24045845

  5. Basic amino acid residues located in the N-terminal region of BEND3 are essential for its nuclear localization.

    PubMed

    Shiheido, Hirokazu; Shimizu, Jun

    2015-02-20

    BEN domain-containing protein 3 (BEND3) has recently been reported to function as a heterochromatin-associated protein in transcriptional repression in the nucleus. BEND3 should have nuclear localization signals (NLSs) to localize to the nucleus in light of its molecular weight, which is higher than that allowed to pass through nuclear pore complexes. We here analyzed the subcellular localization of deletion/site-directed mutants of human BEND3 by an immunofluorescence assay in an attempt to identify the amino acids essential for its nuclear localization. We found that three basic amino acid residues located in the N-terminal region of BEND3 (BEND356-58, KRK) are essential, suggesting that these residues play a role as a functional NLS. These results provide valuable information for progressing research on BEND3. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Subcellular localization of celery mannitol dehydrogenase. A cytosolic metabolic enzyme in nuclei.

    PubMed Central

    Yamamoto, Y T; Zamski, E; Williamson, J D; Conkling, M A; Pharr, D M

    1997-01-01

    Mannitol dehydrogenase (MTD) is the first enzyme in mannitol catabolism in celery (Apium graveolens L. var dulce [Mill] Pers. cv Florida 638). Mannitol is an important photoassimilate, as well as providing plants with resistance to salt and osmotic stress. Previous work has shown that expression of the celery Mtd gene is regulated by many factors, such as hexose sugars, salt and osmotic stress, and salicylic acid. Furthermore, MTD is present in cells of sink organs, phloem cells, and mannitol-grown suspension cultures. Immunogold localization and biochemical analyses presented here demonstrate that celery MTD is localized in the cytosol and nuclei. Although the cellular density of MTD varies among different cell types, densities of nuclear and cytosolic MTD in a given cell are approximately equal. Biochemical analyses of nuclear extracts from mannitol-grown cultured cells confirmed that the nuclear-localized MTD is enzymatically active. The function(s) of nuclear-localized MTD is unknown. PMID:9414553

  7. Nup124p Is a Nuclear Pore Factor of Schizosaccharomyces pombe That Is Important for Nuclear Import and Activity of Retrotransposon Tf1

    PubMed Central

    Balasundaram, David; Benedik, Michael J.; Morphew, Mary; Dang, Van-Dinh; Levin, Henry L.

    1999-01-01

    The long terminal repeat (LTR)-containing retrotransposon Tf1 propagates within the fission yeast Schizosaccharomyces pombe as the result of several mechanisms that are typical of both retrotransposons and retroviruses. To identify host factors that contribute to the transposition process, we mutagenized cultures of S. pombe and screened them for strains that were unable to support Tf1 transposition. One such strain contained a mutation in a gene we named nup124. The product of this gene contains 11 FXFG repeats and is a component of the nuclear pore complex. In addition to the reduced levels of Tf1 transposition, the nup124-1 allele caused a significant reduction in the nuclear localization of Tf1 Gag. Surprisingly, the mutation in nup124-1 did not cause any reduction in the growth rate, the nuclear localization of specific nuclear localization signal-containing proteins, or the cytoplasmic localization of poly(A) mRNA. A two-hybrid analysis and an in vitro precipitation assay both identified an interaction between Tf1 Gag and the N terminus of Nup124p. These results provide evidence for an unusual mechanism of nuclear import that relies on a direct interaction between a nuclear pore factor and Tf1 Gag. PMID:10409764

  8. Nup124p is a nuclear pore factor of Schizosaccharomyces pombe that is important for nuclear import and activity of retrotransposon Tf1.

    PubMed

    Balasundaram, D; Benedik, M J; Morphew, M; Dang, V D; Levin, H L

    1999-08-01

    The long terminal repeat (LTR)-containing retrotransposon Tf1 propagates within the fission yeast Schizosaccharomyces pombe as the result of several mechanisms that are typical of both retrotransposons and retroviruses. To identify host factors that contribute to the transposition process, we mutagenized cultures of S. pombe and screened them for strains that were unable to support Tf1 transposition. One such strain contained a mutation in a gene we named nup124. The product of this gene contains 11 FXFG repeats and is a component of the nuclear pore complex. In addition to the reduced levels of Tf1 transposition, the nup124-1 allele caused a significant reduction in the nuclear localization of Tf1 Gag. Surprisingly, the mutation in nup124-1 did not cause any reduction in the growth rate, the nuclear localization of specific nuclear localization signal-containing proteins, or the cytoplasmic localization of poly(A) mRNA. A two-hybrid analysis and an in vitro precipitation assay both identified an interaction between Tf1 Gag and the N terminus of Nup124p. These results provide evidence for an unusual mechanism of nuclear import that relies on a direct interaction between a nuclear pore factor and Tf1 Gag.

  9. Emerin and histone deacetylase 3 (HDAC3) cooperatively regulate expression and nuclear positions of MyoD, Myf5, and Pax7 genes during myogenesis

    PubMed Central

    Demmerle, Justin; Koch, Adam J.; Holaska, James M.

    2016-01-01

    The spatial organization of chromatin is critical in establishing cell-type dependent gene expression programs. The inner nuclear membrane protein emerin has been implicated in regulating global chromatin architecture. We show emerin associates with genomic loci of muscle differentiation promoting factors in murine myogenic progenitors, including Myf5 and MyoD. Prior to their transcriptional activation Myf5 and MyoD loci localized to the nuclear lamina in proliferating progenitors and moved to the nucleoplasm upon transcriptional activation during differentiation. The Pax7 locus, which is transcribed in proliferating progenitors, localized to the nucleoplasm and Pax7 moved to the nuclear lamina upon repression during differentiation. Localization of Myf5, MyoD, and Pax7 to the nuclear lamina and proper temporal expression of these genes required emerin and HDAC3. Interestingly, activation of HDAC3 catalytic activity rescued both Myf5 localization to the nuclear lamina and its expression. Collectively, these data support a model whereby emerin facilitates repressive chromatin formation at the nuclear lamina by activating the catalytic activity of HDAC3 to regulate the coordinated spatiotemporal expression of myogenic differentiation genes. PMID:24062260

  10. Functional Activity of the Fanconi Anemia Protein FAA Requires FAC Binding and Nuclear Localization

    PubMed Central

    Näf, Dieter; Kupfer, Gary M.; Suliman, Ahmed; Lambert, Kathleen; D’Andrea, Alan D.

    1998-01-01

    Fanconi anemia (FA) is an autosomal recessive disease characterized by genomic instability, cancer susceptibility, and cellular hypersensitivity to DNA-cross-linking agents. Eight complementation groups of FA (FA-A through FA-H) have been identified. Two FA genes, corresponding to complementation groups FA-A and FA-C, have been cloned, but the functions of the encoded FAA and FAC proteins remain unknown. We have recently demonstrated that FAA and FAC interact to form a nuclear complex. In this study, we have analyzed a series of mutant forms of the FAA protein with respect to functional activity, FAC binding, and nuclear localization. Mutation or deletion of the amino-terminal nuclear localization signal (NLS) of FAA results in loss of functional activity, loss of FAC binding, and cytoplasmic retention of FAA. Replacement of the NLS sequence with a heterologous NLS sequence, derived from the simian virus 40 T antigen, results in nuclear localization but does not rescue functional activity or FAC binding. Nuclear localization of the FAA protein is therefore necessary but not sufficient for FAA function. Mutant forms of FAA which fail to bind to FAC also fail to promote the nuclear accumulation of FAC. In addition, wild-type FAC promotes the accumulation of wild-type FAA in the nucleus. Our results suggest that FAA and FAC perform a concerted function in the cell nucleus, required for the maintenance of chromosomal stability. PMID:9742112

  11. Identification of polyproline II regions derived from the proline-rich nuclear receptor coactivators PNRC and PNRC2: new insights for ERα coactivator interactions.

    PubMed

    Byrne, C; Miclet, E; Broutin, I; Gallo, D; Pelekanou, V; Kampa, M; Castanas, E; Leclercq, G; Jacquot, Y

    2013-10-01

    Protein-protein interactions are crucial for signal transductions required for cell differentiation and proliferation. Their modulation is therefore key to the development of therapeutic alternatives, particularly in the context of cancer. According to literature data, the polyproline-rich nuclear receptor coactivators PNRC and PNRC2 interact with estrogen receptor (ERα) through their PxxP SH3-binding motifs. In a search to identify the molecular features governing this interaction, we explored using electronic circular dichroism (ECD) spectroscopy and molecular dynamics (MD) calculations, the capacity of a range of putative biologically active peptides derived from these proteins and containing this PxxP motif(s) to form polyproline II (PPII) domains. An additional more exhaustive structural study on a lead PPII peptide was also performed using 2D nuclear magnetic resonance (NMR) spectroscopy. With the exception of one of all the investigated peptides (PNRC-D), binding assays failed to detect any affinity for Grb2 SH3 domains, suggesting that PPII motifs issued from Grb2 antagonists have a binding mode distinct from those derived from Grb2 agonists. Instead, the peptides revealed a competitive binding ability against a synthetic peptide (ERα17p) with a putative PPII-cognate domain located within a coregulator recruitment region of ERα (AF-2 site). Our work, which constitutes the first structure-related interaction study concerning PNRC and PNRC2, supports not only the existence of PxxP-induced PPII sequences in these coregulators, but also confirms the presence of a PPII recognition site in the AF-2 of the steroid receptor ERα, a region important for transcription regulation. © 2013 Wiley Periodicals, Inc.

  12. Search for protein partners of mitochondrial single-stranded DNA-binding protein Rim1p using a yeast two-hybrid system.

    PubMed

    Kucejová, B; Foury, F

    2003-01-01

    RIM1 is a nuclear gene of the yeast Saccharomyces cerevisiae coding for a protein with single-stranded DNA-binding activity that is essential for mitochondrial genome maintenance. No protein partners of Rim1p have been described so far in yeast. To better understand the role of this protein in mitochondrial DNA replication and recombination, a search for protein interactors by the yeast two-hybrid system was performed. This approach led to the identification of several candidates, including a putative transcription factor, Azf1p, and Mph1p, a protein with an RNA helicase domain which is known to influence the mutation rate of nuclear and mitochondrial genomes.

  13. Tissue distribution of aryl hydrocarbon receptor in the intestine: Implication of putative roles in tumor suppression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikuta, Togo, E-mail: togo@cancer-c.pref.saitama.jp; Kurosumi, Masafumi, E-mail: mkurosumi@cancer-c.pref.saitama.jp; Yatsuoka, Toshimasa, E-mail: yatsuoka-gi@umin.ac.jp

    Intestinal homeostasis is maintained by complex interactions between intestinal microorganisms and the gut immune system. Dysregulation of gut immunity may lead to inflammatory disorders and tumorigenesis. We previously have shown the tumor suppressive effects of aryl hydrocarbon receptor (AhR) in intestinal carcinogenesis. In the present study, we investigated AhR distribution in the mouse and human intestine by histochemical analysis. In the normal intestine, AhR was mainly localized in the stroma containing immune cells in the lamina propria and lymphoid follicles. On the other hand, in the tumor tissue from human colon cancer and that developed in Apc{sup Min/+}mice, AhR expressionmore » was elevated. AhR immunostaining was found in both stromal and tumor cells. Although AhR was localized in the cytoplasm of tumor cells in most cases, nuclear AhR was also observed in some. AhR knockdown using siRNA resulted in significant promotion of cell growth in colon cancer cell lines. Furthermore, AhR activation by AhR ligands supplemented in culture medium suppressed cell growth. Our study results suggest that tumor suppressive roles of AhR are estimated in two distinct ways: in normal tissue, AhR is associated with tumor prevention by regulating gut immunity, whereas in tumor cells, it is involved in growth suppression. - Highlights: • In the normal intestine, AhR was mainly localized in stroma containing immune cells. • In the tumor tissue, AhR expression was found in both stromal and tumor cells. • AhR knockdown promoted cell growth in colon cancer cell lines.« less

  14. Population genomics of the killer whale indicates ecotype evolution in sympatry involving both selection and drift.

    PubMed

    Moura, Andre E; Kenny, John G; Chaudhuri, Roy; Hughes, Margaret A; J Welch, Andreanna; Reisinger, Ryan R; de Bruyn, P J Nico; Dahlheim, Marilyn E; Hall, Neil; Hoelzel, A Rus

    2014-11-01

    The evolution of diversity in the marine ecosystem is poorly understood, given the relatively high potential for connectivity, especially for highly mobile species such as whales and dolphins. The killer whale (Orcinus orca) has a worldwide distribution, and individual social groups travel over a wide geographic range. Even so, regional populations have been shown to be genetically differentiated, including among different foraging specialists (ecotypes) in sympatry. Given the strong matrifocal social structure of this species together with strong resource specializations, understanding the process of differentiation will require an understanding of the relative importance of both genetic drift and local adaptation. Here we provide a high-resolution analysis based on nuclear single-nucleotide polymorphic markers and inference about differentiation at both neutral loci and those potentially under selection. We find that all population comparisons, within or among foraging ecotypes, show significant differentiation, including populations in parapatry and sympatry. Loci putatively under selection show a different pattern of structure compared to neutral loci and are associated with gene ontology terms reflecting physiologically relevant functions (e.g. related to digestion). The pattern of differentiation for one ecotype in the North Pacific suggests local adaptation and shows some fixed differences among sympatric ecotypes. We suggest that differential habitat use and resource specializations have promoted sufficient isolation to allow differential evolution at neutral and functional loci, but that the process is recent and dependent on both selection and drift. © 2014 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.

  15. Population genomics of the killer whale indicates ecotype evolution in sympatry involving both selection and drift

    PubMed Central

    Moura, Andre E; Kenny, John G; Chaudhuri, Roy; Hughes, Margaret A; J Welch, Andreanna; Reisinger, Ryan R; de Bruyn, P J Nico; Dahlheim, Marilyn E; Hall, Neil; Hoelzel, A Rus

    2014-01-01

    The evolution of diversity in the marine ecosystem is poorly understood, given the relatively high potential for connectivity, especially for highly mobile species such as whales and dolphins. The killer whale (Orcinus orca) has a worldwide distribution, and individual social groups travel over a wide geographic range. Even so, regional populations have been shown to be genetically differentiated, including among different foraging specialists (ecotypes) in sympatry. Given the strong matrifocal social structure of this species together with strong resource specializations, understanding the process of differentiation will require an understanding of the relative importance of both genetic drift and local adaptation. Here we provide a high-resolution analysis based on nuclear single-nucleotide polymorphic markers and inference about differentiation at both neutral loci and those potentially under selection. We find that all population comparisons, within or among foraging ecotypes, show significant differentiation, including populations in parapatry and sympatry. Loci putatively under selection show a different pattern of structure compared to neutral loci and are associated with gene ontology terms reflecting physiologically relevant functions (e.g. related to digestion). The pattern of differentiation for one ecotype in the North Pacific suggests local adaptation and shows some fixed differences among sympatric ecotypes. We suggest that differential habitat use and resource specializations have promoted sufficient isolation to allow differential evolution at neutral and functional loci, but that the process is recent and dependent on both selection and drift. PMID:25244680

  16. Novel functions of prototype foamy virus Gag glycine- arginine-rich boxes in reverse transcription and particle morphogenesis.

    PubMed

    Müllers, Erik; Uhlig, Tobias; Stirnnagel, Kristin; Fiebig, Uwe; Zentgraf, Hanswalter; Lindemann, Dirk

    2011-02-01

    Prototype foamy virus (PFV) Gag lacks the characteristic orthoretroviral Cys-His motifs that are essential for various steps of the orthoretroviral replication cycle, such as RNA packaging, reverse transcription, infectivity, integration, and viral assembly. Instead, it contains three glycine-arginine-rich boxes (GR boxes) in its C terminus that putatively represent a functional equivalent. We used a four-plasmid replication-deficient PFV vector system, with uncoupled RNA genome packaging and structural protein translation, to analyze the effects of deletion and various substitution mutations within each GR box on particle release, particle-associated protein composition, RNA packaging, DNA content, infectivity, particle morphology, and intracellular localization. The degree of viral particle release by all mutants was similar to that of the wild type. Only minimal effects on Pol encapsidation, exogenous reverse transcriptase (RT) activity, and genomic viral RNA packaging were observed. In contrast, particle-associated DNA content and infectivity were drastically reduced for all deletion mutants and were undetectable for all alanine substitution mutants. Furthermore, GR box I mutants had significant changes in particle morphology, and GR box II mutants lacked the typical nuclear localization pattern of PFV Gag. Finally, it could be shown that GR boxes I and III, but not GR box II, can functionally complement each other. It therefore appears that, similar to the orthoretroviral Cys-His motifs, the PFV Gag GR boxes are important for RNA encapsidation, genome reverse transcription, and virion infectivity as well as for particle morphogenesis.

  17. Endothelial cell palmitoylproteomics identifies novel lipid modified targets and potential substrates for protein acyl transferases

    PubMed Central

    Marin, Ethan P.; Derakhshan, Behrad; Lam, TuKiet T.; Davalos, Alberto; Sessa, William C.

    2012-01-01

    Rationale Protein S-palmitoylation is the post-translational attachment of a saturated 16-carbon palmitic acid to a cysteine side chain via a thioester bond. Palmitoylation can affect protein localization, trafficking, stability, and function. The extent and roles of palmitoylation in endothelial cell (EC) biology is not well understood, in part due to technological limits on palmitoylprotein detection. Objective To develop a method using acyl-biotinyl exchange (ABE) technology coupled with mass spectrometry to globally isolate and identify palmitoylproteins in EC. Methods and Results More than 150 putative palmitoyl proteins were identified in EC using ABE and mass spectrometry. Among the novel palmitoylproteins identified is superoxide dismutase 1 (SOD1), an intensively studied enzyme that protects all cells from oxidative damage. Mutation of cysteine 6 prevents palmitoylation, leads to reduction in SOD1 activity in vivo and in vitro, and inhibits nuclear localization, thereby supporting a functional role for SOD1 palmitoylation. Moreover, we used ABE to search for substrates of particular protein acyl transferases in EC. We found that palmitoylation of the cell adhesion protein PECAM1 is dependent on the protein acyl transferase ZDHHC21. We show that knockdown of ZDHHC21 leads to reduced levels of PECAM1 at the cell surface. Conclusions Our data demonstrate the utility of EC palmitoylproteomics to reveal new insights into the role of this important post-translational lipid modification in EC biology. PMID:22496122

  18. Molecular evolution of Adh and LEAFY and the phylogenetic utility of their introns in Pyrus (Rosaceae)

    PubMed Central

    2011-01-01

    Background The genus Pyrus belongs to the tribe Pyreae (the former subfamily Maloideae) of the family Rosaceae, and includes one of the most important commercial fruit crops, pear. The phylogeny of Pyrus has not been definitively reconstructed. In our previous efforts, the internal transcribed spacer region (ITS) revealed a poorly resolved phylogeny due to non-concerted evolution of nrDNA arrays. Therefore, introns of low copy nuclear genes (LCNG) are explored here for improved resolution. However, paralogs and lineage sorting are still two challenges for applying LCNGs in phylogenetic studies, and at least two independent nuclear loci should be compared. In this work the second intron of LEAFY and the alcohol dehydrogenase gene (Adh) were selected to investigate their molecular evolution and phylogenetic utility. Results DNA sequence analyses revealed a complex ortholog and paralog structure of Adh genes in Pyrus and Malus, the pears and apples. Comparisons between sequences from RT-PCR and genomic PCR indicate that some Adh homologs are putatively nonfunctional. A partial region of Adh1 was sequenced for 18 Pyrus species and three subparalogs representing Adh1-1 were identified. These led to poorly resolved phylogenies due to low sequence divergence and the inclusion of putative recombinants. For the second intron of LEAFY, multiple inparalogs were discovered for both LFY1int2 and LFY2int2. LFY1int2 is inadequate for phylogenetic analysis due to lineage sorting of two inparalogs. LFY2int2-N, however, showed a relatively high sequence divergence and led to the best-resolved phylogeny. This study documents the coexistence of outparalogs and inparalogs, and lineage sorting of these paralogs and orthologous copies. It reveals putative recombinants that can lead to incorrect phylogenetic inferences, and presents an improved phylogenetic resolution of Pyrus using LFY2int2-N. Conclusions Our study represents the first phylogenetic analyses based on LCNGs in Pyrus. Ancient and recent duplications lead to a complex structure of Adh outparalogs and inparalogs in Pyrus and Malus, resulting in neofunctionalization, nonfunctionalization and possible subfunctionalization. Among all investigated orthologs, LFY2int2-N is the best nuclear marker for phylogenetic reconstruction of Pyrus due to suitable sequence divergence and the absence of lineage sorting. PMID:21917170

  19. Phosphatidic acid interacts with a MYB transcription factor and regulates its nuclear localization and function in Arabidopsis.

    PubMed

    Yao, Hongyan; Wang, Geliang; Guo, Liang; Wang, Xuemin

    2013-12-01

    Phosphatidic acid (PA) has emerged as a class of cellular mediators involved in various cellular and physiological processes, but little is known about its mechanism of action. Here we show that PA interacts with werewolf (WER), a R2R3 MYB transcription factor involved in root hair formation. The PA-interacting region is confined to the end of the R2 subdomain. The ablation of the PA binding motif has no effect on WER binding to DNA, but abolishes its nuclear localization and its function in regulating epidermal cell fate. Inhibition of PA production by phospholipase Dζ also suppresses WER's nuclear localization, root hair formation, and elongation. These results suggest a role for PA in promoting protein nuclear localization.

  20. Phosphatidic Acid Interacts with a MYB Transcription Factor and Regulates Its Nuclear Localization and Function in Arabidopsis[C][W

    PubMed Central

    Yao, Hongyan; Wang, Geliang; Guo, Liang; Wang, Xuemin

    2013-01-01

    Phosphatidic acid (PA) has emerged as a class of cellular mediators involved in various cellular and physiological processes, but little is known about its mechanism of action. Here we show that PA interacts with WEREWOLF (WER), a R2R3 MYB transcription factor involved in root hair formation. The PA-interacting region is confined to the end of the R2 subdomain. The ablation of the PA binding motif has no effect on WER binding to DNA, but abolishes its nuclear localization and its function in regulating epidermal cell fate. Inhibition of PA production by phospholipase Dζ also suppresses WER’s nuclear localization, root hair formation, and elongation. These results suggest a role for PA in promoting protein nuclear localization. PMID:24368785

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paterson, Carolyn P.; Ayalew, Lisanework E.; Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5E3 S7N 5B4 Canada

    The L1 region of bovine adenovirus (BAdV)-3 encodes a non-structural protein designated 52K. Anti-52K serum detected a protein of 40 kDa, which localized to the nucleus but not to the nucleolus in BAdV-3-infected or transfected cells. Analysis of mutant 52K proteins suggested that three basic residues ({sup 105}RKR{sup 107}) of the identified domain (amino acids {sup 102}GMPRKRVLT{sup 110}) are essential for nuclear localization of 52K. The nuclear import of a GST-52K fusion protein utilizes the classical importin {alpha}/{beta}-dependent nuclear transport pathway. The 52K protein is preferentially bound to the cellular nuclear import receptor importin {alpha}3. Although deletion of amino acidmore » 102-110 is sufficient to abrogate the nuclear localization of 52K, amino acid 90-133 are required for interaction with importin-{alpha}3 and localizing a cytoplasmic protein to the nucleus. These results suggest that 52K contains a bipartite NLS, which preferentially utilize an importin {alpha}3 nuclear import receptor-mediated pathway to transport 52K to the nucleus.« less

  2. Connections of intermediate filaments with the nuclear lamina and the cell periphery.

    PubMed

    Katsuma, Y; Swierenga, S H; Marceau, N; French, S W

    1987-01-01

    We investigated the relationship between intermediate filaments (IFs) and other detergent- and nuclease-resistant filamentous structures of cultured liver epithelial cells (T51B cell line) using whole mount unembedded preparations which were sequentially extracted with Triton X-100 and nucleases. Immunogold labelling and stereoscopic observation facilitated the examination of each filamentous structure and their three-dimensional relationships to each other. After solubilizing phospholipid, nucleic acid and soluble cellular protein, the resulting cytoskeleton preparation consisted of a network of cytokeratin and vimentin IFs linked by 3 nm filaments. The IFs were anchored to and determined the position of the nuclear lamina filaments (NLF) network and the centrioles. The NLF was composed of the nuclear lamina filaments measuring 3-6 nm in diameter which radiated from and anchored to the skeleton of the nuclear pores. The IFs located in the nuclear region appeared to be interwoven with the NLF. At the cell surface, the IFs seemed to be attached to the putative actin filament network. They formed a focally interrupted plexus-like structure at the cell periphery. Fragments of vimentin filaments were found among the filamentous network located at the cell surface, and some filaments terminated blindly there.

  3. Phosphorylation of zona occludens-2 by protein kinase C epsilon regulates its nuclear exportation.

    PubMed

    Chamorro, David; Alarcón, Lourdes; Ponce, Arturo; Tapia, Rocio; González-Aguilar, Héctor; Robles-Flores, Martha; Mejía-Castillo, Teresa; Segovia, José; Bandala, Yamir; Juaristi, Eusebio; González-Mariscal, Lorenza

    2009-09-01

    Here, we have analyzed the subcellular destiny of newly synthesized tight junction protein zona occludens (ZO)-2. After transfection in sparse cells, 74% of cells exhibit ZO-2 at the nucleus, and after 18 h the value decreases to 17%. The mutation S369A located within the nuclear exportation signal 1 of ZO-2 impairs the nuclear export of the protein. Because Ser369 represents a putative protein kinase C (PKC) phosphorylation site, we tested the effect of PKC inhibition and stimulation on the nuclear export of ZO-2. Our results strongly suggest that the departure of ZO-2 from the nucleus is regulated by phosphorylation at Ser369 by novel PKCepsilon. To test the route taken by ZO-2 from synthesis to the plasma membrane, we devised a novel nuclear microinjection assay in which the nucleus served as a reservoir for anti-ZO-2 antibody. Through this assay, we demonstrate that a significant amount of newly synthesized ZO-2 goes into the nucleus and is later relocated to the plasma membrane. These results constitute novel information for understanding the mechanisms that regulate the intracellular fate of ZO-2.

  4. A split motor domain in a cytoplasmic dynein

    PubMed Central

    Straube, Anne; Enard, Wolfgang; Berner, Alexandra; Wedlich-Söldner, Roland; Kahmann, Regine; Steinberg, Gero

    2001-01-01

    The heavy chain of dynein forms a globular motor domain that tightly couples the ATP-cleavage region and the microtubule-binding site to transform chemical energy into motion along the cytoskeleton. Here we show that, in the fungus Ustilago maydis, two genes, dyn1 and dyn2, encode the dynein heavy chain. The putative ATPase region is provided by dyn1, while dyn2 includes the predicted microtubule-binding site. Both genes are located on different chromosomes, are transcribed into independent mRNAs and are translated into separate polypeptides. Both Dyn1 and Dyn2 co-immunoprecipitated and co-localized within growing cells, and Dyn1–Dyn2 fusion proteins partially rescued mutant phenotypes, suggesting that both polypeptides interact to form a complex. In cell extracts the Dyn1–Dyn2 complex dissociated, and microtubule affinity purification indicated that Dyn1 or associated polypeptides bind microtubules independently of Dyn2. Both Dyn1 and Dyn2 were essential for cell survival, and conditional mutants revealed a common role in nuclear migration, cell morphogenesis and microtubule organization, indicating that the Dyn1–Dyn2 complex serves multiple cellular functions. PMID:11566874

  5. Genomics analysis of Aphanomyces spp. identifies a new class of oomycete effector associated with host adaptation.

    PubMed

    Gaulin, Elodie; Pel, Michiel J C; Camborde, Laurent; San-Clemente, Hélène; Courbier, Sarah; Dupouy, Marie-Alexane; Lengellé, Juliette; Veyssiere, Marine; Le Ru, Aurélie; Grandjean, Frédéric; Cordaux, Richard; Moumen, Bouziane; Gilbert, Clément; Cano, Liliana M; Aury, Jean-Marc; Guy, Julie; Wincker, Patrick; Bouchez, Olivier; Klopp, Christophe; Dumas, Bernard

    2018-04-18

    Oomycetes are a group of filamentous eukaryotic microorganisms that have colonized all terrestrial and oceanic ecosystems, and they include prominent plant pathogens. The Aphanomyces genus is unique in its ability to infect both plant and animal species, and as such exemplifies oomycete versatility in adapting to different hosts and environments. Dissecting the underpinnings of oomycete diversity provides insights into their specificity and pathogenic mechanisms. By carrying out genomic analyses of the plant pathogen A. euteiches and the crustacean pathogen A. astaci, we show that host specialization is correlated with specialized secretomes that are adapted to the deconstruction of the plant cell wall in A. euteiches and protein degradation in A. astaci. The A. euteiches genome is characterized by a large repertoire of small secreted protein (SSP)-encoding genes that are highly induced during plant infection, and are not detected in other oomycetes. Functional analysis revealed an SSP from A. euteiches containing a predicted nuclear-localization signal which shuttles to the plant nucleus and increases plant susceptibility to infection. Collectively, our results show that Aphanomyces host adaptation is associated with evolution of specialized secretomes and identify SSPs as a new class of putative oomycete effectors.

  6. A conserved proline residue in the leucine zipper region of AtbZIP34 and AtbZIP61 in Arabidopsis thaliana interferes with the formation of homodimer.

    PubMed

    Shen, Huaishun; Cao, Kaiming; Wang, Xiping

    2007-10-19

    Two putative Arabidopsis E group bZIP transcript factors, AtbZIP34 and AtbZIP61, are nuclear-localized and their transcriptional activation domain is in their N-terminal region. By searching GenBank, we found other eight plant homologues of AtbZIP34 and AtbZIP61. All of them have a proline residue in the third heptad of zipper region. Yeast two-hybrid assay and EMSA showed that AtbZIP34 and AtbZIP61 could not form homodimer while their mutant forms, AtbZIP34m and AtbZIP61m, which the proline residue was replaced by an alanine residue in the zipper region, could form homodimer and bind G-box element. These results suggest that the conserved proline residue interferes with the homodimer formation. However, both AtbZIP34 and AtbZIP61 could form heterodimers with members of I group and S group transcription factors in which some members involved in vascular development. So we speculate that AtbZIP34 and AtbZIP61 may participate in plant development via interacting with other group bZIP transcription factors.

  7. Functional Study of Genes Essential for Autogamy and Nuclear Reorganization in Paramecium▿§

    PubMed Central

    Nowak, Jacek K.; Gromadka, Robert; Juszczuk, Marek; Jerka-Dziadosz, Maria; Maliszewska, Kamila; Mucchielli, Marie-Hélène; Gout, Jean-François; Arnaiz, Olivier; Agier, Nicolas; Tang, Thomas; Aggerbeck, Lawrence P.; Cohen, Jean; Delacroix, Hervé; Sperling, Linda; Herbert, Christopher J.; Zagulski, Marek; Bétermier, Mireille

    2011-01-01

    Like all ciliates, Paramecium tetraurelia is a unicellular eukaryote that harbors two kinds of nuclei within its cytoplasm. At each sexual cycle, a new somatic macronucleus (MAC) develops from the germ line micronucleus (MIC) through a sequence of complex events, which includes meiosis, karyogamy, and assembly of the MAC genome from MIC sequences. The latter process involves developmentally programmed genome rearrangements controlled by noncoding RNAs and a specialized RNA interference machinery. We describe our first attempts to identify genes and biological processes that contribute to the progression of the sexual cycle. Given the high percentage of unknown genes annotated in the P. tetraurelia genome, we applied a global strategy to monitor gene expression profiles during autogamy, a self-fertilization process. We focused this pilot study on the genes carried by the largest somatic chromosome and designed dedicated DNA arrays covering 484 genes from this chromosome (1.2% of all genes annotated in the genome). Transcriptome analysis revealed four major patterns of gene expression, including two successive waves of gene induction. Functional analysis of 15 upregulated genes revealed four that are essential for vegetative growth, one of which is involved in the maintenance of MAC integrity and another in cell division or membrane trafficking. Two additional genes, encoding a MIC-specific protein and a putative RNA helicase localizing to the old and then to the new MAC, are specifically required during sexual processes. Our work provides a proof of principle that genes essential for meiosis and nuclear reorganization can be uncovered following genome-wide transcriptome analysis. PMID:21257794

  8. A comparative study on efficiency of adult fibroblast, putative embryonic stem cell and lymphocyte as donor cells for production of handmade cloned embryos in goat and characterization of putative ntES cells obtained from these embryos.

    PubMed

    Dutta, Rahul; Malakar, Dhruba; Khate, Keviletsu; Sahu, Shailendra; Akshey, Yogesh; Mukesh, Manishi

    2011-09-15

    The main purpose of the experiment was to compare the efficiency of three cell types, namely adult fibroblast, putative embryonic stem (ES) cell, and lymphocyte, as donor cells for somatic cell nuclear transfer by handmade cloning in goats. The outcome clearly shows that putative embryonic stem cells, with a cleavage and blastocyst production rate of 74.69% ± 3.92 and 39.75% ± 3.86, respectively, performs better in comparison to adult fibroblast cell and lymphocyte. Between adult fibroblast cell and lymphocyte no statistically significant difference exists at P < 0.05. An overall cleavage and blastocyst formation rate of 67.41% ± 3.92 and 26.96% ± 3.86 was obtained using adult fibroblast donor cells. The study establishes beyond doubt the reprogrammability of lymphocyte by handmade cloning (HMC) protocol with a cleavage and blastocyst production rate of 56.47% ± 3.92 and 24.70% ± 3.86, respectively. PCR analysis of highly polymorphic 286 bp fragment of MHC II DRB genes of cloned embryos and three donor cells were performed to verify the cloned embryos. The amplified PCR products were subjected to SSCP to confirm their genetic identity. The karyotyping of the cloned embryos showed normal chromosomal status as expected in goat. Significantly, in the second stage of the experiment, the produced cloned embryos were successfully used to derive ntES-like cells. The rate of primary colony formation rate was 62.50% ± 4.62 for fibroblast donor cell derived embryos. The same was 60.60% ± 4.62 for putative ES donor cell derived embryos and 66.66% ± 4.62 for lymphocyte donor cell derived embryos, respectively. The putative ntES colonies were positively characterized for alkaline phosphatase, Oct-4, TRA-1-60, TRA-1-81, Sox-2, and Nanog by Immunocytochemistry and Reverse Transcription PCR. To further validate the stem ness, the produced putative ntES colonies were differentiated to embryoid bodies. Immunocytochemistry revealed that embryoid bodies expressed NESTIN specific for ectodermal lineage; GATA-4 for endodermal lineage and smooth muscle actin-I, and troponin-I specific for mesodermal lineage. The study has established an efficient protocol for putative ntES cell derivation from HMC embryos. It could be of substantial significance as patient specific ntES cells have proven therapeutic significance. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Identification and characterization of putative stem cells in the adult pig ovary.

    PubMed

    Bui, Hong-Thuy; Van Thuan, Nguyen; Kwon, Deug-Nam; Choi, Yun-Jung; Kang, Min-Hee; Han, Jae-Woong; Kim, Teoan; Kim, Jin-Hoi

    2014-06-01

    Recently, the concept of 'neo-oogenesis' has received increasing attention, since it was shown that adult mammals have a renewable source of eggs. The purpose of this study was to elucidate the origin of these eggs and to confirm whether neo-oogenesis continues throughout life in the ovaries of the adult mammal. Adult female pigs were utilized to isolate, identify and characterize, including their proliferation and differentiation capabilities, putative stem cells (PSCs) from the ovary. PSCs were found to comprise a heterogeneous population based on c-kit expression and cell size, and also express stem and germ cell markers. Analysis of PSC molecular progression during establishment showed that these cells undergo cytoplasmic-to-nuclear translocation of Oct4 in a manner reminiscent of gonadal primordial germ cells (PGCs). Hence, cells with the characteristics of early PGCs are present or are generated in the adult pig ovary. Furthermore, the in vitro establishment of porcine PSCs required the presence of ovarian cell-derived extracellular regulatory factors, which are also likely to direct stem cell niche interactions in vivo. In conclusion, the present work supports a crucial role for c-kit and kit ligand/stem cell factor in stimulating the growth, proliferation and nuclear reprogramming of porcine PSCs, and further suggests that porcine PSCs might be the culture equivalent of early PGCs. © 2014. Published by The Company of Biologists Ltd.

  10. Subcellular localization and vacuolar targeting of sorbitol dehydrogenase in apple seed.

    PubMed

    Wang, Xiu-Ling; Hu, Zi-Ying; You, Chun-Xiang; Kong, Xiu-Zhen; Shi, Xiao-Pu

    2013-09-01

    Sorbitol is the primary photosynthate and translocated carbohydrate in fruit trees of the Rosaceae family. NAD(+)-dependent sorbitol dehydrogenase (NAD-SDH, EC 1.1.1.14), which mainly catalyzes the oxidation of sorbitol to fructose, plays a key role in regulating sink strength in apple. In this study, we found that apple NAD-SDH was ubiquitously distributed in epidermis, parenchyma, and vascular bundle in developing cotyledon. NAD-SDH was localized in the cytosol, the membranes of endoplasmic reticulum and vesicles, and the vacuolar lumen in the cotyledon at the middle stage of seed development. In contrast, NAD-SDH was mainly distributed in the protein storage vacuoles in cotyledon at the late stage of seed development. Sequence analysis revealed there is a putative signal peptide (SP), also being predicated to be a transmembrane domain, in the middle of proteins of apple NAD-SDH isoforms. To investigate whether the putative internal SP functions in the vacuolar targeting of NAD-SDH, we analyzed the localization of the SP-deletion mutants of MdSDH5 and MdSDH6 (two NAD-SDH isoforms in apple) by the transient expression system in Arabidopsis protoplasts. MdSDH5 and MdSDH6 were not localized in the vacuoles after their SPs were deleted, suggesting the internal SP functions in the vacuolar targeting of apple NAD-SDH. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Chitosan Nanoparticles for Nuclear Targeting: The Effect of Nanoparticle Size and Nuclear Localization Sequence Density.

    PubMed

    Tammam, Salma N; Azzazy, Hassan M E; Breitinger, Hans G; Lamprecht, Alf

    2015-12-07

    Many recently discovered therapeutic proteins exert their main function in the nucleus, thus requiring both efficient uptake and correct intracellular targeting. Chitosan nanoparticles (NPs) have attracted interest as protein delivery vehicles due to their biocompatibility and ability to escape the endosomes offering high potential for nuclear delivery. Molecular entry into the nucleus occurs through the nuclear pore complexes, the efficiency of which is dependent on NP size and the presence of nuclear localization sequence (NLS). Chitosan nanoparticles of different sizes (S-NPs ≈ 25 nm; L-NP ≈ 150 nm) were formulated, and they were modified with different densities of the octapeptide NLS CPKKKRKV (S-NPs, 0.25, 0.5, 2.0 NLS/nm(2); L-NPs, 0.6, 0.9, 2 NLS/nm(2)). Unmodified and NLS-tagged NPs were evaluated for their protein loading capacity, extent of cell association, cell uptake, cell surface binding, and finally nuclear delivery efficiency in L929 fibroblasts. To avoid errors generated with cell fractionation and nuclear isolation protocols, nuclear delivery was assessed in intact cells utilizing Förster resonance energy transfer (FRET) fluorometry and microscopy. Although L-NPs showed ≈10-fold increase in protein loading per NP when compared to S-NPs, due to higher cell association and uptake S-NPs showed superior protein delivery. NLS exerts a size and density dependent effect on nanoparticle uptake and surface binding, with a general reduction in NP cell surface binding and an increase in cell uptake with the increase in NLS density (up to 8.4-fold increase in uptake of High-NLS-L-NPs (2 NLS/nm(2)) compared to unmodified L-NPs). However, for nuclear delivery, unmodified S-NPs show higher nuclear localization rates when compared to NLS modified NPs (up to 5-fold by FRET microscopy). For L-NPs an intermediate NLS density (0.9 NLS/nm(2)) seems to provide highest nuclear localization (3.7-fold increase in nuclear delivery compared to High-NLS-L-NPs). Results indicate that a higher NLS density does not result in maximum protein nuclear localization and that a universal optimal density for NPs of different sizes does not exist.

  12. Death-domain associated protein-6 (DAXX) mediated apoptosis in hantavirus infection is counter-balanced by activation of interferon-stimulated nuclear transcription factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khaiboullina, Svetlana F., E-mail: sv.khaiboullina@gmail.com; Morzunov, Sergey P.; Boichuk, Sergei V.

    2013-09-01

    Hantaviruses are negative strand RNA species that replicate predominantly in the cytoplasm. They also activate numerous cellular responses, but their involvement in nuclear processes is yet to be established. Using human umbilical vein endothelial cells (HUVECs), this study investigates the molecular finger-print of nuclear transcription factors during hantavirus infection. The viral-replication-dependent activation of pro-myelocytic leukemia protein (PML) was followed by subsequent localization in nuclear bodies (NBs). PML was also found in close proximity to activated Sp100 nuclear antigen and interferon-stimulated gene 20 kDa protein (ISG-20), but co-localization with death-domain associated protein-6 (DAXX) was not observed. These data demonstrate that hantavirusmore » triggers PML activation and localization in NBs in the absence of DAXX-PLM-NB co-localization. The results suggest that viral infection interferes with DAXX-mediated apoptosis, and expression of interferon-activated Sp100 and ISG-20 proteins may indicate intracellular intrinsic antiviral attempts.« less

  13. Stronger activation of SREBP-1a by nucleus-localized HBx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Qi; Qiao, Ling; Yang, Jian

    2015-05-08

    We previously showed that hepatitis B virus (HBV) X protein activates the sterol regulatory element-binding protein-1a (SREBP-1a). Here we examined the role of nuclear localization of HBx in this process. In comparison to the wild-type and cytoplasmic HBx, nuclear HBx had stronger effects on SREBP-1a and fatty acid synthase transcription activation, intracellular lipid accumulation and cell proliferation. Furthermore, nuclear HBx could activate HBV enhancer I/X promoter and was more effective on up-regulating HBV mRNA level in the context of HBV replication than the wild-type HBx, while the cytoplasmic HBx had no effect. Our results demonstrate the functional significance of themore » nucleus-localized HBx in regulating host lipogenic pathway and HBV replication. - Highlights: • Nuclear HBx is more effective on activating SREBP-1a and FASN transcription. • Nuclear HBx is more effective on enhancing intracellular lipid accumulation. • Nuclear HBx is more effective on enhancing cell proliferation. • Nuclear HBx up-regulates HBV enhancer I/X promoter activity. • Nuclear HBx increases HBV mRNA level in the context of HBV replication.« less

  14. Natural hybridization and introgression between Ligularia cymbulifera and L. tongolensis (Asteraceae, Senecioneae) in four different locations.

    PubMed

    Yu, Jiaojun; Kuroda, Chiaki; Gong, Xun

    2014-01-01

    Natural hybridization has been considered to represent an important factor influencing the high diversity of the genus Ligularia Cass. in the Hengduan Mountains, China. Natural hybridization has been confirmed to occur frequently in Ligularia. To date, however, it has been demonstrated only within a single population. In this paper, we present evidence of natural hybridization in Ligularia from four different locations. The internal transcribed spacer (ITS) region of the nuclear ribosomal DNA and three chloroplast intergenic spacers (trnK-rps16, trnL-rpl32 and trnQ-5'rps16) of 149 accessions of putative hybrids and their putative parents (L. cymbulifera and L. tongolensis) were analyzed for evidence of hybridization. The ITS data clearly distinguished two putative parental species and sympatric L. vellerea and supported the hypothesis that those morphological intermediates were products of natural hybridization between L. cymbulifera and L. tongolensis. Moreover, several identified morphological parents were actual introgressed products. Because of hybridization and introgression, chloroplast DNA sequences generated a poorly resolved network. The present results indicate that varying degrees of hybridization and introgression occur differently depending on the habitat context. We conclude that gene flow caused by natural hybridization in Ligularia indeed plays an important role in the species diversity.

  15. A proteomic study of the arabidopsis nuclear matrix.

    PubMed

    Calikowski, Tomasz T; Meulia, Tea; Meier, Iris

    2003-10-01

    The eukaryotic nucleus has been proposed to be organized by two interdependent nucleoprotein structures, the DNA-based chromatin and the RNA-dependent nuclear matrix. The functional composition and molecular organization of the second component have not yet been resolved. Here, we describe the isolation of the nuclear matrix from the model plant Arabidopsis, its initial characterization by confocal and electron microscopy, and the identification of 36 proteins by mass spectrometry. Electron microscopy of resinless samples confirmed a structure very similar to that described for the animal nuclear matrix. Two-dimensional gel electrophoresis resolved approximately 300 protein spots. Proteins were identified in batches by ESI tandem mass spectrometry after resolution by 1D SDS-PAGE. Among the identified proteins were a number of demonstrated or predicted Arabidopsis homologs of nucleolar proteins such as IMP4, Nop56, Nop58, fibrillarins, nucleolin, as well as ribosomal components and a putative histone deacetylase. Others included homologs of eEF-1, HSP/HSC70, and DnaJ, which have also been identified in the nucleolus or nuclear matrix of human cells, as well as a number of novel proteins with unknown function. This study is the first proteomic approach towards the characterization of a higher plant nuclear matrix. It demonstrates the striking similarities both in structure and protein composition of the operationally defined nuclear matrix across kingdoms whose unicellular ancestors have separated more than one billion years ago. Copyright 2003 Wiley-Liss, Inc.

  16. Cellular stress stimulates nuclear localization signal (NLS) independent nuclear transport of MRJ

    PubMed Central

    Andrews, Joel F.; Sykora, Landon J.; Barik-Letostak, Tiasha; Menezes, Mitchell E.; Mitra, Aparna; Barik, Sailen; Shevde, Lalita A.; Samant, Rajeev S.

    2012-01-01

    HSP40 family member MRJ (DNAJB6) has been in the spot light for its relevance to Huntington’s, Parkinson’s diseases, limb-girdle muscular dystrophy, placental development, neural stem cells, cell cycle and malignancies such as breast cancer and melanoma. This gene has two spliced variants coding for 2 distinct proteins with significant homology. However, MRJ(L) (large variant) is predominantly localized to the nucleus whereas MRJ(S) (small variant) is predominantly cytoplasmic. Interestingly MRJ(S) translocates to the nucleus in response to heat shock. The classical heat shock proteins respond to crises (stress) by increasing the number of molecules, usually by transcriptional up-regulation. Our studies imply that a quick increase in the molar concentration of MRJ in the nuclear compartment is a novel method by which MRJ responds to stress. We found that MRJ(S) shows NLS (nuclear localization signal) independent nuclear localization in response to heat shock and hypoxia. The specificity of this response is realized due to lack of such response by MRJ(S) when challenged by other stressors, such as some cytokines or UV light. Deletion analysis has allowed us to narrow down on a 20 amino acid stretch at the C-terminal region of MRJ(S) as a potential stress sensing region. Functional studies indicated that constitutive nuclear localization of MRJ(S) promoted attributes of malignancy such as proliferation and invasiveness overall indicating distinct phenotypic characteristics of nuclear MRJ(S). PMID:22504047

  17. Nuclear distribution of the Trypanosoma cruzi RNA Pol I subunit RPA31 during growth and metacyclogenesis, and characterization of its nuclear localization signal.

    PubMed

    Canela-Pérez, Israel; López-Villaseñor, Imelda; Cevallos, Ana María; Hernández, Roberto

    2018-03-01

    Trypanosoma cruzi is the aetiologic agent of Chagas disease. Our research group studies ribosomal RNA (rRNA) gene transcription and nucleolus dynamics in this species of trypanosomes. RPA31 is an essential subunit of RNA polymerase I (Pol I) whose presence is apparently restricted to trypanosomes. Using fluorescent-tagged versions of this protein (TcRPA31-EGFP), we describe its nuclear distribution during growth and metacyclogenesis. Our findings indicate that TcRPA31-EGFP alters its nuclear presence from concentrated nucleolar localization in exponentially growing epimastigotes to a dispersed granular distribution in the nucleoplasm of stationary epimastigotes and metacyclic trypomastigotes. These changes likely reflect a structural redistribution of the Pol I transcription machinery in quiescent cellular stages where downregulation of rRNA synthesis is known to occur. In addition, and related to the nuclear internalization of this protein, the presence of a classical bipartite-type nuclear localization signal was identified towards its C-terminal end. The functionality of this motif was demonstrated by its partial or total deletion in recombinant versions of the tagged fluorescent protein. Moreover, ivermectin inhibited the nuclear localization of the labelled chimaera, suggesting the involvement of the importin α/β transport system.

  18. Nuclear Import of the Retrotransposon Tf1 Is Governed by a Nuclear Localization Signal That Possesses a Unique Requirement for the FXFG Nuclear Pore Factor Nup124p

    PubMed Central

    Dang, Van-Dinh; Levin, Henry L.

    2000-01-01

    Retroviruses, such as human immunodeficiency virus, that infect nondividing cells generate integration precursors that must cross the nuclear envelope to reach the host genome. As a model for retroviruses, we investigated the nuclear entry of Tf1, a long-terminal-repeat-containing retrotransposon of the fission yeast Schizosaccharomyces pombe. Because the nuclear envelope of yeasts remains intact throughout the cell cycle, components of Tf1 must be transported through the envelope before integration can occur. The nuclear localization of the Gag protein of Tf1 is different from that of other proteins tested in that it has a specific requirement for the FXFG nuclear pore factor, Nup124p. Using extensive mutagenesis, we found that Gag contained three nuclear localization signals (NLSs) which, when included individually in a heterologous protein, were sufficient to direct nuclear import. In the context of the intact transposon, mutations in the NLS that mapped to the first 10 amino acid residues of Gag significantly impaired Tf1 retrotransposition and abolished nuclear localization of Gag. Interestingly, this NLS activity in the heterologous protein was specifically dependent upon the presence of Nup124p. Deletion analysis of heterologous proteins revealed the surprising result that the residues in Gag with the NLS activity were independent from the residues that conveyed the requirement for Nup124p. In fact, a fragment of Gag that lacked NLS activity, residues 10 to 30, when fused to a heterologous protein, was sufficient to cause the classical NLS of simian virus 40 to require Nup124p for nuclear import. Within the context of the current understanding of nuclear import, these results represent the novel case of a short amino acid sequence that specifies the need for a particular nuclear pore complex protein. PMID:11003674

  19. Nuclear import of the retrotransposon Tf1 is governed by a nuclear localization signal that possesses a unique requirement for the FXFG nuclear pore factor Nup124p.

    PubMed

    Dang, V D; Levin, H L

    2000-10-01

    Retroviruses, such as human immunodeficiency virus, that infect nondividing cells generate integration precursors that must cross the nuclear envelope to reach the host genome. As a model for retroviruses, we investigated the nuclear entry of Tf1, a long-terminal-repeat-containing retrotransposon of the fission yeast Schizosaccharomyces pombe. Because the nuclear envelope of yeasts remains intact throughout the cell cycle, components of Tf1 must be transported through the envelope before integration can occur. The nuclear localization of the Gag protein of Tf1 is different from that of other proteins tested in that it has a specific requirement for the FXFG nuclear pore factor, Nup124p. Using extensive mutagenesis, we found that Gag contained three nuclear localization signals (NLSs) which, when included individually in a heterologous protein, were sufficient to direct nuclear import. In the context of the intact transposon, mutations in the NLS that mapped to the first 10 amino acid residues of Gag significantly impaired Tf1 retrotransposition and abolished nuclear localization of Gag. Interestingly, this NLS activity in the heterologous protein was specifically dependent upon the presence of Nup124p. Deletion analysis of heterologous proteins revealed the surprising result that the residues in Gag with the NLS activity were independent from the residues that conveyed the requirement for Nup124p. In fact, a fragment of Gag that lacked NLS activity, residues 10 to 30, when fused to a heterologous protein, was sufficient to cause the classical NLS of simian virus 40 to require Nup124p for nuclear import. Within the context of the current understanding of nuclear import, these results represent the novel case of a short amino acid sequence that specifies the need for a particular nuclear pore complex protein.

  20. The Defective Nuclear Lamina in Hutchinson-Gilford Progeria Syndrome Disrupts the Nucleocytoplasmic Ran Gradient and Inhibits Nuclear Localization of Ubc9▿

    PubMed Central

    Kelley, Joshua B.; Datta, Sutirtha; Snow, Chelsi J.; Chatterjee, Mandovi; Ni, Li; Spencer, Adam; Yang, Chun-Song; Cubeñas-Potts, Caelin; Matunis, Michael J.; Paschal, Bryce M.

    2011-01-01

    The mutant form of lamin A responsible for the premature aging disease Hutchinson-Gilford progeria syndrome (termed progerin) acts as a dominant negative protein that changes the structure of the nuclear lamina. How the perturbation of the nuclear lamina in progeria is transduced into cellular changes is undefined. Using patient fibroblasts and a variety of cell-based assays, we determined that progerin expression in Hutchinson-Gilford progeria syndrome inhibits the nucleocytoplasmic transport of several factors with key roles in nuclear function. We found that progerin reduces the nuclear/cytoplasmic concentration of the Ran GTPase and inhibits the nuclear localization of Ubc9, the sole E2 for SUMOylation, and of TPR, the nucleoporin that forms the basket on the nuclear side of the nuclear pore complex. Forcing the nuclear localization of Ubc9 in progerin-expressing cells rescues the Ran gradient and TPR import, indicating that these pathways are linked. Reducing nuclear SUMOylation decreases the nuclear mobility of the Ran nucleotide exchange factor RCC1 in vivo, and the addition of SUMO E1 and E2 promotes the dissociation of RCC1 and Ran from chromatin in vitro. Our data suggest that the cellular effects of progerin are transduced, at least in part, through reduced function of the Ran GTPase and SUMOylation pathways. PMID:21670151

  1. The defective nuclear lamina in Hutchinson-gilford progeria syndrome disrupts the nucleocytoplasmic Ran gradient and inhibits nuclear localization of Ubc9.

    PubMed

    Kelley, Joshua B; Datta, Sutirtha; Snow, Chelsi J; Chatterjee, Mandovi; Ni, Li; Spencer, Adam; Yang, Chun-Song; Cubeñas-Potts, Caelin; Matunis, Michael J; Paschal, Bryce M

    2011-08-01

    The mutant form of lamin A responsible for the premature aging disease Hutchinson-Gilford progeria syndrome (termed progerin) acts as a dominant negative protein that changes the structure of the nuclear lamina. How the perturbation of the nuclear lamina in progeria is transduced into cellular changes is undefined. Using patient fibroblasts and a variety of cell-based assays, we determined that progerin expression in Hutchinson-Gilford progeria syndrome inhibits the nucleocytoplasmic transport of several factors with key roles in nuclear function. We found that progerin reduces the nuclear/cytoplasmic concentration of the Ran GTPase and inhibits the nuclear localization of Ubc9, the sole E2 for SUMOylation, and of TPR, the nucleoporin that forms the basket on the nuclear side of the nuclear pore complex. Forcing the nuclear localization of Ubc9 in progerin-expressing cells rescues the Ran gradient and TPR import, indicating that these pathways are linked. Reducing nuclear SUMOylation decreases the nuclear mobility of the Ran nucleotide exchange factor RCC1 in vivo, and the addition of SUMO E1 and E2 promotes the dissociation of RCC1 and Ran from chromatin in vitro. Our data suggest that the cellular effects of progerin are transduced, at least in part, through reduced function of the Ran GTPase and SUMOylation pathways.

  2. Nuclear localization of the dystrophin-associated protein α-dystrobrevin through importin α2/β1 is critical for interaction with the nuclear lamina/maintenance of nuclear integrity.

    PubMed

    Aguilar, Areli; Wagstaff, Kylie M; Suárez-Sánchez, Rocío; Zinker, Samuel; Jans, David A; Cisneros, Bulmaro

    2015-05-01

    Although α-dystrobrevin (DB) is assembled into the dystrophin-associated protein complex, which is central to cytoskeletal organization, it has also been found in the nucleus. Here we delineate the nuclear import pathway responsible for nuclear targeting of α-DB for the first time, together with the importance of nuclear α-DB in determining nuclear morphology. We map key residues of the nuclear localization signal of α-DB within the zinc finger domain (ZZ) using various truncated versions of the protein, and site-directed mutagenesis. Pulldown, immunoprecipitation, and AlphaScreen assays showed that the importin (IMP) α2/β1 heterodimer interacts with high affinity with the ZZ domain of α-DB. In vitro nuclear import assays using antibodies to specific importins, as well as in vivo studies using siRNA or a dominant negative importin construct, confirmed the key role of IMPα2/β1 in α-DB nuclear translocation. Knockdown of α-DB expression perturbed cell cycle progression in C2C12 myoblasts, with decreased accumulation of cells in S phase and, significantly, altered localization of lamins A/C, B1, and B2 with accompanying gross nuclear morphology defects. Because α-DB interacts specifically with lamin B1 in vivo and in vitro, nuclear α-DB would appear to play a key role in nuclear shape maintenance through association with the nuclear lamina. © FASEB.

  3. Haplotype analysis of global chili thrips (Schirtothrips dorsalis) populations using the metazoan barcode

    USDA-ARS?s Scientific Manuscript database

    Scirtothirps dorsalis is a globally invasive polyphagous crop pest infesting several major field and ornamental crops. Established in Florida since 2005, it had spread to Texas within one year. Establishing a putative source locality of the US population would help stakeholders target effective cont...

  4. Haplotype analysis of global chilli thrips (Scirtothrips dorsalis) populations using the metazoan barcode

    USDA-ARS?s Scientific Manuscript database

    Scirtothirps dorsalis is a globally invasive polyphagous crop pest infesting several major field and ornamental crops. Established in Florida since 2005, it had spread to Texas within one year. Establishing a putative source locality of the US population would help stakeholders target effective cont...

  5. Characterization and subcellular localization of an RNA silencing suppressor encoded by Rice stripe tenuivirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong Ruyi; Wu Jianxiang; Zhou Yijun

    2009-04-25

    Rice stripe virus (RSV) is a single-stranded (ss) RNA virus belonging to the genus Tenuivirus. RSV is present in many East Asian countries and causes severe diseases in rice fields, especially in China. In this study, we analyzed six proteins encoded by the virus for their abilities to suppress RNA silencing in plant using a green fluorescent protein (GFP)-based transient expression assay. Our results indicate that NS3 encoded by RSV RNA3, but not other five RSV encoded proteins, can strongly suppress local GFP silencing in agroinfiltrated Nicotiana benthamiana leaves. NS3 can reverse the GFP silencing, it can also prevent longmore » distance spread of silencing signals which have been reported to be necessary for inducing systemic silencing in host plants. The NS3 protein can significantly reduce the levels of small interfering RNAs (siRNAs) in silencing cells, and was found to bind 21-nucleotide ss-siRNA, siRNA duplex and long ssRNA but not long double-stranded (ds)-RNA. Both N and C terminal of the NS3 protein are critical for silencing suppression, and mutation of the putative nuclear localization signal decreases its local silencing suppression efficiency and blocks its systemic silencing suppression. The NS3-GFP fusion protein and NS3 were shown to accumulate predominantly in nuclei of onion, tobacco and rice cells through transient expression assay or immunocytochemistry and electron microscopy. In addition, transgenic rice and tobacco plants expressing the NS3 did not show any apparent alteration in plant growth and morphology, although NS3 was proven to be a pathogenicity determinant in the PVX heterogenous system. Taken together, our results demonstrate that RSV NS3 is a suppressor of RNA silencing in planta, possibly through sequestering siRNA molecules generated in cells that are undergoing gene silencing.« less

  6. Open chromatin encoded in DNA sequence is the signature of ‘master’ replication origins in human cells

    PubMed Central

    Audit, Benjamin; Zaghloul, Lamia; Vaillant, Cédric; Chevereau, Guillaume; d'Aubenton-Carafa, Yves; Thermes, Claude; Arneodo, Alain

    2009-01-01

    For years, progress in elucidating the mechanisms underlying replication initiation and its coupling to transcriptional activities and to local chromatin structure has been hampered by the small number (approximately 30) of well-established origins in the human genome and more generally in mammalian genomes. Recent in silico studies of compositional strand asymmetries revealed a high level of organization of human genes around 1000 putative replication origins. Here, by comparing with recently experimentally identified replication origins, we provide further support that these putative origins are active in vivo. We show that regions ∼300-kb wide surrounding most of these putative replication origins that replicate early in the S phase are hypersensitive to DNase I cleavage, hypomethylated and present a significant enrichment in genomic energy barriers that impair nucleosome formation (nucleosome-free regions). This suggests that these putative replication origins are specified by an open chromatin structure favored by the DNA sequence. We discuss how this distinctive attribute makes these origins, further qualified as ‘master’ replication origins, priviledged loci for future research to decipher the human spatio-temporal replication program. Finally, we argue that these ‘master’ origins are likely to play a key role in genome dynamics during evolution and in pathological situations. PMID:19671527

  7. A nuclear fraction of turnip crinkle virus capsid protein is important for elicitation of the host resistance response.

    PubMed

    Kang, Sung-Hwan; Qu, Feng; Morris, T Jack

    2015-12-02

    The N-terminal 25 amino acids (AAs) of turnip crinkle virus (TCV) capsid protein (CP) are recognized by the resistance protein HRT to trigger a hypersensitive response (HR) and systemic resistance to TCV infection. This same region of TCV CP also contains a motif that interacts with the transcription factor TIP, as well as a nuclear localization signal (NLS). However, it is not yet known whether nuclear localization of TCV CP is needed for the induction of HRT-mediated HR and resistance. Here we present new evidence suggesting a tight correlation between nuclear inclusions formed by CP and the manifestation of HR. We show that a fraction of TCV CP localized to cell nuclei to form discrete inclusion-like structures, and a mutated CP (R6A) known to abolish HR failed to form nuclear inclusions. Notably, TIP-CP interaction augments the inclusion-forming activity of CP by tethering inclusions to the nuclear membrane. This TIP-mediated augmentation is also critical for HR resistance, as another CP mutant (R8A) known to elicit a less restrictive HR, though still self-associated into nuclear inclusions, failed to direct inclusions to the nuclear membrane due to its inability to interact with TIP. Finally, exclusion of CP from cell nuclei abolished induction of HR. Together, these results uncovered a strong correlation between nuclear localization and nuclear inclusion formation by TCV CP and induction of HR, and suggest that CP nuclear inclusions could be the key trigger of the HRT-dependent, yet TIP-reinforced, resistance to TCV. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Molecular and biochemical analysis of symbiotic plant receptor kinase complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Douglas R; Riely, Brendan K

    DE-FG02-01ER15200 was a 36-month project, initiated on Sept 1, 2005 and extended with a one-year no cost extension to August 31, 2009. During the project period we published seven manuscripts (2 in review). Including the prior project period (2002-2005) we published 12 manuscripts in journals that include Science, PNAS, The Plant Cell, Plant Journal, Plant Physiology, and MPMI. The primary focus of this work was to further elucidate the function of the Nod factor signaling pathway that is involved in initiation of the legume-rhizobium symbiosis and in particular to explore the relationship between receptor kinase-like proteins and downstream effectors ofmore » symbiotic development. During the project period we have map-base cloned two additional players in symbiotic development, including an ERF transcription factor and an ethylene pathway gene (EIN2) that negatively regulates symbiotic signaling; we have also further characterized the subcellular distribution and function of a nuclear-localized symbiosis-specific ion channel, DMI1. The major outcome of the work has been the development of systems for exploring and validating protein-protein interactions that connect symbiotic receptor-like proteins to downstream responses. In this regard, we have developed both homologous (i.e., in planta) and heterologous (i.e., in yeast) systems to test protein interactions. Using yeast 2-hybrid screens we isolated the only known interactor of the nuclear-localized calcium-responsive kinase DMI3. We have also used yeast 2-hybrid methodology to identify interactions between symbiotic signaling proteins and certain RopGTPase/RopGEF proteins that regulate root hair polar growth. More important to the long-term goals of our work, we have established a TAP tagging system that identifies in planta interactions based on co-immuno precipitation and mass spectrometry. The validity of this approach has been shown using known interactors that either co-iummnoprecipate (i.e., remorin) or co-localize (i.e., the flotillin FLOT4) with symbiotic receptor-like proteins. As controls for TAP tag analysis we have generated protein isoforms that carry fluorescent domains (translational fusions to GFP) and these have been used to establish the subcellular location and dynamics of two symbiotic receptors, LYK3 and DMI2. Both proteins localize to membrane microdomains, or putative lipid rafts, and display dynamic behavior following elicitation with the Nod factor ligand. Finally, mass spectrometry of interacting proteins is yielding lists of candidate proteins that we are poised to test using semi-high throughput RNAi technology and Tnt1 knockout collections in Medicago truncatula.« less

  9. Piwi Nuclear Localization and Its Regulatory Mechanism in Drosophila Ovarian Somatic Cells.

    PubMed

    Yashiro, Ryu; Murota, Yukiko; Nishida, Kazumichi M; Yamashiro, Haruna; Fujii, Kaede; Ogai, Asuka; Yamanaka, Soichiro; Negishi, Lumi; Siomi, Haruhiko; Siomi, Mikiko C

    2018-06-19

    In Drosophila ovarian somatic cells (OSCs), Piwi represses transposons transcriptionally to maintain genome integrity. Piwi nuclear localization requires the N terminus and PIWI-interacting RNA (piRNA) loading of Piwi. However, the underlying mechanism remains unknown. Here, we show that Importinα (Impα) plays a pivotal role in Piwi nuclear localization and that Piwi has a bipartite nuclear localization signal (NLS). Impα2 and Impα3 are highly expressed in OSCs, whereas Impα1 is the least expressed. Loss of Impα2 or Impα3 forces Piwi to be cytoplasmic, which is rectified by overexpression of any Impα members. Extension of Piwi-NLS with an additional Piwi-NLS leads Piwi to be imported to the nucleus in a piRNA-independent manner, whereas replacement of Piwi-NLS with SV40-NLS fails. Limited proteolysis analysis suggests that piRNA loading onto Piwi triggers conformational change, exposing the N terminus to the environment. These results suggest that Piwi autoregulates its nuclear localization by exposing the NLS to Impα upon piRNA loading. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. PGE2 mediates EGFR internalization and nuclear translocation via caveolin endocytosis promoting its transcriptional activity and proliferation in human NSCLC cells

    PubMed Central

    Bazzani, Lorenzo; Donnini, Sandra; Giachetti, Antonio; Christofori, Gerhard; Ziche, Marina

    2018-01-01

    Prostaglandin E2 (PGE2) contributes to tumor progression by promoting cancer cell growth, invasion and by creating a favorable pro-tumor microenvironment. PGE2 has been reported to transactivate and internalize into the nucleus receptor tyrosine kinases such as Epidermal growth factor receptor (EGFR), thereby supporting tumor progression. Here we demonstrate that in non-small cell lung carcinoma (NSCLC) cells, PGE2 induces EGFR nuclear translocation via different dynamin-dependent endocytic pathways, promotes the formation of an EGFR-STAT3 complex, affects nuclear EGFR target gene expression and mediates tumor cell proliferation. Indeed, we find that PGE2 induces EGFR internalization and consequent nuclear import through Clathrin- and Caveolin-mediated endocytosis and through the interaction of EGFR with Importin β1. Within the nucleus, EGFR forms a complex with STAT3, an event blocked by ablation of Clathrin Heavy Chain or Caveolin-1. The combination of EGF and PGE2 prolongs nuclear EGFR transcriptional activity manifested by the upregulation of CCND1, PTGS2, MYC and NOS2 mRNA levels and potentiates nuclear EGFR-induced NSCLC cell proliferation. Additionally, NSCLC patients with high expression of a nuclear EGFR gene signature display shorter survival times than those with low expression, thus showing a putative correlation between nuclear EGFR and poor prognosis in NSCLC. Together, our findings indicate a complex mechanism underlying PGE2-induced EGF/EGFR signaling and transcriptional control, which plays a key role in cancer progression. PMID:29599917

  11. PGE2 mediates EGFR internalization and nuclear translocation via caveolin endocytosis promoting its transcriptional activity and proliferation in human NSCLC cells.

    PubMed

    Bazzani, Lorenzo; Donnini, Sandra; Giachetti, Antonio; Christofori, Gerhard; Ziche, Marina

    2018-03-13

    Prostaglandin E 2 (PGE 2 ) contributes to tumor progression by promoting cancer cell growth, invasion and by creating a favorable pro-tumor microenvironment. PGE 2 has been reported to transactivate and internalize into the nucleus receptor tyrosine kinases such as Epidermal growth factor receptor (EGFR), thereby supporting tumor progression. Here we demonstrate that in non-small cell lung carcinoma (NSCLC) cells, PGE 2 induces EGFR nuclear translocation via different dynamin-dependent endocytic pathways, promotes the formation of an EGFR-STAT3 complex, affects nuclear EGFR target gene expression and mediates tumor cell proliferation. Indeed, we find that PGE 2 induces EGFR internalization and consequent nuclear import through Clathrin- and Caveolin-mediated endocytosis and through the interaction of EGFR with Importin β1. Within the nucleus, EGFR forms a complex with STAT3, an event blocked by ablation of Clathrin Heavy Chain or Caveolin-1. The combination of EGF and PGE 2 prolongs nuclear EGFR transcriptional activity manifested by the upregulation of CCND1 , PTGS2 , MYC and NOS2 mRNA levels and potentiates nuclear EGFR-induced NSCLC cell proliferation. Additionally, NSCLC patients with high expression of a nuclear EGFR gene signature display shorter survival times than those with low expression, thus showing a putative correlation between nuclear EGFR and poor prognosis in NSCLC. Together, our findings indicate a complex mechanism underlying PGE 2 -induced EGF/EGFR signaling and transcriptional control, which plays a key role in cancer progression.

  12. Large-Scale Paraphrasing for Natural Language Understanding

    DTIC Science & Technology

    2018-04-01

    to manufacture , use, or sell any patented invention that may relate to them. This report is the result of contracted fundamental research deemed...station contaminated local fish populations Atomic power generation in Springfield polluted indigenous seafood stocks Radioactive power generation...from PPDB. Springfield’s nuclear power plant contaminated local fish populations nuclear power station nuclear plant power plant fish stocks

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piccioli, Zachary; McKee, Courtney H.; Leszczynski, Anna

    We investigated the nuclear import of low risk HPV11 E7 protein using 1) transfection assays in HeLa cells with EGFP fusion plasmids containing 11E7 and its domains and 2) nuclear import assays in digitonin-permeabilized HeLa cells with GST fusion proteins containing 11E7 and its domains. The EGFP-11E7 and EGFP-11cE7{sub 39-98} localized mostly to the nucleus. The GST-11E7 and GST-11cE7{sub 39-98} were imported into the nuclei in the presence of either Ran-GDP or RanG19V-GTP mutant and in the absence of nuclear import receptors. This suggests that 11E7 enters the nucleus via a Ran-dependent pathway, independent of nuclear import receptors, mediated bymore » a nuclear localization signal located in its C-terminal domain (cNLS). This cNLS contains the zinc binding domain consisting of two copies of Cys-X-X-Cys motif. Mutagenesis of Cys residues in these motifs changed the localization of the EGFP-11cE7/-11E7 mutants to cytoplasmic, suggesting that the zinc binding domain is essential for nuclear localization of 11E7.« less

  14. Tau regulates the subcellular localization of calmodulin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barreda, Elena Gomez de; Avila, Jesus, E-mail: javila@cbm.uam.es; CIBER de Enfermedades Neurodegenerativas, 28031 Madrid

    Highlights: {yields} In this work we have tried to explain how a cytoplasmic protein could regulate a cell nuclear function. We have tested the role of a cytoplasmic protein (tau) in regulating the expression of calbindin gene. We found that calmodulin, a tau-binding protein with nuclear and cytoplasmic localization, increases its nuclear localization in the absence of tau. Since nuclear calmodulin regulates calbindin expression, a decrease in nuclear calmodulin, due to the presence of tau that retains it at the cytoplasm, results in a change in calbindin expression. -- Abstract: Lack of tau expression in neuronal cells results in amore » change in the expression of few genes. However, little is known about how tau regulates gene expression. Here we show that the presence of tau could alter the subcellular localization of calmodulin, a protein that could be located at the cytoplasm or in the nucleus. Nuclear calmodulin binds to co-transcription factors, regulating the expression of genes like calbindin. In this work, we have found that in neurons containing tau, a higher proportion of calmodulin is present in the cytoplasm compared with neurons lacking tau and that an increase in cytoplasmic calmodulin correlates with a higher expression of calbindin.« less

  15. Nuclear Lipids in the Nervous System: What they do in Health and Disease.

    PubMed

    Garcia-Gil, Mercedes; Albi, Elisabetta

    2017-02-01

    In the last 20 years it has been widely demonstrated that cell nucleus contains neutral and polar lipids localized in nuclear membranes, nucleoli, nuclear matrix and chromatin. Nuclear lipids may show specific organization forming nuclear lipid microdomains and have both structural and functional roles. Depending on their localization, nuclear lipids play different roles such as the regulation of nuclear membrane and nuclear matrix fluidity but they also can act as platforms for vitamin and hormone function, for active chromatin anchoring, and for the regulation of gene expression, DNA duplication and transcription. Crosstalk among different kinds of lipid signalling pathways influence the physiopathology of numerous cell types. In neural cells the nuclear lipids are involved in cell proliferation, differentiation, inflammation, migration and apoptosis. Abnormal metabolism of nuclear lipids might be closely associated with tumorigenesis and neurodegenerative diseases such as Alzheimer disease and Parkinson disease among others.

  16. Comparative proteomic expression profile in all-trans retinoic acid differentiated neuroblastoma cell line.

    PubMed

    Cimmino, Flora; Spano, Daniela; Capasso, Mario; Zambrano, Nicola; Russo, Roberta; Zollo, Massimo; Iolascon, Achille

    2007-07-01

    Neuroblastoma (NB) is an infant tumor which frequently differentiates into neurons. We used two-dimensional differential in-gel electrophoresis (2D-DIGE) to analyze the cytosolic and nuclear protein expression patterns of LAN-5 cells following neuronal differentiating agent all-trans-retinoic acid treatment. We identified several candidate proteins, from which G beta2 and Prefoldin 3 may have a role on NB development. These results strength the use of proteomics to discover new putative protein targets in cancer.

  17. The Selenocysteine-Specific Elongation Factor Contains Unique Sequences That Are Required for Both Nuclear Export and Selenocysteine Incorporation.

    PubMed

    Dubey, Aditi; Copeland, Paul R

    2016-01-01

    Selenocysteine (Sec) is a critical residue in at least 25 human proteins that are essential for antioxidant defense and redox signaling in cells. Sec is inserted into proteins cotranslationally by the recoding of an in-frame UGA termination codon to a Sec codon. In eukaryotes, this recoding event requires several specialized factors, including a dedicated, Sec-specific elongation factor called eEFSec, which binds Sec-tRNASec with high specificity and delivers it to the ribosome for selenoprotein production. Unlike most translation factors, including the canonical elongation factor eEF1A, eEFSec readily localizes to the nucleus of mammalian cells and shuttles between the cytoplasmic and nuclear compartments. The functional significance of eEFSec's nuclear localization has remained unclear. In this study, we have examined the subcellular localization of eEFSec in the context of altered Sec incorporation to demonstrate that reduced selenoprotein production does not correlate with changes in the nuclear localization of eEFSec. In addition, we identify several novel sequences of the protein that are essential for localization as well as Sec insertion activity, and show that eEFSec utilizes CRM1-mediated nuclear export pathway. Our findings argue for two distinct pools of eEFSec in the cell, where the cytoplasmic pool participates in Sec incorporation and the nuclear pool may be involved in an as yet unknown function.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekhri, Palak; Tao, Tao; Kaplan, Feige

    As the sole E2 enzyme for SUMOylation, Ubc9 is predominantly nuclear. However, the underlying mechanisms of Ubc9 nuclear localization are still not well understood. Here we show that RNAi-depletion of Imp13, an importin known to mediate Ubc9 nuclear import, reduces both Ubc9 nuclear accumulation and global SUMOylation. Furthermore, Ubc9-R13A or Ubc9-H20D mutation previously shown to interrupt the interaction of Ubc9 with nucleus-enriched SUMOs reduces the nuclear enrichment of Ubc9, suggesting that the interaction of Ubc9 with the nuclear SUMOs may enhance Ubc9 nuclear retention. Moreover, Ubc9-R17E mutation, which is known to disrupt the interaction of Ubc9 with both SUMOs andmore » Imp13, causes a greater decrease in Ubc9 nuclear accumulation than Ubc9-R13A or Ubc9-H20D mutation. Lastly, Ubc9-K74A/S89D mutations that perturb the interaction of Ubc9 with nucleus-enriched SUMOylation-consensus motifs has no effect on Ubc9 nuclear localization. Altogether, our results have elucidated that the amino acid residues within the N-terminal region of Ubc9 play a pivotal role in regulation of Ubc9 nuclear localization. - Highlights: • Imp13-mediated nuclear import of Ubc9 is critical for global SUMOylation. • Ubc9 mutations disrupting Ubc9-SUMO interaction decrease Ubc9 nuclear accumulation. • N-terminal amino acid residues of Ubc9 are critical for Ubc9 nuclear enrichment.« less

  19. Tale taming radioactive fears: Linking nuclear waste disposal to the "continuum of the good".

    PubMed

    Yli-Kauhaluoma, Sari; Hänninen, Hannu

    2014-04-01

    We examine how the constructor of the world's first repository for the final disposal of spent nuclear fuel in Eurajoki, Finland, aims to shape lay understanding of the facility's risks and to tame the nuclear fears of the local community by producing positive associations, imagery and tales. Our empirical material consists of the constructor's newsletters targeted mainly at the local residents. In the narrative analysis, we identified a storyline where the construction of the repository is linked into the "continuum of the good" in the municipality of the construction site and the surrounding areas. The storyline consists of five different themes all emphasizing the "continuum of the good" in the area: cultural heritage, well-being, developing expertise, natural environment, and local families. Our study contributes to the literature on pro-nuclear storytelling by showing how the inclination is towards narratives that are constructed around local symbols, cultural landmarks, and institutions.

  20. Inheritance of yeast nuclear pore complexes requires the Nsp1p subcomplex

    PubMed Central

    Makio, Tadashi; Lapetina, Diego L.

    2013-01-01

    In the yeast Saccharomyces cerevisiae, organelles and macromolecular complexes are delivered from the mother to the emerging daughter during cell division, thereby ensuring progeny viability. Here, we have shown that during mitosis nuclear pore complexes (NPCs) in the mother nucleus are actively delivered through the bud neck and into the daughter cell concomitantly with the nuclear envelope. Furthermore, we show that NPC movement into the daughter cell requires members of an NPC subcomplex containing Nsp1p and its interacting partners. NPCs lacking these nucleoporins (Nups) were blocked from entry into the daughter by a putative barrier at the bud neck. This selection process could be observed within individual cells such that NPCs containing Nup82p (an Nsp1p-interacting Nup) were transferred to the daughter cells while functionally compromised NPCs lacking Nup82p were retained in the mother. This mechanism is proposed to facilitate the inheritance of functional NPCs by daughter cells. PMID:24165935

  1. Three-dimensional visualization of gammaherpesvirus life cycle in host cells by electron tomography.

    PubMed

    Peng, Li; Ryazantsev, Sergey; Sun, Ren; Zhou, Z Hong

    2010-01-13

    Gammaherpesviruses are etiologically associated with human tumors. A three-dimensional (3D) examination of their life cycle in the host is lacking, significantly limiting our understanding of the structural and molecular basis of virus-host interactions. Here, we report the first 3D visualization of key stages of the murine gammaherpesvirus 68 life cycle in NIH 3T3 cells, including viral attachment, entry, assembly, and egress, by dual-axis electron tomography. In particular, we revealed the transient processes of incoming capsids injecting viral DNA through nuclear pore complexes and nascent DNA being packaged into progeny capsids in vivo as a spool coaxial with the putative portal vertex. We discovered that intranuclear invagination of both nuclear membranes is involved in nuclear egress of herpesvirus capsids. Taken together, our results provide the structural basis for a detailed mechanistic description of gammaherpesvirus life cycle and also demonstrate the advantage of electron tomography in dissecting complex cellular processes of viral infection.

  2. Essential role of the HMG domain in the function of yeast mitochondrial histone HM: functional complementation of HM by the nuclear nonhistone protein NHP6A.

    PubMed

    Kao, L R; Megraw, T L; Chae, C B

    1993-06-15

    The yeast mitochondrial histone protein HM is required for maintenance of the mitochondrial genome, and disruption of the gene encoding HM (HIM1/ABF2) results in formation of a respiration-deficient petite mutant phenotype. HM contains two homologous regions, which share sequence similarity with the eukaryotic nuclear nonhistone protein, HMG-1. Experiments with various deletion mutants of HM show that a single HMG domain of HM is functional and can restore respiration competency to cells that lack HM protein (him1 mutant cells). The gene encoding the putative yeast nuclear HMG-1 homolog, the NHP6A protein, can functionally complement the him1 mutation. These results suggest that the HMG domain is the basic unit for the function of HM in mitochondria and that the function of HMG-1 proteins in the nucleus and HM in the mitochondrion may be equivalent.

  3. Nuclear location of a chromatin insulator in Drosophila melanogaster.

    PubMed

    Xu, Qinghao; Li, Mo; Adams, Jessica; Cai, Haini N

    2004-03-01

    Chromatin-related functions are associated with spatial organization in the nucleus. We have investigated the relationship between the enhancer-blocking activity and subnuclear localization of the Drosophila melanogaster suHw insulator. Using fluorescent in situ hybridization, we observed that genomic loci containing the gypsy retrotransposon were distributed closer to the nuclear periphery than regions without the gypsy retrotransposon. However, transgenes containing a functional 340 bp suHw insulator did not exhibit such biased distribution towards the nuclear periphery, which suggests that the suHw insulator sequence is not responsible for the peripheral localization of the gypsy retrotransposon. Antibody stains showed that the two proteins essential for the suHw insulator activity, SUHW and MOD(MDG4), are not restricted to the nuclear periphery. The enhancer-blocking activity of suHw remained intact under the heat shock conditions, which was shown to disrupt the association of gypsy, SUHW and MOD(MDG4) with the nuclear periphery. Our results indicate that the suHw insulator can function in the nuclear interior, possibly through local interactions with chromatin components or other nuclear structures.

  4. Characterization of a nuclear localization signal in the C-terminus of the adeno-associated virus Rep68/78 proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cassell, Geoffrey D.; Weitzman, Matthew D.

    2004-10-01

    Adeno-associated virus (AAV) replicates in the nucleus of infected cells, and therefore multiple nuclear import events are required for productive infection. We analyzed nuclear import of the viral Rep proteins and characterized a nuclear localization signal (NLS) in the C-terminus. We demonstrate that basic residues in this region constitute an NLS that is transferable and mediates interaction with the nuclear import receptor importin {alpha} in vitro. Mutant Rep proteins are predominantly cytoplasmic and are severely compromised for interactions with importin {alpha}, but retain their enzymatic functions in vitro. Interestingly, mutations of the NLS had significantly less effect on importin {alpha}more » interaction and replication in the context of Rep78 than when incorporated into the Rep68 protein. Together, our results demonstrate that a bipartite NLS exists in the shared part of Rep68 and Rep78, and suggest that an alternate entry mechanism may also contribute to nuclear localization of the Rep78 protein.« less

  5. Nuclear localization of coactivator RAC3 is mediated by a bipartite NLS and importin {alpha}3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeung, Percy Luk; Zhang, Aihua; Chen, J. Don

    2006-09-15

    The nuclear receptor coactivator RAC3 (also known as SRC-3/ACTR/AIB1/p/CIP/TRAM-1) belongs to the p160 coactivator family, which are involved in several physiological processes and diseases. Here we have investigated how RAC3 is translocated into the nucleus and show that it is mediated through a bipartite NLS and importin {alpha}3. This bipartite NLS is located within the conserved bHLH domain, and its mutation abolished nuclear localization. The NLS is also sufficient to cause nuclear import of EGFP, and the activity requires basic amino acids within the NLS. RAC3 binds strongly to importin {alpha}3, which also depends on the basic amino acids. Functionally,more » RAC3 cytoplasmic mutant loses its ability to enhance transcription, suggesting that nuclear localization is essential for coactivator function. Together, these results reveal a previous unknown mechanism for nuclear translocation of p160 coactivators and a critical function of the conserved bHLH within the coactivator.« less

  6. Functional analysis of the C-terminal region of human adenovirus E1A reveals a misidentified nuclear localization signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, Michael J.; King, Cason R.; Dikeakos, Jimmy D.

    The immortalizing function of the human adenovirus 5 E1A oncoprotein requires efficient localization to the nucleus. In 1987, a consensus monopartite nuclear localization sequence (NLS) was identified at the C-terminus of E1A. Since that time, various experiments have suggested that other regions of E1A influence nuclear import. In addition, a novel bipartite NLS was recently predicted at the C-terminal region of E1A in silico. In this study, we used immunofluorescence microscopy and co-immunoprecipitation analysis with importin-α to verify that full nuclear localization of E1A requires the well characterized NLS spanning residues 285–289, as well as a second basic patch situatedmore » between residues 258 and 263 ({sup 258}RVGGRRQAVECIEDLLNEPGQPLDLSCKRPRP{sup 289}). Thus, the originally described NLS located at the C-terminus of E1A is actually a bipartite signal, which had been misidentified in the existing literature as a monopartite signal, altering our understanding of one of the oldest documented NLSs. - Highlights: • Human adenovirus E1A is localized to the nucleus. • The C-terminus of E1A contains a bipartite nuclear localization signal (NLS). • This signal was previously misidentified to be a monopartite NLS. • Key basic amino acid residues within this sequence are highly conserved.« less

  7. Immunocytochemical localization of the major polypeptides of the nuclear pore complex-lamina fraction. Interphase and mitotic distribution

    PubMed Central

    1978-01-01

    This laboratory has previously isolated a fraction from rat liver nuclei consisting of nuclear pore complexes associated with the proteinaceous lamina which underlies the inner nuclear membrane. Using protein eluted from sodium dodecyl sulfate (SDS) gels, we have prepared antibodies in chickens to each of the three predominant pore complex- lamina bands. Ouchterlony double diffusion analysis shows that each of these individual bands cross-reacts strongly with all three antisera. In immunofluorescence localization performed on tissue culture cells with these antibodies, we obtain a pattern of intense staining at the periphery of the interphase nucleus, with little or no cytoplasmic reaction. Electron microscope immunoperoxidase staining of rat liver nuclei with these antibodies labels exclusively the nuclear periphery. Furthermore, reaction occurs in areas which contain the lamina, but not at the pore complexes. While our isolation procedure extracts the internal contents of nuclei completely, semiquantitative Ouchterlony analysis shows that it releases negligible amounts of these lamina antigens. Considered together, our results indicate that these three bands represent major components of a peripheral nuclear lamina, and are not structural elements of an internal "nuclear protein matrix." Fluorescence microscopy shows that the perinuclear interphase localization of these lamina proteins undergoes dramatic changes during mitosis. Concomitant with nuclear envelope disassembly in prophase, these antigens assume a diffuse localization throughout the cell. This distribution persists until telophase, when the antigens become progressively and completely localized at the surface of the daughter chromosome masses. We propose that the lamina is a biological polymer which can undergo reversible disassembly during mitosis. PMID:102651

  8. Nuclear translocation of Acinetobacter baumannii transposase induces DNA methylation of CpG regions in the promoters of E-cadherin gene.

    PubMed

    Moon, Dong Chan; Choi, Chul Hee; Lee, Su Man; Lee, Jung Hwa; Kim, Seung Il; Kim, Dong Sun; Lee, Je Chul

    2012-01-01

    Nuclear targeting of bacterial proteins has emerged as a pathogenic mechanism whereby bacterial proteins induce host cell pathology. In this study, we examined nuclear targeting of Acinetobacter baumannii transposase (Tnp) and subsequent epigenetic changes in host cells. Tnp of A. baumannii ATCC 17978 possesses nuclear localization signals (NLSs), (225)RKRKRK(230). Transient expression of A. baumannii Tnp fused with green fluorescent protein (GFP) resulted in the nuclear localization of these proteins in COS-7 cells, whereas the truncated Tnp without NLSs fused with GFP were exclusively localized in the cytoplasm. A. baumannii Tnp was found in outer membrane vesicles, which delivered this protein to the nucleus of host cells. Nuclear expression of A. baumannii Tnp fused with GFP in A549 cells induced DNA methylation of CpG regions in the promoters of E-cadherin (CDH1) gene, whereas the cytoplasmic localization of the truncated Tnp without NLSs fused with GFP did not induce DNA methylation. DNA methylation in the promoters of E-cadherin gene induced by nuclear targeting of A. baumannii Tnp resulted in down-regulation of gene expression. In conclusion, our data show that nuclear traffic of A. baumannii Tnp induces DNA methylation of CpG regions in the promoters of E-cadherin gene, which subsequently down-regulates gene expression. This study provides a new insight into the epigenetic control of host genes by bacterial proteins.

  9. Negative transcriptional regulation of mitochondrial transcription factor A (TFAM) by nuclear TFAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eun Jin; Kang, Young Cheol; Park, Wook-Ha

    2014-07-18

    Highlights: • TFAM localizes in nuclei and mitochondria of neuronal cells. • Nuclear TFAM does not bind the Tfam promoter. • Nuclear TFAM reduced the Tfam promoter activity via suppressing NRF-1 activity. • A novel self-negative feedback regulation of Tfam gene expression is explored. • FAM may play different roles depending on its subcellular localizations. - Abstract: The nuclear DNA-encoded mitochondrial transcription factor A (TFAM) is synthesized in cytoplasm and transported into mitochondria. TFAM enhances both transcription and replication of mitochondrial DNA. It is unclear, however, whether TFAM plays a role in regulating nuclear gene expression. Here, we demonstrated thatmore » TFAM was localized to the nucleus and mitochondria by immunostaining, subcellular fractionation, and TFAM-green fluorescent protein hybrid protein studies. In HT22 hippocampal neuronal cells, human TFAM (hTFAM) overexpression suppressed human Tfam promoter-mediated luciferase activity in a dose-dependent manner. The mitochondria targeting sequence-deficient hTFAM also repressed Tfam promoter activity to the same degree as hTFAM. It indicated that nuclear hTFAM suppressed Tfam expression without modulating mitochondrial activity. The repression required for nuclear respiratory factor-1 (NRF-1), but hTFAM did not bind to the NRF-1 binding site of its promoter. TFAM was co-immunoprecipitated with NRF-1. Taken together, we suggest that nuclear TFAM down-regulate its own gene expression as a NRF-1 repressor, showing that TFAM may play different roles depending on its subcellular localizations.« less

  10. COP1 is required for UV-B–induced nuclear accumulation of the UVR8 photoreceptor

    PubMed Central

    Skvortsova, Mariya Y.; Loubéry, Sylvain

    2016-01-01

    The UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8) promotes UV-B acclimation and tolerance in Arabidopsis thaliana. UVR8 localizes to both cytosol and nucleus, but its main activity is assumed to be nuclear. UV-B photoreception stimulates nuclear accumulation of UVR8 in a presently unknown manner. Here, we show that CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) is required for UV-B–induced nuclear accumulation of UVR8, but bypassing the COP1 requirement for UVR8 nuclear accumulation did not rescue the cop1 mutant UV-B phenotype. Using a glucocorticoid receptor (GR)-based fusion protein system to conditionally localize GR-UVR8 to the nucleus, we have demonstrated that both photoactivation and nuclear localization of UVR8 are required for UV-B–induced photomorphogenic responses. In contrast, there was no UV-B response when UV-B–activated UVR8 was artificially retained in the cytosol. In agreement with a predominantly nuclear activity, constitutively active UVR8W285A accumulated in the nucleus also in the absence of UV-B. Furthermore, GR-COP1 expression lines suggested that UV-B–activated UVR8 can be coimported into the nucleus by COP1. Our data strongly support localization of UVR8 signaling in the nucleus and a dual role for COP1 in the regulation of UV-B–induced UVR8 nuclear accumulation and in UVR8-mediated UV-B signaling. PMID:27407149

  11. Nuclear-specific AR-V7 Protein Localization is Necessary to Guide Treatment Selection in Metastatic Castration-resistant Prostate Cancer.

    PubMed

    Scher, Howard I; Graf, Ryon P; Schreiber, Nicole A; McLaughlin, Brigit; Lu, David; Louw, Jessica; Danila, Daniel C; Dugan, Lyndsey; Johnson, Ann; Heller, Glenn; Fleisher, Martin; Dittamore, Ryan

    2017-06-01

    Circulating tumor cells (CTCs) expressing AR-V7 protein localized to the nucleus (nuclear-specific) identify metastatic castration-resistant prostate cancer (mCRPC) patients with improved overall survival (OS) on taxane therapy relative to the androgen receptor signaling inhibitors (ARSi) abiraterone acetate, enzalutamide, and apalutamide. To evaluate if expanding the positivity criteria to include both nuclear and cytoplasmic AR-V7 localization ("nuclear-agnostic") identifies more patients who would benefit from a taxane over an ARSi. The study used a cross-sectional cohort. Between December 2012 and March 2015, 193 pretherapy blood samples, 191 of which were evaluable, were collected and processed from 161 unique mCRPC patients before starting a new line of systemic therapy for disease progression at the Memorial Sloan Kettering Cancer Center. The association between two AR-V7 scoring criteria, post-therapy prostate-specific antigen (PSA) change (PTPC) and OS following ARSi or taxane treatment, was explored. One criterion required nuclear-specific AR-V7 localization, and the other required an AR-V7 signal but was agnostic to protein localization in CTCs. Correlation of AR-V7 status to PTPC and OS was investigated. Relationships with survival were analyzed using multivariable Cox regression and log-rank analyses. A total of 34 (18%) samples were AR-V7-positive using nuclear-specific criteria, and 56 (29%) were AR-V7-positive using nuclear-agnostic criteria. Following ARSi treatment, none of the 16 nuclear-specific AR-V7-positive samples and six of the 32 (19%) nuclear-agnostic AR-V7-positive samples had ≥50% PTPC at 12 weeks. The strongest baseline factor influencing OS was the interaction between the presence of nuclear-specific AR-V7-positive CTCs and treatment with a taxane (hazard ratio 0.24, 95% confidence interval 0.078-0.79; p=0.019). This interaction was not significant when nuclear-agnostic criteria were used. To reliably inform treatment selection using an AR-V7 protein biomarker in CTCs, nuclear-specific localization is required. We analyzed outcomes for patients with metastatic castration-resistant prostate cancer on androgen receptor signaling inhibitors and standard chemotherapy. Patients with circulating tumor cells that had AR-V7 protein in the cellular nuclei were very likely to survive longer on taxane-based chemotherapy, and tests unable to distinguish where the protein is located in the cell are not as predictive of benefit. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  12. Functional characterization of transcription factor binding sites for HNF1-alpha, HNF3-beta (FOXA2), HNF4-alpha, Sp1 and Sp3 in the human prothrombin gene enhancer.

    PubMed

    Ceelie, H; Spaargaren-Van Riel, C C; De Jong, M; Bertina, R M; Vos, H L

    2003-08-01

    Prothrombin is a key component in blood coagulation. Overexpression of prothrombin leads to an increased risk of venous thrombosis. Therefore, the study of the transcriptional regulation of the prothrombin gene may help to identify mechanisms of overexpression. The aim of our study was to localize the regions within the prothrombin enhancer responsible for its activity, to identify the proteins binding to these regions, and to establish their functional importance. We constructed a set of prothrombin promoter 5' deletion constructs containing the firefly luciferase reporter gene, which were transiently transfected in HepG2, HuH7 and HeLa cells. Putative transcription factor (TF) binding sites were evaluated by electrophoretic mobility shift assays. The functional importance of each TF binding site was evaluated by site directed mutagenesis and transient transfection of the mutant constructs. We confirmed the major contribution of the enhancer region to the transcriptional activity of the prothrombin promoter. Analysis of this region revealed putative binding sites for hepatocyte nuclear factor HNF4, HNF3-beta and specificity protein(Sp)1. We identified six different TFs binding to three evolutionary conserved sites in the enhancer: HNF4-alpha (site 1), HNF1-alpha, HNF3-beta and an as yet unidentified TF (site 2) and the ubiquitously expressed TFs Sp1 and Sp3 (site 3). Mutagenesis studies showed that loss of binding of HNF3-beta resulted in a considerable decrease of enhancer activity, whereas loss of HNF4-alpha or Sp1/Sp3 resulted in milder reductions. The prothrombin enhancer plays a major role in regulation of prothrombin expression. Six different TFs are able to bind to this region. At least three of these TFs, HNF4-alpha, HNF3-beta and Sp1/Sp3, are important in regulation of prothrombin expression.

  13. Morphology and ultrastructure of the germarium in panoistic ovarioles of a basal "apterygotous" insect, Thermobia domestica.

    PubMed

    Tworzydlo, Waclaw; Kisiel, Elzbieta; Jankowska, Wladyslawa; Bilinski, Szczepan M

    2014-06-01

    It has been shown that in Drosophila the germline stem cells (GSCs), similar to the germline and non-germline stem cells of other species, develop and function in specialized microenvironments formed by somatic cells, referred to as the niches. In the fruit fly ovaries, the female GSCs divide asymmetrically to produce new GSCs and the progenitor cells, the cystoblasts (Cbs). Each Cb then divides to generate the cyst composed of 16 interconnected sibling cells, the cystocytes. After cyst formation, specific molecules are transferred to one of the cystocytes which differentiates into the oocyte, whereas the other 15 cystocytes become the nurse cells. We have studied morphology and ultrastructure of the germaria in the ovarioles (ovaries) of a basal "apterygotous" insect, the firebrat (Thermobia domestica). Our analyses have revealed that in this insect, putative GSCs are present along the anterior apex of the germarium. These cells are separated from each other and from the basement lamina covering the ovariole by characteristic somatic cells, termed the apical somatic cells (ASCs), or their elongated processes. We believe that all the ASCs of a given ovariole constitute a "dispersed" niche in which putative GSCs are anchored. Our analyses have additionally shown that in Thermobia, both the Cbs and young (meiotic) oocytes are always individual and never form syncytial cysts. These findings indicate that in certain basal insects the syncytial phase of oogenesis has been eliminated during evolution. Finally, we show that in the early meiotic oocytes of Thermobia, during the so-called bouquet stage, prominent Balbiani bodies (Bbs) are formed. Analysis of serial micrographs indicates that the Bbs invariably arise next to the segment of the nuclear envelope to which the telomeres of the bouquet chromosomes are attached. We suggest, in the light of these data, that the localization of the Bb together with the polar attachment of the bouquet chromosomes play a crucial role in the early asymmetrization of Thermobia oocytes. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. Molecular characterization of infectious pancreatic necrosis virus strains isolated from the three types of salmonids farmed in Chile.

    PubMed

    Manríquez, René A; Vera, Tamara; Villalba, Melina V; Mancilla, Alejandra; Vakharia, Vikram N; Yañez, Alejandro J; Cárcamo, Juan G

    2017-01-31

    The infectious pancreatic necrosis virus (IPNV) causes significant economic losses in Chilean salmon farming. For effective sanitary management, the IPNV strains present in Chile need to be fully studied, characterized, and constantly updated at the molecular level. In this study, 36 Chilean IPNV isolates collected over 6 years (2006-2011) from Salmo salar, Oncorhynchus mykiss, and Oncorhynchus kisutch were genotypically characterized. Salmonid samples were obtained from freshwater, estuary, and seawater sources from central, southern, and the extreme-south of Chile (35° to 53°S). Sequence analysis of the VP2 gene classified 10 IPNV isolates as genogroup 1 and 26 as genogroup 5. Analyses indicated a preferential, but not obligate, relationship between genogroup 5 isolates and S. salar infection. Fifteen genogroup 5 and nine genogroup 1 isolates presented VP2 gene residues associated with high virulence (i.e. Thr, Ala, and Thr at positions 217, 221, and 247, respectively). Four genogroup 5 isolates presented an oddly long VP5 deduced amino acid sequence (29.6 kDa). Analysis of the VP2 amino acid motifs associated with clinical and subclinical infections identified the clinical fingerprint in only genogroup 5 isolates; in contrast, the genogroup 1 isolates presented sequences predominantly associated with the subclinical fingerprint. Predictive analysis of VP5 showed an absence of transmembrane domains and plasma membrane tropism signals. WebLogo analysis of the VP5 BH domains revealed high identities with the marine birnavirus Y-6 and Japanese IPNV strain E1-S. Sequence analysis for putative 25 kDa proteins, coded by the ORF between VP2 and VP4, exhibited three putative nuclear localization sequences and signals of mitochondrial tropism in two isolates. This study provides important advances in updating the characterizations of IPNV strains present in Chile. The results from this study will help in identifying epidemiological links and generating specific biotechnological tools for controlling IPNV outbreaks in Chilean salmon farming.

  15. High Local Diversity of Trypanosoma in a Common Bat Species, and Implications for the Biogeography and Taxonomy of the T. cruzi Clade

    PubMed Central

    Kalko, Elisabeth K. V.; Cottontail, Iain; Wellinghausen, Nele; Tschapka, Marco; Perkins, Susan L.

    2014-01-01

    The Trypanosoma cruzi clade is a group of parasites that comprises T. cruzi sensu lato and its closest relatives. Although several species have been confirmed phylogenetically to belong to this clade, it is uncertain how many more species can be expected to belong into this group. Here, we present the results of a survey of trypanosome parasites of the bat Artibeus jamaicensis from the Panamá Canal Zone, an important seed disperser. Using a genealogical species delimitation approach, the Poisson tree processes (PTP), we tentatively identified five species of trypanosomes – all belonging to the T. cruzi clade. A small monophyletic group of three putative Trypanosoma species places at the base of the clade phylogeny, providing evidence for at least five independent colonization events of these parasites into the New World. Artibeus jamaicensis presents a high diversity of these blood parasites and is the vertebrate with the highest number of putative trypanosome species reported from a single locality. Our results emphasize the need for continued efforts to survey mammalian trypanosomes. PMID:25268381

  16. High unexpected genetic diversity of a narrow endemic terrestrial mollusc

    PubMed Central

    Madeira, Pedro M.; Chefaoui, Rosa M.; Cunha, Regina L.; Moreira, Francisco; Dias, Susana; Calado, Gonçalo

    2017-01-01

    The Iberian Peninsula has an extensive record of species displaying strong genetic structure as a result of their survival in isolated pockets throughout the Pleistocene ice ages. We used mitochondrial and nuclear sequence data to analyze phylogeographic patterns in endemic land snails from a valley of central Portugal (Vale da Couda), putatively assigned to Candidula coudensis, that show an exceptionally narrow distributional range. The genetic survey presented here shows the existence of five main mitochondrial lineages in Vale da Couda that do not cluster together suggesting independent evolutionary histories. Our results also indicate a departure from the expectation that species with restricted distributions have low genetic variability. The putative past and contemporary models of geographic distribution of Vale da Couda lineages are compatible with a scenario of species co-existence in more southern locations during the last glacial maximum (LGM) followed by a post-LGM northern dispersal tracking the species optimal thermal, humidity and soil physical conditions. PMID:28321363

  17. Isolation and Identification of Three γ-Glutamyl Tripeptides and Their Putative Production Mechanism in Aged Garlic Extract.

    PubMed

    Nakamoto, Masashi; Fujii, Takuto; Matsutomo, Toshiaki; Kodera, Yukihiro

    2018-03-21

    We analyzed aged garlic extract (AGE) to understand its complex sulfur chemistry using post-column high-performance liquid chromatography with an iodoplatinate reagent and liquid chromatography high resolution mass spectrometry (LC-MS). We observed unidentified peaks of putative sulfur compounds. Three compounds were isolated and identified as γ-glutamyl-γ-glutamyl- S-methylcysteine, γ-glutamyl-γ-glutamyl- S-allylcysteine (GGSAC) and γ-glutamyl-γ-glutamyl- S-1-propenyl-cysteine (GGS1PC) by nuclear magnetic resonance and LC-MS analysis based on comparisons with chemically synthesized reference compounds. GGSAC and GGS1PC were novel compounds. Trace amounts of these compounds were detected in raw garlic, but the contents of these compounds increased during the aging process. Production of these compounds was inhibited using a γ-glutamyl transpeptidase (GGT) inhibitor in the model reaction mixtures. These findings suggest that γ-glutamyl tripeptides in AGE are produced by GGT during the aging process.

  18. Herpes simplex virus glycoproteins gB and gH function in fusion between the virion envelope and the outer nuclear membrane.

    PubMed

    Farnsworth, Aaron; Wisner, Todd W; Webb, Michael; Roller, Richard; Cohen, Gary; Eisenberg, Roselyn; Johnson, David C

    2007-06-12

    Herpesviruses must traverse the nuclear envelope to gain access to the cytoplasm and, ultimately, to exit cells. It is believed that herpesvirus nucleocapsids enter the perinuclear space by budding through the inner nuclear membrane (NM). To reach the cytoplasm these enveloped particles must fuse with the outer NM and the unenveloped capsids then acquire a second envelope in the trans-Golgi network. Little is known about the process by which herpesviruses virions fuse with the outer NM. Here we show that a herpes simplex virus (HSV) mutant lacking both the two putative fusion glycoproteins gB and gH failed to cross the nuclear envelope. Enveloped virions accumulated in the perinuclear space or in membrane vesicles that bulged into the nucleoplasm (herniations). By contrast, mutants lacking just gB or gH showed only minor or no defects in nuclear egress. We concluded that either HSV gB or gH can promote fusion between the virion envelope and the outer NM. It is noteworthy that fusion associated with HSV entry requires the cooperative action of both gB and gH, suggesting that the two types of fusion (egress versus entry) are dissimilar processes.

  19. Nuclear pore complex evolution: a trypanosome Mlp analogue functions in chromosomal segregation but lacks transcriptional barrier activity

    PubMed Central

    Holden, Jennifer M.; Koreny, Ludek; Obado, Samson; Ratushny, Alexander V.; Chen, Wei-Ming; Chiang, Jung-Hsien; Kelly, Steven; Chait, Brian T.; Aitchison, John D.; Rout, Michael P.; Field, Mark C.

    2014-01-01

    The nuclear pore complex (NPC) has dual roles in nucleocytoplasmic transport and chromatin organization. In many eukaryotes the coiled-coil Mlp/Tpr proteins of the NPC nuclear basket have specific functions in interactions with chromatin and defining specialized regions of active transcription, whereas Mlp2 associates with the mitotic spindle/NPC in a cell cycle–dependent manner. We previously identified two putative Mlp-related proteins in African trypanosomes, TbNup110 and TbNup92, the latter of which associates with the spindle. We now provide evidence for independent ancestry for TbNup92/TbNup110 and Mlp/Tpr proteins. However, TbNup92 is required for correct chromosome segregation, with knockout cells exhibiting microaneuploidy and lowered fidelity of telomere segregation. Further, TbNup92 is intimately associated with the mitotic spindle and spindle anchor site but apparently has minimal roles in control of gene transcription, indicating that TbNup92 lacks major barrier activity. TbNup92 therefore acts as a functional analogue of Mlp/Tpr proteins, and, together with the lamina analogue NUP-1, represents a cohort of novel proteins operating at the nuclear periphery of trypanosomes, uncovering complex evolutionary trajectories for the NPC and nuclear lamina. PMID:24600046

  20. Subcellular Localization Screening of Colletotrichum higginsianum Effector Candidates Identifies Fungal Proteins Targeted to Plant Peroxisomes, Golgi Bodies, and Microtubules.

    PubMed

    Robin, Guillaume P; Kleemann, Jochen; Neumann, Ulla; Cabre, Lisa; Dallery, Jean-Félix; Lapalu, Nicolas; O'Connell, Richard J

    2018-01-01

    The genome of the hemibiotrophic anthracnose fungus, Colletotrichum higginsianum , encodes a large inventory of putative secreted effector proteins that are sequentially expressed at different stages of plant infection, namely appressorium-mediated penetration, biotrophy and necrotrophy. However, the destinations to which these proteins are addressed inside plant cells are unknown. In the present study, we selected 61 putative effector genes that are highly induced in appressoria and/or biotrophic hyphae. We then used Agrobacterium -mediated transformation to transiently express them as N -terminal fusions with fluorescent proteins in cells of Nicotiana benthamiana for imaging by confocal microscopy. Plant compartments labeled by the fusion proteins in N. benthamiana were validated by co-localization with specific organelle markers, by transient expression of the proteins in the true host plant, Arabidopsis thaliana , and by transmission electron microscopy-immunogold labeling. Among those proteins for which specific subcellular localizations could be verified, nine were imported into plant nuclei, three were imported into the matrix of peroxisomes, three decorated cortical microtubule arrays and one labeled Golgi stacks. Two peroxisome-targeted proteins harbored canonical C -terminal tripeptide signals for peroxisome import via the PTS1 (peroxisomal targeting signal 1) pathway, and we showed that these signals are essential for their peroxisome localization. Our findings provide valuable information about which host processes are potentially manipulated by this pathogen, and also reveal plant peroxisomes, microtubules, and Golgi as novel targets for fungal effectors.

  1. Can PET-CT imaging and radiokinetic analyses provide useful clinical information on atypical femoral shaft fracture in osteoporotic patients?

    PubMed

    Chesnut, C Haile; Chesnut, Charles H

    2012-03-01

    Atypical femoral shaft fractures are associated with the extended usage of nitrogen-containing bisphosphonates as therapy for osteoporosis. For such fractures, the positron emission tomography (PET) procedure, coupled with computerized tomography (CT), provides a potential imaging modality for defining aspects of the pathogenesis, site specificity, and possible prodromal abnormalities prior to fracture. PET-CT may assess the radiokinetic variables K1 (a putative marker for skeletal blood flow) and Ki (a putative marker for skeletal bone formation), and when combined with PET imaging modalities and CT skeletal site localization, may define the site of such radiokinetic findings. Further studies into the clinical usage of PET-CT in patients with atypical femoral shaft fractures are warranted.

  2. Complex Patterns of Local Adaptation in Teosinte

    PubMed Central

    Pyhäjärvi, Tanja; Hufford, Matthew B.; Mezmouk, Sofiane; Ross-Ibarra, Jeffrey

    2013-01-01

    Populations of widely distributed species encounter and must adapt to local environmental conditions. However, comprehensive characterization of the genetic basis of adaptation is demanding, requiring genome-wide genotype data, multiple sampled populations, and an understanding of population structure and potential selection pressures. Here, we used single-nucleotide polymorphism genotyping and data on numerous environmental variables to describe the genetic basis of local adaptation in 21 populations of teosinte, the wild ancestor of maize. We found complex hierarchical genetic structure created by altitude, dispersal events, and admixture among subspecies, which complicated identification of locally beneficial alleles. Patterns of linkage disequilibrium revealed four large putative inversion polymorphisms showing clinal patterns of frequency. Population differentiation and environmental correlations suggest that both inversions and intergenic polymorphisms are involved in local adaptation. PMID:23902747

  3. Genome-wide screen uncovers novel pathways for tRNA processing and nuclear-cytoplasmic dynamics.

    PubMed

    Wu, Jingyan; Bao, Alicia; Chatterjee, Kunal; Wan, Yao; Hopper, Anita K

    2015-12-15

    Transfer ribonucleic acids (tRNAs) are essential for protein synthesis. However, key gene products involved in tRNA biogenesis and subcellular movement remain to be discovered. We conducted the first comprehensive unbiased analysis of the role of nearly an entire proteome in tRNA biology and describe 162 novel and 12 previously known Saccharomyces cerevisiae gene products that function in tRNA processing, turnover, and subcellular movement. tRNA nuclear export is of particular interest because it is essential, but the known tRNA exporters (Los1 [exportin-t] and Msn5 [exportin-5]) are unessential. We report that mutations of CRM1 (Exportin-1), MEX67/MTR2 (TAP/p15), and five nucleoporins cause accumulation of unspliced tRNA, a hallmark of defective tRNA nuclear export. CRM1 mutation genetically interacts with los1Δ and causes altered tRNA nuclear-cytoplasmic distribution. The data implicate roles for the protein and mRNA nuclear export machineries in tRNA nuclear export. Mutations of genes encoding actin cytoskeleton components and mitochondrial outer membrane proteins also cause accumulation of unspliced tRNA, likely due to defective splicing on mitochondria. Additional gene products, such as chromatin modification enzymes, have unanticipated effects on pre-tRNA end processing. Thus, this genome-wide screen uncovered putative novel pathways for tRNA nuclear export and extensive links between tRNA biology and other aspects of cell physiology. © 2015 Wu et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Identification of New Diterpenes as Putative Marker Compounds Distinguishing Agnus Castus Fruit (Chaste Tree) from Shrub Chaste Tree Fruit (Viticis Fructus).

    PubMed

    Oshima, Naohiro; Masada, Sayaka; Suzuki, Ryuta; Yagi, Kanae; Matsufuji, Hiroshi; Suenaga, Emi; Takahashi, Yutaka; Yahagi, Tadahiro; Watanabe, Masato; Yahara, Shoji; Iida, Osamu; Kawahara, Nobuo; Maruyama, Takuro; Goda, Yukihiro; Hakamatsuka, Takashi

    2016-01-01

    Agnus Castus Fruit is defined in the European Pharmacopoeia as the dried ripe fruit of Vitex agnus-castus. In Europe it is used as a medicine targeting premenstrual syndrome and climacteric disorder. In Japan, Agnus Castus Fruit is becoming popular as a raw material for over-the-counter drugs and health food products, though its congenic species, Vitex rotundifolia and Vitex trifolia, have been used as Shrub Chaste Tree Fruit in traditional medicines. Therefore, it is important to discriminate these Vitex plants from the viewpoint of regulatory science. Here we tried to identify putative marker compounds that distinguish between Agnus Castus Fruit and Shrub Chaste Tree Fruit. We analyzed extracts of each crude drug by liquid chromatography-mass spectrometry, and performed differential analysis by comparison of each chromatogram to find one or more peaks characteristic of Agnus Castus Fruit. A peak was isolated and identified as an equilibrium mixture of new compounds named chastol (1) and epichastol (1a). The planar structures of 1 and 1a were determined spectroscopically. Their relative configurations were revealed by nuclear Overhauser effect spectroscopy and differential nuclear Overhauser effect-NMR data. Since avoiding contamination from closely related species is needed for the quality control of natural pharmaceuticals, this information will be valuable to establish a method for the quality control of both, Agnus Castus Fruit and Shrub Chaste Tree Fruit products. Georg Thieme Verlag KG Stuttgart · New York.

  5. EGO-1, a Putative RNA-Directed RNA Polymerase, Promotes Germline Proliferation in Parallel With GLP-1/Notch Signaling and Regulates the Spatial Organization of Nuclear Pore Complexes and Germline P Granules in Caenorhabditis elegans

    PubMed Central

    Vought, Valarie E.; Ohmachi, Mitsue; Lee, Min-Ho; Maine, Eleanor M.

    2005-01-01

    Caenorhabditis elegans EGO-1, a putative cellular RNA-directed RNA polymerase, promotes several aspects of germline development, including proliferation, meiosis, and gametogenesis, and ensures a robust response to RNA interference. In C. elegans, GLP-1/Notch signaling from the somatic gonad maintains a population of proliferating germ cells, while entry of germ cells into meiosis is triggered by the GLD-1 and GLD-2 pathways. GLP-1 signaling prevents germ cells from entering meiosis by inhibiting GLD-1 and GLD-2 activity. We originally identified the ego-1 gene on the basis of a genetic interaction with glp-1. Here, we investigate the role of ego-1 in germline proliferation. Our data indicate that EGO-1 does not positively regulate GLP-1 protein levels or GLP-1 signaling activity. Moreover, GLP-1 signaling does not positively regulate EGO-1 activity. EGO-1 does not inhibit expression of GLD-1 protein in the distal germline. Instead, EGO-1 acts in parallel with GLP-1 signaling to influence the proliferation vs. meiosis fate choice. Moreover, EGO-1 and GLD-1 act in parallel to ensure germline health. Finally, the size and distribution of nuclear pore complexes and perinuclear P granules are altered in the absence of EGO-1, effects that disrupt germ cell biology per se and probably limit germline growth. PMID:15911573

  6. Controlling Androgen receptor nuclear localization by dendrimer conjugates

    NASA Astrophysics Data System (ADS)

    Wang, Haoyu

    Androgen Receptor (AR) antagonists, such as bicalutamide and flutamide have been used widely in the treatment of prostate cancer. Although initial treatment is effective, prostate cancer cells often acquire antiandrogen resistance with prolonged treatment. AR over-expression and AR mutations contribute to the development of antiandrogen resistant cancer. Second generation antiandrogens such as enzalutamide are more effective and show reduced AR nuclear localization. In this study, derivatives of PAN52, a small molecule antiandrogen previously developed in our lab, were conjugated to the surface of generation 4 and generation 6 PAMAM dendrimers to obtain antiandrogen PAMAM dendrimer conjugates (APDC). APDCs readily enter cells and associate with AR in the cytoplasm. Due to their large size and positive charge, they can not enter the nucleus, thus retaining AR in the cytoplasm. In addition, APDCs are effective in decreasing AR mediated transcription and cell proliferation. APDC is the first AR antagonists that inhibit DHT-induced nuclear localization of AR. By inhibiting AR nuclear localization, APDC represents a new class of antiandrogens that offer an alternative approach to addressing antiandrogen-resistant prostate cancer. Lysine post-translational modification of AR Nuclear Localization Sequence (NLS) has great impact on AR cellular localization. It is of interest to understand which modifications modulate AR translocation into the nucleus. In this study, we prepared dendrimer-based acetyltransferase mimetic (DATM), DATM is able to catalytically acetylate AR in CWR22Rv1 cells, which will be a useful tool for studying AR modification effect on AR cellular localization. Derivatives of DATM, which transfer other chemical groups to AR, can be prepared similarly, and with more dendrimer based AR modification tools prepared in future, we will be able to understand and control AR cellular localization through AR modification.

  7. Restless 5S: the re-arrangement(s) and evolution of the nuclear ribosomal DNA in land plants.

    PubMed

    Wicke, Susann; Costa, Andrea; Muñoz, Jesùs; Quandt, Dietmar

    2011-11-01

    Among eukaryotes two types of nuclear ribosomal DNA (nrDNA) organization have been observed. Either all components, i.e. the small ribosomal subunit, 5.8S, large ribosomal subunit, and 5S occur tandemly arranged or the 5S rDNA forms a separate cluster of its own. Generalizations based on data derived from just a few model organisms have led to a superimposition of structural and evolutionary traits to the entire plant kingdom asserting that plants generally possess separate arrays. This study reveals that plant nrDNA organization into separate arrays is not a distinctive feature, but rather assignable almost solely to seed plants. We show that early diverging land plants and presumably streptophyte algae share a co-localization of all rRNA genes within one repeat unit. This raises the possibility that the state of rDNA gene co-localization had occurred in their common ancestor. Separate rDNA arrays were identified for all basal seed plants and water ferns, implying at least two independent 5S rDNA transposition events during land plant evolution. Screening for 5S derived Cassandra transposable elements which might have played a role during the transposition events, indicated that this retrotransposon is absent in early diverging vascular plants including early fern lineages. Thus, Cassandra can be rejected as a primary mechanism for 5S rDNA transposition in water ferns. However, the evolution of Cassandra and other eukaryotic 5S derived elements might have been a side effect of the 5S rDNA cluster formation. Structural analysis of the intergenic spacers of the ribosomal clusters revealed that transposition events partially affect spacer regions and suggests a slightly different transcription regulation of 5S rDNA in early land plants. 5S rDNA upstream regulatory elements are highly divergent or absent from the LSU-5S spacers of most early divergent land plant lineages. Several putative scenarios and mechanisms involved in the concerted relocation of hundreds of 5S rRNA gene copies are discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Identification and Characterization of Switchgrass Histone H3 and CENH3 Genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Jiamin; Frazier, Taylor; Huang, Linkai

    Switchgrass is one of the most promising energy crops and only recently has been employed for biofuel production. The draft genome of switchgrass was recently released; however, relatively few switchgrass genes have been functionally characterized. CENH3, the major histone protein found in centromeres, along with canonical H3 and other histones, plays an important role in maintaining genome stability and integrity. Despite their importance, the histone H3 genes of switchgrass have remained largely uninvestigated. In this study, we identified 17 putative switchgrass histone H3 genes in silico. Of these genes, 15 showed strong homology to histone H3 genes including six H3.1more » genes, three H3.3 genes, four H3.3-like genes and two H3.1-like genes. The remaining two genes were found to be homologous to CENH3. RNA-seq data derived from lowland cultivar Alamo and upland cultivar Dacotah allowed us to identify SNPs in the histone H3 genes and compare their differential gene expression. Interestingly, we also found that overexpression of switchgrass histone H3 and CENH3 genes in N. benthamiana could trigger cell death of the transformed plant cells. Localization and deletion analyses of the histone H3 and CENH3 genes revealed that nuclear localization of the N-terminal tail is essential and sufficient for triggering the cell death phenotype. Lastly, our results deliver insight into the mechanisms underlying the histone-triggered cell death phenotype and provide a foundation for further studying the variations of the histone H3 and CENH3 genes in switchgrass.« less

  9. Identification and Characterization of Switchgrass Histone H3 and CENH3 Genes

    DOE PAGES

    Miao, Jiamin; Frazier, Taylor; Huang, Linkai; ...

    2016-07-12

    Switchgrass is one of the most promising energy crops and only recently has been employed for biofuel production. The draft genome of switchgrass was recently released; however, relatively few switchgrass genes have been functionally characterized. CENH3, the major histone protein found in centromeres, along with canonical H3 and other histones, plays an important role in maintaining genome stability and integrity. Despite their importance, the histone H3 genes of switchgrass have remained largely uninvestigated. In this study, we identified 17 putative switchgrass histone H3 genes in silico. Of these genes, 15 showed strong homology to histone H3 genes including six H3.1more » genes, three H3.3 genes, four H3.3-like genes and two H3.1-like genes. The remaining two genes were found to be homologous to CENH3. RNA-seq data derived from lowland cultivar Alamo and upland cultivar Dacotah allowed us to identify SNPs in the histone H3 genes and compare their differential gene expression. Interestingly, we also found that overexpression of switchgrass histone H3 and CENH3 genes in N. benthamiana could trigger cell death of the transformed plant cells. Localization and deletion analyses of the histone H3 and CENH3 genes revealed that nuclear localization of the N-terminal tail is essential and sufficient for triggering the cell death phenotype. Lastly, our results deliver insight into the mechanisms underlying the histone-triggered cell death phenotype and provide a foundation for further studying the variations of the histone H3 and CENH3 genes in switchgrass.« less

  10. THE SUBARCSECOND MID-INFRARED VIEW OF LOCAL ACTIVE GALACTIC NUCLEI. III. POLAR DUST EMISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asmus, D.; Hönig, S. F.; Gandhi, P., E-mail: dasmus@eso.org

    2016-05-10

    Recent mid-infrared (MIR) interferometric observations have shown that in a few active galactic nuclei (AGNs) the bulk of the infrared emission originates from the polar region above the putative torus, where only a little dust should be present. Here, we investigate whether such strong polar dust emission is common in AGNs. Out of 149 Seyferts in the MIR atlas of local AGNs, 21 show extended MIR emission on single-dish images. In 18 objects, the extended MIR emission aligns with the position angle (PA) of the system axis, established by [O iii], radio, polarization, and maser-based PA measurements. The relative amountmore » of resolved MIR emission is at least 40% and scales with the [O iv] fluxes, implying a strong connection between the extended continuum and [O iv] emitters. These results together with the radio-quiet nature of the Seyferts support the scenario that the bulk of MIR emission is emitted by dust in the polar region and not by the torus, which would demand a new paradigm for the infrared emission structure in AGNs. The current low detection rate of polar dust in the AGNs of the MIR atlas is explained by the lack of sufficient high-quality MIR data and the requirements on the orientation, strength of narrow-line region, and distance of the AGNs. The James Webb Space Telescope will enable much deeper nuclear MIR studies with comparable angular resolution, allowing us to resolve the polar emission and surroundings in most of the nearby AGNs.« less

  11. Landscape genomics reveal signatures of local adaptation in barley (Hordeum vulgare L.)

    PubMed Central

    Abebe, Tiegist D.; Naz, Ali A.; Léon, Jens

    2015-01-01

    Land plants are sessile organisms that cannot escape the adverse climatic conditions of a given environment. Hence, adaptation is one of the solutions to surviving in a challenging environment. This study was aimed at detecting adaptive loci in barley landraces that are affected by selection. To that end, a diverse population of barley landraces was analyzed using the genotyping by sequencing approach. Climatic data for altitude, rainfall and temperature were collected from 61 weather sites near the origin of selected landraces across Ethiopia. Population structure analysis revealed three groups whereas spatial analysis accounted significant similarities at shorter geographic distances (< 40 Km) among barley landraces. Partitioning the variance between climate variables and geographic distances indicated that climate variables accounted for most of the explainable genetic variation. Markers by climatic variables association analysis resulted in altogether 18 and 62 putative adaptive loci using Bayenv and latent factor mixed model (LFMM), respectively. Subsequent analysis of the associated SNPs revealed putative candidate genes for plant adaptation. This study highlights the presence of putative adaptive loci among barley landraces representing original gene pool of the farming communities. PMID:26483825

  12. Domains involved in calcineurin phosphatase inhibition and nuclear localisation in the African swine fever virus A238L protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrams, Charles C.; Chapman, Dave A.G.; Silk, Rhiannon

    2008-05-10

    The African swine fever virus A238L protein inhibits calcineurin phosphatase activity and activation of NF-{kappa}B and p300 co-activator. An 82 amino acid domain containing residues 157 to 238 at the C-terminus of A238L was expressed in E. coli and purified. This purified A238L fragment acted as a potent inhibitor of calcineurin phosphatase in vitro with an IC{sub 50} of approximately 70 nM. Two putative nuclear localisation signals were identified between residues 80 to 86 (NLS-1) and between residues 203 to 207 overlapping with the N-terminus of the calcineurin docking motif (NLS-2). Mutation of these motifs independently did not reduce nuclearmore » localisation compared to the wild type A238L protein, whereas mutation of both motifs significantly reduced nuclear localisation of A238L. Mutation of the calcineurin docking motif resulted in a dramatic increase in the nuclear localisation of A238L provided an intact NLS was present. We propose that binding of calcineurin to A238L masks NLS-2 contributing to the cytoplasmic retention of A238L.« less

  13. Phosphorylation of a conserved serine in the deoxyribonucleic acid binding domain of nuclear receptors alters intracellular localization.

    PubMed

    Sun, Kai; Montana, Vedrana; Chellappa, Karthikeyani; Brelivet, Yann; Moras, Dino; Maeda, Yutaka; Parpura, Vladimir; Paschal, Bryce M; Sladek, Frances M

    2007-06-01

    Nuclear receptors (NRs) are a superfamily of transcription factors whose genomic functions are known to be activated by lipophilic ligands, but little is known about how to deactivate them or how to turn on their nongenomic functions. One obvious mechanism is to alter the nuclear localization of the receptors. Here, we show that protein kinase C (PKC) phosphorylates a highly conserved serine (Ser) between the two zinc fingers of the DNA binding domain of orphan receptor hepatocyte nuclear factor 4alpha (HNF4alpha). This Ser (S78) is adjacent to several positively charged residues (Arg or Lys), which we show here are involved in nuclear localization of HNF4alpha and are conserved in nearly all other NRs, along with the Ser/threonine (Thr). A phosphomimetic mutant of HNF4alpha (S78D) reduced DNA binding, transactivation ability, and protein stability. It also impaired nuclear localization, an effect that was greatly enhanced in the MODY1 mutant Q268X. Treatment of the hepatocellular carcinoma cell line HepG2 with PKC activator phorbol 12-myristate 13-acetate also resulted in increased cytoplasmic localization of HNF4alpha as well as decreased endogenous HNF4alpha protein levels in a proteasome-dependent fashion. We also show that PKC phosphorylates the DNA binding domain of other NRs (retinoic acid receptor alpha, retinoid X receptor alpha, and thyroid hormone receptor beta) and that phosphomimetic mutants of the same Ser/Thr result in cytoplasmic localization of retinoid X receptor alpha and peroxisome proliferator-activated receptor alpha. Thus, phosphorylation of this conserved Ser between the two zinc fingers may be a common mechanism for regulating the function of NRs.

  14. Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene

    PubMed Central

    Chang, Zhenyi; Chen, Zhufeng; Wang, Na; Xie, Gang; Lu, Jiawei; Yan, Wei; Zhou, Junli; Tang, Xiaoyan; Deng, Xing Wang

    2016-01-01

    The breeding and large-scale adoption of hybrid seeds is an important achievement in agriculture. Rice hybrid seed production uses cytoplasmic male sterile lines or photoperiod/thermo-sensitive genic male sterile lines (PTGMS) as female parent. Cytoplasmic male sterile lines are propagated via cross-pollination by corresponding maintainer lines, whereas PTGMS lines are propagated via self-pollination under environmental conditions restoring male fertility. Despite huge successes, both systems have their intrinsic drawbacks. Here, we constructed a rice male sterility system using a nuclear gene named Oryza sativa No Pollen 1 (OsNP1). OsNP1 encodes a putative glucose–methanol–choline oxidoreductase regulating tapetum degeneration and pollen exine formation; it is specifically expressed in the tapetum and miscrospores. The osnp1 mutant plant displays normal vegetative growth but complete male sterility insensitive to environmental conditions. OsNP1 was coupled with an α-amylase gene to devitalize transgenic pollen and the red fluorescence protein (DsRed) gene to mark transgenic seed and transformed into the osnp1 mutant. Self-pollination of the transgenic plant carrying a single hemizygous transgene produced nontransgenic male sterile and transgenic fertile seeds in 1:1 ratio that can be sorted out based on the red fluorescence coded by DsRed. Cross-pollination of the fertile transgenic plants to the nontransgenic male sterile plants propagated the male sterile seeds of high purity. The male sterile line was crossed with ∼1,200 individual rice germplasms available. Approximately 85% of the F1s outperformed their parents in per plant yield, and 10% out-yielded the best local cultivars, indicating that the technology is promising in hybrid rice breeding and production. PMID:27864513

  15. A calmodulin-like protein (LCALA) is a new Leishmania amazonensis candidate for telomere end-binding protein.

    PubMed

    Morea, Edna G O; Viviescas, Maria Alejandra; Fernandes, Carlos A H; Matioli, Fabio F; Lira, Cristina B B; Fernandez, Maribel F; Moraes, Barbara S; da Silva, Marcelo S; Storti, Camila B; Fontes, Marcos R M; Cano, Maria Isabel N

    2017-11-01

    Leishmania spp. telomeres are composed of 5'-TTAGGG-3' repeats associated with proteins. We have previously identified LaRbp38 and LaRPA-1 as proteins that bind the G-rich telomeric strand. At that time, we had also partially characterized a protein: DNA complex, named LaGT1, but we could not identify its protein component. Using protein-DNA interaction and competition assays, we confirmed that LaGT1 is highly specific to the G-rich telomeric single-stranded DNA. Three protein bands, with LaGT1 activity, were isolated from affinity-purified protein extracts in-gel digested, and sequenced de novo using mass spectrometry analysis. In silico analysis of the digested peptide identified them as a putative calmodulin with sequences identical to the T. cruzi calmodulin. In the Leishmania genome, the calmodulin ortholog is present in three identical copies. We cloned and sequenced one of the gene copies, named it LCalA, and obtained the recombinant protein. Multiple sequence alignment and molecular modeling showed that LCalA shares homology to most eukaryotes calmodulin. In addition, we demonstrated that LCalA is nuclear, partially co-localizes with telomeres and binds in vivo the G-rich telomeric strand. Recombinant LCalA can bind specifically and with relative affinity to the G-rich telomeric single-strand and to a 3'G-overhang, and DNA binding is calcium dependent. We have described a novel candidate component of Leishmania telomeres, LCalA, a nuclear calmodulin that binds the G-rich telomeric strand with high specificity and relative affinity, in a calcium-dependent manner. LCalA is the first reported calmodulin that binds in vivo telomeric DNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Hypothesis testing clarifies the systematics of the main Central American Chagas disease vector, Triatoma dimidiata (Latreille, 1811), across its geographic range.

    PubMed

    Dorn, Patricia L; de la Rúa, Nicholas M; Axen, Heather; Smith, Nicholas; Richards, Bethany R; Charabati, Jirias; Suarez, Julianne; Woods, Adrienne; Pessoa, Rafaela; Monroy, Carlota; Kilpatrick, C William; Stevens, Lori

    2016-10-01

    The widespread and diverse Triatoma dimidiata is the kissing bug species most important for Chagas disease transmission in Central America and a secondary vector in Mexico and northern South America. Its diversity may contribute to different Chagas disease prevalence in different localities and has led to conflicting systematic hypotheses describing various populations as subspecies or cryptic species. To resolve these conflicting hypotheses, we sequenced a nuclear (internal transcribed spacer 2, ITS-2) and mitochondrial gene (cytochrome b) from an extensive sampling of T. dimidiata across its geographic range. We evaluated the congruence of ITS-2 and cyt b phylogenies and tested the support for the previously proposed subspecies (inferred from ITS-2) by: (1) overlaying the ITS-2 subspecies assignments on a cyt b tree and, (2) assessing the statistical support for a cyt b topology constrained by the subspecies hypothesis. Unconstrained phylogenies inferred from ITS-2 and cyt b are congruent and reveal three clades including two putative cryptic species in addition to T. dimidiata sensu stricto. Neither the cyt b phylogeny nor hypothesis testing support the proposed subspecies inferred from ITS-2. Additionally, the two cryptic species are supported by phylogenies inferred from mitochondrially-encoded genes cytochrome c oxidase I and NADH dehydrogenase 4. In summary, our results reveal two cryptic species. Phylogenetic relationships indicate T. dimidiata sensu stricto is not subdivided into monophyletic clades consistent with subspecies. Based on increased support by hypothesis testing, we propose an updated systematic hypothesis for T. dimidiata based on extensive taxon sampling and analysis of both mitochondrial and nuclear genes. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene.

    PubMed

    Chang, Zhenyi; Chen, Zhufeng; Wang, Na; Xie, Gang; Lu, Jiawei; Yan, Wei; Zhou, Junli; Tang, Xiaoyan; Deng, Xing Wang

    2016-12-06

    The breeding and large-scale adoption of hybrid seeds is an important achievement in agriculture. Rice hybrid seed production uses cytoplasmic male sterile lines or photoperiod/thermo-sensitive genic male sterile lines (PTGMS) as female parent. Cytoplasmic male sterile lines are propagated via cross-pollination by corresponding maintainer lines, whereas PTGMS lines are propagated via self-pollination under environmental conditions restoring male fertility. Despite huge successes, both systems have their intrinsic drawbacks. Here, we constructed a rice male sterility system using a nuclear gene named Oryza sativa No Pollen 1 (OsNP1). OsNP1 encodes a putative glucose-methanol-choline oxidoreductase regulating tapetum degeneration and pollen exine formation; it is specifically expressed in the tapetum and miscrospores. The osnp1 mutant plant displays normal vegetative growth but complete male sterility insensitive to environmental conditions. OsNP1 was coupled with an α-amylase gene to devitalize transgenic pollen and the red fluorescence protein (DsRed) gene to mark transgenic seed and transformed into the osnp1 mutant. Self-pollination of the transgenic plant carrying a single hemizygous transgene produced nontransgenic male sterile and transgenic fertile seeds in 1:1 ratio that can be sorted out based on the red fluorescence coded by DsRed Cross-pollination of the fertile transgenic plants to the nontransgenic male sterile plants propagated the male sterile seeds of high purity. The male sterile line was crossed with ∼1,200 individual rice germplasms available. Approximately 85% of the F1s outperformed their parents in per plant yield, and 10% out-yielded the best local cultivars, indicating that the technology is promising in hybrid rice breeding and production.

  18. Gene regulatory network analysis reveals differences in site-specific cell fate determination in mammalian brain

    PubMed Central

    Ertaylan, Gökhan; Okawa, Satoshi; Schwamborn, Jens C.; del Sol, Antonio

    2014-01-01

    Neurogenesis—the generation of new neurons—is an ongoing process that persists in the adult mammalian brain of several species, including humans. In this work we analyze two discrete brain regions: the subventricular zone (SVZ) lining the walls of the lateral ventricles; and the subgranular zone (SGZ) of the dentate gyrus (DG) of the hippocampus in mice and shed light on the SVZ and SGZ specific neurogenesis. We propose a computational model that relies on the construction and analysis of region specific gene regulatory networks (GRNs) from the publicly available data on these two regions. Using this model a number of putative factors involved in neuronal stem cell (NSC) identity and maintenance were identified. We also demonstrate potential gender and niche-derived differences based on cell surface and nuclear receptors via Ar, Hif1a, and Nr3c1. We have also conducted cell fate determinant analysis for SVZ NSC populations to Olfactory Bulb interneurons and SGZ NSC populations to the granule cells of the Granular Cell Layer. We report 31 candidate cell fate determinant gene pairs, ready to be validated. We focus on Ar—Pax6 in SVZ and Sox2—Ncor1 in SGZ. Both pairs are expressed and localized in the suggested anatomical structures as shown by in situ hybridization and found to physically interact. Finally, we conclude that there are fundamental differences between SGZ and SVZ neurogenesis. We argue that these regulatory mechanisms are linked to the observed differential neurogenic potential of these regions. The presence of nuclear and cell surface receptors in the region specific regulatory circuits indicate the significance of niche derived extracellular factors, hormones and region specific factors such as the oxygen sensitivity, dictating SGZ and SVZ specific neurogenesis. PMID:25565969

  19. Invasion Genetics of the Western Flower Thrips in China: Evidence for Genetic Bottleneck, Hybridization and Bridgehead Effect

    PubMed Central

    Yang, Xian-Ming; Sun, Jing-Tao; Xue, Xiao-Feng; Li, Jin-Bo; Hong, Xiao-Yue

    2012-01-01

    The western flower thrips, Frankliniella occidentalis (Pergande), is an invasive species and the most economically important pest within the insect order Thysanoptera. F. occidentalis, which is endemic to North America, was initially detected in Kunming in southwestern China in 2000 and since then it has rapidly invaded several other localities in China where it has greatly damaged greenhouse vegetables and ornamental crops. Controlling this invasive pest in China requires an understanding of its genetic makeup and migration patterns. Using the mitochondrial COI gene and 10 microsatellites, eight of which were newly isolated and are highly polymorphic, we investigated the genetic structure and the routes of range expansion of 14 F. occidentalis populations in China. Both the mitochondrial and microsatellite data revealed that the genetic diversity of F. occidentalis of the Chinese populations is lower than that in its native range. Two previously reported cryptic species (or ecotypes) were found in the study. The divergence in the mitochondrial COI of two Chinese cryptic species (or ecotypes) was about 3.3% but they cannot be distinguished by nuclear markers. Hybridization might produce such substantial mitochondrial-nuclear discordance. Furthermore, we found low genetic differentiation (global F ST = 0.043, P<0.001) among all the populations and strong evidence for gene flow, especially from the three southwestern populations (Baoshan, Dali and Kunming) to the other Chinese populations. The directional gene flow was further supported by the higher genetic diversity of these three southwestern populations. Thus, quarantine and management of F. occidentalis should focus on preventing it from spreading from the putative source populations to other parts of China. PMID:22509325

  20. Characterization of Nrf2 activation and heme oxygenase-1 expression in NIH3T3 cells exposed to aqueous extracts of cigarette smoke.

    PubMed

    Knörr-Wittmann, Constanze; Hengstermann, Arnd; Gebel, Stephan; Alam, Jawed; Müller, Thomas

    2005-12-01

    Cigarette smoke (CS) is a complex chemical mixture estimated to be composed of up to 5000 different chemicals, many of which are prooxidant. Here we show that, at least in vitro, the cellular response designed to combat oxidative stress resulting from CS exposure is primarily controlled by the transcription factor Nrf2, a principal inducer of antioxidant and phase II-related genes. The prominent role of Nrf2 in the cellular response to CS is substantiated by the following observations: In NIH3T3 cells exposed to aqueous extracts of CS (i) Nrf2 is strongly stabilized and becomes detectable in nuclear extracts. (ii) Nuclear localization of Nrf2 coincides with increased DNA binding of a putative Nrf2/MafK heterodimer to its cognate cis-regulatory site, i.e., the antioxidant-responsive element (ARE). (iii) Studies on the regulatory elements of the oxidative stress-inducible gene heme oxygenase-1 (hmox1) using various hmox1 promoter/luciferase reporter constructs revealed that the strong CS-dependent expression of this gene is primarily governed by the distal enhancers 1 ("E1") and 2 ("E2"), which both contain three canonical ARE-like stress-responsive elements (StREs). Notably, depletion of Nrf2 levels caused by RNA interference significantly compromised CS-induced hmox1 promoter activation, based on the distinct Nrf2 sensitivity exhibited by E1 and E2. Finally, (iv) siRNA-dependent knock-down of Nrf2 completely abrogated CS-induced expression of phase II-related genes. Taken together, these results confirm the outstanding role of Nrf2 both in sensing (oxidant) stress and in orchestrating an efficient transcriptional response aimed at resolving the stressing conditions.

  1. Staufen1 is imported into the nucleolus via a bipartite nuclear localization signal and several modulatory determinants

    PubMed Central

    Martel, Catherine; Macchi, Paolo; Furic, Luc; Kiebler, Michael A.; Desgroseillers, Luc

    2005-01-01

    Mammalian Stau1 (Staufen1), a modular protein composed of several dsRBDs (double-stranded RNA-binding domains), is probably involved in mRNA localization. Although Stau1 is mostly described in association with the rough endoplasmic reticulum and ribosomes in the cytoplasm, recent studies suggest that it may transit through the nucleus/nucleolus. Using a sensitive yeast import assay, we show that Stau1 is actively imported into the nucleus through a newly identified bipartite nuclear localization signal. As in yeast, the bipartite nuclear localization signal is necessary for Stau1 nuclear import in mammalian cells. It is also required for Stau1 nucleolar trafficking. However, Stau1 nuclear transit seems to be regulated by mechanisms that involve cytoplasmic retention and/or facilitated nuclear export. Cytoplasmic retention is mainly achieved through the action of dsRBD3, with dsRBD2 playing a supporting role in this function. Similarly, dsRBD3, but not its RNA-binding activity, is critical for Stau1 nucleolar trafficking. The function of dsRBD3 is strengthened or stabilized by the presence of dsRBD4 but prevented by the interdomain between dsRBD2 and dsRBD3. Altogether, these results suggest that Stau1 nuclear trafficking is a highly regulated process involving several determinants. The presence of Stau1 in the nucleus/nucleolus suggests that it may be involved in ribonucleoprotein formation in the nucleus and/or in other nuclear functions not necessarily related to mRNA transport. PMID:16162096

  2. RASCAL is a new human cytomegalovirus-encoded protein that localizes to the nuclear lamina and in cytoplasmic vesicles at late times postinfection.

    PubMed

    Miller, Matthew S; Furlong, Wendy E; Pennell, Leesa; Geadah, Marc; Hertel, Laura

    2010-07-01

    The products of numerous open reading frames (ORFs) present in the genome of human cytomegalovirus (CMV) have not been characterized. Here, we describe the identification of a new CMV protein localizing to the nuclear envelope and in cytoplasmic vesicles at late times postinfection. Based on this distinctive localization pattern, we called this new protein nuclear rim-associated cytomegaloviral protein, or RASCAL. Two RASCAL isoforms exist, a short version of 97 amino acids encoded by the majority of CMV strains and a longer version of 176 amino acids encoded by the Towne, Toledo, HAN20, and HAN38 strains. Both isoforms colocalize with lamin B in deep intranuclear invaginations of the inner nuclear membrane (INM) and in novel cytoplasmic vesicular structures possibly derived from the nuclear envelope. INM infoldings have been previously described as sites of nucleocapsid egress, which is mediated by the localized disruption of the nuclear lamina, promoted by the activities of viral and cellular kinases recruited by the lamina-associated proteins UL50 and UL53. RASCAL accumulation at the nuclear membrane required the presence of UL50 but not of UL53. RASCAL and UL50 also appeared to specifically interact, suggesting that RASCAL is a new component of the nuclear egress complex (NEC) and possibly involved in mediating nucleocapsid egress from the nucleus. Finally, the presence of RASCAL within cytoplasmic vesicles raises the intriguing possibility that this protein might participate in additional steps of virion maturation occurring after capsid release from the nucleus.

  3. ORF73 LANA homologs of RRV and MneRV2 contain an extended RGG/RG-rich nuclear and nucleolar localization signal that interacts directly with importin β1 for non-classical nuclear import.

    PubMed

    Howard, Kellie; Cherezova, Lidia; DeMaster, Laura K; Rose, Timothy M

    2017-11-01

    The latency-associated nuclear antigens (LANA) of KSHV and macaque RFHVMn, members of the RV1 rhadinovirus lineage, are closely related with conservation of complex nuclear localization signals (NLS) containing bipartite KR-rich motifs and RG-rich domains, which interact distinctly with importins α and ß1 for nuclear import via classical and non-classical pathways, respectively. RV1 LANAs are expressed in the nucleus of latently-infected cells where they inhibit replication and establish a dominant RV1 latency. Here we show that LANA homologs of macaque RRV and MneRV2 from the more distantly-related RV2 lineage, lack the KR-rich NLS, and instead have a large RG-rich NLS with multiple RG dipeptides and a conserved RGG motif. The RG-NLS interacts uniquely with importin β1, which mediates nuclear import and accumulation of RV2 LANA in the nucleolus. The alternative nuclear import and localization of RV2 LANA homologs may contribute to the dominant RV2 lytic replication phenotype. Copyright © 2017. Published by Elsevier Inc.

  4. UL31 and UL34 Proteins of Herpes Simplex Virus Type 1 Form a Complex That Accumulates at the Nuclear Rim and Is Required for Envelopment of Nucleocapsids

    PubMed Central

    Reynolds, Ashley E.; Ryckman, Brent J.; Baines, Joel D.; Zhou, Yuping; Liang, Li; Roller, Richard J.

    2001-01-01

    The herpes simplex virus type 1 (HSV-1) UL34 protein is likely a type II membrane protein that localizes within the nuclear membrane and is required for efficient envelopment of progeny virions at the nuclear envelope, whereas the UL31 gene product of HSV-1 is a nuclear matrix-associated phosphoprotein previously shown to interact with UL34 protein in HSV-1-infected cell lysates. For these studies, polyclonal antisera directed against purified fusion proteins containing UL31 protein fused to glutathione-S-transferase (UL31-GST) and UL34 protein fused to GST (UL34-GST) were demonstrated to specifically recognize the UL31 and UL34 proteins of approximately 34,000 and 30,000 Da, respectively. The UL31 and UL34 gene products colocalized in a smooth pattern throughout the nuclear rim of infected cells by 10 h postinfection. UL34 protein also accumulated in pleiomorphic cytoplasmic structures at early times and associated with an altered nuclear envelope late in infection. Localization of UL31 protein at the nuclear rim required the presence of UL34 protein, inasmuch as cells infected with a UL34 null mutant virus contained UL31 protein primarily in central intranuclear domains separate from the nuclear rim, and to a lesser extent in the cytoplasm. Conversely, localization of UL34 protein exclusively at the nuclear rim required the presence of the UL31 gene product, inasmuch as UL34 protein was detectable at the nuclear rim, in replication compartments, and in the cytoplasm of cells infected with a UL31 null virus. When transiently expressed in the absence of other viral factors, UL31 protein localized diffusely in the nucleoplasm, whereas UL34 protein localized primarily in the cytoplasm and at the nuclear rim. In contrast, coexpression of the UL31 and UL34 proteins was sufficient to target both proteins exclusively to the nuclear rim. The proteins were also shown to directly interact in vitro in the absence of other viral proteins. In cells infected with a virus lacking the US3-encoded protein kinase, previously shown to phosphorylate the UL34 gene product, UL31 and UL34 proteins colocalized in small punctate areas that accumulated on the nuclear rim. Thus, US3 kinase is required for even distribution of UL31 and UL34 proteins throughout the nuclear rim. Taken together with the similar phenotypes of the UL31 and UL34 deletion mutants, these data strongly suggest that the UL31 and UL34 proteins form a complex that accumulates at the nuclear membrane and plays an important role in nucleocapsid envelopment at the inner nuclear membrane. PMID:11507225

  5. Yeast Ivy1p Is a Putative I-BAR-domain Protein with pH-sensitive Filament Forming Ability in vitro.

    PubMed

    Itoh, Yuzuru; Kida, Kazuki; Hanawa-Suetsugu, Kyoko; Suetsugu, Shiro

    2016-01-01

    Bin-Amphiphysin-Rvs161/167 (BAR) domains mold lipid bilayer membranes into tubules, by forming a spiral polymer on the membrane. Most BAR domains are thought to be involved in forming membrane invaginations through their concave membrane binding surfaces, whereas some members have convex membrane binding surfaces, and thereby mold membranes into protrusions. The BAR domains with a convex surface form a subtype called the inverse BAR (I-BAR) domain or IRSp53-MIM-homology domain (IMD). Although the mammalian I-BAR domains have been studied, those from other organisms remain elusive. Here, we found putative I-BAR domains in Fungi and animal-like unicellular organisms. The fungal protein containing the putative I-BAR-domain is known as Ivy1p in yeast, and is reportedly localized in the vacuole. The phylogenetic analysis of the I-BAR domains revealed that the fungal I-BAR-domain containing proteins comprise a distinct group from those containing IRSp53 or MIM. Importantly, Ivy1p formed a polymer with a diameter of approximately 20 nm in vitro, without a lipid membrane. The filaments were formed at neutral pH, but disassembled when pH was reverted to basic. Moreover, Ivy1p and the I-BAR domain expressed in mammalian HeLa cells was localized at a vacuole-like structure as filaments as revealed by super-resolved microscopy. These data indicate the pH-sensitive polymer forming ability and the functional conservation of Ivy1p in eukaryotic cells.

  6. Compositional profile of α/β-hydrolase fold proteins in mangrove soil metagenomes: prevalence of epoxide hydrolases and haloalkane dehalogenases in oil-contaminated sites

    PubMed Central

    Jiménez, Diego Javier; Dini-Andreote, Francisco; Ottoni, Júlia Ronzella; de Oliveira, Valéria Maia; van Elsas, Jan Dirk; Andreote, Fernando Dini

    2015-01-01

    The occurrence of genes encoding biotechnologically relevant α/β-hydrolases in mangrove soil microbial communities was assessed using data obtained by whole-metagenome sequencing of four mangroves areas, denoted BrMgv01 to BrMgv04, in São Paulo, Brazil. The sequences (215 Mb in total) were filtered based on local amino acid alignments against the Lipase Engineering Database. In total, 5923 unassembled sequences were affiliated with 30 different α/β-hydrolase fold superfamilies. The most abundant predicted proteins encompassed cytosolic hydrolases (abH08; ∼ 23%), microsomal hydrolases (abH09; ∼ 12%) and Moraxella lipase-like proteins (abH04 and abH01; < 5%). Detailed analysis of the genes predicted to encode proteins of the abH08 superfamily revealed a high proportion related to epoxide hydrolases and haloalkane dehalogenases in polluted mangroves BrMgv01-02-03. This suggested selection and putative involvement in local degradation/detoxification of the pollutants. Seven sequences that were annotated as genes for putative epoxide hydrolases and five for putative haloalkane dehalogenases were found in a fosmid library generated from BrMgv02 DNA. The latter enzymes were predicted to belong to Actinobacteria, Deinococcus-Thermus, Planctomycetes and Proteobacteria. Our integrated approach thus identified 12 genes (complete and/or partial) that may encode hitherto undescribed enzymes. The low amino acid identity (< 60%) with already-described genes opens perspectives for both production in an expression host and genetic screening of metagenomes. PMID:25171437

  7. Fault tolerance in protein interaction networks: stable bipartite subgraphs and redundant pathways.

    PubMed

    Brady, Arthur; Maxwell, Kyle; Daniels, Noah; Cowen, Lenore J

    2009-01-01

    As increasing amounts of high-throughput data for the yeast interactome become available, more system-wide properties are uncovered. One interesting question concerns the fault tolerance of protein interaction networks: whether there exist alternative pathways that can perform some required function if a gene essential to the main mechanism is defective, absent or suppressed. A signature pattern for redundant pathways is the BPM (between-pathway model) motif, introduced by Kelley and Ideker. Past methods proposed to search the yeast interactome for BPM motifs have had several important limitations. First, they have been driven heuristically by local greedy searches, which can lead to the inclusion of extra genes that may not belong in the motif; second, they have been validated solely by functional coherence of the putative pathways using GO enrichment, making it difficult to evaluate putative BPMs in the absence of already known biological annotation. We introduce stable bipartite subgraphs, and show they form a clean and efficient way of generating meaningful BPMs which naturally discard extra genes included by local greedy methods. We show by GO enrichment measures that our BPM set outperforms previous work, covering more known complexes and functional pathways. Perhaps most importantly, since our BPMs are initially generated by examining the genetic-interaction network only, the location of edges in the protein-protein physical interaction network can then be used to statistically validate each candidate BPM, even with sparse GO annotation (or none at all). We uncover some interesting biological examples of previously unknown putative redundant pathways in such areas as vesicle-mediated transport and DNA repair.

  8. Fault Tolerance in Protein Interaction Networks: Stable Bipartite Subgraphs and Redundant Pathways

    PubMed Central

    Brady, Arthur; Maxwell, Kyle; Daniels, Noah; Cowen, Lenore J.

    2009-01-01

    As increasing amounts of high-throughput data for the yeast interactome become available, more system-wide properties are uncovered. One interesting question concerns the fault tolerance of protein interaction networks: whether there exist alternative pathways that can perform some required function if a gene essential to the main mechanism is defective, absent or suppressed. A signature pattern for redundant pathways is the BPM (between-pathway model) motif, introduced by Kelley and Ideker. Past methods proposed to search the yeast interactome for BPM motifs have had several important limitations. First, they have been driven heuristically by local greedy searches, which can lead to the inclusion of extra genes that may not belong in the motif; second, they have been validated solely by functional coherence of the putative pathways using GO enrichment, making it difficult to evaluate putative BPMs in the absence of already known biological annotation. We introduce stable bipartite subgraphs, and show they form a clean and efficient way of generating meaningful BPMs which naturally discard extra genes included by local greedy methods. We show by GO enrichment measures that our BPM set outperforms previous work, covering more known complexes and functional pathways. Perhaps most importantly, since our BPMs are initially generated by examining the genetic-interaction network only, the location of edges in the protein-protein physical interaction network can then be used to statistically validate each candidate BPM, even with sparse GO annotation (or none at all). We uncover some interesting biological examples of previously unknown putative redundant pathways in such areas as vesicle-mediated transport and DNA repair. PMID:19399174

  9. Karyopherin α 3 and karyopherin α 4 proteins mediate the nuclear import of methyl-CpG binding protein 2.

    PubMed

    Baker, Steven Andrew; Lombardi, Laura Marie; Zoghbi, Huda Yahya

    2015-09-11

    Methyl-CpG binding protein 2 (MeCP2) is a nuclear protein with important roles in regulating chromatin structure and gene expression, and mutations in MECP2 cause Rett syndrome (RTT). Within the MeCP2 protein sequence, the nuclear localization signal (NLS) is reported to reside between amino acids 255-271, and certain RTT-causing mutations overlap with the MeCP2 NLS, suggesting that they may alter nuclear localization. One such mutation, R270X, is predicted to interfere with the localization of MeCP2, but recent in vivo studies have demonstrated that this mutant remains entirely nuclear. To clarify the mechanism of MeCP2 nuclear import, we isolated proteins that interact with the NLS and identified karyopherin α 3 (KPNA3 or Kap-α3) and karyopherin α 4 (KPNA4 or Kap-α4) as key binding partners of MeCP2. MeCP2-R270X did not interact with KPNA4, consistent with a requirement for an intact NLS in this interaction. However, this mutant retains binding to KPNA3, accounting for the normal localization of MeCP2-R270X to the nucleus. These data provide a mechanism for MeCP2 nuclear import and have implications for the design of therapeutics aimed at modulating the function of MeCP2 in RTT patients. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. RNF38 encodes a nuclear ubiquitin protein ligase that modifies p53

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheren, Jamie E.; Kassenbrock, C. Kenneth, E-mail: ken.kassenbrock@ucdenver.edu; Department of Biology, Colorado State University, Fort Collins, CO 80523-1878

    2013-11-01

    Highlights: •RNF38 is shown to be a nuclear protein with a bipartite nuclear localization signal. •RNF38 protein is purified and shown to have ubiquitin protein ligase (E3) activity. •We show that RNF38 binds p53 and can ubiquitinate p53 in vitro. •Overexpression of RNF38 increases p53 ubiquitination in HEK293T cells. •Overexpression of RNF38 in HEK293T cells alters p53 localization. -- Abstract: The RNF38 gene encodes a RING finger protein of unknown function. Here we demonstrate that RNF38 is a functional ubiquitin protein ligase (E3). We show that RNF38 isoform 1 is localized to the nucleus by a bipartite nuclear localization sequencemore » (NLS). We confirm that RNF38 is a binding partner of p53 and demonstrate that RNF38 can ubiquitinate p53 in vitro and in vivo. Finally, we show that overexpression of RNF38 in HEK293T cells results in relocalization of p53 to discrete foci associated with PML nuclear bodies. These results suggest RNF38 is an E3 ubiquitin ligase that may play a role in regulating p53.« less

  11. Tracking STAT nuclear traffic.

    PubMed

    Reich, Nancy C; Liu, Ling

    2006-08-01

    Accurate cellular localization is crucial for the effective function of most signalling molecules and nuclear translocation is central to the function of transcription factors. The passage of large molecules between the cytoplasm and nucleus is restricted, and this restriction affords a mechanism to regulate transcription by controlling the access of transcription factors to the nucleus. In this Review, we focus on the signal transducer and activator of transcription (STAT) family of transcription factors. The regulation of the nuclear trafficking of STAT-family members is diverse. Some STAT proteins constitutively shuttle between the nucleus and cytoplasm, whereas others require tyrosine phosphorylation for nuclear localization. In either case, the regulation of nuclear trafficking can provide a target for therapeutic intervention.

  12. Localization of Label-Retaining Cells in Murine Vocal Fold Epithelium

    ERIC Educational Resources Information Center

    Leydon, Ciara; Bartlett, Rebecca S.; Roenneburg, Drew A.; Thibeault, Susan L.

    2011-01-01

    Purpose: Epithelial homeostasis is critical for vocal fold health, yet little is known about the cells that support epithelial self-renewal. As a known characteristic of stem cells is that they are slow-cycling in vivo, the purpose of this prospective controlled study was to identify and quantify slow-cycling cells or putative stem cells in murine…

  13. Acute Liver Injury Induces Nucleocytoplasmic Redistribution of Hepatic Methionine Metabolism Enzymes

    PubMed Central

    Delgado, Miguel; Garrido, Francisco; Pérez-Miguelsanz, Juliana; Pacheco, María; Partearroyo, Teresa; Pérez-Sala, Dolores

    2014-01-01

    Abstract Aims: The discovery of methionine metabolism enzymes in the cell nucleus, together with their association with key nuclear processes, suggested a putative relationship between alterations in their subcellular distribution and disease. Results: Using the rat model of d-galactosamine intoxication, severe changes in hepatic steady-state mRNA levels were found; the largest decreases corresponded to enzymes exhibiting the highest expression in normal tissue. Cytoplasmic protein levels, activities, and metabolite concentrations suffered more moderate changes following a similar trend. Interestingly, galactosamine treatment induced hepatic nuclear accumulation of methionine adenosyltransferase (MAT) α1 and S-adenosylhomocysteine hydrolase tetramers, their active assemblies. In fact, galactosamine-treated livers showed enhanced nuclear MAT activity. Acetaminophen (APAP) intoxication mimicked most galactosamine effects on hepatic MATα1, including accumulation of nuclear tetramers. H35 cells that overexpress tagged-MATα1 reproduced the subcellular distribution observed in liver, and the changes induced by galactosamine and APAP that were also observed upon glutathione depletion by buthionine sulfoximine. The H35 nuclear accumulation of tagged-MATα1 induced by these agents correlated with decreased glutathione reduced form/glutathione oxidized form ratios and was prevented by N-acetylcysteine (NAC) and glutathione ethyl ester. However, the changes in epigenetic modifications associated with tagged-MATα1 nuclear accumulation were only prevented by NAC in galactosamine-treated cells. Innovation: Cytoplasmic and nuclear changes in proteins that regulate the methylation index follow opposite trends in acute liver injury, their nuclear accumulation showing potential as disease marker. Conclusion: Altogether these results demonstrate galactosamine- and APAP-induced nuclear accumulation of methionine metabolism enzymes as active oligomers and unveil the implication of redox-dependent mechanisms in the control of MATα1 subcellular distribution. Antioxid. Redox Signal. 20, 2541–2554. PMID:24124652

  14. Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich motif.

    PubMed

    Hernández-Sánchez, Itzell E; Maruri-López, Israel; Ferrando, Alejandro; Carbonell, Juan; Graether, Steffen P; Jiménez-Bremont, Juan F

    2015-01-01

    The cactus OpsDHN1 dehydrin belongs to a large family of disordered and highly hydrophilic proteins known as Late Embryogenesis Abundant (LEA) proteins, which accumulate during the late stages of embryogenesis and in response to abiotic stresses. Herein, we present the in vivo OpsDHN1 subcellular localization by N-terminal GFP translational fusion; our results revealed a cytoplasmic and nuclear localization of the GFP::OpsDHN1 protein in Nicotiana benthamiana epidermal cells. In addition, dimer assembly of OpsDHN1 in planta using a Bimolecular Fluorescence Complementation (BiFC) approach was demonstrated. In order to understand the in vivo role of the histidine-rich motif, the OpsDHN1-ΔHis version was produced and assayed for its subcellular localization and dimer capability by GFP fusion and BiFC assays, respectively. We found that deletion of the OpsDHN1 histidine-rich motif restricted its localization to cytoplasm, but did not affect dimer formation. In addition, the deletion of the S-segment in the OpsDHN1 protein affected its nuclear localization. Our data suggest that the deletion of histidine-rich motif and S-segment show similar effects, preventing OpsDHN1 from getting into the nucleus. Based on these results, the histidine-rich motif is proposed as a targeting element for OpsDHN1 nuclear localization.

  15. Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich motif

    PubMed Central

    Hernández-Sánchez, Itzell E.; Maruri-López, Israel; Ferrando, Alejandro; Carbonell, Juan; Graether, Steffen P.; Jiménez-Bremont, Juan F.

    2015-01-01

    The cactus OpsDHN1 dehydrin belongs to a large family of disordered and highly hydrophilic proteins known as Late Embryogenesis Abundant (LEA) proteins, which accumulate during the late stages of embryogenesis and in response to abiotic stresses. Herein, we present the in vivo OpsDHN1 subcellular localization by N-terminal GFP translational fusion; our results revealed a cytoplasmic and nuclear localization of the GFP::OpsDHN1 protein in Nicotiana benthamiana epidermal cells. In addition, dimer assembly of OpsDHN1 in planta using a Bimolecular Fluorescence Complementation (BiFC) approach was demonstrated. In order to understand the in vivo role of the histidine-rich motif, the OpsDHN1-ΔHis version was produced and assayed for its subcellular localization and dimer capability by GFP fusion and BiFC assays, respectively. We found that deletion of the OpsDHN1 histidine-rich motif restricted its localization to cytoplasm, but did not affect dimer formation. In addition, the deletion of the S-segment in the OpsDHN1 protein affected its nuclear localization. Our data suggest that the deletion of histidine-rich motif and S-segment show similar effects, preventing OpsDHN1 from getting into the nucleus. Based on these results, the histidine-rich motif is proposed as a targeting element for OpsDHN1 nuclear localization. PMID:26442018

  16. Yeast proteins Gar1p, Nop1p, Npl3p, Nsr1p, and Rps2p are natively methylated and are substrates of the arginine methyltransferase Hmt1p.

    PubMed

    Yagoub, Daniel; Hart-Smith, Gene; Moecking, Jonas; Erce, Melissa A; Wilkins, Marc R

    2015-09-01

    The Hmt1 methyltransferase is the predominant arginine methyltransferase in Saccharomyces cerevisiae. There are 18 substrate proteins described for this methyltransferase, however native sites of methylation have only been identified on two of these proteins. Here we used peptide immunoaffinity enrichment, followed by LC-ETD-MS/MS, to discover 21 native sites of arginine methylation on five putative Hmt1 substrate proteins, namely Gar1p (H/ACA ribonucleoprotein complex subunit 1), Nop1p (rRNA 2'-O-methyltransferase fibrillarin), Npl3p (nucleolar protein 3), Nsr1p (nuclear localization sequence-binding protein), and Rps2p (40S ribosomal protein S2). The sites, many of which were found to be mono- or di-methylated, were predominantly found in RGG (Arg-Gly-Gly) motifs. Heavy methyl-SILAC validated the majority of these peptides. The above proteins, and relevant sites of methylation, were subsequently validated by in vitro methylation with recombinant Hmt1. This brings the total of Hmt1 substrate proteins for which native methylation sites have been identified to five. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. An Oomycete CRN Effector Reprograms Expression of Plant HSP Genes by Targeting their Promoters

    PubMed Central

    Song, Tianqiao; Ma, Zhenchuan; Shen, Danyu; Li, Qi; Li, Wanlin; Su, Liming; Ye, Tingyue; Zhang, Meixiang; Wang, Yuanchao; Dou, Daolong

    2015-01-01

    Oomycete pathogens produce a large number of CRN effectors to manipulate plant immune responses and promote infection. However, their functional mechanisms are largely unknown. Here, we identified a Phytophthora sojae CRN effector PsCRN108 which contains a putative DNA-binding helix-hairpin-helix (HhH) motif and acts in the plant cell nucleus. Silencing of the PsCRN108 gene reduced P. sojae virulence to soybean, while expression of the gene in Nicotiana benthamiana and Arabidopsis thaliana enhanced plant susceptibility to P. capsici. Moreover, PsCRN108 could inhibit expression of HSP genes in A. thaliana, N. benthamiana and soybean. Both the HhH motif and nuclear localization signal of this effector were required for its contribution to virulence and its suppression of HSP gene expression. Furthermore, we found that PsCRN108 targeted HSP promoters in an HSE- and HhH motif-dependent manner. PsCRN108 could inhibit the association of the HSE with the plant heat shock transcription factor AtHsfA1a, which initializes HSP gene expression in response to stress. Therefore, our data support a role for PsCRN108 as a nucleomodulin in down-regulating the expression of plant defense-related genes by directly targeting specific plant promoters. PMID:26714171

  18. The RPG gene of Medicago truncatula controls Rhizobium-directed polar growth during infection

    PubMed Central

    Arrighi, Jean-François; Godfroy, Olivier; de Billy, Françoise; Saurat, Olivier; Jauneau, Alain; Gough, Clare

    2008-01-01

    Rhizobia can infect roots of host legume plants and induce new organs called nodules, in which they fix atmospheric nitrogen. Infection generally starts with root hair curling, then proceeds inside newly formed, intracellular tubular structures called infection threads. A successful symbiotic interaction relies on infection threads advancing rapidly at their tips by polar growth through successive cell layers of the root toward developing nodule primordia. To identify a plant component that controls this tip growth process, we characterized a symbiotic mutant of Medicago truncatula, called rpg for rhizobium-directed polar growth. In this mutant, nitrogen-fixing nodules were rarely formed due to abnormally thick and slowly progressing infection threads. Root hair curling was also abnormal, indicating that the RPG gene fulfils an essential function in the process whereby rhizobia manage to dominate the process of induced tip growth for root hair infection. Map-based cloning of RPG revealed a member of a previously unknown plant-specific gene family encoding putative long coiled-coil proteins we have called RRPs (RPG-related proteins) and characterized by an “RRP domain” specific to this family. RPG expression was strongly associated with rhizobial infection, and the RPG protein showed a nuclear localization, indicating that this symbiotic gene constitutes an important component of symbiotic signaling. PMID:18621693

  19. The RPG gene of Medicago truncatula controls Rhizobium-directed polar growth during infection.

    PubMed

    Arrighi, Jean-François; Godfroy, Olivier; de Billy, Françoise; Saurat, Olivier; Jauneau, Alain; Gough, Clare

    2008-07-15

    Rhizobia can infect roots of host legume plants and induce new organs called nodules, in which they fix atmospheric nitrogen. Infection generally starts with root hair curling, then proceeds inside newly formed, intracellular tubular structures called infection threads. A successful symbiotic interaction relies on infection threads advancing rapidly at their tips by polar growth through successive cell layers of the root toward developing nodule primordia. To identify a plant component that controls this tip growth process, we characterized a symbiotic mutant of Medicago truncatula, called rpg for rhizobium-directed polar growth. In this mutant, nitrogen-fixing nodules were rarely formed due to abnormally thick and slowly progressing infection threads. Root hair curling was also abnormal, indicating that the RPG gene fulfils an essential function in the process whereby rhizobia manage to dominate the process of induced tip growth for root hair infection. Map-based cloning of RPG revealed a member of a previously unknown plant-specific gene family encoding putative long coiled-coil proteins we have called RRPs (RPG-related proteins) and characterized by an "RRP domain" specific to this family. RPG expression was strongly associated with rhizobial infection, and the RPG protein showed a nuclear localization, indicating that this symbiotic gene constitutes an important component of symbiotic signaling.

  20. An Oomycete CRN Effector Reprograms Expression of Plant HSP Genes by Targeting their Promoters.

    PubMed

    Song, Tianqiao; Ma, Zhenchuan; Shen, Danyu; Li, Qi; Li, Wanlin; Su, Liming; Ye, Tingyue; Zhang, Meixiang; Wang, Yuanchao; Dou, Daolong

    2015-12-01

    Oomycete pathogens produce a large number of CRN effectors to manipulate plant immune responses and promote infection. However, their functional mechanisms are largely unknown. Here, we identified a Phytophthora sojae CRN effector PsCRN108 which contains a putative DNA-binding helix-hairpin-helix (HhH) motif and acts in the plant cell nucleus. Silencing of the PsCRN108 gene reduced P. sojae virulence to soybean, while expression of the gene in Nicotiana benthamiana and Arabidopsis thaliana enhanced plant susceptibility to P. capsici. Moreover, PsCRN108 could inhibit expression of HSP genes in A. thaliana, N. benthamiana and soybean. Both the HhH motif and nuclear localization signal of this effector were required for its contribution to virulence and its suppression of HSP gene expression. Furthermore, we found that PsCRN108 targeted HSP promoters in an HSE- and HhH motif-dependent manner. PsCRN108 could inhibit the association of the HSE with the plant heat shock transcription factor AtHsfA1a, which initializes HSP gene expression in response to stress. Therefore, our data support a role for PsCRN108 as a nucleomodulin in down-regulating the expression of plant defense-related genes by directly targeting specific plant promoters.

  1. Structural and temporal requirements of Wnt/PCP protein Vangl2 function for convergence and extension movements and facial branchiomotor neuron migration in zebrafish.

    PubMed

    Pan, Xiufang; Sittaramane, Vinoth; Gurung, Suman; Chandrasekhar, Anand

    2014-02-01

    Van gogh-like 2 (Vangl2), a core component of the Wnt/planar cell polarity (PCP) signaling pathway, is a four-pass transmembrane protein with N-terminal and C-terminal domains located in the cytosol, and is structurally conserved from flies to mammals. In vertebrates, Vangl2 plays an essential role in convergence and extension (CE) movements during gastrulation and in facial branchiomotor (FBM) neuron migration in the hindbrain. However, the roles of specific Vangl2 domains, of membrane association, and of specific extracellular and intracellular motifs have not been examined, especially in the context of FBM neuron migration. Through heat shock-inducible expression of various Vangl2 transgenes, we found that membrane associated functions of the N-terminal and C-terminal domains of Vangl2 are involved in regulating FBM neuron migration. Importantly, through temperature shift experiments, we found that the critical period for Vangl2 function coincides with the initial stages of FBM neuron migration out of rhombomere 4. Intriguingly, we have also uncovered a putative nuclear localization motif in the C-terminal domain that may play a role in regulating CE movements. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Molecular Evidence for a Natural Primary Triple Hybrid in Plants Revealed from Direct Sequencing

    PubMed Central

    Kaplan, Zdenek; Fehrer, Judith

    2007-01-01

    Background and Aims Molecular evidence for natural primary hybrids composed of three different plant species is very rarely reported. An investigation was therefore carried out into the origin and a possible scenario for the rise of a sterile plant clone showing a combination of diagnostic morphological features of three separate, well-defined Potamogeton species. Methods The combination of sequences from maternally inherited cytoplasmic (rpl20-rps12) and biparentally inherited nuclear ribosomal DNA (ITS) was used to identify the exact identity of the putative triple hybrid. Key Results Direct sequencing showed ITS variants of three parental taxa, P. gramineus, P. lucens and P. perfoliatus, whereas chloroplast DNA identified P. perfoliatus as the female parent. A scenario for the rise of the triple hybrid through a fertile binary hybrid P. gramineus × P. lucens crossed with P. perfoliatus is described. Conclusions Even though the triple hybrid is sterile, it possesses an efficient strategy for its existence and became locally successful even in the parental environment, perhaps as a result of heterosis. The population investigated is the only one known of this hybrid, P. × torssanderi, worldwide. Isozyme analysis indicated the colony to be genetically uniform. The plants studied represented a single clone that seems to have persisted at this site for a long time. PMID:17478544

  3. Functional analysis of rice HOMEOBOX4 (Oshox4) gene reveals a negative function in gibberellin responses.

    PubMed

    Dai, Mingqiu; Hu, Yongfeng; Ma, Qian; Zhao, Yu; Zhou, Dao-Xiu

    2008-02-01

    The homeodomain-leucine zipper (HD-Zip) putative transcription factor genes are divided into 4 families. In this work, we studied the function of a rice HD-Zip I gene, H OME O BO X4 (Oshox4). Oshox4 transcripts were detected in leaf and floral organ primordia but excluded from the shoot apical meristem and the protein was nuclear localized. Over-expression of Oshox4 in rice induced a semi-dwarf phenotype that could not be complemented by applied GA3. The over-expression plants accumulated elevated levels of bioactive GA, while the GA catabolic gene GA2ox3 was upregulated in the transgenic plants. In addition, over-expression of Oshox4 blocked GA-dependent alpha-amylase production. However, down-regulation of Oshox4 in RNAi transgenic plants induced no phenotypic alteration. Interestingly, the expression of YAB1 that is involved in the negative feedback regulation of the GA biosynthesis was upregulated in the Oshox4 over-expressing plants. One-hybrid assays showed that Oshox4 could interact with YAB1 promoter in yeast. In addition, Oshox4 expression was upregulated by GA. These data together suggest that Oshox4 may be involved in the negative regulation of GA signalling and may play a role to fine tune GA responses in rice.

  4. Isolation and expression analysis of cDNAs that are associated with alternate bearing in Olea europaea L. cv. Ayvalık

    PubMed Central

    2013-01-01

    Background Olive cDNA libraries to isolate candidate genes that can help enlightening the molecular mechanism of periodicity and / or fruit production were constructed and analyzed. For this purpose, cDNA libraries from the leaves of trees in “on year” and in “off year” in July (when fruits start to appear) and in November (harvest time) were constructed. Randomly selected 100 positive clones from each library were analyzed with respect to sequence and size. A fruit-flesh cDNA library was also constructed and characterized to confirm the reliability of each library’s temporal and spatial properties. Results Quantitative real-time RT-PCR (qRT-PCR) analyses of the cDNA libraries confirmed cDNA molecules that are associated with different developmental stages (e. g. “on year” leaves in July, “off year” leaves in July, leaves in November) and fruits. Hence, a number of candidate cDNAs associated with “on year” and “off year” were isolated. Comparison of the detected cDNAs to the current EST database of GenBank along with other non - redundant databases of NCBI revealed homologs of previously described genes along with several unknown cDNAs. Of around 500 screened cDNAs, 48 cDNA elements were obtained after eliminating ribosomal RNA sequences. These independent transcripts were analyzed using BLAST searches (cutoff E-value of 1.0E-5) against the KEGG and GenBank nucleotide databases and 37 putative transcripts corresponding to known gene functions were annotated with gene names and Gene Ontology (GO) terms. Transcripts in the biological process were found to be related with metabolic process (27%), cellular process (23%), response to stimulus (17%), localization process (8.5%), multicellular organismal process (6.25%), developmental process (6.25%) and reproduction (4.2%). Conclusions A putative P450 monooxigenase expressed fivefold more in the “on year” than that of “off year” leaves in July. Two putative dehydrins expressed significantly more in “on year” leaves than that of “off year” leaves in November. Homologs of UDP – glucose epimerase, acyl - CoA binding protein, triose phosphate isomerase and a putative nuclear core anchor protein were significant in fruits only, while a homolog of an embryo binding protein / small GTPase regulator was detected in “on year” leaves only. One of the two unknown cDNAs was specific to leaves in July while the other was detected in all of the libraries except fruits. KEGG pathway analyses for the obtained sequences correlated with essential metabolisms such as galactose metabolism, amino sugar and nucleotide sugar metabolisms and photosynthesis. Detailed analysis of the results presents candidate cDNAs that can be used to dissect further the genetic basis of fruit production and / or alternate bearing which causes significant economical loss for olive growers. PMID:23552171

  5. Mining novel effector proteins from the esophageal gland cells of Meloidogyne incognita

    PubMed Central

    Rutter, William B.; Hewezi, Tarek; Abubucker, Sahar; Maier, Tom R.; Huang, Guozhong; Mitreva, Makedonka; Hussey, Richard S.; Baum, Thomas J.

    2014-01-01

    Meloidogyne incognita is one of the most economically damaging plant pathogens in agriculture and horticulture. Identifying and characterizing the effector proteins, which M. incognita secretes into its host plants during infection, is an important step towards finding new ways to manage this pest. In this study we have identified the cDNAs for 18 putative effectors, i.e., proteins that have the potential to facilitate M. incognita parasitism of host plants. These putative effectors are secretory proteins that do not contain transmembrane domains and whose genes are specifically expressed in the secretory gland cells of the nematode, indicating that they are likely secreted from the nematode through its stylet. We have determined that in the plant cells, these putative effectors are likely to localize to the cytoplasm. Furthermore, the transcripts of many of these novel effectors are specifically up-regulated during different stages of the nematode’s life cycle, indicating that they function at specific stages during M. incognita parasitism. The predicted proteins showed little to no homology to known proteins from free-living nematode species, suggesting that they evolved recently to support the parasitic lifestyle. On the other hand, several of the effectors are part of gene families within the M. incognita genome as well as that of Meloidogyne hapla, which points to an important role that these putative effectors are playing in both parasites. With the discovery of these putative effectors we have increased our knowledge of the effector repertoire utilized by root-knot nematodes to infect, feed, and reproduce on their host plants. Future studies investigating the roles these proteins play in planta will help mitigate the effects of this damaging pest. PMID:24875667

  6. Mining novel effector proteins from the esophageal gland cells of Meloidogyne incognita.

    PubMed

    Rutter, William B; Hewezi, Tarek; Abubucker, Sahar; Maier, Tom R; Huang, Guozhong; Mitreva, Makedonka; Hussey, Richard S; Baum, Thomas J

    2014-09-01

    Meloidogyne incognita is one of the most economically damaging plant pathogens in agriculture and horticulture. Identifying and characterizing the effector proteins which M. incognita secretes into its host plants during infection is an important step toward finding new ways to manage this pest. In this study, we have identified the cDNAs for 18 putative effectors (i.e., proteins that have the potential to facilitate M. incognita parasitism of host plants). These putative effectors are secretory proteins that do not contain transmembrane domains and whose genes are specifically expressed in the secretory gland cells of the nematode, indicating that they are likely secreted from the nematode through its stylet. We have determined that, in the plant cells, these putative effectors are likely to localize to the cytoplasm. Furthermore, the transcripts of many of these novel effectors are specifically upregulated during different stages of the nematode's life cycle, indicating that they function at specific stages during M. incognita parasitism. The predicted proteins showed little to no homology to known proteins from free-living nematode species, suggesting that they evolved recently to support the parasitic lifestyle. On the other hand, several of the effectors are part of gene families within the M. incognita genome as well as that of M. hapla, which points to an important role that these putative effectors are playing in both parasites. With the discovery of these putative effectors, we have increased our knowledge of the effector repertoire utilized by root-knot nematodes to infect, feed on, and reproduce on their host plants. Future studies investigating the roles that these proteins play in planta will help mitigate the effects of this damaging pest.

  7. In quest of contact: phylogeography of helmeted terrapins (Pelomedusa galeata, P. subrufa sensu stricto).

    PubMed

    Vamberger, Melita; Hofmeyr, Margaretha D; Ihlow, Flora; Fritz, Uwe

    2018-01-01

    Based on rangewide sampling and three mitochondrial and two nuclear markers (together up to 1,850 bp and 1,840 bp, respectively), we examine the phylogeography of two helmeted terrapin species ( Pelomedusa galeata and P. subrufa sensu stricto) and infer shifts of climatically suitable spaces since the Last Glacial Maximum using a modeling approach. Whilst P. galeata displays significant phylogeographic structuring across its range and consists of two deeply divergent lineages that could represent distinct species, P. subrufa shows no obvious phylogeographic differentiation. This seems to be related to historically stable or fluctuating ranges. One of the lineages within P. galeata appears to be confined to the westernmost, winter-rainfall region of South Africa and deserves special conservational attention due to the scarcity of surface water. The other lineage is distributed further east and is differentiated in three weakly supported subclades with parapatric distribution; one occurring inland, and two along the south and east coasts, respectively. As far as is known, P. subrufa occurs in South Africa only in the northeast of the country (Limpopo, Mpumalanga) and we report the species for the first time from the Lapalala Wilderness Area in the Waterberg region (Limpopo), approximately 350 km further west than previously recorded. We confirmed the occurrence of P. galeata only 80 km south of Lapalala. Thus, a sympatric occurrence of P. galeata and P. subrufa is possible. Another putative contact zone, for the two lineages within P. galeata , must be located in the Western Cape region, and further contact zones are likely for the eastern subclades within P. galeata . The nuclear loci provided no evidence for gene flow across taxa or genetic clusters within taxa. Future investigations should use denser sampling from putative contact zones and more nuclear markers to re-examine this situation. Despite few phylogeographic studies published for southern African biota, it seems likely that differentiation follows general rules, and that climate and physiographic barriers (e.g., the Great Escarpment) have shaped phylogeographic patterns.

  8. Lamin A reassembly at the end of mitosis is regulated by its SUMO-interacting motif

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriuchi, Takanobu; Kuroda, Masaki; Kusumoto, Fumiya

    Modification of proteins with small ubiquitin-related modifier (SUMO; SUMOylation) is involved in the regulation of various biological processes. Recent studies have demonstrated that noncovalent associations between SUMOylated proteins and co-operative proteins containing SUMO-interacting motifs (SIMs) are important for the spatiotemporal organization of many protein complexes. In this study, we demonstrate that interactions between lamin A, a major component of the nuclear lamina, and SUMO isoforms are dependent on one of the four SIMs (SIM3) resided in lamin A polypeptide in vitro. Live cell imaging and immunofluorescence staining showed that SIM3 is required for accumulation of lamin A on the chromosomesmore » during telophase, and subsequent evaluation of a panel of deletion mutants determined that a 156-amino acid region spanning the carboxyl-terminal Ig-fold domain of lamin A is sufficient for this accumulation. Notably, mutation of SIM3 abrogated the dephosphorylation of mitosis-specific phosphorylation at Ser-22 of lamin A, which normally occurs during telophase, and the subsequent nuclear lamina reorganization. Furthermore, expression of a conjugation-defective SUMO2 mutant, which was previously shown to inhibit endogenous SUMOylation in a dominant-negative manner, also impaired the accumulation of wild type lamin A on telophase chromosomes. These findings suggest that interactions between SIM3 of lamin A and a putative SUMO2-modified protein plays an important role in the reorganization of the nuclear lamina at the end of mitosis. - Highlights: • Lamin A interacts with SUMO2 via a SUMO-interacting motif (SIM) in the Ig domain. • SIM3 of lamin A is responsible for chromosomal accumulation during telophase. • A 156-aa region spanning the Ig domain is sufficient for chromosomal accumulation. • Accumulation of lamin A is required for timely dephosphorylation on chromosomes. • A putative SUMO2-modified protein may mediate chromosomal accumulation of lamin A.« less

  9. Nine microsatellite loci developed from the octocoral, Paragorgia arborea

    USGS Publications Warehouse

    Coykendall, D. Katharine; Morrison, Cheryl L.

    2015-01-01

    Paragorgia arborea, or bubblegum coral, occurs in continental slope habitats worldwide, which are increasingly threatened by human activities such as energy development and fisheries practices. From 101 putative loci screened, nine microsatellite markers were developed from samples taken from Baltimore canyon in the western North Atlantic Ocean. The number of alleles ranged from two to thirteen per locus and each displayed equilibrium. These nuclear resources will help further research on population connectivity in threatened coral species where mitochondrial markers are known to lack fine-scale genetic diversity.

  10. Nuclear targeting of the maize R protein requires two nuclear localization sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shieh, M.W.; Raikhel, N.V.; Wessler, S.R.

    1993-02-01

    Previous genetic and structural evidence indicates that the maize R gene encodes a nuclear transcriptional activating factor. In-frame carboxyl- and amino-terminal fusions of the R gene to the reporter gene encoding [beta]-glucuronidase (GUS) were sufficient to direct GUS to the nucleus of the transiently transformed onion (Allium cepa) epidermal cells. Further analysis of chimeric constructs containing regions of the R gene fused to the GUS cDNA revealed three specific nuclear localization sequences (NLSs) that were capable of redirecting the GUS protein to the nucleus. Amino-terminal NLS-A (amino acids 100-109, GDRRAAPARP) contained several arginine residues; a similar localization signal is foundmore » in only a few viral proteins. The medial NLS-M (amino acids 419-428, MSERKRREKL) is a simian virus 40 large T antigen-type NLS, and the carboxyl-terminal NLS-C (amino acids 598-610, MISESLRKAIGKR) is a mating type [alpha]2 type. NLSs M and C are independently sufficient to direct the GUS protein to the nucleus when it is fused at the amino terminus of GUS, whereas NLS-A fused to GUS partitioned between the nucleus and cytoplasm. Similar partitioning was observed when localization signals NLS-A and NLS-C were independently fused to the carboxy-terminal portion of GUS. A sequential deletion of the localization signals indicated that the amino-terminal and carboxyl-terminal fusions of R and GUS were redirected to the nucleus only when both NLS-A and -M, or NLS-C and -M, were present. These results indicate that multiple localization signals are necessary for nuclear targeting of this protein. The conservation of the localization signals within the alleles of R and similar proteins from other organisms is also discussed. 45 refs., 6 figs.« less

  11. The use of additive and subtractive approaches to examine the nuclear localization sequence of the polyomavirus major capsid protein VP1

    NASA Technical Reports Server (NTRS)

    Chang, D.; Haynes, J. I. 2nd; Brady, J. N.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    A nuclear localization signal (NLS) has been identified in the N-terminal (Ala1-Pro-Lys-Arg-Lys-Ser-Gly-Val-Ser-Lys-Cys11) amino acid sequence of the polyomavirus major capsid protein VP1. The importance of this amino acid sequence for nuclear transport of VP1 protein was demonstrated by a genetic "subtractive" study using the constructs pSG5VP1 (full-length VP1) and pSG5 delta 5'VP1 (truncated VP1, lacking amino acids Ala1-Cys11). These constructs were used to transfect COS-7 cells, and expression and intracellular localization of the VP1 protein was visualized by indirect immunofluorescence. These studies revealed that the full-length VP1 was expressed and localized in the nucleus, while the truncated VP1 protein was localized in the cytoplasm and not transported to the nucleus. These findings were substantiated by an "additive" approach using FITC-labeled conjugates of synthetic peptides homologous to the NLS of VP1 cross-linked to bovine serum albumin or immunoglobulin G. Both conjugates localized in the nucleus after microinjection into the cytoplasm of 3T6 cells. The importance of individual amino acids found in the basic sequence (Lys3-Arg-Lys5) of the NLS was also investigated. This was accomplished by synthesizing three additional peptides in which lysine-3 was substituted with threonine, arginine-4 was substituted with threonine, or lysine-5 was substituted with threonine. It was found that lysine-3 was crucial for nuclear transport, since substitution of this amino acid with threonine prevented nuclear localization of the microinjected, FITC-labeled conjugate.

  12. Functional relationship between CABIT, SAM and 14-3-3 binding domains of GAREM1 that play a role in its subcellular localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishino, Tasuku; Matsunaga, Ryota; Konishi, Hiroaki, E-mail: hkonishi@pu-hiroshima.ac.jp

    2015-08-21

    GAREM1 (Grb2-associated regulator of Erk/MAPK1) is an adaptor protein that is involved in the epidermal growth factor (EGF) pathway. The nuclear localization of GAREM1 depends on the nuclear localization sequence (NLS), which is located at the N-terminal CABIT (cysteine-containing, all in Themis) domain. Here, we identified 14-3-3ε as a GAREM-binding protein, and its binding site is closely located to the NLS. This 14-3-3 binding site was of the atypical type and independent of GAREM phosphorylation. Moreover, the binding of 14-3-3 had an effect on the nuclear localization of GAREM1. Unexpectedly, we observed that the CABIT domain had intramolecular association withmore » the C-terminal SAM (sterile alpha motif) domain. This association might be inhibited by binding of 14-3-3 at the CABIT domain. Our results demonstrate that the mechanism underlying the nuclear localization of GAREM1 depends on its NLS in the CABIT domain, which is controlled by the binding of 14-3-3 and the C-terminal SAM domain. We suggest that the interplay between 14-3-3, SAM domain and CABIT domain might be responsible for the distribution of GAREM1 in mammalian cells. - Highlights: • 14-3-3ε regulated the nuclear localization of GAREM1 as its binding partner. • The atypical 14-3-3 binding site of GAREM1 is located near the NLS in CABIT domain. • The CABIT domain had intramolecular association with the SAM domain in GAREM1. • Subcellular localization of GAREM1 is affected with its CABIT-SAM interaction.« less

  13. Specific nuclear localizing sequence directs two myosin isoforms to the cell nucleus in calmodulin-sensitive manner.

    PubMed

    Dzijak, Rastislav; Yildirim, Sukriye; Kahle, Michal; Novák, Petr; Hnilicová, Jarmila; Venit, Tomáš; Hozák, Pavel

    2012-01-01

    Nuclear myosin I (NM1) was the first molecular motor identified in the cell nucleus. Together with nuclear actin, they participate in crucial nuclear events such as transcription, chromatin movements, and chromatin remodeling. NM1 is an isoform of myosin 1c (Myo1c) that was identified earlier and is known to act in the cytoplasm. NM1 differs from the "cytoplasmic" myosin 1c only by additional 16 amino acids at the N-terminus of the molecule. This amino acid stretch was therefore suggested to direct NM1 into the nucleus. We investigated the mechanism of nuclear import of NM1 in detail. Using over-expressed GFP chimeras encoding for truncated NM1 mutants, we identified a specific sequence that is necessary for its import to the nucleus. This novel nuclear localization sequence is placed within calmodulin-binding motif of NM1, thus it is present also in the Myo1c. We confirmed the presence of both isoforms in the nucleus by transfection of tagged NM1 and Myo1c constructs into cultured cells, and also by showing the presence of the endogenous Myo1c in purified nuclei of cells derived from knock-out mice lacking NM1. Using pull-down and co-immunoprecipitation assays we identified importin beta, importin 5 and importin 7 as nuclear transport receptors that bind NM1. Since the NLS sequence of NM1 lies within the region that also binds calmodulin we tested the influence of calmodulin on the localization of NM1. The presence of elevated levels of calmodulin interfered with nuclear localization of tagged NM1. We have shown that the novel specific NLS brings to the cell nucleus not only the "nuclear" isoform of myosin I (NM1 protein) but also its "cytoplasmic" isoform (Myo1c protein). This opens a new field for exploring functions of this molecular motor in nuclear processes, and for exploring the signals between cytoplasm and the nucleus.

  14. Fluorescent Labeling of the Nuclear Envelope by Localizing Green Fluorescent Protein on the Inner Nuclear Membrane.

    PubMed

    Taniyama, Toshiyuki; Tsuda, Natsumi; Sueda, Shinji

    2018-06-15

    The nuclear envelope (NE) is a double membrane that segregates nuclear components from the cytoplasm in eukaryotic cells. It is well-known that the NE undergoes a breakdown and reformation during mitosis in animal cells. However, the detailed mechanisms of the NE dynamics are not yet fully understood. Here, we propose a method for the fluorescent labeling of the NE in living cells, which enables the tracing of the NE dynamics during cell division under physiological conditions. In our method, labeling of the NE is accomplished by fixing green fluorescent protein carrying the nuclear localization signal on the inner nuclear membrane based on a unique biotinylation reaction from the archaeon Sulfolobus tokodaii. With this method, we observed HeLa cells during mitosis by confocal laser scanning microscopy and succeeded in clearly visualizing the difference in the timing of the formation of the NE and the nuclear lamina.

  15. A putative homologue of CDC20/CDH1 in the malaria parasite is essential for male gamete development.

    PubMed

    Guttery, David S; Ferguson, David J P; Poulin, Benoit; Xu, Zhengyao; Straschil, Ursula; Klop, Onny; Solyakov, Lev; Sandrini, Sara M; Brady, Declan; Nieduszynski, Conrad A; Janse, Chris J; Holder, Anthony A; Tobin, Andrew B; Tewari, Rita

    2012-02-01

    Cell-cycle progression is governed by a series of essential regulatory proteins. Two major regulators are cell-division cycle protein 20 (CDC20) and its homologue, CDC20 homologue 1 (CDH1), which activate the anaphase-promoting complex/cyclosome (APC/C) in mitosis, and facilitate degradation of mitotic APC/C substrates. The malaria parasite, Plasmodium, is a haploid organism which, during its life-cycle undergoes two stages of mitosis; one associated with asexual multiplication and the other with male gametogenesis. Cell-cycle regulation and DNA replication in Plasmodium was recently shown to be dependent on the activity of a number of protein kinases. However, the function of cell division cycle proteins that are also involved in this process, such as CDC20 and CDH1 is totally unknown. Here we examine the role of a putative CDC20/CDH1 in the rodent malaria Plasmodium berghei (Pb) using reverse genetics. Phylogenetic analysis identified a single putative Plasmodium CDC20/CDH1 homologue (termed CDC20 for simplicity) suggesting that Plasmodium APC/C has only one regulator. In our genetic approach to delete the endogenous cdc20 gene of P. berghei, we demonstrate that PbCDC20 plays a vital role in male gametogenesis, but is not essential for mitosis in the asexual blood stage. Furthermore, qRT-PCR analysis in parasite lines with deletions of two kinase genes involved in male sexual development (map2 and cdpk4), showed a significant increase in cdc20 transcription in activated gametocytes. DNA replication and ultra structural analyses of cdc20 and map2 mutants showed similar blockage of nuclear division at the nuclear spindle/kinetochore stage. CDC20 was phosphorylated in asexual and sexual stages, but the level of modification was higher in activated gametocytes and ookinetes. Changes in global protein phosphorylation patterns in the Δcdc20 mutant parasites were largely different from those observed in the Δmap2 mutant. This suggests that CDC20 and MAP2 are both likely to play independent but vital roles in male gametogenesis.

  16. A Putative Homologue of CDC20/CDH1 in the Malaria Parasite Is Essential for Male Gamete Development

    PubMed Central

    Guttery, David S.; Ferguson, David J. P.; Poulin, Benoit; Xu, Zhengyao; Straschil, Ursula; Klop, Onny; Solyakov, Lev; Sandrini, Sara M.; Brady, Declan; Nieduszynski, Conrad A.; Janse, Chris J.; Holder, Anthony A.; Tobin, Andrew B.; Tewari, Rita

    2012-01-01

    Cell-cycle progression is governed by a series of essential regulatory proteins. Two major regulators are cell-division cycle protein 20 (CDC20) and its homologue, CDC20 homologue 1 (CDH1), which activate the anaphase-promoting complex/cyclosome (APC/C) in mitosis, and facilitate degradation of mitotic APC/C substrates. The malaria parasite, Plasmodium, is a haploid organism which, during its life-cycle undergoes two stages of mitosis; one associated with asexual multiplication and the other with male gametogenesis. Cell-cycle regulation and DNA replication in Plasmodium was recently shown to be dependent on the activity of a number of protein kinases. However, the function of cell division cycle proteins that are also involved in this process, such as CDC20 and CDH1 is totally unknown. Here we examine the role of a putative CDC20/CDH1 in the rodent malaria Plasmodium berghei (Pb) using reverse genetics. Phylogenetic analysis identified a single putative Plasmodium CDC20/CDH1 homologue (termed CDC20 for simplicity) suggesting that Plasmodium APC/C has only one regulator. In our genetic approach to delete the endogenous cdc20 gene of P. berghei, we demonstrate that PbCDC20 plays a vital role in male gametogenesis, but is not essential for mitosis in the asexual blood stage. Furthermore, qRT-PCR analysis in parasite lines with deletions of two kinase genes involved in male sexual development (map2 and cdpk4), showed a significant increase in cdc20 transcription in activated gametocytes. DNA replication and ultra structural analyses of cdc20 and map2 mutants showed similar blockage of nuclear division at the nuclear spindle/kinetochore stage. CDC20 was phosphorylated in asexual and sexual stages, but the level of modification was higher in activated gametocytes and ookinetes. Changes in global protein phosphorylation patterns in the Δcdc20 mutant parasites were largely different from those observed in the Δmap2 mutant. This suggests that CDC20 and MAP2 are both likely to play independent but vital roles in male gametogenesis. PMID:22383885

  17. Region of Nipah virus C protein responsible for shuttling between the cytoplasm and nucleus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horie, Ryo; Yoneda, Misako, E-mail: yone@ims.u-tok

    Nipah virus (NiV) causes severe encephalitis in humans, with high mortality. NiV nonstructural C protein (NiV-C) is essential for its pathogenicity, but its functions are unclear. In this study, we focused on NiV-C trafficking in cells and found that it localizes predominantly in the cytoplasm but partly in the nucleus. An analysis of NiV-C mutants showed that amino acids 2, 21–24 and 110–139 of NiV-C are important for its localization in the cytoplasm. Inhibitor treatment indicates that the nuclear export determinant is not a classical CRM1-dependent nuclear export signal. We also determined that amino acids 60–75 and 72–75 were importantmore » for nuclear localization of NiV-C. Furthermore, NiV-C mutants that had lost their capacity for nuclear localization inhibited the interferon (IFN) response more strongly than complete NiV-C. These results indicate that the IFN-antagonist activity of NiV-C occurs in the cytoplasm. -- Highlights: •Nipah virus (NiV) infection resulted in high mortality, but effective treatment has not been established. •Several reports revealed that NiV nonstructural C protein (NiV-C) was essential for NiV pathogenicity, however, whole of NiV-C function is still unknown. •Although nonstructural C proteins of other Paramyxoviruses are expressed in similar mechanism and exert similar activity, subcellular localization and cellular targets are different. In this study, we evaluated the subcellular localization of NiV-C. •To our knowledge, this is the first report showing that NiV-C shuttles between the nucleus and cytoplasm. We also clarified that NiV-C has nuclear export signal and nuclear localization signal using NiV-C deleted, alanine substitution mutants and enhanced green fluorescent protein (EGFP) fused proteins. •And we also showed that interferon (IFN) antagonist activity of NiV-C related to its subcellular localization. Our results indicate that NiV-C exert IFN antagonist activity in the cytoplasm.« less

  18. Crosstalk between ERK2 and RXR regulates nuclear import of transcription factor NGFI-B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, Chris M.; Paulsen, Ragnhild E.

    2005-10-21

    Transcription factor NGFI-B initiates apoptosis when allowed to translocate to mitochondria. Retinoid-X receptor (RXR), another member of the nuclear receptor family, regulates NGFI-B signaling through heterodimerization and nuclear export. Growth factor EGF activates ERK2, which phosphorylates NGFI-B and determines if NGFI-B is allowed to translocate to mitochondria. In the present study, EGF treatment resulted in an increased nuclear import of NGFI-B. Likewise, active ERK2 resulted in a preferential nuclear localization of NGFI-B. When coexpressed with RXR the nuclear import and nuclear localization induced by active ERK2 were strongly reduced. In the presence of its ligand 9-cis-retinoic acid, RXR no longermore » inhibited ERK2-induced nuclear import. Thus, RXR serves a permissive role for ERK2-mediated nuclear accumulation of NGFI-B. This finding represents a novel crosstalk between ERK2 and RXR signaling pathways, and explains how two independent inhibitors of apoptosis (EGF and 9-cis-retinoic acid) may cooperate to regulate nuclear targeting of apoptosis inducer NGFI-B.« less

  19. Mechanism for G2 phase-specific nuclear export of the kinetochore protein CENP-F.

    PubMed

    Loftus, Kyle M; Cui, Heying; Coutavas, Elias; King, David S; Ceravolo, Amanda; Pereiras, Dylan; Solmaz, Sozanne R

    2017-08-03

    Centromere protein F (CENP-F) is a component of the kinetochore and a regulator of cell cycle progression. CENP-F recruits the dynein transport machinery and orchestrates several cell cycle-specific transport events, including transport of the nucleus, mitochondria and chromosomes. A key regulatory step for several of these functions is likely the G2 phase-specific export of CENP-F from the nucleus to the cytosol, where the cytoplasmic dynein transport machinery resides; however, the molecular mechanism of this process is elusive. Here, we have identified 3 phosphorylation sites within the bipartite classical nuclear localization signal (cNLS) of CENP-F. These sites are specific for cyclin-dependent kinase 1 (Cdk1), which is active in G2 phase. Phosphomimetic mutations of these residues strongly diminish the interaction of the CENP-F cNLS with its nuclear transport receptor karyopherin α. These mutations also diminish nuclear localization of the CENP-F cNLS in cells. Notably, the cNLS is phosphorylated in the -1 position, which is important to orient the adjacent major motif for binding into its pocket on karyopherin α. We propose that localization of CENP-F is regulated by a cNLS, and a nuclear export pathway, resulting in nuclear localization during most of interphase. In G2 phase, the cNLS is weakened by phosphorylation through Cdk1, likely resulting in nuclear export of CENP-F via the still active nuclear export pathway. Once CENP-F resides in the cytosol, it can engage in pathways that are important for cell cycle progression, kinetochore assembly and the faithful segregation of chromosomes into daughter cells.

  20. Nuclear translocation of glutathione S-transferase {pi} is mediated by a non-classical localization signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawakatsu, Miho; Goto, Shinji, E-mail: sgoto@nagasaki-u.ac.jp; Yoshida, Takako

    2011-08-12

    Highlights: {yields} Nuclear translocation of GST{pi} is abrogated by the deletion of the last 16 amino acid residues in the carboxy-terminal region, indicating that residues 195-208 of GST{pi} are required for nuclear translocation. {yields} The lack of a contiguous stretch of positively charged amino acid residues within the carboxy-terminal region of GST{pi}, suggests that the nuclear translocation of GST{pi} is mediated by a non-classical nuclear localization signal. {yields} An in vitro transport assay shows that the nuclear translocation of GST{pi} is dependent on cytosolic factors and ATP. -- Abstract: Glutathione S-transferase {pi} (GST{pi}), a member of the GST family ofmore » multifunctional enzymes, is highly expressed in human placenta and involved in the protection of cellular components against electrophilic compounds or oxidative stress. We have recently found that GST{pi} is expressed in the cytoplasm, mitochondria, and nucleus in some cancer cells, and that the nuclear expression of GST{pi} appears to correlate with resistance to anti-cancer drugs. Although the mitochondrial targeting signal of GST{pi} was previously identified in the amino-terminal region, the mechanism of nuclear translocation remains completely unknown. In this study, we find that the region of GST{pi}195-208 is critical for nuclear translocation, which is mediated by a novel and non-classical nuclear localization signal. In addition, using an in vitro transport assay, we demonstrate that the nuclear translocation of GST{pi} depends on the cytosolic extract and ATP. Although further experiments are needed to understand in depth the precise mechanism of nuclear translocation of GST{pi}, our results may help to establish more efficient anti-cancer therapy, especially with respect to resistance to anti-cancer drugs.« less

  1. The R35 residue of the influenza A virus NS1 protein has minimal effects on nuclear localization but alters virus replication through disrupting protein dimerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalime, Erin N.; Pekosz, Andrew, E-mail: apekosz@jhsph.edu

    The influenza A virus NS1 protein has a nuclear localization sequence (NLS) in the amino terminal region. This NLS overlaps sequences that are important for RNA binding as well as protein dimerization. To assess the significance of the NS1 NLS on influenza virus replication, the NLS amino acids were individually mutated to alanines and recombinant viruses encoding these mutations were rescued. Viruses containing NS1 proteins with mutations at R37, R38 and K41 displayed minimal changes in replication or NS1 protein nuclear localization. Recombinant viruses encoding NS1 R35A were not recovered but viruses containing second site mutations at position D39 inmore » addition to the R35A mutation were isolated. The mutations at position 39 were shown to partially restore NS1 protein dimerization but had minimal effects on nuclear localization. These data indicate that the amino acids in the NS1 NLS region play a more important role in protein dimerization compared to nuclear localization. - Highlights: • Mutations were introduced into influenza NS1 NLS1. • NS1 R37A, R38A, K41A viruses had minimal changes in replication and NS1 localization. • Viruses from NS1 R35A rescue all contained additional mutations at D39. • NS1 R35A D39X mutations recover dimerization lost in NS1 R35A mutations. • These results reaffirm the importance of dimerization for NS1 protein function.« less

  2. A Putative Chloroplast-Localized Ca(2+)/H(+) Antiporter CCHA1 Is Involved in Calcium and pH Homeostasis and Required for PSII Function in Arabidopsis.

    PubMed

    Wang, Chao; Xu, Weitao; Jin, Honglei; Zhang, Taijie; Lai, Jianbin; Zhou, Xuan; Zhang, Shengchun; Liu, Shengjie; Duan, Xuewu; Wang, Hongbin; Peng, Changlian; Yang, Chengwei

    2016-08-01

    Calcium is important for chloroplast, not only in its photosynthetic but also nonphotosynthetic functions. Multiple Ca(2+)/H(+) transporters and channels have been described and studied in the plasma membrane and organelle membranes of plant cells; however, the molecular identity and physiological roles of chloroplast Ca(2+)/H(+) antiporters have remained unknown. Here we report the identification and characterization of a member of the UPF0016 family, CCHA1 (a chloroplast-localized potential Ca(2+)/H(+) antiporter), in Arabidopsis thaliana. We observed that the ccha1 mutant plants developed pale green leaves and showed severely stunted growth along with impaired photosystem II (PSII) function. CCHA1 localizes to the chloroplasts, and the levels of the PSII core subunits and the oxygen-evolving complex were significantly decreased in the ccha1 mutants compared with the wild type. In high Ca(2+) concentrations, Arabidopsis CCHA1 partially rescued the growth defect of yeast gdt1Δ null mutant, which is defective in a Ca(2+)/H(+) antiporter. The ccha1 mutant plants also showed significant sensitivity to high concentrations of CaCl2 and MnCl2, as well as variation in pH. Taken these results together, we propose that CCHA1 might encode a putative chloroplast-localized Ca(2+)/H(+) antiporter with critical functions in the regulation of PSII and in chloroplast Ca(2+) and pH homeostasis in Arabidopsis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  3. Evaluation of combinations of putative anti-biofilm agents and antibiotics to eradicate biofilms of Staphylococcus aureus and Pseudomonas aeruginosa.

    PubMed

    Belfield, Katherine; Bayston, Roger; Hajduk, Nadzieja; Levell, Georgia; Birchall, John P; Daniel, Matija

    2017-09-01

    To evaluate potential anti-biofilm agents for their ability to enhance the activity of antibiotics for local treatment of localized biofilm infections. Staphylococcus aureus and Pseudomonas aeruginosa in vitro biofilm models were developed. The putative antibiotic enhancers N-acetylcysteine, acetylsalicylic acid, sodium salicylate, recombinant human deoxyribonuclease I, dispersin B, hydrogen peroxide and Johnson's Baby Shampoo (JBS) were tested for their anti-biofilm activity alone and their ability to enhance the activity of antibiotics for 7 or 14 days, against 5 day old biofilms. The antibiotic enhancers were paired with rifampicin and clindamycin against S. aureus and gentamicin and ciprofloxacin against P. aeruginosa. Isolates from biofilms that were not eradicated were tested for antibiotic resistance. Antibiotic levels 10× MIC and 100× MIC significantly reduced biofilm, but did not consistently eradicate it. Antibiotics at 100× MIC with 10% JBS for 14 days was the only treatment to eradicate both staphylococcal and pseudomonal biofilms. Recombinant human deoxyribonuclease I significantly reduced staphylococcal biofilm. Emergence of resistance of surviving isolates was minimal and was often associated with the small colony variant phenotype. JBS enhanced the activity of antibiotics and several other promising anti-biofilm agents were identified. Antibiotics with 10% JBS eradicated biofilms produced by both organisms. Such combinations might be useful in local treatment of localized biofilm infections. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Identification of Germ Plasm-Associated Transcripts by Microarray Analysis of Xenopus Vegetal Cortex RNA

    PubMed Central

    Cuykendall, Tawny N.; Houston, Douglas W.

    2011-01-01

    RNA localization is a common mechanism for regulating cell structure and function. Localized RNAs in Xenopus oocytes are critical for early development, including germline specification by the germ plasm. Despite the importance of these localized RNAs, only approximately 25 have been identified and fewer are functionally characterized. Using microarrays, we identified a large set of localized RNAs from the vegetal cortex. Overall, our results indicate a minimum of 275 localized RNAs in oocytes, or 2–3% of maternal transcripts, which are in general agreement with previous findings. We further validated vegetal localization for 24 candidates and further characterized three genes expressed in the germ plasm. We identified novel germ plasm expression for reticulon 3.1, exd2 (a novel exonuclease-domain encoding gene), and a putative noncoding RNA. Further analysis of these and other localized RNAs will likely identify new functions of germ plasm and facilitate the identification of cis-acting RNA localization elements. PMID:20503379

  5. Structural determination of importin alpha in complex with beak and feather disease virus capsid nuclear localization signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, Edward I.; EH Graham Centre for Agricultural Innovation; Dombrovski, Andrew K.

    2013-09-06

    Highlights: •Circovirus capsid proteins contain large nuclear localization signals (NLS). •A method of nuclear import has not been elucidated. •Beak and feather disease virus (BFDV) capsid NLS was crystallized with importin α. •The structure showed BFDV NLS binding to the major site of importin α. •Result shows implications for mechanism of nuclear transport for all circoviruses. -- Abstract: Circoviruses represent a rapidly increasing genus of viruses that infect a variety of vertebrates. Replication requires shuttling viral molecules into the host cell nucleus, a process facilitated by capsid-associated protein (Cap). Whilst a nuclear localization signal (NLS) has been shown to mediatemore » nuclear translocation, the mode of nuclear transport remains to be elucidated. To better understand this process, beak and feather disease virus (BFDV) Cap NLS was crystallized with nuclear import receptor importin-α (Impα). Diffraction yielded structural data to 2.9 Å resolution, and the binding site on both Impα and BFDV Cap NLS were well resolved. The binding mechanism for the major site is likely conserved across circoviruses as supported by the similarity of NLSs in circovirus Caps. This finding illuminates a crucial step for infection of host cells by this viral family, and provides a platform for rational drug design against the binding interface.« less

  6. Regulation of the Drosophila Hypoxia-Inducible Factor α Sima by CRM1-Dependent Nuclear Export ▿

    PubMed Central

    Romero, Nuria M.; Irisarri, Maximiliano; Roth, Peggy; Cauerhff, Ana; Samakovlis, Christos; Wappner, Pablo

    2008-01-01

    Hypoxia-inducible factor α (HIF-α) proteins are regulated by oxygen levels through several different mechanisms that include protein stability, transcriptional coactivator recruitment, and subcellular localization. It was previously reported that these transcription factors are mainly nuclear in hypoxia and cytoplasmic in normoxia, but so far the molecular basis of this regulation is unclear. We show here that the Drosophila melanogaster HIF-α protein Sima shuttles continuously between the nucleus and the cytoplasm. We identified the relevant nuclear localization signal and two functional nuclear export signals (NESs). These NESs are in the Sima basic helix-loop-helix (bHLH) domain and promote CRM1-dependent nuclear export. Site-directed mutagenesis of either NES provoked Sima nuclear retention and increased transcriptional activity, suggesting that nuclear export contributes to Sima regulation. The identified NESs are conserved and probably functional in the bHLH domains of several bHLH-PAS proteins. We propose that rapid nuclear export of Sima regulates the duration of cellular responses to hypoxia. PMID:18332128

  7. Robust nuclear lamina-based cell classification of aging and senescent cells

    PubMed Central

    Righolt, Christiaan H.; van 't Hoff, Merel L.R.; Vermolen, Bart J.; Young, Ian T.; Raz, Vered

    2011-01-01

    Changes in the shape of the nuclear lamina are exhibited in senescent cells, as well as in cells expressing mutations in lamina genes. To identify cells with defects in the nuclear lamina we developed an imaging method that quantifies the intensity and curvature of the nuclear lamina. We show that this method accurately describes changes in the nuclear lamina. Spatial changes in nuclear lamina coincide with redistribution of lamin A proteins and local reduction in protein mobility in senescent cell. We suggest that local accumulation of lamin A in the nuclear envelope leads to bending of the structure. A quantitative distinction of the nuclear lamina shape in cell populations was found between fresh and senescent cells, and between primary myoblasts from young and old donors. Moreover, with this method mutations in lamina genes were significantly distinct from cells with wild-type genes. We suggest that this method can be applied to identify abnormal cells during aging, in in vitro propagation, and in lamina disorders. PMID:22199022

  8. Robust nuclear lamina-based cell classification of aging and senescent cells.

    PubMed

    Righolt, Christiaan H; van 't Hoff, Merel L R; Vermolen, Bart J; Young, Ian T; Raz, Vered

    2011-12-01

    Changes in the shape of the nuclear lamina are exhibited in senescent cells, as well as in cells expressing mutations in lamina genes. To identify cells with defects in the nuclear lamina we developed an imaging method that quantifies the intensity and curvature of the nuclear lamina. We show that this method accurately describes changes in the nuclear lamina. Spatial changes in nuclear lamina coincide with redistribution of lamin A proteins and local reduction in protein mobility in senescent cell. We suggest that local accumulation of lamin A in the nuclear envelope leads to bending of the structure. A quantitative distinction of the nuclear lamina shape in cell populations was found between fresh and senescent cells, and between primary myoblasts from young and old donors. Moreover, with this method mutations in lamina genes were significantly distinct from cells with wild-type genes. We suggest that this method can be applied to identify abnormal cells during aging, in in vitro propagation, and in lamina disorders.

  9. Influence of structural variation on nuclear localization of DNA-binding polyamide-fluorophore conjugates.

    PubMed

    Edelson, Benjamin S; Best, Timothy P; Olenyuk, Bogdan; Nickols, Nicholas G; Doss, Raymond M; Foister, Shane; Heckel, Alexander; Dervan, Peter B

    2004-01-01

    A pivotal step forward in chemical approaches to controlling gene expression is the development of sequence-specific DNA-binding molecules that can enter live cells and traffic to nuclei unaided. DNA-binding polyamides are a class of programmable, sequence-specific small molecules that have been shown to influence a wide variety of protein-DNA interactions. We have synthesized over 100 polyamide-fluorophore conjugates and assayed their nuclear uptake profiles in 13 mammalian cell lines. The compiled dataset, comprising 1300 entries, establishes a benchmark for the nuclear localization of polyamide-dye conjugates. Compounds in this series were chosen to provide systematic variation in several structural variables, including dye composition and placement, molecular weight, charge, ordering of the aromatic and aliphatic amino-acid building blocks and overall shape. Nuclear uptake does not appear to be correlated with polyamide molecular weight or with the number of imidazole residues, although the positions of imidazole residues affect nuclear access properties significantly. Generally negative determinants for nuclear access include the presence of a beta-Ala-tail residue and the lack of a cationic alkyl amine moiety, whereas the presence of an acetylated 2,4-diaminobutyric acid-turn is a positive factor for nuclear localization. We discuss implications of these data on the design of polyamide-dye conjugates for use in biological systems.

  10. Nuclear Transcription Factors in the Mitochondria: A New Paradigm in Fine-Tuning Mitochondrial Metabolism.

    PubMed

    Sepuri, Naresh Babu V; Tammineni, Prasad; Mohammed, Fareed; Paripati, Arunkumar

    2017-01-01

    Noncanonical functions of several nuclear transcription factors in the mitochondria have been gaining exceptional traction over the years. These transcription factors include nuclear hormone receptors like estrogen, glucocorticoid, and thyroid hormone receptors: p53, IRF3, STAT3, STAT5, CREB, NF-kB, and MEF-2D. Mitochondria-localized nuclear transcription factors regulate mitochondrial processes like apoptosis, respiration and mitochondrial transcription albeit being nuclear in origin and having nuclear functions. Hence, the cell permits these multi-stationed transcription factors to orchestrate and fine-tune cellular metabolism at various levels of operation. Despite their ubiquitous distribution in different subcompartments of mitochondria, their targeting mechanism is poorly understood. Here, we review the current status of mitochondria-localized transcription factors and discuss the possible targeting mechanism besides the functional interplay between these factors.

  11. Fascin regulates nuclear actin during Drosophila oogenesis

    PubMed Central

    Kelpsch, Daniel J.; Groen, Christopher M.; Fagan, Tiffany N.; Sudhir, Sweta; Tootle, Tina L.

    2016-01-01

    Drosophila oogenesis provides a developmental system with which to study nuclear actin. During Stages 5–9, nuclear actin levels are high in the oocyte and exhibit variation within the nurse cells. Cofilin and Profilin, which regulate the nuclear import and export of actin, also localize to the nuclei. Expression of GFP-tagged Actin results in nuclear actin rod formation. These findings indicate that nuclear actin must be tightly regulated during oogenesis. One factor mediating this regulation is Fascin. Overexpression of Fascin enhances nuclear GFP-Actin rod formation, and Fascin colocalizes with the rods. Loss of Fascin reduces, whereas overexpression of Fascin increases, the frequency of nurse cells with high levels of nuclear actin, but neither alters the overall nuclear level of actin within the ovary. These data suggest that Fascin regulates the ability of specific cells to accumulate nuclear actin. Evidence indicates that Fascin positively regulates nuclear actin through Cofilin. Loss of Fascin results in decreased nuclear Cofilin. In addition, Fascin and Cofilin genetically interact, as double heterozygotes exhibit a reduction in the number of nurse cells with high nuclear actin levels. These findings are likely applicable beyond Drosophila follicle development, as the localization and functions of Fascin and the mechanisms regulating nuclear actin are widely conserved. PMID:27535426

  12. Intersectional gene flow between insular endemics of Ilex (Aquifoliaceae) on the Bonin Islands and the Ryukyu Islands.

    PubMed

    Setoguchi, H; Watanabe, I

    2000-06-01

    Hybridization and introgression play important roles in plant evolution, and their occurrence on the oceanic islands provides good examples of plant speciation and diversification. Restriction fragment length polymorphisms (RFLPs) and trnL (UAA) 3'exon-trnF (GAA) intergenic spacer (IGS) sequences of chloroplast DNA (cpDNA), and the sequences of internal transcribed spacer (ITS) of nuclear ribosomal DNA were examined to investigate the occurrence of gene transfer in Ilex species on the Bonin Islands and the Ryukyu Islands in Japan. A gene phylogeny for the plastid genome is in agreement with the morphologically based taxonomy, whereas the nuclear genome phylogeny clusters putatively unrelated endemics both on the Bonin and the Ryukyu Islands. Intersectional hybridization and nuclear gene flow were independently observed in insular endemics of Ilex on both sets of islands without evidence of plastid introgression. Gene flow observed in these island systems can be explained by ecological features of insular endemics, i.e., limits of distribution range or sympatric distribution in a small land area.

  13. Quantum indistinguishability in chemical reactions.

    PubMed

    Fisher, Matthew P A; Radzihovsky, Leo

    2018-05-15

    Quantum indistinguishability plays a crucial role in many low-energy physical phenomena, from quantum fluids to molecular spectroscopy. It is, however, typically ignored in most high-temperature processes, particularly for ionic coordinates, implicitly assumed to be distinguishable, incoherent, and thus well approximated classically. We explore enzymatic chemical reactions involving small symmetric molecules and argue that in many situations a full quantum treatment of collective nuclear degrees of freedom is essential. Supported by several physical arguments, we conjecture a "quantum dynamical selection" (QDS) rule for small symmetric molecules that precludes chemical processes that involve direct transitions from orbitally nonsymmetric molecular states. As we propose and discuss, the implications of the QDS rule include ( i ) a differential chemical reactivity of para- and orthohydrogen, ( ii ) a mechanism for inducing intermolecular quantum entanglement of nuclear spins, ( iii ) a mass-independent isotope fractionation mechanism, ( iv ) an explanation of the enhanced chemical activity of "reactive oxygen species", ( v ) illuminating the importance of ortho-water molecules in modulating the quantum dynamics of liquid water, and ( vi ) providing the critical quantum-to-biochemical linkage in the nuclear spin model of the (putative) quantum brain, among others.

  14. Ploidy levels among species in the 'Oxalis tuberosa alliance' as inferred by flow cytometry.

    PubMed

    Emshwiller, Eve

    2002-06-01

    The 'Oxalis tuberosa alliance' is a group of Andean Oxalis species allied to the Andean tuber crop O. tuberosa Molina (Oxalidaceae), commonly known as 'oca'. As part of a larger project studying the origins of polyploidy and domestication of cultivated oca, flow cytometry was used to survey DNA ploidy levels among Bolivian and Peruvian accessions of alliance members. In addition, this study provided a first assessment of C-values in the alliance by estimating nuclear DNA contents of these accessions using chicken erythrocytes as internal standard. Ten Bolivian accessions of cultivated O. tuberosa were confirmed to be octoploid, with a mean nuclear DNA content of approx. 3.6 pg/2C. Two Peruvian wild Oxalis species, O. phaeotricha and O. picchensis, were inferred to be tetraploid (both with approx. 1.67 pg/2C), the latter being one of the putative progenitors of O. tuberosa identified by chloroplast-expressed glutamine synthetase data in prior work. The remaining accessions (from 78 populations provisionally identified as 35 species) were DNA diploid, with nuclear DNA contents varying from 0.79 to 1.34 pg/2C.

  15. Direct Estimation of Power Distribution in Reactors for Nuclear Thermal Space Propulsion

    NASA Astrophysics Data System (ADS)

    Aldemir, Tunc; Miller, Don W.; Burghelea, Andrei

    2004-02-01

    A recently proposed constant temperature power sensor (CTPS) has the capability to directly measure the local power deposition rate in nuclear reactor cores proposed for space thermal propulsion. Such a capability reduces the uncertainties in the estimated power peaking factors and hence increases the reliability of the nuclear engine. The CTPS operation is sensitive to the changes in the local thermal conditions. A procedure is described for the automatic on-line calibration of the sensor through estimation of changes in thermal .conditions.

  16. Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum

    PubMed Central

    Echevarría, Wihelma; Leite, M. Fatima; Guerra, Mateus T.; Zipfel, Warren R.; Nathanson, Michael H.

    2013-01-01

    Calcium is a second messenger in virtually all cells and tissues1. Calcium signals in the nucleus have effects on gene transcription and cell growth that are distinct from those of cytosolic calcium signals; however, it is unknown how nuclear calcium signals are regulated. Here we identify a reticular network of nuclear calcium stores that is continuous with the endoplasmic reticulum and the nuclear envelope. This network expresses inositol 1,4,5-trisphosphate (InsP3) receptors, and the nuclear component of InsP3-mediated calcium signals begins in its locality. Stimulation of these receptors with a little InsP3 results in small calcium signals that are initiated in this region of the nucleus. Localized release of calcium in the nucleus causes nuclear protein kinase C (PKC) to translocate to the region of the nuclear envelope, whereas release of calcium in the cytosol induces translocation of cytosolic PKC to the plasma membrane. Our findings show that the nucleus contains a nucleoplasmic reticulum with the capacity to regulate calcium signals in localized subnuclear regions. The presence of such machinery provides a potential mechanism by which calcium can simultaneously regulate many independent processes in the nucleus. PMID:12717445

  17. Compensation as Means for Local Acceptance The Case of the Final Disposal of Spent Nuclear Fuel in Eurajoki, Finland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojo, M.

    The paper sheds light on the local negotiations on compensation as a part of the site selection for the spent nuclear fuel repository in Finland. The negotiation took place between the representatives of the Municipality of Eurajoki, the nuclear power company Teollisuuden Voima Ltd (TVO) and the nuclear waste management company Posiva Ltd in the late 1990's. The compensation negotiation process and the development of the requirements are elucidated in detail on the basis of the analysis of the minutes of the meetings of the Vuojoki working party. The paper helps to understand the smooth site selection process in Finland.more » The context of the local decision-making is viewed from the policy, institutional and economic aspect. It is concluded in the paper that when trying to understand the progress of the Finnish site selection process more emphasis should be put on the role of TVO, the economic dependency of the Municipality of Eurajoki on TVO and the partnership between TVO and the leading local politicians. (authors)« less

  18. SKP2- and OTUD1-regulated non-proteolytic ubiquitination of YAP promotes YAP nuclear localization and activity.

    PubMed

    Yao, Fan; Zhou, Zhicheng; Kim, Jongchan; Hang, Qinglei; Xiao, Zhenna; Ton, Baochau N; Chang, Liang; Liu, Na; Zeng, Liyong; Wang, Wenqi; Wang, Yumeng; Zhang, Peijing; Hu, Xiaoyu; Su, Xiaohua; Liang, Han; Sun, Yutong; Ma, Li

    2018-06-11

    Dysregulation of YAP localization and activity is associated with pathological conditions such as cancer. Although activation of the Hippo phosphorylation cascade is known to cause cytoplasmic retention and inactivation of YAP, emerging evidence suggests that YAP can be regulated in a Hippo-independent manner. Here, we report that YAP is subject to non-proteolytic, K63-linked polyubiquitination by the SCF SKP2 E3 ligase complex (SKP2), which is reversed by the deubiquitinase OTUD1. The non-proteolytic ubiquitination of YAP enhances its interaction with its nuclear binding partner TEAD, thereby inducing YAP's nuclear localization, transcriptional activity, and growth-promoting function. Independently of Hippo signaling, mutation of YAP's K63-linkage specific ubiquitination sites K321 and K497, depletion of SKP2, or overexpression of OTUD1 retains YAP in the cytoplasm and inhibits its activity. Conversely, overexpression of SKP2 or loss of OTUD1 leads to nuclear localization and activation of YAP. Altogether, our study sheds light on the ubiquitination-mediated, Hippo-independent regulation of YAP.

  19. Region of Nipah virus C protein responsible for shuttling between the cytoplasm and nucleus.

    PubMed

    Horie, Ryo; Yoneda, Misako; Uchida, Shotaro; Sato, Hiroki; Kai, Chieko

    2016-10-01

    Nipah virus (NiV) causes severe encephalitis in humans, with high mortality. NiV nonstructural C protein (NiV-C) is essential for its pathogenicity, but its functions are unclear. In this study, we focused on NiV-C trafficking in cells and found that it localizes predominantly in the cytoplasm but partly in the nucleus. An analysis of NiV-C mutants showed that amino acids 2, 21-24 and 110-139 of NiV-C are important for its localization in the cytoplasm. Inhibitor treatment indicates that the nuclear export determinant is not a classical CRM1-dependent nuclear export signal. We also determined that amino acids 60-75 and 72-75 were important for nuclear localization of NiV-C. Furthermore, NiV-C mutants that had lost their capacity for nuclear localization inhibited the interferon (IFN) response more strongly than complete NiV-C. These results indicate that the IFN-antagonist activity of NiV-C occurs in the cytoplasm. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Importance of nuclear localization for the apoptosis-induced activity of a fungal galectin AAL (Agrocybe aegerita lectin)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Yi; Feng, Lei; Tong, Xin

    2009-08-28

    Agrocybe aegerita lectin (AAL) was identified previously in our group as a novel galectin from medicinal fungi Agrocybe aegerita, and has been shown to effectively induce cancer cell cycle arrest and apoptosis in vitro and tumor regression in vivo. Here, AAL was observed to translocate into the HeLa cell nucleus and induce cell apoptosis when it was predominantly in the nucleus. The N-terminus and C-terminus of AAL were required for nuclear localization. Site mutated proteins were generated based on AAL structure. Dimer interface mutant I25G, carbohydrate recognition domain (CRD) mutant R63H, and loop region mutant L33A could not enter themore » nucleus and lost the ability to induce apoptosis. CRD mutant H59Q and loop region mutant I144G maintained nuclear localization activity, and H59Q retained residual bioability but I144G had no activity, indicating that nuclear localization is important but not sufficient for AAL to become apoptotically active. Our findings provide a novel antitumor mechanism of fungal galectin.« less

  1. Intracellular distribution of a speech/language disorder associated FOXP2 mutant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizutani, Akifumi; Department of Pediatrics, Jichi Medical University, Yakushiji 3311-1, Shimotsukeshi, Tochigi 329-0498; Matsuzaki, Ayumi

    Although a mutation (R553H) in the forkhead box (FOX)P2 gene is associated with speech/language disorder, little is known about the function of FOXP2 or its relevance to this disorder. In the present study, we identify the forkhead nuclear localization domains that contribute to the cellular distribution of FOXP2. Nuclear localization of FOXP2 depended on two distally separated nuclear localization signals in the forkhead domain. A truncated version of FOXP2 lacking the leu-zip, Zn{sup 2+} finger, and forkhead domains that was observed in another patient with speech abnormalities demonstrated an aggregated cytoplasmic localization. Furthermore, FOXP2 (R553H) mainly exhibited a cytoplasmic localizationmore » despite retaining interactions with nuclear transport proteins (importin {alpha} and {beta}). Interestingly, wild type FOXP2 promoted the transport of FOXP2 (R553H) into the nucleus. Mutant and wild type FOXP2 heterodimers in the nucleus or FOXP2 R553H in the cytoplasm may underlie the pathogenesis of the autosomal dominant speech/language disorder.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busch, Albert; Kiel, Tilman; Heupel, Wolfgang-M.

    Lamins, which form the nuclear lamina, not only constitute an important determinant of nuclear architecture, but additionally play essential roles in many nuclear functions. Mutations in A-type lamins cause a wide range of human genetic disorders (laminopathies). The importance of lamin A (LaA) in the spatial arrangement of nuclear pore complexes (NPCs) prompted us to study the role of LaA mutants in nuclear protein transport. Two mutants, causing prenatal skin disease restrictive dermopathy (RD) and the premature aging disease Hutchinson Gilford progeria syndrome, were used for expression in HeLa cells to investigate their impact on the subcellular localization of NPC-associatedmore » proteins and nuclear protein import. Furthermore, dynamics of the LaA mutants within the nuclear lamina were studied. We observed affected localization of NPC-associated proteins, diminished lamina dynamics for both LaA mutants and reduced nuclear import of representative cargo molecules. Intriguingly, both LaA mutants displayed similar effects on nuclear morphology and functions, despite their differences in disease severity. Reduced nuclear protein import was also seen in RD fibroblasts and impaired lamina dynamics for the nucleoporin Nup153. Our data thus represent the first study of a direct link between LaA mutant expression and reduced nuclear protein import.« less

  3. Nuclear Architecture of Mouse Spermatocytes: Chromosome Topology, Heterochromatin, and Nucleolus.

    PubMed

    Berrios, Soledad

    2017-01-01

    The nuclear organization of spermatocytes in meiotic prophase I is primarily determined by the synaptic organization of the bivalents that are bound by their telomeres to the nuclear envelope and described as arc-shaped trajectories through the 3D nuclear space. However, over this basic meiotic organization, a spermatocyte nuclear architecture arises that is based on higher-ordered patterns of spatial associations among chromosomal domains from different bivalents that are conditioned by the individual characteristics of chromosomes and the opportunity for interactions between their domains. Consequently, the nuclear architecture is species-specific and prone to modification by chromosomal rearrangements. This model is valid for the localization of any chromosomal domain in the meiotic prophase nucleus. However, constitutive heterochromatin plays a leading role in shaping nuclear territories. Thus, the nuclear localization of nucleoli depends on the position of NORs in nucleolar bivalents, but the association among nucleolar chromosomes mainly depends on the presence of constitutive heterochromatin that does not affect the expression of the ribosomal genes. Constitutive heterochromatin and nucleoli form complex nuclear territories whose distribution in the nuclear space is nonrandom, supporting the hypothesis regarding the existence of a species-specific nuclear architecture in first meiotic prophase spermatocytes. © 2017 S. Karger AG, Basel.

  4. Role of Nuclear Pools of Aminoacyl-tRNA Synthetases in tRNA Nuclear Export

    PubMed Central

    Azad, Abul K.; Stanford, David R.; Sarkar, Srimonti; Hopper, Anita K.

    2001-01-01

    Reports of nuclear tRNA aminoacylation and its role in tRNA nuclear export (Lund and Dahlberg, 1998; Sarkar et al., 1999; Grosshans et al., 2000a) have led to the prediction that there should be nuclear pools of aminoacyl-tRNA synthetases. We report that in budding yeast there are nuclear pools of tyrosyl-tRNA synthetase, Tys1p. By sequence alignments we predicted a Tys1p nuclear localization sequence and showed it to be sufficient for nuclear location of a passenger protein. Mutations of this nuclear localization sequence in endogenous Tys1p reduce nuclear Tys1p pools, indicating that the motif is also important for nucleus location. The mutations do not significantly affect catalytic activity, but they do cause defects in export of tRNAs to the cytosol. Despite export defects, the cells are viable, indicating that nuclear tRNA aminoacylation is not required for all tRNA nuclear export paths. Because the tRNA nuclear exportin, Los1p, is also unessential, we tested whether tRNA aminoacylation and Los1p operate in alternative tRNA nuclear export paths. No genetic interactions between aminoacyl-tRNA synthetases and Los1p were detected, indicating that tRNA nuclear aminoacylation and Los1p operate in the same export pathway or there are more than two pathways for tRNA nuclear export. PMID:11359929

  5. Role of nuclear pools of aminoacyl-tRNA synthetases in tRNA nuclear export.

    PubMed

    Azad, A K; Stanford, D R; Sarkar, S; Hopper, A K

    2001-05-01

    Reports of nuclear tRNA aminoacylation and its role in tRNA nuclear export (Lund and Dahlberg, 1998; Sarkar et al., 1999; Grosshans et al., 20001) have led to the prediction that there should be nuclear pools of aminoacyl-tRNA synthetases. We report that in budding yeast there are nuclear pools of tyrosyl-tRNA synthetase, Tys1p. By sequence alignments we predicted a Tys1p nuclear localization sequence and showed it to be sufficient for nuclear location of a passenger protein. Mutations of this nuclear localization sequence in endogenous Tys1p reduce nuclear Tys1p pools, indicating that the motif is also important for nucleus location. The mutations do not significantly affect catalytic activity, but they do cause defects in export of tRNAs to the cytosol. Despite export defects, the cells are viable, indicating that nuclear tRNA aminoacylation is not required for all tRNA nuclear export paths. Because the tRNA nuclear exportin, Los1p, is also unessential, we tested whether tRNA aminoacylation and Los1p operate in alternative tRNA nuclear export paths. No genetic interactions between aminoacyl-tRNA synthetases and Los1p were detected, indicating that tRNA nuclear aminoacylation and Los1p operate in the same export pathway or there are more than two pathways for tRNA nuclear export.

  6. Learning Artificial Phonotactic Constraints: Time Course, Durability, and Relationship to Natural Constraints

    ERIC Educational Resources Information Center

    Taylor, Conrad F.; Houghton, George

    2005-01-01

    G. S. Dell, K. D. Reed, D. R. Adams, and A. S. Meyer (2000) proposed a "breadth-of-constraint" continuum on phoneme errors, using artificial experiment-wide constraints to investigate a putative middle ground between local and language-wide constraints. The authors report 5 experiments that test the idea of the continuum and the location of the…

  7. A calreticulin-dependent nuclear export signal is involved in the regulation of liver receptor homologue-1 protein folding.

    PubMed

    Yang, Feng-Ming; Feng, Shan-Jung; Lai, Tsai-Chun; Hu, Meng-Chun

    2015-10-15

    As an orphan member of the nuclear receptor family, liver receptor homologue-1 (LRH-1) controls a tremendous range of transcriptional programmes that are essential for metabolism and hormone synthesis. Our previous studies have shown that nuclear localization of the LRH-1 protein is mediated by two nuclear localization signals (NLSs) that are karyopherin/importin-dependent. It is unclear whether LRH-1 can be actively exported from the nucleus to the cytoplasm. In the present study, we describe a nuclear export domain containing two leucine-rich motifs [named nuclear export signal (NES)1 and NES2] within the ligand-binding domain (LBD). Mutation of leucine residues in NES1 or NES2 abolished nuclear export, indicating that both NES1 and NES2 motifs are essential for full nuclear export activity. This NES-mediated nuclear export was insensitive to the chromosomal region maintenance 1 (CRM1) inhibitor leptomycin B (LMB) or to CRM1 knockdown. However, knockdown of calreticulin (CRT) prevented NES-mediated nuclear export. Furthermore, our data show that CRT interacts with LRH-1 and is involved in the nuclear export of LRH-1. With full-length LRH-1, mutation of NES1 led to perinuclear accumulation of the mutant protein. Immunofluorescence analysis showed that these perinuclear aggregates were co-localized with the centrosome marker, microtubule-associated protein 1 light chain 3 (LC3), ubiquitin and heat shock protein 70 (Hsp70), indicating that the mutant was misfolded and sequestered into aggresome-like structures via the autophagic clearance pathway. Our study demonstrates for the first time that LRH-1 has a CRT-dependent NES which is not only required for cytoplasmic trafficking, but also essential for correct protein folding to avoid misfolding-induced aggregation. © 2015 Authors; published by Portland Press Limited.

  8. MNDA binds NPM/B23 and the NPM-MLF1 chimera generated by the t(3;5) associated with myelodysplastic syndrome and acute myeloid leukemia.

    PubMed

    Xie, J; Briggs, J A; Morris, S W; Olson, M O; Kinney, M C; Briggs, R C

    1997-10-01

    The myeloid cell nuclear differentiation antigen (MNDA) is a nuclear protein expressed specifically in developing cells of the human myelomonocytic lineage, including the end-stage monocytes/macrophages and granulocytes. Nuclear localization, lineage- and stage-specific expression, association with chromatin, and regulation by interferon alpha indicate that this protein is involved in regulating gene expression uniquely associated with the differentiation process and/or function of the monocyte/macrophage. MNDA does not bind specific DNA sequences, but rather a set of nuclear proteins that includes nucleolin (C23). Both in vitro binding assays and co-immunoprecipitation were used to demonstrate that MNDA also binds protein B23 (nucleophosmin/NPM). Three reciprocal chromosome translocations found in certain cases of leukemia/lymphoma involve fusions with the NPM/B23 gene, t(5;17) NPM-RARalpha, t(2;5) NPM-ALK, and the t(3;5) NPM-MLF1. In the current study, MNDA was not able to bind the NPM-ALK chimera originating from the t(2;5) and containing residues 1-117 of NPM. However, MNDA did bind the NPM-MLF1 product of the t(3;5) that contains the N-terminal 175 residues of NPM. The additional 58 amino acids (amino acids 117-175) of the NPM sequence that are contained in the product of the NPM-MLF1 fusion gene relative to the product of the NPM-ALK fusion appear responsible for MNDA binding. This additional NPM sequence contains a nuclear localization signal and clusters of acidic residues believed to bind nuclear localization signals of other proteins. Whereas NPM and nucleolin are primarily localized within the nucleolus, MNDA is distributed throughout the nucleus including the nucleolus, suggesting that additional interactions define overall MNDA localization.

  9. FOXP2 promotes the nuclear translocation of POT1, but FOXP2(R553H), mutation related to speech-language disorder, partially prevents it

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanabe, Yuko; Fujita, Eriko; Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498

    Highlights: {yields} We isolated protection of telomeres 1 (POT1) as a FOXP2-associated protein by a yeast two-hybrid. {yields} FOXP2 associated and co-localized with POT1 in the nuclei. {yields} FOXP2(R553H) also co-localized with POT1 in both the cytoplasm and nuclei. {yields} FOXP2(R553H) partially prevented the nuclear translocation of POT1. {yields} FOXP2(R553H) mutation may be associated with the pathogenesis of speech-language disorder. -- Abstract: FOXP2 is a forkhead box-containing transcription factor with several recognizable sequence motifs. However, little is known about the FOXP2-associated proteins except for C-terminal binding protein (CtBP). In the present study, we attempted to isolate the FOXP2-associated protein withmore » a yeast two-hybrid system using the C-terminal region, including the forkhead domain, as a bait probe, and identified protection of telomeres 1 (POT1) as a FOXP2-associated protein. Immunoprecipitation assay confirmed the association with FOXP2 and POT1. POT1 alone localized in the cytoplasm but co-localized with FOXP2 and the forkhead domain of FOXP2 in nuclei. However, both FOXP2 with mutated nuclear localization signals and (R553H) mutated forkhead, which is associated with speech-language disorder, prevented the nuclear translocation of POT1. These results suggest that FOXP2 is a binding partner for the nuclear translocation of POT1. As loss of POT1 function induces the cell arrest, the impaired nuclear translocation of POT1 in the developing neuronal cells may be associated with the pathogenesis of speech-language disorder with FOXP2(R553H) mutation.« less

  10. [Medicen Paris Région: A world-class ''competitiveness cluster'' in the Paris region incorporating a neuroscience ''subcluster''].

    PubMed

    Canet, Emmanuel

    2007-04-01

    The French public-private partnerships known as "competitive clusters" [pôles de compétitivité (PdC)] are intended to be novel and ambitious engines of regional growth, employment and biomedical innovation. Partly funded by government and local councils, they aim to capitalize on regional expertise by bringing together basic scientists, clinicians, innovative entrepreneurs and local decision-makers around specific themes that have become too costly and complex for any of these actors to tackle alone. Clusters provide the critical mass required both to underpin innovation potential and to authenticate regional claims to international competitiveness. Medicen is a biomedicine and therapeutics cluster comprising 120 partners from four broad "colleges" in the greater Paris region: major industry, small and medium-sized businesses, teaching hospitals/State research bodies, and local councils. Chief among its cooperative R&D projects is the neuroscience subcluster, in which "TransAl" the neurodegenerative disease project, counts Sanofi-Aventis, Servier and the French Atomic Energy Commission [Commissariat à l'Energie Atomique (CEA)] as key partners. One main aim is to develop an experimental model in rhesus monkeys in which a putative cause of Alzheimer's disease, intracerebral accumulation of b-amyloid peptide, is generated by impairing the peptide's clearance. The other aim, in which the nuclear medicine expertise of the CEA will be crucial, is to identify, characterize and validate markers for magnetic resonance and positron emission tomography imaging, and to source biomarkers from cerebrospinal fluid proteomics. A human biological resource centre (DNA and tissue banks) project dedicated to neurological and psychiatric disease should be up and running in 2007. Only through fundamental restructuring of resources on such a large cooperative scale are solutions likely to be found to the major problems of modern medicine, bringing healthcare and regional socioeconomic benefits in its wake.

  11. Life history and biogeographic diversification of an endemic western North American freshwater fish clade using a comparative species tree approach.

    PubMed

    Baumsteiger, Jason; Kinziger, Andrew P; Aguilar, Andres

    2012-12-01

    The west coast of North America contains a number of biogeographic freshwater provinces which reflect an ever-changing aquatic landscape. Clues to understanding this complex structure are often encapsulated genetically in the ichthyofauna, though frequently as unresolved evolutionary relationships and putative cryptic species. Advances in molecular phylogenetics through species tree analyses now allow for improved exploration of these relationships. Using a comprehensive approach, we analyzed two mitochondrial and nine nuclear loci for a group of endemic freshwater fish (sculpin-Cottus) known for a wide ranging distribution and complex species structure in this region. Species delimitation techniques identified three novel cryptic lineages, all well supported by phylogenetic analyses. Comparative phylogenetic analyses consistently found five distinct clades reflecting a number of unique biogeographic provinces. Some internal node relationships varied by species tree reconstruction method, and were associated with either Bayesian or maximum likelihood statistical approaches or between mitochondrial, nuclear, and combined datasets. Limited cases of mitochondrial capture were also evident, suggestive of putative ancestral hybridization between species. Biogeographic diversification was associated with four major regions and revealed historical faunal exchanges across regions. Mapping of an important life-history character (amphidromy) revealed two separate instances of trait evolution, a transition that has occurred repeatedly in Cottus. This study demonstrates the power of current phylogenetic methods, the need for a comprehensive phylogenetic approach, and the potential for sculpin to serve as an indicator of biogeographic history for native ichthyofauna in the region. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Dose- and time-dependent expression of aryl hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translocator (ARNT) in PCB-, B[a]P-, and TBT-exposed intertidal copepod Tigriopus japonicus.

    PubMed

    Kim, Bo-Mi; Rhee, Jae-Sung; Hwang, Un-Ki; Seo, Jung Soo; Shin, Kyung-Hoon; Lee, Jae-Seong

    2015-02-01

    The aryl hydrocarbon receptor (AhR) and aryl hydrocarbon nuclear translocator (ARNT) genes from the copepod Tigriopus japonicus (Tj) were cloned to examine their potential functions in the invertebrate putative AhR-CYP signaling pathway. The amino acid sequences encoded by the Tj-AhR and Tj-ARNT genes showed high similarity to homologs of Daphnia and Drosophila, ranging from 68% and 70% similarity for the AhR genes to 56% for the ARNT genes. To determine whether Tj-AhR and Tj-ARNT are modulated by environmental pollutants, transcriptional expression of Tj-AhR and Tj-ARNT was analyzed in response to exposure to five concentrations of polychlorinated biphenyl (PCB 126) (control, 10, 50, 100, 500 μg L(-1)), benzo[a]pyrene (B[a]P) (control, 5, 10, 50, 100 μg L(-1)), and tributyltin (TBT) (control, 1, 5, 10, 20 μg L(-1)) 24h after exposure. A time-course experiment (0, 3, 6, 12, 24h) was performed to analyze mRNA expression patterns after exposure to PCB, B[a]P, and TBT. T. japonicus exhibited dose-dependent and time-dependent upregulation of Tj-AhR and Tj-ARNT in response to pollutant exposure, and the degree of expression was dependent on the pollutant, suggesting that pollutants such as PCB, B[a]P, and TBT modulate expression of Tj-AhR and Tj-ARNT genes in the putative AhR-CYP signaling pathway. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Computational identification of post-translational modification-based nuclear import regulations by characterizing nuclear localization signal-import receptor interaction.

    PubMed

    Lin, Jhih-Rong; Liu, Zhonghao; Hu, Jianjun

    2014-10-01

    The binding affinity between a nuclear localization signal (NLS) and its import receptor is closely related to corresponding nuclear import activity. PTM-based modulation of the NLS binding affinity to the import receptor is one of the most understood mechanisms to regulate nuclear import of proteins. However, identification of such regulation mechanisms is challenging due to the difficulty of assessing the impact of PTM on corresponding nuclear import activities. In this study we proposed NIpredict, an effective algorithm to predict nuclear import activity given its NLS, in which molecular interaction energy components (MIECs) were used to characterize the NLS-import receptor interaction, and the support vector regression machine (SVR) was used to learn the relationship between the characterized NLS-import receptor interaction and the corresponding nuclear import activity. Our experiments showed that nuclear import activity change due to NLS change could be accurately predicted by the NIpredict algorithm. Based on NIpredict, we developed a systematic framework to identify potential PTM-based nuclear import regulations for human and yeast nuclear proteins. Application of this approach has identified the potential nuclear import regulation mechanisms by phosphorylation of two nuclear proteins including SF1 and ORC6. © 2014 Wiley Periodicals, Inc.

  14. [Detection of putative polysaccharide biosynthesis genes in Azospirillum brasilense strains from serogroups I and II].

    PubMed

    Petrova, L P; Prilipov, A G; Katsy, E I

    2017-01-01

    It is known that in Azospirillum brasilense strains Sp245 and SR75 included in serogroup I, the repeat units of their O-polysaccharides consist of five residues of D-rhamnose, and in strain SR15, of four; and the heteropolymeric O-polysaccharide of A. brasilense type strain Sp7 from serogroup II contains not less than five types of repeat units. In the present work, a complex of nondegenerate primers to the genes of A. brasilense Sp245 plasmids AZOBR_p6, AZOBR_p3, and AZOBR_p2, which encode putative enzymes for the biosynthesis of core oligosaccharide and O-polysaccharide of lipopolysaccharide, capsular polysaccharides, and exopolysaccharides, was proposed. By using the designed primers, products of the expected sizes were synthesized in polymerase chain reactions on genomic DNA of A. brasilense Sp245, SR75, SR15, and Sp7 in 36, 29, 23, and 12 cases, respectively. As a result of sequencing of a number of amplicons, a high (86–99%) level of identity of the corresponding putative polysaccharide biosynthesis genes in three A. brasilense strains from serogroup I was detected. In a blotting-hybridization reaction with the biotin-labeled DNA of the A. brasilense gene AZOBR_p60122 coding for putative permease of the ABC transporter of polysaccharides, localization of the homologous gene in ~120-MDa plasmids of the bacteria A. brasilense SR15 and SR75 was revealed.

  15. Exact solution of equations for proton localization in neutron star matter

    NASA Astrophysics Data System (ADS)

    Kubis, Sebastian; Wójcik, Włodzimierz

    2015-11-01

    The rigorous treatment of proton localization phenomenon in asymmetric nuclear matter is presented. The solution of proton wave function and neutron background distribution is found by the use of the extended Thomas-Fermi approach. The minimum of energy is obtained in the Wigner-Seitz approximation of a spherically symmetric cell. The analysis of four different nuclear models suggests that the proton localization is likely to take place in the interior of a neutron star.

  16. Nuclear Receptors and AMPK: Can Exercise Mimetics Cure Diabetes?

    PubMed Central

    Wall, Christopher E.; Yu, Ruth T.; Atkins, Anne R.; Downes, Michael; Evans, Ronald M.

    2016-01-01

    Endurance exercise can lead to systemic improvements in insulin sensitivity and metabolic homeostasis, and is an effective approach to combat metabolic diseases. Pharmacological compounds that recapitulate the beneficial effects of exercise, also known as “exercise mimetics,” have the potential to improve disease symptoms of metabolic syndrome. These drugs, which can increase energy expenditure, suppress hepatic gluconeogenesis, and induce insulin sensitization, have accordingly been highly scrutinized for their utility in treating metabolic diseases including diabetes. Nevertheless, the identity of an efficacious exercise mimetic still remains elusive. In this article, we will highlight several nuclear receptors and cofactors that are putative molecular targets for exercise mimetics, and review recent studies that provide advancements in our mechanistic understanding of how exercise mimetics exert their beneficial effects. We will also discuss evidence from clinical trials utilizing these compounds in human subjects to evaluate their efficacy in treating diabetes. PMID:27106806

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraitiene, Asta; US Department of Agriculture, Agricultural Research Service, Molecular Plant Pathology Laboratory, Room 214 Building 004 BARC-West, 10300 Baltimore Avenue, Beltsville, MD 20705; Zhao Yan

    Transient expression of engineered reporter RNAs encoding an intron-containing green fluorescent protein (GFP) from a Potato virus X-based expression vector previously demonstrated the nuclear targeting capability of the 359 nucleotide Potato spindle tuber viroid (PSTVd) RNA genome. To further delimit the putative nuclear-targeting signal, PSTVd subgenomic fragments were embedded within the intron, and recombinant reporter RNAs were inoculated onto Nicotiana benthamiana plants. Appearance of green fluorescence in leaf tissue inoculated with PSTVd-fragment-containing constructs indicated shuttling of the RNA into the nucleus by fragments as short as 80 nucleotides in length. Plant-to-plant variation in the timing of intron removal and subsequentmore » GFP fluorescence was observed; however, earliest and most abundant GFP expression was obtained with constructs containing the conserved hairpin I palindrome structure and embedded upper central conserved region. Our results suggest that this conserved sequence and/or the stem-loop structure it forms is sufficient for import of PSTVd into the nucleus.« less

  18. Impact of the 26mAl(p, γ) reaction to galactic 26Al yield

    NASA Astrophysics Data System (ADS)

    Kahl, D.; Shimizu, H.; Yamaguchi, H.; Abe, K.; Beliuskina, O.; Cha, S. M.; Chae, K. Y.; Chen, A. A.; Ge, Z.; Hayakawa, S.; Imai, N.; Iwasa, N.; Kim, A.; Kim, D. H.; Kim, M. J.; Kubono, S.; Kwag, M. S.; Liang, J.; Moon, J. Y.; Nishimura, S.; Oka, S.; Park, S. Y.; Psaltis, A.; Teranishi, T.; Ueno, Y.; Yang, L.

    2018-04-01

    Astrophysical observables that are directly linked to nuclear physics inputs provide critical and stringent constraints on nucleosynthetic models. As 26Al was the first specific radioactivity observed in the Galaxy, its origin has fascinated the nuclear astrophysics community for nearly forty years. Despite extensive research, the precise origins of 26Al remain elusive. At present, the sum of all putative stellar contributions generally overestimates the 26Al mass in the interstellar medium. Among the many reactions that influence the yield of 26Al, radiative proton capture on its isomer 26mAl is one of the least constrained reactions by experimental data. To this end, we developed a 26Al isomeric beam and performed proton elastic scattering to search for low-spin states in 27Si. The experimental method and the preliminary results of this on-going study will be presented.

  19. Effects of sulfite on the uptake and binding of benzo[a]pyrene diol epoxide in cultured murine respiratory epithelial cells.

    PubMed Central

    Green, J L; Jones, B C; Reed, G A

    1994-01-01

    Sulfur dioxide (SO2) may act as a cocarcinogen with benzo[a]pyrene (BaP) in the respiratory tract. We have modeled this effect by examining the interactions of 7r,8t-dihydroxy-9t,10t-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (anti-BPDE) with sulfite, the physiological form of SO2, in a murine respiratory epithelial cell line (C10). We exposed C10 cells to [3H]-anti-BPDE and determined the effects of 1 and 10 mM sulfite on the uptake and subcellular localization of labeled products. Autoradiographic analysis showed that sulfite doubled the nuclear localization of anti-BPDE-derived materials after a 4-hr incubation period. The net nuclear localization of anti-BPDE-derived materials was not affected by sulfite during the first 60 min, but nuclear localization continued to increase in the sulfite-containing incubations throughout the 4-hr incubation period. Little increase in nuclear localization of anti-BPDE-derived material was noted in the incubations without sulfite after 60 min. Subcellular fractionation was performed to determine the amount of label associated with cytosolic and nuclear fractions and to determine covalent binding to protein and DNA. Sulfite produced a modest increase in the amount of [3H]-anti-BPDE-derived products bound to protein; however, binding to nuclear DNA increased by more than 200% with 10 mM sulfite. Analysis of the supernatants from the cytosolic and nuclear fractions of cells exposed to anti-BPDE and sulfite demonstrated the presence of 7r,8t,9t-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene-10c-su lfonate (BPT-10-sulfonate). [3H]-BPT-10-sulfonate was unable to enter C10 cells, suggesting that it is formed intracellularly.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1. Figure 2. Figure 3. Figure 3. Figure 3. Figure 3. Figure 3. Figure 3. Figure 4. PMID:8033853

  20. Evolutionary Relationships and Functional Diversity of Plant Sulfate Transporters

    PubMed Central

    Takahashi, Hideki; Buchner, Peter; Yoshimoto, Naoko; Hawkesford, Malcolm J.; Shiu, Shin-Han

    2011-01-01

    Sulfate is an essential nutrient cycled in nature. Ion transporters that specifically facilitate the transport of sulfate across the membranes are found ubiquitously in living organisms. The phylogenetic analysis of known sulfate transporters and their homologous proteins from eukaryotic organisms indicate two evolutionarily distinct groups of sulfate transport systems. One major group named Tribe 1 represents yeast and fungal SUL, plant SULTR, and animal SLC26 families. The evolutionary origin of SULTR family members in land plants and green algae is suggested to be common with yeast and fungal SUL and animal anion exchangers (SLC26). The lineage of plant SULTR family is expanded into four subfamilies (SULTR1–SULTR4) in land plant species. By contrast, the putative SULTR homologs from Chlorophyte green algae are in two separate lineages; one with the subfamily of plant tonoplast-localized sulfate transporters (SULTR4), and the other diverged before the appearance of lineages for SUL, SULTR, and SLC26. There also was a group of yet undefined members of putative sulfate transporters in yeast and fungi divergent from these major lineages in Tribe 1. The other distinct group is Tribe 2, primarily composed of animal sodium-dependent sulfate/carboxylate transporters (SLC13) and plant tonoplast-localized dicarboxylate transporters (TDT). The putative sulfur-sensing protein (SAC1) and SAC1-like transporters (SLT) of Chlorophyte green algae, bryophyte, and lycophyte show low degrees of sequence similarities with SLC13 and TDT. However, the phylogenetic relationship between SAC1/SLT and the other two families, SLC13 and TDT in Tribe 2, is not clearly supported. In addition, the SAC1/SLT family is absent in the angiosperm species analyzed. The present study suggests distinct evolutionary trajectories of sulfate transport systems for land plants and green algae. PMID:22629272

  1. Evolutionary relationships and functional diversity of plant sulfate transporters.

    PubMed

    Takahashi, Hideki; Buchner, Peter; Yoshimoto, Naoko; Hawkesford, Malcolm J; Shiu, Shin-Han

    2011-01-01

    Sulfate is an essential nutrient cycled in nature. Ion transporters that specifically facilitate the transport of sulfate across the membranes are found ubiquitously in living organisms. The phylogenetic analysis of known sulfate transporters and their homologous proteins from eukaryotic organisms indicate two evolutionarily distinct groups of sulfate transport systems. One major group named Tribe 1 represents yeast and fungal SUL, plant SULTR, and animal SLC26 families. The evolutionary origin of SULTR family members in land plants and green algae is suggested to be common with yeast and fungal SUL and animal anion exchangers (SLC26). The lineage of plant SULTR family is expanded into four subfamilies (SULTR1-SULTR4) in land plant species. By contrast, the putative SULTR homologs from Chlorophyte green algae are in two separate lineages; one with the subfamily of plant tonoplast-localized sulfate transporters (SULTR4), and the other diverged before the appearance of lineages for SUL, SULTR, and SLC26. There also was a group of yet undefined members of putative sulfate transporters in yeast and fungi divergent from these major lineages in Tribe 1. The other distinct group is Tribe 2, primarily composed of animal sodium-dependent sulfate/carboxylate transporters (SLC13) and plant tonoplast-localized dicarboxylate transporters (TDT). The putative sulfur-sensing protein (SAC1) and SAC1-like transporters (SLT) of Chlorophyte green algae, bryophyte, and lycophyte show low degrees of sequence similarities with SLC13 and TDT. However, the phylogenetic relationship between SAC1/SLT and the other two families, SLC13 and TDT in Tribe 2, is not clearly supported. In addition, the SAC1/SLT family is absent in the angiosperm species analyzed. The present study suggests distinct evolutionary trajectories of sulfate transport systems for land plants and green algae.

  2. NG2/CSPG4-collagen type VI interplays putatively involved in the microenvironmental control of tumour engraftment and local expansion.

    PubMed

    Cattaruzza, Sabrina; Nicolosi, Pier Andrea; Braghetta, Paola; Pazzaglia, Laura; Benassi, Maria Serena; Picci, Piero; Lacrima, Katia; Zanocco, Daniela; Rizzo, Erika; Stallcup, William B; Colombatti, Alfonso; Perris, Roberto

    2013-06-01

    In soft-tissue sarcoma patients, enhanced expression of NG2/CSPG4 proteoglycan in pre-surgical primary tumours predicts post-surgical metastasis formation and thereby stratifies patients into disease-free survivors and patients destined to succumb to the disease. Both primary and secondary sarcoma lesions also up-regulate collagen type VI, a putative extracellular matrix ligand of NG2, and this matrix alteration potentiates the prognostic impact of NG2. Enhanced constitutive levels of the proteoglycan in isolated sarcoma cells closely correlate with a superior engraftment capability and local growth in xenogenic settings. This apparent NG2-associated malignancy was also corroborated by the diverse tumorigenic behaviour in vitro and in vivo of immunoselected NG2-expressing and NG2-deficient cell subsets, by RNAi-mediated knock down of endogenous NG2, and by ectopic transduction of full-length or deletion constructs of NG2. Cells with modified expression of NG2 diverged in their interaction with purified Col VI, matrices supplemented with Col VI, and cell-free matrices isolated from wild-type and Col VI null fibroblasts. The combined use of dominant-negative NG2 mutant cells and purified domain fragments of the collagen allowed us to pinpoint the reciprocal binding sites within the two molecules and to assert the importance of this molecular interaction in the control of sarcoma cell adhesion and motility. The NG2-mediated binding to Col VI triggered activation of convergent cell survival- and cell adhesion/migration-promoting signal transduction pathways, implicating PI-3K as a common denominator. Thus, the findings point to an NG2-Col VI interplay as putatively involved in the regulation of the cancer cell-host microenvironment interactions sustaining sarcoma progression.

  3. Compositional profile of α / β-hydrolase fold proteins in mangrove soil metagenomes: prevalence of epoxide hydrolases and haloalkane dehalogenases in oil-contaminated sites.

    PubMed

    Jiménez, Diego Javier; Dini-Andreote, Francisco; Ottoni, Júlia Ronzella; de Oliveira, Valéria Maia; van Elsas, Jan Dirk; Andreote, Fernando Dini

    2015-05-01

    The occurrence of genes encoding biotechnologically relevant α/β-hydrolases in mangrove soil microbial communities was assessed using data obtained by whole-metagenome sequencing of four mangroves areas, denoted BrMgv01 to BrMgv04, in São Paulo, Brazil. The sequences (215 Mb in total) were filtered based on local amino acid alignments against the Lipase Engineering Database. In total, 5923 unassembled sequences were affiliated with 30 different α/β-hydrolase fold superfamilies. The most abundant predicted proteins encompassed cytosolic hydrolases (abH08; ∼ 23%), microsomal hydrolases (abH09; ∼ 12%) and Moraxella lipase-like proteins (abH04 and abH01; < 5%). Detailed analysis of the genes predicted to encode proteins of the abH08 superfamily revealed a high proportion related to epoxide hydrolases and haloalkane dehalogenases in polluted mangroves BrMgv01-02-03. This suggested selection and putative involvement in local degradation/detoxification of the pollutants. Seven sequences that were annotated as genes for putative epoxide hydrolases and five for putative haloalkane dehalogenases were found in a fosmid library generated from BrMgv02 DNA. The latter enzymes were predicted to belong to Actinobacteria, Deinococcus-Thermus, Planctomycetes and Proteobacteria. Our integrated approach thus identified 12 genes (complete and/or partial) that may encode hitherto undescribed enzymes. The low amino acid identity (< 60%) with already-described genes opens perspectives for both production in an expression host and genetic screening of metagenomes. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  4. Localization and expression of putative circadian clock transcripts in the brain of the nudibranch Melibe leonina.

    PubMed

    Duback, Victoria E; Sabrina Pankey, M; Thomas, Rachel I; Huyck, Taylor L; Mbarani, Izhar M; Bernier, Kyle R; Cook, Geoffrey M; O'Dowd, Colleen A; Newcomb, James M; Watson, Winsor H

    2018-09-01

    The nudibranch, Melibe leonina, expresses a circadian rhythm of locomotion, and we recently determined the sequences of multiple circadian clock transcripts that may play a role in controlling these daily patterns of behavior. In this study, we used these genomic data to help us: 1) identify putative clock neurons using fluorescent in situ hybridization (FISH); and 2) determine if there is a daily rhythm of expression of clock transcripts in the M. leonina brain, using quantitative PCR. FISH indicated the presence of the clock-related transcripts clock, period, and photoreceptive and non-photoreceptive cryptochrome (pcry and npcry, respectively) in two bilateral neurons in each cerebropleural ganglion and a group of <10 neurons in the anterolateral region of each pedal ganglion. Double-label experiments confirmed colocalization of all four clock transcripts with each other. Quantitative PCR demonstrated that the genes clock, period, pcry and npcry exhibited significant differences in expression levels over 24 h. These data suggest that the putative circadian clock network in M. leonina consists of a small number of identifiable neurons that express circadian genes with a daily rhythm. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Local negotiation on compensation siting of the spent nuclear fuel repository in Finland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojo, Matti

    The aim of the paper is to analyse the local negotiation process between the Municipality of Eurajoki and the nuclear power company Teollisuuden Voima (TVO) and the nuclear waste management company Posiva Oy. The aim of the negotiations was to find an acceptable form of compensation for siting a spent nuclear fuel repository in Olkiluoto, Finland. The paper includes background information on the siting process in Finland, the local political setting in the Municipality of Eurajoki and a description of the negotiation process. The analysis of the negotiations on compensation is important for better understanding the progress of the Finnishmore » siting process. The paper describes the picture of the contest to host the spent nuclear fuel repository. It also provides more information on the relationship between the Municipality of Eurajoki and the power company TVO. The negotiations on compensation and the roles of various players in the negotiations have not been studied in detail because the minutes of the Vuojoki liaison group were not available before the decision of the Supreme Administrative Court in May 2006. (author)« less

  6. Microscopically based energy density functionals for nuclei using the density matrix expansion. II. Full optimization and validation

    NASA Astrophysics Data System (ADS)

    Navarro Pérez, R.; Schunck, N.; Dyhdalo, A.; Furnstahl, R. J.; Bogner, S. K.

    2018-05-01

    Background: Energy density functional methods provide a generic framework to compute properties of atomic nuclei starting from models of nuclear potentials and the rules of quantum mechanics. Until now, the overwhelming majority of functionals have been constructed either from empirical nuclear potentials such as the Skyrme or Gogny forces, or from systematic gradient-like expansions in the spirit of the density functional theory for atoms. Purpose: We seek to obtain a usable form of the nuclear energy density functional that is rooted in the modern theory of nuclear forces. We thus consider a functional obtained from the density matrix expansion of local nuclear potentials from chiral effective field theory. We propose a parametrization of this functional carefully calibrated and validated on selected ground-state properties that is suitable for large-scale calculations of nuclear properties. Methods: Our energy functional comprises two main components. The first component is a non-local functional of the density and corresponds to the direct part (Hartree term) of the expectation value of local chiral potentials on a Slater determinant. Contributions to the mean field and the energy of this term are computed by expanding the spatial, finite-range components of the chiral potential onto Gaussian functions. The second component is a local functional of the density and is obtained by applying the density matrix expansion to the exchange part (Fock term) of the expectation value of the local chiral potential. We apply the UNEDF2 optimization protocol to determine the coupling constants of this energy functional. Results: We obtain a set of microscopically constrained functionals for local chiral potentials from leading order up to next-to-next-to-leading order with and without three-body forces and contributions from Δ excitations. These functionals are validated on the calculation of nuclear and neutron matter, nuclear mass tables, single-particle shell structure in closed-shell nuclei, and the fission barrier of 240Pu. Quantitatively, they perform noticeably better than the more phenomenological Skyrme functionals. Conclusions: The inclusion of higher-order terms in the chiral perturbation expansion seems to produce a systematic improvement in predicting nuclear binding energies while the impact on other observables is not really significant. This result is especially promising since all the fits have been performed at the single-reference level of the energy density functional approach, where important collective correlations such as center-of-mass correction, rotational correction, or zero-point vibrational energies have not been taken into account yet.

  7. Nucleolar localization of cirhin, the protein mutated in North American Indian childhood cirrhosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Bin; Mitchell, Grant A.; Richter, Andrea

    2005-12-10

    Cirhin (NP{sub 1}16219), the product of the CIRH1A gene is mutated in North American Indian childhood cirrhosis (NAIC/CIRH1A, OMIM 604901), a severe autosomal recessive intrahepatic cholestasis. It is a 686-amino-acid WD40-repeat containing protein of unknown function that is predicted to contain multiple targeting signals, including an N-terminal mitochondrial targeting signal, a C-terminal monopartite nuclear localization signal (NLS) and a bipartite nuclear localization signal (BNLS). We performed the direct determination of subcellular localization of cirhin as a crucial first step in unraveling its biological function. Using EGFP and His-tagged cirhin fusion proteins expressed in HeLa and HepG2, cells we show thatmore » cirhin is a nucleolar protein and that the R565W mutation, for which all NAIC patients are homozygous, has no effect on subcellular localization. Cirhin has an active C-terminal monopartite nuclear localization signal (NLS) and a unique nucleolar localization signal (NrLS) between residues 315 and 432. The nucleolus is not known to be important specifically for intrahepatic cholestasis. These observations provide a new dimension in the study of hereditary cholestasis.« less

  8. Probabilistic expert systems for forensic inference from DNA markers in horses: applications to confirm genealogies with lack of genetic data.

    PubMed

    Dobosz, Marina; Bocci, Chiara; Bonuglia, Margherita; Grasso, Cinzia; Merigioli, Sara; Russo, Alessandra; De Iuliis, Paolo

    2010-01-01

    Microsatellites have been used for parentage testing and individual identification in forensic science because they are highly polymorphic and show abundant sequences dispersed throughout most eukaryotic nuclear genomes. At present, genetic testing based on DNA technology is used for most domesticated animals, including horses, to confirm identity, to determine parentage, and to validate registration certificates. But if genetic data of one of the putative parents are missing, verifying a genealogy could be questionable. The aim of this paper is to illustrate a new approach to analyze complex cases of disputed relationship with microsatellites markers. These cases were solved by analyzing the genotypes of the offspring and other horses' genotypes in the pedigrees of the putative dam/sire with probabilistic expert systems (PESs). PES was especially efficient in supplying reliable, error-free Bayesian probabilities in complex cases with missing pedigree data. One of these systems was developed for forensic purposes (FINEX program) and is particularly valuable in human analyses. We applied this program to parentage analysis in horses, and we will illustrate how different cases have been successfully worked out.

  9. The goldfish nervus terminalis: a luteinizing hormone-releasing hormone and molluscan cardioexcitatory peptide immunoreactive olfactoretinal pathway.

    PubMed

    Stell, W K; Walker, S E; Chohan, K S; Ball, A K

    1984-02-01

    Antisera to two putative neurotransmitters, luteinizing hormone-releasing hormone (LHRH) and molluscan cardioexcitatory tetrapeptide (H-Phe-Met-Arg-Phe-NH2; FMRF-amide), bind specifically to neurites in the inner nuclear and inner plexiform layers of the goldfish retina. Retrograde labeling showed that intraocular axon terminals originate from the nervus terminalis, whose cell bodies are located in the olfactory nerves. Double immunocytochemical and retrograde labeling showed that some terminalis neurons project to the retina; others may project only within the brain. All terminalis neurons having proven retinal projections were both LHRH- and FMRF-amide-immunoreactive. The activity of retinal ganglion cells was recorded with microelectrodes in isolated superfused goldfish retinas. In ON- and OFF-center double-color-opponent cells, micromolar FMRF-amide and salmon brain gonadotropin-releasing factor ( [Trp7, Leu8] LHRH) caused increased spontaneous activity in the dark, loss of light-induced inhibition, and increased incidence of light-entrained pulsatile response. The nervus terminalis is therefore a putatively peptidergic retinopetal projection. Sex-related olfactory stimuli may act through it, thereby modulating the output of ganglion cells responsive to color contrast.

  10. Human Pif1 helicase unwinds synthetic DNA structures resembling stalled DNA replication forks

    PubMed Central

    George, Tresa; Wen, Qin; Griffiths, Richard; Ganesh, Anil; Meuth, Mark; Sanders, Cyril M.

    2009-01-01

    Pif-1 proteins are 5′→3′ superfamily 1 (SF1) helicases that in yeast have roles in the maintenance of mitochondrial and nuclear genome stability. The functions and activities of the human enzyme (hPif1) are unclear, but here we describe its DNA binding and DNA remodeling activities. We demonstrate that hPif1 specifically recognizes and unwinds DNA structures resembling putative stalled replication forks. Notably, the enzyme requires both arms of the replication fork-like structure to initiate efficient unwinding of the putative leading replication strand of such substrates. This DNA structure-specific mode of initiation of unwinding is intrinsic to the conserved core helicase domain (hPifHD) that also possesses a strand annealing activity as has been demonstrated for the RecQ family of helicases. The result of hPif1 helicase action at stalled DNA replication forks would generate free 3′ ends and ssDNA that could potentially be used to assist replication restart in conjunction with its strand annealing activity. PMID:19700773

  11. Overlapping contributions of Msh1p and putative recombination proteins Cce1p, Din7p, and Mhr1p in large-scale recombination and genome sorting events in the mitochondrial genome of Saccharomyces cerevisiae.

    PubMed

    Mookerjee, Shona A; Sia, Elaine A

    2006-03-20

    The mechanisms that govern mutation avoidance in the mitochondrial genome, though believed to be numerous, are poorly understood. The identification of individual genes has implicated mismatch repair and several recombination pathways in maintaining the fidelity and structural stability of mitochondrial DNA. However, the majority of genes in these pathways have not been identified and the interactions between different pathways have not been extensively studied. Additionally, the multicopy presence of the mitochondrial genome affects the occurrence and persistence of mutant phenotypes, making mitochondrial DNA transmission and sorting important factors affecting mutation accumulation. We present new evidence that the putative recombination genes CCE1, DIN7, and MHR1 have overlapping function with the mismatch repair homolog MSH1 in point mutation avoidance and suppression of aberrant recombination events. In addition, we demonstrate a novel role for Msh1p in mtDNA transmission, a role not predicted by studies of its nuclear homologs.

  12. The importance of genetic verification for determination of Atlantic salmon in north Pacific waters

    USGS Publications Warehouse

    Nielsen, J.L.; Williams, I.; Sage, G.K.; Zimmerman, C.E.

    2003-01-01

    Genetic analyses of two unknown but putative Atlantic salmon Salmo salar captured in the Copper River drainage, Alaska, demonstrated the need for validation of morphologically unusual fishes. Mitochondrial DNA sequences (control region and cytochrome b) and data from two nuclear genes [first internal transcribed spacer (ITS-1) sequence and growth hormone (GH1) amplification product] indicated that the fish caught in fresh water on the Martin River was a coho salmon Oncorhynchus kisutch, while the other fish caught in the intertidal zone of the Copper River delta near Grass Island was an Atlantic salmon. Determination of unusual or cryptic fish based on limited physical characteristics and expected seasonal spawning run timing will add to the controversy over farmed Atlantic salmon and their potential effects on native Pacific species. It is clear that determination of all putative collections of Atlantic salmon found in Pacific waters requires validation. Due to uncertainty of fish identification in the field using plastic morphometric characters, it is recommended that genetic analyses be part of the validation process. ?? 2003 The Fisheries Society of the British Isles.

  13. Effects of the nuclear localization of the N(pro) protein of classical swine fever virus on its virulence in pigs.

    PubMed

    Li, Yongfeng; Shen, Liang; Sun, Yuan; Wang, Xiao; Li, Chao; Huang, Junhua; Chen, Jianing; Li, Lianfeng; Zhao, Bibo; Luo, Yuzi; Li, Su; Qiu, Hua-Ji

    2014-12-05

    The N(pro) protein of classical swine fever virus (CSFV) is localized in the cytoplasm and nucleus. However, it is unknown whether the nuclear localization of N(pro) correlates with the virulence of CSFV in the host. Previously, we showed that the N(pro) protein fused with interferon regulatory factor 3 (IRF3) was present only in the cytoplasm. Here, we generated and evaluated a recombinant CSFV vSM-IRF3 harboring the IRF3 gene inserted into the N(pro) gene of the highly virulent CSFV Shimen strain. Compared to the even nuclear and cytoplasmic distribution of the enhanced green fluorescent protein (EGFP)-N(pro) fusion expressed by the recombinant CSFV EGFP-CSFV, vSM-IRF3 expressed an IRF3-N(pro) fusion protein that only was localized in the cytoplasm. vSM-IRF3 was markedly attenuated in vitro and in vivo, and the inoculated pigs were completely protected from lethal CSFV challenge, whereas the parental virus as well as EGFP-CSFV exhibited a typical virulent phenotype. Taken together, the nuclear localization of N(pro) plays a significant role in the CSFV replication and virulence. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. The Pseudorabies Virus DNA Polymerase Accessory Subunit UL42 Directs Nuclear Transport of the Holoenzyme

    PubMed Central

    Wang, Yi-Ping; Du, Wen-Juan; Huang, Li-Ping; Wei, Yan-Wu; Wu, Hong-Li; Feng, Li; Liu, Chang-Ming

    2016-01-01

    Pseudorabies virus (PRV) DNA replication occurs in the nuclei of infected cells and requires the viral DNA polymerase. The PRV DNA polymerase comprises a catalytic subunit, UL30, and an accessory subunit, UL42, that confers processivity to the enzyme. Its nuclear localization is a prerequisite for its enzymatic function in the initiation of viral DNA replication. However, the mechanisms by which the PRV DNA polymerase holoenzyme enters the nucleus have not been determined. In this study, we characterized the nuclear import pathways of the PRV DNA polymerase catalytic and accessory subunits. Immunofluorescence analysis showed that UL42 localizes independently in the nucleus, whereas UL30 alone predominantly localizes in the cytoplasm. Intriguingly, the localization of UL30 was completely shifted to the nucleus when it was coexpressed with UL42, demonstrating that nuclear transport of UL30 occurs in an UL42-dependent manner. Deletion analysis and site-directed mutagenesis of the two proteins showed that UL42 contains a functional and transferable bipartite nuclear localization signal (NLS) at amino acids 354–370 and that K354, R355, and K367 are important for the NLS function, whereas UL30 has no NLS. Coimmunoprecipitation assays verified that UL42 interacts with importins α3 and α4 through its NLS. In vitro nuclear import assays demonstrated that nuclear accumulation of UL42 is a temperature- and energy-dependent process and requires both importins α and β, confirming that UL42 utilizes the importin α/β-mediated pathway for nuclear entry. In an UL42 NLS-null mutant, the UL42/UL30 heterodimer was completely confined to the cytoplasm when UL42 was coexpressed with UL30, indicating that UL30 utilizes the NLS function of UL42 for its translocation into the nucleus. Collectively, these findings suggest that UL42 contains an importin α/β-mediated bipartite NLS that transports the viral DNA polymerase holoenzyme into the nucleus in an in vitro expression system. PMID:26913023

  15. Surface localization of the nuclear receptor CAR in influenza A virus-infected cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Tadanobu; Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, CREST, JST, and COE Program in the 21st Century, Shizuoka 422-8526; Moriyama, Yusuke

    Constitutive active/androstane receptor CAR is a member of the nuclear receptors which regulate transcription of xenobiotic metabolism enzymes. CAR is usually localized in the cytosol and nucleus. Here, we found that CAR was localized at the cell surface of influenza A virus (IAV)-infected cells. Additionally, we demonstrated that expression of a viral envelope glycoprotein, either hemagglutinin (HA) or neuraminidase (NA), but not viral nucleoprotein (NP), was responsible for this localization. This report is the first demonstration of CAR at the surface of tissue culture cells, and suggests that CAR may exert the IAV infection mechanism.

  16. Radioactive fallout projections and arms control agreements: INF (Intermediate-range Nuclear Forces) and START (Strategic Arms Reduction Treaty)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, C.S.

    1988-02-01

    Projections of levels of radioactive fallout from a nuclear war are sensitive to assumptions about the structure of the nuclear stockpiles as well as the assumed scenarios for a nuclear war. Recent arms control proposals would change these parameters. This paper examines the implications of the proposed (Intermediate-range Nuclear Forces) INF treaty and (Strategic Arms Reduction Treaty) START on fallout projections from a major nuclear war. We conclude that the INF reductions are likely to have negligible effects on estimates of global and local fallout, whereas the START reductions could result in reductions in estimates of local fallout that rangemore » from significant to dramatic, depending upon the nature of the reduced strategic forces. Should a major war occur, projections of total fatalities from direct effects of blast, thermal radiation, a nd fallout, and the phenomenon known as nuclear winter, would not be significantly affected by INF and START initiatives as now drafted. 14 refs.« less

  17. Conjecture Regarding Posttranslational Modifications to the Arabidopsis Type I Proton-Pumping Pyrophosphatase (AVP1)

    PubMed Central

    Pizzio, Gaston A.; Hirschi, Kendal D.; Gaxiola, Roberto A.

    2017-01-01

    Agbiotechnology uses genetic engineering to improve the output and value of crops. Altering the expression of the plant Type I Proton-pumping Pyrophosphatase (H+-PPase) has already proven to be a useful tool to enhance crop productivity. Despite the effective use of this gene in translational research, information regarding the intracellular localization and functional plasticity of the pump remain largely enigmatic. Using computer modeling several putative phosphorylation, ubiquitination and sumoylation target sites were identified that may regulate Arabidopsis H+-PPase (AVP1- Arabidopsis Vacuolar Proton-pump 1) subcellular trafficking and activity. These putative regulatory sites will direct future research that specifically addresses the partitioning and transport characteristics of this pump. We posit that fine-tuning H+-PPases activity and cellular distribution will facilitate rationale strategies for further genetic improvements in crop productivity. PMID:28955362

  18. STATs get their move on.

    PubMed

    Reich, Nancy C

    2013-10-01

    Understanding the mechanisms that regulate dynamic localization of a protein within a cell can provide critical insight to its functional molecular interactions. Signal transducers and activators of transcription (STATs) play essential roles in development, proliferation, and immune defense. However the consequences of STAT hyperactivity can predispose to diseases including autoimmunity and cancer. To function as transcription factors STATs must gain access to the nucleus, and knowledge of the mechanisms that regulate STAT nuclear trafficking can provide a means to control STAT action. This review presents a synopsis of some of the studies that address the nuclear dynamics of the STAT proteins. Evidence suggests that not all STATs are the same. Nuclear import of STAT1 and STAT4 appears linked to their tyrosine phosphorylation and the formation of parallel dimers via reciprocal phosphotyrosine and Src homology 2 domain interactions. This dimer arrangement generates a conformational nuclear localization signal. STAT2 is imported continually to the nucleus in an unphosphorylated state due to its association with IRF9, but the dominant nuclear export signal of STAT2 shuttles the complex back to the cytoplasm. Following STAT2 tyrosine phosphorylation, it can form dimers with STAT1 to affect nuclear import as the trimeric complex (ISGF3). Distinctly, STAT3, STAT5, and STAT6 are continually imported to the nucleus independent of tyrosine phosphorylation. Mutational studies indicate the nuclear localization signals in these STATs require the conformational structure of their coiled-coil domains. Increases in STAT nuclear accumulation following cytokine stimulation appear coordinate with their ability to bind DNA.

  19. Prolonged exposure to particulate chromate inhibits RAD51 nuclear import mediator proteins.

    PubMed

    Browning, Cynthia L; Wise, John Pierce

    2017-09-15

    Particulate hexavalent chromium (Cr(VI)) is a human lung carcinogen and a human health concern. The induction of structural chromosome instability is considered to be a driving mechanism of Cr(VI)-induced carcinogenesis. Homologous recombination repair protects against Cr(VI)-induced chromosome damage, due to its highly accurate repair of Cr(VI)-induced DNA double strand breaks. However, recent studies demonstrate Cr(VI) inhibits homologous recombination repair through the misregulation of RAD51. RAD51 is an essential protein in HR repair that facilitates the search for a homologous sequence. Recent studies show prolonged Cr(VI) exposure prevents proper RAD51 subcellular localization, causing it to accumulate in the cytoplasm. Since nuclear import of RAD51 is crucial to its function, this study investigated the effect of Cr(VI) on the RAD51 nuclear import mediators, RAD51C and BRCA2. We show acute (24h) Cr(VI) exposure induces the proper localization of RAD51C and BRCA2. In contrast, prolonged (120h) exposure increased the cytoplasmic localization of both proteins, although RAD51C localization was more severely impaired. These results correlate temporally with the previously reported Cr(VI)-induced RAD51 cytoplasmic accumulation. In addition, we found Cr(VI) does not inhibit interaction between RAD51 and its nuclear import mediators. Altogether, our results suggest prolonged Cr(VI) exposure inhibits the nuclear import of RAD51C, and to a lesser extent, BRCA2, which results in the cytoplasmic accumulation of RAD51. Cr(VI)-induced inhibition of nuclear import may play a key role in its carcinogenic mechanism since the nuclear import of many tumor suppressor proteins and DNA repair proteins is crucial to their function. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Nucleo-cytoplasmic shuttling of the endonuclease ankyrin repeats and LEM domain-containing protein 1 (Ankle1) is mediated by canonical nuclear export- and nuclear import signals.

    PubMed

    Zlopasa, Livija; Brachner, Andreas; Foisner, Roland

    2016-06-01

    Ankyrin repeats and LEM domain containing protein 1 (Ankle1) belongs to the LEM protein family, whose members share a chromatin-interacting LEM motif. Unlike most other LEM proteins, Ankle1 is not an integral protein of the inner nuclear membrane but shuttles between the nucleus and the cytoplasm. It contains a GIY-YIG-type nuclease domain, but its function is unknown. The mammalian genome encodes only one other GIY-YIG domain protein, termed Slx1. Slx1 has been described as a resolvase that processes Holliday junctions during homologous recombination-mediated DNA double strand break repair. Resolvase activity is regulated in a spatial and temporal manner during the cell cycle. We hypothesized that Ankle1 may have a similar function and its nucleo-cytoplasmic shuttling may contribute to the regulation of Ankle1 activity. Hence, we aimed at identifying the domains mediating Ankle1 shuttling and investigating whether cellular localization is affected during DNA damage response. Sequence analysis predicts the presence of two canonical nuclear import and export signals in Ankle1. Immunofluorescence microscopy of cells expressing wild-type and various mutated Ankle1-fusion proteins revealed a C-terminally located classical monopartite nuclear localization signal and a centrally located CRM1-dependent nuclear export signal that mediate nucleo-cytoplasmic shuttling of Ankle1. These sequences are also functional in heterologous proteins. The predominant localization of Ankle1 in the cytoplasm, however, does not change upon induction of several DNA damage response pathways throughout the cell cycle. We identified the domains mediating nuclear import and export of Ankle1. Ankle1's cellular localization was not affected following DNA damage.

  1. Identification and Functional Analysis of ZIC3 Mutations in Heterotaxy and Related Congenital Heart Defects

    PubMed Central

    Ware, Stephanie M.; Peng, Jianlan; Zhu, Lirong; Fernbach, Susan; Colicos, Suzanne; Casey, Brett; Towbin, Jeffrey; Belmont, John W.

    2004-01-01

    Mutations in the zinc finger transcription factor ZIC3 cause X-linked heterotaxy and have also been identified in patients with isolated congenital heart disease (CHD). To determine the relative contribution of ZIC3 mutations to both heterotaxy and isolated CHD, we screened the coding region of ZIC3 in 194 unrelated patients, including 61 patients with classic heterotaxy, 93 patients with heart defects characteristic of heterotaxy, and 11 patients with situs inversus totalis. Five novel ZIC3 mutations in three classic heterotaxy kindreds and two sporadic CHD cases were identified. None of these alleles was found in 97 ethnically matched control samples. On the basis of these analyses, we conclude that the phenotypic spectrum of ZIC3 mutations should be expanded to include affected females and CHD not typical for heterotaxy. This screening of a cohort of patients with sporadic heterotaxy indicates that ZIC3 mutations account for ∼1% of affected individuals. Missense and nonsense mutations were found in the highly conserved zinc finger–binding domain and in the N-terminal protein domain. Functional analysis of all currently known ZIC3 point mutations indicates that mutations in the putative zinc finger DNA binding domain and in the N-terminal domain result in loss of reporter gene transactivation. It is surprising that transfection studies demonstrate aberrant cytoplasmic localization resulting from mutations between amino acids 253–323 of the ZIC3 protein, indicating that the pathogenesis of a subset of ZIC3 mutations results at least in part from failure of appropriate nuclear localization. These results further expand the phenotypic and genotypic spectrum of ZIC3 mutations and provide initial mechanistic insight into their functional consequences. PMID:14681828

  2. Disruption of adherens junction and alterations in YAP-related proliferation behavior as part of the underlying cell transformation process of alcohol-induced oral carcinogenesis.

    PubMed

    Husari, Ayman; Hülter-Hassler, Diana; Steinberg, Thorsten; Schulz, Simon Daniel; Tomakidi, Pascal

    2018-01-01

    Accumulating evidences indicate that alcohol might play a causative in oral cancer. Unfortunately, in vitro cell systems, uncovering the molecular background of the underlying cell transformation process, are rare. Therefore, this study was conducted, to identify molecular changes and characterize their putative cell behavioral consequences in epitheloid (EPI) and fibroblastoid (FIB) oral keratinocyte phenotypes, arising from chronical alcohol treatment. Concerning adherens junctions (AJs), both EPI and FIB showed membrane-bound β-catenin, but exhibited differences for E-cadherin and zyxin. While EPI revealed E-cadherin/β-catenin membrane co-localization, which in parts also applied for zyxin, FIB membranes were devoid of E-cadherin and exhibited marginal zyxin expression. Fetal calf serum (FCS) administration in starved cells promoted proliferation in both keratinocyte phenotypes, whereat EPI and FIB yielded a strikingly modified FCS sensitivity on the temporal scale. Impedance measurement-based cell index detection yielded proliferation stimulation occurring much earlier in FIB (<20h) compared to EPI (>45h). Nuclear preference of the proliferation-associated YAP co-transcription factor in FIB was FCS independent, while it required FCS in EPI. Taken together, the lack of membrane-inherent E-cadherin/β-catenin co-localization together with low zyxin - reveals perturbation of AJ integrity in FIB. Regarding cell behavior, perturbed AJs in FIB correlate with temporal proliferation sensitivity towards FCS. CYF of 5.6 strongly suggests involvement of chromatin-bound YAP in FIB's proliferation temperosensitivity. These molecular differences detected for EPI and FIB are part of the underlying cell transformation process of alcohol-induced oral carcinogenesis, and indicate FIB being in a more advanced transformation stage. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Identification and Characterization of a PutAMT1;1 Gene from Puccinellia tenuiflora

    PubMed Central

    Bu, Yuanyuan; Sun, Bo; Zhou, Aimin; Zhang, Xinxin; Lee, Imshik; Liu, Shenkui

    2013-01-01

    Nitrogen is one of the most important limiting factors for plant growth. However, as ammonium is readily converted into ammonia (NH3) when soil pH rises above 8.0, this activity depletes the availability of ammonium (NH4 +) in alkaline soils, consequently preventing the growth of most plant species. The perennial wild grass Puccinellia tenuiflora is one of a few plants able to grow in soils with extremely high salt and alkaline pH (>9.0) levels. Here, we assessed how this species responds to ammonium under such conditions by isolating and analyzing the functions of a putative ammonium transporter (PutAMT1;1). PutAMT1;1 is the first member of the AMT1 (ammonium transporter) family that has been identified in P. tenuiflora. This gene (1) functionally complemented a yeast mutant deficient in ammonium uptake (2), is preferentially expressed in the anther of P. tenuiflora, and (3) is significantly upregulated by ammonium ions in both the shoot and roots. The PutAMT1;1 protein is localized in the plasma membrane and around the nuclear periphery in yeast cells and P. tenuiflora suspension cells. Immunoelectron microscopy analysis also indicated that PutAMT1;1 is localized in the endomembrane. The overexpression of PutAMT1;1 in A. thaliana enhanced plant growth, and increased plant susceptibility to toxic methylammonium (MeA). Here, we confirmed that PutAMT1;1 is an ammonium-inducible ammonium transporter in P. tenuiflora. On the basis of the results of PutAMT1;1 overexpression in A. thaliana, this gene might be useful for improving the root to shoot mobilization of MeA (or NH4 +). PMID:24340088

  4. Reverse Genetic Analysis of Ourmiaviruses Reveals the Nucleolar Localization of the Coat Protein in Nicotiana benthamiana and Unusual Requirements for Virion Formation ▿ † ‡

    PubMed Central

    Crivelli, Giulia; Ciuffo, Marina; Genre, Andrea; Masenga, Vera; Turina, Massimo

    2011-01-01

    Ourmia melon virus (OuMV) is the type member of the genus Ourmiavirus. These viruses have a trisegmented genome, each part of which encodes a single protein. Ourmiaviruses share a distant similarity with other plant viruses only in their movement proteins (MP), whereas their RNA-dependent RNA polymerase (RdRP) shares features only with fungal viruses of the family Narnaviridae. Thus, ourmiaviruses are in a unique phylogenetic position among existing plant viruses. Here, we developed an agroinoculation system to launch infection in Nicotiana benthamiana plants. Using different combinations of the three segments, we demonstrated that RNA1 is necessary and sufficient for cis-acting replication in the agroinfiltrated area. RNA2 and RNA3, encoding the putative movement protein and the coat protein (CP), respectively, are both necessary for successful systemic infection of N. benthamiana. The CP is dispensable for long-distance transport of the virus through vascular tissues, but its absence prevents efficient systemic infection at the exit sites. Virion formation occurred only when the CP was translated from replication-derived RNA3. Transient expression of a green fluorescent protein-MP (GFP-MP) fusion via agroinfiltration showed that the MP is present in cytoplasmic connections across plant cell walls; in protoplasts the GFP-MP fusion stimulates the formation of tubular protrusions. Expression through agroinfiltration of a GFP-CP fusion displays most of the fluorescence inside the nucleus and within the nucleolus in particular. Nuclear localization of the CP was also confirmed through Western blot analysis of purified nuclei. The significance of several unusual properties of OuMV for replication, virion assembly, and movement is discussed in relation to other positive-strand RNA viruses. PMID:21411534

  5. The ventrolateral medulla and medullary raphe in sudden unexpected death in epilepsy.

    PubMed

    Patodia, Smriti; Somani, Alyma; O'Hare, Megan; Venkateswaran, Ranjana; Liu, Joan; Michalak, Zuzanna; Ellis, Matthew; Scheffer, Ingrid E; Diehl, Beate; Sisodiya, Sanjay M; Thom, Maria

    2018-06-01

    Sudden unexpected death in epilepsy (SUDEP) is a leading cause of premature death in patients with epilepsy. One hypothesis proposes that sudden death is mediated by post-ictal central respiratory depression, which could relate to underlying pathology in key respiratory nuclei and/or their neuromodulators. Our aim was to investigate neuronal populations in the ventrolateral medulla (which includes the putative human pre-Bötzinger complex) and the medullary raphe. Forty brainstems were studied comprising four groups: 14 SUDEP, six epilepsy controls, seven Dravet syndrome cases and 13 non-epilepsy controls. Serial sections through the medulla (from obex 1 to 10 mm) were stained for Nissl, somatostatin, neurokinin 1 receptor (for pre-Bötzinger complex neurons) and galanin, tryptophan hydroxylase and serotonin transporter (neuromodulatory systems). Using stereology total neuronal number and densities, with respect to obex level, were measured. Whole slide scanning image analysis was used to quantify immunolabelling indices as well as co-localization between markers. Significant findings included reduction in somatostatin neurons and neurokinin 1 receptor labelling in the ventrolateral medulla in sudden death in epilepsy compared to controls (P < 0.05). Galanin and tryptophan hydroxylase labelling was also reduced in sudden death cases and more significantly in the ventrolateral medulla region than the raphe (P < 0.005 and P < 0.05). With serotonin transporter, reduction in labelling in cases of sudden death in epilepsy was noted only in the raphe (P ≤ 0.01); however, co-localization with tryptophan hydroxylase was significantly reduced in the ventrolateral medulla. Epilepsy controls and cases with Dravet syndrome showed less significant alterations with differences from non-epilepsy controls noted only for somatostatin in the ventrolateral medulla (P < 0.05). Variations in labelling with respect to obex level were noted of potential relevance to the rostro-caudal organization of respiratory nuclear groups, including tryptophan hydroxylase, where the greatest statistical difference noted between all epilepsy cases and controls was at obex 9-10 mm (P = 0.034), the putative level of the pre-Bötzinger complex. Furthermore, there was evidence for variation with duration of epilepsy for somatostatin and neurokinin 1 receptor. Our findings suggest alteration to neuronal populations in the medulla in SUDEP with evidence for greater reduction in neuromodulatory neuropeptidergic and mono-aminergic systems, including for galanin, and serotonin. Other nuclei need to be investigated to evaluate if this is part of more widespread brainstem pathology. Our findings could be a result of previous seizures and may represent a pathological risk factor for SUDEP through impaired respiratory homeostasis during a seizure.

  6. Roles of the Nuclear Lamina in Stable Nuclear Association and Assembly of a Herpesviral Transactivator Complex on Viral Immediate-Early Genes

    PubMed Central

    Silva, Lindsey; Oh, Hyung Suk; Chang, Lynne; Yan, Zhipeng; Triezenberg, Steven J.; Knipe, David M.

    2012-01-01

    ABSTRACT Little is known about the mechanisms of gene targeting within the nucleus and its effect on gene expression, but most studies have concluded that genes located near the nuclear periphery are silenced by heterochromatin. In contrast, we found that early herpes simplex virus (HSV) genome complexes localize near the nuclear lamina and that this localization is associated with reduced heterochromatin on the viral genome and increased viral immediate-early (IE) gene transcription. In this study, we examined the mechanism of this effect and found that input virion transactivator protein, virion protein 16 (VP16), targets sites adjacent to the nuclear lamina and is required for targeting of the HSV genome to the nuclear lamina, exclusion of heterochromatin from viral replication compartments, and reduction of heterochromatin on the viral genome. Because cells infected with the VP16 mutant virus in1814 showed a phenotype similar to that of lamin A/C−/− cells infected with wild-type virus, we hypothesized that the nuclear lamina is required for VP16 activator complex formation. In lamin A/C−/− mouse embryo fibroblasts, VP16 and Oct-1 showed reduced association with the viral IE gene promoters, the levels of VP16 and HCF-1 stably associated with the nucleus were lower than in wild-type cells, and the association of VP16 with HCF-1 was also greatly reduced. These results show that the nuclear lamina is required for stable nuclear localization and formation of the VP16 activator complex and provide evidence for the nuclear lamina being the site of assembly of the VP16 activator complex. PMID:22251972

  7. Nuclear accumulation of SHIP1 mutants derived from AML patients leads to increased proliferation of leukemic cells.

    PubMed

    Nalaskowski, Marcus M; Ehm, Patrick; Rehbach, Christoph; Nelson, Nina; Täger, Maike; Modest, Kathrin; Jücker, Manfred

    2018-05-28

    The inositol 5-phosphatase SHIP1 acts as negative regulator of intracellular signaling in myeloid cells and is a tumor suppressor in myeloid leukemogenesis. After relocalization from the cytoplasm to the plasma membrane SHIP1 terminates PI3-kinase mediated signaling processes. Furthermore, SHIP1 is also found in distinct puncta in the cell nucleus and nuclear SHIP1 has a pro-proliferative function. Here we report the identification of five nuclear export signals (NESs) which regulate together with the two known nuclear localization signals (NLSs) the nucleocytoplasmic shuttling of SHIP1. Mutation of NLSs reduced the nuclear import and mutation of NESs decreased the nuclear export of SHIP1 in the acute myeloid leukemia (AML) cell line UKE-1. Interestingly, four SHIP1 mutants (K210R, N508D, V684E, Q1153L) derived from AML patients showed a nuclear accumulation after expression in UKE-1 cells. In addition, overexpression of the AML patient-derived mutation N508D caused an increased proliferation rate of UKE-1 cells in comparison to wild type SHIP1. Furthermore, we identified serine and tyrosine phosphorylation as a molecular mechanism for the regulation of nucleocytoplasmic shuttling of SHIP1 where tyrosine phosphorylation of distinct residues i.e. Y864, Y914, Y1021 reduces nuclear localization, whereas serine phosphorylation at S933 enhances nuclear localization of SHIP1. In summary, our data further implicate nuclear SHIP1 in cellular signaling and suggest that enhanced accumulation of SHIP1 mutants in the nucleus may be a contributory factor of abnormally high proliferation of AML cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Fluctuations and symmetry energy in nuclear fragmentation dynamics.

    PubMed

    Colonna, M

    2013-01-25

    Within a dynamical description of nuclear fragmentation, based on the liquid-gas phase transition scenario, we explore the relation between neutron-proton density fluctuations and nuclear symmetry energy. We show that, along the fragmentation path, isovector fluctuations follow the evolution of the local density and approach an equilibrium value connected to the local symmetry energy. Higher-density regions are characterized by smaller average asymmetry and narrower isotopic distributions. This dynamical analysis points out that fragment final state isospin fluctuations can probe the symmetry energy of the density domains from which fragments originate.

  9. Role of ANC-1 in tethering nuclei to the actin cytoskeleton.

    PubMed

    Starr, Daniel A; Han, Min

    2002-10-11

    Mutations in anc-1 (nuclear anchorage defective) disrupt the positioning of nuclei and mitochondria in Caenorhabditis elegans. ANC-1 is shown to consist of mostly coiled regions with a nuclear envelope localization domain (called the KASH domain) and an actin-binding domain; this structure was conserved with the Drosophila protein Msp-300 and the mammalian Syne proteins. Antibodies against ANC-1 localized cytoplasmically and were enriched at the nuclear periphery in an UNC-84-dependent manner. Overexpression of the KASH domain or the actin-binding domain caused a dominant negative anchorage defect. Thus, ANC-1 may connect nuclei to the cytoskeleton by interacting with UNC-84 at the nuclear envelope and with actin in the cytoplasm.

  10. Identification of EhTIF-IA: The putative E. histolytica orthologue of the human ribosomal RNA transcription initiation factor-IA.

    PubMed

    Srivastava, Ankita; Bhattacharya, Alok; Bhattacharya, Sudha; Jhingan, Gagan Deep

    2016-03-01

    Initiation of rDNA transcription requires the assembly of a specific multi-protein complex at the rDNA promoter containing the RNA Pol I with auxiliary factors. One of these factors is known as Rrn3P in yeast and Transcription Initiation Factor IA (TIF-IA) in mammals. Rrn3p/TIF-IA serves as a bridge between RNA Pol I and the pre-initiation complex at the promoter. It is phosphorylated at multiple sites and is involved in regulation of rDNA transcription in a growth-dependent manner. In the early branching parasitic protist Entamoeba histolytica, the rRNA genes are present exclusively on circular extra chromosomal plasmids. The protein factors involved in regulation of rDNA transcription in E. histolytica are not known. We have identified the E. histolytica equivalent of TIF-1A (EhTIF-IA) by homology search within the database and was further cloned and expressed. Immuno-localization studies showed that EhTIF-IA co-localized partially with fibrillarin in the peripherally localized nucleolus. EhTIF-IA was shown to interact with the RNA Pol I-specific subunit RPA12 both in vivo and in vitro. Mass spectroscopy data identified RNA Pol I-specific subunits and other nucleolar proteins to be the interacting partners of EhTIF-IA. Our study demonstrates for the first time a conserved putative RNA Pol I transcription factor TIF-IA in E. histolytica.

  11. The Putative Exchange Factor Gef3p Interacts with Rho3p GTPase and the Septin Ring during Cytokinesis in Fission Yeast*

    PubMed Central

    Muñoz, Sofía; Manjón, Elvira; Sánchez, Yolanda

    2014-01-01

    The small GTP-binding proteins of the Rho family and its regulatory proteins play a central role in cytokinetic actomyosin ring assembly and cytokinesis. Here we show that the fission yeast guanine nucleotide exchange factor Gef3p interacts with Rho3p at the division site. Gef3p contains a putative DH homology domain and a BAR/IMD-like domain. The protein localized to the division site late in mitosis, where it formed a ring that did not constrict with actomyosin ring (cytokinetic actomyosin ring) invagination; instead, it split into a double ring that resembled the septin ring. Gef3p co-localized with septins and Mid2p and required septins and Mid2p for its localization. Gef3p interacts physically with the GTP-bound form of Rho3p. Although Gef3p is not essential for cell separation, the simultaneous disruption of gef3+ and Rho3p-interacting proteins, such as Sec8p, an exocyst component, Apm1p, a subunit of the clathrin adaptor complex or For3p, an actin-polymerizing protein, yielded cells with strong defects in septation and polarity respectively. Our results suggest that interactions between septins and Rho-GEFs provide a new targeting mechanism for GTPases in cytokinesis, in this case probably contributing to Rho3p function in vesicle tethering and vesicle trafficking in the later steps of cell separation. PMID:24947517

  12. Localization of migraine susceptibility genes in human brain by single-cell RNA sequencing.

    PubMed

    Renthal, William

    2018-01-01

    Background Migraine is a debilitating disorder characterized by severe headaches and associated neurological symptoms. A key challenge to understanding migraine has been the cellular complexity of the human brain and the multiple cell types implicated in its pathophysiology. The present study leverages recent advances in single-cell transcriptomics to localize the specific human brain cell types in which putative migraine susceptibility genes are expressed. Methods The cell-type specific expression of both familial and common migraine-associated genes was determined bioinformatically using data from 2,039 individual human brain cells across two published single-cell RNA sequencing datasets. Enrichment of migraine-associated genes was determined for each brain cell type. Results Analysis of single-brain cell RNA sequencing data from five major subtypes of cells in the human cortex (neurons, oligodendrocytes, astrocytes, microglia, and endothelial cells) indicates that over 40% of known migraine-associated genes are enriched in the expression profiles of a specific brain cell type. Further analysis of neuronal migraine-associated genes demonstrated that approximately 70% were significantly enriched in inhibitory neurons and 30% in excitatory neurons. Conclusions This study takes the next step in understanding the human brain cell types in which putative migraine susceptibility genes are expressed. Both familial and common migraine may arise from dysfunction of discrete cell types within the neurovascular unit, and localization of the affected cell type(s) in an individual patient may provide insight into to their susceptibility to migraine.

  13. Interplay Between Cytoplasmic and Nuclear Androgen Receptor Splice Variants Mediate Castration Resistance

    PubMed Central

    Zhan, Yang; Zhang, Guanyi; Wang, Xiaojie; Qi, Yanfeng; Bai, Shanshan; Li, Dongying; Ma, Tianfang; Sartor, Oliver; Flemington, Erik K.; Zhang, Haitao; Lee, Peng; Dong, Yan

    2016-01-01

    Androgen receptor splice variants (AR-Vs) are implicated in resistance of prostate cancer to androgen-directed therapies. When expressed alone in cells, some AR-Vs (e.g., AR-V7) localize primarily to the nucleus, whereas others (e.g., AR-V1, AR-V4, and AR-V6) localize mainly to the cytoplasm. Significantly, the latter are often co-expressed with the nucleus-predominant AR-Vs and the full-length AR (AR-FL). An important question to be addressed is whether the cytoplasmic-localized AR-Vs play a role in castration-resistant prostate cancer (CRPC) through interaction with the nucleus-predominant AR-Vs and AR-FL. Here, it is demonstrated that AR-V1, -V4, and -V6 can dimerize with both AR-V7 and AR-FL. Consequently, AR-V7 and androgen-bound AR-FL induced nuclear localization of AR-V1, -V4, and -V6, and these variants, in turn, mitigated the ability of the anti-androgen enzalutamide to inhibit androgen-induced AR-FL nuclear localization. Interestingly, the impact of nuclear localization of AR-V4 and -V6 on AR transactivation differs from that of AR-V1. Nuclear localization leads to an increased ability of AR-V4 and -V6 to transactivate both canonical AR targets and AR-V-specific targets and to confer castration-resistant cell growth. However, while AR-V1, which lacks inherent transcriptional activity, appears to activate AR-FL in an androgen-independent manner, it significantly antagonizes AR-V7 transactivation. Together, these data demonstrate that the complex interactions among different AR-Vs and AR-FL play a significant role in castration resistant disease. Implications This study suggests important consequences for clinical castration resistance due to simultaneous expression of AR-FL and AR-Vs in patient tumors and suggests that dissecting these interactions should help develop effective strategies to disrupt AR-V signaling. PMID:27671337

  14. Midbody Accumulation in Breast Cancer Stem Cells

    DTIC Science & Technology

    2011-08-01

    transit amplifying or differentiating cells. These results suggest that MBds are in almost exclusively in stem cells and putative breast cancer stem...confer tumor-like properties to these cells. We were unable to establish GFP-MKLP1 breast cancer cell lines for this analysis for some reason that we...and nonpolarized cells (Fig. 1c, d). Immuno- electron microscopy confirmed this localization and revealed ultrastructural features characteristic of

  15. Nuclear ferritin: A new role for ferritin in cell biology.

    PubMed

    Alkhateeb, Ahmed A; Connor, James R

    2010-08-01

    Ferritin has been traditionally considered a cytoplasmic iron storage protein. However, several studies over the last two decades have reported the nuclear localization of ferritin, specifically H-ferritin, in developing neurons, hepatocytes, corneal epithelial cells, and some cancer cells. These observations encouraged a new perspective on ferritin beyond iron storage, such as a role in the regulation of iron accessibility to nuclear components, DNA protection from iron-induced oxidative damage, and transcriptional regulation. This review will address the translocation and functional significance of nuclear ferritin in the context of human development and disease. The nuclear translocation of ferritin is a selective energy-dependent process that does not seem to require a consensus nuclear localization signal. It is still unclear what regulates the nuclear import/export of ferritin. Some reports have implicated the phosphorylation and O-glycosylation of the ferritin protein in nuclear transport; others suggested the existence of a specific nuclear chaperone for ferritin. The data argue strongly for nuclear ferritin as a factor in human development and disease. Ferritin can bind and protect DNA from oxidative damage. It also has the potential of playing a regulatory role in transcription. Nuclear ferritin represents a novel new outlook on ferritin functionality beyond its classical role as an iron storage molecule. Copyright 2010 Elsevier B.V. All rights reserved.

  16. NIMBY, CLAMP, and the location of new nuclear-related facilities: U.S. national and 11 site-specific surveys.

    PubMed

    Greenberg, Michael R

    2009-09-01

    Public and political opposition have made finding locations for new nuclear power plants, waste management, and nuclear research and development facilities a challenge for the U.S. government and the nuclear industry. U.S. government-owned properties that already have nuclear-related activities and commercial nuclear power generating stations are logical locations. Several studies and utility applications to the Nuclear Regulatory Commission suggest that concentrating locations at major plants (CLAMP) has become an implicit siting policy. We surveyed 2,101 people who lived within 50 miles of 11 existing major nuclear sites and 600 who lived elsewhere in the United States. Thirty-four percent favored CLAMP for new nuclear power plants, 52% for waste management facilities, and 50% for new nuclear laboratories. College educated, relatively affluent male whites were the strongest CLAMP supporters. They disproportionately trusted those responsible for the facilities and were not worried about existing nuclear facilities or other local environmental issues. Notably, they were concerned about continuing coal use. Not surprisingly, CLAMP proponents tended to be familiar with their existing local nuclear site. In short, likely CLAMP sites have a large and politically powerful core group to support a CLAMP policy. The challenge to proponents of nuclear technologies will be to sustain this support and expand the base among those who clearly are less connected and receptive to new nearby sites.

  17. Cytoplasmic and nuclear localization of cadherin in honey bee (Apis mellifera L.) gonads.

    PubMed

    Florecki, Mônica M; Hartfelder, Klaus

    2011-01-01

    Cadherins are crucial molecules mediating cell-cell interactions between somatic and germline cells in insect and mammalian male and female gonads. We analysed the presence and localization of cadherins in ovaries of honeybee queens and in testes of drones. Transcripts representing two classical cadherins, E-cadherin (shotgun) and N-cadherin, as well as three protocadherins (Starry night, Fat and Fat-like) were detected in gonads of both sexes. Pan-cadherin antibodies, which most probably detect a honeybee N-cadherin, were used in immunolocalization analyses. In the germarium of ovarioles, cadherin-IR (cadherin immunoreactivity) was evidenced as homogeneously distributed in the cytoplasm and as nuclear foci, in both germline and somatic cells. It was also detected in polyfusomes and ring canals. In testiolar tubules, cadherin-IR showed a cytoplasmic and nuclear distributon alike in ovaries. The unexpected nuclear localization and cytoplasmic distribution in ovaries and testes were corroborated by immunogold electron microscopy, which revealed cadherin aggregates associated with electron-dense nuclear structures. With respect to cadherin localization, the honeybee differs from Drosophila, the model for gametogenesis in insects, raising the question as to how differences among solitary and social species may be built into and generated from the general architecture of polytrophic meroistic ovaries. It also indicates the possibility of divergent roles for cadherin in the functional architecture of insect gonads, in general, especially in taxa with high reproductive output.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, Joel F.; Sykora, Landon J.; Barik Letostak, Tiasha

    HSP40 family member MRJ (DNAJB6) has been in the spot light for its relevance to Huntington's, Parkinson's diseases, limb-girdle muscular dystrophy, placental development, neural stem cells, cell cycle and malignancies such as breast cancer and melanoma. This gene has two spliced variants coding for 2 distinct proteins with significant homology. However, MRJ(L) (large variant) is predominantly localized to the nucleus whereas MRJ(S) (small variant) is predominantly cytoplasmic. Interestingly MRJ(S) translocates to the nucleus in response to heat shock. The classical heat shock proteins respond to crises (stress) by increasing the number of molecules, usually by transcriptional up-regulation. Our studies implymore » that a quick increase in the molar concentration of MRJ in the nuclear compartment is a novel method by which MRJ responds to stress. We found that MRJ(S) shows NLS (nuclear localization signal) independent nuclear localization in response to heat shock and hypoxia. The specificity of this response is realized due to lack of such response by MRJ(S) when challenged by other stressors, such as some cytokines or UV light. Deletion analysis has allowed us to narrow down on a 20 amino acid stretch at the C-terminal region of MRJ(S) as a potential stress sensing region. Functional studies indicated that constitutive nuclear localization of MRJ(S) promoted attributes of malignancy such as proliferation and invasiveness overall indicating distinct phenotypic characteristics of nuclear MRJ(S).« less

  19. Cytoplasmic proteasomes are not indispensable for cell growth in Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuchiya, Hikaru; Arai, Naoko; Tanaka, Keiji, E-mail: tanaka-kj@igakuken.or.jp

    2013-07-05

    Highlights: •We succeeded to control the proteasome localization by the anchor-away technique. •Nuclear proteasome-depleted cells showed a lethal phenotype. •Cytoplasmic proteasomes are not indispensable for cell growth in dividing cells. -- Abstract: The 26S proteasome is an essential protease complex responsible for the degradation of ubiquitinated proteins in eukaryotic cells. In rapidly proliferating yeast cells, proteasomes are mainly localized in the nucleus, but the biological significance of the proteasome localization is still unclear. In this study, we investigated the relationship between the proteasome localization and the functions by the anchor-away technique, a ligand-dependent sequestration of a target protein into specificmore » compartment(s). Anchoring of the proteasome to the plasma membrane or the ribosome resulted in conditional depletion of the nuclear proteasomes, whereas anchoring to histone resulted in the proteasome sequestration into the nucleus. We observed that the accumulation of ubiquitinated proteins in all the proteasome-targeted cells, suggesting that both the nuclear and cytoplasmic proteasomes have proteolytic functions and that the ubiquitinated proteins are produced and degraded in each compartment. Consistent with previous studies, the nuclear proteasome-depleted cells exhibited a lethal phenotype. In contrast, the nuclear sequestration of the proteasome resulted only in a mild growth defect, suggesting that the cytoplasmic proteasomes are not basically indispensable for cell growth in rapidly growing yeast cells.« less

  20. Nuclear Localization of Suppressor of Cytokine Signaling-1 Regulates Local Immunity in the Lung

    PubMed Central

    Zimmer, Jana; Weitnauer, Michael; Boutin, Sébastien; Küblbeck, Günter; Thiele, Sabrina; Walker, Patrick; Lasitschka, Felix; Lunding, Lars; Orinska, Zane; Vock, Christina; Arnold, Bernd; Wegmann, Michael; Dalpke, Alexander

    2016-01-01

    Suppressor of cytokine signaling 1 (SOCS1) is a negative feedback inhibitor of cytoplasmic Janus kinase and signal transducer and activator of transcription (STAT) signaling. SOCS1 also contains a nuclear localization sequence (NLS), yet, the in vivo importance of nuclear translocation is unknown. We generated transgenic mice containing mutated Socs1ΔNLS that fails to translocate in the cell nucleus (MGLtg mice). Whereas mice fully deficient for SOCS1 die within the first 3 weeks due to excessive interferon signaling and multiorgan inflammation, mice expressing only non-nuclear Socs1ΔNLS (Socs1−/−MGLtg mice) were rescued from early lethality. Canonical interferon gamma signaling was still functional in Socs1−/−MGLtg mice as shown by unaltered tyrosine phosphorylation of STAT1 and whole genome expression analysis. However, a subset of NFκB inducible genes was dysregulated. Socs1−/−MGLtg mice spontaneously developed low-grade inflammation in the lung and had elevated Th2-type cytokines. Upon ovalbumin sensitization and challenge, airway eosinophilia was increased in Socs1−/−MGLtg mice. Decreased transepithelial electrical resistance in trachea epithelial cells from Socs1−/−MGLtg mice suggests disrupted epithelial cell barrier. The results indicate that nuclear SOCS1 is a regulator of local immunity in the lung and unravel a so far unrecognized function for SOCS1 in the cell nucleus. PMID:27917175

  1. Multiple elements regulate nuclear/cytoplasmic shuttling of FOXO1: characterization of phosphorylation- and 14-3-3-dependent and -independent mechanisms.

    PubMed Central

    Zhao, Xiangshan; Gan, Lixia; Pan, Haiyun; Kan, Donghui; Majeski, Michael; Adam, Stephen A; Unterman, Terry G

    2004-01-01

    FOXO1, a Forkhead transcription factor, is an important target of insulin and growth factor action. Phosphorylation of Thr-24, Ser-256 and Ser-319 promotes nuclear exclusion of FOXO1, yet the mechanisms regulating nuclear/cytoplasmic shuttling of FOXO1 are poorly understood. Previous studies have identified an NLS (nuclear localization signal) in the C-terminal basic region of the DBD (DNA-binding domain), and a leucine-rich, leptomycin-B sensitive NES (nuclear export signal) located further downstream. Here, we find that other elements in the DBD also contribute to nuclear localization, and that multiple mechanisms contribute to nuclear exclusion of FOXO1. Phosphorylation of Ser-319 and a cluster of nearby residues (Ser-322, Ser-325 and Ser-329) functions co-operatively with the nearby NES to promote nuclear exclusion. The N-terminal region of FOXO1 (amino acids 1-149) also is sufficient to promote nuclear exclusion, and does so through multiple mechanisms. Amino acids 1-50 are sufficient to promote nuclear exclusion of green fluorescent protein fusion proteins, and the phosphorylation of Thr-24 is required for this effect. A leucine-rich, leptomycin B-sensitive export signal is also present nearby. Phosphorylated FOXO1 binds 14-3-3 proteins, and co-precipitation studies with tagged proteins indicate that 14-3-3 binding involves co-operative interactions with both Thr-24 and Ser-256. Ser-256 is located in the C-terminal region of the DBD, where 14-3-3 proteins may interfere both with DNA-binding and with nuclear-localization functions. Together, these studies demonstrate that multiple elements contribute to nuclear/cytoplasmic shuttling of FOXO1, and that phosphorylation and 14-3-3 binding regulate the cellular distribution and function of FOXO1 through multiple mechanisms. The presence of these redundant mechanisms supports the concept that the regulation of FOXO1 function plays a critical role in insulin and growth factor action. PMID:14664696

  2. Nuclear localization of CPI-17, a protein phosphatase-1 inhibitor protein, affects histone H3 phosphorylation and corresponds to proliferation of cancer and smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eto, Masumi, E-mail: masumi.eto@jefferson.edu; Kirkbride, Jason A.; Chugh, Rishika

    2013-04-26

    Highlights: •Non-canonical roles of the myosin phosphatase inhibitor (CPI-17) were studied. •CPI-17 is localized in the nucleus of hyperplastic cancer and smooth muscle cells. •CPI-17 Ser12 phosphorylation may regulate the nuclear import. •CPI-17 regulates histone H3 phosphorylation and cell proliferation. •The nuclear CPI-17-PP1 axis plays a proliferative role in cells. -- Abstract: CPI-17 (C-kinase-activated protein phosphatase-1 (PP1) inhibitor, 17 kDa) is a cytoplasmic protein predominantly expressed in mature smooth muscle (SM) that regulates the myosin-associated PP1 holoenzyme (MLCP). Here, we show CPI-17 expression in proliferating cells, such as pancreatic cancer and hyperplastic SM cells. Immunofluorescence showed that CPI-17 was concentratedmore » in nuclei of human pancreatic cancer (Panc1) cells. Nuclear accumulation of CPI-17 was also detected in the proliferating vascular SM cell culture and cells at neointima of rat vascular injury model. The N-terminal 21-residue tail domain of CPI-17 was necessary for the nuclear localization. Phospho-mimetic Asp-substitution of CPI-17 at Ser12 attenuated the nuclear import. CPI-17 phosphorylated at Ser12 was not localized at nuclei, suggesting a suppressive role of Ser12 phosphorylation in the nuclear import. Activated CPI-17 bound to all three isoforms of PP1 catalytic subunit in Panc1 nuclear extracts. CPI-17 knockdown in Panc1 resulted in dephosphorylation of histone H3 at Thr3, Ser10 and Thr11, whereas it had no effects on the phosphorylation of myosin light chain and merlin, the known targets of MLCP. In parallel, CPI-17 knockdown suppressed Panc1 proliferation. We propose that CPI-17 accumulated in the nucleus through the N-terminal tail targets multiple PP1 signaling pathways regulating cell proliferation.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walpen, Thomas; Kalus, Ina; Schwaller, Juerg

    Highlights: Black-Right-Pointing-Pointer Pim1{sup -/-} endothelial cell proliferation displays increased sensitivity to rapamycin. Black-Right-Pointing-Pointer mTOR inhibition by rapamycin enhances PIM1 cytosolic and nuclear protein levels. Black-Right-Pointing-Pointer Truncation of Pim1 beyond serine 276 results in nuclear localization of the kinase. Black-Right-Pointing-Pointer Nuclear PIM1 increases endothelial proliferation independent of rapamycin. -- Abstract: The PIM serine/threonine kinases and the mTOR/AKT pathway integrate growth factor signaling and promote cell proliferation and survival. They both share phosphorylation targets and have overlapping functions, which can partially substitute for each other. In cancer cells PIM kinases have been reported to produce resistance to mTOR inhibition by rapamycin. Tumormore » growth depends highly on blood vessel infiltration into the malignant tissue and therefore on endothelial cell proliferation. We therefore investigated how the PIM1 kinase modulates growth inhibitory effects of rapamycin in mouse aortic endothelial cells (MAEC). We found that proliferation of MAEC lacking Pim1 was significantly more sensitive to rapamycin inhibition, compared to wildtype cells. Inhibition of mTOR and AKT in normal MAEC resulted in significantly elevated PIM1 protein levels in the cytosol and in the nucleus. We observed that truncation of the C-terminal part of Pim1 beyond Ser 276 resulted in almost exclusive nuclear localization of the protein. Re-expression of this Pim1 deletion mutant significantly increased the proliferation of Pim1{sup -/-} cells when compared to expression of the wildtype Pim1 cDNA. Finally, overexpression of the nuclear localization mutant and the wildtype Pim1 resulted in complete resistance to growth inhibition by rapamycin. Thus, mTOR inhibition-induced nuclear accumulation of PIM1 or expression of a nuclear C-terminal PIM1 truncation mutant is sufficient to increase endothelial cell proliferation, suggesting that nuclear localization of PIM1 is important for resistance of MAEC to rapamycin-mediated inhibition of proliferation.« less

  4. A Study of Community Leaders in a Nuclear Host Community: Local Issues, Expectations and Support and Opposition.

    ERIC Educational Resources Information Center

    Bronfman, B. H.

    As part of a continuing effort to assess the social impacts on communities of energy facility planning, construction, operation, and decommissioning, a May 1977 survey of 37 community leaders in Hartsville, Tennessee (site of a nuclear power plant) establishes major local issues (past, present, and future) which leaders feel are important to…

  5. Metabolite Regulation of Nuclear Localization of Carbohydrate-response Element-binding Protein (ChREBP)

    PubMed Central

    Sato, Shogo; Jung, Hunmin; Nakagawa, Tsutomu; Pawlosky, Robert; Takeshima, Tomomi; Lee, Wan-Ru; Sakiyama, Haruhiko; Laxman, Sunil; Wynn, R. Max; Tu, Benjamin P.; MacMillan, John B.; De Brabander, Jef K.; Veech, Richard L.; Uyeda, Kosaku

    2016-01-01

    The carbohydrate-response element-binding protein (ChREBP) is a glucose-responsive transcription factor that plays an essential role in converting excess carbohydrate to fat storage in the liver. In response to glucose levels, ChREBP is regulated by nuclear/cytosol trafficking via interaction with 14-3-3 proteins, CRM-1 (exportin-1 or XPO-1), or importins. Nuclear localization of ChREBP was rapidly inhibited when incubated in branched-chain α-ketoacids, saturated and unsaturated fatty acids, or 5-aminoimidazole-4-carboxamide ribonucleotide. Here, we discovered that protein-free extracts of high fat-fed livers contained, in addition to ketone bodies, a new metabolite, identified as AMP, which specifically activates the interaction between ChREBP and 14-3-3. The crystal structure showed that AMP binds directly to the N terminus of ChREBP-α2 helix. Our results suggest that AMP inhibits the nuclear localization of ChREBP through an allosteric activation of ChREBP/14-3-3 interactions and not by activation of AMPK. AMP and ketone bodies together can therefore inhibit lipogenesis by restricting localization of ChREBP to the cytoplasm during periods of ketosis. PMID:26984404

  6. ROSAT PSPC and HRI observations of the composite starburst/Seyfert 2 galaxy NGC 1672

    NASA Technical Reports Server (NTRS)

    Brandt, W. N.; Halpern, Jules P.; Iwasawa, K.

    1995-01-01

    The nearby barred spiral galaxy NGC 1672 has been observed with the Position Sensitive Proportional Counter (PSPC) and High Resolution Imager (HRI) instruments on board the ROSAT X-ray satellite. NGC 1672 is thought to have an obscured Seyfert nucleus, and it has strong starburst activity as well. Three bright X-ray sources with luminosities 1-2 x 10(exp 40) erg/s are clearly identified with NGC 1672. The strongest lies at the nucleus, and the other two lie at the ends of NGC 1672's prominent bar, locations that are also bright in H alpha and near-infrared images. The nuclear source is resolved by the HRI on about the scale of the recently identified nuclear ring, and one of the sources at the ends of the bar is also probably resolved. The X-ray spectrum of the nuclear source is quite soft, having a Raymond-Smith plasma temperature of approximately equals 0.7 keV and little evidence for intrinsic absorption. The ROSAT band X-ray flux of the nuclear source appears to be dominated not by X-ray binary emission but rather by diffuse gas emission. The absorption and emission properties of the sources, as well as their spatial extents, lead us to models of superbubbles driven by supernovae. However, the large density and emission measure of the nuclear X-ray source stretch the limits that can be comfortably accommodated by these models. We do not detect direct emission from the putative Seyfert nucleus, although an alternative model for the nuclear source is thermal emission from gas that is photoionized by a hidden Seyfert nucleus. The spectra of the other two X-ray sources are harder than that of the nuclear source, and have similar difficulties with regard to superbubble models.

  7. Nuclear transporters in a multinucleated organism: functional and localization analyses in Aspergillus nidulans

    PubMed Central

    Markina-Iñarrairaegui, Ane; Etxebeste, Oier; Herrero-García, Erika; Araújo-Bazán, Lidia; Fernández-Martínez, Javier; Flores, Jairo A.; Osmani, Stephen A.; Espeso, Eduardo A.

    2011-01-01

    Nuclear transporters mediate bidirectional macromolecule traffic through the nuclear pore complex (NPC), thus participating in vital processes of eukaryotic cells. A systematic functional analysis in Aspergillus nidulans permitted the identification of 4 essential nuclear transport pathways of a hypothetical number of 14. The absence of phenotypes for most deletants indicates redundant roles for these nuclear receptors. Subcellular distribution studies of these carriers show three main distributions: nuclear, nucleocytoplasmic, and in association with the nuclear envelope. These locations are not specific to predicted roles as exportins or importins but indicate that bidirectional transport may occur coordinately in all nuclei of a syncytium. Coinciding with mitotic NPC rearrangements, transporters dynamically modified their localizations, suggesting supplementary roles to nucleocytoplasmic transport specifically during mitosis. Loss of transportin-SR and Mex/TAP from the nuclear envelope indicates absence of RNA transport during the partially open mitosis of Aspergillus, whereas nucleolar accumulation of Kap121 and Kap123 homologues suggests a role in nucleolar disassembly. This work provides new insight into the roles of nuclear transporters and opens an avenue for future studies of the molecular mechanisms of transport among nuclei within a common cytoplasm, using A. nidulans as a model organism. PMID:21880896

  8. NLSdb-major update for database of nuclear localization signals and nuclear export signals.

    PubMed

    Bernhofer, Michael; Goldberg, Tatyana; Wolf, Silvana; Ahmed, Mohamed; Zaugg, Julian; Boden, Mikael; Rost, Burkhard

    2018-01-04

    NLSdb is a database collecting nuclear export signals (NES) and nuclear localization signals (NLS) along with experimentally annotated nuclear and non-nuclear proteins. NES and NLS are short sequence motifs related to protein transport out of and into the nucleus. The updated NLSdb now contains 2253 NLS and introduces 398 NES. The potential sets of novel NES and NLS have been generated by a simple 'in silico mutagenesis' protocol. We started with motifs annotated by experiments. In step 1, we increased specificity such that no known non-nuclear protein matched the refined motif. In step 2, we increased the sensitivity trying to match several different families with a motif. We then iterated over steps 1 and 2. The final set of 2253 NLS motifs matched 35% of 8421 experimentally verified nuclear proteins (up from 21% for the previous version) and none of 18 278 non-nuclear proteins. We updated the web interface providing multiple options to search protein sequences for NES and NLS motifs, and to evaluate your own signal sequences. NLSdb can be accessed via Rostlab services at: https://rostlab.org/services/nlsdb/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Regulation of subcellular localization of the Aryl Hydrocarbon Receptor (AhR)

    USGS Publications Warehouse

    Richter, Catherine A.; Tillitt, Donald E.; Hannink, Mark

    2001-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates the toxicity of dioxin and other xenobiotics. In the absence of exogenous ligand, AhR is cytosolic. We investigated how AhR is retained in the cytosol and how dioxin induces AhR to move to the nucleus. Disruption of nuclear export of AhR by the nuclear export inhibitor leptomycin B (LMB) or by mutation of the AhR nuclear export signal resulted in nuclear accumulation of AhR in the absence of exogenous ligand. Mutation of the AhR nuclear localization signal resulted in defects in nuclear import of AhR in both the presence and the absence of exogenous ligand. Dioxin treatment caused a more rapid accumulation of AhR in the nucleus than LMB treatment. In the presence of both dioxin and LMB, nuclear accumulation of AhR was more rapid than in the presence of dioxin alone. Our results show that AhR shuttles between the nucleus and the cytosol in the absence of exogenous ligand. Binding of ligand induces an increase in the rate of nuclear import of AhR but does not eliminate nuclear export of AhR.

  10. Evolution of the nuclear receptor gene superfamily.

    PubMed Central

    Laudet, V; Hänni, C; Coll, J; Catzeflis, F; Stéhelin, D

    1992-01-01

    Nuclear receptor genes represent a large family of genes encoding receptors for various hydrophobic ligands such as steroids, vitamin D, retinoic acid and thyroid hormones. This family also contains genes encoding putative receptors for unknown ligands. Nuclear receptor gene products are composed of several domains important for transcriptional activation, DNA binding (C domain), hormone binding and dimerization (E domain). It is not known whether these genes have evolved through gene duplication from a common ancestor or if their different domains came from different independent sources. To test these possibilities we have constructed and compared the phylogenetic trees derived from two different domains of 30 nuclear receptor genes. The tree built from the DNA binding C domain clearly shows a common progeny of all nuclear receptors, which can be grouped into three subfamilies: (i) thyroid hormone and retinoic acid receptors, (ii) orphan receptors and (iii) steroid hormone receptors. The tree constructed from the central part of the E domain which is implicated in transcriptional regulation and dimerization shows the same distribution in three subfamilies but two groups of receptors are in a different position from that in the C domain tree: (i) the Drosophila knirps family genes have acquired very different E domains during evolution, and (ii) the vitamin D and ecdysone receptors, as well as the FTZ-F1 and the NGF1B genes, seem to have DNA binding and hormone binding domains belonging to different classes. These data suggest a complex evolutionary history for nuclear receptor genes in which gene duplication events and swapping between domains of different origins took place. PMID:1312460

  11. SRSF1-3 contributes to diversification of the immunoglobulin variable region gene by promoting accumulation of AID in the nucleus.

    PubMed

    Kawaguchi, Yuka; Nariki, Hiroaki; Kawamoto, Naoko; Kanehiro, Yuichi; Miyazaki, Satoshi; Suzuki, Mari; Magari, Masaki; Tokumitsu, Hiroshi; Kanayama, Naoki

    2017-04-01

    Activation-induced cytidine deaminase (AID) is essential for diversification of the Ig variable region (IgV). AID is excluded from the nucleus, where it normally functions. However, the molecular mechanisms responsible for regulating AID localization remain to be elucidated. The SR-protein splicing factor SRSF1 is a nucleocytoplasmic shuttling protein, a splicing isoform of which called SRSF1-3, has previously been shown to contribute to IgV diversification in chicken DT40 cells. In this study, we examined whether SRSF1-3 functions in IgV diversification by promoting nuclear localization of AID. AID expressed alone was localized predominantly in the cytoplasm. In contrast, co-expression of AID with SRSF1-3 led to the nuclear accumulation of both AID and SRSF1-3 and the formation of a protein complex that contained them both, although SRSF1-3 was dispensable for nuclear import of AID. Expression of either SRSF1-3 or a C-terminally-truncated AID mutant increased IgV diversification in DT40 cells. However, overexpression of exogenous SRSF1-3 was unable to further enhance IgV diversification in DT40 cells expressing the truncated AID mutant, although SRSF1-3 was able to form a protein complex with the AID mutant. These results suggest that SRSF1-3 promotes nuclear localization of AID probably by forming a nuclear protein complex, which might stabilize nuclear AID and induce IgV diversification in an AID C-terminus-dependent manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Cortical Recruitment and Nuclear–Cytoplasmic Shuttling of Scd5p, a Protein Phosphatase-1-targeting Protein Involved in Actin Organization and EndocytosisD⃞

    PubMed Central

    Chang, Ji Suk; Henry, Kenneth; Geli, María Isabel; Lemmon, Sandra K.

    2006-01-01

    Scd5p regulates endocytosis and cortical actin organization as a targeting subunit for the Ser/Thr protein phosphatase-1 (PP1) in yeast. To identify localization signals in Scd5p required for cell surface recruitment, visualization of GFP-tagged Scd5 truncations and deletions was performed. Scd5p contains a PP1 binding site, a 3-repeat region of 20 amino acids (3R), and a 9-repeat region of 12 amino acids (9R). We found that the 9R is critical for cortical localization of Scd5p, but cortical recruitment is not essential for Scd5p's function in actin organization and endocytosis. We propose that Scd5p can target PP1 to endocytic factors in the cytoplasm that have been disassembled and/or inactivated by phosphorylation. We also found that Scd5p undergoes nuclear-cytoplasmic shuttling in a Crm1p-dependent manner. Scd5p-ΔCT lacking the 9R region and its nuclear export signal (NES) accumulates in the nucleus, causing cortical actin and endocytic defects. Cytoplasmic localization and function of Scd5p-ΔCT is restored by NES addition. However, removal of Scd5p's nuclear localization signal prevents nuclear entry, but endocytosis and actin organization remain relatively normal. These results indicate that nuclear-cytoplasmic shuttling is not required for regulation of Scd5p's cortical function and suggest that Scd5p has an independent nuclear function. PMID:16251346

  13. Function of Nup98 subtypes and their fusion proteins, Nup98-TopIIβ and Nup98-SETBP1 in nuclear-cytoplasmic transport.

    PubMed

    Saito, Shoko; Yokokawa, Takafumi; Iizuka, Gemmei; Cigdem, Sadik; Okuwaki, Mitsuru; Nagata, Kyosuke

    2017-05-20

    Nup98 is a component of the nuclear pore complex. The nup98-fusion genes derived by chromosome translocations are involved in hematopoietic malignancies. Here, we investigated the functions of Nup98 isoforms and two unexamined Nup98-fusion proteins, Nup98-TopIIβ and Nup98-SETBP1. We first demonstrated that two Nup98 isoforms are expressed in various mouse tissues and similarly localized in the nucleus and the nuclear envelope. We also showed that Nup98-TopIIβ and Nup98-SETBP1 are localized in the nucleus and partially co-localized with full-length Nup98 and a nuclear export receptor XPO1. We demonstrated that Nup98-TopIIβ and Nup98-SETBP1 negatively regulate the XPO1-mediated protein export. Our results will contribute to the understanding of the molecular mechanism by which the Nup98-fusion proteins induce tumorigenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Nucleocytoplasmic shuttling of hexokinase II in a cancer cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neary, Catherine L., E-mail: nearycl@umdnj.edu; Pastorino, John G.

    2010-04-16

    In yeast, the hexokinase type II enzyme (HXKII) translocates to the nucleus in the presence of excess glucose, and participates in glucose repression. However, no evidence has suggested a nuclear function for HXKII in mammalian cells. Herein, we present data showing nuclear localization of HXKII in HeLa cells, both by immunocytochemistry and subcellular fractionation. HXKII is extruded from the nucleus, at least in part, by the activity of the exportin 1/CrmA system, as demonstrated by increased nuclear expression and decreased cytoplasmic expression after incubation with leptomycin B, a bacterially-derived exportin inhibitor. Furthermore, cytoplasmic localization of HXKII is dependent on itsmore » enzymatic activity, as inhibiting HXKII activity using 2-deoxy-D-glucose (2DG) increased nuclear localization. This effect was more significant in cells incubated in the absence of glucose for 24 h prior to addition of 2DG. Regulated translocation of HXKII to the nucleus of mammalian cells could represent a previously unknown glucose-sensing mechanism.« less

  15. Nonlocal Polarization Feedback in a Fractional Quantum Hall Ferromagnet.

    PubMed

    Hennel, Szymon; Braem, Beat A; Baer, Stephan; Tiemann, Lars; Sohi, Pirouz; Wehrli, Dominik; Hofmann, Andrea; Reichl, Christian; Wegscheider, Werner; Rössler, Clemens; Ihn, Thomas; Ensslin, Klaus; Rudner, Mark S; Rosenow, Bernd

    2016-04-01

    In a quantum Hall ferromagnet, the spin polarization of the two-dimensional electron system can be dynamically transferred to nuclear spins in its vicinity through the hyperfine interaction. The resulting nuclear field typically acts back locally, modifying the local electronic Zeeman energy. Here we report a nonlocal effect arising from the interplay between nuclear polarization and the spatial structure of electronic domains in a ν=2/3 fractional quantum Hall state. In our experiments, we use a quantum point contact to locally control and probe the domain structure of different spin configurations emerging at the spin phase transition. Feedback between nuclear and electronic degrees of freedom gives rise to memristive behavior, where electronic transport through the quantum point contact depends on the history of current flow. We propose a model for this effect which suggests a novel route to studying edge states in fractional quantum Hall systems and may account for so-far unexplained oscillatory electronic-transport features observed in previous studies.

  16. 48 CFR 926.7103 - Requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... preference in hiring to an eligible employee of Department of Energy Defense Nuclear Facilities. This right... and subcontractors employed at Department of Energy Defense Nuclear Facilities, to the extent... implementation of Section 3161 at the Department of Energy Defense Nuclear Facility and local counsel, should...

  17. 48 CFR 926.7103 - Requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... preference in hiring to an eligible employee of Department of Energy Defense Nuclear Facilities. This right... and subcontractors employed at Department of Energy Defense Nuclear Facilities, to the extent... implementation of Section 3161 at the Department of Energy Defense Nuclear Facility and local counsel, should...

  18. 48 CFR 926.7103 - Requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... preference in hiring to an eligible employee of Department of Energy Defense Nuclear Facilities. This right... and subcontractors employed at Department of Energy Defense Nuclear Facilities, to the extent... implementation of Section 3161 at the Department of Energy Defense Nuclear Facility and local counsel, should...

  19. 48 CFR 926.7103 - Requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... preference in hiring to an eligible employee of Department of Energy Defense Nuclear Facilities. This right... and subcontractors employed at Department of Energy Defense Nuclear Facilities, to the extent... implementation of Section 3161 at the Department of Energy Defense Nuclear Facility and local counsel, should...

  20. 48 CFR 926.7103 - Requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... preference in hiring to an eligible employee of Department of Energy Defense Nuclear Facilities. This right... and subcontractors employed at Department of Energy Defense Nuclear Facilities, to the extent... implementation of Section 3161 at the Department of Energy Defense Nuclear Facility and local counsel, should...

  1. Do nuclear collisions create a locally equilibrated quark–gluon plasma?

    DOE PAGES

    Romatschke, P.

    2017-01-10

    Experimental results on azimuthal correlations in high energy nuclear collisions (nucleus–nucleus, proton–nucleus, and proton–proton) seem to be well described by viscous hydrodynamics. It is often argued that this agreement implies either local thermal equilibrium or at least local isotropy. In this note, I present arguments why this is not the case. Neither local near-equilibrium nor near-isotropy are required in order for hydrodynamics to offer a successful and accurate description of experimental results. However, I predict the breakdown of hydrodynamics at momenta of order seven times the temperature, corresponding to a smallest possible QCD liquid drop size of 0.15 fm.

  2. A Role for Myosin Va in Human Cytomegalovirus Nuclear Egress.

    PubMed

    Wilkie, Adrian R; Sharma, Mayuri; Pesola, Jean M; Ericsson, Maria; Fernandez, Rosio; Coen, Donald M

    2018-03-15

    Herpesviruses replicate and package their genomes into capsids in replication compartments within the nuclear interior. Capsids then move to the inner nuclear membrane for envelopment and release into the cytoplasm in a process called nuclear egress. We previously found that nuclear F-actin is induced upon infection with the betaherpesvirus human cytomegalovirus (HCMV) and is important for nuclear egress and capsid localization away from replication compartment-like inclusions toward the nuclear rim. Despite these and related findings, it has not been shown that any specific motor protein is involved in herpesvirus nuclear egress. In this study, we have investigated whether the host motor protein, myosin Va, could be fulfilling this role. Using immunofluorescence microscopy and coimmunoprecipitation, we observed associations between a nuclear population of myosin Va and the viral major capsid protein, with both concentrating at the periphery of replication compartments. Immunoelectron microscopy showed that nearly 40% of assembled nuclear capsids associate with myosin Va. We also found that myosin Va and major capsid protein colocalize with nuclear F-actin. Importantly, antagonism of myosin Va with RNA interference or a dominant negative mutant revealed that myosin Va is important for the efficient production of infectious virus, capsid accumulation in the cytoplasm, and capsid localization away from replication compartment-like inclusions toward the nuclear rim. Our results lead us to suggest a working model whereby human cytomegalovirus capsids associate with myosin Va for movement from replication compartments to the nuclear periphery during nuclear egress. IMPORTANCE Little is known regarding how newly assembled and packaged herpesvirus capsids move from the nuclear interior to the periphery during nuclear egress. While it has been proposed that an actomyosin-based mechanism facilitates intranuclear movement of alphaherpesvirus capsids, a functional role for any specific myosin in nuclear egress has not been reported. Furthermore, the notion that an actomyosin-based mechanism facilitates intranuclear capsid movement is controversial. Here we show that human cytomegalovirus capsids associate with nuclear myosin Va and F-actin and that antagonism of myosin Va impairs capsid localization toward the nuclear rim and nuclear egress. Together with our previous results showing that nuclear F-actin is induced upon HCMV infection and is also important for these processes, our results lend support to the hypothesis that nascent human cytomegalovirus capsids migrate to the nuclear periphery via actomyosin-based movement. These results shed light on a poorly understood viral process and the cellular machinery involved. Copyright © 2018 American Society for Microbiology.

  3. Impact of intermediate and high energy nuclear data on the neutronic safety parameters of MYRRHA accelerator driven system

    NASA Astrophysics Data System (ADS)

    Stankovskiy, Alexey; Çelik, Yurdunaz; Eynde, Gert Van den

    2017-09-01

    Perturbation of external neutron source can cause significant local power changes transformed into undesired safety-related events in an accelerator driven system. Therefore for the accurate design of MYRRHA sub-critical core it is important to evaluate the uncertainty of power responses caused by the uncertainties in nuclear reaction models describing the particle transport from primary proton energy down to the evaluated nuclear data table range. The calculations with a set of models resulted in quite low uncertainty on the local power caused by significant perturbation of primary neutron yield from proton interactions with lead and bismuth isotopes. The considered accidental event of prescribed proton beam shape loss causes drastic increase in local power but does not practically change the total core thermal power making this effect difficult to detect. In the same time the results demonstrate a correlation between perturbed local power responses in normal operation and misaligned beam conditions indicating that generation of covariance data for proton and neutron induced neutron multiplicities for lead and bismuth isotopes is needed to obtain reliable uncertainties for local power responses.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiheido, Hirokazu, E-mail: shiheido@ak.med.kyoto-u.ac.jp; Shimizu, Jun

    BEN domain-containing protein 3 (BEND3) has recently been reported to function as a heterochromatin-associated protein in transcriptional repression in the nucleus. BEND3 should have nuclear localization signals (NLSs) to localize to the nucleus in light of its molecular weight, which is higher than that allowed to pass through nuclear pore complexes. We here analyzed the subcellular localization of deletion/site-directed mutants of human BEND3 by an immunofluorescence assay in an attempt to identify the amino acids essential for its nuclear localization. We found that three basic amino acid residues located in the N-terminal region of BEND3 (BEND3{sub 56–58}, KRK) are essential,more » suggesting that these residues play a role as a functional NLS. These results provide valuable information for progressing research on BEND3. - Highlights: • BEND3 localizes to the nucleus. • The N-terminal 60 amino acids region of BEND3 contains NLS. • Amino acids located between 56 and 58 of BEND3 (KRK) are part of NLS. • KRK motif is highly conserved among BEND3 homologs.« less

  5. The relationship of the oestrogen and progestin receptors in the abnormal uterus of the adult anovulatory rat. Effects of neonatal treatment with testosterone propionate or clomiphene citrate.

    PubMed Central

    White, J O; Moore, P A; Elder, M G; Lim, L

    1981-01-01

    The neonatal administration of testosterone propionate to Wistar rats resulted in anovulatory adults in persistent vaginal oestrus. Clomiphene citrate had a similar effect. In both groups of adults, hyperplasia of the uterine epithelium and occasional metaplasia was observed. The uterine nuclear and cytosol oestrogen and progestin receptors of these anovulatory rats were found to have affinities for their respective ligands similar to those of normal females. The nuclear oestrogen receptor comprised occupied and unoccupied components, as in normal females. The content of the nuclear oestrogen receptor was comparable with that of females in the late dioestrous or pro-oestrous phase. This content was higher in the clomiphene-treated group. Despite the relatively high nuclear oestrogen receptor content the content of progestin receptors, a putative index of the oestrogenic response, was lower in the treated rats than in normal adult females throughout the cycle. Administration of oestradiol to both treatment groups resulted in depletion of cytosol oestrogen receptor content 1 h later, which, however, was not reflected by an increase in the content of nuclear oestrogen receptors. There was no measurable increase in progesterone receptor content in treated rats after daily administration of oestrogen (5 microgram/rat) for 3 days. These changes in sex-hormone-receptor interactions involving an impairment of the normal oestrogenic response may be associated with the abnormal differentiation of the uterus in these sterile, anovulatory animals. Images Fig. 1. Fig. 2. PMID:7316994

  6. Genome-wide screen uncovers novel pathways for tRNA processing and nuclear–cytoplasmic dynamics

    PubMed Central

    Wu, Jingyan; Bao, Alicia; Chatterjee, Kunal; Wan, Yao; Hopper, Anita K.

    2015-01-01

    Transfer ribonucleic acids (tRNAs) are essential for protein synthesis. However, key gene products involved in tRNA biogenesis and subcellular movement remain to be discovered. We conducted the first comprehensive unbiased analysis of the role of nearly an entire proteome in tRNA biology and describe 162 novel and 12 previously known Saccharomyces cerevisiae gene products that function in tRNA processing, turnover, and subcellular movement. tRNA nuclear export is of particular interest because it is essential, but the known tRNA exporters (Los1 [exportin-t] and Msn5 [exportin-5]) are unessential. We report that mutations of CRM1 (Exportin-1), MEX67/MTR2 (TAP/p15), and five nucleoporins cause accumulation of unspliced tRNA, a hallmark of defective tRNA nuclear export. CRM1 mutation genetically interacts with los1Δ and causes altered tRNA nuclear–cytoplasmic distribution. The data implicate roles for the protein and mRNA nuclear export machineries in tRNA nuclear export. Mutations of genes encoding actin cytoskeleton components and mitochondrial outer membrane proteins also cause accumulation of unspliced tRNA, likely due to defective splicing on mitochondria. Additional gene products, such as chromatin modification enzymes, have unanticipated effects on pre-tRNA end processing. Thus, this genome-wide screen uncovered putative novel pathways for tRNA nuclear export and extensive links between tRNA biology and other aspects of cell physiology. PMID:26680305

  7. The Role of Ect2 Nuclear RhoGEF Activity in Ovarian Cancer Cell Transformation

    PubMed Central

    Huff, Lauren P.; DeCristo, Molly J.; Trembath, Dimitri; Kuan, Pei Fen; Yim, Margaret; Liu, Jinsong; Cook, Danielle R.; Miller, C. Ryan; Der, Channing J.

    2013-01-01

    Ect2, a Rho guanine nucleotide exchange factor (RhoGEF), is atypical among RhoGEFs in its predominantly nuclear localization in interphase cells. One current model suggests that Ect2 mislocalization drives cellular transformation by promoting aberrant activation of cytoplasmic Rho family GTPase substrates. However, in ovarian cancers, where Ect2 is both amplified and overexpressed at the mRNA level, we observed that the protein is highly expressed and predominantly nuclear and that nuclear but not cytoplasmic Ect2 increases with advanced disease. Knockdown of Ect2 in ovarian cancer cell lines impaired their anchorage-independent growth without affecting their growth on plastic. Restoration of Ect2 expression rescued the anchorage-independent growth defect, but not if either the DH catalytic domain or the nuclear localization sequences of Ect2 were mutated. These results suggested a novel mechanism whereby Ect2 could drive transformation in ovarian cancer cells by acting as a RhoGEF specifically within the nucleus. Interestingly, Ect2 had an intrinsically distinct GTPase specificity profile in the nucleus versus the cytoplasm. Nuclear Ect2 bound preferentially to Rac1, while cytoplasmic Ect2 bound to RhoA but not Rac. Consistent with nuclear activation of endogenous Rac, Ect2 overexpression was sufficient to recruit Rac effectors to the nucleus, a process that required a functional Ect2 catalytic domain. Furthermore, expression of active nuclearly targeted Rac1 rescued the defect in transformed growth caused by Ect2 knockdown. Our work suggests a novel mechanism of Ect2-driven transformation, identifies subcellular localization as a regulator of GEF specificity, and implicates activation of nuclear Rac1 in cellular transformation. PMID:24386507

  8. STATs get their move on

    PubMed Central

    Reich, Nancy C

    2013-01-01

    Understanding the mechanisms that regulate dynamic localization of a protein within a cell can provide critical insight to its functional molecular interactions. Signal transducers and activators of transcription (STATs) play essential roles in development, proliferation, and immune defense. However the consequences of STAT hyperactivity can predispose to diseases including autoimmunity and cancer. To function as transcription factors STATs must gain access to the nucleus, and knowledge of the mechanisms that regulate STAT nuclear trafficking can provide a means to control STAT action. This review presents a synopsis of some of the studies that address the nuclear dynamics of the STAT proteins. Evidence suggests that not all STATs are the same. Nuclear import of STAT1 and STAT4 appears linked to their tyrosine phosphorylation and the formation of parallel dimers via reciprocal phosphotyrosine and Src homology 2 domain interactions. This dimer arrangement generates a conformational nuclear localization signal. STAT2 is imported continually to the nucleus in an unphosphorylated state due to its association with IRF9, but the dominant nuclear export signal of STAT2 shuttles the complex back to the cytoplasm. Following STAT2 tyrosine phosphorylation, it can form dimers with STAT1 to affect nuclear import as the trimeric complex (ISGF3). Distinctly, STAT3, STAT5, and STAT6 are continually imported to the nucleus independent of tyrosine phosphorylation. Mutational studies indicate the nuclear localization signals in these STATs require the conformational structure of their coiled-coil domains. Increases in STAT nuclear accumulation following cytokine stimulation appear coordinate with their ability to bind DNA. PMID:24470978

  9. Putative function of hypothetical proteins expressed by Clostridium perfringens type A strains and their protective efficacy in mouse model.

    PubMed

    Alam, Syed Imteyaz; Dwivedi, Pratistha

    2016-10-01

    The whole genome sequencing and annotation of Clostridium perfringens strains revealed several genes coding for proteins of unknown function with no significant similarities to genes in other organisms. Our previous studies clearly demonstrated that hypothetical proteins CPF_2500, CPF_1441, CPF_0876, CPF_0093, CPF_2002, CPF_2314, CPF_1179, CPF_1132, CPF_2853, CPF_0552, CPF_2032, CPF_0438, CPF_1440, CPF_2918, CPF_0656, and CPF_2364 are genuine proteins of C. perfringens expressed in high abundance. This study explored the putative role of these hypothetical proteins using bioinformatic tools and evaluated their potential as putative candidates for prophylaxis. Apart from a group of eight hypothetical proteins (HPs), a putative function was predicted for the rest of the hypothetical proteins using one or more of the algorithms used. The phylogenetic analysis did not suggest an evidence of a horizontal gene transfer event except for HP CPF_0876. HP CPF_2918 is an abundant extracellular protein, unique to C. perfringens species with maximum strain coverage and did not show any significant match in the database. CPF_2918 was cloned, recombinant protein was purified to near homogeneity, and probing with mouse anti-CPF_2918 serum revealed surface localization of the protein in C. perfringens ATCC13124 cultures. The purified recombinant CPF_2918 protein induced antibody production, a mixed Th1 and Th2 kind of response, and provided partial protection to immunized mice in direct C. perfringens challenge. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Identification of candidates for interacting partners of the tail domain of DcNMCP1, a major component of the Daucus carota nuclear lamina-like structure.

    PubMed

    Mochizuki, Ryota; Tsugama, Daisuke; Yamazaki, Michihiro; Fujino, Kaien; Masuda, Kiyoshi

    2017-05-04

    NMCP/CRWN (NUCLEAR MATRIX CONSTITUENT PROTEIN/CROWDED NUCLEI) is a major component of a protein fibrous meshwork (lamina-like structure) on the plant inner nuclear membrane. NMCP/CRWN contributes to regulating nuclear shape and nuclear functions. An NMCP/CRWN protein in Daucus carota (DcNMCP1) is localized to the nuclear periphery in interphase cells, and surrounds chromosomes in cells in metaphase and anaphase. The N-terminal region and the C-terminal region of DcNMCP1 are both necessary for localizing DcNMCP1 to the nuclear periphery. Here candidate interacting partners of the amino acid position 975-1053 of DcNMCP1 (T975-1053), which is present in the C-terminal region and contains a conserved sequence that plays a role in localizing DcNMCP1 to the nuclear periphery, are screened for. Arabidopsis thaliana nuclear proteins were subjected to far-Western blotting with GST-fused T975-1053 as a probe, and signals were detected at the positions corresponding to ∼70, ∼40, and ∼18 kDa. These ∼70, ∼40, and ∼18 kDa nuclear proteins were identified by mass spectrometry, and subjected to a yeast 2-hybrid (Y2H) analysis with T975-1053 as bait. In this analysis, the ∼40 kDa protein ARP7, which is a nuclear actin-related protein possibly involved in regulating chromatin structures, was confirmed to interact with T975-1053. Independently of the far-Western blotting, a Y2H screen was performed using T975-1053 as bait. Targeted Y2H assays confirmed that 3 proteins identified in the screen, MYB3, SINAT1, and BIM1, interact with T975-1053. These proteins might have roles in NMCP/CRWN protein-mediated biologic processes.

  11. Specific Nuclear Localizing Sequence Directs Two Myosin Isoforms to the Cell Nucleus in Calmodulin-Sensitive Manner

    PubMed Central

    Dzijak, Rastislav; Yildirim, Sukriye; Kahle, Michal; Novák, Petr; Hnilicová, Jarmila; Venit, Tomáš; Hozák, Pavel

    2012-01-01

    Background Nuclear myosin I (NM1) was the first molecular motor identified in the cell nucleus. Together with nuclear actin, they participate in crucial nuclear events such as transcription, chromatin movements, and chromatin remodeling. NM1 is an isoform of myosin 1c (Myo1c) that was identified earlier and is known to act in the cytoplasm. NM1 differs from the “cytoplasmic” myosin 1c only by additional 16 amino acids at the N-terminus of the molecule. This amino acid stretch was therefore suggested to direct NM1 into the nucleus. Methodology/Principal Findings We investigated the mechanism of nuclear import of NM1 in detail. Using over-expressed GFP chimeras encoding for truncated NM1 mutants, we identified a specific sequence that is necessary for its import to the nucleus. This novel nuclear localization sequence is placed within calmodulin-binding motif of NM1, thus it is present also in the Myo1c. We confirmed the presence of both isoforms in the nucleus by transfection of tagged NM1 and Myo1c constructs into cultured cells, and also by showing the presence of the endogenous Myo1c in purified nuclei of cells derived from knock-out mice lacking NM1. Using pull-down and co-immunoprecipitation assays we identified importin beta, importin 5 and importin 7 as nuclear transport receptors that bind NM1. Since the NLS sequence of NM1 lies within the region that also binds calmodulin we tested the influence of calmodulin on the localization of NM1. The presence of elevated levels of calmodulin interfered with nuclear localization of tagged NM1. Conclusions/Significance We have shown that the novel specific NLS brings to the cell nucleus not only the “nuclear” isoform of myosin I (NM1 protein) but also its “cytoplasmic” isoform (Myo1c protein). This opens a new field for exploring functions of this molecular motor in nuclear processes, and for exploring the signals between cytoplasm and the nucleus. PMID:22295092

  12. 5 CFR 5801.102 - Prohibited securities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... licenses for facilities which generate electric energy by means of a nuclear reactor; (2) State or local... reactor or a low-level waste facility; (3) Entities manufacturing or selling nuclear power or test reactors; (4) Architectural-engineering companies providing services relating to a nuclear power reactor...

  13. 5 CFR 5801.102 - Prohibited securities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... licenses for facilities which generate electric energy by means of a nuclear reactor; (2) State or local... reactor or a low-level waste facility; (3) Entities manufacturing or selling nuclear power or test reactors; (4) Architectural-engineering companies providing services relating to a nuclear power reactor...

  14. Generation of a transgenic medaka (Oryzias latipes) strain for visualization of nuclear dynamics in early developmental stages.

    PubMed

    Inoue, Takanobu; Iida, Atsuo; Maegawa, Shingo; Sehara-Fujisawa, Atsuko; Kinoshita, Masato

    2016-12-01

    In this study, we verified nuclear transport activity of an artificial nuclear localization signal (aNLS) in medaka fish (Oryzias latipes). We generated a transgenic medaka strain expresses the aNLS tagged enhanced green fluorescent protein (EGFP) driven by a medaka beta-actin promoter. The aNLS-EGFP was accumulated in the nuclei of somatic tissues and yolk nuclei of oocytes, but undetectable in the spermatozoa. The fluorescent signal was observed from immediately after fertilization by a maternal contribution. Furthermore, male and female pronuclei were visualized in fertilized eggs, and nuclear dynamics of pronuclear fusion and subsequent cleavage were captured by time-lapse imaging. In contrast, SV40NLS exhibited no activity of nuclear transport in early embryos. In conclusion, the aNLS possesses a strong nuclear localization activity and is a useful probe for fluorescent observation of the pronuclei and nuclei in early developmental stage of medaka. © 2016 Japanese Society of Developmental Biologists.

  15. Demonstration of nuclear compartmentalization of glutathione in hepatocytes.

    PubMed Central

    Bellomo, G; Vairetti, M; Stivala, L; Mirabelli, F; Richelmi, P; Orrenius, S

    1992-01-01

    The intracellular distribution of glutathione (GSH) in cultured hepatocytes has been investigated by using the compound monochlorobimane (BmCl), which interacts specifically with GSH to form a highly fluorescent adduct. Image analysis of BmCl-labeled hepatocytes predominantly localized the fluorescence in the nucleus; the nuclear/cytoplasmic concentration gradient was approximately three. This concentration gradient was collapsed by treatment of the cells with ATP-depleting agents. The uneven distribution of BmCl fluorescence was not attributable to (i) nonspecific interaction of BmCl with protein sulfhydryl groups, (ii) any selective nuclear localization of the GSH transferase(s) catalyzing formation of the GSH-BmCl conjugate, or (iii) any apparent alterations in cell morphology from culture conditions, suggesting that this distribution did, indeed, reflect a nuclear compartmentalization of GSH. That the nuclear pool of GSH was found more resistant to depletion by several agents than the cytoplasmic pool supports the assumption that GSH is essential in protecting DNA and other nuclear structures from chemical injury. Images PMID:1584774

  16. Distinct molecular cues ensure a robust microtubule-dependent nuclear positioning in the Drosophila oocyte

    PubMed Central

    Tissot, Nicolas; Lepesant, Jean-Antoine; Bernard, Fred; Legent, Kevin; Bosveld, Floris; Martin, Charlotte; Faklaris, Orestis; Bellaïche, Yohanns; Coppey, Maïté; Guichet, Antoine

    2017-01-01

    Controlling nucleus localization is crucial for a variety of cellular functions. In the Drosophila oocyte, nuclear asymmetric positioning is essential for the reorganization of the microtubule (MT) network that controls the polarized transport of axis determinants. A combination of quantitative three-dimensional live imaging and laser ablation-mediated force analysis reveal that nuclear positioning is ensured with an unexpected level of robustness. We show that the nucleus is pushed to the oocyte antero-dorsal cortex by MTs and that its migration can proceed through distinct tracks. Centrosome-associated MTs favour one migratory route. In addition, the MT-associated protein Mud/NuMA that is asymmetrically localized in an Asp-dependent manner at the nuclear envelope hemisphere where MT nucleation is higher promotes a separate route. Our results demonstrate that centrosomes do not provide an obligatory driving force for nuclear movement, but together with Mud, contribute to the mechanisms that ensure the robustness of asymmetric nuclear positioning. PMID:28447612

  17. Four nucleocytoplasmic-shuttling proteins and p53 interact specifically with the YB-NLS and are involved in anticancer reagent-induced nuclear localization of YB-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Toru; Ohashi, Sachiyo; Kobayashi, Shunsuke

    In cancer cells, anticancer reagents often trigger nuclear accumulation of YB-1, which participates in the progression of cancer malignancy. YB-1 has a non-canonical nuclear localization signal (YB-NLS). Here we found that four nucleocytoplasmic-shuttling RNA-binding proteins and p53 interact specifically with the YB-NLS and co-accumulate with YB-1 in the nucleus of actinomycin D-treated cells. To elucidate the roles of these YB-NLS-binding proteins, we performed a dominant-negative experiment in which a large excess of YB-NLS interacts with the YB-NLS-binding proteins, and showed inhibitory effects on actinomycin D-induced nuclear transport of endogenous YB-1 and subsequent MDR1 gene expression. Furthermore, the YB-NLS-expressing cells weremore » also found to show increased drug sensitivity. Our results suggest that these YB-NLS-associating proteins are key factors for nuclear translocation/accumulation of YB-1 in cancer cells. - Highlights: • Four nucleocytoplasmic-shuttling proteins and p53 associate with YB-NLS. • They showed nuclear co-accumulation with YB-1 in actinomycin D-treated cells. • Overexpression of YB-NLS was carried out to take YB-NLS-binding proteins from YB-1. • YB-NLS inhibited actinomycin D-induced nuclear localization of endogenous YB-1. • YB-NLS suppressed actinomycin D-induced expression of MDR1.« less

  18. Off-site Emergency Planning at UK Nuclear Licensed Sites.

    PubMed

    Leonard, Paul; Thomas, Gareth

    2017-04-01

    Nuclear emergency planning arrangements in the UK are continually kept under review. This work proposes to outline how experience from nuclear exercises and undertaking emergency response duties can be based on radiological knowledge of specific sites and utilised in the future. In 2014, the UK regulator, the Office for Nuclear Regulation (ONR) revised their principles for the determination of off-site emergency planning areas around nuclear sites where predetermined countermeasures and other protection measures are applied to protect those people who may be affected by a radiation emergency. The revised principles also enhanced communication from the nuclear site operators and local authorities to the public. This updated ONR's application of the UK Radiation (Emergency Preparedness and Public Information) Regulations 2001 (REPPIR) http://www.hse.gov.uk/radiation/ionising/reppir.htm, which includes details of minimising potential doses to the public, as well as assessment and reassurance, linked to other concurrent risks such as flooding. ONR undertakes site-specific assessments of each operators' hazard identification and risk evaluation, which include consideration of whether the public might receive a significant radiation dose in the year following the emergency (excluding countermeasures in the first 24 hours). In defining the areas for off-site emergency planning, practical and strategic factors are then considered, which include other local non-nuclear emergency planning arrangements and experience, and whether local geographic and demographic aspects could aid public credibility and confidence. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Regulatory T cells facilitate the nuclear accumulation of inducible cAMP early repressor (ICER) and suppress nuclear factor of activated T cell c1 (NFATc1)

    PubMed Central

    Vaeth, Martin; Gogishvili, Tea; Bopp, Tobias; Klein, Matthias; Berberich-Siebelt, Friederike; Gattenloehner, Stefan; Avots, Andris; Sparwasser, Tim; Grebe, Nadine; Schmitt, Edgar; Hünig, Thomas; Serfling, Edgar; Bodor, Josef

    2011-01-01

    Inducible cAMP early repressor (ICER) is a transcriptional repressor, which, because of alternate promoter use, is generated from the 3′ region of the cAMP response modulator (Crem) gene. Its expression and nuclear occurrence are elevated by high cAMP levels in naturally occurring regulatory T cells (nTregs). Using two mouse models, we demonstrate that nTregs control the cellular localization of ICER/CREM, and thereby inhibit IL-2 synthesis in conventional CD4+ T cells. Ablation of nTregs in depletion of regulatory T-cell (DEREG) mice resulted in cytosolic localization of ICER/CREM and increased IL-2 synthesis upon stimulation. Direct contacts between nTregs and conventional CD4+ T cells led to nuclear accumulation of ICER/CREM and suppression of IL-2 synthesis on administration of CD28 superagonistic (CD28SA) Ab. In a similar way, nTregs communicated with B cells and induced the cAMP-driven nuclear localization of ICER/CREM. High levels of ICER suppressed the induction of nuclear factor of activated T cell c1 (Nfatc1) gene in T cells whose inducible Nfatc1 P1 promoter bears two highly conserved cAMP-responsive elements to which ICER/CREM can bind. These findings suggest that nTregs suppress T-cell responses by the cAMP-dependent nuclear accumulation of ICER/CREM and inhibition of NFATc1 and IL-2 induction. PMID:21262800

  20. A Zinc-Finger-Family Transcription Factor, AbVf19, Is Required for the Induction of a Gene Subset Important for Virulence in Alternaria brassicicola

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Akhil; Ohm, Robin A.; Oxiles, Lindsay

    2011-10-26

    Alternaria brassicicola is a successful saprophyte and necrotrophic plant pathogen with a broad host range within the family Brassicaceae. It produces secondary metabolites that marginally affect virulence. Cell wall degrading enzymes (CDWE) have been considered important for pathogenesis but none of them individually have been identified as significant virulence factors in A. brassicicola. In this study, knockout mutants of a gene, AbVf19, were created and produced considerably smaller lesions than the wild type on inoculated host plants. The presence of tandem zinc-finger domains in the predicted amino acid sequence and nuclear localization of AbVf19- reporter protein suggested that it wasmore » a transcription factor. Gene expression comparisons using RNA-seq identified 74 genes being downregulated in the mutant during a late stage of infection. Among the 74 downregulated genes, 28 were putative CWDE genes. These were hydrolytic enzyme genes that composed a small fraction of genes within each family of cellulases, pectinases, cutinases, and proteinases. The mutants grew slower than the wild type on an axenic medium with pectin as a major carbon source. This study demonstrated the existence and the importance of a transcription factor that regulates a suite of genes that are important for decomposing and utilizing plant material during the late stage of plant infection.« less

  1. Promoter mapping of the mouse Tcp-10bt gene in transgenic mice identifies essential male germ cell regulatory sequences.

    PubMed

    Ewulonu, U K; Snyder, L; Silver, L M; Schimenti, J C

    1996-03-01

    Transgenic mice were generated to localize essential promoter elements in the mouse testis-expressed Tcp-10 genes. These genes are expressed exclusively in male germ cells, and exhibit a diffuse range of transcriptional start sites, possibly due to the absence of a TATA box. A series of transgene constructs containing different amounts of 5' flanking DNA revealed that all sequences necessary for appropriate temporal and tissue-specific transcription of Tcp-10 reside between positions -1 to -973. All transgenic animals containing these sequences expressed a chimeric transgene at high levels, in a pattern that paralleled the endogenous genes. These experiments further defined a 227 bp fragment from -746 to -973 that was absolutely essential for expression. In a gel-shift assay, this 227-bp fragment bound nuclear protein from testis, but not other tissues, to yield two retarded bands. Sequence analysis of this fragment revealed a half-site for the AP-2 transcription factor recognition sequence. Gel shift assays using native or mutant oligonucleotides demonstrated that the putative AP-2 recognition sequence was essential for generating the retarded bands. Since the binding activity is testis-specific, but AP-2 expression is not exclusive to male germ cells, it is possible that transcription of Tcp-10 requires interaction between AP-2 and a germ cell-specific transcription factor.

  2. RNA Splicing in a New Rhabdovirus from Culex Mosquitoes▿†

    PubMed Central

    Kuwata, Ryusei; Isawa, Haruhiko; Hoshino, Keita; Tsuda, Yoshio; Yanase, Tohru; Sasaki, Toshinori; Kobayashi, Mutsuo; Sawabe, Kyoko

    2011-01-01

    Among members of the order Mononegavirales, RNA splicing events have been found only in the family Bornaviridae. Here, we report that a new rhabdovirus isolated from the mosquito Culex tritaeniorhynchus replicates in the nuclei of infected cells and requires RNA splicing for viral mRNA maturation. The virus, designated Culex tritaeniorhynchus rhabdovirus (CTRV), shares a similar genome organization with other rhabdoviruses, except for the presence of a putative intron in the coding region for the L protein. Molecular phylogenetic studies indicated that CTRV belongs to the family Rhabdoviridae, but it is yet to be assigned a genus. Electron microscopic analysis revealed that the CTRV virion is extremely elongated, unlike virions of rhabdoviruses, which are generally bullet shaped. Northern hybridization confirmed that a large transcript (approximately 6,500 nucleotides [nt]) from the CTRV L gene was present in the infected cells. Strand-specific reverse transcription-PCR (RT-PCR) analyses identified the intron-exon boundaries and the 76-nt intron sequence, which contains the typical motif for eukaryotic spliceosomal intron-splice donor/acceptor sites (GU-AG), a predicted branch point, and a polypyrimidine tract. In situ hybridization exhibited that viral RNAs are primarily localized in the nucleus of infected cells, indicating that CTRV replicates in the nucleus and is allowed to utilize the host's nuclear splicing machinery. This is the first report of RNA splicing among the members of the family Rhabdoviridae. PMID:21507977

  3. RNA splicing in a new rhabdovirus from Culex mosquitoes.

    PubMed

    Kuwata, Ryusei; Isawa, Haruhiko; Hoshino, Keita; Tsuda, Yoshio; Yanase, Tohru; Sasaki, Toshinori; Kobayashi, Mutsuo; Sawabe, Kyoko

    2011-07-01

    Among members of the order Mononegavirales, RNA splicing events have been found only in the family Bornaviridae. Here, we report that a new rhabdovirus isolated from the mosquito Culex tritaeniorhynchus replicates in the nuclei of infected cells and requires RNA splicing for viral mRNA maturation. The virus, designated Culex tritaeniorhynchus rhabdovirus (CTRV), shares a similar genome organization with other rhabdoviruses, except for the presence of a putative intron in the coding region for the L protein. Molecular phylogenetic studies indicated that CTRV belongs to the family Rhabdoviridae, but it is yet to be assigned a genus. Electron microscopic analysis revealed that the CTRV virion is extremely elongated, unlike virions of rhabdoviruses, which are generally bullet shaped. Northern hybridization confirmed that a large transcript (approximately 6,500 nucleotides [nt]) from the CTRV L gene was present in the infected cells. Strand-specific reverse transcription-PCR (RT-PCR) analyses identified the intron-exon boundaries and the 76-nt intron sequence, which contains the typical motif for eukaryotic spliceosomal intron-splice donor/acceptor sites (GU-AG), a predicted branch point, and a polypyrimidine tract. In situ hybridization exhibited that viral RNAs are primarily localized in the nucleus of infected cells, indicating that CTRV replicates in the nucleus and is allowed to utilize the host's nuclear splicing machinery. This is the first report of RNA splicing among the members of the family Rhabdoviridae.

  4. Interplay between RNASEH2 and MOV10 controls LINE-1 retrotransposition

    PubMed Central

    Choi, Jongsu; Hwang, Sung-Yeon; Ahn, Kwangseog

    2018-01-01

    Abstract Long interspersed nuclear element 1 is an autonomous non-long terminal repeat retrotransposon that comprises ∼17% of the human genome. Its spontaneous retrotransposition and the accumulation of heritable L1 insertions can potentially result in genome instability and sporadic disorders. Moloney leukemia virus 10 homolog (MOV10), a putative RNA helicase, has been implicated in inhibiting L1 replication, although its underlying mechanism of action remains obscure. Moreover, the physiological relevance of MOV10-mediated L1 regulation in human disease has not yet been examined. Using a proteomic approach, we identified RNASEH2 as a binding partner of MOV10. We show that MOV10 interacts with RNASEH2, and their interplay is crucial for restricting L1 retrotransposition. RNASEH2 and MOV10 co-localize in the nucleus, and RNASEH2 binds to L1 RNAs in a MOV10-dependent manner. Small hairpin RNA-mediated depletion of either RNASEH2A or MOV10 results in an accumulation of L1-specific RNA-DNA hybrids, suggesting they contribute to prevent formation of vital L1 heteroduplexes during retrotransposition. Furthermore, we show that RNASEH2-MOV10-mediated L1 restriction downregulates expression of the rheumatoid arthritis-associated inflammatory cytokines and matrix-degrading proteinases in synovial cells, implicating a potential causal relationship between them and disease development in terms of disease predisposition. PMID:29315404

  5. Genetic variability in Melipona quinquefasciata (Hymenoptera, Apidae, Meliponini) from northeastern Brazil determined using the first internal transcribed spacer (ITS1).

    PubMed

    Pereira, J O P; Freitas, B M; Jorge, D M M; Torres, D C; Soares, C E A; Grangeiro, T B

    2009-01-01

    Melipona quinquefasciata is a ground-nesting South American stingless bee whose geographic distribution was believed to comprise only the central and southern states of Brazil. We obtained partial sequences (about 500-570 bp) of first internal transcribed spacer (ITS1) nuclear ribosomal DNA from Melipona specimens putatively identified as M. quinquefasciata collected from different localities in northeastern Brazil. To confirm the taxonomic identity of the northeastern samples, specimens from the state of Goiás (Central region of Brazil) were included for comparison. All sequences were deposited in GenBank (accession numbers EU073751-EU073759). The mean nucleotide divergence (excluding sites with insertions/deletions) in the ITS1 sequences was only 1.4%, ranging from 0 to 4.1%. When the sites with insertions/deletions were also taken into account, sequence divergences varied from 0 to 5.3%. In all pairwise comparisons, the ITS1 sequence from the specimens collected in Goiás was most divergent compared to the ITS1 sequences of the bees from the other locations. However, neighbor-joining phylogenetic analysis showed that all ITS1 sequences from northeastern specimens along with the sample of Goiás were resolved in a single clade with a bootstrap support of 100%. The ITS1 sequencing data thus support the occurrence of M. quinquefasciata in northeast Brazil.

  6. Structural and Sequence Similarities of Hydra Xeroderma Pigmentosum A Protein to Human Homolog Suggest Early Evolution and Conservation

    PubMed Central

    Ghaskadbi, Saroj

    2013-01-01

    Xeroderma pigmentosum group A (XPA) is a protein that binds to damaged DNA, verifies presence of a lesion, and recruits other proteins of the nucleotide excision repair (NER) pathway to the site. Though its homologs from yeast, Drosophila, humans, and so forth are well studied, XPA has not so far been reported from protozoa and lower animal phyla. Hydra is a fresh-water cnidarian with a remarkable capacity for regeneration and apparent lack of organismal ageing. Cnidarians are among the first metazoa with a defined body axis, tissue grade organisation, and nervous system. We report here for the first time presence of XPA gene in hydra. Putative protein sequence of hydra XPA contains nuclear localization signal and bears the zinc-finger motif. It contains two conserved Pfam domains and various characterized features of XPA proteins like regions for binding to excision repair cross-complementing protein-1 (ERCC1) and replication protein A 70 kDa subunit (RPA70) proteins. Hydra XPA shows a high degree of similarity with vertebrate homologs and clusters with deuterostomes in phylogenetic analysis. Homology modelling corroborates the very close similarity between hydra and human XPA. The protein thus most likely functions in hydra in the same manner as in other animals, indicating that it arose early in evolution and has been conserved across animal phyla. PMID:24083246

  7. Structural and sequence similarities of hydra xeroderma pigmentosum A protein to human homolog suggest early evolution and conservation.

    PubMed

    Barve, Apurva; Ghaskadbi, Saroj; Ghaskadbi, Surendra

    2013-01-01

    Xeroderma pigmentosum group A (XPA) is a protein that binds to damaged DNA, verifies presence of a lesion, and recruits other proteins of the nucleotide excision repair (NER) pathway to the site. Though its homologs from yeast, Drosophila, humans, and so forth are well studied, XPA has not so far been reported from protozoa and lower animal phyla. Hydra is a fresh-water cnidarian with a remarkable capacity for regeneration and apparent lack of organismal ageing. Cnidarians are among the first metazoa with a defined body axis, tissue grade organisation, and nervous system. We report here for the first time presence of XPA gene in hydra. Putative protein sequence of hydra XPA contains nuclear localization signal and bears the zinc-finger motif. It contains two conserved Pfam domains and various characterized features of XPA proteins like regions for binding to excision repair cross-complementing protein-1 (ERCC1) and replication protein A 70 kDa subunit (RPA70) proteins. Hydra XPA shows a high degree of similarity with vertebrate homologs and clusters with deuterostomes in phylogenetic analysis. Homology modelling corroborates the very close similarity between hydra and human XPA. The protein thus most likely functions in hydra in the same manner as in other animals, indicating that it arose early in evolution and has been conserved across animal phyla.

  8. Extensive population genetic structure in the giraffe

    PubMed Central

    Brown, David M; Brenneman, Rick A; Koepfli, Klaus-Peter; Pollinger, John P; Milá, Borja; Georgiadis, Nicholas J; Louis, Edward E; Grether, Gregory F; Jacobs, David K; Wayne, Robert K

    2007-01-01

    Background A central question in the evolutionary diversification of large, widespread, mobile mammals is how substantial differentiation can arise, particularly in the absence of topographic or habitat barriers to dispersal. All extant giraffes (Giraffa camelopardalis) are currently considered to represent a single species classified into multiple subspecies. However, geographic variation in traits such as pelage pattern is clearly evident across the range in sub-Saharan Africa and abrupt transition zones between different pelage types are typically not associated with extrinsic barriers to gene flow, suggesting reproductive isolation. Results By analyzing mitochondrial DNA sequences and nuclear microsatellite loci, we show that there are at least six genealogically distinct lineages of giraffe in Africa, with little evidence of interbreeding between them. Some of these lineages appear to be maintained in the absence of contemporary barriers to gene flow, possibly by differences in reproductive timing or pelage-based assortative mating, suggesting that populations usually recognized as subspecies have a long history of reproductive isolation. Further, five of the six putative lineages also contain genetically discrete populations, yielding at least 11 genetically distinct populations. Conclusion Such extreme genetic subdivision within a large vertebrate with high dispersal capabilities is unprecedented and exceeds that of any other large African mammal. Our results have significant implications for giraffe conservation, and imply separate in situ and ex situ management, not only of pelage morphs, but also of local populations. PMID:18154651

  9. Extensive population genetic structure in the giraffe.

    PubMed

    Brown, David M; Brenneman, Rick A; Koepfli, Klaus-Peter; Pollinger, John P; Milá, Borja; Georgiadis, Nicholas J; Louis, Edward E; Grether, Gregory F; Jacobs, David K; Wayne, Robert K

    2007-12-21

    A central question in the evolutionary diversification of large, widespread, mobile mammals is how substantial differentiation can arise, particularly in the absence of topographic or habitat barriers to dispersal. All extant giraffes (Giraffa camelopardalis) are currently considered to represent a single species classified into multiple subspecies. However, geographic variation in traits such as pelage pattern is clearly evident across the range in sub-Saharan Africa and abrupt transition zones between different pelage types are typically not associated with extrinsic barriers to gene flow, suggesting reproductive isolation. By analyzing mitochondrial DNA sequences and nuclear microsatellite loci, we show that there are at least six genealogically distinct lineages of giraffe in Africa, with little evidence of interbreeding between them. Some of these lineages appear to be maintained in the absence of contemporary barriers to gene flow, possibly by differences in reproductive timing or pelage-based assortative mating, suggesting that populations usually recognized as subspecies have a long history of reproductive isolation. Further, five of the six putative lineages also contain genetically discrete populations, yielding at least 11 genetically distinct populations. Such extreme genetic subdivision within a large vertebrate with high dispersal capabilities is unprecedented and exceeds that of any other large African mammal. Our results have significant implications for giraffe conservation, and imply separate in situ and ex situ management, not only of pelage morphs, but also of local populations.

  10. Early events of polyoma infection: adsorption, penetration and nuclear transport

    NASA Technical Reports Server (NTRS)

    Consigli, R. A.; Haynes, J. I. Jr; Chang, D.; Grenz, L.; Richter, D.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Polyoma virions have different attachment proteins which are responsible for hemagglutination of erythrocytes and attachment to cultured mouse kidney cells (MKC). Virion binding studies demonstrated that MKC possess specific (productive infection) and nonspecific (nonproductive) receptors. Empty polyoma capsids have hemagglutination activity and bind to non-specific MKC receptors, but they are not capable of competing for specific virion cell receptors or preventing productive infection. Isoelectric focusing of the virion major capsid protein, VP1, separated this protein into six species (A through F). These species had identical amino acid sequences, but differed in degree of modification (phosphorylation, acetylation, sulfation and hydroxylation). Evidence based upon precipitation with specific antisera supports the view that VP1 species E is required for specific adsorption and that D and F are required for hemagglutination. The virion attachment domain has been localized to an 18 kilodalton fragment of the C-terminal region of VP1. Monopinocytotic vesicles containing 125I-labeled polyoma virions were isolated from infected MKC. A crosslinker was used to bind the MKC cell receptor(s) covalently to VP1 attachment protein, and a new 120 kilodalton band was identified by SDS-PAGE. An anti-idiotype antibody prepared against a neutralizing polyoma monoclonal antiody was used to identify a putative 50 kilodalton receptor protein from a detergent extract of MKC, as well as from MKC membrane preparation.

  11. The RNA-editing deaminase ADAR is involved in stress resistance of Artemia diapause embryos.

    PubMed

    Dai, Li; Liu, Xue-Chen; Ye, Sen; Li, Hua-Wei; Chen, Dian-Fu; Yu, Xiao-Jian; Huang, Xue-Ting; Zhang, Li; Yang, Fan; Yang, Jin-Shu; Yang, Wei-Jun

    2016-11-01

    The most widespread type of RNA editing, conversion of adenosine to inosine (A→I), is catalyzed by two members of the adenosine deaminase acting on RNA (ADAR) family, ADAR1 and ADAR2. These enzymes edit transcripts for neurotransmitter receptors and ion channels during adaption to changes in the physical environment. In the primitive crustacean Artemia, when maternal adults are exposed to unfavorable conditions, they release diapause embryos to withstand harsh environments. The aim of the current study was therefore to elucidate the role of ADAR of Artemia diapause embryos in resistance to stress. Here, we identified Artemia ADAR (Ar-ADAR), which harbors a putative nuclear localization sequence (NLS) and two double-stranded RNA-binding motifs (dsRBMs) in the amino-terminal region and an adenosine deaminase (AD) domain in the carboxyl-terminal region. Western blot and immunofluorescence analysis revealed that Ar-ADAR is expressed abundantly in post-diapause embryos. Artemia (n = 200, three replicates) were tested under basal and stress conditions. We found that Ar-ADAR was significantly induced in response to the stresses of salinity and heat-shock. Furthermore, in vivo knockdown of Ar-ADAR (n = 100, three replicates) by RNA interference induced formation of pseudo-diapause embryos, which lack resistance to the stresses and exhibit high levels of apoptosis. These results indicate that Ar-ADAR contributes to resistance to stress in Artemia diapause embryos.

  12. Ancient drainage basin of the Tharsis region, Mars: Potential source for outflow channel systems and putative oceans or paleolakes

    USGS Publications Warehouse

    Dohm, J.M.; Ferris, J.C.; Baker, V.R.; Anderson, R.C.; Hare, T.M.; Strom, R.G.; Barlow, N.G.; Tanaka, K.L.; Klemaszewski, J.E.; Scott, D.H.

    2001-01-01

    Paleotopographic reconstructions based on a synthesis of published geologic information and high-resolution topography, including topographic profiles, reveal the potential existence of an enormous drainage basin/aquifer system in the eastern part of the Tharsis region during the Noachian Period. Large topographic highs formed the margin of the gigantic drainage basin. Subsequently, lavas, sediments, and volatiles partly infilled the basin, resulting in an enormous and productive regional aquifer. The stacked sequences of water-bearing strata were then deformed locally and, in places, exposed by magmatic-driven uplifts, tectonic deformation, and erosion. This basin model provides a potential source of water necessary to carve the large outflow channel systems of the Tharsis and surrounding regions and to contribute to the formation of putative northern-plains ocean(s) and/or paleolakes. Copyright 2001 by the American Geophysical Union.

  13. Mapping of aldose reductase gene sequences to human chromosomes 1, 3, 7, 9, 11, and 13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, J.B.; Kojis, T.; Heinzmann, C.

    1993-09-01

    Aldose reductase (alditol:NAD(P)+ 1-oxidoreductase; EC 1.1.1.21) (AR) catalyzes the reduction of several aldehydes, including that of glucose, to the corresponding sugar alcohol. Using a complementary DNA clone encoding human AR, the authors mapped the gene sequences to human chromosomes 1, 3, 7, 9, 11, 13, 14, and 18 by somatic cell hybridization. By in situ hybridization analysis, sequences were localized to human chromosomes 1q32-q43, 3p12, 7q31-q35, 9q22, 11p14-p15, and 13q14-q21. As a putative functional AR gene has been mapped to chromosome 7 and a putative pseudogene to chromosome 3, the sequences on the other seven chromosomes may represent other activemore » genes, non-aldose reductase homologous sequences, or pseudogenes. 24 refs., 3 figs., 2 tabs.« less

  14. Chromosomal localization of the mouse Src-like adapter protein (Slap) gene and its putative human homolog SLA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angrist, M.; Chakravarti, A.; Wells, D.E.

    1995-12-10

    Molecules containing Src-homology 2 (SH2) and Src-homology 3 (SH3) domains are critical components of signal transduction pathways that serve to relay signals originating from the cell surface to the interior of the cell. Src-like adapter protein (SLAP) is a recently described adapter protein that binds activated the Eck receptor protein-tyrosine kinase. Although SLAP bears a striking homology to the SH3 and SH2 domains of the Src family of nonreceptor tyrosine kinases, it does not contain a tyrosine kinase catalytic domain. In this report, the Slap gene was mapped by linkage analysis to mouse chromosome 15, while its putative human homologmore » (SLA) was identified and mapped to human 8q22.3-qter using a panel of somatic cell hybrids. 10 refs., 2 figs.« less

  15. IE1 and hr facilitate the localization of Bombyx mori nucleopolyhedrovirus ORF8 to specific nuclear sites.

    PubMed

    Kang, WonKyung; Imai, Noriko; Kawasaki, Yu; Nagamine, Toshihiro; Matsumoto, Shogo

    2005-11-01

    The Bombyx mori nucleopolyhedrovirus (BmNPV) ORF8 protein has previously been reported to colocalize with IE1 to specific nuclear sites during infection. Transient expression of green fluorescent protein (GFP)-fused ORF8 showed the protein to have cytoplasmic localization, but following BmNPV infection the protein formed foci, suggesting that ORF8 requires some other viral factor(s) for this. Therefore, interacting factors were looked for using the yeast two-hybrid system and IE1 was identified. We mapped the interacting region of ORF8 using a yeast two-hybrid assay. An N-terminal region (residues 1-110) containing a predicted coiled-coil domain interacted with IE1, while a truncated N-terminal region (residues 1-78) that lacks this domain did not. In addition, a protein with a complete deletion of the N-terminal region failed to interact with IE1. These results suggest that the ORF8 N-terminal region containing the coiled-coil domain is required for the interaction with IE1. Next, whether IE1 plays a role in ORF8 localization was investigated. In the presence of IE1, GFP-ORF8 localized to the nucleus. In addition, cotransfection with a plasmid expressing IE1 and a plasmid containing the hr3 element resulted in nuclear foci formation. A GFP-fused ORF8 mutant protein containing the coiled-coil domain, previously shown to interact with IE1, also formed nuclear foci in the presence of IE1 and hr3. However, ORF8 mutant proteins that did not interact with IE1 failed to form nuclear foci. In contrast to wild-type IE1, focus formation was not observed for an IE1 mutant protein that was deficient in hr binding. These results suggest that IE1 and hr facilitate the localization of BmNPV ORF8 to specific nuclear sites.

  16. Nuclear uptake and dosimetry of 64Cu-labeled chelator somatostatin conjugates in an SSTr2-transfected human tumor cell line.

    PubMed

    Eiblmaier, Martin; Andrews, Rebecca; Laforest, Richard; Rogers, Buck E; Anderson, Carolyn J

    2007-08-01

    64Cu radiopharmaceuticals have shown tumor growth inhibition in tumor-bearing animal models with a relatively low radiation dose that may be related to nuclear localization of the 64Cu in tumor cells. Here we address whether the nuclear localization of 64Cu from a 64Cu-labeled chelator-somatostatin conjugate is related to the dissociation of the radio-copper from its chelator. The 64Cu complex of 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid (TETA) has demonstrated instability in vivo, whereas 64Cu-CB-TE2A (CB-TE2A is 4,11-bis(carboxymethyl)-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane) was highly stable. Receptor binding, nuclear uptake, internalization, and efflux assays were performed to characterize the interaction with the somatostatin receptor and the intracellular fate of 64Cu-labeled chelator-peptide conjugates in A427-7 cells. From these data, the absorbed dose to cells was calculated. 64Cu-TETA-Y3-TATE (64Cu-[1]) and 64Cu-CB-TE2A-Y3-TATE (64Cu-[2]) had high affinity for somatostatin receptor subtype 2 (SSTr2) in A427-7 cells. After 3 h, 64Cu-[2] showed greater internalization (>30%) compared with 64Cu-[1] (approximately 15%). There was uptake of 64Cu-[1] in nuclei of 427-7 cells (9.4% +/- 1.7% at 24 h), whereas 64Cu-[2] showed minimal nuclear accumulation out to 24 h (1.3% +/- 0.1%). A427-7 cells were exposed to 0.40 Gy from 64Cu-[1] and exposed to 1.06 Gy from 64Cu-[2]. External beam irradiation of A427-7 cells showed <20% cell killing at 1 Gy. These results are consistent with our hypothesis that dissociation of 64Cu from TETA leads to nuclear localization. Dosimetry calculations indicated that the nuclear localization of 64Cu-[1] was not significant enough to increase the absorbed dose to the nuclei of A427-7 cells. These studies show that 64Cu localization to cell nuclei from internalizing, receptor-targeted radiopharmaceuticals is related to chelate stability.

  17. Identification and qualification of 500 nuclear, single-copy, orthologous genes for the Eupulmonata (Gastropoda) using transcriptome sequencing and exon capture.

    PubMed

    Teasdale, Luisa C; Köhler, Frank; Murray, Kevin D; O'Hara, Tim; Moussalli, Adnan

    2016-09-01

    The qualification of orthology is a significant challenge when developing large, multiloci phylogenetic data sets from assembled transcripts. Transcriptome assemblies have various attributes, such as fragmentation, frameshifts and mis-indexing, which pose problems to automated methods of orthology assessment. Here, we identify a set of orthologous single-copy genes from transcriptome assemblies for the land snails and slugs (Eupulmonata) using a thorough approach to orthology determination involving manual alignment curation, gene tree assessment and sequencing from genomic DNA. We qualified the orthology of 500 nuclear, protein-coding genes from the transcriptome assemblies of 21 eupulmonate species to produce the most complete phylogenetic data matrix for a major molluscan lineage to date, both in terms of taxon and character completeness. Exon capture targeting 490 of the 500 genes (those with at least one exon >120 bp) from 22 species of Australian Camaenidae successfully captured sequences of 2825 exons (representing all targeted genes), with only a 3.7% reduction in the data matrix due to the presence of putative paralogs or pseudogenes. The automated pipeline Agalma retrieved the majority of the manually qualified 500 single-copy gene set and identified a further 375 putative single-copy genes, although it failed to account for fragmented transcripts resulting in lower data matrix completeness when considering the original 500 genes. This could potentially explain the minor inconsistencies we observed in the supported topologies for the 21 eupulmonate species between the manually curated and 'Agalma-equivalent' data set (sharing 458 genes). Overall, our study confirms the utility of the 500 gene set to resolve phylogenetic relationships at a range of evolutionary depths and highlights the importance of addressing fragmentation at the homolog alignment stage for probe design. © 2016 John Wiley & Sons Ltd.

  18. Nonrandom patterns of genetic admixture expose the complex historical hybrid origin of unisexual leaf beetle species in the genus Calligrapha.

    PubMed

    Montelongo, Tinguaro; Gómez-Zurita, Jesús

    2015-01-01

    Many unisexual animal lineages supposedly arose from hybridization. However, support for their putative hybrid origins mostly comes from indirect methodologies, which are rarely confirmatory. Here we provide compelling data indicating that tetraploid unisexual Calligrapha are true genetic mosaics obtained via analysis of mitochondrial DNA (mtDNA) and allelic variation and coalescence times for three single-copy nuclear genes (CPS, HARS, and Wg) in five of six unisexual Calligrapha and a representative sample of bisexual species. Nuclear allelic diversity in unisexuals consistently segregates in the gene pools of at least two but up to three divergent bisexual species, interpreted as putative parentals of interspecific hybridization crosses. Interestingly, their mtDNA diversity derives from an additional yet undiscovered older evolutionary lineage that is possibly the same for all independently originated unisexual species. One possibly extinct species transferred its mtDNA to several evolutionary lineages in a wave of hybridization events during the Pliocene, whereby descendant species retained a polymorphic mtDNA constitution. Recent hybridizations, in the Pleistocene and always involving females with the old introgressed mtDNA, seemingly occurred in the lineages leading to unisexual species, decoupling mtDNA introgression (and inferences derived from these data, such as timing and parentage) from subsequent acquisition of the new reproductive mode. These results illuminate an unexpected complexity in possible routes to animal unisexuality, with implications for the interpretation of ancient unisexuality. If the origin of unisexuality requires a mechanism where (1) hybridization is a necessary but insufficient condition and (2) multiple bouts of hybridization involving more than two divergent lineages are required, then the origins of several classical unisexual systems may have to be reassessed.

  19. A cysteine protease encoded by the baculovirus Bombyx mori nuclear polyhedrosis virus.

    PubMed Central

    Ohkawa, T; Majima, K; Maeda, S

    1994-01-01

    Sequence analysis of the BamHI F fragment of the genome of Bombyx mori nuclear polyhedrosis virus (BmNPV) revealed an open reading frame whose deduced amino acid sequence had homology to those of cysteine proteases of the papain superfamily. The putative cysteine protease sequence (BmNPV-CP) was 323 amino acids long and showed 35% identity to a cysteine proteinase precursor from Trypanosoma brucei. Of 36 residues conserved among cathepsins B, H, L, and S and papain, 31 were identical in BmNPV-CP. In order to determine the activity and function of the putative cysteine protease, a BmNPV mutant (BmCysPD) was constructed by homologous recombination of the protease gene with a beta-galactosidase gene cassette. BmCysPD-infected BmN cell extracts were significantly reduced in acid protease activity compared with wild-type virus-infected cell extracts. The cysteine protease inhibitor E-64 [trans-epoxysuccinylleucylamido-(4-guanidino)butane] inhibited wild-type virus-expressed protease activity. Deletion of the cysteine protease gene had no significant effect on viral growth or polyhedron production in BmN cells, indicating that the cysteine protease was not essential for viral replication in vitro. However, B. mori larvae infected with BmCysPD showed symptoms different from those of wild-type BmNPV-infected larvae, e.g., less degradation of the body, including fat body cells, white body surface color due presumably to undegraded epidermal cells, and an increase in the number of polyhedra released into the hemolymph. This is the first report of (i) a virus-encoded protease with activity on general substrates and (ii) evidence that a virus-encoded protease may play a role in degradation of infected larvae to facilitate horizontal transmission of the virus. Images PMID:8083997

  20. Colonization and diversification of aquatic insects on three Macaronesian archipelagos using 59 nuclear loci derived from a draft genome.

    PubMed

    Rutschmann, Sereina; Detering, Harald; Simon, Sabrina; Funk, David H; Gattolliat, Jean-Luc; Hughes, Samantha J; Raposeiro, Pedro M; DeSalle, Rob; Sartori, Michel; Monaghan, Michael T

    2017-02-01

    The study of processes driving diversification requires a fully sampled and well resolved phylogeny, although a lack of phylogenetic markers remains a limitation for many non-model groups. Multilocus approaches to the study of recent diversification provide a powerful means to study the evolutionary process, but their application remains restricted because multiple unlinked loci with suitable variation for phylogenetic or coalescent analysis are not available for most non-model taxa. Here we identify novel, putative single-copy nuclear DNA (nDNA) phylogenetic markers to study the colonization and diversification of an aquatic insect species complex, Cloeon dipterum L. 1761 (Ephemeroptera: Baetidae), in Macaronesia. Whole-genome sequencing data from one member of the species complex were used to identify 59 nDNA loci (32,213 base pairs), followed by Sanger sequencing of 29 individuals sampled from 13 islands of three Macaronesian archipelagos. Multispecies coalescent analyses established six putative species. Three island species formed a monophyletic clade, with one species occurring on the Azores, Europe and North America. Ancestral state reconstruction indicated at least two colonization events from the mainland (to the Canaries, respectively Azores) and one within the archipelago (between Madeira and the Canaries). Random subsets of the 59 loci showed a positive linear relationship between number of loci and node support. In contrast, node support in the multispecies coalescent tree was negatively correlated with mean number of phylogenetically informative sites per locus, suggesting a complex relationship between tree resolution and marker variability. Our approach highlights the value of combining genomics, coalescent-based phylogeography, species delimitation, and phylogenetic reconstruction to resolve recent diversification events in an archipelago species complex. Copyright © 2016 Elsevier Inc. All rights reserved.

Top